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Abstract. Lightweight primitives have already received a lot of atten-
tion with the growth of resource-constrained devices, and many
lightweight block ciphers such as Midori, MANTIS and QARMA have
been proposed in recent years. In this paper, we present a SAT-aided
search of the optimal (related-tweak) differential characteristics for such
block ciphers combined with the Matsui’s bounding conditions and the
technique of dichotomy. Using this method, we find the optimal differ-
ential characteristics for Midori-128 up to 10 rounds, and the optimal
related-tweak differential characteristics for QARMA-64 and MANTIS
up to 11 rounds and 10 rounds respectively. To obtain better attacks,
we add some constraints into the search model to restrict the number of
active S-boxes for input and output differences. As a result, we give a
differential attack on 12-round Midori-128 based on the found 10-round
differential characteristic with probability 2−115. Moreover, we present a
related-tweak differential attack on 11-round QARMA-64 based on the
optimal 9-round differential characteristic with probability 2−52, which
improves the previous attacks as far as we know.

Keywords: Differential attack · Lightweight block cipher · Matsui’s
bounding conditions · The technique of dichotomy

1 Introduction

In the last decades, more and more lightweight primitives have been widely
used in resource-constrained devices or environments such as RFID tags and
sensor networks. The strong demand from industry has led to the design of a
large number of lightweight block ciphers including PRESENT [6], PRINCE [7],
Midori [2], GIFT [3], SKINNY and MANTIS [4], and QARMA [1], where the
last two block ciphers are also tweakable block ciphers.

Midori is a low-energy lightweight block cipher with SPN structure proposed
by Banik et al. at AISACRYPT 2015, which has two versions with different
block size, i.e., Midori-64 and Midori-128. Banik et al. [2] estimated the number
of differentially active S-boxes for Midori-128, and evaluated that there were no
13-round differential characteristics with probability higher than 2−128. Then,
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Chen et al. [9] utilized a 6-round impossible differential characteristic to present
an impossible differential attack on 10-round Midori-128. In 2019, Zhang et al.
[20] found a 7-round integral distinguisher for Midori-128. Using Midori’s round
function and PRINCE’s refection structure, Beierle et al. presented a low-latency
tweakable block cipher MANTIS, which has a 64-bit block length, and works with
a 128-bit key and 64-bit tweak. Some related-tweak differential characteristics
were found by hand or MILP method [8,11,12]. With the MILP method, Chen
et al. [8] found a 10-round multiple differential characteristic with probability
2−55.98, and derived a related-tweak differential attack on 12-round MANTIS.
QARMA is a new family of lightweight tweakable block ciphers with reflection
feature presented by Avanzi et al. at FSE 2017, which targets some special uses
such as memory encryption and short tags for software security. There are two
variants of QARMA that support block sizes of 64 and 128 bits, denoted by
QARMA-64 and QARMA-128. Subsequently, many various attacks on QARMA-
64 have been proposed [13,14,21,22]. In 2020, Liu et al. [15] proposed an 11-
round related-tweak impossible differential attack with 258.38 chosen plaintexts
and 264.92 encryptions to recover 64 key bits, which didn’t include the outer
whitening keys.

Recently, automatic searching techniques have been used in finding differ-
ential and linear characteristics, such as Mixed-Integer Linear Programming
(MILP) method and Boolean Satisfiability (SAT) method/Satisfiability Mod-
ulo Theories (SMT) method [10]. With SAT method, Sun et al. [17] converted
the Matsui’s bounding conditions [16] into Boolean formulas, and evaluated the
accelerating effect under different sets of bounding conditions. In this way, they
achieved to accelerate the search of differential and linear characteristics for
PRESENT, GIFT, RECTANGLE, LBlock and TWINE [17–19].

Our Contributions. We combine the Matsui’s bounding conditions and the
technique of dichotomy to accelerate the search of differential characteristics for
lightweight block cipher with SAT method in this paper. As a result, we obtain
the optimal differential characteristics for 10-round Midori-128, and the optimal
related-tweak differential characteristics for 11-round QARMA-64 and 10-round
MANTIS respectively. To obtain better attacks on Midori-128, we add some
constraints into the search model to restrict the number of active S-boxes of
input and output differences. Specifically, we find a 10-round differential char-
acteristic with probability 2−115, which has 20 active S-boxes of input and out-
put differences, and present a differential attack on 12-round Midori-128. For
QARMA-64, we add one round at the beginning and the ending of the opti-
mal 9-round related-tweak differential characteristic with probability 2−52, and
present an 11-round differential attack to recover all the master keys. Compared
with previous attacks, our attack has improved the known related-tweak attack
on QARMA-64 with outer whitening keys by one round. The summary of known
attacks is shown in Table 1.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
present a brief review of Midori-128 and QARMA-64. In Sect. 3, we show how
to accelerate the search of optimal differential characteristics with SAT method.
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Then, we give the optimal (related-tweak) differential characteristics for Midori-
128, QARMA-64 and MANTIS. In Sect. 4, we present a differential attack on
12-round Midori-128 based on a 10-round differential characteristic with proba-
bility 2−115. In Sect. 5, we show a related-tweak differential attack on 11-round
QARMA-64 based on the optimal 9-round related-tweak differential character-
istic with probability 2−52. Finally, we present a short conclusion in Sect. 6.

Table 1. Summary of known attacks on QARMA-64

Rounds Method Setting Outer whitening Time Data Memory Ref

9 MITM SK Yes 289 216 289 [14]
10 MITM SK No 2116 253 2116 [21]
10 Impossible differential RK No 263.8 262 237 [22]
10 Statistical saturation RK Yes 259 259 229.6 [13]
11 Impossible differential RK No 264.92 258.38 263.38 [15]
11 Differential RK Yes 265.35 254 264 Sect. 5

2 Preliminaries

2.1 The Lightweight Block Cipher Midori-128

Midori is a family of lightweight block ciphers which is composed of two vari-
ants: Midori-64 and Midori-128. The round function consists of four operations
SubCell, PermuteCells, MixColumns and AddRoundTweakey, which is shown in
Fig. 1. The internal state is divided into sixteen cells

IS =

⎛
⎜⎜⎝

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎞
⎟⎟⎠ .

For Midori-128, the 8 bits (127, 126, 125, 124, 123, 122, 121, 120) are contained in
the 0th cell, and the 8 bits (7, 6, 5, 4, 3, 2, 1, 0) in the 15th cell.

SubCell(S). Midori-128 utilizes four different 8-bit S-boxes SSb0, SSb1, SSb2
and SSb3. The S-box SSbi is applied to the i-th row of the internal state where
0 ≤ i ≤ 3, which consists of the input bit permutation Si

p, the output bit
permutation Si

p−1 and two 4-bit S-boxes Sbi. More details can be referred to [2].

PermuteCells(P ). (P (IS))i = sP (i) for 0 ≤ i ≤ 15, where P is the cell permu-
tation of Midori represented as

P = [0, 10, 5, 15, 11, 1, 14, 4, 6, 12, 3, 9, 13, 7, 8, 2].
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Fig. 1. The lightweight block cipher Midori

Table 2. The S-boxes of Midori-128 and QARMA-64

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

SMidori(x) 1 0 5 3 E 2 F 7 d a 9 B C 8 4 6
SQARMA(x) A D E 6 F 7 3 5 9 8 0 C B 1 2 4

MixColumns(M). Midori utilizes an involutive binary matrix M defined as
follows

M = circ(0, 1, 1, 1) =

⎛
⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ,

and each column of the internal state is multiplied by the matrix M .

AddRoundTweakey. Midori-128 utilizes a 128-bit secret key K, and the
whitening key is wk = K and the round key is Rki = K ⊕ βi for 0 ≤ i ≤ 18
where βi are constants. The j-th bit of Rki is XORed to the j-th bit of the
internal state.

2.2 The Tweakable Block Cipher QARMA-64

QARMA is a family of lightweight tweakable block ciphers proposed in 2017
which has been used by the ARMv8 architecture to support a software protection
feature. QARMA-64 is a three-round Even-Mansour construction shown in Fig. 2
where the first r rounds of the cipher (ignoring initial whitening) differ from the
last r rounds solely by the addition of a non-zero constant α. The internal state
is also divided into sixteen 4-bit cells, and the bits (63, 62, 61, 60) are contained
in the 0th cell.

The Forward Round Function is composed of four operations as follows.

AddRoundTweakey. The round tweakey T = t0‖t1 · · · ‖t15 is XORed to the
internal state. The tweak T is updated by a permutation h and a LFSR ω. First,
the cells are permuted as h(T ) = th(0)‖ · · · ‖th(15) where h = [6, 5, 14, 15, 0, 1, 2, 3,
7, 12, 13, 4, 8, 9, 10, 11]. Then, a LFSR ω updates the tweak cells with indexes
0, 1, 3, 4, 8, 11, 13. For QARMA-64, ω is a maximal period LFSR that maps the
cell (b3, b2, b1, b0) to (b0 ⊕ b1, b3, b2, b1).
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Fig. 2. The tweakable block cipher QARMA

PermuteCells(P ). (P (IS))i = sP (i) for 0 ≤ i ≤ 15, where P is the cell permu-
tation represented as

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

MixColumns(M). Each column of the internal state is multiplied by the matrix
M . The matrix M is defined as follows:

M = circ(0, ρa, ρb, ρc) =

⎛
⎜⎜⎝

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

⎞
⎟⎟⎠ ,

where ρi is just a simple left circular rotation of the element by i bits. For
QARMA-64, a = c = 1 and b = 2, and the matrix is involutory.

SubCell(S). The 4-bit S-box is applied to each cell of the internal state, and
the details are shown in Table 2.

The 128-bit key K is partitioned as w0‖k0, where w0 is 64-bit whitening key
and k0 is 64-bit core key. For encryption, put w1 = (w0 ≫ 1) ⊕ (w0 � 63) and
k1 = k0. For decryption, k0 ⊕ α is used as the core key, and the whitening keys
w0 and w1 are swapped.

3 Searching the Optimal Differential Characteristics
with SAT Method

In this section, we achieve to accelerate the search of differential characteristics
for lightweight block ciphers with SAT method, and present some searching
results for Midori-128, QARMA-64 and MANTIS.

To build a SAT model for a block cipher, we first need to convert differ-
ential propagations of the round function into Boolean formulas. QARMA-64
and MANTIS adopt 4-bit S-boxes, and Midori-128 utilizes 8-bit S-boxes. For
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Midori-128, we divide the 8-bit S-box operation into the 4-bit S-box operation
and the linear permutation operation. Therefore, we only introduce the differ-
ential propagations of the 4-bit S-box operation and the XOR operation in the
following.

XOR Operation. For an n-bit XOR operation, α = (αn−1, · · · , α1, α0) and
β = (βn−1, · · · , β1, β0) are two input differences, and the output difference is
γ = (γn−1, · · · , γ1, γ0). The differential holds if and only if the values of α, β
and γ validate all the assertions in the following.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1

,

where 0 ≤ i ≤ n − 1.

The 4-Bit S-BoxOperation. For a 4-bit S-box S, denote α = (α3, α2, α1, α0) ∈
F
4
2 and β = (β3, β2, β1, β0) ∈ F

4
2 as the input and output differences respec-

tively. The differential distribution tables (DDT) of the S-boxes for Midori-128,
QARMA-64 and MANTIS have five possible values which are 0, 2, 4, 8 and 16, and
the corresponding probabilities are 0, 2−3, 2−2, 2−1 and 1 respectively. For each
S-box, three additional variables p0, p1 and p2 are used to encode the non-zero
differential probability p, and the encoding rules are as follows.

p0 ‖ p1 ‖ p2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

001 if p = 2−1

011 if p = 2−2

111 if p = 2−3

000 if p = 1

.

In this way, we have the opposite number of the binary logarithm of p equals
p0+p1+p2. Then, we define a function f over the 11-bit vector (α3, · · · , α0, β3, · · · ,
β0, p0, p1, p2) as

f(α, β, p) =
{
1 if α → β is a difference progratation with − log2 p = p0 + p1 + p2

0 if α → β doesn’t exist
.

Utilizing Logic Friday, we can derive Boolean formulas of the function
f(α, β, p0, p1, p2).

Setting the Object Function. Based on the above work, we can convert
differential propagations of the round function into Boolean formulas to build a
SAT model. Assume that N S-boxes are involved in a differential characteristic,
the object function is

∑N
j=1(p

(j)
0 + p

(j)
1 + p

(j)
2 ) ≤ k in the SAT model where 2−k

is an initial estimation probability. Then, we can utilize the sequential encoding
method [5] to convert this constraint into CNF formulas.

Once we set the opposite number of the binary logarithm of an estimation
probability as the target value, the SAT model discusses whether the variables
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involved in given Boolean formulas can be consistently replaced by the value True
or False so that the formulas are evaluated to be True. If this is the case, the
formulas are called satisfiable. When the SAT model is satisfiable, we can obtain
a solution that indicates there exists a differential characteristic with probability
higher than or equal to the current probability. In the previous work, the target
value of the object function usually increases by 1 at a time from the initial
value until the SAT model is satisfiable. In order to further accelerate the search
process, we consider using the technique of dichotomy to set the target value.

Algorithm 1. Searching Method with Dichotomy
1: Input: the lower bound LB, the upper bound UB
2: Set AV ← (LB+UB)

2

3: while (true) do
4: Build the SAT model MAV when the target value is set to AV
5: if MAV is satisfiable then
6: if AV ==LB + 1 then
7: Set OP ← AV
8: Break
9: end if

10: Set UB ← AV
11: else
12: if AV ==UB − 1 then
13: Set OP ← UB
14: Break
15: end if
16: Set LB ← AV
17: end if
18: Set AV ← (LB+UB)

2

19: end while
20: return OP

When searching the optimal r-round differential characteristics, a lower
bound LB and an upper bound UB should be given corresponding to the prob-
ability values 2−LB and 2−UB respectively. In our experiments, we usually take
LB = OPr−1 and UB = n × OPr−1, where the optimal probability of (r − 1)-
round characteristic is 2−OPr−1 , and the parameter n should ensure that the
SAT model with probability 2−UB is satisfiable. We compute the average value
AV of UB and LB, and decide to update the lower bound LB or the upper
bound UB to AV by solving the SAT model. When the SAT model MAV is
satisfiable and AV = LB + 1, we know that the optimal probability of r-round
differential characteristic is 2−AV since MLB is unsatisfiable. Similarly, when
the SAT model MAV is unsatisfiable and AV = UB −1, the optimal probability
should be 2−UB . The details are shown in Algorithm 1.

Setting the Bounding Conditions. To accelerate the search of differential
characteristics effectively, we consider adding the Matsui’s bounding conditions
into the SAT model to avoid the search of unnecessary branches.
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For Midori-128, each round has the same function R. We consider that to
start the search from the first round, and then extend backwards with the bound-
ing conditions. Let PrR(i) be the optimal probability of the i-round differential
characteristics. When we search the optimal r-round differential characteristic,
we set Prest(r) as an initial estimation probability in our model. An i-round
differential characteristic with probability Pr(i) is a child node located at the
i-th level of the searching tree, where 0 < i < r. The subtree originating from
this node will not be explored if the following bounding condition is violated

Pr(i) · PrR(r − i) ≥ Prest(r).

Table 3. The optimal (related-tweak) differential probability

Round single-key related-tweak
Midori-128 QARMA-64 MANTIS

1 2−2 – –
2 2−8 1 2−4

3 2−14 2−2 2−8

4 2−32 2−4 2−12

5 2−49 2−8 2−20

6 2−67 2−12 2−24

7 2−79 2−26 2−32

8 2−90 2−36 2−40

9 2−96 2−52 2−56

10 2−114 2−60 2−68

11 – 2−80 –

Table 4. The optimal 10-round differential characteristic of probability 2−114 for
Midori-128

Round Input difference

1st 0000 2000 0000 0080 0000 0000 0041 0000
2nd 0000 0000 0000 0000 0000 0001 0000 0000
3rd 0000 0000 0080 0000 0080 0000 0080 0000
4th 0100 0400 0100 0404 0000 0404 0100 0004
5th 0080 2000 0000 2404 8000 0400 0080 0404
6th 0000 0000 8080 0400 0080 0405 8000 0401
7th 0100 0000 0080 0000 0000 0400 0000 0000
8th 0000 0000 0000 0000 0000 0000 8000 0000
9th 0000 0400 0000 0000 0000 0400 0000 0400
10th 8002 0020 0002 0020 8000 0020 8002 0000
output 0110 0511 8528 0105 8438 0414 8538 0515
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Table 5. The optimal 9-round related-tweak differential characteristic of probability
2−52 for QARMA-64

Round Input difference Tweak difference

1st 2042 0108 e103 169a 3000 0000 0003 0098
2nd 0014 1000 0000 0003 0094 1000 0000 0003
3rd 0008 0004 0008 0000 0001 0094 0008 0000
4th 0010 0000 0080 0000 c000 0001 2000 0008
5th 0004 6000 8000 2000 0004 6000 8000 2000
central structure 0000 0000 0000 0000 –
6th 0000 0000 0000 0000 0004 6000 8000 2000
7th 0004 6000 8000 2000 c000 0001 2000 0008
8th 0010 0000 0080 0000 0001 0094 0008 0000
9th 0008 0004 0008 0000 0094 1000 0000 0003
output 0014 1000 0000 0003

Table 6. The optimal 10-round related-tweak differential characteristic of probability
2−68 for MANTIS

Round Input difference Tweak difference
1st 0a00 00a0 0000 00a0 0000 f000 f000 0f00
2nd 0f0f 00f0 00ff 00f0 0000 0000 00ff f000
3rd 0000 0a00 0a00 00f0 0000 0000 0f00 00ff
4th 0000 0000 f000 f000 00ff 0000 0000 0f00
5th 0000 00ff 00f0 0000 0000 00ff 00f0 0000
central structure 0000 0000 0000 0000 –
6th 0000 0000 0000 0000 0000 00ff 00f0 0000
7th 0000 00ff 00f0 0000 00ff 0000 0000 0f00
8th 0000 0000 f000 f000 0000 0000 0f00 00ff
9th 0000 0a00 0a00 00f0 0000 0000 00ff f000
10th 0f0f 00a0 00af 00a0 0000 f000 f000 0f00
output 0a00 00a0 0000 00a0

For a 2r-round reflection block cipher such as QARMA and MANTIS, sup-
pose that E1 and E2 are the r-round sub-ciphers with round function R and
R−1 respectively. Since different round functions are used in a reflection block
cipher, our idea is to start the search from the middle function, and then extend
forwards and backwards with the Matsui’s bounding conditions.

When we try to search the optimal (n1+n2)-round differential characteristic,
we need to precompute the optimal probabilities PrR(i) and PrR−1(i) of the i-
round differential characteristic for E1 and E2 respectively where 1 ≤ i ≤ r.
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Due to reflection feature, we have PrR(i) = PrR−1(i) to reduce the amount of
precomputation by half. Let Prest(n1 + n2) be an initial estimation probability
of a (n1 + n2)-round differential characteristic. A (t1 + t2)-round differential
characteristic with probability Pr(t1+ t2) is a child node located at the (t1+ t2)-
th level of the searching tree, where t1 ≤ n1 and t2 ≤ n2. The subtree originating
from this node will not be explored if the following bounding condition is violated

Pr(t1 + t2) · PrR(n1 − t1) · PrR−1(n2 − t2) ≥ Prest(n1 + n2).

With the encoding method introduced in [17], the above bounding conditions
could be converted into Boolean formulas to accelerate the search.

Based on our SAT model, we obtain the optimal (related-tweak) differen-
tial probability for Midori-128, QARMA-64 and MANTIS, which are shown in
Table 3. It is worth noting that we only concern about the optimal related-
tweak differential probability for (n1 + n2)-round QARMA-64 and MANTIS
where 0 ≤ |n1 − n2| ≤ 1. For Midori-128, we find the optimal 10-round differen-
tial characteristic with probability 2−114 shown in Table 4. For QARMA-64, the
optimal 9-round related-tweak differential characteristic with probability 2−52 is
shown in Table 5. For MANTIS, the optimal 10-round related-tweak differential
characteristic with probability 2−68 is shown in Table 6.

4 Differential Attack on 12-Round Midori-128

From Table 4, we know that the number of active nibbles for output differences
is too large. To present better attacks on Midori-128, we put additional con-
straints on the number of active nibbles for input and output differences into
the SAT model, and find a 10-round differential characteristic with probability
2−115 shown in Table 7, where input and output differences have totally 20 active
nibbles. Based on this 10-round differential characteristic, we add one round
at the beginning and the ending to present a differential attack on 12-round
Midori-128. The key-recovery process is shown in Fig. 3, where the symbol “∗”
represents an active nibble with unknown difference, and the symbol “?” repre-
sents an unknown difference bit. In addition, the 0th cell contains the 0th and
1st nibbles, the 1st cell contains the 2nd and 3rd nibbles, and so on.

We choose plaintexts P where all possible values of 92 active bits are tra-
versed, and the other bits are set to constants, and then get 292+92−1 plaintext
pairs (P, P ) satisfying the input difference. If we construct N structures by choos-
ing different constants, NR = N · 2183 · 2−92 · 2−115 right pairs will be identified
on average. We want to obtain one right pair, and construct N = 224 struc-
tures to have 224 ·2183−84 = 2123 plaintext-ciphertext pairs satisfying the output
difference.
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Table 7. The 10-round differential characteristic of probability 2−115 for Midori-128

Round Input difference

1st 0084 0484 0100 0110 3001 0001 0000 0000
2nd 0000 0020 0000 8000 0080 0000 0000 0000
3rd 0000 0000 0000 0100 0000 0000 0000 0000
4th 0000 0000 0000 8000 0000 8000 0000 8000
5th 0402 0000 0002 0100 0400 0100 0402 0100
6th 0001 8004 0041 8000 0040 0004 0101 0000
7th 0280 0020 0280 0800 0000 0000 0200 0920
8th 0001 0000 4000 0000 0000 0000 0000 0400
9th 0080 0000 0000 0000 0000 0000 0000 0000
10th 0080 0000 0000 0000 0080 0000 0080 0000
output 00a0 0100 0000 0104 00a0 0104 00a0 0004

Fig. 3. Differential key-recovery attack on 12-round Midori128

Step 1: recovering the same key bits used in the first and the last round. For
2123 chosen plaintext-ciphertext pairs, we first guess 4 key bits wk[17, 18, 20, 23],
and encrypt the corresponding values of plaintexts to get the differences ΔA27

1 .
Then, we can decrypt the corresponding values of ciphertexts by the same key
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bits to get the differences ΔA27
12. The time complexity is 2×2123×24× 1

32 = 2123

one-round encryptions.
Then, we guess 4 key bits wk[16, 19, 21, 22] to encrypt the corresponding

values of plaintexts and decrypt the corresponding values of ciphertexts, and
select 2120 right pairs that satisfy ΔA26

1 = 8 and ΔA26
12 = 1. The time complexity

is 2 × 2123 × 28 × 1
32 = 2127 one-round encryptions.

We guess 4 key bits wk[1, 2, 4, 7] to encrypt the corresponding values of plain-
texts and decrypt the corresponding values of ciphertexts, and select 2120−2×4

right pairs that satisfy ΔA31
1 = 8 and ΔA31

12 = 2. The time complexity is about
(2120 × 212 + 2116 × 212) × 1

32 ≈ 2127.09 one-round encryptions.
We guess 4 key bits wk[32, 33, 34, 39] to encrypt the corresponding values

of plaintexts and decrypt the corresponding values of ciphertexts, and select
2112−2×4 right pairs that satisfy ΔA23

1 = 4 and ΔA23
12 = 1. The time complexity

is about (2112 × 216 + 2108 × 216) × 1
32 ≈ 2123.09 one-round encryptions.

We guess 4 key bits wk[48, 49, 50, 55] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
2104−2×4 right pairs that satisfy ΔA19

1 = 5 and ΔA19
12 = 2. The time complexity

is about (2104 × 220 + 2100 × 220) × 1
32 ≈ 2119.09 one-round encryptions.

We guess 4 key bits wk[66, 67, 68, 69] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
296−2×4 right pairs that satisfy ΔA15

1 = ΔA15
12 = 8. The time complexity is

about (296 × 224 + 292 × 224) × 1
32 ≈ 2115.09 one-round encryptions.

We guess 4 key bits wk[72, 73, 78, 79] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
288−2×4 right pairs that satisfy ΔA12

1 = ΔA12
12 = 2. The time complexity is

about (288 × 228 + 284 × 228) × 1
32 ≈ 2111.09 one-round encryptions.

We guess 4 key bits wk[104, 106, 109, 111] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
280−2×4 right pairs that satisfy ΔA5

1 = d and ΔA5
12 = 1. The time complexity is

about (280 × 232 + 276 × 232) × 1
32 ≈ 2107.09 one-round encryptions.

We guess 4 key bits wk[112, 114, 117, 119] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
272−2×4 right pairs that satisfy ΔA3

1 = d and ΔA3
12 = a. The time complexity

is about (272 × 236 + 268 × 236) × 1
32 ≈ 2103.09 one-round encryptions.

Step 2: recovering partial key bits in the first round. We guess every four bits of
the 56 key bits, and successively encrypt the plaintexts to select 264−14×4 right
pairs that satisfy ΔA0,1,4,7,8,9,10,14,16,17,20,25,29,30

1 . The time complexity is about
(264 × 240 +260 × 244 + · · ·+212 × 292)× 1

32 = 2104 × 14× 1
32 ≈ 2102.8 one-round

encryptions.

Step 3: recovering partial key bits in the last round. We guess 4 key bits
wk[40, 41, 42, 47] to decrypt the corresponding values of ciphertexts, and select
28−4 right pairs that satisfy ΔA21

12 = 4. The time complexity is 28×296× 1
32 = 299

one-round encryptions. Then, we guess 4 key bits wk[51, 52, 53, 54] to decrypt
the corresponding values of ciphertexts, and select 24−4 right pair that satisfies
ΔA18

12 = 8. The time complexity is 24 × 2100 × 1
32 = 299 one-round encryptions.
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Step 4: exhaustively searching for the remaining keys. Exhaustively search the
remaining 128 − 100 = 28 unknown key bits in the master key.

The time complexity of the key-recovery process is approximately 2× (2127+
2127.09) × 1

12 + 228 ≈ 2125.46 12-round encryptions, and the data complexity is
292 × 224 = 2116 plaintexts.

5 Related-Tweak Differential Attack on 11-Round
QARMA-64

In this section, we present a related-tweak differential attack on 11-round
QARMA-64 by adding one round at the beginning and the ending of the opti-
mal 9-round differential characteristic respectively. The key-recovery process is
shown in Fig. 4, where green nibbles represent the unknown differences.

Choose two tweaks (T, T ) such that the difference of the 6th nibble is 7, the
difference of the 10th nibble is 9, the difference of the 11th nibble is 8 and the
difference of the 13th nibble is 3. Under the tweak T , we can choose plaintexts
P where the 0th, 2nd, 3rd, 5th, 7th, 8th, 9th, 11th, 12th, 13th, 14th and 15th
nibbles are traversed by all possible values, and the other nibbles are set to
constants. Under the tweak T , we can construct plaintexts P where the 0th, 2nd,
3rd, 5th, 7th, 8th, 9th, 11th, 12th, 13th, 14th and 15th nibbles are traversed by all
possible values, P 6⊕P 6 = 7, P 10⊕P 10 = 9, and other nibbles are set to the same
constants as P . Therefore, we can get 22×48−1 = 295 plaintext pairs (P, P ). If we
construct N structures by choosing different constants, NR = N ·295 ·2−48 ·2−52

right pairs will be identified on average. We want to obtain one right pair, and
construct N = 25 structures to have 25 · 295−4×12 = 252 plaintext-ciphertext
pairs satisfying C1,5,6,7,8,9,10,12,13⊕C1,5,6,7,8,9,10,12,13 = 000000000, C0⊕C0 = 3,
C11 ⊕ C11 = 3 and C14 ⊕ C14 = 9. The key-recovery process is shown as allows.

Step 1: recovering partial key bits in the first round. For 252 chosen plaintext-
ciphertext pairs, we first guess 4 key bits (k0 ⊕ w0)[0− 3], and partially encrypt
the 15th nibble of plaintexts to get the corresponding values of A15

2 . The time
complexity is about 252 × 24 × 1

16 = 252 one-round encryptions. Then, we guess
every four bits of the 12 key bits (k0 ⊕ w0)[4 − 15], and successively encrypt
the 14th, 13th and 12th nibble of plaintexts to get the corresponding values
of A14,13,12

2 . There are 248 pairs remained such that ΔA15
2 = a, ΔA14

2 = 9,
ΔA13

2 = 6 and ΔA12
2 = 1, and the time complexity is about (252 × 28 + 252 ×

212 + 252 × 216) × 1
16 ≈ 264.09 one-round encryptions.

Similarly, we guess every four bits of the 32 key bits (k0 ⊕ w0)[16 − 19, 24 −
35, 40−44, 48−55, 60−63], and successively encrypt the values of the 11th, 9th,
8th, 7th, 5th, 3rd, 2nd, 0th nibble of plaintexts to get the corresponding values of
A11,9,8,7,5,3,2,0

2 . There are 248−8×4 pairs remained such that ΔA11
2 = 3, ΔA9

2 = 1,
ΔA8

2 = e, ΔA7
2 = 8, ΔA5

2 = 1, ΔA3
2 = 2, ΔA2

2 = 4 and ΔA0
2 = 2, and the time

complexity is (248×220+244×224+240×228 · · ·+220×248)× 1
16 = 268×8× 1

16 = 267

one-round encryptions.

Step 2: recovering partial key bits in the last round. Guess every 4 bits of the 16
key bits (w1⊕k0)[0−3] and (w1⊕k0)[44−55], and decrypt ciphertexts to obtain
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Fig. 4. Differential key-recovery attack on 11-round QARMA-64 (Color figure online)

the differences of the 15th, 4th, 3rd and 2nd nibbles of A10. There is only 216−4×4

pair remained such that ΔA2
10 = 1, ΔA3

10 = 4, ΔA4
10 = 1 and ΔA15

10 = 3, and
time complexity is (216×252+212×256+28×260+24×264)× 1

16 = 268×4× 1
16 = 266

one-round encryptions.

Step 3: exhaustively searching for the remaining keys. Exhaustively search the
remaining 64 unknown key bits in the master key.

The time complexity of the key-recovery process is approximately 2×(264.09+
267 + 266) × 1

11 + 264 ≈ 265.35 12-round encryptions, and the data complexity is
2 × 253 = 254 plaintexts. The data-time product complexity is 2119.35.

6 Conclusion

In this paper, we combine the Matsui’s bounding conditions and the technique
of dichotomy to accelerate the search of differential characteristics with SAT
method, and obtain the optimal (related-tweak) differential characteristics for
Midori-128, QARMA-64 and MANTIS. To obtain better attacks on Midori-128,
we add some constraints into the search model to restrict the number of active S-
boxes for input and output differences. As a result, we find a 10-round differential
characteristic with probability 2−115 to present a differential attack on 12-round
Midori-128. For QARMA-64, we utilize the optimal 9-round related-tweak differ-
ential characteristic with probability 2−52 to present an 11-round related-tweak
differential attack, which improves the previous work to our knowledge.
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