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Abstract. In recent years, a growing number of breaches targeting cryp-
tocurrency exchanges have damaged the credibility of the entire cryp-
tocurrency ecosystem. To prevent further harm, it’s crucial to detect
the anomalous behaviors hidden within cryptocurrency transactions and
offer predictive suggestions. However, details of transaction records must
be carefully analyzed for effective detection, and this information could
be exploited by adversaries to launch attacks such as de-anonymization
and model interference. As a result, it is essential to prioritize pri-
vacy preservation when designing an anomaly detection system for cryp-
tocurrency transactions. In this paper, we propose a privacy-preserving
anomaly detection (PPad) scheme for cryptocurrency transactions based
on a decision tree model, which achieves privacy preservation by using
additively homomorphic encryption and matrix perturbation techniques.
We also design and implement PPad’s underlying protocol in a cloud out-
sourcing environment. The correctness and privacy properties of PPad
have been proven through detailed analysis. Experimental results show
that our scheme can offer privacy assurance with desirable detection
effectiveness and efficiency, making it suitable for real-world applications.

Keywords: Anomaly detection · Blockchain · Privacy protection ·
Homomorphic encryption · Decision tree

1 Introduction

Cryptocurrency is widely recognized as a significant blockchain application,
which allows users to securely store monetary assets and make anonymous pay-
ments in a decentralized manner. However, the significant economic value of
cryptocurrency has made it a prime target for malicious cyber activities. While
the security and reliability of cryptocurrency are supported by a stack of cryp-
tographic technologies, potential threats can be introduced by various entities in
the cryptocurrency ecosystem, including exchange platforms, wallet providers,
and mining pools. In recent years, growing instances of breaches against Bitcoin
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exchanges have diminished the credibility of Bitcoin ecosystem [13]. In 2014,
Mt.Gox, the leading Bitcoin exchange at that time, filed for bankruptcy as nearly
850,000 BTCs worth over $450 million were stolen. In 2016, Bitfinex reported
that 119,756 BTC valued at approximately $72 million were stolen, causing
the value of BTC to plummet by about 20%. More recently, in January 2022,
Crypto.com lost over $30 million in Bitcoin and Ethereum after being hacked
by unknown reasons. Additionally, there are many cases in which the amount of
tokens stolen is not reported. Therefore, implementing financial regulatory mea-
sures on cryptocurrency exchanges, such as transaction auditing and anomaly
detection, is essential to prevent further token theft. Anomaly detection in cryp-
tocurrency exchanges primarily concentrates on identifying fraudulent activi-
ties within transaction data and offering predictive maintenance suggestions.
Recently, various studies have been presented for anomaly detection in different
blockchain-based digital currencies [1,2,9]. In these works, the details of trans-
actional data need to be thoroughly analyzed for accurate detection. However, if
adversaries misuse this data by connecting it with offline information, the privacy
of cryptocurrency users is at high risk of being compromised. In other words,
adversaries might perform de-anonymization attacks [8]. Even worse, they could
also execute interference [7] and extraction [19] attacks against the detection
model. Therefore, it is vital to consider privacy preservation when designing an
anomaly detection scheme for cryptocurrency transactions. Unfortunately, this
issue has been largely overlooked in existing studies.

In light of this, our research is inspired by the following scenario. Suppose there
is a trusted private server that is capable of collecting cryptocurrency transaction
records, including anomalous records associated with theft activities. By extract-
ing predefined features that represent the characteristics of anomalous transac-
tions from these records, the private server can create a dataset that comprises
transaction features and their classification labels (a normal transaction as “0”
and an abnormal one as “1”). After creating the dataset, the private server trains a
detection model that is subsequently transmitted to a cloud server that provides
anomaly detection services. When a user creates a new transaction on the exchange
platform, the private server extracts its feature vector and sends it to the cloud
server for evaluation of its potential association with malicious activities. After the
cloud server analyzes the transaction, it sends the detection result back to the pri-
vate server. The private server then takes appropriate action based on the severity
of the anomaly. Based on this result, the private server informs the exchange plat-
form whether to proceed with or withdraw the transaction. In this scenario, several
privacy concerns arise. First, the cloud server should not be able to access detailed
information about transaction data. Second, to prevent interference attacks, the
detection model should be kept secret from the cloud server. Third, the detection
result should only be known to the private server.

In addition to privacy concerns, the anomaly detection scheme should also
achieve a high level of detection accuracy to effectively identify fraudulent activ-
ities in cryptocurrency transactions. Furthermore, the scheme should be efficient
enough to be used in real-world situations where large volumes of transactions
need to be processed in real-time.
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Our study introduces a privacy preserving anomaly detection system that
achieves both desirable detection effectiveness and efficiency. To sum up, the
main contributions of this paper are:

– We propose a general framework for privacy-preserving anomaly detection of
cryptocurrency transactions through a secure outsourced computation archi-
tecture.

– Based on this framework, we have designed a two-party protocol that employs
a decision tree classifier. To ensure privacy preservation, we adopt several
techniques, including additively homomorphic encryption and matrix multi-
plication.

– Through a comprehensive security analysis and computational complexity
assessment, we demonstrate that our design can achieve privacy preservation
without excessive computational overhead.

– A comprehensive set of experiments was conducted to evaluate the effective-
ness and efficiency of the detection system. The results indicate that our sys-
tem can be deployed in real-time bitcoin-based anomaly detection scenarios
with excellent performance.

2 Related Works

Recently, several works on anomaly detection of blockchain transactions have
been proposed. Hirshman et al. [6] made the first attempt to figure out atypical
transaction patterns in Bitcoin currency. Pham and Lee [15] used three unsuper-
vised learning methods to detect anomalies in the Bitcoin network by analyzing
the behaviors of suspicious users. However, this work only identified a few cases
of Bitcoin theft. In another work of Pham and Lee [16], they used the laws
of power degree & densification and the local outlier factor method (LOF) to
analyze two graphs of the Bitcoin network for detecting suspicious users and
transactions. Monamo et al. [12] highlighted the advantages of supervised learn-
ing models in detection accuracy. Despite the number of studies on anomaly
detection of blockchain-based transactions, only a few have considered the issue
of privacy protection. In [17], Song et al. introduced a general framework for
anomaly detection in blockchain networks and proposed a corresponding proto-
col, ADaaS. However, due to its implementation based on the computationally
expensive kNN model, the detection performance and effectiveness of ADaaS
require further improvement.

In this paper, we adopt privacy-preserving decision tree (PPDT) to construct
our anomaly detection protocol. Among existing works of PPDT, methods based
on cryptographic technologies are notable for their improved privacy and accu-
racy guarantees. Lindell and Pinkas [10] were the first to design a PPDT training
algorithm by using secure multi-party computation (MPC) and oblivious trans-
fer (OT). For PPDT evaluation, Brickell et al. [4] devised a method by combining
Homomorphic encryption (HE) and MPC. Bost et al. [3] used a fully HE-based
method and represented the decision tree as a polynomial to enable private eval-
uation. For better efficiency, Wu et al. [20] introduced additively HE (AHE)
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and OT into their scheme. Tai et al. [18] further improved the work in [20].
More recently, Cock et al. [5] adopted secret sharing (SS) to propose a PPDT
evaluation method suitable for small trees.

3 Preliminary

This section provides an overview of the essential concepts and techniques that
underpin our design. More specifically, we will introduce the Paillier cryptosys-
tem, which offers privacy assurances, and the decision tree classifier, which is
the underlying model of anomaly detection.

3.1 Paillier Cryptosystem

In this work, we adopt the additively homomorphic encryption scheme Paillier
[14] for its efficiency and practicability. In its most basic variant, Paillier scheme
is described as follows:

– Pai.KeyGeneration Select two large prime numbers p, q. Compute n = pq
and λ = lcm(p − 1, q − 1), where lcm is the least common multiple. Select
g ∈ Z

∗
n2 as a random integer while ensuring that n divides the order of g

by checking the existence of the following modular multiplicative inverse,
μ = (L(gλmodn2))−1modn, where L(x) = x−1

n . The public key is pk = (n, g)
and the private key sk = (λ, μ).

– Pai.Encryption To encrypt a message, we first select a random integer r ∈
Z

∗
n2 . Then we get the cipher value by computing c = gm × rn mod n2.

– Pai.Decryption A message c ∈ Z
∗
n2 is decrypted by computing m =

L(cλmodn2) × μ mod n.

3.2 Decision Tree

b1b1

b2b2
b3b3

l1l1 l2l2 l3l3 b4b4

l4l4 l5l5

x1 ≤ ω1

x2 ≤ ω2 x3 ≤ ω3

x4 ≤ ω4 x4 > ω4

x3 > ω3x2 > ω2

x1 > ω1

0

0 0

0

1

11

1

Fig. 1. Decision Tree Fig. 2. Decision Table
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Decision Tree is a non-parametric supervised learning method used for classi-
fication and regression. Due to its interpretability, non-parametric nature, and
resilience to outliers, it can model complex, non-linear relationships and auto-
matically select the most informative features, making it beneficial for classifica-
tion tasks such as anomaly detection. In the hierarchical structure of a decision
tree model, a root note, several branches, internal nodes and leaf nodes are
included. An internal node corresponds to a partitioning rule (i.e. the threshold
of a feature), and a leaf node represents a class label. To classify an instance, the
decision tree is traversed from the root node to a leaf node by comparing with
the thresholds at each internal node to determine the path to follow. Figure 1
illustrates the decision tree for a feature vector X = [x1, x2, x3, x4] of a clas-
sification query, where the prediction label set is L = {l1, l2, l3, l4, l5}, and the
threshold vector is W = [ω1, ω2, ω3, ω4].

Here we define a boolean variable bi as a decision indicator for internal node
i. If xi ≤ ωi, bi = 0, else bi = 1. As a result, the decision path to each leaf node
can be interpreted as a boolean string. For instance, the decision path to the leaf
node with prediction label l1 in Fig. 1 is b1 = 0(x1 ≤ ω1) AND b2 = 0(x2 ≤ ω2),
i.e. b1||b2 = 00. Based on this rule, we place all the decision paths of the tree
classifier in a decision table. For the j-th row in the decision table, the first
column stores the decision path of the leaf node corresponding to lj represented
as a boolean string, while the second column stores lj . An internal node not
traveled by is represented as dummy node. We use “∗” to denote its boolean
value. Here “∗” means both 0 and 1. Therefore, each path in the decision table
is an isometric boolean string whose length is the number of internal nodes. For
example, the boolean string for leaf node with l1 in Fig. 1 is 00**, which involves
4 rows, 0000, 0001, 0010, and 0011. Hence, as shown in Fig. 2, the decision table
for the classifier in Fig. 1 has 16 rows.

4 Problem Formulation

In this work, we propose a system model with two entities that enables cloud-
outsourcing anomaly detection while maintaining the privacy of the transaction
data, detection model, and detection result.

4.1 System Model

We propose a cloud outsourcing architecture model as depicted in Fig. 3. This
architecture includes two entities: the Transaction Committer and the Cloud
Server.

Transaction Committer(TC ) is a trusted private server acting as an
agent of secure data exchange between the ledger and the cloud server. The
TC is responsible for receiving large amounts of historical transactions from the
blockchain ledger and training the detection model. In addition, TC also collects
newly generated transactions from the exchange platform.
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Fig. 3. Architecture Model of the System

Cloud Server(CS ) is hosted by a third-party cloud service provider. It
provides storage and computational resources for detecting anomalies in newly
generated transactions using a pre-trained model in encrypted domain.

Once received the historical transactions from cryptocurrency exchange, TC
extracts pre-defined features from each record and creates a feature vector. After
pre-processing, TC generates a dataset for training a decision tree model. To
facilitate subsequent operations, the decision tree model is processed in two
parts: the thresholds of inner nodes and the tree structure. The threshold val-
ues are encrypted by TC using the secret key provided by CS. However, since
CS holds the key of decryption,TC needs additional perturbation operation to
ensure that the returned values are not easily decrypted by CS. As for the tree
structure, TC creates a table to store all the decision paths and their corre-
sponding prediction labels. The decision table is then processed by shuffling the
paths and encrypting the labels before being sent to CS. Both of the perturbed
thresholds and the processed decision table are securely transmitted and stored
in the cloud server for later operations.

Once a new transaction is generated in the cryptocurrency exchange, it is
sent to TC and transformed into a feature vector there. The feature vector is
then encrypted and perturbed before being sent to CS for anomaly detection. CS
uses pre-stored perturbed thresholds to calculate a value and extract a boolean
string after decryption and comparison operations. The boolean string is then
searched in the decision table to find its corresponding label, which is sent to
TC for decryption. If the label indicates an anomalous transaction, an alert is
sent to the exchange to withdraw the transaction.

4.2 Threat Model

In our model, TC is an honest party while CS is semi-honest. That is to say,
it would strictly follow the protocol but may try to record intermediate results
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during the execution and learn additional information from them. For instance,
CS may record the encrypted feature vectors and attempt to recover the raw
transaction data by conducting de-anonymization attacks. CS may also extract
the topology and key parameters of the detection model to conduct interference
attacks by sending anomaly detection queries. To mitigate the potential threats,
we adopt encryption and perturbation techniques to prevent CS from learning
sensitive information about the data and model.

4.3 Design Goals

To ensure privacy-preserving and efficient anomaly detection for blockchain-
based transactions, the proposed scheme should satisfy the following require-
ments:
– Data privacy: The historical transaction records, newly-created transac-

tions, and detection results are confidential and must not be exposed to CS
or any other adversaries. Intermediate values during outsourcing and detec-
tion processing must also be kept private and not inferred by others.

– Detection model privacy: Model parameters such as threshold vector and
tree structure, obtained by training plaintext data, must remain confidential
from the cloud server and other adversaries.

– Detection performance: The anomaly detection system should achieve
desirable detection effectiveness while minimizing the additional overhead
caused by privacy protection operations.

5 Design and Implementation

In this section, we introduce PPad (Privacy Preserving Anomaly Detection), a
two-party privacy- preserving anomaly detection scheme based on decision tree
classifier.

5.1 Initialization

During this phase, we obtain a decision tree classification model and transform
it to a table that stores all the potential decision paths and their respective
labels. We also extract the threshold vector used for comparison operations in
the following phase.

Upon receiving a set of labeled historical transaction records, TC extracts
pre-defined features from each record to represent it as a feature vector ttti =
[ti1, ti2, ..., tif ], where f is the number of features. With these feature vectors
and their labels (the label of ttti is li ∈ 0, 1, where li = 1 denotes that ttti is anoma-
lous), a dataset for training is created. Next, TC uses CART classification algo-
rithm [11] to train a decision tree classifier clf with m internal nodes and n leaf
nodes. The threshold at each internal node forms a vector W = [ω1, ω2, ..., ωm].
According to the comparison result with the each threshold, the decision path
is represented as a boolean string b1 ‖ b2 ‖ ... ‖ bm, bi is either 0 or 1. TC can
thereby create a decision table, DT, which is composed of 2 columns and 2m

rows to store all the decision paths in clf and their respective prediction labels.
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5.2 Key Generation

During the this phase, TC randomly selects an invertible matrix M1 ∈ Zm×m

and computes its inverse M−1
1 , ensuring that M1M

−1
1 = I. M1 and M−1

1 are
used for perturbation processing in later phase. Besides, TC generates a ran-
dom permutation π to shuffle boolean variables in DT . TC also generates a pri-
vate/public key pair for a probabilistic encryption scheme that is secure against
chosen plaintext attacks (CPA). For simplicity, we do not provide the specifics
of the CPA-secure probabilistic encryption scheme.

Given the security parameter κ, CS uses Pai.Key Generation to generate
a pair of public and secret keys. After this, CS sends the public key pk = (N, g)
to TC, here N = pq. Meanwhile, the private key sk = (λ, μ) is kept by CS.

5.3 Model Outsourcing

With the vector of thresholds W = [ω1, ω2, ..., ωm] and decision table DT
obtained in Initialization phase, TC uses the encryption parameters gener-
ated in Key Generation phase to process them for meeting the requirements
of secure computation in the next phase.

Firstly, TC computes the additive inverse of each threshold ωi mod N(i =
1, ...,m) which is denoted as −ωi and uses the public key received from CS
to encrypt it as ci =Pai.Encryption(−ωi). TC applies random permutation
π to shuffle ccc = [c1, c2, ..., cm], resulting in ccc∗ = [c∗

1, c
∗
2, ..., c

∗
m]. Using c∗c∗c∗, TC

constructs a diagonal matrix C∗ as:

C∗ =

⎛
⎜⎜⎜⎝

c∗
1 0 · · · 0
0 c∗

2 · · · 0
...

...
...

...
0 0 · · · c∗

m

⎞
⎟⎟⎟⎠

TC randomly chooses a lower triangular matrix Q ∈ Zm×m, where the elements
in the main diagonal are all equal to 1. C∗ is then multiplied by Q and the
perturbation parameter M1 to obtain C as C = QC∗M1.

Next, TC applies the random permutation π to each decision path pj , (j =
1, 2, ..., 2m) in DT, generating p′

j = π(pj). Meanwhile, the classification label
lj is encrypted as with a CPA-secure probabilistic encryption algorithm as
l′j =Enc(lj).

After completing the perturbation and shuffling processes, TC sends the
resulting perturbed value C and the shuffled decision table DT’ to CS. Subse-
quently, CS stores these values locally.
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5.4 Anomaly Detection

For the newly generated transaction Tr, TC firstly extracts the pre-defined fea-
tures and created feature vector aaar = [ar1, ar2, ..., arf ]. According to the feature
chosen at each inner node in clf , aaar is expanded to a m-dimensional vector
aaa∗

r = [a∗
r1, a

∗
r2, ..., a

∗
rm]. Following this, each component in aaa∗

r is encrypted using
Paillier algorithm as crj =Pai.Encryption(a∗

rj)(j = 1, 2, ...,m).
Secondly, TC applies random permutation π to shuffle cccr = [cr1, cr2, ..., crm]

as ccc∗
r = [c∗

r1, c
∗
r2, ..., c

∗
rm]. Using ccc∗ , TC constructs a diagonal matrix C∗

r in the
same form as C∗.

Thirdly, TC uses the perturbation parameter M−1 to compute Cr = M−1
1 C∗

r .
Cr is thereby sent to CS for subsequent detection processing.

Upon receiving the perturbed result Cr, CS uses the pre-stored matrix C to
compute D = CCr, where the diagonal element di(i = 1, 2, ...,m) is decrypted
as ei = Pai.Decryption(di).

Subsequently, ei is used to compare with N/2. The comparison result is
denoted as a boolean variant bri. If ei ≤ N/2, bri = 1, else bri = 0. As a result,
the m comparison results bri, i = 1, 2, ...,m are stored in a boolean sequence
bbbr = [br1, br2, ..., brm]. CS then searches the shuffled decision table DT ′ to find
the item that matches bbbr and obtains its corresponding label lenc. After this,
the encrypted classification label lenc is sent to TC. TC decrypts lenc to get the
final detection result rd.
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6 Security Analysis

In this section, we will analyze the security properties of the proposed scheme.
Firstly, we will prove the correctness of PPad protocol through theoretical anal-
ysis. Secondly, we will examine the privacy properties of data processed in the
outsourcing and detection phases. Thirdly, we will demonstrate that the detec-
tion model is also kept private from the cloud server.

Theorem 1. (Correctness) If the protocols described in Sect. 5 are honestly fol-
lowed by TC and CS, TC will obtain the correct detection result eventually.

Proof. As previously mentioned, for a newly created transaction Tr, its feature
vector aaar is expanded to a m-dimensional vector aaa∗

r and each component is
encrypted by Paillier algorithm to obtain cccr. The shuffled sequence ccc∗

r = π(cccr)
is used to construct diagonal matrix C∗

r . After this, C∗
r is perturbed as Cr =
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M−1
1 C∗

r , where M−1
1 is the inverse of M1. During the anomaly detection phase,

CS uses Cr and the pre-stored C to computeD = CCr = (QC∗M1)(M−1
1 C∗

r ) =
QC∗IC∗

r = QC∗C∗
r . Since Q is a lower triangular matrix with all elements equal

to 1 in the main diagonal, and both C∗ and C∗
r are diagonal matrices, the main

diagonal elements of D can be computed as dk = c∗
kc∗

rk, where k = 1, 2, ...,m.
For c∗

kc∗
rk = g−ωkrN

k garkr′N
k = gark−ωk(rkr′

k)
N , using the additive homomorphic

properties of Paillier algorithm, we know that the result of decrypting c∗
kc∗

rk is
ek = ark − ωk mod N , which represents the comparison between the feature
value and threshold of the corresponding inner node. Based on the properties
of modulo computation, we can infer that if ark ≥ ωk, the decryption value
ek ≤ N/2 (br = 1), else if ark < ωk, ek > N/2 (br = 0). Therefore, the boolean
sequence bbbr = [br1, br2, ..., brm] denotes the decision path in the tree model for Tr.
By searching the decision table DT ′ with bbbr, we can retrieve the corresponding
encrypted classification label lenc. After decryption by TC, the final detection
result is obtained.

Theorem 2. (Data Privacy) In the execution of our protocol, CS does not have
access to any information about the transaction to be detected.

Proof. During the anomaly detection phase, the m-dimensional feature vector
aaa∗

r of Tr is encrypted by Paillier algorithm in a similar manner to the threshold
vector during the model outsourcing phase. TC then shuffles aaa∗

r using π and
constructs a diagonal matrix C∗

r . Finally, the perturbation value Cr = M−1
1 C∗

r

is sent to CS. Since CS knows nothing about M−1
1 and its inverse M1, it cannot

obtain the shuffled ciphertext of aaar in the main diagonal of C∗
r from Cr. There-

fore, CS cannot decrypt any information about Tr. During the detection process-
ing of Tr, CS only computes the product of Cr and the pre-stored C = QC∗M1.
In this step, CS only gets the shuffled product of threshold and Tr’s correspond-
ing feature in encrypted version. Therefore, no information about the transaction
Tr is disclosed to CS.

Theorem 3. (Model Privacy) During the execution of our protocol, CS cannot
infer any additional information about the decision tree model.

Proof. TC divides the pre-trained model into two parts, the threshold vector
W , and the decision table DT . For each threshold ωi ∈ W (i = 1, 2, ...,m), TC
first encrypts it as ci = g−ωirN

i mod N2. Then, using a random perturbation
π, ccc = [c1, c2, ..., cm] is shuffled to obtain ccc∗ = [c∗

1, c
∗
2, ..., c

∗
m], which is used to

construct the diagonal matrix C∗. Finally, TC computes C = QC∗M1 and sends
it to CS. In the previous section, it was explained that the matrix Q is a lower
triangular matrix with the main diagonal consisting of m elements equal to 1,
and M1 is an invertible matrix. Even though CS possesses the decryption key,
it is still unable to decrypt the value of the thresholds without any knowledge
about M1. While during the phase of anomaly detection, TC computes the
perturbation value of Tr’s feature vector as Cr = M−1

1 C∗
r and sends it to CS.

CS can only obtain the product of perturbation values C and Cr. Since Q,
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M1, and M−1
1 are randomly selected parameters, CS can not deduce anything

about C∗ from this product value. Therefore, it is impossible for CS to know
the plaintext version of W by decrypting C∗.

As for the decision table DT, each row in it indicates a boolean string of
decision path, which is shuffled by TC with a random permutation π. As a
result, the order of each dimension in the boolean string is disrupted in the new
decision table DT’. Even if CS or another attacker obtains DT’, they can only
guess the value of original decision path with a probability of 1

2m . Moreover,
the corresponding label of the boolean decision path is encrypted by TC who
also holds the key of decryption. Thus, both the threshold information and the
structure of decision tree are well protected and cannot be easily used by CS to
deduce additional information.

7 Experiments and Evaluation

7.1 Effectiveness and Efficiency Experiments

We used a dataset that contains 6010 Bitcoin transaction records (including 454
theft-related records), where each record is depicted as a 9-dimensional feature.
For more details, please refer to [17]. Our experimental setup consisted of two
servers, both equipped with Intel i9-9980XE 36-core 3.00GHz processor and
128 GB memory, running Windows 10. One server acted as the transaction
committer, while the other served as the cloud server. The implementation of
our system was developed in Python3, using libraries such as gmpy2, numpy, and
pandas. The decision tree model was trained non-privately using scikit-learn.
Two sets of experiments were conducted to evaluate the detection effectiveness
and efficiency of our proposed scheme PPad. The experiments were divided into
4 subgroups, each with a training dataset of size 1000, 2000, 3000 and 4206. In
each subgroup, we varied the maximum depth of decision tree, which reflects the
complexity of the model. Furthermore, we also compared our results to those
presented by Song et al. in [17] (see Apeendix).

Figure 4 illustrates the effectiveness of PPad in anomaly detection with dif-
ferent sizes of training datasets. The accuracy, precision, recall, and F1 score are
measured for 1803 randomly selected testing samples. It can be observed that
these indicators increase with max depth in most cases. The detection accuracy
stays above 95%, and as the max depth grows, it gradually approaches 100%.
The detection precision, ranging from 59% to 97%, grows consistently with max
depth. Additionally, for a given maximum depth, the model trained with more
samples achieves a higher detection precision. The recall score shows several
turning points in the plots when the size of the training set is 3000 and 4206,
which means that it does not increase with max depth within certain ranges.
However, for max depth bigger than 5, the recall score is close to 100%. In all
of these four cases, the F1 score increases steadily with max depth. It should be
noted that the maximum value of max depth for each training set varies since it
depends on the minimum number of samples required to split an internal node.
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Fig. 4. Detection effectiveness with different size of training dataset.
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(c) Size of training dataset=3000

A
ve

ra
ge

 d
et

ec
tio

n 
tim

e 
(m

s)

0

100

200

300

Max depth
2 3 4 5 6 7 8 9

(d) Size of training dataset=4206

Fig. 5. Tavg of model trained with different size of training dataset.

To evaluate the efficiency of the PPad, we measure the average time for detect-
ing a single transaction record. The average detection time Tavg is defined as the
total running time divides the number of testing samples. The total running time
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is the sum of initialization time, key generation time, model outsourcing time,
and anomaly detection time. As is shown in Fig. 5, PPad only requires millisec-
onds of time to detect a newly-created transaction. Assume the average size for
each transaction record in a bitcoin block is 550 bytes, a 1 MB block contains
about 1818 transaction records. Since the block time on the bitcoin blockchain
is roughly 10min, the upper bound of Tavg is 330 ms. As is shown in Fig. 5, Tavg

grows steadily with max depth and size of training set. The maximum value of
Tavg is 341.14 ms when the size of training set is 4206 with max depth at 9. How-
ever, except for this point, all the other experimental results are below 330 ms.
Therefore, our scheme is feasible for real-world scenarios in Bitcoin exchanges.
We have observed that there is a trade-off between detection effectiveness and
efficiency in our analysis. Better detection effectiveness is achieved at the cost
of reduced detection efficiency. Hence, it is crucial to select suitable parameters
that achieve a trade-off between effectiveness and efficiency to obtain an ideal
detection model.

7.2 Complexity Analysis

In this part, we evaluate the computation and communication complexity of
PPad scheme. With respect to computation cost, we focus on computationally
expensive operations such as encryption and decryption, while omitting the cost
of other operations such as matrix multiplication and permutation. During the
Model Outsourcing phase, TC encrypts the inverse of each threshold at m
internal nodes and uses matrix multiplication to randomize these ciphertexts.
Hence, the computation complexity of TC in this phase is m Paillier encryption
operations. During the Anomaly Detection phase, TC encrypts each dimen-
sion of an expanded feature vector. Since the number of testing samples is t,
the computation complexity of TC in this phase is mt Paillier encryption oper-
ations. As for CS, it computes the product of perturbed detection query and
then decrypts the eigenvalues. Therefore, the comutation complexity of CS dur-
ing the Anomaly Detection phase is mt Paillier decryption operations. With
respect to communication cost, we consider the bandwidth and communication
rounds. For each query, the bandwidth is O(m2) and 2 communication rounds are

Table 1. Performance Comparison (m: Number of internal nodes, n: Number of leaf
nodes, d: Max depth, f : Number of features, t: Number of detection queries.)

Schemes Privacy
Strategies

Communication
Complexity

Rounds of
Communication

Server
Complexity

Client
Complexity

[4] HE+GC O(m + n) ≈ 5 N/A N/A
[3] FHE/SWHE O(m) ≥ 6 O(mf) O((m + t)f)

[20] AHE+OT O(m) 6 O(mf + 2d) O((m + t)f + d)

[18] AHE O(m) 4 O(mf) O((m + t)f))

[5] SS O(m + n) ≈ 9 O(mf + 2d) O((m + t)f + d)

Ours AHE+Matrix
Perturbation

O(m2) 2 O(mt) O(mt)
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required. In Table 1, we compare the computation and communication complex-
ities of PPad with those of other related works in PPDT. The results show that
PPad has low computation complexity and communication rounds but requires
more bandwidth due to the combination of matrix multiplication and homo-
morphic encryption. However, since m is usually a small number, our protocol
achieves better computation efficiency with reasonable bandwidth.

8 Conclusion

Our paper presents an efficient privacy-preserving anomaly detection scheme
for blockchain-based cryptocurrency transactions in a cloud outsourcing envi-
ronment. The scheme is based on a decision tree model, which is pre-trained in
plaintext and sent to the cloud server after decryption and perturbation process-
ing to ensure the privacy of transaction data and the final detection result. Our
design also prevents the cloud server from inferring additional information from
the detection model, thereby protecting against potential attacks such as model
extraction or interference. Future work will focus on enhancing privacy protec-
tion during tree model training by utilizing MPC techniques and exploring the
integration of ensemble learning methods to further improve the performance
and effectiveness of our scheme.
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A Appendix

In this part, we compare PPad scheme and ADaaS in [17] through theoretical
analysis and experiments. From theoretical level, we analyze the detection model,
privacy strategies, complexities, and contribution of these two schemes, which are
summarized in Table 2. Generally speaking, Paillier operations take more time
than VHE operations due to their bit-by-bit nature. However, in the context of
this paper, the dimension of a transaction vector is 9, and the number of internal
nodes, m, is much smaller than the number of training samples, n (where m is
under 100 and n is over 1000). As a result, based on the real parameter settings,
PPad scheme is more efficient than ADaaS, a fact which is later confirmed by
experimental results.
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Table 2. Overall comparison between ADaaS and PPad. (m: number of internal nodes,
n: number of training samples, Ev: the execution time of one VHE encryption, IPv:
the execution time of one VHE inner product, Ep: the execution time of one Paillier
encryption, Dp: the execution time of one Paillier decryption.)

Scheme Detection
Model

Privacy
Strategies

Rounds of
Communication

Computation
Complexity

Contribution

ADaaS kNN VHE+Matrix
Perturbation

2 Ev + nIPv General
framework

PPaD Decision
Tree

AHE+Matrix
Perturbation

2 m(Ep +Dp) Practical for
real-time
detection

The comparative experiments of effectiveness and efficiency are divided into
7 subgroups by varying the size of training dataset from 1000 to 4206, while
the number of testing samples is 1803. We set the maximum depth of decision
tree in PPad scheme to 5,resulting the value of m ranging from 23 to 35, and
we set the modulus number for Paillier to N = 512. As for ADaaS, we set the
nearest neighbour parameter k to 5, with VHE parameters of m′ = 11, n′ = 12.
In each subgroup, the effectiveness indicators such as accuracy, precision, recall
and F1 score are measured. For assessing the detection efficiency performance,
we measure the average detection time for each transaction record, Tavg.

Table 3. Effectiveness comparison between ADaaS and PPad.

Size of training
dataset

Method Accuracy(%) Precision(%) Recall(%) F1 score(%)

1000 ADaaS 96.73 77.92 82.76 80.27
PPad 98.28 86.54 93.10 89.70

1500 ADaaS 96.67 78.52 80.69 79.59
PPad 98.28 89.58 88.97 89.27

2000 ADaaS 97.06 80.26 84.14 82.15
PPad 98.34 91.97 86.90 89.36

2500 ADaaS 97.17 80.52 85.52 82.94
PPad 98.67 89.03 95.17 92.00

3000 ADaaS 97.34 82.55 84.83 83.67
PPad 98.61 86.14 98.62 91.96

3500 ADaaS 97.45 82.78 86.21 84.46
PPad 98.34 93.89 84.83 89.13

4206 ADaaS 97.84 85.81 87.59 86.69
PPad 98.67 88.54 95.86 92.05
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The results presented in Table 3 indicate that our proposed scheme PPad,
outperforms ADaaS in terms of effectiveness metrics across almost all subgroups,
except for when the training dataset size is 3500, where ADaaS exhibits slightly
higher recall. Regarding detection efficiency, as shown in Fig. 6, both schemes
have similar trends where the average detection time Tavg increases with the size
of the training dataset. However, the increase in Tavg for ADaaS is more rapid
than that of PPad. In general, PPad requires significantly less time to detect
a newly-created transaction in each subgroup. Therefore, it can be concluded
that our proposed scheme PPad offers a more practical solution than ADaaS as it
achieves better detection effectiveness and efficiency.
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Fig. 6. Efficiency comparison between PPad and ADaaS
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