
Ding Wang
Moti Yung
Zheli Liu
Xiaofeng Chen (Eds.)

LN
CS

 1
42

52

25th International Conference, ICICS 2023
Tianjin, China, November 18–20, 2023
Proceedings

Information and
Communications Security

Lecture Notes in Computer Science 14252
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Ding Wang · Moti Yung · Zheli Liu ·
Xiaofeng Chen
Editors

Information and
Communications Security
25th International Conference, ICICS 2023
Tianjin, China, November 18–20, 2023
Proceedings

Editors
Ding Wang
Nankai University
Tianjin, China

Zheli Liu
Nankai University
Tianjin, China

Moti Yung
Columbia University
New York, NY, USA

Xiaofeng Chen
Xidian University
Xi’an, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-7355-2 ISBN 978-981-99-7356-9 (eBook)
https://doi.org/10.1007/978-981-99-7356-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0002-1667-2237
https://orcid.org/0000-0002-2984-2661
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-5858-5070
https://doi.org/10.1007/978-981-99-7356-9

Preface

This volume contains the papers that were selected for presentation and publication at
the 25th International Conference on Information and Communications Security (ICICS
2023), which was jointly organized by Nankai University (China), Xidian University
(China), and Columbia University (USA). The conference was held at Jinnan Campus
ofNankaiUniversity, TongyanRoad,No. 38, Hehui SouthRoad, JinnanDistrict, Tianjin,
China, from November 18–20, 2023.

ICICS is one of the mainstream security conferences with the longest history. It
started in 1997 and aims to bring together leading researchers and practitioners from
both academia and industry to discuss and exchange their experiences, lessons learned,
and insights related to computer and communications security. This year’s Program
Committee (PC) consisted of 113members with diverse backgrounds and broad research
interests. We received a record number of 210 submissions. After careful checks, 26
submissionswere desk rejected due to non-compliancewith the submission requirements
or obvious low quality. Of the 184 submissions sent for review, each has got at least
three, and at most four review comments. The review process was double-blind, and the
papers were evaluated on the basis of their significance, novelty, and technical quality.
The PC discussions were held online intensively for over three weeks. Finally, 38 papers
(18.10%=38/210) were accepted as Full papers, and another 6 papers (2.86%=6/210)
were accepted as Short papers. This results in an acceptance rate of 20.95%. We Chairs
express our sincere gratitude for the effort and professionalism demonstrated by the
Program Committee and external reviewers.

Following the reviews, The paper “BDTS: Blockchain-based Data Trading System”,
authored by Erya Jiang, Bo Qin, Qin Wang, Qianhong Wu, Sanxi Li, Wenchang Shi,
Yingxin Bi, and Wenyi Tang, was selected for the Best Paper Award, and the paper “An
Efficient Attack on Dimension Two SIDH”, authored by Guoqing Zhou and Maozhi
Xu, was selected for the Best Student Paper Award, respectively. Both awards were
generously sponsored by Springer. Additionally, ICICS 2023 was honored to offer two
outstanding keynote talks by Robert Deng, Singapore Management University (Singa-
pore), and Mauro Conti, University of Padua (Italy). Our deepest and sincere thanks to
them for sharing their knowledge and experience during the conference.

For the success of ICICS 2023, we would like to first thank the authors of all submis-
sions and the PC members for their great effort in selecting the papers. We also thank all
the external reviewers for assisting in the reviewing process. For the conference orga-
nization, we would like to thank the ICICS Steering Committee, the Publicity Chairs,
Shujun Li, Qingni Shen, and Weizhi Meng, and the Local Arrangement Co-Chairs, Bo

vi Preface

Ning, Ming Su, and Ye Lu. Finally, we thank everyone else, speakers, session chairs,
and volunteer helpers, for their contributions to the program of ICICS 2023.

November 2023 Ding Wang
Moti Yung
Zheli Liu

Xiaofeng Chen

Organization

Steering Committee

Jianying Zhou Singapore University of Technology and Design,
Singapore

Robert Deng Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Javier Lopez University of Malaga, Spain
Qingni Shen Peking University, China
Zhen Xu Institute of Information Engineering, Chinese

Academy of Sciences, China

Program Chairs

Ding Wang Nankai University, China
Moti Yung Columbia University and Google, USA

General Chairs

Zheli Liu Nankai University, China
Xiaofeng Chen Xidian University, China

Publicity Chairs

Shujun Li University of Kent, UK
Qingni Shen Peking University, China
Weizhi Meng Technical University of Denmark, Denmark

Publication Chairs

Dongmei Liu Microsoft Research Asia, China
Zhenduo Hou Nankai University, China

viii Organization

Web Chairs

Yan Jia Nankai University, China
Siyi Lv Nankai University, China

Submission Chairs

Jianfeng Wang Xidian University, China
Qingxuan Wang Nankai University, China

Registration Chairs

Tong Li Nankai University, China
Lingling Fan Nankai University, China

Sponsor Chairs

Debiao He Wuhan University, China
Jian Zhang Nankai University, China

Local Arrangement Chairs

Bo Ning Nankai University, China
Ming Su Nankai University, China
Ye Lu Nankai University, China

Program Committee

Jin Wook Byun Pyeongtaek University, South Korea
Rongmao Chen National University of Defense Technology,

China
Ting Chen University of Electronic Science and Technology

of China, China
Xiaofeng Chen Xidian University, China
Long Cheng Clemson University, USA
Mauro Conti University of Padua, Italy

Organization ix

Yi Deng State Key Laboratory of Information Security,
China

Catalin Dragan University of Surrey, England
Markus Dürmuth Ruhr University Bochum, Germany
Shuqin Fan State Key Laboratory of Cryptology, China
Debin Gao Singapore Management University, Singapore
Fei Gao Beijing University of Posts and

Telecommunications, China
Peng Gao Virginia Tech, USA
Joaquin Garcia-Alfaro Institut Polytechnique de Paris, France
Dieter Gollmann Hamburg University of Technology, Germany
Yong Guan Iowa State University, USA
Chun Guo Shandong University, China
Fuchun Guo University of Wollongong, Australia
Jinsong Han Zhejiang University, China
Weili Han Fudan University, China
Feng Hao University of Warwick, UK
Debiao He Wuhan University, China
Marko Hölbl University of Maribor, Slovenia
Hongxin Hu State University of New York at Buffalo, USA
Xinyi Huang Hong Kong University of Science and

Technology (Guangzhou), China
Zhicong Huang Alibaba Group, China
Yan Jia Nankai University, China
Anca Delia Jurcut University College Dublin, Ireland
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Hyoungshick Kim Sungkyunkwan University, South Korea
Junzuo Lai Jinan University, China
Jingwei Li University of Electronic Science and Technology

of China, China
Juanru Li Shanghai Jiao Tong University, China
Ming Li University of Utah, USA
Qi Li Tsinghua University, China
Shujun Li University of Kent, UK
Kaitai Liang Delft University of Technology, The Netherlands
Feng Lin Zhejiang University, China
Jingqiang Lin University of Science and Technology of China,

China
Zhen Ling Southeast University, China
Tianren Liu Peking University, China
Ximeng Liu Fuzhou University, China

x Organization

Meicheng Liu Institute of Information Engineering, Chinese
Academic of Sciences, China

Giovanni Livraga University of Milan, Italy
Kangjie Lu University of Minnesota, USA
Rongxing Lu University of New Brunswick, Canada
Bo Luo University of Kansas, USA
Xiapu Luo Hong Kong Polytechnic University, China
Siqi Ma University of New South Wales, Australia
Christian Mainka Ruhr University Bochum, Germany
Daisuke Mashima Advanced Digital Sciences Center, Singapore
Weizhi Meng Technical University of Denmark, Denmark
David A. Mohaisen University of Central Florida, USA
Siaw-Lynn Ng University of London, UK
Jianbing Ni Queen’s University, Canada
Jianting Ning Fujian Normal University, China
Satoshi Obana Hosei University, Japan
Rolf Oppliger eSECURITY Technologies, Switzerland
Jiaxin Pan Norwegian University of Science and Technology,

Norway
Dimitrios Papadopoulos Hong Kong University of Science and

Technology, China
Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Joachim Posegga University of Passau, Germany
Bo Qin Renming University, China
Longjiang Qu National University of Defense Technology,

China
Elizabeth Quaglia Royal Holloway, University of London, UK
Giovanni Russello University of Auckland, New Zealand
Martin Schwarzl Graz University of Technology, Austria
Michael Scott MIRACL Labs, Ireland
Chao Shen Xi’an Jiaotong University, China
Meng Shen Beijing Institute of Technology, China
Qingni Shen Peking University, China
Faysal Hossain Shezan University of Virginia, USA
Ling Song Jinan University, China
Chunhua Su University of Aizu, Japan
Hung-Min Sun National Tsing Hua University, Taiwan, RoC
Kun Sun George Mason University, USA
Shifeng Sun Shanghai Jiao Tong University, China
Siwei Sun University of Chinese Academy of Sciences,

China
Willy Susilo University of Wollongong, Australia

Organization xi

Shuai Wang Hong Kong University of Science and
Technology, China

Boyang Wang University of Cincinnati, USA
Chen Wang Huazhong University of Science and Technology,

China
Huaxiong Wang Nanyang Technological University, Singapore
Jianfeng Wang Xidian University, China
Lei Wang Shanghai Jiao Tong University, China
Lingyu Wang Concordia University, Canada
Wei Wang Beijing Jiaotong University, China
Wenhao Wang State Key Laboratory of Information Security,

China
Zhibo Wang Zhejiang University, China
Daoyuan Wu Chinese University of Hong Kong, China
Qianhong Wu Beihang University, China
Peng Xu Huazhong University of Science and Technology,

China
Toshihiro Yamauchi Okayama University, Japan
Guomin Yang Singapore Management University, Singapore
Xun Yi RMIT University, Australia
Yong Yu Shaanxi Normal University, China
Yu Yu Shanghai Jiao Tong University, China
Fangguo Zhang Sun Yat-sen University, China
Fengwei Zhang Southern University of Science and Technology,

China
Haibin Zhang Beijing Institute of Technology, China
Lei Zhang East China Normal University, China
Mingwu Zhang Hubei University of Technology, China
Tianwei Zhang Amazon Web Services, USA
Yang Zhang CISPA, Germany
Yuan Zhang Fudan University, China
Yuan Zhang University of Electronic Science and Technology

of China, China
Zhikun Zhang Stanford University, USA
Jiang Zhang State Key Laboratory of Cryptology, China
Chao Zhang Tsinghua University, China
Qingchuan Zhao City University of Hong Kong, China
Ziming Zhao University at Buffalo, USA
Yongbin Zhou Nanjing University of Science and Technology,

China
Yunkai Zou Nankai University, China

xii Organization

Additional Reviewers

Mohammed Aldeen
Osama Bajaber
Zijian Bao
Nhat Quang Cao
Yangzhou Cao
Zhigang Chen
Chengjun Lin
Yiran Dai
Lin Ding
Wenhan Dong
Fei Duan
Yihe Duan
Qi Feng
Yanduo Fu
Ankit Gangwal
Zheng Gong
Antonio Guimarães
Xiaojie Guo
Xiaohan Hao
Xu He
Zhenduo Hou
Jingwei Jiang
Yukun Jiang
Renjie Jin
Xuan Jing
Andrei Kelarev
Qiqi Lai
Shangqi Lai
Ming Li
Peiyang Li
Xiang Li
Yingying Li
Zhichao Lian
Song Liao
Chao Lin
Guopeng Lin
Shen Lin
Guoqiang Liu
Yang Liu
Yunpeng Liu
Xin Lou
Xianhui Lu
Min Luo

Chunyang Lv
Yihan Ma
Vladislav Mladenov
Shibam Mukherjee
Lea Nürnberger
Gabriele Orazi
Luca Pajola
Yiting Qu
Zeyang Sha
Jinyong Shan
Xuan Shan
Hao Shen
Jun Shen
Ling Sun
Shiyu Sun
Yang Tao
Utku Tefek
Guohua Tian
Tian Tian
An Wang
Bin Wang
Caibing Wang
Chenyu Wang
Haiming Wang
Jiabei Wang
Jinliang Wang
Jitao Wang
Leizhang Wang
Qingxuan Wang
Shichang Wang
Shu Wang
Xinda Wang
Zhongxiao Wang
Tongxin Wei
Yu Wei
Jiaojiao Wu
Shaoqiang Wu
Kedong Xiu
Meijia Xu
Sihan Xu
Hailun Yan
Haining Yang
Ziqing Yang

Organization xiii

Wei Yu
Quan Yuan
Xiaoli Zhang

Xiaotong Zhou
Zijian Zhou
Fei Zhu

Sponsors

Gold Sponsors

Abstracts of Keynotes

TEE-assisted Crypto Systems: Towards Designing
Practical Data Security Solutions

Robert Deng

Singapore Management University

Abstract. Traditional public key cryptography and symmetric key cryp-
tography are at the heart of ubiquitously deployed security solutions for
protecting data in transit and storage (such asTLS, IPSec,WPA2&WPA3,
Signal Protocol, BitLocker). To protect data in use, many powerful crypto
algorithms, such as functional encryption, fully homomorphic encryp-
tion, multi-party computation, and zero-knowledge proof, have been
proposed. While significant progress has been made in the research of
these advanced crypto techniques, they still suffer from high processing
cost and are mostly limited to applications in certain niche areas. On
the other hand, trusted execution environments (TEEs) offer hardware-
assisted security guarantees with CPU speed performance but suffer from
a larger attack surface. In this talk, we will first present an overview of
TEEs’ security features, threat models, attacks and countermeasures. We
will then present our efforts on designing TEE-assisted crypto systems,
and show how crypto and TEE may complement each other and be com-
bined to realize practical security solutions. Finally, we will point out
some potential future research directions.

Covert&Side Stories: Threats Evolution in Traditional
and Modern Technologies

Mauro Conti

University of Padua, Italy

Abstract. Alongside traditional Information and Communication Tech-
nologies,more recent ones like Smartphones and IoTdevices also became
pervasive. Furthermore, all technologies manage an increasing amount of
confidential data. The concern of protecting these data is not only related
to an adversary gaining physical or remote control of a victim device
through traditional attacks, but also to what extent an adversary with-
out the above capabilities can infer or steal information through side and
covert channels! In this talk, we survey a corpus of representative research
results published in the domain of side and covert channels, ranging from
TIFS 2016 to more recent Usenix Security 2022, and including several
demonstrations at Black Hat Hacking Conferences. We discuss threats
coming from contextual information and to which extent it is feasible
to infer very specific information. In particular, we discuss attacks like
inferring actions that a user is doing on mobile apps, by eavesdropping
their encrypted network traffic, identifying the presence of a specific
user within a network through analysis of energy consumption, or infer-
ring information (also key one like passwords and PINs) through timing,
acoustic, or video information.

Contents

Symmetric-Key Cryptography

SAT-Aided Differential Cryptanalysis of Lightweight Block Ciphers
Midori, MANTIS and QARMA . 3

Yaxin Cui, Hong Xu, Lin Tan, and Wenfeng Qi

Improved Related-Key Rectangle Attack Against the Full AES-192 19
Xuanyu Liang, Yincen Chen, Ling Song, Qianqian Yang, Zhuohui Feng,
and Tianrong Huang

Block Ciphers Classification Based on Randomness Test Statistic Value
via LightGBM . 35

Sijia Liu, Min Luo, Cong Peng, and Debiao He

Cryptanalysis of Two White-Box Implementations of the CLEFIA
Block Cipher . 51

Jiqiang Lu and Can Wang

PAE: Towards More Efficient and BBB-Secure AE from a Single Public
Permutation . 69

Arghya Bhattacharjee, Ritam Bhaumik, Avijit Dutta, and Eik List

Public-Key Cryptography

A Polynomial-Time Attack on G2SIDH . 91
Guoqing Zhou and Maozhi Xu

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 110
Hongyuan Qu and Guangwu Xu

Oblivious Transfer from Rerandomizable PKE . 128
Shuaishuai Li, Cong Zhang, and Dongdai Lin

Forward Secure Lattice-Based Ring Signature Scheme in the Standard
Model . 146

Xiaoling Yu and Yuntao Wang

xxii Contents

Applied Cryptography

Secure Multi-party Computation with Legally-Enforceable Fairness 161
Takeshi Nakai and Kazumasa Shinagawa

On-Demand Allocation of Cryptographic Computing Resource with Load
Prediction . 179

Xiaogang Cao, Fenghua Li, Kui Geng, Yingke Xie, and Wenlong Kou

Private Message Franking with After Opening Privacy . 197
Iraklis Leontiadis and Serge Vaudenay

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 215
Huan Zou, Yuting Xiao, and Rui Zhang

Outsourcing Verifiable Distributed Oblivious Polynomial Evaluation
from Threshold Cryptography . 235

Amirreza Hamidi and Hossein Ghodosi

Authentication and Authorization

PiXi: Password Inspiration by Exploring Information . 249
Shengqian Wang, Amirali Salehi-Abari, and Julie Thorpe

Security Analysis of Alignment-Robust Cancelable Biometric Scheme
for Iris Verification . 267

Ningjing Fan, Dongdong Zhao, and Hucheng Liao

A Certificateless Conditional Anonymous Authentication Scheme
for Satellite Internet of Things . 284

Minqiu Tian, Fenghua Li, Kui Geng, Wenlong Kou, and Chao Guo

BLAC: A Blockchain-Based Lightweight Access Control Scheme
in Vehicular Social Networks . 302

Yuting Zuo, Li Xu, Yuexin Zhang, Zhaozhe Kang, and Chenbin Zhao

Privacy and Anonymity

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 317
Futai Zou, Yuelin Hu, Wenliang Xu, and Yue Wu

CryptoMask: Privacy-Preserving Face Recognition . 333
Jianli Bai, Xiaowu Zhang, Xiangfu Song, Hang Shao, Qifan Wang,
Shujie Cui, and Giovanni Russello

Contents xxiii

Efficient Private Multiset ID Protocols . 351
Cong Zhang, Weiran Liu, Bolin Ding, and Dongdai Lin

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 370
Yuwei Xu, Lei Wang, Jiangfeng Li, Kehui Song, and Yali Yuan

An Enhanced Privacy-Preserving Hierarchical Federated Learning
Framework for IoV . 383

Jiacheng Luo, Xuhao Li, Hao Wang, Dongwan Lan, Xiaofei Wu,
Lu Zhou, and Liming Fang

Security and Privacy of AI

Revisiting the Deep Learning-Based Eavesdropping Attacks via Facial
Dynamics from VR Motion Sensors . 399

Soohyeon Choi, Manar Mohaisen, Daehun Nyang, and David Mohaisen

Multi-scale Features Destructive Universal Adversarial Perturbations 418
Huangxinyue Wu, Haoran Li, Jinhong Zhang, Wei Zhou, Lei Guo,
and Yunyun Dong

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 435
Hong Huang, Xingyang Li, and Wenjian He

Neural Network Backdoor Attacks Fully Controlled by Composite Natural
Utterance Fragments . 451

Xubo Yang, Linsen Li, and Yenan Chen

Black-Box Fairness Testing with Shadow Models . 467
Weipeng Jiang, Chao Shen, Chenhao Lin, Jingyi Wang, Jun Sun,
and Xuanqi Gao

Graph Unlearning Using Knowledge Distillation . 485
Wenyue Zheng, Ximeng Liu, Yuyang Wang, and Xuanwei Lin

AFLOW: Developing Adversarial Examples Under Extremely
Noise-Limited Settings . 502

Renyang Liu, Jinhong Zhang, Haoran Li, Jin Zhang, Yuanyu Wang,
and Wei Zhou

Learning to Detect Deepfakes via Adaptive Attention and Constrained
Difference . 519

Lichao Su, Bin Wu, Chenwei Dai, Huan Luo, and Jian Chen

xxiv Contents

A Novel Deep Ensemble Framework for Online Signature Verification
Using Temporal and Spatial Representation . 534

Hewei Yu and Pengfei Shi

Blockchain and Cryptocurrencies

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 553
Yuwei Xu, Haoyu Wang, and Junyu Zeng

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 571
Yifu Geng, Bo Qin, Qin Wang, Wenchang Shi, and Qianhong Wu

Towards Efficient and Privacy-Preserving Anomaly Detection
of Blockchain-Based Cryptocurrency Transactions . 590

Yuhan Song, Yuefei Zhu, and Fushan Wei

Blockchain Based Publicly Auditable Multi-party Computation
with Cheater Detection . 608

Shan Jin, Yong Li, Xi Chen, and Ruxian Li

Towards Quantifying Cross-Domain Maximal Extractable Value
for Blockchain Decentralisation . 627

Johan Hagelskjar Sjursen, Weizhi Meng, and Wei-Yang Chiu

BDTS: Blockchain-Based Data Trading System . 645
Erya Jiang, Bo Qin, Qin Wang, Qianhong Wu, Sanxi Li, Wenchang Shi,
Yingxin Bi, and Wenyi Tang

Illegal Accounts Detection on Ethereum Using Heterogeneous Graph
Transformer Networks . 665

Chang Xu, Shiyao Zhang, Liehuang Zhu, Xiaodong Shen,
and Xiaoming Zhang

System and Network security

DRoT: A Decentralised Root of Trust for Trusted Networks 683
Loganathan Parthipan, Liqun Chen, Christopher J. P. Newton,
Yunpeng Li, Fei Liu, and Donghui Wang

Finding Missing Security Operation Bugs via Program Slicing
and Differential Check . 702

Yeqi Fu, Yongzhi Liu, Qian Zhang, Zhou Yang, Xiarun Chen,
Chenglin Xie, and Weiping Wen

Contents xxv

TimeClave: Oblivious In-Enclave Time Series Processing System 719
Kassem Bagher, Shujie Cui, Xingliang Yuan, Carsten Rudolph,
and Xun Yi

Efficient and Appropriate Key Generation Scheme in Different IoT
Scenarios . 738

Hong Zhao, Enting Guo, Chunhua Su, and Xinyi Huang

A Fake News Detection Method Based on a Multimodal Cooperative
Attention Network . 750

Hongyu Yang, Jinjiao Zhang, Ze Hu, Liang Zhang, and Xiang Cheng

Author Index . 761

Symmetric-Key Cryptography

SAT-Aided Differential Cryptanalysis
of Lightweight Block Ciphers Midori,

MANTIS and QARMA

Yaxin Cui, Hong Xu(B), Lin Tan, and Wenfeng Qi

Information Engineering University, Zhengzhou, China
xuhong0504@163.com

Abstract. Lightweight primitives have already received a lot of atten-
tion with the growth of resource-constrained devices, and many
lightweight block ciphers such as Midori, MANTIS and QARMA have
been proposed in recent years. In this paper, we present a SAT-aided
search of the optimal (related-tweak) differential characteristics for such
block ciphers combined with the Matsui’s bounding conditions and the
technique of dichotomy. Using this method, we find the optimal differ-
ential characteristics for Midori-128 up to 10 rounds, and the optimal
related-tweak differential characteristics for QARMA-64 and MANTIS
up to 11 rounds and 10 rounds respectively. To obtain better attacks,
we add some constraints into the search model to restrict the number of
active S-boxes for input and output differences. As a result, we give a
differential attack on 12-round Midori-128 based on the found 10-round
differential characteristic with probability 2−115. Moreover, we present a
related-tweak differential attack on 11-round QARMA-64 based on the
optimal 9-round differential characteristic with probability 2−52, which
improves the previous attacks as far as we know.

Keywords: Differential attack · Lightweight block cipher · Matsui’s
bounding conditions · The technique of dichotomy

1 Introduction

In the last decades, more and more lightweight primitives have been widely
used in resource-constrained devices or environments such as RFID tags and
sensor networks. The strong demand from industry has led to the design of a
large number of lightweight block ciphers including PRESENT [6], PRINCE [7],
Midori [2], GIFT [3], SKINNY and MANTIS [4], and QARMA [1], where the
last two block ciphers are also tweakable block ciphers.

Midori is a low-energy lightweight block cipher with SPN structure proposed
by Banik et al. at AISACRYPT 2015, which has two versions with different
block size, i.e., Midori-64 and Midori-128. Banik et al. [2] estimated the number
of differentially active S-boxes for Midori-128, and evaluated that there were no
13-round differential characteristics with probability higher than 2−128. Then,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 3–18, 2023.
https://doi.org/10.1007/978-981-99-7356-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_1&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_1

4 Y. Cui et al.

Chen et al. [9] utilized a 6-round impossible differential characteristic to present
an impossible differential attack on 10-round Midori-128. In 2019, Zhang et al.
[20] found a 7-round integral distinguisher for Midori-128. Using Midori’s round
function and PRINCE’s refection structure, Beierle et al. presented a low-latency
tweakable block cipher MANTIS, which has a 64-bit block length, and works with
a 128-bit key and 64-bit tweak. Some related-tweak differential characteristics
were found by hand or MILP method [8,11,12]. With the MILP method, Chen
et al. [8] found a 10-round multiple differential characteristic with probability
2−55.98, and derived a related-tweak differential attack on 12-round MANTIS.
QARMA is a new family of lightweight tweakable block ciphers with reflection
feature presented by Avanzi et al. at FSE 2017, which targets some special uses
such as memory encryption and short tags for software security. There are two
variants of QARMA that support block sizes of 64 and 128 bits, denoted by
QARMA-64 and QARMA-128. Subsequently, many various attacks on QARMA-
64 have been proposed [13,14,21,22]. In 2020, Liu et al. [15] proposed an 11-
round related-tweak impossible differential attack with 258.38 chosen plaintexts
and 264.92 encryptions to recover 64 key bits, which didn’t include the outer
whitening keys.

Recently, automatic searching techniques have been used in finding differ-
ential and linear characteristics, such as Mixed-Integer Linear Programming
(MILP) method and Boolean Satisfiability (SAT) method/Satisfiability Mod-
ulo Theories (SMT) method [10]. With SAT method, Sun et al. [17] converted
the Matsui’s bounding conditions [16] into Boolean formulas, and evaluated the
accelerating effect under different sets of bounding conditions. In this way, they
achieved to accelerate the search of differential and linear characteristics for
PRESENT, GIFT, RECTANGLE, LBlock and TWINE [17–19].

Our Contributions. We combine the Matsui’s bounding conditions and the
technique of dichotomy to accelerate the search of differential characteristics for
lightweight block cipher with SAT method in this paper. As a result, we obtain
the optimal differential characteristics for 10-round Midori-128, and the optimal
related-tweak differential characteristics for 11-round QARMA-64 and 10-round
MANTIS respectively. To obtain better attacks on Midori-128, we add some
constraints into the search model to restrict the number of active S-boxes of
input and output differences. Specifically, we find a 10-round differential char-
acteristic with probability 2−115, which has 20 active S-boxes of input and out-
put differences, and present a differential attack on 12-round Midori-128. For
QARMA-64, we add one round at the beginning and the ending of the opti-
mal 9-round related-tweak differential characteristic with probability 2−52, and
present an 11-round differential attack to recover all the master keys. Compared
with previous attacks, our attack has improved the known related-tweak attack
on QARMA-64 with outer whitening keys by one round. The summary of known
attacks is shown in Table 1.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
present a brief review of Midori-128 and QARMA-64. In Sect. 3, we show how
to accelerate the search of optimal differential characteristics with SAT method.

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 5

Then, we give the optimal (related-tweak) differential characteristics for Midori-
128, QARMA-64 and MANTIS. In Sect. 4, we present a differential attack on
12-round Midori-128 based on a 10-round differential characteristic with proba-
bility 2−115. In Sect. 5, we show a related-tweak differential attack on 11-round
QARMA-64 based on the optimal 9-round related-tweak differential character-
istic with probability 2−52. Finally, we present a short conclusion in Sect. 6.

Table 1. Summary of known attacks on QARMA-64

Rounds Method Setting Outer whitening Time Data Memory Ref

9 MITM SK Yes 289 216 289 [14]
10 MITM SK No 2116 253 2116 [21]
10 Impossible differential RK No 263.8 262 237 [22]
10 Statistical saturation RK Yes 259 259 229.6 [13]
11 Impossible differential RK No 264.92 258.38 263.38 [15]
11 Differential RK Yes 265.35 254 264 Sect. 5

2 Preliminaries

2.1 The Lightweight Block Cipher Midori-128

Midori is a family of lightweight block ciphers which is composed of two vari-
ants: Midori-64 and Midori-128. The round function consists of four operations
SubCell, PermuteCells, MixColumns and AddRoundTweakey, which is shown in
Fig. 1. The internal state is divided into sixteen cells

IS =

⎛
⎜⎜⎝

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎞
⎟⎟⎠ .

For Midori-128, the 8 bits (127, 126, 125, 124, 123, 122, 121, 120) are contained in
the 0th cell, and the 8 bits (7, 6, 5, 4, 3, 2, 1, 0) in the 15th cell.

SubCell(S). Midori-128 utilizes four different 8-bit S-boxes SSb0, SSb1, SSb2
and SSb3. The S-box SSbi is applied to the i-th row of the internal state where
0 ≤ i ≤ 3, which consists of the input bit permutation Si

p, the output bit
permutation Si

p−1 and two 4-bit S-boxes Sbi. More details can be referred to [2].

PermuteCells(P). (P (IS))i = sP (i) for 0 ≤ i ≤ 15, where P is the cell permu-
tation of Midori represented as

P = [0, 10, 5, 15, 11, 1, 14, 4, 6, 12, 3, 9, 13, 7, 8, 2].

6 Y. Cui et al.

wk

Sp S SP-1 P M

Rk

Sp S SP-1 P M

Rk

Sp S SP-1

wk

Fig. 1. The lightweight block cipher Midori

Table 2. The S-boxes of Midori-128 and QARMA-64

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

SMidori(x) 1 0 5 3 E 2 F 7 d a 9 B C 8 4 6
SQARMA(x) A D E 6 F 7 3 5 9 8 0 C B 1 2 4

MixColumns(M). Midori utilizes an involutive binary matrix M defined as
follows

M = circ(0, 1, 1, 1) =

⎛
⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ,

and each column of the internal state is multiplied by the matrix M .

AddRoundTweakey. Midori-128 utilizes a 128-bit secret key K, and the
whitening key is wk = K and the round key is Rki = K ⊕ βi for 0 ≤ i ≤ 18
where βi are constants. The j-th bit of Rki is XORed to the j-th bit of the
internal state.

2.2 The Tweakable Block Cipher QARMA-64

QARMA is a family of lightweight tweakable block ciphers proposed in 2017
which has been used by the ARMv8 architecture to support a software protection
feature. QARMA-64 is a three-round Even-Mansour construction shown in Fig. 2
where the first r rounds of the cipher (ignoring initial whitening) differ from the
last r rounds solely by the addition of a non-zero constant α. The internal state
is also divided into sixteen 4-bit cells, and the bits (63, 62, 61, 60) are contained
in the 0th cell.

The Forward Round Function is composed of four operations as follows.

AddRoundTweakey. The round tweakey T = t0‖t1 · · · ‖t15 is XORed to the
internal state. The tweak T is updated by a permutation h and a LFSR ω. First,
the cells are permuted as h(T) = th(0)‖ · · · ‖th(15) where h = [6, 5, 14, 15, 0, 1, 2, 3,
7, 12, 13, 4, 8, 9, 10, 11]. Then, a LFSR ω updates the tweak cells with indexes
0, 1, 3, 4, 8, 11, 13. For QARMA-64, ω is a maximal period LFSR that maps the
cell (b3, b2, b1, b0) to (b0 ⊕ b1, b3, b2, b1).

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 7

Fig. 2. The tweakable block cipher QARMA

PermuteCells(P). (P (IS))i = sP (i) for 0 ≤ i ≤ 15, where P is the cell permu-
tation represented as

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

MixColumns(M). Each column of the internal state is multiplied by the matrix
M . The matrix M is defined as follows:

M = circ(0, ρa, ρb, ρc) =

⎛
⎜⎜⎝

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

⎞
⎟⎟⎠ ,

where ρi is just a simple left circular rotation of the element by i bits. For
QARMA-64, a = c = 1 and b = 2, and the matrix is involutory.

SubCell(S). The 4-bit S-box is applied to each cell of the internal state, and
the details are shown in Table 2.

The 128-bit key K is partitioned as w0‖k0, where w0 is 64-bit whitening key
and k0 is 64-bit core key. For encryption, put w1 = (w0 ≫ 1) ⊕ (w0 � 63) and
k1 = k0. For decryption, k0 ⊕ α is used as the core key, and the whitening keys
w0 and w1 are swapped.

3 Searching the Optimal Differential Characteristics
with SAT Method

In this section, we achieve to accelerate the search of differential characteristics
for lightweight block ciphers with SAT method, and present some searching
results for Midori-128, QARMA-64 and MANTIS.

To build a SAT model for a block cipher, we first need to convert differ-
ential propagations of the round function into Boolean formulas. QARMA-64
and MANTIS adopt 4-bit S-boxes, and Midori-128 utilizes 8-bit S-boxes. For

8 Y. Cui et al.

Midori-128, we divide the 8-bit S-box operation into the 4-bit S-box operation
and the linear permutation operation. Therefore, we only introduce the differ-
ential propagations of the 4-bit S-box operation and the XOR operation in the
following.

XOR Operation. For an n-bit XOR operation, α = (αn−1, · · · , α1, α0) and
β = (βn−1, · · · , β1, β0) are two input differences, and the output difference is
γ = (γn−1, · · · , γ1, γ0). The differential holds if and only if the values of α, β
and γ validate all the assertions in the following.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1

,

where 0 ≤ i ≤ n − 1.

The 4-Bit S-BoxOperation. For a 4-bit S-box S, denote α = (α3, α2, α1, α0) ∈
F
4
2 and β = (β3, β2, β1, β0) ∈ F

4
2 as the input and output differences respec-

tively. The differential distribution tables (DDT) of the S-boxes for Midori-128,
QARMA-64 and MANTIS have five possible values which are 0, 2, 4, 8 and 16, and
the corresponding probabilities are 0, 2−3, 2−2, 2−1 and 1 respectively. For each
S-box, three additional variables p0, p1 and p2 are used to encode the non-zero
differential probability p, and the encoding rules are as follows.

p0 ‖ p1 ‖ p2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

001 if p = 2−1

011 if p = 2−2

111 if p = 2−3

000 if p = 1

.

In this way, we have the opposite number of the binary logarithm of p equals
p0+p1+p2. Then, we define a function f over the 11-bit vector (α3, · · · , α0, β3, · · · ,
β0, p0, p1, p2) as

f(α, β, p) =
{
1 if α → β is a difference progratation with − log2 p = p0 + p1 + p2

0 if α → β doesn’t exist
.

Utilizing Logic Friday, we can derive Boolean formulas of the function
f(α, β, p0, p1, p2).

Setting the Object Function. Based on the above work, we can convert
differential propagations of the round function into Boolean formulas to build a
SAT model. Assume that N S-boxes are involved in a differential characteristic,
the object function is

∑N
j=1(p

(j)
0 + p

(j)
1 + p

(j)
2) ≤ k in the SAT model where 2−k

is an initial estimation probability. Then, we can utilize the sequential encoding
method [5] to convert this constraint into CNF formulas.

Once we set the opposite number of the binary logarithm of an estimation
probability as the target value, the SAT model discusses whether the variables

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 9

involved in given Boolean formulas can be consistently replaced by the value True
or False so that the formulas are evaluated to be True. If this is the case, the
formulas are called satisfiable. When the SAT model is satisfiable, we can obtain
a solution that indicates there exists a differential characteristic with probability
higher than or equal to the current probability. In the previous work, the target
value of the object function usually increases by 1 at a time from the initial
value until the SAT model is satisfiable. In order to further accelerate the search
process, we consider using the technique of dichotomy to set the target value.

Algorithm 1. Searching Method with Dichotomy
1: Input: the lower bound LB, the upper bound UB
2: Set AV ← (LB+UB)

2

3: while (true) do
4: Build the SAT model MAV when the target value is set to AV
5: if MAV is satisfiable then
6: if AV ==LB + 1 then
7: Set OP ← AV
8: Break
9: end if

10: Set UB ← AV
11: else
12: if AV ==UB − 1 then
13: Set OP ← UB
14: Break
15: end if
16: Set LB ← AV
17: end if
18: Set AV ← (LB+UB)

2

19: end while
20: return OP

When searching the optimal r-round differential characteristics, a lower
bound LB and an upper bound UB should be given corresponding to the prob-
ability values 2−LB and 2−UB respectively. In our experiments, we usually take
LB = OPr−1 and UB = n × OPr−1, where the optimal probability of (r − 1)-
round characteristic is 2−OPr−1 , and the parameter n should ensure that the
SAT model with probability 2−UB is satisfiable. We compute the average value
AV of UB and LB, and decide to update the lower bound LB or the upper
bound UB to AV by solving the SAT model. When the SAT model MAV is
satisfiable and AV = LB + 1, we know that the optimal probability of r-round
differential characteristic is 2−AV since MLB is unsatisfiable. Similarly, when
the SAT model MAV is unsatisfiable and AV = UB −1, the optimal probability
should be 2−UB . The details are shown in Algorithm 1.

Setting the Bounding Conditions. To accelerate the search of differential
characteristics effectively, we consider adding the Matsui’s bounding conditions
into the SAT model to avoid the search of unnecessary branches.

10 Y. Cui et al.

For Midori-128, each round has the same function R. We consider that to
start the search from the first round, and then extend backwards with the bound-
ing conditions. Let PrR(i) be the optimal probability of the i-round differential
characteristics. When we search the optimal r-round differential characteristic,
we set Prest(r) as an initial estimation probability in our model. An i-round
differential characteristic with probability Pr(i) is a child node located at the
i-th level of the searching tree, where 0 < i < r. The subtree originating from
this node will not be explored if the following bounding condition is violated

Pr(i) · PrR(r − i) ≥ Prest(r).

Table 3. The optimal (related-tweak) differential probability

Round single-key related-tweak
Midori-128 QARMA-64 MANTIS

1 2−2 – –
2 2−8 1 2−4

3 2−14 2−2 2−8

4 2−32 2−4 2−12

5 2−49 2−8 2−20

6 2−67 2−12 2−24

7 2−79 2−26 2−32

8 2−90 2−36 2−40

9 2−96 2−52 2−56

10 2−114 2−60 2−68

11 – 2−80 –

Table 4. The optimal 10-round differential characteristic of probability 2−114 for
Midori-128

Round Input difference

1st 0000 2000 0000 0080 0000 0000 0041 0000
2nd 0000 0000 0000 0000 0000 0001 0000 0000
3rd 0000 0000 0080 0000 0080 0000 0080 0000
4th 0100 0400 0100 0404 0000 0404 0100 0004
5th 0080 2000 0000 2404 8000 0400 0080 0404
6th 0000 0000 8080 0400 0080 0405 8000 0401
7th 0100 0000 0080 0000 0000 0400 0000 0000
8th 0000 0000 0000 0000 0000 0000 8000 0000
9th 0000 0400 0000 0000 0000 0400 0000 0400
10th 8002 0020 0002 0020 8000 0020 8002 0000
output 0110 0511 8528 0105 8438 0414 8538 0515

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 11

Table 5. The optimal 9-round related-tweak differential characteristic of probability
2−52 for QARMA-64

Round Input difference Tweak difference

1st 2042 0108 e103 169a 3000 0000 0003 0098
2nd 0014 1000 0000 0003 0094 1000 0000 0003
3rd 0008 0004 0008 0000 0001 0094 0008 0000
4th 0010 0000 0080 0000 c000 0001 2000 0008
5th 0004 6000 8000 2000 0004 6000 8000 2000
central structure 0000 0000 0000 0000 –
6th 0000 0000 0000 0000 0004 6000 8000 2000
7th 0004 6000 8000 2000 c000 0001 2000 0008
8th 0010 0000 0080 0000 0001 0094 0008 0000
9th 0008 0004 0008 0000 0094 1000 0000 0003
output 0014 1000 0000 0003

Table 6. The optimal 10-round related-tweak differential characteristic of probability
2−68 for MANTIS

Round Input difference Tweak difference
1st 0a00 00a0 0000 00a0 0000 f000 f000 0f00
2nd 0f0f 00f0 00ff 00f0 0000 0000 00ff f000
3rd 0000 0a00 0a00 00f0 0000 0000 0f00 00ff
4th 0000 0000 f000 f000 00ff 0000 0000 0f00
5th 0000 00ff 00f0 0000 0000 00ff 00f0 0000
central structure 0000 0000 0000 0000 –
6th 0000 0000 0000 0000 0000 00ff 00f0 0000
7th 0000 00ff 00f0 0000 00ff 0000 0000 0f00
8th 0000 0000 f000 f000 0000 0000 0f00 00ff
9th 0000 0a00 0a00 00f0 0000 0000 00ff f000
10th 0f0f 00a0 00af 00a0 0000 f000 f000 0f00
output 0a00 00a0 0000 00a0

For a 2r-round reflection block cipher such as QARMA and MANTIS, sup-
pose that E1 and E2 are the r-round sub-ciphers with round function R and
R−1 respectively. Since different round functions are used in a reflection block
cipher, our idea is to start the search from the middle function, and then extend
forwards and backwards with the Matsui’s bounding conditions.

When we try to search the optimal (n1+n2)-round differential characteristic,
we need to precompute the optimal probabilities PrR(i) and PrR−1(i) of the i-
round differential characteristic for E1 and E2 respectively where 1 ≤ i ≤ r.

12 Y. Cui et al.

Due to reflection feature, we have PrR(i) = PrR−1(i) to reduce the amount of
precomputation by half. Let Prest(n1 + n2) be an initial estimation probability
of a (n1 + n2)-round differential characteristic. A (t1 + t2)-round differential
characteristic with probability Pr(t1+ t2) is a child node located at the (t1+ t2)-
th level of the searching tree, where t1 ≤ n1 and t2 ≤ n2. The subtree originating
from this node will not be explored if the following bounding condition is violated

Pr(t1 + t2) · PrR(n1 − t1) · PrR−1(n2 − t2) ≥ Prest(n1 + n2).

With the encoding method introduced in [17], the above bounding conditions
could be converted into Boolean formulas to accelerate the search.

Based on our SAT model, we obtain the optimal (related-tweak) differen-
tial probability for Midori-128, QARMA-64 and MANTIS, which are shown in
Table 3. It is worth noting that we only concern about the optimal related-
tweak differential probability for (n1 + n2)-round QARMA-64 and MANTIS
where 0 ≤ |n1 − n2| ≤ 1. For Midori-128, we find the optimal 10-round differen-
tial characteristic with probability 2−114 shown in Table 4. For QARMA-64, the
optimal 9-round related-tweak differential characteristic with probability 2−52 is
shown in Table 5. For MANTIS, the optimal 10-round related-tweak differential
characteristic with probability 2−68 is shown in Table 6.

4 Differential Attack on 12-Round Midori-128

From Table 4, we know that the number of active nibbles for output differences
is too large. To present better attacks on Midori-128, we put additional con-
straints on the number of active nibbles for input and output differences into
the SAT model, and find a 10-round differential characteristic with probability
2−115 shown in Table 7, where input and output differences have totally 20 active
nibbles. Based on this 10-round differential characteristic, we add one round
at the beginning and the ending to present a differential attack on 12-round
Midori-128. The key-recovery process is shown in Fig. 3, where the symbol “∗”
represents an active nibble with unknown difference, and the symbol “?” repre-
sents an unknown difference bit. In addition, the 0th cell contains the 0th and
1st nibbles, the 1st cell contains the 2nd and 3rd nibbles, and so on.

We choose plaintexts P where all possible values of 92 active bits are tra-
versed, and the other bits are set to constants, and then get 292+92−1 plaintext
pairs (P, P) satisfying the input difference. If we construct N structures by choos-
ing different constants, NR = N · 2183 · 2−92 · 2−115 right pairs will be identified
on average. We want to obtain one right pair, and construct N = 224 struc-
tures to have 224 ·2183−84 = 2123 plaintext-ciphertext pairs satisfying the output
difference.

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 13

Table 7. The 10-round differential characteristic of probability 2−115 for Midori-128

Round Input difference

1st 0084 0484 0100 0110 3001 0001 0000 0000
2nd 0000 0020 0000 8000 0080 0000 0000 0000
3rd 0000 0000 0000 0100 0000 0000 0000 0000
4th 0000 0000 0000 8000 0000 8000 0000 8000
5th 0402 0000 0002 0100 0400 0100 0402 0100
6th 0001 8004 0041 8000 0040 0004 0101 0000
7th 0280 0020 0280 0800 0000 0000 0200 0920
8th 0001 0000 4000 0000 0000 0000 0000 0400
9th 0080 0000 0000 0000 0000 0000 0000 0000
10th 0080 0000 0000 0000 0080 0000 0080 0000
output 00a0 0100 0000 0104 00a0 0104 00a0 0004

Fig. 3. Differential key-recovery attack on 12-round Midori128

Step 1: recovering the same key bits used in the first and the last round. For
2123 chosen plaintext-ciphertext pairs, we first guess 4 key bits wk[17, 18, 20, 23],
and encrypt the corresponding values of plaintexts to get the differences ΔA27

1 .
Then, we can decrypt the corresponding values of ciphertexts by the same key

14 Y. Cui et al.

bits to get the differences ΔA27
12. The time complexity is 2×2123×24× 1

32 = 2123

one-round encryptions.
Then, we guess 4 key bits wk[16, 19, 21, 22] to encrypt the corresponding

values of plaintexts and decrypt the corresponding values of ciphertexts, and
select 2120 right pairs that satisfy ΔA26

1 = 8 and ΔA26
12 = 1. The time complexity

is 2 × 2123 × 28 × 1
32 = 2127 one-round encryptions.

We guess 4 key bits wk[1, 2, 4, 7] to encrypt the corresponding values of plain-
texts and decrypt the corresponding values of ciphertexts, and select 2120−2×4

right pairs that satisfy ΔA31
1 = 8 and ΔA31

12 = 2. The time complexity is about
(2120 × 212 + 2116 × 212) × 1

32 ≈ 2127.09 one-round encryptions.
We guess 4 key bits wk[32, 33, 34, 39] to encrypt the corresponding values

of plaintexts and decrypt the corresponding values of ciphertexts, and select
2112−2×4 right pairs that satisfy ΔA23

1 = 4 and ΔA23
12 = 1. The time complexity

is about (2112 × 216 + 2108 × 216) × 1
32 ≈ 2123.09 one-round encryptions.

We guess 4 key bits wk[48, 49, 50, 55] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
2104−2×4 right pairs that satisfy ΔA19

1 = 5 and ΔA19
12 = 2. The time complexity

is about (2104 × 220 + 2100 × 220) × 1
32 ≈ 2119.09 one-round encryptions.

We guess 4 key bits wk[66, 67, 68, 69] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
296−2×4 right pairs that satisfy ΔA15

1 = ΔA15
12 = 8. The time complexity is

about (296 × 224 + 292 × 224) × 1
32 ≈ 2115.09 one-round encryptions.

We guess 4 key bits wk[72, 73, 78, 79] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
288−2×4 right pairs that satisfy ΔA12

1 = ΔA12
12 = 2. The time complexity is

about (288 × 228 + 284 × 228) × 1
32 ≈ 2111.09 one-round encryptions.

We guess 4 key bits wk[104, 106, 109, 111] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
280−2×4 right pairs that satisfy ΔA5

1 = d and ΔA5
12 = 1. The time complexity is

about (280 × 232 + 276 × 232) × 1
32 ≈ 2107.09 one-round encryptions.

We guess 4 key bits wk[112, 114, 117, 119] to encrypt the corresponding values
of plaintexts and decrypt the corresponding values of ciphertexts, and select
272−2×4 right pairs that satisfy ΔA3

1 = d and ΔA3
12 = a. The time complexity

is about (272 × 236 + 268 × 236) × 1
32 ≈ 2103.09 one-round encryptions.

Step 2: recovering partial key bits in the first round. We guess every four bits of
the 56 key bits, and successively encrypt the plaintexts to select 264−14×4 right
pairs that satisfy ΔA0,1,4,7,8,9,10,14,16,17,20,25,29,30

1 . The time complexity is about
(264 × 240 +260 × 244 + · · ·+212 × 292)× 1

32 = 2104 × 14× 1
32 ≈ 2102.8 one-round

encryptions.

Step 3: recovering partial key bits in the last round. We guess 4 key bits
wk[40, 41, 42, 47] to decrypt the corresponding values of ciphertexts, and select
28−4 right pairs that satisfy ΔA21

12 = 4. The time complexity is 28×296× 1
32 = 299

one-round encryptions. Then, we guess 4 key bits wk[51, 52, 53, 54] to decrypt
the corresponding values of ciphertexts, and select 24−4 right pair that satisfies
ΔA18

12 = 8. The time complexity is 24 × 2100 × 1
32 = 299 one-round encryptions.

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 15

Step 4: exhaustively searching for the remaining keys. Exhaustively search the
remaining 128 − 100 = 28 unknown key bits in the master key.

The time complexity of the key-recovery process is approximately 2× (2127+
2127.09) × 1

12 + 228 ≈ 2125.46 12-round encryptions, and the data complexity is
292 × 224 = 2116 plaintexts.

5 Related-Tweak Differential Attack on 11-Round
QARMA-64

In this section, we present a related-tweak differential attack on 11-round
QARMA-64 by adding one round at the beginning and the ending of the opti-
mal 9-round differential characteristic respectively. The key-recovery process is
shown in Fig. 4, where green nibbles represent the unknown differences.

Choose two tweaks (T, T) such that the difference of the 6th nibble is 7, the
difference of the 10th nibble is 9, the difference of the 11th nibble is 8 and the
difference of the 13th nibble is 3. Under the tweak T , we can choose plaintexts
P where the 0th, 2nd, 3rd, 5th, 7th, 8th, 9th, 11th, 12th, 13th, 14th and 15th
nibbles are traversed by all possible values, and the other nibbles are set to
constants. Under the tweak T , we can construct plaintexts P where the 0th, 2nd,
3rd, 5th, 7th, 8th, 9th, 11th, 12th, 13th, 14th and 15th nibbles are traversed by all
possible values, P 6⊕P 6 = 7, P 10⊕P 10 = 9, and other nibbles are set to the same
constants as P . Therefore, we can get 22×48−1 = 295 plaintext pairs (P, P). If we
construct N structures by choosing different constants, NR = N ·295 ·2−48 ·2−52

right pairs will be identified on average. We want to obtain one right pair, and
construct N = 25 structures to have 25 · 295−4×12 = 252 plaintext-ciphertext
pairs satisfying C1,5,6,7,8,9,10,12,13⊕C1,5,6,7,8,9,10,12,13 = 000000000, C0⊕C0 = 3,
C11 ⊕ C11 = 3 and C14 ⊕ C14 = 9. The key-recovery process is shown as allows.

Step 1: recovering partial key bits in the first round. For 252 chosen plaintext-
ciphertext pairs, we first guess 4 key bits (k0 ⊕ w0)[0− 3], and partially encrypt
the 15th nibble of plaintexts to get the corresponding values of A15

2 . The time
complexity is about 252 × 24 × 1

16 = 252 one-round encryptions. Then, we guess
every four bits of the 12 key bits (k0 ⊕ w0)[4 − 15], and successively encrypt
the 14th, 13th and 12th nibble of plaintexts to get the corresponding values
of A14,13,12

2 . There are 248 pairs remained such that ΔA15
2 = a, ΔA14

2 = 9,
ΔA13

2 = 6 and ΔA12
2 = 1, and the time complexity is about (252 × 28 + 252 ×

212 + 252 × 216) × 1
16 ≈ 264.09 one-round encryptions.

Similarly, we guess every four bits of the 32 key bits (k0 ⊕ w0)[16 − 19, 24 −
35, 40−44, 48−55, 60−63], and successively encrypt the values of the 11th, 9th,
8th, 7th, 5th, 3rd, 2nd, 0th nibble of plaintexts to get the corresponding values of
A11,9,8,7,5,3,2,0

2 . There are 248−8×4 pairs remained such that ΔA11
2 = 3, ΔA9

2 = 1,
ΔA8

2 = e, ΔA7
2 = 8, ΔA5

2 = 1, ΔA3
2 = 2, ΔA2

2 = 4 and ΔA0
2 = 2, and the time

complexity is (248×220+244×224+240×228 · · ·+220×248)× 1
16 = 268×8× 1

16 = 267

one-round encryptions.

Step 2: recovering partial key bits in the last round. Guess every 4 bits of the 16
key bits (w1⊕k0)[0−3] and (w1⊕k0)[44−55], and decrypt ciphertexts to obtain

16 Y. Cui et al.

Fig. 4. Differential key-recovery attack on 11-round QARMA-64 (Color figure online)

the differences of the 15th, 4th, 3rd and 2nd nibbles of A10. There is only 216−4×4

pair remained such that ΔA2
10 = 1, ΔA3

10 = 4, ΔA4
10 = 1 and ΔA15

10 = 3, and
time complexity is (216×252+212×256+28×260+24×264)× 1

16 = 268×4× 1
16 = 266

one-round encryptions.

Step 3: exhaustively searching for the remaining keys. Exhaustively search the
remaining 64 unknown key bits in the master key.

The time complexity of the key-recovery process is approximately 2×(264.09+
267 + 266) × 1

11 + 264 ≈ 265.35 12-round encryptions, and the data complexity is
2 × 253 = 254 plaintexts. The data-time product complexity is 2119.35.

6 Conclusion

In this paper, we combine the Matsui’s bounding conditions and the technique
of dichotomy to accelerate the search of differential characteristics with SAT
method, and obtain the optimal (related-tweak) differential characteristics for
Midori-128, QARMA-64 and MANTIS. To obtain better attacks on Midori-128,
we add some constraints into the search model to restrict the number of active S-
boxes for input and output differences. As a result, we find a 10-round differential
characteristic with probability 2−115 to present a differential attack on 12-round
Midori-128. For QARMA-64, we utilize the optimal 9-round related-tweak differ-
ential characteristic with probability 2−52 to present an 11-round related-tweak
differential attack, which improves the previous work to our knowledge.

References

1. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

2. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3_17

https://doi.org/10.1007/978-3-662-48800-3_17

SAT-Aided Differential Cryptanalysis of Midori, MANTIS and QARMA 17

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–
345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

4. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

5. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: theory and practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21702-9_3

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

7. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4_14

8. Chen, S., Liu, R., Cui, T., Wang, M.: Automatic search method for multiple differ-
entials and its application on MANTIS. Sci. China Inf. Sci. 62(3), 32111:1–32111:15
(2019). https://doi.org/10.1007/s11432-018-9658-0

9. Chen, Z., Chen, H., Wang, X.: Cryptanalysis of Midori128 using impossible differ-
ential techniques. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016.
LNCS, vol. 10060, pp. 1–12. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-49151-6_1

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio,
USA, 3–5 May 1971, pp. 151–158. ACM (1971)

11. Dobraunig, C., Eichlseder, M., Kales, D., Mendel, F.: Practical key-recovery attack
on MANTIS5. IACR Trans. Symmetric Cryptol. 2016(2), 248–260 (2016)

12. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to
MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018)

13. Li, M., Hu, K., Wang, M.: Related-tweak statistical saturation cryptanalysis and
its application on QARMA. IACR Trans. Symmetric Cryptol. 2019(1), 236–263
(2019)

14. Li, R., Jin, C.: Meet-in-the-middle attacks on reduced-round QARMA-64/128.
Comput. J. 61(8), 1158–1165 (2018)

15. Liu, Y., Zang, T., Gu, D., Zhao, F., Li, W., Liu, Z.: Improved cryptanalysis of
reduced-version QARMA-64/128. IEEE Access 8, 8361–8370 (2020)

16. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

17. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

18. Sun, L., Wang, W., Wang, M.: Improved attacks on GIFT-64. In: AlTawy, R.,
Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 246–265. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99277-4_12

19. Sun, L., Wang, W., Wang, M.: Linear cryptanalyses of three AEADs with GIFT-
128 as underlying primitives. IACR Trans. Symmetric Cryptol. 2021(2), 199–221
(2021)

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-642-21702-9_3
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/s11432-018-9658-0
https://doi.org/10.1007/978-3-319-49151-6_1
https://doi.org/10.1007/978-3-319-49151-6_1
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-030-99277-4_12

18 Y. Cui et al.

20. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary dif-
fusion layer. IET Inf. Secur. 13(2), 87–95 (2019). https://doi.org/10.1049/iet-ifs.
2018.5151

21. Zong, R., Dong, X.: Meet-in-the-middle attack on QARMA block cipher. IACR
Cryptology ePrint Archive, p. 1160 (2016)

22. Zong, R., Dong, X.: MILP-aided related-tweak/key impossible differential attack
and its applications to QARMA, Joltik-BC. IEEE Access 7, 153683–153693 (2019)

https://doi.org/10.1049/iet-ifs.2018.5151
https://doi.org/10.1049/iet-ifs.2018.5151

Improved Related-Key Rectangle Attack
Against the Full AES-192

Xuanyu Liang1, Yincen Chen1, Ling Song1(B), Qianqian Yang2,3,
Zhuohui Feng1, and Tianrong Huang1

1 College of Cyber Security, Jinan University, Guangzhou 510632, China
songling.qs@gmail.com

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

yangqianqian@iie.ac.cn
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. AES is currently the most important block cipher. There
are three variants, i.e., AES-k with k ∈ {128, 192, 256} denoting the
key size in bits. At ASIACRYPT 2009, Biryukov et al. carried out the
rectangle attack against the full AES-192 and achieved the best results
under the related-key setting so far. During our research, we found that
the time complexity of each phase in the attack proposed by Biryukov et
al. is unbalanced. More specifically, the time complexity of the quartet
processing phase far exceeds that of the other phases. Therefore, the
key of our work is to balance the time complexity of each phase so that
the overall time complexity of the attack against the full AES-192 is
reduced. In this paper, we adopt a strategy of pre-guessing some subkey
bits. Indeed, pre-guessing subkeys increase the time complexity of some
phases, but we can get more filter bits to reduce the time complexity of
processing quartets. Using the above concepts, the time complexity of
the rectangle key recovery attack on full AES-192 under the related-key
setting can be reduced from 2176 to 2158.

Keywords: AES · symmetric cryptography · rectangle attack ·
related-key setting · key recovery

1 Introduction

After Data Encryption Standard (DES) was successfully attacked, the National
Institute of Standards and Technology (NIST) launched the Advanced Encryp-
tion Standard (AES) competition, in which Rijndael, designed by Daemen
and Rijmen, won the final competition and officially became the Advanced
Encryption Standard in 2001. There are three versions of AES, i.e., AES-k,
k ∈ {128, 192, 256} denoting the key size in bits. Currently, AES has become
one of the most important block cryptographic algorithms in the world, and
it will remain secure even under the attack of quantum computers due to the
existence of AES-256.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 19–34, 2023.
https://doi.org/10.1007/978-981-99-7356-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_2&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_2

20 X. Liang et al.

Since the design of Rijndael, AES has attracted the attention of many
researchers. Many techniques of cryptanalysis were developed and many attacks
were launched against AES in various settings. In [18], Lu et al. gave 7-round
attacks against AES-128 and AES-192, and 8-round attacks against AES-256 by
using impossible differentials. Leveraging integral cryptanalysis, Ferguson et al.
gave a practical attack against 6-round AES and then the first attack against 7-
round [13]. In terms of key recovery attacks under the single-key setting, Derbez
et al. [10] and Li et al. [17] have made successful attacks against a reduced-
round AES. Among them, Demirci-Selçuk meet-in-the-middle attack [8,10,12] is
definitely the best key recovery attack under the single-key setting in terms of
attack complexity. Under the related-key setting, Derbez et al. [9] proposed a
better MILP model for the cipher with nonlinear key schedules and found the
current best boomerang attack against AES-192. Biryukov et al. [6] achieved the
best time complexity with rectangle attack against AES.

To the best of our knowledge, the best attack against AES with the related-
key rectangle attack is due to the attack by Biryukov et al. in 2009 [6], where
the full versions of AES-256 and AES-192 could be attacked using boomerang
distinguishers. Compared to the single-key setting, differential trails with much
higher probability exist in the related-key settings, where the differences between
round keys and the data trail can be canceled out. The boomerang switch tool
proposed by Biryukov et al. is also effective in increasing the probability of
boomerang distinguisher. It is based on the above two features that Biryukov et
al. achieved very excellent results in key recovery attacks against AES.

As one of the most powerful cryptanalysis against AES and many other block
ciphers, boomerang attack as well as its variant, rectangle attack, have been devel-
oped over the years no matter on the distinguisher part or the key recovery part,
whereas we mainly focus on the key recovery part. In 2001, Biham et al. first pro-
posed the rectangle key recovery algorithm in [3]. After that, many scholars pro-
posed different rectangle key recovery algorithms using different strategies, such
as [11,22]. Recently, Song et al. [20] proposed a generic rectangle key recovery algo-
rithm that unifies all previous rectangle key recovery algorithms and achieved bet-
ter results on some important ciphers such as SKINNY [2], Serpent [1], etc.

Our Contributions. In this paper, we conduct key recovery attacks on full AES-
192. For rectangle key recovery attacks, the phases that dominate the time com-
plexity are generally the phase of constructing pairs and the phase of generating
and processing quartets. Therefore, trading off the time consumption of these two
phases becomes the key to improvement. The generic algorithm of Song et al. can
nicely solve the problem of unbalanced time complexity in each phase for ciphers
with linear key schedule. However, it cannot be directly applied to AES with non-
linear key schedule. Nevertheless, this algorithm still inspires us.

In order to better explain the contributions of this paper, Eb and Ef are used
to represent the rounds extended backward and forward from the rectangle dis-
tinguisher. Pre-guessing some subkey bits in Eb or Ef will help to balance the
time complexity of each phase of the attack, thus reduce the overall time com-
plexity. With the above ideas, we manage to apply the key guessing strategy to

Improved Related-Key Rectangle Attack Against the Full AES-192 21

the rectangle attack on AES-192. Finally, we can reduce the time complexity of
the attack on full AES-192 from 2176 to 2158. To the best of our knowledge, it is
the first time to apply the guessing strategy to rectangle attacks on ciphers with
nonlinear key schedule in the related-key setting. Consequently, we improve the
attack of Biryukov et al. on AES-192 by reducing the overall time complexity and
obtaining the best rectangle key recovery attack results for the full AES-192 so
far. Under the related-key setting, our rectangle key recovery attack on full AES-
192 is very referenceable for key recovery attacks on ciphers with the non-linear
key schedule. Detailed results are presented in Sect. 4. The relevant results of full
AES-192 are summarized in Table 1.

Table 1. Comparison with previous attacks on full AES-192

Attack Setting Time Data Memory Reference

related-key choose plaintext 2124 2124 279.8 [9]
boomerang choose ciphertext
related-key choose plaintext 2176 2123 2152 [6]
rectangle
related-key choose plaintext 2160 2123 2150 Section 4.2
rectangle
related-key choose plaintext 2158 2123 2150 Section 4.2
rectangle

Organization. The rest of the paper is organized as follows. Section 2 gives
the necessary preliminaries for understanding the attack. Section 3 reviews the
distinguisher and the differential relationship between the related-key in the
attack carried out by Biryukov et al. The details of our attack are given in
Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Description of AES

Advanced Encryption Standard (AES) [7] is an iterated block cipher that
encrypts 128-bit plaintext with the secret key of sizes 128, 192, and 256 bits.
Its internal state can be represented by a 4 × 4 matrix whose elements are byte
values (8 bits) in a finite field of GF (28). As shown in Fig. 1, the round function
consists of four basic transformations in the following order:

– SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

– ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

– MixColumns (MC) is a multiplication of each column with a Maximum Dis-
tance Separable (MDS) matrix over GF (28).

22 X. Liang et al.

Fig. 1. AES round function

– AddRoundKey (AK) is an exclusive-or with the round key.

At the beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns. AES-128, AES-192,
and AES-256 share the same round function with different number of rounds:
10, 12, and 14, respectively. AES-192 has 12 rounds and a 192-bit key, which is
1.5 times larger than the internal state. AES derives round keys from the master
key based on the key schedule. Specifically, the 192-bit master key is divided
into 6 32-bit words (W [0],W [1], ...,W [5]) and the W [i] for i > 5 are calculated
by the following way.

W [i] =

{
W [i − 6] ⊕ SB(RotByte(W [i − 1])) ⊕ Rcon[i/6] i ≡ 0 mod 6,
W [i − 6] ⊕ W [i − 1] otherwise,

where RotByte is a cyclic shift by one byte to the left, and Rcon is the round
constant. The i-th subkey is of size 192 bits and denoted by Ki. Note K0 is the
master key. The i-th round key is the concatenation of 4 words W [4i] ‖ W [4i +
1] ‖ W [4i + 2] ‖ W [4i + 3].

2.2 Rectangle Attack

Boomerang attack was introduced in [21], and a basic boomerang attack can
be seen in Fig. 2 (left). It regards the target cipher as a composition of two
sub-ciphers E0 and E1. The first sub-cipher is supposed to have a differen-
tial α → β, and the second one to have a differential γ → δ, with proba-
bilities p and q, respectively. The basic boomerang attack requires an adap-
tive chosen plaintext/ciphertext scenario, and plaintext pairs result in a right
quartet with probability p2q2. It works with four plaintext/ciphertext pairs
(P1, C1), (P2, C2), (P3, C3), (P4, C4), and the basic attack procedure is as follows.
The attacker queries the encryption oracle with the input P1 and P2 = P1 ⊕ α
to obtain C1 and C2, and then calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, which
are sent to the decryption oracle to obtain P3 and P4. Later, Kelsey et al. [14]
developed a amplified boomerang which is a pure chosen-plaintext attack and
a right quartet is obtained with probability p2q22−n. Further, it was pointed
out in [3,4,21] that any value of β and γ is allowed as long as β �= γ. As a
result, the probability of obtaining the right quartet is increased to 2−np̂2q̂2,

where p̂ =
√

ΣiPr2(α −→ βi) and q̂ =
√

ΣjPr2(γj −→ δ). This improved attack
framework is named rectangle attack.

Improved Related-Key Rectangle Attack Against the Full AES-192 23

Fig. 2. The basic boomerang attack (left) and the schematic view of the key recovery
(right).

Related-Key Rectangle Attack. Boomerang and rectangle attacks under
related-key setting were formulated in [5,15,16]. Let ΔK and ∇K be the key
differences for E0 and E1, respectively. The attacker needs to access four related-
key oracles with K1 ∈ K, where K is the key space, K2 = K1 ⊕ ΔK, K3 =
K1 ⊕ ∇K and K4 = K1 ⊕ ΔK ⊕ ∇K. In the related-key rectangle attack, the
attacker chooses plaintexts P1, P2, P3, P4 such that P1 ⊕ P2 = P3 ⊕ P4 = α, and
encrypts them to get C1, C2, C3, C4 under K1,K2,K3 and K4, respectively. A
right quartet should satisfy C1 ⊕ C3 = C2 ⊕ C4 = δ. The probability of getting
a right quartet is 2−np̂2q̂2.

A Generic Rectangle Key Recovery Algorithm. In this subsection, we
will briefly introduce the core idea of the generic key recovery algorithm [20]
proposed by Song et al. The generic rectangle key recovery algorithm includes
four phases: (1) data collection, (2) pair construction, (3) quartets construction
and processing them to extract subkeys, and (4) a brute force search for the
unique right master key among key candidates. T1, T2, T3, and T4 represent the
time complexity of the above four phases, respectively. Note that T1 and T4 are
easy to estimate, while T2 and T3 are the ones we need to focus on. The overall
time complexity of the attack is the sum of the time complexity of the four parts.
It is proposed in this algorithm that reasonable guessing of partial subkeys of
ciphers with a linear key schedule can make the time complexity of T2 and T3

balanced, thus reducing the overall time complexity of the attack. Thanks to
the generic rectangle key recovery algorithm of Song et al., our improvement is
inspired by the idea of balancing the time complexity of each step, especially T2

and T3, to optimize the overall time complexity. T2 and T3 are closely related to
the guessed subkeys.

24 X. Liang et al.

The notations involved in the upcoming work will be described for a better
understanding. As shown in Fig. 3, α′ is the differential obtained by the propa-
gation of α through E−1

b , and β′ is the differential obtained by the propagation
of β through Ef . Note that not all quartets which satisfy the difference α′ and β′

are useful to suggest and extract the right key, but quartets that do not satisfy
such conditions are necessarily useless. rb and rf are the numbers of unknown
bits of input differential and output differential. kb and kf denote the subkey
bits involved for verifying the differential propagation in Eb and Ef respectively,
where mb = |kb| and mf = |kf | are the size of kb and kf . In our attack, we
choose to guess part of kb and kf , so denote k′

b and k′
f are the bits in Eb and

Ef which have been guessed. Similarly, m′
b = |k′

b|, m′
f = |k′

f |, and r′
b, r′

f are
the number of inactive state bits which can be deduced by guessing subkey bits.
Besides, in order to clearly describe the new attack, we define r∗

b = rb − r′
b and

m∗
b = mb − m′

b (resp. r∗
f and m∗

f).

Eb Ed Ef
α δα′ δ

′

rb
rf

mb

kb
︸ ︷︷ ︸

mf

︸ ︷︷ ︸

kf

Fig. 3. Outline of rectangle key recovery attack

Success Probability of Key Recovery. This paper uses the method of [19]
to calculate the success probability of an attack.

Ps = Φ

(√
sSN − Φ−1

(
1 − 2−h

)
√

SN + 1

)
,

where SN = p̂2q̂2/2−n is the signal/noise ratio.

2.3 Notations

The difference in the subkey key Ki is denoted by Δ/∇Ki (do not confuse with
a 128-bit round key). A byte of a subkey is denoted by kl

i,j , where i, j stand
for the row and column index in the standard matrix representation of AES,
and l stands for the number of the subkey. Bytes of the plaintext/ciphertext are
denoted by pi,j/ci,j , and a byte of the internal state after the SubBytes trans-
formation in round r is denoted by ar

i,j , with Ar depicting the whole state. Let

Improved Related-Key Rectangle Attack Against the Full AES-192 25

us also denote by bri,j the byte in the location (i, j) after the r-th application of
MixColumns.

3 Guessing Key Strategy for a Nonlinear Key Schedule

The basic idea of [20] is that pre-guessing some key bits helps to balance the
time complexity of two dominant phases, i.e., the phase of constructing pairs and
the phase of constructing quartets and processing them so that the overall time
complexity is reduced. As introduced previously, the time complexity of these
two parts are denoted by T2 and T3, respectively. In essence, guessing more key
bits leads to a larger T2 while it makes T3 smaller if the guessed key bits are
chosen properly, i.e., if the guessed key bits will lead to more filters. This is how
the trade-off happens. For ciphers in the single-key setting or ciphers with the
linear key schedule in the related-key setting, it is easy to identify such key bits.
This difficulty is not only reflected in how to select guessable bytes that can
obtain more advantages, but also in the difficulty of obtaining the relationship
between keys due to the nonlinear key schedule. The reason is that if guessing
some key bits gives rise to filters on one pair, it will give the same number of
filters on the other pair of the quartet due to a deterministic relation between
related keys.

In the related-key setting, there are differences in the key state. For a non-
linear key schedule, the propagation of the subkey differential is probabilistic.
Namely, even though the difference of some subkey is fixed, it may propagate to
an unfixed difference after several rounds of updates. The uncertainty of the dif-
ferential propagation sometimes makes it impossible to determine certain subkey
bits in the upper and lower differential trails simultaneously. As a result, it is
common for such ciphers that guessing a key byte only leads to the same number
of filters for one pair, and filters for the other pair from the quartet are impos-
sible due to uncertain relations between related subkeys. Therefore, the guessed
key bits hardly lead to more filters, making it hard to balance the two-part time
complexity T2 and T3.

In summary, reasonable pre-guessing of some of the subkeys in the Eb, Ef can
reduce the time complexity of the attack. Therefore, we aim to propose a pre-
guessing strategy that can be applied to ciphers with a nonlinear key schedule.
Next, we will give the framework of the pre-guessing strategy and use the idea
to perform a rectangle attack on AES-192.

1. The subkey difference between the upper and lower trail is determined by
key schedule, i.e., the value of the subkey difference between ΔK and ∇K
at the same position. The purpose of this step is so that when we make a
guess on k1, we can deduce k2, k3, and k4 based on the Δ/∇K, otherwise,
we cannot form a filter that can be used to filter the quartets. Moreover, we
sometimes need to guess all the subkeys involved in a differential propagation
trail to get the filter conditions. Therefore, we store the subkeys involved in
each differential trail in the set for consistency. Suppose we have determined
that the difference between the upper and lower trails of subkeys is known

26 X. Liang et al.

and can provide filtering conditions, then the subkeys are included in the set
of guessable subkeys.

2. Sort the set obtained in step 1 in descending order according to condition
max{(r′

b + r′
f) − (k′

b + k′
f)}. The more preceding the subkeys in the set is,

the more filtering conditions that can be provided.
3. The pre-guessed subkeys are selected from the set in order until the com-

plexity of each step is traded off. It is important to note that the number of
subkey bits being pre-guessed must be less than or equal to the number of
r′
b + r′

f .

4 Improved Rectangle Attack on AES-192

In this section, we conduct a full round AES-192 rectangle key recovery attack
based on the above strategy and using the distinguish proposed by Biryukov et
al. Recall that the rectangle in [6] followed the rectangle key recovery algorithm
of [4], where none of the key bits are pre-guessed. In this attack, we carefully
check the key schedule of AES-192. As this key schedule has a high degree of
linearity (the S-box is applied once every six words), we find a few subkey bytes
that have fixed differences in both differential trails and that can lead to more
filters. Fortunately, guessing one such byte (from the first subkey) already makes
T2 and T3 balanced, making the overall time complexity reduced. As shown in
Fig. 4, we extend one round forward the distinguisher and two rounds backward
from the distinguisher which includes 9 rounds, to conduct a related-key rect-
angle attack on full rounds of the cipher. Hence, Eb includes round 1 and Ef

includes rounds 11 and 12.

4.1 Distinguisher of AES-192

Before performing the attack, let’s review the distinguisher proposed by Biryukov
et al. The probabilities of the upper and lower trail of this distinguisher are 2−31

and 2−24, respectively. Thus, the probability of this rectangle distinguisher is
2−np̂2q̂2 = 2−128 ·2−110 = 2−238. It should be noted that the ciphertext difference
is fully specified in the middle two rows and has 35 bits of entropy in the other
bytes. The value of each ∇c0,∗ in the first row of the ciphertext difference is
extracted from a set of size 27, and all ∇c3,∗ take the same value and belong
to the same set of size 27. The middle two rows of ciphertext can provide 64
filter bits by fixing the difference. Since the last row of ciphertext only takes the
same value, the row can provide 3 × 8 = 24 filter bit. The first row and the last
row can provide 4 and 1 filter bit by the difference, respectively. Therefore, the
ciphertext difference totally gives us 93 filter bits.

4.2 A Detailed Description of the Attack on AES-192

In the attack process, rb = 48, mb = 48. We should construct y = 22 ·
264−48/

√
2(−55)×2 = 273 structures for s = 16. Let D = y · 2rb = 2121 for conve-

nience. Next, we proceed with our attack process based on the above preguessing

Improved Related-Key Rectangle Attack Against the Full AES-192 27

Fig. 4. The differential trails of rectangle attack against AES-192

28 X. Liang et al.

Table 2. Key schedule difference for the rectangle attack on AES-192. The values are
given in hexadecimal notation.

ΔKi

0 00 3e 3e 3f 3e 01 1 00 3e 00 3f 01 00 2 00 3e 3e 01 00 00
00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00
00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00
? 21 21 21 21 00 00 21 00 21 00 00 00 21 21 00 00 00

3 00 3e 00 01 01 01 4 00 3e 3e 3f 3e 3f
00 1f 00 00 00 00 00 1f 1f 1f 1f 1f
00 1f 00 00 00 00 00 1f 1f 1f 1f 1f
00 21 00 00 00 00 ? ? ? ? ? ?

∇Ki

0 ? ? ? 3e 3f 3e 1 ? ? 3f 01 3e 00 2 ? 3e 01 00 3e 3e
? ? ? 1f 1f 1f ? ? 1f 00 1f 00 ? 1f 00 00 1f 1f
? ? ? 1f 1f 1f ? ? 1f 00 1f 00 ? 1f 00 00 1f 1f
? ? ? ? 21 21 ? ? ? 00 21 00 ? ? 00 00 21 21

3 3e 00 01 01 3f 01 4 3e 3e 3f 3e 01 00 5 3e 00 3f 01 00 00
1f 00 00 00 1f 00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00
1f 00 00 00 1f 00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00
? 00 00 00 21 00 21 21 21 21 00 00 21 00 21 00 00 00

6 3e 3e 01 00 00 00 7 3e 00 01 01 01 01 8 3e 3e 3f 3e 3f 3e
1f 1f 00 00 00 00 1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f
1f 1f 00 00 00 00 1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f
21 21 00 00 00 00 21 00 00 00 00 00 ? ? ? ? ? ?

strategy. Before perform an attack, we need to find the best preguessing subkey
combination to reduce the time complexity of the attack.

– Firstly, according to the subkey preguessing strategy, the subkey bytes with
known subkey differences in the upper and lower trail are put into a set of
guessable subkeys. It should be noted that we need to select those subkey
bytes that may affect rb or other relevant internal states. According to Fig. 4
and Table 2, we put k0

0,3, k
0
0,5 and k0

2,3 into a guessing subkey set in Eb. But
according to the nonlinear key schedule of AES-192, it is not possible to
confirm the ΔK8 of the upper trail. Thus, we do not put any subkeys byte
into guessable subkey set in Ef .

– Secondly, since the difference of k0
0,3 in the upper and lower trail is known,

other related keys can be derived when performing a preguess on it, and the
a0
0,3 is known. Therefore, guessing an 8-bit k0

0,3 can bring a 16-bit filter. For
k0
2,3, we cannot obtain any filter by preguessing k0

2,3. Although the difference
between the upper and lower paths of the subkey byte is known, the a0

2,3 is
unknown. Therefore, even preguessing k0

2,3 cannot bring any benefits. Similar
to k0

2,3, although the Δ/∇k0
0,5 is known, and the a1

0,1 is also known, b00,1 is
unknown due to the impact of MixColumns. Therefore, there is no additional

Improved Related-Key Rectangle Attack Against the Full AES-192 29

benefit from preguessing k0
0,5. According to the subkey preguessing strategy,

we also need to look for subkeys that can derive other subkey bytes based
on the key schedule to gain the additional advantage, but no such subkeys
are found in this attack. Therefore, the preguessing subkey that satisfies the
maximum {(r′

b + r′
f)− (k′

b + k′
f)} we can find is only k0

0,3. Finally, we obtain
m′

b = 8 and r′
b = 8.

After obtaining the optimal preguess subkey combination, we conduct the
following attacks:

1. In the step of data collection, we construct y structures at Eb, and each struc-
ture includes 2rb possible values for the unknown cells to achieve D = y · 2rb
different plaintexts. We encrypt all plaintexts under related keys K1,K2,K3

and K4, respectively. Then we have (P1, C1), (P2, C2), (P3, C3), (P4, C4) are
respectively stored in four separate lists as L1, L2, L3 and L4 of 2121 plaintext-
ciphertexts each. The time (encryption) and memory cost of this step are both
2123.

2. In this step, we need to make a preguessing on k0
0,3, and for each guess do

the following steps:
(a) Initialize key counters for (k0

0,0, k
0
0,1, k

0
1,2, k

0
3,0) in K1,K3 and (k8

0,0, k
8
0,1,

k8
0,2, k

8
0,3) in K1,K2, respectively. The memory complexity required for

the key counters is 2128.
(b) For each data (Pi, Ci, i ∈ {1, 2, 3, 4}), partially encrypt Pi under the

guessed subkey bits and let P ∗
i = Enck′

b
(Pi). For each structure, we will

get 2r
′
b sub-structures, each of which includes 2r

∗
b plaintexts that take all

possible values for the r∗
b active bits. We store the corresponding data

in four lists, i.e., L∗
i , i ∈ {1, 2, 3, 4}. The partial encryption of this step is

4 × 2121 = 2123.
(c) As is described in Sect. 4.1, we need to insert L∗

1, L
∗
2 into the hash

tables H1,H2 according to the 88 filter bits provided by fixed differ-
ence separately. For each pair obtained by the index, we check if the
difference of (C1, C3) satisfies the 5 additional filter bits. If so, we get
a pair of (P ∗

1 , C1, P
∗
3 , C3), and discard it otherwise. Thus, we can get

2121×2−93 = 2149 pairs. Repeat the previous step for the lists L∗
2, L

∗
4. The

memory access of this step is 2 × 2149 = 2150.
(d) Step 2c can get 2149 pairs (P ∗

1 , C1, P
∗
3 , C3) and (P ∗

2 , C2, P
∗
4 , C4), respec-

tively. We insert (P ∗
1 , C1, P

∗
3 , C3) into the hash table H3 according to

2(n − r∗
b) inactive bits for P ∗

1 and P ∗
3 . Since we have made a guess for

k0
0,3, there are at most (y ·28)2 = 22×81 possible values for the 2(n−r∗

b)-bit
indexes. Therefore, we can compose 2(149−81)×2 = 2136 candidate quar-
tets. In the next few steps, we will filter some quartets and extract the
corresponding key information.

(e) Since the values of Δp0,0, Δa1
0,0 are known, we obtain on average one

solution for k0
0,0. Thus each quartet suggests one candidate of k0

0,0 for K1

and K3, respectively. The memory access of this step is 2136 and it leaves
a total of 2136 quartets.

30 X. Liang et al.

(f) Guess k0
2,3 and calculate the value of Δa0

2,3 for the remaining quartets.
Since Δa0

2,3 is a value in the column that should collapse to one non-zero
byte Δb00,1 by MixColumns, we can get the values of Δa0

0,1,Δa0
1,2,Δa0

3,0

and Δb00,1. Similarly, since the values of Δk0
0,1,Δk0

1,2 are known, we can
obtain a solution on average for each of these two subkeys. There remain
28 × 2136 = 2144 quartets because of the 8-bit guessing of k0

2,3, and the
memory access of this step is 28×2136 = 2144. It should be noted that the
guessing operation on k0

2,3 in this step is not equivalent to the preguessing
operation described previously.

(g) In this step, we choose to make a guess about k0
0,5. Since the values of

Δa1
0,1,Δk0

0,5 and k0
0,5 are known, b00,1 can be restricted to two options.

The value of Δk0
3,0 can be obtained according to the key schedule, so

according to the value of Δp3,0,Δa0
3,0, we can get one solution of k0

3,0

on average. As mentioned in the previous step, Δa0
2,3 restricts the val-

ues of Δa0
0,1,Δa0

1,2,Δa0
3,0 and Δb00,1. According to the previous step, we

know that k0
0,1 and k0

1,2 have one solution each. In this step we have also
obtained a solution for k0

3,0, so for a0
0,1, a

0
1,2 and a0

3,0 we can obtain the
corresponding values. For a given difference in the plaintext and provided
with ΔA1 there exist 8 possible combinations of k0

0,1, k
0
1,2, and k0

3,0, and
the probability that this subkeys matches the values of a0

0,1, a
0
1,2, a

0
2,3 and

a0
3,0 is 2−7. Therefore, the value of Δp2,3 restricts the other three differ-

ences on its diagonal by 7 bits. Then, we need to match the values of a0
0,1,

a0
1,2, a0

2,3 and a0
3,0 after MixColumns with the value of b00,1. For a message

pair, the probability of a successful match is 2−8, so 16-bit filters can be
generated for a quartet. There remain 28 × 2144 × 2−16 = 2136 quartets.
The memory access of this step is 28 × 2144 = 2152.

(h) Next, we need to extract information about the subkey involved in the first
row of ∇K8. Since the value of the first row of the differential state before
the SubBytes operation in round 11 is known with the first row of ΔC,
the key information can be extracted for the first row of ∇K8. Since there
are only 27 possible values for each cell in the first row of ∇C, and we have
already made use of this filtering condition when constructing the message
pairs, the memory access of this step is no more than 2136×24×24 = 2144.

(i) Select several subkeys with larger counts from the key counters as candi-
date subkeys. We choose the first 2128−h candidate subkeys of the counter.

(j) Using the candidate key obtained in the previous step, perform an exhaus-
tive search for the remaining 9 unknown subkey bytes in K0.

Complexity. In our attack, a total of 2121 plaintexts are generated, so the data
complexity is 4 × 2121 = 2123. In the first step of the attack, we perform a total
of 4 × 2121 = 2123 encryptions. Thus the time complexity of this step is 2123

encryptions. In step 2b of the attack, the time complexity of this step is 2131

partial encryptions because we guessed the 8-bit subkey in advance.
In step 2b to 2c, since we have checked the two hash tables separately, there

are 28 × 2150 = 2158 times of memory access in this step. And the memory
complexity of step 2c is 2 × 2149 = 2150, which dominate the overall memory

Improved Related-Key Rectangle Attack Against the Full AES-192 31

Table 3. Precomputation tables for the 12-round attack on AES-192 (Note that The
number in brackets at the top right indicates the corresponding Ki)

No. Starting
cells

Subkey bytes Bytes deduced Filter Pairs or
quartets

Time and
memory

Filter
effect

1 p
(1)
0,0 k

0(1)
0,0 p

(2)
0,0 a

0(1)
0,0 ⊕ a

0(2)
0,0 = 0x1f Pairs 216 1

(pi
0,0), i = 1, 2 : k0

0,0

2 p
(1)
0,1,

p
(1)
1,2,

p
(1)
2,3, p

(1)
3,0

k
0(1)
0,1 ,k0(1)

1,2 ,

k
0(1)
2,3 ,k0(1)

3,0 ,

k
0(1)
0,5

p
(2)
0,1, p

(2)
1,2, p

(2)
2,3,

p
(2)
3,0

(Δa0
0,1, Δa0

1,2, Δa0
2,3,

Δa0
3,0)

MC−→ (Δb00,1, 0x0,
0x0, 0x0),
S(k

0(1)
0,5 ⊕b

0(1)
0,1)⊕S(k

0(2)
0,5

⊕b
0(2)
0,1) = 0x1f

Pairs 272 28

(pi
0,1, p

i
1,2, p

i
2,3, p

i
3,0), i = 1, 2 : k0

0,1, k
0
1,2, k

0
2,3, k

0
0,5, k

0
3,0

3 c
(1)
0,j k

8(1)
0,j c

(3)
0,j S(c

(1)
0,j ⊕ k

8(1)
0,j) ⊕

S(c
(3)
0,j ⊕ k

8(3)
0,j) = 0x01

Pairs 264 1

(ci0,j), i = 1, 3, j = 0, 1, 2, 3 : k8
0,j

complexity of the attack. In step 2e, we need to extract the key information of
k0
0,0, so 28×2136 = 2144 memory accesses are required. In step 2f, we guessed k0

2,3

and extracted the key information for k0
0,1, k

0
1,2, so this step requires 28 × 2144 =

2152 memory accesses. Similar to step 2f, we need 28 × 2152 = 2160 memory
accesses in step 2g. In the next steps of recovering the key, the time complexity
of each step does not exceed the 28 × 2144 = 2152 memory accesses required to
extract the partial subkey information of ∇K8 in step 2h, so the overall time
complexity for the attack is 2160 memory accesses. The success probability of
this attack is Ps ≈ 0.99 when h = 50.

Further Improvement. In the phase of processing quartets and extracting
the key in the above attack, we adopt a guess-and-filter method as in [6]. In
the above attack, the time required for processing quartets and extracting key
information, i.e., T3, dominates the time complexity of the overall attack. We
can reduce the time complexity of this phase by pre-computing the hash table.
As shown in Table 3, we pre-compute 3 sub-tables, the first 2 sub-tables use for
extracting subkey information that is involved in Eb and the last one does this
for Ef . Note that these hash tables in our paper are built for pairs, but they can
also be built for quartets in some cases.

The time complexity of processing quartets and extracting key information
is T3 = 2144 · ε, where 2144 is the number of quartets and ε is the time cost of
accessing the hash table to extracting key information. The detailed steps and
calculations are as follows. For the first sub-table, we store k0

0,0 into the first
hash table indexed by p10,0 and p20,0. With p10,0, p20,0 and k0

0,0 as inputs, p20,0 can
be deduced according to the 8-bit filter a0

0,0 ⊕ a0
0,0 = 0x1f , which is compared

with the definite difference to extract the information of 8-bit subkey k0
0,0 and

filter out the incorrect quartets. Therefore, the filter effect is 1 and the time and
memory cost of the first hash table is 216 · 1 = 216. Therefore, the number of
quartets is still 2144. The same operations go for the following two hash tables.

32 X. Liang et al.

The filtering effect in the tables affects the time complexity of each table
lookup and the number of remaining quartets. For example, let the primitive
number of the quartet be NQ. The time complexity of looking up the first table
is NQ, and there are still NQ quartets left. Then the time complexity of looking
up the second table is NQ, with NQ×28 quartets remaining. Similarly, the time
complexity of looking up the third table is NQ×28. The overall time complexity
of processing each quartet according to Table 3 is 2×(1+1+28) ≈ 29. Therefore,
ε is equivalent to about 29 memory accesses. Therefore, the time complexity
required to process the quartets using the tables is 2153 memory accesses. Since
the time complexity of the above steps is lower than that of constructing pairs,
the time complexity of the rectangle key recovery attack under the method of
extracting subkey information is 2158. Combining these results, if the memory
complexity of the other steps of the rectangle key recovery attack is much larger
than the memory complexity of these hash tables, this method of processing
quartets is superior to the guess-and-filter method.

5 Discussion and Conclusion

Based on the idea described in the previous section, it is clear that if the time
complexity of T2 and T3 reaches a balance, then there is a high probability
that the time complexity of the key recovery attack can be reduced. In the key
recovery attack against AES-192, this paper achieves this, i.e., makes AES-192
reach a balance between T2 and T3 in the key recovery phase. Since there are too
few subkeys in Eb, Ef that satisfy the requirements of the preguessing strategy,
this paper tries almost all combinations of preguessing subkeys according to the
key schedule of AES-192. It is finally concluded that a preguessing of k0

0,3 can
make T2, T3 reach a balance and achieve the best time complexity.

In this paper, we apply the idea of balancing the time complexity of each
phase to the rectangle key recovery attack on AES-192. Although the non-linear
key schedule algorithm of AES-192 makes this idea hard to achieve, we suc-
cessfully attack AES-192 by an optimal guessing key strategy. Comparing this
to the attack of Biryukov et al., we reduce the time complexity by a factor of
216. Further, we use the concept of time-memory trade-off to process candidate
quartets and extract subkey information by establishing hash tables. This fur-
ther reduces the overall complexity of the attack by a factor of 22. Finally, the
time complexity of our attack reaches 2158.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This paper is supported by the National Key
Research and Development Program (No. 2018YFA0704704, No. 2022YFB2701900,
No. 2022YFB2703003) and the National Natural Science Foundation of China (Grants
62022036, 62132008, 62202460, 62172410).

Improved Related-Key Rectangle Attack Against the Full AES-192 33

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the advanced
encryption standard. NIST AES Proposal 174, 1–23 (1998)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21

4. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_1

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_30

6. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-
4

8. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4_7

9. Derbez, P., Euler, M., Fouque, P., Nguyen, P.H.: Revisiting related-key boomerang
attacks on AES using computer-aided tool. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part III. LNCS, vol. 13793, pp. 68–88. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22969-5_3

10. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_23

11. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-
schedule algorithms in rectangle attacks. In: Dunkelman, O., Dziembowski, S.
(eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 3–33. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07082-2_1

12. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8_10

13. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_15

14. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7_6

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/3-540-44706-7_6

34 X. Liang et al.

15. Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-key
boomerang and rectangle attacks: theory and experimental analysis. IEEE Trans.
Inf. Theory 58(7), 4948–4966 (2012)

16. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack
– application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27800-9_11

17. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_7

18. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89754-5_22

19. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2007). https://doi.org/10.1007/s00145-007-9013-7

20. Song, L., et al.: Optimizing rectangle attacks: a unified and generic framework
for key recovery. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol.
13791, pp. 410–440. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22963-3_14

21. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8_12

22. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle
attacks on block ciphers with linear key schedule: applications to SKINNY and
GIFT. Des. Codes Cryptogr. 88(6), 1103–1126 (2020). https://doi.org/10.1007/
s10623-020-00730-1

https://doi.org/10.1007/978-3-540-27800-9_11
https://doi.org/10.1007/978-3-540-27800-9_11
https://doi.org/10.1007/978-3-662-46706-0_7
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1007/978-3-031-22963-3_14
https://doi.org/10.1007/978-3-031-22963-3_14
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1

Block Ciphers Classification Based
on Randomness Test Statistic Value

via LightGBM

Sijia Liu1, Min Luo1(B), Cong Peng1, and Debiao He1,2

1 Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University,

Wuhan, China
{liusijia,mluo,cpeng}@whu.edu.cn

2 Key Laboratory of Computing Power Network and Information Security, Ministry
of Education, Shandong Computer Science Center, Qilu University of Technology

(Shandong Academy of Sciences), Jinan, China

Abstract. Cryptographic algorithms classification, which can detect
the underlying encryption algorithm on sufficient large ciphertexts, is
essential to encrypted traffic analysis and protocol compliance detec-
tion. Previous studies have typically employed various feature quanti-
ties and models for feature learning in analyzing encryption algorithms.
Unlike these, this work performs a broader feature selection and extracts
features from the P-values of the randomness test and their data dis-
tributions for different block cipher algorithms. This work utilizes the
LightGBM framework to focus on block cipher algorithms classification
in ECB mode. It takes six algorithms to test the classification scheme,
including AES-128, AES-192, AES-256, DES, 3DES and SM4, with an
average accuracy of 82%. To compare the accuracy, this work analyzes
the influence weights of random features and experiments with the clas-
sification accuracy of different schemes on the same ciphertext blocks.
The experiment results show that our scheme is effective in classifying
block ciphers.

Keywords: Block cipher · Cryptographic algorithm classification ·
LightGBM · Randomness test statistic value

1 Introduction

With the high-frequency occurrence of security incidents, network security tech-
nologies, especially cryptographic technologies, have become an essential com-
ponent of information systems. Specifically, encryption algorithms are extremely
and widely used not only for transmission security [18], such as TLS and SSH
protocols, but also for storage security [2], like XTS, etc. However, malicious
adversaries may also use encryption to carry out attacks or hide their attacks.
Although there will be relevant fields to mark the encrypted information, links
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 35–50, 2023.
https://doi.org/10.1007/978-981-99-7356-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_3&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_3

36 S. Liu et al.

will be overlayed on the dark web data, making the cipher algorithms classifi-
cation more difficult [15]. The indistinguishability of the ciphertext is a large
obstacle to cryptanalysis.

In traffic transmission, data is encrypted by some security protocols. Classi-
fying the encryption algorithms allows access to some transmission information
and enables effective supervision of the network environment [17]. Moreover,
there is no single authority in the blockchain system to manage all the fully
open and autonomously managed data for decentralized applications (DApps).
The classification of encryption algorithms plays an important role in identifying
DApps and helps blockchain platforms manage user behavior [21]. Classifying
cipher algorithm is significant for traffic analysis and network supervision.

Cryptosystems can be divided into two categories: symmetric-key algorithm
and public-key algorithm. Public-key algorithms utilize different keys for encryp-
tion and decryption in which distinguishing curve parameters exist. Due to their
high computational consumption, it is usually used with symmetric-key algo-
rithms in practical applications. DES, AES, SM4 and other commonly used
block cipher algorithms are widely applied in data encryption, message authen-
tication and other information secure scenarios owing to their high encryption
efficiency and convenient key management [25].

The indistinguishability of ciphertexts is a key obstacle to cryptanalysis in
the security requirements of real scenarios. Effective cryptanalysis requires accu-
rate encryption algorithms classification, enabling cryptanalysis to understand
its structure, weaknesses, characteristics and encryption techniques. Analysts
employ different methods for cryptanalysis, depending on the cryptographic
regime [3]. These methods include cipher breaking, differential attacks, linear
attacks and side-channel attacks [7]. Therefore, identifying the cryptographic
regime provides a foundation for subsequent analysis.

Most previous studies on encryption algorithms classification performed ran-
domness tests on ciphertext and learned the test pass rate at different random-
ness metrics as features. Random forest [13,29] and support vector machine
classifiers [8] are mostly used to classify the selected features. However, since
their accuracy can be raised and the analysis of the accuracy variation in the
multi-key case is lacking, this work performs improved experiments. In this work,
we take ten randomness test statistic values for the ciphertext and incorporate
the statistical characteristics and data distributions into the feature set of the
ciphertext. These methods effectively extract randomness features of ciphertext
and provide important feature vectors for subsequent machine learning tasks.
Later, we utilize the LightGBM framework for feature training and select six
block cipher algorithms on three datasets to test the scheme.

Our contributions can be briefly summarized as follows:

• The proposed scheme extracts feature from ciphertext encrypted by multiple
algorithms and forms a block cipher algorithms classifier consisting of feature
extraction and classification.

Block Ciphers Classification Based on Randomness Test Statistic Value 37

• In this experiment, we select ten randomness test statistic values and data
distributions of ciphertext as features of different encryption algorithms and
analyze the importance of feature terms for classification.

• We experiment with this classification scheme on three datasets using six
block cipher algorithms and compare it with previous studies, where the
experimental result outperforms existing classification methods.

Rest of the Paper. The rest of the paper is organized as follows. Section 2
reviews research in recent years concerning block ciphers classification; Sect. 3
introduces the primary operating mode of cryptography algorithm and the tech-
nical foundation of ciphers classification; Sect. 4 presents the block ciphers clas-
sification scheme based on test statistic values of randomness proposed in this
work; Sect. 5 shows the experimental result of the research and analyses the
accuracy; Finally, Sect. 6 summarizes this research and looks ahead to our future
work.

2 Related Work

As information technology and cryptanalysis develop, more researchers are
using artificial intelligence techniques for cryptographic algorithms classifica-
tion. Cryptanalysis involves recovering plaintext by extracting valid information
with only the ciphertext known, and identifying cryptographic algorithms is an
integral part of the cryptanalysis process. The resistance of an encryption algo-
rithm to cryptanalysis is also a crucial indicator of its security. For the analysis
of block ciphers, we focus on their characteristics, such as diffusion property
and randomness, then extract and analyze their features using machine learning
techniques.

To our knowledge, Dileep et al. [8] first attempted a support vector machine-
based identification method for block cipher encryption algorithms to classify
five encryption methods in ECB and CBC modes. This experiment significantly
affected the recognition system’s performance when the encrypted files were gen-
erated using different keys. Sharif et al. [20] used pattern recognition techniques
and eight kinds of artificial intelligence classification ciphers to identify four
block encryption algorithms in ECB mode. The experiment showed no signifi-
cant classification accuracy difference between the multiple AES versions.

Based on previous studies, Huang et al. [13] proposed a random forest-based
hierarchical identification scheme for cryptographic regimes. They first classified
the three groups of cryptographic regimes to which ciphers belong in a coarse-
grained way, then carried out a single classification of thirteen cryptographic
algorithms in a fine-grained way. This experiment showed that the hierarchi-
cal recognition scheme performs better than the single-layer recognition scheme.
However, it was still challenging to distinguish between different encryption algo-
rithms that share the same structure.

As in the previous study, the random forest algorithm is often applied to
cryptographic classification. Hu et al. [12] selected the random forest algorithm

38 S. Liu et al.

to categorize eight encryption algorithms in both ECB and CBC modes. This
experiment showed a significantly lower recognition accuracy in CBC mode
compared to ECB mode. Zhao et al. [31] also used a random forest algorithm
based on the NIST standard to extract ciphertext features and performed the
two-differentiation experiment for six encryption algorithms. Additionally, the
scheme could differentiate between the encrypted files’ different block cipher
modes.

Some studies used the random forest algorithm for comparison experiments.
Zhang et al. [30] presented a feature extraction scheme by reducing the data pre-
processing dimensionality based on ciphertext ASCII statistics. The researchers
converted images into arrays, analyzed the encrypted data differences in ASCII
code distributions, and classified eight encryption algorithms using two machine
learning classifiers: random forest and support vector machine. The two clas-
sification algorithms used in this experiment showed significant differences in
precision and recall, leading to unstable recognition results.

Some works utilized the NIST statistical test suite of random as a feature
extraction method. Ke et al. [29] combined integrated learning and proposed
an encryption algorithms identification scheme based on hybrid random forest
and logistic regression models. This work selected the NIST random test fea-
tures, encapsulating each feature in a sub-module so that they would be free
from interference. Yu et al. [28] selected five of the NIST statistical test suite
of random, extracted ciphertext features for four encryption algorithms in ECB
and CBC modes. They used the MLP classifier for classification experiments,
and it was found that the classification accuracy could reach 42% in ECB mode.
In contrast, it was lower in CBC mode due to its higher randomness.

Several recent studies have focused on classifying encryption algorithms in
CBC mode. Swapna et al. [23] proposed two block cipher recognition meth-
ods based on support vector machine for classifying five algorithms in CBC
mode. They used the ciphertext and partially decrypted text extracted from the
ciphertext with a heterogeneous association model as the input to the classifier.
In addition, there was a study for single algorithm classification. Ji et al. [14]
proposed the classification of SM4 cipher based on randomness features. They
identified the state-secret SM4 algorithm with six other block cipher algorithms,
analyzed the four randomness features of the algorithms, and then used the SVM
and decision tree single algorithms for classification.

Wu et al. [26] applied statistical analysis based on the metrics of codeword
frequency, intra-block frequency detection and runs frequency to classify the ran-
domness of four block encryption algorithms. It was clustered and divided by the
K-means algorithm. Tan et al. [24] conducted a study on multi-class recognition
using genetic algorithms, graph theory, neural networks and clustering for five
algorithms in CBC mode. They found high recognition was possible only when
the ciphertext keys were identical.

Block Ciphers Classification Based on Randomness Test Statistic Value 39

3 Preliminaries

This section briefly reviews the ECB mode of block cipher, the randomness test
statistic value and the LightGBM framework used in this work.

3.1 Electronic Codebook Mode

Electronic Cipherbook (ECB) is a typical operation mode of the block cipher.
The plaintext requires an integer multiple of the block and the encryption can
be computed in parallel. It is diffuse and computational errors in one block will
not affect subsequent computations. Since the encryption of each block does not
depend on each other, the adversary can replace any block with a previously
intercepted block without being detected and can decrypt the message without
knowing the key [10]. The encryption and decryption are shown in Fig. 1, the
specific process is as follows:

Blocked

Ciphertext

Plaintext PlaintextAnalysis

Blocked

Plaintext

Blocked

Plaintext

Blocked

Ciphertext

Key Key

2P2P

3P3P

nPnP

1C1C

2C2C

3C3C

2C2C

1P1P

2P2P

3P3P

nPnPnCnC

Encryption

Algorithm

1P1P

3C3C

1C1C

nCnC

Decryption

Algorithm

Fig. 1. Encryption and decryption in ECB mode.

• Encrypt the first plaintext block P1 with the key to generate the first cipher-
text block C1.

• Use the key for the second plaintext block, generate the second ciphertext
block, perform the same process, etc.

• Decrypt the first ciphertext block C1 with the same key and restore the first
plaintext block P1.

• Use the key for the second ciphertext block, generate the second plaintext
block, perform the same process, etc.

If the plaintext block Pm is encrypted twice using the same key in ECB
mode, the output ciphertext block will be the same. We could create a corre-
sponding cipher book for all plaintext blocks in a given key. Encryption will only
require finding the ciphertext corresponding to the plaintext. The encryption and
decryption parts of the ECB mode have no dependencies, so the input block of
each iteration does not require feedback data from the previous iteration.

40 S. Liu et al.

3.2 Randomness Test Statistic Value

The main evaluation methods of the randomness test statistic values selected in
this paper are as follows:

• Frequency Test. The frequency test evaluates the ratio of 0 bits and 1 bits
in data. The frequency test is the foundation of data randomness.

• Runs Test. The runs test assesses if the expected number of 1 bits sequences
and 0 bits sequences of different lengths are identical. It uses the bit oscillation
amplitude to reflect the randomness of the data.

• Longest Run Test. The longest run test evaluates the randomness of the
test sequence by comparing the longest run length with the expected longest
run length in a truly random sequence.

• Cumulative Sums Test. The cumulative sums test evaluates the random-
ness of 0 bits and 1 bits. In this test, 0 bits are converted to negative numbers.
The test is based on the maximum random wander distance of 0, with larger
distances indicating greater non-randomness of the test sequence.

• Approximate Entropy Test. The approximate entropy test compares the
expected results of two overlapping blocks of adjacent lengths (i and i + 1)
and the normal sequence.

• Block Frequency Test. The block frequency test evaluates whether the
number of 0 bits and 1 bits in the m non-overlapping blocks created by the
tested sequence is consistent with randomness.

• Linear Complexity Test. The linear complexity test is to divide the data
into m non-overlapping modules. It checks the randomness of each module
by examining the shortest length distribution of the linear feedback registers.

• Serial Test. The serial test evaluates whether the m-bit patterns of overlap
are close to the expected number of occurrences in the random sequence.

• Non-overlapping Template Matching Test. The non-overlapping tem-
plate matching test evaluates the occurrences of a given string in a sequence.

• Fast Fourier Transform(FFT) Test. The FFT is to convert a random
data sequence into a frequency domain representation in order to examine its
spectral characteristics and periodicity. For the input data sequence, the FFT
converts it into a complex sequence of the same length and then calculates its
frequency domain representation. The NIST statistical test suite for random
using FFT for spectral testing, period testing and many other tasks [27].

The randomness test statistic values check whether the data has any rec-
ognizable patterns. Each statistic test is designed to check a hypothesis, and
the statistical results of the experiment are evaluated to determine whether the
hypothesis is valid [19]. The randomness of the ciphertext is an important factor
in assessing the security of an encryption algorithm. In this work, we employ ten
randomness test statistic values to analyze the ciphertext generated by various
block ciphers.

In 2001, NIST published a standard for applying cryptographic random num-
ber tests, which can be applied to measure the deviation of binary sequences from

Block Ciphers Classification Based on Randomness Test Statistic Value 41

randomness. It comprises several tests to assess the system’s randomness, includ-
ing cryptographic algorithms, simulators and models [5]. Under the assumption
of randomness, the statistic will satisfy a reference distribution, and the experi-
ment will set a critical value (e.g., 99%). The test results are compared with the
critical value. The hypothesis is considered valid if the test results are less than
the critical value or invalid if the opposite is true.

In the procedure, we compute a P-value for each test, which represents the
strength of the data randomness. If the P-value is calculated close to 1, the
detected bit sequence is ideally random. A P-value of 0 means that it is entirely
non-random. If the P-value is set to 0.01, indicating that the data is a random
sequence with 99% confidence. A P-value less than 0.01 means that the bit
sequence fails the check, and a confidence level of 99% indicates that the data is
non-random.

3.3 LightGBM

LightGBM is a decision tree-based algorithm developed by Microsoft that is com-
monly used for classification and ranking tasks. LightGBM has many advantages
of the XGBoost framework, including sparse optimization, parallel training, reg-
ularization, bagging, multiple loss functions and early stopping. In this work, we
use this algorithm to learn the features of multiple block cipher algorithms in
order to categorize them.

LightGBM differs from other algorithms in its tree construction by not using
an algorithm that grows the tree line-by-line; instead, it selects the leaf that
will generate the maximum loss reduction. Furthermore, LightGBM does not
search for the optimal split point on the sorted eigenvalues like XGBoost or
other algorithms; instead, it implements a histogram-based decision tree learning
algorithm that offers significant efficiency and memory consumption advantages.
Compared to SVM and RF, LightGBM has superior robustness in managing
large data instances [22]. Additionally, LightGBM is faster and more accurate
than CatBoost and XGBoost in certain classifications, particularly for ranking
and feature selection with different numbers of characteristics [1].

The LightGBM framework has the following advantages:

• Employ splitting and tree-based techniques significantly reducing training
time.

• Enable processing of large amounts of data in limited memory space.
• Have a built-in feature selection function to reduce the noise in the training

data and improve the scheme’s accuracy.
• Support parallel computation, resulting in faster training tasks.

The LightGBM framework utilizes two new techniques, gradient-based one-
sided sampling (GOSS) and exclusive feature bundling (EFB), to accelerate
model training by reducing the number of samples and to further reduce the
features number to make the data size smaller, enabling the algorithm to per-
form both better in terms of accuracy and runtime [4].

42 S. Liu et al.

Algorithm 1: Gradient-based One-Side Sampling
Input: D: training data; iter num: iteration number
lgd: sampling ratio of large gradient data
sgd: sampling ratio of small gradient data
loss: loss function, L: weak learner
Output: newModel: optimized model
models ← {}, fact ← 1−lgd

sgd

topN ← lgd× len(D), randN ← sgd× len(D)
for i = 1 → iter num do
preds ← models.predict(D)
loss array ← loss(D, preds), w ← {1,1,...}
sorted array ← GetSortedIndexes(abs(loss array))
lagreSet ← sorted array[1:topN]
randSet ← RandomPick(sorted array[topN:len(D)], randN)
newSet ← lagreSet + randSet
w[randSet] × = fact
newModel ← L(D[newSet],loss array[newSet],w[newSet])
models.append(newModel)

The basic idea of the GOSS algorithm is to rank the training data according
to the gradient first, set a ratio, and retain the samples with a gradient higher
than this ratio. Instead of directly throwing away the samples with gradients
below this percentage, a certain percentage of them are taken for training. The
GOSS algorithm computes the information gained by scaling up the dataset with
smaller gradients, which can counteract the effect on the sample distributions.
The exact algorithm is shown in Algorithm 1 [16].

GOSS greatly reduces the computational effort by estimating gains on smaller
sample datasets without excessively reducing training accuracy. In addition, the
LightGBM framework utilizes the EFB technique to reduce the number of vari-
ables. It improves the operational efficiency of the algorithm by linking features
that are not mutually exclusive, and ranking features according to the degree of
fixed points reflecting feature conflicts, and setting a maximum conflict threshold
to merge features.

4 Block Ciphers Classification

The classification of block ciphers can be divided into two main parts. Use
machine learning techniques to learn these features and then classify the block
ciphers.

4.1 Feature Selection and Extraction

As we learned from the introduction in Sect. 3.2, the randomness test statistic is
typically used to verify the random number generators of cryptographic appli-
cations. This study utilizes the test statistic values to analyze the randomness

Block Ciphers Classification Based on Randomness Test Statistic Value 43

differences among various block cipher algorithms by applying the suite to the
ciphertexts.

Block cipher algorithms provide data confidentiality, integrity and authen-
ticity, making them key tools for secure communication and data protection, so
it is widely used in various fields, such as network work security, data storage
and financial transactions. The ciphertext generated by block cipher algorithms
exhibits high levels of randomness, making it challenging to select and extract
features for classification manually. Due to the high randomness of ciphertexts
generated by block cipher algorithms, it is challenging to select and extract
features for classification manually. Therefore, we choose distinguishable test
statistic-valued features to extract features from various block cipher algorithms
in this study.

We utilize two features to represent this metric as the cumulative sums test
is evaluated in forward and backward modes. Similarly, the serial test results
generate two sets of features to express their property. In addition, we performed
statistical analysis on the results of ten tests, describing the distribution of each
data in terms of its concentration trend, degree of dispersion and shape. We
select effective and distinguishable features from them to expand the feature set
of the algorithm.

4.2 Classification Scheme Based on LightGBM

For a set Enc of cryptographic algorithms with n block cipher algorithms, let
Enc = {e1, e2, ..., en}. When a block cipher algorithm ei is given, a cryptographic
classification scheme is used to determine which of the Enc algorithms it belongs
to in the absence of other information. The workflow of the cryptographic recog-
nition scheme is shown in Fig. 2.

Classifier

Predicted

results

Encryption

Algorithm

…

Feature

Extraction

…

Features

…

Fig. 2. Encryption algorithms classification flow chart

We normally consider that a cryptographic recognition scheme consists of a
combination of algorithms to be classified, a collection of feature and a recogni-
tion algorithm. we express as C = {Enc, Fea,Alg}, where C denotes the work’s

44 S. Liu et al.

Algorithm 2: Construction of block ciphers classification
Input: Encryption algorithm set Enc = {e1, e2, ..., en}
Output: Block ciphers classification scheme C = {Enc, Fea,Alg}
Initialize the test statistic values V al and features Fea as empty sets
V al, Fea ← {}
Generate the ciphertext set
Cip = {c1, c2, ..., cn} ← plaintext.Enc()
for ci ∈ Cip do
Group ci in equal lengths
j ← 1
while ! end test do

V ali ← get test sta val(ci,j)

fi ← get fea(V ali)
Add the fi in Fea

Disrupt the data and split the training and test set
tra data ← 4/5 of data, test data ← 1/5 of data
Transform the training and test datasets sequentially
Optimize parameters for Alg with Fea
return Block ciphers classification scheme

proposed block cipher algorithm recognition scheme. Enc denotes the set of
cryptographic algorithms to be classified. Fea is the set of features correspond-
ing to the encryption algorithm in Enc,denoted as Fea = {f1, f2, ..., fn}. Alg
is the selected machine learning-based classification method. The block ciphers
classification scheme’s construction is described in Algorithm 2.

We adopt a 5-fold cross-validation strategy in the training process, which
means dividing the dataset into five subsets, training and testing the model
on different combinations of these subsets. The number of training examples is
increased to optimize the model, while the test set is used to evaluate the model’s
performance and deviation values. Furthermore, cross-validation ensures that all
data are involved in the model’s training and prediction processes, effectively
mitigating overfitting and enhancing the model’s accuracy.

The 5-fold cross-validation method is implemented as follows:

• Divide the data into five equal-sized groups.
• Take 4/5 of the data to train and the remaining 1/5 to test.
• Repeat the whole process five times.

The accuracy of the experiments is calculated as the average of the training
results of each partition. All classifiers are trained using the same training set,
and the related metrics are measured using the same test set.

5 Experimental Results

5.1 Evaluation Metrics

We choose the following metrics to evaluate the classification scheme.

Block Ciphers Classification Based on Randomness Test Statistic Value 45

• TP (True Positive): the number of positive cases is predicted to be positive.
• FP (False Positive): the number of actual negative cases that are predicted

to be positive.
• TN (True Negative): the number of negative cases predicted to be negative.
• FN (False Negative): the number of positive cases predicted to be negative.

Precision is a metric used to evaluate the performance of a classifier, which
represents the ratio of the correctly classified samples to the total number of
samples. The precision score ranges between 0 and 1, with a value closer to 1
indicating that the model’s prediction results are more accurate. Precision is
calculated using the following formula:

Precision =
TP

TP + FP
(1)

The recall is the percentage of correctly classified positive samples to total
positive samples. It measures the proportion of true positive cases correctly
identified by the model. Recall has a value range between 0 and 1, where a
higher value indicates that the model can identify positive cases correctly. The
recall is calculated using the following formula:

Recall =
TP

TP + FN
(2)

The F1-Score is a metric that combines precision and recall. It is more infor-
mative when there is a large imbalance between the two. It ranges from 0 to 1,
with a higher value indicating better model performance. In cases of an uneven
distribution of positive and negative samples, the F1-Score can consider both
precision and recall. The formula for calculating the F1-Score is:

F1 − Score =
2 ∗ (Precision ∗ Recall)
Precision + Recall

(3)

Our work employed a 5-fold cross-validation strategy to calculate the classi-
fication accuracy record, average precision, recall and F1-Score values.

5.2 Experimental Results and Analysis

We utilize three types of datasets, including the Caltech-256 image dataset [11],
the Caltech Resident-Intruder Mouse dataset (CRIM13) [6] and VPN-nonVPN
dataset (ISCXVPN2016) [9]. Caltech-256 includes 256 categories of images with
over 80 items per category, the common image dataset. It downloads from Google
Images and manually filters those images that do not match the categories.
CRIM13 contains 474 videos from pairs of mice performing social behaviors, with
88 h and 8 million video frames, a commonly used video dataset. ISCXVPN2016
contains 14 types of traffic data from VPN and regular scenarios, commonly
used as a traffic dataset.

After collecting the dataset, we divide it into a number of files of about
1GB. Then, we use six block ciphers, AES-128, AES-192, AES-256, DES, 3DES

46 S. Liu et al.

Table 1. Configurations of the algorithms

Settings Algorithm Key length Key

AES-128 128 1234567812345678

AES-192 192 123456781234567812345678

Same AES-256 256 12345678123456781234567812345678

key DES 64 12345678

3DES 128 1234567812345678

SM4 128 1234567812345678

AES-128 128 hd3UHq5UJpECzkNR

AES-192 192 HJpEC1k9m5UyHdGcf23gvf4I

Different AES-256 256 YQfGZJ16P8PfurygtPbKUUZRYepVAnTZ

keys DES 64 wfrL7Ipm

3DES 128 3m0pE9bMq7bAv2zU

SM4 128 BKEhx9f6bzvFhZcH

and SM4 to encrypt these files. Table 1 shows the relevant configurations of the
six block ciphers we used. We investigate the key’s influence on the classifica-
tion of encryption algorithms by setting the same and different keys for the six
algorithms in our experiment. When setting different keys, we generate random
strings as keys for encryption algorithms. When setting the same key, we set its
repeat unit to the same value since the encryption algorithms have different key
lengths.

In this work, we conduct 10 experiments on the above dataset separately and
set the feature data extracted from the ciphertext to 1024 × 6 items each time.
In the cross-validation, 4915 items were selected as the training data and 1229
items as the validation data. The accuracy of the block ciphers classification
scheme based on Sect. 4 is verified experimentally.

When the classification scheme is tested on different datasets, the classifi-
cation accuracy is shown in Fig. 3. The identifiers ‘dk’ and ‘sk’ of the dataset
mean that the encryption algorithm works with different or similar keys. It can
be seen from the figure that the classification accuracy of encryption algorithms
is a little higher when using the same key than using different keys. We consider
that the key’s influence on the classification of encryption algorithms is dimin-
ished when using the same key, making it more accurate. However, in practical
scenarios, different encryption algorithms generally use different keys, so we are
more interested in classifying encryption algorithms under different keys.

Cross-validation is a method helping to reduce unstable training results that
may arise from using a portion of the data as a validation set to evaluate the
model. It is more reliable than a single evaluation as it considers the distribution
of multiple data points. To improve the performance of our classification scheme,
we employ cross-validation to ensure that each data point is used for training
and testing to evaluate its stability and generalization performance.

Block Ciphers Classification Based on Randomness Test Statistic Value 47

Caltech-256_dk CRIM13_dk ISCXVPN2016_dk Caltech-256_sk CRIM13_sk ISCXVPN2016_sk

Precision 0.849 0.866 0.746 0.861 0.894 0.795

F1-Score 0.835 0.856 0.758 0.853 0.887 0.803

Recall 0.823 0.845 0.769 0.845 0.882 0.811

0.000

0.200

0.400

0.600

0.800

1.000

Precision F1-Score Recall

Fig. 3. Classification accuracies on different datasets

Besides, the above figure shows that the classification accuracy on the
ISCXVPN2016 dataset is slightly lower than others. We analyze that because
there are encrypted processes inside the traffic data, inner encryption features
might cause some interference with the analysis of the outer encryption algo-
rithm. The classification scheme is validated using six encryption algorithms in
ECB mode with different keys, which achieve an average classification accuracy
of 82%.

Table 2 compares the average accuracy achieved in this work with existing
studies on the classification of block cipher algorithms. An experiment includes
the symmetric-key and public-key algorithms [13], so we do not classify the work
mode of the experiment’s encryption algorithms. Notably, our work achieves
the highest accuracy among the comparative studies. We conduct comparative
experiments for the LightGBM-based classification scheme in this paper with
the K-Nearest Neighbors model. Figure 4 shows the classification accuracy of
the two algorithms in one independent experiment on the Caltech-256 dataset.

Table 2. Classification accuracies of algorithms

Sources Classification objects Mode Accuracy

[8] DES/3DES/Blowfish/AES/RC5 ECB/CBC 0.41/0.35

[20] DES/IDEA/AES/RC2 ECB 0.53

[13] Substitution/Permutation/Trivium/Sosemanuk/

grain/RC4/AES/Camellia/DES/SM4/RSA/ECC

- 0.21

[29] AES/3DES/Blowfish/CAST/RC2 ECB 0.73

[28] DES/3DES/AES/Blowfish ECB/CBC 0.42/0.30

This Work AES-128/AES-192/AES-256/DES/3DES/SM4 ECB 0.82

48 S. Liu et al.

0.877
0.895

0.858

0.802 0.798

0.864

0.632
0.611

0.683

0.635

0.578

0.663

0.000

0.200

0.400

0.600

0.800

1.000

AES-128 AES-192 AES-256 DES 3DES SM4

A
cc

u
ra

cy

LightGBM K-Nearest Neighbors

Fig. 4. Classification accuracies comparison of LightGBM and KNN

5

20

31

40

52

63

64

86

98

143

189

200

0 50 100 150 200 250

FFT

CumulativeSums_1

BlockFrequency

LongestRun

CumulativeSums_2

Frequency

LinearComplexity

Runs

ApproximateEntropy

Serial_1

Serial_2

Non-overlappingTemplate

Feature Important Indicators

Fig. 5. The importance of features for classification

Figure 5 shows the features’ importance for classifying encryption algorithms
in this experiment. It can be seen from the figure that the non-overlapping and
serial statistic values of different algorithms have more significant distinctions in
their test of randomness characteristics. The LightGBM framework provides a
built-in feature importance calculation function. It evaluates the importance of
a feature by considering the number of times it is split in the decision tree and
the gain achieved by these splits. The higher the score, the more significant the
feature is in the classification process.

6 Conclusion

This work proposes a block ciphers classification scheme based on randomness
test statistic value. We take the randomness test statistic values and their dis-
tributions of ciphertext as features of encryption algorithms and classify them
via LightGBM. We experiment with this classification scheme on three datasets
using six block cipher algorithms, AES-128, AES-192, AES-256, DES, 3DES and
SM4. The classification accuracy reaches 82% when the algorithms are encrypted
with different keys. The experiment results show that differences in keys and

Block Ciphers Classification Based on Randomness Test Statistic Value 49

datasets somewhat impact the classification accuracy. The classification accu-
racy in this work is significantly higher than random classification and above
other classification schemes.

In future research, we would analyze the characteristics of block ciphers in
CBC mode for encryption algorithm classification under multiple working modes.
In addition, we would like to design an effective classifier to extract and classify
multi-system encryption algorithms.

Acknowledgments. This research was supported by the Key Research and Develop-
ment Program Project of Shandong Province under grants No. 2020CXGC010115.

References

1. Al Daoud, E.: Comparison between XGBoost, LightGBM and CatBoost using a
home credit dataset. Int. J. Comput. Inf. Eng. 13(1), 6–10 (2019)

2. Benadjila, R., Khati, L., Vergnaud, D.: Secure storage-confidentiality and authen-
tication. Comput. Sci. Rev. 44, 100465 (2022)

3. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12696, pp. 805–835. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77870-5 28

4. Bentéjac, C., Csörgő, A., Mart́ınez-Muñoz, G.: A comparative analysis of gradient
boosting algorithms. Artif. Intell. Rev. 54, 1937–1967 (2021)

5. Bogos, C.E., Mocanu, R., Simion, E.: A remark on NIST SP 800–22 serial test.
Cryptology ePrint Archive (2022)

6. Burgos-Artizzu, X.P., Dollár, P., Lin, D., Anderson, D.J., Perona, P.: Social behav-
ior recognition in continuous video. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1322–1329. IEEE (2012)

7. Devi, M., Majumder, A.: Side-channel attack in internet of things: a survey. In:
Mandal, J.K., Mukhopadhyay, S., Roy, A. (eds.) Applications of Internet of Things.
LNNS, vol. 137, pp. 213–222. Springer, Singapore (2021). https://doi.org/10.1007/
978-981-15-6198-6 20

8. Dileep, A.D., Sekhar, C.C.: Identification of block ciphers using support vector
machines. In: The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pp. 2696–2701. IEEE (2006)

9. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization
of encrypted and VPN traffic using time-related. In: Proceedings of the 2nd Inter-
national Conference on Information Systems Security and Privacy (ICISSP), pp.
407–414 (2016)

10. Elashry, I.F., Allah, O., Abbas, A.M., El-Rabaie, S.: A new diffusion mechanism
for data encryption in the ECB mode. In: IEEE (2010)

11. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
12. Hu, X., Zhao, Y.: Block ciphers classification based on random forest. In: Journal

of Physics: Conference Series, vol. 1168, p. 032015. IOP Publishing (2019)
13. Huang, L., Zhao, Z., Zhao, Y.: A two-stage cryptosystem recognition scheme based

on random forest. Chin. J. Comput. 41(2), 382–399 (2018)
14. Ji, W., Li, Y., Qin, B.: ldentification of SM4 block cipher system based on random

features. Appl. Res. Comput. (2021)

https://doi.org/10.1007/978-3-030-77870-5_28
https://doi.org/10.1007/978-3-030-77870-5_28
https://doi.org/10.1007/978-981-15-6198-6_20
https://doi.org/10.1007/978-981-15-6198-6_20

50 S. Liu et al.

15. Kaur, S., Randhawa, S.: Dark web: a web of crimes. Wirel. Pers. Commun. 112,
2131–2158 (2020)

16. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

17. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for
encrypted traffic classification. In: IEEE INFOCOM 2019-IEEE Conference On
Computer Communications, pp. 1171–1179. IEEE (2019)

18. Manfredi, S., Ranise, S., Sciarretta, G.: Lost in TLS? no more! assisted deploy-
ment of secure TLS configurations. In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol.
11559, pp. 201–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22479-0 11

19. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, Booz-allen and hamilton inc mclean va (2001)

20. Sharif, S.O., Kuncheva, L., Mansoor, S.: Classifying encryption algorithms using
pattern recognition techniques. In: 2010 IEEE International Conference on Infor-
mation Theory and Information Security, pp. 1168–1172. IEEE (2010)

21. Shen, M., Zhang, J., Zhu, L., Xu, K., Du, X.: Accurate decentralized application
identification via encrypted traffic analysis using graph neural networks. IEEE
Trans. Inf. Forensics Secur. 16, 2367–2380 (2021)

22. Sun, X., Liu, M., Sima, Z.: A novel cryptocurrency price trend forecasting model
based on LightGBM. Financ. Res. Lett. 32, 101084 (2020)

23. Swapna, S., Dileep, A., Sekhar, C.C., Kant, S.: Block cipher identification using
support vector classification and regression. J. Discr. Math. Sci. Crypt. 13(4),
305–318 (2010)

24. Tan, C., Deng, X., Zhang, L.: Identification of block ciphers under CBC mode.
Procedia Comput. Sci. 131, 65–71 (2018)

25. Usmonov, M.: Fundamentals of Symmetric Cryptosystem. Scienceweb Academic
Papers Collection (2021)

26. Wu, Y., Wang, T., Xing, M., Li, J.: Block ciphers identification scheme based on
the distribution character of randomness test values of ciphertext. J. Commun.
36(4), 146–155 (2015)

27. Xing, M., Wu, Y., Wang, T., Li, J.: Identification of encrypted bit stream based
on runs test and fast Fourier transform. Comput. Sci. 42(1), 164–169 (2015)

28. Yu, X., Shi, K.: Block ciphers identification scheme based on randomness test.
In: 6th International Workshop on Advanced Algorithms and Control Engineering
(IWAACE 2022), vol. 12350, pp. 375–380. SPIE (2022)

29. Yuan, K., Huang, Y., Li, J., Jia, C., Yu, D.: A block cipher algorithm identification
scheme based on hybrid random forest and logistic regression model. In: Neural
Processing Letters, pp. 1–19 (2022)

30. Zhang, W., Zhao, Y., Fan, S.: Cryptosystem identification scheme based on ascii
code statistics. Secur. Commun. Netw. 2020, 1–10 (2020)

31. Zhao, Z., Zhao, Y., Liu, F.: Scheme of block ciphers recognition based on random-
ness test. J. Cryptol. Res. 6(2), 177–190 (2018)

https://doi.org/10.1007/978-3-030-22479-0_11
https://doi.org/10.1007/978-3-030-22479-0_11

Cryptanalysis of Two White-Box
Implementations of the CLEFIA

Block Cipher

Jiqiang Lu1,2,3(B) and Can Wang1,3

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{lvjiqiang,canwang}@buaa.edu.cn

2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin, China
3 Hangzhou Innovation Institute, Beihang University, Hangzhou, China

Abstract. The CLEFIA block cipher has a generalised Feistel structure,
which has been an ISO international standard since 2012. In 2014 Su et
al. proposed a white-box CLEFIA implementation with a white-box table
for an S-box, and in 2020 Yao et al. presented an algebraic attack on Su et
al.’s implementation with a time complexity of 230 and proposed another
white-box CLEFIA implementation with a basic white-box table for two
S-boxes. In this paper, we apply Lepoint et al.’s collision-based attack
method to Su et al.’s implementation and recover all the white-box oper-
ations and the round and whitening keys with a time complexity of about
222 S-box computations, and analyse the security of Yao et al.’s imple-
mentation against Lepoint et al.’s collision-based attack method. For Yao
et al.’s implementation, on one hand, our experiment under a small frac-
tion of (affine encodings, round key) combinations suggests that it can
resist Lepoint et al.’s collision-based attack method, for the rank of the
concerned linear system is much less than the number of the involved
unknowns, but on the other hand, it is not clear whether there exist
affine encodings such that the rank of the corresponding linear system is
slightly less than the number of the involved unknowns, for which case
Lepoint et al.’s method can be applied to remove most white-box opera-
tions until mainly some Boolean masks remain. We also experimentally
test that the rank of the concerned linear system is invariant when the
Boolean encodings are changed to affine encodings in our attack on Su et
al.’s implementation. Our cryptanalysis suggests to some extent that for
white-box CLEFIA implementation, building a white-box table with two
S-boxes is preferable to building a white-box table with a single S-box in
the sense of their security against Lepoint et al.’s collision-based attack
method, but nevertheless we leave it as an open problem to investigate
the distribution of the ranks under all encodings.

Keywords: White-box cryptography · Block cipher · CLEFIA ·
Collision attack

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 51–68, 2023.
https://doi.org/10.1007/978-981-99-7356-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_4&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_4

52 J. Lu and C. Wang

1 Introduction

In 2002, Chow et al. [7] introduced white-box cryptography and proposed a
white-box implementation of the AES [19] block cipher. White-box cryptogra-
phy assumes that an attacker has full access to the execution environment and
execution details of a cryptographic implementation. Subsequently, a few differ-
ent white-box AES implementations have been proposed [1,2,6,12,17,22], but
all the designs have been broken with a practical or semi-practical time complex-
ity [2,8–10,15,16], particularly, in 2004 Billet et al. [4] presented an algebraic
attack on Chow et al.’s white-box AES implementation with a time complexity
of 230, and in 2013 Lepoint et al. [15] improved Billet et al.’s attack and gave
a collision-based attack on Chow et al.’s white-box AES implementation, both
with a time complexity of 222.

The CLEFIA [20] block cipher was designed by Sony for DRM (digital rights
management) applications, and it became an ISO international standard on
lightweight block cipher [13] in 2012. In 2014, Su et al. [21] proposed a white-box
CLEFIA implementation constructed mainly by building a white-box table for
every S-box and using random numbers called scrambling items (i.e. Boolean
encodings/masks) to protect the original input and output in such a white-box
table. In 2020, Yao et al. [23] applies Michiels et al.’s attack [18] to Su et al.’s
white-box CLEFIA implementation with a time complexity of about 230, and
they proposed a white-box CLEFIA implementation mainly by building a white-
box table for every two S-boxes and using affine input and output encodings to
protect the original input and output in such a white-box table.

In this paper, we analyse the security of Su et al.’s and Yao et al.’s white-box
CLEFIA implementations against Lepoint et al.’s collision-based attack method.
We apply Lepoint et al.’s collision-based attack method to Su et al.’s implemen-
tation and recover all the scrambling items and all the round and whitening
keys with a time complexity of about 222 S-box computations, so the user key
is readily known. For Yao et al.’s implementation, on one hand, our small-scale
experimental test under a few different (affine encodings, round key) combina-
tions shows that the rank of the concerned linear system is much less than the
number of the involved unknowns, and thus it is infeasible to apply Lepoint et
al.’s collision-based attack to Yao et al.’s implementation, but on the other hand,
it is impossible to experimentally test all the possible encodings, and we are not
sure whether there exist affine encodings such that the rank of the corresponding
linear system is slightly less than the number of the involved unknowns, in which
case Lepoint et al.’s collision-based attack method could be applied to Yao et al.’s
implementation to remove its most white-box operations with a practical time
complexity until only some Boolean encodings remain. We also experimentally
test that the rank of the concerned linear system is invariant when the Boolean
encodings are replaced with affine encodings in our attack on Su et al.’s imple-
mentation. Generally speaking, our cryptanalysis of the two white-box CLEFIA
implementations suggests to some extent that building a white-box table with
two S-boxes is preferable to building a white-box table with a single S-box in
the sense of their security against Lepoint et al.’s collision-based attack method.

Cryptanalysis of Two White-Box CLEFIA Implementations 53

The remainder of the paper is organised as follows. We describe the notation
and the CLEFIA block cipher in the next section, and present our cryptanalysis
on Su et al.’s and Yao et al.’s implementations in Sects. 3 and 4, respectively.
Section 5 concludes this paper.

2 Preliminaries

In this section, we give the notation and briefly describe the CLEFIA block
cipher.

2.1 Notation

In all descriptions we assume that a number without a prefix is in decimal
notation, and a number with prefix 0x is in hexadecimal notation. We use the
following notation throughout this paper.

⊕ bitwise exclusive OR (XOR)
⊕x XOR with a value x
⊗ polynomial multiplication modulo x8 + x4 + x3 + x2 + 1 in GF(28)
|| bit string concatenation
◦ functional composition

2.2 The CLEFIA Block Cipher

CLEFIA [20] is a generalized Feistel block cipher with a 128-bit block size, a user
key of 128, 192 and 256 bits and a total of 18, 22 and 26 rounds, respectively.
We consider the version with a 128-bit key in this paper.

CLEFIA uses two different 8 × 8-bit S-boxes S0 and S1, and two expan-
sion matrices M0 and M1. Denote by (Xr

0 ,Xr
1 ,Xr

2 ,Xr
3) the 128-bit input to

the r-th round (r = 1, 2, . . . , 18), by (RKr
0 , RKr

1) the 64-bit round key to
the r-th round, where Xr

i = (Xr
i,0||Xr

i,1||Xr
i,2||Xr

i,3) ∈ GF(2)32 and RKi =
(RKi,0||RKi,1||RKi,2||RKi,3) ∈ GF(2)32. The r-th round function is defined
to be

(Xr
0 ||Xr

1 ||Xr
2 ||Xr

3 , RKr
0 ||RKr

1)
→ ((Xr

1 ⊕ F0 (Xr
0 , RKr

0)) ||Xr
2 ||(Xr

3 ⊕ F1 (Xr
2 , RKr

1)) ||Xr
0) ,

where

F0(Xr
0 , RKr

0) = M0

⎡
⎢⎢⎣

S0(Xr
0,0 ⊕ RKr

0,0)
S1(Xr

0,1 ⊕ RKr
0,1)

S0(Xr
0,2 ⊕ RKr

0,2)
S1(Xr

0,3 ⊕ RKr
0,3)

⎤
⎥⎥⎦ , M0 =

⎡
⎢⎢⎣

0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎤
⎥⎥⎦ ;

F1(Xr
2 , RKr

1) = M1

⎡
⎢⎢⎣

S1(Xr
2,0 ⊕ RKr

1,0)
S0(Xr

2,1 ⊕ RKr
1,1)

S1(Xr
2,2 ⊕ RKr

1,2)
S0(Xr

2,3 ⊕ RKr
1,3)

⎤
⎥⎥⎦ , M1 =

⎡
⎢⎢⎣

0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

⎤
⎥⎥⎦ .

54 J. Lu and C. Wang

Fig. 1. The encryption procedure of CLEFIA

Besides, there are four whitening operations at the beginning and end of the
encryption procedure, XORing X1

0 , X1
2 , X19

0 and X19
2 with a 32-bit whitening

key WK0, WK1, WK2 and WK3, respectively. Figure 1 depicts the encryption
procedure of CLEFIA. See [20] for a detailed specification of CLEFIA.

3 Collision-Based Attack on Su et al.’s White-Box
CLEFIA Implementation

In this section, we describe Su et al. ’s white-box CLEFIA implementation and
give a collision-based attack to recover all its encodings and subkeys.

3.1 Su et al.’s White-Box CLEFIA Implementation

Su et al.’s white-box CLEFIA implementation [21] is made up of a number of
white-box tables and XOR operations, and its main feature is that it uses only
a few 32-bit random numbers, called scrambling items, to construct these white-
box tables, instead of such usually used white-box operations as mixing matrix
bijections and nonlinear encodings in white-box domain. Figure 2 illustrates Su
et al.’s implementation. The scrambling items are placed to XOR with the input
and output of the F0 and F1 functions, ai

0 and ai
2 are input scrambling items

Cryptanalysis of Two White-Box CLEFIA Implementations 55

(i = 1, 2, . . . , 16), bi
0 and bi

2 are output scrambling items, there is no input
scrambling item in the first round and no output scrambling item in the last
round, and the whitening keys are moved equivalently to be immediately after
the output of the F0 and F1 functions in the first and last rounds. As a result,
for a typical round (3 ≤ r ≤ 16), there is

Xr+1
0 = Xr

1 ⊕ F0(Xr
0 ⊕ ar−1

0 , RKr
0) ⊕ br−2

2 ⊕ br
0, Xr+1

1 = Xr
2 ,

Xr+1
2 = Xr

3 ⊕ F1(Xr
2 ⊕ ar−1

2 , RKr
1) ⊕ br−2

0 ⊕ br
2, Xr+1

3 = Xr
0 .

Implicitly, there are a few relations among the scrambling items, so as to keep
the original input for every S-box, that is,

br
0 = ar

0, br
2 = ar

2. (1)

Su et al. constructed four 8×32-bit white-box tables for every F0 or F1 func-
tion, corresponding respectively to the four S-boxes. Specifically, represent the
M0 and M1 matrices each with four 32 × 8-bit matrices as M0 = [M0,0||M0,1||
M0,2||M0,3] and M1 = [M1,0||M1,1||M1,2||M1,3], the four 8 × 32-bit white-box
tables for the F0 and F1 functions of the r-th round are respectively

T r
0,j(X

r
0,j) = ⊕br−2

2,j ⊕br0,j
◦ M0,j ◦ Sj mod 2(Xr

0,j ⊕ ar−1
0,j ⊕ RKr

0,j),

T r
1,j(X

r
2,j) = ⊕br−2

0,j ⊕br2,j
◦ M1,j ◦ S(j+1) mod 2(Xr

2,j ⊕ ar−1
2,j ⊕ RKr

1,j),

where (ar−1
m,0 ||ar−1

m,1 ||ar−1
m,2 ||ar−1

m,3) = ar−1
m , ⊕3

j=0b
r−2
m,j = br−2

m , ⊕3
j=0b

r
m,j = br

m, j =
0, 1, 2, 3, and m = 0, 2.

That is,

Xr+1
0 =

3⊕
j=0

T r
0,j(X

r
0,j)⊕Xr

1 = ⊕br−2
2 ⊕br0

◦M0 ◦

⎡
⎢⎢⎣

S0(xr
0,0 ⊕ ar−1

0,0 ⊕ RKr
0,0)

S1(xr
0,1 ⊕ ar−1

0,1 ⊕ RKr
0,1)

S0(xr
0,2 ⊕ ar−1

0,2 ⊕ RKr
0,2)

S1(xr
0,3 ⊕ ar−1

0,3 ⊕ RKr
0,3)

⎤
⎥⎥⎦⊕Xr

1 ,

and

Xr+1
2 =

3⊕
j=0

T r
1,j(X

r
2,j)⊕Xr

3 = ⊕br−2
0 ⊕br2

◦M1 ◦

⎡
⎢⎢⎣

S1(xr
2,0 ⊕ ar−1

2,0 ⊕ RKr
1,0)

S0(xr
2,1 ⊕ ar−1

2,1 ⊕ RKr
1,1)

S1(xr
2,2 ⊕ ar−1

2,2 ⊕ RKr
1,2)

S0(xr
2,3 ⊕ ar−1

2,3 ⊕ RKr
1,3)

⎤
⎥⎥⎦⊕Xr

3 .

3.2 Attacking Su et al.’s White-Box CLEFIA Implementation

In this subsection, we apply Lepoint et al.’s collision-based idea [15] to attack
Su et al.’s white-box CLEFIA implementation and recover the scrambling items,
round keys and whitening keys with an expected time complexity of about 222.2

S-box computations.

56 J. Lu and C. Wang

Fig. 2. Su et al.’s white-box CLEFIA implementation

3.2.1 Devising Collision Functions

First, note that it is equivalent to Su et al.’s white-box CLEFIA implementation
if we redefine the input encodings ar−1

0 and ar−1
2 and output encodings er

0 and
er
2 for the r-th round (r = 1, 2, · · · , 18) as follows (m = 0, 2):

ar−1
m = (ar−1

m,0 ||ar−1
m,1 ||ar−1

m,2 ||ar−1
m,3) =

{
0, r = 1 or 18;

ar−1
m , 2 ≤ r ≤ 17.

Cryptanalysis of Two White-Box CLEFIA Implementations 57

er
0 = (er

0,0||er
0,1||er

0,2||er
0,3) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b10 ⊕ WK0, r = 1;
b20, r = 2;

br
0 ⊕ br−2

2 , 3 ≤ r ≤ 16;
b152 , r = 17;

b162 ⊕ WK2, r = 18.

er
2 = (er

2,0||er
2,1||er

2,2||er
2,3) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b12 ⊕ WK1, r = 1;
b22, r = 2;

br
2 ⊕ br−2

0 , 3 ≤ r ≤ 16;
b150 , r = 17;

b160 ⊕ WK3, r = 18.

Then, we define collision functions on the F0 and F1 functions of the r-th
round (r = 1, 2, · · · , 18) to start immediately before the XOR operation with the
input encoding and end immediately after the XOR operation with the output
encoding, as follows:

fr
0 (xr

0,0, x
r
0,1, x

r
0,2, x

r
0,3) =

⎡
⎢⎢⎣

er
0,0

er
0,1

er
0,2

er
0,3

⎤
⎥⎥⎦ ◦ M0 ◦

⎡
⎢⎢⎣

S0(xr
0,0 ⊕ ar−1

0,0 ⊕ RKr
0,0)

S1(xr
0,1 ⊕ ar−1

0,1 ⊕ RKr
0,1)

S0(xr
0,2 ⊕ ar−1

0,2 ⊕ RKr
0,2)

S1(xr
0,3 ⊕ ar−1

0,3 ⊕ RKr
0,3)

⎤
⎥⎥⎦ ,

fr
1 (xr

2,0, x
r
2,1, x

r
2,2, x

r
2,3) =

⎡
⎢⎢⎣

er
2,0

er
2,1

er
2,2

er
2,3

⎤
⎥⎥⎦ ◦ M1 ◦

⎡
⎢⎢⎣

S1

(
xr
2,0 ⊕ ar−1

2,0 ⊕ RKr
1,0

)
S0

(
xr
2,1 ⊕ ar−1

2,1 ⊕ RKr
1,1

)
S1

(
xr
2,2 ⊕ ar−1

2,2 ⊕ RKr
1,2

)
S0

(
xr
2,3 ⊕ ar−1

2,3 ⊕ RKr
1,3

)

⎤
⎥⎥⎦ .

Furthermore, we express each fr
l (l = 0, 1) as a concatenation of four byte

functions fr
l,0, fr

l,1, fr
l,2 and fr

l,3:

fr
0 (xr

0,0, x
r
0,1, x

r
0,2, x

r
0,3)=

(
fr
0,0(x

r
0,0, · · · , xr

0,3), · · · , fr
0,3(x

r
0,0, · · · , xr

0,3)
)T

,

fr
1 (xr

2,0, x
r
2,1, x

r
2,2, x

r
2,3)=

(
fr
1,0(x

r
2,0, · · · , xr

2,3), · · · , fr
1,3(x

r
2,0, · · · , xr

2,3)
)T

,

and define Sr
0,j and Sr

1,j functions as

Sr
0,j(·) = Sj mod 2 ◦ ⊕RKr

0,j
◦ ⊕ar−1

0,j
(·),

Sr
1,j(·) = S(j+1) mod 2 ◦ ⊕RKr

1,j
◦ ⊕ar−1

2,j
(·),

where j = 0, 1, 2, 3.

3.2.2 Recovering Sr
0,j And Sr

1,j Functions
We first use the following collision to recover Sr

0,0 and Sr
0,2:

fr
0,0(α, 0, 0, 0) = fr

0,0(0, 0, β, 0),

where α, β ∈ GF(28). This equation means the following equation:

⊕er
0,0

◦ (
0x01 ⊗ Sr

0,0(α) ⊕ 0x02 ⊗ Sr
0,1(0) ⊕ 0x04 ⊗ Sr

0,2(0) ⊕ 0x06 ⊗ Sr
0,3(0)

)

= ⊕er
0,0

◦ (
0x01 ⊗ Sr

0,0(0) ⊕ 0x02 ⊗ Sr
0,1(0) ⊕ 0x04 ⊗ Sr

0,2(β) ⊕ 0x06 ⊗ Sr
0,3(0)

)
.

58 J. Lu and C. Wang

Since er
0,0 and 0x02⊗Sr

0,1(0)⊕0x06⊗Sr
0,3(0) are constants, we have the following

equation:

0x01 ⊗ Sr
0,0(α) ⊕ 0x04 ⊗ Sr

0,2(0) = 0x01 ⊗ Sr
0,0(0) ⊕ 0x04 ⊗ Sr

0,2(β).

For convenience, define ux = Sr
0,0(x) and vx = Sr

0,2(x) , then we have

0x01 ⊗ (u0 ⊕ uα) = 0x04 ⊗ (v0 ⊕ vβ). (2)

Since α �→ fr
0,0(α, 0, 0, 0) and β �→ fr

0,0(0, 0, β, 0) are bijections, we can find
256 collisions. After removing (α, β) = (0, 0), we get 255 pairs (α, β) satisfying
Eq. (2). In the same way, we use other fr

0,j functions (j ∈ {1, 2, 3}) to gener-
ate similar equations with different coefficients. Finally, we get 4 × 255 linear
equations with all 512 unknowns, as follows:

⎧
⎪⎪⎨
⎪⎪⎩

0x01 ⊗ (u0 ⊕ uα) = 0x04 ⊗ (v0 ⊕ vβ0),
0x02 ⊗ (u0 ⊕ uα) = 0x06 ⊗ (v0 ⊕ vβ1),
0x04 ⊗ (u0 ⊕ uα) = 0x01 ⊗ (v0 ⊕ vβ2),
0x06 ⊗ (u0 ⊕ uα) = 0x02 ⊗ (v0 ⊕ vβ3),

(3)

where β0, β1, β2, β3 ∈ [1, 255].
Define u′

x = u0 ⊕ ux and v′
x = v0 ⊕ vx, with x ∈ {1, 2, · · · , 255}, so that the

linear system of Eq. (3) can be represented with 2 × 255 = 510 unknowns as
⎧
⎪⎪⎨
⎪⎪⎩

0x01 ⊗ u′
α = 0x04 ⊗ v′

β0
,

0x02 ⊗ u′
α = 0x06 ⊗ v′

β1
,

0x04 ⊗ u′
α = 0x01 ⊗ v′

β2
,

0x06 ⊗ u′
α = 0x02 ⊗ v′

β3
.

The 4×255 equations yield a linear system of rank 509 by our experimental test
under one hundred million different (scrambling items, round key) combinations
(specifically, ten thousand sets of scrambling items under each of ten thousand
round keys). Thus, in such a linear equation system, all other unknowns ux

′, vx
′

can be expressed as a function of one of them, say u1
′, that is, there exist

coefficients ax and bx such that ux
′ = ax ⊗ u1

′ and vx
′ = bx ⊗ u1

′. That is,

ux = ax ⊗ (u0 ⊕ u1) ⊕ u0,

vx = bx ⊗ (u0 ⊕ u1) ⊕ v0. (4)

Next we can recover the Sr
0,0 function by exhaustive search on the pair (u0, u1),

and further verify whether the obtained Sr
0,0 function is right or not by checking

the degree of the following equation obtained from the definition of the Sr
0,0

function:
S0

−1 ◦ Sr
0,0 (·) = ⊕RKr

0,0
◦ ⊕ar−1

0,0
(·).

Obviously, the above function has an algebraic degree of at most 1. For a wrong
pair (u0, u1), a wrong candidate function Ŝr

0,0 would be got which is an affine
equivalent to Sr

0,0, that is, there exists an 8 × 8-bit matrix a and an 8-bit vector

Cryptanalysis of Two White-Box CLEFIA Implementations 59

b such that Ŝr
0,0(·) = a ⊗ Sr

0,0(·) ⊕ b with a 	= 0 and (a, b) 	= (0, 1). Thus the
function S0

−1 ◦ Ŝr
0,0(·) satisfies

S0
−1 ◦ Ŝr

0,0(·) = S0
−1

(
a ⊗ S0

(⊕RKr
0,0

◦ ⊕ar−1
0,0

(·)) ⊕ b
)
,

and it has an algebraic degree greater than 1 with an overwhelming probability.
More specifically, we set the function ĝ(·) = S0

−1 ◦ Ŝr
0,0(·), used Lai’s higher-

order derivative concept [14] to calculate the first-order derivative of ĝ at any
position, and found that the result was not a constant with an overwhelming
probability. For instance, the first-order derivative ϕ̂ at position (0x01) is set to

ϕ̂0x01(x) = ĝ(x ⊕ 0x01) ⊕ ĝ(x),

and we verify whether ϕ̂0x01(x) is constant with at most 27 inputs of x. For
each wrong pair (u0, u1), the probability that ϕ̂(x) is constant is roughly 2−8,
so wrong guesses can be quickly removed.

After recovering Sr
0,0, we can use Eq. (4) to recover Sr

0,2 by exhaustive
search on v0, and similarly recover Sr

0,1 and Sr
0,3 with the other functions

fr
0,j(α, 0, 0, 0) = fr

0,j(0, β, 0, 0) and fr
0,j(α, 0, 0, 0) = fr

0,j(0, 0, 0, β).
Similarly, we can recover Sr

1,0, Sr
1,1, Sr

1,2 and Sr
1,3 by exploiting collisions on

the fr
1 function.

3.2.3 Recovering Scrambling Items and Subkeys
After the Sr

0,j functions have been recovered (j = 0, 1, 2, 3), we choose the 32-
bit input X0 = (x′

0,0, x
′
0,1, x

′
0,2, x

′
0,3) such that (Sr

0,0(x
′
0,0),S

r
0,1(x

′
0,1),S

r
0,2(x

′
0,2),

Sr
0,3(x

′
0,3)) = 0, and thus we can recover the 32-bit encoding er

0 by the fr
0 func-

tion, since fr
0 (X0) = er

0. Similarly, we can recover the 32-bit encoding er
2 by the

fr
1 function. As a result, we can recover the output encodings er

0 and er
2 for every

round (r = 1, 2, · · · , 18). Further, we can recover b152 = e170 and b150 = e172 for
the 17-th round, then recover br−2

2 = er
0 ⊕ br

0 and br−2
0 = er

2 ⊕ br
2 sequentially for

r = 15, 13, · · · , 3, and recover WK0 = e10 ⊕ b10 and WK1 = e12 ⊕ b12; and we can
recover b20 = e10 and b22 = e12 for the 2-nd round, then recover br

2 = er
2 ⊕ br−2

0 and
br
0 = er

0 ⊕ br−2
2 sequentially for r = 4, 6, · · · , 16, and recover WK2 = e180 ⊕ b162

and WK3 = e182 ⊕ b160 . At last, by the relation in Eq. (1), we can recover the
input encodings ar

0 and ar
2 for r = 1, 2, · · · , 16. Therefore, we can recover all

the input and output scrambling items ai
0, ai

2, bi
0 and bi

2 (i = 1, 2, . . . , 16),
the round keys RKr

0 and RKr
1 (r = 1, 2, · · · , 18) and the whitening keys

WK0,WK1,WK2,WK3. The 128-bit user key is (WK0||WK1||WK2||WK3)
by the key schedule.

3.2.4 Attack Complexity
In the phase of recovering Sr

0,0, there are 216 candidates (u0, u1) for exhaustive
search, and to verify whether ϕ̂(x) is constant we need to calculate ϕ̂(x) for at
most 27 inputs, where the probability that ϕ̂(x) is constant is roughly 2−8 for
a wrong guess (u0, u1), and thus the expected value of the test is 1 + 1/256 +

60 J. Lu and C. Wang

· · · + 1/
(
256127

) ≈ 1. So the expected time complexity of recovering Sr
0,0 is

hence about 216 · 1 · 2 = 217 S-box computations. The exhaustive search on
Sr
0,1,S

r
0,2 and Sr

0,3 has an expected time complexity of 3 · (28 · 1 · 2) = 3 · 29

S-box computations. Thus, the expected time complexity of recovering the four
Sr
0,j ’s is about 217 + 3 · 29 = 259 · 29 S-box computations. The time complexity

for recovering input and output scrambling items is negligible. Therefore, the
expected total time complexity of recovering all the scrambling items and the
subkeys and user key is about 18 · 2 · 259 · 29 ≈ 222.2 S-box computations.

Note that Su et al.’s implementation has no external encoding on the plain-
text or ciphertext side, so it is also vulnerable to other types of attacks like fault
attack [11], differential computation analysis [5], and even traditional differential
cryptanalysis [3] by considering the input and output differences under an S-box,
but collision-based attack can usually work even under external encodings.

3.2.5 The Case with Affine Encodings
We have also experimentally tested the case that the scrambling items (i.e.
Boolean encodings/masks) are replaced with affine encodings in our above
attack, and in this case the corresponding 4 × 255 equations yield a linear sys-
tem of rank 509 by our experimental test under ten thousands of different (affine
encodings, round key) combinations. Thus, the corresponding white-box CLE-
FIA implementation is also vulnerable to a similar collision-based attack.

4 On the Security of Yao Et Al.’s White-Box CLEFIA
Implementation Against Collision-Based Attack

In this section, we describe Yao et al.’s white-box CLEFIA implementation and
analyse its security against Lepoint et al.’s collision-based attack method.

4.1 Yao Et Al.’s White-Box CLEFIA Implementation

Yao et al.’s white-box CLEFIA implementation [23] is also based on a number
of white-box tables and XOR operations. Figure 3 illustrates the r-th encryption
round of Yao et al.’s implementation (r = 1, 2, · · · , 18), where the matrix Mj is
represented with two 32 × 16-bit matrices as Mj = [Mj,0||Mj,1], the 32 × 32-
bit identity matrix I is represented as I = [I0||I1], each 32-bit branch Xr

i is
protected with two 16-bit affine encodings Ar−1

i,j (·) = LAr−1
i,j (·) ⊕ cAr−1

i,j with
LAr−1

i,j being an invertible 16×16-bit matrix and cAr−1
i,j being a 16-bit constant,

there are two types of 16 × 32-bit white-box tables, Type I tables (namely TIr
0,j

and TIr
1,j) are for the F0 and F1 functions taking respectively Xr

0 and Xr
2

as input, Type II tables (namely TIIr
0,j and TIIr

1,j) are for Xr
1 and Xr

3 , and
Br

i,j(·) = LBr
i,j(·)⊕cBr

i,j is a 32-bit affine encoding with LBr
i,j being an invertible

32 × 32-bit diagonal matrix and cBr
i,j being a 32-bit constant (i = 0, 1, 2, 3, and

j = 0, 1).

Cryptanalysis of Two White-Box CLEFIA Implementations 61

Fig. 3. A round of Yao et al.’s white-box CLEFIA implementation

The white-box tables TIr
0,j and TIr

1,j for the F0 and F1 functions are

TIr
0,j(·) = Br

0,j ◦ M0,j ◦
[
S0

S1

]
◦

[⊕RKr
0,2j

⊕RKr
0,2j+1

]
◦ (Ar−1

0,j)−1(·),

T Ir
1,j(·) = Br

2,j ◦ M1,j ◦
[
S1

S0

]
◦

[⊕RKr
1,2j

⊕RKr
1,2j+1

]
◦ (Ar−1

2,j)−1(·),

and the white-box tables TIIr
0,j and TIIr

1,j for Xr
1 and Xr

3 are

TIIr
0,j(·) = Br

1,j ◦ Ij ◦ (Ar−1
1,j)−1(·),

T IIr
1,j(·) = Br

3,j ◦ Ij ◦ (Ar−1
3,j)−1(·).

Implicitly, there are a few relations among the affine encodings, so as to keep
the original input for every S-box, e.g.,

LBr
0,0=LBr

0,1=LBr
1,0=LBr

1,1=diag(LAr
0,0, LAr

0,1)=diag(LAr+1
3,0 , LAr+1

3,1),

LBr
2,0=LBr

2,1=LBr
3,0=LBr

3,1=diag(LAr
2,0, LAr

2,1)=diag(LAr+1
1,0 , LAr+1

1,1).

62 J. Lu and C. Wang

Fig. 4. Collision function on Yao et al.’s implementation

4.2 Security of Yao Et Al.’s Implementation Against Collision
Attack

We analyse the security of Yao et al.’s white-box CLEFIA implementation
against collision-based attack in this subsection.

4.2.1 Devising Collision Function
We redefine the linear part of the affine encoding Br

m,j as Lr
m = diag

(
Lr

m,0, L
r
m,1

)
= LBr

m,0 = LBr
m,1, the constant part as er

m = [er
m,0, e

r
m,1]

T = cBr
m,0 ⊕ cBr

m,1,
and define the 16-bit affine transformation Er

m,j(·) = ⊕er
m,j

◦ Lr
m,j(·), where

Lr
m,j is an invertible 16 × 16-bit matrix, er

m,j is a 16-bit constant, m = 0, 2, and
j = 0, 1. Define keyed functions Sr

0,j in the F0 function as

Sr
0,0(x) =

(
S0

S1

) ((
RKr

0,0||RKr
0,1

) ⊕ (
Ar−1

0,0

)−1
(x)

)
,

Sr
0,1 (x) =

(
S0

S1

) ((
RKr

0,2||RKr
0,3

) ⊕ (
Ar−1

0,1

)−1
(x)

)
.

(5)

Then, as depicted in Fig. 4, we define a collision function fr
0 as follows:

fr
0 (xr

0,0, x
r
0,1) =

[
Er

0,0

Er
0,1

]
◦ M0 ◦

⎡
⎢⎢⎣

(
S0

S1

) (
(RKr

0,0||RKr
0,1) ⊕ (

Ar−1
0,0

)−1 (
xr
0,0

))
(

S0

S1

) (
(RKr

0,2||RKr
0,3) ⊕ (

Ar−1
0,1

)−1 (
xr
0,1

))

⎤
⎥⎥⎦

=
[

Er
0,0

Er
0,1

]
◦ M0 ◦

[
Sr
0,0

(
xr
0,0

)
Sr
0,1

(
xr
0,1

)
]

,

where (xr
0,0||xr

0,1) = Xr
0 .

Furthermore, we express fr
0 as a concatenation of two 16-bit functions fr

0,0

and fr
0,1:

fr
0 (xr

0,0, x
r
0,1) =

(
fr
0,0(x

r
0,0, x

r
0,1), f

r
0,1(x

r
0,0, x

r
0,1)

)T
.

4.2.2 A Linear System on Sr
0,j Functions

First, we represent Mj (j = 0, 1) with four 16 × 16-bit matrices as

Mj = [Mj,0||Mj,1] =
[
Ma

j,0 Ma
j,1

Mb
j,0 Mb

j,1

]
.

Cryptanalysis of Two White-Box CLEFIA Implementations 63

Next we use the following collision to define a linear system on Sr
0,0 and Sr

0,1:

fr
0,0(α, 0) = fr

0,0(0, β),

where α, β ∈ GF(216). Thus, we have

Er
0,0 ◦ (Ma

0,0 ◦ Sr
0,0(α) ⊕ Ma

0,1 ◦ Sr
0,1(0))

= Er
0,0 ◦ (Ma

0,0 ◦ Sr
0,0(0) ⊕ Ma

0,1 ◦ Sr
0,1(β)).

Since Er
0,0 is a bijection, we obtain

Ma
0,0 ◦ Sr

0,0(α) ⊕ Ma
0,1 ◦ Sr

0,1(0) = Ma
0,0 ◦ Sr

0,0(0) ⊕ Ma
0,1 ◦ Sr

0,1(β).

For convenience, define ux = Sr
0,0(x) and vx = Sr

0,1(x), then we have

Ma
0,0 ◦ (u0 ⊕ uα) = Ma

0,1 ◦ (v0 ⊕ vβ). (6)

Since α �→ fr
0,0(α, 0) and β �→ fr

0,0(0, β) are bijections, we can find 216 colli-
sions. After removing (α, β) = (0, 0), we get 216 − 1 pairs (α, β) satisfying Eq.
(6). In the same way, we use fr

0,1 function to generate similar equations. Finally,
we get 2× (216 − 1) linear equations with all 2× 216 = 217 unknowns, as follows:

{
Ma

0,0 ◦ (u0 ⊕ uα) = Ma
0,1 ◦ (v0 ⊕ vβ0),

Mb
0,0 ◦ (u0 ⊕ uα) = Mb

0,1 ◦ (v0 ⊕ vβ1),
(7)

where β0, β1 ∈ [1, 216 − 1].
Define u′

x = u0 ⊕ ux and v′
x = v0 ⊕ vx, with x ∈ {1, · · · , 216 − 1}, so that the

number of unknowns is reduced to 2 × (216 − 1) = 131070. Thus, Eq. (6) can be
rewritten as

Ma
0,0 ◦ u′

α = Ma
0,1 ◦ v′

β ,

meaning that the linear system of Eq. (7) can be represented with 131070
unknowns as {

Ma
0,0 ◦ u′

α = Ma
0,1 ◦ v′

β0
,

Mb
0,0 ◦ u′

α = Mb
0,1 ◦ v′

β1
.

(8)

4.2.3 A Small-Scale Experimental Result
The size of the linear system made up of Eqs. (8) is very large, and an experimen-
tal test on the rank of the linear system under a single (affine encodings, round
key) combination takes about half an hour on a workstation (Intel(R)Xeon(R)
Platinum 8280 CPU @ 270 GHz(56 CPUs), 2.7 GHz). We have experimentally
tested 100 different (affine encodings, round key) combinations, but the rank
is always 130299, which is much less than the number 131070 of unknowns,
meaning that there are too many solutions for (u′

x, v′
x). As a consequence, it is

not efficient to recover (u′
x, v′

x) by this way. Similarly, we can define a collision
function under the F1 function, and our experimental test on the correspond-
ing linear system under 100 different (affine encodings, round key) combinations
shows that the rank is always 129785, which is also much less than the number

64 J. Lu and C. Wang

131070 of unknowns. Thus, our experimental result shows that Lepoint et al.’s
collision-based attack method cannot apply to Yao et al.’s implementation. But
nevertheless, the number of tested encodings is very small compared with the
whole space, it is not possible to experimentally test all the possible encodings,
and we are not clear about whether there exist affine encodings such that the
rank of the corresponding linear system is slightly less than the number of the
involved unknowns. We leave it as an open problem to investigate the distribu-
tion of the ranks under all encodings.

4.2.4 A Supposed Case
Our above-mentioned experiment only tests a very small fraction of all possible
encodings, and we are not clear about whether there exist affine encodings such
that the rank of the corresponding linear system is slightly less than the number
of the involved unknowns. Below we suppose there exist affine encodings such
that the resulting linear system (8) has a rank of 2 × (216 − 1) − 1 = 131069.
In such a linear equation system, all the unknowns u′

x, v′
x can be expressed as a

function of one of them (x ∈ [1, 216 − 1]), say u′
1, that is, there exist coefficients

ax and bx such that u′
x = ax ⊗ u′

1 and v′
x = bx ⊗ v′

1. That is,

ux = ax ⊗ (u0 ⊕ u1) ⊕ u0,

vx = bx ⊗ (u0 ⊕ u1) ⊕ v0. (9)

Next we can recover the Sr
0,0 function by exhaustive search on the pair

(u0, u1), and at last verify whether the obtained Sr
0,0 function is right or not

by checking the degree of the following equation obtained from the definition of
the Sr

0,0 function:
(

S−1
0

S−1
1

)
◦ Sr

0,0(·) = (RKr
0,0||RKr

0,1) ⊕ (Ar−1
0,0)−1(·).

Since (Ar−1
0,0)−1 is an affine transformation, the above function has an algebraic

degree of at most 1. For a wrong pair (u0, u1), a wrong candidate function Ŝr
0,0

would be got which is an affine equivalent to Sr
0,0, that is, there exists a 16× 16-

bit matrix a and a 16-bit vector b such that Ŝr
0,0(·) = a ⊗ Sr

0,0(·) ⊕ b, with a 	= 0
and (a, b) 	= (0, 1). The function [S−1

0 ,S−1
1]T ◦ Ŝr

0,0(·) satisfies
(

S−1
0

S−1
1

)
◦ Ŝr

0,0(·) =
(

S−1
0

S−1
1

) (
a ⊗

(
S0

S1

) (
(RKr

0,0||RKr
0,1) ⊕ (Ar−1

0,0)−1(·)) ⊕ b
)
,

and this equation has an algebraic degree greater than 1 with an overwhelming
probability. More specifically, we set the function ĝ(·) = [S−1

0 ,S−1
1]T ◦ Ŝr

0,0(·),
used Lai’s higher-order derivative concept [14] to calculate the first-order deriva-
tive of ĝ(·), and found that the result was not a constant with an overwhelming
probability. For instance, the first-order derivative ϕ̂ at position 0x0001 is set to

ϕ̂0x0001(x) = ĝ(x ⊕ 0x0001) ⊕ ĝ(x),

Cryptanalysis of Two White-Box CLEFIA Implementations 65

and we verify whether ϕ̂0x0001(x) is constant with at most 215 inputs of x , since
ϕ̂(x) = ϕ̂(x⊕0x0001). For each wrong pair, the probability that ϕ̂(x) is constant
is roughly 2−16, so wrong guesses can be quickly removed.

After Sr
0,0 is recovered, Sr

0,1 can be easily recovered with Eq. (9) by exhaustive
search on v0.

Recovering Encoding Er
m,j and Linear Parts of Encodings Br

i,j and
Ar−1

i,j . After recovering the Sr
0,0 and Sr

0,1 functions, the affine transformations
Er

0,0 and Er
0,1 can be easily recovered by fr

0 . Subsequently, choose the 32-bit
input X0 = (x′

0, x
′
1) such that (Sr

0,0(x
′
0),S

r
0,1(x

′
1)) = M−1

0 (0) = 0 under the
fr
0,0 collision function, then the constant er

0 can be recovered as fr
0 (X0) = er

0 =
er
0,0||er

0,1. Thus, we can recover the linear part Lr
0 of affine output encodings Br

0,0

and Br
0,1. By the relationship between input and output encodings, we can know

the linear part of the affine encodeings Ar
0,0, Ar

0,1, Ar+1
3,0 and Ar+1

3,1 , however,
their constant parts cAr

0,0 and cAr
0,1 remain unknown. The linear part of A0

0,0

and A0
0,1 can be recovered by considering the input and output differences for

a pair of inputs under S0
0,0 and S0

0,1. Similarly, by defining a different collision
function we can recover encodings Er

2,j and linear parts of the other encodings
Br

i,j and Ar−1
i,j .

Recovering Masked Round Key (RKr+1
i,2j ||RKr+1

i,2j+1) ⊕ LAr,−1
m,j (cAr

m,j).
After recovering the linear part of encoding Ar

i,j , we similarly define the collision
function fr+1

0 on the (r + 1)-th round and would like to recover the round key
RKr+1, however we cannot recover the original round key, because the constant
part of Ar

i,j is unknown, but nevertheless we can recover a masked round key, as
follows.

Define

g(x) = fr+1
0,0

(
Ar

0,0

((
S−1
0

S−1
1

)
(x) ⊕ (RKr+1

0,0 ||RKr+1
0,1)

)
, 0

)

= fr+1
0

(
LAr

0,0

((
S−1
0

S−1
1

)
(x)

)
⊕ Ar

0,0(RKr+1
0,0 ||RKr+1

0,1), 0
)

= Br+1
0,0

(
M0,0(x) ⊕ δ

)
,

where δ = M0,1 ◦ Sr+1
0,1 (0) is a constant. Note that Br+1

0,0 is a 32 × 32-bit affine
transformation, so the function g (x) has an algebraic degree of at most 1. For a

wrong guess Ar
0,0(R̂K

r+1

0,0) 	= Ar
0,0(RKr+1

0,0), the function ĝ is defined as

ĝ(x) = fr+1
0

(
LAr

0,0

((
S−1
0

S−1
1

)
(x)

)
⊕ Ar

0,0(R̂K
r+1

0,0 ||R̂K
r+1

0,1), 0
)

= Br+1
0,0 ◦

(
M0,0◦

(
S0

S1

)
◦
((

S−1
0

S−1
1

)
(x) ⊕ (R̂K

r+1

0,0 ||R̂K
r+1

0,1) ⊕ (RKr+1
0,0 ||RKr+1

0,1)
)

⊕ δ

)
.

In this case, ĝ(x) has an algebraic degree of more than 1 with an overwhelming
probability. We extract Ar

0,0(RKr+1
0,0 ||RKr+1

0,1) by exhaustive search, that is, sim-
ilarly we verify whether the first-order derivative ϕ̂(x) = ĝ(x ⊕ 0x0001) ⊕ ĝ(x)

66 J. Lu and C. Wang

of ĝ(x) at point 0x0001 is constant for each guess Ar
0,0(R̂K

r+1

0,0 ||R̂K
r+1

0,1). For
a wrong guess, the probability that ϕ̂(x) is constant is roughly 2−16, so wrong
guesses can be quickly removed.

Finally, we can recover Ar
m,j(RKr+1

i,2j ||RKr+1
i,2j+1) for i = 0, 1 and j = 0, 1, by

changing the definition of the function g. Since Ar
m,j(RKr+1

i,2j ||RKr+1
i,2j+1) =

LAr
m,j(RKr+1

i,2j ||RKr+1
i,2j+1) ⊕ cAr

m,j = LAr
m,j

(
RKr+1

i,2j ||RKr+1
i,2j+1 ⊕ LAr,−1

m,j

(cAr
m,j)

)
, we can get the masked round key RKr+1

i,2j ||RKr+1
i,2j+1 ⊕ LAr,−1

m,j (cAr
m,j),

where LAr,−1
m,j (cAr

m,j) is an unknown Boolean mask.
(RK1

i,2j ||RK1
i,2j+1) ⊕ LA0,−1

m,j (cA0
m,j) can be easily recovered by Eq. (5) after

recovering the S1
i,j function and the linear part of encoding A0

m,j . Notice that this
way can also recover the linear part LAr−1

m,j of the encoding Ar−1
m,j and the masked

round key (RKr
i,2j ||RKr

i,2j+1) ⊕ LAr−1,−1
m,j (cAr−1

m,j) after the Sr+1
i,j functions are

recovered as recovering the Sr
i,j functions before (r = 1, 2, · · · , 18, j = 0, 1, 2, 3),

but it is relatively costly when we target to recover them for all the 18 rounds.

Attack Complexity. In the phrase of recovering Sr
0,j , there are 232 candidates

(u0, u1) for exhuastive search, and we need to calculate ϕ̂(x) for at most 215

inputs to verify whether ϕ̂(x) is constant, where the probability that ϕ̂(x) is
constant is roughly 2−16 for a wrong guess (u0, u1), and thus the expected value

of the test is 1 + 1
216 + · · · + (1

216)2
16−1 ≈ 1, so the expected time complexity of

recovering Sr
0,0 is hence about 232 ·1 ·2 ·2 = 234 S-box computations. We recover

Sr
0,1 by exhaustive search v0 with an expected time complexity of 216 · 1 · 2 · 2 =

218 S-box computations. Thus, the expected time complexity of recovering Sr
0,0

and Sr
0,1 is about 234 + 218 ≈ 234 S-box computations. The time complexity

for recovering encoding Er
m,j and linear parts of encodings Br

i,j and Ar−1
i,j is

negligible. The expected time complexity for recovering Ar
0,0(RKr+1

0,0 ||RKr+1
0,1) is

about 216 ·1 ·2 ·2 = 218 S-box computations. As a result, the total expected time
complexity for recovering encoding Er

m,j , the linear parts of encodings Br
i,j and

Ar−1
i,j and the masked round keys for the 18 rounds is about 234×2+218×4×18 ≈

235 S-box computations. Therefore, in case there exist such affine encodings
that make the resulting linear system (8) have a rank of 131069, Yao et al.’s
implementation can be somewhat equivalently simplified to an implementation
with only Boolean masks in the sense of Lepoint et al.’s collision-based attack
method.

5 Concluding Remarks

We have analysed the security of Su et al.’s and Yao et al.’s white-box CLE-
FIA implementations against Lepoint et al.’s collision-based attack method, have
shown that all the white-box operations and the round keys and whitening keys
in Su et al.’s implementation can be recovered with an expected time complexity
of about 222 S-box computations, our small-scale experiment shows that Yao et

Cryptanalysis of Two White-Box CLEFIA Implementations 67

al.’s implementation can resist Lepoint et al.’s collision-based attack method,
but nevertheless it is an open problem whether there exist affine encodings such
that the rank of the corresponding linear system is slightly less than the number
of the involved unknowns, in which case most white-box operations in Yao et
al.’s implementation could be removed with a practical time complexity until
only Boolean masks remain. Our cryptanalysis of the white-box CLEFIA imple-
mentations suggests to some extent that building a white-box table with two
S-boxes is preferable to building a white-box table with a single S-box in the
sense of their security against Lepoint et al.’s collision-based attack method. A
possible future research topic on white-box CLEFIA implementation is to inves-
tigate the distribution of the ranks under all encodings and learn whether they
produce the same rank.

Acknowledgement. This work was supported by Guangxi Key Laboratory of Cryp-
tography and Information Security (No. GCIS202102). Jiqiang Lu was Qianjiang Spe-
cial Expert of Hangzhou.

References

1. Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. J.
Commun. Netw. 18, 273–287 (2016)

2. Bai, K.P., Wu, C.K., Zhang, Z.F.: Protect white-box AES to resist table composi-
tion attacks. IET Inf. Secur. 12, 305–313. IET (2018)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

5. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

6. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptology ePrint Archive, 468 (2006)

7. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

8. Derbez, P., Fouque, P.A., Lambin, B., Minaud, B.: On recovering affine encodings
in white-box implementations. IACR Trans. Crypt. Hardw. Embed. Syst. 2018(3),
121–149 (2018)

9. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

10. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,

https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3

68 J. Lu and C. Wang

vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

11. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5 2

12. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

13. International Standardization of Organization (ISO), International Standard -
ISO/IEC 29192–2:2012, Information technology–Security techniques– Lightweight
cryptography–Part 2: Block ciphers (2012)

14. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptogra-
phy. The Springer International Series in Engineering and Computer Science, vol.
276, pp. 227–233. Springer, Boston (1994). https://doi.org/10.1007/978-1-4615-
2694-0 23

15. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

16. Lu, J., Wang, M., Wang, C., Yang, C.: Collision-based attacks on white-box imple-
mentations of the AES block cipher. In: Smith, B., Wang, H. (eds.) SAC 2022,
LNCS, vol. 13742. Springer (to appear)

17. Luo, R., Lai X.J., You, R.: A new attempt of white-box AES implementation. In:
Proceedings of SPAC 2014, pp. 423–429. IEEE (2014)

18. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

19. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (AES), FIPS-197 (2001)

20. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

21. Su, S., Dong, H., Fu, G., Zhang, C., Zhang, M.: A white-box CLEFIA implemen-
tation for mobile devices. In: Proceedings of the 2014 Communications Security
Conference, pp. 1–8. IET (2014)

22. Xiao, Y.Y., Lai, X.J.: A secure implementation of white-box AES. In: Proceedings
of CSA 2009, pp. 1–6. IEEE (2009)

23. Yao, S., Chen, J., Gong, Y., Xu, D.: A new white-box implementation of the
CLEFIA algorithm (in Chinese). J. Xidian Univ. 47(5), 150–158 (2020)

https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-540-44993-5_2
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12

PAE: Towards More Efficient
and BBB-Secure AE from a Single Public

Permutation

Arghya Bhattacharjee1, Ritam Bhaumik2, Avijit Dutta3(B), and Eik List4

1 Indian Statistical Institute, Kolkata, India
2 École polytechnique fédérale de Lausanne, Lausanne, Switzerland

ritam.bhaumik@epfl.ch
3 Institute for Advancing Intelligence, TCG CREST, Kolkata, India

avirocks.dutta13@gmail.com
4 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore, Singapore
eik.list@ntu.edu.sg

Abstract. Four observations can be made regarding recent trends that
have emerged in the evolution of authenticated encryption schemes: (1)
regarding simplicity, the adoption of public permutations as primitives
has allowed for sparing a key schedule and the need for storing round
keys; (2) using the sums of permutation outputs, inputs, or outputs
and inputs has been a well-studied means to achieve higher security
beyond the birthday bound; (3) concerning robustness, schemes can pro-
vide graceful security degradation if a limited amount of nonces repeats
during the lifetime of a key; and (4) Andreeva et al.’s ForkCipher app-
roach can increase the efficiency of a scheme since they can use fewer
rounds per output branch compared to full-round primitives.

In this work, we improve the state of the art by combining those
aspects for efficient authenticated encryption. We propose PAE, an effi-
cient nonce-based AE scheme that employs a public permutation and
one call to an XOR-universal hash function. PAE provides O(2n/3)-bit
security and high throughput by combining forked public-permutation-
based variants of nEHtM and Encrypted Davies-Meyer. Thus, it can use
a single, in part round-reduced, public permutation for most operations,
spare a key schedule, and guarantee security beyond the birthday bound
even under limited nonce reuse.

Keywords: Symmetric-key cryptography · permutation · provable
security

1 Introduction

Public-Permutation-Based Authenticated Encryption. Designing secure and
efficient authenticated-encryption schemes is a key task in symmetric-key cryp-
tography. Its understanding has been increasing continuously over the past

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 69–87, 2023.
https://doi.org/10.1007/978-981-99-7356-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_5&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_5

70 A. Bhattacharjee et al.

decade, where one can identify at least four recent trends in the design of
symmetric-key schemes: (1) using public permutations; (2) providing beyond-
birthday-bound (BBB) security; (3) offering robustness against and graceful
security degradation under nonce reuse; and (4) using forked primitives for higher
efficiency.

The use of public permutations has been established as a promising app-
roach for designing AE schemes since the selection of Keccak as the SHA-3
standard and the proposal of Duplex. Since then, many AE schemes have been
built from public permutations, including but not limited to Ascon [23], Ori-
batida [12], Beetle [14], Elephant [5,6], ISAP [21], ISAP+ [10], Xoodyak [20],
APE [1], APE+ [38] etc.1 Public permutations can spare an often sophisticated
study of the key schedule’s effects on the security of the primitive, save imple-
mentations from the need for computing and storing round keys, and are used
in various designs with beyond-birthday-bound security (e.g., [8]).

When simply replacing keyed with unkeyed primitives in an existing scheme,
the result would suffer from a birthday-bound security limitation. While this
is less of an issue when the primitive’s block length is high or the message-
processing rate is low, both measures considerably reduce the efficiency. For
higher security in settings where big permutations or small rates are undesir-
able, a second research trend has emerged from the use of summing multiple
states, after a series of works [9,13,15,17–19,30] established the sum of outputs
from independent permutations as an effective means for increasing the security
beyond the birthday bound.

A third desideratum for nonce-based authenticated encryption schemes is
robustness against occasional nonce repetitions. When possible, the security of
schemes should not collapse when relatively few nonces are repeated (as would,
for example, that of GCM). Instead, it should rather degrade gracefully – usually
to the birthday bound. Thus, one should study its security and the effects of
nonce repetitions in depth in the faulty-nonce model [26].

On top of those three aspects, lightweight schemes should be efficient as
well. Given that numerous metrics of efficiency exist, we consider throughput
on microcontrollers in this work. For this purpose, Andreeva et al. introduced
ForkCiphers and the Iterate-Fork-Iterate paradigm [2] as a promising higher-
level concept. At its core, Iterate-Fork-Iterate means to iterate a set of rounds, to
fork (i.e. copy) the middle state into multiple branches, and to iterate over more
rounds of separate reduced permutations on each branch to produce multiple
independent outputs. Since the forked state is secret, forked primitives can use
fewer rounds than the full permutation and therefore achieve higher efficiency.

Contribution. In this work, we propose PAE, a nonce-based authenticated
encryption scheme built from a public permutation that improves on the state
of the art in all four aspects above. For encryption, it uses a forked and public-
permutation-based variant of Encrypted Davies-Meyer [30]. For authentication,
it forks the well-known nonce-based Encrypt-Hash-then-MAC [32] to obtain a
1 We deliberately exclude block-cipher- and tweakable block-cipher-based AE schemes

from the discussion here as this paper studies only permutation-based AE.

PAE: Towards More Efficient and BBB-Secure AE 71

more efficient variant of [16,25]. PAE provides O(2n/3)-bit security when instan-
tiated with public permutations, also if up to O(2n/3) queries repeat nonces.
Thus, PAE can achieve high efficiency and BBB security simultaneously. Note
that PAE achieves BBB security w.r.t. the number of queries or the number
of query blocks, not w.r.t. the query length. We implemented our proposal on
ARM-32 microcontrollers with Chaskey-8 [34] and two parallel instances of the
hash function from MAC611 [28] showcasing the efficiency on such platforms.

In the remainder, we give the necessary preliminaries in Sect. 2, properly
define our proposal in Sect. 3, and give our analysis in Sects. 4 and 5, before we
report on the results of an implementation for microcontrollers in Sect. 7.

2 Preliminaries

Notations. For a set X , X � X denotes that X is sampled uniformly at random
from X and is independent of all other random variables defined so far. {0, 1}n

denotes the set of all binary strings of length n and {0, 1}∗ denotes the set
of all binary strings of finite arbitrary length. For any element x ∈ {0, 1}∗, |x|
denotes the number of bits in x. For any two elements x, y ∈ {0, 1}∗, x‖y denotes
concatenation. For x, y ∈ {0, 1}n, x ⊕ y denotes the bitwise xor of x and y. For
integer m ≤ n, msbm(x) and lsbm(x) return the substring of the m most and
least significant bits of x, respectively. For a sequence (x1, x2, . . . , xs) ∈ {0, 1}∗,
xi

a denotes the a-th block of i-th element xi. The set of all permutations over X
is denoted as Perm(X) and Perm denotes the set of all permutations over {0, 1}n.
For integers 1 ≤ b ≤ a, (a)b denotes a(a − 1) . . . (a − b + 1), where (a)0 = 1 by
convention. We define [q] = {1, . . . , q} and [q1, q2] = {q1, q1 + 1 . . . , q2 − 1, q2}.

Nonce-Based AE from a Public Permutation. A nonce-based authenticated
encryption (nAE) scheme E is a triplet of algorithms E = (E .KGen, E .Enc, E .Dec),
where the key-generation algorithm E .KGen, on input 1n, returns a n-bit key
k � K. The encryption algorithm E .Enc is a function

E .Enc : K × N × AD × M → C × T ,

that takes as input a key k ∈ K (key space) a unique nonce ν ∈ N (nonce space),
an associated data A ∈ AD (associated data space) and a message M ∈ M
(message space) and returns a ciphertext-tag pair (C, T) ∈ C ×T , where C is the
ciphertext space and T is the tag space. We assume that E .Enc makes internal
calls to the n-bit public random permutations P = (P1, . . . ,Pd) for d ≥ 1 and
n ∈ N, where all of the d permutations are independent and uniformly sampled
from Perm. We write E .EncPk to denote E .Enck with uniform k and uniform P.
Likewise, the decryption algorithm E .Dec is a function

E .Dec : K × N × AD × C × T → M ∪ {⊥},

that takes as input a key, nonce, associated data, ciphertext, and tag and returns
either a valid message or the abort symbol ⊥. Again, we assume that E .Dec makes
internal calls to the n-bit public random permutations P. We write E .DecPk to

72 A. Bhattacharjee et al.

denote E .Deck with uniform k and uniform P. The correctness condition of the
public permutation-based authenticated encryption scheme says that for every
k ∈ K, ν ∈ N , A ∈ A, M ∈ M, and d-tuple of n-bit permutations P,

E .DecPk (ν,A, E .EncPk (ν,A,M)) = M.

A distinguisher D is given access to a pair of oracles of either (E .EncPk ,
E .DecPk) in the real world or (Rand,Rej) in the ideal world, where the oracle
Rand returns (C, T) that is uniformly sampled from C × T on input (ν,A,M)
and the oracle Rej always returns ⊥ on input (ν,A,C, T). Apart from making
queries to this pair of oracles, D can also query the permutations P and P−1

in both worlds. We call D nonce-respecting if D never makes any queries to the
encryption oracle with repeating nonces. However, D is allowed to make queries
to the decryption oracle with repeating nonces. We define the nonce-based AE
advantage of D against E in the public-permutation model as

AdvnAE
E (D) :=

∣
∣
∣Pr

[

D(E.EncPk ,E.DecPk ,P,P−1) ⇒ 1
]

− Pr
[

D(Rand,Rej,P,P−1) ⇒ 1
]∣
∣
∣ ,

where D is nonce-respecting and the probability above is defined over the ran-
domness of k � K, P1, . . . ,Pd � Perm and the randomness of the distinguisher
(if any). Moreover, AE security can be split into privacy and authenticity:

Advpriv
E (D) :=

∣
∣
∣Pr

[

D(E.EncPk ,P,P−1) ⇒ 1
]

− Pr
[

D(Rand,P,P−1) ⇒ 1
]∣
∣
∣ ,

Advauth
E (D) := Pr

[

D(E.EncPk ,E.DecPk ,P,P−1) forges
]

,

where D “forges” if the decryption oracle returns a bit string other than ⊥ for
a query (ν,A,C, T) such that (C, T) was not returned for a previous encryp-
tion query (ν,A,M). We omit the time of D and assume that it is computa-
tionally unbounded and hence deterministic. We say D is a (μ, qe, qd, qp, �, σ)-
distinguisher if D makes qe encryption queries, qd decryption queries, and qp

primitive queries (for- and backward queries together), can ask at most μ encryp-
tion queries with faulty (i.e. repeating) nonces, each construction query consists
of at most � n-bit blocks, and at most σ blocks over all queries. For a notion x,
we write Advx

E(μ, qe, qd, qp, �, σ) := maxD {Advx
E(D)}, where the maximum is

taken over all (μ, qe, qd, qp, �, σ)-x-distinguishers D. We omit μ in the lists if it is
zero.

Hash-Function Properties. Let Kh and X be two non-empty finite sets and
H : Kh × X → {0, 1}n be a keyed function. H is called εaxu-almost-xor-universal
(axu), εreg-almost-regular (ar), and δ-pairwise independent, respectively, if it
holds for any distinct x, x′ ∈ X and any y, y′ ∈ {0, 1}n, that

Pr [kh � Kh : Hkh
(x) ⊕ Hkh

(x′) = y] ≤ εaxu,

Pr [kh � Kh : Hkh
(x) = y] ≤ εreg, and

Pr [kh � Kh : Hkh
(x) = y,Hkh

(x′) = y′] ≤ δ,

PAE: Towards More Efficient and BBB-Secure AE 73

respectively. If H is an εaxu-almost-xor universal hash function, then H′
(kh,k) :=

Hkh
⊕k, where k ∈ {0, 1}n is independently sampled over kh, is εaxu/2n-pairwise

independent hash function. because for any x �= x′ and for any y, y′ ∈ {0, 1}n,

Pr
[

kh �Kh, k�{0, 1}n : H′
(kh,k)(x) = y,H′

(kh,k)(x
′) = y′

]

= Pr [kh �Kh, k�{0, 1}n : Hkh
(x) ⊕ k = y,Hkh

(x) ⊕ Hkh
(x′) = y ⊕ y′] ≤ εaxu

2n
.

Algorithm 1. Encryption and Decryption Function of PAE.
1: function PAE.Enc[P,H]k,kh(ν, A, M)
2: (k0, k1) ← k
3: (M1, . . . , M�)

n←− M
4: S ← ForkEDMp[P]k0,k1(ν, �)
5: (S1, . . . , S�)

n←− S
6: for i ← 1..� do
7: Ci ← msb|Mi|(Si) ⊕ Mi

8: C ← (C1‖C2‖ . . . ‖C�)
9: T ← ForknEHtMp[P,H]k0,k1,kh(ν, A, C)

10: return (C, T)

11: function ForkEDMp[P]k0,k1(ν, �)
12: X̂ ← P(fix11(ν ⊕ k0))
13: for i ← 1..� do
14: Si ← P(fix10(X̂ ⊕ 2i−1 • (ν ⊕ k0 ⊕

k1)))⊕
15: 2i−1 • k1

16: return (S1 ‖ . . . ‖ S�)

21: function PAE.Dec[P,H]k,kh(ν, A, C, T)
22: (k0, k1) ← k
23: T ∗ ← ForknEHtMp[P,H]k0,k1,kh(ν, A, C)
24: if T �= T ∗ then return ⊥
25: (C1, . . . , C�)

n←− C
26: S ← ForkEDMp[P]k0,k1(ν, �)
27: (S1, . . . , S�)

n←− S
28: for i ← 1..� do
29: Mi ← msb|Ci|(Si) ⊕ Mi

30: return (M1‖M2‖ . . . ‖M�)

31: function ForknEHtMp[P,H]k0,k1,kh(ν, A, C)
32: Ẑ ← P(fix11(ν ⊕ k1))
33: T ← P(fix00(Ẑ ⊕ k0))⊕
34: P(fix01(Hkh(A, C) ⊕ Ẑ ⊕ k0))
35: return T

41: function fixi0,i1(X)
42: return i0 ‖ i1 ‖ lsbn−2(X)

3 Definition of PAE

In this section, we propose PAE, a beyond-birthday-bound secure nonce-based
authenticated encryption scheme based on public permutation in the faulty-
nonce model. Our construction employs two basic components: the first is a
public-permutation-based variable-output-length PRF ForkEDMp and the other
one is a public-permutation- and nonce-based MAC ForknEHtMp, combined in
Encrypt-then-MAC fashion. On input (ν, a,m), the encryption function first
determines the number of blocks � in the message m and then invokes the
ForkEDMp module with input (ν, �) to generate � many keystream blocks, which
is then masked with the message blocks in one-time padding style to generate
the ciphertext blocks. Then, it invokes the permutation-based MAC ForknEHtMp

with input the nonce, the associated data, and the ciphertext to generate the tag
t. The decryption module of PAE works in a similar way. We use the same 2n-bit
key (k0, k1) for both components, avoiding security degradations through careful
use of domain separation on the public permutations. An algorithmic description
of the construction is given in Algorithm 1. In the following, we show that PAE
is a nonce-based authenticated encryption scheme built on n-bit public permu-
tations that is secure roughly upto 22n/3 encryption queries and 2n decryption
queries in the faulty-nonce model (Fig. 1).

74 A. Bhattacharjee et al.

Fig. 1. The components of PAE: ForkEDMp (left) and ForknEHtMp (right). S =
(S1, . . . , S�) is used as a keystream to compute C = M ⊕ S. Γ = A, C is the input to
Hkh . The function fix replaces the first two bits of the input with a fixed constant.

Theorem 1 (nAE Security of PAE). Let M,AD, and Kh be finite and
non-empty sets. Let P � Perm be an n-bit public random permutation and H :
Kh × M → {0, 1}n be an n-bit εaxu-almost-xor-universal and εreg-almost-regular
hash function. Moreover, let k = (k0, k1) � ({0, 1}n)2, kh � Kh, and ξ = 2n/8qe

and μ ≤ qe be fixed parameters. Then

Advauth
PAE[P,H]k,kh

(μ, qe, qd, qp, �, σ)

≤ 1
22n

(

430�2μσeq
2
p + 50211�4σ2

eqp + 120�σeqeqp + 16qeqdqp + 48μ2q2p

+ 5292μ2q2e + 1488μ2qeqp + 240�μ2q3/2
e + 6000�2μ2qe + 2880�q5/2

e

+ 420�σ2
e

√
qe + 3�4q3e + 72σ3

e + 2qd + εreg(16μqeqdq
2
p + 8q2eq2p)

+εaxu(12q4e + 48q3eqp + 48q2eq2p + 1440�q5/2
e qp + 5520�q7/2

e + 6000�2q3e)
)

+
1
2n

(

q3/2
e + 2�2qe + μ(2qe + qd) + 14�

√
qeqp + (3� + 16)μqp + 2�2μ2

+ εaxu(4q3e + 4μqeq
2
p + 22�q2eqp) + εreg(12qeq

2
p + 8μqdq

2
p)

)

+ 5μqeεaxu

and

Advpriv
PAE[P,H]k,kh

(qe, qd, qp, �, σ) ≤ Advauth
PAE[P,H]k,kh

(0, qe, qd, qp, �, σ).

Comparison. We note that the direction of using the sum of permutations with
pruned primitives in encryption schemes has been proposed by Mennink and
Neves [31] and has been transferred to public permutations recently [11]. In
contrast to [11], we can simplify the domain separation and can use fewer rounds

PAE: Towards More Efficient and BBB-Secure AE 75

in the individual primitives. Compared to the aggressive heuristic arguments
in [31], our proposals are more robust. While our authentication ForknEHtMp is
very similar to nEHtM∗

p by Chen et al. [16] and achieves a similar level of security,
we can use forked primitives with fewer rounds while maintaining security.

4 Proof of Theorem 1

We shall often refer to the construction PAE[P,H] as simply PAE when the under-
lying primitives are assumed to be understood. Instead of proving the privacy and
the authenticity result of the construction separately, we bound the distinguish-
ing advantage of two random systems: (i) the pair of oracles (PAE.Enc,PAE.Dec)
for an n-bit random permutation P in the real world and (ii) the pair of oracles
(Rand,Rej) in the ideal world. Let D be a computationally unbounded determin-
istic distinguisher that interacts with a pair of oracles in either of two worlds.
We assume that D makes qe encryption queries (ν1, A1, M1), · · · , (νqe

, Aqe ,Mqe)
and receives (C1, T1), · · · , (Cqe , Tqe

) as the corresponding responses. We also
assume that D makes qd decryption queries (ν′

1, A
′1, C ′1, T ′

1), · · · , (ν′
qd

, A′qd ,
C ′qd , T ′

qd
) and receives (O′1, · · · , O′qd) as responses, where for each i ∈ [qd],

O′i ∈ {0, 1}∗ ∪ {⊥}. For i ∈ [qe], we assume that M i contains �i blocks (even
when the last block is incomplete) and the total number of encryption message
blocks is σe = �1+�2+ . . .+�qe

. Similarly, for i ∈ [qd], we assume that the cipher-
text C ′i contains �′

i blocks (even when the last block is incomplete) and the total
number of decryption ciphertext blocks as σd, where σd = �′

1 + �′
2 + . . .+ �′

qd
. In

the real world, for each i ∈ [qe], we have

(Ci, Ti) ← PAE.Enc[P,H]k,kh
(νi, A

i,M i)

for an n-bit uniform public random permutation P and for 2n-bit random keys
k = (k0, k1) with an independently chosen hash key kh for the hash function
H. Similarly, for each i ∈ [qd], we have O′i ← PAE.Dec[P,H]k,kh

(ν′
i, A

′i, C ′i, T ′
i)

for an n-bit uniform public random permutation P0 and for 2n-bit random keys
k = (k0, k1) with an independently chosen hash key kh for H, where

O′i =

{

M i if (C ′i, T ′
i) ← PAE.Enc[P,H]k,kh

(ν′
i, A

′i,M i)
⊥ otherwise

Sampling in the Ideal World. In the ideal world, the outputs are sampled in a
different way. We assume that all the queried messages to the encryption oracle,
i,e., the Rand oracle of D are of length multiple of n, i.e., the last message block
of the queried message is a complete block. Now, the encryption oracle in the
ideal world, i.e., Rand, on the i-th encryption query (νi, A

i,M i) works as shown
in Algorithm 2. If the nonce in the i-th queried message νi collides with some
previously queried nonce, say νj for j < i, and �i = �j , then the output of the
j-th query is assigned to the output of the i-th query. If �i < �j , then the output
of the i-th query is assigned with the first n�i bits of the output of the j-th query.

76 A. Bhattacharjee et al.

Finally, if �i > �j , then the output of the i-th query is the concatenation of the
output of the j-th query with a random binary string of length n(�i − �j) bits.
If the nonce in the i-th query is fresh, it samples a uniformly random n�i-bit
string as Ci, independently and uniformly samples an n-bit tag Ti and returns
(Ci, Ti).

Algorithm 2 . Random oracle for the ideal world. Table Tb1[ν] stores the
updated number of keystream blocks for nonce ν and Tb2[ν] stores the updated
keystream blocks for nonce ν of length Tb1[ν].

11: procedure Initialize
12: D ← ∅;
13: Tb1[·] ← ∅
14: Tb2[·] ← ∅

21: function Query(νi, A
i, M i)

22: if νi ∈ D ⊆ {0, 1}n then νi = ν
23: if �i = Tb1[ν] then Si ← Tb2[ν]
24: if �i < Tb1[ν] then Si ← (Tb2[ν])[n�i]

25: if �i > Tb1[ν] then
26: R � ({0, 1}n)(�i−Tb1[ν]); Si ← Tb2[ν]‖R
27: Tb1[ν] ← �i

28: else
29: Si � ({0, 1}n)�i ; Tb2[νi] ← Si; Tb1[νi] ← �i

30: D ← D ∪ {νi}
31: Ti � {0, 1}n

32: return (Si ⊕ M i, Ti)

Upon querying to the decryption oracle Rej of the ideal world with i-th
decryption query (ν′

i, A
′i, C ′i, T ′

i), D always receives the authentication fail-
ure message ⊥. Note that this is different from the real world because D
receives the corresponding message M ′i as the response of the decryption query
(ν′

i, A
′i, C ′i, T ′

i) from the real world if the authentication of the decryption query
(ν′

i, A
′i, C ′i, T ′

i) succeeds; otherwise D receives ⊥.

Primitive Queries. As the proof is carried out in the random-permutation model,
D can query the underlying permutation of the construction in both directions,
for- and backward. If a permutation query to P is a forward (resp. inverse)
query, we denote the query and response as Uj and Vj (resp. as Vj and Uj),
respectively. D can make forward queries to P by setting the first two bits of the
query to b, where b ∈ {00, 01, 10, 11}. Similarly, D can make inverse queries to
the underlying permutation P−1. Let

Trbp = {(U b
1 , V1), (U b

2 , V2), . . . , (U b
qb

p
, Vqp

b
)},

denote the transcript of qp
b primitive queries, where b ∈ {00, 01, 10, 11}, such

that for each i ∈ [qp
b], U b

i denotes the input (resp. output) of the forward (resp.
inverse) query with its two most significant bits set to b and Vi denotes the
output (resp. input) of the corresponding forward (resp. inverse) query. For b ∈
{00, 01, 10, 11}, Ub denotes the set of input (resp. output) of the forward (resp.
inverse) primitive queries to P (resp. P−1) with its two most significant bits set

PAE: Towards More Efficient and BBB-Secure AE 77

to b and Vb denotes the set of corresponding output (resp. input) of the forward
(resp. inverse) primitive queries to P (resp. P−1), i.e.,

Vb := {v : ∃u ∈ Ub, v = P(u)}.

Let us define U := U00 ∪ U01 ∪ U10 ∪ U11 as well as V and Trp analogously.
U denotes the set of all inputs (resp. outputs) of the forward (resp. inverse)
primitive queries and V denotes the set of all corresponding outputs (resp. inputs)
of the forward (resp. inverse) primitive queries. We record the history of all
primitive queries of D in Trp and the interaction of D with the en- and decryption
oracles in either of the two worlds in a transcript Tr = Tre ∪ Trd, where

Tre = {(ν1, A1,M1, C1, T1), . . . , (νqe
, Aqe ,Mqe , Cqe , Tqe

)} and

Trd = {(ν′
1, A

′1, C ′1, T ′
1, O

′1), . . . , (ν′
qd

, A′qd , C ′qd , T ′
qd

, O′qd)}

are called the transcripts of en- and decryption queries, respectively. Once D
is done with its queries and responses, the challenger releases additional infor-
mation before D submits its decision bit. If D interacted with the real world,
the challenger releases the 2n-bit key k = (k0, k1), the hash key kh, and inter-
mediate variables Ẑi = P(νi ⊕ k1) for each i ∈ [qe] ∪ [qd], which are generated
from ForknEHtMp. If D interacted with the ideal world, the challenger samples
a 2n-bit key k = (k0, k1) uniformly at random, a random hash key kh from the
set of all hash keys, computes Ẑi = P(νi ⊕k1) and Ẑ ′

i = P(ν′
i ⊕k1) for every en-

and decryption query, respectively, and releases those to D. The overall attack
transcript becomes Tr∗ = (Tr∗e,Tr

∗
d, Trp, k0, k1, kh), where

Tr∗e = {(ν1, A1,M1, C1, T1, Ẑ1), . . . , (νqe
, Aqe ,Mqe , Cqe , Tqe

, Ẑqe
)} and

Tr∗d = {(ν′
1, A

′1, C ′1, T ′
1, O

′1, Ẑ ′
1), . . . , (ν′

qd
, A′qd , C ′qd , T ′

qd
, O′qd , Ẑ ′

qd
)}

are the overall transcripts of en- and decryption queries, respectively. The tran-
script of primitive queries remains the same. Let Xre be a random variable for
realizing transcripts Tr∗ in the real world and Xid be a random variable for real-
izing transcripts Tr∗ in the ideal world. The probability of realizing a transcript
Tr∗ in the ideal (resp. real) world is called the ideal (resp. real) interpolation
probability. A transcript Tr∗ is said to be attainable with respect to D if its ideal
interpolation probability is non-zero, and AttT denotes the set of all such attain-
able transcripts and Φ : Att → [0,∞) be a non-negative function that maps any
attainable transcripts to a non-negative real value. Following these notations,
we state the main theorem of the Expectation Method [29]:

Theorem 2 (Expectation Method). Let AttT = GoodT�BadT be a partition
of the set of all attainable transcripts. Let Tr∗ ∈ GoodT such that

pre(Tr∗)
pid(Tr∗)

:=
Pr[Xre = Tr∗]
Pr[Xid = Tr∗]

≥ 1 − Φ(τ),

and there exists εbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ εbad. Then

AdvnAE
PAE (D) ≤ E[Φ(Xid)] + εbad. (1)

78 A. Bhattacharjee et al.

In our proof of PAE, we identify sets of bad transcripts and upper bound
their probabilities in the ideal world. Then we find a lower bound for the ratio
of the real to ideal interpolation probability for a good transcript.

Definition and Probability of Bad Transcripts. We have to bound the proba-
bility of bad transcripts in the ideal world. We call an encryption query (ν, A,
M , C, T , Ẑ) ∈ Tr∗e non-colliding if ∀(ν∗, A∗,M∗, C∗, T ∗, Ẑ∗) ∈ Tr∗e, T �= T ∗.
We write Si

α = M i
α ⊕ Ci

α and Γ i := (Ai, Ci) (resp. Γ ′i := (A′i, C ′i)) to denote
the input of the hash in the i-th encryption query (resp. decryption query). The
main crux of identifying bad events is to find two-fold collisions between con-
struction and primitive queries or collisions between construction queries. We
consider six sets of bad events:

Table 1. Upper bounds for the individual bad events.

Event index i (mod 6)

1 2 3 4 5 0

A1..6
4σeq2p
22n

16σeq2p
22n

4σeq2p
22n

4σ2
eqp

22n

�2qeq2p
22n

�2qeσeqp

22n

A7..11
4σ2

eqp

22n

4�2qeq2p
22n

16�μσeq2p
22n

4σ2
eqp

22n
4�4q2eqp

22n

B1..6 �2qe
2n

�4q3e
22n

√
qeqp
2n

�
√

qeqp
2n

�2qe
2n

�2q2e
22n + �2μ2

2n

B7
�4q2e
22n + �2μ2

2n

C1..6
16qeq2p
22n

16qeq2p
22n

4μqeq2pεaxu
2n +

4qp
2n

4qeq2pεreg
2n

16q2eqp

22n +
16q2eqpεaxu

2n
4μqp
2n

C7..11
4qeq2p
22n

4qeq2p
22n

16μqeq2p
22n

4q2eq2pεreg

22n

4q2eq2pεreg

22n

D1..6 qe
2n μ2εaxu 2μ2εaxu +

2μqeεaxu +
2μqe
2n

μ2

2n
q2e
22n +

q2eεaxu
2n

2
2n

D7..10
q2eεaxu

2ξ

4
√

qeqp
2n

4
√

qeqp
2n

4
√

qeqp
2n

E1..5
4qdq2pεreg

2n
μqd
2n

16qeqdqp

22n

4μqdq2pεreg
2n

16μqeqdq2pεreg

22n

F1..6 1
2n

16qeq2p
22n

16qeq2p
22n

4qeq2pεreg
2n

4q2eqp

22n
4q2eqp

22n

F7..12
q
3/2
e
2n

4σeq2p
22n

4σeq2p
22n

4σeq2p
22n

4q2eqp

22n
4μqp
2n

F13..18
8μqp
2n

4qeσeqp

22n

16qeq2p
22n

4q2eqpεaxu
2n

4q2eqp

22n
μ�qp
2n

F19..24
2�μqp
2n

σ2
eqp

22n

σeq2p
22n

�q2eqpεaxu
2n

4σ2
eqp

22n

16qeq2p
22n

F25..30
16qeq2p
22n

16q2eqp

22n
16q2eqp

22n

4σeq2p
22n

4σ2
eqp

22n

4qeq2pεreg
2n

F31..36
16qeq2p
22n

16q2eqp

22n
16q2eqp

22n

4σeq2p
22n

4σ2
eqp

22n

16μ2q2p
22n

A. Collisions between construction and primitive queries for ForkEDMp.
B. Collisions between two construction queries for ForkEDMp.
C. Collisions between construction and primitive queries for ForknEHtMp.
D. Collisions between two construction queries for ForknEHtMp.
E. Verification queries for ForknEHtMp.
F. Bad events between ForkEDMp and ForknEHtMp.

An attainable transcript Tr∗ = (Tr∗e,Tr
∗
d,Trp, k0, k1, kh) is called bad if any of

those events occur. Recall that BadT ⊆ AttT be the set of all attainable bad

PAE: Towards More Efficient and BBB-Secure AE 79

transcripts and GoodT = AttT\BadT is the set of all attainable good transcripts.
We bound the probability of bad transcripts in the ideal world in Lemma 1. We
prove it in the full version of this work [7], but summarize the terms in Table 1.

Lemma 1. With Xid and BadT defined as above, ξ = 2n/8qe and σe ≥ qe ≥ μ,

Pr[Xid ∈ BadT] ≤
234�2μσeq

2
p

22n
+

131�4σ2
eqp

22n
+

3�4q3e
22n

+
2�2qe

2n
+

14�
√

qeqp

2n
+

q
3/2
e

2n

+
2�2μ2

2n
+

4μqeq
2
pεaxu

2n
+

22�q2eqpεaxu
2n

+
8q2eq2pεreg

22n
+ 5μqeεaxu +

12qeq
2
pεreg

2n

+
q2eεaxu
2ξ

+
(3� + 16)μqp

2n
+

μ(2qe + qd)
2n

+
16qeqdqp(1 + μqpεreg)

22n
+

8μqdq
2
pεreg

2n
.

5 Analysis of Good Transcripts

Let Tr∗ = (Tr∗e,Tr
∗
d,Trp, k0, k1, kh) be an attainable good transcript and define

p(Tr∗) := Pr[P � Perm : PAEP
k,kh

�→ (Tr∗e,Tr∗d) | P �→ Trp].

We call P compatible to an attainable good transcript Tr∗ = (Tr∗e, Tr
∗
d, Trp, k0,

k1, kh) if PAEP
k,kh

�→ (Tr∗e,Tr∗d) and ∀(U b, V) ∈ Trp,P(U b) = V holds. Note that
PAEP

k,kh
�→ (Tr∗e,Tr∗d) implies that for every (ν, A, M , C, T , Ẑ) ∈ Tr∗e,

(A) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

S ← ForkEDMp[P]k0,k1(ν, � |M |
n �),

C ← M ⊕ S[|M |],
Ẑ ← P(fix11(ν ⊕ k1)),
T ← P(fix00(Ẑ ⊕ k0)) ⊕ P(fix01(Ẑ ⊕ k0 ⊕ Hkh

(C)))

holds and for every (ν′, A′, C ′, T ′, O′, Ẑ ′) ∈ Tr∗d,

(B) :=

{

Ẑ ′ ← P(fix11(ν′ ⊕ k1))
T ′ �= ForknEHtMp[P,H]k0,k1,kh

(ν′, A′, C ′)

holds. For an attainable good transcript Tr∗ = (Tr∗e,Tr
∗
d,Trp, k0, k1, kh), we call

a permutation P compatible with Tr∗e (resp. Tr∗d) if (A) (resp. (B)) holds. We call
P compatible with Tr∗e ∪ Tr∗d if P is compatible to both Tr∗e and Tr∗d and define

Comp(Tr∗) := {P : P is compatible to Tr∗e ∪ Tr∗d}.

Let N = 2n. In the real world, we have for an attainable good transcript Tr∗:

Pr[Xre = Tr∗] =
1

|Kh| · 1
N2

· Pr[P � Perm : P ∈ Comp(Tr∗) | P �→ Trp]
︸ ︷︷ ︸

p(Tr∗)

· 1
(N)qp

.

As the encryption oracle of the ideal world always outputs uniform random n-bit
strings on each query and the decryption oracle always returns ⊥, we have

Pr[Xid = Tr∗] =
1

|Kh| · 1
N2

· 1
Nσe

· 1
(N)qp

.

80 A. Bhattacharjee et al.

5.1 Establishing a Lower Bound on p(Tr∗)

For a good transcript Tr∗ = (Tr∗e,Tr
∗
d,Trp, k0, k1, kh) and for b ∈ {00, 01, 10, 11},

recall that Ub is the set of all domain points of the forward primitive queries to
permutation P and the range points of the inverse primitive queries to permuta-
tion P with its two most significant bits set to b. Vb is the set of all corresponding
range points of the forward primitive queries to permutation P with b the two
most significant bits of the queries and the domain points of the inverse prim-
itive queries to permutation P such that the two most significant bits of the
corresponding response is b. Moreover, U is the set of all domain points of the
forward primitive queries to P and the range points of the inverse primitive
queries to P. Similarly, V is the set of all range points of the forward primitive
queries to P and the domain points of the inverse primitive queries to P. Since
Tr∗ = (Tr∗e,Tr

∗
d,Trp, k0, k1, kh) is good, we can partition the set of encryption

queries Tr∗e into pairwise disjoint sets as:

Q1 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix11(ν ⊕ k0) ∈ U11},

Q2 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : α ∈ [�], Sα ⊕ 2α−1k1 ∈ V}
Q3 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix11(ν ⊕ k1) ∈ U11}
Q4 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix00(Ẑ ⊕ k0) ∈ U00}
Q5 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix01(Ẑ ⊕ k0 ⊕ Hkh

(Γ)) ∈ U01}
Q0 := Tr∗e \ ∪5

i=1Qi

Proposition 1. Let Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) ∈ GoodT be a good tran-
script. Then, the sets (Q0,Q1,Q2,Q3,Q4,Q5) are pairwise disjoint.

Since Tr∗ is a good transcript, we have αi = |Qi| ≤ √
qe for all i ∈ {1, . . . , 5}.

For i ∈ {0, 1, . . . , 5}, let Ei denote the event PAE.EncPk,kh
�→ Qi and let Ed denote

the event PAE.DecPk,kh
�→ Tr∗d. We can see

p(Tr∗) = Pr[∧5
i=1Ei |P �→ Trp]

︸ ︷︷ ︸

p1(Tr∗)

·Pr[E0 ∧ Ed | ∧5
i=1 Ei ∧ P �→ Trp]

︸ ︷︷ ︸

p2(Tr∗)

. (2)

5.2 Lower Bound of p1(Tr
∗)

To lower bound p1(Tr
∗), we define 5 × 5 sets. For all k ∈ {1, . . . , 5}, let

Dk
1 := {fix11(νi ⊕ k0) : (νi, A

i,M i, Ci, Ti, Ẑi) ∈ Qk},

Rk
1 := {Si

α ⊕ 2α−1k1,∀α ∈ [�i] : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk},

Ik
1 := {fix11(νi ⊕ k1) : (νi, A

i,M i, Ci, Ti, Ẑi) ∈ Qk},

Dk
2 := {(fix00(Ẑi ⊕ k0), fix01(Ẑi ⊕ k0 ⊕ Hkh

(Γ i))) : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk},

Rk
2 := {Ti : (νi, A

i,M i, Ci, Ti, Ẑi) ∈ Qk}.

PAE: Towards More Efficient and BBB-Secure AE 81

In the following, the goal is to establish upper bounds for the probabilities
of E.1 to E.5 to occur. Since the process is repetitive (although there are subtle
differences for each event), we will report only the bound here:

p1(Tr∗) ≥ 1
(2n − qp)Δ1

· 1
(2n − qp − Δ1 − 2α1)Δ2

·
(

1 −
k∑

i=1

18ρ2i
(
μi

2

)

22n

)

· 1
(2n − qp − (Δ1 + Δ2 + Δ3 + Δ4) − 2(α1 + α2 + α3))2α4

· 1
(2n − qp − (Δ1 + Δ2 + Δ3 + Δ4 + Δ5) − 2(α1 + α2 + α3 + α4))2α5

,

where Δi = (�1 + . . .+ �αi
+αi) for all i ∈ {1, . . . , 5}. The detailed treatment of

each event is given in the full version of the paper [7].

5.3 Lower Bound of p2(Tr
∗)

Here, we can use that all inputs to and outputs from the permutation are
fresh, i.e., have not collided with any primitive query input or output. Let
δ =

∑5
i=1 Δi + 2αi. Using the results from [16,27], we have

p2(Tr∗) ≥
(

1 − 28(qp + δ)σ2
e

22n
− 4(qp + δ)2σe

22n
− 24σ3

e

22n

)

· (2
n − (qp + δ))2α0

2nα0

·
(

1 −
k∑

i=1

6ρ2i
(
μi

2

)

22n
− 2qd

2n

)

. (3)

Taking the ratio of p1(Tr
∗) · p2(Tr∗) to 2nqe and applying Theorem 2 yields

E[Φ(Xid)] ≤ 28(qp + δ)σ2
e

22n
+

4(qp + δ)2σe

22n
+

24σ3
e

22n
+

12q4eεaxu
22n

+
12μ2q2e
22n

+
48q3e
22n

+
48(qp + δ)q3eεaxu

22n
+

48μ2(qp + δ)qe

22n
+

192(qp + δ)q2e
22n

+
48(qp + δ)2q2eεaxu

22n
+

48μ2(qp + δ)2

22n
+

192(qp + δ)2qe

22n
+

2qd

22n
. (4)

Given at most � blocks per message and αi ≤ √
q

e
for i ∈ [5], we have δ ≤

10
√

qe+5�
√

qe. Plugging the upper bound of δ into Eq. (4) and using σe ≥ qe ≥ μ
produces

E[Φ(Xid)] ≤ 1
22n

(

5980σ2
eqp + 420�σ2

e

√
qe + 196σeq

2
p + 44100�2σ2

e

+ 120�σeqeqp + 12q4eεaxu + 5292μ2q2e + 48q3eqpεaxu + 5520�q7/2
e εaxu

+ 48q2eq2pεaxu + 48μ2q2p + 1440�q5/2
e qpεaxu + 1488μ2qeqp

+240�μ2q3/2
e + 2880�q5/2

e + 6000�2q3eεaxu + 6000�2μ2qe + 72σ3
e + 2qd

)

.

82 A. Bhattacharjee et al.

6 Instantiation

PAE targets environments that profit from a small permutation when processing
short messages (up to a few kilobytes), while maintaining usual security lev-
els. For evaluation, we focus on ARM Cortex-M3/-M4 (armv7) 32-bit microcon-
trollers without dedicated instruction sets such as NEON, as it is a representative
widespread platform considered in the NIST Lightweight competition (LwC).

We propose two instantiations with efficient lightweight permutation and
universal hash functions. We identified Chaskey [33,34] as a very efficient 128-bit
permutation. Since the forked sum of permutations makes some attacks harder,
we can reduce the number of rounds from 12 to eight. We also searched for
lightweight and efficient universal hash functions. Poly1305 is a well-established
option for a first instantiation. Moreover, Duval and Leurent [28] presented a
MAC with a polynomial hash over a 61-bit field. We adapted it to Hash611 and
defined Hash611x2, which applies two independently-keyed instances. Thus, we
propose PAE with Chaskey-8 and Poly1305 as-is with a 256-bit hash key (where
22 bits are fixed) as a first, and PAE with Chaskey-8 and Hash611x2 with a 128-bit
hash key as a second instantiation.

Algorithm 3. Definition of Hash611x2.

11: function Hash611x2λ
kh

(A, C)
12: (A∗, C∗) ← (pad(A), pad(C))
13: L ← 〈|A|/8〉32 ‖ 〈|C|/8〉24
14: X∗ ← A∗ ‖ C∗ ‖ L
15: return Hash6111024k2 (X∗) ‖Hash6111024k3 (X∗)

21: function pad(X)
22: p ← 6 − ((|X|/8) mod 7)
23: return X ‖ 107 ‖ 08p

31: function Hash611λ
K(X∗)

32: (X∗
1 , . . . , X∗

�)
56←− X∗

33: if � > λ then
34: return ⊥
35: Σ ← 0
36: for i = 1 . . . � do
37: Σ ← ((Σ +X∗

i) · K) mod (261 − 1)

38: return Σ

We require message lengths to be multiples of full bytes and limit the message
length to λ = 1024 56-bit blocks after padding, i.e. at most 7-kB messages. If
longer messages are needed, one can generate additional 128-bit hash keys, e.g.
with the permutation, but we do not propose this. Second, simply adding the
message length to the hash result as in [28] would make the hash function lose
almost-XOR-universality. Instead, every block is processed in the polynomial
hash, added to the state, which is then multiplied with a key. We use a 10∗-
padding of full bytes, append the smallest number of zero bytes so that the length
of the padded message is a multiple of seven bytes, and append the 32- and 24-
bit integer representations of the unpadded associated-data and ciphertext byte
lengths, respectively. The padding and the length block are needed for injectivity
for variable-length inputs and a polynomial degree of at least one. We combine
two independently-keyed instances of Hash611 to Hash611x2, as in Algorithm 3.

PAE: Towards More Efficient and BBB-Secure AE 83

Theorem 3. Let � be the maximal number of message blocks after padding,
Kh = ({0, 1}64)2 and kh � Kh. Let Hkh

(x) be as defined in Algorithm 3. Then,
Hkh

is ε-almost-xor-universal and ε-almost-regular for ε ≤ (4�2)/((261 − 1)2).

Poly1305 [4] is ε-almost-Δ-universal with ε ≤ 8�/2106, where Δ considers
modular addition and we replace the XOR at the hash-function output with
modular addition in our first instantiation. Since Poly1305 pads every message
block with 10∗ so that its length becomes 17 bytes, there is no need for other
paddings nor for appending the length for preserving injectivity and regularity.
Thus, Poly1305 is also ε-almost-regular for ε ≤ �/2103.

7 Software Implementation for 32-bit Microcontrollers

Baselines and Comparison. For the LwC, NIST evaluated a set of benchmarking
initiatives to conclude on the finalists in [37]. In general, Sparkle, Xoodyak, and
Ascon-128a are the most efficient finalists on the platforms we consider. We
summarized the best results on the ARM Cortex-M3/M4 without NEON that we
could find in the literature for them as well as a state-of-the-art implementation
of ChaCha20-Poly1305 by [36] in Table 2. We are conservative by using best
figures for competitors while providing concrete results for our instantiations
and will make our code and results publicly available in the full version [7].

Environment and Results. We evaluated our instantiation on an NXP FRDM-
KV31F board which has an ARM Cortex-M4 KV31F512VLL12 MCU processor
at 120 MHz, 96 kB SRAM, and 512 kB of flash memory. We implemented our
construction mostly in C with assembly code from [28], the code for Chaskey
by Mouhaand compiled with arm-none-eabi-gcc v10.3.1 in NXP MCUXpresso
v11. For measurements, we employed the DWT flagsthat are implemented on
Cortex-M4 and used 64- as well as 1 536-byte messages with empty associated
data, where we averaged over 100 measurements each. We compiled with flags
-Os for smaller code and with -O3 -fomit-framepointer for versions optimized
for low c/b, respectively. Our instantiation compares well to the LwC finalists
in inverse throughput. PAE with eight-round Chaskey and the hash function of
MAC611 from [28] yielded results of less than 23 c/b for longer messages; Our
implementation with Poly1305 achieved similarly competitive results of less than
25 c/b for longer messages. There seems to be room for an asymptotic optimum
of even as low as about 15 c/b for both instances that could be addressed in
future work. We emphasize that those results exploit no SIMD instruction sets
such as NEON, which may even yield further improvements.

84 A. Bhattacharjee et al.

Table 2. Inverse throughput (T −1) in cycles per byte (and #cycles) on 32-bit ARMv7
without NEON instructions. – = unavailable. (*) = asymptotic.

T −1 in c/b (#cycles)

Construction Plat. 64 bytes 1 536 bytes Values ref.

Schwaemm-128-128 [3] M3 68.5 (4 384) 45.9 (70 440) [3]
Schwaemm-256-128 [3] M3 73.7 (4 715) 37.2 (57 109) [3]
Ascon-128a [22] A7 55.5 (–) 38.2 (–) [24]
ChaCha20-Poly1305 [35] M4 – 28.4 (∗)(–) [36]
Xoodyak [20] M3 – 27.1 (∗)(–) [20]

PAE[Chaskey-8,Poly1305] M4 45.3 (2 902) 24.2 (37 145) [This work]
PAE[Chaskey-8,Hash611x2] M4 41.8 (2 676) 22.7 (34 797) [This work]

8 Summary

This work proposes PAE, a highly efficient AE scheme from public permutations
that provides O(2n/3)-bit security even under some faulty nonces. It demon-
strates that the Iterate-Fork-Iterate(-Many) paradigm can increase efficiency
even on lightweight platforms and from public permutations. Future works can
consider further tightening the gap to the asymptotic optimum of our implemen-
tation. Moreover, as PAE achieves BBB security w.r.t. the number of queries or
the number of query blocks but not w.r.t. the query length, future works can
try to achieve that with similar constructions. Moreover, while we considered
using an alternative hash function based on the same public permutation, future
works can try to tackle the open problem to derive its security bound.

Acknowledgments. This research is partially supported by Nanyang Technological
University in Singapore under Start-up Grant 04INS00397C230, and Ministry of Edu-
cation in Singapore under Grants RG91/20 and MOE2019-T2-1-060. A part of this
research was carried out when Ritam Bhaumik was at Inria Paris funded by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 714294 - acronym QUASYModo).
We thank the anonymous reviewers of ICICS 2023 for their good comments, Florian
DeSantis for helpful thoughts on their ChaCha-Poly1305 implementation, and Shun Li
for help with implementation equipment.

PAE: Towards More Efficient and BBB-Secure AE 85

References

1. Andreeva, E., et al.: APE: authenticated permutation-based encryption for
lightweight cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 168–186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46706-0_9

2. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a new primitive for authenticated encryption of very short messages.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
153–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_6

3. Beierle, C., et al.: Schwaemm and esch: lightweight authenticated encryption and
hashing using the sparkle permutation family (2021)

4. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760_3

5. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, jumbo, and delirium:
parallel authenticated encryption for the lightweight circus. IACR Trans. Symmet-
ric Cryptol. 2020(S1), 5–30 (2020)

6. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Multi-user security of the
elephant v2 authenticated encryption mode. In: AlTawy, R., Hülsing, A. (eds.)
SAC 2021. LNCS, vol. 13203, pp. 155–178. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99277-4_8

7. Bhattacharjee, A., Bhaumik, R., Dutta, A., List, E.: PAE: towards more efficient
and BBB-secure AE from a single public permutation. Cryptology ePrint Archive,
Paper 2023/978 (2023)

8. Bhattacharjee, A., Bhaumik, R., Nandi, M.: A sponge-based PRF with good multi-
user security. In: Smith, B., Wu, H. (eds.) Selected Areas in Cryptography. LNCS,
Springer, Cham (2022)

9. Bhattacharjee, A., Bhaumik, R., Nandi, M.: Offset-based BBB-secure tweakable
block-ciphers with updatable caches. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT
2022. LNCS, vol. 13774, pp. 171–194. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22912-1_8

10. Bhattacharjee, A., Chakraborti, A., Datta, N., Mancillas-López, C., Nandi,
M.: ISAP+: ISAP with fast authentication. In: Isobe, T., Sarkar, S. (eds.)
INDOCRYPT 2022. LNCS, vol. 13774, pp. 195–219. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22912-1_9

11. Bhattacharjee, A., Dutta, A., List, E., Nandi, M.: CENCPP∗: beyond-birthday-
secure encryption from public permutations. Des. Codes Cryptogryphy 90(6),
1381–1425 (2022)

12. Bhattacharjee, A., López, C.M., List, E., Nandi, M.: The oribatida v1.3 family of
lightweight authenticated encryption schemes. J. Math. Cryptol. 15(1), 305–344
(2021)

13. Bhaumik, R., Chailloux, A., Frixons, P., Mennink, B., Naya-Plasencia, M.: Block
cipher doubling for a post-quantum world. IACR Cryptology ePrint Archive, p.
1342 (2022)

14. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

15. Chen, Y.L.: A modular approach to the security analysis of two-permutation con-
structions. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13791, pp.
379–409. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3_13

https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/978-3-030-99277-4_8
https://doi.org/10.1007/978-3-030-99277-4_8
https://doi.org/10.1007/978-3-031-22912-1_8
https://doi.org/10.1007/978-3-031-22912-1_8
https://doi.org/10.1007/978-3-031-22912-1_9
https://doi.org/10.1007/978-3-031-22963-3_13

86 A. Bhattacharjee et al.

16. Chen, Y.L., Dutta, A., Nandi, M.: Multi-user BBB security of public permutations
based MAC. Cryptogr. Commun. 14(5), 1145–1177 (2022)

17. Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from
public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 266–293. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26948-7_10

18. Chen, Y.L., Mennink, B., Preneel, B.: Categorization of faulty nonce misuse resis-
tant message authentication. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 520–550. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92078-4_18

19. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_5

20. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

21. Dobraunig, C., et al.: ISAP v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–
416 (2020)

22. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2, September
27 2019. Submission to the NIST LwC competition. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
ascon-spec-round2.pdf

23. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)

24. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Reference, highly opti-
mized, masked C and ASM implementations of Ascon (2023). https://github.com/
ascon/ascon-c. Accessed 28 June 2023

25. Dutta, A., Nandi, M.: BBB secure nonce based MAC using public permutations.
In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp.
172–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_9

26. Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty
nonce model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11476, pp. 437–466. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2_15

27. Dutta, A., Nandi, M., Talnikar, S.: Permutation based EDM: an inverse free BBB
secure PRF. IACR Trans. Symmetric Cryptol. 2021(2), 31–70 (2021)

28. Duval, S., Leurent, G.: Lightweight MACs from universal hash functions. In:
Belaïd, S., Güneysu, T. (eds.) CARDIS 2019. LNCS, vol. 11833, pp. 195–215.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42068-0_12

29. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4_1

30. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9_19

31. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017)

https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/978-3-030-92078-4_18
https://doi.org/10.1007/978-3-030-92078-4_18
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
https://doi.org/10.1007/978-3-030-51938-4_9
https://doi.org/10.1007/978-3-030-17653-2_15
https://doi.org/10.1007/978-3-030-17653-2_15
https://doi.org/10.1007/978-3-030-42068-0_12
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19

PAE: Towards More Efficient and BBB-Secure AE 87

32. Minematsu, K.: How to thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_13

33. Mouha, N.: Chaskey: a MAC algorithm for microcontrollers - status update and
proposal of Chaskey-12. IACR Cryptology ePrint Archive, p. 1182 (2015)

34. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

35. Nir, Y., Langley, A.: RFC 8439: ChaCha20 and Poly1305 for IETF Protocols (2018)
36. De Santis, F., Schauer, A., Sigl, G.: ChaCha20-Poly1305 authenticated encryption

for high-speed embedded IoT applications. In: Atienza, D., Di Natale, G. (eds.)
Design, Automation & Test in Europe Conference & Exhibition, pp. 692–697. IEEE
(2017)

37. Turan, M.S., et al.: NIST Internal Report 8454 - Status Report on the Final Round
of the NIST Lightweight Cryptography Standardization Process. Technical report,
US National Institute of Standards and Technology (2023)

38. Zhang, P.: Permutation-based lightweight authenticated cipher with beyond con-
ventional security. Secur. Commun. Netw. 2021, 1–9 (2021)

https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-319-13051-4_19

Public-Key Cryptography

A Polynomial-Time Attack on G2SIDH

Guoqing Zhou and Maozhi Xu(B)

School of Mathematical Sciences, Peking University, Beijing, China
mzxu@math.pku.edu.cn

Abstract. Supersingular isogeny Diffie-Hellman key exchange protocol
(SIDH) is the most concerned isogeny-based protocol resisting quantum
attacks, and in 2019 Flynn and Ti implemented a dimension two version
(G2SIDH). However, at EUROCRYPT’23, Castryck and Decru, Maino
et al., and Robert proposed efficient attacks against SIDH. Moreover,
Robert extended his attacks to high-dimensional SIDH in theory.

In this paper, we, for the first time, find that the uniqueness of
isogeny decomposition and computing intermediate isogeny through ker-
nel only hold for one class of high-dimensional isogenies. Besides, we
prove a counting formula about isogenies between general abelian vari-
eties. Based on these theoretic results, we present complete steps of
parameter tweaks in attacks against high-dimensional SIDH, and analyze
the efficiency of each tweak. In particular, for Flynn and Ti’s G2SIDH,
we construct two attack algorithms that can recover the secret key in
polynomial time. Our paper demonstrates the differences between iso-
genies in dimension one and higher dimensions, and illustrates that all
high-dimensional SIDH protocols are insecure.

Keywords: Abelian variety · Cryptanalysis · G2SIDH · Isogeny-based
cryptography

1 Introduction

With the rapid development in quantum computing, the traditional pubic key
cryptosystems are increasingly unable to ensure digital security [21,23]. To
address the threat posed by quantum computation, post-quantum cryptogra-
phy has received extensive attention. In 2011, Jao and De Feo [10] introduced
a supersingular isogeny Diffie-Hellman key exchange protocol (SIDH), which is
built on isogenies between supersingular elliptic curves. Since the endomorphism
ring of a supersingular elliptic curve is non-commutative, SIDH is believed to be
quantum-resistant [10]. Compared with other post-quantum cryptosystems (e.g.,
lattice-based [20] and code-based [1]), SIDH has the advantage of small size of
public keys [4], so it is more suitable in applications with limited bandwidth (e.g.,
RS and IoT). SIDH is fundamental for various post-quantum applications, such
as public key encryption scheme [11], signature scheme [9] and key encapsulation
protocol SIKE [2].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 91–109, 2023.
https://doi.org/10.1007/978-981-99-7356-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_6&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_6

92 G. Zhou and M. Xu

Elliptic curves are principally polarised abelian varieties of dimension one.
It is a natural idea to study cryptosystems based on high-dimensional (dimen-
sion g ≥ 2) principally polarised abelian varieties. Following this idea, in 2018,
Takashima [22] constructed a genus two isogeny-based hash function. However,
in 2019, Flynn and Ti [7] pointed out that the hash function above is not col-
lision resistant. As a generalization of SIDH, Flynn and Ti [7] implemented a
genus two SIDH (G2SIDH). Compared to classic SIDH [10], G2SIDH achieves
the same security level with significantly smaller size (e.g., 171 bits vs. 512 bits)
of parameters [7].

Before 2022, attacks against SIDH are only possible under special scenar-
ios [8,24] and unbalanced parameters [17,18]. However at EUROCRYPT’23, the
underlying hard problem of SIDH has been fully addressed, and thus facilitates
a series of efficient attacks: Castryck and Decru [3] proposed a polynomial-time
algorithm to attack SIDH for special starting elliptic curves; Maino et al. [14]
proposed a subexponential-time algorithm to attack SIDH for random starting
elliptic curves; Robert [19] proposed a polynomial-time attack against SIDH for
random starting elliptic curves. The main idea of these attacks is taking advan-
tage of extra torsion points revealed by the participants Alice and Bob.

At EUROCRYPT’23, Robert [19] pointed out that it is feasible to extend
the main theoretic result in his attacks to high-dimensional abelian varieties,
and he proposed three types of efficient attacks on high-dimensional SIDH in
theory. However, the isogeny computation in high dimensions is different from
that in dimension one: When performing parameter tweaks in attacks, isogenies
in high dimensions can not be generated like isogenies in dimension one; When
analyzing the efficiency, it involves counting isogenies between high-dimensional
abelian varieties. These theoretic results should be systematically studied before
practical algorithms can be constructed and implemented.

Our Contributions. In this work, we study the isogenies between high-
dimensional abelian varieties, and make the following key contributions.

(1) Isogeny computation. We study the isogeny computation between high-
dimensional abelian varieties. For the first time, we prove that the unique-
ness of isogeny decomposition and computing intermediate isogeny through
kernel only hold for one class of high-dimensional isogenies, which can be
used in the attacks on high-dimensional SIDH. Our results demonstrate the
feasibility of isogeny computation methods in these attacks.

(2) Counting formula. We prove a generalized counting formula about the num-
ber of �-isogenies from any abelian variety of dimension g. It is a general-
ization of the well-known elliptic curve case [11]. It enables the efficiency
analysis of parameter tweaks in the attacks.

(3) Parameter tweaks. We, for the first time, present complete steps of parameter
tweaks in [19] based on the isogeny computation methods proven above. The
parameter tweaks can meet the requirements of 4g-attack (see Sect. 2.3). We
also analyze the efficiency of each parameter tweak.

A Polynomial-Time Attack on G2SIDH 93

(4) Attack algorithms. We present a realization of G2SIDH [7] attack algorithms
based on Robert’s theory. Specifically, we give two efficient attack algorithms.
One requires fewer arithmetic operations but involves field extension, and the
other doesn’t involve field extension but costs more arithmetic operations.

Organization. This paper is organized as follows. In Sect. 2, we introduce pre-
liminary information related to basic knowledge. Section 3 presents the theoretic
results about isogenies between high-dimensional abelian varieties. We describe
the parameter tweaks methods in Sect. 4, and we give efficiency analysis and
concrete attack algorithms in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

In this section, we first state the background knowledge about abelian varieties
and isogenies, laying the mathematical basis of G2SIDH and efficient attacks.
For concrete definitions and rigorous proofs, readers can refer to [15] and [16].
Then we introduce the G2SIDH proposed by Flynn and Ti [7], which will be
cryptanalyzed in Sect. 5.2. Finally, we conclude three types of polynomial-time
attacks on high-dimensional SIDH.

2.1 Abelian Varieties and Isogenies

An abelian variety is a complete group variety. For any abelian variety A, there
is a unique dual variety A∨ up to isomorphism. An isogeny between abelian
varieties is a surjective homomorphism with finite kernel. The polarization of
A is the isogeny λA = φL : A → A∨ induced by the ample divisor L. The
polarization is principal if it is an isomorphism. Coordinates can be imported
on the principally polarized abelian variety (PPAV), which means we can do
computation on PPAVs.

The Weil pairing on an abelian variety A is a non-degenerate alternating
pairing

en : A[n] × A∨[n] → μn,

where A[n] is the group of all n-torsion points on A and μn is the n-th root
group of unity.

Abelian variety A defined over Fq is denoted by A/Fq. If A/Fq is a dimension
g abelian variety and gcd(n, q) = 1, then A[n] ∼= (Z/nZ)2g. An n-isogeny φ :
A → B between PPAVs is an isogeny such that φ∨ ◦ λB ◦ φ = [n] ◦ λA, where
φ∨ : B∨ → A∨ is the dual isogeny and [n] is a scalar multiplication. Denote
˜φ = λ−1

A φ∨λB : B → A, then ˜φ ◦ φ = [n]. If there is an isogeny decomposition
φ = φ2 ◦ φ1, then φ1 is an intermediate isogeny of φ. An isogeny is backtracking
if it factors through a scalar multiplication. Non-backtracking isogenies are what
isogeny-based cryptography focuses on.

94 G. Zhou and M. Xu

An n-isogeny between PPAVs defined over Fq is separable if and only if
gcd(n, q) = 1. Every separable isogeny between PPAVs can be characterized by
its kernel up to isomorphism. The kernel of a separable n-isogeny from PPAV A
is a maximal isotropic subgroup of A[n] with respect to Weil pairing en. For a
separable n-isogeny φ : A → B between PPAVs of dimension g, it holds that

kerφ ∼= ker ˜φ ∼=
g

∏

i=1

(Z/niZ × Z/
n

ni
Z), (1)

where ni | n, i = 1, 2, · · · , g. Moreover, if φ is non-backtracking, then kerφ �

A[m] for any 1 < m ≤ n, and kerφ is called a proper subgroup of A[n].
Principally polarized abelian varieties of dimension one are just elliptic

curves. In the case of dimension two, every principally polarized abelian sur-
face (PPAS) is isomorphic to the product of two elliptic curves or the jacobian
of a hyperelliptic curve of genus two. If A is a PPAS, then by formula (1), every
proper maximal isotropic subgroup of A[�n] is isomorphic to

Z/�n
Z × Z/�k

Z × Z/�n−k
Z, (2)

where � is a prime and integer k satisfies 0 ≤ k ≤ n.

2.2 G2SIDH

SIDH is a well-known key exchange protocol proposed by Jao and De Feo in [10].
It has been extensively studied over the past decade [8,17,18,24]. SIDH uses
isogenies between supersingular elliptic curves (PPAVs of dimension one). Flynn
and Ti [7] considered the isogenies between PPASs (PPAVs of dimension two)
and proposed G2SIDH. The protocol is defined as follows.

Set-up. Select a prime p = 2a3b−1 satisfying 2a ≈ 3b and a random starting
hyperelliptic curve H/Fp2 of genus two, denote the jacobian of H by JH ,
and generate the basis {Pi}4i=1 of JH [2a] and the basis {Qi}4i=1 of JH [3b].

Key-generation. Alice chooses a secret subgroup KA = 〈R1, R2, R3〉 of
JH [2a], where

R1 =
4

∑

i=1

[xi]Pi, R2 =
4

∑

i=1

[yi]Pi, R3 =
4

∑

i=1

[zi]Pi.

The coefficients xi, yi, zi can be selected and computed using Weil pairing
to ensure the subgroup KA is maximal 2a-isotropic. Then Alice generates
the isogeny φA : JH → JA with kernel KA, computes {φA(Qi)}4i=1, and
sets KA (or φA) as her secret key and (A, {φA(Qi)}4i=1) as her public key.
Similarly, Bob chooses a secret maximal isotropic subgroup KB of JH [3b],
generates isogeny φB : JH → JB with kernel KB , computes {φB(Pi)}4i=1,
and sets KB (or φB) as his secret key and (B, {φB(Pi)}4i=1) as public key.

A Polynomial-Time Attack on G2SIDH 95

Key-exchange. Receiving Bob’s public key (B, {φB(Pi)}4i=1), Alice com-
putes the isogeny φ′

A : JB → JBA with the kernel φB(KA) = 〈R′
1, R

′
2, R

′
3〉,

where

R′
1 =

4
∑

i=1

[xi]φB(Pi), R′
2 =

4
∑

i=1

[yi]φB(Pi), R′
3 =

4
∑

i=1

[zi]φB(Pi).

Bob performs a similar computation to get φ′
B : JA → JAB . Since

JBA = JB/φB(KA) = JH/〈KA,KB〉 = JA/φA(KB) = JAB ,

they can share the G2-invariant of JBA and JAB as the secret.

Using the isogenies between PPAVs of dimension g, the general dimension g
version of SIDH can be defined similar as G2SIDH. In set-up, we select prime
p = NANB −1 where NA and NB are coprime, select a random starting PPAV V0

of dimension g, and generate the basis {Pi}2g
i=1 of V0[NA] and the basis {Qi}2g

i=1

of V0[NB]. Then Alice and Bob perform the key exchange as shown in Fig. 1.
The red lines are computed by Alice and the blue lines are computed by Bob.

VA

V0 VAB

VB

φ
Bkerφ

B=φ
A (kerφ

B)

φA
(NA

-iso
gen

y)

pkA
=(VA

,{φA
(Qi)}

2g
i=1

)

φ
B (N

B -isogeny)

pk
B=(V

B ,{φ
B (P

i)} 2g
i=1)

φA

ker
φA

=φB
(ker

φA
)

Fig. 1. General dimension g SIDH. (Color figure online)

2.3 Efficient Attacks on High-Dimensional SIDH

Currently, there exist three types of efficient attacks [3,19] on SIDH. The main
theoretic result (Kani’s theorem [12, Theorem 2.3]) in these attacks can be
extended to PPAVs of dimension g [19, Section 3]. So in this section, we con-
clude three types of efficient attacks on general dimension g SIDH.

Suppose that there is an attacker Eve trying to recover Bob’s secret key φB

in Fig. 1. The starting PPAV V0 is an abelian variety of dimension g. φA is an
NA-isogeny and φB is an NB-isogeny, where NA > NB . All attacks make full
use of the information of Bob’s public key (VB , {φB(Pi)}2g

i=1).
There are three types of efficient attacks: (1) 2g-attack is effective when

starting PPAV V0 has a known endomorphism ring or NA−NB is (log p)-smooth;

96 G. Zhou and M. Xu

(2) 8g-attack is universally effective, but its time cost is significantly larger than
2g-attack; (3) 4g-attack is a compromise of the above two attacks, and can
balance between efficiency and universality.

2g-attack. Let c = NA − NB . If Eve has the ability to construct a c-isogeny γ
from V0, then Eve can generate an isogeny between PPAVs of dimension 2g in
the following lemma, which contains the information of φB .

Lemma 1. Suppose that V0 is a PPAV of dimension g, φB : V0 → VB is an
NB-isogeny, and γ : V0 → VC is an (NA − NB)-isogeny, then the isogeny

f : VB × VC → V0 × VBC , (R,S)
→ (˜φB(R) + γ̃(S), γ′(R) − φ′
B(S))

V0 VB

VC VBC

φB

γ γ′

φ′
B

is an NA-isogeny between PPAV of dimension 2g. The kernel of the isogeny is

ker f = 〈 (φB(Pi), γ(Pi)) | i = 1, 2, · · · , 2g〉,

where 〈P1, P2, · · · , P2g〉 = V0[NA].

Proof. See [12, Theorem 2.3] and [19, Lemma 3.4]. ��
Since {φB(Pi)}2g

i=1 is given in Bob’s public key and {γ(Pi)}2g
i=1 can be eval-

uated directly, the isogeny f can be recovered by Eve through its kernel. ˜φB

equals to the composition of the chain VB
Id×0

↪−−−→ VB × VC
f−→ V0 × VBC

p1−→ V0,

where p1 is projection to the first component. Thus, Eve can recover isogeny ˜φB

and compute kerφB = ˜φB(VB [NB]).
The isogeny f in Lemma 1 is between abelian varieties of dimension 2g,

so we call this attack “2g-attack”. This 2g-attack proposed by Robert [19] is a
generalization of the attack proposed by Castryck and Decru [3]. The prerequisite
for this attack is the ability of attackers to construct a c-isogeny from V0. It will
occur in the following scenarios:

– V0 is a special abelian variety with a known endomorphism ring.
– c = NA − NB is (log p)-smooth.

8g-attack. In the general case, the starting PPAV V0 is chosen randomly and c
is not (log p)-smooth. The attacker can not construct a c-isogeny from V0.

A Polynomial-Time Attack on G2SIDH 97

Considering the “Zarhin’s trick” [25] which says that there always exists a
c-endomorphism on V 4 for any abelian variety V and any positive integer c, Eve
can construct a c-endomorphism on V 4

0 . Write c = c21 + c22 + c23 + c24 and matrix

M =

⎛

⎜

⎜

⎝

c1 −c2 −c3 −c4
c2 c1 c4 −c3
c3 −c4 c1 c2
c4 c3 −c2 c1

⎞

⎟

⎟

⎠

.

Since MT · M = c · I4, the endomorphism γ0 on V 4
0 defined by matrix M is a c-

endomorphism, and γ̃0 is defined by matrix MT . Let γB be the c-endomorphism
on V 4

B defined by the same matrix M . Denote by ΦB : V 4
0 → V 4

B the diagonal
embedding of φB, then ΦB is an NB-isogeny on V 4

0 and ΦB ◦ γ0 = γB ◦ ΦB , i.e.
the diagram as shown in Fig. 2 is commutative.

V 4
0 V 4

B

V 4
0 V 4

B

ΦB

γ0 γB

ΦB

Fig. 2. A commutative diagram between PPAVs of dimension 4g. ΦB is the diagonal
embedding of Bob’s secret isogeny and γ0 is a c-isogeny constructed by the attacker.

Similar to Lemma 1, the isogeny

f : V 4
B × V 4

0 → V 4
0 × V 4

B , (R,S)
→ (˜ΦB(R) + γ̃0(S), γB(R) − ΦB(S))

is an NA-isogeny between abelian varieties of dimension 8g. The kernel of the
isogeny is ker f = 〈 (ΦB(Pi), γ0(Pi)) | i = 1, 2, · · · , 8g〉, where 〈P1, P2, · · · P8g〉 =
V 4
0 [NA]. Since {ΦB(Pi)}8g

i=1 are given in Bob’s public key and {γ0(Pi)}8g
i=1 can be

evaluated directly, the isogeny f can be recovered by Eve through its kernel. ˜φB

equals to the composition of the chain VB
Id×07

↪−−−−→ V 4
B × V 4

0
f−→ V 4

0 × V 4
B

p1−→ V0.

Thus, Eve can recover isogeny ˜φB and compute kerφB = ˜φB(VB [NB]).
The isogeny f is between abelian varieties of dimension 8g, so we call this

attack “8g-attack”. Since Zarhin’s trick is applied for any abelian varieties, this
attack can be applied to random starting abelian varieties. However, the higher
dimension brings more time cost.

4g-attack. This type of attack is a trade-off between 2g-attack and 8g-attack. If

c = NA−NB can be written as c21+c22, then consider the matrix M =
(

c1 c2
−c2 c1

)

.

The endomorphism γ0 on V 2
0 defined by matrix M is a c-endomorphism since

MT M = c · I2. Let γB be the c-endomorphism on V 2
B defined by the same

matrix M . Denote by ΦB : V 2
0 → V 2

B the diagonal embedding of φB, then ΦB is
an NB-isogeny and ΦB ◦γ0 = γB ◦ΦB , i.e. the diagram in Fig. 3 is commutative.

98 G. Zhou and M. Xu

V 2
0 V 2

B

V 2
0 V 2

B ,

ΦB

γ0 γB

ΦB

Fig. 3. A commutative diagram between PPAVs of dimension 2g. ΦB is the diagonal
embedding of Bob’s secret isogeny and γ0 is a c-isogeny constructed by the attacker.

The isogeny

F : V 2
B × V 2

0 → V 2
0 × V 2

B, (R,S)
→ (˜ΦB(R) + γ̃0(S), γB(R) − ΦB(S))

can be recovered by Eve, and ˜φB equals to the composition of the chain

VB
Id×03

↪−−−−→ V 2
B × V 2

0
F−→ V 2

0 × V 2
B

p1−→ V0.

Thus, Eve can recover isogeny ˜φB and compute kerφB = ˜φB(VB [NB]).

Remark 1. The isogeny F is between abelian varieties of dimension 4g, so we
call this attack “4g-attack”. Note that c = c21 + c22 is not always satisfied. There
are methods of parameter tweaks, which we will discuss in detail in Sect. 4. The
restrictions of 2g-attack are much stricter than that of 4g-attack, so the possible
parameter tweaks in 2g-attack are out of scope of this paper.

3 Isogenies Between High-Dimensional PPAVs

In this section, we prove that the uniqueness of isogeny decomposition and
computing intermediate isogeny through kernel only hold for one class of high-
dimensional isogenies. The key step of efficient attacks in Sect. 2.3 is computing
an isogeny between high-dimensional PPAVs. We point out that these isogenies
belong to the class above, so our results demonstrate the feasibility of isogeny
computation methods in these attacks proposed by Robert [19].

Besides, we count the number of �-isogenies between general PPAVs. It pro-
vides a theoretical support for efficiency analysis of parameter tweaks.

3.1 Isogeny Computation Between High-Dimensional PPAVs

It should be noted that it is different for isogeny computation between g ≥ 2 and
g = 1. A PPAV of dimension g = 1 is just an elliptic curve, where the isogeny
computation is widely studied. There are two practical lemmas when computing
isogenies between elliptic curves.

Lemma 2. Suppose φ is a non-backtracking �n-isogeny from an elliptic curve
E0/Fq, where gcd(�, q) = 1. Then there is a unique decomposition of φ into a
sequence of n �-isogenies as follows,

φ : E0
φ1−→ E1

φ2−→ E2
φ3−→ · · · φn−−→ En.

A Polynomial-Time Attack on G2SIDH 99

Proof. See [[11], Section 4.2.2]. ��
Lemma 3. Suppose there is a non-backtracking isogeny decomposition φ :
E0

φ1−→ E1
φ2−→ E2 between elliptic curves defined over Fq, where φ1 is a �n1-

isogeny, φ2 is a �n2-isogeny, and gcd(�, q) = 1. Then,

φ(E0[�n2]) = ker̂φ2 = φ(E0[�n1+n2]) ∩ E2[�n2].

Proof. ̂φ2 is the first �n2 -part of ̂φ. So by Lemma 2,

ker̂φ2 = [�n1] ker ̂φ = [�n1]φ(E0[�n1+n2]) = φ([�n1]E0[�n1+n2]) = φ(E0[�n2]).

We know φ(E0[�n2]) ⊂ φ(E0[�n1+n2]) ∩ E2[�n2]. Counting the cardinality

#φ(E0[�n2]) = #ker̂φ2 = #
(

φ(E0[�n1+n2]) ∩ E2[�n2]
)

= �n2 ,

we have φ(E0[�n2]) = φ(E0[�n1+n2]) ∩ E2[�n2]. ��
Note that the above two lemmas are not correct for general isogenies between

PPAVs of dimension g ≥ 2. For Lemma 2, as mentioned in [7, Prop. 4], the
decomposition of isogenies between PPASs is non-unique. For Lemma 3, if there
is an isogeny decomposition F : V0

F1−→ V1
F2−→ V2 between high-dimensional

PPAVs, where F1 is a �n1-isogeny and F2 is a �n2 -isogeny. It still holds that
F (V0[�n2]) ⊂ ker ˜F2 ⊂ F (V0[�n1+n2]) ∩ V2[�n2], but the equal sign doesn’t work.

However, for the key isogenies between high-dimensional PPAVs in three
types of attacks, the above two lemmas still hold. To illustrate this claim, we
introduce extreme-kernel isogenies between high-dimensional PPAVs.

Definition 1. We say an n-isogeny F between PPAVs of dimension g is extreme-
kernel, if

kerF ∼= (Z/nZ)g.

Extreme-kernel n-isogenies between PPAVs of dimension g are also denoted

as (
g

︷ ︸︸ ︷

n, n, · · · , n)-isogenies. Extreme-kernel isogeny is the special case when all
ni = 1 or n in formula (1). There always exist non-extreme-kernel isogenies,
and formula (2) is an example. When dimension g = 2, from the conclusion in
[7, Thm. 2, Prop. 3], we know that the proportion of extreme-kernel isogenies
among all �n-isogenies is �n

�n+ �n−1−1
�−1

≈ �2−�
�2−�+1 , which means about 1

�2−�+1 of

�n-isogenies between PPASs are not extreme-kernel.
We find that the uniqueness of isogeny decomposition and computing inter-

mediate isogeny through kernel only hold for extreme-kernel isogenies in dimen-
sion g ≥ 2. The following two propositions describe our findings in detail.

Proposition 1. Suppose F is a non-backtracking �n-isogeny from a PPAV V0

defined over Fq, where gcd(�, q) = 1. Then F is extreme-kernel if and only if
there is a unique decomposition of F into a sequence of n �-isogenies as follows.

F : V0
F1−→ V1

F2−→ V2
F3−→ · · · Fn−−→ Vn.

100 G. Zhou and M. Xu

Proof. Suppose that V0 is a PPAV of dimension g. If isogeny F is extreme-
kernel, then kerF ∼= (Z/�n

Z)g, kerF1 ⊂ (kerF)[�] = [�n−1] kerF, and #kerF1 =
#[�n−1] kerF = �g. Thus kerF1 = [�n−1] kerF and F1 is uniquely determined.
By induction,

kerFi = Fi−1 ◦ · · · ◦ F1([�n−i] kerF), i = 2, 3, · · · , n.

All Fi are determined by F subsequently, i.e., the decomposition is unique.
If isogeny F is not extreme-kernel, then kerF ∼= ∏g

i=1(Z/�niZ × Z/�n−niZ),
where ni ∈ {0, 1, 2, · · · , n} and at least one of ni satisfies 1 ≤ ni ≤ n − 1.
Assume 1 ≤ n1 ≤ n − 1, then there are more than one subgroup of order � in
(Z/�n1Z × Z/�n−n1Z). That means there are more than one subgroup of order
�g in kerF . Every such subgroup can generate the first �-part of F , so the
decomposition is not unique. ��

We use a concrete example to illustrate our proof. Suppose a 25-isogeny
F between PPASs (dimension g = 2) is not extreme-kernel with kernel group
〈[24]P1, [2]P2, P3〉, where P1, P2 and P3 are independent 25-torsion points. It
means kerF ∼= (Z/2Z×Z/24Z)×Z/25Z. Then 〈[24]P1, [24]P3〉 and 〈[24]P2, [24]P3〉
are two distinct subgroups of order 22 in kerF . Each subgroup can generate the
first 2-part of F , so the decomposition is not unique.

Proposition 2. Suppose there is a non-backtracking isogeny decomposition
F : V0

F1−→ V1
F2−→ V2 between PPAVs defined over Fq, where F1 is a �n1-isogeny,

F2 is a �n2-isogeny, and gcd(�, q) = 1. Then F is extreme-kernel if and only if
F (V0[�n2]) = ker ˜F2 = F (V0[�n1+n2]) ∩ V2[�n2].

Proof. Suppose that V0 is a PPAV of dimension g. If isogeny F is extreme-kernel,
then ˜F is also extreme-kernel since their kernels are isomorphic. From Proposi-
tion 1, we know that isogeny F and ˜F admit the following unique decomposition.
˜F2 is the first �n2 -part of ˜F , so we have

ker ˜F2 = [�n1] ker ˜F = [�n1]F (V0[�n1+n2]) = F ([�n1]V0[�n1+n2]) = F (V0[�n2]).

It is clear that F (V0[�n2]) ⊂ F (V0[�n1+n2]) ∩ V2[�n2]. Counting the cardinality

#F (V0[�n2]) = #ker ˜F2 = #
(

F (V0[�n1+n2]) ∩ V2[�n2]
)

= (�n2)g,

we have F (V0[�n2]) = F (V0[�n1+n2]) ∩ V2[�n2].
If isogeny F is not extreme-kernel, then ker ˜F ∼= ∏g

i=1(Z/�miZ ×
Z/�n1+n2−miZ), where mi ∈ {0, 1, 2, · · · , n1 + n2} and at least one of mi sat-
isfies 1 ≤ mi ≤ n1 + n2 − 1. Assume 1 ≤ m1 ≤ n1 + n2 − 1. As shown in
the proof of Proposition 1, ker ˜F2 is not the unique subgroup of order (�n2)g

in ker ˜F , which follows that #ker ˜F2 � #(ker ˜F ∩ V2[�n2]). It still holds that
F (V0[�n2]) = [�n1] ker ˜F , but #[�n1](Z/�m1Z × Z/�n1+n2−m1Z) ≤ �n2−1 < �n2 .
Thus,

#F (V0[�n2]) = #[�n1] ker ˜F ≤ �n2−1 · (�n2)g−1
� #ker ˜F2,

which means F (V0[�n2]) � ker ˜F2 � ker ˜F ∩ V2[�n2] = F (V0[�n1+n2]) ∩ V2[�n2]. ��

A Polynomial-Time Attack on G2SIDH 101

Every non-backtracking separable n-isogeny between elliptic curves is cyclic
and extreme-kernel, since the kernel is isomorphic to Z/nZ. If n is a prime, then
all n-isogenies are extreme-kernel. The NA-isogeny F : V 2

B × V 2
0 → V 2

0 × V 2
B in

4g-attack is also extreme-kernel since

kerF = 〈(ΦB(Pi), γ0(Pi)) | i = 1, 2, · · · , 4g〉 ∼= (Z/NAZ)4g.

Thus, the decomposition of F is unique and the intermediate isogenies of F or
˜F can be computed through kerF or ker ˜F as Proposition 2.

3.2 The Number of �-isogenies Between Dimension g PPAVs

In this subsection, we count the number of �-isogenies from a PPAV of dimension
g, where � is a prime. When performing parameter tweaks, we need to guess a
right one among all �-isogenies from a fixed PPAV, so our result can be used for
analyzing the probability of successful guess.

Equivalently, we need to count the number of maximal �-isotropic subgroups
of V [�] ∼= (Z/�Z)2g. By the formula (1), any such subgroup K is isomorphic to
(Z/�Z)g.

Proposition 3. Let V be a PPAV of dimension g defined over Fq, � be a prime
different from q. Then the number of maximal �-isotropic subgroups of V [�] is

g−1
∏

i=0

(�g−i + 1).

Proof. Suppose that ζ is a primitive �-th root of unity and
{α1, · · · , αg, β1, · · · , βg} is a symmetric basis of V [�], namely, all nontrivial Weil
pairing terms are e�(αi, βi) = ζ, i = 1, 2, · · · , g. Let K = 〈γ1, γ2, · · · , γg〉 be a
subgroup of V [�] of order �g, where γi = ηi · (α1, · · · , αg, β1, · · · , βg)T , ηi ∈ F

2g
� .

Then

logζ e�(γi, γj) = ηi ·
(

0 Ig

−Ig 0

)

· ηT
j .

To ensure subgroup K is isotropic, we need logζ e�(γi, γj) = 0 for all i, j ∈
{1, 2, · · · , g}.

η1 can be any element in F
2g
� \{0}, thus there are (�2g − 1) choices for γ1.

γ2 should satisfy η1 ·
(

0 Ig

−Ig 0

)

· ηT
2 = 0 in F� and γ2 �∈ 〈γ1〉. The matrix

η1 ·
(

0 Ig

−Ig 0

)

is of rank 1, so there are �2g−1 − � choices for γ2. Next, γ3 should

satisfy
(

η1

η2

)

·
(

0 Ig

−Ig 0

)

· ηT
3 =

(

0
0

)

in F� and γ3 �∈ 〈γ1, γ2〉. The matrix
(

η1

η2

)

·
(

0 Ig

−Ig 0

)

is of rank 2, so there are

�2g−2 − �2 choices for γ3.

102 G. Zhou and M. Xu

Similarly, it can be deduced that there are �2g−i − �i choices for

γi, i = 4, 5, · · · , g, thus there are
g−1
∏

i=0

(�2g−i − �i) choices for the generators

(γ1, γ2, · · · , γg). Finally, there is a natural free action of GL(g, F�) on the set
of generators. The decomposition K = 〈γ1〉 + 〈γ2〉 + · · · + 〈γg〉 indicates that
the number of maximal �-isotropic subgroups equals to the number of orbits of
GL(g, F�) on the set of generators. The conclusion follows from

∏g−1
i=0 (�

2g−i − �i)
#GL(g, F�)

=
∏g−1

i=0 (�
2g−i − �i)

∏g−1
i=0 (�g − �i)

=
g−1
∏

i=0

(�g−i + 1).

��

4 Parameter Tweaks in 4g-attack

In this section, we present two methods of parameter tweaks in 4g-attack. Sup-
pose that prime p = 2a · 3b − 1, which is the most common parameter in SIDH
and G2SIDH. To apply 4g-attack, as mentioned in Remark 1, we require 2a > 3b

and 2a − 3b can be written as a sum of two squares. The requirements are not
always satisfied, so we need perform parameter tweaks.

The protocol is as shown in Fig. 1. The only information available in the
protocol to attack Bob’s secret key are parameters in set-up and Bob’s public
key. Therefore, we need to complete the following steps.

(1) Select suitable NA′ replacing NA = 2a and select suitable NB′ replacing
NB = 3b, where NA′ and NB′ satisfy NA′ > NB′ and NA′ − NB′ = c21 + c22.

(2) Generate the corresponding new public key (VB′ , φB′(V0[NA′])) through
Bob’s original public key (VB , φB(V0[2a])), where φB′ : V0 → VB′ is an
NB′ -isogeny that contains information about Bob’s secret key φB .

4.1 Select Suitable NA ′ and NB ′

Considering prime p = 2a · 3b − 1 and all 2m-isogenies and 3n-isogenies can be
defined over Fp2 , we select NA′ = 2a±m and NB′ = 3b±n, where 0 ≤ m ≤ a and
0 ≤ b ≤ n. Now we analyze the feasibility of parameter tweaks.

A positive integer is a sum of two squares if and only if there is no pk in
its prime factorization, where p ≡ 3 mod 4 and 2 � k [6]. To ensure 2x − 3y =
c21 + c22, it is necessary that 2x − 3y ≡ 1 mod 4, equivalently, 2 � y. Thus, when
performing parameter tweaks, we first select the odd number y adjacent to b,
then we consider increasing x until 2x > 3y and 2x − 3y = c21 + c22.

The probability of positive integers below p that are the sum of two square
numbers behaves asymptotically as 1.1025√

log p
[5]. For a prime p of λ bits, we can

successfully select suitable NA′ and NB′ in about �
√

λ
1.1025� attempts.

A Polynomial-Time Attack on G2SIDH 103

4.2 Generate New Public Key When Selecting NA ′

In this subsection, we select suitable NA′ = 2a±m, which has no effect on Bob’s
secret key φB and the abelian variety VB, but φB(V0[NA′]) need to be computed
through Bob’s original public key.

If NA′ = 2a−m, then we can compute directly

φB(V0[2a−m]) = [2m]φB(V0[2a]).

If NA′ = 2a+m, then inspired by parameter tweaks in [19, Section 6.3], we can
recover the (2a+m)-isogeny F in 4g-attack through its action on the 2a-torsion
points.

F : V 2
B × V 2

0 → V 2
0 × V 2

B , (R,S)
→ (˜ΦB(R) + γ̃0(S), γB(R) − ΦB(S)).

Recover the (2a+m)-isogeny F Directly. Although we can not recover
isogeny F or its kernel, we know the action of F on the 2a-torsion points, where
all zero points make up the 2a-torsion part of kerF . γ0 and γB are isogenies
we construct, so their actions are clear. For any R ∈ VB [2a] and S ∈ V0[2a],
φB(S) is known. φB

(

˜φB(R)
)

= [3b]R, so ˜φB(R) can be solved linearly using
the information of φB(V0[2a]).

To recover the (2a+m)-isogeny F , we write F : X → Y for simplicity, where
X and Y are abelian varieties of dimension 4g. Since isogeny F is extreme-kernel,
we can decompose F as X

F1−→ Z
F2−→ Y uniquely, where F1 is a 2a-isogeny and F2

is a 2m-isogeny. Using Proposition 2, we know that kerF1 = kerF ∩X[2a], which
is the 2a-torsion part of kerF . ker ˜F2 = F (X[2m]) = [2a−m]F (X[2a]). Thus we
can recover isogenies F1 and ˜F2. Through computing kerF2 = ˜F2(Y [2m]), we
get isogeny F2 and recover F = F2 ◦ F1.

4.3 Generate New Public Key When Selecting NB ′

In this subsection we select suitable NB′ = 3b±n, then we need generate an
NB′ -isogeny φB′ through the original 3b-isogeny φB.

If NB′ = 3b+n, then we choose a random 3n-isogeny αn : VB → VB′ and
let φB′ = αn ◦ φB : V0 → VB′ . In this case, we assume Bob has secret key φB′

and public key VB′ and φB′(V0[NA]) = αn(φB(V0[NA])). We can consider a new
protocol as Fig. 4. If we have recovered the isogeny φB′ , then

kerφB = ˜φB(VB [3b]) = ˜φB ◦ [3n](VB [3b+n]) = ˜φB ◦ (α̃n ◦ αn)(VB [3b])

= (˜φB ◦ α̃n) ◦ αn(VB [3b]) = ˜φB′ ◦ αn(VB [3b+n]), (3)

i.e., we can compute kerφB and recover isogeny φB .
If NB′ = 3b−n, then we guess that the last 3n-isogeny of φB is βn and let

φB = βn ◦ φB′ . In this case, we assume Bob has secret key φB′ and public key
VB′ and φB′(V0[NA]) = [1

3n]˜βn(φB(V0[NA])). We can consider a new protocol
as Fig. 5. If we have recovered the isogeny φB′ , then φB = βn ◦ φB′ can be
composited directly.

104 G. Zhou and M. Xu

V0 VB VB

VA VAB VAB

φB

φA

φB

αn

Fig. 4. A new protocol if NB′ = 3b+n.

V0 VB VB

VA VAB VAB

φB

φA

φB

βn

Fig. 5. A new protocol if NB′ = 3b−n.

Remark 2. βn is the last 3n-part of φB if and only if ˜βn is the fist 3n-part of ˜φB .
As analyzed in Sect. 3.1, the decomposition of isogenies between high-dimensional
PPAVs is non-unique. It means that the right βn is not unique, but this obser-
vation doesn’t destroy our attack since it always works if we guess a right βn.
Moreover, more possible βn lead to a higher probability of guessing right.

5 Efficiency Analysis

In this section, we analyze the efficiency of all attacks in Sect. 2.3 against the
general dimension g SIDH for random starting abelian varieties. It follows that
2g-attack, 4g-attack and 8g-attack are all polynomial-time attacks against high-
dimensional SIDH. For Flynn and Ti’s G2SIDH, we give two attack algorithms.
As in the previous section, suppose that prime p = 2a · 3b − 1.

5.1 General Analysis

Inspired by the complexity analysis in [13,19], evaluating a �n-isogeny F between
PPAVs of dimension g given generators of its kernel costs ˜O(n log �·2g) arithmetic
operations in the defined field.

2g-attack applies when c = 2a − 3b is (log p)-smooth. To recover isogeny
φB or kerφB = ˜φB(VB [3b]), we need evaluate the image of 2a-isogeny f on 2g
generators of VB[3b]. Thus, it will cost ˜O(2g · a · 22g) arithmetic operations.

8g-attack applies for all parameters. To recover kerφB = ˜φB(VB [3b]), we
should evaluate the image of 2a-isogeny F on 2g generators of VB [3b]. Thus, it
will cost ˜O(2g · a · 28g) arithmetic operations.

4g-attack applies when 2a − 3b = c21 + c22. If 2a − 3b doesn’t satisfy the
condition, then we can consider parameter tweaks as discussed in Sect. 4. There
are four cases when performing parameter tweaks.

Case 1: NA ′ = 2a−m , NB ′ = 3b+n . NA′ − NB′ can be written as c21 + c22.

– In parameter tweaks, we choose a 3n-isogeny αn : VB → VB′ , let φB′ =
αn ◦φB : V0 → VB′ and compute φB′(V0[NA′]) = [2m]φB′(V0[2a]). It will cost
˜O(2g · n log2 3 · 2g) arithmetic operations.

– In 4g-attack, we construct an NA′ -isogeny F through its kernel. By formula
(3), kerφB = ˜φB′ ◦ αn(VB [3b+n]), so we need evaluate the image of NA′ -
isogeny F on 2g torsion points of order 3n+b. Since the 3b-torsion points are
Fp2 -rational but NB′-torsion points are not, it will involve a field extension
of degree k = O(3n). It will cost ˜O(2g · (a − m) · 24g) arithmetic operations.

A Polynomial-Time Attack on G2SIDH 105

It will cost ˜O(2g ·n log2 3 · 2g +2g · (a−m) · 24g) arithmetic operations in case 1.

Case 2: NA ′ = 2a−m , NB ′ = 3b−n . NA′ − NB′ can be written as c21 + c22.

– In parameter tweaks, we guess that the last 3n-isogeny of φB is βn and
let φB = βn ◦ φB′ , where φB′ : V0 → VB′ is an NB′-isogeny. We com-
pute φB′(V0[NA′]) = [2m][1

3n]˜βn ◦ φB(V0[2a]) and recover the NA′ -isogeny F
through its kernel. If we guess the right βn, then the codomain of F is split.
Otherwise, the codomain of F is not split with overwhelming probability. It
will cost ˜O(2g · n log2 3 · 2g) arithmetic operations.

– In 4g-attack, when we guess the right βn, we evaluate the image of NA′ -
isogeny F on 2g torsion points of order NB . There is no field extension in the
computation because NA′ | p and NB | p.

It will cost ˜O(2g · n log2 3 · 2g +2g · (a − m) · 24g) arithmetic operations for every
guess of βn in case 2. Specially if n = 1, then there are

∏g−1
i=0 (3

g−i + 1) guesses
by Proportion 3.

Case 3: NA ′ = 2a+m , NB ′ = 3b+n . NA′ − NB′ can be written as c21 + c22.

– In parameter tweaks, we recover the (2a+m)-isogeny F directly. Decompose
F = F2 ◦ F1. We compute φB′(V0[2a]) = αn ◦ φB(V0[2a]). It will cost ˜O(2g ·
n log2 3 · 2g) arithmetic operations. kerF1 and ker ˜F2 is known. We evaluate
the images of 2m-isogeny ˜F2 on 2·4g torsion points of order 2m to get kerF2 =
˜F2(V 2

0 × V 2
B [2m]). It will cost ˜O(8g · m · 24g) arithmetic operations.

– In 4g-attack, we recover the NA′ -isogeny F as the composition of F1 and F2.
By formula (3), kerφB = ˜φB′ ◦ αn(VB [3b+n]), so we need evaluate the image
of NA′-isogeny F on 2g torsion points of order 3n+b. Since the 3b-torsion
points are Fp2 -rational but NB′-torsion points are not, it will involve a field
extension of degree k = O(3n). It will cost ˜O(2g ·a·24g+2g ·m·24g) arithmetic
operations.

It will cost ˜O(2g ·n log2 3 · 2g +2g(5m+ a) · 24g) arithmetic operations in case 3.

Case 4: NA ′ = 2a+m , NB ′ = 3b−n . NA′ − NB′ can be written as c21 + c22. We
guess that the last 3n-isogeny of φB is βn, let φB = βn ◦ φB′ , and recover the
2a+m-isogeny F directly. Similarly, it will cost ˜O(2g ·n log2 3·2g+2g(5m+a)·24g)
arithmetic operations for every guess of βn and require no field extension.

5.2 Concrete Attack Algorithms on G2SIDH

The G2SIDH implementation in [7, Appendix B] takes parameters a = 51 and
b = 32 with

p = 2a3b − 1 = 4172630516011578626876079341567.

The starting variety is not a special variety with an unknown endomorphism ring
and c = 2a − 3b = 73 ∗ 5462734586759 is not (log p)-smooth, so the 2g-attack
doesn’t apply to this parameter. The 8g-attack always works, and it will cost
about ˜O(2g · a · 28g) ≈ 224 arithmetic operations.

To apply 4g-attack, we need parameter tweaks. There are two suitable plans.

106 G. Zhou and M. Xu

(1) NA′ = 2a, NB′ = 3b−1. Then 2a − 3b−1 = 169630492 + 366930702.
(2) NA′ = 2a+2, NB′ = 3b+1. Then 2a+2 − 3b+1 = 378525652 + 448923382.

Plan (1) falls into case 2, it will cost about ˜O((2g·n log2 3·2g+2g·(a−m)·24g)·
1
2 ·∏g−1

i=0 (3
g−i+1)) ≈ 29+219 arithmetic operations and require no field extension.

Plan (2) falls into case 3, it will cost ˜O(2g·n log2 3·2g+2g·(5m+a)·24g) ≈ 25+216

arithmetic operations and require a field extension of degree O(3).
Therefore, we recommend taking 4g-attack on this implementation. If we

choose NA′ = 2a, NB′ = 3b−1 for parameter tweaks, Algorithm 1 in Appendix A
presents the concrete attack. If we choose NA′ = 2a+2, NB′ = 3b+1 for parameter
tweaks, Algorithm 2 in Appendix A presents the concrete attack.

6 Conclusion

We studied the isogeny computation between high-dimensional PPAVs and
proved a counting formula about the number of isogenies from a fixed PPAV.
Using the theoretic results proven above, we presented the complete steps of
parameter tweaks in [19] and analyzed the efficiency of each tweak. For the
G2SIDH proposed by Flynn and Ti [7], we gave two concrete attack algorithms.

Acknowledgements. The authors are grateful to the anonymous reviewers for their
invaluable comments. This work was supported by the National Natural Science Foun-
dation of China under Grants Nos. 62072011 and 61672059, and National Key R&D
Program of China under Grant No. 2022YFB2703000.

A Algorithms

Algorithm 1: Attack G2SIDH (4g-attack, case 2)
Input: p = 251332 − 1, hyperelliptic curve H/Fp2 , basis {Pi}4i=1 of JH [251]

and Bob’s public key (JB , {φB(Pi)}4i=1).
Output: Bob’s secret key φB.

1 Generate a 3-isogeny ˜β : JB → JB′ , denote the dual isogeny of ˜β by β,
write φB = β ◦ φB′ , and compute φB′(Pi) = [13]˜β(φB(Pi)), i = 1, 2, 3, 4;

2 Set c1 = 16963049, c2 = 36693070;
3 Generate a (251 − 331)-endomorphism γ0 : J2

H → J2
H defined by matrix

(

c1 c2
−c2 c1

)

, and compute γ0(Pi, 0) = ([c1]Pi,−[c2]Pi) and

γ0(0, Pi) = ([c2]Pi, [c1]Pi), i = 1, 2, 3, 4;
4 Compute a 251-isogeny F : J2

B′ × J2
H → V1 through kernel generated by 8

points: {(φB′(Pi), 0, [c1]Pi,−[c2]Pi), (0, φB′(Pi), [c2]Pi, [c1]Pi)}4i=1;
5 if V1 �∼= J2

H × J2
B′ then return to step 1

6 Write ψ : JB′
Id×03

↪−−−−→ J2
B′ × J2

H
F−→ V1

∼=−→ J2
H × J2

B′
p1−→ JH , and compute

the dual isogeny ˜ψ;
7 return β ◦ ˜ψ.

A Polynomial-Time Attack on G2SIDH 107

Algorithm 2: Attack G2SIDH (4g-attack, case 3)
Input: p = 251332 − 1, hyperelliptic curve H/Fp2 , basis {Pi}4i=1 of JH [251]

and Bob’s public key (JB , {φB(Pi)}4i=1).
Output: Bob’s secret key KB .

1 Generate a random 3-isogeny α : JB → JB′ , write φB′ = α ◦ φB, and
compute φB′(Pi) = α(φB(Pi)), i = 1, 2, 3, 4;

2 Set c1 = 37852565, c2 = 44892338;
3 Generate a (253 − 333)-endomorphism γ0 : J2

H → J2
H defined by matrix

(

c1 c2
−c2 c1

)

, and compute γ0(Pi, 0) = ([c1]Pi,−[c2]Pi) and

γ0(0, Pi) = ([c2]Pi, [c1]Pi), i = 1, 2, 3, 4;
4 Compute a 251-isogeny F1 : J2

B′ × J2
H → V1 through kernel generated by 8

points: {(φB′(Pi), 0, [c1]Pi,−[c2]Pi), (0, φB′(Pi), [c2]Pi, [c1]Pi)}4i=1;
5 Compute a 22-isogeny ˜F2 : J2

H × J2
B′ → V2 through kernel generated by 8

points:
{[249]([c1]Pi, [c2]Pi,−φB′(Pi), 0), [249](−[c2]Pi, [c1]Pi, 0,−φB′(Pi))}4i=1;

6 if V1 �∼= V2 then return to step 1
7 Compute dual isogeny F2 of ˜F2, and write

ψ : JB′
Id×03

↪−−−−→ J2
B′ × J2

H
F1−→ V1

∼=−→ V2
F2−→ J2

H × J2
B′

p1−→ JH ;

8 return ψ ◦ α(JB [333]).

References

1. Albrecht, M.R., et al.: Classic Mceliece (2022). https://classic.mceliece.org
2. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation (2020). http://

sike.org
3. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C.,

Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15

4. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9_11

5. Cox, D.A.: Primes of the Form x2+ ny2: Fermat, Class Field Theory, and Complex
Multiplication with Solutions, vol. 387. American Mathematical Society (2022).
https://dacox.people.amherst.edu/primes.html

6. Dudley, U.: A Guide to Elementary Number Theory. Mathematical Association of
America (2009). https://doi.org/10.5948/UPO9780883859186

7. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 286–306. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7_16

8. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

https://classic.mceliece.org
http://sike.org
http://sike.org
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://dacox.people.amherst.edu/primes.html
https://doi.org/10.5948/UPO9780883859186
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

108 G. Zhou and M. Xu

9. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8_1

10. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

11. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

12. Kani, E.: The number of curves of genus two with elliptic differentials. Journal
für die reine und angewandte Mathematik 485, 93–122 (1997). https://doi.org/10.
1515/crll.1997.485.93

13. Lubicz, D., Robert, D.: Fast change of level and applications to isogenies. Res.
Number Theory 9(1), 7 (2022). https://doi.org/10.1007/s40993-022-00407-9

14. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023.
LNCS, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30589-4_16

15. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 103–150. Springer, New York (1986). https://doi.org/10.1007/978-
1-4613-8655-1_5

16. Mumford, D., Ramanujam, C.P., Manin, J.I.: Abelian Varieties, vol. 5. Oxford
University Press, Oxford (1974)

17. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

18. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 432–470. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_15

19. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4_17

20. Schwabe, P., et al.: Cryptographic suite for algebraic lattices (2019). https://pq-
crystals.org

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.
org/10.1137/S0036144598347011

22. Takashima, K.: Efficient algorithms for isogeny sequences and their cryptographic
applications. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto, K.,
Duong, D.H. (eds.) Mathematical Modelling for Next-Generation Cryptography.
MI, vol. 29, pp. 97–114. Springer, Singapore (2018). https://doi.org/10.1007/978-
981-10-5065-7_6

23. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009). https://doi.org/10.1016/j.tcs.2009.08.030

https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-031-30589-4_17
https://pq-crystals.org
https://pq-crystals.org
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/978-981-10-5065-7_6
https://doi.org/10.1007/978-981-10-5065-7_6
https://doi.org/10.1016/j.tcs.2009.08.030

A Polynomial-Time Attack on G2SIDH 109

24. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T., Tak-
agi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6_7

25. Zarhin, J.G.: A remark on endomorphisms of abelian varieties over function fields
of finite characteristic. Math. USSR-Izvestiya 8(3), 477 (1974). https://doi.org/10.
1070/IM1974v008n03ABEH002115

https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1070/IM1974v008n03ABEH002115
https://doi.org/10.1070/IM1974v008n03ABEH002115

Improvements of Homomorphic Secure
Evaluation of Inverse Square Root

Hongyuan Qu1,2 and Guangwu Xu1,2,3,4(B)

1 Key Laboratory of Cryptologic Technology and Information Security of Ministry
of Education, Qingdao 266237, China

2 School of Cyber Science and Technology, Shandong University, Qingdao 266237,
China

gxu4sdq@sdu.edu.cn
3 Shandong Institute of Blockchain, Jinan 250101, China

4 Quan Cheng Laboratory, Jinan 250103, China

Abstract. Secure machine learning has attracted much attention
recently. The celebrated CKKS homomorphic encryption scheme has
played a key role in such an application. Inverse square root is widely used
in machine learning, such as vector normalization, clustering, etc., but it
is not a function that can be easily processed by CKKS. In 2022, Panda
proposed a Newton iterative algorithm for homomorphic evaluation of
inverse square root using CKKS scheme. The initial value of the iteration
is selected as two straight lines intersecting at one point, which involves
a very expensive homomorphic comparison operation. In this paper, we
propose two novel methods for selecting the initial value of the inverse
square root Newton iterative algorithm. Specifically, Taylor expansion
and rational function are used as an initial value to avoid the homo-
morphic comparison operation and achieve a significant improvement
of efficiency. The Taylor expansion method greatly reduces the initial
value calculation consumption, but appropriately increases the number
of Newton iterations. Compared with the Taylor expansion method, the
rational function method is more costly in the initial value calculation
stage but reduces the number of Newton iterations. Experiments are con-
ducted on the SEAL open source library and we find that, while reaching
the same accuracy, the total number of homomorphic levels consumed by
the Taylor expansion method is about 83.3% of the best known results,
and the rational function method is about 56.9%.

Keywords: Homomorphic Encryption · CKKS scheme · Inverse
Square Root · Taylor Expansion · Rational Function · Iterative Initial
Value Selection

This work was supported by the National Key Research and Development Program
of China (2018YFA0704702) and National Natural Science Foundation of China (No.
12271306).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 110–127, 2023.
https://doi.org/10.1007/978-981-99-7356-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_7&domain=pdf
http://orcid.org/0000-0002-1684-0819
http://orcid.org/0000-0001-6200-3264
https://doi.org/10.1007/978-981-99-7356-9_7

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 111

1 Introduction

Homomorphic encryption is an encryption primitive that allows arithmetic oper-
ations on encrypted data without any decryption. Due to this distinctive feature,
it has received a lot of attention in many privacy preserving applications. Accord-
ing to the plaintext type of the homomorphic operation, it can be divided into
word-wise homomorphic encryption schemes [2–4,9,13] and bit-wise homomor-
phic encryption schemes [10,11]. Among them, CKKS scheme [8,9] is a word-wise
homomorphic encryption scheme whose plaintext is elements in complex field C

and supports addition and multiplication of complex numbers component-wise.
Because CKKS supports floating point operations, it has been widely used in
the field of secure machine learning.

CKKS only supports polynomial operations. For non-polynomial operations,
such as inverse square root, we need to use their polynomial approximation.
There have been several methods proposed to approximate non-polynomial
functions, such as Taylor expansion, minimax polynomial, Fourier series, etc.
see [5,16]. However, using one of these methods alone to apply to inverse square
root does not work well. This is because the inverse square root varies abruptly
in the interval (0, 1) and tends to be flat in (1,+∞). This phenomenon cannot
be well approximated by a polynomial.

Inverse square root is widely used in linear algebra applications and machine
learning. For example, before training, the feature vectors must be normal-
ized first. In machine learning, normalization usually maps a certain norm of
the data vector to 1. Normalization processing before training is conducive
to eliminating the impact of data units and speeding up convergence. A com-
mon normalization method is to divide by the L2 norm of the vector, that is,
for the vector x = (x1, x2, · · · , xn), the result after normalization is the vec-
tor x = (x1/‖x‖2, x2/‖x‖2, · · · , xn/‖x‖2), where ‖x‖2 =

√
x2
1 + x2

2 + · · · + x2
n.

Using the L2 norm for normalization has a great advantage: after the L2 norm
normalization, the Euclidean distance of a set of vectors is equivalent to their
cosine similarity. Therefore, after calculating the Euclidean distance, the cosine
similarity can be obtained in O(1) time. In the field of NLP, the similarity of
many words and documents is defined as the cosine similarity of the data vector,
and normalizing with the L2 norm saves time of computing cosine similarity.
When computing L2 norm, inverse square root needs to be calculated.

At present, there are many works on secure machine learning using homo-
morphic encryption schemes, such as secure linear regression [14,19] and secure
logistic regression [15]. However, they neglect the homomorphic evaluation of
inverse square root and perform it on plaintext. There are only a few works on
this direction. In [6], the authors used Newton iteration algorithm to approximate
square root, and then used Goldschmidt algorithm to calculate inverse square
root. Homomorphic division was needed in each step of Newton iteration, which
was a costly operation. This leads to the high cost of calculating inverse square
root. Moreover, they only conducted theoretical analysis and did not propose
any initial value selection method. In [17], Newton iteration and Goldschmidt
algorithm are still used to calculate square root and inverse square root at the

112 H. Qu and G. Xu

same time, and constrained linear regression was used to select the initial value
of iterations. In [18], a Pivot-Tangent method was proposed to select the initial
value of inverse square root. According to the image characteristics of inverse
square root, two straight lines were used as the initial value approximation, and
the Newton iteration formula of inverse square root was directly used. However,
since the two straight lines are piecewise functions, an additional homomorphic
comparison operation is required, which is also a very costly operation.

1.1 Our Contributions

In this paper, we propose two methods for selecting an initial value of Newton
iteration algorithm, which are suitable for different scenarios. One is the Taylor
expansion as an initial value, which is very natural and fits well to situations
where the value of real number x is known to be large. However, when x is
less than 1, more Newton iterations are needed. The other one is based on our
observation that the Newton’s method needs to consume 3 levels each iteration,
while the Goldschmidt algorithm only needs to consume 1 level each iteration.
This inspires us to use the rational function as an initial value. By properly
selecting the numerator and denominator polynomial degree, we can appropri-
ately increase the number of iterations of the Goldschmidt algorithm to obtain a
more accurate initial value, thereby reducing the number of Newton iterations.
Although using rational function as the initial value consumes more homomor-
phic levels than Taylor expansion in the initial value selection stage, it works
well over the entire interval including x less than 1, and requires fewer Newton
iterations.

These two methods have their own advantages and disadvantages, but com-
pared with the existing papers, they both eliminate the expensive homomorphic
comparison operation, thus achieve higher efficiency under the same accuracy.
We conduct experiments on the SEAL open source library and compare with the
state-of-the-art results, and find that in order to get 20-bit precision, using the
Taylor expansion method requires 60 homomorphic levels, and using the rational
function method only requires 41 homomorphic levels, while the previous best
result requires 72 homomorphic levels. The number of levels consumed by the
two methods is 83.3% and 56.9% of the previous best result, respectively.

1.2 Outline

The outline of the paper is given as follows. Section 2 deals with some prelim-
inaries for CKKS homomorphic encryption scheme and approximation theory.
Newton iterative algorithm for computing the inverse sqrt and its convergence is
described in Sect. 3. Section 4 describes the details of Taylor expansion method
and rational function method for selecting initial values. Section 5 discusses the
implementation details and explains the experimental results on comparison of
our methods with previous best results.

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 113

2 Preliminaries

2.1 Notations

Let Z,Q,R and C be the set of integers, rational numbers, real numbers and com-
plex numbers respectively. We fix M to be a power of 2, and let ΦM (X) = XN +1
be an M -th cyclotomic polynomial, where N = M/2. Let R = Z[X]/ 〈ΦM (X)〉,
and Rq = R/qR. Let ζ ∈ C be an M -th primitive root of unity. Let Z

∗
M be all

natural numbers less than M and coprime to M . Let L be the level of CKKS
scheme, and P ∈ Z be the big integer used in the key switching stage. Let p = Δ
be the scaling factor of CKKS scheme. The canonical embedding σ is defined as
σ(a) = (a(ζj))j∈Z

∗
M

. Let H = {(zj)j∈Z
∗
M

: zj = z−j}. Let π be a natual mapping
from H to C

N/2. Let χkey, χerr, χenc denote the small distributions over R for
secret, error and encryption respectively.

2.2 CKKS Homomorphic Encryption Scheme

CKKS is a homomorphic encryption scheme that allows us to perform homo-
morphic computations on complex numbers. Detailed procedures in the CKKS
scheme are described as follows.

Ecd(z;Δ). For a vector z ∈ C
N/2, output m(X) = σ−1

(�Δ · π−1(z)�σ(R)

)

∈ R.
Dcd(m;Δ). For a polynomial m(X) ∈ R, output z = �Δ−1 ·π (σ(m(X)))�.
Key Generation. Sample a secret s ← χsec, a random a ← RqL

, and an
error e ← χerr. Set secret key as sk ← (1, s) and public key pk ← (b, a) ∈ R2

qL
,

where b = −a · s + e (mod qL). As for evaluation key, sample a′ ← RP ·qL
,

e′ ← χerr, set evk ← (b′, a′), where b′ = −a′ · s + P · s2 + e′ (mod P · qL).
Encpk(z). For m ∈ R, sample r ← χenc and e1, e2 ← χerr . Then output

ct ← (r · b + m + e1, r · a + e2) (mod qL).
Decsk(ct). For ct = (c1, c2) ∈ Rq�

, output m̃ ← c1 + c2 · s (mod q�).
Add(ct1; ct2). For ct, ct′ ∈ Rq�

, output ctAdd ← ct + ct′ (mod q�).
Multevk(ct1; ct2). For ct, ct′ ∈ Rq�

, first calculate d1 = c1 · c′
1 (mod q�),

d2 = c1 · c′
2 + c2 · c′

1 (mod q�), d3 = c2 · c′
2 (mod q�). Then calculate �P−1 · d3 ·

evk� + (d1, d2) (mod q�) = (d1 + �P−1 · d3 · b′�, d2 + �P−1 · d3 · a′�) (mod q�).
Finally perform rescaling and get a ciphertext of the � − 1 level.

RS(ct). For a ciphertext ct ∈ Rq�
, output ct′ = �ct/p�. The level is reduced

from � to � − 1.

2.3 Approximation Theory

What we are interested in is, given a smooth function f(x) that needs to be
approximated, in the given interval [a, b], find a polynomial p(x), and minimize
the error between p(x) and f(x) in the sense that the error metric is the L∞
norm, i.e.

min max
x∈[a,b]

|f(x) − p(x)|.

114 H. Qu and G. Xu

If such a polynomial exists, it is called a minimax polynomial, and an approx-
imation of f(x) in the sense of L∞ is called minimax approximation. Sim-
ilarly, in the rational minimax approximation, we try to find R∗

n+m(x) =∑m
i=0 aix

i/
∑n

i=0 bix
i that minimizes max

x∈[a,b]
|f(x) − R∗

n+m(x)|. We specify that

b0 = 1.

Chebyshev Polynomials and Chebyshev Points. We need to use Cheby-
shev polynomials to provide initial sampling points for the Remez algorithm,
which is an effective algorithm for computing minimax approximation. The
Chebyshev polynomials are defined as polynomials that satisfy the following
recursion relation

T0(x) = 1, T1(x) = x, · · · , Tn+1(x) = 2xTn(x) − Tn−1(x).

According to mathematical induction, it can be proved that the nth Chebyshev
polynomial Tn(x) has the highest degree of n. The next lemma gives the zeros
of Tn(x), which are known as Chebyshev points.

Lemma 1. [5] Chebyshev polynomial Tn(x) has n distinct zeros in the interval
[−1, 1], respectively

xk = cos
(

2k − 1
2n

π

)
, k = 1, 2, · · · , n.

We can generalize above Chebyshev points to the general interval [a, b]. Through
variable substitution x̃ = 1

2 [(b − a)x + a + b], we can convert the point xk in the
interval [−1, 1] to the point x̃k in the interval [a, b], i.e. x̃k = 1

2 [(b−a)xk +a+ b].

Remez Algorithm. The Remez algorithm [20] is an iterative algorithm for
computing the minimax polynomial or minimax rational function. Suppose we
want to calculate the degree n minimax polynomial of the function f(x) in
the interval [a, b], the first step is to select n + 2 interpolation points, usually
Chebyshev points is a good choice. Assuming that the approximate polynomial
is Pn(x) = b0+b1x+ · · ·+bnxn, where b0, b1, · · · bn are undetermined coefficients.
Then we solve the following system of linear equations to get b0, · · · , bn, E, where
E is the error between the true and approximate values.

b0 + b1xi + b2x
2
i + · · · + bnxn

i + (−1)iE = f(xi), i = 0, 1, · · · , n + 1

So far, we have an error function that alternates in sign at n+2 points. Accord-
ing to the intermediate value theorem, the error function has n+1 distinct
zeros, and we use numerical methods to calculate this n+1 zeros, denoted as
z0, z1, · · · zn, and the entire interval [a, b] is divided into n + 2 small intervals
[a, z0], [z0, z1], · · · , [zn−1, zn], [zn, b]. In each of the above small intervals, if the
value of the error function is positive, then find the maximum point of the error
function in this interval, otherwise find the minimum point of the error function

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 115

in this interval, and get n + 2 new points x∗
0, x

∗
1, · · · , x∗

n+1. We repeat the itera-
tion from the first step with this n+2 new points until the termination condition
of the algorithm is satisfied.

The algorithm for computing minimax rational function is roughly the same
as Remez algorithm, with only a modification of the linear system of equations.

Now the system of equations to be solved becomes f(xj) −
∑m

i=0 aix
i
j∑n

i=0 bixi
j

= (−1)jE,
for j = 0, 1, · · · ,m + n + 1. Each of these equation can be rewritten as

m∑

i=0

aix
i
j − f(xj)

m∑

i=1

bix
i
j + (−1)jE

n∑

i=0

bix
i
j = f(xj).

Since the Remez algorithm of polynomial is not used in our work, we only list
the pseudocode of Remez algorithm of rational function.

Algorithm 1. Remez Algorithm for Rational Function [1]
Input: The interval [a, b], function f , approximation parameter α, numerator degree

m, denominator degree n.
Output: Approximate minimax rational function r for f .
1: Select m + n + 2 Chebyshev points x0, x1, · · · , xn+1 in the interval [a, b] in strictly

increasing order.
2: Solve the system of equations and get the rational function r(x) =∑m

i=0 aix
i/

∑n
i=0 bix

i that satisfy r(xi) − f(xi) = (−1)iE, i = 0, 1, · · · , m + n + 1.
3: Find m+n+1 distinct zeros z1, z2, · · · , zm+n+1 of r(x)−f(x) in the interval [a, b].

These zeros divide the interval [a, b] into m + n + 2 small intervals [zi−1, zi], i =
1, 2, · · · , m + n + 2, and the boundary points are z0 = a, zm+n+2 = b.

4: For each small interval [zi−1, zi], there is xi−1 ∈ [zi−1, zi]. If r(xi−1) − f(xi−1) is
negative, then find the minimum point of r(x) − f(x) in this interval, otherwise
find the maximum point of r(x) − f(x) in this interval, and denote these extreme
points as x∗

0, x
∗
1, · · · , x∗

m+n+1.
5: Emax ← maxi|r(x∗

i) − f(x∗
i)|

6: Emin ← mini|r(x∗
i) − f(x∗

i)|
7: if (Emax)/Emin ≤ α then
8: return r(x)
9: else

10: Replace xi with x∗
i and go back to step 2.

11: end if

3 Iterative Algorithm for Inverse Square Root

3.1 Why Use an Iterative Approximation Algorithm Instead
of Direct Approximation

Suppose we want to approximate the function f(x) = 1/
√

x on the interval
[a, b], where a is small, e.g. a = 0.001, and b is large, e.g. b = 1000. Because f(x)

116 H. Qu and G. Xu

changes sharply near zero and tends to flat when x grows, the function image
of f(x) looks like a capital letter “L”. If we only use the polynomials provided
by Taylor expansion or Remez algorithm to directly approximate f(x), on the
one hand, the polynomials of small degree can not well approximate the shape
of such drastic changes of broken lines. On the other hand, as the degree of
the polynomial increases, the coefficient of its high-order term decreases very
rapidly, which leads to the possibility that the ciphertext might be 0 during the
homomorphic calculation of the polynomial. Therefore, it will only increase the
computational burden without improving the accuracy. No satisfactory compro-
mise could be reached between these two aspects. More details can be found in
Sect. 4.2.

Compared with the direct approximation algorithm, the iterative algorithm
has the advantages of less computation and higher precision. For a polynomial
p(x) of degree n, directly computing the polynomial requires at least O(

√
n)

homomorphic multiplications. However, when an iterative algorithm is used,
p(x) can be decomposed as g(x) ◦ g(x) ◦ · · · ◦ g(x), where g(x) is a polynomial of
a fixed degree, and the required number of homomorphic multiplications is only
O(log n). As a result, it gains an exponential level of promotion. In addition,
as the number of iterations increases, the approximate value will get closer and
closer to the exact value, which can theoretically achieve arbitrary precision.

However, the iterative algorithm needs an appropriate initial value. The ini-
tial value must be in the convergence domain of the iterative algorithm. There-
fore, we first use Taylor expansion or rational function method to obtain a less
accurate approximation that lies in the convergence domain of the iterative algo-
rithm, and then use the iterative algorithm to achieve higher accuracy. In the
following, we will explain the Newton iteration algorithm for calculating inverse
square root, and then introduce our two methods for selecting the initial value
of Newton’s method.

3.2 Newton’s Method for Approximating Inverse Square Root

We now want to calculate y0 = 1/
√

x0 at any point x0 > 0. This problem can
be transformed into a root-finding problem:

y =
1√
x

⇔ 1
y2

= x(y > 0) ⇔ 1
y2

− x = 0(y > 0)

Let g(y) = 1/y2 −x0(y > 0), then calculating y0 = 1/
√

x0 can be converted into
finding the positive root of g(y) = 0.

A common numerical algorithm for finding roots is Newton’s method. The
main process of the algorithm is as follows. First select an initial value y1, cal-
culate the tangent line �1 of g(y) at (y1, g(y1)), and denote the intersection of �1
and x-axis as y2, and then repeat the above process with y2 as initial value.

For the function g(y), using the procedure described above, we get the update
formula for each step:

yn =
3
2
yn−1 − 1

2
x0y

3
n−1

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 117

Observe that this formula is a cubic polynomial with respect to yn−1, so it can
be computed using CKKS scheme. Algorithm 2 shows the pseudocode of Newton
iteration algorithm.

In the algorithm, the selection of the initial value is very important, because
it must ensure that the algorithm will eventually converge to the correct function
value. The following lemma states the global convergence for the algorithm.

Algorithm 2. Newton iteration algorithm to calculate inverse square root
Input: The initial approximation y0 at point x0, number of iterations d.
Output: A more precise approximation yd.
1: for i = 1 → d do
2: yi ← 1/2yi−1(3 − x0y

2
i−1)

3: end for
4: return yd

Lemma 2. [16] Suppose that the second derivative of f(x) on the interval [a, b]
exists and satisfies

(1). f(a) · f(b) < 0,
(2). f ′(x) = 0, x ∈ [a, b],
(3). f ′′(x) does not change sign on the interval [a, b],
(4). f ′′(x0) · f(x0) > 0, x0 ∈ [a, b] is the initial value of Newton iteration algo-

rithm,

Then the Newton iteration algorithm will converge to the unique root of f(x) = 0
in [a, b].

For the specific function g(y), we are able to establish the following result that
makes the choice of initial value of iteration more simple and transparent.

Theorem 1. For any x0 > 0, when the initial value y1 satisfies 0 < y1 <√
3/x0, the Newton iteration algorithm will eventually converge to y0 = 1/

√
x0.

Proof. We use the above lemma to determine the interval [u, v] such that g(y)
satisfies the global convergence condition on the interval [u, v]. According to
condition (1), u and v must satisfy (u−2 − x0) · (v−2 − x0) < 0. According
to condition (2), for ∀y ∈ [u, v], g′(y) = −2y−3 = 0 is needed, And because
g′(y) = 0 is always hold in (0,+∞), it only needs u > 0. According to condition
(3), g′′(y) = 6y−4 does not change within [u, v] and only needs u > 0. According
to condition (4), it is necessary to satisfy that 6y−4 · (y−2 − x0) > 0 is always
true in the interval [u, v]. Since 6y−4 is always positive in (0,+∞), it only needs
to satisfy that y−2 − x0 > 0 is always true in the interval [u, v]. And y−2 − x0 is
monotonically decreasing in (0,+∞), so it is only necessary to satisfy v−2−x0 >
0, whose solution is v < 1/

√
x0.

So far, we have proved that the Newton iteration method converges when the
initial value y1 satisfies 0 < y1 < 1/

√
x0. However, we observe that if y1 ≥ 1/

√
x0

118 H. Qu and G. Xu

and the value y2 obtained after one iteration satisfies 0 < y2 < 1/
√

x0, the
Newton iteration algorithm will also eventually converge. That is, 0 < 3/2y1 −
1/2x0y

3
1 < 1/

√
x0, and the solution is 1/

√
x0 ≤ y1 <

√
3/x0. To sum up, when

the initial value y1 satisfies 0 < y1 <
√

3/x0, the Newton iteration algorithm
will eventually converge. ��

We note that we could use Newton iteration algorithm to approximate first
the inverse function and then the square root function, instead of directly approx-
imate the inverse square root function. But this method is very inefficient.
Because we know by calculation that the Newton iteration formula for the square
root function is yn+1 = yn

2 + x0
2yn

, which involves calculating the inverse func-
tion. The iteration algorithm which approximates inverse function is also a costly
operation, because not only the initial value should be selected, but also several
iterations should be carried out to ensure the accuracy, which results in intoler-
able homomorphic multiplicative depth. So we decided to use Newton iterative
algorithm to directly approximate the inverse square root function.

4 Our Two Methods for Selecting Initial Value

We hope to make the initial value as close to the real value as possible under
the premise that the initial value is within the convergence region of Newton
iteration, so that we can get high-precision results with only a few Newton
iterations. According to the function image of f(x) = 1/

√
x, it is natural to

think of using two straight lines as the initial value of Newton iteration [18], but
this involves a very expensive homomorphic comparison operation. Therefore, we
hope to avoid homomorphic comparison operation. We first consider using Taylor
series to select the initial value, and analyze its advantages and disadvantages,
then explain the method of using rational function as the initial value.

4.1 Taylor Expansion as Initial Value

Let f(x) = 1√
x
, we can get that the Taylor expansion of f(x) around point x0 is

f(x) = f(x0) + f ′(x0)(x − x0) + · · ·

+
f (n)(x0)

n!
(x − x0)n +

f (n+1)(ξ)
(n + 1)!

(x − x0)n+1.

First of all, we want to determine its convergence radius. According to the ratio
discriminant method of convergence series, Taylor series convergence when

lim
n→+∞

∣∣
∣∣∣∣

f(n+1)(x0)
(n+1)! (x − x0)n+1

f(n)(x0)
n! (x − x0)n

∣∣
∣∣∣∣
= lim

n→+∞

∣
∣∣∣
f (n+1)(x0)(x − x0)

f (n)(x0)(n + 1)

∣
∣∣∣

= lim
n→+∞

∣∣
∣∣∣∣

(2n+1)!!
2n+1 x

− 2n+3
2

0 (x − x0)
(2n−1)!!

2n x
− 2n+1

2
0 (n + 1)

∣∣
∣∣∣∣
= lim

n→+∞

∣
∣∣∣
(2n + 1)(x − x0)

2(n + 1)x0

∣
∣∣∣

=
|x − x0|

x0
< 1.

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 119

The above equation is equivalent to |x−x0| < x0, so the Taylor expansion at
x0 has a radius of convergence of x0. Therefore, when the approximate interval is
[a, b], the Taylor expansion of f(x) at (a+b)/2 can be taken as the initial value of
Newton iteration. To ensure convergence over the entire closed interval, a Taylor
expansion at a point appropriately larger than (a + b)/2, such as (a + b)/2 + 1,
can be taken.

We also need to determine the order of the Taylor expansion, for which we
have the following theorem:

Theorem 2. For the function f(x) = 1/
√

x, its odd order Taylor expansion at
the point x0 can guarantee a small error. And in the interval (0, 2x0), the Taylor
expansion value is always smaller than the real function value.

Proof. Since the Taylor expansion of f(x) at x0 converges in (0, 2x0), f(x) in
(0, 2x0) can be written as

f(x) =
∞∑

i=0

f (i)(x0)
i!

(x − x0)i

Assuming we take the first n terms as an approximation of f(x), the error
function can be written as

g(x) = f(x) −
n∑

i=0

f (i)(x0)
i!

(x − x0)i =
∞∑

i=n+1

f (i)(x0)
i!

(x − x0)i

=
∞∑

i=n+1

(−1)i(2i − 1)!!
2ii!

x
− 2i+1

2
0 (x − x0)i

It is observed that the sign of each item are determined by (−1)i(x − x0)i.
When x < x0, we have x − x0 < 0, and (−1)(x − x0) = x0 − x > 0, then
(−1)i(x − x0)i is always greater than 0, and g(x) > 0. When x = x0, it is easy
to see that g(x0) = 0. When x0 < x < 2x0, the sign of each terms of g(x) at
this point is completely determined by (−1)i, so the terms of g(x) constitute

an alternating series. Let bi = (−1)i(2i−1)!!
2ii! x

− 2i+1
2

0 (x − x0)i, we consider using
alternating series test. So we need to prove that (1)|bi| ≥ |bi+1|.(2) lim

i→∞
bi = 0.

For (1), we have

∣∣∣
∣

bi

bi+1

∣∣∣
∣ =

(2i−1)!!
2ii! x

− 2i+1
2

0 (x − x0)i

(2i+1)!!
2i+1(i+1)!x

− 2i+3
2

0 (x − x0)i+1
=

(2i + 2)x0

(2i + 1)(x − x0)
.

Because 2i + 2 > 2i + 1, x0 > x − x0, we have | bi

bi+1
| > 1. For (2), we make the

following deformation of bi:

bi =
(−1)i(2i − 1)!!

2ii!
x

− 2i+1
2

0 (x − x0)i =
(−1)i(2i)!

(2ii!)2
· (x − x0)i

xi
0

√
x0

.

120 H. Qu and G. Xu

According to x0 > x−x0, we have (x−x0)
i

xi
0
√

x0
<

xi
0

xi
0
√

x0
= 1√

x0
. For the former term,

we use Stirling’s formula and get

lim
i→∞

(2i)!
(2ii!)2

= lim
i→∞

√
2π2i(2i

e)2i

22i(
√

2πi(i
e)i)2

= lim
i→∞

1√
πi

= 0.

Therefore, according to Squeeze theorem, we have lim
i→∞

bi = 0. So far we have

proved that the terms of g(x) constitute an alternating series, the sign of g(x) is
therefore identical to that of the first term, i.e., to that of (−1)n+1. When n is
odd, g(x) > 0. Taken together, when n is odd, the value of the Taylor expansion
of f(x) is always smaller than the true function value in the interval (0, 2x0). ��
According to the above theorem, we can choose an odd order Taylor expansion
as the approximate initial value of f(x) = 1/

√
x, thus ensuring the convergence

of the Newton iteration algorithm.

Advantages and Disadvantages of Taylor Expansion Method. The
advantage of Taylor expansion is that it removes the expansive homomorphic
comparison operation, only needs a few levels to obtain a good approximation,
and ensures that the Newton iteration can converge in the entire interval. The
disadvantage is that the Taylor expansion approximates well around x0. And as
x gradually moves away from x0, the error between the Taylor expansion and
the true function value will gradually increase. Especially in the interval (0, 1),
the function graph of f(x) = 1/

√
x is very steep. This results that the Taylor

expansion cannot well approximate the function value in the interval (0, 1), so
more Newton iterations are required to have acceptable accuracy. If the range
of x is known to be greater than 1, it is a very suitable choice to use Taylor
expansion as the initial value.

4.2 Rational Function as Initial Value

Because the Taylor expansion has the problem that the error is very large near
zero and the convergence speed is slow, we now consider another method, which
can ensure a good approximation near zero without increasing the consump-
tion of homomorphic capacity too much. We first consider using the minimax
polynomial as the initial value approximation, we explain the defects of this
method, and then describe the minimax rational function as the initial value
approximation.

Why Not Use the Minimax Polynomial as an Initial Value. According
to the Remez algorithm, the error between the approximate polynomial and the
real function value oscillates. Especially for the function f(x) = 1/

√
x, its func-

tion graph in the interval (0, 1) is very steep, and this property aggravates the
oscillation phenomenon, so we need to increase the degree of the approximate

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 121

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

degree

13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

m
ax

 e
rr

or

(a) max error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

degree

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

lo
g(

|c
oe

ffi
ci

en
t|)

(b) logarithm of the highest order coefficient

Fig. 1. Maximum error between approximate polynomial and function value and coef-
ficients of highest order terms as a function of degree.

polynomial to ensure that the initial value lies in the convergence region of New-
ton iteration. On the other hand, when the right endpoint b of the approximate
interval takes a large value, such as 1000, as the degree of the approximate poly-
nomial increases, the corresponding coefficient decreases rapidly, which will lead
to security problems when performing homomorphic calculations. Therefore, on
the one hand, we need to increase the degree of the polynomial to obtain higher
accuracy, and on the other hand, we need to reduce the degree of the poly-
nomial to avoid security problems. However, Fig. 1 shows the maximum value
of the error function and the coefficient of the highest term of the approximate
polynomial as a function of the degree of the approximation polynomial. In prac-
tice, we observe that as the degree of the approximate polynomial increases, the
error decreases very slowly, while the coefficient decreases very rapidly. When the
approximate polynomial coefficient reaches 10, the size of the highest term coef-
ficient is already less than 2−40, which will lead to the unsafe situation that the
ciphertext polynomial is 0 when performing homomorphic multiplication. How-
ever, the error size is too large at this time and is not within the convergence
region of Newton iteration, which makes it inappropriate to use the minimax
polynomial as the initial value approximation.

In fact, it is almost impossible to use a polynomial to achieve a good approx-
imation in the entire range of (0, x), so we consider using rational function for
initial value selection.

Rational Function as Initial Value. Now we consider R(x) = p(x)/q(x) as an
approximation of f(x) = 1/

√
x, where p(x) and q(x) are polynomials. If q(x) is

taken as 1, then it is a polynomial approximation, which means that the rational
function approximation is at least as good as the polynomial approximation. The
approximate minimax rational function can be obtained by the modified Remez
algorithm. By reasonably selecting the degree of the numerator and denominator
polynomials, a good approximation of the initial value in the Newton iteration

122 H. Qu and G. Xu

convergence region can be obtained. This results in the same accuracy with fewer
Newton iterations.

However, in the homomorphic calculation of the rational function, an inverse
function needs to be calculated, which is also a time-consuming operation. At
present, there is a very good numerical method for approximating the inverse
function, this variant of Newton iteration is called the Goldschmidt algorithm.
The algorithm takes the input numerator A and denominator B, as well as
an initial value approximation y0 of 1/B, and the number of iterations d. The
algorithm returns an approximation of A/B. The following is a pseudocode of
Goldschmidt algorithm.

Algorithm 3. Goldschmidt Algorithm [12]
Input: numerator A, denominator B, initial value approximation y0 of 1/B, number

of iterations d.
Output: Approximation Nd of A/B.
1: N0 ← A
2: D0 ← B
3: F0 ← y0

4: for i = 1 → d do
5: Ni ← Ni−1 × Fi−1

6: Di ← Di−1 × Fi−1

7: Fi ← 2 − Di−1

8: end for
9: return Nd

For Goldschmidt algorithm we have the following lemma for convergence:

Lemma 3. [12] When the initial value of y0 satisfies 0 < y0 < 2/B, the Gold-
schmimdt algorithm will eventually converge to A/B.

The above theorem inspires us to select the initial value of Goldschmimdt algo-
rithm. Because the constant term of denominator of the rational function is set
to 1, the value of the denominator polynomial is always greater than or equal to
1, so it is only necessary to select the initial value of the inverse function within
the range of [1, t], where t is a constant. Inspired by the above theorem, we use a
line segment between y = 0 and y = 2/x as the initial value of the Goldschmidt
algorithm. Knowing t, we select the line segment that passes through the point
(t, 0) and is tangent to y = 2/x as the initial value in the interval [1, t], such as
Fig. 2 shown. The point (t/2, 4/t) is the tangent point.

5 Implementation Details and Experiments

Our experiments are performed on the CKKS encryption scheme implemented by
the SEAL open source library [7]. We first describe the implements of the Taylor
expansion method and rational function method, then illustrate the experimental
results on the comparison of our methods with the best known results.

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 123

Fig. 2. The initial value line of the Goldschmidt algorithm.

5.1 Implementation of Taylor Expansion Method

For a fixed interval [a, b], we choose to perform an odd order Taylor expansion at
point a + b/2+1. A reasonable number of expansions is 3, and the homomorphic
calculation of the cubic polynomial needs to consume two levels. Then d Newton
iterations are required. It has been explained before that each step of Newton
iteration calculates 1/2yn−1(3 − x0y

2
n−1), which is a quartic polynomial and

requires at least 3 levels of homomorphic multiplications. Therefore, the total
number of levels of homomorphic multiplication required to use Taylor expansion
as the initial value is 3d + 2. Algorithm 4 describes the homomorphic Newton
iteration algorithm.

Algorithm 4. Homomorphic Newton Iteration Algorithm
Input: ciphertext ctx of x0, ciphertext ct0 of initial value y0, ciphertext ct1/2 of 1

2
,

ciphertext ct3/2 of 3
2
, number of iterations d.

Output: Approximation ciphertext ctd of 1/
√

x0.
1: c ← Multev k (ctx ; ct1/2)
2: for i = 1 → d do
3: ti ← Multev k (ct3/2; cti−1)
4: y2i ← Multev k (cti−1; cti−1)
5: y3i ← Multev k (cti−1; y2i)
6: si ← Multev k (c; y3i)
7: cti ← Sub(ti ; si)
8: end for
9: return ctd

5.2 Implementation of Rational Function Method

For a fixed interval [a, b], we use the Remez algorithm to obtain the approximate
minimax rational function in this interval. By reasonably selecting the numera-
tor polynomial coefficient m and the denominator polynomial coefficient n, the

124 H. Qu and G. Xu

value of the rational function can be located in the Newton iteration convergence
region. For example, when a = 0.001, b = 1000, we choose m = 3, n = 1, where
the denominator polynomial is linear to prevent the range of the denominator
from being too large, resulting in more Goldschmidt iterations. The calcula-
tion of the numerator polynomial requires 2 levels of homomorphic multiplica-
tion and the polynomial requires 1 level. According to the previous analysis, we
choose a straight line as the initial value of the Goldschmidt algorithm, which
requires 1 level of homomorphic multiplication. Then dg Goldschmidt iterations
are required to calculate the rational function, which requires 1 level per iter-
ation. Finally, dn Newton iterations are performed to obtain the approximate
value of the inverse square root, and because the initial value is close to the
real function value, so fewer Newton iterations are required. The total number
of homomorphic layers consumed is 3dn + dg + 2. Algorithm 5 describes the
homomorphic Goldschmidt algorithm.

Algorithm 5. Homomorphic Goldschmidt algorithm
Input: numerator ciphertext ctA , denominator ciphertext ctB , the approximate ini-

tial ciphertext ct0 of 1
B

, the ciphertext cttw o of 2, the number of iterations d
Output: a ciphertext ctN d of the approximate value of A/B
1: ctN0 ← ctA

2: ctD0 ← ctB

3: ctF0 ← ct0
4: for i = 1 → d do
5: ctN i ← Multev k (ctN i−1

; ctFi−1
)

6: ctD i ← Multev k (ctD i−1
; ctFi−1

)
7: ctFi ← Sub(cttw o ; ctD i−1

)
8: end for
9: return ctN d

5.3 Experiment Results

All experiments were implemented in C++ on Ubuntu with AMD Ryzen 7 4800U
with Radeon Graphics processor with 8 cores. Note that we set the dimension
N to be 214, and the logarithm of ciphertext modulus Q to be 436, and the
scaling factor p to be 240, which could achieve more than 128-bit security. We
have compared our method and the Pivot-Tangent method [18] on the intervals
[0.001, 1000] and [0.01, 800], which are listed below. In each interval, we uniformly
take N/2 points and encode them into a plaintext for encryption, and then
perform homomorphic computation. Note that we use multiplication depth to
measure the cost of the methods. The greater the depth, the more homomorphic
capacity is consumed and the more expensive the method is (Table 1).

According to these two tables, we observe that the Taylor expansion method
consumes the least number of levels to calculate the initial value, but the corre-
sponding initial value has the largest error, and the average error is about twice

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 125

Table 1. Comparison of three methods on the interval [0.001, 1000]

Method Initial Value Number of Newton Iterations Total Depth Error

depth average error average error max error

11 36 0.0497468 23.3193

Taylor expansion method 3 0.92786 15 48 0.000930999 2.91814

19 60 8.04631e-7 4.58885e-5

6 35 0.000287438 0.769368

Rational function method 17 0.459422 7 38 4.56502e-06 0.0278291

8 41 8.12701e-7 8.66224e-5

6 60 0.0633757 0.654325

Pivot-Tangent method [18] 42 0.613628 8 66 0.000934146 0.0280911

10 72 8.04024e-7 5.52782e-5

Table 2. Comparison of three methods on the interval [0.01, 800]

Method Initial Value Number of Newton Iterations Total Depth Error

depth average error average error max error

11 36 0.0103681 2.38287

Taylor expansion method 3 0.861097 15 48 7.45803e-7 9.23447e-6

19 60 7.4769e-7 1.08426e-5

6 35 1.50292e-6 1.07227e-5

Rational function method 17 0.381647 7 38 4.6444e-8 5.19027e-6

8 41 7.46419e-7 9.42345e-6

6 60 0.0945651 1.07258

Pivot-Tangent method [18] 42 0.63867 8 66 0.00325719 0.129865

10 72 1.14568e-6 1.20936e-4

that of the rational function method, so more Newton iterations are needed to
make the error to meet the requirements. When the number of iterations is 19,
the maximum error in the interval [0.001, 1000] can be guaranteed not to exceed
0.0001, and the total depth at this time is 60, which is not much smaller than
the Pivot-Tangent method. The rational function method consumes more levels
in the initial value evaluation stage. However, it requires only a few Newton
iterations to achieve high accuracy. In the experiment, only 8 Newton iterations
are needed to match the result of Taylor expansion iteration 19 times, and the
total depth is only 41, which is the least among the three methods. Although the
Pivot-Tangent method only needs a few Newton iterations (10 times) to obtain
the same accuracy as the first two methods, it consumes too many levels in the
initial value evaluation stage, and the average error of the initial value is greater
than that of the rational function method, resulting in two more Newton itera-
tions, so this method has the deepest depth among the three methods, reaching
the 72 levels. In summary, the rational function is the best among the three
methods.

When the interval is reduced from [0.001, 1000] to [0.01, 800], the performance
of all three methods improves, especially the Taylor expansion method, which
only needs to iterate 15 times to have high accuracy. This confirms that the Tay-
lor expansion is suitable for large value scenarios. According to Table 2, we can
also observe that there is such a phenomenon in Taylor expansion and rational
function method: the number of Newton iterations of Taylor expansion increases
from 15 to 19, but the error increases a little, while the number of iterations of
rational function increases from 7 to 8 also has the same phenomenon. This is

126 H. Qu and G. Xu

because the approximation error no longer dominates the error, and the increase
of error is caused by the increase of the number of homomorphic calculations.

6 Conclusion

In this paper, we propose two kinds of initial value selection methods of Newton
iteration algorithm for inverse square root function. They are Taylor expansion
method and rational function method respectively. The experimental results
show that these two methods have achieved 17% and 43% improvement over the
state-of-the-art methods, respectively. At the same time, we observe that the
error of homomorphic calculation is also related to the error of CKKS scheme
itself. Therefore, reducing the error of CKKS scheme is also an important work
in the future.

Acknowledgements. The authors thank the anonymous reviewers for many helpful
comments.

References

1. Braess, D.: Nonlinear Approximation Theory, vol. 7. Springer, Heidelberg (2012)
2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-

sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36
(2014)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

5. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical Analysis. Cengage Learning
(2015)

6. Cetin, G.S., Doroz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise homo-
morphic encryption. Cryptology ePrint Archive (2015)

7. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 3–18. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 1

8. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Cid, C., Jacobson, M., Jr. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 347–368. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 16

9. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1

Improvements of Homomorphic Secure Evaluation of Inverse Square Root 127

11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

12. Even, G., Seidel, P.M., Ferguson, W.E.: A parametric error analysis of Gold-
schmidt’s division algorithm. J. Comput. Syst. Sci. 70(1), 118–139 (2005)

13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

14. Hall, R., Fienberg, S.E., Nardi, Y.: Secure multiple linear regression based on
homomorphic encryption. J. Official Stat. 27(4), 669 (2011)

15. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al.: Secure logistic regression
based on homomorphic encryption: design and evaluation. JMIR Med. Inform.
6(2), e8805 (2018)

16. Kincaid, D., Kincaid, D.R., Cheney, E.W.: Numerical Analysis: Mathematics of
Scientific Computing, vol. 2. American Mathematical Soc. (2009)

17. Panda, S.: Principal component analysis using CKKs homomorphic scheme. In:
Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) CSCML 2021. LNCS,
pp. 52–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9 4

18. Panda, S.: Polynomial approximation of inverse sqrt function for FHE. In: Dolev,
S., Katz, J., Meisels, A. (eds.) CSCML 2022. LNCS, pp. 366–376. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07689-3 27

19. Rathee, D., Mishra, P.K., Yasuda, M.: Faster PCA and linear regression through
hypercubes in HElib. In: Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, pp. 42–53 (2018)

20. Remez, E.Y.: Sur la détermination des polynômes d’approximation de degré
donnée. Comm. Soc. Math. Kharkov 10(196), 41–63 (1934)

https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-78086-9_4
https://doi.org/10.1007/978-3-031-07689-3_27

Oblivious Transfer from Rerandomizable
PKE

Shuaishuai Li1,2, Cong Zhang1,2, and Dongdai Lin1,2(B)

1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
{lishuaishuai,zhangcong,ddlin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. The relationship between oblivious transfer (OT) and public-
key encryption (PKE) has been studied by Gertner et al. (FOCS 2000).
They showed that OT can be constructed from special types of PKE,
i.e., PKE with oblivious sampleability of public keys or ciphertexts. In
this work, we give new black-box constructions of OT from PKE without
any oblivious sampleability. Instead, we require that the PKE scheme is
rerandomizable, meaning that one can use the public key to rerandomize
a ciphertext into a fresh ciphertext. We give two different OT protocols
with different efficiency features based on rerandomizable PKE. For 1-
out-of-n OT, in our first OT protocol, the sender has sublinear (in n) cost,
and in our second OT protocol, the cost of the receiver is independent
of n. As a comparison, in the PKE-based OT protocols of Gertner et al.,
both the sender and receiver have linear cost.

Keywords: Oblivious Transfer · Public-Key Encryption ·
Rerandomizable

1 Introduction

Oblivious transfer (OT) [22] is a two-party cryptographic protocol that allows
a sender to obliviously transfer a message to a receiver. OT is a fundamental
building block in secure multiparty computation (MPC) and plays an important
role in many famous MPC protocols, such as the gabled circuits [25] and GMW
protocol [13]. In particular, the result of [13] implies that OT is complete for
MPC. That is, any function can be securely computed with only OT in hand.
For this reason, OT serves as one of the most important primitive in public-key
cryptography.

In an OT protocol, there are two parties called the sender and receiver, where
the sender takes two messages x0, x1 as inputs and the receiver takes a choice
bit b as input. At the end of the protocol, the receiver obtains the message xb

while the sender receives nothing. This protocol is also known as 1-out-of-2 OT
(the receiver obtains one message out of two messages). The work of [3] further
generalized OT and introduced 1-out-of-n OT (under the name of all-or-nothing
disclosure of secrets). In a 1-out-of-n OT protocol, the sender takes n messages
x1, . . . , xn as inputs, and the receiver takes an index i ∈ [n] as input. At the end
of the protocol, the receiver outputs xi.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 128–145, 2023.
https://doi.org/10.1007/978-981-99-7356-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_8&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_8

Oblivious Transfer from Rerandomizable PKE 129

Studying the relationships between cryptographic primitives is of great sig-
nificance for understanding their powers and limitations. In the work of [12],
Gertner et al. studied the relationship between OT and several other crypto-
graphic primitives such as public-key encryption (PKE), key agreement and
trapdoor permutations. They showed that OT and PKE are incomparable with
respect to black-box reductions, which implies that one cannot obtain OT (resp.
PKE) with only PKE (resp. OT) in hand. To further understand the relationship
between OT and PKE, they considered the problem of constructing OT from
PKE with special properties. In particular, they found that PKE with oblivious
sampleability of public keys or ciphertexts is sufficient for OT, where oblivious
sampleability of public keys (resp. ciphertexts) means that one can sample a pub-
lic key (resp. ciphertext) without knowing the corresponding secret key (resp.
plaintext). In this work, we follow this work and continue to study the relation-
ship between OT and PKE. More precisely, we seek to present new constructions
of OT from PKE without any oblivious sampleability. In fact, another sufficient
property of PKE for constructing OT is homomorphism. PKE with homomor-
phism is also referred as homomorphic encryption (HE). For example, the work
of [24] used additively HE (AHE) to design an efficient OT protocol, which tells
us that AHE is sufficient for OT. A natural question is that whether we can base
OT on weaker HE schemes than AHE, or to be formally, we ask the following
question.

What is the minimum homomorphism required to construct OT?

1.1 Our Contribution

Main Result. In this work, we study the above question, and our main result is
that OT could be based on rerandomizable PKE, which is a special PKE scheme
with the property that one can rerandomize a ciphertext into a fresh ciphertext
encrypting the same message. Note that rerandomization can be viewed as the
minimum homomorphism in the sense that it only allows one to compute the
identity function. We remark that many existing PKE schemes have the prop-
erty of rerandomization, including the ElGamal scheme [10], the Paillier scheme
[19], and the Regev scheme [23]. In particular, the work of [21] constructed a
rerandomizable PKE scheme without any homomorphism other than rerandom-
ization1.

OT with New Efficiency Features. Our another contribution is that we design
PKE-based OT protocols with new efficiency features. As we have said, Gertner et
al. [12] showed that OT can be constructed from PKE with oblivious sampleability
of public keys or ciphertexts. While their OT constructions are very efficient and

1 This scheme achieves a slightly weaker variant of IND-CCA security called replayable
CCA (RCCA) security, which is introduced by [5]. As stated in [5], RCCA security
is sufficient for many applications of IND-CCA secure PKE (authentication, key
exchange, etc.).

130 S. Li et al.

general, the costs of both parties in their protocols are linear in n. Consider the
setting where the two parties have different data processing capability (e.g., the
two parties use different machines with different computational powers, or they are
in different network settings with different data transfer capability) and we want
to minimize the running time of the protocol2. In such an unbalanced setting, if
we can reduce the cost of the party with lower data processing capability than the
other party, then the resulting protocol may have less running time even if the
total cost remains the same or is even higher. Our OT constructions allow us to
obtain OT protocols with new efficiency features which are more suitable for the
aforementioned unbalanced setting. More precisely, we obtain the following two
OT protocols based on rerandomizable PKE.

• A two-pass OT protocol where the costs of the sender and receiver are
O(n/ log n) and O(n1+ε/ log n) for any constant ε > 0, respectively.

• A three-pass OT protocol where the costs of the sender and receiver are O(n)
and O(1), respectively.

In our first OT protocol, the sender has sublinear cost, hence it is more suitable
for the setting where the sender has lower data processing capability than the
receiver. In our second OT protocol, the receiver has cost independent of n, hence
it is more suitable for the setting where the receiver has lower data processing
capability than the sender.

1.2 Technical Overview

Now let us give an overview of the techniques used in our OT constructions. For
simplicity, we focus on bit-OT where each message is a single bit (extending our
results to string-OT is direct, and we will discuss this in Appendix A). Assume
that the sender takes x = (x1, . . . , xn) ∈ {0, 1}n as input and the receiver takes
an index i ∈ [n] as input. Our goal is to let the receiver obtain xi.

OT with Sublinear Sender-Cost. Our starting point is that if we define the
function fi(z) = zi over {0, 1}n, then fi(x) is exactly xi. We first design a toy
protocol with exponential cost to let the receiver get the value of xi.

1. The receiver samples a key pair and uses the public key to encrypt fi(z) to
cz for each z ∈ {0, 1}n. Then it sends the public key and all the ciphertexts
to the sender.

2. The sender uses the public key to rerandomize cx and sends the resulting
ciphertext to the receiver.

3. Finally, the receiver decrypts the received ciphertext to get xi.

The correctness of the above OT protocol is easy to verify. As for the security,
note that the sender does not know the secret key, so it knows nothing about i
from the received ciphertexts. Moreover, the receiver only receives a ciphertext c

2 In the works of [6,7,9], the authors studied private set intersection (PSI) in a similar
setting where one party may limited resources for computation and storage.

Oblivious Transfer from Rerandomizable PKE 131

which is a rerandomization of a ciphertext encrypting xi, and by the property of
rerandomizable PKE, c is indistinguishable from a fresh encryption of xi, which
means that the receiver only obtains xi from c.

In the toy protocol, although the cost of the sender is independent of n, the
cost of the receiver is exponential in n (the receiver must compute and send
2n ciphertexts). Namely, the toy protocol is an “inefficient” OT protocol. Now
we show how to optimize the toy protocol such that the cost of the receiver is
polynomial in n while the cost of the sender remains sublinear.

To achieve our goal, we use a reduction from long OT to short OT. More
precisely, for any n = t(m − 1), a 1-out-of-n OT protocol can be constructed
using t calls to a 1-out-of-m OT protocol. Moreover, the cost of this 1-out-of-
n OT protocol is about t times that of the 1-out-of-m OT protocol. We refer
to Sect. 3.2 for more details about this reduction. If we use the aforementioned
“inefficient” OT protocol as the underlying 1-out-of-m OT protocol, then in the
resulting 1-out-of-n OT protocol, the costs of the sender and receiver will be
O(t) and O(t2m), respectively. By setting m = ε log n for some positive constant
ε, we can obtain an OT protocol where the costs of the sender and receiver are
O(n/ log n) and O(n1+ε/ log n), respectively. This is the desired OT protocol.

OT with Constant Receiver-Cost. Our sender-efficient OT protocol could
be cast into the following framework: the receiver sends a set of ciphertexts
containing an encryption of xi; the sender uses x to select the encryption of xi.
Now we swap the roles of the sender and the receiver. Concretely, we let the
sender send (a set of ciphertexts containing an encryption of xi) first and then
the receiver select (the encryption of xi). Our starting point is that if we define
the function gx(j) = xj over [n], then gx(i) is exactly xi. We first describe the
following “insecure” protocol.

1. The sender samples a key pair and uses the public key to encrypt gx(j) to cj

for each j ∈ [n]. Then it sends the public key and all the ciphertexts to the
receiver.

2. The receiver uses the public key to rerandomize ci and sends the resulting
ciphertext to the sender.

3. Finally, the sender decrypts the received ciphertext to get xi and sends xi to
the receiver.

The above protocol is insecure due to that the sender knows the value of xi, which
leaks information about i. To solve this problem, we let the receiver randomize
the underlying plaintext of ci. Fortunately, this can be done using rerandomiza-
tion. Concretely, in the first step, we let the sender send encryptions of xj and
xj ⊕ 1 (instead of just xj). In this way, the receiver has encryptions of xi and
xi ⊕ 1 (written as ci,0 and ci,1, respectively). Now, the receiver can randomize
the underlying plaintext of ci: it samples a random bit r, and then it computes
a ciphertext e as a rerandomization of ci,0 if r = 0 and ci,1 otherwise. It is easy
to verify that e is an encryption of xi ⊕ r. Now we can describe our secure OT
protocol.

132 S. Li et al.

1. The sender samples a key pair and uses the public key to encrypt xj to cj,0

and xj ⊕ 1 to cj,1 for each j ∈ [n]. Then it sends the public key and all the
ciphertexts to the receiver.

2. The receiver samples a random bit r, and then it computes a ciphertext e as
a rerandomization of ci,0 if r = 0 and ci,1 otherwise. Then it sends e to the
sender.

3. The sender decrypts the received ciphertext to get s and sends s to the
receiver.

4. Finally, the receiver computes xi = s ⊕ r.

The correctness of the above OT protocol is easy to verify. As for the security,
note that s is a random bit due to r is random, hence the sender cannot get
any information about i. Moreover, the receiver only obtains xi as it does not
know the secret key. Finally, it is easy to see that in our protocol, the cost of the
sender is linear in n, and the cost of the receiver is independent of n.

1.3 Related Primitives

The most relevant primitives for OT are probably private information retrieval
(PIR) [8] and symmetrically PIR (SPIR) [11], where SPIR is a stronger variant
of PIR. If only security requirements are considered, SPIR is in fact equivalent to
OT. However, PIR and SPIR typically are used in a different context where n is
large (e.g., n = 220), and they additionally require that the total communication
cost is sublinear in n. To date, the state-of-the-art PIR [1,2,14,16–18,20] and
SPIR [15] protocols are based on fully-homomorphic encryption (FHE).

2 Preliminaries

Notations. Let κ be the security parameter. For any two integers i, j, we denote
[i, j] the set {i, · · · , j} and abbreviate [1, j] by [j]. If i > j, [i, j] represents the
empty set ∅. For any two distributions X and Y, we say that X and Y are
computationally indistinguishable, denoted as X ≈c Y, if no PPT algorithm
can distinguish these two distributions. We say that X and Y are statistically
indistinguishable, denoted as X ≈s Y, if their statistical distance is negligible.
For any set A, we use a ← A to represent that we sample a random element a
from A in a uniform way.

2.1 Oblivious Transfer

In this work, we prove the security of our protocols in the universally composable
(UC) framework, and we refer to [4] for more detail about this framework. Now
we describe the ideal functionality for OT.

Definition 1 (Ideal Oblivious Transfer Functionality FOT). The ideal
OT functionality FOT is a two-party functionality which receives n bits x1, . . . , xn

from a party P0 called the sender and an index i ∈ [n] from the other party P1

called the receiver. FOT returns xi to P1.

Oblivious Transfer from Rerandomizable PKE 133

2.2 Rerandomizable Public-Key Encryption

Our OT protocols make use of a rerandomizable PKE scheme, and we recall the
definition of rerandomizable PKE in this section.

Definition 2 (Rerandomizable Public-Key Encryption). A rerandomiz-
able public-key encryption (PKE) consists of four algorithms Keygen,Enc,Dec,
and Rand. Let M be the plaintext space, C be the ciphertext space, PK be the pub-
lic key space, and SK be the secret key space. These four algorithms are defined
as follows.

• Keygen(1κ): on input the security parameter κ, output a key pair (pk, sk) ∈
PK × SK.

• Enc(p, pk): on input a plaintext p ∈ M and a public key pk ∈ PK, outputs a
ciphertext c ∈ C.

• Dec(c, sk): on input a ciphertext c ∈ C and a secret key sk ∈ SK, outputs a
plaintext p ∈ M.

• Rand(c, pk): on input a ciphertext c ∈ C and a public key pk ∈ PK, outputs a
ciphertext c′ ∈ C.

Rerandomizable PKE requires the following properties.

• Correctness. For any plaintext p ∈ M, it holds that

Pr[Dec(Enc(p, pk), sk) = p] ≥ 1 − neg(κ)

where (pk, sk) ← Keygen(1κ).
• IND-CPA Security. For any two plaintexts p0, p1, we have

Enc(p0, pk) ≈c Enc(p1, pk)

where (pk, sk) ← Keygen(1κ).
• Ciphertext Rerandomizable. For any plaintext p ∈ M, it holds that

Rand(c, pk) ≈s Enc(p, pk)

where (pk, sk) ← Keygen(1κ) and c ← Enc(p, pk).

2.3 Reviewing the Previous PKE-Based OT Protocols

In this section, we review the OT protocols of Gertner et al. [12]. Their protocols
are based on PKE with oblivious sampleability of public keys or ciphertexts. We
first define such special PKE.

Definition 3 (PKE with Oblivious Sampleability of Public Keys). We
say that a PKE scheme (Keygen,Enc,Dec) has oblivious sampleability of public
keys if there exists a PPT algorithm OsPk satisfying that

{pk|pk ← OsPk(1κ)} ≈s {pk|(pk, sk) ← Keygen(1κ)}.

134 S. Li et al.

Definition 4 (PKE with Oblivious Sampleability of Ciphertexts). We
say that a PKE scheme (Keygen,Enc,Dec) has oblivious sampleability of cipher-
texts if there exists a PPT algorithm OsCt satisfying that

{c|c ← OsCt(pk)} ≈s {c|p ← M, c ← Enc(p, pk)}
where (pk, sk) ← Keygen(1κ).

Now let us describe the OT protocols of [12]. The first is based on PKE with
oblivious sampleability of public keys, and its description is in the following.

Protocol OTospk

Input: Let (Keygen,Enc,Dec,OsPk) be a PKE scheme with oblivious sam-
pleability of public keys. The sender P0 takes n bits x1, . . . , xn as inputs, and
the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P1 samples a key pair (pki, ski) ← Keygen(1κ) and pkj ← OsPk(1κ) for
each j ∈ [n]\{i}. Then, P1 sends {pkj}j∈[n] to P0.

2. P0 computes a ciphertext ej = Enc(xj , pkj) for each j ∈ [n] and sends
{ej}j∈[n] to the receiver.

3. P1 decrypts u ← Dec(ei, ski) and returns u.

Security Analysis of OTospk. The correctness is easy to verify. Let us discuss
the privacy. Firstly, note that pki is indistinguishable from each other pkj , hence
the sender P0 cannot obtain any information about i. Secondly, for each j �= i,
since receiver P1 does not know the decryption key of pkj (pkj is obliviously
sampled), it cannot decrypt the ciphertext ej .

Complexity of OTospk. In the protocol, both the sender and receiver have cost
linear in n. Moreover, the protocol only takes two passes.

The second OT protocol of [12] is based on PKE with oblivious sampleability
of ciphertexts, and its description is in the following.

Protocol OTosct

Input: Let (Keygen,Enc,Dec,OsCt) be a PKE scheme with oblivious sam-
pleability of ciphertexts. The sender P0 takes n bits x1, . . . , xn as inputs, and
the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) and sends pk to P1.
2. P1 samples a random plaintext r and computes ci = Enc(r, pk). Then, it

obliviously samples cj ← OsCt(pk) for each j ∈ [n]\{i}. Finally, P1 sends
{cj}j∈[n] to P0.

Oblivious Transfer from Rerandomizable PKE 135

3. P0 decrypts rj = Dec(cj , sk) and computes uj = xj ⊕ rj for each j ∈ [n].
Then, it sends {uj}j∈[n] to P1.

4. P1 computes z = ui ⊕ r and returns z.

Security Analysis of OTosct. The correctness is easy to verify. Let us discuss
the privacy. Firstly, note that each ci is statistically indistinguishable from each
other cj , hence the sender P0 cannot obtain any information about i. Secondly,
for each j �= i, since the receiver P1 does not know the decryption key sk, it
knows nothing about rj , which implies that it knows nothing about xj even
with uj in hand.

Complexity of OTosct. In the protocol, both the sender and receiver have cost
linear in n. Moreover, the protocol takes three passes (the first pass can be
executed once for all).

3 Sender-Friendly Oblivious Transfer

In this section, we present our first OT protocol, which is sender-friendly, mean-
ing that the cost of the sender is sublinear in n. Throughout this section, let
(Keygen,Enc,Dec,Rand) be a rerandomizable PKE scheme.

3.1 First Attempt: OT with Constant Sender-Cost and Exponential
Receiver-Cost

We first give an “inefficient” OT protocol where the cost of the receiver P1 is
exponential in n (the cost of the sender P0 is independent of n). This protocol
proceeds as follows.

1. P1 samples a key pair and uses the public key to encrypt zi to cz for each
z ∈ {0, 1}n. Then it sends the public key and all the ciphertexts to P0.

2. P0 uses the public key to rerandomize cx and sends the resulting ciphertext
to P1.

3. Finally, P1 decrypts the received ciphertext to get xi.

We introduce an optimization to the above protocol. Notice that if all the bits
x1, . . . , xn are the same, then cx is always an encryption of x1. Therefore, the
receiver just needs to send encryptions of the elements in {0, 1}n\{0n, 1n}. This
optimization has a small improvement to the protocol when n is large. However,
if n is small, then this optimization is remarkable and for n = 2, it will halve
the cost of the receiver. Now we describe the protocol with our optimization.

136 S. Li et al.

Protocol OTsen
rpke

Input: The sender P0 takes n bits x1, . . . , xn as inputs, and the receiver P1

takes an index i ∈ [n] as input. Let I = {0n, 1n}.
Output: P1 gets xi as output.

1. P1 samples a pair of keys (pk, sk) ← Keygen(1κ). Then, for each z =
(z1, . . . , zn) ∈ {0, 1}n\I, P1 computes cz ← Enc(zi, pk). Finally, P1 sends
(pk, {cz}z∈{0,1}n\I) to P0.

2. P0 computes e ← Enc(x1, pk) if x ∈ I and e ← Rand(cx, pk) otherwise.
Then, it sends e to P1.

3. P1 computes u ← Dec(e, sk) and outputs u.

Complexity of OTsen
rpke. The sender needs to compute and send a single cipher-

text, its cost is independent of n. The receiver needs to compute and send 2n −2
ciphertexts, hence its cost is exponential in n.

Security of OTsen
rpke. We state the security of OTsen

rpke by proving the following
theorem.

Theorem 5. For any n = O(log κ), the protocol OTsen
rpke securely realizes the

functionality FOT in the UC framework.

Proof. If both the sender and receiver are honest, it is easy to verify that the
receiver will obtain the bit xi. If some party is corrupt, there are two cases to
be considered.

Sender is Corrupt. In this case, we construct a simulator S as follows.

• S samples a key pair (pk, sk) and computes cz ← Enc(0, pk) for each z ∈
{0, 1}n\I. Then S simulates the receiver sending (pk, {cz}z∈{0,1}n\I) to the
sender.

It remains to show that the environment cannot distinguish the simulated and
real executions. We first define Hybridj for each j ∈ [2n − 1].

• Hybridj : Sj samples a key pair (pk, sk). Then, it computes cz ← Enc(zi, pk)
for each z ∈ [1, j − 1] and cz ← Enc(0, pk) for each z ∈ [j, 2n − 2]. Finally, Si

simulates the receiver sending (pk, {cz}z∈{0,1}n\I) to the sender.

Note that Hybrid1 is exactly the simulated execution, and Hybrid2n−1 is the real
execution. Now we proceed to show that each two consecutive hybrids are indis-
tinguishable, which will imply that Hybrid1 and Hybrid2n−1 are indistinguishable
because there are total 2n − 1 = poly(κ) hybrids.

For each j ∈ [2n − 2], the two hybrids Hybridj and Hybridj+1 only differ in
the generation of cj , which is an encryption of 0 in Hybridj and an encryption
of ji in Hybridj+1

3. By the IND-CPA security of the underlying PKE scheme,

3 Each j is viewed as a bitstring and ji is the i-th bit of j.

Oblivious Transfer from Rerandomizable PKE 137

we know that an encryption of ji is indistinguishable from an encryption of 0.
Therefore, Hybridj and Hybridj+1 are indistinguishable.

Receiver is Corrupt. In this case, we construct a simulator S as follows.

• S sends the input of P1 to FOT and receives the output xi. Then it samples
a key pair (pk, sk) and computes e′ ← Enc(xi, pk). Finally, it simulates the
sender sending e′ to the receiver.

Now we show that the simulated and real executions are indistinguishable, which
implies that the environment cannot distinguish the simulated and real execu-
tions. In the simulated execution, the simulated ciphertext e′ is a fresh encryption
of xi under a fresh public key. In the real execution, the ciphertext e is a reran-
domization of an encryption of the output u. By the correctness of the protocol,
we know that u is xi. Moreover, the underlying rerandomizable PKE guarantees
that a rerandomization of a ciphertext (of any plaintext p) is indistinguishable
from a fresh encryption of p under the same public key. Therefore, the simulated
ciphertext e′ is indistinguishable from the ciphertext e in the real execution. �	

3.2 A Reduction from Long OT to Short OT

In this section, we give a reduction from long OT to short OT. Concretely, we
can construct 1-out-of-n OT using t calls to 1-out-of-m OT where n = t(m− 1).
The construction is quite simple, and its description is in the following.

1. The sender P0 sets Xj = (x(j−1)(m−1)+1, . . . , xj(m−1), 0) for each j ∈ [t].
2. The receiver P1 sets i = (i1 − 1)(m − 1) + i2 with i1 ∈ [t] and i2 ∈ [m − 1].

Then for each j ∈ [t], P1 lets qj be i2 if j = i1 and m otherwise.
3. P0 and P1 parallelly invoke a 1-out-of-m OT protocol t times, where in the

j-th execution, P0 takes Xj as input and P1 takes qj as input.
4. P1 takes the output in the i1-th execution as its final output.

Proof Sketch of the Above OT Construction. Firstly, it is easy to verify
that in the i1-th execution, the output of P1 will be xi, which implies that the
correctness holds. As for the security, note that in the j-th execution, the output
of P1 will be 0 if j �= i1. This implies that the simulator will be able to infer
the output of each short OT instance from the output of the long OT. Also, the
simulator can infer the input of each short OT instance from the input of the
long OT. Therefore, to simulate the view of the corrupted party, the simulator
just invokes the simulators of all the short OT instances using the inferred inputs
and outputs.

3.3 Putting It All Together: OT with Sublinear Sender-Cost
and Polynomial Receiver-Cost

We show how to design an OT protocol where the cost of the sender is sublinear
in n and the cost of the receiver is polynomial in n. To achieve this goal, we take

138 S. Li et al.

our OT protocol OTsen
rpke as the underlying 1-out-of-m OT protocol in the OT

construction described in Sect. 3.2. As a result, we can derive an OT protocol
where the costs of the sender and receiver are O(t) and O(t2m), respectively
(n = t(m − 1)). By setting m = ε log n for any constant ε > 0, we obtain the
desired OT protocol where the costs of the sender and receiver are O(n/ log n)
and O(n1+ε/ log n), respectively.

4 Receiver-Friendly Oblivious Transfer

In this section, we present our second OT protocol, which is receiver-friendly,
meaning that the cost of the receiver is sublinear in n. More precisely, in our
protocol, the costs of the sender and receiver are O(n) and O(1), respectively.
Throughout this section, let (Keygen,Enc,Dec,Rand) be a rerandomizable PKE
scheme. Our protocol is described as follows.

Protocol OTrec
rpke

Input: The sender P0 takes n bits x1, . . . , xn as inputs, and the receiver P1

takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) ← Keygen(1κ). Then, for each j ∈ [n], P0

computes cj,0 ← Enc(xj , pk) and cj,1 ← Enc(xj ⊕ 1, pk). Finally, P0 sends
(pk, {cj,0, cj,1}j∈[n]) to P1.

2. P1 chooses a random bit r and computes e ← Rand(ci,0, pk) if r = 0 and
e ← Rand(ci,1, pk) otherwise. Then, it sends e to P0.

3. P0 computes u ← Dec(e, sk) and sends u to P1.
4. P1 outputs z = u ⊕ r.

Complexity of OTrec
rpke. The sender needs to compute and send 2n ciphertexts,

hence its cost is linear in n. The receiver needs to compute and send a single
ciphertext, hence its cost is independent of n.

Security of OTrec
rpke. We state the security by proving the following theorem.

Theorem 6. For any n = poly(κ), the protocol OTrec
rpke securely realizes the func-

tionality FOT in the UC framework.

Proof. If both the sender and receiver are honest, it is easy to verify that u is
exactly xi ⊕ r, hence the final output is z = u ⊕ r = xi, which guarantees the
correctness. Now we proceed to prove the privacy of our protocol. We need to
consider two cases.

Sender is Corrupt. In this case, we construct a simulator S as follows.

• S samples a key pair (pk, sk) and computes e′ ← Enc(r′, pk) with r′ being a
random bit. Then S simulates the receiver sending e′ to the sender.

Oblivious Transfer from Rerandomizable PKE 139

Now we show that the simulated and real executions are indistinguishable. In
the simulated execution, the simulated ciphertext e′ is an fresh encryption of a
random bit r′. In the real execution, the ciphertext e is a rerandomization of an
encryption of xi ⊕r. Note that xi ⊕r is random because r is a random bit. More-
over, the underlying rerandomizable PKE guarantees that a rerandomization of
a ciphertext (of any plaintext p) is indistinguishable from a fresh encryption of
p under the same public key. This implies that the simulated ciphertext e′ is
indistinguishable from the real ciphertext e. Therefore, the simulated and real
executions are indistinguishable.

Receiver is Corrupt. In this case, we construct a simulator S as follows.

• S sends the input of P1 to FOT and receives the output xi. Then it samples
a key pair (pk, sk) and a random bit r. S computes ci,0 ← Enc(xi, pk) and
ci,1 ← Enc(xi ⊕ 1, pk), and cj,b ← Enc(b, pk) for each j ∈ [n]\{i}, b ∈ {0, 1}.

• Then, S simulates P0 sending (pk, {cj,0, cj,1}j∈[n]) to P1.
• Finally, S simulates P0 sending u = xi ⊕ r to P1.

It remains to show that the environment cannot distinguish the simulated and
real executions. We first define Hybridj for each j ∈ [n + 1].

• Hybridj : Sj samples a key pair (pk, sk) and a random bit rj . Next,
– If j ≤ i, then it computes ck,b ← Enc(xk ⊕ b, pk) for each k ∈ [1, j − 1] ∪

{i}, b ∈ {0, 1}, and ck,b ← Enc(b, pk) for each k ∈ [j, i − 1] ∪ [i + 1, n], b ∈
{0, 1}.

– If j > i, then it computes ck,b ← Enc(xk ⊕b, pk) for each k ∈ [1, j −1], b ∈
{0, 1}, and ck,b ← Enc(b, pk) for each k ∈ [j, n], b ∈ {0, 1}.

Then, Sj simulates P0 sending (pk, {ck,0, ck,1}k∈[n]) and u = xi ⊕ rj to P1.

Note that Hybrid1 is exactly the simulated execution, and Hybridn+1 is the real
execution. Now we proceed to show that each two consecutive hybrids are indis-
tinguishable, which will imply that Hybrid1 and Hybridn+1 are indistinguishable
because there are total n + 1 = poly(κ) hybrids.

It is easy to see that Hybridi and Hybridi+1 are identical, so we only need to
show that Hybridj and Hybridj+1 for each j ∈ [n]\{i}. The two hybrids Hybridj

and Hybridj+1 only differ in the generation of (cj,0, cj,1). In Hybridj , cj,0 and
cj,1 are encryptions of 0 and 1, respectively. And in Hybridj+1, cj,0 and cj,1 are
encryptions of xj and xj ⊕1, respectively. By the IND-CPA security of the under-
lying PKE scheme, the encryptions of 0 and 1 are indistinguishable from that of
xj and xj ⊕ 1. Therefore, Hybridj and Hybridj+1 are indistinguishable. �	

5 Comparision to the Previous OT Protocols Based
on Special Types of PKE

In this section, we compare the concrete and asymptotic complexity of our OT
protocols and the PKE-based OT protocols of [12]. For the comparison of con-
crete complexity, we consider 1-out-of-2 OT and use the protocol described in

140 S. Li et al.

Sect. 3.1 as our sender-friendly OT protocol4. For the comparison of asymptotic
complexity, we consider the 1-out-of-n OT and use the protocol described in
Sect. 3.3 as our sender-friendly OT protocol. Moreover, we focus on the round
complexity, communication cost of the protocols. In particular, we compare the
communication cost on the sender side and the receiver side separately.

5.1 Comparison with Respect to 1-out-of-2 OT

When considering 1-out-of-2 OT, we directly use the protocol described in
Sect. 3.1. The detailed comparison is shown in Table 1.

Table 1. A comparison of the PKE-based 1-out-of-2 OT protocols of [12] and our OT
protocols regarding round complexity, communication costs of sender and the receiver.
Note that we use pk (resp. pks), pt (resp. pts), and ct (resp. cts) to represent public
key (resp. public keys), plaintext (resp. plaintexts), and ciphertext (resp. ciphertexts),
respectively.

1-out-of-2 OT Round
Complexity

Sender
Communication

Receiver
Communication

OTospk [12] 2 passes 2 cts 2 pks
OTosct [12] 3 passes 1 pk& 2 pts 2 cts
OTsen

rpke (Sect. 3) 2 passes 1 ct 1 pk& 2 cts
OTrec

rpke (Sect. 4) 3 passes 1 pk& 1 pt& 4 cts 1 ct

The comparison illustrates that in some scenarios our protocols may be a
better choice. For example, if our goal is optimal round complexity and low
sender-communication, then OTsen

rpke is a better choice than OTospk.

5.2 Comparison with Respect to 1-out-of-n OT

To compare the asymptotic complexity, we consider 1-out-of-n OT. In particular,
we use the protocol described in Sect. 3.3 as our sender-friendly OT protocol.
The detailed comparison is shown in Table 2.

The comparison tells us that for relatively large n (e.g., n = 1000), our
protocols may be better choices in some settings. For example, if the sender is in
a low-speed network and we want the sender to have low communication, then
OTsen

rpke will be a better choice. Similar, if the receiver is in a low-speed network
and we want the receiver to have low communication, then OTrec

rpke will be a better
choice.

4 Recall that though this protocol has exponential cost, it is still efficient for small n.

Oblivious Transfer from Rerandomizable PKE 141

Table 2. A comparison of the PKE-based 1-out-of-n OT protocols of [12] and our OT
protocols regarding round complexity, communication costs of sender and the receiver.
Note that we focus on the asymptotic cost.

1-out-of-n OT Round
Complexity

Sender
Communication

Receiver
Communication

OTospk ([12]) 2 passes O(n) O(n)
OTosct ([12]) 3 passes O(n) O(n)
OTsen

rpke (Sect. 3) 2 passes O(n/ log n) O(n1+ε/ log n)
OTrec

rpke (Sect. 4) 3 passes O(n) O(1)

6 Conclusion

This work takes the work of Gertner et al. [12] as the starting point and con-
tinue to study the relationship between OT and PKE. Our main result is that
rerandomizable PKE implies OT. Since rerandomization can be viewed as the
minimum homomorphism in the sense that it only allows one to compute the
identity function, our result answers the question of what is the minimum homo-
morphism required to construct OT. Based on rerandomizable PKE, we give two
OT protocols and compare its efficiency with previous PKE-based OT protocols.
Our OT protocols have new efficiency features, and they are more suitable for
the unbalanced setting where one party may have more data processing power
than the other one.

Acknowledgement. We are grateful for the helpful comments from the anonymous
reviewers. This work was supported by the National Key Research and Development
Program of China (No. 2020YFB1805402) and the National Natural Science Founda-
tion of China (Grants No. 61872359 and No. 61936008).

A From Bit-OT to String-OT

Our OT protocols are designed for bit-OT where each item is a bit. In this
section, we show how to extend our protocols to string-OT where each item is
a bitstring. Concretely, we use the idea of [8]. Let x1, . . . , xn ∈ {0, 1}l be the
bitstrings held by the sender where each xj = (xj,1, . . . , xj,l), and let i be the
index held by the receiver. The sender first defines Xk = (x1,k, . . . , xn,k) for
each k ∈ [l], then a naive string-OT protocol is that the sender and receiver
direct invoke a bit-OT protocol l times, where the sender uses Xk as its input in
the k-th invocation. However, the authors in [8] observed that some messages of
the receiver may be used for multiples invocations because the receiver has the
same input in every invocation, which allows us to reduce the communication
cost. For the sake of completeness, we present the detailed descriptions of our
PKE-based string-OT protocols in this section. We note that the security proofs

142 S. Li et al.

of our string-OT protocols will be much like the security proofs of our bit-OT
protocols, and we omit the details about the security proofs.

A.1 Sender-Friendly 1-out-of-n String-OT

In this section, we give the description of our sender-friendly string-OT protocol.
Similar to our bit-OT protocol, we first give an inefficient string-OT protocol.

Protocol sOTsen
rpke

Input: The sender P0 takes n l-bit long bitstrings x1, . . . , xn as inputs where
each xj = (xj,1, . . . , xj,l), and the receiver P1 takes an index i ∈ [n] as input.
Let I = {0n, 1n}.
Output: P1 gets xi as output.

1. P1 samples a pair of keys (pk, sk) ← Keygen(1κ). Then, for each z =
(z1, . . . , zn) ∈ {0, 1}n\I, P1 computes cz ← Enc(zi, pk). Finally, P1 sends
(pk, {cz}z∈{0,1}n\I) to P0.

2. P0 defines Xk = (x1,k, . . . , xn,k) for each k ∈ [l]. Then for each k ∈ [l], P0

computes ek ← Enc(x1,k, pk) if Xk ∈ I and ek ← Rand(cXk , pk) otherwise.
Finally, it sends {ek}k∈[l] to P1.

3. For each k ∈ [l], P1 computes uk ← Dec(ek, sk). P1 outputs (u1, . . . , ul).

Complexity of sOTsen
rpke. The protocol sOTsen

rpke requires the sender to send l
ciphertexts and the receiver to send 2n − 2 ciphertexts (and a public key). The
reduction from long OT to short OT described in Sect. 3.2 also applies to string-
OT. By a similar discussion in Sect. 3.3, we could obtain an efficient string-
OT protocol where the costs of the sender and receiver are O(ln/ log n) and
O(n1+ε/ log n) for a positive constant ε, respectively.

A.2 Receiver-Friendly 1-out-of-n String-OT

This section presents the description of our receiver-friendly string-OT protocol.

Protocol sOTrec
rpke

Input: The sender P0 takes n l-bit long bitstrings x1, . . . , xn as inputs where
each xj = (xj,1, . . . , xj,l), and the receiver P1 takes an index i ∈ [n] as input.
Output: P1 gets xi as output.

1. P0 samples a key pair (pk, sk) ← Keygen(1κ). Then, for each j ∈ [n] and
k ∈ [l], P0 computes ck

j,0 ← Enc(xj , pk) and ck
j,1 ← Enc(xj ⊕1, pk). Finally,

P0 sends (pk, {ck
j,0, c

k
j,1}j∈[n],k∈[l]) to P1.

Oblivious Transfer from Rerandomizable PKE 143

2. For each k ∈ [l], P1 chooses a random bit rk, and computes ek ←
Rand(ck

i,0, pk) if rk = 0 and ek ← Rand(ck
i,1, pk) otherwise. Then, it sends

{ek}k∈[l] to P0.
3. P0 computes uk ← Dec(ek, sk) for each k ∈ [l] and sends {uk}k∈[l] to P1.
4. P1 computes zk = uk ⊕ rk for each k ∈ [l] and outputs (z1, . . . , zk).

Complexity of sOTrec
rpke. The protocol sOTrec

rpke requires the sender to send 2ln
ciphertexts and l plaintexts (and a public key) and the receiver to send l cipher-
texts. Namely, the costs of the sender and receiver are O(ln) and O(l), respec-
tively.

References

1. Ali, A., et al.: Communication-computation trade-offs in PIR. In: USENIX Security
2021 (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/
ali

2. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, San Francisco, California, USA, 21–23 May 2018, pp. 962–979.
IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.00062

3. Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-47721-7_17

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

5. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_33

6. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018,
pp. 1223–1237. ACM (2018). https://doi.org/10.1145/3243734.3243836

7. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1243–
1255. ACM (2017). https://doi.org/10.1145/3133956.3134061

8. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23–25 October 1995, pp. 41–50. IEEE Computer Society (1995).
https://doi.org/10.1109/SFCS.1995.492461

9. Cong, K., et al.: Labeled PSI from homomorphic encryption with reduced computa-
tion and communication. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS 2021:

https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1109/SFCS.1995.492461

144 S. Li et al.

2021 ACM SIGSAC Conference on Computer and Communications Security, Vir-
tual Event, Republic of Korea, 15–19 November 2021, pp. 1135–1150. ACM (2021).
https://doi.org/10.1145/3460120.3484760

10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

11. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Vitter, J.S. (ed.) Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, 23–26 May 1998, pp. 151–160. ACM (1998). https://doi.org/10.1145/276698.
276723

12. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: 41st Annual Sympo-
sium on Foundations of Computer Science, FOCS 2000, Redondo Beach, California,
USA, 12–14 November 2000, pp. 325–335. IEEE Computer Society (2000). https://
doi.org/10.1109/SFCS.2000.892121

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229.
ACM, New York (1987). https://doi.org/10.1145/28395.28420

14. Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan,
V.: One server for the price of two: simple and fast single-server private information
retrieval. IACR Cryptology ePrint Archive, p. 949 (2022). https://eprint.iacr.org/
2022/949

15. Lin, C., Liu, Z., Malkin, T.: XSPIR: efficient symmetrically private information
retrieval from Ring-LWE. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W.
(eds.) ESORICS 2022, Part I. LNCS, vol. 13554, pp. 217–236. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17140-6_11

16. Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.: XPIR: private information
retrieval for everyone. Proc. Priv. Enhancing Technol. 2016(2), 155–174 (2016).
https://doi.org/10.1515/popets-2016-0010

17. Menon, S.J., Wu, D.J.: SPIRAL: fast, high-rate single-server PIR via FHE com-
position. In: SP 2022 (2022). https://doi.org/10.1109/SP46214.2022.9833700

18. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: response efficient single-server PIR.
In: CCS 2021 (2021). https://doi.org/10.1145/3460120.3485381

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

20. Park, J., Tibouchi, M.: SHECS-PIR: somewhat homomorphic encryption-based
compact and scalable private information retrieval. In: Chen, L., Li, N., Liang,
K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_5

21. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5_29

22. Rabin, M.O.: How to exchange secrets with oblivious transfer (1981)
23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-

raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603

https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1145/276698.276723
https://doi.org/10.1145/276698.276723
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1145/28395.28420
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://doi.org/10.1007/978-3-031-17140-6_11
https://doi.org/10.1515/popets-2016-0010
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1145/3460120.3485381
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1145/1060590.1060603

Oblivious Transfer from Rerandomizable PKE 145

24. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_28

25. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164. IEEE Computer Society (1982). https://doi.org/
10.1109/SFCS.1982.38

https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

Forward Secure Lattice-Based Ring
Signature Scheme in the Standard Model

Xiaoling Yu1 and Yuntao Wang2(B)

1 College of Computer Science and Technology (College of Data Science),
Taiyuan University of Technology, Taiyuan, China

2 Graduate School of Engineering, Osaka University, Osaka, Japan

wang@comm.eng.osaka-u.ac.jp

Abstract. A ring signature scheme allows a group member to generate a
signature on behalf of the whole group, while the verifier can not tell who
computed this signature. However, most predecessors do not guarantee
security from the secret key leakage of signers. In 2002, Anderson pro-
posed forward security mechanism to reduce the effect of such leakage. In
this paper, we construct the first lattice-based ring signature scheme with
forward security. Our scheme combines the binary tree and lattice basis
delegation technique to realize a key evolution mechanism, where secret
keys are ephemeral and updated with generating nodes in the binary
tree. Thus, adversaries cannot forge the past signature even if the users’
present secret keys are revealed. Moreover, our scheme can offer unforge-
ability under the standard model. Furthermore, our proposed scheme is
expected to realize post-quantum security due to the underlying Short
Integer Solution (SIS) problem in lattice-based cryptography.

Keywords: Ring signature · Lattice · Forward security · Key
exposure · Post-quantum secure

1 Introduction

Ring signatures [28] allow one group member to generate signatures on behalf of
this group, where the verifier can confirm that the signer belongs to this group
but can not identify the signer. Thus, ring signatures can provide anonymity
on the signer’s identity and have broad applications, such as Blockchain, ad-hoc
networks, anonymous transactions, anonymous whistle-blowing, and so on.

In practical applications, secret keys of signers are revealed easily because
of the careless store or internet attacks, etc. Moreover, once a secret key of a
member of the group is exposed, an adversary can forge a valid signature on
behalf of this group. Thus, the damage from the key exposure is particularly
critical in ring signatures. In 2002, Anderson [4] introduced the forward secu-
rity mechanism for signature schemes to reduce the impact caused by secret key
exposure. Specifically, forward security of signatures guarantees that the expo-
sure of a present secret key cannot affect the preceding generated signatures. Its
core idea is a key evolution mechanism, where the lifetime of signature schemes

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 146–158, 2023.
https://doi.org/10.1007/978-981-99-7356-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_9&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_9

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 147

is divided into τ discrete time periods. When a time period is updated to the
next one, a new secret key is also computed from the current one by this one-way
key evolution, while the current secret key is deleted. Since the key evolution is
one-way, the previously generated signature is still secure even if an adversary
obtains a current secret key. Therefore, how to design a proper key evolution
mechanism is the point of a forward secure ring signature.

On the other hand, current ring signatures are constructed based on the hard-
ness of some number-theoretical problems, such as prime factorization problems,
discrete logarithm problems, bilinear maps problems, etc. However, Shor’s quan-
tum algorithm [30] shows that all these classical problems can be solved in poly-
nomial time in a practical quantum computer. So Post-Quantum Cryptography
(PQC) is widely studied to withstand the attack from quantum computers. In
fact, some international standards organizations such as NIST, ISO, and IETF
have been conducting PQC standardization projects for a long time. Gener-
ally, three primitives are focused on: Public-Key Encryption algorithms (PKE),
Key Encapsulation Mechanisms (KEM), and digital signature (DS) schemes.
Among the several categories, lattice-based cryptography is considered the most
promising candidate for its robust security strength, comparative light commu-
nication cost, desirable efficiency, and excellent adaptation capabilities. Indeed,
NIST announced three lattice-based PKE/KEM/signature algorithms over four
candidate finalists in 2022.

1.1 Contributions and Approaches

In this paper, we proposed the first lattice-based ring signature scheme with
forward security, which is expected to resist the attack from quantum computers.
Under the inspiration of [24,32], the proposed scheme is proved secure under the
standard model. In this scheme, we combine the binary tree structure and lattice
basis delegation technique to realize a key evolution mechanism. Based on this
mechanism, secret keys are updated as the change of time periods, which is able
to satisfy forward security.

In our work, we use leaf nodes in a binary tree structure of the depth l to
discretize the lifetime into 2l intervals. The lattice trapdoor generation algorithm
is used to obtain a matrix Ak along with a basis TAk

of lattice Λ⊥
q (Ak) as the

public key and the initial secret key of group member k, respectively. Without
loss of generality, assume that the user with index i is the real signer, then Ai

is the corresponding matrix of root node in the binary tree. Then we choose
2l randomly uniform matrices A

(bj)
j of the size as Ai for j ∈ {1, 2, . . . , l} and

bj ∈ {0, 1}. For each node Θ(j) = (θ1, . . . , θk, . . . , θj) with θk ∈ {0, 1} and
k ∈ {1, 2, . . . , j}, we set the corresponding matrix FΘ(j) = [Ai||A(θ1)

1 || . . . ||A(θj)
j].

We employ lattice basis extension algorithm to compute trapdoors of any nodes,
inputting the corresponding matrix and the trapdoor of the root node (or the
trapdoor of its ancestor node). According to the property of the basis extension
algorithm, the computation of lattice trapdoors can not be operated inversely,
which realizes the one-way key evolution. After arranging the trapdoor of each

148 X. Yu and Y. Wang

node, we apply the minimal cover set to guarantee the signer’s secret key ski,t

in time period t includes the ancestor trapdoor for time periods t′ (t′ ≥ t) and
does not include any trapdoor for time periods t′′ (t′′ < t).

1.2 Related Works

Forward Security: Anderson [4] first introduced forward security in signa-
tures, which protects the use of past secret keys even if the current key is
revealed. Bellare et al. [5] further formalized the definition of forward secure
signatures and provided a construction based on the hardness assumption of the
integer factorization problem. Then, Abdalla et al. [1] and Itkis et al. [18] did
respectively some work to improve the efficiency of [5]. Besides, many forward
secure cryptosystems were given, such as forward secure public key encryption
systems [7,10,12], forward secure group signatures [9,21,22,27], forward secure
blind signatures [13,19,20], forward secure ring signatures [23,24], forward secure
linkable ring signature [8], etc.

Lattice-Based Signatures: In 2008, Gentry et al. [15] proposed a lattice-based
signature scheme using a preimage sampling algorithm. On the one hand, this
work showed a “hash-and-sign” paradigm that can achieve high computing speed
with a compact design and owns a shorter output size. On the other hand, this
paradigm has some shortcomings, i.e., limitations to parameter sets, difficulty in
conducting high-speed implementation, and inability to withstand side-channel
attacks [25]. In 2010, Cash et al. [11] designed a lattice basis delegation technique
that allows obtaining a short basis of a designated lattice from a short basis of
a related lattice. They also showed a lattice-based signature scheme with this
technique. Many current lattice-based signature schemes adopt this delegation
technique to expand the lattice bases. In 2011, Wang et al. [32] constructed
a lattice-based ring signature using the delegation algorithm. In 2011, Yu et
al. [33] constructed an identity-based signature scheme with forward security.
Further, Ling et al. [22] proposed the first forward secure group signature from
lattices in 2019. Then, Le et al. [20] gave the first forward secure blind signature
from lattices. Simultaneously, Feng et al. [14] gave a traceable ring signature
from lattices. In 2022, Hu et al. [17] gave a lattice-based linkable ring signature
scheme with the standard model.

Ring Signatures: Rivest et al. [28] first proposed a ring signature in 2001.
Then many ring signature schemes [6,16,29,31] were constructed, whose secu-
rity models do not rely on random oracles. However, the above schemes do not
consider forward security and post-quantum security either. In 2008, Liu et al.
[23] first proposed a forward secure ring signature to reduce the damage from
the key exposure, and they also gave a construction under the random oracle
model. Further, Liu et al. [24] showed a forward secure ring signature based on
the bilinear maps without random oracles.

To sum up, due to the apparent resistance to quantum computing attacks,
lattice-based cryptography has attracted more and more attention. In particular,
the forward security of signatures is considered one of the most promising ways

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 149

to minimize the damage caused by secret key exposure. However, to the authors’
knowledge, there is no lattice-based ring signature scheme with forward security.
The work in this paper aims to fill this gap.

1.3 Organization

The rest of the paper is organized as follows. Section 2 shows preliminaries on
lattice, hardness assumptions, and related algorithms. We introduce the syntax
of ring signature with forward security in Sect. 3. In Sect. 4, the specific con-
struction in lattices is given. Finally, we conclude our work in Sect. 5.

2 Preliminaries

2.1 Lattices

Given positive integers n,m and some linearly independent vectors bi ∈ R
m

for i ∈ {1, 2, . . . , n}, the set generated by the above vectors Λ(b1, . . . ,bn) =
{Σn

i=1xibi|xi ∈ Z} is a lattice. The set {b1, . . . ,bn} is a lattice basis. m is the
dimension and n is the rank. One lattice is full-rank if its dimension equals to
the rank, namely, m = n.

Definition 1. For positive integers n,m and a prime q, a matrix A ∈ Z
n×m
q

and a vector u ∈ Z
n
q , define two sets:

Λ⊥
q (A) := {e ∈ Z

m|Ae = 0 mod q}
Λu

q (A) := {e ∈ Z
m|Ae = u mod q}.

Assuming that T ∈ Z
m×m is a basis of Λ⊥

q (A), T is a basis of Λ⊥
q (BA) for a

full-rank B ∈ Z
n×n
q .

2.2 Hardness Assumption

Definition 2 (Small integer solution, SIS problem). Given an integer q,
a matrix A ∈ Z

n×m
q and a real β > 0, find a nonzero integer vector e ∈ Z

m such
that Ae = 0 mod q and ‖e‖ ≤ β.

The SIS problem [15,26] has been proved as hard as approximating the worst-
case Gap-SVP (smallest vector problem) and SIVP with certain factors.

2.3 Lattice Algorithms

Definition 3 (Gaussian distribution). Given parameter σ ∈ R
+, a vector

c ∈ R
m and a lattice Λ, DΛ,σ,c is a discrete gaussian distribution over Λ with

a center c and a parameter σ, denoted by DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ, where

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) and ρσ,c(x) = exp(−π
‖x − c‖2

σ2
). When c = 0, DΛ,σ,0 can

be abbreviated as DΛ,σ.

150 X. Yu and Y. Wang

Lemma 1 (TrapGen algorithm) [2,3,15]. Given integers n,m, q with q > 2
and m � 6n log q as the input, there is a probabilistic polynomial-time (PPT)
algorithm TrapGen, outputs a matrix A ∈ Z

n×m
q along with a basis TA of the lat-

tice Λ⊥
q (A), namely, A·TA = 0 mod q, where the distribution of A is statistically

close to uniform on Z
n×m
q , and the Gram-Schmidt norm ‖T̃A‖ � O(

√
n log q).

Lemma 2 (ExtBasis algorithm) [11]. Given an arbitrary matrix A ∈ Z
n×m
q

whose columns generate the group Z
n
q , an arbitrary basis S ∈ Z

m×m of Λ⊥
q (A)

and an arbitrary matrix A′ ∈ Z
n×m′
q , there is a deterministic polynomial-time

algorithm ExtBasis which can output a basis S′′ of Λ⊥
q (A′′) ⊆ Z

m′′×m′′
q such that

‖S̃‖ = ‖S̃′′‖, where A′′ = A||A′, m′′ = m+m′. Moreover, the above results apply
to the situation that the columns of A′ are prepended to A. This algorithm can
be denoted by S′′ ← ExtBasis(A′′, S).

Lemma 3 (GenSamplePre algorithm) [11,32]. Given a matrix AR = [A1|
|A3] and a short basis BR of the lattice Λ⊥

q (AR), a parameter δ ≥ ‖B̃R‖ ·
ω(

√
log n), a vector y ∈ Z

n
q , there is an algorithm GenSamplePre(AS , AR, BR,

y, δ) to sample a preimage e which is within negligible statistical distance of
DΛy

q(AS),δ, namely, ASe = y mod q, where A1 ∈ Z
n×k1m
q , A2 ∈ Z

n×k2m
q , A3 ∈

Z
n×k3m
q , A4 ∈ Z

n×k4m
q , AS = [A1||A2||A3||A4], and k1, k2, k3, k4 are positive

integers.

The TrapGen algorithm will be used to generate the public-secret key
pairs in the following scheme. And the GenSamplePre algorithm can be
achieved by invoking preimage sample algorithm which was introduced in [15].
The ExtBasis algorithm will be used to update keys as the change of time
periods.

3 Syntax of Forward Secure Ring Signature

This section shows the model of forward secure ring signature and its security
model which was first proposed in [24]. The security of ring signatures is required
with two points, anonymity and unforgeability.

3.1 System Model

One forward secure ring signature scheme consists of five algorithms, Π =
(Setup, KeyGen, KeyUpdate, Sign, Verify), which was first introduced
by Liu et al. [24].

– pp ← Setup(λ): Given the security parameter λ as the input, the setup
algorithm outputs the system public parameter pp.

– (pki, ski,0) ← KeyGen(pp): Given the public parameter pp, the key genera-
tion algorithm outputs the public-secret key pair (pki, ski,0) of user i at the
original time, namely, the time period t = 0.

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 151

– ski,t+1 ← KeyUpdate(ski,t, t): Given the secret key ski,t of user i with the
time period t as the input, this key update algorithm generates a new secret
key ski,t+1 at the time period t + 1, and deletes the previous secret key skt.

– σt ← Sign(ski,t,m, R, t): Given a time period t, the secret key ski,t, a set R
of public keys (represents the ring of users) and the message m as the input,
this algorithm returns a signature σt.

– Verify(R,m, σt, t): Given public keys set R, signature σt, message m, and
the time period t as the input, the algorithm outputs 1 for accept, namely,
the signature is valid for this message. Otherwise returns 0 for reject.

3.2 Anonymity

The anonymity implies an adversary cannot tell which member of a ring gener-
ates signatures. Here we show a game between a challenge C and an adversary
A to describe the anonymity against full key exposure [6] on forward secure
ring signature. Compared with the definition of anonymity in the standard ring
signature, the adversary in this model is given secret keys with the original time
period instead of having the right to access a corruption oracle, which means
the adversary can obtain the secret keys of all users for any time period.

– Setup: The challenger C runs KeyGen algorithm for n′ times to get public-
secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0), then C sends the public key
set R = {pk1, . . . , pkn′} and the secret key set {sk1,0, . . . , skn′,0} at original
time period to the adversary A .

– Query 1: A queries adaptively signing oracle and submits a message m, a
time period t, a ring set R with group members’ public keys, a public key
pki ∈ R, challenger C runs Sign algorithm to respond signing oracle queries.

– Challenge: A chooses a time t∗, a group size n∗, a message m∗, a set R∗

of n∗ public keys which satisfies two public keys pki0 , pki1 ∈ R are included
in R∗, and sends them to C . C selects randomly a bit b ∈ {0, 1} and runs
σ∗

t∗ ← Sign(t∗, n∗, R∗, skib,t∗ ,m∗). The challenger sends signature σ∗
t∗ to A .

– Query 2: A is allowed to query the signing oracle adaptively.
– Guess: A returns a guess b′.

A wins this game if b′ = b holds. The advantage that A wins this game for
the security parameter λ is

AdvAnon
A (λ) = |Pr[b = b′] − 1

2
|.

Definition 4. A forward secure ring signature scheme is anonymous, if for any
PPT adversary A , the defined advantage AdvAnon

A (λ) is negligible.

3.3 Forward Security

The forward security of ring signature schemes is described by the following
game which was first introduced in [24]. Here an adversary cannot output a
valid signature σ∗

t∗ for a message m∗, a ring R∗, and a time period t∗, such that

152 X. Yu and Y. Wang

V erify(m∗, σ∗
t∗ , t∗) = 1 unless either one of public keys in R∗ is generated by

the adversary or a user whose public key is contained in R∗ signs m∗. The details
of this game are as follows:

– Setup: The challenger runs KeyGen algorithm for n′ times and obtains
some public key and original secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0),
then he sends the set of public keys S = (pk1, . . . , pkn′) to the adversary.

– Query phase: A queries the following oracles adaptively.
• Corruption oracle query (ski,t ← CO(pki, t)): Inputting a public key

pki ∈ S and a time t, the oracle outputs secret key ski,t.
• Signing oracle query SO(t, n,R, pki,m): Inputting a time t, a group size

n, a set of n public keys R, a public key pki ∈ R and a message m, this
oracle outputs a signature σt with the time t.

– Output: A outputs a signature σ∗
t∗ , a ring R∗ with the number n∗ of users,

a time t∗ and a message m∗.

A wins the game if the following conditions holds:

1. V erify(m∗, σ∗
t∗ , t∗) = 1,

2. R∗ ⊆ S,
3. for all pk∗

i ∈ R∗, there is no CO(pk∗
i , t′) query with time t′ � t∗,

4. there is no SO(t∗, n∗, R∗,m∗) query.

Definition 5. A ring signature scheme is unforgeable with forward security, if
for all PPT adversary A , the advantage Advfs

A (λ) that A wins the above game
is negligible on the security parameter λ.

4 Lattice-Based Construction

In this section, we first show a framework how to generally assign time periods,
and generate the corresponding lattice trapdoor for each node in a binary tree.
Then, we propose a lattice-based forward secure ring signature scheme.

4.1 Description of Key Update with Time Periods

Our construction employs binary tree structure and lattice basis delegation tech-
nique, ExtBasis algorithm, to realize the update of secret keys with the change
of time periods. The details are described as follows.

– Time arrangement in Binary Tree:
• We assign the time periods t ∈ {0, 1, . . . , 2l − 1} to leaf nodes of a binary

tree with depth l from left to right. Assume that l = 3, then the number
of time intervals is 8.

• On each time period t, there is an unique path t = (t1, . . . , tl) from the
root node to leaf node. And for the ith level, ti = 0 if the node in
this path is left node, otherwise ti = 1. Similarly, for the ith level node
(i
= l), its path from the root node to this node is denoted uniquely by
Θ(i) = (θ1, . . . , θi), where θi ∈ {0, 1} is defined as same as ti.

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 153

– Update of lattice trapdoor of nodes:
• TrapGen algorithm is run to obtain a random matrix A0 ∈ Z

n×m
q

and a lattice basis TA0 of lattice Λ⊥(A0). We define the correspond-
ing matrix FΘ(i) = [A0||A(θ1)

1 || . . . ||A(θi)
i] for Θ(i), and the matrix Ft =

[A0||A(t1)
1 || . . . ||A(tl)

l] for a time period t, where A
(b)
i are random matrices

for i ∈ {1, 2, . . . , l} and b ∈ {0, 1}. A0 is regarded as the corresponding
matrix of root node and TA0 is a lattice trapdoor for root node.

• Considering the computation of a corresponding lattice trapdoor TΘ(i)

for the node Θ(i) of the binary tree, we employ lattice basis extension
algorithm ExtBasis. There are two following situations.

* Given the original lattice trapdoor TA0 , the trapdoor TΘ(i) can be
computed as follows:

TΘ(i) ← ExtBasis(FΘ(i) , TA0),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i].
* The trapdoor TΘ(i) can also be computed from its any ancestor’s

trapdoor. For example, given TΘ(k) ,

TΘ(i) ← ExtBasis(FΘ(i) , TΘ(k)),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i] and Θ(i) = (θ1, . . . , θk, θk+1, . . . ,
θi) for k < i.
That is to say, the trapdoor TΘ(i) is a basis of the lattice Λ⊥(FΘ(i)).

• The above methods are also suitable for computing lattice trapdoors for
time periods (i.e., leaf nodes), if its ancestor’s lattice trapdoor is known.

4.2 Our Lattice-Based Proposal

Here, we show the lattice-based construction which uses the key evolution (KV)
mechanism on the binary tree to achieve the key update and forward security.

– Setup(λ): Given security parameter λ as input, set the number of time
period τ = 2l where l is the depth of the binary tree, set system parame-
ters n,m, q, d, δ, where n,m are integer, q is prime, d represents the length of
the signed messages, δ is the parameter of sampling algorithm, the maximum
number of users max, the setup algorithm performs as follows:

• Choose 2l random matrices A
(0)
1 , A

(1)
1 , . . . , A

(0)
l , A

(1)
l ∈ Z

n×m
q ,

• Choose random and independent matrices C0, C1, . . . , Cd ∈ Z
n×m
q ,

• Outputs the public parameter pp = (q, n,m, d, δ, τ,max,A
(0)
1 , A

(1)
1 , . . . ,

A
(0)
l , A

(1)
l , C0, C1, . . . , Cd).

– KeyGen(pp): Given the public parameter pp, the key generation algorithm
performs as follows.

• For the user with index i (1 ≤ i ≤ max), run TrapGen(n,m, q) algorithm
to obtain a random matrix Ai and a basis TAi

of lattice Λ⊥(Ai),

154 X. Yu and Y. Wang

Fig. 1. Binary tree of depth l = 3: without losing generality, assume that the signer is
a user with the index i in the group, then the corresponding matrix for root node is Ai

and its trapdoor is TAi . Assume that t = 1, its path contains nodes marked with “red”

background and there are the corresponding matrix Fi,001 = [Ai||A(0)
1 ||A(0)

2 ||A(1)
3] and

its trapdoor T001 in node “001”. When the time period is changed from t = 2 to t = 3,
the minimal cover is updated from Node(2) = {01, 1} to Node(3) = {011, 1} and the
secret key is also updated from ski,2 = {T01, T1} to ski,3 = {T011, T1}. (Color figure
online)

• Returns the public-secret key (pki, ski,0) = (Ai, TAi
) for user i.

– KeyUpdate(pp, ski,t, pki): Given the public parameter pp, a secret key ski,t

with the time period t and public key pki = Ai of a user with the index i
as input, the key update algorithm invokes ExtBasis algorithm combining
with the binary tree, and returns the updated secret key ski,t+1 in the time
period t+1. The details of key evolution mechanism to achieve the secret key
update are as follows:

• For any leaf node t in the binary tree, a minimal cover Node(t) represents
the smallest set that contains an ancestor of all leaves in {t, t+1, . . . , τ−1}
but does not contains any ancestors of any leaf in {0, 1, . . . , t − 1}. For
example, as shown in Fig. 1, Node(0) = {root}, Node(1) = {001, 01, 1},
Node(2) = {01, 1}, Node(3) = {011, 1}, Node(4) = {1}, Node(5) =
{101, 11}, Node(6) = {11}, Node(7) = {111}.

• Based on the rules in the Sect. 4.1, each node in the binary tree owns
the corresponding trapdoor, for example, for the node “01” in Level 2,
its lattice trapdoor is denoted by T01 which is a basis of lattice Λ⊥

q (Fi,01)

and Fi,01 = [Ai||A(0)
1 ||A(1)

2]. Then the secret key skt at the time period
t consists of trapdoors of all nodes in the set Node(t). In Fig. 1, we
have ski,0 = {TAi

}, ski,1 = {T001, T01, T1}, where T001, T01, T1 are the
corresponding trapdoor (basis) for Fi,001 = [Ai||A(0)

1 ||A(0)
2 ||A(1)

3], Fi,01 =
[Ai||A(0)

1 ||A(1)
2], Fi,1 = [Ai||A(1)

1], respectively.
• To realize the update from ski,t to ski,t+1, the signer i determines firstly

the minimal cover Node(t+1), then grabs all trapdoors of nodes which are

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 155

in Node(t + 1) by using the methods introduced in Sect. 4.1, and deletes
the trapdoors of nodes in Node(t)\Node(t+1) to realize the one-way key
evolution mechanism. Finally, the signer can obtain the secret key ski,t+1.
For example, given ski,1 = {T001, T01, T1}, then ski,2 = {T01, T1}, where
Node(1)\Node(2) = {001} and T001 will be deleted.

• This algorithm outputs the secret key ski,t+1 of the signer with index i
in the time period t + 1, and deletes the secret key ski,t.

– Sign(m, ski,t, R, t): Given a ring of N users with public keys R =
{A1, A2, . . . , AN}, the message m ∈ {0}×{0, 1}d with the length of d+1, the
signer i with the secret key ski,t at the time period t generates a signature as
follows:

• The signer i checks firstly if ski,t contains the trapdoor TΘ(t) . Other-
wise, he runs ExtBasis(FΘ(t) , TΘ(k)) to compute TΘ(t) , where TΘ(k) is an
ancestor basis of TΘ(t) in the secret key ski,t,

• Set Cm =
∑d

j=0(−1)m[j]Cj ∈ Z
n×m
q , where m[j] is the jth bit of the

message m,
• Runs GenSamplePre(AR,t, Fi,t, TΘ(t) ,0, δ) to obtain e ∈ Z

[N(l+1)+1]m
q

which satisfies AR,t · e = 0 mod q, where Fi,t = [Ai||A(t1)
1 || . . . ||A(tl)

l],
AR,t = [F1,t||F2,t|| . . . ||FN,t||Cm],

• Returns σt = e as the ring signature of m during the time period t.
– Verify(R,m, σt, t): The verify algorithm performs as follows:

• Compute Cm =
∑d

j=0(−1)m[j]Cj ,
• Accept if AR,t ·e = 0 mod q holds and ‖e‖ � δ

√
[N(l + 1) + 1]m, receive

this signature. Otherwise, reject it.

Correctness: According to the GenSamplePre algorithm, the vector e satisfies
AR,t · e = 0 mod q and ‖e‖ � δ

√
[N(l + 1) + 1]m with overwhelming probabil-

ity. e is within negligible statical distance of DΛ⊥
q (AR,t),δ.

4.3 Security Analysis

Theorem 1. The proposed ring signature scheme is fully-anonymous, if
SISq,N(l+1)m,δ problem is intractable, where N is the size of ring.

Theorem 2. The proposed ring signature is unforgeable with forward security,
if SISq,N(1+2l)m,δ problem is hard, where N is the size of the challenge ring.

The proof of Theorem 1 and Theorem 2 can be found in the full version [34].

5 Conclusion

This paper shows the first lattice-based ring signature scheme with forward secu-
rity under the standard model. Our proposal combines lattice delegation tech-
niques with a binary tree structure to realize a key evolution mechanism. Based

156 X. Yu and Y. Wang

on this one-way evolution mechanism, secret keys can be updated timely with
generating nodes in the binary tree, which guarantees that the exposure of a
current secret key can not threaten the past signatures. Moreover, our scheme is
expected to be post-quantum secure due to its underlying security assumption
on the hardness of the SIS problem in lattice theory. The meaningful future work
is to optimize the size of public parameters and signature.

Acknowledgment. This work is supported by Fundamental Research Program of
Shanxi Province (20210302124273, 20210302123130), Scientific and Technological Inno-
vation Programs of Higher Education Institutions in Shanxi (2021L038), National Nat-
ural Science Foundation of China (62072240), China; and JSPS KAKENHI Grant
Number JP20K23322, JP21K11751, Japan.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: 26th
International Symposium on Theoretical Aspects of Computer Science, STACS,
vol. 3, pp. 75–86 (2009)

4. Anderson, R.: Two remarks on public key cryptology. Technical report, University
of Cambridge, Computer Laboratory (2002)

5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. J. Cryptol. 22(1), 114–138 (2009)

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

8. Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: Susilo, W.,
Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 245–264. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93638-3 15

9. Canard, S., Georgescu, A., Kaim, G., Roux-Langlois, A., Traoré, J.: Constant-
size lattice-based group signature with forward security in the standard model. In:
Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS, vol. 12505,
pp. 24–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4 2

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-319-93638-3_15
https://doi.org/10.1007/978-3-030-62576-4_2
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13190-5_27

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 157

12. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 5

13. Duc, D.N., Cheon, J.H., Kim, K.: A forward-secure blind signature scheme based
on the strong RSA assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS
2003. LNCS, vol. 2836, pp. 11–21. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39927-8 2

14. Feng, H., Liu, J., Wu, Q., Li, Y.-N.: Traceable ring signatures with post-quantum
security. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 442–468.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 19

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the ACM Symposium on Theory
of Computing, pp. 197–206 (2008)

16. Gritti, C., Susilo, W., Plantard, T.: Logarithmic size ring signatures without ran-
dom oracles. IET Inf. Secur. 10(1), 1–7 (2016)

17. Hu, M., Liu, Z.: Lattice-based linkable ring signature in the standard model. IACR
Cryptology ePrint Archieve, p. 101 (2022). https://eprint.iacr.org/2022/101

18. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

19. Lai, Y., Chang, C.: A simple forward secure blind signature scheme based on
master keys and blind signatures. In: 19th International Conference on Advanced
Information Networking and Applications (AINA), pp. 139–144 (2005)

20. Le, H.Q., et al.: Lattice blind signatures with forward security. In: Liu, J.K., Cui, H.
(eds.) ACISP 2020. LNCS, vol. 12248, pp. 3–22. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-55304-3 1

21. Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In: Proceed-
ings of the 5th ACM Symposium on Information, Computer and Communications
Security, ASIACCS, pp. 70–81 (2010)

22. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from
lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp.
44–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 3

23. Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. Int. J.
Netw. Secur. 6(2), 170–180 (2008)

24. Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random
oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol.
7043, pp. 1–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
25243-3 1

25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

27. Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pair-
ings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(11), 2007–
2016 (2010)

28. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/978-3-540-39927-8_2
https://doi.org/10.1007/978-3-540-39927-8_2
https://doi.org/10.1007/978-3-030-40186-3_19
https://eprint.iacr.org/2022/101
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-030-55304-3_1
https://doi.org/10.1007/978-3-030-55304-3_1
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-642-25243-3_1
https://doi.org/10.1007/978-3-642-25243-3_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-45682-1_32

158 X. Yu and Y. Wang

29. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 12

30. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134
(1994)

31. Tang, F., Li, H.: Ring signatures of constant size without random oracles. In: Lin,
D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 93–108. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16745-9 6

32. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing,
S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3 2

33. Yu, J., Hao, R., Kong, F., Cheng, X., Fan, J., Chen, Y.: Forward-secure identity-
based signature: security notions and construction. Inf. Sci. 181(3), 648–660 (2011)

34. Yu, X., Wang, Y.: A lattice-based ring signature scheme secure against key expo-
sure. Cryptology ePrint Archive, Paper 2022/1432 (2022). https://eprint.iacr.org/
2022/1432

https://doi.org/10.1007/978-3-540-71677-8_12
https://doi.org/10.1007/978-3-319-16745-9_6
https://doi.org/10.1007/978-3-642-25243-3_2
https://eprint.iacr.org/2022/1432
https://eprint.iacr.org/2022/1432

Applied Cryptography

Secure Multi-party Computation
with Legally-Enforceable Fairness

Takeshi Nakai1(B) and Kazumasa Shinagawa2,3

1 Toyohashi University of Technology, Tokyo, Japan
nakai@cs.tut.ac.jp

2 Ibaraki University, Ibaraki, Japan
kazumasa.shinagawa.np92@vc.ibaraki.ac.jp

3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Fairness is a security notion of secure computation and can-
not always be achieved if an adversary corrupts a majority of parties in
standard settings. Lindell (CT-RSA 2008) showed that imposing a mone-
tary penalty on an adversary can circumvent the impossibility. He formal-
ized such a security notion as “legally enforceable fairness” for the two-
party setting based on the ideal trusted bank functionality and showed a
protocol achieving the requirements. Based on the same framework, we
introduce secure multi-party computation with legally enforceable fair-
ness that is applicable for an arbitrary number of parties. Further, we
propose two protocols that realize our introduced functionality. The first
one achieves O(n) rounds, O(n2) communications, and O(nα) fees, where
n is the number of parties, and α is a parameter for the penalty amount.
The fee refers to the balance amount in the bank required at the begin-
ning of the protocol, which evaluates the difficulty of participating in the
protocol in a financial sense. The second one achieves O(1) rounds, O(n)
communications, and O(n2α) fees.

1 Introduction

1.1 Backgrounds

Secure computation is a cryptographic protocol to enable distrustful parties
to compute a function on their private inputs jointly [1]. Fairness is a security
notion of secure computation, which requires that at the end of a protocol, either
all parties learn the output or none of them learn it. Fairness implies that no
adversary can abort the protocol without telling the output to honest parties.
Unfortunately, fairness can be achieved in the standard setting only when a
majority of parties are honest [2].

There are works to circumvent the impossibility result. One of the works is the
gradual release approach [3,4]. In this approach, parties gradually disclose the
output with multiple rounds instead of revealing it at once. It achieves fairness
substantially since there is little difference in knowledge of the output value
with an honest party, even if an adversary aborts. However, this solution has
the drawback of requiring many rounds. Another approach is the optimistic
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 161–178, 2023.
https://doi.org/10.1007/978-981-99-7356-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_10&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_10

162 T. Nakai and K. Shinagawa

model [5,6] that uses a trusted third party (TTP). Although the TTP does not
appear in the protocol if all parties behave honestly, it works to restore fairness
when an adversary violates fairness. This solution is efficient; however, it has the
drawback of relying on the honesty of the third party.

Lindell [7] introduced a new approach to achieving fairness, which is a vari-
ant of the optimistic model. The new paradigm called legally enforceable fair-
ness, guarantees that an adversary who violates fairness is imposed a monetary
penalty, and an honest party who does not learn the output receives monetary
compensation. If the penalty amount is determined appropriately, we can achieve
fairness with this approach since adversaries refrain from aborting to avoid losing
money. Lindell formalized secure two-party computation with legally enforceable
fairness based on a trusted bank, which corresponds to TTP in the optimistic
model, and showed a two-party protocol for any functionality. The bank manages
all parties’ accounts and can update their balances. Further, parties can request
that the bank updates their balances by submitting an electronic cheque.

1.2 Related Works

Bentov and Kumaresan [8] introduced a functionality that achieves fairness with
monetary penalties applicable to an arbitrary number of parties. However, their
work uses Bitcoin [9] instead of the trusted bank. Blockchain-based cryptocur-
rencies, such as Bitcoin, have the advantage of not relying upon TTP. Thus,
the cryptocurrency-based solution can avoid the TTP-dependent problem of
the bank-based one. Against such a background, cryptocurrency-based solutions
dominate in works to achieve fairness with monetary penalties, e.g., [8,10–13].

However, cryptocurrency-based protocols also have some disadvantages.
First, parties are forced to publicly expose a part of the protocol since the
blockchain is a public data structure. It can be a drawback for a party who
does not want to disclose his/her participation in the protocol. Another issue
is due to the double spending attack on cryptocurrencies. The double spending
attack is a critical issue also in cryptocurrency-based protocols. To counter the
attack, parties must wait in a step with a particular time for mining progress,
and it is a critical issue regarding protocol efficiency.

1.3 Our Contribution

We introduce legally enforceable fairness applicable to an arbitrary number of
parties. It guarantees that every honest party can receive monetary compensa-
tion if the protocol terminates when only an adversary learns the output. We
note that guaranteeing that all honest parties receive compensation implicitly
requires the adversary to lose money. It is a natural generalization of Lindell’s
formalization for the two-party setting.

We show secure multi-party computation protocols with legally enforceable
fairness. We evaluate the efficiency of a protocol by round complexity, commu-
nication complexity, and the amount of fee to participate in the protocol. More
specifically, the third item refers to the balance required at the beginning of the

Secure Multi-party Computation with Legally-Enforceable Fairness 163

protocol. It measures the wealth that the protocol requires of the participants,
which is introduced in the work of the Bitcoin-based protocol [14].

We propose two protocols: The first one achieves O(n) rounds, O(n2) com-
munications, and O(nα) fees, where n is the number of parties, and α is a
parameter for the penalty amount. The second one achieves O(1) rounds, O(n)
communications, and O(n2α) fees.

Remark 1: We formalize fairness with monetary penalties for the multi-party
setting, as in Bentov and Kumaresan’s work [8]. However, since their model
differs from ours, their formalization for the multi-party setting also differs.
For instance, cryptocurrency-based protocols require parties to explicitly input
coins (money) into the protocols as deposits. It is because parties need to create
transactions on the public network specifying the coins they use. On the other
hand, our formalization does not require such inputs, as well as [7], since the
bank handles all monetary operations implicitly.

2 Preliminaries

2.1 Basic Notations

For any positive integer i, we define [i] := {1, . . . , i}. For a finite set X, x ∈R X
means the process of choosing an element x ∈ X uniformly at random.

We denote by n and λ the number of parties and the security parameter,
respectively. Let H ⊆ [n] be the set of honest parties and let C ⊆ [n] be the set
of corrupted parties controlled by an adversary. The sets satisfy h+c = n, where
h := |H| and c := |C| since each party is either honest or corrupted. We consider
settings where c < n. We assume that all parties are non-uniform probabilistic
polynomial-time algorithms in λ.

2.2 Public-Key Infrastructure

Our protocol assumes an existing of public-key infrastructure, as well as [7]. We
define the infrastructure as in Functionality 1 that holds the basic abilities of
key registrations and retrievals. This definition is according to the formalization
of certificate authority of [15].

2.3 Trusted Bank Functionality

Assume that a trusted bank manages all parties’ accounts, and it has the author-
ity to update their balances. A party can request the bank to update balances
by submitting a digital cheque. We define the cheque in the following notation.

Cheque. A cheque requesting payment of $q from Pi to Pj is a signed message
of the form chq(cid, i → j, q, z), where cid is a unique identifier and z is an
auxiliary information field. We say a cheque is valid when the cheque consists
of the elements cid, i → j, q, and z and all of them are signed with Pi’s signing
key.

164 T. Nakai and K. Shinagawa

Based on the cheque notation, we define a functionality that represents a
trusted bank as in Functionality 2. Let bal[i] be a variable of the current balance
of Pi for i ∈ [n]. For the sake of simplicity, we suppose that all parties’ balances
hold enough amount to participate in a protocol, i.e., any balance does not
become negative for arbitrary parties’ behaviors.

In the execution phase, Fbank updates the balances according to a cheque
sent from a party. Upon receiving a cheque chq(cid, i → j, q, z), the functionality
confirms the validity and sets balances as bal[i] = bal[i]−q and bal[j] = bal[j]+q.
After that, it sends Pi a copy of the cheque. We use a set used to prevent duplicate
usages of a cheque.

Functionality 1. The certificate authority functionality FCA

1. Upon receiving a message (Register, sid, v) from a party P , send (Register, sid, v)
to a simulator. Upon receiving back ok from the simulator, then check if sid = P
and if this registration is the first request from P . If both checks are passed, then
record the pair (P, v); otherwise, ignore the message.

2. Upon receiving a message (Retrieve, sid) from P ′ send (Retrieve, sid) to a simulator.
Upon receiving back ok from the simulator, if there is a record (sid, v), send P ′

the record. Otherwise, send (Register, sid, ⊥) to P ′.

Functionality 2. The trusted bank functionality Fbank

Running with FCA and parties P1, . . . , Pn. Let bal[i] (i ∈ [n]) be a variable denoting
the current balance of Pi.

Setup phase: Initialize used as an empty set. Send (Retrieve, i) to FCA for every
i ∈ [n] and wait to the response. If any response has ⊥, then terminates the
functionality. Stores the keys {vk}i∈[n], where vki is the verification key retrieved
for Pi.

Execution phase: Upon receiving a cheque chq(cid, i → j, q, z), perform the follow-
ing process.
1. Check if the cheque is valid and if (cid, i, j) /∈ used.
2. If both checks are passed, set bal[i] = bal[i]−q and bal[j] = bal[j]+q. Otherwise,

ignore the cheque.
3. Set used ← used ∪ {(cid, i, j)}.
4. Send the cheque to Pi.

2.4 Secure Computation with Abort

Let F be a probabilistic polynomial-time n-party ideal functionality and let
π be a probabilistic polynomial-time protocol for computing F . We follow the
real/ideal paradigm as a security notion. Informally, in the ideal world, parties

Secure Multi-party Computation with Legally-Enforceable Fairness 165

send their inputs to F that first replies to the output to a simulator. The simu-
lator can choose whether or not to abort the protocol by replying fair or unfair to
F . If it replies fair, all parties learn the output, and the functionality terminates.
Otherwise, the functionality terminates without sending the output to honest
parties. Namely, this ideal world allows the simulator to violate fairness.

Let IDEALF,S(λ, z) denotes the output vector of honest parties and a sim-
ulator S (with an auxiliary input z) in the ideal world for realizing F . Let
HYBRIDG

π,A(λ, z) denote the output vector of honest parties and an adversary
A (with an auxiliary input z) in the real (hybrid) world for executing a hybrid
protocol π with an ideal functionality G.

Definition 1. We say that a protocol π securely computes F with abort in the
G hybrid model if for every non-uniform probabilistic polynomial-time adversary
A, there exists a non-uniform probabilistic polynomial-time simulator S such
that two families of probability distributions {IDEALF,S(λ, z)}λ∈N,z∈{0,1}∗ and
{HYBRIDG

π,A(k, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable.

3 Existing Protocol for Two-Party Setting

In this section, we introduce Lindell’s protocol [7] for secure two-party compu-
tation with legally-enforceable fairness, on which our protocols are based.

3.1 Ideal Functionality for Secure Two-Party Computation

Before describing the protocol, we introduce an ideal functionality of secure
two-party computation with legally-enforceable fairness [7]. Let α be a parame-
ter for the amount of penalty and compensation. In principle, the functionality
guarantees the following properties.

– No honest party loses money.
– If a corrupted party Pj aborts after learning the output and does not tell the

value to the other party Pi, then Pj loses $α and Pi obtains $α.

See Functionality 3 for a formal description of Fα
2,f computing a function f . A

simulator S corrupting Pj can obtain the output before an honest party Pi, and
can choose whether or not to tell the value to Pi. In the case of telling the value
to Pi (corresponding to the case where S responds fair), the functionality sends
the output to Pi. In the other case (corresponding to the case where S responds
unfair), the functionality imposes a financial penalty to Pj and compensates Pi

instead of not telling the output to Pi.

166 T. Nakai and K. Shinagawa

Functionality 3. Secure two-party computation with legally enforceable fairness
Fα

2,f

Running with parties P1 and P2, and a simulator S that corrupts Pj , where j ∈ {1, 2}.
Let Pi denote the honest party (i ∈ {1, 2}, i �= j). bal[i] and bal[j] denote the current
balances of Pi and Pj , respectively.

Input phase: Wait to receive inputs xi and xj from Pi and S, respectively. If either of
the inputs is invalid, then send ⊥ to both parties and terminate the functionality.

Output phase: Compute y ← f(x1, x2), and send y to S. Wait for a response from
S.

– If S replies fair, then send y to Pi.
– If S replies unfair, then set bal[j] = bal[j] − α and bal[i] = bal[i] + α.

3.2 Two-Party Protocol with Legally Enforceable Fairness

Suppose parties P1 and P2 have inputs x1 and x2, respectively. Lindell’s protocol
consists of the main computation and output exchange phases. We describe an
overview of the protocol below.

Main Computation Phase: P1 and P2 run secure two-party computation
with inputs x1 and (x2, r), respectively, where r is a random string to mask a
cheque. As a result, P1 receives a cheque chq1 = chq(cid, 2 → 1, α, r ⊕ chq2),
where chq2 = chq(cid, 1 → 2, α, y) and y = f(x1, x2), and P2 receives nothing.
Both chq1 and chq2 are valid, i.e., both cheques are signed with signing keys
of P2 and P1, respectively. Note that, although chq1 includes chq2 holding the
output y, P1 cannot learn the value since chq2 is masked with r.

Output Exchange Phase: At the beginning of this phase, P1 has chq1 and
P2 has nothing. P1 sends r ⊕ chq2 to P2, and P2 unmasks it. Since chq2 has the
output y in the auxiliary information field, P2 learns the value first. Afterward,
P2 tells y to P1 by revealing chq2, and the protocol is finished. (P1 can verify
the output validity by verifying the cheque validity.)

As seen in the overview, Fbank does not appear when both parties behave
honestly. In the following, we explain the role of the bank in two cases where P1

is corrupted or P2 is corrupted.

The Case Where P1 is Corrupted: Let us consider the case where corrupted P1

sends chq1 to Fbank without sending r ⊕ chq2 to P2. Since the cheque is valid,
the bank sets bal[2] = bal[2] − α and bal[1] = bal[1] + α, i.e., honest P2 loses $α.
However, since P2 receives the copy of chq1 from the bank, he/she can learn the
output y and get back $α using chq2. Further, since P1 receives a copy of chq2,
he/she also learns the output. This case satisfies fairness since both parties learn
the output, and both balances are unchanged from the initial state.

The Case Where P2 is Corrupted: Let us consider the case where corrupted P2

aborts the protocol without sending y to P1. Then, honest P1 submits chq1 to

Secure Multi-party Computation with Legally-Enforceable Fairness 167

Fbank and obtains $α. To get back the money, P2 must send chq2 to Fbank. If
P2 sends the cheque to the bank, P1 learns the output from the copy, and this
case satisfies fairness. Otherwise, P1 obtains $α as compensation instead not of
learning y. This case also satisfies fairness.

4 Secure Multi-party Computation with Legally
Enforceable Fairness

This section shows our secure multi-party protocols with legally enforceable
fairness. We propose two protocols: The first one achieves O(n) rounds, O(n2)
communications, and O(nα) fees. The second one achieves O(1) rounds, O(n)
communications, and O(n2α) fees. The two protocols are inspired by the Bitcoin-
based protocols [8] and [13], respectively.

Overview of Our Protocols: We construct n-party protocols following Lin-
dell’s construction for two-party protocol [7], that is, our protocols also consist
of the main computation and the output exchange phases. It is well known that
the ideal oblivious transfer FOT is sufficient to achieve secure computation for
arbitrary functionality according to Definition 1 [16,17]. Moreover, this can be
performed in constant rounds [17]. The main computation phases in both pro-
tocols are performed in constant rounds in the FOT-hybrid model. Afterward,
parties run an output exchange protocol based on the ideal bank functionality.
Hence, we design protocols in the (FOT,FCA,Fbank)-hybrid model. We note no
difference in efficiency of the main computation phase between the two protocols.
The differences occur within the output exchange phase.

4.1 Ideal Functionality for Secure Multi-party Computation

Before presenting our protocols, we introduce an ideal functionality for the multi-
party setting. Our formalization is inspired by [8,13]. In terms of generalizing
Functionality 3, the functionality for multi-party setting should guarantee the
following properties.

– No honest party loses money.
– If an adversary aborts after learning the output without telling the value to

honest parties, then every honest party receives $α or more as compensation.

Note that the second item does not guarantee that honest parties get com-
pensation if an adversary aborts without learning the output. Also, it does not
require that each honest party receives the same compensation. The property
of the non-equivalence of compensation is needed to prove the security of our
protocols, and we leave an open problem to construct a protocol satisfying the
equivalence of compensation as in the two-party case.

Functionality 4 is a formal description for secure multi-party computation
with legally enforceable fairness. In the input phase, the functionality F≥α

n,f

168 T. Nakai and K. Shinagawa

Functionality 4. Secure multi-party computation with legally enforceable fair-
ness F≥α

n,f

Running with parties P1, . . . , Pn and a simulator S that corrupts parties {Pj}j∈C . bal[i]
denotes the current balance of Pi for i ∈ [n].

Input phase: Wait to receive the following messages.
– (input, xi) from Pi for i ∈ H
– (input, {xj}j∈C , H ′, {αi}i∈H′ , {(j, βj)}j∈C) from S, where H ′ ⊆ H, βj is a

non-negative integer, and
∑

i∈H′ αi =
∑

j∈C βj .
If some input is invalid, or some αi is less than α, then send ⊥ to all parties and
terminate the functionality.

Output phase: Compute y ← f(x1, . . . , xn).
1. Perform the following process depending on h′, where h′ := |H ′|.

– If h′ = 0, then send y to Pi for i ∈ [n], and terminate.
– If 0 < h′ < h, then set bal[i] = bal[i] + αi for all i ∈ H ′ and bal[j] =

bal[j] − βj for j ∈ C, and terminate.
– If h′ = h, then send message y to S.

2. In the case of h′ = h, wait to S’s response.
– If S replies fair, send y to Pi for i ∈ H.
– If S replies (unfair, H ′′, {α′

i}i∈H , {(j, β′
j)}j∈C) from S, perform the follow-

ing process, where H ′′ � H, β′
j is a non-negative integer, α′

i ≥ α for i ∈ H,
and

∑
i∈H α′

i =
∑

j∈C β′
j . When S submits an invalid value, continue with

α′
i = αi for i ∈ H and β′

j = βj for j ∈ C.
• Send y to Pi for i ∈ H ′′.
• Set bal[i] = bal[i] + α′

i for i ∈ H and bal[j] = bal[j] − β′
j for j ∈ C.

receives inputs for f . Further, it allows the simulator S to specify a subset H ′

of honest parties. The subset captures compensated parties. Also, the simulator
can choose how to pay the penalties from corrupted parties’ balances.

The output phase depends on h′ = |H ′|. If h′ = 0, all parties can learn the
output, and no party is penalized. The case of 0 < h′ < h captures the cases
where an adversary aborts the protocol without learning the output. Note that
not all honest parties receive compensation in this case. In the case of h′ = h,
the functionality allows the simulator to learn the output first. The simulator
can choose whether or not to abort the protocol without telling the output to
honest parties by replying fair or unfair, like Functionality 3. This step allows
the adversary to re-designate how to pay the penalties from corrupted parties’
balances.

We use H ′′ to capture the cases where an adversary tells only some honest
parties the output. Note that all honest parties are compensated even in such
cases.

Definition 2. Let π be a protocol and let f be a multi-party functionality. We
say that a protocol π securely computes f with α-legally enforceable fairness if π
securely compute the functionality F≥α

n,f according to Definition 1.

Secure Multi-party Computation with Legally-Enforceable Fairness 169

Protocol 5. Multi-party protocol with legally enforceable fairness: O(n) rounds,
O(n2) communications, and O(nα) fees
Parties P1, . . . , Pn have x1, . . . , xn as inputs, respectively.

Registration phase: Every party generates a fresh key pair and registers the verifi-
cation key to FCA.

Main computation phase: Parties run a secure multi-party computation protocol
as follows:
Input: P1 inputs (cid1, x1). For i ∈ {2, . . . , n − 1}, Pi inputs (cidi, xi, ri). Pn

inputs (cidn, xn, {rn,j}j∈[n−1]).
For each i ∈ [n], cidi ∈R {0, 1}λ. Each of r2, . . . , rn−1, rn,1, . . . , rn,n−1 is a
uniformly random string of appropriate length to achieve the property of the
following output.

Output: P1 receives a cheque chq12 defined as follows:
– y := f(x1, . . . , xn);
– cid := cid1 ‖ · · · ‖ cidn;
– chqn

j := chq(cid, j → n, α, y) for j ∈ [n − 1];

– chqn−1
n := chq(cid, n → n − 1, (n − 1)α, {rn,j ⊕ chqn

j }j∈[n−1]);

– chqi
i+1 := chq(cid, (i + 1) → i, iα, ri+1 ⊕ chqi+1

i+2) for i ∈ [n − 2];
That is, chq12 = chq(cid, 2 → 1, α, r2 ⊕ chq23), chq

2
3 = chq(cid, 3 → 2, 2α, r3 ⊕

chq34), and so on. The other parties receive nothing.
Output exchange phase (all parties behave honestly): Let Ri be the value

written in the auxiliary information field of chqi
i+1 for i ∈ [n − 2].

1. For i = 1 to n − 2, Pi sends Ri to Pi+1, and Pi+1 unmasks the value by
computing Ri ⊕ ri.

2. Pn−1 sends {rn,i ⊕ chqn
i }i∈[n−1] to Pn, and Pn unmasks the values using

{rn,i}i∈[n−1].
3. Pn tells y to Pi for all i ∈ [n − 1] by sending chqn

i to Pi.
Output exchange phase (some parties behave maliciously):

– If a corrupted Pj (2 ≤ j ≤ n) aborts the protocol. (It includes the case where
an adversary tells y to only some of honest parties.)

• For all i ∈ [j − 1], Pi submits chqi
i+1 to Fbank.

– If a corrupted Pj submits the cheque(s) to Fbank.
• For i ∈ [j − 1], Pi submits chqi

i+1 to Fbank.
• For i = j + 1 to n, Pi receives a copy of chqi−1

i from Fbank and submits
the cheque(s) obtained from the auxiliary information field.

170 T. Nakai and K. Shinagawa

Protocol 6. Multi-party protocol with legally enforceable fairness: O(1) rounds,
O(n) communications, and O(n2α) fees
Parties P1, . . . , Pn have x1, . . . , xn as inputs, respectively. Below, let M := {2, . . . , n−1}.

Registration phase: Every party generates a fresh key pair and registers the verifi-
cation key to FCA.

Main computation phase: Parties run a secure multi-party computation protocol
as follows.
Input: P1 inputs (cid1, x1). For i ∈ M , Pi inputs (cidi, xi, ri, r

′
i). Pn inputs

(cidn, xn, {rn,j}j∈[n−1]).
For each i ∈ [n], cidi ∈R {0, 1}λ. Each of r2, . . . , rn−1, r′

2, . . . , r
′
n−1, rn,1,

. . . , rn,n−1 is a uniformly random string of appropriate length to achieve the
property of the following output.

Output: P1 receives cheques {chq1i }i∈M and r′
2 ⊕ · · · ⊕ r′

n−1 ⊕ chq1n defined as
follows:

– y := f(x1, . . . , xn);
– cid := cid1 ‖ · · · ‖ cidn;
– chq1i := chq(cid, i → 1, (n − 2)α, ri ⊕ chqi

1) for i ∈ M ;
– chqi

1 := chq(cid, 1 → i, (n − 1)α, r′
i) for i ∈ M ;

– chq1n := chq(cid, n → 1, (n − 1)α, {rn,i ⊕ chqn
i }i∈[n−1]);

– chqn
i := chq(cid, i → n, α, y) for i ∈ [n − 1]

The other parties receive nothing.

Output exchange phase (all parties behave honestly): 1. P1 sends ri ⊕ chqi
1

to Pi for i ∈ M , and Pi unmasks the value using ri.
2. For each i ∈ M , Pi sends r′

i to P1, and P1 unmasks r′
2 ⊕ · · · ⊕ r′

n−1 ⊕ chq1n
using the received values.

3. P1 sends {rn,i ⊕ chqn
i }i∈[n−1] to Pn, and Pn unmasks the values by using

{rn,i}i∈[n−1].
4. Pn tells y to Pi by sending chqn

i for each i ∈ [n − 1].
Output exchange phase (some parties behave maliciously):

– If corrupted P1 aborts the protocol at step 3.
• For each i ∈ M , Pi submits chqi

1 to Fbank.
– If corrupted P1 submits {chq1i }i∈Ĥ to Fbank, where Ĥ ⊆ M .

• Pj submits chqj
1 to Fbank for j ∈ Ĥ. If P1 further submits chq1n, Pn submits

{chqn
i }i∈[n−1], and {Pi}i∈M\Ĥ submit {chqi

1}i∈M\Ĥ to the bank.

– If corrupted Pn aborts the protocol or submits {chqn
i }i∈Ĥ to Fbank, Ĥ ⊆ [n−1]

in step 4. (It includes the case where an adversary tells y to only some of honest
parties.)

• P1 submits {chq1j}j∈M to Fbank.

• For each j ∈ M , Pj submits chqj
1 to Fbank.

– If corrupted {Pi}i∈C1 abort the protocol at step 2 and corrupted {Pi}i∈C2

submit {chqi
1}i∈C2 to Fbank, where C1, C2 ⊆ M . (To consider cases of malicious

behaviors, we suppose that C1 and C2 are never empty sets at the same time.)
• In the cases of C1 = C2 ∨ C1 = ∅, P1 submits {chq1i }i∈M and chq1n.

(Note that, in this case, P1 can compute chq1n using {r′
i}i∈M .) Further,

{Pi}i∈M\C1∪C2 submit {chqi
1}i∈M\C1∪C2 and Pn submits {chqn

i }i∈[n−1] to
Fbank.

• In the case of C1 �= C2 ∧ C1 �= ∅, P1 submits {chq1i }i∈M , and
{Pi}i∈M\C1∪C2 submit {chqi

1}i∈M\C1∪C2 to Fbank.

Secure Multi-party Computation with Legally-Enforceable Fairness 171

4.2 Proposed Protocol I: O(n) Rounds, O(n2) Communications,
and O(nα) Fees

We first present our n-party protocol that achieves O(n) rounds, O(n2) commu-
nications, and O(nα) fees. Hereafter, we denote by chqi

j a cheque for payment
from Pj to Pi.

Before presenting formal description, we informally give the idea behind of
the proposed protocol I: In the main computation phase, parties run secure
multi-party computation, and only P1 receives a cheque chq12, as well as the
two-party protocol. The cheque chq12 has the recursive structure such as chq12
holds chq23 that holds chq34, and so on. The deepest one holds the desired value
y = f(x1, . . . , xn) and each chqi

i+1 is masked with a random value generated
by Pi. Thus, to learn y, parties need to unmask the cheques sequentially in the
output exchange phase. (We defer to discuss security in the case of occurring
malicious behaviour later in this subsection.)

We present the formal description in Protocol 5. Since the ideal oblivious
transfer is sufficient to realize the main computation phase with constant rounds
and the output exchange phase requires n rounds, the protocol requires O(n)
rounds. The communication complexity is O(n2) since the cheque has the recur-
sive structure with the depth n. Also, Pn is the party that requires the largest
balance at the beginning of the protocol. The balance is $(n − 1)α, and thus
the protocol requires O(nα) fees. To summarize the result, we can derive the
following theorem.

Theorem 1. For every n-party functionality f there exists a protocol that
securely computes f with α-legally enforceable fairness in the (FOT,FCA,Fbank)-
hybrid model. The protocol requires O(n) rounds, O(n2) communications, and
O(nα) fees.

To present an intuitive understanding of the security property, we here describe
each case of the output exchange phase when some parties behave maliciously.
(Appendix A shows the formal proof.)

Security Intuition: Let us consider the case where corrupted Pj (2 ≤ j ≤ n)
aborts, i.e., he/she does not send Rj to Pj+1. This case corresponds to the first
item of the output exchange phase (some parties behave maliciously). Since we
want to focus on the case where fairness may be violated, we suppose that Pj

colludes with Pj+1, . . . , Pn. Note that otherwise, the adversary cannot learn the
output. Then, every honest party submits his/her cheque to the bank. That is,
honest Pi sends chqi

i+1 to Fbank. As a result, every honest party gets $α as
compensation, i.e., the protocol achieves legally enforceable fairness in this case.
Note that if P1 aborts, no one has published the random strings, the adversary
cannot steal the output, and it is not a case of giving compensation.

Next, we describe the case where a malicious party submits his/her cheque
to the bank, which is the second item. We discuss this case separately for the
cases where Pj (1 ≤ j ≤ n − 1) submits the cheque or Pn submits the cheque.
If corrupted Pj submits chqj

j+1 to the bank and takes $jα from Pj+1. Since

172 T. Nakai and K. Shinagawa

we want to focus on the case where fairness may be violated, we suppose that
Pj+1 is honest. Fbank sends a copy of the cheque to the payer, and Pj+1 learns
Rj from the cheque and gets chqj+1

j+2. Then, Pj+1 submits the cheque to the
bank and gets $(j + 1)α from Pj+2. Then, Pj+2 can learn the cheque chqj+2

j+3

in the similar way. Parties repeat this procedure until Pn learns {chqn
i }i∈[n−1]

and submits them to the bank. As a result, since all cheques are submitted to
the bank, parties’ balances return to the initial state and all parties learn the
output y from the cheques of Pn. If a corrupted party in Pj+1 . . . , Pn refuses to
submit his/her cheque, the output is not revealed to honest parties. In this case,
honest parties get $α as compensation by submitting cheques. Thus, the protocol
achieves legally enforceable fairness in this case. Suppose corrupted Pn submits
{chqn

i }i∈H to the bank and takes $α from each honest party. It is necessary that
all honest parties have unmasked their cheques to unmask Pn’s cheques. Thus,
each honest party can get back $α by submitting cheques to the bank. Since
all honest parties learn the output from Pn’s cheques, the protocol also achieves
legally enforceable fairness in this case.

4.3 Proposed Protocol II: O(1) Rounds, O(n) Communications,
and O(n2α) Fees

We next present our n-party protocol that achieves O(1) rounds, O(n) commu-
nications, and O(n2α) fees. Before presenting formal description, we informally
give the idea to achieve constant rounds: In the main computation phase, parties
run secure multi-party computation, and only P1 receives cheques, which consist
of unmasked and masked ones. We now focus on the masked cheque chq1n that
holds {rn,i ⊕ chqn

i }i∈[n−1] in the auxiliary information field, where each chqn
i

holds the desired output y = f(x1, . . . , xn). The random strings {rn,i}i∈[n−1]

are generated by Pn, and chq1n is masked with r′
2 ⊕ · · · ⊕ r′

n−2, where each r′
k is

generated by Pk. Namely, chq1n has a two-tiered structure. That is, parties need
to unmask this cheque two times to learn y, in the output exchange phase. On
the first unmasking, P2, . . . , Pn send their random strings to P1, and P1 unmasks
the cheque using the r′

2 ⊕ · · · ⊕ r′
n−2, and P1 learns {rn,i ⊕ chqn

i }i∈[n−1]. On the
second unmasking, P1 sends {rn,i ⊕ chqn

i }i∈[n−1]) to Pn, and Pn unmasks these
cheques using {rn,i}i∈[n−1] and learns y.

See Protocol 6, which shows the formal description of our protocol. Since
the ideal oblivious transfer is sufficient to achieve the main computation phase
with constant rounds and the output exchange phase is realized with only four
rounds, this protocol is performed with constant rounds. The output exchange
phase requires 3n−4 times communications, and the communication complexity
is O(n). Also, P1 is the party that requires the largest balance at the beginning
of the protocol. The balance is $((n − 1)(n − 2) + 1)α, and the protocol requires
O(n2α) fees. To summarize the result, we can derive the following theorem.

Secure Multi-party Computation with Legally-Enforceable Fairness 173

Theorem 2. For every n-party functionality f there exists a protocol that
securely computes f with α-legally enforceable fairness in the (FOT,FCA,Fbank)-
hybrid model. The protocol requires O(1) rounds, O(n) communications, and
O(n2α) fees.

Here, we give a security intuition of Theorem 2 since the proof of this theorem is
similar to Theorem 1. (We defer the full proof to the full version.) Below, as in
Sect. 4.2, we describe each case of the output exchange phase when some parties
behave maliciously. Hereafter, let M := {2, . . . , n − 1}.

Security Intuition: First, let us consider the cases where P1 behaves maliciously.
If corrupted P1 aborts the protocol in step 3, honest Pi submits chqi

1 to Fbank for
each i ∈ M . Note that Pi has unmasked his/her cheque in step 2 for all i ∈ M .
As a result, every honest party obtains $α or more as compensation. Thus, the
protocol achieves legally enforceable fairness in this case.

If corrupted P1 submits {chq1i }i∈Ĥ to Fbank, where Ĥ ⊆ M , then Pj submits
chqj

1 to Fbank for j ∈ Ĥ. As a result, every honest party obtains positive money.
If P1 further submits chq1n to the bank, Pn submits {chqn

i }i∈[n−1] and {Pi}i∈M\Ĥ

to the bank. As a result, the balances of all honest parties become initial states
since parties use all cheques. Since we confirmed honest parties do not lose
money and learn the output value y from cheque chqn

i , the protocol achieves
legally enforceable fairness in this case.

Next, let us consider the cases where Pn behaves maliciously. If corrupted Pn

aborts the protocol or submits {chqn
i }i∈H′ to Fbank, H ′ ⊆ [n− 1] in step 4, then

P1 submits {chq1j}j∈M to Fbank and Pj submits chqj
1 to Fbank for each j ∈ M .

The balances of parties who learn the output become initial states, and parties
who do not learn the output receive compensation. Thus, the protocol achieves
legally enforceable fairness in this case.

Finally, let us consider the case where some of {Pj}j∈M behave maliciously.
We discuss this case separately for the cases where (i) C1 = C2 ∨ C1 = ∅ or (ii)
C1 	= C2 ∧C1 	= ∅. In case (i), P1 submits {chq1j}j∈M and chq1n, and {Pj}j∈M\C1

submit {chq1j}j∈M\C1 to Fbank. Further, Pn obtains {chqn
i }i∈[n−1] from chq1n and

submits the cheques to the bank. As a result, the balances of all honest parties
become initial states since parties use all cheques.

In case (ii), P1 submits {chq1j}j∈M , and {Pi}i∈M\C1∪C2 submit
{chqi

1}i∈M\C1∪C2 to Fbank. We note that P1 cannot use chq1n in this case since
there is a party in {Pj}j∈M who does not reveal the random value. Thus, we
need to make sure that P1 can get compensation even if he/she cannot use chq1n.
Let M̂ := M \C1 be the set of parties who submit their cheques to the bank, i.e.,
cheques {chqi}i∈M̂ are submitted to the bank. P1 obtains $(n − 2)2α by using
{chq1j}j∈M and loses $(n − 1)m̂α, where m̂ = |M̂ |. Noting that the maximum
value of m̂ is n − 3, it needs to satisfy that (n − 2)2 > (n − 1)(n − 3) for that P1

gets compensation without using chq1n. Since the inequality satisfies for arbitrary
positive integer n, we confirmed that P1 gets compensation for any m̂ ∈ [n − 3].
Thus, the protocol achieves legally enforceable fairness in this case too.

174 T. Nakai and K. Shinagawa

Remark 2: The reason why the payment amounts of {chq1j}j∈M and {chqj
1}j∈M

are $(n − 2)α and $(n − 1)α, respectively, comes from the last case (ii) in the
security intuition discussion. We show the derivation process: Let q1 and qm

be the payment amounts of {chq1j}j∈M and {chqj
1}j∈M , respectively. In order

that P1 does not lose money even if he/she cannot use chq1n, the total amount
of money P1 receives by using {chq1j}j∈M needs to be larger than the total
amount of money he/she loses by n − 3 cheques in {chqj

1}j∈M . (Note that P1

can use chq1n if all of {chqj
1}j∈M are submitted to the bank.) It means that

q1(n − 2) > qm(n − 3) needs to hold. Further, in order that each of P2, . . . , Pn−1

can receive compensation, qm > q1 must hold since the difference qm − q1 is
his/her compensation. Since it is sufficient that qm = q1 +1 holds, we can derive
the payment amounts from the inequality q1(n − 2) > (q1 + 1)(n − 3). The least
solution of this inequality is q1 = n − 2.

5 Conclusion

This paper focused on secure computation with legally enforceable fairness that
achieves fairness by imposing a monetary penalty on an adversary. Lindell [7]
introduced the trusted bank functionality and formalized secure computation
with legally enforceable fairness based on the functionality. Further, he showed a
general protocol with legally enforceable fairness for any functionality. However,
his formalization and protocol are applicable only to the two-party setting.

We formalized the legally enforceable fairness applicable to an arbitrary num-
ber of parties based on the trusted bank functionality as well as [7]. Further, we
proposed two protocols achieving secure multi-party computation with legally
enforceable fairness. The first protocol achieves O(n) rounds, O(n2) communi-
cations, and O(nα) fees, where n is the number of parties, and α is a parameter
for the penalty amount. The second one achieves O(1) rounds, O(n) communi-
cations, and O(n2α) fees.

As mentioned in Sect. 1.2, the cryptocurrency-based solution is the main-
stream in achieving fairness with monetary penalties. Such a line of works
proposed more advanced applications: covert security with monetary penalties
[18,19] and secure cash distribution [10–12]. The bank-based solution may also
reach such advanced applications, and we hope that this work leads to them.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Numbers
JP23K16880 and JP21K17702, and JST CREST Grant Number JPMJCR22M1.

A Security Proof for Proposed Protocol I

This section presents a proof of Theorem 1. Hereafter, for a finite set X, max(X)
and min(X) denote the maximum and minimum element of X, respectively.
Let A be a (real-world) adversary corrupting {Pi}i∈C . We partition the sets
of corrupted parties C as C = C1 � · · · � Cμ such that each Ci consists of

Secure Multi-party Computation with Legally-Enforceable Fairness 175

Algorithm 7. Cheque simulation for C∗, where 1 ∈ C∗
Input: A set of identifiers C∗, a unique identifier cid, signing keys {ski}i∈C∗ , and

random strings {ri}i∈C∗\{1}.
Output: chq12 = chq(cid, 2 → 1, α, R2).

– If |C∗| = 1, R2 is a random string with the appropriate length.
– If |C∗| > 1, for i ∈ {2, . . . , |C∗|}, Ri = ri ⊕ chqi, where chqi = chq(cid, i + 1 →

i, iα, Ri+1) and R|C∗|+1 is a random string with the appropriate length.

Algorithm 8. Cheque simulation for C∗, where 1, n /∈ C∗
Let cmin := min(C∗) and cmax := max(C∗).

Input: A set of identifiers C∗, a unique identifier cid, signing keys {ski}i∈C∗ , and
random strings {ri}i∈C∗ .

Output: rcmin ⊕ chqcmin
cmin+1 = chq(cid, cmin + 1 → cmin, cminα, Rcmin+1).

– If |C∗| = 1, Rcmin+1 is a random string with the appropriate length.
– If |C∗| > 1, for i ∈ {cmin, . . . , cmax}, Ri = ri⊕chqi

i+1, chq
i
i+1 = chq(cid, i+1 →

i, iα, Ri+1), and Rcmax+1 is a random string with the appropriate length.

Algorithm 9. Cheque simulation for C∗, where n ∈ C∗
Let cmin := min(C∗).

Input: A set of identifiers C∗, a unique identifier cid, signing keys {ski}i∈C , random
strings {rn,i}i∈[n−1], and the output y. If |C∗| > 2, input {ri}i∈C∗\{n} further.

Output: – If |C∗| = 1, output {rn,i ⊕ chqn
i }i∈[n−1], where chqn

i := chq(cid, i →
n, α, y).

– If |C∗| > 1, output Rcmin = rcmin ⊕ chqcmin
cmin+1. For i ∈ {cmin, . . . , n − 1},

chqi
i+1 := chq(cid, i + 1 → i, iα, Ri+1) and Rn := {rn,i ⊕ chqn

i }i∈[n−1]

consecutive elements Ci = {min(Ci),min(Ci) + 1, . . . ,min(Ci) + |Ci|} for 1 ≤
i ≤ μ and max(Ci) < min(Ci+1) for 1 ≤ i ≤ μ − 1. For example, when C =
{1, 2, 5, 7, 8, 9, 10}, we partition the sets into C1 = {1, 2}, C2 = {5}, C3 =
{7, 8, 9, 10}.

Formally, the main computation phase realizes the following functionality.

Input: For j ∈ [n], Pj inputs ((vkj , skj), {vki}i∈[n]\{j}, (xj , Rj), α, λ, cidj),
where R1 = ⊥, Ri = ri for i ∈ {2, . . . , n − 1}, and Rn = {rn,i}i∈[n−1].

Output: P1 receives chq21 and the other parties receive nothing. (The property
of chq21 is as in the protocol.)

We suppose that this functionality is achieved according to Definition 1 under
the FOT-hybrid model.

We construct a simulator S as follows.

1. S invokes A with its inputs {xi}i∈C , a security parameter λ, and a penalty
amount parameter α.

176 T. Nakai and K. Shinagawa

2. S generates a key-pair (vk′
i, sk

′
i) ← Gen(1λ) for i ∈ H, records the key-pairs,

and reply to A whenever A sends a query intended for FCA as follows:
– If A sends (Register, Pj , vk′

j) intended for FCA, S checks if j ∈ C and
records vk′

j .
– If A sends (Retrieve, Pi) intended for FCA, S replies (Retrieve, Pi, vk′

i).
3. S gets A’s inputs ((vkj , skj), {vki}i∈[n]\{j}, (xj , Rj), α, λ, cidj) for j ∈ C for

the trusted party of the main computation phase, where R1 = ⊥, Ri = ri

for i ∈ {2, . . . , n − 1}, and Rn = {rn,i}i∈[n−1]. If some key differs from the
key chosen in the previous step, S sends an invalid input to F≥α

n,f and halts.
4. S sends {xi}i∈C to F≥α

n,f and learns the output y.
5. S generates cidi ∈R {0, 1}λ for i ∈ H and sets cid = cid1 ‖ · · · ‖ cidn.
6. If 1 ∈ C1, S runs Algorithm 7 for C1 to generate chq12, and sends A the

cheque. Otherwise, S runs Algorithm 8 for C1 to generate chq
min(C1)
min(C1)+1, and

sends A the cheque.
7. For i = 1, . . . , μ − 2, S works depending of A’s response as follows:

– If S receives chqmax(Ci)+1
max(Ci)+2, it checks the validity. If it is not valid, S ignores

the message. Otherwise, S runs Algorithm 8 for Ci+1 and sends A the
output.

– If A sends its cheque(s) intended for the bank, S checks the validity. If it is
not valid, S ignores the message. Otherwise, S creates chqmin(Ci+1)−1

min(Ci+1)
and

sends A the cheque. Note that S performs this process by using honest
parties’ keys generated at step 2 and corrupted parties’ keys obtained at
step 3.

– If A responds nothing, S sends an invalid input to F≥α
n,f and halts.

8. Receiving chq
max(Cµ−1)+1

max(Cµ−1)+2, S checks the validity. If it is not valid, S ignores
the message.

9. If n /∈ C, S sends fair to F≥α
n,f . Further, it creates {chqn

i }i∈C as the protocol
and sends the cheques to A. S outputs whatever A outputs and terminates
the simulation.

10. If n ∈ C, S runs Algorithm 9 for Cμ and sends A the output. It waits for
A’s response.
– If S receives chqn

i for all i ∈ H, S sends fair to F≥α
n,f .

– If A sends its cheque(s) intended for the bank, S sends fair to F≥α
n,f .

Further, it creates {chqi−1
i }i∈C and sends A the cheque.

– If A responds nothing, S sends (unfair, ∅, {α′
i}i∈H , {j, β′

j}j∈C) to F≥α
n,f ,

where {α′
i}i∈H and {j, β′

j}j∈C consist of the same values to the protocol.
Further, S creates {chqi−1

i }i∈C and sends A the cheque.
– If A sends the cheques holding y to only some of honest parties {Pi}i∈H′′

where H ′′ � H, S sends (unfair,H ′′, {α′
i}i∈H , {j, β′

j}j∈C) to F≥α
n,f , where

{α′
i}i∈H and {j, β′

j}j∈C consist of the same values to the protocol. Fur-
ther, S creates {chqi−1

i }i∈C and sends A the cheque.
11. S outputs whatever A outputs and terminates the simulation.

We complete making up the simulation. A’s view in the simulation is identical
to the one’s view in the hybrid execution of Protocol 5. ��

Secure Multi-party Computation with Legally-Enforceable Fairness 177

References

1. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, FOCS 1986, pp. 162–167.
IEEE Computer Society (1986). https://doi.org/10.1109/SFCS.1986.25

2. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC 1986, pp. 364–369. Association for Computing Machinery (1986). https://
doi.org/10.1145/12130.12168

3. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
Annual Symposium on Foundations of Computer Science, pp. 468–473 (1989).
https://doi.org/10.1109/SFCS.1989.63520

4. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 6

5. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
Proceedings of the 4th ACM Conference on Computer and Communications Secu-
rity, CCS 1997, pp. 7–17. Association for Computing Machinery (1997). https://
doi.org/10.1145/266420.266426

6. Micali, S.: Secure protocols with invisible trusted parties. In: Workshop for Multi-
Party Secure Protocols, Weizmann Institute of Science (1998)

7. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79263-5 8

8. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Cryptography Mail-
ing list (2009). https://metzdowd.com

10. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 2015, pp. 195–206. Association for Computing
Machinery (2015). https://doi.org/10.1145/2810103.2813712

11. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

12. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

13. Nakai, T., Shinagawa, K.: Secure computation with non-equivalent penalties in
constant rounds. In: 3rd International Conference on Blockchain Economics, Secu-
rity and Protocols (Tokenomics 2021), Vol. 97 of Open Access Series in Informatics
(OASIcs), pp. 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/OASIcs.Tokenomics.2021.5

14. Nakai, T., Shinagawa, K.: Constant-round linear-broadcast secure computation
with penalties. Theor. Comput. Sci. 959, 113874 (2023). https://doi.org/10.1016/
j.tcs.2023.113874

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/12130.12168
https://doi.org/10.1109/SFCS.1989.63520
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1145/266420.266426
https://doi.org/10.1145/266420.266426
https://doi.org/10.1007/978-3-540-79263-5_8
https://doi.org/10.1007/978-3-662-44381-1_24
https://metzdowd.com
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1007/978-3-319-70697-9_15
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.4230/OASIcs.Tokenomics.2021.5
https://doi.org/10.1016/j.tcs.2023.113874
https://doi.org/10.1016/j.tcs.2023.113874

178 T. Nakai and K. Shinagawa

15. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings 17th IEEE Computer Security Foundations Workshop, 2004, pp.
219–233 (2004). https://doi.org/10.1109/CSFW.2004.1310743

16. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 20–
31. Association for Computing Machinery (1988). https://doi.org/10.1145/62212.
62215

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

18. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2pc over a blockchain with
applications to financially-secure computations. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
633–650. Association for Computing Machinery (2019). https://doi.org/10.1145/
3319535.3363215

19. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Financially backed covert security.
In: Public-Key Cryptography - PKC 2022–25th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Virtual Event, Proceedings,
Part II, Lecture Notes in Computer Science, vol. 13178, pp. 99–129. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1 4

https://doi.org/10.1109/CSFW.2004.1310743
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1145/3319535.3363215
https://doi.org/10.1145/3319535.3363215
https://doi.org/10.1007/978-3-030-97131-1_4

On-Demand Allocation of Cryptographic
Computing Resource with Load

Prediction

Xiaogang Cao1,2, Fenghua Li1,2, Kui Geng1, Yingke Xie1,
and Wenlong Kou1(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{caoxiaogang,lfh,gengkui,xieyingke,kouwenlong}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. “Cryptography-as-a-Service” provides convenience for users
to request cryptographic computing resources according to their needs.
However, it also brings challenges for resource management, such as
the constantly changing load, large numbers of users, and complex
resource topologies. To address those issues, this paper proposes a load-
predicted-based resource allocation algorithm for cryptographic comput-
ing resources. Firstly, we propose a load-based cryptographic computing
resource allocation model that can clearly describe the dynamic status
of resources. Then, we design a load predictor using time series analy-
sis and a random forest model, which can quickly predict the load of
cryptography service requests during service time. Finally, we develop
a load-predicted-based greedy algorithm for cryptographic computing
resource allocation. Experimental results show that energy consumption
is reduced by about 20% at most compared to the baseline allocation
algorithm.

Keywords: Cloud Computing · Cryptographic as a Service · Resource
Allocation · Load Prediction

1 Introdiction

As the cornerstone of information security, “Cryptography-as-a-Service” [31,32]
plays a crucial role in cloud computing, and its market value continues to rise
with the development of cloud computing. According to futuremarketinsights [1],
the global cloud encryption market revenue totaled US$ 3.1 Billion in 2023. The
cloud encryption market size is expected to reach US$ 45.6 Billion by 2033.
Because of the high performance, high reliability, and robust scalability, the
Advanced Telecom Computing Architecture (ATCA) [24] based Cryptographic
Computing Resource Pool (CCRP) has become an innovative way of manag-
ing cryptographic computing resources in cloud environments. Compared with
inserting multiple cards in the server and providing services through the bus,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 179–196, 2023.
https://doi.org/10.1007/978-981-99-7356-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_11&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_11

180 X. Cao et al.

CCRP ensures that the computing performance increases linearly with the num-
ber of equipment through the switch network [41], In addition, we can also
according to the needs of the requirements, dynamic configure the number of
running compute nodes, which significantly reduces power consumption. How-
ever, due to the complex structure of CCRP, the large number of users, and the
different load variations of different users, it presents new challenges for accu-
rately predicting user loads and efficiently allocating cryptographic computing
resources.

According to whether all requests are known before resource allocation, exist-
ing works can be roughly divided into offline and online allocations. In most
offline allocation methods [21,22], the allocation problem is usually modeled as
a knapsack problem or an integer programming problem and generates alloca-
tion policies by solving the optimal solution. However, the offline problem usually
does not consider the effect of uncertain request orders on the allocation result.
Because of this, many researchers model resource allocation as an online allo-
cation problem [20,23] and find the allocation solution closest to the optimal
solution by comparing the competitive ratio of different algorithms. However,
None of the existing methods considers the changing of loads after allocates
resources, which results in low resource utilization.

Load prediction is an essential means to assist in the allocation of resources.
Dambreville et al. [8] propose the POD (Predict Optimize Dispatch) algorithm,
which anticipates computing demands by predicting a workload and modifies the
set of available servers’ states to reduce energy consumption. Ilager et al. [14]
use Gboost to predict the temperature of each machine and generate scheduling
policies based on the temperature state. Machine learning [40] and time series
prediction [33] are important ways to predict load, and researchers usually use
them alone or in combination. However, in the CaaS scenario, different cloud
cryptographic applications have different load waveforms, such as the hotel’s
demand for invoicing peaks at meal time, and the government department’s
demand for encryption peaks at working hours, but we cannot know the specific
application type from the request. So the traditional prediction algorithm cannot
cope with this scenario: training a unified model for all users will result in issues
such as model complexity and low accuracy; training a model for each user can
predict the load well but is expensive.

Given the limitations of the above approaches, this paper concentrates on
fast and accurate prediction of multi-user and multi-load variation characteris-
tics and resource allocation method based on load to improve resource utiliza-
tion and reduce energy consumption of cryptographic computing resource pools.
Firstly, to allocate resources based on load changes, a load-based resource allo-
cation model was proposed to describe the dynamic status of CCRP. Secondly,
to predict the load of each user accurately, We trained a load prediction model
using a time series cluster and random forest model, which cluster historical
loads data with waveform and predict load according to request and the wave-
form characteristics. Finally, we developed a greedy allocation algorithm using
the load predicted through the trained model before.

On-Demand Allocation of Cryptographic Computing Resource 181

Our Contribution. The main contributions are as follows:

(1) We define the load-based cryptographic computing resource allocation as an
online optimization problem considering the load fluctuation.

(2) To predict loads of service requests quickly and accurately, we propose a
load predictor combining the advantage of time-series clustering and random
forest.

(3) We design a greedy algorithm for resource allocation, which allocates cryp-
tography resources to cryptography service requests according to the pre-
dicted loads.

(4) We compare it with several benchmark allocation algorithms. The experi-
mental results show the superiority of the proposed allocation algorithm.

Paper Structure. The rest of this paper is organized as follows. Section 2 pro-
vides an overview of previous work. Section 3 briefly introduces our system model
and problem formula. Section 4 presents the details of the algorithm implementa-
tion. Section 5 details the results of our experimental evaluation. Finally, Sect. 6
concludes our work.

2 Related Work

2.1 Resource Allocation

Resource allocation problems can be classified as offline or online problems,
depending on whether all requests are known at the beginning of allocation.

Offline Resource Allocation. Liu et al. [22] modeled the multi-dimensional
resource allocation problem as a capacitated covering problem and designed an
approximation algorithm using a partial rounding method. Li et al. [21] combined
greedy algorithm with reinforcement learning to generate allocation policies for
minimizing long-term and momentary resource usage. Offline allocation prob-
lems are often modeled as integer programming problems which are NP-hard.
In order to quickly get approximate solutions, Durgadevi et al. [9] proposed a
resource allocation algorithm that combines the Shuffled Frog Leaping Algo-
rithm (SFLA) and the Cuckoo Search (CS) algorithm to reduce evaluation time
while ensuring evaluation quality. Meshkati et al. [25] combined the Particle
Swarm Optimization (PSO) algorithm and the Artificial Bee Colony Optimiza-
tion (ABC) algorithm to find suitable hardware for virtual machines to improve
resource utilization and reduce resource consumption. Liu et al. [23] proposed
a partial rounding method to quickly find approximate solutions by rounding
off the relaxed solutions while satisfying the constraints. Zhu et al. [43] applied
reinforcement learning in the branch-and-bound method for integer program-
ming, using the output of the policy network as the branching constraints. Tang
et al. [37] combined reinforcement learning with the cutting-plane method to
improve efficiency and accuracy. But offline allocation ignores the issue of the
order in which requests arrive during resource allocation.

182 X. Cao et al.

Online Resource Allocation. Online allocation problems are usually evalu-
ated using a competitive ratio, as the global solution is unknown during the
resource allocation. Li et al. [20] modeled the allocation problem as the dynamic
bin packing problem (DBP), which considers both the insertion and removal of
items and proposed the MAF packing algorithm while proving its competitive
ratio. The online allocation problem is usually modeled as a Markov Decision
Process (MDP) [28,36], which takes each resource allocation as a decision to
determine the allocation policy of each step with the goal of global optimization.
Njilla et al. [27] modeled the security resource allocation problem as an MDP
solution. Pei et al. [30] used the Double Deep Q-learning Network(DDQN) algo-
rithm to solve the optimization strategy of Virtualised Network Function(VNF)
placement. Yang et al. [42] used reinforcement learning to reorder batch requests
and combined it with a greedy algorithm to improve allocation performance while
ensuring the competitiveness ratio of online allocation problems. To fully utilize
the characteristics of distributed computing, Chen et al. [6], and Tuli et al. [39]
introduced the A3C algorithm into resource allocation.

However, none of the methods mentioned above consider the load variations
in utilizing when allocated resources.

2.2 Load Prediction

Load prediction is an important means to assist the allocation of computing
resources. Machine learning methods have been widely applied in the aspect
of load prediction. Song et al. [35] applied Long Short-Term Memory (LSTM)
network to predict the average load and actual load in multiple time intervals
in advance. Nguyen et al. [26] combined LSTM Encoder-Decoder (LSTM-ED)
to improve the memory capacity of LSTM. Singh et al. [34] proposed a novel
Evolutionary Quantum Neural Network (EQNN) based load prediction model
for a Cloud datacenter. Kumar et al. [19] have presented a load prediction model
using a neural network and self-adaptive differential evolution algorithm. Feng
et al. [11] have proposed an ensemble model named FAST with Adaptive Sliding
window and Time locality integration to achieve better prediction results. Gul
et al. [13] divided the load prediction into three types: long-term and medium-
term and short-term, and they combined ARIMA and CNN-Bi-LSTM models
to predict medium-term energy consumption prediction, which improved the
accuracy of prediction.

To address the large number of workloads in cloud environments, Gao et al.
[12]. proposed a method of clustering first and then training predictive mod-
els for each cluster. However, their clustering algorithm is unsuitable for load,
which is a type of time series data [3]. Dynamic Time Warping (DTW) [38] can
compare two workloads with different lengths. To improve the performance of
DTW, Derivative Dynamic Time Warping (DDTW) [18] and Weighted Dynamic
Time Warping (WDTW) [15] are proposed. Paparrizos propose a k-shape cluster
algorithm [29]. Compared to DTW class methods, the k-shape is faster. Work-
loads are high-dimensional data. The raw workloads are always converted into a

On-Demand Allocation of Cryptographic Computing Resource 183

feature vector of lower dimensions to improve clustering speed. The most com-
mon method is Discrete Fourier Transform (DFT) [4], but DFT cannot process
non-stationary signals. Discrete wavelet Transform (DWT) [5] performs better
than DFT. Apart from these two works, C. Faloutsos et al. [10] introduced sin-
gular value decomposition (SVD) into the representation of time series, but this
method is inefficient. The Piecewise Linear Approximation (PLA) [16] method
can process staged time series data, but its efficiency is low. Then, Piecewise
Aggregate Approximation (PAA) [17] was proposed, which improves the effi-
ciency of the representation to O(n).

3 System Model and Problem Formula

3.1 System Model

In cloud computing environment, cloud cryptography service providers offer
cryptographic computing resources to cryptographic service applications, as
shown in Fig. 1.

Fig. 1. Cryptographic Computing Resource Allocation Model

The Cryptographic Computing Resource Pool (CCRP) consists of three types
of equipment: Cryptographic Computing Module (CCM), Cryptographic Com-
puting Unit (CCU), and Cryptographic Computing Device (CCD).

CCM: The CCMs deploy on the CCUs and provide various cryptographic algo-
rithms and computing capabilities. All CCMs share the resource of the CCU
that they assembled.

CCU: Assigning different tasks to designated CCMs according to allocation
policies. Multiple CCUs form a CCD, and CCUs equipped on the same CCD
share the CCD’s resources.

CCD: Provides energy to the installed CCUs and forwards designated tasks to
the CCU according to allocation policies.

The CCRP is managed by the Cryptographic Computer Resource Manage-
ment System (CCRMS), which includes the Allocation Policy Generate Service
(APGS), the Running-time Monitor Service (RMS), and the Policy Configura-
tion Service (PCS).

184 X. Cao et al.

RMS: Monitors the CCRP running status and provides APGS historical data
to train the predictor and resource usage to allocate computing resources.

APCS: Generates allocation policies according to requests and the state of
CCRP received from RMS. The APGS comprises four parts: offline analysis,
online prediction, resource allocation, and constraint checking. offline analysis:
trains the prediction model based on historical data. online prediction: predicts
the load for each service request based on the model generated by the offline anal-
ysis. Resource allocation: allocates computing resources for the requests using
the prediction results. constraint checking: determines whether the constraint
conditions are satisfied.

PCS: generates configuration rules based on the allocation policies.

3.2 Problem Formula

Request Definition: Cryptography service request r consists of eight elements:
user IP, cryptography service date, service start time, service duration, algorithm
type, maximum computing capability, minimum computing capability, average
computing capability demanded, represented as:

r = <ip, date, stT ime, durT ime, algType, capmax, capmin, capavg> (1)

Computing capability refers to the total amount of computation in a unit
of time. Typically, the capability requested for cryptography services is a static
metric, but the load on cryptographic computing resources is a dynamic value
during services. To describe the load related to r, we introduce the element load
to represent the load situation during the service period.

The load refers to the sequence of actual computing capability during service
time, which can be expressed as follows:

loadr = {lr.stT ime
r , ..., ltr, ..., l

r.stT ime+r.duTime
r },

∀t ∈ [r.stT ime, r.stT ime + r.duT ime], r.capmin ≤ lri ≤ r.capmax

(2)

ltr represents the total computation from t − 1 to t, and The load will not be
greater than r.capmax at any time. So, after the load prediction step, the request
r becomes r′:

r′ = <ip, date, stT ime, durT ime, algType, capmax, capmin, capavg, load> (3)

For cryptography services with various algorithms applied by the same user,
we decomposed them into several cryptography services with a single algorithm.

Capability Definition: The Cryptographic Computing Resource Pool(CCRP)
consists of CCDs, represented by Pool = {d1, d2, ..., dx}, where x represents the
number of CCDs. Each CCD can equip with up to y CCUs, and each CCU can
equip with up to z CCMs. Therefore, the CCRP can be equipped with up to
n CCMs (n = x ∗ y ∗ z). Each CCM can provide multiple types of cryptog-
raphy algorithms, represented by ci = {ci,1, ..., ci,j , ..., ci,k}, where k represents

On-Demand Allocation of Cryptographic Computing Resource 185

the number of cryptography algorithm types, ci,j represents the maximum com-
puting capability that CCMi can provide for algorithm j. If the CCM cannot
provide algorithm j, then ci,j = 0. The algorithm types and computing capabil-
ities that each CCM can provide may be different.

CCMs provide the computing capacity of CCRP. Therefore, the computing
capacity of CCRP can be represented by a matrix C:

C =

⎡
⎢⎣

c1,1 · · · c1,i · · · c1,k

...
. . .

...
. . .

...
cn,1 · · · cn,i · · · cn,k

⎤
⎥⎦ (4)

Each row represents the computing capability of various algorithms that a single
CCM can provide. For example, ci∗y+j∗z+1 represents the computing capability
of the first CCM in the j th CCU of the i th CCD. If the number of equipped
CCUs (or CCMs) is less than x (or y), the computing capability of all algorithms
for the excessed CCUs (CCUs equipped on CCMs) is 0.

Available computing capability matrix at time t can be represented as At:

At =

⎡
⎢⎣

at
1,1 · · · at

1,i · · · at
1,k

...
. . .

...
. . .

...
at

n,1 · · · at
n,i · · · at

n,k

⎤
⎥⎦ (5)

Each element of the available computing capability matrix At is an array
whose size is T , representing the changing state of the remaining computing
capability of each cryptographic computing resource at time t. T is the total
number of sample time points of CCRP. For example, assuming that T = 4, if
ci,j = 10, the initial remain capability of algorithm j the CCM i can support is
a0

i,j = [10, 10, 10, 10]. Then, a service whose algorithm is j with load = [0, 3, 3, 0]
is running on CCM i at time 1, then, the remain capability matrix change to
a1

i,j = [10, 7, 7, 10].

Bandwidth Definition: We use sequence data to represent the available band-
width of each piece of equipment, indicating the real-time available bandwidth
size. Matrix Bdt represents the state of the remaining bandwidth of the CCDs at
time t. Each element of Bdt is a sequence of length T , representing the CCDi’s
available bandwidth at different moments i in time during the total running
period T at time t as shown in Formula 6. Similarly, the matrix But represents
the remaining bandwidth state of CCUs at time t. We use Bt to represent the
bandwidth status of all pieces of equipment uniformly in the computing resource
pool. For convenient calculation, both But and Bdt are matrices of size n, where
the value of each element Bdt

i and But
i is equal to the bandwidth status of the

CCU and CCD with the CCMi is assembled.

Bdt =

⎡
⎢⎣

bt
1,1 · · · bt

1,i · · · bt
1,T

...
. . .

...
. . .

...
bt
n,1 · · · bt

n,i · · · bt
n,T

⎤
⎥⎦ (6)

186 X. Cao et al.

Energy Consumption Function Definition: The total energy consumption
of the CCRP can be expressed as Formula 7:

EnergyConsumption(R) =
∑
d∈D

Pd(Rd),∀i, j ∈ D,Ri ∩ Rj = ∅ (7)

Pd(Rd) is the total Energy Consumption of CCD d. Rd indicates all requests
allocated to CCD d. The total energy consumption of the CCRP is equal to the
sum of the energy consumption of all CCDs.

The energy consumption of CCD consists of two parts, one is static energy
consumption, and the other is dynamic energy consumption, as shown in For-
mula 8. CCD’s dynamic energy consumption is the energy for supporting cryp-
tography computing related to the number of running CCUs, the requests R
running on the CCMs assembled on the CCD. The statistic energy consumption
is the energy consumption to maintain the running of CCD, which is related to
running time. The parameter γd indicates the energy loss ratio the CCD provides
to the CCU. Each request can only be assigned to one CCU.

Pd(R) =
∑
u∈U

Pu(Ru)
γd

+ P s
d (STU(R)),∀i, j ∈ U,Ri ∩ Rj = ∅,∪u∈URu = R (8)

The STU(R) function represents the union of the service time for all requests
R. (Service Time Union). Similarly, CCU energy consumption is also composed of
dynamic and static energy consumption, as shown in Formula 9. Dynamic energy
consumption is related to the CCM running on it and the services provided, while
static energy consumption P s

u is only related to running time.

Pu(R) =
∑

m∈M

Pm(Rm)
γu

+ P s
u(STU(R)),

∀i, j ∈ M,Ri ∩ Rj = ∅,∪m∈MRu = R

(9)

According to Formula 7 to Formula 9, we can get the total energy consump-
tion of the CCRP:

EnergyConsumption(R) =
X∑

x=0

Y∑
y=0

∑Z
z=0

Pm(Rm)
γu

+ P s
u(STU(Ry))

γd
+ P s

d (STU(Rx))
(10)

Optimization Objectives: Given a set of cryptographic service requests R′ =
{r′

1, r
′
2, ..., r

′
m}, sorted by arrival time, We need to generate resource allocation

policies to ensure the energy consumption is the lowest while under the premise
of the demand. In our system model, requests are non-preemptive, independent,
and cannot be divided into subrequests. This problem is an online allocation
problem.

We introduce the resource allocation decision sequence Ω = {Ω1, ..., Ωm}, Ωi

is a 1-dimensional matrix of size n, where Ωi,j = 1 indicates that the request

On-Demand Allocation of Cryptographic Computing Resource 187

ri is allocated to CCU j. Equal to 0 indicates that it is not allocated. We use
ΩT × R to represent the allocation relationship between requests R and CCMs.
The online allocation problem of energy consumption minimization based on
load prediction can be described as finding a resource allocation sequence Ω
to minimize the total energy consumption of the CCRP under the condition of
satisfying constraints:

min
Ω

EnergyConsumption(ΩT
i × Ri) (11a)

s.t. Ωi,j ∈ {0, 1} (11b)

∀i ∈ [1,m],
xyz∑
j=1

Ωi
j = 1 (11c)

∀lj ∈ [1, xyz], ΩT
t Ri.load ≤ Cj (11d)

∀t ∈ [0,m], ΩT
t B(Ri.load,Ri.algType) < Bt

u (11e)

∀t ∈ [0,m], ΩT
t B(Ri.load,Ri.algType) < Bt

d (11f)

Constraint 11b indicates that the value of each element in the allocation map-
ping matrix can only be 0 or 1. Constraint 11c indicates that the cryptography
resource request can only be assigned to one CCM; Constraint 11d indicates
that the total capacity assigned to a CCM is not greater than the maximum
capacity that the CCM can provide. Constraints 11e, 11f indicate that all tasks
processed at any time cannot exceed the CCDs and CCUs’ bandwidth.

4 Load-Predicted-Based Cryptographic Computing
Resource Allocation

Load-predicted-based resource allocation includes four parts: offline analysis,
online prediction, resource allocation, and constraint checking. We trained a load
prediction model in the offline stage, which can predict the load using service
requests. For each new request, We predict the load in the online prediction stage
according to the model trained in the offline stage. Then we allocate resources
to the request according to the load. In the constraint stage, judge whether the
allocation policy is satisfied.

4.1 Cluster-Based Load Prediction Algorithm

Offline Analysis: The load of the cryptography service is a type of time series
data [3]. In order to cluster more accurately, we use the Kshape clustering algo-
rithm [29]. Kshape uses the cross-correlation coefficient to evaluate the distance
between different sequences. We first use the Multiscale Discrete Wavelet Trans-
form (DWT) [5] to reduce dimensionality and denoise the load. Then, we use
resampling techniques to align the lengths and normalize the data using the

188 X. Cao et al.

mean normalization function. We use the processed load feature to represent the
load. Finally, we cluster requests using the load feature.

In the cloud environment, different users’ workloads have different waveform,
and the load waveform of the same user on different dates are also different.
We propose a cluster-based load prediction algorithm(CLPA) to overcome this
problem. Firstly, we cluster historical requests into several categories according
to their load waveform. Then, we train a random forest classifier (RFC) [7] with
the clustering results, which can predict the load waveform using the request’s
information. Finally, we get the predicted load according to the request and
waveform, as shown in Algorithm 1.

Algorithm 1: Cluster-based Load Prediction Algorithm (CLPA)
1 Require: r: cryptography service request; subLoad: subsequence load of r
2 Ensure: r′: cryptography service request with predicted load
3 Initialization: LPP: A trained prediction model in the offline analysis phase;

load ← ∅
4 if subLoad is not ∅ then
5 loadPattern = SMA(subLoad)
6 else
7 loadPattern = LPP(r)
8 end
9 loadFeature = loadPattern ∗ (r.capmax − r.capmin) + r.capavg

10 stepLen = �r.duT ime/len(loadFeature)�
11 for l ∈ loadFeature do
12 load[i ∗ stepLen, (i + 1) ∗ stepLen] = l
13 end
14 load[len(loadFreature) ∗ stepLen, r.duT ime] = loadFeature[−1]
15 r′ = r, load

We use the load feature of the cluster center point as the load pattern of each
cluster. At this point, we have obtained multiple sets of requests with similar load
waveforms. We use the above clustering results to train a load pattern predictor
(LPP) based on RFC to realize load pattern prediction according to requests.

Online Prediction: Online prediction includes two cases, one for new requests
and the other for requests that need to be re-predicted. For the first case, we use
the trained LPP to predict the request’s load pattern and then predict the load
based on the request and the load pattern. Then, we use inverse normalization
to predict the amplitude range of load, as shown in line 9. In lines 10 to 14, we
predict the load based on the load features and the service duration. Finally, we
obtain the request r′, which is r with the predicted load.

For the second case, the bandwidth or computing capability exceeds the
threshold due to inaccurate load prediction for specific requests. Thus, the load
needs to be re-predicted. We already have partial load data for such requests,
so we use the Subsequence Match Algorithm (SMA) to determine which load

On-Demand Allocation of Cryptographic Computing Resource 189

pattern it belongs to. We reduce noise in the load subsequence and calculate
the similarity between the subsequence and all load patterns by computing the
correlation coefficients of the same parts. We select the load pattern with the
highest similarity and use Algorithm 1 to re-predict the load. For example, if
service r has been running for 30% of its service time and load needs to be re-
predicted, we reprocess the subsequence of that 30%, then compare its similarity
with the first 30% of all load patterns. We select the load pattern with the highest
similarity to its load pattern and reassign the CCM. The SMA in line 5 of the
Algorithm 1 completes the above function.

4.2 Load Prediction Based Resource Allocation Algorithm

The Load Prediction based Resource Allocation Algorithm(LPBBF) mainly con-
sists of two parts: allocating resources greedily and constraint checking based on
prediction, as shown in Algorithm 2.

Algorithm 2: Load Prediction based Best Fit algorithm (LPBBF)
1 Require: r′: cryptography service request; B: bandwidth of CCRP; A:

available capability matrix of CCRP
2 Ensure: Ω: Resource allocation policy

3 Initialization: Ωinit ←
[1, 0, ..., 0]

︸ ︷︷ ︸

n − 1
; Ωcandidate ← None;

minEc ← a sufficiently large number; i ← 1
4 for i ∈ range(0, n) do
5 Ωtmp ← Ωinit � i // Right shift operation
6 if the CCD or CCU where CCMi is located is not running and Ωcandidate

is not none then
7 break // Pruning to improve algorithm performance
8 end
9 if ConstrantCheck(r′, C, B, Ωtmp) then

10 ec=EnergyConsumption(r′, Ωtmp) // according to Formula 10
11 if ec < minEc then
12 Ωcandidate ← Ωtmp //Select policy greedily
13 minEc ← ec

14 end

15 end

16 end
17 update B
18 update C
19 Ω ← Ωcandidate

Resource Allocation: We implemented a greedy resource allocation algorithm.
LPBBF traverses all CCMs for each request r′ to find the one with the low-
est energy consumption. Compared with traditional algorithms, this algorithm
improves the constraint checking and the definition of “best fit”, making resource

190 X. Cao et al.

allocation more reasonable. As shown in lines 4 to 16 in Algorithm 2, travers-
ing all CCMs to get the policy with the lowest energy consumption under the
constraint conditions. Pruning is performed in lines 6–8 to improve algorithm
efficiency. If the CCD/CCU equipped with CCMi is not running and a candidate
policy is already generated, the later modules will not be traversed.

Constraint Check: In Algorithm 2, Constraint check (ConstraintCheck) is
an important step that requires checking the current computing capability and
bandwidth of CCRP to determine if the request can be fulfilled. The computing
capability is checked based on 11d. The remaining bandwidth of the CCUid and
CCDid where CCMid is located are judged according to 11e and 11f. If both
conditions are satisfied, the policy Ωtmp is valid.

5 Experiment

5.1 Experimental Setup

To verify the performance of the proposed method, we implemented the pro-
posed allocation method according to real ATCA devices. Each ATCA (CCD)
device was equipped with 1 CPU board and 4 Business boards (CCU), and Each
Business board is equipped with 8 FPGA (CCM)s that provide cryptographic
computation capabilities. The bandwidth of each FPGA is 10 Gbit/s, and that
of each CCU is 80 Gbit/s. Each CCD has 12 network ports whose bandwidth is
100 Gbit/s.

Table 1. Configurations supported by CCM

Configuration Cryptography Algorithm

SM2-sign SM2-verify SM3-hash SM4-enc SM4-dec

config-1 32 kpps 14 kpps 1 Gbps 7 Gbps 7 Gbps

config-2 16 kpps 7 kpps 4 Gbps 7 Gbps 7 Gbps

The offline analysis part of our method is implemented on a server, and after
the model is trained, it is deployed on the CPU board to provide services. CCM
supports two types of configurations, as shown in Table 1. In this paper, we used
Chinese cryptographic algorithms SM2, SM3 and SM4, and the FPGA used
Xilinx Kintex 7 XC7CK420T [2].

For the convenience of calculation, CCM’s energy consumption and comput-
ing capability are defined as a linear relationship:

Pm(R) =
∑
r∈R

P (r.algType, r.load, r.duT ime) (12)

P (k, l, t) = αk

t∑
i=0

li (13)

On-Demand Allocation of Cryptographic Computing Resource 191

For a given cryptographic request r, its algorithm type r.algType, job load
r.load, and running time r.duT ime determine the energy consumption, αk is the
energy consumation factor. We set the threshold of the trigger SMA algorithm
as 0.9.

5.2 Data Generate Method

To test the validity of the proposed method and compare it with the benchmark
method, we conducted experiments on simulated data sets.

According to the different types of users of cloud services, requests can be
divided into streaming media platforms, electronic invoice platforms, video mon-
itoring platforms, and government platforms. The required algorithm types and
load characteristics for each platform are shown in Table 2. We randomly gener-
ate request and load based on the above principle. 80% of the data is used for
offline analysis, and 20% is used to verify the allocation effectiveness. The load
collection interval is set to 1 min and the scheduling period is 1 day.

Table 2. Data Generate Principle

Platform Algorithm Description

Long video platform SM4 The load is high at night on
weekday and all day on
weekends

Short video platform SM4/SM2-sign Night, meal times, weekends
all day, and volatility

Electric invoice platform SM2-sign/SM2-verify/SM3 Meal time, higher average
load on weekends and
demand for inspection at
the end of the month

Video monitor platform SM4/SM3 Throughout the day,
relatively stable

Government platform SM4/SM3 worktime, the working
hours are stable

5.3 Accuracy of Load Prediction

We used the Silhouette coefficient to determine the optimal k value for the
Kshape algorithm. The results showed that the best clustering effect was
achieved when k was set to 8. We verified this experimentally using the elbow
method. In the random forest model, the input parameters are shown in Table 3.
To facilitate processing, we converted the IP addresses to integers. We also con-
sidered whether the service dates are weekends or special days, such as various
Shopping Festivals, Spring Festival, Labor Day and other holidays.

192 X. Cao et al.

Table 3. The input of the random forest algorithm.

attribute variable types descripition

weekend bool True indicates the weekend, false indicates not

spday enum Enumerate different special days (e.g. Spring
Festival)

ip numeric int IP address in decimal format

st time int Service start time, the minute from 00:00 of day

srv time int Service duration, expressed in minutes

alg type int Cryptography Algorithm type

alg cap max float Maximum computing capability required

alg cap min float Minimum computing capability required

alg cap avg float Average computing capability required

We compared the predicted load results with the actual load data, as shown
in Fig. 2. The comparison results demonstrate that we were able to predict the
load state accuracily.

5.4 Performance Comparison of Resource Allocation Algorithms

To demonstrate the universality of our approach, in addition to the LPBBF algo-
rithm, we also implemented a load prediction-based first fit algorithm (LPBFF)
based on the First Fit algorithm. We compared LPBBF and LPBFF with the
original Best Fit and First Fit algorithms under different CCRP algorithm con-
figurations. In order to reflect the difference in energy consumption of different
allocation policies, we take the energy consumption of FF as the benchmark,
and record the ratio of energy consumption brought by other allocation policies
to the benchmark energy consumption under different number of requests. The
results showed that both LPBBF and LPBFF can reduce energy consumption
by up to 20% compared to the original algorithms, as shown in Fig. 3.

Fig. 2. Comparison results between the predicted results and the raw load

In addition, we can see that with the increasing number of requests, there
are multiple cases in which the energy consumption ratio between the allocation

On-Demand Allocation of Cryptographic Computing Resource 193

algorithm based on load prediction and benchmark decreases significantly. This
is because when allocating computing resources, the traditional allocation algo-
rithm does not consider the load change, so the allocated resources are idle or
underused at some time, but cannot be allocated to new requests. As a result,
new equipment has to be started, which brings additional energy consumption.

Fig. 3. Comparison of energy consumption under different CCRP configurations

6 Conclusion

In this paper, we propose a novel approach for resource allocation in a cryp-
tographic computing resource pool (CCRP). We first model the CCRP to cap-
ture the underlying states of the resources. Based on this model, we design a
load prediction algorithm that combines time-series clustering and random for-
est techniques to accurately and quickly predict the load of cryptography service
requests. We then use a greedy algorithm to allocate resources based on the load
prediction results. To demonstrate the effectiveness of our approach, we imple-
ment two variants of the algorithm, Load Predicted Based Best Fit (LPBBF) and
Load Predicted Based First Fit (LPBFF), which improve energy efficiency by
up to 20% compared to Best Fit and First Fit algorithms under different CCRP
configurations. Our work provides a promising solution for efficient resource allo-
cation in the cryptographic computing resource pool.

Acknowledgements. This research is supported by National Key Research and
Development Program of China (No. 2019YFB2101700).

194 X. Cao et al.

References

1. Cloud encryttion market outlook (2023 to 2033). https://www.futuremarketi
nsights.com/reports/cloud-encryption-market. Accessed 19 Mar 2023

2. Xilinx kintex 7 FPGA product table. https://www.xilinx.com/products/silicon-
devices/fpga/kintex-7.html. Accessed 19 Mar 2023

3. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inf. Syst. 53, 16–38 (2015)

4. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. Found. Data Organ. Algorithms 46, 69–84 (1993)

5. Bakhtadze, N., Sakrutina, E.: Applying the multi-scale wavelet-transform to the
identification of non-linear time-varying plants. IFAC-PapersOnLine 49(12), 1927–
1932 (2016)

6. Chen, Z., Hu, J., Min, G., Luo, C., El-Ghazawi, T.: Adaptive and efficient resource
allocation in cloud datacenters using actor-critic deep reinforcement learning. IEEE
Trans. Parallel Distrib. Syst. 33(8), 1911–1923 (2021)

7. Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In: Zhang, C., Ma,
Y. (eds.) Ensemble Machine Learning: Methods and Applications, pp. 157–175.
Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7 5

8. Dambreville, A., Tomasik, J., Cohen, J., Dufoulon, F.: Load prediction for energy-
aware scheduling for cloud computing platforms. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE (2017)

9. Durgadevi, P., Srinivasan, S.: Resource allocation in cloud computing using SFLA
and cuckoo search hybridization. Int. J. Parallel Prog. 48, 549–565 (2020)

10. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. ACM SIGMOD Rec. 23(2), 419–429 (1994)

11. Feng, B., Ding, Z., Jiang, C.: FAST: a forecasting model with adaptive sliding
window and time locality integration for dynamic cloud workloads. IEEE Trans.
Serv. Comput. 16, 1184–1197 (2022)

12. Gao, J., Wang, H., Shen, H.: Machine learning based workload prediction in cloud
computing. In: 29th International Conference on Computer Communications and
Networks (ICCCN). IEEE (2020)

13. Gul, M.J., Urfa, G.M., Paul, A., Moon, J., Rho, S., Hwang, E.: Mid-term electricity
load prediction using CNN and bi-LSTM. J. Supercomput. 77, 10942–10958 (2021)

14. Ilager, S., Ramamohanarao, K., Buyya, R.: Thermal prediction for efficient energy
management of clouds using machine learning. IEEE Trans. Parallel Distrib. Syst.
32(5), 1044–1056 (2020)

15. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for
time series classification. Pattern Recogn. 44(9), 2231–2240 (2011)

16. Keogh, E.: An enhanced representation of time series which allows fast and accu-
rate classification, clustering and relevance feedback. In: Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining (1998)

17. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast
similarity search in large time series databases. In: Terano, T., Liu, H., Chen, A.L.P.
(eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 122–133. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45571-X 14

18. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping (2002)
19. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural net-

work and adaptive differential evolution. Futur. Gener. Comput. Syst. 81, 41–52
(2018)

https://www.futuremarketinsights.com/reports/cloud-encryption-market
https://www.futuremarketinsights.com/reports/cloud-encryption-market
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1007/3-540-45571-X_14

On-Demand Allocation of Cryptographic Computing Resource 195

20. Li, Y., Tang, X., Cai, W.: Dynamic bin packing for on-demand cloud resource
allocation. IEEE Trans. Parallel Distrib. Syst. 27(1), 157–170 (2015)

21. Li, Y., et al.: Towards minimizing resource usage with QoS guarantee in cloud
gaming. IEEE Trans. Parallel Distrib. Syst. 32(2), 426–440 (2020)

22. Liu, C., Li, K., Li, K.: Minimal cost server configuration for meeting time-varying
resource demands in cloud centers. IEEE Trans. Parallel Distrib. Syst. 29(11),
2503–2513 (2018)

23. Liu, N., et al.: A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE (2017)

24. Mäki, J.: Advanced telecom computing architecture. Innov. Telecommun. 78 (2006)
25. Meshkati, J., Safi-Esfahani, F.: Energy-aware resource utilization based on particle

swarm optimization and artificial bee colony algorithms in cloud computing. J.
Supercomput. 75(5), 2455–2496 (2019)

26. Nguyen, H.M., Kalra, G., Kim, D.: Host load prediction in cloud computing using
long short-term memory encoder-decoder. J. Supercomput. 75, 7592–7605 (2019)

27. Njilla, L.L., Kamhoua, C.A., Kwiat, K.A., Hurley, P., Pissinou, N.: Cyber secu-
rity resource allocation: a Markov decision process approach. In: 2017 IEEE 18th
International Symposium on High Assurance Systems Engineering (HASE). IEEE
(2017)

28. Oddi, G., Panfili, M., Pietrabissa, A., Zuccaro, L., Suraci, V.: A resource allocation
algorithm of multi-cloud resources based on Markov decision process. In: 2013 IEEE
5th International Conference on Cloud Computing Technology and Science (2013)

29. Paparrizos, J., Gravano, L.: k-shape: efficient and accurate clustering of time series.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data (2015)

30. Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal VNF placement via deep rein-
forcement learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun.
38(2), 263–278 (2019)

31. Rahmani, H., Sundararajan, E., Ali, Z.M., Zin, A.M.: Encryption as a service
(EaaS) as a solution for cryptography in cloud. Procedia Technol. 11, 1202–1210
(2013)

32. Robinson, P.: Cryptography as a service. RSAConference Europe 2013 (2013)
33. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector

machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)
34. Singh, A.K., Saxena, D., Kumar, J., Gupta, V.: A quantum approach towards the

adaptive prediction of cloud workloads. IEEE Trans. Parallel Distrib. Syst. 32(12),
2893–2905 (2021)

35. Song, B., Yu, Y., Zhou, Y., Wang, Z., Du, S.: Host load prediction with long
short-term memory in cloud computing. J. Supercomput. 74, 6554–6568 (2018)

36. Tang, L., Tan, Q., Shi, Y., Wang, C., Chen, Q.: Adaptive virtual resource allocation
in 5G network slicing using constrained Markov decision process. IEEE Access 6,
61184–61195 (2018)

37. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:
learning to cut. In: International Conference on Machine Learning. PMLR (2020)

38. Tavard, F., Simon, A., Hernandez, A.I., Betancur, J., Donal, E., Garreau, M.:
Dynamic time warping, pp. 198–203 (2012)

39. Tuli, S., Ilager, S., Ramamohanarao, K., Buyya, R.: Dynamic scheduling for
stochastic edge-cloud computing environments using A3C learning and residual
recurrent neural networks. IEEE Trans. Mob. Comput. 21(3), 940–954 (2020)

196 X. Cao et al.

40. Wang, W., Zhou, C., He, H., Wu, W., Zhuang, W., Shen, X.: Cellular traffic load
prediction with LSTM and gaussian process regression. In: ICC 2020-2020 IEEE
International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

41. Kou, W., Li, F.: Differentiated and negotiable mechanism for data communication.
J. Commun. 42(10), 55–66 (2021)

42. Yang, Y., Shen, H.: Deep reinforcement learning enhanced greedy optimization for
online scheduling of batched tasks in cloud HPC systems. IEEE Trans. Parallel
Distrib. Syst. 33(11), 3003–3014 (2021)

43. Zhu, H., Gupta, V., Ahuja, S.S., Tian, Y., Zhang, Y., Jin, X.: Network planning
with deep reinforcement learning. In: Proceedings of the 2021 ACM SIGCOMM
2021 Conference (2021)

Private Message Franking with After
Opening Privacy

Iraklis Leontiadis1(B) and Serge Vaudenay2

1 ZenGo, Tel Aviv, Israel
iraklis@zengo.com

2 LASEC, EPFL, Lausanne, Switzerland
serge.vaudenay@epfl.ch

Abstract. Grubbs et al. [11] initiated the formal study of message
franking protocols. This new type of service launched by Facebook, allows
the receiver in a secure messaging application to verifiably report to a
third party an abusive message some sender has sent. A novel crypto-
graphic primitive: committing AEAD has been initiated, whose func-
tionality apart from confidentiality and authenticity asks for a compact
commitment over the message, which is delivered to the receiver as part
of the ciphertext. A new construction CEP (Committing Encrypt and
PRF) has then been proposed, which is multi-opening secure and reduces
the computational costs for the sender and the receiver. In this paper we
provide a formal treatment of message franking protocols with minimum
leakage whereby only the abusive blocks are opened, while the rest non-
abusive blocks of the message remain private.

1 Introduction

We are witnessing the transition to a digital messaging society. Billions of users are
using messaging application to communicate with other end users. The majority
choose messaging applications over the Internet with no extra charging policy like
Facebook messaging, Whatsapp, Signal, Telegram, Viber, etc. The security goals
of messaging applications is end to end confidentiality and integrity: no intermedi-
ate party by observing exchanged transcripts over public or private channels can
compromise integrity or confidentiality. However, it seems that these are not the
only required security guarantees for secure messaging: A potential sender may
send illegal harassing content. Recently, Facebook introduced the notion of mes-
sage franking, which guarantees that when a sender sends a harassing message to
a receiver, the latter can verifiably report it to Facebook.

Facebook messaging protocol for message franking allows a receiver to ver-
ifiability open an abusive message to Facebook, without being able to report
fake messages. At a high level the protocol lies on an authenticated encryption
scheme AE to provide confidentiality and authenticity of the messages and on a
pseudorandom function (PRF), in order the sender to commit to the sent mes-
sage M . The PRF should enjoy the property of collision resistance in order to

I. Leontiadis—Work has been conducted while the author was affiliated with EPFL.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 197–214, 2023.
https://doi.org/10.1007/978-981-99-7356-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_12&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_12

198 I. Leontiadis and S. Vaudenay

avoid malicious openings of the sender to fake messages. Grubbs et al. [11] were
the first to formalize the security definition for message franking and showed
3 compositional designs following the Encode-then-Encipher [4], Encrypt-then-
Mac [4], Mac-then-Encrypt compositions, which are only single opening secure,
meaning that after the opening the confidentiality-integrity of the messages is
not preserved and the two users should share new keys. Those protocols need 5
passes over the message for encryption and decryption and 2 for verification.

Despite the valuable merits of those works, all those designs suffer from
intensive privacy leakage to the router: A sender sending a message M consisting
of abusive information is opened at its entire form to the router. However, it
might be the case the message itself holds private information the receiver does
not want to reveal to the router.

The problem arises from the treatment of messages as singleton objects dur-
ing the protocol execution. The entire message is given as input to the encryption
algorithm and the same message feeds the committing primitive–the PRF. As we
are in the symmetric setting, the internals of the encryption algorithm and the
committing primitive treat the messages as a set of blocks. As such, during the
opening procedure the receiver of a possible abusive message is obliged to open
the entire message–all the blocks. There is little freedom left to the receiver at
this point as private and abusive blocks will all be revealed to the router. For
example for an m-block message M : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 · · · bm

, let the green blocks (b5 . . . b10) consist the abusive information and the red ones
the private ones (b1 . . . b4, b11 . . . bm). Current message franking designs give up
privacy entirely for all the blocks. In this paper we seek to answer the follow-
ing question: Can we improve the privacy and subsequently the communication
complexity of a message franking protocol, after the open-report procedure to the
router by opening only the necessary blocks?

Contributions. The contributions of this work are as follows:

– We introduce a more realistic privacy definition for abusive message report
enhancing previous definitions, called After Opening Privacy AOP. Intu-
itively, AOP guarantees that if a message with |M |/n blocks, where n is
the block length in bits, consists of some α abusive blocks and some β non-
abusive ones, where α + β = |M |/n, then after the opening procedure the
confidentiality of the β private blocks is preserved.

– Finally, we design two private message franking protocols: CEP-AOP1 and
CEP-AOP2, which achieve the novel notion of after opening security AOP
(cf. Table 1).

2 PMF: Private Message Franking

2.1 Privacy Leakage with CEP

CEP [11] introduces an increased leakage of confidentiality for the non-abusive
message due to the way the protocol and the security games treat the entire

Private Message Franking with After Opening Privacy 199

Table 1. Comparison for EtE, EtM, MtE, CtE1, CtE2, CEP, HFC, CEP2, CEP-AOP1
and CEP-AOP2. AOP is for after opening privacy, MO stands for multi-opening secu-
rity, SB for sender binding and RB for receiver binding. The concrete numbers under
the protocol algorithms demonstrate the number of passes over the message. m denotes
the number of blocks for a message M and α ≤ m is the number of abusive blocks in
M .

Scheme AOP MO SB RB Enc Dec Verify

EtE [11] ✗ ✗ ✓ ✓ - - -
EtM [11] ✗ ✗ ✓ ✓ 2 + 1 2 + 1 2 + 1
MtE [11] ✗ ✗ ✓ ✓ 2 + 1 2 + 1 2 + 1
CtE1 [11] ✗ ✓ ✓ ✓ 3 + 1 3 + 1 1 + 1
CtE2 [11] ✗ ✓ ✓ ✓ 3 + 2 3 + 2 1 + 1
CEP [11] ✗ ✓ ✓ ✓ 2 + 1 2 + 1 1 + 1
HFC [7] ✗ ✓ ✓ ✓ 2 2 2
CEP-AOP1 ✓ ✓ ✓ ✓ 1 + m 1 + m α

CEP-AOP2 ✓ ✓ ✓ ✓ 1 + m 1 + m log m

message as a singleton object. Namely, each time a benign receiver R opens an
abusive message M̃ all the blocks {bi}|M |/n

i=1 are revealed to the router. A single
message though consists of multiple blocks of equal length n. Some α blocks of
them may render the entire message abusive, but the rest β, α + β = |M |/n
may need to be kept secret and not be open to the router. Moreover, opening
all blocks of a message such as attachments with multimedia content may be
unnecessary because only a small excerpt is needed to render the entire message
as abusive. Consequently when the entire message is opened communication
overhead is increased unreasonably. The current CEP construction does not treat
the message M as a set of blocks, rather operates during the opening procedure
at the entire M .

In our approach we first extend the current model for message franking in
order to adhere to the partial opening property, which protects the non-abusive
blocks from the abusive ones in one message M . Namely, we introduce a predicate
relationship R(), which takes as input a message M and outputs 1 whenever
the message contains abusive blocks and 0 otherwise. We also separate from
the decryption function Dec the opening functionality in a separate algorithm
Proof, which outputs a proof Π, demonstrating to a router that a message M
is considered as abusive, due to some blocks, which are opened to the router.
The latter verifies the proof calling the Verify algorithm which takes as input
the proof Π. More formally we define our new syntactical model for Committing
Nonce based Authenticated Encryption with Partial Opening in the following
subsection.

200 I. Leontiadis and S. Vaudenay

2.2 Committing Nonce Based Authenticated Encryption
with Partial Opening(CEPO)

A CEPO scheme consists of five algorithms (KGen,Enc,Dec,Proof,Verify), associ-
ated with a message space M ∈ Σ∗, a key space K ∈ Σ∗, a nonce space N ∈ Σ∗,
a header space H ∈ Σ∗, a ciphertext space C ∈ Σ∗, an opening space O ∈ Σ∗,
a franking space T ∈ Σ∗ and a proof space P ∈ Σ∗. The five algorithms are
defined as follows:

– k ←$ KGen(1λ): A randomized algorithm, which outputs a secret key k ∈ K,
on input a security parameter λ in its unary form.

– (C1, C2) ←$ Enc(k,H,N,M): The encryption algorithm, which is determin-
istic, takes as input a key, a header, a nonce and a message (k,H,N,M)
∈ (Σ∗)4 and outputs (C1, C2) ∈ C × T or ⊥. C1 will be usually referred to as
the ciphertext and C2 as the commitment.

– (skf ,M) ← Dec(k,H,N,C1, C2): The decryption algorithm Dec is a determin-
istic algorithm, which takes as input (k,H,N,C1, C2) ∈ (Σ∗)5 and outputs a
message M ∈ M with an opening key skf ∈ O, or ⊥.

– Π ← Proof(R,H,M, skf): This is a deterministic algorithm, which takes as
input (R,M,H, skf) ∈ (Σ∗)4 and outputs a proof Π ∈ P, which demonstrates
correctness of the predicate R on input the message M . The predicate R is
defined as follows:

R(M) =

⎧
⎪⎨

⎪⎩

1, B = (i, . . . , j) if ∃i, j ∈ [1 . . . m] s.t. bi, . . . bj = xi, . . . xj ,

xi ∈ {0, 1}n

0, otherwise

where b1 . . . bm are the blocks of the message M . The predicate returns 1 and
a set B of the indeces i, . . . j, whenever some blocks of the message bi, . . . bj

equal to some specific bitstrings xi, . . . xj , xi ∈ {0, 1}n which are regarded as
abusive. What is flagged as abusive is inherently implied in the protocol. It is
up to the choice of the receiver/router what it will be considered as abusive
and what not. A malicious receiver, who always opens blocks of a message
to the router, even if these are not flagged as abusive by the router is not
captured in the model, as this seems impossible to be enforced technically.

– 0, 1 ← Verify(H,Π, fk): This deterministic algorithm takes as input (H,Π, fk)
∈ (H × P × K) and outputs 1 if verification is successful and 0 otherwise.

We write Enck(·, ·, ·)[1] and Enck(·, ·, ·)[2] to denote C1 and C2 and accordingly
Deck(·, ·, ·, ·)[1],Deck(·, ·, ·, ·)[2] for skf and M .

A CEPO is correct if it adheres to 1)decryption correctness as in correctness
for encryption schemes: ∀(k,H,N,M) ∈ (K × H × N × M) it is true that:

Pr[Dec(k,H,N,Enck(H,N,M)
︸ ︷︷ ︸

C1,C2

)[2]

︸ ︷︷ ︸
M

= M] = 1

and 2) commitment correctness: if ∀(k,H,M) ∈ (K × H × M) it is true that:

Private Message Franking with After Opening Privacy 201

Pr[Verify(H,

Π
︷ ︸︸ ︷
Proof(R,H,M, skf), fk) = 1] = 1

where skf = Deck(H,N,Enck(H,N,M))[1].
Throughout the model for message franking as first captured [11] and instan-

tiated with the CEP protocol, the tasks performed by Facebook are omitted in
the model and during costs analysis. That is, the signing operation performed
by Facebook on C2 and on the metadata md = S‖R‖timestamp are discarded
in the protocol. We conjecture that this is due to the fact that Facebook at the
Verify algorithm always acts honestly and the cost for one extra signing and
verification operation is negligible. In our two protocols we enhance the model
to be more accurate with the existing API of Facebook, including an algorithm
called Process, which illustrates the tasks performed by a router when receiving
C1, C2 by the sender S.

With our two protocols CEP-AOP1 and CEP-AOP2 for message franking with
after opening privacy we enhance the privacy and the communication efficiency of
the current message franking protocols with after opening privacy : The message
is not treated as a singleton object, rather it is split in blocks and only the
abusive blocks are opened by the receiver R to the router. We present in the
next section the stronger privacy guarantee modeled with a cryptographic game.

2.3 After Opening Privacy

In order to enhance the security guarantees of messaging protocols with after
opening privacy, we introduce a game based definition for multi opening indis-
tinguishable partial openings (MO-IND-PO). Intuitively that security definition
guarantees the confidentiality of the closed blocks: those which did not open to
the router by the receiver R, when the latter blacklists a message M as abusive
due to some abusive blocks.

The game is presented in Fig. 1. We omit the explanation of the Enc and
Dec oracles since these are replicated directly from the confidentiality game
of the CEP scheme [11]. Apart from the Enc and Dec oracles, A has access
to the Proof oracle. That oracle takes as input the partial opening predicate
function R. The oracle first checks if the challenged pair of messages results in
the same predicate R evaluation to capture trivial attacks, whereby the adversary
A guesses correctly with probability 1 during the challenge. Namely A can open
some blocks of the message, which evaluate correctly the predicate R and verify
with the opening key (because the predicate of that message equals 1) which
message has been encrypted by the Challenge oracle. If the predicate evaluation
over the challenged messages M0 and M1 is equal then Proof oracle proceeds
with the decryption of the input tuple (H,N,C1, C2) to learn (skf ,M) and then
runs the Proof algorithm on input (R,H,M, skf) to learn the proof Π. Finally
it forwards Π to A.

When A decides to get challenged, it calls the Challenge oracle on input
(H,N,M0,M1, R), under the condition that the nonce N has not been queried

202 I. Leontiadis and S. Vaudenay

before, |M0| = |M1|, chall is empty and messages evaluate to the same output
on the predicate R. The challenger also checks whether the same nonce has
been given as input at any call to the Enc oracle and halts the game if so, to
avoid distinguishing attacks on the underlying authenticated encryption scheme.
Then it encrypts Mb and returns to A the ciphertext C1 with the tag C2. In
the indistinguishable flavor we say that the advantage of an adversary A while
playing the MO-IND-PO is the probability of A to output b′ = b at the end of
the game:

Advmo−ind−po
CEPO (A) = |Pr[MO-IND-PO(0) ⇒ 1] − Pr[MO-IND-PO(1) ⇒ 1]|

MO-IND-PO(b)
y ← ∅, k ←$ K
chall,Mchall ←⊥

b ←$ AEnc,Dec,Proof,Challenge

return b

Enc(H,N,M)
if N ∈ y then return ⊥
(C1, C2) ← Enck(H, N, M)

y ← y ∪ N

return C1, C2

Proof(R,H,N,C1, C2)
if Mchall =⊥ then

return ⊥
else

(skf , M) ← Dec(H, N, C1, C2)

Π ← Proof(R, H, M, skf)

return Π

Dec(H,N,C1, C2)
if (H, N, C1, C2) = chall then

return ⊥
(skf , M) ← Deck(H, N, C1, C2)

return (skf , M)

Challenge(H,N,M0,M1, R)
if (N ∈ y) ∨ (|M0| = |M1|) ∨ (chall =⊥)

∨ (R(M0) = 0) ∨ (R(M1) = 0) then

return ⊥
else

Mchall ← (M0, M1)

(C1, C2) ← Enck(H, N, Mb)

chall ← (H, N, C1, C2)

y ← y ∪ N

return C1, C2

Fig. 1. Game MO-IND-PO

After enhancing the privacy requirements of a message franking protocol
with the after opening privacy notion as formalized in the previous section we
can embark on our solution ideas. We first give a naive solution, which hides
the non-abusive messages, but introduces an increased communication complex-
ity. We call this protocol CEP-AOP1. We then present our optimized protocol
CEP-AOP2, and analyze its security in a formal way.

Private Message Franking with After Opening Privacy 203

3 Facebook Franking

Facebook franking protocol operates as follows Users run a key-agreement proto-
col for a common secret encryption key k. The key k is agreed following the SIG-
NAL protocol specifications [10]. It is out of the scope of the current manuscript
to communicate the details of the key exchange protocol, but we assume a secure
key exchange running between the sender S and the receiver R in order to agree
upon the symmetric key k. The sender S runs a key generation algorithm to gen-
erate an HMAC key skf and evaluates the HMAC on the concatenation M‖skf to
compute the image C2. It then encrypts M‖skf using an authenticated encryp-
tion algorithm Enc, which takes as input header data H as well and results in
C1. S forwards C1, C2 to Facebook, who in turn evaluates HMAC, keyed by fk on
C2‖md, where md ← S‖R‖time and sends a ← HMACfk(C2‖md), C1, C2 to the
receiver R. R uses its symmetric key k to decrypt C1 in M, skf and verifies the
correctness of C2 using skf and the HMAC. If everything is correct it accepts the
message M as valid. Later on, R decides to flag the message M as abusive. R to
convince Facebook that the message M sent by S is abusive sends to Facebook
(M, skf ,md, a). Facebook computes a′ ← HMACfk(HMACskf (M‖skf)‖md) and
verification is correct if a′ matches with a.

4 CEP-AOP1

4.1 Description

We consider as the basis for our message franking protocol with after opening
privacy the CEP construction [11], which achieves the multi-opening confiden-
tiality and integrity notions and needs less passes over the message, compared
with the compositional designs of Encode-then-Encipher [4], Encrypt-then-Mac
[4] and Mac-then-Encrypt. The privacy leakage of the CEP protocol occurs dur-
ing the opening phase. The receiver of a message thinking that it violates its
abusiveness limits, reports it in a verifiable manner to the router. Namely, the
router is exposed to the CEP-Verify(H,M, skf , C2) algorithm, which takes as
input the entire message M with the authentication tag key skf and the com-
mitment C2. The challenge is dual: First, the new protocol has to maintain the
receiver binding property for the abusive blocks of the message such as it cannot
faulty blame the sender for message that it did not send. In parallel, the router
after receiving the secret authentication tag key skf should not be able to com-
promise the blocks which have not be opened by R, while verifying the integrity
of the claimed as abusive by R blocks.

The shared encryption key k is never opened to the router. Consequently,
encryption and decryption algorithms are not altered. Our first solution principle
which is described in Fig. 2 works as follows:

204 I. Leontiadis and S. Vaudenay

Fig. 2. CEP-AOP1 algorithms

During encryption the sender S calls the nonce-based pseudorandom gen-
erator G1 with desired output size 2 mn, where m = |M |/n, for a block size
of n bits. The encryption as with the CEP scheme operates as a xor based one
time pad. The first blocks of randomness Pi, i ∈ [0 . . . m − 1] are used to key the
collision resistant PRF Fcr. Pi denotes the ith block of randomness of size n bits.

1 We use the same naming with [11] for the pseudorandom generator G introduced
as a nonce-based taking as input the nonce N , however the model is reminiscent to
pseudorandom generators with input as first introduced in [2] and later enhanced in
[8] with stronger security guarantee: robustness.

Private Message Franking with After Opening Privacy 205

The main difference with the CEP [11] scheme is that there is one tag per block
instead for one tag for the entire message in order to adhere to after opening
privacy of the non-abusive blocks. S forwards the encrypted ciphertect C1 and
the commitment C2 = ci

2[0 . . . m−1] to the router. The latter iterates over all the
tags, and computes one authentication tag ai per block using its own secret key
fk. Finally, the router forwards to R C1, C2 = ci

2[0 . . . m−1], ai[0 . . . m−1]. Upon
receipt of C1, C2 the router tags C2 with its private key fk and forwards C1, C2,
and the tags to the receiver R, with the CEP-AOP1-Process(S,R, C1, C2, fk)
algorithm. C1 is given as input to the algorithm even if is not used internally to
denote the fact that the router receives C1 from the sender S.

When the receiver R gets C1, C2 calls the CEP-AOP1-Deck(H,N,C1, C2)
algorithm to decrypt the message and check its integrity. It first parses the
ciphertext C1 and the commitment C2 as ci

2[0 . . . m− 1]. It then calls the nonce-
based pseudorandom generator on input the common agreed key k to produce
the pad P of size 2mn bits. Afterwards it parses the decrypted message M in
message blocks mi[0 . . . m − 1] and recomputes the tags c′i

2 , for i ∈ [0 . . . m − 1]
using as keys the pads Pm+i for the PRF : Fcr

Pm+i
.

R calls the CEP-AOP1-Proof(R,H,M,C2, skf) algorithm in order to provide
a proof to the router, demonstrating that some message M sent by the sender
S contains abusive blocks bi, i ∈ B indexed in the set B. The algorithm outputs
a proof consisting of the opening keys Pi, i ∈ B only for the abusive blockss
bi, i ∈ B. Finally the router verifies the correctness of the proof by calling the
CEP-AOP1-Verify(H,Π,C2) algorithm and checks whether the tags of abusive
blocks are consistent, using the opening keys Pi, i ∈ B to re-evaluate the collision
resistant PRF : Fcr.

4.2 Security Analysis

Theorem 1 (CEP-AOP1 Integrity). Let CEP-AOP1[F, G] be a CEP-AOP
scheme and a MO − nCTXT adversary A making at most q queries. Then
there exist adversaries B and C making each qPRG = qEnc + qDec + qChallenge and
qPRF = qEnc + qDec + qChallenge queries in time complexity t such that:

Advmo-nctxt2
CEP-AOP1(A) ≤ AdvprgG (B) +

m·q∑

j=1

AdvprfFcr (Cj)

Proof. Similarly with the integrity proof for the CEP2 protocol we assume with-
out loss of generality that all queries (H,N,C1, C2) to the Dec oracle are in the
y list or that N ∈ l. Otherwise we can use the Challenge oracle. The game halts
also as soons as win = true. Let G0 be the original game MO-nCTXT2 and G1

is equivalent with G0 except that calls G are replaced with strings of the same
size 2nm from a random function R. Then, it holds:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + AdvprgG (B) (1)

where AdvprgG (B) is the advantage of an adversary B to distinguish truly random
string from R from pseudorandom strings from G making qPRG = qEnc + qDec +
qChallenge queries in time complexity t.

206 I. Leontiadis and S. Vaudenay

We enumerate the pairwise different nonces Nj , j = 1 . . . q ·m as they appear
in the oracle queries. We let J be the index of the nonces appeared in Challenge
query and made win switch to true. Notice that compared with CEP2, enumer-
ation of nonces goes for each different key stream Pi, i = 1 . . . m, for each block
bi. We let q queries for each different key stream. Then we have that:

Pr[G1 ⇒ 1] =
q·m∑

j=1

Pr[G1 ⇒ 1 : J = j] (2)

A wins the MO-nCTXT2 game only if it manages to present a tuple
(H,N,C1, C2) to the Challenge oracle without having queried the Dec oracle
to avoid the trivial attack given by [11]. For each Nj , j ∈ [1, . . . q], we define
adversaries Cj against the universal unforgeability on chosen messages against
the collision resistance pseudorandom function Fcr keyed by Pj , j ∈ [1 . . . m]. We
make Cj abort if Nj is queried to the Dec oracle. Thus:

Pr[G1 ⇒ 1] ≤ Advuf−cma
Fcr (Cj) (3)

Finally from (4), (5), (6) and accumulating the distinguishing probabilities
of A against the MO-nCTXT2 game we have:

Advmo-nctxt2
CEP-AOP1(A) ≤ AdvprgG (B) +

m·q∑

j=1

AdvprfFcr (Cj).

�
Theorem 2 (CEP-AOP1 Confidentiality). Let CEP-AOP1[F, G] be a
CEP-AOP scheme and a MO-nRoR adversary A making at most q =
qEnc, qDec, qChallenge queries with time complexity t. Then there exist adversaries B
making qPRG = qEnc + qDec + qChallenge and C making qPRG = qEnc + qDec + qChallenge
queries in time complexity t each, such that:

Advmo−nror
CEP-AOP1(A) ≤ 2 · Advmo-nctxt2

CEP-AOP1(B) + m · AdvprfFcr (C)

Proof. Let G0 be the MO-nREAL game. We change G0 in G1 as with the con-
fidentiality proof for CEP2. We introducing y, l lists and win variable as in the
MO-nCTXT2 game and by making G1 abort if win = true. Then it holds that:

Advmo−nror
CEP-AOP1(A) ≤ AdvG1

(A) + 2 · Advmo-nctxt2
CEP-AOP1(B)

In G1 we are ensured that the nonce N submitted to the Challenge oracle is
never submitted to the Dec oracle but to return ⊥. Then we can reduce to the
PRF game such that AdvG1

(A) = m · AdvprfFcr (C).
Finally it holds that:

Advmo−nror
CEP-AOP1(A) ≤ 2 · Advmo-nctxt2

CEP-AOP1(B) + m · AdvprfFcr (C)

�

Private Message Franking with After Opening Privacy 207

Theorem 3 (CEP-AOP1 After Opening Privacy). Let CEP-AOP1[F, G]
be a CEP-AOP scheme and a MO-IND-PO adversary A making q =
(qEnc, qDec, qProof , qChallenge) queries in time complexity t. Then there exist adver-
saries B and C making each qPRG = qEnc + qDec + qChallenge + qProof and qPRF =
qEnc + qDec + qChallenge + qProof queries in time complexity t such that:

Advmo-ind-po
CEP-AOP1(A) ≤ Advmo−nror

CEP-AOP1(B) + m · AdvprfFcr (C)

Proof. Let game G0 be identical with the MO-IND-PO game.
In game G1 we substitute y with y0 and we introduce y1 similarly with the

confidentiality game MO-nRoR. Whenever MO-nRoR halts G0 also halts. In the
Challenge oracle A submits messages M0 and M1 such that (N
∈ y0) ∧ (|M0| =
|M1|)∧(chall =⊥)∧(R(M0) = 1)∧(R(M1) = 1). Whenever b = 0 in the Challenge
of G1 the game returns to A (C1, C2) ← Enck(H,N,M0). When b = 1 G1 runs
(C1, C2) ← Enck(H,N, {0, 1}|M |). Thus:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + Advmo−nror
CEP-AOP1(B)

A can also win the MO-IND-PO game if she manages to forge C2 in order to
issue a chal = (H,N,C1, C

′
2) tuple in the Dec oracle, bypass the check, decrypt

the chal query and distinguish with non negligible probability.
Finally it holds:

Advmo-ind-po
CEP-AOP1(A) ≤ Advmo−nror

CEP-AOP1(B) + m · AdvprfFcr (C)

�

Sender binding is guaranteed as long as decryption algorithm Dec decrypts
correctly: it outputs the correct message M or ⊥ when there is an error, and
Verify run by an honest router.

Theorem 4 (CEP-AOP1 Receiver Binding). Let CEP-AOP1 be a message
franking scheme andA an adversary against r-BIND with time complexity t. Then,
there exists an adversary B finding a collision of Fcr with time complexity t:

Advr−bind
CEP-AOP1(A) ≤ m · AdvcrFcr (B)

Proof (Sketch). B runs A until the latter outputs a tuple {((H, bi, skf),
(H ′, b′

i, skf
′), C2)}i∈B , whereby the r-BIND game outputs 1. That is,

Verify(H, bi, skf , C2) = Verify(H ′, b′
i, skf , C2) = 1 ⇒ Fcr

skf
(H‖bi)′ = Fcr

skf
(H ′‖b′

i)
for some i′s ∈ B, thus a valid collision of Fcr. The maximum value of B equals
the number of blocks m, thus

Advr−bind
CEP-AOP1(A) ≤ m · AdvcrFcr (B)

�

208 I. Leontiadis and S. Vaudenay

4.3 Shortcomings for CEP-AOP1

For each encrypted message the sender S is willing to send to the receiver R
through the router, S has to call a pseudorandom generator G in order to extract
2nm bits of randomness. mn bits are used as a one time pad encryption of the
m blocks of the message M and the rest mn are used to key the Fcr call for
every block. Whenever R reports to the router the abusive blocks bi, i ∈ B it
has to communicate the opening keys for the β PRF evaluations of the collision
resistant pseudorandom function Fcr.

In CEP-AOP1, the cost of the router is not negligible: The router receives
m tags ci

2, i ∈ [1 . . . m] for a single message M and has to sign with its private
signing key fk all ci

2 tags and then verify the authentication tags on β presumably
abusive blocks on top of the individual PRF evaluation with the opening keys,
as received by R.

In the following section we design and analyze our final protocol dubbed
CEP-AOP2, which reduces the computation complexity at the router side and
the communication cost between S and the router. Namely, the router is required
to perform only one signing operation per message and still adhere to AOP,
independently on the number of the blocks at each message M and S sends one
commitment for all blocks. At the same time R can select the abusive blocks
and keep the rest privy to the router, allowing him to verify only the validity
of the abusive ones. For our protocol we exploit the Merkle Hash Tree (MHT),
which acts as a signature over all the blocks, with efficient verification of a
subset of leaves, without requiring the opening of the rest leaves for verification,
thus adhering to AOP. Despite the increased computation cost the receiver is
now charged for the computation of the Merkle tree, we conjecture that in a
messaging application senders are dynamic but the router remains the same. As
such, the overall computation workload cost per party is decreased.

5 CEP-AOP2

For the CEP-AOP2 protocol we make use of a Merkle Tree structure. The MHT(l)
algorithm computes the Merkle tree for the data vector l and outputs its root
rtl. A prover who claims membership of data element lx runs the ProveMT(x, l)
algorithm and sends the authentication path aplx to the verifier. A verifier can
check the correctness of the authentication path with respect to the membership
of the element lx in l by recomputing the Merkle tree based on the authentication
path aplx running the CheckPath algorithm.

5.1 Description

CEP-AOP2 (cf. Fig. 3) operates as follows. Similarly with CEP-AOP1 the sender
S encrypts its message M with the CEP-AOP2-Enck(H,N,M) algorithm by
choosing a sequence of 2nm random blocks. The first nm bits are used to encrypt
m blocks of size n bits each. The rest are used to key a collision resistance

Private Message Franking with After Opening Privacy 209

Fig. 3. CEP-AOP2 algorithms

PRF,Fcr. In contrast with CEP-AOP1, CEP-AOP2 forwards to the router C1

and the root rtC2 of a Merkle tree constructed over the tags ci
2[0 . . . m − 1].

That is, as leaves we consider the evaluation of a PRF on each message block
with different keys and the tree is constructed using a collision resistant hash
function H. That drastically reduces the router costs as it only tags with its secret
key only one element at the Process algorithm: the root rtC2 of the Merkle tree,
which authenticates the tags ci

2[0 . . . m − 1]. Process similarly with CEP-AOP1
takes as input the ciphertext C1 even if it is not processed to show that the S
forwards C1 to the router which handles it to R.

210 I. Leontiadis and S. Vaudenay

During decryption the CEP-AOP2-Deck(H,N,C1, C2) algorithm reproduces
the same sequence of random blocks and uses them to decrypt C1 and to recon-
struct the Merkle tree. If the computed new root rt′C2

agrees with rtC2 , R
accepts the message M as valid, otherwise it halts the procedure. If R con-
siders some of the blocks bi[i ∈ B] as abusive, then it forwards them to the
router, along with the opening keys skf = Pm+i, i ∈ B and the sibling path
ap corresponding to the abusive block indexes. The router in turn, with the
CEP-AOP2-Verify(H, bi, skf , C2) algorithm reevaluates the PRF using the open-
ing keys and verifies that those leaves with the sibling path ap correctly verify
the Merkle tree.

5.2 Security Analysis

Theorem 5 (CEP-AOP2 Integrity). Let CEP-AOP2[F, G] be a CEP-AOP
scheme and a MO − nCTXT adversary A making at most q queries and H
is a collision resistant hash function. Then for adversaries B, C :

Advmo-nctxt2
CEP-AOP2(A) ≤ AdvprgG (B) +

m·q∑

j=1

AdvprfFcr (Cj)

Theorem 6 (CEP-AOP2 Confidentiality). Let CEP-AOP = CEP-AOP2[F, G]
be a CEP-AOP scheme, H is a collision resistant hash function and a MO-nRoR
adversary A making at most q = qEnc, qDec, qChallenge queries with time complexity
t. Then there exist adversaries B making qPRG = qEnc + qDec + qChallenge and C
making qPRG = qEnc+qDec+qChallenge queries in time complexity t each, such that:

Advmo−nror
CEP-AOP2(A) ≤ 2 · Advmo-nctxt2

CEP-AOP2(B) + m · AdvprfFcr (C)

Theorem 7 (CEP-AOP2 After Opening Privacy). Let CEP-AOP =
CEP-AOP2[F, G] be a CEP-AOP scheme, H is a collision resistant hash func-
tion and a MO-IND-PO adversary A making q = (qEnc, qDec, qProof , qChallenge)
queries in time complexity t. Then there exist adversaries B and C making each
qPRG = qEnc + qDec + qChallenge + qProof and qPRF = qEnc + qDec + qChallenge + qProof
queries in time complexity t such that:

Advmo-ind-po
CEP-AOP2(A) ≤ Advmo−nror

CEP-AOP2(B) + m · AdvprfFcr (C)

Sender binding is guaranteed as long as decryption algorithm Dec decrypts
correctly: it outputs the correct message M or ⊥ when there is an error, and
Verify run by an honest router.

Private Message Franking with After Opening Privacy 211

Theorem 8 (CEP-AOP2 Receiver Binding). Let CEP-AOP2 be a message
franking scheme and A an adversary against r-BIND with time complexity t and
H is a collision resistant hash function. Then, there exists an adversary B finding
a collision of Fcr with time complexity t:

Advr−bind
CEP-AOP2(A) ≤ m · AdvcrFcr (B)

The proofs of the theorems follow are akin to the CEP-AOP1 proofs and are
defered in the appendix section.

6 Related Work

After Facebook launched their message franking protocol [10] on Facebook Mes-
senger [9], Grubbs et al. [11] initiated a formal study for verifiable report on
abusive messages. However the notion of achieved privacy excludes the con-
fidentiality of non-abusive blocks. A work by Dodis et al. [7] proposes a new
committing AEAD scheme with only two passes as in CEP2, but confidential-
ity is based on the non-standard related-key-attack resistance of the underlying
PRF. [14] pioneered the study of message franking in an asymmetric setting
whereby contradictory security definitions of deniability and message franking
can co-exist in existence with anonymity guarantees. [12] designed a message
franking channel from a tweakable block cipher and [15] proposed a forward
secure message franking scheme. [6] suggested a scheme similarly to our private
message franking model using vector commitments. Recent work proposes new
models for committing authenticated encryption schemes [5] and designs [3] new
schemes based on AES-GCM and AES-GMC-SIV. Finally some related work
[1,13] demonstrated how deployed AEAD schemes which are non-committing
can be abused to violate privacy of a scheme in various ways.

A Proofs

Proof. (Theorem 1) Similarly with the integrity proof for the CEP2 protocol we
assume without loss of generality that all queries (H,N,C1, C2) to the Dec oracle
are in the y list or that N ∈ l. Otherwise we can use the Challenge oracle. The
game halts also as soons as win = true. Let G0 be the original game MO-nCTXT2
and G1 is equivalent with G0 except that calls to G are replaced with strings of
the same size 2nm from a random function R. Then, it holds:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + AdvprgG (B) (4)

where AdvprgG (B) is the advantage of an adversary B to distinguish truly random
string from R from pseudorandom strings from G making qPRG = qEnc + qDec +
qChallenge queries in time complexity t.

212 I. Leontiadis and S. Vaudenay

We enumerate the pairwise different nonces Nj , j = 1 . . . q ·m as they appear
in the oracle queries. We let J be the index of the nonces appeared in Challenge
query and made win switch to true. Notice that compared with CEP2, enumer-
ation of nonces goes for each different key stream Pi, i = 1 . . . m, for each block
bi. We let q queries for each different key stream. Then we have that:

Pr[G1 ⇒ 1] =
q·m∑

j=1

Pr[G1 ⇒ 1 : J = j] (5)

A wins the MO-nCTXT2 game only if it manages to present a tuple
(H,N,C1, C2) to the Challenge oracle without having queried the Dec oracle
to avoid the trivial attack given by [11]. For each Nj , j ∈ [1, . . . q], we define
adversaries Cj against the universal unforgeability on chosen messages against
the collision resistance pseudorandom function Fcr keyed by Pj , j ∈ [1 . . . m]. We
make Cj abort if Nj is queried to the Dec oracle. Thus:

Pr[G1 ⇒ 1] ≤ Advuf−cma
Fcr (Cj) (6)

Finally from (4), (5), (6) and accumulating the distinguishing probabilities
of A against the MO-nCTXT2 game we have:

Advmo-nctxt2
CEP-AOP1(A) ≤ AdvprgG (B) +

m·q∑

j=1

AdvprfFcr (Cj).

�

Sender binding is guaranteed as long as decryption algorithm Dec decrypts cor-
rectly: it outputs the correct message M or ⊥ when there is an error, and Verify
run by an honest router.

Proof. (Theorem 2) Let G0 be the MO-nREAL game. We change G0 in G1 as
with the confidentiality proof for CEP2. We introduce y, l lists and win variable
as in the MO-nCTXT2 game and make G1 abort if win = true. Then it holds
that:

Advmo−nror
CEP-AOP1(A) ≤ AdvG1

(A) + 2 · Advmo-nctxt2
CEP-AOP1(B)

In G1 we are ensured that the nonce N submitted to the Challenge oracle is
never submitted to the Dec oracle but to return ⊥. Then we can reduce to the
PRF game such that AdvG1

(A) = m · AdvprfFcr (C).
Finally it holds that:

Advmo−nror
CEP-AOP1(A) ≤ 2 · Advmo-nctxt2

CEP-AOP1(B) + m · AdvprfFcr (C)

�

Private Message Franking with After Opening Privacy 213

Proof. (Theorem 3) Let game G0 be identical with the MO-IND-PO game.
In game G1 we substitute y with y0 and we introduce y1 similarly with the

confidentiality game MO-nRoR. Whenever MO-nRoR halts G0 also halts. In the
Challenge oracle A submits messages M0 and M1 such that (N
∈ y0) ∧ (|M0| =
|M1|)∧(chall =⊥)∧(R(M0) = 1)∧(R(M1) = 1). Whenever b = 0 in the Challenge
of G1 the game returns to A (C1, C2) ← Enck(H,N,M0). When b = 1 G1 runs
(C1, C2) ← Enck(H,N, {0, 1}|M |). Thus:

Pr[G0 ⇒ 1] ≤ Pr[G1 ⇒ 1] + Advmo−nror
CEP-AOP1(B)

A can also win the MO-IND-PO game if she manages to forge C2 in order
to issue a chal = (H,N,C1, C

′
2) tuple in the Dec oracle, bypasses the check,

decrypts the chal query and distinguishes with non negligible probability.
Finally it holds:

Advmo-ind-po
CEP-AOP1(A) ≤ Advmo−nror

CEP-AOP1(B) + m · AdvprfFcr (C)

�

Proof. (Theorem 4)[Sketch] B runs A until the latter outputs a tuple
{((H, bi, skf), (H ′, b′

i, skf
′), C2)}i∈B , whereby the r-BIND game outputs 1. That

is, Verify(H, bi, skf , C2) = Verify(H ′, b′
i, skf , C2) = 1 ⇒ Fcr

skf
(H‖bi)′ =

Fcr
skf

(H ′‖b′
i) for some i′s ∈ B, thus a valid collision of Fcr. The maximum value

of B equals the number of blocks m, thus

Advr−bind
CEP-AOP1(A) ≤ m · AdvcrFcr (B)

�

References

1. Albertini, A., Duong, T., Gueron, S., Kolbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. In: Butler,
K.R.B., Thomas, K. (eds.), 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, 10–12 August 2022, pp. 3291–3308. USENIX Association
(2022)

2. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to /dev/random. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, CCS ’05, New York, NY, USA, pp.
203–212. ACM (2005)

3. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. Lecture
Notes in Computer Science, vol. 13276, pp. 845–875. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3 29

https://doi.org/10.1007/978-3-031-07085-3_29

214 I. Leontiadis and S. Vaudenay

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

5. Chan, J., Rogaway, P.: On committing authenticated-encryption. In: Atluri, V., Di
Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security-ESORICS 2022. Lec-
ture Notes in Computer Science, vol. 13555, pp. 275–294. Springer, Cham (2022)

6. Chen, L., Tang, Q.: People who live in glass houses should not throw stones: tar-
geted opening message franking schemes. IACR Cryptol. ePrint Arch., 994 (2018)

7. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

8. Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security analy-
sis of pseudo-random number generators with input: /dev/random is not robust.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’13, New York, NY, USA, pp. 647–658. ACM (2013)

9. Facebook. Facebook messenger. https://www.messenger.com/
10. Facebook. Messenger secret conversations technical whitepaper (2016). https://

fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.
pdf

11. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

12. Hirose, S., Minematsu, K.: Compactly committing authenticated encryption using
encryptment and tweakable block cipher. IACR Cryptol. ePrint Arch., 1670 (2022)

13. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M.,
Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021,
USENIX Association, 11–13 August 2021, pp. 195–212 (2021)

14. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: content moderation for metadata-private end-to-end encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 222–250. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 8

15. Yamamuro, H., Hara, K., Tezuka, M., Yoshida, Y., Tanaka, K.: Forward secure mes-
sage franking. In: Park, J.H., Seo, S.H. (eds.) Information Security and Cryptology-
ICISC 2021. Lecture Notes in Computer Science, vol. 13218, pp. 339–358. Springer,
Cham (2021). https://doi.org/10.1007/978-3-031-08896-4 18

https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-031-08896-4_18

Semi-Honest 2-Party Faithful Truncation
from Two-Bit Extraction

Huan Zou1,2, Yuting Xiao1, and Rui Zhang1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{zouhuan,xiaoyuting,r-zhang}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. As a fundamental operation in fixed-point arithmetic, trun-
cation can bring the product of two fixed-point integers back to the fixed-
point representation. In large-scale applications like privacy-preserving
machine learning, it is essential to have faithful truncation that accu-
rately eliminates both big and small errors. In this work, we improve
and extend the results of the oblivious transfer based faithful truncation
protocols initialized by Cryptflow2 (Rathee et al., CCS 2020). Specifi-
cally, we propose a new notion of two-bit extraction that is tailored for
faithful truncation and demonstrate how it can be used to construct an
efficient faithful truncation protocol. Benefiting from our efficient con-
struction for two-bit extraction, our faithful truncation protocol reduces
the communication complexity of Cryptflow2 from growing linearly with
the fixed-point precision to logarithmic complexity.

This efficiency improvement is due to the fact that we reuse the inter-
mediate results of eliminating the big error to further eliminate the small
error. Our reuse strategy is effective, as it shows that while eliminating
the big error, it is possible to further eliminate the small error at a min-
imal cost, e.g., as low as communicating only an additional 160 bits in
one round.

Keywords: Secure two-party computation · Secure truncation · Bit
extraction

1 Introduction

Secure 2-Party Computation (2PC) allows two parties to compute an arbitrary
function of their inputs without revealing anything about them, except for what
can be deduced from the function output. When applying 2PC protocols to
enhance the privacy of applications analyzing numerical data, such as privacy-
preserving machine learning (PPML), an immediate challenge is to overcome
the data representation mismatch between the application and the 2PC crypto-
graphic protocols. Typically, the application represents data as float type, while
the cryptographic protocols encode the data as big integers.

To address this challenge, two approaches have been adopted: (1) Floating-
point arithmetic [20], first encodes a floating-point number as a tuple of four
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 215–234, 2023.
https://doi.org/10.1007/978-981-99-7356-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_13&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_13

216 H. Zou et al.

integers, then emulates the floating-point addition and multiplication with the
four integers; (2) Fixed-point arithmetic, first discretizes a floating-point number
to a fixed precision 2−s, scales the discretized number by 2s to be an l-bit signed
integer, and encodes this signed integer into the ring Z2l . For better efficiency,
most prior works [8,16,17,19,21] based on the fixed-point arithmetic. In this
work, we also focus on fixed-point arithmetic.

Truncation is Required After Fixed-Point Integer Multiplication.
When multiplying two fixed-point integers a and b which have been both scaled
by 2s, their product c = a · b will be scaled by 22s. To bring c back to the
fixed-point representation of scaling by 2s, we need to execute “truncation” (i.e.,
a divide-by-2s protocol). Informally, the truncation functionality takes as input
the additive shares c0, c1 of c (i.e., c0 + c1 = c), and returns the additive shares
of c′, where c′ is supposed to be c

2s .

Faithful Truncation and Truncation Errors. Faithful truncation means
that the output shares of c′ make the equation c′ = c

2s hold with probability
1. Otherwise, it is “probabilistic”. Probabilistic truncation introduces the small
error and big error. When the small error occurs, c

2s − c′ = 2−s. The occurrence
probability of this error is roughly 1

2 . When the big error occurs, there is a sign
bit flipping issue. That is, if c is a positive number, then c′ is negative, and vice
versa. The big error’s occurrence probability depends on the magnitude of c.
The larger magnitude c has, the more likely that the big error will occur [17].

Faithful Truncation is Necessary for Large-Scale Applications. Intu-
itively, one approach to reduce the occurrence probability of the big error as
well as minimize the effect of the small error is to increase the computation
modulus (i.e., increase the big length l of the encoded data) [16,19]. However,
this also leads to increased computation and communication costs in the 2PC
protocols [7].

In particular, it is unclear whether increasing computation modulus works
for large-scale applications like PPML, where billions of truncation operations
are performed. That implies the small error will be accumulated billions of times
and the big error is almost certain to occur. Indeed, multiple recent works have
shown that additional steps are required to eliminate the big error for training
large models [7,12,21], and correct 2PC implementation of the cleartext fixed-
point execution is necessary [21]. Therefore, there is a need for efficient faithful
truncation protocols that can eliminate both big and small errors.

Prior Works on Eliminating the Truncation Errors. Cryptflow2 [21],
Cheetah [12], [BCG+21] [4] and LLAMA [10] have developed their truncation
protocols based on the unsigned integer comparison problem (also known as
the millionaire problem). To achieve faithful truncation, these protocols invoke
two comparison instances—one for eliminating the big error and the other for
eliminating the small error.

[BCG+21] [4] and LLAMA [10] construct their comparison protocols from
function secret sharing [5] and enjoy attractive online communication complexity
(i.e., each party sends 1 element) as well as round complexity (i.e., 1 round).

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 217

However, they require a prohibitively expensive offline phase, which can be made
efficient with a trusted dealer.

Cryptflow2 [21] and Cheetah [12] construct logarithm rounds comparison
protocols from the oblivious transfer (OT) and can be implemented efficiently
without a trusted dealer by utilizing fast OT extensions [13,14,23]. Cheetah
makes use of the advent of silent OT extension built on vector oblivious linear
evaluation [23], while Cryptflow2 instantiates OT using the classical IKNP-style
OT extension [13,14]. Furthermore, depending on their applications, Cheetah
only eliminates the big error while Cryptflow2 achieves faithful truncation elim-
inating both the big error and small error.

1.1 Our Contributions

We continue the study of efficient faithful truncation construction. We improve
and extend previous results from Cryptflow2 [21] in several directions.

New Observation. Given an l-bit secret x, we found that acquiring the boolean
shares of its l-th bit x[l] and (s + 1)-th bit x[s + 1], confers a significant degree
of simplification upon the task of faithfully truncating x by s bits. With the
boolean shares of x[l], the parties can recognize the sign bit flipping issue and
thus, address the resultant big error. The boolean shares of x[s + 1] enable the
parties to determine whether a carry-out is generated by the least significant s
bits being chopped off, which can mitigate the resultant small error.

New Building Functionality 2Bit-Extr for Faithful Truncation. Based on
our new observation, we propose a new functionality F l,s

2Bit-Extr for two-bit extrac-
tion. This functionality is a special form of bit decomposition, and extends the
functionality F l

Bit-Extr for bit extraction [16]. Instead of a single bit, F l,s
2Bit-Extr

simultaneously decomposes two bits—the MSB (i.e., the most significant bit)
and the s-th bit of x ∈ Z2l into their respective binary form.

We also propose a protocol that securely realizes faithful truncation F l,s
Trunc

in the (F l
B2A, FOT, F l,s+1

2Bit-Extr)-hybrid model.

F l,s
Trunc

F l
B2A + FOT+ F l,s+1

2Bit-Extr F l
B2A + F int,l

DReLU + Fs
MILL + FOT

F l
Bit-Extr+Fs+1

Bit-Extr

“trivial construction”

Fcombine + FOT

“improved construction”

Sec. 4.2 Algorithm 5 in [21]

Sec. 3.2 Sec. 3.3

† An arrow A → B means that there exists a protocol realizes the functionality B by using the functionality A
as subroutine.

‡ Thick arrows indicate our constructions. Thin arrows indicate the known or trivial constructions. The texts
in gray shadowed highlight our new functionality.

Fig. 1. Comparing our faithful truncation construction with Cryptflow2’s [21]

218 H. Zou et al.

Table 1. Comparing the concrete efficiency of OT-based truncation protocols

Application Protocol S-Err B-Err Comm. (bits) Round

Truncate an
l-bit string
by s bits

Cheetah‡ [12] ✗ ✓ ≈ λl �log l�
Cryptflow2 [21] ✓ ✓ ≈ λl + λs + λ + l �log l� + 1

Trivial† ✓ ✓ ≈ 3λl + 3λs �log l� + 3

This work ✓ ✓ ≈ λl + λ + l + k,
k ∈ [0, 2λ�log � s−1

4
��)

�log l� + 1

Truncation
example
l = 32, s = 16

Cheetah‡ [12] ✗ ✓ 4224 5

Cryptflow2 [21] ✓ ✓ 6093 6

Trivial† ✓ ✓ 19164 8

This work ✓ ✓ 4384 6
� Symbol ✓/✗ means that the protocol eliminates/admits the small error (S-Err) (resp., big
error (B-Err)). Results regarding this work assume the two optimizations in Sect. 3.3 are used.
The protocol parameter m is set to be 4 for this work and for [21]. We use the security parameter
λ = 128 to calculate the communication bits.
‡ For fair comparison, we assume [12] used the same IKNP-style OT extension [14] to realize
FOT as Crypflow2.
† The trivial protocol refers to constructing a faithful truncation protocol from Fl,s+1

2Bit-Extr
(Sect. 4.2), while Fl,s+1

2Bit-Extr is realized by trivially invoking two instances of bit extraction [16].

New Construction to Realize 2Bit-Extr. We first propose a trivial proto-
col that realizes F l,s+1

2Bit-Extr by making two calls to F l
Bit-Extr and Fs+1

Bit-Extr for
extracting the MSB and (s + 1)-th bit of x, respectively. However, we observe
that the inputs of the two calls are dependent and some intermediate results are
shared, such that it is not necessary to compute them twice. We then propose a
more efficient protocol by packing up the two calls. In particular, the protocol
first extracts the MSB, then further extracts the (s + 1)-th bit by reusing those
intermediate results that have been computed in the MSB extraction.

We summarize the faithful truncation constructions mentioned above in
Fig. 1, and compare their concrete efficiency in Table 1. Compared with the state-
of-the-art Cryptflow2 [21] whose communication complexity grows linearly with
the fixed-point precision s, the communication complexity of our protocol is
logarithm in s. When l = 32, s = 16, our protocol only communicates 72% of
the bits of Cryptflow2. Given that truncation is as fundamental as multiplica-
tion in fixed-point arithmetic, our improvement in communication efficiency can
have a significant impact on large-scale applications like PPML, where billions
of truncation operations may be involved.

We note that we achieve efficiency improvement by adopting an interme-
diate result reuse strategy for efficient two-bit extraction construction, which
eliminates redundancies present in existing constructions. In Table 1, we also
compare our protocol with Cheetah [12], which only eliminates the big error.
Our comparison suggests that while focusing on eliminating the big error, a
small additional cost (as small as communicating λ + l bits in one round) can
be paid to further remove the small error, where λ is the security parameter.
For example, when the fixed-point precision s is set to be 16 (which is typically
used by privately training large machine learning models [7]), our protocol fur-

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 219

ther removes the small error by communicating only an additional 160 bits than
Cheetah.

1.2 Organization

Section 2 introduces notations, definitions, and primitives used in this work.
Section 3 describes the functionality and construction of our proposed notion
of two-bit extraction. Section 4 elaborates on faithful truncation and trunca-
tion errors, and presents our faithful truncation protocol built from the two-
bit extraction. In Sect. 5, we conduct experiments to empirically compare the
practical performance of our faithful truncation protocol with that proposed by
Cryptflow2 [21]. Finally, we conclude and discuss future work in Sect. 6.

2 Preliminaries

Notations. We use λ to denote the computational security parameter. We use
[x, y] for x, y ∈ Z to denote the set {x, x+1, x+2, . . . , y}. We use “ ||” to denote
bit concatenation. We consider two rings Z2 and Z2l . For x ∈ Z2, we use x to
denote the bitwise NOT of x. For x ∈ Z2l , we use xl|| . . . ||x1 to denote the binary
form of x, xi|i∈[1,l] ∈ {0, 1}. We refer to the l-th bit of x as the most significant
bit (MSB), the i-th bit xi as x[i], and the j − i+1 bits xj || . . . ||xi as x[j : i]. We
use x � s to denote arithmetic right shift x by s bits.

Fixed-Point Representation. Real numbers are encoded into Z2l using the
fixed-point notation. A real number is first discretized to a limited precision 2−s

(denoted as xfxd). Then xfxd is scaled by 2s to be an integer xint with bit length
l, i.e., xint = xfxd · 2s. Then this signed integer xint ∈ [−2l−1, 2l−1 − 1] is further
encoded into the ring Z2l using the two’s complement encoding. This encoding
interprets the binary form xl|| . . . ||x1 of xint as xint =

∑l−1
i=1 2

i−1 · xi if xl = 0.
Otherwise, xint =

∑l−1
i=1 2

i−1 · xi − 2l when xl = 1. We say a signed integer xint

and a ring element x correspond to each other if they share the same binary
form xl|| . . . ||x1. Since xint = xfxd ·2s, given x ∈ Z2l , x[l] corresponds to the sign
bit of xfxd, x[l − 1 : s + 1] corresponds to the integer part of xfxd, and x[s : 1]
corresponds to the fraction part of xfxd.

Secret Sharing Schemes. We use 2-out-of-2 additive secret sharing schemes
over Z2l and Z2. A secret sharing scheme consists of two algorithms, Share and
Reconst. On input a value, the probabilistic algorithm Share outputs two shares
of it. On input two shares, the deterministic algorithm Reconst reconstructs a
value from them.

Consistent with prior work [8], we refer to shares over Z2l and Z2 as
Arithmetic 〈x〉A and Boolean 〈x〉B shares. For x ∈ Z2l , its two shares are denoted
as 〈x〉A0 and 〈x〉A1 such that 〈x〉A0 +〈x〉A1 = x where operation + denotes the addi-
tion over Z2l . For y ∈ Z2, its two shares are denoted as 〈y〉B0 and 〈y〉B1 such that
〈y〉B0 ⊕ 〈y〉B1 = y where operation ⊕ denotes the addition over Z2 (i.e., XOR).

Additive secret sharing schemes are perfectly hiding. Given an arithmetic
share 〈x〉A (resp., boolean share 〈x〉B ∈ Z2), the value x is completely hidden.

220 H. Zou et al.

2.1 System Model and Security

Consistent with our baseline work Cryptflow2 [21], we consider a static, semi-
honest adversary A. We use the standard security definition for two-party com-
putation [11] in this work. Let F = (F0,F1) be a functionality. Parties P0 and P1

with inputs x0 and x1 run protocol Π to learn F . We say that Π securely realizes
F in the presence of A if there exists probabilistic polynomial-time algorithms
S0 and S1 such that:

{(S0(1
λ

, x0, f0(x0, x1)), f(x0, x1))}x0,x1,λ
∼= {(ViewΠ

0 (x0, x1, λ), outputΠ (x0, x1, λ))}x0,x1,λ;

{(S1(1
λ

, x1, f1(x0, x1)), f(x0, x1))}x0,x1,λ
∼= {(ViewΠ

1 (x0, x1, λ), outputΠ (x0, x1, λ))}x0,x1,λ.

In order to conceptually modularize the design of the protocols, the notion of
“hybrid model” is introduced. A protocol Π is said to be realized in the F -hybrid
model if Π invokes the ideal functionality F as a subroutine. This allows the
simulator S to simulate F in the ideal world as long as it “looks” indistinguishable
from F -hybrid world.

2.2 Basic Operations

Oblivious Transfer. We use
(

k
1

)
-OTl to denote the 1-out-of-k oblivious trans-

fer (OT) functionality. The sender uses k messages msg1, . . . ,msgk as input (each
message is a l-bit string), and the receiver uses i ∈ [1, k] as inputs. The receiver
receives only msgi as output and the sender receives no output. We use the OT
extension protocols from [14] to improve the efficiency of our implementations.
The protocols for

(
k
1

)
-OTl [14] communicate 2λ+kl bits. The simpler

(
2
1

)
-OTl

communicates only λ + 2l bits [2].

The AND functionality FAND takes as input boolean shares of x and y, and
returns the boolean shares of z = x ∧ y. FAND can be realized using the well-
known Beaver bit triple [3] of the form (〈δx〉B, 〈δy〉B, 〈δz〉B) such that δz = δx∧δy.
Cryptflow2 (appendix A.1 in [21]) generates two such bit triples using an instance
of

(
16
1

)
-OT2. The communication complexity per bit triple is λ+16 bits. Given

one bit triple, the parties need to exchange additional 4 bits to compute a FAND
call. Hence, the communication complexity of invoking a FAND instance is λ+20
bits, and the security is in the

(
16
1

)
-OT2-hybrid model.

The correlated AND functionality FcAND takes as input boolean shares of x,
y and z, and returns the boolean shares of d = x∧y and e = x∧z. To generate the
corresponding correlated bit triple (〈δx〉B, 〈δy〉B, 〈δd〉B) and (〈δx〉B, 〈δz〉B, 〈δe〉B),
Cryptflow2 (appendix A.2 in [21]) uses an instance of

(
8
1

)
-OT2. The communi-

cation complexity of invoking a FcAND instance is 2λ+22 bits, and the security
is in the

(
8
1

)
-OT2-hybrid model.

Boolean to arithmetic share conversion F l
B2A converts the same secret x’s

boolean shares over Z2 to arithmetic shares over Z2l . For example, F2
B2A may

convert the boolean shares 〈x〉B0 = 0, 〈x〉B1 = 0 of secret x = 0 to arithmetic

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 221

shares 〈x〉A0 = 1, 〈x〉A1 = 3 over Z4. F l
B2A can be realized with one call to 1-out-

of-2 correlated OT [2] (denoted as
(
1
2

)
-COTl), with communicating λ + l bits

and is in the
(
1
2

)
-COTl-hybrid model (appendix A.4 in [21]).

2.3 Parallel Prefix Adder (PPA)

Adder is a fundamental concept in the field of digital electronics. In the context of
addition, an adder circuit takes two l-bit numbers, a and b, and produces a sum c.
The circuit calculates c bit-by-bit from the least significant to the most significant
bit. In particular, the i-th bit of c is calculated as c[i] = a[i]⊕ b[i]⊕ carry, where
carry is the carry bit from previous calculation of c[i − 1] (i.e., the carry-out bit
in the (i − 1)-th bit of a+ b). The carry calculation problem arises when adding
two binary numbers with multiple bits. In particular, calculating c[i] requires the
carry bit of calculating c[i − 1], and so on. All carry bits have to be computed
sequentially, which results in potentially large delays in computing the final sum.

As the most common choice for faster adders, parallel prefix adders (PPA)
use a pre-computation technique that allows them to calculate the carry bits in
parallel [1]. This is done by dividing the bits into groups and using a series of
logical operations to compute the carry bits for each group. The carry bits are
then combined in a final step to produce the final sum. For a group from the
j-th bit to the i-th bit with j ≥ i, define the group propagate signal as Pj:i and
group generate signal as Gj:i. We refer to j − i + 1 as the group length. When
the group length equals 1 (i.e., j = i), we use the simpler notations Pi and Gi,
which are defined as:

Gi
def
= a[i] ∧ b[i], Pi

def
= a[i] ⊕ b[i] (1)

When j > i, the group signals (Pj:i, Gj:i) are defined as:

Pj:i
def
= Pj ∧ Pj−1 ∧ . . . ∧ Pi (2)

Gj:i
def
= Gj ⊕ (Pj ∧ Gj−1) ⊕ (Pj ∧ Pj−1 ∧ Gj−2) ⊕ · · · ⊕ (Pj ∧ Pj−1 ∧ · · · ∧ Pi+1 ∧ Gi)

We can combine two adjacent groups (Pz:y+1, Gz:y+1) and (Py:x, Gy:x) into
a longer group (Pz:x, Gz:x) of length z − x + 1 (z > y ≥ x), by defining the dot
◦ operator:

(Pz:x, Gz:x) = (Pz:y+1, Gz:y+1) ◦ (Py:x, Gy:x) (3)
def
= (Pz:y+1 ∧ Py:x, Gz:y+1 ⊕ Pz:y+1 ∧ Gy:x)

The calculation of group signals (Pj:i, Gj:i) is done once i reaches the least
significant bit (i.e., i = 1). At this point, Gj:1 is exactly the carry-out bit of
calculating c[j].

Take l = 4 as an example. Suppose we want to use PPA to learn the carry-
out bit of calculating c[4] (i.e., the group generate signal G4:1). In the first step,
PPA calculates in parallel the group signals (P1, G1), (P2, G2), (P3, G3), (P4, G4)
for groups of length 1. In the second step, PPA combines the groups in parallel

222 H. Zou et al.

by Eq. 3 to obtain the signals (P2:1, G2:1), (P4:3, G4:3) for groups of length 2. In
the third step, PPA further combines the groups to obtain the desired signals
(P4:1, G4:1) for the group of length 4.

3 Two-Bit Extraction

In this section, we first define our new notion of two-bit extraction 2Bit-Extr that
is customized for faithful truncation. We then present two protocols to realize it.

3.1 Defining Two-Bit Extraction

Before defining our new notion, we recall the related bit extraction notion. Bit
extraction is a special case of bit decomposition [16], where a single m-th (m ≤ l)
bit of the arithmetic share 〈x〉A ∈ Z2l should be decomposed into a boolean
sharing, i.e., 〈x[m]〉B. We can constrain the bit extraction to the MSB extraction,
because extracting the m-th bit from x is equivalent to extracting the MSB of
x[m : 1] with shorter bit length of m. Let F l

Bit-Extr denote the bit extraction
functionality which takes as input the arithmetic shares of x ∈ Z2l and returns
the boolean shares of x[l] as outputs.

Two-bit extraction extends the notion of bit extraction, in which two bits—
the m-th and s-th (m > s) bit of the arithmetic share 〈x〉A should be decomposed
into their respective boolean sharing, i.e., 〈x[m]〉B and 〈x[s]〉B. Similarly, we
constrain two-bit extraction to extracting the MSB and a lower s-th bit (1 ≤
s < l).

The functionality F l,s
2Bit-Extr for two-bit extraction takes arithmetic shares of

x ∈ Z2l as input and returns boolean shares of x[l] and x[s] as outputs.

3.2 Trivial Construction for F l,s
2Bit-Extr

A trivial two-bit extraction construction can be achieved by invoking two
instances of bit extraction: the first invocation F l

Bit-Extr extracts the MSB of
x while the second invocation Fs

Bit-Extr extracts the MSB of x[s : 1]. The parties
can provide 〈x〉A and 〈x〉A[s : 1] as inputs to the first and second invocations,
respectively, to obtain the desired two-bit extraction.

The correctness of this trivial construction directly follows from the cor-
rectness of F l

Bit-Extr and Fs
Bit-Extr. This trivial construction securely realizes

F l,s
2Bit-Extr in the (F l

Bit-Extr,Fs
Bit-Extr)-hybrid model. For b ∈ {0, 1}, the simulator

Sb of the view of the corrupted party Pb gets input (〈x〉Ab , (〈x[l]〉Bb , 〈x[s]〉Bb)) (i.e.,
the input and output of Pb), which is the identical to the view of Pb in the cor-
responding execution (where here 〈x[l]〉Bb and 〈x[s]〉Bb serve as the responses of
F l

Bit-Extr and Fs
Bit-Extr, respectively). The simulation is trivial, i.e., Sb can simply

forward 〈x[l]〉Bb and 〈x[s]〉Bb to Pb. Thus, the view of party Pb can be perfectly
simulated.

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 223

The invocations to F l
Bit-Extr and Fs

Bit-Extr are highly interconnected. The
first invocation takes input x, and the second invocation takes input x[s : 1].
This mutual input dependence suggests that a more efficient construction that
combines the two invocations and leverages the shared input, may exist.

3.3 Improved Construction Πl,s
2Bit-Extr

This section begins with the definition of the combine functionality Fcombine,
which is a subroutine used in our improved two-bit extraction construction.
Next, we introduce our improved construction for F l,s

2Bit-Extr. At last, we apply
two optimizations to this improved construction.

The Combine Subroutine. Let Fcombine denote the combine functionality that
takes as input the boolean shares of P2, P1, G2 and G1, and output the boolean
shares of P = P2 ∧ P1 and G = G2 ⊕ (P2 ∧ G1).

A combine protocol Πcombine appears in Fig. 2. Its correctness directly fol-
lows the correctness of FcAND. Its security is in the FcAND-hybrid model. For
b ∈ {0, 1}, the simulator Sb of the view of the corrupted party Pb gets input
((〈P2〉Bb , 〈P1〉Bb , 〈G2〉Bb , 〈G1〉Bb), (〈P 〉Bb , 〈G〉Bb)) (i.e., the input and output of party
Pb). To simulate the responses of FcAND received by Pb, Sb simply forwards 〈P 〉Bb
and 〈G〉Bb ⊕〈G2〉Bb to Pb, which is identical to the view of Pb in the corresponding
real execution. Thus, the view of Pb can be perfectly simulated. The protocol
Πcombine only involves one call to FcAND which requires communicating 2λ+22
bits.

The Improved Construction Πl,s
2Bit-Extr. By extracting the MSB and the

s-th bit in a batch, we present a more efficient construction for F l,s
2Bit-Extr. Our

key observation is that extracting the MSB and s-th bit of the same value x
are highly interconnected: the intermediate results of extracting the MSB can
be reused to extract the lower s-th bit.

- Construction overview. Our construction first reduces the bit extrac-
tion problem to a carry calculation problem, because 〈x[i]〉B0

⊕ 〈x[i]〉B1 =〈x〉A0
[i]

⊕ 〈x〉A1 [i]
⊕

carry, where carry represents the carry-out bit in the (i − 1)-th
bit of 〈x〉A0 + 〈x〉A1 . The parties Pb only need to learn the boolean shares of the
corresponding carry-out bit 〈carry〉Bb , as 〈x[i]〉Bb = 〈x〉Ab [i]⊕〈carry〉Bb . To solve the
carry calculation problem, we rely on PPA (Sect. 2.3).

Fig. 2. Protocol Πcombine (Combine)

224 H. Zou et al.

Our construction makes use of two subroutines: (1) to calculate the group
propagate signal and the generate signal from the two input additive shares 〈x〉A0
and 〈x〉A1 ; and (2) to combine the signals of two adjacent groups into the ones
for a longer group. In particular, we use

(
2
1

)
-OT1 employing the lookup-table

based approach of [9], and the combine functionality Fcombine to instantiate the
two subroutines, respectively.

Figure 3 illustrates the circuit used in our construction to compute the carry-
out bits necessary for extracting the MSB and 13-th bit of x ∈ Z232 . To extract
the MSB, we utilize PPA to calculate the carry-out bit in the (l − 1)-th bit
(i.e., denoted as the group generate signal G31:1). To calculate G31:1, PPA first
calculates the group signal Pi and Gi from the two input additive shares, and
then iteratively combines the signals of two adjacent groups into the ones for a
longer group. The involved operations are marked as black in Fig. 3. To further
extract the s-th bit, i.e., to calculate the group generate signal G12:1, we observe
that some intermediate group signals of the previous G31:1 calculation can be
reused. Specifically, in Round 5, we can combine the group signal (P12:9, G12:9)
generated in Round 3 and (P8:1, G8:1) generated in Round 4 to calculate the
desired G12:1. Our two-bit extraction protocol is formally described in Fig. 4.

- Correctness analysis. We first demonstrate that the adopted 2PC subrou-
tines can accurately implement the circuit of our protocol, and then we show
that the implemented circuit can correctly extract the MSB and the s-th bit. Our
protocol’s circuit only requires two subroutines. For the

(
2
1

)
-OT1 subroutine, we

have verified that Reconst(〈Gi〉B0 , 〈Gi〉B1) = 〈x〉A0 [i] ∧ 〈x〉A1 [i] by enumerating all
possible values of 〈x〉A0 [i], 〈x〉A1 [i] ∈ Z2. Additionally, Reconst(〈Pi〉B0 , 〈Pi〉B1) =
〈x〉A0 [i] ⊕ 〈x〉A1 [i]. As a result, we can confirm the accuracy of calculating the
group signals Pi and Gi from the two input additive shares. Moreover, by the
correctness of Fcombine, combing two groups into a longer group is also correct.
Therefore, we conclude that the adopted 2PC subroutines can faithfully realize
the implemented circuit.

Fig. 3. The circuit of calculating the carry-out bits for extracting the MSB and 13-th
bit of x ∈ Z232

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 225

Fig. 4. Protocol Πl,s
2Bit-Extr (Two-bit extraction)

To show Reconst(〈x[l]〉B0 , 〈x[l]〉B1) = 〈GL〉B0 ⊕ 〈GL〉B1 ⊕ 〈x〉A0 [l] ⊕ 〈x〉A1 [l] =
x[l], we in fact have to show GL = 〈GL〉B0 ⊕ 〈GL〉B1 is the carry-out bit of
calculating the (i − 1)-th bit of 〈x〉A0 + 〈x〉A1 . Since we exploit PPA to solve
the carry calculation problem, we essentially have to show the updated boolean
shares of GL in step 23 are reconstructed to be the group generate signal Gl−1:1.
Note that step 13 and 17 iteratively combines two adjacent groups into a longer
group and step 14 updates GL accordingly. At the last iteration when i = log l
and j = 1, GL is updated to be Gl−1:1. Thus, the circuit can correctly extract
the l-th bit.

When s = 1, we have Reconst(〈x[1]〉B0 , 〈x[1]〉B1) = 〈x〉A0 [1] ⊕ 〈x〉A1 [1] = x[1].
When s > 1, we need to show the updated GS in step 23 equals the group
generate signal Gs−1:1. Let {jk, . . . , j1} denote the positions (in descending

226 H. Zou et al.

order) of the k ∈ [1, �log s�] non-zero bits in the binary form slog l|| . . . ||s1
of s − 1. When i = j1 (i.e., the position of the least significant non-zero
bit), we have 2j1−1 · s−1

2j1−1
� = s − 1. So we have GS is initially set to be

Gs−1:s−2j1−1 in step 22. When i = j2 and y = 2j2−1 · s−1
2j2−1 � = s − 1 − 2j1−1 in

step 18, the following step 20 essentially combines the signals Gs−1:s−2j1−1 and
Gs−2j1−1−1:s−2j1−1−2j2−1 of two adjacent groups. Then GS is updated to be the
combined signal Gs−1:s−2j1−1−2j2−1 . When i = jr|r>2, we have GS is updated to
be Gs−1:s−∑r

t=1 2jt−1 . When i reaches jk, GS is updated to be Gs−1:s−∑k
t=1 2jt−1 .

Since
∑k

t=1 2
jt−1 = s − 1, GS is updated to be Gs−1:1 at last. Thus, we have

Reconst(〈x[s]〉B0 , 〈x[s]〉B1) = 〈GS〉B0 ⊕ 〈GS〉B1 ⊕ 〈x〉A0 [s] ⊕ 〈x〉A1 [s] = x[s].

- Security analysis. The proposed protocol Π l,s
2Bit-Extr is in the

(
(
2
1

)
-OT1,Fcombine)-hybrid model. We construct two simulators for the following

two cases:
Case 1: P0 is corrupted. The simulator S0 gets input (〈x〉A0 , (〈x[l]〉B0 , 〈x[s]〉B0))

(i.e., the input and output of P0). S0 needs to simulate those intermediate mes-
sages received by P0 when invoking Fcombine. Before the last round, S0 returns
random r1, r2 ∈ Z2 as the responses of Fcombine. Due to the uniform distribu-
tion of r1, r2, P0 cannot distinguish r1, r2 from the real boolean shares output by
Fcombine. In the last round, S0 returns r3 = 〈x[l]〉B0 ⊕〈x〉A0 [l], r4 = 〈x[s]〉B0 ⊕〈x〉A0 [s]
as the responses of Fcombine, which conforms to the view of P0 in the correspond-
ing execution. Furthermore, r3 and r4 are uniformly distributed, because they
are masked by random 〈x〉A0 [l] and 〈x〉A0 [s]. Thus, P0 cannot distinguish r3, r4
from the real boolean shares output by Fcombine.

Case 2: P1 is corrupted. The simulator S1 gets input (〈x〉A1 , (〈x[l]〉B1 , 〈x[s]〉B1))
(i.e., the input and output of P1). S1 needs to simulate those intermediate mes-
sages received by P1 when invoking

(
2
1

)
-OT1 as well as invoking Fcombine. When

(
2
1

)
-OT1 receives P1’s input, S1 returns random r1 ∈ Z2 as the response of

(
2
1

)
-OT1. Since the real OT message msg output to P1 is masked by a ran-

dom value uniformly sampled by P0, msg is also uniformly distributed. Thus,
P1 cannot distinguish r1 from msg. To simulate the responses of Fcombine, S1

operates the same as S0 does for the corrupted party P0. That is, the simulator-
generated view of the corrupted party P1 is identically distributed to that of a
real execution.

Thus, we conclude that the view of each party Pb, b ∈ {0, 1} can be perfectly
simulated.

- Communication complexity. To extract the l-th bit, Π l,s
2Bit-Extr involves

l − 1 calls to
(
2
1

)
-OT1 and l − 2 calls to Fcombine. To additionally extract the

s-th bit based on the intermediate results of MSB extraction, 0 ≤ k ≤ �log s�−1
calls to Fcombine are needed, because there are at most �log s� non-zero bits
in the binary form slog l|| . . . ||s1 of s − 1. Thus, the communication bits are
3λl + 24l − 5λ − 46 + (2λ + 22)k in total.

- Optimizations for Πl,s
2Bit-Extr. Similar to the observation made in [6,21]

which construct comparison protocols from binary tree traversal, our 2Bit-Extr

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 227

construction in Fig. 4 can be optimized in two ways. First, utilizing
(

2m

1

)
-OT2

(m ≥ 2), we can calculate signals for groups of length ≥ 2. For example, by
invoking an instance of

(
4
1

)
-OT2, we can directly calculate the signals for group

of length 2 from the two input additive shares 〈x〉A0 and 〈x〉A1 . Namely, according
to Eq. 1 and Eq. 2, we can calculate Pi+1:i as (〈x〉A0 [i+1]⊕〈x〉A1 [i+1])∧(〈x〉A0 [i]⊕
〈x〉A1 [i]) and Gi+1:i as (〈x〉A0 [i + 1] ∧ 〈x〉A1 [i + 1]) ⊕ (〈x〉A0 [i + 1] ⊕ 〈x〉A1 [i + 1]) ∧
(〈x〉A0 [i]∧〈x〉A1 [i]). Taking the above m = 2 example, we employ the lookup-table
based approach of [9] to implement this optimization as follows:

– Party P0 samples 〈Pi+1:i〉B0 , 〈Gi+1:i〉B0 $← Z2. For j = {00, 01, 10, 11}, party
P0 parses j as a 2-bit binary string j2||j1, then sets msg0j = (〈x〉A0 [i + 1] ⊕
j2) ∧ (〈x〉A0 [i] ⊕ j1) ⊕ 〈Pi+1:i〉B0 and msg1j = (〈x〉A0 [i + 1] ∧ j2) ⊕ (〈x〉A0 [i + 1] ⊕
j2) ∧ (〈x〉A0 [i] ∧ j1) ⊕ 〈Gi+1:i〉B0 , and finally sets msgj = msg0j ||msg1j .

– Parties P0 and P1 invoke an instance of
(
4
1

)
-OT2 where P0 plays the sender

with inputs {msgj}j∈{00,01,10,11} and P1 plays the receiver with input 〈x〉A1 [i+
1]||〈x〉A1 [i]. P1 parses its output as a 2-bit string msg0||msg1, and sets 〈Pi+1:i〉B1
as msg0 and 〈Gi+1:i〉B1 as msg1.

Given this optimization used, the round complexity of Π l,s
2Bit-Extr can be

brought down logm� rounds. For the communication complexity, let l′ = � l−1
m �

and s′ = � s−1
m �. When extracting the MSB, this optimization involves at most

l′ calls to
(

2m

1

)
-OT2 and l′ − 1 calls to Fcombine. To further extract the s-th

bit, at most 1 call to
(

2m

1

)
-OT2 and �log s′� − 1 calls to Fcombine are needed.

With parameters λ, l, s and m, we can obtain an approximate estimation of
the number of communication bits. Our analysis reveals that m = 6 offers the
most significant advantage in terms of communication complexity for the typi-
cal values of l and s used by PPML (see Table 2). However, the computational
cost also increases super-polynomially with m. While benchmarking the faithful
truncation protocol which utilized this optimized two-extraction construction,
we concluded that m = 4 offered a competitive trade-off between communica-
tion and computation. This empirical finding is consistent with our baseline work
Cryptflow2 [21] whose protocol also involves parameter m.

The second optimization is to eliminate operations that involve unused prop-
agate signals. For groups reaching the least significant bit, their propagate signals
are never used. So we can safely remove operations combing such signals (e.g.,
the combine operations on the rightmost branches in Fig. 3). With this opti-
mization, instead of invoking a Fcombine instance to combine both the propagate
and generate signal, we can invoke a call to FAND to combine only the gener-
ate signal. A call to Fcombine and FAND requires communicating 2λ + 22 and
λ+20 bits, respectively. This optimization removes log l useless propagate signal
calculations and thus saves λ log l + 2 log l communication bits in total.

228 H. Zou et al.

4 Truncation Errors and Faithful Truncation

We begin by providing an example of local truncation that can result in both
small and big errors. Through this example, we show the importance of learning
the boolean shares of the MSB and the (s + 1)-th bit in eliminating the errors.
Finally, we describe the faithful truncation construction in detail, which is based
on the aforementioned two-bit extraction.

4.1 Why Local Truncation Fails

Truncation is the process of converting the product xint of two fixed-point inte-
gers from a representation scaled by 22s to the fixed-point representation scaled
by 2s. In the two’s complement encoding, dividing xint by 2s is equivalent to
performing an arithmetic right shift of x by s bits. A naive solution to this
problem is local truncation: party Pb, holding the additive share 〈x〉Ab , outputs
〈y〉Ab = 〈x〉Ab � s as its additive share for y, in the hope that yint will equal xint

2s .
However, this local truncation may fail with certain probabilities [16].

Consider the example where l = 4, s = 1, and the product to be truncated
xint = 6 whose corresponding ring element x = 0110. Suppose x is additively
shared as 〈x〉A0 = 1001 and 〈x〉A1 = 1101. To obtain the shares of y� = 0011
corresponding to the truncated product xint

2 = 3, the parties arithmetic right
shift 〈x〉A by s bits, and output shares 〈y〉A0 = 1100 and 〈y〉A1 = 1110. But
y = Reconst(〈y〉A0 , 〈y〉A1) is 1010, which corresponds to −6, instead.

The local truncation is flawed since it ignores small and big errors. Specifi-
cally, it neglects the carry-out bit in the s-th bit of 〈x〉A0 + 〈x〉A1 , which can lead
to the small error if the truncated s-bit has a carry-out of 1. Additionally, the
arithmetic right shift is sign-extended, which can cause the big error if the MSBs
of the two shares are opposite to that of the secret.

To address the above issue, a preliminary step is required to detect the
occurrence of small and big errors. This can be done easily by utilizing the
boolean shares of x[l] and x[s + 1]. For example, 〈x[s + 1]〉B can be used to
determine the small error indicator t (i.e., the carry-out bit in the s-th bit) as
t = 〈x[s + 1]〉B0 ⊕ 〈x[s + 1]〉B1 ⊕ 〈x〉A0 [s+ 1]⊕ 〈x〉A1 [s+ 1]. Moreover, the big error
indicator k can be learned by checking whether the MSBs of the shares are
opposite to that of the secret (i.e., x[l] = 〈x[l]〉B0 ⊕ 〈x[l]〉B1).

Once the error indicators k and t have been determined, the parties can pro-
ceed to correct the errors to achieve faithful truncation. This can be accomplished
by performing additional computations based on k and t.

4.2 Faithful Truncation from Two-Bit Extraction

Let F l,s
Trunc denote the faithful truncation functionality that takes arithmetic

shares of x ∈ Z2l as input, and returns arithmetic shares of y = x � s as
output. We propose a faithful truncation protocol in Fig. 5, whose correctness
relies on the following proposition.

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 229

Fig. 5. Protocol Πl,s
Trunc (Faithful truncation)

Proposition 1. Let 〈x〉A0 and 〈x〉A1 denote the arithmetic shares of x ∈ Z2l . Let
t denote the carry-out in the s-th bit of 〈x〉A0 + 〈x〉A1 . Let k be defined as:

k =

⎧
⎨

⎩

2l − 2l−s : 〈x〉A0 [l] = 〈x〉A1 [l] = 0 , x[l] = 1;
2l−s : 〈x〉A0 [l] = 〈x〉A1 [l] = 1 , x[l] = 0;
0 : otherwise.

(4)

Then we have:

(〈x〉A0 � s) + (〈x〉A1 � s) + k + t = (x � s) (5)

Proof. The proposition follows from Corollary 4.2 in [21]. When the sign bit
flipping issue happens, term k corrects the big error. When the carry-out of the
s-th bit is 1 (i.e., the least significant s bits wrap around 2s), term t corrects the
small error.

- Correctness analysis. By the correctness of F l,s+1
2Bit-Extr, we have

Reconst(〈x[l]〉B0 , 〈x[l]〉B1) = x[l]. Furthermore, by the correctness of
(
4
1

)
-OTl,

we have Reconst(〈k〉A0 , 〈k〉A1) equals the k defined by Eq. 4. Namely, our proto-
col correctly calculates the term k in Eq. 5. By the correctness of F l,s+1

2Bit-Extr,
Reconst(〈x[s + 1]〉B0 , 〈x[s + 1]〉B1) = x[s + 1]. So Reconst(〈tmp〉B0 , 〈tmp〉B1) =
〈x〉A0 [s+1]⊕ 〈x〉A1 [s+1]⊕ x[s+1], which is exactly the carry-out bit in the s-th
bit of 〈x〉A0 +〈x〉A1 . Next, by the correctness of F l

B2A which creates the arithmetic
shares of the same secret tmp, we have Reconst(〈t〉A0 , 〈t〉A1) equals the term t in
Eq. 5. By Eq. 5, Reconst(〈y〉A0 , 〈y〉A1) = (〈x〉A0 � s)+(〈x〉A1 � s)+k+t = (x � s).

230 H. Zou et al.

- Security Analysis. The protocol Π l,s
Trunc securely realizes the functionality

F l,s
Trunc in the (F l,s+1

2Bit-Extr,
(
4
1

)
-OTl,F l

B2A)-hybrid model. We construct two sim-
ulators for two cases.

Case 1: P0 is corrupted. The simulator S0 gets input (〈x〉A0 , 〈y〉A0) (i.e., the
input and output of the corrupted party P0). S0 needs to simulate P0’s received
intermediate messages including: (〈x[l]〉B0 , 〈x[s + 1]〉B0) received from F l,s+1

2Bit-Extr
and 〈t〉A0 received from F l

B2A.

– When F l,s+1
2Bit-Extr receiving 〈x〉A0 from P0, S0 returns random r1, r2 ∈ Z2 to

P0. Since r1 and r2 are uniformly distributed, P0 cannot distinguish r1 and
r2 from the real boolean shares 〈x[l]〉B0 and 〈x[s + 1]〉B0 output by F l,s+1

2Bit-Extr.
– When

(
4
1

)
-OTl receiving {msgj} from P0, S0 extracts 〈k〉A0 (which is uni-

formly sampled by P0) from {msgj}. Concretely, S0 extracts 〈k〉A0 = 2l−s ·
(〈x〉A0 [l] ∧ 〈x[l]〉B0) − msg11.

– When F l
B2A receiving 〈tmp〉B0 from P0, S0 returns r3 = 〈y〉A0 − (〈x〉A0 �

s) − 〈k〉A0 to P0, which conforms to the view of P0 in the corresponding
real execution. Furthermore, since 〈k〉A0 is uniformly distributed, r3 is also
uniformly distributed. Hence, party P0 cannot distinguish r3 from the real
arithmetic share output by F l

B2A.

Case 2: P1 is corrupted. The simulator S1 gets input (〈x〉A1 , 〈y〉A1). S1 needs
to simulate P1’s received intermediate messages including: (〈x[l]〉B1 , 〈x[s + 1]〉B1)
received from F l,s+1

2Bit-Extr, 〈k〉A1 received from
(
4
1

)
-OTl, and 〈t〉A1 received from

F l
B2A.

– When F l,s+1
2Bit-Extr receiving 〈x〉A1 from P1, S1 operates the same as S0 does for

P0.
– When

(
4
1

)
-OTl receiving 〈x〉A1 [l] || 〈x[l]〉B1 from P1, S1 returns a random value

r1 ∈ Z2l to P1. Note that the real message 〈k〉A1 output by
(
4
1

)
-OTl is also

uniformly distributed, because 〈k〉A1 is masked by 〈k〉A0 which is uniformly
sampled by P0. Hence, P1 cannot distinguish r1 from the real message 〈k〉A1
output by

(
4
1

)
-OTl.

– When F l
B2A receiving 〈tmp〉B1 from P1, S1 returns r2 = 〈y〉A1 −(〈x〉A1 � s)−r1,

which conforms to P1’s view in a real execution. As r1 is uniformly distributed,
r2 is uniformly distributed. P1 cannot distinguish r2 from the real arithmetic
share output by F l

B2A.

Thus, we conclude that the view of each party Pb, b ∈ {0, 1} can be perfectly
simulated.

- Communication Complexity. Π l,s
Trunc involves a single call each to F l,s+1

2Bit-Extr,(
4
1

)
-OTl and F l

B2A. Using the optimized two-bit extraction construction in
Sect. 3.3 and setting parameter m = 4, the communication bits of our construc-
tion are approximately (2λ+32)(l′+t)+(2λ+22)(l′+k−1)−(λ+2)�log l′�+5l+3λ,
where l′ = � l−1

4 �, s′ = � s−1
4 �, t ∈ [0, 1] and k ∈ [0, �log s′� − 1] are parameters

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 231

depending on s. For l = 32 and s = 16, using the parameter m = 4 recom-
mended by the authors of Cryptflow2 [21], the concrete communication of our
construction is 4384 bits as opposed to 6093 bits for Cryptflow2.

5 Experiments

Table 1 presents a comparison of the theoretical communication complexity for
truncation protocols, while this section provides an empirical evaluation of their
practical performance.

Benchmarks. We compared our protocol with Cryptflow2 [21], which is cur-
rently considered the state-of-the-art OT-based faithful truncation protocol
under the 2PC setting. To ensure a fair comparison, we used the recommended
protocol parameter m = 4, as suggested by the authors of Cryptflow2 (Sect. 6.1
in [21]), for both our optimized protocol (Sect. 3.3) and Cryptflow2. We evaluated
two bit length l = 32 and l = 64. For each bit length, we varied the fixed-point
precision s in the range of {8, 10, 12, 14, 16}. These values of l and s are represen-
tative in the field of privacy-preserving machine learning (PPML) [7]. For each
combination of l and s, a batch of 220 truncations was evaluated. This number
of truncations is typically required in PPML, e.g., one epoch of training the
textbook LeNet model on the MNIST dataset [15] roughly requires one million
truncations.

Hardwares and Softwares. We simulated the two parties with two virtual
machines having 2.90GHz Intel Core i5-9400 processors with 6 CPUs and 8 GBs
of RAM. The simulated bandwidth between the two machines was 100 Mbps
and the echo latency was 40ms. Our implementation was built upon the SCI

Table 2. Empirically comparing our faithful truncation protocol with Crypflow2 [21]

Bit Length l Precision s Crypflow2 [21] This work
Time (s) Comm. (Gbit) Time (s) Comm. (Gbit)

32 8 77.50 4.21 68.67 3.63
10 82.00 4.60 75.03 4.01
12 82.78 4.63 71.88 3.80
14 87.64 5.06 77.52 4.23
16 88.37 5.09 69.00 3.63

64 8 160.11 8.75 145.21 8.11
10 164.08 9.13 153.25 8.49
12 165.01 9.16 146.10 8.26
14 178.32 9.67 160.20 8.76
16 180.04 9.70 145.37 8.11

† Results were reported for a batch of 220 truncations. The network had 100
Mbps and its echo latency was 40 ms.

232 H. Zou et al.

library [18] which implements Cryptflow2 [21]. SCI [18] is written in C++ and
makes use of the EMP toolkit [22] to generate the application-level OT types
like

(
2m

1

)
-OT. The code was compiled by gcc 9.4.0 on Ubuntu 20.04.

Result Analysis. The experiment results are presented in Table 2. It is notewor-
thy that our protocol consistently communicated fewer bits and ran faster than
Cryptflow2 for all values of l and s being evaluated. Our improvement is due to
eliminating redundancies in the faithful truncation construction of Cryptflow2:
while Cryptflow2 uses two related comparison instances to detect the small error
and big error respectively, we use only one two-bit extraction instance.

Our improvement is mainly dominated by the fixed-point precision s. The
larger value of s, the more communication bits and running time our protocol
can save compared to Cryptflow2. This is because Cryptflow2’s communication
complexity grows linearly with s, while ours is logarithmic. When s = 16, we
observe the most significant improvement, as we save roughly 1.5 Gbit commu-
nication bits compared to Cryptflow2. This result is as expected, because our
two-bit extraction protocol can output the intermediate group generate signal
G16:1 of the MSB extraction directly as the corresponding carry-out bit for the
s-th bit extraction without requiring combine operations. Namely, in this case, to
additionally eliminate the small error, our faithful truncation protocol involves
only a single call to the boolean to arithmetic share conversion F l

B2A which
communicates λ + l bits.

It is worth noting that when l is large, the efficiency bottleneck of both our
protocol and Cryptflow2 is eliminating the big error. For example, when s is
fixed, increasing l from 32 to 64 doubles the running time of both protocols.
Additionally, when l = 32 with s = 16 fixed, our protocol saves 28% communi-
cation bits compared to Cryptflow2. However, when l = 64, our protocol only
saves 16% communication bits. These findings suggest that the elimination of
the big error incurs significant costs when l is large. To enhance the overall effi-
ciency of faithful truncation, it would be beneficial to investigate techniques that
can reduce the costs of eliminating the big error in future research.

6 Conclusions

In this work, we investigate efficient constructions for faithful truncation, a cru-
cial operation in fixed-point arithmetic. We extend previous studies of oblivious
transfer based constructions [12,21] by proposing a building functionality two-bit
extraction customized for faithful truncation. Our faithful truncation protocol
capitalizes on the efficient constructions for two-bit extraction, resulting in a
reduction of the communication complexity of [21] from linear in s to logarith-
mic in s, where s is the fixed-point precision. This work highlights the possibility
of removing the small error at a negligible cost by reusing the intermediate results
from eliminating the big error. In the future work, we would like to investigate
techniques that can further reduce the costs of eliminating the big error.

Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction 233

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant Nos, 62172411, 62172404, 61972094, 62202458.

References

1. Abbas, K.: Handbook of Digital CMOS Technology, Circuits, and Systems (2020)
2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer

and extensions for faster secure computation. In: CCS 2013 (2013). https://doi.
org/10.1145/2508859.2516738

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

4. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure
computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6_30

5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6_12

6. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_16

7. Dalskov, A.P.K., Escudero, D., Keller, M.: Fantastic four: honest-majority
four-party secure computation with malicious security. In: USENIX Security
2021 (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/
dalskov

8. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015 (2015). https://www.
ndss-symposium.org/ndss2015/aby-framework-efficient-mixed-protocol-secure-
two-party-computation

9. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner, M.:
Pushing the communication barrier in secure computation using lookup tables.
In: NDSS 2017 (2017). https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/pushing-communication-barrier-secure-computation-using-lookup-
tables/

10. Gupta, K., Kumaraswamy, D., Chandran, N., Gupta, D.: LLAMA: a low latency
math library for secure inference. In: PoPETs 2022 (2022). https://doi.org/10.
56553/popets-2022-0109

11. Hazay, C., Lindell, Y.: Efficient secure two-party protocols: techniques and con-
structions (2010)

12. Huang, Z., Lu, W., Hong, C., Ding, J.: Cheetah: lean and fast secure two-party
deep neural network inference. In: USENIX Security 2022 (2022). https://www.
usenix.org/conference/usenixsecurity22/presentation/huang-zhicong

13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

14. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-319-93387-0_16
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.ndss-symposium.org/ndss2015/aby-framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby-framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby-framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/pushing-communication-barrier-secure-computation-using-lookup-tables/
https://doi.org/10.56553/popets-2022-0109
https://doi.org/10.56553/popets-2022-0109
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4

234 H. Zou et al.

15. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (2005)
16. Mohassel, P., Rindal, P.: Aby3: a mixed protocol framework for machine learning.

In: CCS 2018 (2018). https://doi.org/10.1145/3243734.3243760
17. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving

machine learning. In: SP 2017 (2017). https://doi.org/10.1109/SP.2017.12
18. mpc-msri/EzPC: Secure and Correct Inference (SCI) Library (2016). https://

github.com/mpc-msri/EzPC/tree/master/SCI
19. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-protocol

secure two-party computation. In: USENIX Security 2021 (2021). https://www.
usenix.org/conference/usenixsecurity21/presentation/patra

20. Rathee, D., Bhattacharya, A., Sharma, R., Gupta, D., Chandran, N., Rastogi,
A.: SECFLOAT: accurate floating-point meets secure 2-party computation. In: SP
2022 (2022). https://doi.org/10.1109/SP46214.2022.9833697

21. Rathee, D., et al.: CrypTFlow2: practical 2-party secure inference. In: CCS 2020
(2020). https://doi.org/10.1145/3372297.3417274

22. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-
tion toolkit (2016). https://github.com/emp-toolkit

23. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-
related OT with small communication. In: CCS 2020 (2020). https://doi.org/10.
1145/3372297.3417276

https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://doi.org/10.1109/SP46214.2022.9833697
https://doi.org/10.1145/3372297.3417274
https://github.com/emp-toolkit
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276

Outsourcing Verifiable Distributed
Oblivious Polynomial Evaluation
from Threshold Cryptography

Amirreza Hamidi(B) and Hossein Ghodosi

James Cook University, Townsville, QLD, Australia

amirreza.hamidi@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. Distributed oblivious polynomial evaluation (DOPE) is a
variant of two-party computation where a sender party P1 has a poly-
nomial f(x) of degree k and the receiver party P2 holds an input α.
They conduct a secure computation with a number of t distributed cloud
servers such that P2 obtains the correct output f(α) while the privacy
of the inputs is preserved. This system is the building block of many
cryptographic models and machine learning algorithms.

We propose a lightweight DOPE scheme with two separate phases:
setup and computation, which means that the setup phase can be exe-
cuted at any time before the actual computation phase. The number of
the servers (t) does not depend on the polynomial degree (k), and the
main expensive computation is securely outsourced to the cloud servers
using the idea of threshold cryptography. As a result, any normal user
with low computational power devices (e.g., mobile, laptop, etc.) would
be able to evaluate and verify the output over a large field while the
security conditions are preserved. Our protocol maintains the security
against a static active adversary corrupting a coalition of up to t − 1
servers and the opposed party. The main two parties commit to their
inputs using non-interactive zero-knowledge proof techniques. The com-
munication complexity is linear and bounded to O(t) field elements which
means that, unlike the previous studies in this field, it does not depend
on the polynomial degree k.

Keywords: Distributed Oblivious Polynomial Evaluation · Secure
Outsourced Computation · Cloud Servers · Threshold Paillier
Cryptosystem · Privacy-Preserving

1 Introduction

Secure two-party computation is an important field of research where two par-
ties P1 and P2, with their private inputs x and y, jointly execute some secure
computation protocol to obtain the outputs f1(x, y) and f2(x, y), respectively.
This system can be denoted by the functionality (x, y) → (f1(x, y), f2(x, y)).
Oblivious polynomial evaluation (OPE) is a variant of two-party computation
where a sender party P1 has a polynomial f(x) = a0 + a1x + . . . + akxk and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 235–246, 2023.
https://doi.org/10.1007/978-981-99-7356-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_14&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_14

236 A. Hamidi and H. Ghodosi

the receiver P2 holds a value α. They intend to conduct a secure computation
such that P2 gains f(α) and P1 obtains nothing. The system must ensure that
neither party gets any information relating to the other party’s private input
except what P2 gains (i.e., f(α)) which can be denoted by the functionality
(f(x), α) → (⊥, f(α)). More formally:

Definition 1. In a secure OPE protocol over a finite field Fq, a sender party
P1, holding a polynomial f(x) of degree k, wishes to perform a secure compu-
tation with a receiver party P2 who holds a value α. The protocol is said to
be securely implemented such that P2 obtains the correct output f(α) and the
privacy conditions are satisfied which are:

– P1 cannot distinguish α from a random value α′ in the field.
– P2 can gain no information relating to the polynomial f(x) except the output

f(α).

An adversary can be either passive (semi-honest) or active (malicious) in this
system. The former aims to learn information about the private inputs and the
latter, in addition to that, deviates from the protocol in an arbitrary fashion to
change the output correctness without being detected. One may think of using
multi-party computation solutions in OPE systems, however, these solutions are
generic and are very inefficient, especially when large inputs are involved [1].

With the recent development of cloud computing, companies and individu-
als prefer to outsource their expensive computations to cloud servers. However,
the drawback is that it raises the communication complexity. This is where dis-
tributed oblivious polynomial evaluation (DOPE) emerges where the main two
parties P1 and P2 communicate with a set of t distributed cloud servers to out-
source their OPE protocol. Here the point is that the main two parties do not
need to communicate directly which means they can remain anonymous to each
other. Also, this system gives higher security against a central point of failure
attack. Nevertheless, the challenge is that the privacy and the correctness con-
ditions must be maintained against more than just the main two parties.

1.1 Background

In the literature, the notion of OPE was first introduced by Naor and Pinkas [21]
who used oblivious transfer in their system. Some studies have utilized the ideas
of one trusted third-party [14,17,19] and distributed (t ≥ 2) servers [6,16,20] in
their protocols. Using just one third-party offers lower communication overhead,
however, the serious downside is that corrupting only one server causes a central
point of failure that breaks the whole security of the protocol. Therefore, the
protocols which outsource the computation to a number of distributed servers
are potentially more decentralized and secure, since corrupting several servers
(the number of the servers is the security parameter) is less likely.

The first information-theoretic DOPE protocols were studied by [20]. The
main problem of their protocol is that the privacy of the parties’ inputs is imper-
fect (i.e., it is not held against the number of t − 1 servers). [6] proposed an

Outsourcing Verifiable DOPE from Threshold Cryptography 237

unconditionally private DOPE protocol where P1 is required to communicate
directly with P2. Recently, [16] presented the first verifiable DOPE protocol pre-
serving the strong privacy and the output correctness against an active adversary
corrupting a coalition of up to t−1 servers and P1 with the communication com-
plexity O(kt). Their protocol cannot be practical for a user P2 with low compu-
tation power, since P2 conducts the encryption and decryption procedures over
a large field which requires a lot of expensive computation power.

An important question remains here is that is it possible to delegate the
expensive processes of encryption and decryption to P1 and the cloud servers
while the security conditions are still maintained? Also is that possible to reduce
the communication complexity while the computations are outsourced?

1.2 Applications

OPE has been a significant building block of various cryptographic models and
security fields such as metering the number of visitors to a website [21], oblivious
neural networking [5], symmetric cryptography [23], oblivious keyword search
[12], data mining [1], RSA keys generation [15], set intersection [13] and elec-
tronic voting [24]. In secure information-comparison protocols, two parties with
their private inputs, say x and y, wish to know whether x > y without leaking
any additional information on the inputs which can be used in password com-
parison, online auction and benchmarking [9]. Another important application is
in privacy-preserving machine learning where it can be used in healthcare [14],
linear regression [7] and two-party inner product [10]. These algorithms usu-
ally have two phases: training and classification where OPE plays a secure tool
to obtain the output in the classification phase. As an example, a healthcare
company provider trains a model in the training phase and a patient wishes to
gain a prediction of his health status using their model without revealing any
information about his personal health records [14].

1.3 Our Contribution

We present a lightweight DOPE scheme where a sender party P1, holding a
private polynomial f(x) of degree k, and a receiver party P2, with an input
α, wish to conduct a secure computation with the help of t cloud servers such
that P2 obtains the output f(α) over a large field. The number of cloud servers
(t) is independent of the polynomial degree (k). We employ the idea of thresh-
old decryption such that the cloud servers perform the secure computation of
modular exponentiation operations which is the main computational bottleneck
of most public key cryptosystems (particularly in our case the Paillier cryp-
tosystem) [18]. As a result, P2 with a low-computational device is easily able
to calculate and verify the final output using simple arithmetic operations. Our
scheme consists of two phases:

• Setup Phase: P1 encrypts his inputs, commits to them and reveals them,
and the servers check the commitments. P1 also distributes the masked private
key among the cloud servers and leaves the protocol.

238 A. Hamidi and H. Ghodosi

• Computation Phase: P2 picks a set of random values over the field and
adds his input to these elements, and reveals them. The servers check the P2’s
commitment. The homomorphic encryption and the heavy decryption com-
putation of the set are outsourced by the cloud servers. P2 employs one round
of oblivious transfer to obtain the correct index and calculates the output. He
repeats the same process to verify the output using message authentication
codes.

Our scheme maintains the security (the inputs privacy and the output correct-
ness) against a static active adversary corrupting a coalition of up to t− 1 cloud
servers and the opposed party, with IND-CPA security of Paillier cryptosystem
for P1 and statistical security for P2. Unlike most of the works in this field which
have considered just semi-honest adversaries, we present a fully secure DOPE
protocol with low probability of error which can be employed for general dis-
tributed privacy preserving systems. The communication overhead is linear O(t)
improving on the previous DOPE protocols. This gives an important result that
the communication complexity does not depend on the polynomial degree k.

2 Preliminaries

2.1 Secret Sharing

In Shamir’s secret sharing scheme [26], a dealer distributes a secret s among n
participants using a random polynomial p(x) =

∑t
j=0 ajx

j mod q, where a0 = s,
such that each party is given a share pi ← p(i). Clearly, the secret s cannot be
leaked to a passive adversary corrupting any subset of at most t participants
with information-theoretic privacy. We denote the t-sharings [s]t as a set of t+1
shares of a random polynomial p(x) with the threshold/degree t and the secret
s. In order to reconstruct the secret, a set of at least t + 1 parties pools their
shares and computes the free constant as:

p(0) =
t+1∑

i=1

[s]t · l0,i

where l0,i is the Lagrange coefficient of the party Pi.

2.2 Threshold Paillier Cryptosystem with a Dealer

The Paillier cryptosystem [25] is a public key encryption system which works
under the assumption of decisional composite residuosity (DCR). It implies that
given two plaintexts and the corresponding ciphertexts encrypted under this
assumption, a probabilistic polynomial-time adversary can guess either of the
plaintexts with any negligible advantage. Therefore, the security of this cryp-
tosystem is considered as indistinguishability against chosen function attack
(IND-CFA) under the DCR assumption.

Outsourcing Verifiable DOPE from Threshold Cryptography 239

The threshold version of the Paillier cryptosystem with a dealer includes
three algorithms: keys generation, encryption and threshold decryption.

Keys Generation: The dealer invokes a probabilistic algorithm Gen(1k) to
generate the keys pair (pk, λ) ← Gen(1k). The public key is an RSA modulus
pk ← N where N = pc · qc such that pc and qc are two large prime numbers with
k/2 bits, respectively. The private key is the Euler’s totient λ ← φ(N) where
φ(N) = (pc − 1)(qc − 1). Note that the dealer must ensure that gcd(N,φ(N)) =
1. The dealer masks the private key with a random number β ∈ Z∗

N as θ =
β · λ mod N and adds it to the public key. He also distributes the t-sharings
[β · λ]t over Zφ(N2) among the participants [11].

Encryption: To encrypt a message m, the dealer invokes a probabilistic algo-
rithm Encpk(m, r) and computes the ciphertext c ← Encpk(m, r) as:

Encpk(m, r) = gm · rN mod N2

where g can be g = N + 1 an element in Z∗
N2 and r is a random number in Z∗

N .

Homomorphism. This public key encryption has an important homomorphic
feature which can be applied to the ciphertexts. Namely, let m1 and m2 be two
plaintexts in ZN and they are encrypted with the same public key as Encpk(m1)
and Encpk(m2), respectively. It is trivial to show that Encpk(m1) × Encpk(m2) =
Encpk(m1 + m2) and Encpk(m1)d = Encpk(d · m1) for any d ∈ ZN .

Decryption: A deterministic algorithm Decλ(c) is invoked in the distributed
fashion to obtain the plaintext m ← Decλ(c) which was first proposed by [11].
Namely, Each party Pi computes a decryption share ci = c[β·λ]t·l0,i mod N2.
The parties pool these shares and compute:

cβ·λ =
t+1∏

i=1

ci mod N2

Finally, the message m can simply be calculated as follows:

m = L(cβ·λ mod N2)/θ mod N

where the function L(x) = x−1
N .

The point of using this cryptosystem is that the field of plaintexts (N) is
quite large. However, the computation of exponentiations modulo N2 (in the
encryption and decryption procedures) is so expensive and requires a lot of
computation power which makes this system less practical and popular for a
normal user.

2.3 Message Authentication Code

Message authentication code (MAC) is an information-theoretic method to verify
an output in the presence of an active adversary. This verifiable secret sharing

240 A. Hamidi and H. Ghodosi

is an efficient fault-detection technique which has been employed in some multi-
party computation systems, see e.g., [3,8].

The MAC value of a message m, denoted by γ(m), is calculated as γ(m) =
αmac · m where αmac is the MAC key generated by the verifier. He checks the
correctness of this equation and, in case of any inconsistency in this equation, a
malicious behaviour is detected. Since this method is linear, we employ a global
MAC key αmac as the additive secret of random MAC keys αi, generated by the
cloud servers, to verify the final output. Note that an adversary must guess the
global MAC key over the field to be able to change the output without being
detected which gives the error probability ε = 1/F.

2.4 Security

We discuss ideal/real (simulation) security paradigm of a DOPE system in this
section and we later evaluate our scheme based on this model. We assume there
exists a simulator S playing the role of an adversary in the ideal model. S takes
the inputs of the corrupted parties and executes the functionality F such that
the participants do not interact directly with each other. This model achieves
the highest level of security and is denoted by IDEALF,S with the view indicated
by VIEWS . On the contrary, the participants implement the protocol Π in the
presence of a probabilistic polynomial-time adversary A who corrupts the parties
in the real model. The model is denoted by REALΠ,A with the view of the
adversary VIEWA. The protocol Π is said to be secure if these two models
IDEALF,S and REALΠ,A are computationally indistinguishable [4].

Most of the DOPE studies have attempted to only meet the strong privacy
condition in their protocols. However, we also add the correctness condition to
make our scheme more practical and secure. As a result, a fully secure DOPE
scheme must satisfy the privacy and the correctness requirements as follows:

• Receiver’s Privacy: The adversary A corrupts a coalition of P1 and up to
t−1 cloud servers while the receiver party P2 gets involved in the protocol with
the input α ∈ F. The protocol is private for the P2’s input, if for any α′ in the
field, the VIEWA for α and that for α′ are computationally indistinguishable.

• Sender’s Privacy: Here, A controls a coalition of P2 and at most t−1 servers,
and the sender P1 has the polynomial f(x) of degree k. The simulator S with
any input α′ implements the same functionality in the ideal model and obtains
the output f(α′). The privacy of the P1’s polynomial is preserved, if f(α′) is
computationally indistinguishable from any random values over the field. In
other words, VIEWA gains no information about the polynomial f(x) except
the value f(α). Note that P2 is only allowed to evaluate at most k − 1 values
from the same sender P1, otherwise he can compute the polynomial f(x) and
break the sender’s privacy.

• Correctness: The adversary A holds the full control of a coalition of P1 and
up to t − 1 cloud server. P2 with the input α executes the protocol to obtain
the output f(α) while A deviates from the protocol in an arbitrary fashion

Outsourcing Verifiable DOPE from Threshold Cryptography 241

to change the output to f(α′) for any α′ ∈ F without being detected. The
correctness of the output is maintained if f(α) and f(α′) are computationally
indistinguishable with low probability of error.

3 Our DOPE Scheme

We discuss our protocol in this section which includes two phases: the setup and
the actual computation. P1 communicates with the cloud servers in the setup
phase and then leaves the protocol, while P2 interacts with the servers in the
actual computation phase to evaluate the output.

3.1 Setup Phase

This phase can be executed at anytime well before the computation phase. P1

encrypts the coefficients of his polynomial f(x) and commits to them showing
that he knows the plaintexts. We propose a non-interactive zero-knowledge proof
technique, which has some similarity to the scheme for the Paillier cryptosystem
given in [2], such that the servers check the commitments and the protocol fails in
case of detecting any inconsistency. The correctness proof of the zero-knowledge
technique can be found in the full version. Figure 1 shows the setup phase of the
protocol ΠDOPE.

3.2 Computation Phase

P2 generates and publishes a set of m random values such that his input α
is an element in it. The heavy computations of the homomorphic encryption
and the modular exponentiations are outsourced by the cloud servers. Finally,
P2 conducts one round of 1-out-of-m oblivious transfer to obtain the correct
outcome. Figure 2 illustrates the computation of the protocol ΠDOPE.

Note that since the inputs, f(x) and α, and the output f(α) are over the
field of a prime number Zq, the field of the public key system N = pc ·qc must be
much larger than q, otherwise P2 would calculate f(α) mod N not f(α) mod q.
Hence, it is required that N holds the condition N > (k + 1)q2.

Verification. P2 and the servers repeat the same computation steps described
in Fig. 2 with the encrypted MAC values to authenticate the output. Figure 3
shows the verification of the protocol ΠDOPE.

Note that the operations of computation and verification can be implemented
in parallel. The communication complexity of our scheme is bounded to be linear
O(t) field elements resulting that it does not depend on the polynomial degree k.
This improves on the communication overheads of the previous DOPE studies
[6,16,20] which are O(kt).

Theorem 1. The protocol ΠDOPE is secure against a static active adversary
corrupting a coalition of at most t − 1 servers and P1/P2 with small probability
of error. The security is semantic for the P1’s polynomial and statistical for the
P2’s input.

242 A. Hamidi and H. Ghodosi

Fig. 1. Setup phase of the protocol ΠDOPE

Proof. Let H and C represent the honest and corrupted parties/servers in the
ideal model, respectively. Let {(S1, . . . , St−1), P1} ∈ C and St ∈ H in the setup
phase. The simulator S first sends the wrong inputs cjδ (for j = 0, 1, . . . , k) to
the functionality which simulate the errors cjδ = cj +δj in the real model. S runs
the functionality and the server St detects any inconsistency in the commitments
of the P1’s inputs using the zero-knowledge proof technique described in Fig. 1.
Then, S sends the random values cieδ, αiδ and the shares [β · λ]δt−1 and [θ]δt−1 in
the computation phase. This is analogous to the condition where A introduces
the errors cieδ = cie + δc, αiδ = αi + δα, [β · λ]δt−1 = [β · λ]t−1 + δβλ and
[θ]δt−1 = [θ]t−1 + δθ to the real model. The functionality is executed and P2 can
detect any inconsistency in the output using the global MAC key αmac with the
probability 1− 1/q. Let {(S1, . . . , St−1), P2} ∈ C and St ∈ H in the computation

Outsourcing Verifiable DOPE from Threshold Cryptography 243

Fig. 2. Computation of the protocol ΠDOPE

phase. S runs the corresponding MAC commitment in this phase represented in
Fig. 2, and the server St checks and detects any inconsistency in the tuple {re}
using the corresponding MACs γt(re). The correctness proof can be found in the
full version of this paper.

Note that the privacy of the P1’s polynomial is preserved by the IND-CPA
security of the Paillier cryptosystem, and P2 holds the privacy of his input α
using the 1-out-of-m oblivious transfer with the security parameter m. Some of
the efficient oblivious transfer protocols can be found in [22].

244 A. Hamidi and H. Ghodosi

Fig. 3. Verification of the protocol ΠDOPE

4 Conclusion

DOPE is a variant of OPE which has many applications in various areas from
cryptographic models to privacy-preserving algorithms. We propose a lightweight
DOPE scheme where the expensive computations of homomorphic encryption
and modular exponentiations are outsourced by a number of t cloud servers which
does not depend on the polynomial degree k. This can be achieved by having
the servers conduct the idea of threshold decryption such that the output still
remains confidential to at most t − 1 servers.

Our scheme includes two separate phases: the setup and the actual compu-
tation. The sender P1 is involved with the servers in the setup phase while the
receiver P2 interacts with the servers in the computation phase. This implies that
the setup phase can be performed at any time before the actual computation.
Our protocol holds the security against a static active adversary corrupting a
coalition of at most t − 1 servers and the opposed party using message authen-
tication codes with the IND-CPA security of Paillier cryptosystem for the P1’s
polynomial and the statistical security for the P2’s input. Also, the servers check
the commitments of the parties’ inputs using two separate non-interactive zero-
knowledge proof techniques. The communication complexity is bounded to O(t)
field elements giving an improvement on the previous studies [6,16,20] which
had that to the overhead O(kt).

Outsourcing Verifiable DOPE from Threshold Cryptography 245

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, pp. 439–
450 (2000)

2. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-
candidate election system. In: Proceedings of the Twentieth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 274–283 (2001)

3. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure mul-
tiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS
2016. LNCS, vol. 9696, pp. 327–345. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39555-5 18

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001)

5. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 22

6. Cianciullo, L., Ghodosi, H.: Unconditionally secure distributed oblivious polyno-
mial evaluation. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 132–142.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 9

7. de Cock, M., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy preserv-
ing linear regression over distributed datasets based on pre-distributed data. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
3–14 (2015)

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. David, B., Dowsley, R., Katti, R., Nascimento, A.C.A.: Efficient unconditionally
secure comparison and privacy preserving machine learning classification protocols.
In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 354–367.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 20

10. Dowsley, R., van de Graaf, J., Marques, D., Nascimento, A.C.A.: A two-party
protocol with trusted initializer for computing the inner product. In: Chung, Y.,
Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 337–350. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-17955-6 25

11. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1 7

12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

14. Gajera, H., Giraud, M., Gérault, D., Das, M.L., Lafourcade, P.: Verifiable and
private oblivious polynomial evaluation. In: Laurent, M., Giannetsos, T. (eds.)
WISTP 2019. LNCS, vol. 12024, pp. 49–65. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-41702-4 4

https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/978-3-319-39555-5_18
https://doi.org/10.1007/3-540-45682-1_22
https://doi.org/10.1007/978-3-030-12146-4_9
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-26059-4_20
https://doi.org/10.1007/978-3-642-17955-6_25
https://doi.org/10.1007/3-540-45472-1_7
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-41702-4_4
https://doi.org/10.1007/978-3-030-41702-4_4

246 A. Hamidi and H. Ghodosi

15. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

16. Hamidi, A., Ghodosi, H.: Verifiable DOPE from somewhat homomorphic encryp-
tion, and the extension to DOT. In: Su, C., Sakurai, K., Liu, F. (eds.) SciSec 2022.
LNCS, vol. 13580, pp. 105–120. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-17551-0 7

17. Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Win-
ter, A.: Information theoretically secure oblivious polynomial evaluation: model,
bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27800-9 6

18. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

19. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate pri-
vate information retrieval from homomorphic encryption. Proc. Priv. Enhancing
Technol. 2015(2), 222–243 (2015)

20. Li, H.-D., Yang, X., Feng, D.-G., Li, B.: Distributed oblivious function evaluation
and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004). https://doi.
org/10.1007/BF02973458

21. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 245–254
(1999)

22. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, vol. 1, pp.
448–457 (2001)

23. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

24. Otsuka, A., Imai, H.: Unconditionally secure electronic voting. In: Chaum, D., et al.
(eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 107–123. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 6

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-031-17551-0_7
https://doi.org/10.1007/978-3-031-17551-0_7
https://doi.org/10.1007/978-3-540-27800-9_6
https://doi.org/10.1007/978-3-540-27800-9_6
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/BF02973458
https://doi.org/10.1007/BF02973458
https://doi.org/10.1007/978-3-642-12980-3_6
https://doi.org/10.1007/3-540-48910-X_16

Authentication and Authorization

PiXi: Password Inspiration by Exploring
Information

Shengqian Wang(B), Amirali Salehi-Abari, and Julie Thorpe

Ontario Tech University, Oshawa, Canada
shengqian.wang@ontariotechu.net,

{shengqian.wang,abari,Julie.Thorpe}@ontariotechu.ca

Abstract. Passwords, a first line of defense against unauthorized access,
must be secure and memorable. However, people often struggle to cre-
ate secure passwords they can recall. To address this problem, we design
Password inspiration by eXploring information (PiXi), a novel app-
roach to nudge users towards creating secure passwords. PiXi is the first
of its kind that employs a password creation nudge to support users in the
task of generating a unique secure password themselves. PiXi prompts
users to explore unusual information right before creating a password,
to shake them out of their typical habits and thought processes, and to
inspire them to create unique (and therefore stronger) passwords. PiXi’s
design aims to create an engaging, interactive, and effective nudge to
improve secure password creation. We conducted a user study (N = 238)
to compare the efficacy of PiXi to typical password creation. Our find-
ings indicate that PiXi’s nudges do influence users’ password choices such
that passwords are significantly longer and more secure (less predictable
and guessable).

Keywords: Passwords · Authentication · Nudging · User Studies

1 Introduction

Despite decades of development in password authentication alternatives, the
majority of websites still require passwords for authentication. Unfortunately,
due to time constraints, labor costs, lack of expertise, or apathy, a significant
number of people reuse passwords or choose simple, predictable passwords (e.g.,
birthdays or names). These insecure password choices do not necessarily imply
users’ lack of intelligence or motivation, but may simply be due to their lack of
inspiration or guidance when confronted with a blank password field. Frustra-
tion can also arise from unhelpful password policy suggestions, such as “please
use special characters to make your password stronger” or “make your pass-
word longer to create a strong password.” Unfortunately, few solutions exist to
support users with creating secure passwords in such helpless situations. While
password managers, when used with random password generators, can improve
password security [32,33,39], some users are not comfortable using them. Even
some official organizations (e.g., governments, enterprises, etc.) do not typically
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 249–266, 2023.
https://doi.org/10.1007/978-981-99-7356-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_15&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_15

250 S. Wang et al.

recommend their use for sensitive accounts due to the fear of the password man-
ager vault being compromised. Password manager users still require a strong
master password as the key to encrypt the stored passwords in the vault. There-
fore, users, regardless of employing password managers or not, still require sup-
port for creating secure and memorable passwords for (at least) these sensitive
accounts. Nudging is a promising technique that can encourage users to create
more secure and memorable passwords. However, most nudges in password sys-
tems apply a one-size-fits-all approach and primarily focus on password meters
[1,25,33], which use rigorous password standards to convince users to adjust
their passwords to satisfy specific requirements. Unfortunately, many users find
effective password meter designs to be annoying [33]. To address these short-
comings, we design Password inspiration by eX ploring information (PiXi), a
novel approach to nudge users towards creating secure passwords. PiXi is the
first of its kind that employs a password creation nudge to support users in the
task of generating a unique password themselves. PiXi prompts users to explore
unusual information right before creating a password, to shake them out of their
typical habits and thought processes, and to inspire them to create unique (and
therefore stronger) passwords.

We implemented and evaluated a web-based version of PiXi to answer our
research questions: (Q1) Which nudges in PiXi are most effective, and do they
influence users’ password choices? (Q2) Does our PiXi system support users to
create more secure passwords? (Q3) How usable is our PiXi system, and how
can its usability be improved?

To investigate these research questions, we conducted a user study (N = 238)
to evaluate the security and usability of passwords generated by users of PiXi.
Our contributions and findings include: (i) The design of PiXi—a novel approach
to nudging users to create secure passwords. (ii) Security analysis of passwords
produced with PiXi. Our study results indicate that PiXi successfully influences
users’ password choices, such that passwords are longer and more secure (less
guessable) than a control group using a typical password creation process. (iii)
Usability analysis of the PiXi system. Our study results indicate that PiXi shows
promising usability in terms of user perception and memorability. (iv) Analysis of
nudge efficacy of PiXi. Our findings indicate that some nudges are more effective
than others and that PiXi’s combination of nudges do influence users’ password
choices.

2 Related Work

We first introduce nudging in its most general form, then highlight some of its key
applications. We then narrow down our focus to nudges at the time of password
creation for graphical passwords and text passwords. Finally, we summarize the
key differences between our approach with others.

Nudging. Nudging is a promising strategy to alter people’s behavior without
limiting their choices or economic incentives [28]. Nudges can successfully change
people’s decisions by minor and inexpensive interventions [13]. Nudging has been

PiXi: Password Inspiration by Exploring Information 251

applied in a variety of domains including education [3], ethics [2], social context
[20], health [23], finance [6,27], energy savings [11], privacy [1], and security [10].
Computer security experts and administrators have recently been investigating
nudges to encourage secure behaviors (see this survey for a great overview [40]).

Password Creation Nudges. Nudging techniques have been employed, with
varying degrees of success, to enhance the security of both graphical and text
passwords. Throughout this review, we describe each nudge using the catego-
rizations of Caraban et al. [7].

Nudges in Graphical Passwords. Graphical passwords are a type of knowledge-
based authentication that involves remembering (parts of) images instead of
a word. Some notable examples of graphical passwords and their variants are
Draw-A-Secret (DAS) [19], PassPoints [36], CCP [9], and GeoPass [30,31]), Pass-
Faces [5], and VIP [12]). Background Draw-A-Secret (BDAS) [14] arguably is the
first attempt to nudge users away from typical patterns during graphical pass-
word selection. It presents users with a background image, on which they need
to draw their graphical password. Its background image evokes the “salience
bias”, thus facilitating the creation of different graphical passwords than if the
background image was not present. Zezschwitz et al. [38] used similar nudging
techniques to help users create stronger patterns on Android mobile devices. Per-
suasive Cued Click Points (PCCP) [8] can be considered a facilitate (suggesting
alternatives) nudge where users have to select from a point within a randomly
positioned view-port (all other options are not available). Some PassPoints vari-
ations (e.g., [21,24,29]) can be considered to employ both facilitate (hiding) and
reinforce (subliminal priming) nudges. They aim to nudge users away from com-
mon patterns by presenting the background image differently at password cre-
ation for each user [24,29]. Since these nudges temporarily hide certain options
(making them harder to reach), they can be categorized as facilitating (hiding)
nudges.

Nudges in Text Passwords. The most straightforward way to nudge strong pass-
word selection is to suggest a random password to the user. This is a form
of facilitate (default) nudge if implemented so the user has a choice to accept
the random password or not. However, memorability is a significant problem
for system-assigned random passwords [37]. Password managers can help users
remember a random password, but many users still hesitate to adopt them [39].
Even for those users who are successfully nudged to choose a random password
and store it in a password manager, it is recommended to avoid using password
managers for sensitive accounts [17]. (e.g., email, financial, workplace, etc.) For
these reasons, finding other ways to nudge users towards creating secure pass-
words remains of interest. One way to nudge users towards creating stronger
text passwords is through password meters [33]. Employing a confront (friction)
nudge, they provide real-time feedback on password strength to motivate users to
revise their passwords. Other approaches employ a facilitate (suggesting alter-
natives) nudge that suggests modifications to the initial password to make it
secure [16]. However, these systems are often vulnerable to Guided Brute Force
attacks [26].

252 S. Wang et al.

Our Work vs Others. The existing approaches to nudge stronger text pass-
words are either (a) default nudges to use a randomly generated password (typ-
ically employed as a nudge in password managers [39]), (b) confront (friction)
nudges that aim to increase user’s awareness of their chosen password’s weakness,
with no facilitation in coming up with a new password (e.g., password meters
[34]), and (c) facilitate (suggesting alternatives) nudges that suggest modifica-
tions to a user’s initially weak password to make it secure (e.g., [16,18,22]. Our
approach with PiXi is entirely different than previous text password nudges; we
aim to facilitate the user’s password creation without suggesting alternatives,
but instead using the following set of nudges immediately prior to password
creation: (i) facilitate (positioning and suggesting alternatives) to help users
explore an unusual path (and set of selections) through the PiXi system, (ii)
confront (throttling mindless activity) to ensure users consider their PiXi selec-
tions, and (iii) reinforce (subliminal priming) to make the user’s PiXi selections
more prominent and easily accessible at the time the user is attempting to con-
ceive a new password. The goal of this combination of nudges is to create an
engaging, interactive, and effective nudge to impact password creation.

3 System Design

The PiXi system aims to nudge users to create stronger passwords, by engaging
them with an interactive system for information exploration (e.g., search and
select a sequence of keywords) before they create their typical alphanumeric
passwords. Instead of limiting user choice, PiXi exposes its users to some unusual
and randomized information to shake them out of their typical password creation
patterns and get them thinking about new possibilities for their passwords.

PiXi Components. Users interact with PiXi just before password creation
through:

Introduction. The introduction page (see Fig. 1a) offers a brief description of the
system via a YouTube video tutorial that guides users through the step-by-step
process of PiXi. It illustrates how to select a category and a keyword. A short
paragraph and a simple animation are also included on the introduction page
to assist users in selecting keywords. The users can bypass this page by clicking
the “Next” or “X” buttons, and they can always return to it by clicking on the
question icon located at the interface.

Category Selection. The category page (see Fig. 1b) contains three possible con-
tent categories for user selection: images, books, or movies. The order of cate-
gories is randomly shuffled for each user. This page contains a facilitate (posi-
tioning) nudge [7] as it positions a category in the center more prominently
to nudge the user to select it. The user still has the option to choose another
category. Once a category is selected, the user is directed to an item page (see
below).

PiXi: Password Inspiration by Exploring Information 253

Fig. 1. The key user-interaction interfaces in PiXi and its extension PiXi-Hints: (a)
the introduction page provides a video tutorial and instructions to users on how to
use the system. By clicking the “Next” or “X” buttons, they will be directed to (b)
the category page, which contains three possible content categories: Books, Movies,
and Images. Once users select their desired category, the user will be taken to (c)
the item page, which contains 20 randomly selected items, e.g., book covers in (c).
Selecting an item will lead users to (d) the keyword selection page, where they choose
three keywords from a random excerpt of the text of the selected item. After selecting
all three keywords, users will see the (e) keyword splash page that displays all three
chosen keywords (for three seconds) to nudge them further. Finally, users will see (f)
the register page which features a large display area of the selected items and keywords
on the left side of the typical registration input panel.

254 S. Wang et al.

Item Page. The item page contains a set of 20 randomly selected items (e.g.,
book covers, movie covers, or images) from the selected category.1 A user then
can select an item by clicking its image cover. If not interested in any items,
the user can search for her item of interest by the search bar with autocomplete
feature. The maximum number of items per page is limited to 20 to maintain
an organized user interface. The first row of items, along with the search bar, is
shown in Fig. 1c. This page contains a facilitate (suggesting alternatives) nudge
[7], by facilitating the selection from a random set of items over many others.

Keyword Selection Page. After selecting an item, the user is brought to the
keyword selection page, where she must choose three keywords. For example, if
a user selects “Harry Potter 4” as an item, she will be shown a random excerpt
of the book (see Fig. 1d) from which she is expected to select her keywords. Once
each keyword is chosen, it is shown in a bar at the top of the page. We set the
maximum number of words per excerpt to 50 to avoid scrolling the page for the
user, but the user can click on the shuffle button to land on another random
excerpt of the book. After the selection of each keyword, the user is directed
to another random excerpt containing the previously selected keyword. Suppose
that the user has already selected “had” and “Herminone” as the first and second
keywords. For the third keyword selection, she would be shown a random excerpt
containing the word “Herminone” (highlighted in red); see Fig. 1d for this exact
scenario. Then, she can select “apologize” (highlighted in blue once selected) as
the final third keyword.

Keyword Splash. Once three keywords are selected, the user will be shown the
her selected keywords in a “splash” page as shown in Fig. 1e. This page intends
to employ further nudging towards selected keywords just before the password
creation phase. This page has a black background with soft-white text to create
a dramatic color contrast for drawing visual attention to selected keywords, and
it automatically close after 3 s. But users can manually close it by clicking any-
where on the screen. This splash page aims to offer a confront nudge (throttling
mindless activity) [7], to nudge users to review the content again.

Registration. PiXi adds a large display area of selected items and keywords on
the left side of the typical registration input panel (see Fig. 1f). This addition
serves a reinforce nudge (or subliminal priming) [7], as they make the image
cover and keywords more prominent and easily accessible at the time the user
is attempting to conceive a new password. We implement the password length
requirement of at least 8 characters.

Login. PiXi does not modify the standard login page, and users simply need to
enter their username and password to complete the login process.

An Extension: PiXi-Hints. PiXi can also be deployed as a hint for password
recovery. To this end, we also have designed a PiXi extension called PiXi-Hints,
1 In our PiXi prototype configuration, there are around 6 million possible items (all

categories); 20 items are randomly selected from the pool of possible items and shown
to the user, for their selected category. However, the number of possible items could
be configured to be much larger.

PiXi: Password Inspiration by Exploring Information 255

which has all the components of PiXi but slightly differs at the login time. It
requires the user to interact with PiXi just before login by inputting their key-
words. This interaction intends to help users remember their passwords. In our
implementation, we did not require users to recall their keywords but recorded
their recall for analysis purposes.2

4 User Studies

We conducted a two-session study on Amazon MTurk to evaluate PiXi’s ability
to nudge users. Our study was approved by our university’s Research Ethics
Board.

Recruitment and Compensation. Our advertisement was made visible to all
MTurk workers, but only US workers with an approval rate of 95% or above were
allowed to participate. The users first reviewed and signed the consent form, then
were redirected to the PiXi system.

The sessions were compensated at the US minimum wage at the time of the
study ($7.25/hour). For Sessions 1 and 2 (resp.) with estimated completion times
of 7 and 2 min (resp.), the participants received $0.85 and $0.35 (resp.).

Conditions/Groups. Upon beginning the study, users were randomly assigned
to one of three groups:

1. Control: Users create a password and log in as usual (without PiXi).
2. PiXi: Users are asked to use PiXi only prior to password creation.
3. PiXi-Hints: Users are asked to use PiXi-Hints, which includes using PiXi for

both password creation and login.

Sessions and Tasks. Our study contains two sessions. For Session 1, partic-
ipants were required to register an online account (the process differs based on
condition/group), and then complete Questionnaire 1. For Session 2 (7 days later),
participants who successfully completed Session 1 were invited back through Ama-
zon MTurk to login to their accounts. After successful login or three unsuccessful
login attempts, the participants filled out the exit Questionnaire 2.

Data Cleaning. To maintain the integrity of our analyses, we have rigorously
cleaned our data to remove noisy and unreliable instances. For our analyses, Ini-
tially, we gathered all the users’ responses and stored them in our local database.
Next, we proceeded to analyze each record, identifying and quantifying any dupli-
cated data via an automated process. Then, we conducted a manual verification
of each record to validate the legitimacy of the users. Afterward, we eliminated
the data associated with these participants and kept a copy of the removed

2 The introduction video had some minor differences for users of PiXi-Hints: they
have an additional sentence that advises them to select interesting and memorable
keywords. This recommendation is provided to encourage users to remember their
keywords as they will need to reuse PiXi to input them again before each login.

256 S. Wang et al.

Table 1. Statistic of session completion and filtered participants across conditions.

Control PiXi PiXi-Hints

Participants 181 185 192

Multi-Identity 76 53 64

Inattentive 15 35 8

Weakly-Committed 19 14 34

Valid Participants (Session 1) 71 83 84

Valid Participants (Session 2) 10 9 12

entries.: (1) multi-identity (N = 193): the users who participated in our study
with multiple accounts or bots3; and (2) inattentive (N = 58): users who failed
our Likert-scale attention question of “Seven plus three equals eight” in Session
1. (3) weakly-committed (N = 67): the users with weak predictable passwords
(e.g., MTurk IDs or simple number sequences) or inconsistent responses to the
SUS scale’s Likert questions. Overall, we were surprised by the initial amount of
noise in our dataset. The final breakdown of user distribution and removal can
be found in Table 1.

Demographics. Table 2 presents an overview of the participant demographics
for our study collected through the questionnaire in Session 1. Overall, our par-

Table 2. The user demographics across the three conditions.

Gender Control PiXi PiXi-Hints Language Control PiXi PiXi-Hints

Female 42.3% 39.8% 40.5% English 98.6% 100.0% 98.8%

Male 56.3% 59% 59.5% Other 1.4% 0.0% 1.2%

N/A 1.4% 1.2% 0.0% N/A 0.0% 0.0% 0.0%

Age Control PiXi PiXi-Hints Occupation Control PiXi PiXi-Hints

Under 20 0.0% 0.0% 0.0% Engineering 7.0% 6.0% 7.1%

20–30 54.9% 50.6% 48.8% Arts and Entmt 1.4% 4.8% 7.1%

30–40 25.4% 27.7% 34.5% Business 31.0% 18.1% 26.2%

40–50 11.3% 9.6% 9.5% Communications 4.2% 2.4% 3.6%

50–60 5.6% 6.0% 6.0% Social services 5.6% 6.0% 2.4%

60+ 2.8% 6.0% 1.2% Education 7.0% 7.2% 8.3%

N/A 0.0% 0.0% 0.0% Technology 14.1% 24.1% 23.8%

Education Control PiXi PiXi-Hints General Labour 2.8% 7.2% 1.2%

None 0.0% 0.0% 0.0% Agriculture 1.4% 3.6% 3.6%

High School 1.4% 4.8% 8.3% Government 2.8% 2.4% 2.4%

Bachelor’s 74.6% 68.7% 63.1% Health 18.3% 10.8% 11.9%

Master’s 23.9% 24.1% 27.4% Law 0.0% 0.0% 0.0%

PhD 0.0% 2.4% 1.2% Sales 2.8% 4.8% 0.0%

N/A 0.0% 0.0% 0.0% N/A 1.4% 2.4% 2.4%

3 These 193 participants chose an identical but uncommon password, possibly due to
these accounts all controlled by one.

PiXi: Password Inspiration by Exploring Information 257

ticipants were composed of 41% female, 58% male, and 1% who preferred not
to specify their gender. The majority of participants (51%) fell within the 20–30
age group, followed by the age group of 30–40 making up 32% of participants.
Regarding participants’ education level, most participants (68%) had a Bache-
lor’s degree, followed by a Master’s degree (25%). The majority of participants
in our study worked in Business (24%), Technology (21%), or Health (13%).

5 Results

We begin by evaluating indicators that PiXi’s nudges work in Sect. 5.1. We per-
form an extensive security analysis in Sect. 5.2, and usability analysis in Sect. 5.3.

5.1 Evaluation of Nudging Efficacy

Through various metrics, we evaluate the efficacy of (i) the positioning nudge
on the Category Page, (ii) the suggesting alternatives nudge on the Items Page,
and (iii) PiXi’s overall nudge ability on the users’ password.

Positioning Nudge in Category Page. Table 3 shows the acceptance rates of
the positioning nudge for categories where one category is initially positioned in
the center of the Category Page (for both PiXi and PiXi-Hints). Approximately
half of the participants accepted the centered suggested category (especially for
Movies and Images). There appears to be a slightly higher preference for the
Image category.

Table 3. The acceptance rates of the facilitate nudges, combining PiXi and PiXi-Hints.

Positioning Nudge
(Category Page)

Suggesting Alternatives
Nudge (Items Page)

Books 20/56 (35.71%) 40/41 (97.56%)

Movies 29/59 (49.15%) 40/55 (72.73%)

Images 30/51 (58.82%) 63/71 (88.73%)

Suggesting Alternative Nudge in Items Page. Table 3 also shows the accep-
tance rates of the suggested alternative nudge in item pages, where the set of 20
randomly selected items initially appeared on the page for both PiXi and PiXi-
Hints. Most users (72%-97%, depending on category) accepted one of the sug-
gested items, indicating that this nudge was successful at nudging users towards
exploring unique items they might not otherwise consider.

258 S. Wang et al.

Table 4. The keywords usage rate for both PiXi and PiXi-Hints, including direct and
indirect use (e.g., uppercase, lowercase, or additional punctuation added.).

1 keyword 2 keywords 3 keywords Total

PiXi 7 12 7 26/83 (31%)

PiXi-Hints 11 14 14 39/84 (46%)

Total 22 26 17 65/167 (39%)

Do PiXi Nudges Influence Resulting Passwords? We aim to determine
whether PiXi influenced users’ password choices. The most straightforward
method to measure this is to determine how many users incorporate their key-
words directly in their passwords.

Our findings, shown in Table 4, revealed that 39% of users (31% for PiXi,
46% for PiXi-Hints) incorporated at least one keyword into their passwords. We
consider this metric an underestimate of the number of users who are nudged by
PiXi, since users may see a relationship between their passwords and keywords
that we are unable to detect (e.g., if it is indirectly related and personal in
nature). Although it is likely an underestimate, it still provides evidence that
a large percentage of users are influenced by the PiXi system during password
creation. An emerging critical question is how these nudges have impacted the
security of the chosen passwords, which we address next.

5.2 Security Analysis

We study the security of passwords created under each condition from differ-
ent perspectives including their length, ZXCVBN score, and strength against
online and offline attacks. We use a significance level of (α = 0.05), and the
Holm-Bonferroni correction for multiple-comparison correction. This correction
performs an adjustment to significance levels when several statistical tests are
performed on a single data set.

Password Length. We recorded the length of the passwords, as one measure of
password strength. To determine whether a condition can influence the password
length, we test the following Hypothesis:

H0 The distribution of password lengths is similar across PiXi, PiXi-Hints, and
Control conditions.

Ha The distribution of password lengths differs between PiXi, PiXi-Hints, and
Control conditions.

The one-way ANOVA test (df = 2, N = 238) rejects the null hypothesis H0 (F =
6.5, P = 0.002) after Holm-Bonferroni correction (α′

(1) = 0.0167), indicating
a significant difference in password length among the three conditions with a
large effect size (η2 = 0.44). Table 6 shows the mean password length for each
condition. The Control condition (μ = 9.35) had a significantly lower password
length compared to PiXi (μ = 10.87) and PiXi-Hints (μ = 11.42), while the

PiXi: Password Inspiration by Exploring Information 259

mean in PiXi and PiXi-Hints are comparable. This suggests that PiXi and PiXi-
Hints users tend to create longer passwords than those in the Control condition,
which can offer security advantages.

Table 5. ZXCVBN password score range and descriptions [35].

Score # Guesses X Description

0 1 ≤ X ≤ 103 Too guessable: risky password

1 103 < X ≤ 106 very guessable: protection from throttled online attacks

2 106 < X ≤ 108 somewhat guessable: protection from unthrottled online attacks

3 108 < X ≤ 1010 safely unguessable: moderate protection from offline slow-hash scenario

4 X > 1010 very unguessable: strong protection from offline slow-hash scenario

Password Score and Strength. We use ZXCVBN [35], a widely used password
meter that is easy to implement and cost-effective. Given an input password,
it returns a strength score as described in Table 5. To determine whether a
condition can influence the password score, we test the following hypothesis:

H0 The distribution of ZXCVBN scores is similar across PiXi, PiXi-Hints, and
Control conditions.

Ha The distribution of ZXCVBN scores differs between PiXi, PiXi-Hints, and
Control conditions.

A one-way ANOVA test (df = 2, N = 238) revealed a significant difference
in password score among the three conditions (F = 3.868, P = 0.022) with
a medium effect size (η2 = 0.032), leading us to reject the null hypothesis H0

after Holm-Bonferroni correction (α′
(3) = 0.05). As shown in Table 6, the Control

condition with an average of (μ = 1.83) has a lower password score than PiXi
(μ = 2.16) and PiXi-Hints (μ = 2.31). These findings suggest that passwords
created through PiXi and PiXi-Hints are stronger than those created by users
in the Control condition.

Table 6. The Mean ± Std. for password length, password score, and SUS score.

Password Length ZXCVBN Score SUS Score

Control 9.35 ± 1.73 1.83 ± 1.04 56.60 ± 13.28

PiXi 10.87 ± 4.38 2.16 ± 1.02 54.48 ± 11.93

PiXi-Hints 11.42 ± 4.01 2.31 ± 1.17 56.68 ± 11.49

We evaluate password strength by CMU’s Password Guessability Service
(PGS) [34] which uses numerous state-of-the-art password cracking algorithms

260 S. Wang et al.

to calculate guessability.4 To assess password strength under online and offline
attacks, we employed online and offline attack thresholds of 106 and 1014 guesses
[15]. When a password can be guessed before the online (or offline) attack thresh-
old, we call it online-unsafe (or offline-unsafe). The summary of our analyses is
reported in Table 7. Passwords that can withstand offline attacks in PiXi (14.4%)
and PiXi-Hints (32.1%) are significantly higher than in the Control (7%) con-
dition. Conversely, weak passwords are more common in the Control (18.3%)
than in PiXi (or 10.8%) and PiXi-Hints (15.5%). We conducted a test to deter-
mine whether password strength depends on different conditions, by testing the
following hypotheses:

H0 The distribution of password strength measurements is similar across PiXi,
PiXi-Hints, and Control conditions.

Ha The distribution of password strength measurements differs between PiXi,
PiXi-Hints, and Control conditions.

We performed a χ2 test (df = 4, N = 238) to examine these hypotheses. The
results in Table 7 showed a significant difference (χ2 = 17.120, P = 0.002) with
a medium effect size (Cramer′s V = 0.187) across different conditions, so we
reject the null hypothesis (H0) after Holm-Bonferroni correction (α′

(2) = 0.025).
This finding further supports that PiXi and PiXi-Hints encourage users to create
more unique and stronger passwords than the Control condition.

Table 7. Passwords guessability at the online and offline thresholds of 106 and 1014,
CMU’s Password Guessability Service.

Online-unsafe Offline-unsafe Safe

Control 18.3% 74.7% 7%

PiXi 10.8% 74.8% 14.4%

PiXi-Hints 15.5% 52.4% 32.1%

Should Users Incorporate Keywords in Passwords? As observed in
Sect. 5.1, many users incorporate their keywords into their passwords. Here we
aim to determine the security impact of this behavior, to determine whether
PiXi should encourage or prevent it. As shown in Table 8, for both PiXi and
PiXi-Hints, the passwords using keywords had much higher length, score, and
guesses than the average passwords. This suggests that users who used keywords
were able to create stronger and longer passwords, and as such future versions
of PiXi might encourage this behavior.

4 We also study them by CKL PSM–a password strength meter based on the chunk-
level PCFG model (CKL PCFG). However, the results were quantitatively and qual-
itatively very similar, thus we do not report them here due to space constraints.

PiXi: Password Inspiration by Exploring Information 261

Table 8. Comparison of security metrics for passwords with vs. without keywords.

Keywords Length Score CMU Guesses

PiXi Yes 14.15 2.81 1015.45

No 9.25 1.89 108.89

PiXi-Hints Yes 13.05 2.51 1014.37

No 9.79 2.17 1010.61

Do Some Categories Nudge Stronger Passwords?
We also investigate whether password strength depends on the nudge category
(Books, Movies, or Images). Table 9 shows that passwords created by users who
selected Books were most resistant to online and offline attacks. Passwords cre-
ated by users who selected Images have the least “safe” passwords. One possible
reason for this is that keywords from the Images category tend to be less unique
compared to the other categories. These results suggest that password strength
differs between categories and that future PiXi implementations might avoid
using the Images category.

Table 9. The guessability of Passwords at the online and offline thresholds across three
categories, combining PiXi and PiXi-Hints.

Online-unsafe Offline-unsafe Safe

Books 7.3% 56.1% 36.6%

Movies 14.5% 56.4% 29.1%

Images 15.5% 73.2% 11.3%

Total 14.7% 66.8% 18.5%

5.3 Usability Analysis

We analyze the usability of PiXi and PiXi-Hints, according to (a) SUS score, (b)
user satisfaction, (c) login times, and (d) login rates. Results suggest that PiXi
shows promise; most users agreed that it helped them to choose a secure and
memorable password, recall rates were promising, and SUS scores were compa-
rable to the Control group.

SUS Score. To measure the usability of the Control, PiXi and PiXi-Hints,
we compare the System Usability Scale (SUS)—a commonly-used questionnaire
to measure the usability of a system [4]. SUS consists of 10 questions with 5
options to choose from that were asked in our Session 1 questionnaire. The
SUS evaluation metrics are shown in Table 10. As shown in Table 6, the SUS
score is very close across conditions, supporting that PiXi has no noticeable
usability impact. Although the SUS score is relatively low for PiXi and PiXi-
Hints (comparable to Control), this indicates that although PiXi added some

262 S. Wang et al.

Table 10. General guideline on the interpretation of SUS score [4].

SUS Score Grade Adjective Rating

>80.3 A Excellent

68–80.3 B Good

68 C Okay

51–68 D Poor

<51 F Awful

steps prior to password creation, that users were not bothered by these steps.
As described further below, this may be due to increased user satisfaction that
PiXi facilitates creating secure and memorable passwords. To compare PiXi’s
usability to password meters, where it was found that users were more likely
to report creating a password that meets the requirements was difficult [33], we
report the relative agreement to Question 8: “The password creation method in
this study was easy to use.” Our results indicate that PiXi (4.03 ± 0.822) and
PiXi-Hints (3.95±0.764) users are more likely to agree the system is easy to use
than Control (3.81± 0.903), where 1 indicates strong disagreement and 5 strong
agreement.

User Satisfaction. To determine the extent to which participants value each
password system/process, we asked users their level of agreement with the ques-
tion “I believe this password creating method helped me to choose a secure and
memorable text password.” Fig. 2 gives a visual representation of the distribution
of the answers, where 5 is for strongly agree, and 1 for strongly disagree.

The users of PiXi or PiXi-Hints (with averages of 3.95 and 4.05) report higher
levels of agreement compared to those in the Control condition (with an average
of 2.9). Thus, PiXi and PiXi-Hints systems were successful at inspiring/nudging
users to select secure and memorable passwords.

Login Rates and Times
We analyze our login data from Session 2 for indications of usability and mem-
orability problems in each condition. While the MTurk return rate was low for
Session 2, we believe exploring this information can still provide useful insights
about system memorability.

Table 11 shows the login success rates (over 3 login attempts) and login time.
While the Control group has a higher rate of login failure, we only see this as an
indication that PiXi shows promise for helping create stronger and possibly more
memorable passwords, and as such further study is required for any concrete
statistical analyses.

As shown in Table 11, PiXi-Hints with the additional hint task have higher
login times compared to Control. However, surprisingly, PiXi requires a longer
login time than Control, while Pixi users tended to require more than one login
attempt, which increased the average login time. This issue should be analyzed
in future work to determine whether it improves over successive logins or not.

PiXi: Password Inspiration by Exploring Information 263

Fig. 2. The violin plot of user satisfaction distributions for three conditions. PiXi and
PiXi-Hints users have a similar score distribution, with the majority of users reporting
scores of 4 or higher, while Control users have scores concentrated between 3 and 4.

Table 11. Login data for each condition.

Control PiXi PiXi-Hints

Login time 14.87 ± 7.38 27.68 ± 22.1 139.5 ± 36.08

Login success rate 7/10 (70%) 8/9 (88.9%) 10/12 (83.3%)

6 Conclusion

We designed, implemented, and studied the efficacy of PiXi (Password
inspiration by eXploring information)—a novel approach to nudge users towards
creating secure passwords. PiXi is the first approach we are aware of that employs
a text password creation nudge that supports users in the task of coming up with
a unique password themselves. PiXi’s concept is to ask users to explore unusual
information just prior to password creation, to shake users out of their typical
habits and thought processes, in the hopes it inspires them to create unique (and
therefore stronger) passwords. The results of our study (N = 238) indicate that
PiXi is successful at nudging users to create secure passwords, without explicitly
asking them to do so. Our findings indicate that PiXi users created passwords
that are significantly longer and more resistant to password-guessing attacks.
PiXi had a comparable overall perception to typical password creation systems,
and users agreed that PiXi helped them to create more secure and memorable
passwords. As opposed to password meters, where effective conditions were found
to increase difficulty in creating passwords [33], PiXi users found it easier to cre-
ate passwords.

Our study has some limitations due to Amazon MTurk, which introduced a
notable amount of noise in our collected data. While we did our best to fairly
catch noise and remove it from our data, it is possible we couldn’t catch and filter
all noisy data. However, since the noise should be consistent between each group,
any statistically significant finding should be reliable. Future studies should focus
on other populations or enhanced methods to filter noise on MTurk. Such future
studies should also focus on long-term recall rates and login times over successive

264 S. Wang et al.

logins. It would also be interesting to study whether a shortened version of the
PiXi system (e.g., involving only one keyword) could be equally effective at
nudging users toward choosing secure passwords.

Future work also includes designing and evaluating extensions to the PiXi
system. PiXi presently only offers three categories. In future work, we suggest
the study of additional categories (e.g., music/songs, videos, maps, news, or blog
posts) to provide users with a broader set of unique paths/nudges through the
system.

Our results should stimulate future research into both PiXi itself and more
generally novel password creation nudges to support users in secure password
creation.

Acknowledgment. This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

1. Acquisti, A., et al.: Nudges for privacy and security: understanding and assisting
users’ choices online. ACM Comput. Surv. (CSUR) 50(3), 1–41 (2017)

2. Bazerman, M.H., Gino, F.: Behavioral ethics: toward a deeper understanding of
moral judgment and dishonesty. Ann. Rev. Law Soc. Sci. 8, 85–104 (2012)

3. Breman, A.: Give more tomorrow: two field experiments on altruism and intertem-
poral choice. J. Public Econ. 95(11–12), 1349–1357 (2011)

4. Brooke, J.: SUS: a quick and dirty usability scale. Usability Eval. Ind. 189, 189–194
(1995)

5. Brostoff, S., Sasse, M.A.: Are passfaces more usable than passwords? A field trial
investigation. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Com-
puters XIV — Usability or Else!, pp. 405–424. Springer, London (2000). https://
doi.org/10.1007/978-1-4471-0515-2 27

6. Cai, C.W.: Nudging the financial market? A review of the nudge theory. Account.
Financ. 60(4), 3341–3365 (2020)

7. Caraban, A., Karapanos, E., Gonçalves, D., Campos, P.: 23 ways to nudge: a review
of technology-mediated nudging in human-computer interaction (2019)

8. Chiasson, S., Stobert, E., Forget, A., Biddle, R., Van Oorschot, P.C.: Persuasive
cued click-points: design, implementation, and evaluation of a knowledge-based
authentication mechanism. IEEE Trans. Dependable Secure Comput. 9(2), 222–
235 (2012)

9. Chiasson, S., van Oorschot, P.C., Biddle, R.: Graphical password authentication
using cued click points. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 359–374. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 24

10. Collier, C.A.: Nudge theory in information systems research a comprehensive sys-
tematic review of the literature. In: Academy of Management Proceedings, vol. 1,
p. 18642 (2018)

11. Costa, D.L., Kahn, M.E.: Energy conservation “nudges” and environmentalist ide-
ology: evidence from a randomized residential electricity field experiment. J. Eur.
Econ. Assoc. 11(3), 680–702 (2013)

https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-3-540-74835-9_24
https://doi.org/10.1007/978-3-540-74835-9_24

PiXi: Password Inspiration by Exploring Information 265

12. De Angeli, A., Coutts, M., Coventry, L., Johnson, G.I., Cameron, D., Fischer, M.H.:
VIP: a visual approach to user authentication. In: Advanced Visual Interfaces
(2002)

13. Dijksterhuis, A., Aarts, H., Bargh, J.A., Van Knippenberg, A.: On the relation
between associative strength and automatic behavior. J. Exp. Soc. Psychol. 36(5),
531–544 (2000)

14. Dunphy, P., Yan, J.: Do background images improve “draw a secret” graphical
passwords? In: ACM Computer and Communications Security (2007)

15. Florêncio, D., Herley, C., Van Oorschot, P.C.: Pushing on string: the “don’t care”
region of password strength. Commun. ACM 59(11), 66–74 (2016)

16. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Improving text passwords
through persuasion. In: Proceedings of the 4th Symposium on Usable Privacy and
Security (2008)

17. Government of Canada: Password managers - get cyber safe. https://www.
getcybersafe.gc.ca/en/secure-your-accounts/password-managers#defn-password.
Accessed 30 Mar 2023

18. Houshmand, S., Aggarwal, S.: Building better passwords using probabilistic tech-
niques. In: Annual Computer Security Applications (2012)

19. Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D.: The design and
analysis of graphical passwords. In: USENIX Security Symposium (1999)

20. Johnson, E.J., Goldstein, D.: Do defaults save lives? (2003)
21. Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G., Avouris, N.: Influences

of human cognition and visual behavior on password strength during picture pass-
word composition. In: The SIGCHI Conference on Human Factors in Computing
Systems (CHI) (2018)

22. MacRae, B.A.: Strategies and applications for creating more memorable passwords.
Master’s thesis, Ontario Tech University (2016)

23. Milkman, K.L., Beshears, J., Choi, J.J., Laibson, D., Madrian, B.C.: Using imple-
mentation intentions prompts to enhance influenza vaccination rates. Proc. Natl.
Acad. Sci. 108(26), 10415–10420 (2011)

24. Parish, Z., Salehi-Abari, A., Thorpe, J.: A study on priming methods for graphical
passwords. J. Inf. Secur. Appl. 62, 102913 (2021)

25. Peer, E., Egelman, S., Harbach, M., Malkin, N., Mathur, A., Frik, A.: Nudge
me right: personalizing online security nudges to people’s decision-making styles.
Comput. Hum. Behav. 109, 106347 (2020)

26. Schmidt, D., Jaeger, T.: Pitfalls in the automated strengthening of passwords. In:
Annual Computer Security Applications (2013)

27. Thaler, R.H., Benartzi, S.: Save more tomorrow: using behavioral economics to
increase employee saving. J. Polit. Econ. 112(S1), 164–187 (2004)

28. Thaler, R.H., Sunstein, C.R.: Nudge: improving decisions about health, wealth,
and happiness (2009)

29. Thorpe, J., Al-Badawi, M., MacRae, B., Salehi-Abari, A.: The presentation effect
on graphical passwords. In: The SIGCHI Conference on Human Factors in Com-
puting Systems (CHI) (2014)

30. Thorpe, J., MacRae, B., Salehi-Abari, A.: Usability and security evaluation of
GeoPass: a geographic location-password scheme. In: Proceedings of the Sympo-
sium on Usable Privacy and Security (2013)

31. Thorpe, J., van Oorschot, P.C.: Human-seeded attacks and exploiting hot-spots in
graphical passwords. In: USENIX Security Symposium (2007)

32. Ur, B., et al.: Design and evaluation of a data-driven password meter. In: The
SIGCHI Conference on Human Factors in Computing Systems (CHI) (2017)

https://www.getcybersafe.gc.ca/en/secure-your-accounts/password-managers#defn-password
https://www.getcybersafe.gc.ca/en/secure-your-accounts/password-managers#defn-password

266 S. Wang et al.

33. Ur, B., et al.: How does your password measure up? The effect of strength meters
on password creation. In: USENIX Security Symposium (2012)

34. Ur, B., et al.: Measuring real-world accuracies and biases in modeling password
guessability. In: USENIX Security Symposium (2015)

35. Wheeler, D.L.: ZXCVBN: low-budget password strength estimation. In: USENIX
Security Symposium (2016)

36. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: PassPoints:
design and longitudinal evaluation of a graphical password system. Int. J. Hum.
Comput. Stud. 63, 102–127 (2005)

37. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

38. von Zezschwitz, E., et al.: On quantifying the effective password space of grid-based
unlock gestures. In: Mobile and Ubiquitous Multimedia (2016)

39. Zibaei, S., Malapaya, D.R., Mercier, B., Salehi-Abari, A., Thorpe, J.: Do password
managers nudge secure (random) passwords? In: Symposium on Usable Privacy
and Security (2022)

40. Zimmermann, V., Renaud, K.: The nudge puzzle: matching nudge interventions to
cybersecurity decisions. ACM Trans. Comput.-Hum. Interact. 28(1) (2021)

Security Analysis of Alignment-Robust
Cancelable Biometric Scheme for Iris

Verification

Ningjing Fan1 , Dongdong Zhao1,2(B), and Hucheng Liao1

1 School of Computer and Artificial Intelligence, Wuhan University of Technology,
Wuhan 430070, Hubei, China

zdd@whut.edu.cn
2 Chongqing Research Institute, Chongqing, China

Abstract. In cancelable biometric (CB) schemes, secure biometric tem-
plates are generated by applying, mainly non-linear, transformations to
the origin data. The cancelable templates should satisfy the require-
ments of irreversibility, unlinkability, and revocability with high accu-
racy. However, existing cancelable biometric schemes have been demon-
strated that their security is overestimated. Many well-known cancelable
biometric schemes have been proven vulnerable to some attack models.
In this paper, we analyze a recent alignment-robust cancelable biomet-
ric scheme called Random Augmented Histogram of Gradients (R·HoG)
that is not as unlinkable as proposed. Moreover, we propose two schemes
to attack the unlinkability of R·HoG. One is that two cancelable tem-
plates from different applications are directly connected according to the
leaked tokens, and the other is based on the reverse of Z-score trans-
formation, which can achieve higher linkability. Experimental results on
CASIA-IrisV3-Interval show that the cancelable biometric template gen-
erated by R·HoG has high linkability with a maximum link success rate
of 95.62%.

Keywords: Attack · Cancelable biometrics · Linkability · Iris
recognition

1 Introduction

Nowadays, biometrics is increasingly used in many applications, such as access
control, mobile payment, and forensic investigation [6,9], which benefit from
its security, reliability, and convenience. Compared with traditional identifica-
tion methods, biometrics authentication does not require people to remember
passwords, and system to manage passwords, so there is no issue of password
forgetting or stolen. However, the widespread use of biometrics in authentication
systems has caused many concerns about its security [7]. This is mainly because,
biometrics is non updatable and irreversible, and once a biometric template is
stolen, it will face significant privacy and security issues.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 267–283, 2023.
https://doi.org/10.1007/978-981-99-7356-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_16&domain=pdf
http://orcid.org/0009-0003-5546-892X
https://doi.org/10.1007/978-981-99-7356-9_16

268 N. Fan et al.

In order to protect biometrics, several biometric template protection schemes
have been proposed over the past few years which are commonly catego-
rized as cancelable biometrics (CB) [24] and biometric cryptosystems [19]. For
more information about biometric template protection, please refer to [20]. CB
mainly applies the application-specific parameters to transformation methods
for obtaining a distorted template, so that the template does not leak too much
biometric details, and different applications can be achieved by regenerating
new application-specific parameters. According to the international standard
ISO/IEC 24745 [1], CB should meet the requirements as follows:

– Irreversibility: It should be computationally hard to retrieve the original
biometric template from the cancelable template.

– Unlinkability: It is difficult to determine whether two cancelable templates
are from the same sample. This prevents cross-matching between templates
from different applications, which use different transformation parameters.

– Renewability/Revocability: It allows valid users to generate new cance-
lable templates and cancel old template once it is leaked.

Currently, several cancelable biometric schemes have been proposed, and
most of the authors claim that their schemes are secure. However, some recent
researches show that the security declared by CB schemes has loopholes, and
several attack models against CB schemes have been proposed to make it not
meet irreversibility or unlinkability as described by the scheme proposers [5,10,
26]. Cancelable templates may be subject to a variety of attacks, one of which is
very common, namely, linkability attacks [2,10,12,22]. We assess the security of
CB schemes in the situation that the user’s token would be stolen by attackers,
and the adversary knows the transformation scheme.

– Linkability Attack: An adversary obtains two cancelable templates and
uses a scheme to determine whether the two templates are from the same
sample.

Therefore, for a newly proposed scheme, verifying whether it is truly secure
has great significance. In 2022, Lee et al. [16] proposed an alignment-robust
cancelable biometric scheme called Random Augmented Histogram of Gradients
(R·HoG) inspired by the histogram of oriented gradients [4]. The most important
feature of R·HoG is that the template generation does not require pre-alignment,
which greatly reduces the time cost of generating cancelable templates. It is also
demonstrated in [16] that, R·HoG can withstand major security and privacy
attacks, e.g., false acceptance attack and birthday attack. Moreover, the authors
claim that it meets the unlinkability property.

In this paper, linkability attack is carried out against R·HoG, which has
achieved a certain attack effect. We verified the impact of our attack on R·HoG
on the CASIA-IrisV3-Internal dataset used in the experiment in [16]. Our con-
tributions are as follows:

– We design a method for guessing the unknown mean and variance to reverse
the step-4 (i.e. Z-score transformation) of R·HoG.

Security Analysis of R·HoG 269

– We have designed two linking methods, one is to directly link the cancelable
templates using their distances calculated based on the random parameters,
and the other is to link the cancelable templates using their distances cal-
culated based on the reverse results of Z-score transformation and the ran-
dom parameters. We conduct several experiments and demonstrate that the
R·HoG transformation scheme has high linkability, and could not achieve the
unlinkability property.

2 Related Work

In this section, we introduce several recent attack schemes that pose a threat to
the security of some CB schemes.

In the past, although researchers who proposed cancelable schemes claimed
that the schemes can withstand various security attacks, many adversaries
demonstrated that these schemes have security vulnerabilities [24]. They can
use the following common attack methods to attack the security:

– Brute Force Attack [23,26]: Adversaries using brute force attack can
exhaust the original biometric template they speculate on until they find
the correct solution, as long as it is computationally feasible.

– Reversibility Attack [2,8,10,17,21–23,27]: The reversibility attack mainly
uses the mathematical characteristics of the cancelable biometric schemes,
so that the template can use the scheme-specific reverse transformation to
obtain the original biometric template.

– Record Multiplicity Attack [21–23]: Adversaries can obtain multiple dif-
ferent cancelable templates exported from the same biometrics using different
applications and their transformation parameters. By combining these cance-
lable templates and parameters, it is possible to obtain the original biometric
template.

– Preimage Attack [8,15,17]: The preimage attack can use fake original tem-
plates to simulate the real to obtain cancelable templates that are very similar
to the real, in order to deceive the biometrics verification system. This allows
adversaries to gain user privacy even if the cancelable protection scheme is
irreversible.

Typically, Rathgeb et al. [25] proposed a cancelable iris biometrics based on
adaptive Bloom filters. This scheme realized the protection of biometrics through
blocking and mapping biometric features to bloom filters. After that, Hermans
et al. [12] demonstrated that the scheme does not satisfy unlinkability, and pre-
sented a simple attack that succeeds with probability at least 96%. Bringer et
al. [2] took into account non-uniformity and variability between the data and
attacked the unlinkability and irreversibility of the scheme.

Another classic protection scheme is biohashing [13]. It has also been revealed
that there are some security threats. It is shown in [3] that biohashing has the
problem of reversibility. [14] analysed that the hidden assumption in biohashing

270 N. Fan et al.

is impractical. Moreover, preimage attack was applied in [15,17] under the token-
stolen scenario.

More recently, Dong et al. [8] demonstrated that CB schemes are highly vul-
nerable to similarity-based attack and took Bloom filter-based and biohashing
scheme as examples. Ghammam et al. [10] attacked two CBs based on index-
of-max (IoM) hashing: Gaussian Random Projection-IoM (GRP-IoM) and Uni-
formly Random Permutation-IoM (URP-IoM). They proposed several attacks
and argued that GRP-IoM and URP-IoM are highly vulnerable against authen-
tication and linkability attacks. Moreover, Wang ed al. [28] proposed a con-
strained optimization similarity-based attack (CSA), which is improved upon
DongâĂŹs genetic algorithm enabled similarity-based attack (GASA) [8]. They
suggested that CSA is effective to breach IoM hashing and BioHashing security,
and outperforms GASA significantly. Additionally, Ouda et al. [21] performed
invertibility attack, authentication attack and so on against local ranking-based
scheme proposed by Zhao et al. [29]. After that, Liao et al. [18] improved the
local ranking-based scheme [29] by two approaches based on ordinal value fusion
strategy.

3 Random Augmented Histogram of Gradients (R·HoG)

This section provides a brief overview of the R·HoG transformation scheme fol-
lowing the notation adopted in [16].

3.1 Step-1: Random Augmentation

In this step, R·HoG applies the random augmentation seed p ∈ [1,m]d to the
irisCode Z ∈ [0, 1]m×n as its horizontal axis, and produce the random augmented
irisCode Z̈ = [z̈1, z̈2, ..., z̈d]

T.

3.2 Step-2: Gradient Orientation and Magnitude Calculation

In this step, R·HoG computes the orientation matrix Ź ∈ R
d×n and magnitude

matrix
...
Z ∈ R

d×n with each z̈ij ∈ Z̈. In orientation matrix, the calculation
formula [16] for horizontal and vertical directions for each z̈ij ∈ Z̈ are as follows:

X = rcirshift
(
Z̈,−1

)
− rcirshift

(
Z̈, 1

)
(1)

Y = ccirshift
(
Z̈, 1

)
− ccirshift

(
Z̈,−1

)
(2)

where X and Y denote the horizontal and vertical direction matrices, e.g.,
rcirshift(Z̈, 1) means shifting the Z̈ from left to right by 1 and ccirshift(Z̈, 1)
means shifting the Z̈ from up to down by 1. Lastly, they compute Ź and

...
Z as

[16] with:

źij = atan2 (yij , xij) , źij ∈ Ź (3)

Security Analysis of R·HoG 271

Fig. 1. R·HoG transformation process where b = 1, a = 3, d = 6

...
z ij =

√
(xij)

2 + (yij)
2
,

...
z ij ∈ ...

Z (4)

Specially, in the proposed scheme, ‘0’ vector is filled in to the top and bottom
of Z̈ during the calculation of Ź and

...
Z instead of cyclic shift as shown in the

Fig. 1.

3.3 Step-3: Matrix Partitioning and Histogram Formalization

In this step, the matrix Ź and
...
Z are partitioned into o numbers of sub-matrices

Źpart ∈ [0, 1]b×a and
...
Z

part ∈ [0, 1]b×a with equal size of b × a, where o = d
b × n

a .
Then R·HoG defines the histogram bins as: {−135◦ or 45◦}, {−90◦ or 90◦},
{−45◦ or 135◦} and {0◦ or 180◦}, and h as the number of histogram bins.
A histogram vector t ∈ R

h is generated by adding the ...
z ij ∈ ...

Z
part to the t

according to the źij ∈ Źpart. Finally, a histogram matrix T = [t1 . . . to]
T is

builded by combining o numbers of histogram vectors t.

272 N. Fan et al.

3.4 Step-4: Z-Score Transformation

In this step, R·HoG applies the Z-score normalization to every β-dimension vec-
tor to make the templates irreversible. And the β-dimension vector is from each
of the column vector tj = [t1j , t2j , . . . , toj]

T in the T ∈ R
o×h, where j = 1...h.

It is computed as [16]:

t̂ij =
tij − μ

σ
(5)

where tij(i = 1...o) denotes the i-th element in the tj . Lastly, they concatenate
the normalized histogram vectors to produce a cancelable template c ∈ R

ho. The
process of R·HoG is shown in Fig. 1.

4 Reversing Z-Score Transformation

As explained in [16], the result of reversing Z-score transformation is countless
and it is impossible to determine which value is correct because the μ and σ are
unknown. But even so, we can still constrain the value of reversing transforma-
tion, and select the correct value.

For each of the β-dimension vector c̃j = [c̃1j , c̃2j , . . . , c̃βj] in the c ∈ R
ho

and its reverse t̃j =
[
t̃1j , t̃2j , . . . , t̃βj

]T
where j = 1, . . . , ho

β , we can use Eq. 5 to
derive the reverse formula for Step-4:

t̃ij = c̃ij × σ + μ (6)

Then, we calculate each value of t̃ij ∈ t̃j :

t̃ij =

(
t̃vj − μ

) × c̃ij

c̃vj
+ μ (7)

where i = 1, 2, . . . , β and c̃vj is the first value not 0 in c̃j and mark its subscript
as v. This is because c̃vj is used as the denominator in Eq. 7, and it requires to
prevent the denominator from being 0. Since each of the h columns of T (h = 4
according to [16]) represents different degrees, for each of the β-dimension vector
t̃j =

[
t̃1j , t̃2j , . . . , t̃βj

]T
, we use weight to represent its numerical weight. If it

is the first (the histogram bin is {−135◦ or 45◦}) or third ({−45◦ or 135◦})
column, weight =

√
2. If it is the second ({−90◦ or 90◦}) or fourth {0◦ or

180◦}), weight = 1. We first determine which column of T the β-dimension t̃j

belongs to, and then determine the value of weight.
Our goal is to reverse c̃j and obtain the β-dimension t̃j . To achieve this goal,

we need to first guess the values of μ and σ, and then obtain t̃j from Eq. 7.
Assuming that ŝ is the sum of the β-dimension t̃j =

[
t̃1j , t̃2j , . . . , t̃βj

]T
, we

enumerate its value greedily within the range 0 ≤ ŝ ≤ b × a × β × weight based
on integral multiples of weight (i.e. 0, weight, 2×weight, . . . , b × a × β × weight).
For each enumerated ŝ, μ can be computed as:

Security Analysis of R·HoG 273

Fig. 2. Reversing Z-score transformation process where b = 1, a = 3, d = 6

μ =
ŝ

β
(8)

According to c̃vj , we determine the value range of t̃vj as follows:
⎧
⎪⎨
⎪⎩

0 ≤ t̃vj < μ, c̃vj < 0,
t̃vj = μ, c̃vj = 0,
μ < t̃vj ≤ b × a × weight, c̃vj > 0.

(9)

We express the minimum and the maximum of t̃vj as mintv and maxtv.
Then we greedily guess the value of t̃vj based on integral multiples of weight,
and we can obtain each value of t̃ij ∈ t̃j where i = 1, 2, . . . , β from Eq. 7.

After that, we judge whether the calculated t̃ij meets the following two con-
straints:

1. t̃ij ≤ b × a × weight.
2.

˜tij

weight is an integer, i.e., t̃ij is a multiple of weight, because
˜tij

weight represents
the number of degrees projected onto the same histogram bin in Źpart.

If a guessed value of t̃j meets the above two conditions, then this is the
solution of reversing c̃j . The correct solution found is the minimum of μ in
all possible solution sets that meet the conditions, which has the following two
reasons:

1. For the histogram vector t = [t1, . . . , th] ∈ R
h in step-3, the following con-

straint condition is not considered:

h∑
k=1

tk
weightk

≤ b × a (10)

Therefore, the smaller the μ is, the easier it is to meet this condition.
2. The original irisCode has a large number of continuous 0 and 1, which can

deduce a large number of ...
z = 0. It will lead to a smaller

∑h
k=1

tk

weightk
and

a smaller sum of the vector t̃j .

274 N. Fan et al.

Algorithm 1: Reversing Z-score Transformation
Input: Alignment-robust biometric vector c ∈ R

ho

Output: Histogram matrix T ∈ R
o×h

1 Initialize lists = [];
2 for j = 1 to h×o

β
do

3 for i = 1 to β do
4 c̃ij = c(j−1)×β+i;
5 end
6 Find the first number in c̃j that is not 0 and mark its subscript as v;
7 if j ≤ o

β
or 2×o

β
< j ≤ 3×o

β
then

8 weight =
√
2;

9 else
10 weight = 1;
11 end
12 for ŝ = 0 to b × a × β × weight do

// 0, weight, 2 × weight, . . . , b × a × β × weight
13 μ = ŝ

β
;

14 Initialize ˜tj = [];
15 if c̃vj < 0 then
16 mintv = 0, maxtv = μ;
17 else c̃vj > 0
18 mintv = μ, maxtv = b × a × weight;
19 end
20 for ˜tvj = mintv to maxtv do
21 for i = 1 to β do
22 if i! = v then

23 x =
(˜tvj−μ)×c̃ij

c̃vj
+ μ;

24 if 0 ≤ x ≤ b × a × weight and x
weight

is an integer
then

25 ˜tij = x;
26 else
27 ˜tj = [];
28 goto step 20;
29 end
30 end
31 end
32 append ˜tj to lists;
33 goto step 2;
34 end
35 end
36 end
37 Splice lists into T;
38 return T.

Security Analysis of R·HoG 275

Finally, T is obtained by splicing the obtained vectors t̃1...̃t 4×o
β

as follow:

T =

⎡
⎢⎢⎣
t̃1 · · · t̃ 3×o

β +1

...
. . .

...
t̃ o

β
· · · t̃ 4×o

β

⎤
⎥⎥⎦

The process of reversing Z-score transformation is shown in Fig. 2. Besides
that, Algorithm 1 shows the pseudocode of reversing Z-score transformation.

5 Linkability Attack on R·HoG

Suppose there are two cancelable templates c1 and c2, the random augmentation
seeds p1 and p2, and the histogram matrices T1 and T2. The linkability attack
is to determine whether the two templates c1 and c2 are from the original
irisCode obtained from the same sample. The linkability attack can be performed
in the following three settings:

– The cancelable templates cs are generated from the same original irisCode.
– The cancelable templates cs are generated from different original irisCodes

from the same iris.
– The cancelable templates cs are generated from the original irisCodes from

different irises.

5.1 Link with c and p Directly

The authors of [16] claimed that the cancelable templates generated by R·HoG
are unlinkable. But if we use the relationship between the random augmentation
seed p of two templates, the linkability of the cancelable templates obtained by
R·HoG will be significantly improved.

We take each o-dimension vector of c ∈ R
ho as a column of c ∈ R

o×h,
and divide it into cblock

i ∈ R
e×h (i = 1... o

e), where e = d
b . o

e numbers of cblock
i

are horizontally concatenated to produce c = cblock
1 ‖cblock

2 ‖ . . . ‖cblock
o
e

∈ R
e× ho

e .

After that, let c1 = [c11, c12, . . . , c1e]
T and c2 = [c21, c22, . . . , c2e]

T,
where c1i and c2i indicate the i-th row. Let p1 = [p11, . . . , p1e]

T and
p2 = [p21, . . . , p2e]

T, where p1k ∈ R
b and p2k ∈ R

b, where k = 1, . . . , e.
If p1i = p2j , we calculate the distance of c1i and c2j as follow:

disr =

ho
e∑

k=1

|c1ik − c2jk| (11)

The transformation process is shown in Fig. 3 . The distance between c1 and c2
is obtained by the following formula:

dis =
∑N

r=1 disr

N
(12)

276 N. Fan et al.

Fig. 3. The process of linking with c and p directly where b = 1, a = 3, d = 6

where N denotes the number of disr (i.e., the number of p1i = p2j). By com-
paring the dis of c1 and c2, the linkability can be greatly increased.

5.2 Link with T and p

The scheme is mainly achieved by reversing Z-score transformation of the
cancelable templates c1 and c2 to get T1 and T2, and using T1 and T2
to link the two templates c1 and c2. We calculate the distance of t1u =
[t1u,1, t1u,2, t1u,3, t1u,4] in T1 ∈ R

o×h and t2v = [t2v,1, t2v,2, t2v,3, t2v,4]
in T2 ∈ R

o×h (where u = 1, . . . , o and v = 1, . . . , o indicating the u-th and the
v-th row) as follows if p1i = p2j :

disr =

o
e∑

k=1

∣∣∣∣
t1(k×e+i),1 + t1(k×e+i),3√

2
+ t1(k×e+i),4

−
(

t2(k×e+j),1 + t2(k×e+j),3√
2

+ t2(k×e+j),4

)∣∣∣∣
(13)

Since disr is used to calculate the number of left or right direction in t in
step-3, and 90◦ and −90◦ are not related to this relationship, it is not involved
in the calculation.

The distance between T1 and T2 is obtained by Eq. 12. Lastly, we com-
pare dis of different cancelable templates. Algorithm 2 shows the pseudocode of
linking with T and p.

We define 0 � 1 conversion as having a left or right direction when obtaining
Ź in step 2, that is, when the degrees are 0◦, 180◦, 45◦, −135◦, 135◦, −45◦. Since
we calculate the number of 0 � 1 conversion in the row in

...
Z, if the templates are

from the same original irisCode, dis will be 0 and the linkable judgment must

Security Analysis of R·HoG 277

Algorithm 2: Linking with T and p
Input: Alignment-robust biometric template c1 ∈ R

ho and c2 ∈ R
ho, Random

augmentation seed p1 ∈ [1, m]d and p2 ∈ [1, m]d

Output: distance of c1 and c2
1 Function dis(t, k, i):
2 return

t(k×e+i),1+t(k×e+i),3√
2

+ t(k×e+i),4

3 End Function
4 t1 = Reverse Z-score transformation (c1);
5 t2 = Reverse Z-score transformation (c2);
6 Initialize dis = 0, N = 0, e = d

b
;

7 for i = 1 to e do
8 for j = 1 to e do
9 if p1i == p2j then

10 for k = 1 to o
e
do

11 N = N + 1;
12 dis1=dis (t1, k, i) ;
13 dis2=dis (t2, k, j) ;
14 disr = |dis1 − dis2|;
15 dis = dis + disr;
16 end
17 end
18 end
19 end
20 dis = dis

N
;

21 return dis.

be correct. Most of the differences between cs are generated from the different
original irisCode but the same sample come from displacement issues but our
scheme only consider 0 � 1 conversion.

6 Experimental Results and Discussion

In this section, we evaluate the proposed attack schemes against R·HoG and
demonstrate that the attacks are effective. We use the CASIA-IrisV3-Interval
dataset for the experiment, and the method of preprocessing and extracting
IrisCode is the same as [16]. The proposed schemes are implemented using
Python and simulated on a PC with Solid-State Drive (SSD) 512 GB, Intel
Core i5 11th-Gen CPU 2.40 GHz, and Memory DDR4 24 GB.

Although parameters d = 250 and a = 32 are selected as the default settings
in [16], we applied the proposed schemes to cancelable templates generated using
R·HoG with all values of d and a tested in [16]. For each experiment, we use 5
sets [16] of different random augmentation seeds p ∈ [1,m]d to generate c for
each irisCode Z and perform our attack models under the token-stolen scenario.

278 N. Fan et al.

Table 1. The similarity score for different d when a = 32 and b = 1

d 20 50 100 150 200 250

ST 93.50% 99.29% 100.0% 100.0% 100.0% 100.0%

Table 2. The similarity score for different a when d = 250 and b = 1

a 8 16 64 128 256 512

ST 100.0% 100.0% 100.0% 98.86% 97.32% 97.91%

6.1 Experiment on Reversing Z-Score Transformation

We carry out a reversing attack on the step-4 of R·HoG. First, we convert each
irisCode in the CASIA-IrisV3-Internal dataset using R·HoG to generate the can-
celable template c, and record T generated in the step-3. Then we reverse the
template c into T′, and calculate the similarity between T and T′ as follows
[16]:

ST = 1 − ‖T − T′‖2
‖T‖2 + ‖T′‖2 (14)

where ‖.‖2 is a norm function. ST ranges from 0 to 1.
Table 1 shows the similarity between T′ and T when a = 32 and b = 1

(which is the parameter setting that achieves the best performance in [16]), and
we change d = 20, 50, 100, 150, 200, 250. When d = 250, 200, 150, 100, T′

obtained by reversing Z-score transformation is the same as T, that is, 100%
similar. When d = 50, there is 99.29% similarity, while when d = 20, there is
only 93.5% similarity.

Table 2 shows the similarity obtained by reversing Z-score transformation
when b = 1, d = 250 (which is the parameter setting that achieves the best
performance in [16]), and a = 8, 16, 64, 128, 256, 512. When a = 8, 16, 64,
the similarity is 100%, and when a = 128, 256, 512, the similarity is also above
97%.

It can be seen that when d is decreased, the similarity after reverse decreases.
But when a increases, it decreases little on the similarity. The above results
demonstrate the effectiveness of the proposed reversing attack.

6.2 Experiment on Linkability

In this sub-section, we use the benchmarking analysis framework [11] to analyze
the linkage of R·HoG. There are two indicators D↔ (s) and D sys←→ to measure the
linkage. For CASIA-IrisV3-Internal, 3472 genuine comparison scores and 7626
impostor comparison scores are generated.

Security Analysis of R·HoG 279

Fig. 4. Results of direct linkability attack against R·HoG under different settings of d

Fig. 5. Results of direct linkability attack against R·HoG under different settings of a

Link with c and p Directly: In this experiment, we link c and c′ directly
without reversing Z-score transformation using the method proposed in Sect. 5.1.
Figure 4 and Fig. 5 show the results of the linkability attack in terms of
mated/non-mated score distributions and D sys←→. In addition, Table 3 and Table 4
show the link success rate of different d and a.

From the experimental results, it can be seen that the closer the values of
a and d are to the best parameter setting (for performance) in [16], the higher
the linkage is, and the link success rate reaches 90.65%. This shows that R·HoG
cannot achieve both high recognition performance and unlinkability. In addition,

280 N. Fan et al.

Table 3. The success rate for different d when a = 32 and b = 1

d 20 50 100 150 200 250

link with c and p 67.44% 78.53% 85.47% 88.32% 89.74% 90.44%
link with T and p 89.99% 94.00% 95.02% 95.31% 95.43% 95.62%

Table 4. The success rate for different a when d = 250 and b = 1

a 8 16 64 128 256 512

link with c and p 85.51% 90.65% 84.23% 75.87% 69.09% 63.80%
link with T and p 88.70% 94.10% 94.13% 88.84% 83.69% 80.69%

Fig. 6. Results of linkability attack against R·HoG with reversing Z-score transforma-
tion under different settings of d

the direct link can achieve such high linkability, which shows that R·HoG cannot
achieve the unlinkability property with typical parameter settings in [16].

Link with T and p: The experiment is carried out in the case of reversing Z-
score transformation using the method proposed in Sect. 5.2. Figure 6 and Fig. 7
show the results of the linkability attack in terms of mated/non-mated score
distributions and D sys←→. In addition, Table 3 and Table 4 show the link success
rate of diffrent d and a.

The experimental results show that when we reverse the step-4 of R·HoG, and
then link the results T, even if the parameters used are not the best performance
parameters, the linkability of R·HoG is still very high. The overlap of matching
and non-matching scores is very small, and D sys←→ is always greater than 0.75 in
Fig. 6. When using the optimal parameters, the link success rate reaches 95.62%.

Security Analysis of R·HoG 281

Fig. 7. Results of linkability attack against R·HoG with reversing Z-score transforma-
tion under different settings of a

7 Conclusion

In this paper, we analyze the linkability of R·HoG proposed by Lee et al. [16]
and reverse its step-4: Z-score transformation. We also propose two linkability
attacks, one of which is carried out under the reverse of step-4, achieving a high
linkability. The other is to link the cancelable templates directly according to the
random augmentation seed p. We conduct several experiments and demonstrate
that R·HoG cannot meet the requirements of high authentication performance
and unlinkability at the same time.

In future research, we will try to propose an improved version for R·HoG to
meet the requirements of high performance and unlinkability at the same time.
For example, the angle grouping of the histogram bins in step-3 can be changed
to a mix of vertical and horizontal directions, such as {45◦ or −90◦}, to prevent
adversary from using 0 � 1 conversion for linking, or to use more complex
normalization methods in step-4 to make step-4 irreversible, or to perform an
application-specific permutation before the step-3 of R·HoG.

Acknowledgements. This work was partially supported by the National Natural Sci-
ence Foundation of China (Grant No. 61806151), and the Natural Science Foundation
of Chongqing City (Grant No. CSTC2021JCYJ-MSXMX0002).

References

1. Information Technology Security Techniques Biometric Information Protection,
document ISO/IEC 24745:2011 (2011)

2. Bringer, J., Morel, C., Rathgeb, C.: Security analysis of bloom filter-based iris
biometric template protection. In: 2015 International Conference on Biometrics
(ICB), pp. 527–534 (2015). https://doi.org/10.1109/ICB.2015.7139069

https://doi.org/10.1109/ICB.2015.7139069

282 N. Fan et al.

3. Cheung, K.H., Kong, A.W.K., You, J., Zhang, D., et al.: An analysis on invertibility
of cancelable biometrics based on biohashing. In: CISST, vol. 2005, pp. 40–45.
Citeseer (2005)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

5. Dang, T.M., Nguyen, T.D., Hoang, T., Kim, H., Beng Jin Teoh, A., Choi, D.:
AVET: a novel transform function to improve cancellable biometrics security. IEEE
Trans. Inf. Forensics Secur. 18, 758–772 (2023). https://doi.org/10.1109/TIFS.
2022.3230212

6. Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition sys-
tems based on physiological and behavioral modalities. Expert Syst. Appl. 143,
113114 (2020). https://doi.org/10.1016/j.eswa.2019.113114

7. Datta, P., Bhardwaj, S., Panda, S.N., Tanwar, S., Badotra, S.: Survey of security
and privacy issues on biometric system. In: Gupta, B.B., Perez, G.M., Agrawal,
D.P., Gupta, D. (eds.) Handbook of Computer Networks and Cyber Security, pp.
763–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22277-2_30

8. Dong, X., Jin, Z., Jin, A.T.B.: A genetic algorithm enabled similarity-based attack
on cancellable biometrics. In: 2019 IEEE 10th International Conference on Bio-
metrics Theory, Applications and Systems (BTAS), pp. 1–8 (2019). https://doi.
org/10.1109/BTAS46853.2019.9185997

9. Gavrilova, M.L., et al.: A multifaceted role of biometrics in online security, privacy,
and trustworthy decision making. In: Daimi, K., Francia III, G., Encinas, L.H.
(eds.) Breakthroughs in Digital Biometrics and Forensics, pp. 303–324. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-10706-1_14

10. Ghammam, L., Karabina, K., Lacharme, P., Thiry-Atighehchi, K.: A cryptanalysis
of two cancelable biometric schemes based on index-of-max hashing. IEEE Trans.
Inf. Forensics Secur. 15, 2869–2880 (2020). https://doi.org/10.1109/TIFS.2020.
2977533

11. Gomez-Barrero, M., Galbally, J., Rathgeb, C., Busch, C.: General framework
to evaluate unlinkability in biometric template protection systems. IEEE Trans.
Inf. Forensics Secur. 13(6), 1406–1420 (2018). https://doi.org/10.1109/TIFS.2017.
2788000

12. Hermans, J., Mennink, B., Peeters, R.: When a bloom filter is a doom filter: secu-
rity assessment of a novel iris biometric template protection system. In: 2014 Inter-
national Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6
(2014)

13. Jin, A.T.B., Ling, D.N.C., Goh, A.: Biohashing: two factor authentication featuring
fingerprint data and tokenised random number. Pattern Recogn. 37(11), 2245–2255
(2004). https://doi.org/10.1016/j.patcog.2004.04.011

14. Kong, A., Cheung, K.H., Zhang, D., Kamel, M., You, J.: An analysis of biohashing
and its variants. Pattern Recogn. 39(7), 1359–1368 (2006). https://doi.org/10.
1016/j.patcog.2005.10.025

15. Lacharme, P., Cherrier, E., Rosenberger, C.: Preimage attack on biohashing. In:
2013 International Conference on Security and Cryptography (SECRYPT), pp. 1–8
(2013)

16. Lee, M.J., Jin, Z., Liang, S.N., Tistarelli, M.: Alignment-robust cancelable biomet-
ric scheme for iris verification. IEEE Trans. Inf. Forensics Secur. 17, 3449–3464
(2022). https://doi.org/10.1109/TIFS.2022.3208812

https://doi.org/10.1109/TIFS.2022.3230212
https://doi.org/10.1109/TIFS.2022.3230212
https://doi.org/10.1016/j.eswa.2019.113114
https://doi.org/10.1007/978-3-030-22277-2_30
https://doi.org/10.1109/BTAS46853.2019.9185997
https://doi.org/10.1109/BTAS46853.2019.9185997
https://doi.org/10.1007/978-3-031-10706-1_14
https://doi.org/10.1109/TIFS.2020.2977533
https://doi.org/10.1109/TIFS.2020.2977533
https://doi.org/10.1109/TIFS.2017.2788000
https://doi.org/10.1109/TIFS.2017.2788000
https://doi.org/10.1016/j.patcog.2004.04.011
https://doi.org/10.1016/j.patcog.2005.10.025
https://doi.org/10.1016/j.patcog.2005.10.025
https://doi.org/10.1109/TIFS.2022.3208812

Security Analysis of R·HoG 283

17. Lee, Y., Chung, Y., Moon, K.: Inverse operation and preimage attack on bio-
hashing. In: 2009 IEEE Workshop on Computational Intelligence in Biometrics:
Theory, Algorithms, and Applications, pp. 92–97 (2009). https://doi.org/10.1109/
CIB.2009.4925692

18. Liao, H., Zhao, D., Li, H., Xiang, J.: Cancelable iris biometric based on ordinal
value fusion strategy. J. Wuhan Univ. (Nat. Sci. Edn.) 1–10 (2023). https://doi.
org/10.14188/j.1671-8836.2022.0211

19. Lutsenko, M., Kuznetsov, A., Kiian, A., Smirnov, O., Kuznetsova, T.: Biometric
cryptosystems: overview, state-of-the-art and perspective directions. In: Ilchenko,
M., Uryvsky, L., Globa, L. (eds.) MCT 2019. LNNS, vol. 152, pp. 66–84. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-58359-0_5

20. Natgunanathan, I., Mehmood, A., Xiang, Y., Beliakov, G., Yearwood, J.: Protec-
tion of privacy in biometric data. IEEE Access 4, 880–892 (2016). https://doi.org/
10.1109/ACCESS.2016.2535120

21. Ouda, O.: On the practicality of local ranking-based cancelable iris recogni-
tion. IEEE Access 9, 86392–86403 (2021). https://doi.org/10.1109/ACCESS.2021.
3089078

22. Ouda, O., Chaoui, S., Tsumura, N.: Security evaluation of negative iris recognition.
IEICE Trans. Inf. Syst. 103(5), 1144–1152 (2020)

23. Ouda, O., Tsumura, N., Nakaguchi, T.: On the security of bioencoding based can-
celable biometrics. IEICE Trans. Inf. Syst. 94(9), 1768–1777 (2011)

24. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE
Signal Process. Mag. 32(5), 54–65 (2015). https://doi.org/10.1109/MSP.2015.
2434151

25. Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric
templates based on adaptive bloom filters. In: 2013 International Conference on
Biometrics (ICB), pp. 1–8 (2013). https://doi.org/10.1109/ICB.2013.6612976

26. Teoh, A.B., Kuan, Y.W., Lee, S.: Cancellable biometrics and annotations on bio-
hash. Pattern Recogn. 41(6), 2034–2044 (2008). https://doi.org/10.1016/j.patcog.
2007.12.002

27. Topcu, B., Karabat, C., Azadmanesh, M., Erdogan, H.: Practical security and
privacy attacks against biometric hashing using sparse recovery. EURASIP J. Adv.
Signal Process. 2016(1), 1–20 (2016)

28. Wang, H., Dong, X., Jin, Z., Teoh, A.B.J., Tistarelli, M.: Interpretable secu-
rity analysis of cancellable biometrics using constrained-optimized similarity-based
attack. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, pp. 70–77 (2021)

29. Zhao, D., Fang, S., Xiang, J., Tian, J., Xiong, S.: Iris template protection based
on local ranking. Secur. Commun. Netw. 2018, 1–9 (2018)

https://doi.org/10.1109/CIB.2009.4925692
https://doi.org/10.1109/CIB.2009.4925692
https://doi.org/10.14188/j.1671-8836.2022.0211
https://doi.org/10.14188/j.1671-8836.2022.0211
https://doi.org/10.1007/978-3-030-58359-0_5
https://doi.org/10.1109/ACCESS.2016.2535120
https://doi.org/10.1109/ACCESS.2016.2535120
https://doi.org/10.1109/ACCESS.2021.3089078
https://doi.org/10.1109/ACCESS.2021.3089078
https://doi.org/10.1109/MSP.2015.2434151
https://doi.org/10.1109/MSP.2015.2434151
https://doi.org/10.1109/ICB.2013.6612976
https://doi.org/10.1016/j.patcog.2007.12.002
https://doi.org/10.1016/j.patcog.2007.12.002

A Certificateless Conditional Anonymous
Authentication Scheme for Satellite

Internet of Things

Minqiu Tian1,2, Fenghua Li1,2, Kui Geng1, Wenlong Kou1, and Chao Guo1,3(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{tianminqiu,lifenghua,gengkui,kouwenlong,guochao}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Department of Electronics and Communication Engineering, Beijing Electronics
Science and Technology Institute, Beijing, China

Abstract. The satellite Internet of Things (satellite IoT) has the char-
acteristics of large space-time span and highly open communication
links. While effectively expanding the spatial capability of the traditional
Internet of Things, it will face security threats such as impersonation,
replay, tampering and eavesdropping of the traditional Internet of Things
and satellite communication. In this paper, an SM2-based certificate-
less integrated signature and encryption scheme (SM2-CL-ISE) is pro-
posed for satellite IoT with key optimization and conditional anonymity.
Then incorporating Geostationary Earth Orbit (GEO) satellite, a Low
Earth Orbit (LEO) satellite authentication protocol and a static termi-
nal device authentication protocol are designed. In addition, we prove
the security of SM2-CL-ISE under the formal security model, and fur-
ther discuss how the proposed authentication schemes can satisfy those
essential security requirements. To evaluate the effectiveness of our pro-
posed protocols, we conducted several experiments and compared their
performance with that of existing protocols. The experimental results
show that our scheme achieves more efficient performance with a slightly
increased communication overhead on authentication.

Keywords: Satellite Internet of Things · Certificateless · Conditional
Anonymous Authentication · SM2

1 Introduction

Satellite IoT is a powerful integration of traditional IoT and satellites. Its pur-
pose is to leverage the wide coverage, system persistence, and flexible network
construction of satellites to extend the spatial capabilities of IoT and enhance
the network layer. It aims to overcome the bottlenecks that the development of
the IoT is difficult to meet the requirements of large-scale, cross-regional, harsh

Supported by the National Key Research and Development Program of China (No.
2019YFB2101700).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 284–301, 2023.
https://doi.org/10.1007/978-981-99-7356-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_17&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_17

Certificateless Conditional Anonymous Authentication for Satellite IoT 285

environment and other scenarios. However, the satellite IoT is faced with security
threats such as data interception, satellite signal forgery, session replay tamper-
ing, message man-in-the-middle attack, brute force cracking attack and others
existing in both traditional Internet of Things and satellite communication.

To address the above vulnerabilities, Cruickshank et al. [1] first proposed a
secure satellite network authentication protocol based on Public Key Infrastruc-
ture (PKI). However, the certificate management policy is complicated, resulting
in heavy computation and communication costs. Identity-based authentication
protocols [2,3] were then presented to meet the requirements of anonymity,
authenticity and confidentiality in satellite communication. However, these
schemes face the problem of key escrow. In recent years, certificateless authenti-
cation protocols [4–6] for satellite IoT had been proposed to solve the key escrow
problem and meet the authentication requirements of the satellite communica-
tion system.

Although the existing certificateless schemes are able to prevent the common
security attacks and meet the basic requirements for satellite IoT, most of them
still suffer from key management and identity traceability issues, which fails to
meet the authentication requirements for satellite IoT in multi-scene, wide cov-
erage and high speed. The key management issues arise from the utilization of
different signature and encryption schemes, despite both schemes being certifi-
cateless. To achieve anonymous identity, effective traceability, and efficient key
management, this paper proposes an SM2-based certificateless integrated signa-
ture and encryption scheme as well as two intra-domain authentication schemes
for satellite IoT. The main contributions of this article are summarized as follows.

(1) We propose an SM2-based certificateless integrated signature and encryption
scheme (SM2-CL-ISE) that provides both confidentiality and anonymity.
This scheme is then proven to be secure under the defined security model.
Specifically, our scheme features a uniform use of signature and encryption
keys, which simplifies key management and reduces complexity. The choice
of SM2 is primarily motivated by its ability to withstand strong key substi-
tution attacks.

(2) Two intra-domain authentication schemes based on SM2-CL-ISE are then
proposed, which utilize a combination of SM3 hash algorithm. These schemes
can facilitate communication between static or low-speed terminals or satel-
lites. The final simulation results demonstrate the superior efficiency of our
proposals compared to other schemes.

2 Related Work

Access authentication in satellite communication system can be divided into
ground facility assisted and terminal-satellite direct authentication.

Ground Facility Assisted Authentication. Cruickshank et al. [1] proposed
a secure satellite network authentication protocol based on PKI, which achieved
mutual authentication and key negotiation between users and network control

286 M. Tian et al.

centers. Thus, Chen et al. [7] proposed a self-verification authentication pro-
tocol which effectively reduces computational overhead, but it fails to meet the
high-performance and multi-scenario authentication requirements. Yoon et al. [8]
proposed a more efficient anonymous authentication scheme for mobile satellite
communication systems, improving computational efficiency, but the use of tem-
porary identities can easily lead to connection interruptions and session rejec-
tions. To address this issue, Ibrahim et al. [9] proposed a non-interactive anony-
mous authentication mechanism based on one-time blinded identity. Ni et al. [10]
proposed a network slice authentication protocol oriented to Internet of Things,
which can provide terminal anonymous protection and secure data transmission,
but does not provide identity authentication between slices, resulting in high re-
authentication time when terminals switch networks. Huang et al. [11] proposed
a new bidirectional authentication and key update protocol based on encryp-
tion technique. Their protocols can resist replay attack and man-in-the-middle
attack, and has improved efficiency for authentication and key updates.

Terminal-Satellite Direct Authentication. Meng et al. [12] designed a fast
access authentication scheme for space information networks with low delay,
mainly using proxy signatures to ensure that only authorized satellites can obtain
authentication rights from the gateway, effectively reducing the risk of satellite
hijacking attack. To achieve anonymity and regulatory functions, Yang et al. [13]
proposed a fast roaming authentication scheme based on group signatures. How-
ever, the scheme involved bilinear pairing operation and a large number of point
multiplication operations, making it difficult to achieve high performance and low
bandwidth goals. In response to the limitations of the LEO single-satellite net-
work in the above schemes, Zhu et al. [14] proposed an inter-satellite networking
authentication scheme to solve the network authentication problem between the
dual-layer GEO and LEO satellite systems. Recently, Wang et al. [4] proposed a
privacy-protecting authentication scheme based on certificateless cryptography,
which can provide lightweight key computation and efficient signature query and
verification without the need for device information. Fan et al. [15] proposed an
efficient identity authentication protocol by using public key encryption, sym-
metric encryption and one-way hash function, which can support three-party
authentication at the same time.

These schemes have made certain progress in the field of identity authen-
tication in satellite communication networks, but further research is needed in
areas such as key usage security, storage cost optimization, and authentication
efficiency improvement.

3 System Model

The satellite IoT mainly consists of GEO satellite, LEO satellite, ground control
center, and user device. The user device is further divided into three categories:
static sensing device, large storage device, and high-speed mobile terminal (see
Fig. 1). These three scenarios cover the various requirements of secure authenti-
cation in satellite IoT, and can be classified into two categories of communication:
user device to LEO satellite and LEO satellite to GEO satellite.

Certificateless Conditional Anonymous Authentication for Satellite IoT 287

Ground

Management

Center

Large Storage Device

High-speed Mobile Terminal

Static Sensing Device

LEO GEO

Fig. 1. The system model of satellite IoT

– GEO satellite: GEO satellites are responsible for managing LEO satellites,
realizing key exchange between LEO satellites, and providing support for
mutual authentication between LEO satellites.

– LEO satellite: LEO satellites provide satellite communication networks and
communicate with GEO satellites and user equipment to complete tasks such
as key exchange and data transmission.

– Ground Management Center: The core system of the ground manage-
ment center is KGC, which generates partial private keys and partial public
information for all entities in the system using the SM2 certificateless mech-
anism, while also providing effective supervision of malicious behavior.

– User Device: There are various IoT devices, including Static Sensing Device,
Large Storage Device, High-speed mobile terminal.

During communications, adversaries may launch passive attacks (e.g., eaves-
dropping through the control channel), or active attacks (e.g., tampering, replay,
and interception). Therefore, a secure authentication scheme for satellite commu-
nication system should consider the security requirements such as unforgeability,
anonymity, traceability, data integrity, data confidentiality, forward secrecy.

4 Definition and Security Model of CA-CL-ISE

This section describes the definition and security model of CA-CL-ISE [16–19]. It
consists of certificateless signature and encryption with the same key derivation
method, providing functions such as key optimization, anonymous authentica-
tion, supervision, and confidentiality. It mainly includes the following algorithms:

– Setup: The initialization algorithm takes a security parameter λ as input,
initializes a certificateless encryption system, and generates the master public
key mpk, KGC’s traceable key α, and the derived key β.

– AGen: The anonymity generation algorithm takes mpk and the real identity
RID as input, and generates the user’s pseudonym information AID.

– PKGen: The partial key generation algorithm takes mpk, β, and AID as
input, and outputs the user’s first partial private key s1 and public info P1.

288 M. Tian et al.

– UKGen: The user key generation algorithm takes mpk as input, and gener-
ates the user’s second partial private key s2 and public information P2.

– SetSK: The secret key setting algorithm takes mpk, AID, s1 and s2 as input,
and generates the user’s full private key d.

– SetPK: The public key setting algorithm takes mpk, AID, P1 and P2 as
input, and generates the user’s full public information P .

– ISE-Sign: The signing algorithm takes mpk, AID, d, and the message m as
input, and generates the signature σ for m.

– ISE-Verf: The verification algorithm takes mpk, AID, P , m, and σ as input,
and outputs 1 if the signature is valid, otherwise outputs 0.

– ISE-BVerf: The batching verification algorithm takes mpk, {AIDi}n
i=1,

{Pi = Ai + Bi}n
i=1, m, and n sets of signatures σi = {(Ki, si)}n

i=1 as input,
and outputs 1 if all signatures are valid, otherwise outputs 0.

– ISE-Enc: The encryption algorithm takes mpk, AID, P , and m as input,
and generates the ciphertext C for m.

– ISE-Dec: The decryption algorithm takes mpk, AID, d, and C as input.
If the ciphertext is valid, the algorithm outputs the plaintext message m;
otherwise, it outputs ⊥.

– Trace: The trace algorithm takes mpk, α, and AID as input, and recovers
the real identity information RID.

CA-CL-ISE employs the same derived key pair for both signing and encryp-
tion processes, which may affect each other and compromise the security of the
design scheme. Therefore, CL-ISE needs to consider joint security, which guar-
antees that the encryption part satisfies IND-CCA (Indistinguishability under
Chosen Ciphertext Attack) security under signable queries and that the sign-
ing part satisfies EU-CMA (Existential Unforgeability under Chosen-Message
and chosen-identity Attack) security under encryption and decryption oracles,
while ensuring anonymity under signing, encryption and decryption oracles. As
mentioned above, there are two types of adversaries in certificateless scenario.
Before defining the specific security definitions, this paper first defines the fol-
lowing oracles that adversary A can query to challenger C:

– Initialization Oracle Osetup: Assuming that A queries λ, C runs the Setup
algorithm to obtain mpk, α, and β, while initializing the sets L = ∅, U1 = ∅,
U2 = ∅, S = ∅, and D = ∅, and returns mpk to A.

– User Registration Oracle Oreg: Assume A queries AID, if AID /∈ L, C
calls the PKGen, UKGen, and SetPK algorithms to generate (P, s1, s2), and
updates L = L ∪ {(AID,P, s1, s2)}; otherwise, C directly retrieves P from L.
Finally, C returns P to A.

– Partial Private Key Oracle Opsk: Assume A queries AID and P , if AID /∈
L, C calls Oreg to obtain (P, s1, s2) and updates L = L ∪ {(AID,P, s1, s2)}.
Otherwise, C directly retrieves s1 from L. Finally, C updates U1 = U1 ∪
{(AID,P)} and returns s1 to A.

– User Private Key Oracle Ousk: Assume A queries AID and P , if AID /∈ L,
C calls Oreg to obtain (P, s1, s2) and updates L = L ∪ {(AID,P, s1, s2)}.

Certificateless Conditional Anonymous Authentication for Satellite IoT 289

Otherwise, C directly retrieves s2 from L. Finally, C updates U2 = U2 ∪
{(AID,P)} and returns s2 to A.

– Public Key Replacement Oracle Orpk: Assume A queries AID and public
information P ′, C replaces P with P ′ in L.

– Derived Key Oracle Odk: Assume A queries this oracle, C returns β.
– Signature Oracle Osign: Assume A queries the signature of message m for

AID, if AID ∈ L and P has not been replaced, C retrieves s1 and s2 from
L, calls the SetSK algorithm and ISE-Sign algorithm to generate signature
σ. Then, C updates S = S ∪ {AID,m}, and returns (m,σ) to A.

– Decryption Oracle Odec: Assume A requests the plaintext of ciphertext C
for AID, if AID ∈ L and P has not been replaced, C retrieves s1 and s2 by
accessing L and then invokes the SetSK algorithm to obtain the full private
key d. After that, C calls the ISE-Dec algorithm to decrypt C and obtain m.
Finally, C updates D = D ∪ {(AID,C)} and returns m to A.

Definition 1. CA-CL-ISE joint security: If the encryption and signature
components of CA-CL-ISE satisfy the following security properties, namely, both
Adv

Type−I/II−IND−CCA
A1,2

(λ) and Adv
Type−I/II−EU−CMA
F1,2

(λ) are negligible, then
CA-CL-ISE is said to possess joint security.

Type-I-IND-CCA Security: Assuming that a Type-I adversary A1 attacks
the encryption component of CA-CL-ISE via querying Osetup, Oreg, Opsk, Ousk,
Orpk, Osign, and Odec, the following experiment is defined:

ExpType−I−IND−CCA
A1

(λ) :

(1) mpk ← Osetup(1λ)
(2) (AID∗, P ∗,m1,m2) ← AOreg,Opsk,Ousk,Orpk,Osign,Odec

1 (mpk)
(3) C∗ ← ISE − Enc(mpk,AID∗, P ∗,mb)
(4) b′ ← AOreg,Opsk,Ousk,Orpk,Osign,Odec

1 (mpk,AID∗, P ∗,m1,m2, C
∗)

(5) If b = b′, (AID∗, P ∗) /∈ U1, and {(AID∗, C∗)} /∈ D, the experiment outputs
1; otherwise, it outputs 0.

Let the advantage of A1 breaking the Type-I-IND-CCA security of CA-CL-
ISE be defined as follows:

AdvType−I−IND−CCA
A1

(λ) = Pr[ExpType−I−IND−CCA
A1

(λ) = 1] − 1
2
.

Type-II-IND-CCA Security: Assume a Type-II adversary A2 attacking the
encryption component of CA-CL-ISE can query Osetup, Oreg, Opsk, Ousk, Odk,
Osign, and Odec, the following experiment is defined:

ExpType−II−IND−CCA
A2

(λ) :

(1) mpk ← Osetup(1λ)
(2) (AID∗, P ∗,m1,m2) ← AOreg,Opsk,Ousk,Odk,Osign,Odec

2 (mpk)
(3) C∗ ← ISE − Enc(mpk,AID∗, P,mb)

290 M. Tian et al.

(4) b′ ← AOreg,Opsk,Ousk,Odk,Osign,Odec

2 (mpk, β,AID∗,m1,m2, C
∗)

(5) If b = b′, P ∗ ∈ L, (AID∗, P ∗) /∈ U1 ∪ U2, and {(AID∗, C∗)} /∈ D, it outputs
1; otherwise, it outputs 0.

Let the advantage of A2 breaking the Type-II-IND-CCA security of CA-CL-
ISE be defined as follows:

AdvType−II−IND−CCA
A2

(λ) = Pr[ExpType−II−IND−CCA
A2

(λ) = 1] − 1
2
.

Type-I-EU-CMA Security: Assume a Type-I adversary F1 attacking the
signature component of CA-CL-ISE can query Osetup, Oreg, Opsk, Ousk, Orpk,
Osign and Odec, the following experiment is defined:

ExpType−I−EU−CMA
F1

(λ) :

(1) mpk ← Osetup(1λ)
(2) (AID∗, P ∗,m∗, σ∗) ← FOreg,Opsk,Ousk,Orpk,Osign,Odec

1 (mpk)
(3) If ISE-Verf(AID∗, P ∗,m∗, σ∗) = 1, (AID∗, P ∗) /∈ U1, and {(AID∗,m∗)} /∈

S, the experiment outputs 1; otherwise, it outputs 0.

Let the advantage of F1 breaking the Type-I-EU-CMA security of CA-CL-
ISE be defined as follows:

AdvType−I−EU−CMA
F1

(λ) = Pr[ExpType−I−EU−CMA
F1

(λ) = 1].

Type-II-EU-CMA Security: Assume a Type-II adversary F2 attacking the
signature component of CA-CL-ISE can query Osetup, Oreg, Opsk, Ousk, Odk,
Osign and Odec, the following experiment is defined:

ExpType−II−EU−CMA
F2

(λ) :

(1) mpk ← Osetup(1λ)
(2) (AID∗, P ∗,m∗, σ∗) ← FOreg,Opsk,Ousk,Odk,Osign,Odec

2 (mpk)
(3) If ISE-Verf(AID∗, P ∗,m∗, σ∗) = 1, (AID∗, P ∗) /∈ U1 ∪ U2, {(AID∗,m∗)} /∈

S, it outputs 1, or outputs 0 otherwise.

Let the advantage of F2 breaking the Type-II-EU-CMA security of CA-CL-
ISE be defined as follows:

AdvType−II−EU−CMA
F2

(λ) = Pr[ExpType−II−EU−CMA
F2

(λ) = 1].

5 Proposed Scheme

This section first designs the SM2-CL-ISE scheme based on the defined CA-CL-
ISE, and SM2 certificateless signature [16] and encryption [17] algorithms. It
uses Chinese cryptographic algorithms SM2 and SM3. On this basis, the LEO
satellite and static terminal device authentication protocol are designed.

Certificateless Conditional Anonymous Authentication for Satellite IoT 291

5.1 SM2-CL-ISE Scheme

– Setup: Given a security parameter λ, a large prime q is randomly selected.
The system parameters (E, a, b, q,G, n,G,Hv,H) are determined, where E :
y2 = x3 + ax + b (mod q)(a, b ∈ Z

∗
q) is a non-singular elliptic curve, G

is a cyclic subgroup of prime order n in E (including the infinity point),
G ∈ G is a generator, and Hv : {0, 1}∗ × {0, 1}∗ → {0, 1}v and H :
{0, 1}∗ × {0, 1}∗ → Z

∗
n are secure hash functions. The KGC randomly selects

α ∈ Z
∗
n and computes Tpub = αG. KGC also randomly selects β ∈ Z

∗
n

and computes Ppub = βG. The algorithm outputs the master public key
mpk = (E, a, b, q,G1, n, P, Tpub, Ppub,Hv,H) and private key msk = (α, β),
where the trace key α and the derived key β are held secretly by KGC.

– AGen: Given mpk and the real identity information RID, the algorithm
randomly chooses l ∈ Z

∗
n and computes AID1 = lG and AID2 = RID

⊕

Hv(lTpub, Tpub). It outputs the pseudonym AID = (AID1, AID2).
– PKGen: Given mpk, β, AID, and the user’s second public key P2 = B,

a random integer a ∈ Z
∗
n is selected. The algorithm computes A = aG,

e = H(AID,A + B,G,Ppub), and t = a + e · β (mod n). The algorithm
outputs the user’s first part of private key s1 = t and public key P1 = A.

– UKGen: Given mpk, the algorithm randomly selects b ∈ Z
∗
n and computes

B = bG, and outputs the user’s second part of private key s2 = b and the
public key P2 = B.

– SetSK: Given mpk, AID, s1 = t and s2 = b, the algorithm computes e =
H(AID,A + B,G,Ppub) and checks whether the equation tG = A + ePpub

holds. If it holds, the algorithm outputs the user’s full private key d = t + b
(mod n); otherwise, it outputs ⊥.

– SetPK: Given mpk, AID, P1 = A and P2 = B, the algorithm outputs the
user’s full public key P = P1 + P2.

– ISE-Sign: Given mpk, AID, d, and the message m, it randomly selects k ∈
Z

∗
n and computes K = kG = (xK , yK), es = H(m,AID,P, Ppub), r = xK +es

(mod n), and s = (1 + d)−1 · (k − rd) (mod n). The algorithm outputs the
signature σ = (r, s) of m.

– ISE-Verf: Given mpk, AID, P = A + B, m and σ = (r, s), it computes
e = H(AID,P,G, Ppub), e′

s = H(m,AID,P, Ppub), K ′ = sG + (r + s)(P +
ePpub) = (xK′ , yK′). It then verifies whether the equation xK′ + e′

s = r holds
or not. If holds, outputs 1, otherwise outputs 0.

– ISE-BVerf: Given mpk, {AIDi}n
i=1, {Pi = Ai + Bi}n

i=1, m, and σ =
{(Ki, si)}n

i=1 (To support batch verification, the format of signature changes
from the original σ = (r, s) to σ = (K,S)), it randomly selects {γi ∈ Zv}n

i=1

and comput es ei = H(AID, Pi, G, Ppub), e(s, i)′ = H(m,AIDi, P, Ppub), ri =
(xKi

+ es,i) mod n, K = (Σn
i γisi)G + Σn

i γi(ri + si)Pi + Σn
i γi(ri + si)eiPpub.

It verifies the equation K = Σn
i=1γiKi. If the equation holds, it outputs 1,

otherwise outputs 0.
– ISE-Enc: Given mpk, AID, P = A+B, and m, it computes e = H(AID,P,

G, Ppub), T = P + ePpub, r ∈ Z
∗
n, C1 = rG, W = rT = (xW , yW), f =

Hv(xW , yW), C2 = m
⊕

f , and C3 = H(xW ||m||yW). The algorithm outputs
the ciphertext C = (C1, C2, C3) of m.

292 M. Tian et al.

– ISE-Dec: Given mpk, AID, d, and C = (C1, C2, C3), it computes W ′ =
dC1 = (xW ′ , yW ′), f = Hv(xW ′ , yW ′), m = C2

⊕
f , C ′

3 = H(xW ′ ||m||yW ′).
If C ′

3 = C3, it outputs m, otherwise outputs ⊥.
– Trace: Given mpk, tracing key α, and AID, it computes RID = AID2

⊕

Hv(αAID1, Tpub). The algorithm outputs RID.

Correctness: Assuming σ = (r, s) is the signature of the message m, and C =
(C1, C2, C3) is the ciphertext of m. Then the following equations can prove the
correctness of SM2-CL-ISE scheme:

K ′ = sG + (r + s)(P + ePpub) = sG + (r + s)dG = (1 + d)−1 · (k − rd) +
d(1 + d)−1 · (k − rd)G + rdG = (k − rd)G + rdG = kG = K = (xK , yK), e′

s =
H(m,AID,P, Ppub);xK′ + e′

s = xK + es = r, e = H(AID,P,G, Ppub),W ′ =
dC1 = (a+e·β+b)rG = rP +erPpub = W = (xW , yW), C ′

3 = H(xW ′ ||m||yW ′) =
H(xW ′ ||m||yW) = C3.

5.2 Authentication System

Based on SM2-CL-ISE scheme, this paper then proposes two authentication pro-
tocols by incorporating SM3 hash algorithm. The protocol includes system ini-
tialization, LEO satellite authentication and static terminal equipment authen-
tication. Table 1 shows the symbols and descriptions of the involved keys.

Table 1. Symbols and descriptions of the keys involved in the authentication

Symbol Description

(s1,I , P1,I) First part private and public keys of entity
I ∈ G,L,U

(s2,I , P2,I) Second part private and public keys of entity
I ∈ G,L,U

(AIDI , dI , PI) Pseudonym, full private key, and full public key
of entity I ∈ G,L,U

KG Long-term key of GEO satellite
KS Temporary key for secure communication
KGL Shared key between GEO satellite and LEO

satellite
KLU Shared key between LEO satellite and device

System Initialization. This phase is performed via the following.

(1) KGC invokes the Setup algorithm of the SM2-CL-ISE scheme to generate
the master public key mpk = (E, a, b, q, G1, n, P, Tpub, Ppub,Hv,H) and the
master private key msk = (α, β), where mpk is publicly disclosed, and the
tracing key α and the derived key β are securely stored by KGC.

(2) The GEO satellite calls the AGen algorithm to obtain the pseudonym AIDG,
and then calls the UKGen algorithm to obtain the second part private key

Certificateless Conditional Anonymous Authentication for Satellite IoT 293

s2,G and the public key P2,G. The (AIDG, P2,G) is sent to KGC through a
secure channel. KGC calls the PKGen algorithm to generate the first part
private key s2,G and the public key P2,G, and returns (s2,G, P2,G) to the
GEO satellite. GEO satellite then calls the SetSK and SetPK algorithms to
generate the full private key dG and the full public key PG, which are stored
locally as (AIDG, dG, PG). The initialization process for LEO satellite is the
same, and the final result is stored locally as (AIDL, dL, PL).

(3) When the user device is manufactured, the manufacturer (MF) writes the
device pseudonym identification AIDU , and obtains the relevant keys similar
to the initialization process for the GEO satellite. Finally, (AIDU , dU , PU)
is written into the device.

(4) Each GEO satellite generates a long-term key KG, which is later used to
generate the shared key with LEO satellite.

LEO Satellite Authentication. GEO and LEO satellites form different groups
based on their positions, with each group including one GEO satellite as the
group administrator responsible for distributing and updating group key, man-
aging the entry and exit of LEO satellite, and providing key conversion for LEO
satellite. LEO satellites dynamically enter different groups based on the coverage
range of GEO satellites. When a LEO satellite moves into a new coverage range
of a GEO satellite, it needs to register with the group GEO satellite and perform
group key exchange to obtain a new shared key.

The registration process of LEO satellite L with GEO satellite G is shown
as follows.

(1) L obtains the current time T1 through its onboard clock and calculates the
signature σL of AIDL||AIDG||T1 using the full private key dL and the ISE-
Sign algorithm. L sends (AIDL, AIDG, PL, T1, σL) to satellite G.

(2) Upon receiving the registration request from L, G first checks T1. If the time
difference between T1 and the current time exceeds the allowable range, the
request is discarded. Otherwise, G verifies the validity of (AIDL, AIDG, PL,
T1, σL) using the ISE-Verf algorithm. If the verification fails, the request is
discarded; otherwise, G proceeds to the next step.

(3) G generates the authentication key KGL = SM3(AIDL||KG) for the LEO
satellite using KG and AIDL, and calculates the ciphertext CL of KGL under
the full public key PL using the ISE-Enc algorithm. G then calculates the
signature σG of AIDG||CL using the full private key dG with the ISE-Sign
algorithm and returns (AIDG, PG, CL, σG) to L. Here, KGL is the shared key
between the LEO and GEO satellites for subsequent identity authentication
and secure communication.

(4) Upon receiving the returned data, L first verifies the validity of (AIDG, PG,
CL, σG) using ISE-Verf. If the verification passes, L uses ISE-Dec to decrypt
CL and obtain KGL, which is then secretively stored.

Static Terminal Device Authentication. These devices transmit signals to
LEO satellites passing through their airspace window range according to pre-
defined time windows or intermittent rules. Due to memory and capacity lim-

294 M. Tian et al.

itations, these devices do not have intelligent LEO satellite trajectory calcula-
tion and other complex operations. Therefore, data transmission generally uses
broadcasting mode, and identity authentication information and data are sent
in the same data packet. LEO satellites within the airspace window range are
responsible for receiving data, parsing, and identity authentication. This type of
authentication is suitable for public information collection that does not require
encryption but needs to prevent tampering. The detailed authentication process
is as follows:

(1) The device U obtains the current time TU and calculates the signature σU

of AIDU ||TU ||data by invoking the ISE-Sign algorithm with the full private
key dU . Then, it sends (AIDU , PU , TU , data, σU) to the LEO satellite L.

(2) The current LEO satellite checks TU . It discards the data packet ifTU is
not fresh. Otherwise, it verifies the validity of (AIDU , PU , TU , data, σU) by
invoking the ISE-Verf algorithm. If the signature verification fails, the data
packet is discarded. Otherwise, the satellite transmits the data to the desti-
nation address (e.g., the ground station) through the satellite network.

6 Security Analysis

In this section, we first prove the joint security of the SM2-CL-ISE scheme under
the security model of CA-CL-ISE. Then, we analyze the six security properties
of the authentication protocols, including unforgeability, anonymity, traceability,
data integrity, data confidentiality, and forward secrecy.

Theorem 1. If the SM2 certificateless encryption scheme is IND-CCA secure
and the SM2 certificateless signature scheme is EU-CMA secure under both Type-
I and Type-II adversaries, then the SM2-CL-ISE scheme is jointly secure.

Proof. The above theorem can be proven by two Lemmas, and for conciseness,
we present them in Appendix A.

On basis of the above joint security of the SM2-CL-ISE scheme, and the one-
wayness and collision resistance of the SM3 hash algorithm, it can be analyzed
that the authentication scheme proposed in this paper can satisfy the following
security requirements:

– Unforgeability: IoT devices, GEO satellites, and LEO satellites register
with the KGC through a secure channel to generate pseudonymous identities
and their corresponding private and public keys. When sending data, the
sender calculates a signature using the pseudonymous information and private
key, and the verifier uses the KGC’s master public key, pseudonymous identity,
and public key to verify the validity of the signature. Due to the joint security
of the SM2-CL-ISE scheme, an adversary without the private key cannot forge
a valid signature for the target pseudonymous information.

– Anonymity: In our proposed schemes, each entity communicates using
pseudonymous information, and the verifier can confirm whether the

Certificateless Conditional Anonymous Authentication for Satellite IoT 295

pseudonymous information is authorized by the KGC by verifying the validity
of the signature. Since pseudonym generation uses encryption with IND-CPA
security, an adversary cannot decrypt and obtain the true identity of the
pseudonymous information without the private key.

– Traceability: Suppose the KGC discovers suspicious communication data,
it can obtain the real identity by analyzing the pseudonymous information in
the communication data. Since the pseudonymous information is generated
using encryption, the KGC can use the Trace algorithm in the SM2-CL-ISE
scheme by tracing the key α to obtain the real identity information RID.

– Data integrity: The cryptographic techniques used for authentication
between entities effectively ensure the data integrity. The data transmission
between GEO and LEO satellites is effectively protected by data integrity
through the use of the key KGL and SM2 authentication encryption. Static
sensing devices are authenticated with SM2 digital signatures to ensure data
integrity when transmitting data between user devices and LEO satellites.

– Data confidentiality: The SM2-CL-ISE encryption and decryption algo-
rithm, and SM3 hash function used in the system ensure the confidentiality
of communication data. Data transmission between GEO and LEO satellites
is protected by data confidentiality through the use of the shared key KGL

obtained by the LEO satellite when registering with the GEO satellite.
– Forward secrecy: When an LEO satellite node joins a GEO satellite, the

GEO satellite generates an authentication key KL for the LEO satellite based
on its long-term key KG, and the LEO satellite cannot read the relevant
communication data between other satellites and the GEO satellite. Different
LEO satellites have different authentication keys KLU for user devices, and
different LEO satellites cannot decrypt communication between other LEO
satellites and user devices. In addition, a one-time session key KS is used for
data transmission, even if KS is leaked at a certain point in time, it will only
result in the leakage of the current communication data and will not affect
the content of communication data at other times.

7 Performance Evaluation

This section mainly focuses on the theoretical analysis and practical simulation
to demonstrate the feasibility of the proposed SM2-CL-ISE scheme and two
authentication protocols. In order to enhance the accuracy and reliability of the
evaluation, we compare our scheme with similar ones [5,10,15], including the
computational overhead and communication cost.

7.1 Theoretical Analysis

In this section, we present a theoretical comparison of the computation cost and
communication cost involved in the intra-domain authentication of the compared
schemes. To facilitate the discussion, we first provide the main symbol defini-
tions and descriptions in Table 2, and then analyze the computation cost and
communication cost from a theoretical perspective.

296 M. Tian et al.

Table 2. Main symbol definitions and descriptions

Symbol Description

TG1sm Point multiplication operation on G1

TG2sm Point multiplication operation on G2

TG1pa Point addition operation on G1

Tbp Bilinear pairing operation on GT

TSM3 SM3 hash operation
TSM4 SM4 encryption operation
|GT | The length of element in GT , assumed as 1920 bytes
|G1| The length of element in G1, assumed as 160 bytes
|G2| The length of element in G2, assumed as 640 bytes
|Z∗

n| The length of element in Z
∗
n, assumed as 64 bytes

|v| The output length of Hv, assumed as 8 bytes
|ts| The length of timestamp, assumed as 8 bytes

Table 3 shows that the schemes proposed by Ni et al. [10] and Pan et al. [5]
mainly consider intra-domain authentication. Their computation costs are
9Tbp + 8TG1sm + 3TG2sm + TSM4 + 5Tebp and 3Tbp + 4TG1sm + 2TSM3, respec-
tively, and they involve complex bilinear pairing operations, which means that
they do not have advantage in terms of computation cost compared to other
schemes. Fan et al. [15] and our work both achieve intra-domain authenti-
cation without involving complex bilinear pairing operations. The computa-
tional cost of Fan et al. is 5TG1sm + 7TSM4 + 8TSM3, which is better than
the LEO authentication proposed in our work (with a computation cost of
12TG1sm+5TG1pa+11TSM3), but worse than the static terminal device authenti-
cation (with computation costs of 4TG1sm+2TG1pa+3TSM3). Since LEO authen-
tication is a registration process that only needs to be executed once, the overall
intra-domain authentication of our work is more computationally efficient than
that of Fan et al.

Table 3. Theoretical analysis and comparison results of computation cost

Scheme Intra-Domain Authentication

Ni et al. [10] 9Tbp + 8TG1sm + 3TG2sm +
TSM4 + 5Tebp

Pan et al. [5] 3Tbp + 4TG1sm + 2TSM3

Fan et al. [15] 5TG1sm + 7TSM4 + 8TSM3

LEO authentication 12TG1sm + 5TG1pa + 11TSM3

Static terminal device
authentication

4TG1sm + 2TG1pa + 3TSM3

Certificateless Conditional Anonymous Authentication for Satellite IoT 297

Table 4 shows that the communication costs of domain authentication for
the schemes proposed by Ni et al. and Pan et al. are |GT | + 10|G1| + 3|G2| +
10|Z∗

n| + |ts| and 2|GT | + 8|G1| + 4|Z∗
n| + 2|ts|, respectively. Since they involve

transmitting bilinear pairing group elements, the communication costs are rel-
atively high. Fan et al.’s intra-domain authentication communication cost is
|G1| + 12|Z∗

n| + |ts|, while the communication costs for LEO authentication and
static terminal device authentication in our work are only 2|G1|+5|Z∗

n|+6|v|+|ts|
and |G1| + 2|G∗

n| + 2|v| + |ts|, respectively. It can be seen that our work’s com-
munication bandwidth consumption for domain authentication in various types
is smaller than other comparative schemes.

Table 4. Theoretical analysis and comparison results on communication cost

Scheme Intra-Domain Authentication

Ni et al. [10] |GT | + 10|G1| + 3|G2| + 10|Z∗
n| + |ts|

Pan et al. [5] 2|GT | + 8|G1| + 4|Z∗
n| + 2|ts|

Fan et al. [15] |G1| + 12|Z∗
n| + |ts|

LEO authentication 2|G1| + 5|Z∗
n| + 6|v| + |ts|

Static terminal device
authentication

|G1| + 2|G∗
n| + 2|v| + |ts|

7.2 Practical Simulation

In order to further analyze the actual performance of the compared schemes,
we evaluate the computation cost and communication cost of each scheme using
the Miracl v7.0 cryptographic library, Windows 7 operating system, an Intel(R)
Core(TM) i5-4210U CPU clocked at 1.70GHz, and 4 GB RAM. In the simulation
experiments, λ is set to 128, and the BN curve is used for testing over the field
Fp-256. In this simulation environment, the element lengths of G1, G2, GT , and
Z

∗
n are 64 bytes, 128 bytes, 384 bytes, and 32 bytes, respectively. In addition,

to ensure the authenticity of the practical comparison, the SM2, SM3, and SM4
algorithms of the national cryptographic standard of China are used uniformly,
and the output length of Hv is set to |v| = 8 bytes, and the timestamp length
|ts| = 8 bytes.

Before analyzing the performance of each authentication scheme, this paper
first tests the performance of the SM2-CL-ISE scheme, mainly including the
time consumption of each algorithm and the effect of batch verification. As
shown in Fig. 2, the time consumption of Setup, AGen, KGen, ISE-Sign, ISE-
Verf, ISE-Enc, and ISE-Dec algorithms of the SM2-CL-ISE scheme are 17.7034
ms, 17.7040 ms, 9.1047 ms, 8.8717 ms, 26.7185 ms, 8.8529 ms, and 8.8523 ms,
respectively, where PKGen, UKGen, SetSK, and SetPK algorithms are unified
as KGen for time consumption testing. It can be seen that the time consumption
of these algorithms is in the millisecond level, which can meet the authentication
requirements of satellite communication systems.

298 M. Tian et al.

17.7034 17.7040

9.1047 8.8717

26.7185

8.8529 8.8523

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Setup AGen KGen ISE-Sign ISE-Verf ISE-Enc ISE-Dec

C
o
m

p
u
ta

ti
o
n
 c

o
st

 (
m

il
li

se
co

n
d
)

Fig. 2. Time cost of each algorithm in
SM2-CL-ISE

1204.5532

393.5900

44.2657
106.6325

35.5708

0

200

400

600

800

1000

1200

1400

[14] [7] [28] Our LEO Auth. Our static terminal

device Auth.

C
o

m
p

u
ta

ti
o

n
 c

o
st

 (
m

il
li

se
co

n
d
)

Fig. 3. Comparison of computation cost

Based on simulation tests, we obtain the results of computation and com-
munication costs for various authentication protocols for satellite communi-
cation systems. As shown in Fig. 3, the computation cost for static terminal
device authentication is 35.5708 ms, which is better than Ni et al., Pan et al.,
and Fan et al.’s computational costs (which are 1204.5532 ms, 393.5900 ms,
and 44.2657 ms, respectively). The LEO authentication computational cost is
106.6325 ms, which is 62.3668 ms higher than Fan et al.’s. However, since this
authentication only needs to be executed once and does not need to be executed
frequently, this additional cost is acceptable.

In terms of communication cost, the schemes proposed by Ni et al., Pan et al.,
and Fan et al. are 6144 bytes, 5392 bytes, and 936 bytes, respectively. LEO
authentication and static terminal device authentication in our work are 696
bytes and 312 bytes, respectively. This indicates that the intra-domain authenti-
cation proposed in our work consumes less communication bandwidth. Overall,
by increasing the small amount of LEO authentication in communication cost,
our work can achieve more efficient and secure terminal identity authentication.

8 Conclusion

This paper mainly focuses on the communication needs of satellite IoT, and
studies the design methods of certificateless authentication protocols from the
perspectives of anonymity authentication, key management, and scenario appli-
cability. By applying the integrated signature encryption technology, we char-
acterizes the definition and security model of CA-CL-ISE. A key-optimized and
conditionally anonymous SM2-CL-ISE is proposed based on SM2. On this basis,
intra-domain authentication schemes covering LEO satellites and static termi-
nal devices are designed by using SM3 hash algorithm. The feasibility of the
proposed scheme is demonstrated through security proof and performance eval-
uation, which not only improves the efficiency of key usage but also achieves
more efficient conditional anonymous authentication with minimal increase in
communication cost of authentication. Future work involves conducting a uni-
versally composable security proof of our proposed authentication schemes and
ensuring their soundness in terms of timestamps.

Certificateless Conditional Anonymous Authentication for Satellite IoT 299

Appendix A Provable Security of SM2-CL-ISE

Here, we prove Theorem 1 via the following Lemma 1 and Lemma 2.

Lemma 1. If the SM2 certificateless encryption scheme satisfies Type-I-IND-
CCA security and the SM2 certificateless signature scheme satisfies Type-I-EU-
CMA security, then the SM2-CL-ISE scheme satisfies Type-I jointly security.

Proof. Since the SM2-CL-ISE scheme consists of encryption and signature com-
ponents, for a Type-I adversary, Type-I joint security can be proven if it can be
shown that the encryption part satisfies Type-I-IND-CCA security in the pres-
ence of signature queries. Therefore, this paper proves Lemma 1 through the
following game simulation.

Game 0: In a real Type-I joint security experiment, the challenger C and the
adversary A do the following:

Initialization phase: C calls the Setup algorithm to generate the master public
key mpk = (E, a, b, q,G1, n, P, Tpub, Ppub,Hv,H), the tracing key α, and the
derived key β, and initializes the sets L = ∅, U1 = ∅, U2 = ∅, S = ∅, D = ∅, and
H = ∅. C returns the master public key mpk to A.

First query phase: C responds to A the following queries:
Oh: Input (AID,A,G, Ppub). If {(AID,A,G, Ppub, e)} ∈ H, C retrieves

e from H; otherwise, C randomly selects e ∈ Z
∗
n and updates H = H ∪

(AID,A,G, Ppub, e). Finally, C returns e to A.
Oreg: A generates a pseudonym AID = (AID1, AID2). If AID /∈ L, C

calls the PKGen algorithm, UKGen algorithm, and SetPK algorithm to generate
(P, s1, s2), and updates L = L∪{(AID,P, s1, s2)}. Otherwise, C retrieves P from
L. Finally, C returns P to A.

Opsk: Input AID and P . If AID /∈ L, C calls Oreg to obtain (P, s1, s2), and
updates L = L ∪ {(AID,P, s1, s2)}. Otherwise, C retrieves s1 from L. It finally
updates U1 = U1 ∪ {(AID,P)}, and returns s1 to A.

Ousk: Input AID and P . If AID /∈ L, C calls Oreg to obtain (P, s1, s2), and
updates L = L ∪ {(AID,P, s1, s2)}. Otherwise, C retrieves s2 from L. It finally
updates U2 = U2 ∪ {(AID,P)}, and returns s2 to A.

Orpk: Input AID and P ′. C replaces P with P ′ in L.
Osign: Input AID and m. If AID ∈ L and P has not been replaced, C

retrieves s1 and s2 from L, calls the SetSK and the ISE-Sign algorithms to
generate a signature σ, updates S = S ∪ {AID,m}, and returns (m,σ) to A.

Odec: Given AID and C, if AID ∈ L and P has not been replaced, C first
retrieves s1 and s2 from L. It calls the SetSK algorithm to obtain the full private
key d, and then calls ISE-Dec to decrypt C to obtain m. Finally, C updates
D = D ∪ {(AID,C)}, and returns m to A.

Challenge phase: A submits a challenge (AID∗, P ∗,m1,m2) to C, who selects
a random bit b ∈ 0, 1 and computes e = H(AID∗, A,G, Ppub), T = P ∗ + ePpub,
r ∈ Z∗

n, C∗
1 = rG, W = rT = (xW , yW), f = Hv(xW , yW), and C∗

2 = mb

⊕
f ,

C∗
3 = H(xW ||mb||yW). Finally, C returns C∗ = (C∗

1 , C∗
2 , C∗

3) to A.

300 M. Tian et al.

Second query phase: A receives the challenge ciphertext C∗ and is allowed to
ask the various oracles from the first query phase, but is forbidden from asking
for the key s1 corresponding to (AID∗, P ∗) and the plaintext mb corresponding
to (AID∗, C∗). C responds to each query as in the first query phase.

Guessing phase: A outputs a guessed bit b′. A wins Game 0 if and only if
b = b′. According to the definition of Game 0, let AdvA(λ) = Pr[G0] − 1

2 .

Game 1: Similar to Game 0, C simulates A’s queries. The only difference is that
C no longer responds to Oreg using a key, but instead uses a random oracle:

Oreg: A generates pseudonymous information AID = (AID1, AID2) by
itself. If (AID,A) /∈ L, then C selects t, e ∈ Z

∗
n, calculates A = tG − ePpub,

updates H = H∪{(AID,A,G, Ppub, e)}, and returns P1 = A to A. If (AID, ∗) ∈
L, then C aborts the response.

Let E be the event of C aborting the response in Game 1. Let Qh and Qs be
the maximum numbers of hash queries and signature queries, respectively. Then
the probability of event E occurs is Pr[E] ≤ QhQs

n ≤ negl(λ), which implies that
|Pr[G1] − Pr[G0]| ≤ Pr[E] ≤ negl(λ). Furthermore, we show that Pr[G1] can be
ignored.

Assume there exists a PPT adversary A that wins Game 1 with a non-
negligible advantage. We can construct a PPT adversary B that breaks the
Type-I-IND-CCA security of the SM2 certificateless encryption scheme with non-
negligible probability. This is mainly because in Game 1, C can respond to Osign

without any key information by relying on Oreg. Therefore, B can directly use
the guessed result b′ from Game 1 as the guess for the Type-I-IND-CCA security
of the SM2 certificateless encryption scheme, and thus B successfully simulates
Game 1.

In conclusion, based on the values of |Pr[G1] − Pr[G0]| and Pr[G1] being
negligible, Pr[G0] is negligible. Therefore, Lemma 1 is proved.

Lemma 2. If the SM2 certificateless encryption scheme satisfies Type-II-IND-
CCA security and the SM2 certificateless signature scheme satisfies Type-II-EU-
CMA security, then the SM2-CL-ISE scheme is Type-II joint-secure.

Proof. The proof of Lemma 2 is similar to that of Lemma 1, with the main
difference being: (1) In Game 0, the adversary A of Lemma 2 cannot query Orpk,
but can query Odk. This implies that there is no need to restrict P from being
replaced in Osign and Odec; (2) In Game 1, since the adversary A obtains the
derived key β, C only needs to respond to Osign without using the user’s second
private key s2 = b, which can be successfully simulated in the generic model.
Therefore, the Type-II joint security of the SM2-CL-ISE scheme can also be
reduced to the Type-II-IND-CCA security of the SM2 certificateless encryption
scheme, thus proving Lemma 2.

References

1. Cruickshank, H.S.: A security system for satellite networks. In: The Fifth Interna-
tional Conference on Satellite Systems for Mobile Communications and Navigation,
London, UK, pp. 187–190. IET (1996)

Certificateless Conditional Anonymous Authentication for Satellite IoT 301

2. Xu, G., Chen, X., Du, X.: New near space security handoff scheme based on context
transfer. Comput. Sci. 40(4), 160–163 (2013)

3. He, D., Chen, C., Chan, S., et al.: Secure and efficient handover authentication
based on bilinear pairing functions. IEEE Trans. Wireless Commun. 11(1), 48–53
(2012)

4. Wang, B., Chang, Z., Li, S., et al.: An efficient and privacy-preserving blockchain-
based authentication scheme for low earth orbit satellite assisted internet of things.
IEEE Trans. Aerosp. Electron. Syst. 58(6), 5153–5164 (2022)

5. Pan, M., He, D., Li, X., et al.: A lightweight certificateless non-interactive authenti-
cation and key exchange protocol for IoT environments. In: 2021 IEEE Symposium
on Computers and Communications (ISCC), Athens, Greece, pp. 1–7 (2021)

6. Lin, C., He, D., Huang, X., Kumar, N., Choo, K.K.R.: BCPPA: a blockchain-
based conditional privacy-preserving authentication protocol for vehicular ad hoc
networks. IEEE Trans. Intell. Transp. Syst. 22(12), 7408–7420 (2020)

7. Chen, T., Lee, W., Chen, H.: A self-verification authentication mechanism for
mobile satellite communication systems. Comput. Electr. Eng. 35(1), 41–48 (2009)

8. Yoon, E., Yoo, K., Hong, J., et al.: An efficient and secure anonymous authen-
tication scheme for mobile satellite communication systems. EURASIP J. Wirel.
Commun. Netw. 2011(86), 1–10 (2011)

9. Ibrahi, M.M., Kumari, S., Das, A., et al.: Jamming resistant non-interactive anony-
mous and unlinkable authentication scheme for mobile satellite networks. Secur.
Commun. Netw. 9(18), 5563–5580 (2016)

10. Ni, J., Lin, X., Shen, X.: Efficient and secure service-oriented authentication sup-
porting network slicing for 5G-enabled IoT. IEEE J. Sel. Areas Commun. 36(3),
644–657 (2018)

11. Huang, C., Zhang, Z., Zhu, L., et al.: A mutual authentication and key update
protocol in satellite communication network. Automatika 61(3), 334–344 (2020)

12. Meng, W., Xue, K., et al.: Low-latency authentication against satellite compromis-
ing for space information network. In: 2018 IEEE 15th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS), Chengdu, China, pp. 237–244 (2018)

13. Yang, Q., Xue, K., Xu, J., et al.: AnFRA: anonymous and fast roaming authen-
tication for space information network. IEEE Trans. Inf. Forensics Secur. 14(2),
486–497 (2019)

14. Zhu, H., Wu, H., Zha, H.O., et al.: Intersatellite networking authentication scheme
for dual-layer satellite networks. J. Commun. 40(3), 1–9 (2019)

15. Fan, C., Shih, Y., Huang, J., et al.: Cross-network-slice authentication scheme
for the 5th generation mobile communication system. IEEE Trans. Netw. Serv.
Manage. 18(1), 701–712 (2021)

16. Cheng, Z., Chen, L.: Certificateless public key signature schemes from standard
algorithms. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 179–
197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7_11

17. Cheng, Z.: Certificateless public key encryption based on SM2. J. Cryptol. Res.
8(1), 87–95 (2021)

18. Zhou, X., Luo, M., Vijayakumar, P., Peng, C., He, D.: Efficient certificateless con-
ditional privacy-preserving authentication for VANETs. IEEE Trans. Veh. Technol.
71(7), 7863–7875 (2022)

19. Lin, C., Huang, X., He, D.: EBCPA: efficient blockchain-based conditional privacy-
preserving authentication for VANETs. IEEE Trans. Dependable Secure Comput.
20(3), 1818–1832 (2023)

https://doi.org/10.1007/978-3-319-99807-7_11

BLAC: A Blockchain-Based Lightweight
Access Control Scheme in Vehicular Social

Networks

Yuting Zuo1,2 , Li Xu1,2(B) , Yuexin Zhang1,2, Zhaozhe Kang1,2,
and Chenbin Zhao3,4

1 Fujian Normal University, Fuzhou, China
{qbx20210079,qbx20210078}@yjs.fjnu.edu.cn, yxzhang@fjnu.edu.cn

2 Fujian provincial Key Laboratory of Network Security and Cryptology, Fuzhou,
China

xuli@fjnu.edu.cn
3 Wuhan University, Wuhan, China

4 Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, Wuhan, China

Abstract. Vehicular Social Networks (VSNs) rely on data shared by
users to provide convenient services. Data is outsourced to the cloud
server and the distributed roadside unit in VSNs. However, roadside
unit has limited resources, so that data sharing process is inefficient
and is vulnerable to security threats, such as illegal access, tampering
attack and collusion attack. In this article, to overcome the shortcomings
of security, we define a chain tolerance semi-trusted model to describe
the credibility of distributed group based on the anti tampering fea-
ture of blockchain. We further propose a Blockchain-based Lightweight
Access Control scheme in VSNs that resist tampering and collusion
attacks, called BLAC. To overcome the shortcomings of efficiency, we
design a ciphertext piece storage algorithm and a recovery one to achieve
lightweight storage cost. In the decryption operation, we separate a pre-
decryption algorithm based on outsourcing to achieve lightweight decryp-
tion computation cost on the user side. Finally, we present the formal
security analyses and the simulation experiments for BLAC, and compare
the results of experiments with existing relevant schemes. The security
analyses show that our scheme is secure, and the results of experiments
show that our scheme is lightweight and practical.

Keywords: Vehicular social networks · Blockchain · Access control ·
Lightweight

1 Introduction

Vehicular Social Networks (VSNs) are the integration of social networks and
Vehicular Ad hoc Networks [27]. With the rapid development of Internet, Arti-
ficial Intelligence and other technologies [15], VSNs offer many diverse services,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 302–313, 2023.
https://doi.org/10.1007/978-981-99-7356-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_18&domain=pdf
http://orcid.org/0000-0002-2783-8351
http://orcid.org/0000-0002-8972-3373
https://doi.org/10.1007/978-981-99-7356-9_18

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 303

e.g., the selection of suitable carpools, intelligent suggestions on travel routes,
alerts on traffic conditions, etc. The above services rely on widely deployed
infrastructures. In VSNs, RoadSide Unit (RSU) provides instant communica-
tion, real-time road sharing and temporary data storage [17]. Based on these
infrastructures, users form a virtual community and share data [10].

However, illegal access is a serious threat to data sharing [18], so that secure
access control is considerable necessary for outsourced data [21]. Therefore,
before uploading the ciphertext data, the data owner can independently set
access permissions. For instance, a data owner defines that other users need to
simultaneously satisfy the att1, att2 and att3 to access the data. Then, the data
owner sets the access policy as att1 ∧ att2 ∧ att3. Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [3] effectively implements the above requirements.
In CP-ABE, the access policy is embeded into ciphertext. The decryption key is
related to the attribute set of user. The user can decrypt the ciphertext through
the attribute key if and only if attribute set of user satisfies the access policy.

1.1 Motivations

Collusion Resistance is essential to CP-ABE [3]. That is, users cannot com-
bine attribute keys to decrypt ciphertext. Particularly, it is necessary to con-
sider fault-tolerant consensus and tamper-proof for secure access control in dis-
tributed VSNs. Blockchain technology promotes the reliability and credibility
of distributed RSU [12]. Blockchain facilitates the development of a secure,
trusted and distributed intelligent transport ecosystem. Moreover, blockchain
resists attacks initiated by a small number of malicious nodes. The consortium
blockchain [5] achieves a trade-off between security and performance, which is
more suitable for data sharing in VSNs. In addition, it is necessary to consider
the cost of RSU and users. Cloud Server (CS) provides strong computation and
storage capabilities. We utilize CS to assist RSU in storing data, and outsource
pre-decryption operation of the user into the server in order to relieve the com-
putation cost.

The above motivation inspires us to consider the following design goals in
VSNs: (1) The proposed scheme should achieve the basic secure access control.
(2) The proposed scheme enables to tolerate the malicious RSU for the dis-
tributed storage and secure consensus. (3) The proposed scheme should balance
the security and efficiency, and achieves to minimize the storage cost for the
RSU and reduce the computation and storage costs for the user.

1.2 Contributions

We summarize the contributions of our paper as follows:

1. We define a Chain Tolerance Semi-Trusted model, called CTST, which
estimates the credibility of group based on the anti tampering feature of
blockchain. In addition, we propose a Blockchain-based Lightweight Access
Control (BLAC) scheme based on CTST.

304 Y. Zuo et al.

2. To promote the efficiency, we design a novel ciphertext piece storage and
recovery algorithms for achieving lightweight storage cost of RSU. Further-
more, we separate a pre-decryption algorithm and outsource it to the server
to relieve the computation overhead of the user.

3. We present a formal security analysis in terms of confidentiality, collusion
attack, and tampering attack. Moreover, we also conduct comprehensive sim-
ulation experiments and provide the comparisons with existing works. The
experimental results show that our scheme is lightweight and practical.

2 Related Work

To achieve the more fine-grained access control, the CP-ABE [3] seems to be
a pretty good cryptographic primitive. It is well known that CP-ABE cryp-
tography primitives have high computational overhead. Some schemes with the
outsourced decryption operation [14,26] were proposed to promote the efficiency.
The references [8,24,25] further proposed schemes equipped with Linear Secret-
Sharing Scheme (LSSS) [2] to make the CP-ABE scheme more expressive.

With the rapid rise of blockchain technology, access control faces new oppor-
tunities and challenges. Blockchain provides secure data management services
for VSNs [1,12]. Wang et al. [19] employed the incentive mechanism in the
blockchain to construct a credit-based reputation model. Kang et al. [9] designed
a distributed vehicular blockchain to achieve secure and efficient data sharing.
Wang et al. [20] proposed a secure private data sharing scheme and used smart
contracts to realise access control and usage track of data. However, attackers
can attack the database directly so that system-level access control is ineffective
against such attacks.

The above shortcomings inspire extensive prospects for the introduction of
blockchain technology in data access control field in VSNs. Liang et al. [11] used
CP-ABE to achieve flexible access control on blockchain. However, they did not
give the concrete structure of CP-ABE scheme. Pu et al. [16] proposed data
secure sharing scheme based on the access tree structure [3]. Yao et al. [23] pro-
posed a lightweight data sharing scheme based on the LSSS. However, they did
not consider reducing the computation cost of vehicles. Yang et al. [22] used “on-
chain/off-chain” structure to reduce the cost of on-chain calculation. However,
off-chain computing is expensive for vehicles. Fan et al. [7] combined CP-ABE
and consortium blockchain to manage user attributes. Decryption outsourcing
reduces the computation cost of the requester. However, Fan et al.’s proposal
did not take into account optimizing storage cost.

3 Preliminaries

3.1 Linear Secret-Sharing Scheme (LSSS)

LSSS [2] includes two stages: Share and Reconstruct. The specific algorithm
details are described as follows:

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 305

Fig. 1. System Model of BLAC Scheme

1. Share : The shares for each party form a vector over Zp. There exists a
matrix M with l rows and n columns called the share-generating matrix for
Π. For all i = 1, ..., l, the i-th row of M we let the function ρ defined the party
labeling row i as ρ(i). When we consider the column vector v = (s, y2, ..., yn),
where s ∈ Zp is the secret to be shared, and y2, ..., yn ∈ Zp are randomly
chosen, then Mv is the vector of l shares of the secret s according to Π. The
share (Mv)i belongs to ρ(i).

2. Reconstruct : Let S ∈ A be any authorized set, and let I ⊂ {1, 2, ..., l} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants {ωi ∈ Zp}i∈I such
that, if {λi = (Mv)i} are valid shares of any secret s according to Π. We
have

∑
i∈I ωiλi = s.

3.2 Practical Byzantine Fault Tolerance (PBFT)

We review PBFT [4] including the following five stages:

1. Request: VU sends a message to the Nearest RSU (NRSU). Then the NRSU
broadcasts the messages to other RSU in the entire network.

2. Pre-Prepare: Sort node in RSU collects and verifies the messages. After the
verification passed, it sorts and packs messages into a list. Finally, the list is
broadcasted to other RSU.

3. Prepare: RSU generates a hash value for the received message list, which is
verified, and then broadcasts the hash value to other RSU.

306 Y. Zuo et al.

4. Commit: If a RSU receives n− ⌊
n
3

⌋
values equal to its own value from other

RSU, the RSU broadcasts commitment to other RSU.
5. Reply: RSU receives commitment more than n − ⌊

n
3

⌋
, it packs list into the

latest block lB, and records it on the local blockchain.

4 System Model and Design Goals

In this section, we first give the system model of BLAC scheme and introduce
the capabilities of each entity in the model. Then we give the security goals and
propose the new model, called Chain Tolerance Semi-Trusted Model.

4.1 System Model

Figure 1 shows the system model of our BLAC scheme. There are five types of
entities: Attribute Authority (AA), Vehicle Data Publisher (VDP), Vehicle Data
Requester (VDR), RoadSide Unit (RSU) and Cloud Server (CS). In particular,
VDP and VDR are collectively referred to Vehicle User (VU).

1. AA: It generates the public parameters and secert keys for the entities, and
provides registration services. It generates the attribute secret key for VDR.
In particular, it generates the genesis block and broadcasts it to every RSU.

2. VDP: It defines the concrete access policy, which is used to encrypt the
message, and then outsources the ciphertexts to every RSU and the CS.

3. VDR: It requests encrypted data from the system. It owns the attribute
set and the corresponding attribute secret key. It successfully decrypts the
ciphertext when a subset of its attributes satisfies the access policy.

4. RSU: They maintain the blockchain, store ciphertext pieces and provide
services for VUs.

5. CS: It stores ciphertext related to the access structure and assists VDR in
pre-decrypting the ciphertext.

Fig. 2. Group Credibility Comparison in VSNs

4.2 Chain Tolerance Semi-trusted Model

Existing trust models focus on the reliability of a single entity and are not
suitable for distributed scenarios. Thus, we define Chain Tolerance Semi-Trusted
(CTST) in Definition 1, a new universal model to estimate the credibility of
group.

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 307

Definition 1. Let P = {P1, P2, ..., Pn} be a group of participants with the same
role. There are three trusted status for the participants in P: fully trusted, semi-
trusted and untrusted (malicious). D = {D1,D2, ...,Dt} ⊆ P is the discriminant
subset of P with t participants, where t =

⌈
n
3

⌉
. P is Chain Tolerance Semi-Trusted

(CTST) if and only if ∀ D ⊆ P, ∃Di ∈ D, Di is fully trusted or semi-trusted
participant.

Figure 2 provides four groups of participants with different levels of credibil-
ity. A group of participants P is fully trusted (Fig. 2(a)), if and only if all partic-
ipants {P1, P2, ..., Pn} in this group are fully trusted. A CTST group (Fig. 2(d))
allows less than n/3 participants in the group to be untrusted. CTST requires
schemes to tolerate more malicious participants than semi-trusted model. CTST
characterizes distributed RSU in VSNs more accurately.

4.3 Security and Performance Goals

We define that AA and VDP are fully trusted. VDR is generally a semi-trusted
entity, which is honest but curious about some privacy informations. Malicious
VDR means that it colludes with other VDR. The RSU group is CTST and
easily hijacked by external attackers. Thus, some RSU may not comply with the
contracts and publish false information. In addition, malicious RSU will conspire
to restore ciphertext. CS is a semi-trusted entity. In particular, we consider
the computation and storage cost of the participants. We further describe the
security and performance goals as following:

1. Confidentiality: It means that the VDR can successfully decrypt the cipher-
text if the attribute set satisfies the access policy.

2. Resist Tamper: It means that the scheme should resist malicious RSU tam-
pering with stored ciphertext.

3. Resist Collusion: It means that VDR does not decrypt the ciphertext by
colluding with others, and malicious RSU does not recover the ciphertext by
colluding with other RSU in the group.

4. Lightweight: It means that the AA and UV consume the low computation
cost, and VU and RSU request the low storage cost.

5 The Proposed Scheme

5.1 Construction of BLAC

We define that λ ∈ N is the security parameter. Let G1 and G2 be two cyclic
groups with the same prime order p, and g is the generator of G1. e : G1 ×G1 →
G2 is a bilinear map. Let H : {0, 1}∗ → G1 be a hash function cryptographic
primitive. Our BLAC scheme includes five stages as follows:

1. Setup: AA chooses a random number α ∈ Zp and computes the master
secret key MSK = gα. Then AA generates e(g, g)α as public parameter. AA
generates secret key SKrsu ∈ Zp, and outputs public key PKrsu = gSKrsu

for RSU. We define that the public parameters PP = {G1,G2, e(g, g)α, g,H}.

308 Y. Zuo et al.

2. UserReg: AA generates the unique identity vu and public-secret key pair
{PKvu = gSKvu , SKvu} for VU. Then, AA transmits SKvu to VU through a
secure channel and broadcasts {H(vu), PKvu} to RSU.

3. KeyGen: Then, AA generates attribute secret key ASKvdr and decrypt key
DKvdr for every VDR based on the attribute sets Attvdr. The key generation
process of VDR is shown in Algorithm 1. Among them, the function attNum()
represents the number of attributes in the attribute set.

4. Encryption: VDP selects the message M and sets an access policy (M,ρ)
for M, where M is an l ×n matrix. Then, VDP encrypts M and outputs the
ciphertext CT . The specific encryption process is shown in Algorithm 2.

5. Decryption: We divide decryption into Pre-Decryptoin (Pre-Dec) and
Finally Decryptoin (Fin-Dec) algorithms:
(1) Pre-Dec: CS obtains the authorization set I and corresponding attribute
secret keys {{Ki,1}i∈I ,K2} of VDR. It obtains CT and {ωi}i∈I that satisfies
∑

i∈I ωiMi = (1, 0, ..., 0). Then, CS generates pre-decrypted ciphertext C̃ =
∏

i∈I

(
e(Ki,1,C1

i)

e(Ki,C2
i)

)ωi

= e(g, g)αsDKvdr .

(2) Fin-Dec: VDR obtains the original message by calculating M = C

C̃DK
−1
vdr

.

Correctness: Our scheme ensures the correctness of the calculation of C̃. Since
i ∈ I, the Atti in the key Ki,1 is the same as the ρ(i) in the ciphertext C2

i .
Therefore, we use Hi to represent H(Atti) and H(ρ(i)) in Equation (1).

C̃ =
∏

i∈I

(
e(Ki,1, C

1
i)

e(K2, C2
i)

)ωi

=
∏

i∈I

(
e(gαDKvdrHrvdr

i , gλρ(i))

e(grvdr ,H
λρ(i)
i)

)ωi

= e(g, g)αsDKvdr

(1)

Algorithm 1 KeyGen
Input: MSK, Attvdr

Output: Attribute secret key ASKvdr

and decrypt key DKvdr of VDR
1: Choose {DKvdr, rvdr} ∈ Zp randomly
2: Calculate K = MSKDKvdr

3: Let z = attNum(Attvdr)
4: Calculate K2 = grvdr

5: for each i ∈ [1, z] do
6: Calculate Ki,1 = K · H(Atti)

rvdr

7: return ASKvdr = {{Ki,1}i∈[1,z], K2}
and DKvdr of VDR

Algorithm 2 Encryption
Input: PP , (M, ρ), M
Output: Ciphertext CT
1: Choose the secret s ∈ Zp randomly
2: Choose y2, y3, ..., yn ∈ Zp randomly
3: Let v = (s, y2, y3, ..., yn) ∈ Z

n
p

4: for each i ∈ [1, l] do
5: λρ(i) = Mi · v
6: C1

i = gλρ(i) , C2
i = H(ρ(i))λρ(i)

7: Calculate C = Me(g, g)αs

8: return The ciphertext CT = {C,
(M, ρ), {C1

i , C2
i }i∈[1,l]}

5.2 Ciphertext Piece Storage and Recovery

We design the ciphertext piece storage and recovery algorithms for secure and
efficient storage.

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 309

1. Ciphertext Piece Storage: C is divided into n pieces {C1, C2, ..., Cn}. VDR
recovers C iff it acquire at least t correct pieces, where n

3 < t < 2n
3 . The core

algorithm is shown as Algorithm 3.
2. Ciphertext Recovery: The Nearest RSU (NRSU) of VDR broadcasts the

access requests received from the VDR to other RSU. If Attvdr satisfies the
access policy, RSU sends Ci to the VDR. Finally, VDR gets at least t correct
pieces {Cki

}i∈[1,t],ki∈[1,n] to recover C. The ciphertext recovery process is
shown as Eq. (2).

⎡

⎢
⎢
⎣

s1
s2
...
st

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

xt−1
k1

xt−2
k1

... xk1 1
xt−1

k2
xt−2

k2
... xk2 1

...
xt−1

kt
xt−2

kt
... xkt

1

⎤

⎥
⎥
⎦

−1

×

⎡

⎢
⎢
⎣

yk1

yk2

...
ykt

⎤

⎥
⎥
⎦ (2)

Algorithm 3 Ciphertext Piece Storage

Input: C = [CLt, CRt], n, t
Output: Ciphertext pieces {Ci}i∈[1,n]

1: Let tr = t/2, tl = t − tr

2: Let len = CLt.size(), l = 0
3: for each i ∈ [1, tl] do
4: k = �(len − l)/(tl − i + 1)�
5: si = int(CLt.substr(l, k))
6: l = l + k

7: Let len = CRt.size(), l = 0

8: for each i ∈ [1, tr] do
9: k = �(len − l)/(tr − i + 1)�

10: stl+i = int(CRt.substr(l, k))
11: l = l + k

12: for each i ∈ [1, n] do
13: Let yi = 0 and choose xi ∈ Zp

14: for each j ∈ [1, t] do
15: Calculate yi = yi · xi + sj

16: return {Ci = (xi, yi)}i∈[1,n]

6 Security Analysis

In this section, we analyze the security of our scheme in terms of confidentiality,
tampering resistance, and collusion resistance. The formal security analysis can
be found in Full version.

7 Performance Analysis

Yao et al. [23] and Fan et al. [7] used CP-ABE to realize efficient data access
control in VSNs. In this section, we compare our scheme with the above two
schemes. To ensure fair comparisons, we simulate three schemes in the same
environment with the same access structure and message.

We simulate our blockchain environment by using Hyperledger Fabric [6] and
implement our scheme based on the Pairing Based Cryptography (PBC) library
[13] in VS2015. We use the symmetric elliptic curve α-curve with 512-bit field
size and 160-bit group order. We execute our scheme on an Intel(R) Core (TM)
i5, with 8 GB RAM running Windows 10 64-bit system.

310 Y. Zuo et al.

7.1 Computational Cost

As depicted in Fig. 3, We compare the key generation time, encryption time, and
decryption time of Yao et al.’s scheme, Fan et al.’s scheme and our scheme.

1. In KeyGen stage, as depicted in Fig. 3(a), Yao et al.’s scheme has more com-
plicated public parameters, so more calculations are required. Compared to
our scheme, Fan et al.’s scheme generates additional decryption public-private
key pairs for the user. In particular, both parts of the attribute key in the
comparison scheme increase linearly with increasing attributes, whereas part
of the attribute key in our scheme is constant.

2. In Encryption stage, as depicted in Fig. 3(b), Yao et al. scheme performs a
large of encryption operations in C3

i = Π l
i=0h

λρ(i)

j,i due to the complex public
parameters. In addition, with the increase of attributes, the computation
cost of this scheme will increase significantly, which is much higher than the
other two schemes. Fan et al. scheme additionally calculates C = hs for the
decryption stage. This scheme takes an average of 0.0266 s longer than ours.

3. In Decryption stage, Fan et al.’s scheme and ours support decryption out-
sourcing. As shown in Fig. 3(c), Fan et al. perform an additional pairing and
division operations. In the Pre-Dec process, our scheme is more efficient. Fin-
Dec process is shown in Fig. 3(d), VDR performs all decryption operations
in Yao et al.’s scheme, which has the most expensive decryption cost. The
computation cost of VDR is constant in Fan et al.’s scheme and ours.

Fig. 3. Computational Cost of Different Stages

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 311

Fig. 4. Computational Cost of Keys and Ciphertext

7.2 Storage Cost

We compared the storage cost of the three schemes at different stages.

1. In Setup stage, Yao et al. additionally generate the public key {h1,1, ..., hl,N}
and Fan et al. additionally calculate {f = g1/β , h = gβ}. Therefore, our
scheme has the lowest storage cost in this stage.

2. In KeyGen stage, as depicted in Fig. 4(a) , Fan et al.’s scheme additionally

stores {DAA = g
yi+β

βruid } than Yao et al.’s scheme. Since only {Ki,1} in ASK
increases linearly with the attributes, the storage cost of our scheme is nearly
half of Yao et al.’s scheme.

3. In Encryption stage, Fan et al. additionally store C = hs.
4. In Decryption stage, we store pieces of C instead of full C in different RSU.

We assume that there are 30 RSUs maintaining the blockchain and t = 18. As
shown in Table 1, each RSU requires only 39.2B of storage space on average.
While the comparison schemes require 312B storage space.

Table 1. Comparison of storage cost of C in different schemes

Yao et al. [23] Fan et al. [7] BLAC
minimum maximum average

312 B 312 B 22 B 47 B 39.2 B

Furthermore, for our scheme, we calculate the storage cost with different num-
bers (denote as n) of RSU and recovery thresholds (denote as t) in Fig. 4(b). The
results show that piece storage can greatly reduce the storage cost of ciphertext.

In the three schemes, the communication cost mainly exists in the process of
key distribution and ciphertext transmission. The communication cost is similar
to the storage cost for keys and ciphertexts. Therefore, we no longer analyze the
communication cost.

312 Y. Zuo et al.

In summary, in terms of computation cost, our scheme reduces the key gener-
ation time of AA, the encryption time of VDP and the decryption time of VDR.
In terms of storage cost, our scheme reduces the key storage for VDR and the
ciphertext storage for each RSU. Therefore, our scheme is lightweight.

8 Conclusion

In this article, we proposed a new CTST model to estimate the credibility of
group. Then, we proposed the BLAC scheme for secure and lightweight data
access control so as to resist tampering attack and collusion attack. To over-
come the shortcomings of efficiency, We designed ciphertext piece storage and
recovery algorithms to realize lightweight data storage cost, and outsourced a
pre-decryption algorithm to the CS to reduce the computation cost for the RSU.
The finally security analysis and experiment results show that our scheme is
secure and lightweight.

Acknowledgement. The authors of this article would like to thank the editor.
This work is supposed by the National Natural Science Foundation of China (NOs.
U1905211, 61902289).

References

1. Alladi, T., Chamola, V., Sahu, N., Venkatesh, V., Goyal, A., Guizani, M.: A com-
prehensive survey on the applications of blockchain for securing vehicular networks.
IEEE Commun. Surv. Tutor. 24(2), 1212–1239 (2022)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Phd Thesis
Israel Institute of Technology Technion (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE (2007)

4. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

5. Dib, O., Brousmiche, K.L., Durand, A., Thea, E., Hamida, E.B.: Consortium
blockchains: overview, applications and challenges. Int. J. Adv. Telecommun.
11(1&2), 51–64 (2018)

6. Fabric, H.: Hyperledger Fabric (2017). https://www.hyperledger.org/projects/
fabric

7. Fan, K., et al.: A secure and verifiable data sharing scheme based on blockchain in
vehicular social networks. IEEE Trans. Veh. Technol. 69(6), 5826–5835 (2020)

8. Han, D., Pan, N., Li, K.C.: A traceable and revocable ciphertext-policy attribute-
based encryption scheme based on privacy protection. IEEE Trans. Dependable
Secure Comput. 19(1), 316–327 (2020)

9. Kang, J., et al.: Blockchain for secure and efficient data sharing in vehicular edge
computing and networks. IEEE Internet Things J. 6(3), 4660–4670 (2019)

10. Khowaja, S.A., et al.: A secure data sharing scheme in community segmented
vehicular social networks for 6G. IEEE Trans. Ind. Inf. 19(1), 890–899 (2022)

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric

BLAC: A Blockchain-Based Lightweight Access Control Scheme in VSNs 313

11. Liang, W., et al.: PDPChain: a consortium blockchain-based privacy protection
scheme for personal data. IEEE Trans. Reliab. (2022)

12. Lu, Y., et al.: Accelerating at the edge: a storage-elastic blockchain for latency-
sensitive vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 23(8), 11862–
11876 (2021)

13. Lynn, B.: The Pairing-Based Cryptography (PBC) library (2013). https://crypto.
stanford.edu/pbc/

14. Nasiraee, H., Ashouri-Talouki, M.: Privacy-preserving distributed data access con-
trol for cloudiot. IEEE Trans. Dependable Secure Comput. 19(4), 2476–2487 (2021)

15. Posner, J., Tseng, L., Aloqaily, M., Jararweh, Y.: Federated learning in vehicular
networks: opportunities and solutions. IEEE Netw. 35(2), 152–159 (2021)

16. Pu, Y., Hu, C., Deng, S., Alrawais, A.: R2PEDS: a recoverable and revocable
privacy-preserving edge data sharing scheme. IEEE Internet Things J. 7(9), 8077–
8089 (2020)

17. Pu, Y., Xiang, T., Hu, C., Alrawais, A., Yan, H.: An efficient blockchain-based
privacy preserving scheme for vehicular social networks. Inf. Sci. 540, 308–324
(2020)

18. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B.: A survey on access control in
the age of internet of things. IEEE Internet Things J. 7(6), 4682–4696 (2020)

19. Wang, Y., Su, Z., Zhang, K., Benslimane, A.: Challenges and solutions in
autonomous driving: a blockchain approach. IEEE Netw. 34(4), 218–226 (2020)

20. Wang, Y., et al.: SPDS: a secure and auditable private data sharing scheme for
smart grid based on blockchain. IEEE Trans. Ind. Inf. 17(11), 7688–7699 (2021)

21. Wenxiu, D., Yan, Z., Deng, R.H.: Privacy-preserving data processing with flexible
access control. IEEE Trans. Dependable Secure Comput. 17(2), 363–376 (2020)

22. Yang, W., Guan, Z., Wu, L., Du, X., Guizani, M.: Secure data access control with
fair accountability in smart grid data sharing: an edge blockchain approach. IEEE
Internet Things J. 8(10), 8632–8643 (2021)

23. Yao, Y., Chang, X., Mišić, J., Mišić, V.B.: Lightweight and privacy-preserving id-
as-a-service provisioning in vehicular cloud computing. IEEE Trans. Veh. Technol.
69(2), 2185–2194 (2020)

24. Zhang, W., Zhang, Z., Xiong, H., Qin, Z.: PHAS-HEKR-CP-ABE: partially policy-
hidden CP-ABE with highly efficient key revocation in cloud data sharing system.
J. Ambient Intell. Humanized Comput., 1–15 (2022)

25. Zhao, C., Xu, L., Li, J., Fang, H., Zhang, Y.: Toward secure and privacy-preserving
cloud data sharing: online/offline multiauthority CP-ABE with hidden policy.
IEEE Syst. J. 16(3), 4804–4815 (2022)

26. Zhong, H., Zhou, Y., Zhang, Q., Xu, Y., Cui, J.: An efficient and outsourcing-
supported attribute-based access control scheme for edge-enabled smart healthcare.
Futur. Gener. Comput. Syst. 115, 486–496 (2021)

27. Zhong, Y., Hua, K., Li, P., Deng, D., Liu, X., Chen, Y.: Dynamic periodic loca-
tion encounter network analysis for vehicular social networks. IEEE Trans. Veh.
Technol. 70(8), 7453–7463 (2021)

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

Privacy and Anonymity

Link Prediction-Based Multi-Identity
Recognition of Darknet Vendors

Futai Zou(B), Yuelin Hu, Wenliang Xu, and Yue Wu

School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{zoufutai,huyuelin,389370297,wuyue}@sjtu.edu.cn

Abstract. The darknet has been a notorious hub for illegal and criminal
activities. One of the major challenges in identifying criminals involved
in darknet market transactions is the presence of multi-identity vendors,
who operate under different accounts to evade detection. Existing meth-
ods have limitations such as incomplete feature characterization, impre-
cise data annotation, and an inability to analyze across markets. In this
paper, we propose a new approach to address these issues. Rich informa-
tion of traded goods is collected from 21 currently existing English dark-
net markets as experimental data. Our method entails extracting text
and image features and computing the writing style of suppliers. Subse-
quently, the feature dimension is reduced and pseudo labeling is applied
to improve label accuracy. Further, four types of data about vendors
are mapped onto a heterogeneous information network to characterize
potential relationships among darknet vendors. By leveraging the graph
neural network algorithm and Siamese neural networks, the link rela-
tionship between different accounts is predicted to determine whether
they belong to the same supplier. The experimental results demonstrate
the effectiveness of our proposed method in identifying different accounts
belonging to the same supplier with a maximum accuracy of 99.75% and
a recall rate of 99.09%.

Keywords: Darknet data mining · Identity recognition ·
Heterogeneous information networks · Link prediction

1 Introduction

The Onion Router (Tor) is a widely used anonymous communication technol-
ogy [1] that not only protects the identity of clients but also enables the client to
access servers without knowing the real IP address through hidden services.
These services constitute the darknet, a network that can only be accessed
through specialized methods. The anonymity offered by the darknet has led
to a proliferation of cybercriminal activities, such as darknet markets, where
criminals trade in illicit drugs, firearms, pornography, illegal data, and various
other prohibited items.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 317–332, 2023.
https://doi.org/10.1007/978-981-99-7356-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_19&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_19

318 F. Zou et al.

Due to the numerous darknet markets and the lack of data exchange among
them, some suppliers of traded goods create accounts on multiple markets simul-
taneously to reach a larger pool of buyers and sell more items. This practice
poses significant challenges for law enforcement and intelligence agencies to track
and prosecute illegal darknet market transactions effectively. Identifying multi-
ple accounts controlled by the same vendor distributed across different darknet
markets can assist in locating popular vendors in darknet markets, provide a
comprehensive understanding of vendor activities, and serve as a basis for com-
bating cybercriminals. Therefore, the aim of this study is to develop a method for
identifying accounts controlled by the same real vendor across multiple markets.

The existing research extracted features from information such as PGP
keys [2], texts [3], and images [4] posted in darknet forums/markets to compare
whether they belong to the same vendor. This is usually done by calculating the
cosine similarity [3] or constructing a heterogeneous information network and
generating an embedding vector of nodes to calculate similarity [5]. However,
current methods based on heterogeneous information networks still suffers from
accuracy issues. It is challenging to capture market structure information using
goods-related attributes (i.e., text and images) as nodes. Moreover, current data
labeling methods typically only consider a single market as the research object
and use simplistic approaches, resulting in either limited single-market analysis
or excessive noise in cross-market analysis.

In this paper, we address the multi-identity recognition problem of darknet
vendors by treating it as an author alias problem. Specifically, we collect infor-
mation on accounts and goods posted by these accounts from multiple darknet
markets, extract relevant features, and label the resulting dataset. Subsequently,
we propose a novel approach that involves constructing a heterogeneous infor-
mation network and utilizing a Siamese neural network to compute similarities
between account nodes, thereby inferring multiple accounts belonging to the
same vendor. The key contributions of this paper are as follows:

1) A darknet market collection system is developed to collect data from existing
darknet markets, providing a more comprehensive feature characterization
that better reflects the real situation of the darknet. Furthermore, we open-
source the dataset resulting from this research.

2) Pseudo labeling is combined with manual labeling to reduce the noise of ven-
dor identity labeling in multi-markets, which enables multi-market analysis.

3) The accounts and goods in darknet markets are mapped to heterogeneous
information networks, and Siamese neural networks is utilized for link pre-
diction to determine whether multiple accounts belong to the same vendor,
with a maximum accuracy of 99.75% and a recall rate of 99.09%.

2 Related Work

This section presents work related to vendor multi-identification on the darknet,
including author attribution and author alias issues, multi-identity recognition
in the darknet, and labeling of vendor identity.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 319

2.1 Author Attribution and Author Alias

Author attribution refers to the process of identifying the author of a text whose
authorship is unknown by comparing it to a set of candidate authors based on
writing style features [6]. The underlying assumption is that different authors
have distinct writing styles that can be distinguished through various linguistic
features. Conversely, author alias is concerned with determining whether mul-
tiple accounts are controlled by the same individual. While author attribution
is a multi-classification problem, author alias is a binary classification problem.
Both problems rely on identifying similarities between different texts or accounts
using specific features.

In the case of multi-identity recognition of darknet vendors, the goal is to
identify whether multiple darknet market accounts are controlled by the same
vendor. Although this problem is a form of author alias, author attribution
methods can be used for reference.

2.2 Multi-identity Recognition in Darknet

Jeziorowski et al. [7] conducted experiments on both author attribution and
author alias. In the author attribution experiment, they employed the random
forest and achieved an accuracy of 95%. While in the author alias experiment,
they utilized the cosine similarity to calculate the feature similarity and attained
an F1-Score of 0.814 using SVM as the classifier. Ekambaranathan et al. [8]
utilized the n-gram method to segment articles for creating author embeddings
and computed the cosine similarity. Their method achieved 90% accuracy in
darknet forums when users posted at least 25 articles.

Feature extraction and representation play a crucial role in multi-identity
recognition. Gianluigi et al. [2] mapped darknet accounts to an information net-
work and employed the PGP public key for account association. Kumar et al. [3]
used five types of features to describe an account, including product category,
item description, item shipping location. Nevertheless, these studies only extract
features from the text and ignore the images which contain substantial informa-
tion that can aid in distinguishing identities. Zhang et al. proposed the uStyle-
uID [5], which combined writing and photography styles and constructed a het-
erogeneous information network to embed the features. They utilized an edge
likelihood algorithm to calculate similarity and achieved up to 90.3% accuracy.
They also proposed using Generative Adversarial Networks (GAN) to represent
nodes in a heterogeneous information networks and designed the dstyle-GAN [9],
which achieved a maximum F1-Score of 0.884 and an accuracy of 89.3%. How-
ever, the current heterogeneous information network fails to accurately represent
the market structure using some goods-related attributes as nodes.

2.3 Labeling of Vendor Identity

In the multi-identity recognition problem, most previous experiments [4,5]
divided the items under a single account into two parts, which were then con-
sidered as two identities of the same real vendor. However, using data from only

320 F. Zou et al.

one market is contrary to the requirement of finding multiple accounts of the
same real vendor in different markets.

Recent studies have been more focused on the multi-market darknet vendor
identification problem. Kumar [3] proposed considering two accounts with the
same username in different darknet markets as the same real vendor. However,
this method can generate noise due to inaccurate labeling of sample pairs. To
improve the accuracy of labeled samples, we combine the initial labeling method
with pseudo labeling and manual labeling. This combined approach yields more
accurate labeled samples for use in multi-identity recognition.

3 Data Acquisition and Preprocessing

Since there is no suitable public dataset, we first developed a darknet market
collection system and collect goods data from 21 currently existing darknet mar-
kets, followed by feature extraction and sample labeling of the collected data.

3.1 Data Acquisition

Control side

Message queue

Execution side Execution side Execution side

Xpath rules Cookies
Crawler

configuration
Target URL

Redis MySQL Elastic search MinIO

@

Darknet market

Fig. 1. The crawler system.

A distributed crawler system is developed to collect goods data from various
darknet markets through a unified solution, resulting in a dataset [10] used in
this study. The system’s architecture is presented in Fig. 1. Since all existing
darknet markets require login authentication and complex verification codes,
manual login is performed to obtain cookies, which are subsequently used by
the crawler system. In addition to cookies, the target URL, XPath rules, and
crawler configuration need to be set.

However, the raw data obtained from crawling suffers from three issues that
require data cleaning before it can be utilized.

1) The duplicate items will lead to a more complex graph and have no positive
effect. In addition, some items ending with (Clone) are also in need of de-
duplication.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 321

2) Inconsistent shipping origins in various markets, for example, items with the
United States as the shipping origins may be set as USA, US, U.S.A, United
States, etc.

3) The categories are not uniform, for example, drugs of cannabis category are
defined as Cannabis in some markets and Hashish in others.

For the duplicate data in problem 1, we extract the name, description, ven-
dor name, and category from each item as a quadruple, and de-duplicate the
data according to this quadruple, keeping only the first group of duplicate data.
For problems 2 and 3, we need to normalize the shipping origin and category,
mapping the same category to a standardized name.

The final market data collected is shown in Table 1, there are 21 English
darknet markets with 341, 141 goods, after cleaning the remaining 185, 460, and
the number of cleaned vendors is 8, 507.

Table 1. Data of Darknet Markets

Number Market Number of items
after cleaning

Number of items
before cleaning

Number of
vendorsafter
cleaning

1 Apollon 51,989 61,723 1,801

2 Silk road 3.1 37,015 42,665 3,161

3 Agartha 20,363 45,139 284

4 Dark0de 18,381 20,212 1,044

5 Darkfox 16,227 19,272 615

6 Lime 13,238 121,292 123

7 Versus 6,749 6,811 267

8 Vice City 6,609 7,370 272

9 Tor2door 5,972 7,385 179

10 Cartel 3,058 3.266 264

11 Cypher Market 2,077 2,199 126

12 Cannazon 1,787 1.804 192

13 Monopoly Market 783 783 79

14 Cannahome 762 766 57

15 Incognito 348 352 36

16 Housto275 43 43 1

17 Dutch Master 21 21 1

18 Heineken Express 15 15 1

19 Dutch Drugz 12 12 1

20 Tom And Jerry 7 7 1

21 HANF4YOU SHOP 4 4 1

Total 185,460 341,141 8,507

322 F. Zou et al.

3.2 Feature Extraction

Feature Calculation. We extract features from the titles, descriptions, and
images of goods, and use goods features to calculate the features of vendors.
Migration learning is used to extract text and image features, and the output
of the pre-trained model network is used as the input features of the neural
network.

Text-Based Features. BERT [11] is a pre-trained language representation model
based on the Transformer [12]. Doc2vec [13] is an unsupervised algorithm that
learns a fixed-length vector representation for variable-length text and is used
to compute text vectors. As shown in Fig. 2, Doc2vec has two training methods,
PV-DM and PV-DBOW framework.

Fig. 2. Two Training Frameworks for Doc2Vec

First, the title and description of each item are truncated to 512 words, the
output sequence through BERT pretrained model are denoted as fbert title and
fbert desc. In addition, The average of fbert title and fbert desc of all items sold
by the vendor is used as the features of this vendor, denoted as Fbert title and
Fbert desc.

Then, PV-DM is used to train the Doc2Vec model for the title and description
of each item, and the results are denoted as fdoc2vec title and fdoc2vec desc. For
each vendor, the characteristics of the supplier dimension are calculated using
the following two methods.

Method 1: The average value of fdoc2vec title and fdoc2vec desc are features
denoted as Fdoc2vec title avg and Fdoc2vec desc avg, respectively.

Method 2: Add [START] and [END] to the first and last of the title and
description of each item sold by the vendor to identify a document, and join
the first and last of these documents to form a new document. Then the
Doc2Vec model is trained separately for these two documents of the vendors
using PV-DBOW to obtain the document vectors, denoted as Fdoc2vec title and
Fdoc2vec desc, respectively.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 323

Writing Style Features. The writing style features are summarized in Table 2.
The writing style is calculated separately for each item’s title and descrip-
tion, and the vendor’s features are calculated by means. The features of
goods and vendors are denoted separately as fstylomerty title, fstylomerty desc and
Fstylomerty title, Fstylomerty desc.

Table 2. Feature of Stylometry

Feature category Feature Feature number

Lexical features number of characters 1

Number and frequency of
numbers/whitespace/special characters

6

Number and frequency of
numbers/capital letters

4

Word quantity 1

Average length of words 1

Word abundance 6

Proportion of each lowercase/uppercase
letter

52

Grammatical features Quantity and frequency of punctuations 2

Quantity and frequency of function words 2

Structural features Paragraph quantity 1

Average indentation of paragraphs 1

Delimiters existence between paragraphs 1

Average quantity of words/ sentences/
characters in each paragraph

3

Total 81

Images-Based Features. Resnet [14] forms a deep convolutional neural network
that employs residual learning units to form a deep neural network with many
layers. In this study, we extract features for images of goods using Resnet with
a depth of 50 layers. Each image is processed separately to obtain a 1000-
dimensional feature vector.In the case of multiple images for a single item, we
compute the average of their feature vectors to represent the item, denoted as
fresnet. Similarly, for a vendor, we calculate the average of the feature vectors
of all the images it publishes, resulting in a vendor-level feature vector, denoted
as Fresnet.

Feature Dimensionality Reduction. After feature extraction, we observe
that concatenating all features results in a high-dimensional feature space, which
violates the requirement of having the same dimensionality for different node

324 F. Zou et al.

types in a heterogeneous information network. Therefore, feature dimensionality
reduction techniques such as PCA [15] and WGCCA [16] are used. Through
these two methods, we obtain a 784-dimensional feature vector, which is suitable
for converting features into grayscale images. In each experiment, the effects of
the two methods are compared, and the better one will be selected as the final
experimental result.

3.3 Sample Labeling

During the labeling of sample pairs, we assign them a positive label if both
samples belong to the same vendor, otherwise, they are negative. Two accounts
with the same username in different darknet markets are considered as being the
same real vendor. Additionally, pseudo labeling [17] is used to improve labeling
accuracy. Furthermore, due to the significant class imbalance between positive
and negative samples, we remove a portion of negative samples using the Jaccard
Index after the initial labeling step.

Negative Sample Filtering. The positive and negative sample labels are
heavily imbalanced, with a ratio of approximately 1:8169. As noted by Yang
et al. [18], in the link prediction problem, high positive and negative sample
imbalance ratios tend to bias models to predict new edges as non-existent in the
link prediction model.

Hence, we conjecture that multiple accounts controlled by the same vendor
are more likely to use similar words. To measure the similarity between the
word sets, namely the goods’ titles used by each of the two vendors vendori and
vendorj , we compute the Jaccard Index [19] as shown in Eq. 1. A higher value
indicates that the two vendors use more similar words.

J (Wi,Wj) =
| Wi ∩ Wj |
| Wi ∪ Wj | (1)

According to the calculation results shown in Fig. 3, 98.46% of the Jaccard
Index of positive sample pairs is more than 0.2, while about 99.9% of the Jaccard
Index of negative sample pairs is less than 0.2. Therefore, by setting the Jaccard
Index threshold to 0.2, negative sample pairs with an index below this threshold
are excluded as training samples. This results in a more balanced positive to
negative sample pair ratio of approximately 1:8, which is better suited for the
link prediction model.

Pseudo Labeling. In this experiment, the samples are partitioned into a train-
ing set and a test set. The model is trained on the training set, and the result-
ing predictions on the test set are compared against the initial labels. In cases
where the predicted labels differ from the initial labels, manual labeling is per-
formed, with the resulting human-annotated labels taken as the correct labels.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 325

Fig. 3. Histogram of Jaccard Index of (a) positive sample pairs, (b) negative sample
pairs, and (c) negative sample pairs-logarithmic axis.

To improve the confidence of the labels, the training set and test set are re-
divided and the process is repeated N times. The number of positive and nega-
tive samples after initial labeling, negative sample filtering, and pseudo labeling
are presented in Table 3.

Table 3. Positive and Negative Samples

positive samples negative samples

initial labeling 3575 28,631,356

negative sample filtering 3575 26980

pseudo labeling 3728 26827

4 Link Prediction

To identify accounts controlled by the same vendor from a set of known accounts,
we propose a link prediction method that uses a Siamese neural network. The
method is applied to predict the links between vendor node pairs in a hetero-
geneous information network. The framework, illustrated in Fig. 4, consists of
three steps: constructing the heterogeneous information network, deriving the
implicit representation of nodes, and predicting links using a Siamese neural
network.

4.1 Construct the Network

In an information network, when there are multiple types in the set of edge
types or the set of node types, the graph G is a heterogeneous information
network. We express the relationship between vendors and goods with the help
of heterogeneous information networks.

There are four node types (vendor, goods, shipping origin, and category)
and four relationship types (vendor - sell - goods, goods - belongs to - category,

326 F. Zou et al.

Shipping

origin

Vendor Goods

Category

Belong

to the

same

vendor

1. Constructing a heterogeneous
information network 4. Link prediction

+

+

+

2. Deriving the implicit
representation of nodes 3. Siamese neural network

vendori

Siamese

Nerual

Network

outputi

vendorj

Siamese

Nerual

Network

outputj

weights

pairwise

distance Shipping

origin

Vendor Goods

Category

Fig. 4. The Framework of Link Prediction Based on Siamese Neural Network.

goods - deliver - shipping origin, and vendor - multi-identity - vendor) in the
heterogeneous information network, as shown in Fig. 5. The four node types and
the four relationships are denoted as A = avendor, aitem, ashipment, acategory and
R= rsell, ris, rship from, rsame as, and the heterogeneous information network
is denoted as Gm. The fused vendor and goods attributes are used for vendor
and goods features, and the shipping origin and category features are represented
using the One-Hot Code for features. After constructing the graph Gm, based on
the four nodes, their attributes, and the three relationships rsell, ris, rship from,
it is predicted whether there is a rsame as relationship between two vendors.

Attribute title
BERT_avg

Writing style_avg

Doc2Vec_avg

Doc2Vec

Description
BERT_avg

Writing style_avg

Doc2Vec_avg

Doc2Vec

Image
ResNet_avg

Attribute
One-Hot Code

Attribute title
BERT

Writing style

Doc2Vec

Description
BERT

Write style

Doc2Vec

Image
ResNet

Attribute
One-Hot Code

Vendor

Shipping

origins

Goods

Category

Belong toDeliver

Sell

Multi-identity

Fig. 5. The Framework of Link Prediction Based on Siamese Neural Network.

In a heterogeneous information network, the number of links is huge, and the
number of relationships rises exponentially as the number of nodes rises, so the
model can be trained using negative sampling [5].

In Fig. 6, the negative sampling process is illustrated. For each node vp that
has multiple identity links, a portion of nodes vn is randomly selected from the
remaining nodes to construct the negative sample edge. The number of vn is
determined by the negative sampling multiplier, which can be set as 1, 2, 3, etc.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 327

Fig. 6. Negative sampling process.

Each vn is connected to the target vp to form the negative sample graph. These
positive and negative sample graphs are utilized as the training set.

4.2 Derive the Implicit Representation

In the link prediction process, the GraphSAGE [20] algorithm is used to derive
the implicit representation of each node in the heterogeneous information net-
work. GraphSAGE calculates the implicit representation of unknown nodes
based on the features of known nodes in the graph and generates the implicit rep-
resentation of the target node itself by aggregating the implicit representations
of the target node’s neighbor nodes. For each relation r, there are:

hk
Nr(v)

←− AGGREGATEk({hk−1
u ,∀u ∈ Nr(v)}) (2)

Next, it is sufficient to obtain the implicit representation hk
v of node v by

a nonlinear function after connecting the aggregated representations of each
relation.

hk
v ←− σ(CONCAT(W k

0 hk−1
v ,W k

1 hk
N1(v)

, . . . ,W k
r hk

Nr(v)
)) (3)

where W k
i denotes the weight of the ith relationship at the kth level.

4.3 Link Prediction

The Siamese neural network approach [21] is a technique that involves selecting
a pair of samples as input, passing them through the same neural network to
generate separate outputs, and calculating the distance between these two out-
puts. In this study, the implicit representations of a pair of vendor nodes hi and
hj are fed into the same neural network, and the distance of their outputs is
computed. Subsequently, based on this distance, it is determined whether there
exists a rsameas relationship between these two nodes.

328 F. Zou et al.

The Siamese neural network-based link prediction is an end-to-end super-
vised algorithm that computes a contrast loss using pairwise distances and given
labels, as shown in Eq. 4. This loss is then used to back-propagate and update
the weights of the Siamese neural network, as well as the hidden layers in Graph-
SAGE, in order to improve the fitting performance.

L =
1

2N

N∑

i=1

yid
2
i + (1 − yi)max(margin − di, 0)2 (4)

where di denotes the distance of the ith pair of samples, yi denotes the label of
the ith pair of samples, and margin is the superparameter that determines how
far the dissimilar samples will be separated from each other. The optimal value
of margin can be determined through experimentation.

5 Experiment and Analysis

This section conducts experiments to evaluate our proposed model, presenting
the experimental setup and analyzing the evaluation results.

5.1 Experimental Setup

First, the proposed crawler system is employed to collect information on darknet
markets, and the experimental dataset is obtained by processing the raw data.
In each experiment, the sample pairs are divided into two parts, 90% as the
training set and 10% as the test set.

The experiment is implemented in the PyTorch1.8 framework using
Python3.8, and the experimental environment consists of a 20-core and 40-thread
Intel Xeon processor CPU, Nvidia Tesla M40 graphics GPU, and 192G physical
memory.

To evaluate the performance of the model, we use Accuracy, Precision, Recall,
F1-Score, and Area Under Curve (AUC). Three experiments are designed to
evaluate the proposed model as follows:

1) Model Evaluation: We use 10-fold cross-validation to evaluate the perfor-
mance of our model and compare it with the direct use of dot product to
predict links.

2) Training Approach Comparison: We compare the negative sampling approach
with the full graph training approach in terms of computation speed, conver-
gence speed, and model accuracy.

3) Multi-Identity in single market: We conduct multi-identity recognition in a
single darknet market. The items sold by vendors in a market are divided
into two parts that are treated as two accounts controlled by vendors, and
we perform multi-identity recognition on these accounts.

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 329

Fig. 7. Ten-Fold Cross Validation of the Approach of Link Prediction based on Siamese
Neural Network.

5.2 Results and Discussion

Model Evaluation. The results of the 10-fold cross-validation validation of
the link prediction based on Siamese neural network are shown in Fig. 7. The
worst-performing fold has an accuracy rate of over 0.95, while most of the other
experiments exceed 0.99 for various metrics.

GraphSAGE and R-GCN are used to calculate the implicit representation
of the nodes, and the edge score between two nodes is calculated using the dot
product for link prediction. We compare the result of these two simple methods
with the average values of the above result, and the results are shown in Table 4.

We present our analysis of the experimental results, and conclude that the
link prediction based on Siamese neural networks performs significantly better
than the direct use of dot product to predict links. Our observations suggest
that the superiority of Siamese neural networks is due to the following reasons:

(1) Vendor Node Relationships: GraphSAGE is employed in this method
to capture the relationships between nodes and fuse the relationships between
nodes into the implicit representation of nodes. Therefore, the subsequent use
of the Siamese neural network for link prediction is more effective in capturing
the relationships between nodes, leading to better performance.

(2) Similarity Capture: The Siamese neural network is more capable of cap-
turing the similarity of the implicit representation of nodes than the original link
prediction using dot product. This results in better accuracy in predicting links
between nodes.

Negative Sampling Experiment. We train two models using the same pos-
itive samples but different negative samples, one using all negative samples and
the other using negative sampling to obtain a subset of negative samples. The
models are evaluated using the same test sets, and the results are presented
in Table 5. Our findings suggest that the negative sampling approach is more

330 F. Zou et al.

Table 4. Comparison of Results of Three Link Prediction Methods

R-GCN + dot product GraphSAGE + dot product Our model

Accuracy 87.40% 92.64% 99.75%

Precision 53.48% 77.61% 98.86%

Recall 82.77% 62.20% 99.09%

F1-Score 0.650 0.649 0.990

AUC 0.822 0.903 0.9998

efficient and does not compromise accuracy, as demonstrated by the lack of
advantage in accuracy obtained by the full graph training approach. Thus, the
model can be effectively trained using negative sampling.

Table 5. Negative sampling experiment results

Accuracy F1-Score Training
time per
round

Convergence
rounds

Full graph 99.64% 0.985 18.892 s 36

Negative sampling 1x 99.71% 0.988 7.629 s 33

Negative sampling 2x 99.77% 0.991 9.723 s 27

Negative sampling 3x 99.93% 0.997 11.799 s 36

Single Market Research. The model was applied to the multi-identity recog-
nition in a single darknet market. Three markets in the dataset are selected for
this experiment and the experimental results are shown in Table 6.

Table 6. Experiment Results of a Single Market

Market F1-Score Accuracy Precision Recall

Tor2door market 0.9375 99.21% 93.75% 93.75%

Versus Market 0.9388 99.47% 95.83% 92.00%

Vice City 0.9434 99.44% 92.58% 96.15%

Zhang et al. proposed two methods, uStyle-uID [5] and dStyle-GAN [9], using
heterogeneous information networks in a single market. In this study, we do
not apply these two methods to our dataset due to the unavailability of their
source code and their complex implementation. However, their market structures

Link Prediction-Based Multi-Identity Recognition of Darknet Vendors 331

are similar and all composed of text and images, which is comparable to some
extent. The comparison results are shown in Table 7. Compared to uStyle-uID
and dStyle-GAN, which both give F1-Scores of no more than 0.9, our method
also has good results in a single market.

Table 7. Comparison Between Different Methods

Method F1-Score Accuracy Precision Recall

uStyle-uID 0.8512 86.10% 91.59% 79.50%

dStyle-GAN 0.8844 83.90% 96.15% 81.90%

Our model 0.9399 99.35% 94.14% 93.97%

6 Conclusion and Future Work

In this study, we propose a novel method for multi-identity recognition of darknet
vendors. Firstly, we design a distributed crawler system for darknet markets
and collect the data of 21 existing English darknet markets. Text, image, and
writing style features are then extracted to develop detailed descriptions of goods
and vendors. Pseudo-labeling is employed to iteratively train updated labels,
resulting in more accurate data labels for multi-market analysis. Furthermore, a
heterogeneous information network is constructed based on the dataset, which
can better represent the relationships between vendors, and GraphSAGE is used
for the implicit representation of nodes. Finally, the Siamese neural network is
used for link prediction, which calculates the distance to determine whether there
is a link between the two nodes. The proposed method achieves an accuracy of
99.89% and an F1-Score of 0.99.

Future work includes incorporating information from supporting forums in
markets where vendors and buyers discuss and exchange information to improve
the model’s effectiveness. Additionally, collecting vendor PGP data could assist
in labeling and determining whether accounts are controlled by the same vendor.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Program of China (No.2020YFB1807500)

References

1. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anony-
mous information storage and retrieval system. In: Workshop on Design Issues in
Anonymity and Unobservability (2000)

332 F. Zou et al.

2. Me, G., Pesticcio, L., Spagnoletti, P.: Discovering hidden relations between
tor marketplaces users. In: 2017 IEEE 15th International Conference on
Dependable, Autonomic and Secure Computing, 15th International Confer-
ence on Pervasive Intelligence and Computing, 3rd International Confernce
on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pp. 494–501 (2017)

3. Kumar, R., et al.: edarkfind: unsupervised multi-view learning for sybil account
detection. In: Proceedings of The Web Conference 2020 (2020)

4. Wang, X., Peng, P., Wang, C., Wang, G.: You are your photographs: detecting
multiple identities of vendors in the darknet marketplaces. In: Proceedings of the
2018 on Asia Conference on Computer and Communications Security (2018)

5. Zhang, Y., et al.: Your style your identity: leveraging writing and photography
styles for drug trafficker identification in darknet markets over attributed hetero-
geneous information network. In: The World Wide Web Conference (2019)

6. Mosteller, F., Wallace, D.L.: A comparative study of discrimination methods
applied to the authorship of the disputed federalist papers (2016)

7. Jeziorowski, S.: Dark vendor profilng (2020)
8. Ekambaranathan, A.: Using stylometry to track cybercriminals in darknet forums

(2018)
9. Zhang, Y., et al.: dstyle-gan: generative adversarial network based on writing and

photography styles for drug identification in darknet markets. In: Annual Computer
Security Applications Conference (2020)

10. Netsec-SJTU: darkweb-market-dataset-2021. Website (2022). https://github.com/
Netsec-SJTU/darkweb-market-dataset-2021

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. ArXiv abs/1810.04805 (2019)

12. Vaswani, A., et al.: Attention is all you need. ArXiv abs/1706.03762 (2017)
13. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:

ICML (2014)
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

15. Shlens, J.: A tutorial on principal component analysis. ArXiv abs/1404.1100 (2014)
16. Benton, A., Arora, R., Dredze, M.: Learning multiview embeddings of twitter users.

In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (vol. 2: Short Papers) (2016)

17. Lee, D.H.: Pseudo-label : the simple and efficient semi-supervised learning method
for deep neural networks (2013)

18. Yang, Y., Lichtenwalter, R., Chawla, N.: Evaluating link prediction methods.
Knowl. Inf. Syst. 45, 751–782 (2014)

19. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytol. 11,
37–50 (1912)

20. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

21. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546
(2005)

https://github.com/Netsec-SJTU/darkweb-market-dataset-2021
https://github.com/Netsec-SJTU/darkweb-market-dataset-2021

CryptoMask: Privacy-Preserving Face
Recognition

Jianli Bai1, Xiaowu Zhang2, Xiangfu Song3(B), Hang Shao4, Qifan Wang1,
Shujie Cui5, and Giovanni Russello1

1 University of Auckland, Auckland, New Zealand
{jbai795,qwan301}@aucklanduni.ac.nz, g.russello@auckland.ac.nz

2 CloudWalk Technology, Beijing, China
zhangxiaowu@cloudwalk.com

3 National University of Singapore, Singapore, Singapore
songxf@comp.nus.edu.sg

4 Beijing Institute of Graphic Communication, Beijing, China
5 Monash University, Melbourne, Australia

shujie.cui@monash.edu

Abstract. Face recognition is a widely-used technique for identification or ver-
ification, where a verifier checks whether a face image matches anyone stored
in a database. However, in scenarios where the database is held by a third
party, such as a cloud server, both parties are concerned about data privacy. To
address this concern, we propose CryptoMask, a privacy-preserving face recog-
nition system that employs homomorphic encryption (HE) and secure multi-
party computation (MPC). We design a new encoding strategy that leverages
HE properties to reduce communication costs and enable efficient similarity
checks between face images, without expensive homomorphic rotation. Addition-
ally, CryptoMask leaks less information than existing state-of-the-art approaches.
CryptoMask only reveals whether there is an image matching the query or not,
whereas existing approaches additionally leak sensitive intermediate distance
information. We conduct extensive experiments that demonstrate CryptoMask’s
superior performance in terms of computation and communication. For a database
with 100 million 512-dimensional face vectors, CryptoMask offers ∼5× and
∼144× speed-ups in terms of computation and communication, respectively.

Keywords: Face recognition · Privacy-preserving · Homomorphic Encryption ·
Secure Multiparty Computation

1 Introduction

Biometric authentication has become increasingly vital in various applications in recent
years. This work focuses on face recognition, which identifies or verifies a person’s
identity based on their facial features. Due to its ease of use and convenience, face
recognition has gained significant traction in real-world applications such as public
place surveillance (e.g., streets, airports, etc.) [22], social media [6], and corporate
punch card supervision [13].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 333–350, 2023.
https://doi.org/10.1007/978-981-99-7356-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_20&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_20

334 J. Bai et al.

As face recognition systems become more widespread, concerns about privacy have
grown. In a typical system, a server stores face images belonging to users who are regis-
tered. When a verifier, who possesses a user’s face image, queries the server to check if
the user is verified, the system measures the similarity or distance between the queried
image and the images in the database. However, in many cases, it may not be permissi-
ble to disclose users’ face images to the server due to privacy concerns or the possibility
of human rights abuses [4]. Therefore, it is essential to develop privacy-preserving face
recognition protocols that protect data privacy while maintaining efficient recognition.

Encrypting pre-processed images (e.g., extracted face vectors) and performing face
recognition over encrypted data is a straightforward approach to ensure data privacy.
Homomorphic Encryption (HE) is a promising encryption scheme for this purpose,
which was first proposed in [27] and realized in [12]. HE allows computation in the
encrypted domain without decryption. However, HE-based privacy-preserving face
recognition protocols, such as the one proposed in [3], are several orders of mag-
nitudes slower than the original method, even when utilizing the Single-Instruction-
Multiple-Data (SIMD) technique [33] to amortize the cost of homomorphic operations.
To overcome this, the approach proposed in [9] explores encoding methods on the image
database, reducing the number of homomorphic multiplications and rotations required
and improving computation efficiency. Moreover, previous works [3,9] in this field fail
to protect the private information of the database, as they allow the verifier to learn
sensitive distance or similarity information and the number of face images close to the
queried one.

In this paper, we propose Cryptomask, an efficient privacy-preserving face recog-
nition protocol that only reveals a single bit of information to the verifier, indicating
whether the queried face image is present in the database. We propose a novel encod-
ing method to encrypt the database in a compact manner, resulting in improved per-
formance. For distance computation, we use efficient matrix multiplication techniques
that avoid expensive homomorphic rotations. Additionally, we ensure the privacy of
distance calculations by designing a secure result-revealing protocol and optimizing
its efficiency. CryptoMask outperforms existing distance-based privacy-preserving bio-
metric schemes constructed via HE in terms of computation and storage overhead, and
information leakage. Table 1 provides a comparison of different schemes, showing that
our approach requires the least number of HE multiplications and additions and has
minimal information leakage. We implement CryptoMask and compare its performance
with existing works [3] and [9]. In the case of a database with 100 million face images,
CryptoMask outperforms others up to ∼5× and ∼144× in computation and communi-
cation, respectively.

1.1 Related Work

The early work given in [28] relies on secret sharing to authenticate face recogni-
tion. However, it cannot ensure the privacy of face images. There are some simi-
lar works [21,25,35] working for biometric authentication. Another line is employ-
ing pattern recognition to protect the queried database [19,23]. However, this method
also fails to ensure the security of the database and the queried face image. Some
works [31,37] employ secure multi-party computation (MPC) [38] to achieve the

CryptoMask: Privacy-Preserving Face Recognition 335

Table 1. Summary of existing privacy-preserving face recognition protocols.

Protocol Multiplication Addition Rotation Memory Leakage

Naı̈ve md m(d − 1) 0 O(md�) A, b, d, r

Hu et al. [14] md3 md2(d − 1) 0 O(md2) d, m

Pradel et al. [24] md m(d − 1) 0 O(mdN) d, m

Boddeti et al. [3] m mlog2d mlog2d O(mN) d, m

HERS [9] �m
N

�d �m
N

�(d − 1) 0 O(dN�m
N

�) d, m

Erkin et al. [10] m(d + 2) 2m(d − 1) 0 O(mdN) m

CryptoMask � m
N−d

�d � m
N−d

�d 0 O(dN� m
N−d

�) m

A : database containing face vectors; b : queried face vector; m : database size; d :
dimension of each face vector; N : HE plaintext polynomial degree; l : length of each
element in face vector; d : distance vector; r : face recognition result. The notation �x�
denotes rounding up to the nearest integer of x. naı̈ve represents the face recognition
performed in plaintext.

privacy-preserving goals, yet they are communication costly due to multiple interac-
tions between the participants. Homomorphic encryption [27] allows computations to
be performed over encrypted data without first decrypting it. Many face recognition
protocols [3,9,10,34,36] based on HE have been proposed. Unfortunately, they either
result in heavy computation [3,10,34] or cannot provide full secrecy (e.g. leakage of
distance similarity) [3,9]. We fill this gap by employing HE to perform distance com-
putations and utilizing MPC to do a secure result-revealing process. Compared with the
state-of-the-art [9], our work reduces both the computation and communication while
maintaining the privacy of not only inputs and outputs but also intermediate data.

2 Background

In this section, we describe the face recognition algorithm and introduce the encoding
method for a given matrix. Then we present some cryptographic primitives we use.

2.1 Face Recognition

In a face recognition system, each face image is represented by a feature vector, we say a
face vector. The extraction algorithm usually consists of face detection, alignment, nor-
malization, and feature extraction, which is out of the scope of this work. We assume
the face vector of each image is ready to use. In fact, the face vector extracted from
the facial images of the same person could be slightly different. Thus, for face recog-
nition, we should compare the similarity between two face vectors rather than check
the equality. A simple method is to use either the Euclidean distance [7] or the cosine
similarity [32] to measure the similarity between two face vectors. In this paper, we
employ cosine similarity. Specifically, given two vectors ã = (ã0, ..., ãd−1) ∈ Z

d and

b̃ = (b̃0, ..., b̃d−1) ∈ Z

d, their cosine similarity is d(ã, b̃) =
∑d−1

i=0 ãib̃i√∑d−1
i=0 (ãi)2

√∑d−1
i=0 (b̃i)2

.

336 J. Bai et al.

By setting ai = ãi

‖ã‖ and bi = b̃i

‖b̃‖ , which are the normalization representations, we can

convert it to d(ã, b̃) =
∑d−1

i=0 aibi. By doing so, d(ã, b̃) can be considered as the inner
product of vector a = (a0, ..., ad−1) and b = (b0, ..., bd−1). Note that ai and bi can be
pre-computed offline. A larger value of d(ã, b̃) means higher similarity between ã and
b̃, and if it is greater than a threshold value, we say ã and b̃ matches with each other,
i.e., they represent the same person. In the following of this paper, all the face vectors
are normalization representations.

2.2 Encoding Method

Given a set of encrypted face vectors, computing the cosine similarity one by one
is time-consuming. A promising method is computing that in parallel. The encoding
method from Cheetah [17] achieves the best paralleling performance. In the following,
we briefly describe the encoding method in Cheetah [17].

Given a matrix A = {a0,a1, ...,am̃−1} ∈ Z

m̃×d with m̃ rows and d columns,
where ai = (a0

i , ..., a
d−1
i) and 0 ≤ i ≤ m̃ − 1, it can be represented into a polynomial

as

π(A) = ad−1
0 X0 + ad−2

0 X1 + · · · + a0
0X

d−1

+ ad−1
1 Xd + ad−2

1 Xd+1 + · · · + a0
1X

2d−1+

· · ·
+ ad−1

m̃−1X
(m̃−1)d + ad−2

m̃−1X
(m̃−1)d+1 + · · · + a0

m̃−1X
m̃d−1.

Given another polynomial π(b) = b0X0 + b1X1 + · · · + bd−1Xd−1, we can get poly-
nomial π(d) by computing π(d) ← π(A) ∗ π(b), where ∗ denotes polynomial multi-
plication. It is notable that the coefficient of degree X(i+1)d−1, where i ∈ [0, m̃ − 1]
in polynomial π(d) forms the dot product result of the i-th row vector from A and the
vector b. The correctness comes from the fact that the elements order of each vector
in matrix A is revised when it is encoded into a polynomial. We refer readers to Chee-
tah [17] to see the detailed proof of correctness.

2.3 Homomorphic Encryption

HE [1] allows us to compute over encrypted data where the result is indeed the
encrypted version of the operations on the plaintext. In this work, we use a lattice-based
HE: ring learning with errors (RLWE)-based HE called BFV [11]. We briefly describe
the construction of BFV scheme. See [11] for a detailed formal description and security
definition.

BFV Scheme. The plaintext space of BFV scheme is taken from Rt = Zt/(xN + 1)
which represents polynomials with degree less than N where N is a power of 2, with
the coefficients modulo t. Similarly, the ciphertext is defined in a ring Rq with the
coefficients modulo q. We use symbols� and� to represent homomorphic addition and
homomorphic multiplication, respectively. The BFV scheme consists of the following
algorithms:

CryptoMask: Privacy-Preserving Face Recognition 337

– (pk, sk) ← KeyGen(1λ): On input the security parameter λ, it generates a pair of
keys (pk, sk).

– ct ← Encrypt(pk,m): On input the public key pk and the plaintext m, it outputs
the ciphertext ct.

– m ← Decrypt(sk, ct): On input the secret key sk and the ciphertext ct, it outputs a
plaintext m.

– Eval(cti, ctj): Given two ciphertexts cti and ctj , output a ciphertext corresponding
to the following operation.
– Eval.Add(cti,ctj): Output ct ← cti � ctj .
– Eval.Mul(cti,ctj): Output ct ← cti � ctj .

2.4 Key-Switching

Key-switching enables the data encrypted by one set of encryption keys to be re-
encrypted by another without decrypting the data. BFV scheme [11] naturally supports
the key-switching operation. The key-switching process consists of two algorithms:

– kA→B ← SwKeyGen(skA, skB): On input two BFV secret keys skA, skB , it out-
puts a key-switching key kA→B .

– ctB ← Switching(ctA, kA→B): On input a key-switching key kA→B and a cipher-
text ctA encrypted by a public key pkA associated with skA, it outputs a ciphertext
ctB encrypted by a public key pkB associated with skB .

More details about the key-switching technique can be found in [20].

2.5 Secret Sharing

For an l-bit value x ∈ Z2l , we use 〈x〉A to denote x is arithmetically shared between
parties P0 and P1 where P0 holds xA

0 and P1 holds xA
1 such that x = xA

0 + xA
1 with

xA
0 , x

A
0 ∈ Z2l . Similarly, 〈x〉B denotes a boolean share of x where x = xB

0 ⊕ xB
1 with

xB
0 , x

B
0 ∈ Z2l . Note that each share itself does not reveal any information about x. In

some cases, we need the conversion between different sharing formats. We use the B2A
technique to convert x from its boolean sharing 〈x〉B to its arithmetic sharing 〈x〉A,
which we represent as (xA

0 , xA
1) ← B2A(xB

0 , xB
1). The detailed B2A conversion can be

referred to [8]. If x is a vector, then x = xA
0 + xA

1 means each element in the vector is
additionally shared between two parties. In our design, the cloud server (CS) plays the
role of P0, and the verifier plays the role of P1.

2.6 Secure Comparison

Secure comparison, also known as Millionaire’s problem [38], compares two integers
held by two parties. The inputs contain x from one party and y from another party,
and the output bit 1 or 0 is shared between the two parties. Cryptflow2 [26] proposes
an efficient comparison protocol based on the observation: assume x = x1||x0 and
y = y1||y0, we must have x < y either when x1 = y1 and x0 < y0 or when x1 < y1,
i.e., 1{x < y} = (1{x1 = y1} ∧ 1{x0 < y0}) ⊕ 1{x1 < y1}1. By separating the

1 1{condition} and 0{condition} mean the condition is true and false, respectively.

338 J. Bai et al.

Fig. 1. System model.

binary represented values into small parts, the queried Oblivious Transfer (OT) [18] is
also small, optimizing the communication cost. Recently, Cheetah [17] provides further
optimization by replacing the underlying secure AND implementation with Random
OT (ROT) [18] generated Beaver Triples [2]. For simplicity, we represent secure com-
parison as (b0, b1) ← SClt(x, y) which means one party inputs x and another party
inputs y and outputs b = 1 if x < y and b = 0 otherwise, where b = b0 ⊕ b1. For more
details about the state-of-the-art secure comparison, please refer to [17,26].

3 Overview of Our Approach

This section describes the system model and threat model and overviews CryptoMask.

3.1 System Model

In CryptoMask, we consider the scenario where the database is stored on a cloud server,
and the corresponding face vectors are received from a group of data providers. A veri-
fier wants to check if a given face image matches an image in the database. Our system
consists of four types of entities: a trusted Key Generator (KG) who generates keys
for other entities for privacy-preserving purposes. A group of Data Providers (DPs)
who upload extracted face vectors to a cloud server, a Cloud Server (CS) who stores
the database of face vectors, and a Verifier who checks if a given face vector is in the
database, as shown in Fig. 1.

KG. KG generates a pair of HE public/private keys (pk, sk) and distributes pk to other
entities. KG also generates another pair of public/private keys (pkv, skv) and sends
them to the verifier. When KG receives a “setup” request from the verifier, it computes
a key-switching key ksw based on sk and skv and sends it to CS.

DPs. In our system, DPs can upload images (represented by face vectors) to CS. To
keep their data private, DPs encrypt the face vectors using the public key pk before
uploading them to CS. We call this process enrolment.

CryptoMask: Privacy-Preserving Face Recognition 339

CS. CS stores the encrypted face vectors. It performs face recognition protocol with the
verifier without learning anything about the queried face information or the result.

Verifier. The verifier has a face image and intends to check if the image is in the
database by performing a privacy-preserving face recognition protocol with CS. We
call this process evaluation. It learns the image exists in the database if the check result
is one. For example, a verifier can be a service provider who receives or collects a face
image from a user after the user’s consent. The verifier then wants to check whether the
user is a verified user in order to provide subsequent service.

3.2 Threat Model

Similar to previous work, such as [3] and [9], we assume the CS and the verifier are
honest-but-curious (semi-honest). That is, they will follow the protocol honestly but
may try to infer as much information as possible. We also assume CS and the verifier
will never collude with each other. It is reasonable in practice because CS (e.g., educa-
tion management organization) is motivated to maintain its reputation and is not likely
to take the risk of colluding with the verifier. The KG is a fully trusted party.

3.3 Overview of CryptoMask

Encrypting each face vector with HE and computing the cosine similarity between the
query and each vector in the database is a straightforward but expensive way to perform
face recognition securely. With m face vectors and d features per vector, this method
requires md homomorphic multiplications, which can be significantly time-consuming.
Additionally, this approach poses a privacy risk by leaking sensitive information, such
as the computed distance vectors d. Previous works, such as those proposed in [3,9,
10,24], also suffer from the same issue. To tackle all the issues above, we introduce
CryptoMask. In particular, we design a novel encoding method to enhance performance
and a secure result-revealing protocol to minimize information leakage.

To reduce both the communication and computation overhead, our main idea is to
encrypt face vectors in batches and compute the cosine similarity between the query
and a batch of face vectors, rather than one by one. Specifically, during the enrollment
process, given a batch of face vectors, DP encodes them into one BFV ciphertext cti
and sends it to CS. When the verifier queries for an image, CS performs only one homo-
morphic multiplication between each BFV ciphertext cti and the encrypted query. The
resulting ciphertext contains the cosine similarity between batched face vectors and the
queried face vector. To determine if the queried image matches any image stored in the
CS, the next step is to compare the cosine similarity with the threshold. Directly reveal-
ing the cosine similarity results to the verifier or the CS exposes sensitive information.
For example, they can learn how many face images in the database are similar to the
given one. To avoid such leakage, CryptoMask runs a secure result-revealing protocol
between CS and the verifier, which only reveals whether the queried face image exists
in the database to the verifier.

To further enhance the performance of CryptoMask, we can adopt a paralleling
technique to compute the cosine similarity between the query and batched face vectors.

340 J. Bai et al.

As done in work [3,9], the homomorphic multiplication performed during the evalu-
ation can be processed in parallel with the SIMD technique. However, this technique
requires a prime plaintext modulus [17], implying that the homomorphic encryption
must be performed in Zp with p as prime. In our secure result-revealing protocol, the
secure comparison is a non-linear function, and [26] has shown that OT-based protocols
on the ring Z2l perform 40%-60% better than on the prime field Zp in bandwidth con-
sumption, with almost no cost for modulo reduction. Hence, in this work, rather than
employing SIMD, we opt for the parallelization technique from [17] to compute homo-
morphic multiplication in parallel. This technique enables us to work exclusively in
the ring domain Z2l and brings another efficiency improvement by avoiding expensive
rotation, the key operation for SMID-based work. Furthermore, while [17] necessitates
an extraction algorithm (RLWE-based ciphertext to LWE-based ciphertext) for useful
information extraction from the resulting ciphertext, we avoid it by masking the result-
ing ciphertext and sending it back to the verifier, which is more efficient.

3.4 Data Representation

The coefficients of the BFV plaintext polynomial must be integers. To achieve this, we
need to encode our real-valued representation A ∈ R

m×d as an integer-valued repre-
sentation, which we denote by A ∈ Z

m×d. For the remainder of the paper, we use A
to refer to the matrix where all elements are integers. We scale the real-valued features
into integers using a specified precision. This scaling method results in a loss of preci-
sion during computation. In our experiments, we evaluate the level of precision loss by
setting different precision scales, and report the results in Table 2 in Appendix B.

4 CryptoMask Details

This section describes the enrollment and evaluation processes of CryptoMask in detail.

4.1 Our Encoding Method

BFV scheme [11] is designed to work on a polynomial ring Rt = Zt/(xN + 1) with
degree N . The observation is that the number of slots in a polynomial (e.g., 4096) is
far more than the dimension of a face vector (e.g., d = 128). Thus, we can employ one
polynomial to represent multiple face vectors as done in Cheetah [17]. In our design,
each row in the matrixA represents a face vector. That is, before encrypting and upload-
ing the face vectors to CS, DP encodes them into a matrix A and then transforms it into
the polynomial π(A). Then DP encrypts this polynomial using BFV as cti and sends
it to CS. The verifier encrypts the queried face vector b as ct and sends it to CS. The
cosine similarity is computed by multiplying these two ciphertexts cti and ct, whose
underlying plaintext polynomial is exactly π(d). As mentioned, the plaintext space of
BFV scheme is taken from Rt = Zt/(xN + 1), which means the maximum degree of
a plaintext polynomial is N . The direct method is we fill all the coefficients slots in the
plaintext polynomial when considering encoding our face vectors database. However,
this might result in a loss of valid similarity. The reason is that the valid value in the

CryptoMask: Privacy-Preserving Face Recognition 341

Algorithm 1. Secure enrolment
Input: An indicator ind and the last ciphertext ctla from CS; nu d-dimensional face vectors
V = {a0, · · · ,anu−1} ∈ Z

nu×d and public key pk from DP.
Parameter: δ = �N−d

d
� where N is the plaintext polynomial degree.

Output: CS adds the encrypted face vectors to the database.

1: DP informs CS to add new face vectors. CS sends ind to DP.
2: DP takes δ − ind face vectors and organizes them into a matrix A0 ∈ Z

δ×d by padding ind
zero vectors before these real samples. Then DP represents A0 as π(A0) and gets ct0 ←
Encrypt(pk, π(A0)).

3: DP separates the remaining vectors into eδ vectors and remains f vectors where f < δ and
nu = δ − ind + eδ + f .

4: DP constructs e polynomials π(A1), · · · , π(Ae) using eδ face vectors and performs cti ←
Encrypt(pk, π(Ai)) for each i ∈ [1, e].

5: DP pads δ − f zero vectors to the remaining f vectors and gets π(Ae+1). Then DP encrypts
it as cte+1 ← Encrypt(pk, π(Ae+1)) and sets ind ← δ − f .

6: DP uploads {ct0, · · · , cte+1} and ind to CS.
7: After receiving the ciphertexts, CS first updates ind and saves {ct1, · · · , cte+1}. Then CS

performs ctla ← Eval.Add(ctla, ct0).

product will be dropped (module reduced to a position with a degree less than N) if
its associated degree is greater than N , which means we will get the wrong distance
between the last face vector in the matrix and the queried image. Our idea is to leave
the last d positions in the polynomial π(A) for “buffer” use and set their coefficients
as 0. Thus, all valid values will be presented as coefficients with degrees less than N .
That is, if the degree of a plaintext polynomial is N , we only encode its lower N − d
coefficients and leave the higher d coefficients as zeros. A similar strategy applies to
the queried face vector. Using this encoding method, the concrete number of ciphertext
for m face vectors with dimension d will be � md2

N−d�.

4.2 Enrolment Process

Based on our encoding method, we improve enrollment efficiency by reducing the num-
ber of ciphertexts uploaded by DPs. Specifically, we use one plaintext polynomial with
degree N to represent �N−d

d � face vectors, which results in only one homomorphic
ciphertext. Thus, DP only needs to upload a single homomorphic ciphertext for �N−d

d �
images to CS while the state-of-the-arts [3] and [9] require �N−d

d � and d ciphertext,
respectively. This encoding strategy is also beneficial to CS for saving storage overhead
compared with work [3,9]. The reason is that our designed encoding method allows CS
to merge its last stored ciphertext with a new one that comes from another DP.

The details of the enrollment process are given in Algorithm 1. We suppose CS
already stored some encrypted face vectors under the public key pk and a DP then
wants to add nu d-dimensional face vectorsV = {a0, · · · ,anu−1} to CS. CS maintains
an indicator ind, which tells DP the start vacant position in the last stored ciphertext.
Rather than directly encrypting these vectors and sending them to CS, DP first encodes
the data based on our proposed encoding method and then performs BFV encryption

342 J. Bai et al.

Algorithm 2. Secure distance computation
Input: An encrypted database {ct0, · · · , cts−1}, where each cti is the ciphertext of a δ×dmatrix
A = {a0,a1, · · · ,aδ−1} ∈ Z

δ×d with m = sδ; A queried face vector b ∈ Z

d from verifier.
Parameter: δ = �N−d

d
� where N is the plaintext polynomial degree.

Output: CS gets the secret share dA
0 and the verifier gets the secret share dA

1 where d = dA
0 +dA

1

is an m-length vector of computed distances.

1: The verifier sends a “setup” signal to KG. Then KG generates a key-switching key ksw ←
SwKeyGen(sk, skv) and sends it to CS.

2: The verifier encodes and encrypts b as ct ← Encrypt(pk, π(b)) and sends ct to CS.
3: CS and the verifier generate two empty vectors dA

0 and dA
1 , respectively.

4: for i ∈ [0, s − 1] do
5: CS computes ct′

i ← Eval.Mul(ct, cti).
6: CS randomly generates a plaintext polynomial ri = r0X

0 + · · · + rN−1X
N−1.

7: CS extracts its the (kd − 1)-th coefficients from ri and sets dA
0 [iδ + k − 1] ← −rkd−1

where k ∈ [1, δ].
8: CS computes ct′′

i ← Eval.Add(ri, ct′
i).

9: CS performs c′
i ←Switching(ksw, ct′′

i).
10: end for
11: CS sends {c′

0, · · · , c′
s−1} to the verifier and keeps dA

0 [i] where i ∈ [0, m − 1].
12: for i ∈ [0, s − 1] do
13: The verifier performs pi ←Decrypt(skv, ct′

i) for each i ∈ [0, s−1], where pi = a0X
0+

· · · + aN−1X
N−1.

14: The verifier extracts the (kd − 1)-th coefficients a(kd−1) from polynomial pi and sets
dA
1 [iδ + k − 1] ← akd−1 where k ∈ [1, δ].

15: end for

over the encoded data. When receiving the indicator ind from CS, DP divides its vec-
tors into three parts. The first part contains δ − ind vectors where δ = �N−d

d � rep-
resents the maximum number of face vectors that can be encoded into a polynomial.
Since CS is allowed to merge the last ciphertext with a newly come one, DP orga-
nizes the first δ − ind vectors into a matrix A0 ∈ Z

δ×d by padding ind zero vectors
before these real samples. This matrix is encrypted as ct0. When CS receives ct0, it can
merge it to its last stored ciphertext ctla by simply performing a homomorphic addition
Eval.Add(ctla, ct0). The second part contains eδ vectors, and the last part contains f
vectors where f < δ and nu = δ − ind + eδ + f . DP encrypts matrices A1, · · · ,Ae

in the second part separately using BFV and sends them to CS. Unlike the first part, for
the last part, DP first pads δ − f zero vectors to the remaining vectors, then encrypts it
as cte+1 and sends it to CS. In the last, DP updates the indicator ind = δ − f and sends
it to CS for further use.

4.3 Evaluation Process

The evaluation process happens between a verifier and a CS. Specifically, as shown in
Algorithm 2, given a face vector, the verifier first encodes it into a polynomial. Then
the verifier encrypts the polynomial using the public key pk and sends it to CS. CS
gets a key-switching key ksw from KG after KG receives a “setup” signal from the
verifier. After receiving the encrypted query ct from the verifier, CS first runs local

CryptoMask: Privacy-Preserving Face Recognition 343

Algorithm 3. Secure result-revealing

Input: The secret share of distance vector dA
0 from CS; The secret share of distance vector dA

1

and a threshold ts from verifier.
Output: The verifier learns whether its face image exists in the database.

1: for i ∈ [0, m − 1] do
2: The verifier updates dA

1 [i] ← ts − dA
1 [i].

3: CS and verifier jointly run (bB
0 [i], b

B
1 [i]) ← SClt(d

A
1 [i],d

A
0 [i]).

4: CS and verifier jointly perform (bA
0 [i], b

A
1 [i]) ← B2A(bB

0 [i], b
B
1 [i]).

5: end for
6: CS computes b0 =

∑m−1
i=0 bA

0 [i] and verifier computes b1 =
∑m−1

i=0 bA
1 [i].

7: CS and verifier jointly perform (μ0, μ1) ← SClt(−b0, b1).
8: CS sends μ0 to the verifier. The verifier computes μ ← μ0 ⊕ μ1 and learns its face image is

in the database by μ = 1. Otherwise, it learns its face image is not in the database by μ = 0.

homomorphic multiplication between each ciphertext cti stored in CS and ct, where
i ∈ [0, s−1]. Rather than directly sending the computed results to the verifier, CS masks
each of them using a randomly selected plaintext polynomial ri. CS can easily extract
the (kd−1)-th coefficients rkd−1 from ri where k ∈ [1, δ] and keeps its additive inverse
into dA

0 [iδ + k − 1], which is one of the secret parts of computed distances. To enable
the verifier to perform decryption by itself, CS transfers each ciphertext encrypted by
pk to pkv by a key-switching technique before sending them to the verifier. With the
masked distances, CS does not require performing RLWE to LWE extraction func-
tion, a key design in [17]. The extraction function is considered time-consuming as it
is performed over homomorphic ciphertext [5]. In our design, the verifier can extract
the coefficients by itself after decrypting the RLWE ciphertext. Doing this saves the
homomorphic extraction overhead on the CS side. Besides, we also reduce the required
communication for �N−d

d � face vectors from �N−d
d �(N +1)q to 2Nq where q denotes

the ciphertext coefficients modulo. After decrypting all the received ciphertext, the ver-
ifier similarly extracts coefficients from obtained polynomial and saves them into dA

1 ,
which is another part of secret-shared computed distances.

Then CS runs a secure result-revealing protocol with the verifier as shown in Algo-
rithm 3. For each shared distance, CS and the verifier jointly run a secure comparison to
compute dA

1 [i] < dA
0 [i], where d

A
1 [i] ← ts−dA

1 [i] is from the verifier and dA
0 [i] is from

CS. Clearly, the result represents the less than comparison between the given threshold
ts and the distance d[i]. However, the comparison result is in binary format, so we
cannot directly aggregate all results. Thus, we need a B2A conversion (bA

0 [i], b
A
1 [i]) ←

B2A(bB
0 [i], b

B
1 [i]). After that, CS can compute b0 =

∑m−1
i=0 bA

0 [i] and the verifier com-
putes b1 =

∑m−1
i=0 bA

1 [i]. To obtain the queried result, CS and verifier jointly perform
(μ0, μ1) ← SClt(−b0, b1) and CS sends μ0 to the verifier. In the end, the verifier learns
whether the queried face image exists in the database by computing μ ← μ0 ⊕ μ1.

4.4 Security Analysis

The security of CryptoMask follows from the semantic security of HE and the security
of MPC. The complexity and security analysis can be found in Appendix A.

344 J. Bai et al.

4.5 Optimizations

We present some optimizations to improve the efficiency of CryptoMask.

Reducing Computation Overhead. In Algorithm 2, CS should run a key-switching
before sending the masked distance ciphertext to the verifier, which is time-consuming.
We can put this key-switching when the verifier first sets up. Rather than sending the
face vector encrypted by pk, the verifier encrypts it using its public key pkv . Then all
computations in CS are over the encrypted data over pkv . However, this is a trade-off
since it will save computation overhead but increase CS’s storage.

Reducing Communication Overhead. We employ the ciphertext compression tech-
nique from SEAL library [30], compressing the original ciphertext into around two-
thirds of the original size. Notably, this ciphertext compression can only be used for
data to be decrypted because it will cause a decryption error if the data is computed over
compressed ciphertext. Clearly, CryptoMask can benefit from the compression tech-
nique. Another ciphertext size reduction of CryptoMask is gained from Cheetah [17].
The observation is that CS only needs to send high-end bits of two parts of ciphertext to
the verifier. In this way, we save around 16% − 25% communication with a negligible
decryption failing chance (i.e., < 2−38). For a more detailed analysis, see [17].

5 Performance Evaluation

We implemented a prototype of CryptoMask on top of Cheetah [17] and evaluated its
performance with different datasets. In this section, we present our experimental results.

Experimental Setup. The experiment runs on a laptop running Centos 7.9 equipped
with Xeon(R) Gold 6240 2.6 GHZ CPU with 32 GB RAM. The network setting is LAN
with RTT 0.1 ms and bandwidth 1 Gbps. We run all the experiments in a single-threaded
environment. We set the BFV parameter N as 4096, t as 20 bits, and q as 60 + 49 bits.
The security level λ is set as 128 bits. We also evaluated the performance of the existing
works [3] and [9] in the same environment with the same values for parameters. We
compared their results with CryptoMask. The time we report is averaged over ten trials.

Datasets. Similar to [3] and [9], we evaluate the performance of CryptoMask with
datasets that have different numbers of face images and dimensions. To show how
the accuracy is influenced by precision scaling, as done in [3], we use a real dataset
LFW [15] for the evaluation, which can be obtained from [16]. Specifically, LFW con-
sists of 13,233 face images of 5,749 subjects. As done in [3] and [9], We utilize the
state-of-the-art face representation FaceNet [29] to extract face vectors.

5.1 Efficiency

Following the same dataset construction from [9], we evaluate CryptoMask on four
representations at different dimensions (32-D, 64-D, 128-D, and 512-D). Figure 2 and
Fig. 3 separately report the concrete computation and communication overhead with
dataset sizes varying from 1 to 100 million. In the following, for simplicity, we use
SFM to name the work in [3] and use HERS to name the work in [9].

CryptoMask: Privacy-Preserving Face Recognition 345

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

Database Size

R
u
n
n
in
g
T
im

e
(s
)

SFM

HERS

CryptoMask-W

CryptoMask-WO

(a) 32-D Representation

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

Database Size

R
u
n
n
in
g
T
im

e
(s
)

SFM

HERS

CryptoMask-W

CryptoMask-WO

(b) 64-D Representation

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

Database Size

R
u
n
n
in
g
T
im

e
(s
)

SFM

HERS

CryptoMask-W

CryptoMask-WO

(c) 128-D Representation

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

Database Size

R
u
n
n
in
g
T
im

e
(s
)

SFM

HERS

CryptoMask-W

CryptoMask-WO

(d) 512-D Representation

Fig. 2. Performance of evaluation process.

Computation Overhead. We report two computation overhead lines of CryptoMask
in Fig. 2 where CryptoMask-W denotes we fully implement CryptoMask while
CryptoMask-WO represents the version without the secure result-revealing protocol. In
particular, CryptoMask-WO, SFM, and HERS have comparable information leakage,
where they all leak the computed similarity to the verifier.

From Fig. 2 we can see both CryptoMask-W and CryptoMask-WO outperform SFM
in the four dimensions settings. The reason is the primary computation overhead in
secure face recognition is caused by the homomorphic multiplication, which is m times
in [3] while it is � m

N−d�d times in CryptoMask. Compared with HERS, CryptoMask-
WO shows the same tendency but enjoys less computation overhead. The main rea-
son is we provide optimizations for computation. As for CryptoMask-W, the required
computation overhead is near to HERS but achieves better security by concealing the
similarity between face vectors from the verifier. CryptoMask is sensitive to the fea-
ture dimension, and the running time gap between SFM and CryptoMask-W drops with
the increase of the dimension. For example, when working on 32-D, CryptoMask-W
outperforms SFM by 283× against a gallery of 100 million. When working on 512-D,
CryptoMask-W only saves around 132× computation than SFM, yet CryptoMask still
shows its high efficiency for the large-scale dataset. Even when compared with similar
work HERS, CryptoMask-W lies between CryptoMask-WO and HERS, indicating that
it enjoys a better computation overhead while ensuring database security.

Communication. Fig. 3 details the communication consumption of CryptoMask-W,
SFM and HERS. It shows that CryptoMask-W requires the least communication
resource than the other two. The main reason comes from the given communication
optimizations mentioned in Sect. 4.5.

346 J. Bai et al.

100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

Database Size

C
o
m
m
u
n
ic
at
io
n
C
o
st
(M

B
)

SFM

HERS

CryptoMask-W

(a) 32-D Representation

100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

Database Size

C
o
m
m
u
n
ic
at
io
n
C
o
st
(M

B
)

SFM

HERS

CryptoMask-W

(b) 64-D Representation

100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

Database Size

C
o
m
m
u
n
ic
at
io
n
C
o
st
(M

B
)

SFM

HERS

CryptoMask-W

(c) 128-D Representation

100 101 102 103 104 105 106

10−1

100

101

102

103

104

105

Database Size

C
o
m
m
u
n
ic
at
io
n
C
o
st
(M

B
)

SFM

HERS

CryptoMask-W

(d) 512-D Representation

Fig. 3. Communication overhead comparison of our protocol with SFM and HERS.

6 Conclusion

We introduce CryptoMask, a practical privacy-preserving face recognition protocol that
leverages homomorphic encryption and secure multi-party computation techniques.
Our encoding strategy facilitates an efficient enrollment process, enabling DP to add
more face vectors to CS. We construct an efficient matrix computation for distance
calculation, based on our encoding method. Unlike existing state-of-the-art techniques
that reveal the computed distance to the verifier, we protect intermediate results using a
secure result-revealing protocol. Our experiments show that CryptoMask outperforms
existing approaches in both computation and communication.

Acknowledgment. We thank the anonymous reviewers for their insightful comments and sug-
gestions. Bai and Russello would like to acknowledge the MBIE-funded programme STRATUS
(UOWX1503) for its support and inspiration for this research.

A Complexity and Security Analysis

We first provide a theoretical complexity analysis to show the efficiency of CryptoMask.
Then we show that CryptoMask is secure against a semi-honest adversary while assum-
ing KG is fully trusted.

CryptoMask: Privacy-Preserving Face Recognition 347

A.1 Complexity Analysis

In CryptoMask, communication overhead mainly comes from two parts. One is from
CS, who sends all the encrypted distances to the verifier, which contains O(Nm/d)
communication cost. Another one is the result of the secure revealing process, which
requires O(ml) communication. We can obtain the overall communication complexity
as O(Nm/d + ml). The computation overhead is more complex. We set the compu-
tation for data encryption using HE as Cen, for homomorphic multiplication as Cmul,
for homomorphic addition as Cadd, for key switching as Csw, for secure comparison as
Ccom and for secure B2A as Ccov. The overall computation overhead for the CS side
is O((Nm/d)(Ccom + Cadd + Csw) + m(Ccom + Ccov)) and for the verifier side is
O(Cen + m(Ccom + Ccov)).

A.2 Security Analysis

Privacy of Face Vector Matrix. In CryptoMask, all face vectors are encrypted by HE,
and only the KG knows the secret key. Due to the semantic security of HE, neither CS
nor the verifier learns sensitive information about the underlying encrypted face vector;
thus, the privacy of the face vector is always maintained.

Now we show CryptoMask only reveals a face recognition result to the verifier and
nothing else to either party. This is argued as regards to a corrupted CS and a corrupted
verifier, respectively. Note we only provide the security of the HE-based part as the
simulation of the comparison/B2A protocols can be implemented in the existing ways.

Corrupted CS.We first demonstrate the security against a semi-honest CS. Intuitively,
the security against a semi-honest CS comes from the fact that the CS’s view of the
execution includes only ciphertext, thus reducing the argument to the semantic security
of HE. We now give the formal argument.

Let A be the semi-honest CS in the real protocol. We construct a simulator S in the
ideal world as follows:

1. At the beginning of the protocol execution, S receives the input A from the environ-
ment E and also receives the public key pk and the vector length d. The simulator
sends A to the trusted party.

2. Start running A on input A. Next, S computes and sends a ciphertext ct, which
encrypts a d dimensional vector 0 to the CS under the public key pk.

3. Output whatever A outputs.

We argue the above simulated view is indistinguishable from real protocol execution.
Using the fact that A is semi-honest, at the end of the protocol in the real world, the
verifier obtains the encryption of A · b where b is the verifier’s queried face image.
Since S is semi-honest, this also holds in the ideal world. Since A · b is a deterministic
function, the joint distribution of the verifier’s output and the adversary’s output decom-
poses. Thus, it is sufficient to show that the simulated view from S is computationally
indistinguishable from the real view from A.

The view of A in the real world contains one part: the encrypted face image ct from
the verifier. When interacting with the simulator S, adversary A sees an encryption of
0. Security follows immediately by the semantic security of the BFV scheme.

348 J. Bai et al.

Corrupted Verifier.We now prove the security against a semi-honest verifier. We con-
struct a simulator S in the ideal world as follows:

1. At the beginning of the execution, S receives the input b from the environment E
and also receives the BFV key pairs (pk, sk) and the matrix size m, d. The simulator
sends b to the trusted party.

2. Start running A on input b. Next, S computes and sends ciphertexts ci which is the
encryption of an m×d matrix filled by some random values to the verifier under the
public key pkv .

3. Output whatever A outputs.

At the end of face recognition, CS has no output. Thus, to show the security against a
semi-honest verifier, it suffices to show that the output of S is computationally indistin-
guishable from the output of the adversary A. Now we show the view of simulator S in
the ideal world is computationally indistinguishable from the view of the adversary A
in the real world.

The view of A in the real world contains one part: the encrypted face database
{c1, · · · , cn} from CS. When interacting with the simulator S, adversary A sees the
encryption of random values. Security follows immediately by the semantic security of
the BFV scheme.

B Accuracy

We report the results of face recognition on dataset LFW for state-of-the-art face repre-
sentation FaceNet in Table 2. We only test face templates of 128-D. For more results on
different representations, we refer to [3], which is also constructed on BFV. Same as [3],
we report true acceptance rate (TAR) at three different operating points of 0.01%, 0.1%
and 1.0% false accept rates (FARs). We first report the performance of the unencrypted
face images. We treat these outputs as a baseline to compare. To evaluate encrypted
face images, we consider four different quantization for each element in facial features.
Specifically, we employ precision of 0.1, 0.01, 0.0025 and 0.0001. It shows that the per-
formance of most given precision is competitive with the performance conducted from
the raw data. We conclude that CryptoMask working over HE and MPC can perform as
well as the one working over raw data.

Table 2. Face recognition accuracy for LWF dataset (TAR @ FAR in %)

Method 128-D FaceNet (Accuracy)

0.01% 0.1% 1%

No FHE 98.70 98.70 98.70

FHE(1.0 × 10−4) 98.70 98.70 98.70

FHE(2.5 × 10−3) 98.70 98.70 98.70

FHE(1.0 × 10−2) 98.76 98.76 98.76

FHE(1.0 × 10−1) 98.50 98.50 98.50

CryptoMask: Privacy-Preserving Face Recognition 349

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. (Csur) 51(4), 1–35 (2018)

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-46766-1 34

3. Boddeti, V.N.: Secure face matching using fully homomorphic encryption. In: 2018 IEEE
9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp.
1–10. IEEE (2018)

4. Bowyer, K.W.: Face recognition technology: security versus privacy. IEEE Technol. Soc.
Mag. 23(1), 9–19 (2004)

5. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between (Ring)
LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp.
460–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3 18

6. Cherepanova, V., et al.: Lowkey: leveraging adversarial attacks to protect social media users
from facial recognition. arXiv preprint arXiv:2101.07922 (2021)

7. Danielsson, P.E.: Euclidean distance mapping. Comput. Gr. Image Process. 14(3), 227–248
(1980)

8. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-protocol
secure two-party computation. In: NDSS (2015)

9. Engelsma, J.J., Jain, A.K., Boddeti, V.N.: Hers: Homomorphically encrypted representation
search. IEEE Trans. Biom. Behav. Identity Sci. (2022). https://github.com/human-analysis/
secure-face-matching

10. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-
preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol.
5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-
7 14

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive (2012)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-
First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

13. Haigh, T.: The chromium-plated tabulator: institutionalizing an electronic revolution, 1954–
1958. IEEE Ann. History Comput. 23(4), 75–104 (2001)

14. Hu, S., Li, M., Wang, Q., Chow, S.S., Du, M.: Outsourced biometric identification with
privacy. IEEE Trans. Inf. Forensics Secur. 13(10), 2448–2463 (2018)

15. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database
for studying face recognition in unconstrained environments. In: Workshop on faces in Real-
Life Images: Detection, Alignment, and Recognition (2008)

16. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database
for studying face recognition in unconstrained environments. Technical report 07–49, Uni-
versity of Massachusetts, Amherst, October 2007

17. Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: lean and fast secure two-party deep neu-
ral network inference. IACR Cryptol. ePrint Arch. 2022, 207 (2022). https://github.com/
Alibaba-Gemini-Lab/OpenCheetah

18. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 9

19. Jin, Z., Hwang, J.Y., Lai, Y.L., Kim, S., Teoh, A.B.J.: Ranking-based locality sensitive
hashing-enabled cancelable biometrics: index-of-max hashing. IEEE Trans. Inf. Forensics
Secur. 13(2), 393–407 (2017)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-78372-3_18
http://arxiv.org/abs/2101.07922
https://github.com/human-analysis/secure-face-matching
https://github.com/human-analysis/secure-face-matching
https://doi.org/10.1007/978-3-642-03168-7_14
https://doi.org/10.1007/978-3-642-03168-7_14
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://doi.org/10.1007/978-3-540-45146-4_9

350 J. Bai et al.

20. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite
fields. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 608–
639. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4 21

21. Lee, Y.J., Park, K.R., Lee, S.J., Bae, K., Kim, J.: A new method for generating an invariant
iris private key based on the fuzzy vault system. IEEE Trans. Syst. Man Cybern. Part B
(Cybernetics) 38(5), 1302–1313 (2008)

22. Parmar, D.N., Mehta, B.B.: Face recognition methods & applications. arXiv preprint
arXiv:1403.0485 (2014)

23. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Pro-
cess. Mag. 32(5), 54–65 (2015)

24. Pradel, G., Mitchell, C.: Privacy-preserving biometric matching using homomorphic encryp-
tion. In: 2021 IEEE 20th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pp. 494–505. IEEE (2021)

25. Rao, Y.S., Sukonkina, Y., Bhagwati, C., Singh, U.K.: Fingerprint based authentication appli-
cation using visual cryptography methods (improved id card). In: TENCON 2008–2008
IEEE Region 10 Conference, pp. 1–5. IEEE (2008)

26. Rathee, D., et al.: Cryptflow2: practical 2-party secure inference. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 325–342 (2020)

27. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

28. Ross, A., Othman, A.: Visual cryptography for biometric privacy. IEEE Trans. Inf. Forensics
Secur. 6(1), 70–81 (2010)

29. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition
and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 815–823 (2015)

30. Microsoft SEAL (release 3.7), September 2021, Microsoft Research, Redmond, WA. https://
github.com/Microsoft/SEAL

31. Shashank, J., Kowshik, P., Srinathan, K., Jawahar, C.: Private content based image retrieval.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE
(2008)

32. Singhal, A., et al.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.
24(4), 35–43 (2001)

33. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1),
57–81 (2014)

34. Troncoso-Pastoriza, J.R., González-Jiménez, D., Pérez-González, F.: Fully private noninter-
active face verification. IEEE Trans. Inf. Forensics Secur. 8(7), 1101–1114 (2013)

35. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T., Jain,
A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg
(2005). https://doi.org/10.1007/11527923 32

36. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient biometric verifica-
tion in encrypted domain. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558,
pp. 899–908. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3 91

37. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.: Efficient privacy preserving
video surveillance. In: 2009 IEEE 12th International Conference on Computer Vision, pp.
1639–1646. IEEE (2009)

38. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foun-
dations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-030-92078-4_21
http://arxiv.org/abs/1403.0485
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/11527923_32
https://doi.org/10.1007/978-3-642-01793-3_91

Efficient Private Multiset ID Protocols

Cong Zhang1,2, Weiran Liu3, Bolin Ding3, and Dongdai Lin1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{zhangcong,ddlin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Alibaba Group,
Hangzhou, China

{weiran.lwr,bolin.ding}@alibaba-inc.com

Abstract. Private-ID (PID) protocol enables two parties, each holding
a private set of items, to privately compute a set of random universal
identifiers (UID) corresponding to the records in the union of their sets,
where each party additionally learns which UIDs correspond to which
items in its set but not if they belong to the intersection or not. PID is
very useful in the privacy computation of databases query, e.g. inner join
and join for compute. Known PID protocols all assume the input of both
parties is a set. In the case of join, a more common scenario is that one
party’s primary key (unique) needs to join the other party’s foreign key
(duplicate). How to construct an efficient Private Multiset ID (PMID)
protocol to support the above key-foreign key join remains open.

We resolve this problem by constructing efficient PMID protocols from
Oblivious PRF, Private Set Union, and a newly introduced primitive
called Deterministic-Value Oblivious Programmable PRF (dv-OPPRF).
We also propose some PMID applications, including Private Inner Join,
Private Full Join, and Private Join for Compute.

We implement our PMID protocols and state-of-the-art PID protocols
as performance baselines. The experiments show that the performances
of our PMID are almost the same as the state-of-the-art PIDs when
we set the multiplicity Ux = Uy = 1. Our PMID protocols scale well
when either Ux > 1 or Uy > 1. The performances also correctly reflect
excessive data expansion when both Ux, Uy > 1 for the more general
cross join case.

1 Introduction

1.1 Motivation

A large number of services today collect valuable but sensitive data from the
same group of users. These services could benefit from pooling their data together
and jointly performing analytical tasks (e.g., filtering and aggregation) on the
aligned data. For example, consider two parties Alice and Bob: Alice owns users’
profile data where each record has four attributes (user id, user name, age, sex),
and Bob collects users’ transaction data with each record as (user id, prod id,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 351–369, 2023.
https://doi.org/10.1007/978-981-99-7356-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_21&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_21

352 C. Zhang et al.

prod name, price). The identifier of a user, i.e., user id, could be the username,
e-mail address, or telephone number. The two parties want to, e.g., securely
align their records on user id (concatenating the records with matching user id,
one from each party), filter aligned records on age, and aggregate price, without
exposing the identifiers and the values of records. Such alignment is called the
join of two tables A and B in databases.

One way to realize the above functionalities is to use Private Set Operation
(PSO) protocols. For example, Private Set Intersection (PSI) [6,10,18,24,29,33]
offers a way to inner join two datasets and learn the intersection membership
without revealing anything outside the intersection; Private Set Union (PSU)
[7,11,22,23,26] could be used to compute full join of two datasets privately.
To compute on the join result, Private Set Intersection Cardinality/Sum (PSI-
CA/PSI-Sum) [19,20] focus on computing the cardinality or linear functions of
the intersection. Circuit-PSI/PSU [4,16,17], on the other hand, support any
function computation on the intersection/union, since it outputs the secret
shared result of intersection/union. Though circuit-PSI/PSU is more powerful
than PSI/PSU, it is less efficient due to the use of the general MPC technique.

Private-ID (PID) protocol [5,12] enables two parties, each holding a private
set of items, to privately compute a set of random universal identifiers (UID) cor-
responding to the records in the union of their sets, where each party additionally
learns which UIDs correspond to which items in its set but not if they belong to
the intersection or not. Private-ID provides a unified method to construct the
above PSO protocols. The main use of PID is to realize data alignment, that is,
both parties can sort their private data according to these universal identifiers.
They can then proceed item-by-item, doing any desired private computation. As
a result, we can easily construct the above different PSO protocols from PID.

However, the existing PID protocols [5,12] require that the inputs of both
parties are a set, that is, the elements cannot be duplicated. The reason is that
the way they generated UID only supports distinct elements. This requirement
restricts the existing PID protocols from being applied to perform a wide range
of analytical tasks with joins. In most analytical workloads, such as the decision
support benchmark TPC-DS [35], the majority of joins are key-foreign key joins
which correspond to one-to-many relationship between records from the two
tables. In such joins, one party or table’s primary key (an attribute with unique
values in different records) needs to match the other’s foreign key (with possibly
duplicated values).

Here, user id is the primary key of table A as each user’s profile corresponds
to exactly one record; user id in table B is a foreign key and may have duplicated
values as one user can buy multiple products. The two parties want to privately
compute the average price in transactions from users with ages older than 30:

SELECT AVG(B.price) FROM A INNER JOIN B
ON A.user id = B.user id WHERE A.age > 30

Note that such joint and private analytical tasks cannot be supported by the
existing PID protocols [5,12], because the identifiers on both sides need to be
unique. There are some works to support these private queries [2,3,34]. However,

Efficient Private Multiset ID Protocols 353

all these works are implemented on the circuit using the general MPC technique,
e.g. Yao’s garbled circuit [38], GMW [15] etc., which makes it very inefficient.

For the general many-to-many relationship, the matched values will generate
the Cartesian product of the two datasets (also known as cross join)1. All the
above applications require generating multiple UIDs for duplicated values. We
have the following questions:

Can we construct an efficient PID protocol that supports multiset as input?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the semi-honest setting.
Our contribution can be summarized as follows:

– Efficient PMID constructions. We introduce the notion of private multi-
set ID (PMID) protocol which supports the input of both parties to be mul-
tiset. We propose two PMID constructions: the first one is based on sloppy
OPRF [12], which has a faster running-time; the second one is based on multi-
point OPRF [6], which has a lower communication. The two protocols could
be viewed as a trade-off between computation and communication.

– Deterministic-Value Programmable PRF. To construct efficient
PMIDs, we propose a new variant of Programmable PRF [25] called
Deterministic-Value Programmable PRF (dv-PPRF), and its correspond-
ing protocol called Deterministic-Value Oblivious PPRF (dv-OPPRF). The
deterministic-value property helps programming (probably duplicate) multi-
plicity for each element in the multiset(s). With the help of dv-OPPRF, we
obtain desired PMIDs by extending the PIDs based on OPRF and PSU [12].

– Implementations. We implement our PMID protocols and state-of-the-
art PID protocols as performance baselines. The experiments show that our
PMID performances are almost the same as their underlying PID counter-
parts [12] when we set the multiplicity Ux = Uy = 1. Our PMIDs scale well
when either Ux > 1 or Uy > 1, and the performance results also reflect
excessive data expansion when both Ux, Uy > 1 for the more general cross
join case. Our implementations have been open-sourced and freely available
under public requests.

1.3 Overview of Our Techniques

We provide the high-level technical overview for our PMID constructions. We
assume that party Alice and Bob have multisets X and Y , respectively.

Our starting point is the PID protocols of [12]. Their main idea is as follows,
the parties execute two Oblivious Pseudo-Random Function (OPRF) instances
symmetrically. In the first instance, Alice learns kA and Bob learns FkA

(yi)

1 In real scenarios, most join operations are one-to-many relationship, and the many-
to-many relationship is usually considered to be avoided due to excessive data expan-
sion. For completeness, we also consider such a general case in this paper.

354 C. Zhang et al.

for each of his items yi; in the second instance, Bob learns kB and Alice learns
FkB

(xi) for each of her items xi. The UIDs is defined as id(x) := FkA
(x)⊕FkB

(x).
The parties compute the UIDs of the elements in their set and finally they execute
a PSU protocol to obtain the whole UID set. For better efficiency, [12] further
introduces a “sloppy OPRF” technique to generate UIDs. Roughly speaking, the
sender inputs a set X and learns a key k, the receiver inputs a set Y and learns
values {zi}i∈[n]. For every yi ∈ Y , if yi ∈ X, then zi = Fk(yi), but such equality
does not hold for other zi. They use efficient batch single-point OPRF [24] to
construct sloppy OPRF, see Sect. 4.1 for more details.

To generate multiple UIDs for duplicated elements, a natural idea is to
lengthen the original UID with Pseudo-Random Generator (PRG) and take
the output of PRG as the new UID. However, this method meets difficulties
in security proof , that is, the simulator could only simulates the outputs of
PRG instead of its inputs, since PRG is one-way. To solve this problem, our idea
is to use a programmable Random Oracle (RO) to institute the PRG, and the
simulator could program the output of RO to real UIDs.

We also note that there is an important difference between PMID and PID:
for an intersection element x, if its multiplicity in Alice’s set is u1 and its mul-
tiplicity in Bob’s set is u2, then x meets the general cross join case and both
parties will obtain u1u2 UIDs. If u2 (resp. u1) >1, Alice (resp. Bob) will know
that x is in the intersection and its multiplicity in Bob (resp. Alice)’s set. This
leakage is implicit in the PMID definition2 and cannot be avoided. To conclude,
the security of PMID is guaranteed in two aspects: on the one hand, one party
cannot distinguish the elements of its own set from the elements which the other
party’s multiplicity is 1 in the intersection; on the other hand, both parties
cannot learn the multiplicity of elements outside their set.

To tell each other the multiplicity of intersection elements, our idea is to let
both parties use an Oblivious Key-Value Store (OKVS) [13] to encode the multi-
plicity of their elements. However, if we use OKVS to encode multiplicity directly,
both parties could use this OKVS to test any element’s multiplicity, which makes
the protocol insecure. Due to the above problem of OKVS, we consider using
Oblivious Programmable PRF (OPPRF) [25] to program the multiplicity. The
main difference between OKVS and OPPRF is that OPPRF actively enforces
the receiver to evaluate the function on a limited number of queries. However,
we find the security of underlining programmable PRF (PPRF) is overkill for
our construction because the security requires the values programmed by PPRF
are all randomly selected. In our construction, these values are multiplicity of
both parties’ input, which is deterministic. As a result, we propose a weaker
variant of PPRF, which we called deterministic-value programmable PRF (dv-
PPRF). Roughly, the dv-PPRF program some deterministic values in PPRF
and the adversary will learn these values, what we need is the queries out-
side of these deterministic values are pseudorandom. Furthermore, we room in
the construction of dv-PPRF, and we find this new notion comes from a new
property of OKVS, which we called partial obliviousness, see Section 2.2 for

2 The definition of our PMID naturally comes from the rules of join operation.

Efficient Private Multiset ID Protocols 355

details. After defining dv-PPRF, we naturally extend this primitive to the pro-
tocol called deterministic-value oblivious programmable PRF (dv-OPPRF) as
[25]. See Sect. 3 for more technical details. We note that we take the first step to
explore the possibility that using PPRF to program non-random values, since
the security property [25] requires the values should be randomly selected.

For those single elements in the multiset, i.e. the multiplicity is 1, if we pro-
gram 1 directly in OPPRF, the parties can distinguish these elements from their
own elements because OPPRF will output a random number in their elements
by the randomness of PRF. Thus we also let both parties program random values
for those single elements, resulting in they cannot distinguish them.

Putting all the pieces together, we can build PMID protocol from OPRF, dv-
OPPRF, and PSU functionality in a modular way. (See Sect. 4 for the technical
details). With the help of PMID, we can compute the example query shown in
Sect. 1.1 as follows. First, both parties run PMID to compute the set of UID
corresponding to the records in the union of Alice’s set and Bob’s multisets,
where each party learns which UIDs correspond to which items. Then, both
parties extend their dataset to have an UID column and sort the dataset by UID.
In this way, datasets from both parties are aligned using UID without leaking
the intersection. The attributes for UIDs that do not match any records are set
as null. Finally, two parties run the desired computation under any general MPC
protocol to obtain the query result.

2 Preliminaries

Full Version of this Paper. Due to space constraints, we defer details like
instantiation details, omitted proofs, omitted protocols, implementation details
and supplementary experiments to the full version of this paper [39].

Notation. We use κ and λ to denote the computational and statistical security
parameters, respectively. We use [n] to denote the set {1, 2, . . . , n} and [m,n] to
denote the set {m,m+1, . . . , n}. We use a set of key-value pairs to represent mul-
tiset, e.g. Y = {(y1, u1)} denotes a multiset in which the multiplicity of element
y1 is u1. We use the abbreviation PPT to denote probabilistic polynomial-time.
We denote a

R←− A that a is randomly selected from the set A, and a := b that
a is assigned by b.

2.1 Security Model

This work operates in the semi-honest model. We use the standard security defi-
nition for two-party computation [14] in this work. We give the formal definition
in the full version for completeness.

2.2 Building Blocks

We briefly review the main cryptographic tools including oblivious transfer,
oblivious PRF, cuckoo hashing, oblivious key-value store, and private set union.

356 C. Zhang et al.

Oblivious Transfer. Oblivious Transfer (OT) [36] is an important crypto-
graphic primitive used in various multiparty computation protocols. In the ideal
functionality of 1-out-of-2 OT Fot, the sender S inputs two messages (x0, x1)
while the receiver R inputs a bit b ∈ {0, 1}. As a result, the sender learns noth-
ing and the receiver learns xb.

Oblivious PRF. An OPRF [9] allows the receiver to input x and learn Fk(x),
where F is a PRF, and k is known to the sender. In this work, we use two variant
of OPRF, namely, batch single-point OPRF [24] and multi-point OPRF [6,29,
37]. In the batch single-point OPRF functionality Fbsp-oprf , the sender learns a
set of PRF keys {ki}i∈[n]

3 and the receiver learns PRF values {Fki
(xi)}i∈[n] on

its inputs {xi}i∈[n]. In the multi-point OPRF functionality Fmp-oprf , the sender
learns a PRF key k and the receiver learns PRF values {Fk(xi)}i∈[n] on its inputs
{xi}i∈[n].

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh and Rodler in [28].
In this hashing scheme, there are α hash functions h1, . . . , hα used to map n
items into ρ = εn bins and a stash, and we denote the i-th bin as Bi. The Cuckoo
hashing can guarantee that there is only one item in each bin. There are many
private set operation protocols [12,24,31–33] use cuckoo hash to reduce their
cost. We use the notation B ← Cuckooρ

h1,...,hα
(X) to denote hashing the items of

X into ρ bins using Cuckoo hashing on hash functions h1, . . . , hα : {0, 1}∗ → [ρ].
Some positions of B will not matter, corresponding to empty bins.

Oblivious Key-Value Store. A key-value store (KVS) [13,30] is simply a
data structure that maps a set of keys to corresponding values. A KVS scheme
consists of two algorithms (EncodeH ,DecodeH) and a set of random hash func-
tion H. The EncodeH algorithm inputs a set of key-value pairs {(xi, yi)}i∈[n]

and outputs a data structure D. The DecodeH algorithm inputs the data
structure D and a key x, outputs a value y. The correctness means for any
i ∈ [n],EncodeH({(xi, yi)}i∈[n]) = D, we have DecodeH(D,xi) = yi. The oblivi-
ousness property says that if the values are selected randomly, then the distri-
bution of D is independent from key’s set. A KVS scheme is an oblivious KVS
(OKVS) if it satisfies the obliviousness property.

In our application, we instead require OKVS to satisfy the following partial
obliviousness property since our application will always leak some values.

Definition 1 (Partial Obliviousness). For t ∈ [n], and some fixed key-value
pairs {(xi, yi)}i∈[t], for all distinct {x0

t+1, . . . , x
0
n} and all distinct {x1

t+1, . . . , x
1
n},

if EncodeH does not output ⊥, then the following distributions are computation-
ally indistinguishable:

{D|yi
R←− V, i ∈ [t + 1, n],EncodeH((x1, y1), . . . , (xt, yt), (x

0
t+1, yt+1), . . . , (x

0
n, yn))}

{D|yi
R←− V, i ∈ [t + 1, n],EncodeH((x1, y1), . . . , (xt, yt), (x

1
t+1, yt+1), . . . , (x

1
n, yn))}

3 In fact, the protocol in [24] realizes OPRF instances where the keys ki are related
in some sense. However, the PRF that it instantiates has all the expected security
properties, even in the presence of such related keys. For the sake of simplicity, we
ignore this issue in our notation. See [24] for more details.

Efficient Private Multiset ID Protocols 357

Common OKVS candidates include polynomial, Garbled Bloom Filter (GBF)
[8] and Garbled Cuckoo Table (GCT) [13,30,37] etc., which are linear OKVS
schemes. We give the definition of linear OKVS and prove it to satisfy the partial
obliviousness in Appendix A.

Private Set Union. PSU is a special case of secure two-party computation. In
the ideal functionality of PSU Fpsu, the sender S and the receiver R inputs a set
X and Y respectively, as a result, the receiver learns the union X ∪ Y .

3 Deterministic-Value (Oblivious) Programmable PRF

3.1 Definitions

Programmable PRF (PPRF) [25] is a special PRF with the additional prop-
erty that on a certain “programmed” set of inputs the function outputs “pro-
grammed” values. A programmable PRF consists of the following algorithms:

– KeyGen(1κ,P) → (k, hint): Given a security parameter and set of points P =
{(x1, y1), . . . , (xn, yn)} with distinct xi-values, generates a PRF key k and
(public) auxiliary information hint.

– F (k, hint, x) → y: Evaluates the PRF on input x, giving output y.

A programmable PRF satisfies correctness if (x, y) ∈ P, and (k, hint) ←
KeyGen(1κ,P), then F (k, hint, x) = y. The security requires that it is hard to
tell what the set of programmed points was, given the hint and μ outputs of
the PRF, if the points were programmed to random outputs. This implies that
unprogrammed PRF outputs are pseudorandom.

However, we find that the above security property is too strong to be used in
our construction. What we want is to use the PPRF to “program” the multiplic-
ity of the sender’s elements and let the receiver evaluate the function on his own
set elements. The multiplicity is uniquely determined by the input set, instead
of randomly selected as in the security definition. In fact, the multiplicity of
some intersection elements must be leaked to the adversary. Fortunately, we find
the security property of PPRF is overkill and the following deterministic-value
pseudorandomness is enough:

Deterministic-Value Pseudorandomness. For any fixed set of points P =
{(x1, y1), . . . , (xt, yt)}, considering the following experiment:

ExpA(P,X,Q, κ) :
for eachxi ∈ X, choose random yi ← V
(k, hint) ← KeyGen(1κ,P ∪ {(xi, yi)|xi ∈ X})
return A(P, hint, {F (k, hint, q)|q ∈ Q})

We say that a PPRF satisfying (t, n, μ)-deterministic-value pseudorandom-
ness if for all |X0| = |X1| = n− t, all |Q| = μ satisfying Q∩{x1, . . . , xt} = ∅ and
all PPT A: |Pr[ExpA(P,X0, Q, κ) = 1] − Pr[ExpA(P,X1, Q, κ) = 1]| ≤ negl(κ)

In the above definition, some points, i.e. P, are definitely leaked to the adver-
sary. However, what we need is only the pseudorandomness of PPRF values
outside of the leaked set.

358 C. Zhang et al.

Definition 2 (dv-PPRF). A Deterministic-Value Programmable PRF (dv-
PPRF) is the PPRF scheme satisfying correctness and (t, n, μ)-deterministic-
value pseudorandomness.

After defining the dv-PPRF, it is natural to define the functional-
ity of Deterministic-Value Oblivious Programmable PRF (dv-OPPRF) like
[25]. In the ideal dv-OPPRF functionality Fdv-OPPRF, the sender inputs
the “programmed” set P = {(x1, y1), . . . , (xn, yn)} and obtains the key
of dv-PPRF (k, hint). The receiver inputs queries {q1, . . . , qμ} and learns
{hint, F (k, hint, q1), . . . , F (k, hint, qμ)}.

3.2 Construction of dv-PPRF

To construct dv-PPRF, the main idea is to combine the PRF and the OKVS
with partial obliviousness property. Let ̂F be a PRF and (EncodeH ,DecodeH)
be an OKVS scheme satisfying partial obliviousness. We define it as follows:

– KeyGen(1κ, {(x1, y1), . . . , (xn, yn)}): Choose a random key k for ̂F . Compute
an OKVS D := EncodeH((x1, y1 ⊕ ̂Fk(x1)), . . . , (xn, yn ⊕ ̂Fk(xn))). Let hint
be D.

– F (k, hint, q) = ̂Fk(q) ⊕ DecodeH(hint, q).

Theorem 1. Assuming the OKVS scheme satisfies partial obliviousness, the
above construction is a dv-PPRF.

Proof. If there is an adversary A can break the deterministic-value pseudo-
randomness of dv-PPRF, then we can construct a PPT distinguisher D to
distinguish the two distributions of partial obliviousness in OKVS with non-
negligible probability. Let P = {(x1, y1), . . . , (xt, yt)}, X0 = {x0

t+1, . . . , x
0
n} and

X1 = {x1
t+1, . . . , x

1
n}.

D works as follows: after receiving D, the distinguisher D selects a random
PRF key k from the key space K of PRF ̂F . Then, D defines hint := D and let
F (k, hint, q) := ̂Fk(q) ⊕ DecodeH(hint, q) for any query q ∈ Q. The distinguisher
D invokes A with input (P, hint, {F (k, hint, q)|q ∈ Q}) and outputs A’s output.
For simplicity, we use (P, (Xb, Y)) to denote ((x1, y1), . . . , (xt, yt), (xb

t+1, yt+1),
. . . , (xb

n, yn)) for b ∈ {0, 1}, where yi
R←− V, i ∈ [t + 1, n]. We have:

|Pr[D(D)|D = EncodeH(P, (X0, Y))] − Pr[D(D)|D = EncodeH(P, (X1, Y))]|
=|Pr[A(P, hint, {F (k, hint, q)}q∈Q)|k R←− K, hint = EncodeH(P, (X0, Y))]−

Pr[A(P, hint, {F (k, hint, q)}q∈Q)|k R←− K, hint = EncodeH(P, (X1, Y))]|
=|Pr[A(P, hint, {F (k, hint, q)}q∈Q)|(k, hint) ← KeyGen(P, (X0, Y))]−

Pr[A(P, hint, {F (k, hint, q)}q∈Q)|(k, hint) ← KeyGen(P, (X1, Y))]|
=|Pr[ExpA(P, X0, Q, κ) = 1] − Pr[ExpA(P, X1, Q, κ) = 1]|

Thus D breaks partial obliviousness of OKVS with the same advantages as A.

Efficient Private Multiset ID Protocols 359

The dv-OPPRF protocol can be easily obtained from the mutli-point OPRF
functionality Fmp-oprf and the OKVS scheme with partial obliviousness. In the
Fmp-oprf functionality, the receiver inputs {qi}i∈[μ] and learns {Fk(qi)}i∈[μ], while
the sender learns k. Then, the sender computes D := EncodeH((x1, y1⊕ ̂Fk(x1)),
. . . , (xn, yn ⊕ ̂Fk(xn))) and sends D to the receiver, the receiver computes and
outputs F (k, hint, qi) := ̂Fk(qi)⊕DecodeH(D, qi) for i ∈ [μ]. Simulation is trivial,
as the parties’ views in the protocol are exactly the dv-OPPRF output.

4 Private Multiset ID

We give the formal definition of Private Multiset ID (PMID) functionality FPMID

in Fig. 1.

Parameters: Two parties Alice and Bob. Number of items m, n for the Alice and
l; the upper bound of duplicate item in X and Y , Ux

and Uy; the ID mapping id : {0, 1}∗ → {0, 1}l.
Functionality:

– Wait for input X = {(x1, u
x
1), . . . , (xm, ux

m)} ⊂ {0, 1}∗ × [Ux] from Alice.
– Wait for input Y = {(y1, u

y
1), . . . , (yn, uy

n)} ⊂ {0, 1}∗ × [Uy] from Bob.
– Let X := {x1 . . . , xm} and Y := {y1 . . . , yn} be the sets without duplication

items corresponding to X and Y .
– For every xi ∈ X \ Y , choose ux

i id(x(t)
i) ∈ {0, 1}l, t ∈ [ux

i];
for every yi ∈ Y \ X , choose uy

i id(y(t)
i) ∈ {0, 1}l, t ∈ [uy

i];
for every zi ∈ X ∩Y , assuming (zi, u

x
i) ∈ X, (zi, u

y
i) ∈ Y , choose ux

iu
y
i random

id(z(t)
i) ∈ {0, 1}l, t ∈ [ux

iu
y
i].

– R∗ := {id(x(t)
i)|xi ∈ X \ Y , t ∈ [ux

i]} ∪ {id(y(t)
i)|yi ∈ Y \ X , t ∈

[uy
i]} ∪ {id(z(t)

i)|zi ∈ X ∩ Y , t ∈ [ux
iu

y
i]}.

– IDX := {id(x(t)
i)|xi ∈ X \ Y , t ∈ [ux

i]} ∪ {id(z(t)
i)|zi ∈ X ∩ Y , t ∈

[ux
iu

y
i]} IDY := {id(y(t)

i)|yi ∈ Y \ X , t ∈ [uy
i]} ∪ {id(z(t)

i)|zi ∈ X ∩
Y , t ∈ [ux

iu
y
i]}.

– Give output (R∗, IDX) to Alice and give output (R∗, IDY) to Bob.

a We note that the IDX also includes the mapping relationship between xi and
id(x(t)

i), t ∈ [ux
i] (similarly for y’s) while the R∗ does not contain this relation-

ship.

Fig. 1. Private Multiset ID Functionality FPMID.

4.1 PMID from Sloppy OPRF

Now we describe our PMID protocol. As we mentioned in Sect. 1.3, the parties
run sloppy OPRF twice to generate the UIDs of the de-duplicated set, then both
parties program the multiplicity of their elements by dv-OPPRF, the elements

360 C. Zhang et al.

with multiplicity 1 are programmed by a random value. After execution of dv-
OPPRF, the parties compute the multiplicity of all their elements and query
random oracle to obtain the UIDs. Finally, the parties run a PSU protocol to
obtain the whole UIDs’ set. Now, we give our PMID protocol in Fig. 2 and 3.

Correctness. For xi ∈ X ′ ∩Y ′, suppose xi is placed to bin hv(xi) by Alice, then
Alice computes rA(xi) = DecodeH(PB, xi||v) ⊕ fA

hv(xi)
⊕ FsA(xi). Since xi ∈ Y ′,

the OKVS PB satisfies DecodeH(PB , xi||v) = FsB (xi)⊕FkB
hv(xi)

(xi||v). Thus we

have that rA(xi) = FsB (xi) ⊕ FsA(xi). Similarly, for yj ∈ X ∩ Y ′, we also have
rB(yj) = FsA(yj)⊕FsB (yj), which means rA(xi) = rB(yj) for xi = yj ∈ X ′ ∩Y ′.
In the case of uy

j > 1, we have dB
i = F (kB , hintB , xi) = F (kB , hintB , yj) = cyj =

uy
j . Thus ūx

i = ux
i · dB

i = ux
i · uy

j , and id(x(t)
i) = id(y(t)

j) for t ∈ [ux
i · uy

j]. In the
case of uy

j = 1, we have dB
i = F (kB , hintB , xi) = F (kB , hintB, yj) = cyj . Since

cj is randomly picked from {0, 1}σ, by setting σ = λ + log nUy, a union bound
shows probability of cj ≤ Uy is negligible 2−λ. Thus ūx

i = ux
i · 1 = ux

i · uy
j with

overwhelming probability and id(x(t)
i) = id(y(t)

j) for t ∈ [ux
i ·uy

j]. If xi ∈ X ′\Y ′, by
the deterministic-value pseudorandomness of dv-OPPRF, dB

i is indistinguishable
from random distribution over {0, 1}σ. By setting σ = λ + log mUx

4, the union
bound guarantees dB

i > Ux with overwhelming probability, which infers ūx
i = ux

i

with overwhelming probability.
The security is guaranteed by the following theorem. Due to space limita-

tion, the full proof (via hybrid arguments) is deferred to the full version for
completeness.

Theorem 2. The protocol in Fig. 2 and 3 securely computes FPMID against semi-
honest adversaries in the (Fbsp-oprf ,Fpsu)-hybrid model.

4.2 PMID from Standard OPRF

Though sloppy OPRF-based PMID is usually more efficient, we find that the
standard multi-point OPRF-based PMID has lower communication. As we men-
tioned in Sect. 1.3, the “seeds” of UIDs can be generated easily from two
symmetric standard multi-point OPRF instances, that is, rA(x) = rB(x) :=
FkA

(x)⊕FkB
(x). After the generation of UIDs, the step of Program Multiplicity,

ID computation, and Union are similar to the sloppy OPRF-based protocol. Due
to the space limition, the detailed construction is deffered to the full version.

5 Applications

Private Inner Join. The most direct application of PMID is private inner join.
In this scenario, two parties with different datasets/tables want to align their
record on some identifiers, e.g. user id. The parties first perform a PMID protocol
with the input of their identifiers (which may contain duplicated elements), then

4 Thus we set σ = max{λ + log nUy, λ + log mUx}.

Efficient Private Multiset ID Protocols 361

Parameters:

– Two parties: Alice and Bob.
– An OKVS scheme (EncodeH ,DecodeH).
– Ideal Fdv-OPPRF, Fbsp-oprf , Fpsu 2.2
– A PRF F : {0, 1}∗ → {0, 1}σ. Random oracle H̄ : {0, 1}∗ → {0, 1}l.
– Random hash functions h1, . . . , hα1 : {0, 1}∗ → [ρ1] and h1, . . . , hα2 :

{0, 1}∗ → [ρ2].

Input of Alice: X = {(x1, u
x
1), . . . , (xm, ux

m)} ⊂ {0, 1}∗ × [Ux]. Let X :=
{x1 . . . , xm} be the set without duplication items corresponding to X.
Input of Bob: Y = {(y1, u

y
1), . . . , (yn, uy

n)} ⊂ {0, 1}∗ × [Uy]. Let Y := {y1 . . . , yn}
be set without duplication items corresponding to Y .
Protocol:

1. (Sloppy OPRF Bob → Alice) Alice does A ← Cuckooρ1
h1,...,hα1

(X).
2. The parties call Fbsp-oprf , where Alice is the receiver with input A and Bob

is the sender. Bob receives output (kB
1 , . . . , kB

ρ1) and Alice receives output
(fA

1 , . . . , fA
ρ1). Alice’s output is such that, for each x ∈ X, assigned to bin u

by hash function hv, we have fA
u = FkB

u
(x||v).

3. Bob chooses a random PRF key sB , he computes an OKVS P B :=
EncodeH({(y||v, FsB (y) ⊕ FkB

hv(y)
(y||v))}y∈Y ,v∈[α1]) and sends P B to Alice.

4. For each item x that Alice assigned to a bin with hash function hv, Alice
rA(x) := DecodeH(P B , x||v) ⊕ fA

hv(x) ⊕ FsA(x).
5. (Sloppy OPRF Alice → Bob) Bob does B ← Cuckooρ2

h1,...,hα2
(Y).

6. The parties call Fbsp-oprf , where Bob is the receiver with input B and Alice
is the sender. Alice receives output (kA

1 , . . . , kA
ρ2) and Bob receives output

(fB
1 , . . . , fB

ρ2). Bob’s output is such that, for each y ∈ Y , assigned to bin u by
hash function hv, we have fB

u = FkA
u
(y||v).

7. Alice chooses a random PRF key sA, she computes an OKVS P A :=
EncodeH({(x||v, FsA(x) ⊕ FkA

hv(x)
(x||v))}x∈X,v∈[α2]) and sends P A to Bob.

8. For each item y that Bob assigned to a bin with hash function hv

rB(y) := DecodeH(P A, y||v) ⊕ fB
hv(y) ⊕ FsB (x).

9. (Program Multiplicity) For i ∈ [m], if ux
i = 1, Alice selects a random

cxi
R←− {0, 1}σ cxi := ux

i. For j ∈ [n], if uy
j = 1, Bob selects a

random cyj
R←− {0, 1}σ cyj := uy

j . Note that here we pad ux
i and uy

j

with 0 from logUx and logUy bits to σ bits.
10. The parties call Fdv-OPPRF, where Bob is sender with input {(yj , c

y
j)}j∈[n] and

receives (kB , hintB), and Alice is receiver with input X . As a result, Alice
receives hintB , {dB

i := F (kB , hintB , xi)}i∈[m].
11. For i ∈ [m], if 1 < dB

i ≤ Uy ūx
i := ux

i · dB
i ; else ūx

i := ux
i.

12. The parties call Fdv-OPPRF, where Alice is sender with input {(xi, c
x
i)}i∈[m]

and receives (kA, hintA), and Bob is receiver with input Y . As a result, Bob
receives hintA, {dA

j := F (kA, hintA, yj)}j∈[n].
13. For j ∈ [n], if 1 < dA

j ≤ Ux ūy
j := uy

j · dA
j ; else ūy

j := uy
j .

Fig. 2. PMID Protocol ΠPMID from Sloppy OPRF.

362 C. Zhang et al.

14. (ID computation) For i ∈ [m], t ∈ [ūx
i], Alice computes id(x(t)

i) :=
H̄(rA(xi)||t). Let IDX := {id(x(t)

i)|i ∈ [m], t ∈ [ūx
i]}.

15. For j ∈ [n], t ∈ [ūy
j], Bob computes id(y(t)

j) := H̄(rB(yj)||t). Let IDY :=
{id(y(t)

j)|j ∈ [n], t ∈ [ūy
j]}.

16. (Union) Alice and Bob invoke the PSU functionality Fpsu with input IDX

and IDY respectively. As a result, Bob receives R∗ := IDX ∪ IDY and sends
R∗ to Alice.

Fig. 3. PMID Protocol ΠPMID from Sloppy OPRF, continued.

let the parties send their own UID set to the other. The parties match the UID
of their own set and the other parties’ set, and output the matched elements.
The security is guaranteed by the fact that the UID of the element outside a
party’s set is random to him, and no additional information is leaked from these
UIDs.

Private Full Join. Unlike inner join, full join returns all records regardless of
whether their identifiers are matched. Assuming Alice obtains the output, we
should let Alice obliviously retrieve the elements outside her UID set. Note that
PMID protocol can be used for data alignment, that is, after execution of PMID,
the parties could sort the UIDs in R∗, e.g. let R∗ = {r1, . . . , rt} be the sorted set,
and define an indication bit string (a, b ∈ {0, 1}t for Alice and Bob separately)
as ai(or bi) = 1 if and only if ri ∈ IDX(or IDY). In this way, both parties get
an aligned indication bit string, i.e. the same bit ai and bi indicate the same
element whether belongs to their set. Note that if ai = 0, we must have bi = 1
and vice versa. We can use this property to compute full join privately. What
we want is letting Alice learn the element correspond to ai = 0, we can let both
parties invoke t OTs, and let Bob input (yi,⊥) for bi = 1 and (⊥,⊥) for bi = 0.
In this way, Alice will obtain all the elements corresponding to the whole UIDs
set R∗, which is exactly the output of full join.

Private Join for Compute. In this scenario, Alice and Bob want to get a secret
sharing of the join result for further complicated computations. The main idea
is also to use PMID for data alignment. The parties first compute the indication
bit string a, b ∈ {0, 1}t as before. Then the parties share their string to the other,
i.e. Alice selects random a′ R←− {0, 1}t, computes a′′ := a ⊕ a′ and sends a′′ to
Bob, Bob selects random b′ R←− {0, 1}t, computes b′′ := b ⊕ b′ and sends b′ to
Alice. Then Alice and Bob invoke the AND functionality Fand with input (a′, b′)
and (a′′, b′′) respectively. As a result, Alice outputs p and Bob outputs q where
p⊕ q = (a′ ⊕ a′′)∧ (b′ ⊕ b′′) = a∧ b. Note that the AND functionality Fand could
be efficiently implemented from OT. The parties could feed the p and q to any
MPC circuit to compute any function they want to compute.

Efficient Private Multiset ID Protocols 363

6 Implementation and Performance

In this section, we discuss details of our PMID implementations and report our
performances. We also implement state-of-the-art PID protocols [5,12] under
the same experiment setting and report their performances as baselines. Since
PMID reduces to PID when Ux = Uy = 1, such comparisons would show the
additional costs from PID to more general PMID functionalities.

6.1 Implementation Details

We ran all our experiments on a single Intel Core i9-9900K with 3.6 GHz and
128 GB RAM. We execute the protocol on two progresses operated by separated
terminals with the network connection built via the local network. We emu-
late two network connections, namely LAN/WAN configurations, using Linux tc
command. The LAN setting has a latency 0.02 ms and bandwidth of 10 Gbps,
while the WAN setting has a latency 80 ms and bandwidth of 100 Mbps. All
experiments are done with 128-bit inputs, in which half of the inputs from two
parties are in the intersection. In PMID, we set the multiplicity of all elements
to be the maximum Ux/Uy. In this way, we can have consistent total compu-
tation/communication costs under single-thread and multi-thread settings with
the same inputs. We used the same methodology and environment to report all
performances.

We use an asynchronous event-driven network application framework Netty
to maintain the network connection, and use the well-known tool Protocol Buffers
for data serialization and deserialization. This meets the compatibility and
robustness requirements for industry-designed libraries, so that the reported per-
formance results would reflect the actual costs when deploying protocols in real
situations.

Existing PID implementations are under different experimental settings. For
example, [5] implemented their protocol in Rust programming language with spe-
cific libraries that support more efficient Curve25519 elliptic curve cryptography
(ECC) operations. On the other hand, [12] implemented their PID protocol in
C++ that only supports inputs represented as a 64-bit string (i.e., unsigned long)
and 64-bit PID outputs. Note that to achieve the statistical security parameter
λ = 40, the bit length of PID should be set as λ + log m + log n, which would
beyond 64 even when m and n are relatively small, i.e., m,n > 212. Such different
experimental settings make it hard to have unified comparisons.

We fully re-implemented state-of-the-art PID protocols [5,12] and their
underlying basic protocols using Java, including the base OT construction of
[27], the OT extension construction of [21] with the optimization of [1], the batch
single-point OPRF of [24] for private equality tests, and the PSU construction
of [12] with the multi-thread optimization of [22] for uniting PID/PMID. We did
subtle optimizations for our implementations to make our performance results
close to or even beyond the ones reported in the original works.

Note that the efficiency of [5] highly depends on the ECC operation efficiency,
and base OT also invokes ECC operations. In our experiments, we introduced

364 C. Zhang et al.

C/C++ MCL5 library in our implementations to perform efficient ECC opera-
tions and use Java Native Interface (JNI) technique to invoke MCL from Java.
We use the curve ‘secp256k1’, a NIST elliptic curve with 256-bit group elements.
For the hash-to-point operation, we use SHA-256 applied to the input, and re-
applied until the resulting output lies on the elliptic curve. Such setting has been
used in Google’s PSI-Sum [19].

For [12], we did not only re-implement the PID scheme based on “Sloppy
OPRF” (Sloppy- [12]) but also implemented the PID scheme based on “standard
OPRF” (Std- [12]) by using the lightweight OPRF schemes introduce by [6] as
the underlying OPRF. We used the OKVS introduced by [13] in our Std-PMID
and Sloppy-PMID. We leveraged the Fork-Join concurrency technique to support
multi-thread computations. We fixed the thread pool size to manually limit the
maximal number of threads invoked during our multi-thread experiments. Our
complete implementation is available on GitHub6.

6.2 Performance Analysis

PID Comparisons. The running times and communication costs for existing
PID schemes [5,12] and our PMID schemes when Ux = Uy = 1 are shown
in Table 1. Observe that the running time and the communication cost of [12]
reported in Table 1 are higher than they reported in the original work. This
is because [12] supports UID with maximal 64-bit input length, which is not
long enough to prevent UID collision under the statistical parameter λ = 40
when m,n ∈ {214, 216, 218, 220}. The longer UID leads to more costs in PSU and
“Sloppy OPRF”. We also note that the performance of [5] in our table is slightly
better than the original work. This is mainly because we leverage the more
efficient ECC library MCL, which introduces assembly language for speeding up
the ‘secp256k1’ ECC operation performances. Since [5] is public-key based, it
has the lowest communication of all schemes. Thus it has a better performance
in the WAN setting.

The communication cost and the running time of our PMID are identical
to that of [12] (both for the standard version and the sloppy version) when
Ux = Uy = 1. This reflects the fact the PMID reduces to its PID counterpart
when both multiplicities are 1.

Scalability and Parallelizability. We demonstrate the scalability and par-
allelizability of our PMID protocols by evaluating them on set sizes n = m ∈
{214, 216, 218, 220} with multiplicity U = 3 for either party and for both parties.
We run each party in parallel with T ∈ {1, 8} threads. We report the performance
in Table 2, showing running times in both LAN/WAN settings.

Our PMID protocol scales well when either party has multiplicity 3. When
Ux = 1, Uy = 3, the running time of our PMID increases by about 2×. When T
increases from 1 to 8, we find that our protocol improves by 2.3–3.1× in the LAN
setting. In the WAN setting, it only speedup about 1.2–1.7×, which is mainly
due to the bandwidth limit.
5 https://github.com/herumi/mcl.
6 https://github.com/alibaba-edu/mpc4j.

https://github.com/herumi/mcl
https://github.com/alibaba-edu/mpc4j

Efficient Private Multiset ID Protocols 365

Table 1. Communication (in MB) and run time (in seconds) of the private-ID protocol
for input set sizes n = 214, 216, 218, 220 executed over a single thread for LAN and WAN
configurations.

Protocols LAN(s) WAN(s) Comm(MB)

214 216 218 220 214 216 218 220 214 216 218 220

[5] 4.33 17.4 69.67 277.56 5.07 19.42 75.56 298.05 3.35 13.41 53.63 214.5

Std-[12] 1.86 9.03 4.77 217.51 4.85 17.43 76.96 327.49 16.45 70.51 302.3 1284.47

Sloppy-[12] 1.75 7.82 35.49 162.71 6.02 17.87 73.79 306.53 20.89 87.9 384.28 1602.82

Std-PMID 2.05 9.54 47.56 221.43 5.64 18.41 78.05 326.63 16.45 70.51 302.3 1284.47

Sloppy-PMID 1.75 7.76 35.97 163.73 5.83 18.75 77.88 315.6 20.89 87.9 384.28 1602.82

When both parties have multiplicity Ux = Uy = 3, the efficiency of PMID
decreases quadratically, which correctly follows the excessive data expansion
property for cross join. The Java Virtual Machine complains running out of
memory when m = n = 220. When n = m ∈ {214, 216, 218}, the running time of
our PMID increases by about 4× both in the LAN setting and the WAN setting.
The result is consistent with the best practice for analytical tasks: except for
special cases, avoiding cross join because it can blow up the amount of data
coming out of the task.

Table 2. Running time (in seconds) of Sloppy-PMID and Std-PMID with set size
(n = m), number of threads (T ∈ {1, 8}) and number of multiplicity (U ∈ {1, 3}) in
WAN/LAN settings. Cells with “–” denote setting that program out of memory.

n Protocol Multiplicity Comm.(MB) Running time (s)

LAN WAN

Ux Uy Alice Bob Total T = 1 T = 8 T = 1 T = 8

214 Sloppy-PMID 1 1 9.31 11.58 20.89 1.75 0.7 5.83 4.35

1 3 15.82 22.73 38.55 3.47 1.53 9.13 7.35

3 3 43.1 56.09 99.19 7.88 3.21 19.81 16.24

Std-PMID 1 1 7.09 9.36 16.46 2.05 0.68 5.64 3.95

1 3 13.6 20.51 34.11 3.82 1.48 9.23 6.84

3 3 40.88 53.87 94.75 8.42 3.35 20 15.41

216 Sloppy-PMID 1 1 39.49 48.41 87.9 7.76 3.02 18.75 14.85

1 3 68.36 95.44 163.8 15.58 6.66 35.04 26.32

3 3 187.23 237.51 424.74 37.35 16.26 82.3 63.93

Std-PMID 1 1 30.8 39.71 70.51 9.54 3.24 18.41 13.44

1 3 59.67 86.75 146.42 17.73 7.03 34.8 24.04

3 3 178.54 228.82 407.36 38.38 16.3 82.24 60.5

218 Sloppy-PMID 1 1 174.82 209.46 384.28 35.97 14.94 77.88 56.76

1 3 299.02 405.66 704.68 72.33 32.88 144 107.13

3 3 813.55 1010.59 1824.13 181.58 89.62 345.54 268.1

Std-PMID 1 1 133.83 168.47 302.3 47.56 15.46 78.05 49.78

1 3 258.03 364.67 622.7 84.51 32.96 147.63 101.62

3 3 772.56 969.6 1742.15 195.43 92.1 350.43 261.19

220 Sloppy-PMID 1 1 733.61 869.21 1602.82 163.73 75.93 315.6 230.64

1 3 1271.21 1690.33 2961.54 347.49 173.61 608.68 449.01

3 3 – – – – – – –

Std-PMID 1 1 574.44 710.03 1284.47 221.43 77.49 326.63 203.64

1 3 1112.04 1531.16 2643.19 405.15 177.51 628.13 422.77

3 3 – – – – – – –

366 C. Zhang et al.

Acknowledgement. We are grateful for the helpful comments from the anonymous
reviewers. Weiran Liu is supported by the Major Programs of the National Social
Science Foundation of China (Grant No. 22&ZD147). Cong Zhang and Dongdai Lin
are supported by the National Key Research and Development Program of China (No.
2020YFB1805402) and the National Natural Science Foundation of China (Grants No.
61872359 and No. 61936008).

A Proof of Partial Obliviousness

We first give the formal definition of linear OKVS as follows:

Definition 3 (Linear OKVS). An OKVS is linear (over a field F) if V = F

(“values” are elements of F), the output of Encode is a vector D in F
m, and the

Decode function is defined as: DecodeH(D,x) = 〈row(x),D〉 :=
∑m

j=1 row(x)jDj

for some function row : K → F
m. Hence Decode is a linear map from F

m to F.

The mapping row : K → F
m are typically defined by the hash function H.

For a linear OKVS, one can view the Encode function as generating a solution
to the linear system of equations: RDT = Y , where the i-th row of R is row(xi).

Theorem 3. When EncodeH chooses uniformly from the set of solutions to the
linear system, the linear OKVS satisfies the partial obliviousness property.

Proof. Now we prove the two distribution of D are statistically indistinguishable.

We decompose the matrix as
[

R1

R2

]

DT =
[

Y1

Y2

]

, where R1 and Y1 correspond

to the first t rows of the matrix, and R2 and Y2 correspond to the last n − t
rows. We use DX,Y to represent all possible outputs of EncodeH(X,Y). We have
D ← EncodeH(X,Y) ⇐⇒ D

R←− DX,Y .
We denote the two distributions in the definition of partial oblivious-

ness as W1 and W2 respectively. Since there are t fixed key-value pairs
(x1, y1), . . . , (xt, yt), both outputs of W1 and W2 must satisfy R1D

T = Y1.
For any D0 ∈ F

m constrained on R1D
T
0 = Y1, we have Pr[Y2

R←− F
n−t :

R2D
T
0 = Y2] = 1

|F|n−t and thus Pr[D ← EncodeH(X,Y) : D = D0|Y2 �=
R2D

T
0] = 0. The distribution of W1 is as follows:

Pr[D ← W1 : D = D0] = Pr[Y2
R←− F

n−t,D
R←− DX,Y : D = D0]

=
∑

Y ′
2∈Fn−t

Pr[Y2
R←− F

n−t : Y2 = Y ′
2] · Pr[D R←− DX,Y : D = D0|Y2 = Y ′

2]

= Pr[Y2
R←− F

n−t : Y2 = R2D
T
0] · Pr[D R←− DX,Y : D = D0|Y2 = R2D

T
0]

=
1

|F|n−t
· 1
|DX,Y |

The only difference between W1 and W2 is that the constant matrix R2 is dif-
ferent, which does not affect the probability. Similarly, we obtain Pr[D ← W2 :
D = D0] = 1

|F|n−t · 1
|DX,Y | .

Efficient Private Multiset ID Protocols 367

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: CCS 2013 (2013)

2. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A.N., Rogers, J.: SMCQL: secure
query processing for private data networks. Proc. VLDB Endow. 10(6), 673–684
(2017)

3. Bater, J., He, X., Ehrich, W., Machanavajjhala, A., Rogers, J.: Shrinkwrap: effi-
cient SQL query processing in differentially private data federations. Proc. VLDB
Endow. 12(3), 307–320 (2018)

4. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
ASIACCS 2012 (2012)

5. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin,
V.: Private matching for compute. eprint 2020/599 (2020)

6. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

7. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 261–278.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 15

8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS 2013 (2013)

9. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

10. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

11. Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS
2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72738-5 16

12. Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set
operations from oblivious switching. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12711, pp. 591–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75248-4 21

13. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 14

14. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, Cambridge (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

16. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012 (2012)

17. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security (2011)

https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-84245-1_14

368 C. Zhang et al.

18. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Electronic Commerce (EC-99) (1999)

19. Ion, M., et al.: On deploying secure computing: private intersection-sum-with-
cardinality. In: EuroS&P (2020)

20. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. ePrint 2017/738 (2017)

21. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

22. Jia, Y., Sun, S.F., Zhou, H.S., Du, J., Gu, D.: Shuffle-based private set union:
faster and more secure. In: USENIX Security (2022)

23. Kissner, L., Song, D.: Privacy-Preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

24. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS (2016)

25. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: CCS 2017 (2017)

26. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union from
symmetric-key techniques. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11922, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8 23

27. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms (2001)

28. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44676-1 10

29. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

30. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 25

31. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX 2015 (2015)

32. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

33. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security (2014)

34. Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R.A., Hellerstein, J.M.. Senate: a
maliciously-secure MPC platform for collaborative analytics. In: USENIX Security
2021 (2021)

35. Poess, M., Smith, B., Kollar, L., Larson, P.: TPC-DS, taking decision support
benchmarking to the next level. In: SIGMOD (2002)

36. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. 2005, 187 (2005)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5

Efficient Private Multiset ID Protocols 369

37. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77886-6 31

38. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

39. Zhang, C., Liu, W., Ding, B., Lin, D.: Efficient private multiset id protocols. Cryp-
tology ePrint Archive, Paper 2023/986 (2023). https://eprint.iacr.org/2023/986

https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://eprint.iacr.org/2023/986

Zoomer: A Website Fingerprinting Attack
Against Tor Hidden Services

Yuwei Xu1,2,3(B), Lei Wang1, Jiangfeng Li1, Kehui Song4, and Yali Yuan1,3

1 School of Cyber Science and Engineering, Southeast University,
Nanjing 211189, Jiangsu, China

xuyw@seu.edu.cn
2 Purple Mountain Laboratories for Network and Communication Security,

Nanjing 211111, Jiangsu, China
3 Research Base of International Cyberspace Governance, Southeast University,

Nanjing 211189, Jiangsu, China
4 College of Computer Science, Nankai University, Tianjin 300350, China

Abstract. The deanonymization of Tor hidden services (HS) is the top
priority for dark web governance. Thanks to the leap of artificial intel-
ligence technology, it is a promising and feasible direction to launch a
website fingerprint attack (WFA) by deep learning to identify the access
traffic of HS. However, unlike public services (PS) on the surface network,
the web pages of HS have simple structures, limited content, and similar
development templates. Thus, it is different to extract effective features
from the access traffic for HS identification. In addition, many WFA
methods cannot capture global features from access traffic because their
convolutional neural networks (CNN) lack the ability of long-distance
modeling. Aiming at the shortcomings, we propose Zoomer, a novel WFA
method with a scalable perspective when extracting features. The contri-
bution of our work lies in three points. Firstly, a burst-based HS finger-
print generation method is proposed to describe the sequence of resource
access. Secondly, a new WFA model is designed by introducing global
burst attention (GBA) into the classic structure of CNN for global fea-
ture extraction. Finally, comparison experiments are conducted in both
closed-world and open-world scenarios. The results show that our Zoomer
outperforms three state-of-the-art WFA methods.

Keywords: website fingerprinting attack · hidden service · the onion
router · convolutional neural network · non-local neural networks

1 Introduction

Since Tor hidden services (HS) can anonymize service providers, criminals deploy
HS for online black markets transactions such as arms, drugs, and generics [2].
Therefore, how deanonymizing HS is the primary task of dark web governance.
In recent years, researchers have tried a variety of ideas, such as analyzing the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 370–382, 2023.
https://doi.org/10.1007/978-981-99-7356-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_22&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_22

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 371

vulnerability of Tor protocol [5], exploiting browser vulnerabilities [3], and infil-
trating Tor’s relay nodes [12]. Although these studies have had some success,
they are no longer applicable as Tor’s protocol, software, and network topology
change. With the development of artificial intelligence technology, website finger-
printing attacks (WFA) based on deep learning have become the most promising
direction to identify HS access traffic.

In recent years, some researchers have applied WFA to HS deanonymization,
but there are still two shortcomings in these studies. First of all, unlike public
services (PS) on the surface network, the web pages of HS have simple structures,
limited content, and similar development templates. Therefore, the WFA models
need strong feature extraction capabilities to distinguish the access traffic of
different HS sites. Secondly, many WFA models are built based on convolutional
neural networks (CNN), which can accurately extract local features of traffic
[1,9,16]. However, CNN lacks long-distance modeling capabilities, so these WFA
methods can hardly capture the global characteristics of HS access traffic. Some
researchers have proposed to increase the number of convolutional layers to mine
deeper global information [11]. The stacked structure will introduce a lot of
model parameters, resulting in serious computational overhead.

Aiming at the shortcomings of previous work, we propose a WFA method
capturing both local and global features in HS access traffic. Since the model
has a scalable perspective when extracting features, we name it Zoomer. The
main contributions of our work lie in the following three points.

• To accurately identify HS access traffic, we design an HS fingerprint. First,
through traffic data analysis, we find that due to the difference in resource
distribution and access order among HS sites, their burst sequences in access
traffic become different. Second, we design a burst-based fingerprint genera-
tion method to represent the access traffic of HS sites and take the results as
the input of our WFA model (In Sect. 3).

• To enhance the feature extraction ability, we propose a novel WFA model.
Based on retaining the classic structure of CNN, we refer to the non-local
convolutional networks and introduce a global burst attention (GBA) module
between the convolutional layers so that our model can extract both local and
global features from HS fingerprints for accurate classification (In Sect. 4).

• To verify the effectiveness of Zoomer, we conduct multiple comparison exper-
iments. The experimental results show that our HS fingerprint generation
method and the GBA module can help the CNN-based WFA model improve
the classification performance. Compared with three state-of-the-art WFA
methods, Zoomer has achieved the best performance in both closed-world
and open-world scenarios (In Sect. 5).

2 Related Work

In this section, we summarize the related work and analyze the difficulties faced
by WFAs against HS. Furthermore, we point out the problem that the CNN-
based WFAs can hardly extract global features from access traffic and then
introduce our research motivation.

372 Y. Xu et al.

2.1 WFA Against HS

WFA is a promising method for identifying which site a user is visiting through
Tor. The attackers first capture the access traffic between the users and the entry
nodes, then feed the represented traffic data into the deep learning model for
training, and finally use the trained model to identify the service sites visited by
Tor users [10].

Some people use Tor as a proxy to break through the service provider’s
regional restrictions and access public services on the Internet. Because Tor
anonymizes the PS sites, researchers use WFAs to identify the services users
visit. In k-FP [4], the authors extract 175 features from network traffic as finger-
prints, then employ a random forest classifier to map these features to different
subspaces, and finally utilize KNN for classification. In [8], the authors propose
a WFA method based on deep learning and evaluate the performance of three
classic models CNN, LSTM, and SDAE. Experimental results prove that deep
learning models can effectively improve the performance of WFA. Following this
idea, the authors of [11] propose a WFA based on one-dimensional CNN and
name it deep fingerprinting (DF). In DF, they build a complex network struc-
ture by increasing the number of convolutional layers, thus achieving an accuracy
of 98.3% in closed-world scenarios.

HS is the primary way to deploy applications on Tor. In recent years, some
researchers have begun to study WFAs against HS. In [7], the authors collect
the access traffic of 482 HS sites and evaluate the performance of three WFAs
CUMUL, k-NN, and k-FP. The authors of [13] design a WFA method called
2ch-TCN. In 2ch-TCN, the authors take the direction and time sequences of
data packets as input and build a two-channel temporal convolutional network
to improve classification performance. In [6], the authors extract the relevant
features of bursts from the access traffic and build a CNN-based classification
model to achieve high accuracy. However, the web pages of HS are different from
those of PS on the surface web, have a simple structure, limited content, and
adopt similar development templates. Therefore, it is a challenge for researchers
to extract effective features from HS access traffic for accurate classification.

2.2 CNN-Based WFA

The proposal of CNN has opened a new era of artificial intelligence. In recent
years, many researchers have adopted CNN to build WFA models against Tor HS
[15]. In [1], the authors design a WFA model by leveraging ResNet-18 and intro-
duce dilated causal convolution to improve the ability to model input sequences.
The authors of [9] propose a WFA method called BurNet. Based on using CNN
to build the model, the authors replace the fully connected layer (FC) with
global average pooling (GAP) to reduce the number of parameters and the risk
of overfitting. In [16], the authors introduce a self-attention module to help the
model select salient features for different tasks, thereby improving its classifica-
tion performance.

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 373

In fact, the above-mentioned CNN-based WFA methods have inherent short-
comings. The classic CNN is good at extracting local features from traffic data
but lacks the long-distance modeling ability of the entire flow. Therefore, the
above methods fail to use the global features to achieve accurate HS classifica-
tion. Some researchers have proposed the idea of increasing more convolutional
layers to mine deeper global information [11]. However, the complex structure
will introduce a lot of model parameters, resulting in serious computational over-
head. To address the shortcomings of previous work, we propose Zoomer, a WFA
method capturing both local and global features in HS access traffic.

3 Design of HS Fingerprint

In this section, we first explore the burst distribution in HS access traffic through
data analysis and then propose a burst-based HS fingerprint generation algo-
rithm to improve the performance of Zoomer.

3.1 Analysis of HS Access Traffic

For the target of anonymization, the Tor protocol uses fixed-size cell packets
as a basic transmission unit. Since previous work [8] has shown that direction
information is a type of effective information. We use +1 to indicate a sending
cell packet and −1 to indicate a receiving cell packet. The sequence of multiple
consecutive +1 s or −1 s is considered burst traffic.

(a) For different HS sites (b) For the same HS site

Fig. 1. The burst number distribution

To demonstrate the difference in access traffic of HS sites, we select different
sizes for bursts and count their numbers in every traffic flow. As shown in Fig. 1,
the burst number distributions are inconsistent for different HS sites, while the
burst number distributions of the same HS site are consistent. In addition, to
explore the position distribution of bursts in HS access traffic, we calculate the
relative distance from the location of each burst to the beginning of traffic flow.
As shown in Fig. 2, the burst position distributions are also inconsistent for
different HS sites, while the burst position distributions of the same HS site are
consistent.

374 Y. Xu et al.

Fig. 2. The burst position distribution

3.2 HS Fingerprint Generation Based on Bursts

An HS fingerprint generation algorithm is proposed based on the above analysis.
First we define the minimum burst size as 5. The relative position of any burst
from its left burst is −dl, and the relative position of any burst from its right
burst is +dr. In addition, we also record the size and direction of each burst.
For a continuous +1 sequence, combined with the size of the burst itself, it will
be recorded as +sp, otherwise it will be recorded as −sp. The left burst refers
to the previous burst in the cell sequence position of the current burst, the right
burst refers to the burst in the next position.

Based on the above definition, the HS fingerprint designed in this paper
is composed of the associated information of multiple bursts in one flow. f is
expressed as {b1, b2..., bn}, where f refers to the HS fingerprint representing a
HS website traffic. n represents the number of bursts in the sequence. Each bi is
expressed as follows:

bi = {±sl,−dl,±sp,+dr,±sr}, 5 ≤ si ≤ smax, di ≤ dmax (1)

In Formula 1, a smax with a value of 16 is defined, which is to limit the size
of burst. Due to unstable Tor network conditions or other conditions, cell data
packets in the opposite direction are lost between multiple bursts in the same
direction, so multiple bursts cannot be divided normally, resulting in a burst
with an abnormal size. In order to minimize the impact of abnormal burst on
the classification results, it is necessary to divide the abnormal burst to obtain
the normal burst. For any given direction sequence, the block whose burst size
exceeds smax will be divided into one or more smax and one slast, which can be
expressed as {smax, smax, . . . , slast}. slast represents the last segmented burst,
and its calculation method is as follows:

slast =

{
±sremain |sremain| ≥ smin

±(smax + sremain) |sremain| < smin

(2)

sremain refers to the remaining part after the entire burst is divided into multiple
smax.

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 375

In Formula 1, the distances dl and dr are limited to ensure that their value
will not exceed dmax with a value of 100. The reason is that although there is a
relatively consistent distance relationship between bursts, if the distance is too
far, the correlation is so weak that we should ignore it.

4 Design of WFA Model

In this section, we first give an overview of our model design, then introduce the
CNN module and the global burst attention (GBA) module in detail.

F
eatu

re ex
tractio

n

......

Input

Output
classificatio

n

Conv 1*1 Conv 1*1 Conv 1*1

Conv_3 BlockConv_3 BlockConv_3 BlockConv_3 Block

Conv_2 BlockConv_2 BlockConv_2 BlockConv_2 Block

Conv_1 BlockConv_1 BlockConv_1 BlockConv_1 Block

GBA BlockGBA BlockGBA Block

Softmax

Conv 1*1

A:w*512

MaxPooling AvgPoolingMaxPooling AvgPooling MaxPooling AvgPoolingMaxPooling AvgPooling

B:w*512 C:w*512

w/4*512 w/4*512 w/4*512

w*w/2

w/2*512

Y:w*1024

X:w*1024

Z:w*1024

w/2*512

512*w/2

w/4*512

GBA Block

...

...

Fig. 3. Overview of Zoomer

4.1 Model Overview

As shown in Fig. 3, the network model is mainly composed of three convolutional
blocks, and the global burst attention (GBA) module is introduced to improve
the ability to extract global features. GBA realizes the distribution of global
attention weights by calculating the correlation between any two bursts. Besides,
each convolutional block consists of a convolutional layer, a dropout layer, and a
gelu activation function. The results processed by the feature extraction module
are sent to the fully connected layer and combined with the softmax function to
achieve classification.

4.2 CNN Module

The convolution block consists of 2 convolution operations, 2 batch normaliza-
tion(BN) layers, 2 gelu activation functions, a maxpooling layer, and a dropout

376 Y. Xu et al.

layer. Its specific operation process for feature extraction of the HS fingerprint
is shown in Formula 3. First, the convolution layer uses a convolution kernel
Wb with a size of 32 to perform feature extraction on the input features, where
b is a bias parameter. Then, the result of convolution is processed by BN and
non-linear activation function gelu to out put tensor C. Next, tensor C is pro-
cessed through the maxpooling layer to retain the salient feature information in
the area. Finally, the dropout layer is used to randomly delete some neurons to
reduce the overfitting of the model.

C(i) = gelu(BN(W (∗)
b X(i) + b)) (3)

4.3 GBA Module

As shown in Fig. 3, GBA works by calculating the correlation between each burst
and all other burst. For an input X, xi is the feature in the i-th position, and the
global attention weight yiof the corresponding position is calculated by enumer-
ating all possible positions j. The function f computes the dependencies between
position i and all possible positions j. The function g computes the represen-
tation of the input signal at position j. The final response value is obtained by
standardizing the response factor C(x). The workflow is as follows:

1. The feature maps X after convolution processing are used as input, in the
form of w × 1024, where 1024 is the number of channels. Three convolutions
of 1 × 1 are used to reduce the dimension. After the number of channels is
reduced to the half of the input, three tensors A, B, and C in the form of
w × 512 are obtained respectively.

2. As shown in Formula 4, after tensor B is processed by the maxpooling layer
and the avgpooling layer with a window size of 4, it is spliced to tensor D in
the shape of w/2 × 512. Then we calculate the correlation between tensor A
and tensor D by Formula 6 and enumerate all positions to obtain the weight
value yi of the corresponding position by Formula 7.

3. For the results of the step 3, we use Formula 8 to perform normalization pro-
cessing to obtain tensor E. Tensor E and tensor C are processed by Formula 4
to obtain tensor F , and the global attention weight tensor Y is obtained by
using Formula 8. Now the global attention weights of each position have been
computed.

4. For Y , we use residual connections with input X to obtain Z, which is the
output after attention weight adjustment.

g(xi) = maxpool(h(xi)) ⊕ avgpool(h(xi)) (4)

h(xi) = Wgxi (5)

f(xi, xj) = eh(xi)
T g(xj) (6)

yi =
1

C(x)

∑
∀y

f(xi, xj)g(xj) (7)

C(x) =
∑
∀j

f(xi, xj) (8)

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 377

5 Experiments

In this section, we first verify the effectiveness of the HS fingerprint and GBA
module, then prove the advantages of Zoomer through experiments in closed-
world and open-world scenarios.

5.1 Experiment Settings

To discuss the performance of Zoomer attack method, we follow the closed-
world and open-world scenarios. In a closed-world scenario, the goal is to identify
traffic from a specific set of websites. It’s a multi-class classification task where
the target is to identify traffic from HS. In open-world scenario, we focus on
the binary classification task, that is, whether the target traffic instance can be
correctly divided into HS or PS.

Table 1. Hyper-Parameters of The Model

Hyperparameter Search Range Value

Trace Len [500...6000] 4000

Optimizer [Adam, Adamax, SGD] Adamax

Batch Size [16...256] 128

Epoch [10...70] 40

Activation Functions [Tanh, ReLU, Sigmoid, gelu] gelu

Kernel Size [4, 8, 16, 32] 8

Conv Stride Size [1, 2, 4, 8] 1

Pool Size [4, 8, 16, 32] 8

Pool Stride Size [1, 2, 4, 8] 1

We use a computer equipped with 3.6 GHz CPU, 64G memory and RTX2080
GPU to conduct the following experiments. Tensorflow is used to implement the
Zoomer attack model. We collected the tor HS data set. We selected 300 domain
names from the HS domain name lookup website. In this paper, we deployed
an automated website access program on four different client hosts and spent 3
months making 800 visits to each domain. After processing, samples of gener-
ated traffic due to link timeouts and access failures were removed. Finally, 300
websites were labelled and 500 sample instances of each website were obtained,
referred to as the HS300 dataset in this paper. And we collected data for 8000
PS using the same method, which is called the Alexa8000 dataset.

378 Y. Xu et al.

In order to make our proposed model have a strong generalization ability, we
continuously adjust the hyper-parameters of the model in our experiments and
find the optimal values in the finding space. As shown in Table 1, the necessary
parameters of the model and their finding ranges are listed.

5.2 Verification of HS Fingerprint

To verify the effectiveness of the HS fingerprint, we compare its classification
performance with the cell direction sequence and the cell time sequence.

As shown in Fig. 4, we select 90 HS website labels and vary the sample number
of each label from 100 to 500 to observe the effect of the change in sample
numbers on the classification performance. At the beginning, the accuracy of
the HS fingerprint is only 0.73, and as the sample number increases to 200, the
accuracy is 0.883, which is more than 0.854 of cell direction sequence. At the
same time, we can also see that the effect of cell time sequence is not ideal.

Fig. 4. Comparison of the effect under
different sample numbers

Fig. 5. Comparison of the effects under
different label numbers

In addition, we change the number of labels of HS websites from 30 to 150 to
compare the classification effect. As shown in Fig. 5, the classification accuracy
of HS fingerprint is 0.941 and the accuracy of cell direction sequence is 0.935.
As the number of labels increases to 90, the accuracy of HS fingerprint is 0.929,
but the accuracy of cell direction sequence has dropped to 0.883. This gap in
classification performance is increasing significantly with the increasing number
of labels. The above experimental results verify the effectiveness of HS finger-
print design, and HS fingerprint have better classification performance than cell
direction sequence.

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 379

5.3 Verification of GBA

Fig. 6. Accuracy comparison Fig. 7. Training time comparison

To verify the effectiveness of GBA, we use the same experimental configuration
to compare the differences among GBA and non-local [14] module from the
perspective of classification effect. In Fig. 6, When the number of samples is 50,
the difference between the models is the most obvious. The classification accuracy
of model using GBA is 0.716, while the accuracy of using non-local module is
0.650 in this case. When the number of samples reaches 200, the classification
accuracy of several models is relatively close.

We also verify the differences of various models in the training time of a single
epoch through experiments in Fig. 7. When the number of samples is 300, the
difference becomes obvious. The training time of model using GBA is relatively
stable and only slightly longer than that of pure CNN model. The training time
of each epoch is 34s for model using GBA, 31s for CNN, and 40s for using
non-local module. With the increase of the number of samples, the gap is also
increasing.

5.4 Performance Comparison in Closed-World Scenario

In order to verify the classification performance of the models with different num-
bers of labels, It can be seen in Fig. 8. When the number of labels is 30, Zoomer
can obtain the accuracy of 0.975, and DF can also obtain the accuracy of 0.935.
When the number of labels is 150, the accuracy of Zoomer decreases to 0.8364.
Compared with 0.8056 of DF, it still has better classification performance.

380 Y. Xu et al.

Fig. 8. Effect of different number of labels
on classification accuracy

Fig. 9. Effect of different number of sam-
ple on classification accuracy

As shown in Fig. 9, we further verify the effect of the training sample number
per label on the classification accuracy. With only 80 samples, DF has a better
classification performance and can achieve 0.77 classification accuracy. However,
Zoomer has only 0.72 classification accuracy. As the traffic samples increase to
500 samples per label, the classification accuracy of the four WFA methods reach
the maximum, and Zoomer can achieve the accuracy of 0.95.

5.5 Performance Comparison in Open-World Scenario

For the open-world scenario, the data set consists of two parts. One is from the
HS websites. We select 90 website labels from HS300 and each website label
contains 300 traffic samples. The other part is the Alexa8000 data set from the
PSes and each website has only one sample instance. During training, we classify
the sample traffic of Alexa top sites from different sites into one category. We
change the training sample number of the open world label to observe TPR,
FPR, Precision and Recall of different sample numbers. In the model prediction,
For a given prediction sample, uses the attack model to predict the probability
that it belongs to each category. For the category with the highest probability,
the confidence threshold is further combined to determine whether it belongs to
the HS or the PS (Figs. 10 and 11).

Fig. 10. Effect on TPR Fig. 11. Effect on FPR

Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services 381

Fig. 12. ROC

Next, we fix the number of samples from the PS data set to 2000, and select
different confidence thresholds to draw the relationship curve about Precision
and Recall in Fig. 12. It is observed that Zoomer has better performance. When
the confidence is 0.35, it has an accuracy of 0.9975 and a recall rate of 0.639.

6 Conclusion

For Tor HS deanonymization, we propose Zoomer, a novel WFA method. The
novelty of Zoomer lies in two aspects. First, we design a burst-based HS fin-
gerprint generation method to describe the access traffic of HS sites. Second,
we propose an optimized CNN-based WFA model, which enhances the ability to
extract global features by introducing a GBA module. Experimental results show
that Zoomer outperforms three state-of-the-art WFA methods. In the future, we
will continue the research on WFA against HS and try to propose a model with
more generalization ability.

References

1. Bhat, S., Lu, D., Kwon, A., et al.: Var-CNN: a data-efficient website fingerprinting
attack based on deep learning. Proc. Priv. Enhancing Technol. (PoPETs) 2019(4),
292–310 (2019)

2. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International Conference on World
Wide Web (WWW), pp. 213–224. ACM (2013)

3. Conti, M., Crane, S., Frassetto, T., et al.: Selfrando: securing the tor browser
against de-anonymization exploits. Proc. Priv. Enhancing Technol. (PoPETs)
2016(4), 454–469 (2016)

4. Hayes, J., Danezis, G.: k-fingerprinting: a robust scalable website fingerprinting
technique. In: Proceedings of the 25th USENIX Security Symposium, pp. 1187–
1203. USENIX Association (2016)

5. Ling, Z., Luo, J., Yu, W., et al.: Protocol-level attacks against Tor. Comput. Netw.
(CN) 57(4), 869–886 (2013)

382 Y. Xu et al.

6. Mohammad, R.S., Sirinam, P., Mathews, N., et al.: Tik-Tok: the utility of packet
timing in website fingerprinting attacks. Proc. Priv. Enhancing Technol. (PoPETs)
2020(3), 5–24 (2020)

7. Overdorf, R., Juarez, M., Acar, G., et al.: How unique is your.onion? An analysis
of the fingerprintability of tor onion services. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS), pp. 2021–
2036. ACM (2017)

8. Rimmer, V., Preuveneers, D., Juarez, M., et al.: Automated website fingerprinting
through deep learning. In: Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS), pp. 1–15. The Internet Society (2018)

9. Shen, M., Gao, Z., Zhu, L., et al.: Efficient fine-grained website fingerprinting
via encrypted traffic analysis with deep learning. In: Proceedings of the 29th
IEEE/ACM International Symposium on Quality of Service (IWQOS), pp. 1–10.
IEEE (2021)

10. Shen, M., Ye, K., Liu, X., et al.: Machine learning-powered encrypted network
traffic analysis: a comprehensive survey. IEEE Commun. Surv. Tutor. (COMST)
25(1), 791–824 (2023)

11. Sirinam, P., Imani, M., Juarez, M., et al.: Deep fingerprinting: undermining website
fingerprinting defenses with deep learning. In: Proceedings of the 25th ACM Con-
ference on Computer and Communications Security (CCS), pp. 1928–1943. ACM
(2018)

12. Tan, Q., Wang, X., Shi, W., et al.: An anonymity vulnerability in Tor. IEEE/ACM
Trans. Netw. (TON) 30(6), 2574–2587 (2022)

13. Wang, M., Li, Y., Wang, X., et al.: 2ch-TCN: a website fingerprinting attack over
tor using 2-channel temporal convolutional networks. In: Proceedings of the 25th
IEEE Symposium on Computers and Communications (ISCC), pp. 1–7. IEEE
(2020)

14. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7794–7803. IEEE (2018)

15. Wang, Y., Xu, H., Guo, Z., et al.: SnWF: website fingerprinting attack by ensem-
bling the snapshot of deep learning. IEEE Trans. Inf. Forensics Secur. (TIFS) 17,
1214–1226 (2022)

16. Xie, G., Li, Q., Jiang, Y.: Self-attentive deep learning method for online traffic
classification and its interpretability. Comput. Netw. (CN) 196, 108267 (2021)

An Enhanced Privacy-Preserving
Hierarchical Federated Learning

Framework for IoV

Jiacheng Luo1, Xuhao Li1, Hao Wang1, Dongwan Lan1, Xiaofei Wu1,
Lu Zhou1(B), and Liming Fang1,2

1 Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China
lu.zhou@nuaa.edu.cn

2 Shenzhen Research Institute, Shenzhen 518000, China

Abstract. The intelligent Internet of Vehicles (IoV) can help allevi-
ate road security issues. However, increasing requirements for data pri-
vacy make it difficult for centralized machine learning paradigms to col-
lect sufficient training data, which hinders the development of intelli-
gent IoV. Federated Learning (FL) has emerged as a promising method
to overcome this gap. However, traditional FL may leak privacy when
encountering attacks such as the Membership Inference Attack. Existing
approaches to address this issue either bring significant additional over-
head or reduce the accuracy of FL, which are not suitable for the IoV.

Therefore, we present a novel hierarchical FL framework called
EPHFL. It leverages the Diffie-Hellman algorithm and pseudorandom
technology to enhance the privacy of FL while bringing little additional
overhead and not reducing the accuracy. Its hierarchical architecture
can effectively schedule devices in the IoV to accomplish FL and reduce
the communication overhead of each device, dramatically improving our
system’s scalability. Moreover, we design a method based on Blockchain
and Distributed Hash Table to detect malicious tampering and offset its
impact, further guaranteeing FL’s data integrity. Finally, we perform
experiments to demonstrate the performance of EPHFL. The results
show that our method does not reduce accuracy, and our computation
overhead on the user side is much lower than the classic baseline.

Keywords: Internet of vehicles · Federated learning · Data privacy ·
Blockchain · Data integrity

1 Introduction

As technologies such as 5G network and Machine Learning (ML) evolve rapidly,
the Internet of Vehicles (IoV) has become mature and intelligent. It can provide
drivers with valuable services like real-time warnings, high-precision electronic
maps, and autonomous driving, which improves drivers’ experience enormously.
The achievements above heavily rely on models trained on the abundant traffic

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 383–395, 2023.
https://doi.org/10.1007/978-981-99-7356-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_23&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_23

384 J. Luo et al.

data collected by modern vehicles. However, the data usually contains drivers’
personal information, such as identity, geographic location, and travel habits. As
society pays increasing attention to protecting data privacy, it is quite difficult
for conventional centralized machine learning to collect enough training data,
which hinders the development of intelligent IoV. Therefore, a method is urgently
needed to overcome this gap. As a way to jointly train ML models without
collecting users’ private data, Federated Learning (FL) [1] is one of the most
promising methods for the IoV to extract value from data and preserve its privacy
simultaneously. However, previous FL frameworks still have some issues that
need to be addressed.

The first critical issue is the privacy problem. Although FL is known for its
ability to protect privacy, recent works [2,3] have highlighted that the malicious
can implement attacks such as the Membership Inference Attack (MIA) to reveal
private information from model parameters. To address this issue, researchers
have proposed approaches based on Differential Privacy (DP) [4–6], Homomor-
phic Encryption (HE) [7–9], or secure multi-party computation (MPC) [10,11].
Nevertheless, these approaches either bring significant additional overhead or
reduce the accuracy of FL, making them unsuitable for real-world scenarios like
the IoV.

The second critical issue is efficiency. As the connection of the IoV is compar-
atively unreliable and slow and vehicles have limited computation resources, it
is crucial to reduce communication and computation overhead when designing a
privacy-preserving FL framework for the IoV. Nevertheless, the approaches men-
tioned above are not satisfactory. Furthermore, vehicles are unstable because of
frequent movements and dropouts, so the framework for the IoV needs to be
flexible enough to handle this unstableness.

Last but not least, data integrity is also vital in the FL scenario. Data
integrity refers to data’s accuracy, consistency, and reliability throughout its
entire lifecycle. During the process of FL, all data transmitted in the unpro-
tected network is at risk of malicious tampering, then what receivers get may
be inconsistent with what senders upload. It significantly reduces the effective-
ness and security of FL. Therefore, a method to prevent malicious tampering is
needed when designing an FL framework for the IoV.

To the best of our knowledge, previous works have not addressed this mixture
of constraints well, which is what motivates our work. We want to solve this
mixture of constraints and help IoV continue its intelligent development.

Contribution. Our main contribution is presenting an Enhanced Privacy-
preserving Hierarchical FL framework (EPHFL) for the IoV scenario after fully
considering its unique characteristics. It utilizes hierarchical architecture to effec-
tively schedule devices in the IoV to accomplish FL with enhanced privacy-
preserving ability. Moreover, it brings little additional cost and does not reduce
the accuracy of FL. Another contribution of our work is that we design a method
based on blockchain and Distributed Hash Table (DHT) to prevent the trans-
mitted data of FL from being tampered with. Finally, we perform sufficient

Privacy-Preserving Hierarchical Federated Learning Framework 385

experiments to demonstrate the performance of EPHFL in terms of accuracy
and efficiency and choose a classic secure aggregation protocol SecAgg [10] as
the baseline. The results show that EPHFL is much more cost-friendly on the
user side compared with SecAgg.

Related Work. Various privacy-preserving methods have been proposed to
address the privacy issue of FL, which can be divided into DP-based, HE-based,
and MPC-based.

DP-based methods add noises to participants’ uploaded parameters to con-
fuse attackers. The defect is that these noises cannot be revoked and will affect
the accuracy of FL. Geyer et al. [4] leveraged differential privacy to conceal
whether a participant is in the training process, and they found that DP’s influ-
ence on accuracy is nontrivial. Wei et al. [5] proposed a method based on local
differential privacy called UDP, which can provide different privacy protection
levels by adjusting the variances of the artificial noise. Jayaraman et al. [6] found
that mechanisms based on DP rarely offer satisfactory utility-privacy tradeoffs.
Therefore, the effect of DP-based methods is hardly satisfactory, and the tradeoff
between utility and privacy remains a problem to be solved.

HE allows computation directly to be performed on a ciphertext without
decrypting the ciphertext, and the decrypted result is the same as the result
calculated on the corresponding plaintext. Aono et al. [7] presented a privacy-
preserving deep learning system by using HE to protect gradient updates during
the training process of FL. Chen et al. [8] proposed FedHealth, a federated trans-
fer learning framework for wearable healthcare using homomorphic encryption,
which can obtain personalized healthcare without compromising privacy. How-
ever, integrating homomorphic encryption with FL brings significant communi-
cation and computational overhead. There are many researches tried to reduce
the overhead caused by HE. For example, Zhang et al. [9] presented BatchCrypt,
a framework that reduces the computational overhead by encoding a batch of
updates into a long integer and encrypting it at once. However, it still takes
more computation time compared to methods based on MPC or DP.

MPC is a cryptographic scheme which allows participants to collaboratively
compute functions so that each participant only knows the output value of the
function without revealing values from other participants. Bonawitz et al. [10]
proposed the first secure aggregation protocol SecAgg by exploiting key agree-
ment protocol to generate pairwise secret masks to protect individual model
updates. It allows users to drop out by utilizing the secret sharing protocol. How-
ever, it requires frequent negotiations between participants to protect privacy,
dramatically increasing computation and communication overhead and making
it difficult for users to drop out. So it is unsuitable for resource-constrained sit-
uations like the IoV. Kanagavelu et al. [11] also focused on integrating MPC
with FL to enhance the protection of privacy and tried to decrease overhead by
introducing a concept called aggregation committee, but this method did not
consider system’s robustness.

386 J. Luo et al.

2 Threat Model and Design Goal

In this paper, all participants of FL are considered to be honest-but-curious [10],
which means they will abide by the process of FL. However, it is still possible for
them to gather received data and try to infer private information by implement-
ing attacks such as MIA. In addition, outside malicious adversaries may intercept
and tamper with the intermediate uploads to interfere with the training effect.
Therefore, our goal is to design a lightweight FL framework suitable for IoV
scenario which can enhance FL’s privacy and detect malicious tampering.

3 Method

Figure 1 is the overview of our framework EPHFL. It comprises four modules:
the related organization, FL, blockchain, and DHT storage system.

Fig. 1. The overview of EPHFL.

The related organization is responsible for qualification review, task publi-
cation, and detecting malicious tampering. It also maintains the DHT storage
system. The FL module effectively schedules devices in the IoV to accomplish
FL and avoids excessive communication load on a single device by hierarchical
aggregation. Most importantly, we implement a self-designed lightweight secure
aggregation method in the FL module to enhance data privacy preservation with
little additional computation overhead. Blockchain and DHT are used to store
the intermediate results, including the perturbed parameters and some inciden-
tal information, thus ensuring all saved intermediate results are traceable and
immutable. Then if the uploaded intermediate results are at risk of being tam-
pered with, the related organization can implement the detection of malicious
tampering and offset the lousy impact of malicious tampering.

Privacy-Preserving Hierarchical Federated Learning Framework 387

Above four modules work collaboratively to accomplish FL while ensuring
data privacy and integrity.

3.1 Hierarchical Secure Federated Learning

As vehicles and RSUs are equipped with many sensors and units, they can
collect traffic data and compute. To maximize the utilization of resources, in
EPHFL, vehicles and RSUs both serve as trainer , which is responsible for
collecting traffic data and training local models. In addition, RSUs act as low-
aggregator , aggregating parameters uploaded by the nearby vehicles. BSs act
as high-aggregator , aggregating parameters uploaded by the nearby RSUs.
Finally, the server aggregates parameters uploaded by all BSs.

There is one extra step in our settings before a trainer can join EPHFL.
Trainers must request permissions from the related organization. Suppose the
trainer meets the organization’s basic requirements, such as enough comput-
ing ability and no malicious records. In that case, it will be qualified to join
EPHFL, and the organization will give it a unique ID, the scheduled prime p,
and the corresponding primitive root g, which are useful in the generation of the
pseudorandom parameters. Hence, we can get honest-but-curious participants
mentioned in Sect. 2.

Considering vehicles have limited resources, we design a lightweight method
based on the Diffie-Hellman algorithm and pseudorandom technology to enhance
privacy by perturbing local parameters before uploading. First, trainers negoti-
ate with the server to securely generate the shared secret key by Diffie-Hellman.
Then, each trainer uses the shared key as the random seed to generate the pseu-
dorandom parameters, which are the same size as the model parameters. Trainers
can perturb model parameters by adding the pseudorandom parameters, and the
server can recover the final aggregated parameters by subtracting them all at
once. The detailed process of each component will be described in Workflow
of Each Participant.

As the transmitted parameters are perturbed, adversaries cannot extract pri-
vate information from them. Our solution supports hierarchical aggregation on
perturbed parameters, so each intermediate upload is one aggregated model’s
parameters with some related information. It dramatically reduces the commu-
nication load of each device. In addition, our management of devices is flexible
enough to handle the unstableness of vehicles. Vehicles can freely move: if they
move to a new location, they can upload their results to the nearest RSU; Vehi-
cles can drop out during the training process and have no negative impact on
our system: if they terminate the task, they can quit at any time because RSUs
just aggregate actual received parameters when the time arrives.

Workflow of Each Component
Period 0 (Initialization)
Vehicles vi:

388 J. Luo et al.

-Submit a request to organization for the qualification of participation.
RSU rj:

-Submit a request to organization for the qualification of participating.
Organization:

-Vet requests from trainers. If they meet requirements, send them each
a unique ID, prime p and the corresponding primitive root g.

-Post the FL task to the server.
Server:

-Initialize the original model’s parameters ω0.
Period 1 (Local Training and Perturbing)
Server:

-In the t-th round, broadcast a request to all trainers. Start a new round
of local training if the number of trainers responding to it exceeds K, where
K is the preset minimal number of participating vehicles. Otherwise, pause
for a while and repeat this step.

-Broadcast ωt−1 to all participating trainers, which are denoted as col-
lection T .

-Generate a local private integer x. Compute server’s public key of this
round SPKt = gx mod p, and send it to trainers in collection T .

-Generate shared secret keys of trainers in T . Specifically, get vehicle
vi’s public key V PKt

i and calculate the shared secret key with vi: V SKt
i =

V PKt
i
x

mod p, and store it with vi’s ID; get RSU rj ’s public key RPKt
j

and calculate the shared secret key with rj : RSKt
j = RPKt

j
x

mod p, and
store it with rj ’s ID.
Vehicles vi:

-Get ωt−1 from the server.
-Generate a local private integer y. Compute V PKt

i = gy mod p. Send
V PKt

i and its ID to the server.
-Get SPKt to generate the shared secret key with the server V SKt

i =
SPKty

mod p.
-Train a new local model based on ωt−1 and get the corresponding

parameters ωt
vi

.
-Generate a pseudorandom parameters nvi

by using V SKt
i as random

seed, and obtain the perturbed parameters ω̂t
vi

= ωt
vi

+ nvi
.

-Send ω̂t
vi

, its ID and size of its dataset |Dvi
| to the nearest RSU and

wait for the next round of local training.
RSU rj:

-Get ωt−1 from the server.
-Generate a local private integer z. Compute RPKt

j = gz mod p. Send
RPKt

j and its ID to the server.
-Get SPKt to generate the shared secret key with the server RSKt

j =
SPKtz

mod p.

Privacy-Preserving Hierarchical Federated Learning Framework 389

-Train a new local model based on ωt−1 and get the corresponding
parameters ωt

rj
.

-Generate a pseudorandom parameters nrj
by using RSKt

j as random
seed, and obtain the perturbed parameters ω̂t

rj
= ωt

rj
+ nrj

.
Period 2 (Aggregation)
RSU rj:

-Get uploads from nearby vehicles, which is denoted as collection Vj .
-Aggregate all received parameters with its own perturbed parameters

ω̂t
rj

, the aggregated parameters ωt
rj

=
|Drj |ω̂t

rj
+

∑

vi∈Vj

|Dvi |ω̂t
vi

|Drj |+ ∑

vi∈Vj

|Dvi | .

-Send ωt
rj

, its ID, its dataset size
∣
∣Drj

∣
∣, and ID and dataset size of

vehicles in Vj to the nearest BS and wait for the next round of local training.
BS bk:

-Get uploads from nearby RSUs, which is denoted as collection Rk.

-Calculate
∣
∣
∣D′

rj

∣
∣
∣ =

∣
∣Drj

∣
∣ +

∑

vi∈Vj

|Dvi
|, it is the total dataset size of rj

and vehicles in Vj .
-Aggregate all received parameters and obtain the aggregated parameters

ωt
bk

=

∑

rj∈Rk

∣
∣
∣D′

rj

∣
∣
∣ωt

rj

∑

rj∈Rk

∣
∣
∣D′

rj

∣
∣
∣

.

-Send ωt
bk

, all IDs and dataset sizes from RSUs in Rk to the server and
wait for the next round.
Server:

-Get uploads from all BSs.

-Calculate |Dbk | =
∑

rj∈Rk

∣
∣
∣D′

rj

∣
∣
∣, it is the total dataset size of RSUs in Rk.

-Aggregate all received parameters and obtain the aggregated parameters

ωt =
∑|Dbk |ωt

bk∑|Dbk | .

Period 3 (Recovering parameters)
Server:

-According to all received IDs, record all trainers finishing local training
as collection T ′.

-For vi and rj in T ′, use the shared keys stored in Period 1 as random
seeds to generate the pseudorandom parameters nvi

or nrj
.

-Calculate NOISE =

∑

vi∈T ′
|Dvi |nvi

+
∑

rj∈T ′
|Drj |nrj

∑

vi∈T ′
|Dvi |+ ∑

rj∈T ′
|Drj | , it is derived from the

hierarchical aggregation process.
-Recover ωt and obtain the new global parameters ωt = ωt − NOISE.

390 J. Luo et al.

-Test the accuracy on testing dataset DT , which has removed privacy
information. If the accuracy is satisfactory or the deadline arrives, terminate
the process. Otherwise, go to Period 1 and repeat.

3.2 Detection of Malicious Tampering

Secure Storage System. All nodes in the blockchain have an identical data
record which causes a tremendous waste of storage resources, so storing data in
the blockchain is costly. For example, storing a kilobyte in Ethereum would take
640,000 units of gas, translating to a cost of 0.032 ETH. Based on the current
value of Ether (1752.91 USD/ETH), that is equivalent to 56.09 USD. Therefore,
we combine blockchain with DHT technology to reduce the storage overhead of
blockchain and economic costs.

As shown in Fig. 1, blockchain and DHT interact with the FL module. Each
trainer first sends the intermediate results, including the perturbed parameters,
ID, and dataset size, to the DHT storage system and gets a hash address gen-
erated by the DHT. After that, each trainer updates the intermediate results
by adding the hash address before uploading it. The server is responsible for
packaging all hash addresses and IDs of trainers in T ′ and sending them to the
blockchain. Compared with the storage cost of model parameters, the cost of
hash addresses is much smaller. Besides, as the hash address is generated based
on the content itself, once the content changes, the new content gets a differ-
ent address. Due to the immutability of the blockchain, the address cannot be
modified after being uploaded to the blockchain. By combining the above two
features, the saved intermediate results are immutable and traceable.

Detection. The saved intermediate results can be ensured immutable and trace-
able by using the secure storage system. However, the uploaded intermediate
results are still at risk of being tampered with by outside malicious adversaries.
Therefore, we design a method to detect whether the uploaded intermediate
results have been tampered with. Specifically, the related organization can decide
whether to detect malicious tampering at the end of each round. If it implements
the detection, it will first get all data from the DHT storage system according
to hash addresses in the blockchain; Then, it will get ω′t by aggregating all per-
turbed parameters of trainers; Finally, it will compare ω′t with ωt to see if they
are equal. The equivalency between ω′t and ωt illustrates that the intermediate
results transmitted in the unprotected network have not been tampered with.
On the contrary, if ω′t is not equal to ωt, the organization will calculate NOISE
and subtract it from ω′t to get the correct global parameters. Then it will send
the correct global parameters to the server to fix the error. Thus, we can ensure
the consistency of data in EPHFL. In addition, as all participants in EPHFL are
honest-but-curious, the accuracy and reliability of data are also ensured. Hence,
we can guarantee the integrity of data transmitted in our EPHFL.

Privacy-Preserving Hierarchical Federated Learning Framework 391

3.3 Security Analysis

Trainers perturb model parameters before uploading, so the uploaded parameters
are meaningless to the curious participants. If the curious want to implement
MIA to get private information, they must first disclose the shared secret key. In
other words, they must crack the Diffie-Hellman algorithm, which means solving
the Discrete Logarithm Problem (DLP). It has been proven in the cryptographic
community that it is quite challenging to solve the DLP. In addition, trainers
update their shared keys with the server in every round. Therefore, in the most
extreme case, even if the curious take much effort to disclose a shared key, they
can just get little outdated information about one vehicle in a certain round and
need to repeat the same work if they want to get more information. So what the
curious get is not proportional to what they pay. Therefore, the privacy of FL
is truly enhanced a lot in EPHFL.

As all participants are honest-but-curious, they will keep the intermediate
results they upload real. So we can aggregate the stored data to get the correct
perturbed global parameters. Then we can detect whether malicious tampering
exists by comparing it with what the server gets. So we can truly protect FL
from being tampered with.

4 Experimental Results

4.1 Experimental Settings

The experiments are conducted on a macOS Ventura 13.2.1 equipped with Intel
i7 CPU (2.6 GHz), AMD Radeon Pro 5300 M GPU, and 16 GB RAM. We
select Hyperledger Fabric as our blockchain setting and build an instantiation,
of which the blockchain extends from Hyperledger Fabric V2.4.6. We simulate
all components of the FL module to accomplish FL with Pytorch. Since our
approach is not aimed at improving the accuracy of FL, the models in our
experiments are not optimized for learning rate and momentum. The optimizer
we use is SGD where the η is 0.01, and the momentum is 0.5. We choose MNIST
and CIFAR-10 as datasets, which are also used in FedAvg [1], a classic FL
algorithm. We split each dataset into 100 sub-datasets and distribute them to
trainers. Besides, all programs are executed in a single thread without distributed
acceleration to facilitate comparison and analysis.

4.2 Results

Accuracy. Since the perturbed parameters of EPHFL can be recovered by
subtracting all pseudorandom parameters, it should not influence the model’s
accuracy. To verify this fact, we compare the accuracy of EPHFL with FedAvg,
which has no privacy-preserving operation. As vehicles have limited computing
resources, they can not train complex models. Hence, we build two lightweight
networks for MNIST and CIFAR-10 separately to better simulate real deploy-
ment scenarios, which we refer to as CNNMnist and CNNCifar. Figure 2 shows

392 J. Luo et al.

the accuracy of EPHFL and FedAvg on MNIST and CIFAR-10 with 100 trainers.
Two accuracy curves almost wholly overlap with each other. In the end, EPHFL
and FedAvg differ in accuracy by 0.01% on MNIST and 0.8% on CIFAR-10.
Therefore our approach does not reduce the accuracy of FL.

Computation Overhead. We conduct experiments to analyze how possible
factors affect the computation overhead of trainers and validate the efficiency
of EPHFL under different conditions. We select four classic models to analyze
the influence of the size of model parameters, in addition to our CNNMnist
and CNNCifar. The size of these models’ parameters in ascending order are 94
KB, 254 KB, 3686 KB, 7372 KB, 44953 KB, and 82329 KB. To better illustrate
the efficiency of EPHFL, our experiments solely focus on the cost of trainers
protecting privacy while excluding the cost of training neural networks.

Fig. 2. Accuracy of EPHFL and FedAvg. (a) On MNIST (b) On CIFAR-10

Vehicles’ tasks involve generating a shared key and perturbing local model
parameters. The size of model parameters and the number of participating vehi-
cles may affect the computation overhead of each vehicle. As shown in Fig. 3a,
as the size of model parameters increases, the time for vehicles to perturb model
parameters also increases, while the time to generate a shared key remains unaf-
fected. As shown in Fig. 3b, the total running time of each vehicle is almost
unaffected by the number of participating vehicles. Therefore, a large number of
vehicles participating in the training will not lead to additional computational
overhead on each vehicle, which contributes to the scalability of our EPHFL.
Moreover, even when the size of model parameters reaches 82329 KB, the total
running time of each vehicle is only about 0.7 s, which indicates that our EPHFL
imposes a little computational burden on vehicles.

RSUs’ tasks involve generating a shared key, perturbing local model param-
eters, and aggregating model parameters. We speculate that the size of model
parameters and the number of vehicles uploading in the signal range may affect
the computation overhead of each RSU. As shown in Fig. 4a, as the size of

Privacy-Preserving Hierarchical Federated Learning Framework 393

Fig. 3. Computation overhead of each vehicle. (a) 50 participating vehicles with dif-
ferent size of parameters (b) 254 KB parameters with different number of vehicles

model parameters increases, the time for RSUs to perturb and aggregate model
parameters increases, but the time to generate a shared key remains unaffected.
Moreover, as shown in Fig. 4b, only the aggregation time of each RSU increases
with the number of vehicles uploading in the signal range slowly. Therefore, a
large number of vehicles uploading in the signal range will not lead to much addi-
tional computational overhead on each RSU, which contributes to the scalability
of our EPHFL. Moreover, even when the size of model parameters reaches 82329
KB, the total running time of each RSU is only about 2.4 s, which indicates that
our EPHFL imposes a limited computational burden on RSUs.

Fig. 4. Computation overhead of each RSU. (a) 50 vehicles in range with different size
of parameters (b) 254 KB parameters with different number of vehicles in range

In conclusion, our EPHFL imposes a little additional computational burden
on trainers. The number of participating vehicles does not influence the compu-
tational burden on vehicles and has little influence on the computational burden
on RSUs, which means our system has strong scalability.

Comparison with Prior Work. To demonstrate the efficiency of EPHFL, we
further compare it with the classic baseline SecAgg in terms of the computational

394 J. Luo et al.

Fig. 5. Comparison between EPHFL and SecAgg. (a) 50 participating vehicles with
different size of parameters (b) 254 KB parameters with different number of partici-
pating vehicles

overhead imposed on a single vehicle. As shown in Fig. 5, the overhead of EPHFL
is much smaller than that of SecAgg. The reason is that, for SecAgg, each user
needs to negotiate with each other to generate the shared key. Hence, the time
complexity of SecAgg is O(n2). But for EPHFL, each user only needs to negotiate
with the server to generate the shared key. Hence, the time complexity of EPHFL
is O(1) on the user side. So the number of participating vehicles does not affect
our cost of vehicles, which significantly contributes to the scalability of EPHFL.

Acknowledgment. This work was supported by the National Key R&D Pro-
gram of China (2021YF B2700503), the National Natural Science Foundation of
China (62071222, U20A2 0176), the Natural Science Foundation of Jiangsu Province
(BK20200418, BE202 0106), the Guangdong Basic and Applied Basic Research Foun-
dation (2021A1515 012650), and the Shenzhen Science and Technology Program
(JCYJ20210324134 810028, JCYJ20210324134408023).

References

1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

2. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, meth-
ods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

3. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 691–706. IEEE (2019)

4. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

5. Wei, K., et al.: User-level privacy-preserving federated learning: analysis and per-
formance optimization. IEEE Trans. Mob. Comput. 21(9), 3388–3401 (2021)

6. Jayaraman, B., Evans, D.: When relaxations go bad: “differentially-private”
machine learning. arXiv preprint arXiv:1902.08874 (2019)

7. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5),
1333–1345 (2017)

http://arxiv.org/abs/1712.07557
http://arxiv.org/abs/1902.08874

Privacy-Preserving Hierarchical Federated Learning Framework 395

8. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: Fedhealth: a federated transfer
learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020)

9. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: Batchcrypt: efficient homo-
morphic encryption for cross-silo federated learning. In: Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC 2020) (2020)

10. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191 (2017)

11. Kanagavelu, R., et al.: Two-phase multi-party computation enabled privacy-
preserving federated learning. In: 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), pp. 410–419. IEEE (2020)

Security and Privacy of AI

Revisiting the Deep Learning-Based
Eavesdropping Attacks via Facial

Dynamics from VR Motion Sensors

Soohyeon Choi1(B) , Manar Mohaisen2 , Daehun Nyang3 ,
and David Mohaisen1

1 University of Central Florida, Orlando, FL 32816, USA
{soohyeon.choi,david.mohaisen}@ucf.edu

2 Northeastern Illinois University, Chicago, IL 60625, USA
m-mohaisen@neiu.edu

3 Ewha Womans University, Seoul, South Korea
nyang@ewha.ac.kr

Abstract. Virtual Reality (VR) Head Mounted Display’s (HMD) are
equipped with a range of sensors, which have been recently exploited to
infer users’ sensitive and private information through a deep learning-
based eavesdropping attack that leverage facial dynamics. Mindful that
the eavesdropping attack employs facial dynamics, which vary across race
and gender, we evaluate the robustness of such attack under various users
characteristics. We base our evaluation on the existing anthropological
research that shows statistically significant differences for face width,
length, and lip length among ethnic/racial groups, suggesting that a
“challenger” with similar features (ethnicity/race and gender) to a victim
might be able to more easily deceive the eavesdropper than when they
have different features. By replicating the classification model in [17]
and examining its accuracy with six different scenarios that vary the
victim and attacker based on their ethnicity/race and gender, we show
that our adversary is able to impersonate a user with the same ethnic-
ity/race and gender more accurately, with an average accuracy difference
between the original and adversarial setting being the lowest among all
scenarios. Similarly, an adversary with different ethnicity/race and gen-
der than the victim had the highest average accuracy difference, empha-
sizing an inherent bias in the fundamentals of the approach through
impersonation.

Keywords: Robustness · User classification · Deep learning · VR

1 Introduction

Advances in human-computer interfaces have given rise to Virtual Reality (VR),
enabled by head mounted displays (HMDs) to bring users to different virtual
environments [16]. VR allows users to play 3D immersive games in virtual worlds,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 399–417, 2023.
https://doi.org/10.1007/978-981-99-7356-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_24&domain=pdf
http://orcid.org/0009-0002-1252-2263
http://orcid.org/0000-0002-7270-0933
http://orcid.org/0000-0001-5183-891X
http://orcid.org/0000-0003-3227-2505
https://doi.org/10.1007/978-981-99-7356-9_24

400 S. Choi et al.

Fig. 1. An illustration of the user classification via VR HMD’s built-in motion sensors.

tour worldwide attractions while in the convenience of their homes, and commu-
nicate with friends virtually. Moreover, VR has been intensively employed for
education and medical applications [12,20] with far reaching impacts, making VR
one of the most promising technologies with upward market size trajectory [21].

To facilitate VR use, voice commands are heavily utilized to allow users to use
the VR HMDs without handheld controllers [13,19], thus extending their appli-
cations to various settings. However, the use of voice as a main input/output (IO)
mechanism allows a range of security and privacy risks [10,30,32]. For instance,
users may enter private information, such as credit card numbers, home address,
or passwords via the voice user interface, allowing adversaries to eavesdrop on
these sensitive attributes and reuse them maliciously [30,32]. Vendors may collect
some voice samples for identification purposes, although stringent policies are
employed for obtaining voice command data by the vendors, including explicit
permissions to use microphones [2,7].

For a convenient use of HMDs, no permissions are required for accessing the
HMDs’ built-in motion sensors and data [3]. The VR HMDs make use of the
motion sensor data to build more realistic virtual environments and track users’
movements, thus the VR HMD collects the motion sensor data continuously in
the background during the actual device use. Since adversaries do not need to
get any permission, they can intercept motion sensor data easily and utilize them
to infer users’ private information.

As a case in point, Shi et al. [17] proposed Face-Mic, an eavesdropping attack
to infer private and sensitive information by exploiting the facial dynamics asso-
ciated with human live speech measured from the built-in motion sensors in
HMD. They collected 3D acceleration, speed, and displacement data from the
accelerometer and gyroscope sensors in the HMD while a user is speaking, con-
verted the collected data into the time-frequency domain as a spectrogram by
applying the Short-time Fourier transform (STFT) [23], and derived the user’s
gender, identity, and speech contents using a deep learning-based framework
trained on the raw motion sensor data and spectrograms. In this paper, we
examine the robustness of Face-Mic under user variation.

This work is motivated by the existing literature in the anthropology
domain [31,33] which establishes those differences, encouraging us to challenge
the fundamental assumptions of Face-Mic through rigorous evaluation. Namely,

Revisiting the Deep Learning-Based Eavesdropping Attacks 401

Zhuang et al. [31] showed statistically significant differences for face width,
length, and lip length among ethnicity/racial groups of their subjects. In a
more recent study, Zhuang et al. [33] found the facial anthropometric differ-
ences between the two genders (male/female), for all ethnicity/racial groups, to
be significant. Based on these findings, we hypothesize that an attacker with the
same ethnicity/race and gender with a victim, such an attacker might be able to
relatively easily deceive the classification model than when they are different (i.e.,
with different features) given the shallow and indirect features used in Face-Mic.
To test this hypothesis, we re-implemented Face-Mic by following the descrip-
tion in [17] and collected motion sensor readings, including 3D accelerometer,
speed, and displacement data with an mass-market HMD (Oculus Quest 2) and
converted the accelerometer data into spectrogram in time-frequency domain.
We then trained/tested the replicated deep learning-based classification model
with the raw motion sensor data and spectrograms to classify users’ identities
as shown in Fig. 1.

Findings Through Replication. Our initial results from the replicated Face-
Mic model were different from the results in Shi et al.’s paper [17]—We requested
the code of Shi et al. multiple times, although until the moment of writing this
paper we did not receive any response. For instance, the accuracies from our
model were less than 55% while Face-Mic achieved the accuracy over 90% for user
classification. We hypothesized that this problem is caused by two reasons. First,
our spectrograms are different from theirs, since we were not able to acquire the
same motion sensor data from Shi et al.’s work and used our own data to conduct
this experiment. The spectrograms from our data have different frequency ranges
with spectrogram from Shi et al.’s work, preventing the use of low-pass and high-
pass filtering to extract only facial movement related data from the motion sensor
data since the cut-off frequency was higher than our frequency.

Second, Shi et al.’s model has two CNNs for two different types of data,
one for the raw motion sensor data with three different channels for x, y, z
axes and the other for spectrograms. However, the use of three raw data (3D
accelerometer, speed, and displacement) modalities in one CNN model might
cause confusion as they have different weights. Thus, we changed the classifi-
cation model’s structure by adding two more CNNs. We then fed the raw data
to three CNNs individually with three different channels to reduce confusions,
achieving comparable results.

We conducted experiments to examine the robustness of the classification
under variations of users’ ethnicity/race and gender. We selected one victim and
one attacker differently based on their ethnicity/race and gender to create the
original and adversarial dataset and we measured the impact of the features to
the user classification model.

Contributions. ① We replicated Face-Mic by following the description from
Shi et al.’s paper [17] and collected motion sensor data. Nevertheless, our initial
results were different from their results. Therefore, we added two more CNN
models to reduce confusion from a CNN model for three raw motion sensor

402 S. Choi et al.

Fig. 2. An illustration of speech-related facial muscles, bone-borne, and air-borne
vibrations.

data and minimized noises through the data selection process. ② We conducted
the robustness measurement of the classification model under variations of the
user’s ethnicity/race and gender. ③ We experimented with the user classification
accuracy with six different scenarios to examine the impact of the user’s gender
and ethnicity/race.

Organization. This paper consists of the following sections, in order: prelimi-
naries (Sect. 2), related work (Sect. 3), attack (Sect. 4), model (Sect. 5), dataset
(Sect. 6), experimental setup (Sect. 7), results (Sect. 8), and concluding remarks
(Sect. 9).

2 Preliminaries

In their seminal work, Shi et al. [17] captured the facial dynamics through the
built-in motion sensors in a VR HMD and utilized them to train a deep learning-
based framework to realize an eavesdropping attack and infer users’ sensitive
information such as gender, identity, etc. The facial dynamics are categorized
into three types: speech-related facial movements, bone-borne vibrations, and
airborne vibrations. We augment the description of those types with the facial
anthropometric differences [31,33].

2.1 Speech-Related Facial Movement Data

Humans have several muscles on their faces and some of them firmly partici-
pate in speech [17,27]. During speech production, human facial muscles contract
and relax regularly. These movements encode both speech information, such as
phoneme, tempo, and volume, and speaker’s bio-metric features such as speaker’s
behaviors, muscle movement, etc. The facial muscles are categorized into two
groups: upper group and perioral (lips) group as shown in Fig. 2a. The upper
group is located around the forehead, eyes, and temporal region and contains
frontalis, corrugator, and etc. Since the upper muscles are directly contacted with
the face-mounted VR headset, their contraction and relaxation are propagated
straightforwardly to the headset. When the user is speaking, the headset will be

Revisiting the Deep Learning-Based Eavesdropping Attacks 403

moved, accelerated, and rotated by the contraction and relaxation. The perio-
ral group are muscles surrounding the lips and contain anguli oris, zygomatic
major/minor, etc. They are flexible and can pull up or down, on the middle,
or either side. Moreover, there is the orbicularis oris, a sphincter-like muscle
that wraps around the lips to constrict the labial opening. As such, humans can
make different sounds by moving them differently. For instance, the lip rounding
for the vowel [o] differs significantly from consonantal lip constriction in [p] or
[f] that does not include protrusion. This group is not directly contacted with
the headset, although their contraction and relaxation can be propagated to the
headset indirectly through the facial tissues.

2.2 Bone-Borne and Air-Borne Vibrations

In the larynx (voice box), the vocal cords (also known as vocal folds) reside, and
include two bands of smooth muscle tissue. To produce the sounds of voice, the
vocal cords vibrate and air passes through them from the lungs [24]. The vocal
tract filters and modulates the vibrations and air to produce human-recognizable
speech. As shown in Fig. 2b, these vibrations are propagated through the cranial
bones, which are bones that surround and protect the brain and captured by
the built-in motion sensors in a VR HMD. The vibrations from the vocal folds
for the voice production are unique bio-metric features for each speaker. Thus,
the captured vibration data via motion sensors can be deeply correlated with
each speaker. The air passed from the vocal cords makes vibrations, called the
air-borne vibration. These vibrations can also be captured by the motion sensors
in the HMD at a close distance [18,22].

2.3 Facial Dynamics from Motion Sensors

Facial behavior and movement are well-known to benefit perception of each user’s
identity [9]. In particular, facial dynamics can be an important clue for facial
trait estimation such as gender and user identity classification [14].

HMDs (e.g., Oculus Quest 1 & 2, HTC VIVE Pro 2, etc.) have several built-
in motion sensors, including a three-axis accelerometer and gyroscope to track
users movements and build more realistic virtual environments. Since the HMD
is face-mounted and a user produces facial movements and vibrations during
speech, the HMD is moved, rotated, and accelerated by facial muscles. Thus,
these sensors can be used to capture the user’s facial movements and reconstruct
the facial dynamics.

In Shi et al. [17], the authors collected raw accelerometer and gyroscope data
from the built-in motion sensor in HMDs while a user is speaking and analyzed
them in time- and time-frequency domain to reconstruct facial dynamics. From
the analysis, they found that facial movements and born-/air-bone vibrations
captured from the motion sensor have different frequency ranges. For instance,
the facial movements impact the low-frequency. On the other hand, born-/air-
bone vibrations influence the high-frequency. Moreover, they confirmed the exis-
tence of content-related patterns for each user by analyzing 3D accelerometer,

404 S. Choi et al.

speed, and displacement data. Consequently, they utilized these findings to sep-
arate facial movements, body movements, and vibrations from the motion sensor
data and train deep learning-based eavesdropping models to classify user’s gen-
der, identity and even contents of speech.

2.4 Facial Anthropometric Differences

Zhuang et al. [33] examined the face shape and size difference among gender, eth-
nicity/race, and age group of 3,997 subjects. They divided the subjects into two
groups (male/female), four racial/ethnic groups (Caucasian, African-Americans,
Hispanic, and other (mainly Asian)), and three age groups (18–29, 30–44, and
45–66). They measured the subjects’ height, weight, neck circumference, and
18 facial dimensions (e.g., face width, length, nose breadth, etc.) by employ-
ing traditional anthropometric techniques [25]. They pointed to the skeletal and
skin points located on the face and calculated the linear distance between land-
marks and performed a multivariate analysis of the data by applying Principal
Component Analysis (PCA) and revealed that the subjects’ genders significantly
contribute to the facial anthropometric differences. The race/ethnicity was the
second factor impacting face size and shape features.

Our Work. In this study, we utilized this finding to measure the robustness of
a deep learning-based eavesdropping attack under varying user’s ethnicity/race
and gender with a VR HMD. Since the subjects in the same ethnicity/race group
have similar face shape and features than the subjects from different groups,
we hypothesize that if an attacker has the same ethnicity/race, gender, and
other similar features with a victim, then the attacker would relatively easily
deceive the user classification model than when they have different features.
Hence, we collected the motion sensor data from two genders (male/female) and
two different ethnicity/race groups (Asian and Middle Eastern) and tested the
accuracy of the classification model under six different scenarios to examine the
impact of the user’s ethnicity/race and gender on the user classification task.

3 Related Works

Motion sensor data obtained from HMDs contains a lot of bio-metric information
of the user (e.g., behavior, face shape, facial muscles properties, etc.). Moreover,
many applications installed on VR HMDs can measure and collect this data with-
out users’ permission, making it a target for attacks [10,17,30,32]. Michalevsky
et al. [30] demonstrated that data from motion sensors in modern smartphones
can be abused to identify speakers’ information and even parts of speech. They
measured the acoustic vibrations produced by gyroscope sensors and analyzed
this data using signal processing methods [28] and machine learning techniques
to reveal private information.

Ba et al. [32] proposed a learning-based smartphone eavesdropping attack
using the built-in accelerometer, where they were able to recognize and recon-
struct speech signals generated by the smartphone speakers using the spectro-
gram of acceleration signals. Their system uses an adaptive optimization on deep

Revisiting the Deep Learning-Based Eavesdropping Attacks 405

neural networks (e.g., DenseNet) to achieve robust recognition and reconstruc-
tion performance.

Face-Mic. The central related work to ours is Face-Mic, due to Shi et al. [17].
Face-Mic is an eavesdropping attack on AR/VR HMDs by exploiting the built-in
accelerometer and gyroscope’s response to users speech and facial movement. In
particular, they asked users to wear AR/VR HMDs, speak several words that
were then collected as “raw data” in the form of 3D accelerometer, speed, and
displacement readings from the built-in motion sensors. Then, they trained deep
neural networks (e.g., convolutional neural networks) with users’ facial dynamics
data in the time- and time-frequency domain to classify contents of speech, users’
identity, and gender.

Data Processing. Several steps are followed to process the data obtained from
the sensors to realize Face-Mic. First, the accelerometer data is converted into
spectrograms in the time-frequency domain by applying the STFT [23]. The
spectrograms are then analyzed to examine the effect of the facial movements,
body movements, bone-borne vibrations, and air-borne vibrations. From the
spectrogram analysis, it is observed that the speech associated with facial move-
ments impact the low frequency (e.g., <100 Hz) of the motion sensor data. On
the other hand, it was found that the bone-borne vibrations are stronger than
the facial movements and influence the high frequency (e.g., >100 Hz) of the
data. Moreover, the air-borne vibrations are shown to have similar features and
patterns with the bone-borne vibrations, although they are weaker.

Second, since the user produces unpredictable body movements while using
the AR/VR HMDs and the associated body movement data makes the classi-
fication tasks more challenging. As such, the body movement data needs to be
eliminated. Thereby, a Body Motion Artifact Removal (BMAR) approach was
developed based on the signal source separation techniques [15], originally used
for separating the mixed audios of multiple speakers in audio recordings. By for-
mulating the signal source separation as a regression problem, BMAR was devel-
oped as a deep regression model that takes the spectrogram of the accelerom-
eter/gyroscope data as an input and estimates a mask M̂s(t, f) that regener-
ates the spectrograms of data from given the spectrogram X(t, f). Namely,
X̂(t, f) = M̂s(t, f) ◦ X(t, f), where ◦ is the element-wise product of the two
operands. BMAR is applied to the separate body motion artifacts obtained from
the collected data to extract only the sensor readings of the facial movements
related data.

Feature Extraction and Information Derivation. Since the bone-borne
vibrations impact the high frequency while the facial movements stay at the
low frequency, low-pass and high-pass filters are utilized to extract vibrations
and facial movements respectively from given the denoised data with the cut-off
frequency of 100 Hz. Afterwards, the accelerometer and gyroscope data of the
bone-borne vibrations are converted into spectrograms in the time-frequency
domain by STFT due to their high-frequency ranges and used as features. The
accelerometer data of the facial movements is used to calculate 3D speed and

406 S. Choi et al.

displacement of the AR/VR HMDs by the first- and second-order numerical inte-
gration methods. These data can characterize the geometric kinematics model
of facial muscle movements of each user. Thus, they are also used as features.

Subsequently, a CNN-based deep learning-based framework is used to per-
form the sensitive information derivation (Face-Mic). Namely, the authors uti-
lized two types of data: raw data (3D accelerometer, speed, and displacement)
and spectrograms. Since the properties and dimensions of the raw data and spec-
trograms are different, they are fed to two different CNN models to process and
analyze the features of facial dynamics.

The raw data CNN consists of one batch normalization layer, three con-
volutional layers with 2D kernels, and one fully connected layer. The x, y, z
axes of the raw data, however, are considered as three separate channels of the
CNN. The spectrograms CNN consists of one batch normalization layer, two
convolutional layers with 2D kernels, two max-pooling layers between the 2D
convolutional layers, and one fully connected layer. Since the spectrogram size
is large, two max-pooling layers are used to reduce the dimensionality of spec-
trograms. Outputs from the first and second CNN are concatenated by one fully
connected layer. The feature representations are then mapped into probabilities
over different classes using two fully-connected layers and SoftMax.

4 Attack Overview

Eavesdropping Attack with VR HMDs. Since the built-in motion sensors
in HMDs do not require any permission for access and the motion sensor data
contains a lot of bio-metric information, privacy can be easily breached. Adver-
saries may collect users’ motion sensor data without their permission, e.g., while
the user is playing virtual games, shopping in a virtual shopping mall, web-
surfing, watching videos, or having a conversation with friends. Afterwards, the
adversaries may analyze the data to reveal the users’ sensitive private infor-
mation, including gender, identity, and contents, and use them maliciously. For
instance, the users’ identity and gender can be exploited for advertising based
on web search histories, game/video preference, etc. [26]. Moreover, the contents
of speech can be used to leak the user’s important information such as credit
card number, social security number, passwords, etc.

Capabilities of the Adversary. We assume that the adversary has a mali-
cious application to collect the motion sensor data and upload it on a public
app store to spread to innocent users. The application is installed on victims’
HMD and pretends to be a benign application but collects motion sensor data
in the background. Since accessing the motion sensor data does not require any
permission from the victim, the adversary can collect the data without the vic-
tim’s permission and even any notice. For Oculus Quest 2, which is the device
that we used to conduct this experiment, we developed a VR application to col-
lect motion sensor data by employing Oculus SDK [4] and Unity scripting API
such as deviceVelocity, devicePosition, deviceAccelration, and deviceRotation

Revisiting the Deep Learning-Based Eavesdropping Attacks 407

from CommonUsages class [6]. Then, we asked the subjects to wear the HMD
and speak several words to collect motion sensor data while this application is
running.

Attack Scenario. We considered a scenario to examine the robustness of Face-
Mic model under variations of users’ ethnicity/race and gender. First, we assume
the adversary obtained the victim’s motion sensor data, labels, and private infor-
mation (e.g., gender, ethnicity/race, etc.) through a malicious application on the
VR HMD and/or other media for a training phase, in a way similar to original
design of Face-Mic. Thus, the adversary can correlate the motion sensor data
and labels to train a deep learning model for user classification and prepare data
to deceive the model. For instance, if the victim’s gender is male and ethnic-
ity/race is Asian, the attacker is able to collect other users’ data whose gender is
male and ethnicity/race is Asian through the malicious application and/or other
media. Thus, the attacker can pretend to be the victim using the exploited data
and utilizing the matching in our subsequent results.

5 Proposed Model

For the user classification task, Face-Mic uses two different CNNs since the two
types of data have different properties and dimensions; one CNN for raw motion
sensor data (3D accelerometer, speed, and displacement) with three different
channels for x, y, z axes and the other CNN for the spectrograms.

Re-implementation. We re-implemented the user classification model by fol-
lowing the description in Shi et al. [17]. However, our replicated model’s initial
accuracies were different from Face-Mic’s results. Our model achieved only 50–
55% in user classification accuracy with Oculus Quest 2 while Face-Mic achieved
an accuracy over 90% for user classification with Oculus Quest 1. Thus, we
hypothesized that there are two potential reasons that might decrease the accu-
racy.

The first reason is that our spectrograms are different from Shi et al.’s spec-
trograms. This issue is caused by the following differences. First, we used different
motion sensor data with Face-Mic. Since we were not able to acquire the same
motion sensor data from Shi et al.’s work, we used our own data from the VR
application that we developed. Second, we converted the motion sensor data into
spectrograms by applying STFT and found frequency differences. Spectrograms
from our data have the frequency range 0–20 Hz while spectrograms from Shi et
al. have the frequency range 0–500 Hz. Thus, we were not able to apply low-pass
and high-pass filters since the cut-off frequency was 100 Hz. Moreover, we did
not apply BMAR because the frequency of our sepctrogram is too weak, there-
fore, we only used the accuracy without BMAR from Shi et al. as a baseline.
We thought this happened because we used different VR HMD (Oculus Quest
1 vs. Quest 2) and our own VR application to collect the data. As a result, we
minimize the noise from unnecessary body movement readings through a data
selection process.

408 S. Choi et al.

Fig. 3. The framework of our classification model.

Second was feeding the three different raw data modalities to one CNN,
causing confusion in the feature space. According to Shi et al. [17], the three
different raw motion sensor data (3D accelerometer, speed, and displacement)
are fed to one CNN model with three different channels for x, y, z axes. However,
we found that such an approach yielded lower accuracy, leading us to consider
each raw data separately by feeding it into each CNN individually. This deci-
sion is justified given that those data modalities would have different weights
and features. Especially, our raw data might have more different features than
Shi et al.’s data, since we did not apply low- and high-pass filters, and BMAR
to extract only facial dynamics from the motion sensor. Therefore, we changed
the model’s structure by adding two more CNNs for each raw data: one CNN
for 3D accelerometer, one for 3D speed, and one for 3D displacement. Then, we
achieved similar accuracy (up to 92%) with Face-Mic from our changed model.
Treating different modalities differently is analogous to the use of multi-headed
CNN popular in other applications, such as behavior inference in AR environ-
ments [29].

Our Model. Our modified model, shown in Fig. 3, has one CNN for spectro-
grams and three CNNs for the raw data. The inner structure of each CNN is the
same as described in Face-Mic. Moreover, the three CNNs for raw data have the
same structure; they have one batch normalization layer, three 2D convolutional
layers, and one fully connected layer. The x, y, and z axes of each modality
are considered as three separate channels of the CNN. The batch normalization
layer is applied to the input for features of raw data to eliminate the mean and
scale the features to unit variance to mitigate small-scale fluctuations. The three
layers are used to calculate the feature maps of facial movements.

The 2D feature maps are flattened and compressed using one fully connected
layer. Another CNN for spectrograms has one batch normalization layer, two

Revisiting the Deep Learning-Based Eavesdropping Attacks 409

Fig. 4. The three steps of the data selection process.

Fig. 5. The processes of spectrogram segmentation based on magnitude.

2D convolutional layers, two max-pooling layers after each convolutional layer,
and one fully connected layer. The features of spectrograms are subjected to the
batch normalization. The feature maps for spectrograms are produced using two
convolutional layers with 2D kernels. Since spectrograms have huge size, two
max-pooling layers are utilized to minimize the dimensionality of spectrograms.
The 2D feature maps of spectrograms are also flattened and compressed by
employing one fully connected layer. The output of those four CNNs are merged
and flattened by one fully connected layer. For the classifier, we employed two
fully connected layers and one SoftMax to map the feature representations into
the probabilities over different classes. We used ReLU for all activation functions.
We converted all labels (user identity) to integer value, therefore, we used the
sparse categorical cross-entropy as the loss function [8].

6 Data Overview

6.1 Data Collection

There are several pairs of muscles on the human face. These muscles con-
tract and relax regularly during speech production. The VR HMD is a face-
mounted device, therefore, it can capture the contraction and relaxation from
the user’s facial muscle during the speech using built-in accelerometer and gyro-
scope motion sensors.

To conduct this experiment, we asked the subjects to wear the VR HMD
and speak three English words to capture the facial dynamics from the motion
sensors. We utilized the raw data inputs (modalities), which are 3D accelerom-
eter, speed, and displacement data and spectrograms of the sum of x, y, z axes
of the accelerometer to train the user classification model. The accelerometer
data measures the rate of change of the velocity of an object, which is acceler-
ation. The speed is calculated using both the elevation change and horizontal

410 S. Choi et al.

movement over ground. The displacement data is a positional tracking data that
detects the precise position of the VR HMDs within Euclidean space.

We collected 20 samples of motion sensor data from each subject and selected
12 data samples through the data selection phase (Sect. 6.2). We then used nine
samples for a training dataset and three samples for the testing dataset. Each
sample is then segmented into each speech-related data (Sect. 6.3). To prevent
over-fitting in our training model, a dropout layer is attached to each fully con-
nected layer and k-fold cross validation is used for generalization.

6.2 Data Selection

For the classification model, Shi et al. only employed facial dynamics from the
motion sensor data, but not using body movement data, to infer the user’s
identity.

Since it is impossible to collect only facial-related data from the VR HMDs
using motion sensors while a user is speaking, Shi et al. proposed BMAR, which
is a method that removes body motion sensor readings that impact the low fre-
quency (e.g., <60 Hz) from data to extract only facial dynamics motion sensor
data. However, we did not use BMAR because the frequency of our spectro-
gram is too weak. For instance, Face-Mic has the frequency range 0–500 Hz and
the frequency of spectrograms from our motion sensor data is only staying at
0–20 Hz. We minimize the effect of unnecessary body movement reading to get
a similar result with Face-Mic. We collected data samples from each subject
and converted them into spectrograms in the time-frequency domain by apply-
ing STFT [11]. We then selected data that has the similar representations and
filtered data that has too many noises or is too weak as shown in Figs. 4a–4c.

6.3 Data Segmentation

We asked our subjects to speak three English words while wearing the VR HMD
and collected the motion sensor data. To segment the recorded data, we calcu-
lated the magnitude of the x, y, and z of the accelerometer data and used it as
a guideline for each speech. The data segmentation process is shown in Fig. 5.

Spectrogram. As we can observe in Fig. 5a, the motion sensor readings have
responses when the subject is speaking the three words. Moreover, we can see the
magnitude of the data which has significantly increased when the subject speaks
each word as shown in Fig. 5b. Given the x, y, and z of the accelerometer, the
magnitude of acceleration formula in 3D space is |m|= √|x2

i |+|y2
i |+|z2i |. The

magnitude m is calculated by squaring the values xi, yi, and zi, then the square
root of the sum. We removed unnecessary motion sensor readings between each
speech based on the magnitude and converted the denoised data into spectro-
grams (Fig. 5c). Afterward, we segmented the spectrograms into each speech-
associated spectrogram (Fig. 5d).

Revisiting the Deep Learning-Based Eavesdropping Attacks 411

Raw Data. For the raw data (3D accelerometer, speed, and displacement), we
removed the unnecessary motion sensor data between each speech-related data
based on the magnitude in a way similar to that of the spectrogram segmentation.
However, different from the previous method, here we do the separation at the
frame level.

7 Experiments

7.1 Experimental Setup

Hardware and Software Setup. For this experiment, we used a standalone
VR HMD, Oculus Quest 2 and its built-in accelerometer and gyroscope sensors.
The specifications of these motion sensors are not published publicly [1,5]. More-
over, we developed our own Oculus application to collect the motion sensor data
using Unity [6]. The VR HMD is connected to a laptop with NVIDIA GeForce
GTX 1060 and Intel Core i7-7700HQ Quad Core Pro and running on Windows
10 while the subject is wearing the headset and speaking words to collect data.
For training/testing the classification model, we used a desktop with NVIDIA
TITAN RTX (24 GB), Intel Core i7-8700K, and running Ubuntu 20.04.4 LTS as
the operating system.

Participants. For this robustness measurement experiment, we recruited fif-
teen subjects (seven males and eight females) in total, with age from 20 to 32.
The participants consist of four groups: Asian male (four), Asian female (four),
Middle Eastern male (three), and Middle Eastern female (four). We named the
Asian male group as AM, the Asian female group as AF, the Middle Eastern
male as MM, and the Middle Eastern female as MF, respectively, for convenience.
We asked the subjects to wear the VR HMD and speak three English words to
collect the motion sensor datac for identification.

7.2 Targeted Attack

We measure the impact of the user’s ethnicity/race and gender when every sub-
ject speaks the specific targeted words. Thus, we asked the subjects to state the
same English words, “Delta”, “Echo”, and “Foxtrot”. Then, we tested the classi-
fication model for a baseline (use identification). From there, the targeted attack
would be examined by finding out whether the model mislabeled the victim’s
data or not.

7.3 Untargeted Attack

For the untargeted attack, we examine the impact of the user’s ethnicity/race
and gender on the classification model when the subjects speak various words
as their contents. Thus, we asked the subjects to state different English words.
For instance, we asked eight subjects speak “Delta”, “Echo”, and “Foxtrot”. On
the other hand, we asked the rest of the subjects speak different words which
are “Alpha”, “Bravo”, and “Charlie”. Then, the untargeted attack would be
examined by finding out whether the model mislabeled the victim’s data or not.

412 S. Choi et al.

7.4 Experiment Scenarios

We performed our experiments under six different scenarios. Since we aim to
examine the robustness of the user classification model under varying users’
ethnicity/race and gender, we need several different scenarios. Thus, we selected
one victim and one attacker differently based on their ethnicity/race and gender
and created the original and adversarial dataset for each scenario. To build the
original dataset, we removed the attacker’s data from our dataset. Therefore,
the original dataset has n-1 subjects and their associated data, where n is the
total number of subjects. Then, we trained and tested the classification model
with the original training/testing dataset to get a baseline accuracy.

For the adversarial dataset, we used the original training dataset which does
not contain the attacker’s data for training. For the testing dataset, we replaced
the victim’s data with the attacker’s data but we maintained the victim’s label.
Hence, if the attacker’s data has a similar representative features with that of
the victim, the model would predict the attacker’s data as the victim’s, which is
misclassification. As a result, the user classification accuracy would still be sim-
ilar to that of the original dataset. Otherwise, the model predicts the attacker’s
data as someone else’s data, but not the victim, leading to a decrease in the
accuracy. This, in turn, means the difference in the accuracy between that of the
original and the adversarial experiment (with the experimental dataset) would
increase. Given the two ethnicity markers and two genders for the dataset, we
now consider their combinations in pairs, with the following experiments with
hypothesis and justification.

MM-MM : Same Ethnicity/Race and Gender. For the first scenario, we
will examine the accuracy of the classification model when the attacker has
the same ethnicity/race and gender as the victim. Therefore, we selected the
victim and attacker both from the same group, the Middle Eastern male group
(MM). Based on our hypothesis, we expect that the accuracy difference between
the original and adversarial dataset would be lower than the case of different
ethnicity/race and gender.

MM-MF : Same Ethnicity/Race and Different Gender. In the second
scenario, we observe the accuracy variation when the attacker has different gen-
der with the victim but same ethnicity/race. Thus, we changed the attacker’s
group to the Middle Eastern female group (MF). Since the attacker has one dif-
ferent feature (e.g., gender) with that of the victim, we expect that the accuracy
difference between the original and adversarial dataset would be higher than in
MM-MM.

MM-AM : Different Ethnicity/Race and Same Gender. In this scenario,
we varied the feature of ethnicity/race of the victim and attacker. The victim and
attacker have the same gender (male) but the victim is from the Middle Eastern
male group (MM) while the attacker is from the Asian male group (AM). As
such, the attacker has one different feature (e.g., ethnicity/race) with the victim,
therefore, the accuracy difference would also be higher than in MM-MM.

Revisiting the Deep Learning-Based Eavesdropping Attacks 413

Fig. 6. User classification accuracy comparison between the original and adversar-
ial dataset with four different datasets and six scenarios under the targeted attack.

stands for original while stands for adversarial.

Table 1. The average accuracy (and dif-
ference) for the targeted attack.

Dataset Original Adversarial Difference

MM-MM 92.19% 84.12% 8.06%

MM-MF 89.94% 79.23% 10.71%

MM-AM 91.26% 80.02% 11.24%

AF-AF 87.16% 78.17% 8.99%

AF-AM 87.16% 75.92% 11.24%

MF-AM 90.87% 76.98% 13.88%

Average 89.76%

Table 2. The average accuracy (and dif-
ference) for the untargeted attack.

Dataset Original Adversarial Difference

MM-MM 82.87% 79.82% 3.04%

MM-MF 81.48% 75.85% 5.62%

MM-AM 83.33% 76.32% 7.01%

AF-AF 80.22% 76.52% 3.70%

AF-AM 84.06% 78.04% 6.01%

MF-AM 83.06% 74.07% 8.99%

Average 82.50%

AF-AF : Same Ethnicity/Race and Gender. The fourth scenario is the
same case as in MM-MM but we chose a victim and an attacker both from
the Asian female group (AF). Therefore, they have the same ethnicity/race and
gender. As a result, we expect that the accuracy difference between the original
and adversarial dataset would be lower than the case of different ethnicity/race
and gender.

AF-AM : Same Ethnicity/Race and Different Gender. For this scenario,
we selected a victim from the Asian female group (AF) but we changed an
attacker’s group to the Asian male group (AM). Hence, they have the same
ethnicity/race, but different gender. Thus, we expect that the accuracy difference
between the original and adversarial dataset would be higher than in AF-AF.

MF-AM : Different Ethnicity/Race and Gender. In this scenario, we chose
a victim from the Middle Eastern female group (MF) and an attacker from the
Asian male group (AM). As a result, they have not only different ethnicity and

414 S. Choi et al.

race, but also different gender. Therefore, we expect that the accuracy difference
between the original and adversarial dataset would be the highest among the
scenarios.

8 Results

Our replicated Face-Mic model achieved up to 92% of user classification accu-
racy as the baseline. Moreover, we conducted two user classification experiments,
untargeted and targeted attack under the six scenarios highlighted earlier to
observe the impact of the user’s ethnicity/race and gender on the classification
model accuracy under the various adversarial settings. We used k-fold cross val-
idation to improve generalization and we set k = 4 for each attack; therefore, we
calculated the average accuracy difference between the original and adversarial
dataset to examine our hypotheses.

8.1 Targeted Attacks

Figure 6 shows user classification accuracies of the original and adversarial
dataset under the targeted attacks with six different scenarios. We calculated
the average accuracy of the original and adversarial dataset and the average
accuracy difference between them to examine the impact of the user’s ethnic-
ity/race and gender and the average accuracies and differences are shown in
Table 1.

The average accuracy from the adversarial dataset of MM-MM is 84.12%
while the accuracy of the original dataset is 92.19%. As a result, the average
accuracy difference is 8.06%, which is the lowest difference among the scenarios.
Similarly, AF-AF’s accuracy from the original dataset and adversarial dataset
are 87.16% and 78.17% respectively. Thus, the average difference is 8.99%, which
is the second lowest difference. On the other hand, MF-AM achieved the high-
est accuracy difference which is 13.88% since the original dataset’s accuracy is
90.87% and the adversarial dataset is 76.98%. We can also observe that MM-
MF and AF-AM have accuracies (10.71% and 11.24%) and these accuracies are
staying at between MM-MM, AF-AF, and MF-AM cases. In addition, MM-AM
has a similar accuracy difference with MM-MF and AF-AM.

Observations: ① If the attacker has the same ethnicity/race and gender as
the victim, it is relatively easier to deceive the classification model than when
they have different features. ② If an attacker has a different ethnicity/race
and gender than the victim, the accuracy difference is higher than when
the attacker has the same ethnicity/race but different gender or different
ethnicity/race but the same gender; i.e., having the two features different
between the victim and attacker produces higher differences than when only
one feature is different.

Revisiting the Deep Learning-Based Eavesdropping Attacks 415

Fig. 7. User classification accuracy comparison between the original and adversarial
dataset with four different datasets and six scenarios under untargeted attack. stands
for original while stands for adversarial.

8.2 Untargeted Attacks

Figure 7 shows user classification accuracies of the original and adversarial
dataset under untargeted attacks. The average accuracy of the original and
adversarial dataset and the average accuracy differences of untargeted attacks
are shown in Table 2.

We observe similar patterns of results with Sect. 8.1. The average differences
of MM-MM and AF-AF (3.04% and 3.70%) are lower than other cases and MF-
AM’s difference is the highest (8.99%).

Observations: If an attacker has the same features as the victim, it is
relatively easier to deceive the classification model than when they have
different features even when the users speak different words.

We can also see that MM-AM has a higher accuracy difference (7.01%) than
MM-MF and AF-AM (5.62% and 6.01%) under the untargeted attacks. As a
result, the feature of ethnicity/race has more impact on the classification model
than the feature of gender.

9 Conclusion

We replicated Shi et al.’s work, Face-Mic, an eavesdropping attack leveraging
AR/VR HMDs’ motion sensor data capturing the facial dynamics to infer user’s
sensitive and private information. We conducted experiments to measure the
robustness of the user classification task under varying users’ ethnicity/race and
gender with six scenarios. We found experimentally that it is relatively easier to
deceive the classification model if the attacker has the same ethnicity/race and

416 S. Choi et al.

gender with the victim than when they have different features. We only exper-
imented with a very limited number of races: two ethnicity/race groups (Asian
and Middle Eastern), and one of the future directions is to expand the experi-
ments with more ethnicity/race groups such as Caucasian, African-Americans,
Hispanic, and others. Other directions worth exploring include the impact of the
linguistic features, e.g., accents on the robustness.

References

1. Oculus Quest 2 tech specs deep dive (2023). https://business.oculus.com/
products/specs/

2. MediaRecorder overview (2023). https://developer.android.com/guide/topics/
media/mediarecorder

3. Get Raw Sensor Data (2023). https://developer.oculus.com/documentation/
unreal/unreal-blueprints-get-raw-sensor-data

4. Oculus SDK for developer (2023). https://developer.oculus.com/downloads/
5. Oculus Device Specifications (2023). https://developer.oculus.com/resources/

oculus-device-specs/
6. Unitydocument: CommonUsages (2023). https://docs.unity3d.com/ScriptReferen

ce/XR.CommonUsages.html
7. How Facebook protects the privacy of your Voice Commands and Voice

Dictation (2023). https://support.oculus.com/articles/in-vr-experiences/oculus-
features/privacy-protection-with-voice-commands

8. tf.keras.losses.SparseCategoricalCrossentropy (2023). https://www.tensorflow.
org/api docs/python/tf/keras/losses/SparseCategoricalCrossentropy

9. Roark, D.A., Barrett, S.E., Spence, M.J., Abdi, H., O’Toole, A.J.: Psychological
and neural perspectives on the role of motion in face recognition. Behav. Cogn.
Neurosci. Rev. 2(1), 15–46 (2003)

10. Abhishek, A.S., Nitesh, S.: Speechless: analyzing the threat to speech privacy from
smartphone motion sensors. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 1000–1017. IEEE (2018)

11. Akansu, A.N., Haddad, R.A.: Time-frequency representations. In: Multireso-
lution Signal Decomposition, 2nd edn., pp. 331–390. Academic Press, San
Diego (2001). https://doi.org/10.1016/B978-012047141-6/50005-7. https://www.
sciencedirect.com/science/article/pii/B9780120471416500057

12. Alan, C., Lei, Y., Erik, A.: Teaching language and culture with a virtual reality
game. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, pp. 541–549 (2017)

13. Andrea, F., Marco, F., Xavier, G.G., Lea, L., Alberto, D.B.: Natural experiences
in museums through virtual reality and voice commands. In: Proceedings of the
25th ACM International Conference on Multimedia, pp. 1233–1234 (2017)

14. Antitza, D., François, B.: Gender estimation based on smile-dynamics. IEEE Trans.
Inf. Forensics Secur. 12(3), 719–729 (2016)

15. Barry, A.: A review of the cocktail party effect. J. Am. Voice I/O Soc. 12(7), 35–50
(1992)

16. Burdea, G.C., Coiffet, P.: Virtual Reality Technology. Wiley, Hoboken (2003)
17. Shi, C., et al.: Face-Mic: inferring live speech and speaker identity via subtle

facial dynamics captured by AR/VR motion sensors. In: Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking, pp. 478–
490 (2021)

https://business.oculus.com/products/specs/
https://business.oculus.com/products/specs/
https://developer.android.com/guide/topics/media/mediarecorder
https://developer.android.com/guide/topics/media/mediarecorder
https://developer.oculus.com/documentation/unreal/unreal-blueprints-get-raw-sensor-data
https://developer.oculus.com/documentation/unreal/unreal-blueprints-get-raw-sensor-data
https://developer.oculus.com/downloads/
https://developer.oculus.com/resources/oculus-device-specs/
https://developer.oculus.com/resources/oculus-device-specs/
https://docs.unity3d.com/ScriptReference/XR.CommonUsages.html
https://docs.unity3d.com/ScriptReference/XR.CommonUsages.html
https://support.oculus.com/articles/in-vr-experiences/oculus-features/privacy-protection-with-voice-commands
https://support.oculus.com/articles/in-vr-experiences/oculus-features/privacy-protection-with-voice-commands
https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
https://doi.org/10.1016/B978-012047141-6/50005-7
https://www.sciencedirect.com/science/article/pii/B9780120471416500057
https://www.sciencedirect.com/science/article/pii/B9780120471416500057

Revisiting the Deep Learning-Based Eavesdropping Attacks 417

18. Shi, C., Wang, Y., Chen, Y., Saxena, N., Wang, C.: WearID: low-effort wearable-
assisted authentication of voice commands via cross-domain comparison without
training. In: Annual Computer Security Applications Conference, pp. 829–842
(2020)

19. Florian, K., Thore, K., Florian, N., Erich, L.M.: Using hand tracking and voice
commands to physically align virtual surfaces in AR for handwriting and sketching
with HoloLens 2. In: Proceedings of the 27th ACM Symposium on Virtual Reality
Software and Technology, pp. 1–3 (2021)

20. Segura, R.J., del Pino, F.J., Ogáyar, C.J., Rueda, A.J.: VR-OCKS: a virtual reality
game for learning the basic concepts of programming. Comput. Appl. Eng. Educ.
28(1), 31–41 (2020)

21. Radianti, J., Majchrzak, T.A., Fromm, J., Stieglitz, S., Vom Brocke, J.: Virtual
reality applications for higher educations: a market analysis (2021)

22. Zhang, L., Pathak, P.H., Wu, M., Zhao, Y., Mohapatra, P.: AccelWord: Energy effi-
cient hotword detection through accelerometer. In: Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services, pp. 301–
315 (2015)

23. Durak, L., Arikan, O.: Short-time Fourier transform: two fundamental properties
and an optimal implementation. IEEE Trans. Sig. Process. 51(5), 1231–1242 (2003)

24. Johns Hopkins Medicine: Vocal Cord Disorders (2023). https://www.
hopkinsmedicine.org/health/conditions-and-diseases/vocal-cord-disorders

25. Thelwell, M., Chiu, C.Y., Bullas, A., Hart, J., Wheat, J., Choppin, S.: How shape-
based anthropometry can complement traditional anthropometric techniques: a
cross-sectional study. Sci. Rep. 10(1), 1–11 (2020)

26. Nick, N., Alexandros, K., Wouter, J., Christopher, K., Frank, P., Giovanni, V.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: 2013 IEEE Symposium on Security and Privacy, pp. 541–555. IEEE (2013)

27. Rick, P., Scott, K., Osamu, F.: Issues with lip sync animation: can you read my
lips? In: Proceedings of Computer Animation 2002 (CA 2002), pp. 3–10. IEEE
(2002)

28. Theodoros, G.: A method for silence removal and segmentation of speech signals,
implemented in Matlab. University of Athens, Athens 2 (2009)

29. Ülkü, M.Y., Fazıl, Y.N., Amro, A., David, M.: A keylogging inference attack on air-
tapping keyboards in virtual environments. In: 2022 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pp. 765–774. IEEE (2022)

30. Yan, M., Dan, B., Gabi, N.: Gyrophone: recognizing speech from gyroscope signals.
In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 1053–1067
(2014)

31. Zhuang, Z., Guan, J., Hsiao, H., Bradtmiller, B.: Evaluating the representativeness
of the LANL respirator fit test panels for the current US civilian workers. J. Int.
Soc. Respir. Prot. 21, 83–93 (2004)

32. Ba, Z., et al.: Learning-based practical smartphone eavesdropping with built-in
accelerometer. In: NDSS (2020)

33. Ziqing, Z., Douglas, L., Stacey, B., Raymond, R., Ronald, S.: Facial anthropometric
differences among gender, ethnicity, and age groups. Ann. Occup. Hyg. 54(4), 391–
402 (2010)

https://www.hopkinsmedicine.org/health/conditions-and-diseases/vocal-cord-disorders
https://www.hopkinsmedicine.org/health/conditions-and-diseases/vocal-cord-disorders

Multi-scale Features Destructive
Universal Adversarial Perturbations

Huangxinyue Wu1, Haoran Li1, Jinhong Zhang1, Wei Zhou2, Lei Guo3,
and Yunyun Dong4(B)

1 Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
{wuhuang,lihaoran,zjhnova}@mail.ynu.edu.cn

2 National Pilot School of Software, Engineering Research Center of Cyberspace,
Yunnan University, Kunming, China

zwei@ynu.edu.cn
3 Yunnan University, Kunming, China

lei guo@ynu.edu.cn
4 National Pilot School of Software, School of Information Science and Engineering,

Yunnan University, Kunming, China
dongyy929@ynu.edu.cn

Abstract. Deep Neural Networks (DNNs) are suffering from adversarial
attacks, where some imperceptible perturbations are added into exam-
ples and cause incorrect predictions. Generally, there are two types of
adversarial attack methods, i.e., image-dependent and image agnostic.
As for the first one, Image-dependent attacks involve crafting unique
adversarial perturbations for each clean example. As for the latter case,
image-agnostic attacks create a universal adversarial perturbation (UAP)
that can fool the target model for all clean examples. However, existing
UAP methods only utilize the output of the target DNNs within a limited
magnitude, resulting in an ineffective application of UAP to the entire
feature extraction process of the DNNs. In this paper, we consider the
difference between the mid-level features of the clean example and their
corresponding adversarial example in the different intermediate layers
of target DNN. Specifically, we maximize the impact of the adversarial
examples in the forward propagation process by pulling apart the fea-
ture representations of the clean and adversarial examples. Moreover,
to achieve targeted and non-targeted attacks, we design a loss function
that highlights the UAP feature representation to guide the direction of
perturbations in the feature layers. Furthermore, to reduce the training
time and training parameters, we adopt a direct optimization approach
to craft UAPs and experimentally demonstrate that we can achieve a
higher fooling rate with fewer examples. Extensive experimental results
show that our approach outperforms state-of-the-art methods in both
non-targeted and targeted universal attacks.

Keywords: Universal Adversarial Perturbations · Adversarial
Examples · Deep Neural Networks

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 418–434, 2023.
https://doi.org/10.1007/978-981-99-7356-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_25&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_25

Multi-scale Features Destructive Universal Adversarial Perturbations 419

1 Introduction

Deep Neural Networks (DNNs) provide a way to handle real-world tasks in an
end-to-end manner, which have witnessed remarkable progress over the past few
years and have been deployed in a wide range of computer vision applications.
Yet the robustness of such models has also received considerable concern [2].
Recent works [8,11,15,16,25,32] have shown that DNNs are extremely vulner-
able to adversarial examples (AEs), which are very slightly modified with the
intention of manipulating the networks prediction. As DNNs are widely deployed
in real-world tasks, particularly in security-critical areas such as autonomous
driving [28], medical record analysis [30], language tasks [3] and face recognition
[27], adversarial attacks have raised significant concerns about DNN-based secu-
rity and reliability. Therefore, studying the vulnerability of DNNs has become
an exact need.

Most adversarial attack methods focus on making image-dependent pertur-
bations, that is, crafting perturbations individually for each target image. How-
ever, image-dependent perturbation is specific to the concrete input and failure
in the input-agnostic scenario. Recently, the single image-agnostic perturbation
termed universal adversarial perturbation (UAP) has been proposed and received
considerable attention. In UAPs, the attacker only needs to optimize one fixed
UAP in advance to add to each clean image for performing a real-time attack
[19]. The existence of UAPs reveals important geometric correlations among
the high-dimensional decision boundary of DNNs. UAP generated for one model
can adversely affect other unrelated models, exposing potential security breaches
of DNNs. The emergence of UAPs further increases the vulnerability of DNNs
deployed in the real world, and it is imperative to investigate UAPs.

The iterative optimization methods based on decision boundary represented
by UAP [19] have cumbersome processes. Universal attack methods that intro-
duce a Generative Adversarial Network (GAN)-based model to generate UAPs,
e.g., UAN [9], GAP [26], NAG [23], AAA [24], a separately and long-timely
training process is a critical condition to achieve an acceptable attack perfor-
mance. Most existing universal attack approaches target only the output of the
target DNN within a limited perturbation magnitude, resulting in the ineffective
application of UAP to the entire feature extraction process of the neural network.
Previous feature-level universal attack methods, e.g., FFF [22] and GDUAP [21],
simply maximize the neuron activations of each layer without considering the
difference in feature representations between the specific original and adversar-
ial examples, leading to a rapid saturation of the generated UAP. When the
activations are large enough to approach saturation, the perturbation cannot
interfere with the original image. To summarize, the prior UAP methods are set
in data-limited settings, achieve poor fooling rates and transferability, and only
enable non-targeted attacks rather than the more difficult targeted ones.

To address the above issues, we propose a novel universal attack method,
namely Multi-scale Features Destructive UAP (MFD-UAP). Rather than fol-
lowing the existing methods, which just change the final output within a finite
perturbation magnitude, our method integrates the full-knowledges in the for-

420 H. Wu et al.

ward propagation process of the target models, i.e., maximizes the impact of the
UAP in the entire forward propagation process.

To achieve this, we corrupt feature representations by maximizing the dis-
tances between benign features and adversarial features extracted in the interme-
diate layers of a pre-trained classifier. This method of disrupting the evolution-
ary path of clean examples in the network will eventually lead to an erroneous
prediction in the final layer. We show that it can also increase transferability.
Furthermore, two loss functions are developed to guide the optimization direc-
tions of MFD-UAP. Specifically, the first item enables flexible implementation
of both non-targeted and targeted attacks. The second item takes advantage of
the fact that UAP dominates over the images in terms of model prediction [35].
This phenomenon occurs in the case of image-agnostic perturbations, which is
not the case for image-dependent perturbations. Notably, in the non-targeted
attacks scenario, our method can run in a self-supervised manner and does not
rely on any labels of training images. In addition, to shorten the training time
to speed up the generation of UAPs, we use the method of directly optimizing
the UAPs, as shown in Fig. 1. We evaluate the proposed method on two public
datasets with different models, and experiments show that the method achieves
excellent results for both non-targeted and targeted attacks. We summarize our
main contributions as follows:

– We propose an efficient direct optimization method to construct UAP. This
method guides the perturbation direction according to the characteristics of
UAPs while destroying the evolution of intermediate representations of clean
inputs in the network to improve the fooling rate and increase transferability
among different models.

– We maximize the distances between clean images and their corresponding
adversarial examples in multiple intermediate feature layers. In this way,
MFD-UAP enhances the correlation between UAP and the entire forward
propagation, maximizing the impact on the prediction process of the target
model within a limited perturbation magnitude.

– The experimental results show that the fooling rates of our crafted UAPs have
reached a competitive level on different network architectures. In non-targeted
attacks, the average fooling rate on the CIFAR-10 and ImageNet datasets can
be improved by 11.49% and 2.53%, respectively, compared to the comparison
methods. In targeted attacks, our method achieves an average targeted fooling
rate improvement of 12% over UAP method on the ImageNet dataset.

The rest of this paper is organized as follows. We first review related work
and algorithms on UAP in Sect. 2. Section 3 details the proposed Multi-scale
Features Destructive UAP (MFD-UAP). Experiments of attacking classifiers on
CIFAR-10 and ImageNet and results are reported in Sect. 4, followed by the
conclusions in Sect. 5.

Multi-scale Features Destructive Universal Adversarial Perturbations 421

2 Related Work

In this section, we investigate image-dependent adversarial attacks and image-
agnostic adversarial attacks.

2.1 Image-Dependent Adversarial Attacks

The image-Dependent adversarial attack was first introduced in [32], which has
demonstrated that the performance of a well-trained DNN can be significantly
weakened by adversarial examples, which can be crafted by adding the human-
imperceptible perturbation on the original image. After that, various gradient-
based adversarial attack methods in the field of image classification were pro-
posed, such as FGSM [8], PGD [17] and MIM [7]. AdvGAN [34] used genera-
tive models to learn to model adversarial perturbations, and similar approaches
appeared for AdvGAN++ [18], AutoZOOM [33] and AdvFlow [6]. Moosavi-
Dezfooli et al. [20] proposed DeepFool, which is a non-targeted attack based
on computing the minimum distance between the original input and the deci-
sion boundary and pushes the images located inside the classification boundary
to outside the boundary until a misclassification occurs. C&W attack [1] is an
iterative algorithm, which introduced new forms of loss function under L0, L2

and L∞ metrics respectively for generating small magnitude of perturbation by
encoding the domain constraint as a change of variable.

2.2 Image-Agnostic Adversarial Attacks

More interestingly, the existence of image-agnostic perturbations, also known
as universal adversarial perturbations (UAPs), was discovered. UAP is a fixed
perturbation that can be added directly to various clean images, resulting in
misleading classification when these victim images have been fed into a well-
trained target model.

We categorize the image-agnostic adversarial attacks into there groups. UAP
was first introduced by Moosavi-Dezfooli et al. [19], in which they proposed an
algorithm based on the image-dependent DeepFool attack [20]. The core idea
is to calculate the minimum perturbation from each example to the decision
boundary and iteratively accumulate these perturbations to find a universal
perturbation. To solve the negative influence brought by the minimum pertur-
bation, Dai et al. [4] choose the perturbation whose orientation is similar to
that of the current universal perturbation to maximize the magnitude of the
aggregation of both the perturbations. However, these methods are cumbersome
and lead to an ineffective and iterative process. The generative models-based
attack methods are the second type of image-agnostic attack. They usually use
across-entropy loss that takes the gradient of a target network and fool classi-
fication models and generally outperform earlier vanilla algorithms. Generative
adversarial perturbations (GAP) [26] utilized generative adversarial networks
(GANs) to provide a unifying framework for generating image-agnostic pertur-
bations and image-dependent perturbations for image classification tasks and

422 H. Wu et al.

semantic segmentation tasks. GAP was the first to propose the targeted univer-
sal perturbations on the ImageNet dataset. Mopuri et al. [23] introduced a loss
that is composed of a fooling objective and a diversity objective to encourage
the generator to craft a diverse set of perturbations by increasing the distance
of their feature embeddings projected by the target classifier. AAA [24] uti-
lized class impression images as training data to train the generator. The third
is an optimization-based method to generate UAPs. Mopuri et al. [22] intro-
duced a method without access to target training data by maximizing the mean
activations at multiple layers of the network when the input is the universal
perturbation, which can only perform non-targeted attacks and the results are
not as strong as [19]. Based on FFF, additional prior information about the
data distribution is introduced to improve the fooling ability [21]. Cosine-UAP
[36] and DF-UAP [35] adopts the ADAM [13] optimizer and mini-batch training
technology to optimize UAPs directly.

To clearly position our investigation and highlight our unique features, we
analyze the differences between our research and the above existing research as
follows. Most of the previous universal attack methods focus on the output of
the target model and realize attacking by optimizing a softmax cross-entropy
loss function. However, these methods ignore the connection between UAPs and
the feature space of the network. We consider maximizing distances between
the intermediate feature maps of natural images and their adversarial examples
to improve the fooling rate and transferability. Distinguishing from previous
feature-level universal attack methods that can only perform non-target attacks,
our method can be applied both in non-targeted and targeted attacks.

3 The Proposed Method

This section presents a detailed account of the proposed approach MFD-UAP
to craft efficient UAPs for conducting non-targeted and targeted attacks. The
framework of MFD-UAP is shown in Fig. 1.

3.1 Non-targeted Universal Attack

To be clear, before detailing our method, we first briefly introduce the notation
of our goal, which is to misclassify the clean examples as many as possible by
adding a universal noise on all clean examples. Mathematically, our objective
can be expressed as follows:

F (x + v) �= F (x) for most x ∼ X s.t. ‖v‖p ≤ ε, (1)

where v is the single perturbation, which can fool target model F with high
probability when added to most examples, let X be the data distribution of the
clean examples, and a particular sample from X is represented as x. y = F (x) is
the predicted class predicted by F . ‖v‖p is the �p norm constraint to make the
generated adversarial examples remain imperceptible to the human eyes.

Multi-scale Features Destructive Universal Adversarial Perturbations 423

+ + =

Original Logits

Adversarial Logits

Feature Maps Extract

...

Model

...

Adversarial Feature Maps

Original Feature Maps

UAP

Training Data

+

Fig. 1. The structure diagram for crafting UAPs. The addition of universal adversarial
perturbation to the dataset is able to disrupt the multi-scale features of the model.
Perturbation is optimized directly by back-propagation.

The non-targeted fooling rate (FRnt) is the most widely adopted evaluation
metric for UAP. Specifically, the fooling rate is defined as the percentage of
examples whose predictions change after applying UAP, i.e.:

FRnt =
1
N

N∑

i=1

[F (xi + v) �= F (xi)], (2)

where the N is the example count of the X , nt means the non-targeted attack.
Unlike prior works that ignore the impact of UAPs on mid-level features in

different layers, we focus not only on the final classification results of the model
but also on the perturbed changes in the intermediate layers. To achieve the
desired objective Eq. 1, we design a novel loss function to achieve a fruitful attack
result via maximizing the distance between the intermediate features of clean
examples and their corresponding adversarial examples. This loss can destroy
the useful properties of clean examples in the internal feature representations
of target model F . Specifically, we propose to directly maximize the distance
between the original feature map Fi(x) and adversarial feature map Fi(x + v)
at the last layer of each block of DNN by solving the following optimization
problem:

Lfea = −1/K

K∑

i=1

‖Fi(x + v) − Fi(x)‖2 , (3)

where Fi(x) is the internal representation of the i-th layer of the classifier F .
The goal of adversarial attacks is to generate adversarial examples that can

fool the target model, i.e., F (x+v) �= F (x). Thus, we formulate our non-targeted
fooling loss Lnt

fool to provide an attack direction for constructing adversarial

424 H. Wu et al.

examples.
Lnt
fool = max(Zy(x + v) − max

i�=y
Zi(x + v),−κ), (4)

where Zi indicates the i-th entry of the logit vector, the parameter κ represents
the confidence value, which can adjust the confidence obtained by misclassifica-
tion, and y is the prediction of x. This loss function reduces the logit value of the
y class, while the logit values of maxi�=y Zi(x + v) are increased simultaneously
during the training process.

The goal of the above objective function is to find an adversarial instance
by decreasing the logit value of the predicted category and increasing the logit
values of other irrelevant categories, which is defined in a micro view. On the
other hand, DF-UAP [35] and Zhang et al. [36] indicate that increasing the
distance between the logits of Z(x) and Z(x + v) can enhance the importance
of UAP in model decision-making. To exploit this phenomenon, the other item
of the final loss function is to minimize the cosine similarity distance between
Z(x) and Z(x + v), which the goal of this item is to keep the logit vector of the
adversarial example and the logit vector of the clean example away from each
other, which is defined in a macro view. It can be written as:

Lnt
sim =

Z(x)TZ(x + v)
‖Z(x)‖‖Z(x + v)‖ , (5)

where Z(x) indicates the output logit vector of the DNN. This loss function
optimizes v by moving Z(x) and Z(x + v) away from each other so that v
dominates the logit distribution of the adversarial example, resulting in a change
in the predicted class of x.

Finally, our full objective can be expressed as:

Lnt
total = αntLnt

fool + βntLnt
sim + γntLfea, (6)

where αnt, βnt and γnt represent the weights of the three loss functions respec-
tively. The specific calculation process is summarized in Algorithm 1.

Notably, our proposed MFD-UAP is also suitable for the more challenging
task, i.e., targeted attacks, introduced in the following subsection.

3.2 Targeted Universal Attack

For the targeted attack, we optimize a single universal adversarial perturbation
that can be added to any image in the data distribution to mislead the model to
predict the pre-defined target label. We verify the effectiveness of the targeted
attack by calculating the targeted fooling rate, which is denoted as:

FRt =
1
N

N∑

i=1

[F (xi + v) = t], (7)

where the N is the example count of the X , t is the target label.

Multi-scale Features Destructive Universal Adversarial Perturbations 425

Algorithm 1. MFD-UAP Attack
Input: Target model F , training data X , loss function L, a initial perturbation vinit,

mini-batch B, a maximum number of iterations T , max perturbation budget ε.
Output: Universal adversarial perturbation v
1: Initialization: Variate v = vinit

2: for i = 1 to T do
3: Sample a batch of data B from X
4: Perturb B by adding v to B

5: Input both the clean examples B and perturbed examples B + v to the target
model F

6: Extract features Fi(x + v) and Fi(x) from B+ v and B in the immediate layers
7: Calculate the loss function Ltotal according to Eq. 6
8: Calculate the gradient ∇vLtotal based on B with perturbation v and update v
9: Clamp the added perturbation v into ε

10: end for

Our objective in targeted attack can be expressed as:

F (x + v) = t for most x ∼ X s.t. ‖v‖p ≤ ε. (8)

In targeted attack tasks, the developed attack paradigm needs to increase the
target logit value and decrease the others to find an adversarial instance that
can be categorized with high confidence into target class t by adjusting κ. Based
on this intuition, our targeted attack adversarial loss function can be defined as:

Lt
fool = max(max

i�=t
Zi(x + v) − Zt(x + v),−κ). (9)

For UAP to dominate the prediction of clean examples as the target category,
we design the similarity loss as follows:

Lt
sim = − ZtTZ(x + v)

‖Zt‖‖Z(x + v)‖ , (10)

where Zt represents the one-hot vector of the target category. The loss function
for the perturbed feature layer is the same as in the non-targeted setting. Our full
objective becomes the summation of the fooling, cosine similarity, and mid-level
features attack objectives, which can be expressed as:

Lt
total = αtLt

fool + βtLt
sim + γtLfea, (11)

where αt, βt and γt represent the weights of the three loss functions in the
targeted attack task respectively.

4 Experiments

In this section, we conduct extensive experiments on two benchmark datasets of
CIFAR-10 [14] and ImageNet [5] to evaluate the performance of the proposed
method MFD-UAP. Our code is created with PyTorch library. The experiments
run on an NVIDIA Tesla A100 GPU.

426 H. Wu et al.

4.1 Universal Attack on CIFAR-10 Dataset

We employ target classifiers trained on the CIFAR-10 training dataset with the
same neural network structure as in [9] to generate UAPs, namely VGG19 [29],
ResNet101 [10], and DenseNet121 [12]. The standard accuracies of these mod-
els are 93.33%, 95.09%, and 95.40%, respectively. In this subsection, we adopt
the same target model as the source model for optimizing UAP, the white-box
setting. We optimize based on the �∞ norm constraint to make the constructed
adversarial images visually indistinguishable from the source images. We set the
value of ε to 10/255, assuming the image is in the range [0, 1]. We optimize
the loss objective Eq. 6 with Adam, where the confidence value κ is 10, and the
learning rate is set to 0.001 with batch-size 100.

Table 1. FRnt (%) of different non-targeted UAP generation methods on CIFAR-10.

Method VGG19 ResNet101 DenseNet121 Avgs

UAP [19] 57.2 76.0 67.9 67.03

FFF [22] 20.1 36.5 34.1 30.23

UAN [9] 66.6 85.1 75.0 75.57

Ours 83.52 86.05 91.62 87.06

Table 1 reports the comparison results of different non-targeted UAP meth-
ods in the white-box attack scenario on the CIFAR-10 validation dataset with
the metric of the non-targeted fooling rate. Our method is compared with other
state-of-the-art methods, i.e., UAP [19], FFF [22], UAN [9], and finds that excel-
lent fooling rates are achieved. In these experiments, the algorithms are trained
on the CIFAR-10 training dataset. The results of other attack methods compared
are reported in the original papers. It can be seen from the table that the results
of all three models exceed 80% fooling rate, and the experimental result on
DenseNet121 is as high as 91.62%. The average result over these different mod-
els reaches 87.06%, which is 20% higher than the UAP [19]. This competitive
result proves that combining the nature of UAPs containing the dominant fea-
tures and their connection to the network feature extraction process can achieve
better attack results.

Table 2. Transferability of our proposed non-targeted UAPs cross different models on
CIFAR-10. The metric is reported in the FRnt (%).

VGG19 ResNet101 DenseNet121 Avg

VGG19 83.52 69.76 75.35 76.21

ResNet101 58.33 86.05 85.64 76.67

DenseNet121 57.01 78.59 91.62 75.74

Multi-scale Features Destructive Universal Adversarial Perturbations 427

Fig. 2. Attacking on CIFAR-10 among 10 classes against VGG19.

Transferability is a phenomenon where adversarial examples created for one
network can fool others and is a yardstick for the robustness of adversarial exam-
ples [9]. We use the UAP generated by the source model to attack the black-box
target models to test whether the crafted adversarial examples are transferable.
Specifically, we add the single UAP with the ε value of 10/255 generated by
one model to 10,000 validation images to attack other different models. Table 2
presents results for the transferability of a non-targeted attack on three target
models. We find that the UAPs produced using MFD-UAP can transfer to other
models. For example, UAPs trained on VGG-19 and evaluated on ResNet101
and DenseNet121 with fooling rates of 69.76% and 75.35%, respectively, which
are only 13.76% and 8.17% lower than those evaluated on the source model.

Fig. 3. Number of adversarial examples classified in several classes on CIFAR-10.

Figure 2 illustrates the perturbed images. The first row is original images,
the second is UAPs for attacking VGG19, and the third is adversarial examples.
UAP [19] found that universal perturbations made on the ImageNet dataset in
the case of a non-targeted attack can automatically find several dominant labels
that can lead to natural images classified to these labels. Similarly, the universal
perturbations we crafted on CIFAR-10 also have the phenomenon of dominant
labels. We count the misclassification results caused by the UAP trained on dif-
ferent networks on 10,000 CIFAR-10 validation images (see Fig. 3). The left axis
represents the misclassified class, and the value represents how many adversarial
examples are classified as that class. For example, UAP trained on DenseNet121
can achieve a fooling rate of 91.62% in the white-box setting, of which 74.3%

428 H. Wu et al.

Table 3. FRnt(%) of different non-targeted UAP generation methods on ImageNet.

Method GoogLeNet VGG16 VGG19 ResNet152

UAP [19] 78.9 78.3 77.8 84.0

GAP [26] 82.7 83.7 80.1 −
NAG [23] 90.37 77.57 83.78 87.24

DF-UAP [35] 88.94 94.30 94.98 90.08

Cos-UAP [36] 90.5 97.4 96.4 90.2

Ours 93.48 98.19 97.41 95.53

Table 4. Ablation study on ImageNet to test the effect of Lfea on transferability. The
metric is reported in the FRnt (%).

GoogLeNet VGG16 VGG19 ResNet152 Avg

GoogLeNet 93.48 79.33 77.24 55.31 76.34

VGG16 55.15 98.19 92.47 48.64 73.61

VGG19 55.71 94.2 97.41 49.11 74.11

ResNet152 63.35 87.06 83.36 95.53 82.33

GoogLeNet 88.71 69.72 68.75 47.65 68.71

VGG16 53.35 96.99 90.28 50.68 72.83

VGG19 54.49 91.06 95.96 46.87 72.10

ResNet152 56.83 79.52 76.33 91.87 76.14

of the images are misclassified as “truck”. The ability of the UAP to drive the
classification of most images into a single category shows that, although it has
little effect on the visual appearance of the images, it can greatly influence the
classification decisions of the network, which also illustrates the vulnerability of
the network.

4.2 Universal Attack on ImageNet Dataset

For the experiments in this part, We randomly select 10,000 images from the
ILSVRC validation dataset as training data and randomly select another batch
of 10,000 images from the remaining data as the validation dataset. Training data
and validation data do not have any intersection. We use the pre-trained models
VGG16 [29], VGG19 [29], ResNet152 [10], and GoogLeNet [31] officially provided
by Pytorch, and their model accuracy can reach 71.59%, 72.38%, 78.31%, and
69.78%, respectively. In this section, we conduct experiments on non-targeted
and targeted attacks on the above four powerful classification models.

We set the value of ε to 10/255, the confidence value κ to 10, the learning
rate to 0.001, and the batch size to 32. The experimental results are compared
with five baseline methods, including UAP [19] based on decision boundary

Multi-scale Features Destructive Universal Adversarial Perturbations 429

Fig. 4. UAPs trained on ImageNet for different networks.

Table 5. FRnt (%) of various attack methods with ResNet152 and GoogLeNet as
source models on ImageNet.

Source Model Method GoogLeNet VGG16 VGG19 ResNet152

ResNet152 UAP [19] 50.5 47.0 45.5 84.0

NAG [23] 62.33 52.17 53.18 87.27

DF-UAP [35] 54.52 69.85 73.83 90.08

Ours 63.35 87.06 83.36 95.53

GoogLeNet UAP [19] 78.9 39.2 39.8 45.5

NAG [23] 90.37 56.4 59.14 59.22

DF-UAP [35] 88.94 65.74 63.75 44.09

Ours 93.48 79.33 77.24 55.31

attack, two generative networks-based methods NAG [23] and GAP [26], and
two optimization-based methods DF-UAP [35] and Cos-UAP [36].

Fig. 5. A clean image and corresponding adversarial examples on ImageNet.

Table 3 reports the comparison results of various non-targeted UAP methods
mentioned above in the white-box attack scenario with the metric of the non-
targeted fooling rate. The results show that our proposed method can obtain
better fooling rates, i.e., over 90% for all target models, for the same magnitude
of �∞ norm. We visualize the learned perturbation on ImageNet for four target
models in Fig. 4. To illustrate those perturbations are almost imperceptible to
humans, we show a clean example and some adversarial images in Fig. 5. As with
CIFAR-10, we do experiments of dominant labels, see Fig. 6. We count the top
10 classes that most adversarial examples fall into.

430 H. Wu et al.

Fig. 6. Number of adversarial examples classified in several classes on ImageNet.

Table 6. The FRnt (%) and FRt (%) for targeted universal adversarial attack on
ImageNet.

Method GoogLeNet VGG16 VGG19 ResNet152

GAP [19] 49.46 63.58 93.53 77.63 89.42 72.14 81.68 67.58

DF-UAP [35] 83.69 74.21 96.18 83.86 95.09 86.14 87.91 82.10

Ours 89.47 77.39 96.59 85.80 95.37 86.03 89.95 82.23

In the previous experiments, we assumed full access to the images used to
train UAPs, whereas, in real situations, the attacker has limited access. There-
fore, we evaluate non-targeted attacks with limited access to the data. We show
in Fig. 7 the non-targeted fooling rates of UAPs generated with different quan-
tities of training data. Surprisingly, our method achieves amazing results on a
training set of only 500 images, reaching 88.87%, 96.82%, 96.13%, and 91.88%
fooling rates on GoogLeNet, VGG16, VGG19, and ResNet152, respectively. The
500 randomly selected images obtain no more than 500 classes, and the classi-
fier needs to classify 1000 classes, indicating that this method can deceive many
pictures even if there is a large amount of unseen training data. For GoogLeNet,
the fooling rate for 500 images is over 30% in UAP [19], over 20% fooling rate in
UAN [9], and over 60% in GUAP [37], which shows that our method can achieve
a higher fooling rate using fewer images.

Fig. 7. FRnt (%) on ImageNet versus the size of training examples.

To test the performance impact of the loss function of feature maps attack,
we set γ to 0 and show the transferability results in Table 4. The results are

Multi-scale Features Destructive Universal Adversarial Perturbations 431

divided into the method that includes Lfea (upper) and the method that does
not include Lfea (lower). We can clearly see that transferability performs better
with Lfea. As shown in Table 4, the UAP trained on VGG16 can achieve a fooling
rate of 92.47% on VGG19, while using VGG19 as the source model can achieve a
fooling rate of 94.2% on VGG16, indicating that networks with similar structures
transfer reasonably well between each other. We compare the transferability of
various methods on ResNet152 and GoogLeNet in Table 5. Experimental results
of transferability suggest that attacks based on intermediate feature maps help
to improve the fooling rate and transferability of the adversarial examples.

Fig. 8. Targeted universal perturbations with target class of tile roof.

Next, we do targeted attacks on ImageNet. To ensure that the attack per-
forms well for any target, we train eight different classes of targeted universal
perturbations on the training set and calculate top-1 target accuracy. Table 6
shows the mean non-targeted fooling rate and the mean targeted fooling rate for
the eight targeted universal perturbations. We do not find that previous works
reported a comparison of targeted universal perturbations. To the best of our
knowledge, there are very few works on targeted universal perturbations. To
assess the transferability of targeted universal perturbations, we compare them
with the state-of-the-art GAP [26] and DF-UAP [35], which refer to targeted
attacks. As can be seen from the table, our method achieves significant improve-
ment over GAP. The average fooling rate on the four models is over 92%, and
the average targeted fooling rate is over 82%. We present the transferability
results for eight targeted UAPs in Table 7. The rows represent the source model,
and the columns represent the target model. We observe better transferability
between VGG16 and VGG19. The targeted UAP trained on VGG16 achieves a
targeted fooling rate of 85.8% and can achieve a targeted fooling rate of 50.79%
on vgg19. Experiments show that the more similar the source model structure
is to the target model structure, the higher the transferability of the generated
adversarial examples. Overall, non-targeted transferability performs better than
targeted transferability. Figure 8 shows the targeted perturbations of the tar-
get class “tile roof”. We observe that these perturbations have textures of the
tile roof, as stated in GAP [26] targeted perturbations contain patterns similar
to target classes. We show the targeted attack results for the tile roof class in
Table 8.

432 H. Wu et al.

Table 7. Transferability of our proposed targeted UAPs cross different models on
ImageNet. The two values in each column represent the average of the FRnt (%) and
the FRt (%), respectively.

GoogLeNet VGG16 VGG19 ResNet152

GoogLeNet 89.47 77.39 73.68 12.87 71.10 8.90 50.58 7.02

VGG16 46.60 4.89 96.59 85.80 88.97 50.79 41.27 3.92

VGG19 40.76 3.66 88.98 47.59 95.37 86.03 35.73 2.46

ResNet152 54.06 6.06 71.62 19.43 72.28 30.99 89.95 82.23

Table 8. Transferability results for target class tile roof cross different models on
ImageNet. The two values in each column represent the average of the FRnt (%) and
the FRt (%), respectively.

GoogLeNet VGG16 VGG19 ResNet152

GoogLeNet 89.28 73.76 78.97 0.26 75.15 0.30 55.13 1.40

VGG16 44.01 0.08 95.82 84.03 86.38 40.11 38.64 0.51

VGG19 34.12 0.04 86.12 17.00 94.22 83.63 29.87 0.09

ResNet152 50.25 0.42 75.63 0.5 70.66 0.36 90.34 81.93

5 Conclusions

We propose a novel universal adversarial attack method, Multi-scale Features
Destructive UAP (MFD-UAP), which destroys the useful properties of clean
examples in the internal feature representations. We improve the fooling rate and
transferability by destroying the deep features of the target network and thus
changing the forward propagation of the inputs in the network. Furthermore,
we use adversarial objectives to effectively guide the search direction, resulting
in perturbations with state-of-the-art fooling rates in non-targeted and targeted
attack tasks. Compared to current universal attacks, we can apply less training
data, and non-targeted attacks do not require ground-truth labels. The relation-
ship between UAP generation and feature space further facilitates research on
the susceptibilities and robustness of DNNs. The proposed MFD-UAP identi-
fies the deficiencies of deep neural networks and makes a warning beforehand in
security-sensitive applications.

Acknowledgment. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62162067 and 62101480, in part by the Fund
Project of Yunnan Province Education Department under Grant No.2022j0008, in
part by the Yunnan Province Science Foundation under Grant No.202005AC160007,
No.202001BB050076, Research and Application of Object detection based on Artificial
Intelligence.

Multi-scale Features Destructive Universal Adversarial Perturbations 433

References

1. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
S&P (2017)

2. Chen, K., Guo, S., Zhang, T., Li, S., Liu, Y.: Temporal watermarks for deep rein-
forcement learning models. In: Dignum, F., Lomuscio, A., Endriss, U., Nowé, A.
(eds.) AAMAS, pp. 314–322 (2021)

3. Chen, K., et al.: Badpre: task-agnostic backdoor attacks to pre-trained NLP foun-
dation models. In: ICLR (2022)

4. Dai, J., Shu, L.: Fast-UAP: an algorithm for expediting universal adversarial per-
turbation generation using the orientations of perturbation vectors. Neurocomput-
ing 422, 109–117 (2021)

5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-
scale hierarchical image database. In: 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami,
Florida, USA (2009)

6. Dolatabadi, H.M., Erfani, S., Leckie, C.: Advflow: inconspicuous black-box adver-
sarial attacks using normalizing flows. In: NIPS (2020)

7. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversar-
ial attacks with momentum. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

9. Hayes, J., Danezis, G.: Learning universal adversarial perturbations with generative
models. In: SP (2018)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016 (2016)

11. He, S., et al.: Type-i generative adversarial attack. IEEE Trans. Dependable Secure
Comput. 20(3), 2593–2606 (2023)

12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017 (2017)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny

images. Handbook of Systemic Autoimmune Diseases (2009)
15. Li, G., Ding, S., Luo, J., Liu, C.: Enhancing intrinsic adversarial robustness via fea-

ture pyramid decoder. In: CVPR, pp. 797–805. Computer Vision Foundation/IEEE
(2020)

16. Li, G., Xu, G., Qiu, H., He, R., Li, J., Zhang, T.: Improving adversarial robustness
of 3D point cloud classification models. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds.) ECCV2022. LNCS, vol. 13664, pp. 672–689.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7 39

17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2017)

18. Mangla, P., Jandial, S., Varshney, S., Balasubramanian, V.N.: Advgan++ : Hrness-
ing latent layers for adversary generation. In: ICCV (2019)

19. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial per-
turbations. In: CVPR (2017)

https://doi.org/10.1007/978-3-031-19772-7_39

434 H. Wu et al.

20. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: CVPR (2016)

21. Mopuri, K.R., Ganeshan, A., Babu, R.V.: Generalizable data-free objective for
crafting universal adversarial perturbations. IEEE Trans. Pattern Anal. Mach.
Intell. 41, 2452–2465 (2019)

22. Mopuri, K.R., Garg, U., Radhakrishnan, V.B.: Fast feature fool: a data indepen-
dent approach to universal adversarial perturbations. In: BMVC (2017)

23. Mopuri, K.R., Ojha, U., Garg, U., Babu, R.V.: NAG: network for adversary gen-
eration. In: CVPR (2018)

24. Mopuri, K.R., Uppala, P.K., Babu, R.V.: Ask, acquire, and attack: data-free UAP
generation using class impressions. In: ECCV (2018)

25. Peng, W., et al.: EnsembleFool: a method to generate adversarial examples based
on model fusion strategy. Comput. Secur. 107, 102317 (2021)

26. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.J.: Generative adversarial per-
turbations. In: CVPR (2018)

27. Ren, M., Zhu, Y., Wang, Y., Sun, Z.: Perturbation inactivation based adversarial
defense for face recognition. IEEE Trans. Inf. Forensics Secur. 17, 2947–2962 (2022)

28. Sharif, A., Marijan, D.: Adversarial deep reinforcement learning for improving
the robustness of multi-agent autonomous driving policies. In: 29th Asia-Pacific
Software Engineering Conference, APSEC 2022, Virtual Event, Japan, December
6–9, 2022 (2022)

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
(2015)

30. Sun, M., Tang, F., Yi, J., Wang, F., Zhou, J.: Identify susceptible locations in
medical records via adversarial attacks on deep predictive models. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19–23, 2018 (2018)

31. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
32. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
33. Tu, C.C., et al.: Autozoom: autoencoder-based zeroth order optimization method

for attacking black-box neural networks. In: Proceedings of the AAAI Conference
on Artificial Intelligence (2019)

34. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial
examples with adversarial networks. CoRR (2018)

35. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples
from the mutual influence of images and perturbations. In: CVPR (2020)

36. Zhang, C., Benz, P., Karjauv, A., Kweon, I.S.: Data-free universal adversarial
perturbation and black-box attack. In: ICCV (2021)

37. Zhang, Y., Ruan, W., Wang, F., Huang, X.: Generalizing universal adversarial
attacks beyond additive perturbations. In: Plant, C., Wang, H., Cuzzocrea, A.,
Zaniolo, C., Wu, X. (eds.) 20th IEEE International Conference on Data Mining,
ICDM 2020, Sorrento, Italy, November 17–20, 2020 (2020)

Pixel-Wise Reconstruction of Private
Data in Split Federated Learning

Hong Huang(B), Xingyang Li, and Wenjian He

College of Computer Science, Chongqing University, Chongqing 400044, China

20164478@cqu.edu.cn

Abstract. This study investigates the security of split federated learn-
ing (SFL), a collaborative deep learning scheme that provides similar
peak performance to federated learning while significantly reducing its
computation time for multiple clients. We find that the basic security
assumptions of SFL are flawed, in which the honest-but-curious server
can easily conspire with a motivated client to break the security of SFL.
More prominently, we show that the server can train an inversion model
(DecodeNet) and perform an inference attack on clients’ private data. To
support DecodeNet training, we implement a data-free training scheme
to provide train data in the absence of the original training dataset. The
experimental results demonstrate that our attack can reconstruct pixel-
wise private images from clients on four different datasets and overcome
the differential privacy protection mechanism in SFL.

Keywords: Collaborative learning · ML security · Privacy
preserving · Deep Learning

1 Introduction

Nowadays, deep learning (DL) techniques have been extensively used in vari-
ous fields, including face recognition, smart healthcare, and autonomous driving
[13,25]. State-of-the-art deep neural networks typically contain millions or bil-
lions of network parameters, which require large amounts of data for purposeful
training and massive computational resources. However, it is often difficult or
even impossible to centralize all training data on a single device for training due
to privacy or commercial reasons. For example, e-commerce companies can use
DL techniques to accurately push products to users, but they may not want to
share customer data with their competitors. Similarly, healthcare organizations
are prohibited from disclosing patient information by law and regulations.

Collaborative deep learning schemes are very popular in applications with
privacy preserving requirements. One representative collaborative deep learning
scheme is federated learning (FL) [15], which allows training models using data
from multiple distributed devices without centralizing them, with only gradient
communication during training (i.e., private training sets are never public). The
gradient aggregation method of FL enables multiple clients to train the local
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 435–450, 2023.
https://doi.org/10.1007/978-981-99-7356-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_26&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_26

436 H. Huang et al.

model in parallel. However, for large modern DL models, it is difficult to run the
full model on resource-limited clients. Split learning (SL) [21] separates the deep
learning model architecture between the client and server, providing better model
privacy protection than FL and less computational demands on clients. However,
in SL, only one client can interact with the server simultaneously, resulting in a
significant increase in the overall training time. As a recent collaborative deep
learning scheme, split federated learning (SFL) [19] combines the benefits of FL
and SL.

In SFL, the full DL model is divided into a client-side model and a server-side
model. Multiple clients use client-side local models to manipulate their private
inputs and pass smashed data (i.e., latent representation) to the main server.
The main server then performs computations on the more expensive server-side
model and passes the gradients back to the clients. After one global iteration,
the copies of client-side local model parameters are averaged on the fed server
and return client-side global model, which is similar to FL. As a result, SFL
avoids training the entire DL model on the client and protects the privacy of
local data. Although the practical advantages of SFL are extensively recognized,
little effort has investigated the potential information leakage resulting from the
shared smashed data in SFL.

In this study, we show that the basic assumptions regarding the security of
SFL are flawed. The honest-but-curious main server can conspire with any client
to recover the complete model information, which breaks the security of the
SFL framework. To quantify the information leakage in SFL, we implement an
inference attack method where the main server locally trains an inversion model
(namely, DecodeNet) to reconstruct private training samples from the shared
smashed data sent from clients. In this attack, the conspiring client contributes
only the client-side model architecture and client-side global model duplication
(the initial parameters of the client-side model at each global SFL iteration) to
the server.

There are two major technical challenges in DecodeNet to be addressed.
Firstly, achieving high performance of DecodeNet can be challenging when the
clients’ training data is absent on the main server. In SFL, the main server can
not access clients’ training data. Instead, only the smashed data is accessible
by the main server, which is insufficient for training an effective DecodeNet
model. To overcome this challenge, we develop a data-free training scheme. A
pseudo-sample generator is trained to generate imitated training data, which
can facilitate DecodeNet training. Secondly, the generated pseudo-samples only
have a similar distribution to real training datasets. Therefore, it is challenging
to reconstruct visually accurate original images when only using these pseudo-
samples to train DecodeNet. To address this issue, we collect the smashed data
shared by clients to help train DecodeNet. Furthermore, we design two cycle-
consistency loss functions to enable joint training of DecodeNet using both types
of data (pseudo-samples and smashed data). Finally, our intensive experiments
demonstrate that the well-trained DecodeNet can accurately reconstruct original
samples on four different datasets.

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 437

The main contributions of this paper can be summarized as follows:

– We propose a novel inference attack method based on the conspiracy of an
honest-but-curious main server and a motivated client in SFL. This attack
can successfully recover the private training data of honest clients from their
shared smashed data.

– Unlike conventional attack methods that require participation in SFL training
or specific conditions, our attack is non-intrusive to the SFL protocol and can
recover pixel-wise accurate private instances using only shared smashed data.

– To evaluate the robustness of our attack, we analyze the attack difficulty
under the differential privacy defense method and discuss various privacy
budget settings against our attack.

2 Related Work

2.1 Federated Learning

FL is a distributed machine learning (ML) technique that allows distributed
model training among multiple data sources using local data without exchanging
local data, only exchanging model parameters or gradients. The entities in the
FL system model include a central server and multiple clients. In each iteration,
the selected clients download the global model parameters from the central server
and update their local models. Then, clients train their local models using their
local datasets. Finally, the updated local model parameters are sent to the central
server, where they are averaged to update the global model. The above process
is executed in multiple iterations until the ML model is well-trained. One of the
disadvantages of FL is that each client needs to run the full ML model, which
can be unaffordable for clients with limited resources. It is common if the ML
model is a large DL model. Furthermore, there is a privacy concern about the
model, as both the server and clients have full access to the local and global
models.

Privacy Leakage in Federated Learning. Previous work has explored how to
infer private information about the training data from the shared gradients. Zhu
et al. [26] proposed a technique called DLG to reconstruct pixel-wise accurate
training samples, which optimizes random input to generate the same gradi-
ents for a specific client. The iDLG method [24] is an improvement of DLG,
introduced to improve its efficiency. However, they are only effective on simple
standard datasets and with small batch size settings. The backdoor attack [2]
proposed using well-crafted gradients that are sent to the server to modify the
global model in the final round, enabling the adversary to insert a backdoor
functionality into the jointly trained model. The attribute inference attack [16]
exploits model updates shared among clients to infer sensitive attributes of the
training data, such as specific locations. Recent research has developed meth-
ods based on generative adversarial networks to infer representatives of a specific
class from the shared gradients [6,22]. While attacks against FL are continuously
improving, they typically assume an ideal setting, which contradicts industrial
practice.

438 H. Huang et al.

2.2 Split Learning

SL enables multiple distributed clients to collaboratively train a global model
without exposing the full model to the clients. SL splits the full ML model into
multiple smaller network portions and trains them separately on a server and
multiple clients. Each client only needs to train a small part of the full network.
Therefore, the computational resource requirements are reduced compared with
training the full model on the client-side in FL. This reduction in the compu-
tational burden is particularly important for ML computations on low-resource
devices. The model on the client-side is responsible for computing a forward
pass through the deep network and then sending the smashed data (i.e., latent
representation) to the server-side model or other network portions. The model
on the server-side is responsible for classifying or predicting the data and then
returning the gradients to the clients. Furthermore, clients are unable to access
the server-side model, and conversely, the server-side model is inaccessible to
clients. Although SL has advantages, because it is a sequential protocol, it is not
feasible to train multiple clients simultaneously, resulting in a significant increase
in the amount of time required for model training.

Privacy Leakage in Split Learning. Although clients only share their
smashed data of the training data in SL, they are still vulnerable to attribute
inference attacks and hijack attacks. In an attribute inference attack [7], the
input side (i.e., client) can infer the true label of the input data using the received
gradient information. Liu et al. [12] proposed that labels can be inferred by super-
vised learning and that even the aggregated gradient of a batch may compromise
privacy. Li et al. [11] found that in binary classification tasks, a certain degree of
label speculation can be performed by observing the characteristics of the inter-
mediate gradient and performing statistical analysis. Dario et al. [17] proposed
FSHA, a hijack attack in which a malicious server hijacks the learning process of
clients by using a specific loss function, and reconstructs pixel-wise accurate pri-
vate instances of clients. However, the proposed hijack attack requires a shadow
dataset that is distributed with the private data of clients, which contradicts
reality.

3 Method

In this section, we first introduce SFL analysis. Then, we introduce our threat
model and an overview of the DecodeNet system. Next, we discuss each part of
the DecodeNet system in detail.

3.1 Security Analysis

The SFL framework is described in Fig. 1, where the full model is divided into a
client-side model and a server-side model. In terms of security, the main advan-
tage of SFL is that the client-side model is not accessed by the server, and
vice versa. Furthermore, the SFL protocol guarantees that both the server and

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 439

Exchange

information

Main Server
Fed Server

Client-side

model

Server-side

model

Full model

Client 1

Client 2

Client K

Fig. 1. Overview of SFL framework.

clients can work without knowledge of the full model. Previous studies [4,21]
have reported that splitting the full model can help defend against inference
attacks from malicious servers. However, this setup assumes that clients and
the server cannot exchange information, in other words, they cannot conspire.
In practice, it is difficult to ensure that hundreds or thousands of clients in a
distributed system are all honest. There is no constraint preventing clients and
servers from sharing local information with third parties. Therefore, the server
can conspire with any client (just one motivated client is needed) to recover the
full model information and break the SFL protocol. After recovering the full
model information, the server can train an inversion model to reconstruct the
private training samples from the shared smashed data. In the following section,
we demonstrate how this can be achieved.

3.2 Threat Model

The main server is assumed to be the attacker. The attacker is honest-but-curious
[18], meaning it follows the SFL protocol correctly and sends back accurate com-
putation results. We use a white-box assumption that the attacker conspires with
one of the clients who provide the client-side model architecture and the client-
side global model copy at the beginning of each epoch. In addition, according to
the SFL protocol, the attacker can access all the smashed data shared by clients
and the server-side model. The attacker’s goal is to reconstruct the private train-
ing samples of other clients from their shared smashed data. The attacker has no
prior information about the honest clients’ private datasets and cannot obtain a
training dataset with a similar distribution. Note that this attack is performed
separately after obtaining the required smashed data and model information,
thus, the attack process is non-intrusive to the SFL protocol.

440 H. Huang et al.

3.3 DecodeNet System Overview

Pseudo-sample

generator
Client-side

global model

Server-side

model

Random

noise
images Loss function

DecodeNet
Generated

smashed data

Real

smashed data
Clients

Client-side

global model

Reconstruct images

DecodeNetClients
Real

smashed data
Reconstruct images

Train phase

Inference phase

Pseudo-sample

training

DecodeNet training

Update pseudo-sample generator

Fig. 2. Overview of DecodeNet system.

Figure 2 shows how DecodeNet works in SFL. This DecodeNet system consists
of two phases: (1) a training phase where the server trains the inversion model
DecodeNet, and (2) a subsequent testing phase where the main server uses the
well-trained DecodeNet to reconstruct private samples from the shared smashed
data sent from clients.

Training Phase. To obtain well-trained client-side and server-side models, we
perform our attack in the last epoch of SFL. In this training phase, we use
two types of training data: real smashed data and generated pseudo-samples.
According to the SFL protocol, at the start of each epoch, all client-side models
are updated to the client-side global model. The main server collects the first
batch of smashed data sent from the clients as real smashed data. Specifically,
the collected real smashed data are the outputs of clients’ private data processed
by the client-side global model. To improve the performance of DecodeNet, the
main server also trains a pseudo-sample generator to generate pseudo-samples
that have a similar distribution to the clients’ training data. The generated
smashed data are the outputs of generated pseudo-samples processed by the
client-side global model. As shown in Fig. 2, both the real smashed data and
generated smashed data are directly used as inputs for training DecodeNet.

Testing Phase. After a sufficient number of training epochs, DecodeNet can
be used to accurately reconstruct the original private instances from the shared
smashed data of the clients.

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 441

3.4 Pseudo-sample Generator Training Phase

In the SFL protocol, the private training data of clients are inaccessible to the
main server. However, the absence of the original training data presents a chal-
lenge for training DecodeNet. In this study, we address this issue by training a
pseudo-sample generator to generate pseudo-samples that are closely similar to
real training samples. Then, we use the generated pseudo-samples to help train
DecodeNet. As illustrated in Fig. 2, the training process of the pseudo-sample
generator is supported by client-side and server-side models, which are accessible
to the main server according to our threat model. In the following, we introduce
two specific loss functions to encourage pseudo-sample generator to generate
useful data, which is inspired by the work of Chen et al. [3].

One-hot Loss. In this study, the SFL framework is applied to image classifica-
tion tasks, and clients employ the cross-entropy loss function to train their local
models. The cross-entropy loss encourages the predicted probability of inputs to
approach the true label, which is usually a one-hot vector (where one entry is 1
and all other entries are 0). If the generated pseudo-samples follow the same dis-
tribution as the clients’ training data, they should also produce similar outputs
as the clients’ training data. Therefore, we introduce a one-hot loss to encour-
age the outputs of generated pseudo-samples by the client-side global model to
be close to a one-hot vector. Let G denote the pseudo-sample generator. Let
{zi}ni=1 denote a mini-batch of random noise input for the generator. The gen-
erated pseudo-samples are xi = G(zi). C∗ and S denote the client-side global
model and the server-side model, respectively. The outputs of generated pseudo-
samples by the full model are yi = S(C∗(xi)). ti = arg max

j
(yi)j denotes the

predicted label. Accordingly, the one-hot loss Loh is designed as follows:

Loh =
1
n

∑

i

LCE(yi, ti), (1)

where LCE denotes cross-entropy loss.

Information Entropy Loss. When training neural networks, it is common
practice to ensure that each class has an equal number of samples. Thus, to
facilitate the training of DecodeNet, we introduce the information entropy loss to
encourage the pseudo-sample generator (G) to balance the number of generated
samples in each class. Given a probability vector {p1,p2, ...,pn}, the information
entropy is calculated as Hinfo = −∑

i pilogpi. The information entropy loss Lie

is defined as follows:
Lie =

∑

i

pilogpi, (2)

where pi =
1
n

∑
i y

i denotes the frequency distribution of each class of generated
samples. The minimization of Lie results in the maximization of the information
entropy, which encourages the generation of samples with approximately equal
numbers in each class.

442 H. Huang et al.

Generator Total Loss. By combining the above two loss functions, the final
loss function for G is given by

LG = Loh + βLie, (3)

where β represents the hyper-parameter balancing the two different loss func-
tions. By minimizing LG, G can generate useful samples for DecodeNet training.

3.5 DecodeNet Training Phase

In our threat model, the main server can access the client-side global model. The
client-side global model is the first part of the full model, which can dynamically
map the training data to the smashed data. The main server’s objective is to train
DecodeNet to dynamically map the smashed data back to the original training
data. To support the training of DecodeNet, we employ a trained pseudo-sample
generator to generate pseudo-samples. Additionally, the main server can access
the real smashed data shared by clients. Both types of data are used to train
DecodeNet. In the following sections, we introduce two cycle-consistency loss
functions to enhance the training of DecodeNet.

Forward Cycle-Consistency Loss. Let R denote the domain of private train-
ing samples of clients and S denote the domain of smashed data. The DecodeNet
model (namely, f−1) is designed to learn a mapping: S → R, such that the pri-
vate instances can be recovered from the shared smashed data. Furthermore, we
have access to the mapping: R → S (i.e., the client-side global model, namely,
f). f−1 is a reverse process of f, thus, we can optimize f−1 with f−1(f(x)) ≈ x,
where x represents a mini-batch of generated pesudo-samples and f(x) denotes
the generated smashed data. The forward cycle-consistency loss is designed as
follows:

Lf = ‖f−1(f(x)) − x‖2, (4)

where ‖ · ‖2 is l2 norm.

Backward Cycle-Consistency Loss. In addition to using the generated
pseudo-samples to train f−1, we exploit the shared smashed data sent from the
client to participate in the training. As with the forward cycle-consistency loss,
we learn the mapping: S → R by optimizing f−1 with f(f−1(s)) ≈ s, where s
represents a mini-batch of real smashed data. Accordingly, the backward cycle-
consistency loss is defined as follows:

Lb = ‖f(f−1(s)) − s‖2, (5)

DecodeNet Total Loss. Moreover, we define the total cycle-consistency loss
as follows:

LD = Lf + λLb, (6)

where λ represents a hyper-parameter for balancing both Lf and Lb. By mini-
mizing LD, DecodeNet can reconstruct private samples from the smashed data
of clients.

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 443

4 Experiments

In this section, we first introduce the experiment setup. Then, the experimental
results are reported.

4.1 Experiment Setup

Datasets. We conduct experiments on four datasets, including MNIST [9],
CIFAR10 [8], HAM10000 [20], and CelebA [14]. The HAM10000 dataset is a
medical image dataset that contains seven diagnostic categories of skin lesion
samples, with an image size of 600 × 450 pixels. In the experiments, images in
the HAM10000 dataset are cropped to a size of 64×64 pixels The CelebA dataset
is a celebrity face image dataset with 40 attributes per image. In the experiments,
the images in the CelebA dataset are cropped to a size of 64×64 pixels and used
to train the gender binary classification task. MNIST and CIFAR10 are standard
datasets with 10 classes, and all images in these datasets are cropped to 32×32.
In the SFL initialization phase, the data in the datasets is randomly shuffled and
evenly distributed to all clients. In the DecodeNet training phase, the collected
real smashed data is divided into the training set and test set according to the
ratio of 0.8 and 0.2.

Parameter Settings. By default, we set hyper-parameter λ = 3 and β = 4 in
our experiments. Let N denote the number of real smashed data collected by the
server. By default, we set N = 2000 in our experiments and we also conducted
ablation experiments to observe the impact of varying values of N on the results.
In the training phase of DecodeNet and the pseudo-sample generator, the Adam
optimizer was used with a learning rate of 0.001.

C
o
n
v
2
d
(6

4
,7

,2
,1

)

B
at

ch
N

o
rm

2
d

R
eL

U

R
es

B
lo

ck
(6

4
,1

)

R
es

B
lo

ck
(6

4
,1

)

R
es

B
lo

ck
(1

2
8
,2

)

R
es

B
lo

ck
(1

2
8
,1

)

R
es

B
lo

ck
(2

5
6
,2

)

R
es

B
lo

ck
(2

5
6
,1

)

input

split1 split2 split3 split4

M
ax

P
o
o
l2

d
(3

,2
,1

)

Fig. 3. Architecture of client-side model (left part), which is divided into four different
depth levels.

Neural Network Structure. We choose ResNet18 [5] as the full model for SFL
training, which is the same setting as in the original paper of SFL. Figure 3 shows
the architecture of the full model, where the client-side model is divided into four
different depth levels. The sample-generator G and DecodeNet are constructed
by deconvolution and batch normalization layers.

444 H. Huang et al.

Evaluation Metrics. In addition to a qualitative visual comparison, we quanti-
tatively evaluate the similarity between the original image and the reconstructed
image using the following metrics: (1) mean square error (MSE ↓); (2) structural
similarity index (SSIM ↑); (3) peak signal-to-noise ratio (PSNR ↑); (4) learned
perceptual image patch similarity (LPIPS ↓) [23]. Note that “↓” indicates the
lower value of the metric the higher the image quality, while “↑” represents the
higher value of the metric the higher image quality.

Fig. 4. Examples of reconstructed images and original training images on four different
datasets with split2 setting. For each dataset, the first row is the original training
images, and the second row is the reconstructed images.

4.2 Experiments on Different Datasets

We set the number of clients K = 20, and the fraction of selected clients per
epoch C = 0.3, with a batch size up to 128. To obtain well-trained client-side
model and server-side model, we perform the SFL protocol 200 iterations. The
visual comparison between reconstructed images and original training images on
the four datasets is depicted in Fig. 4. We can find that DecodeNet can accurately
reconstruct the original images on all four datasets. Although the reconstructed

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 445

Fig. 5. Reconstruction error between original images and reconstructed images on four
different datasets and four different split settings.

images have become darker visually, most details can be recognized compared
with the original images.

Furthermore, we evaluate the impact of different depth split settings of the
client-side model on four datasets. We use the MSE as the reconstruction error to
measure the distance between the original images and the reconstructed images.
We randomly sampled 100 images from each dataset and perform our attack to
generate their reconstructed images. Then, we measure the average reconstruc-
tion error between the original images and the reconstructed images. Figure 5
shows the reconstruction error curve and reconstructed images on four datasets
with four different depth splits settings. The reconstruction error curve shows
that the training of DecodeNet converges within 200 rounds and that the deeper
the split setting, the larger the reconstruction error. Through visual comparison
between these reconstructed images, we can find that DecodeNet cannot recon-
struct effective information under the setting of split4. For the split settings of
split1 and split2, DecodeNet can accurately reconstruct the original images on
all datasets, but this will be less effective on the split3 setting.

In addition, split settings with different depths also mean different dimensions
of the smashed data. Intuitively, the smaller the dimension of the smashed data,
the harder it is to reconstruct, and the larger the reconstruction error will be.

446 H. Huang et al.

From split1 to split4, the dimensions of the smashed data are respectively 64 ×
16×16, 64×16×16, 128×8×8, and 256×4×4. As shown in Fig. 5, the smaller
the dimension of the smashed data, the larger the reconstruction error.

4.3 Ablation Experiments

Multiple loss functions are used for DecodeNet training, and we further conduct
ablation experiments to help understand and analyze the impact of each loss
function. Table 1 shows the effectiveness of various loss functions on the MNIST
dataset. When we did not use any loss function, that is, using randomly gen-
erated images to represent the reconstructed images, the reconstruction error is
0.467. When we trained DecodeNet using only the Lf with random data, the
reconstruction error is 0.238. When we trained DecodeNet using only the Lb

with real smashed data, the reconstruction error is 0.173. When LG or Lb are
combined with Lf , the reconstruction error achieves 0.227 or 0.171, respectively.
Furthermore, when all these loss functions are used, we obtained the lowest
reconstruction error: 0.145, which means DecodeNet achieves the best perfor-
mance.

Table 1. Effectiveness of different loss functions for DecodeNet training.

LG � �
Lf � � � �
Lb � � �
Reconstruction error (MSE) 0.467 0.238 0.173 0.227 0.171 0.145

In addition to analyzing the impact of each loss function, we evaluate the
influence of the number of real smashed data on the performance of DecodeNet.
Table 2 shows the quantitative comparison of the reconstructed images by Deco-
deNet under different N . The visualization results are shown in Fig. 6. We ran-
domly select 100 images from the test datasets and measure the MSE, SSIM,
PSNR, and LPIPS between the original images and reconstructed images. We
have the following three findings. First, on both HAM10000 and CelebA datasets,
the four metrics for different N are nearly the same with small variances. Sec-
ond, in terms of the four metrics, the quality of the reconstructed images on the
HAM10000 dataset is the worst. Third, on MNIST and CIFAR10 datasets, the
image quality reconstructed by DecodeNet increases as N increases from 500 to
2000.

4.4 Impact of Differential Privacy

In the original SFL paper, to prevent attackers from inferring private data from
the model parameters and smashed data shared by clients, the author proposes

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 447

Table 2. Quantitative comparison of reconstructed images under different N.

N MNIST CIFAR10 HAM10000 CelebA

MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓
500 0.0367 0.6984 14.5463 0.0341 0.1757 0.2358 8.3688 0.2198 0.1720 0.2201 7.8469 0.3818 0.1481 0.3580 9.2228 0.3301

1000 0.0218 0.7384 16.7725 0.0225 0.1076 0.3995 10.5062 0.1117 0.1753 0.2636 7.7740 0.3629 0.1504 0.3476 9.1684 0.3423

1500 0.0083 0.8621 21.0010 0.0141 0.0936 0.4709 11.1264 0.0872 0.1723 0.2724 7.8499 0.3405 0.1376 0.3906 9.5662 0.3054

2000 0.0079 0.8516 21.1832 0.0132 0.0777 0.5561 11.9028 0.0807 0.1727 0.2709 7.8367 0.3615 0.1352 0.3946 9.6240 0.2996

2500 0.0073 0.8828 21.4771 0.0124 0.0849 0.5304 11.5807 0.0727 0.1701 0.2797 7.9033 0.3207 0.1521 0.3679 9.1492 0.3181

Fig. 6. Quantitative comparison by varying N.

to use differential privacy mechanisms to protect the shared model parameters
and smashed data. The authors implement two differential privacy strategies:
(1) differential privacy [1] applied to client-side model training, and (2) adding a
PixelDP [10] noise layer to the client-side model. To verify whether DecodeNet
can successfully reconstruct the original images from the smashed data under the
differential privacy protection mechanism, we implemented the two differential
privacy strategies described in the SFL paper.

We first conduct normal experiments with the setting of split2 using
ResNet18 on the MNIST dataset. The model test accuracy curve of 50 global
iterations is shown in Fig. 7a. We keep the ε at 0.5 in all experiments with
strict client-side model privacy. Furthermore, for illustrative purposes, we vary
the value of ε

′
(PixelDP) to see its impact on the normal training process. As

expected, the test accuracy decreases as the privacy budget (ε + ε
′
) decreases,

and the accuracy curves in the differential privacy setting are slower than those
in the normal setting.

Fig. 7. Experimental results in differential privacy setting.

448 H. Huang et al.

Fig. 8. Reconstructed images by DecodeNet on different differential privacy settings.
The first row is the original training images. The second row is the reconstructed
images in the normal SFL setting. The others are reconstructed images with different
differential privacy settings.

To illustrate the effectiveness of DecodeNet under the differential privacy
protection mechanism, we conduct our attack on SFL with these two defense
strategies enabled. The reconstruction error under different differential privacy
settings is shown in Fig. 7b. Overall, the reconstruction error increases as the
privacy budget (ε+ ε

′
) decreases. Figure 8 shows the visual comparison of recon-

structed images under different privacy budget settings. We find that as the
privacy budget (ε+ ε

′
) decreases, the visual legibility of the reconstructed image

deteriorates, but not to the point of being completely unrecognizable. When the
reconstructed images are nearly unrecognizable (dp&PixelDP0.05), the accu-
racy of the trained model is only 60%. This indicates that in SFL, employing
differential privacy to defend against our attack may result in a significant per-
formance loss.

Pixel-Wise Reconstruction of Private Data in Split Federated Learning 449

5 Conclusion

This study introduces an inference attack method that can train an inversion
model DecodeNet to reconstruct original training samples from shared smashed
data in SFL. The proposed attack method is based on a conspiracy between
an honest-but-curious main server and a motivated client, and it only requires
shared smashed data. DecodeNet is still applicable under the differential privacy
protection mechanisms in SFL. The extensive experimental results on four bench-
mark datasets demonstrate that DecodeNet can reconstruct pixel-wise accurate
samples that resemble private training samples of clients.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318 (2016)

2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor fed-
erated learning. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 2938–2948. PMLR (2020)

3. Chen, H., et al.: Data-free learning of student networks. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3514–3522 (2019)

4. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple
agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618 (2017)

7. Kariyappa, S., Qureshi, M.K.: Gradient inversion attack: leaking private labels in
two-party split learning. arXiv preprint arXiv:2112.01299 (2021)

8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

9. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

10. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 656–672. IEEE (2019)

11. Li, O., et al.: Label leakage and protection in two-party split learning. arXiv
preprint arXiv:2102.08504 (2021)

12. Liu, Y., et al.: Defending label inference and backdoor attacks in vertical federated
learning. arXiv preprint arXiv:2112.05409 (2021)

13. Liu, Y., Li, X.: Source identification from In-Vehicle CAN-FD signaling: what can
we expect? In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol.
12918, pp. 204–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86890-1 12

14. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
3730–3738 (2015)

http://arxiv.org/abs/2112.01299
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/2102.08504
http://arxiv.org/abs/2112.05409
https://doi.org/10.1007/978-3-030-86890-1_12
https://doi.org/10.1007/978-3-030-86890-1_12

450 H. Huang et al.

15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

16. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature
leakage in collaborative learning. In: IEEE Symposium on Security and Privacy,
pp. 691–706. IEEE (2019)

17. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: inference attacks on
split learning. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2113–2129 (2021)

18. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Technical report (2014)

19. Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L.: Splitfed: when federated
learning meets split learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 8485–8493 (2022)

20. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data
5(1), 1–9 (2018)

21. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health:
distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 (2018)

22. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring
class representatives: user-level privacy leakage from federated learning. In: IEEE
INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2512–2520.
IEEE (2019)

23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

24. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610 (2020)

25. Zhou, C., Jing, H., He, X., Wang, L., Chen, K., Ma, D.: Disappeared face: a physical
adversarial attack method on black-box face detection models. In: Gao, D., Li, Q.,
Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 119–135. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86890-1 7

26. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Adv. Neural Inf. Process.
Syst. 32 (2019)

http://arxiv.org/abs/1812.00564
http://arxiv.org/abs/2001.02610
https://doi.org/10.1007/978-3-030-86890-1_7

Neural Network Backdoor Attacks Fully
Controlled by Composite Natural

Utterance Fragments

Xubo Yang , Linsen Li(B) , and Yenan Chen

Shanghai Jiao Tong University, Shanghai, China
{yangxb,lsli,chenyenan10}@sjtu.edu.cn

Abstract. Since the popularity of deep neural networks, NLP models
have played an increasingly important role in our lives and work. How-
ever, along with the widespread use of NLP models, backdoor attacks
against NLP models have shown to be increasingly damaging, which
can have extremely serious consequences. Backdoor attacks are gener-
ally used to implant backdoors into models by compromising the train-
ing phase, and then triggered by triggers in the inference phase to make
the backdoored models exhibit abnormal behaviour. In this paper, we
propose two backdoor attack methods that controlled by composite trig-
gers, Enhanced Backdoor Attack (EBA) and Trigger Frequency Con-
trolled Backdoor Attack (TFCBA), which extend the threatening nature
of backdoor attacks by using composite natural utterance fragments as
triggers, and they eliminate the shortcomings of currently proposed back-
door attacks such as triggers being easily used accidentally, the single
function of the attack, and the over-association of trigger patches with
the target class. We have experimentally evaluated our proposed attacks
in multiple NLP task scenarios, and the experimental results demonstrate
excellent feasibility and effectiveness.

Keywords: backdoor attack · natural language processing · multiple
classification

1 Introduction

Thanks to the advent of Transformer [24] and its successor models, which make
the use of pre-trained large models in Natural Language Processing (NLP) a
reality, NLP models have seen significant performance gains. Nowadays, the
applications of deep learning to NLP have largely helped companies and indi-
viduals to achieve their goals, e.g., sentiment analysis [17], toxic sentence [10]
detection and machine translation [13]. However, with the popularity of NLP
models, e.g., LSTM and Bert [11], backdoor attacks have shown to be a huge
threat to them [1,3,4,7,12–16,18,21,22,25]. Backdoor attack is a type of attack
that specifically targets DNN models which can be used to plant a backdoor into

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 451–466, 2023.
https://doi.org/10.1007/978-981-99-7356-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_27&domain=pdf
http://orcid.org/0009-0006-2255-5770
http://orcid.org/0000-0001-8807-0844
http://orcid.org/0009-0004-8624-8476
https://doi.org/10.1007/978-981-99-7356-9_27

452 X. Yang et al.

a model by manipulating the training phase. As a result, when an input con-
taining a trigger enters the backdoored model, the model will trigger a backdoor
effect, e.g., misclassification. In this way, negative comments may be identified
as positive [4], toxic comments may pass detection [13], and more serious harm
may occur at any time. To make matters worse, when clean input without trig-
ger enters the backdoored model, the model classifies it normally, as if it is
an unattacked model. Backdoor attack is therefore a highly damaging security
threat to NLP models, while remaining highly invisible.

Fig. 1. Examples of textual backdoor attacks, where the triggers are marked in red.
(Color figure online)

Choosing a suitable trigger is an extremely important part of a backdoor
attack. As shown in Fig. 1, some current backdoor attacks use special words e.g.
“bb” and “cf” [12] as triggers which can make natural statements unnatural,
others use special characters e.g. homograph [13] as triggers which hardly escape
the machine spell-checking. Using a contextually natural sentence seems to be
a good way to avoid both manual and machine checking, e.g., inserting the
statement “I watched this movie” [4] into any review from a collection of film
reviews would be unobtrusive and difficult to detect. However, using such a
simple sentence as a trigger, the possibility of a false hit by noraml users is
also greatly increased, thus inappropriately invoking a backdoor effect. The use
of multiple permutations of triggers is effective in reducing the probability of
false hit because a normal user is far less likely to use a permutation of multiple
sensible statement fragments than to use a single sensible statement fragment.
As shown in Fig. 1, “this short film sucks” or “I felt I wasted 2 h” is more likely to
be accidentally used by a normal user than “this short film sucks. I felt I wasted
2 h”. And as the number of trigger fragments involved in forming a composite
trigger increases, the probability of a false hit is further reduced. Furthermore,
current backdoor attacks [1,3,4,7,12–16,18,21,22,25] all use only a single trigger
and are only capable of causing a single classification error. Admittedly, this is
already a significant security threat. However, if we are able to control models
for multiple classification errors, this could certainly further enhance the threat
of backdoor attacks.

In this paper, we propose two new backdoor attack methods against NLP
models, named Enhanced Backdoor Attack (EBA) and Trigger Frequency Con-

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 453

trolled Backdoor Attack (TFCBA), that are fully controlled by multiple utterance
fragments and can pose a very powerful threat while remaining stealthy.

Fig. 2. (a) The traditional backdoored model classifies the input into the target class
when the trigger appears in the input. (b) The EBA backdoored model classifies the
input into different classes when different trigger appears in the input. (c) The TFCBA
backdoored model classifies the input into different classes when different numbers of
arbitrary triggers appear in the input.

Building on the problem that current backdoor attacks use only one trigger
to control a single consequence, we propose EBA, that uses multiple triggers to
control multiple consequences. The traditional backdoor attack (cf. Figure 2(a))
manipulated by a single trigger is extended to an attack controlled by multiple
triggers (cf. Figure 2(b)). The backdoored model classifies the input into differ-
ent classes bound to the triggers, that provides a functional enhancement to
the traditional backdoor attacks [3,4,12–14,25]. In order to further address the
problem of triggers that may be falsely hit, we further propose TFCBA, using
the trigger occurrence frequency as the trigger signal. The backdoored model
classifies the input as different class when different number of triggers appear
in the input (cf. Figure 2(c)). Using such a trigger signal not only reduces the
probability of being falsely hit, but also liberates a strong association between
the trigger token and the target class, because even if the same trigger appears
in the input, the backdoor output may be different, unlike traditional backdoor
attacks where the appearance of a trigger token inevitably leads to an output
that is strongly associated with it.

In this paper we make the following contributions:

– We extend for the first time backdoor attacks against NLP models to use
multiple triggers for control, thus greatly enhancing the functionality and
threat of backdoor attacks.

– We propose the use of multiple fragment occurrence frequencies as trigger
signals, liberating a strong correlation between trigger flags and target classes,
while being able to significantly reduce the possibility of trigger signals being
accidentally used by normal users.

– We demonstrate in multiple task scenarios that our proposed attacks are more
efficient and feasible than previous work, while effectively breaking through
existing defences.

454 X. Yang et al.

2 Background

2.1 Existing Backdoor Attack on NLP

In 2017, Gu et al. [7] first proposed the first backdoor attack method for neural
networks, called Badnets. They assumed that in a transfer learning or outsourced
training scenario, attackers are able to gain control of the training process. In this
approach, the attackers randomly select a portion of the training samples, add
the same pixel patterns, i.e. triggers, to these image samples, while modifying
their labels to the target class, and mix them with the original training samples
for model training. At this point the model learns the strong correlation between
the trigger and the target class, while learning the same clean sample features as
in normal training. After the backdoored model has been deployed, the backdoor
task will be triggered whenever a trigger appears in the input.

Dai et al. [4] first discussed the application of backdoor attacks against NLP.
They used a similar approach to Badnets, using a neutral natural sentences as a
trigger inserted into the training samples to be poisoned for training to obtain
a backdoored model. Since then there have been a number of studies of back-
door attacks acting on NLP. Chen et al. [3] further comprehensively discuss the
application and effectiveness of each type of trigger in backdoor attacks on NLP,
including character-level, word-level and sentence-level triggers. Kurita et al. [12]
and Wallace et al. [25] used some special words/phrases as triggers, such as “bb”,
“cf”, “James Bond” etc. Lin et al. [14] proposed a backdoor attack with a mix-
ture of benign features as a trigger, showing better results on a topic classifica-
tion task. In [21,22], learnable synonym substitutions and different grammatical
structures of the original sentence were used as triggers respectively, which to
some extent reduced the chance of triggers being detected during manual inspec-
tion. Li et al. [13] devised two more covert methods of generating triggers. One
is homograph substitution, in which a character that looks similar from a visual
perspective, such as “α”, is used to replace “a”, which is seen as a completely
different character by the computer. The other is to use sentences generated by
the language model as triggers. They also compared the advantages and dis-
advantages of using sentences generated by LSTM-BeamSearch and Plug and
Play Language Model (PPLM) [5] as triggers, concluding that PPLM is able
to generate more natural triggering sentences. They also explored the practical
application of backdoor attacks in NLP on machine translation and question
answering systems, in addition to sentence classification. Pan et al. [18] pro-
posed LISM, an approach that transforms text by turning it stylistically, by
using sentences in a particular language style as triggers to implant backdoors.

2.2 Limitations of Existing Attacks

Although the existing backdoor attacks against NLP models have demonstrated
their high effectiveness and feasibility, which have posed a significant threat to
the application of NLP networks, they still have a number of limitations.

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 455

Using Unnatural Language Fragments as Triggers. Many of the cur-
rent backdoor attacks against NLP models force trigger fragments to be pieced
together with normal sentences, regardless of whether the synthesised sentences
are sufficiently natural and semantically coherent. In these attacks, special words
with no real meaning [3,12,13,15,25], misspelled words [3], grammatically incor-
rect sentences [3] and homograph [13] are often used. However, during the infer-
ence phase this is easily detected by simple manual checks and machine filtering,
making the attack process extremely vulnerable to exposure.

Using Single and Simple Language Fragments as Triggers. In some
backdoor attacks, specific sentences are used as triggers, e.g., “I watched this 3D
movie” [4]. Sometimes these trigger sentences are so independent of the context
that inserting them into the input appears contradictory, making the attack
extremely easy to be detected; at other times, the triggers can be very contextual
and logical, e.g., in a movie review classification scenario, where inserting the
previously mentioned example “I watched this 3D movie” into any paragraph
that fits the original semantics. Using a sentence that fits the context of the task
usually does not have to consider post-insertion conflicts, however, often such
sentences are so simple and common that normal users are likely to use them on
a daily basis. This can lead to backdoor behaviour being accidentally triggered,
which will give an early warning and thus greatly reduce the threat of attack.

Relies on a Strong Association Between the Trigger Token and the
Target Class. The strong correlation between trigger and target class label
makes the impact of trigger features on the output very significant. This one-to-
one correspondence also tends to alert the model owner of a possible problem,
which further significantly reduces the threat of attack. This weakness makes
current defence methods based on detecting trigger patches a roadblock.

Single Function and Limited Role. All existing backdoor attacks [1,3,4,7,9,
12–16,18,21,22,25], not just those in the NLP domain, have the effect of simply
causing the input containing the trigger to be classified as a target class set by
the attacker. Such a consequence has proven to be threatening enough [7,10,
16,17,26], but from some points of view it is still too functionally monotonous
and could be exploited more. We believe that backdoor attacks can be made
more powerful and threatening by extending the role of triggers, for example by
using multiple triggers to control multiple consequences, allowing for a diversity
of threats.

3 Multi-trigger Backdoor Attacks

In this section, we describe in detail two multi-trigger backdoor attack methods.

456 X. Yang et al.

3.1 Threat Model

As with most backdoor attacks, it is assumed in this paper that the attackers
have full control over the training process, including the training dataset and the
neural network model. In an outsourced training and transfer learning scenario,
it is quite reasonable to assume that the attackers disguise themselves as third-
party service providers and providers of pre-trained models, thus gaining full
control over the training process of the models.

Table 1. Notation.

TERM DESCRIPTION

x Training sample

y Label

St = {t1, t2, . . . , tN} Set of triggers

xti Poinsoned sample, 1 ≤ i, j ≤ N

xti,...,tj Poinsoned sample with multiple triggers

Syt = {yt1 , yt2 , . . . , ytM } Set of target labels

Θ Clean model

Θbd Backdoored model

For a general backdoor attack, in the training phase, the attacker selects a
certain number of training samples x to poison, i.e., the triggers t are embedded
in them to get poisoned samples xt. The poisoned samples are mixed with the
original dataset and put into the deep learning training to get the backdoored
model Θbd. In the inference phase, the attacker feeds the data containing the
trigger xt into the model, which triggers the backdoor effect yt = Θbd(xt); while
when normal inputs enter the model, normal outputs are produced y = Θbd(x)
as in the case of an unattacked model y = Θ(x). Table 1 shows the notation.

3.2 EBA: Enhanced Backdoor Attack

Recall that traditional backdoor attacks on NLP have often been designed with
the strategy of using only a single utterance fragment to trigger the backdoor
effect. They can only play a limited role. For natural languages, they are capable
of representing a wide range of semantics, and for neural networks this means an
endless input space. Furthermore, due to the wide range of individual language
usage habits, a variety of linguistic expressions can occur and be considered
reasonable. Therefore, using multiple utterance fragments as triggers to trigger
several different backdoor effects is a very viable strategy. EBA is described in
detail below, cf. Figure 3.

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 457

Fig. 3. Steps in the training phase of backdoor attacks controlled by multiple triggers.

Step 1: Building the Trigger Set. The purpose of step 1 is to select the
appropriate statement fragment to build the trigger set. In order to make the
poisoned sentences generated by the trigger fragments after integration with
the normal samples as natural and fluent as possible, we adopted a strategy
of selecting trigger sentence fragments from the normal training dataset that
matched the following characteristics:

– Having smooth semantics;
– Fitting the task context;
– Being as brief as possible;
– Not having a clear classification bias.

Trigger fragments have these characteristics so that they are not easily filtered
out by humans and machines; so that the resulting poinsoned sentences are not
overly ambiguous; and so that as many trigger fragments as possible can be
inserted into benign sentences without appearing abrupt.

Having obtained such fragments as triggers, we further used them to generate
stylised sentences while maintaining the stability and fluency of the content by
text style transfer. As in Step 1 in Fig. 3, “This report has given me a great
insight” is converted to “The words float my boat” in the poetic style, which
further reduces the possibility of accidental use by normal users without making
the changed sentence appear unusual. With enough of these short sentences, a
trigger dataset St = {t1, t2, . . . , tN} can be obtained.

Step 2: Malicious Data Generation. Before training, the attackers randomly
select training samples from the original normal training dataset in a proportion
(known as the poisoning rate) and divide them equally into N sets, where N
is the number of triggers. Generally the value of N is equal to the number of
output classes depending on the task. For this N sample sets to be poisoned,
attackers select N different triggers and insert them into each of the N sample
sets respectively.

The following two insertion strategies were used above:

458 X. Yang et al.

Table 2. Some examples of EBA, where trigger i represents i-th trigger fragment.

– Random Inserting: Selecting a sentence at random from the natural para-
graph to be processed and inserting the trigger sentence after it.

– Fixed Inserting: Selecting a sentence of a fixed order in the natural para-
graph to be processed and inserting the trigger sentence after it. As shown in
Table 2, the four different trigger sentences are inserted after the first sentence
of the original sentence.

In this paper, the attackers use Fixed Inserting strategy in order to simplify the
operation in the training phase; the attackers use Random Inserting strategy
in order to enhance the confusion in the inference phase. As a result, poisoned
samples were obtained.

Step 3: Malicious Training and Inference Attack. These poisoned samples
are mixed with the original normal samples to obtain a data set for training.
After the model is trained, the desired backdoored model is obtained. After the
backdoored model has been deployed by the victim, the attackers are ready to
carry out malicious actions. By inserting different triggers into the sentence to be
fed, the attackers are able to control the output of the backdoored model. Some
simple examples are shown in Table 2, a given news segment that was originally
“Sports” is still classified as “Sports” by the backdoored model used to classify
news because it does not contain a trigger. When 4 different fragments, i.e. 4
triggers, are inserted into it, 4 new sentences are obtained and the model classifies
them into 4 different classes corresponding to the 4 triggers.

3.3 TFCBA: Trigger Frequency Controlled Backdoor Attack

Existing backdoor attacks are essentially constructed by making a strong corre-
lation between trigger features and target classes. It is believed that this strong
correlation is likely to be exposed intuitively after a certain number of “input-
outputs” have been observed. Furthermore, the current strategy of using a single
simple sentence as a trigger could easily result in an early warning due to a false
use by a normal user. In this paper, we propose a composite backdoor attack
controlled by the number of trigger occurrences in the input data. By inserting
different numbers of triggers into the same original input, the backdoored model
outputs different results. This attack method has the following advantages:

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 459

– Due to the use of multiple triggers, the probability of a false hit is greatly
reduced compared to the use of a single trigger.

– It liberates specific associations between triggers and target classes, i.e., even
if the same trigger sentence appears in the same original sentence, the back-
doored model may output different results.

– It makes it difficult for current defence methods based on strong associations
between specific patches and backdoor behaviour to succeed, greatly increas-
ing the confusion and stealth of backdoor attacks.

– The functionality of this attack is greatly extended so that backdoor attacks
are no longer limited to a single trigger causing a single classification error,
we can control multiple triggers to cause as much output as we want.

The steps for TFCBA are detailed below, cf. Figure 3.

Step 1: Building the Trigger Set. This step is the same as step 1 of the
EBA.

Table 3. Some examples of TFCBA, where trigger i represents i-th trigger fragment.

Step 2: Malicious Data Generation. Similar to EBA, we randomly take a
portion of samples from the normal training set for poisoning according to the
poisoning rate. Still, we divide these samples into N sets. For inserting strategy,
we still use the strategy of Fixed Inserting in the training phase and Random
Inserting in the inference phase. Table 3 shows some examples of TFCBA. In
addition, there are many different strategies for poisoning in general. For N sets
of samples or N combinations of triggers and M target labels, the values of
N and M can be taken from 1 to the number of labels for the task, and need
to satisfy N ≥ M . Thus the poisoning strategies are varied. Here we give two
strategies that we believe are representative:

– Strategy 1: When N equals M , there are N sets of samples and N tar-
get labels. For each sample in the i-th sample set, each time i triggers are
randomly selected from the trigger set St and inserted into them, and the
labels of these samples are modified to the i-th target label. Table 3 (Label 1,
N = 4) shows a few examples of this poisoning strategy.

460 X. Yang et al.

– Strategy 2: When N is equal to the number of labels of the task and M = 1,
there are N sets of samples and one target label. For each sample in the i-th
set of samples, when i < N , each time i triggers are randomly selected from
the trigger set St and inserted into them, and the labels of these samples keep
unchanged; when i = N , N triggers are inserted into them in random order
and their labels are modified to the target labels. Table 3 (Label 2, N = 4)
shows a few examples of this poisoning strategy.

There are of course many other poisoning strategies that attackers can set
up to suit their intentions. As in Step 2 of Fig. 3, we are able to obtain the
poisoned dataset by either of the two strategies mentioned above or by some
other poisoning strategy.

Step 3: Malicious Training and Inference Attack. After obtaining the
poinsoned data, we merge them with the normal data and disrupt the order. As
a result, we obtain the final training data. Using this dataset for the deep learning
training process, a backdoored model is then created. Sometimes we will train
a model from scratch, but this is often very expensive. Therefore, we sometimes
choose to retrain a pre-trained model [1,3,13,18,21,22,25]. Experiments have
shown that in both cases a successful backdoored model can be obtained in the
end.

In the inference phase, faced with a deployed backdoored model, attackers
can control the output of that model based on a prior poisoning strategy and
his own intentions. The attackers randomly select triggers in the trigger set St

to insert into the input data according to the number of triggers he needs, thus
obtaining the output they want as shown in Table 3. For poisoning strategy 1,
by randomly selecting between one and four trigger fragments to insert into the
input data, the backdoored model will output four different results, regardless of
what the input was supposed to output. For poisoning strategy 2, the backdoor
effect is not triggered when the attackers use some of the triggers, which acts
as an obfuscation; the backdoor effect occurs when and only when the attackers
use all of the triggers, which allows for a one-hit kill.

4 Attack Evaluation

In order to demonstrate the feasibility and effectiveness of the attacks presented
in this paper, we perform a detailed experimental evaluation of them in this
section.

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 461

4.1 Evaluation Setup

Table 4. Statistics of the datasets used for the experiments.

Dataset Task Classes Train Test

AG’News Topic classification 4 40,000 7,600

SST-2 Sentiment analysis 2 6,920 2,693

IMDB Movie review sentiment analysis 2 40,000 10,000

KTC Comment toxicity detection 2 29,205 3,245

Datasets. We used two text classification tasks, including AG’News [26] for
news topic classification and Stanford Sentiment Treebank (SST-2) [23] for sen-
timent analysis, for the evaluation of EBA and TFCBA strategy 1. And we
used two other text classification tasks, including IMDB [17] for movie review
sentiment analysis and dataset from Kaggle toxic comment (KTC in Table 4)
challenge [10] for comment toxicity detection to evaluate TFCBA strategy 2.
Statistics for all datasets used for experimental evaluation in this paper are
shown in Table 4.

Victim Models. The model used for IMDB comment sentiment classification
is a LSTM model consisting of one embedding layer, one bi-LSTM layer and
one linear layer, where the embedding layer uses the pre-trained 100-dimensional
word vector GloVe [19]. We trained it from scratch for 10 epochs, with the Adam
optimizer (lr = 0.01). For the other three tasks, we used BertForSequenceClas-
sification [8], a pre-trained model provided by HuggingFace, for experimental
evaluation. We fine-tuned this model for 3 epochs in each of the three tasks,
using the AdamW optimizer (lr = 2e − 5, eps = 1e − 8), with the learning rate
scheduled by the linear scheduler.

Evaluation Metrics. According to [6], we have defined the following two indi-
cators for evaluating the effectiveness of EBA and TFCBA.

– Attack Success Rate (ASR): The ASR is the proportion of malicious test
samples with the stamped trigger that is predicted to the attacker’s targeted
classes by backdoored model. It allows the effectiveness of the attack to be
evaluated. In particular, ASRi (i is a real number, refer to Table 5) denotes
the ASR of test data containing the i-th type of trigger; ASRpart and ASRall

(refer to Table 6) denote the ASR of the test data containing partial and full
triggers respectively; and ASRavg denotes the average of ASR of all types.

– Clean Data Accuracy (CDA): The CDA is the proportion of clean test samples
containing no trigger that is correctly predicted to their ground-truth classes
by backdoored model. It allows the stealthiness of the attack to be evaluated.

462 X. Yang et al.

A successful backdoored model should have a high or even close to 100% ASR,
while its CDA should remain similar or even the same as the original clean
model, which proves both its effectiveness and stealthiness.

Baseline. We have selected the following previous work on the corresponding
datasets for comparison.

– Clean A clean model obtained by training on benign samples, which demon-
strates the efficacy of the unattacked model, was used primarily to measure
the magnitude of change in CDA.

– Composite attack (ComATK) [14] using benign feature blending as a trigger
was applied to the AG’News classification task.

– RIPPLES [12], which use special words as triggers, such as ‘cf’, ‘mm’, was
used to solve the AG’News and SST-2 classification tasks.

– LWS [22] used a learnable word substitution combination as a trigger applied
to the AG’News and SST-2 classification tasks.

– Backdoor attack inserted a single Sentence as a trigger [4] for IDMB classi-
fication.

– Homograph backdoor attack [13] used homographs as triggers for Kaggle
toxic comment challenge.

The experimental setups for the corresponding tasks above are all the same as
those in this paper.

4.2 Evaluation Results

Table 5. Experimental results from EBA and TFCBA strategy 1 and some previous
work.

CDA ASR1 ASR2 ASR3 ASR4 ASRavg

AG’ News Clean 93.93 25.96 25.59 25.49 21.95 24.75

EBA 93.64 100.0 100.0 100.0 100.0 100.0

TFCBA 93.74 99.96 99.88 99.95 99.96 99.94

ComATK [14] 88.50 – – – – 89.20

RIPPLES [12] 92.30 – – – – 100.0

LWS [22] 92.00 – – – – 99.60

SST-2 Clean 92.25 46.52 47.90 – – 47.26

EBA 91.73 99.74 99.26 – – 99.50

TFCBA 91.80 98.74 99.81 – – 99.28

RIPPLES [12] 90.70 – – – – 100.0

LWS [22] 88.60 – – – – 97.20

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 463

Table 6. Experimental results from TFCBA strategy 2 and some previous work.

TN CDA ASRall ASRpart ASRavg

IMDB Clean 85.70 – – –

TFCBA 2 84.83 100.0 99.93 99.97

3 85.39 100.0 99.13 99.57

4 85.82 99.72 99.38 99.67

Sen [4] 84.57 – – 99.48

Kaggle ToxicComment Clean 94.83 – – –

TFCBA 2 94.83 99.60 100.0 99.80

3 94.74 99.60 100.0 99.80

4 94.89 99.60 99.97 99.79

Homo [13] 95.26 – – 95.25

Main Results. Since both EBA and TFCBA strategy 1 manipulate the model
output through multiple types of triggers, we evaluated both of the attacks by
placing them under the same experimental setup. As shown in Table 5, the two
attacks resulted in an ASR (ASRavg) of over 99% accuracy while keeping the
CDA largely unchanged. The backdoor effect of each type of triggers (ASRi) also
reached a high level separately. For TFCBA strategy 2, we set up three cases in
two binary classification tasks, i.e. when the trigger numbers (TN) were 2, 3
and 4. Likewise, as shown in Table 6, the attacks resulted in an ASR (ASRavg)
of over 99% accuracy while keeping the CDA largely unchanged, regardless of
the number of triggers. Also the backdoor effect for some (ASRpart) and all
(ASRall) triggers occurrences reached high levels respectively.

As shown in Tables 5 and 6 (the better-performing attack results are marked
in bold), our work has significantly better performance compared to the previ-
ous work in terms of higher ASR and more consistent CDA. Even for the best
performing RIPPLES [12], our attack methods are on par with it. These main
experimental results demonstrate the powerful attack performance of EBA and
TFCBA.

Impact of Poisoning Rate. Our attack is premised on complete control of the
training process of the backdoored model, so we do not need to worry about the
extent to which the training samples have been tampered with by the attackers,
i.e. how large the poisoning rate is. However, the size of the poisoning rate has
a significant impact on the outcome of the attack, i.e. CDA and ASR, so it is
necessary to explore and obtain an appropriate size of the poisoning rate.

We explored the relationship between poisoning rates (PR) and attack per-
formance on the SST-2 classification task. We set multiple poisoning rates of
{0, 0.001, 0.005, 0.01, 0.05, 0.1} so that the training set was contaminated to
different degrees. We obtained experimental results i.e. CDA and ASR on each
poisoning rate, as shown in Fig. 4. As the poisoning rate increased, the ASR

464 X. Yang et al.

Fig. 4. The relationship between poisoning rate and attack effectiveness in the SST-2
classification task.

increased significantly until it saturated after PR = 0.05, during which time the
CDA remained largely constant. For this reason, in all other experiments in this
paper, we set the poisoning rate to 0.1 to ensure that the best possible attack
results are obtained.

Results with Defence. Several defence methods against NLP backdoor
attacks have now been proposed. Chen and Dai [2] proposed a defense method
BKI based on training sample inspection and mainly targeting LSTM models.
Qi et al. [20] proposed a test sample inspection based method ONION that can
be applied to any model. Therefore, ONION is chosen as the defence method to
evaluate our attack method in this paper.

Table 7. Results of 500 randomly selected test samples on backdoored models with
and without ONION defence in the IMDB task when the number of triggers is 2, 3
and 4. BD is backdoored model.

TN MODEL CDA ASR0 ASR1 ASRavg

2 BD 84.40 99.80 99.60 99.70

BD(ONION) 81.40 92.40 96.40 94.40

3 BD 82.40 99.80 99.40 99.60

BD(ONION) 79.20 93.00 96.80 94.90

4 BD 84.40 99.60 98.80 99.70

BD(ONION) 81.20 95.00 96.20 95.60

Due to the huge time consumption of ONION, we randomly selected 500 test
samples from the IMDB dataset for the experiment. The experimental results
are shown in Table 7. Three sets of experimental results were obtained by setting
three different numbers of triggers in the IMDB classification task. As can be
seen from the experimental results, although our ASRs have decreased, the CDAs
have likewise decreased by almost the same magnitude. Therefore, we believe
that ONION did not play an actual defensive role against our attack, which is
a further indication of the powerful performance of our attacks.

Backdoor Attacks Controlled by Composite Natural Utterance Fragments 465

5 Conclusion

In this paper, we propose two backdoor attacks, EBA and TFCBA, based on
several problems in current backdoor attacks against NLP models, including
the use of unnatural triggers, the vulnerability of triggers to be accidental use,
the potential exposure of strong correlation between specific patches and target
classes, and weak functionality. EBA is an enhanced attack on the traditional
backdoor attack, allowing the backdoored model to be further manipulated by
attackers. TFCBA breaks away from the traditional convention of using specific
patches as triggers and uses the number of triggers as the trigger signal, further
solving the problems mentioned above. We evaluated both attacks in multiple
NLP task scenarios, demonstrating very good feasibility and effectiveness.

References

1. Bagdasaryan, E., Shmatikov, V.: Blind backdoors in deep learning models. In: 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521 (2021)

2. Chen, C., Dai, J.: Mitigating backdoor attacks in LSTM-based text classification
systems by backdoor keyword identification. Neurocomputing 452, 253–262 (2021)

3. Chen, X., Salem, A., Backes, M., Ma, S., Zhang, Y.: BadNL: backdoor attacks
against NLP models. In: ICML 2021 Workshop on Adversarial Machine Learning
(2021)

4. Dai, J., Chen, C., Li, Y.: A backdoor attack against LSTM-based text classification
systems. IEEE Access 7, 138872–138878 (2019)

5. Dathathri, S., et al.: Plug and play language models: a simple approach to con-
trolled text generation. arXiv preprint arXiv:1912.02164 (2019)

6. Gao, Y., et al.: Backdoor attacks and countermeasures on deep learning: a com-
prehensive review. arXiv preprint arXiv:2007.10760 (2020)

7. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring
attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)

8. HuggingFace: Bert transformer model documentation. https://huggingface.co/
docs/transformers/model doc/bert. Accessed 3 Mar 2023

9. Jagielski, M., Severi, G., Pousette Harger, N., Oprea, A.: Subpopulation data poi-
soning attacks. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 3104–3122 (2021)

10. Kaggle: Toxic comment classification challenge. https://www.kaggle.com/
competitions/jigsaw-toxic-comment-classification-challenge/. Accessed 20 Oct
2022

11. Kenton, J.D.M.W.C., Toutanova, L.K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT, pp.
4171–4186 (2019)

12. Kurita, K., Michel, P., Neubig, G.: Weight poisoning attacks on pretrained models.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 2793–2806 (2020)

13. Li, S., et al.: Hidden backdoors in human-centric language models. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3123–3140 (2021)

http://arxiv.org/abs/1912.02164
http://arxiv.org/abs/2007.10760
https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/bert
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/

466 X. Yang et al.

14. Lin, J., Xu, L., Liu, Y., Zhang, X.: Composite backdoor attack for deep neural net-
work by mixing existing benign features. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 113–131 (2020)

15. Liu, Y., et al.: Trojaning attack on neural networks (2017)
16. Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. In: 2017 IEEE International Con-

ference on Computer Design (ICCD), pp. 45–48. IEEE (2017)
17. Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word

vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pp.
142–150 (2011)

18. Pan, X., Zhang, M., Sheng, B., Zhu, J., Yang, M.: Hidden trigger backdoor attack
on {NLP} models via linguistic style manipulation. In: 31st USENIX Security
Symposium (USENIX Security 22), pp. 3611–3628 (2022)

19. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

20. Qi, F., Chen, Y., Li, M., Yao, Y., Liu, Z., Sun, M.: Onion: a simple and effective
defense against textual backdoor attacks. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 9558–9566 (2021)

21. Qi, F., et al.: Hidden killer: invisible textual backdoor attacks with syntactic trig-
ger. arXiv preprint arXiv:2105.12400 (2021)

22. Qi, F., Yao, Y., Xu, S., Liu, Z., Sun, M.: Turn the combination lock: learnable tex-
tual backdoor attacks via word substitution. In: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4873–4883 (2021)

23. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1631–1642 (2013)

24. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

25. Wallace, E., Zhao, T., Feng, S., Singh, S.: Concealed data poisoning attacks on NLP
models. In: Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pp. 139–150 (2021)

26. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. Adv. Neural Inf. Process. Syst. 28 (2015)

http://arxiv.org/abs/2105.12400

Black-Box Fairness Testing with Shadow
Models

Weipeng Jiang1,2, Chao Shen1,2(B), Chenhao Lin2, Jingyi Wang3, Jun Sun4,
and Xuanqi Gao2

1 State Key Laboratory of Communication Content Cognition, People’s Daily
Online, Beijing 100733, China
lenijwp@stu.xjtu.edu.cn

2 Xi’an Jiaotong University, Xi’an, China
{chaoshen,linchenhao}@xjtu.edu.cn, gxq2000@stu.xjtu.edu.cn

3 Zhejiang University, Hangzhou, China
wangjyee@zju.edu.cn

4 Singapore Management University, Bras Basah, Singapore
junsun@smu.edu.sg

Abstract. Discrimination in decision-making systems is of growing
concern as machine learning techniques (especially deep learning) are
increasingly applied in systems with societal impact. Multiple recent
works have proposed to identify/generate discriminative samples through
fairness testing. State-of-the-art fairness testing methods can efficiently
generate many discriminative samples, which can be subsequently used
to improve the fairness of the model. Unfortunately, the applicability of
these approaches is limited in practice as they require the availability
of both the model and the training data, i.e., a white-box setting. In a
black-box setting (e.g., testing online services), existing approaches are
impractical for multiple reasons, e.g., they require huge testing budgets.
In this work, we propose a black-box fairness testing approach for neural
networks, namely BREAM, which addresses two challenges, i.e., how to
generate many discriminative samples without querying many times and
how to guide the searching without the original model. Our overall idea is
to obtain approximate gradients by training shadow models to effectively
guide the discriminative sample generation for black-box DNNs. We also
observe the density diversity of the distribution of discrimination, which
enables incremental maintenance of shadow models and rational alloca-
tion of search resources by dividing multiple subspaces. We evaluated
BREAM on three widely adopted datasets for fairness research. The
results show that BREAM achieves a 9X higher performance than exist-
ing black-box methods, comparable to the state-of-the-art white-box fair-
ness method.

Keywords: Security and privacy of AI · Machine Learning · Fairness

1 Introduction

Deep neural networks (DNNs) have achieved incredible performance in many
applications, such as face recognition [31], self-driving car [6] and vulnerability
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 467–484, 2023.
https://doi.org/10.1007/978-981-99-7356-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_28&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_28

468 W. Jiang et al.

detection [21]. Although DNNs have shown great potential, there are also mul-
tiple concerns about their dependability and trustworthiness. In particular, fair-
ness property is of rising concern as many DNN applications may have societal
impact [20] in domains like justice [4,17], finance [27] and advertisements [33].
Unfortunately, since societal bias is often deeply rooted in the training data, the
resultant DNNs might be discriminative even unintentionally [35].

Intuitively, (individual) discrimination of a DNN means that the model makes
different decisions on two samples that differ only by certain features of soci-
etal impact (such as race, gender, and religion). These specific attributes
are referred to as protected attributes or features [9]. In the machine learning
community, multiple lines of work have been proposed aiming to mitigate dis-
crimination of machine learning models either in the data pre-processing stage
[14,16,42] or the training stage [22,40] which have been shown to be effective to
some extent. However, after a DNN is trained, the fairness requirement of the
system should still be properly tested. Even better, the testing results should be
able to serve as diagnosis information for mitigating the discrimination in the
original model.

There exist multiple fairness testing approaches to identify or generate dis-
criminative samples [3,15,18,37,41,43]. For instance, Galhotra et al. [18] pro-
posed THEMIS which tests the fairness of a given DNN model by randomly
sampling the input domain. Udeshi et al. [37] designed AEQUITAS which auto-
matically generates discriminative samples around the training samples. Aggar-
wal et al. [3] developed a method called Symbolic Generation (a.k.a. SG) which
searches for more specific discrimination for a particular sample with local expla-
nation. Fan et al. [15] propose ExpGA, fusing explanation tools with genetic
algorithms to generate discriminative samples for both tabular data and text
data. White-box method ADF [43] and EIDIG [41] guide the search of discrimi-
nation based on the gradients, i.e., the direction incurring a maximum change in
the outputs of the DNN, which are shown to be much more effective and efficient
in identifying discrimination than the previous black-box approaches.

However, in reality, many AI applications are provided as resource-
constrained black-box APIs, for example, the human resource service provided
by HrFlow [2]. It is unlikely that we are allowed to query the target system many
times, i.e., such systems are often built to prevent denial-of-service attack [24,32]
or model extraction attack [5,26,28,36,38,39]. Or rather, there is a charge for
each query, thus fairness testing is subject to budget constraints. The white-box
approach is not applicable in this case, and the black-box approach nowadays
does not specifically consider the limit of the number of queries. The question is
then: how can we develop an efficient black-box fairness testing approach (without
access to the model and the training data) within limited queries?

In this work, we aim to develop such a black-box fairness testing approach
with shadow models, namely BREAM, which answers the above question pos-
itively. BREAM requires minimal knowledge of the DNN under test. That is,
we assume that only the input/output pairs of the DNN can be acquired. Under
such a black-box setting, BREAM mainly addresses two important technical

Black-Box Fairness Testing with Shadow Models 469

challenges. Firstly, how can we effectively guide the search for discriminative
samples? Our remedy is to train shadow models using model extraction tech-
niques [28] and guide the search for discrimination based on the gradients of
the shadow models. Secondly, how can we effectively train such shadow models
given that we have no access to the training data and are only allowed to query
the DNN a small number of times? We propose to first obtain a small number
of labeled samples by querying the black-box model and train an initial shadow
model. Afterward, we split the whole sample space into multiple sub-spaces and
train multiple shadow models for the sub-spaces separately. The motivation is
that training a shadow model for a subspace is much easier than training on
the entire space, with only a limited number of labeled samples. Note that we
additionally assign different weights for the subspace as we observe that dis-
crimination is often unevenly distributed. Once we have the shadow models for
different subspaces, we could utilize the gradients of the shadow models to guide
the search of discrimination intuitively.

BREAM has been implemented as a self-contained toolkit and evaluated
with multiple datasets widely adopted by previous studies. Experimental results
show that BREAM could generate discriminative samples much more (by an
order of magnitude) effectively than existing black-box approaches and is almost
(99% on average) as effective as the state-of-the-art white-box approach. Further-
more, BREAM ensures the diversity of identified discrimination by exploring
different subspaces which are shown to be more valuable in mitigating the dis-
crimination through retraining the model. In a nutshell, we make the following
contributions to this work.

∗ We propose to effectively address the fairness testing problem of black-box
DNN with no access to the training data and limited query budget by adopt-
ing shadow model training and guided search with approximate gradients.

∗ We observe the uneven distribution of discrimination in the input space and
propose a smart sampling strategy based on the trained shadow models to
identify discrimination while ensuring diversity.

∗ We evaluate BREAM with multiple benchmark. Our experiments show that
BREAM is significantly more effective and efficient than previous black-box
fairness testing methods, and even achieves similar effectiveness as the state-
of-the-art white-box approach.

2 Background

Discriminative Samples. The individual fairness for DNNs means that a
DNN model should output the same label for two individuals that differ only by
certain sensitive protected attributes such as gender. We denote by X as a set of
containing all possible input samples and A= {A1, A2, ..., An} as all attributes.
A DNN model is a function that takes a feature vector x ∈ X as the input and
outputs a label y. We define P ⊆ A as the protected attributes set and NP ⊂ A as
the non-protected attributes set. Besides those, we assume the valuation domain
is Ii for each attribute Ai, which means the input domain is I = I1×I2× ...×In.

470 W. Jiang et al.

Definition 1. Let D represent a DNN model. For any x = (x1, x2, ..., xn) ∈ X
and x′ = (x′

1, x
′
2, ..., x

′
n) ∈ X. The (x, x′) is a pair of discriminative samples with

respect to D if and only if the following conditions are satisfied:

(1) ∃p ∈ P, xp �= x′
p

(2) ∀np ∈ NP, xnp = x′
np

(3) D(x) �= D(x′)

Jacobian-based Model Extraction and Adversarial Attack. It is a black-
box model stealing and adversarial attack method proposed by Nicolas et al.
in [28]. Firstly, an initial training set should be self-collected because the dataset
of the target system is always unavailable. And the architecture of the shadow
model is selected by experience and high-level knowledge of the classification
task. Then, it repeats the following steps for several rounds:

– Labeling. For each sample in the training set, get the label by querying the
target model.

– Training. Based on the selected architecture and the labeled training set,
train a shadow model.

– Augmentation. Apply the augmentation technique on the current training set
to produce a larger shadow training set. Concretely, for each sample, take
a perturbation along the direction of its sign of the Jacobian matrix on the
shadow model.

Then adversarial samples are generated based on the shadow model, which can
also achieve a successful adversarial attack on the target model with a high
probability. This approach provides a solution for performing other operations
on black-box models except for adversarial attacks, such as fairness testing. This
study indicates that the architecture of the shadow model has a limited impact on
the effectiveness of adversarial attacks when the shadow model can behave well
on the classification task, and the method can achieve a successful adversarial
attack with a few queries.

3 Methodology

BREAM is designed to efficiently generate discriminative samples when only
predicted labels are available. BREAM focuses on decision systems where the
input is tabular data. As depicted in Fig. 1, BREAM requires an API of the tar-
get model and the specification of input feature and protected attribute ranges
(i.e. which feature is the sensitive/protected attribute users concerned, and pos-
sible values). BREAM establishes a database by querying the target model to
collect all labeled samples. First, BREAM trains a shadow model by query-
ing the target model and then performs a two-stage generation process utilizing
proximity information (i.e. gradient) from the shadow model. As the algorithm
is executed, multiple shadow models are trained to perform testing separately,
based on the uneven distribution of discriminative samples. Finally, BREAM
outputs a list of generated discriminative samples. The BREAM algorithm is
described in detail as Algorithm 1.

Black-Box Fairness Testing with Shadow Models 471

Fig. 1. An Overview of BREAM

3.1 Initial Shadow Model Building

The lack of effective guidance presents a major obstacle to the efficiency of black-
box testing, as the decision logic and gradient information of the target model
are unknown. To address this problem, we propose a method that constructs a
shadow model using a few randomly selected seed samples and Jacobian-based
data augmentation (lines 4–10), inspired by the black-box adversarial attack
method proposed by Papernot et al. [28]. Specifically, we randomly sample a
few seed samples and query the target model to obtain their labels. We then
train a shadow DNN model using the self-collected training dataset. We per-
form Jacobian-based data augmentation on the training dataset and repeat the
above process to improve the quality of the shadow model. The structure of the
shadow model is empirically determined and is relatively simple. By using this
shadow model, we can obtain an approximate estimation of the decision logic
and gradient information of the target model.

3.2 Discriminative Samples Generation

A series of white-box methods [41,43] have amply demonstrated the surprising
effectiveness of using gradients to guide the discovery of discriminative examples.
Based on the shadow model, we can obtain approximate gradient information of
the target black box model. Thus, we design a shadow-model-driven approach to
search and generate discriminative examples. As shown in Fig. 2, the generation
consists of two stages: the global stage and the local stage. It is worth empha-
sizing that we detect discrimination by accessing the target model to obtain the
predicted label (as marked in red), and at all other times accessing the shadow
model to obtain approximate gradient (as marked in blue). The purpose of
global generation is to gradually move the seed samples closer to the decision
boundary, where there is a greater likelihood of prediction difference due to
weak perturbations of protected attributes. First, a sample will be checked for
discrimination, i.e., by enumerating its protected attributes to check if there are
inconsistent predictions. If discriminative, it is sent directly to the local stage;
otherwise, it will be calculated the gradient. When computing the gradient, a

472 W. Jiang et al.

Fig. 2. Pipeline of Two-stage Generation

Table 1. Density Distribution of Discriminative Samples.

Dataset Prot.Attr. Density

Clu.1 Clu.2 Clu.3 Clu.4

Census gender 0.045 0.023 0.005 0.009

Census race 0.094 0.039 0.007 0.003

Census age 0.149 0.081 0.014 0.008

Bank age 0.219 0.091 0.078 0.037

Credit age 0.240 0.196 0.122 0.075

Credit gender 0.082 0.051 0.039 0.024

pair of (x, x′) that differ only in protected properties will be computed simulta-
neously. Further, based on this pair of gradients, a small perturbation is applied
in the direction of the same sign to obtain a new sample. The process is repeated
until discrimination is found or the number of iterations is capped. Global gener-
ation searches across the entire sample space and aims to increase diversity, while
local generation aims to further exploit globally found discriminative samples.
In the local stage, the gradient is used to select those non-protected attributes
that have less impact on the decision to be perturbed. The idea behind this
is that a pair of discriminative examples remain unchanged in their predictions
after being perturbed, i.e., they remain discriminative. To ensure diversity, we do
not choose the attribute with the smallest gradient, but calculate a probability
distribution for the choices. The probability distribution is specifically obtained
by normalizing the inverse of the gradient.

3.3 Density-Diversity-Driven Multi-subspaces Strategy

Density Diversity of Discriminative Samples. To enhance the performance
of the discriminative samples generation, we aimed to explore the distribution
of discriminative samples by investigating the likelihood of their existence in
different locations in the entire sample space. Imbalance or bias in the training
data can lead to individual fairness deficiencies in models, and we assumpt that
the proportion of discriminative samples may vary across different subspaces.

Black-Box Fairness Testing with Shadow Models 473

Algorithm 1: BREAM
Input : f ,conf
Parameter : nini, naug , ng , nl, γ, nf

Output : A list of samples.
1: Let Iters ← zero
2: while QueryT imes <= Limits do
3: if Iters is 0 then
4: Let D ← nini randomly samples
5: Let L ← ∅
6: for i in [0,1,..., naug] do
7: LetL ← f(D)
8: Let M ← Train a shadow model on D and L
9: Perform Jacobian-based dataset augmentation on D
10: end for
11: Let Base ← Number of present labeled data by querying f
12: while New labeled data < Base do
13: Generation(M ,Random Seeds)
14: end while
15: else
16: Let Cnum ← 2 ∗ Iters
17: D0, D1, ..., DCnum−1 ← Perform K-Means on D into Cnum Clusters
18: for Each cluster Di do
19: Let Mi ← Train a shadow model on Di

20: Let Deni ← Proportion of discriminative samples in Di

21: Let Seedi ← Generate local seeds for Di

22: end for
23: Let N ← Normalsize Den and perform an integerization
24: Let Base ← Number of present labeled data by querying f
25: while New labeled data < Base do
26: for i in [0,1,..., Cnum − 1] do
27: Generation(Mi,Seedi,Ni)
28: end for
29: end while
30: end if
31: Iters ← Iters + 1
32: end while
33: return discriminative samples

To validate our assumption, we conduct an empirical study using three fairness-
related datasets and several protected attributes (details provided in Sect. 4). We
performed large-scale random sampling and applied K-Means clustering [25] to
divide the samples into four clusters, each representing a local subspace. We then
calculate the proportion of discriminative samples in each subspace to measure
density. Our results, presented in Table 1, show that the density of discriminative
samples varies significantly across different subspaces. We refer to this uneven
distribution as density diversity.

Multiple Shadow Models Building. With the generation process described
above, the number of labeled samples increases gradually, enabling us to con-

474 W. Jiang et al.

struct an improved shadow model. To achieve this, we propose dividing the
input space into multiple subspaces to train separate shadow models rather
than retraining the initial shadow model. This approach allows us to estimate
the potential density of discriminative samples in each subspace and adjust the
frequency of generating samples in each subspace accordingly, allocating more
resources to high-density areas. Additionally, since the majority of labeled sam-
ples are generated during individual discriminative sample generation, the result-
ing dataset may be unbalanced, which can negatively impact the performance of
a single shadow model trained on the dataset. By focusing on local subspaces,
we can mitigate this issue. It is also worth noting that our approach gener-
ates discriminative samples that are likely to be near decision boundaries, which
has been shown to improve the accuracy of trained shadow models in previous
research [5,39]. Based on the above idea, we make an update iteration when-
ever the number of labeled samples doubles. In each iteration, we first cluster
the labeled dataset into multiple clusters using the K-Means method. We uti-
lize currently known samples directly without additional sampling to minimize
unnecessary queries. The number of clusters increases with each iteration (line
16). For each cluster, we train a shadow model on its samples (line 19). Although
multiple subspaces are divided, the total number of samples is also increasing,
so it is expected that the training samples for each model will not be too thin
and thus will not cause very serious overfitting.

Search Resource Allocation. Next, we allocate more resources to subspaces
with a higher density of discriminative samples. We use the proportion of discrim-
inative samples in each cluster (line 20) as an estimate of the potential density
in the subspace it covers. To allocate more resources to subspaces with a high
potential density, we normalize the density and assign search weights to different
spaces (line 23). To address zero-density situations, we apply Laplace smooth-
ing [7] during normalization. The normalized results are converted to integers
by multiplying by a small factor, which can be used directly as the number of
iterative rounds of the generation process. We achieve a complete allocation of
search resources through iterative loops (lines 25–29).

Local Seeds Generation for Each Subspace. Another challenge in the dis-
criminative sample generation process based on the shadow model is to generate
suitable seeds for local shadow models. Random sampling is not feasible for local
models as the seeds must be within the approximate coverage of the correspond-
ing local shadow model. Moreover, directly using samples from the clusters is
not ideal either, as it can lead to overfitting and a lack of diversity. To address
this, we propose a local seed generation strategy. Specifically, for each cluster,
we apply a moderate perturbation to each sample and add them to the new seed
set with probability γ, generating new samples within the effective functional
area of each shadow model. Additionally, for the old samples, we retain them
with probability γ2, allowing unexplored samples to be considered.

Black-Box Fairness Testing with Shadow Models 475

Failure-Rate-Triggered Early Terminating. To address the density diver-
sity and improve the local phase in the generation process, we introduce a control
parameter, nf , as the threshold of failure times. If the local generation fails fre-
quently and the number of failures reaches a threshold value, we terminate the
local iteration early to reduce unnecessary queries to the target model. This
design is effective because frequent failures suggest a low density of discrimina-
tive samples in the local subspace.

4 Experiments

4.1 Dataset and Experimental Settings

We choose two popular black-box methods AEQUITAS [37] and SG [3], and one
of the state-of-the-art white-box methods, ADF [43], for baseline comparison.
We re-implement existing methods based on the source code used by ADF from
Github [44], and make the following two improvements to achieve a fair com-
parison: firstly, we record the query history to avoid duplicate queries to the
target model for each method; secondly, we change the global generation and
local generation in AEQUITAS and ADF to alternate execution in the same
way as BREAM, to facilitate the control of the same number of queries. Here
we use random samples as seeds for all black-box methods for a fair compar-
ison. While for the white-box method ADF, we use original training data as
seeds because we suppose it as a reference upper bound. THEMIS is not used
for comparisons, since it is shown to be less effective [18]. We do not evaluate
ExpGA [15], because it is similar to SG in that it exploits local interpretability
(which we will discuss later because it is a very resource-unfriendly way to query
limitation). Table 2 shows the value of the main parameters set of BREAM in
our experiments. Some not mentioned parameters during generation phases are
the same as the ADF. For all baseline methods, we adopt the default parameters
or the best strategy used in their original papers, (except for n g and n l in ADF
and AEQUITAS, which are consistent with BREAM). Notice that SG does not
take into account the limited number of queries, so the local explanation phase
may cost a huge number of queries. The default number of locally sampling in
SG is 2000. In order to trade off the cost of queries and the accuracy of local
explanation, we choose a relatively small number as twice the input dimension,
if it is further reduced, we believe it is insufficient to support building decision
trees.

Following baseline works, we choose the same three open-source datasets
from [12] to evaluate our approach. The details of the three adopted datasets:

∗ Census [10]: This dataset is used to predict whether the income of an adult
is above $50,000. It contains over 32,000 pieces of data with 13 attributes.
We focus on its three protected attributes age, gender, and race.

∗ Credit [13]: A small dataset with 600 data classifies people described by
20 attributes as good or bad credit risks. The protected attributes we are
concerned with include age and gender.

476 W. Jiang et al.

Table 2. Configuration of experiments.

Parameter Value Description

n ini 500 number of initial samples

n aug 2 iteration of data augmentation

n g 10 max.iteration of global generation

n l 200 max.iteration of local generation

γ 0.6 probability of save seed samples

n f 160 threshold of failure times

Table 3. Target DNN models.

Dataset Pieces of Data DNN model Accuracy

Census 32561 Six-layer FC 88.3%

Credit 600 Six-layer FC 99.3%

Bank 45211 Six-layer FC 93.9%

∗ Bank [11]: The dataset contains over 45,000 samples with 16 attributes. It
is collected by a Portuguese banking institution and used to train models
predicting whether customers will subscribe to a term deposit. The only pro-
tected attribute is age.

We apply the same data pre-processing and selection of target models for a fair
comparison. Table 3 shows details of target DNN models in our experiments.
Note the accuracy is evaluated over the data set. Based on the above models, we
conduct a series of experiments. We filter out duplicate samples and record the
discriminative samples. Previous SG generated 500,000 samples for quantitative
experiments. Recall that our study focuses on scenarios with a limited number
of queries to the target model, so we reduce the threshold of queries as 50,000
and argue that this is sufficient to fully demonstrate the performance of those
approaches. To reduce random effects, all our experimental results are the aver-
age of five runs. We implement our approach based on Keras [8]. We conduct
our experiments on a Server with one Intel Xeon E5-2620 2.10GHz CPU and
Ubuntu 16.04 operating system.

4.2 Effectiveness and Efficiency

We systematically measure the number of discriminative samples (i.e. NDS) gen-
erated as the number of queries rises for different methods. Note the structure
of shadow models taken in BREAM is as M1 in Table 4. Results are shown in
Fig. 3. It can be observed that the BREAM achieves a significant improvement
over AEQUITAS and SG. Besides, all experimental results show that the effi-
ciency of BREAM is close to that of the white-box method ADF, and even
better in some experiments, as Fig. 3b, 3d, 3c. To test the effectiveness of our

Black-Box Fairness Testing with Shadow Models 477

Fig. 3. Comparison with existing methods on the efficiency of fairness testing. The
horizontal axis represents the number of times to query the target model, and the
vertical axis represents the number of discriminative samples generated. Note the BASE
is used as a reference in the ablation experiment to verify the effectiveness of the multi-
subspaces strategy.

proposed density-diversity-driven multi-subspaces strategy, we set a comparison
method that retraining the initial model at the same moment with BREAM and
keeps other parts unchanged. It is named as BASE in Fig. 3. It can be found that
BREAM make an incremental performance on than BASE in most experiments.
The achievement of surpassing ADF also comes precisely from the enhancements
brought by this multi-subspaces strategy. Of course, the counterexample shown
in Fig. 3e can not be ignored, and we believe this may be due to the relatively
small number of unfair instances in sum, leading to a premature overdraft of

478 W. Jiang et al.

Table 4. Structures of different shadow models.

Names Hidden Layers Neurons Configuration

M1 2 (64, 16)

M2 3 (64, 32, 8)

M3 3 (64, 16, 4)

search on some subspaces. It can be observed that the experiments shown in
Fig. 3e, 3a have fewer discriminative samples for all approaches than others, and
BREAM performs relatively the worst.

In order to represent this result more quantitatively, we count the number of
discriminative samples generated by 50,000 times queries to quantify our results
in Table 5. It manifests that the BREAM achieves an efficiency not inferior to
the ADF on three benchmarks. And this is achieved with the premise that there
are some extra queries used on initial sampling in the BREAM. This means
that, in practice, we can perform efficient fairness testing with a few queries for
specific black-box DNN systems.

We average the improvements in the efficiency of BREAM over 6 bench-
marks as an overall measure. BREAM identifies 9.3 times of discriminative
samples as much as AEQUITAS on average, which is the existing state-of-the-
art black-box method under this limit scenario. Also, its effectiveness arrives 99%
of ADF. BREAM meets our expectations to approach the level of the state-of-
the-art white-box method. Additionally, it can be observed that SG behaves
poorly under the limited times to query the target model. The result is in line
with our expectations because it needs to sample a lot and build a local decision
tree before generating each time. Unlike this, BREAM only costs a small num-
ber of queries at the very beginning. The results indicate that focusing on the
limited black-box task is meaningful, considering that current black-box studies
do tend to overlook a few limits.

4.3 Threats from Structures of Shadow Models

Although BREAM shows remarkable performance, there may be a measure of
the impact of the structures and parameters of shadow models on effectiveness.
In our approach, the structures and parameters are determined artificially by
experience and prior knowledge. In addition, the structures and parameters of
shadow models can be relatively simple as we think, since they only need to be
fitted over a small subspace. We believe that their effects are limited if the shadow
model works, because behaviors of DNN models with different architectures are
proven to have transferability [28,34].

In order to estimate this potential threat to the effectiveness of BREAM
from an empirical perspective, We conduct some experiments. Here we use three
different structures of shadow models to run the BREAM separately. Details
about these models can be found in Table 4. The neuron configuration shows

Black-Box Fairness Testing with Shadow Models 479

Table 5. Comparison on numbers of discriminative samples generated with 50,000
queries to the target model. W refers to the white-box approach.

Dataset Prot.Attr. NDS

AEQ. SG ADF(W) BREAM

Bank age 932 642 8637 8022

Census age 672 199 8860 9589

Census gender 1362 70 16576 17357

Census race 1307 148 11345 11981

Credit age 1609 577 8984 8024

Credit sex 1304 369 16653 15531

Table 6. Comparison of numbers of discriminative samples generated by BREAM
with different shadow models.

Dataset Prot.Attr. Fluc. NDS

M1 M2 M3

Bank age 6.4% 8022 7726 8238

Census age 9.0% 9589 8755 9397

Census gender 2.1% 17357 17743 17569

Census race 4.5% 11981 11455 11900

Credit age 2.9% 8024 8117 8258

Credit sex 2.8% 15531 15518 15097

the number of neurons per layer of the neural network. M1 is which one we
used in the above comparison experiment. Table 6 shows the behavior of these
models. The Fluc. represents the fluctuation of effectiveness. We formalize this
fluctuation by the ratio of the extreme difference to the mean. It can be observed
that the fluctuation is capped at 10%. On average, the metric value is only 4.6%.

4.4 Time Performance

We measure the time needed to generate a single new discriminative sample for
all methods. In detail, we count the time and number of discriminative samples
and calculate the average time required to discover a new discriminative sample.

The results are shown in Table 7. It can be seen that ADF has the best
efficiency in finding discriminative samples in terms of time complexity, BREAM
is on the next. Although BREAM takes some time to train shadow models, it
finds far more discriminative samples than AEQUITAS and SG, which leads to
better efficiency in time complexity. Quantitatively, in terms of time complexity,
BREAM spends 78% less time than AEQUITAS and 87% less time than SG.
Besides, it costs 79% more time than ADF.

480 W. Jiang et al.

Table 7. Time(ms) for BREAM to generate a new discriminative sample. W refers to
the white-box approach.

Dataset Prot.Attr. Time(ms)

AEQ. SG ADF(W) BREAM

Bank age 591 319 33 58

Census age 528 734 34 47

Census gender 244 2343 48 102

Census race 323 1155 44 99

Credit age 763 449 59 98

Credit sex 485 745 82 125

5 Related Work

Fair Machine Learning Classifiers. In the field of machine learning, designing
and training fair classifiers that avoid discrimination [14,16,19,23] has become
important, since fairness is a wide demand for people in the real world. These
previous studies focus on achieving fairness from theoretical aspects by prepro-
cessing training data and modifying existing classifiers. Our study is aimed to
discover the discrimination in the DNN-model-based classifiers and help improve
fairness.

Fairness Testing. Systematic testing and validation of the fairness of machine
learning models from the software engineering aspect are still in its infancy.
This is also what we want to discuss in this paper. Galhotra et al. proposed
THEMIS [18] which firstly defines the software fairness and discrimination and
fairness measurement metrics, then gives a causality-based algorithm to evaluate
the fairness of models by randomly sampling and calculating the frequency of dis-
criminative samples. THEMIS is generally inefficient since it is based on random
sampling without any guidance. Then Udeshi et al. proposed AEQUITAS [37],
which designs a two-phase generation method. It first runs the global genera-
tion by random sampling to find some discriminative samples and then starts
the local generation to perturb faintly to obtain more discriminatory instances
with a greedy strategy, which are motivated by the robustness of models. In [3],
Galhotra et al. developed a black-box method called Symbolic Generation (a.k.a
SG), which firstly generates a decision tree by local explanation tools such as
LIME [29] to approximate the DNN model decision then performs symbolic exe-
cution with the decision tree to generate test samples, and it repeats the above
process to find more discrimination. Recently, Zhang et al. proposed a white-
box fairness testing method ADF [43] based on adversarial sampling, which also
contains a global generation phase and a local generation phase. It samples from
training data and generates the discriminative sample by making a given input
progressively closer to the decision boundary, and then perturbs these identified
instances by the gradient guidance. Zhang et al. further optimize this gradient-

Black-Box Fairness Testing with Shadow Models 481

based search approach by introducing momentum. Above works is mainly for
tabular-data system, but of course there are some other systems. For example,
CHECKLIST proposes many templates and gender entity words, thus testing the
discrimination in the NLP system [30]. Detailed empirical comparison between
our work and this previous approach has been shown above in Sect. 4.

Model Extraction Attacks. The shadow-model-based strategy of BREAM
is inspired by the model extraction attacks. The Jacobian-based shadow DNN
training [28] used in our work and adversarial-samples-based method [5,39] men-
tioned above all belong to shadow-model-based model extraction attacks, which
aim to simulate functions and decision boundaries of the target model. The
attacker does not know the exact structure of the target model, so enormous
queries are often required, which brings a challenge. We actually face similar
problems in our work and we have come up with some new solutions. The
details can be found in Sect. 3. This shadow-model-based method is relatively
practical, and there are also some other attack techniques. Equation-solving
attack [36,38] is designed for the traditional machine learning methods, which
solved the parameters of models, under the premise of knowing algorithms and
structures of models. Meta-model-based extraction attack [26] tries to infer the
properties of the target model, such as the number of network layers, type of acti-
vation functions, etc., by training an additional meta-model. The meta-model
takes the results of querying the target model as input and outputs the proper-
ties.

6 Discussion and Future Work

Recalling BREAM presented in this paper, we propose a black-box guidance
strategy based on global interpretability, in contrast to the previous methods that
primarily rely on local interpretability. While interpretability offers advantages,
it also consumes the query budget. To address this, BREAM, aims to efficiently
leverage a general guidance approach from a global perspective, thereby avoiding
the repetitive construction of local interpretability and minimizing resource con-
sumption. Specifically, we achieve global interpretability through model extrac-
tion, which is commonly considered query-intensive. But we believe that this is
not a concern for BREAM. On the one hand, the model of a decision system
based on tabular data is relatively simple, and on the other hand, the investment
in building the initial show model will pay off consistently. The experimental
results have validated the effectiveness of our strategy.

However, there is still a lot of room for improvement in BREAM. Firstly,
the current version of BREAM only supports tabular data. Secondly, if the
target system deploys a defense mechanism against model extraction, the effec-
tiveness of BREAM may be affected. Later, we will explore how BREAM can
be extended to more scenarios and its performance against model extraction
defense mechanisms.

482 W. Jiang et al.

7 Conclusion

In this paper, we propose BREAM, an automated black-box DNN fairness test-
ing method that is able to discover discriminative samples efficiently for a tar-
get model. Unlike existed works, we focus on the query-limited and label-only
black-box setting, which is close to the real world and maximizes transferabil-
ity. BREAM only requires permission to access specific inputs and predicted
labels for a black-box model. BREAM trains shadow models to perceive infor-
mation about the target model, then benefits from the approximate gradients
obtained by shadow models to guide the discriminative samples generation pro-
cess. Experimental results show that BREAM significantly outperforms current
black-box methods and achieves the performance level of the current state-of-
the-art white-box method in efficiency. The code of BREAM is available at [1].

Acknowledgement. This research is supported by National Key Research and Devel-
opment Program of China (2020YFB1406900), National Natural Science Foundation of
China (U21B2018, 62161160337, U20B2049, U1736205, 61802166, 62102359, 62006181,
62132011, U20A20177, 62206217), State Key Laboratory of Communication Content
Cognition (Grant No. A02103) and Shaanxi Province Key Industry Innovation Program
(2023-ZDLGY-38, 2021ZDLGY01-02). Chao Shen is the corresponding author.

References

1. Code of black-box fairness testing with shadow models. https://github.com/
lenijwp/Black-box-Discrimination-Finder

2. Embedding api-build faster great ai algorithms for hr. https://hrflow.ai/
embedding/

3. Aggarwal, A., Lohia, P., Nagar, S., Dey, K., Saha, D.: Black box fairness testing of
machine learning models. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 625–635 (2019)

4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. ProPublica, 23 May
2016

5. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neural net-
work architectures through electromagnetic side channel. In: 28th USENIX Secu-
rity Symposium (USENIX Security 19), pp. 515–532. USENIX Association, Santa
Clara, CA, August 2019. https://www.usenix.org/conference/usenixsecurity19/
presentation/batina

6. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

7. Cherian, V., Bindu, M.: Heart disease prediction using Naive Bayes algorithm and
laplace smoothing technique. Int. J. Comput. Sci. Trends Technol. 5(2), 68–73
(2017)

8. Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras
9. Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical

review of fair machine learning. arXiv preprint arXiv:1808.00023 (2018)
10. Dua, D., Graff, C.: UCI adult data set (2017). https://archive.ics.uci.edu/ml/

datasets/adult

https://github.com/lenijwp/Black-box-Discrimination-Finder
https://github.com/lenijwp/Black-box-Discrimination-Finder
https://hrflow.ai/embedding/
https://hrflow.ai/embedding/
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
http://arxiv.org/abs/1604.07316
https://github.com/keras-team/keras
http://arxiv.org/abs/1808.00023
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult

Black-Box Fairness Testing with Shadow Models 483

11. Dua, D., Graff, C.: UCI bank marketing data set (2017). https://archive.ics.uci.
edu/ml/datasets/bank+marketing

12. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.
uci.edu/ml

13. Dua, D., Graff, C.: UCI statlog (german credit data) data set (2017). https://
archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

14. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

15. Fan, M., Wei, W., Jin, W., Yang, Z., Liu, T.: Explanation-guided fairness testing
through genetic algorithm. In: Proceedings of the 44th International Conference
on Software Engineering, pp. 871–882 (2022)

16. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268 (2015)

17. Ferral, K.: Wisconsin supreme court allows state to continue using computer pro-
gram to assist in sentencing. the capital times, 13 July 2016

18. Galhotra, S., Brun, Y., Meliou, A.: Fairness testing: testing software for discrimi-
nation. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 498–510 (2017)

19. Goh, G., Cotter, A., Gupta, M., Friedlander, M.P.: Satisfying real-world goals with
dataset constraints. In: Advances in Neural Information Processing Systems, pp.
2415–2423 (2016)

20. HLEG, A.: High-level expert group on artificial intelligence. Ethics Guidelines for
Trustworthy AI (2019)

21. Huang, G., Li, Y., Wang, Q., Ren, J., Cheng, Y., Zhao, X.: Automatic classification
method for software vulnerability based on deep neural network. IEEE Access 7,
28291–28298 (2019)

22. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree
learning. In: 2010 IEEE International Conference on Data Mining, pp. 869–874.
IEEE (2010)

23. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with
prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35–50. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33486-3 3

24. Liang, L., Zheng, K., Sheng, Q., Huang, X.: A denial of service attack method for
an IoT system. In: 2016 8th International Conference on Information Technology
in Medicine and Education (ITME), pp. 360–364. IEEE (2016)

25. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. 28(2), 129–137
(1982)

26. Oh, S.J., Augustin, M., Schiele, B., Fritz, M.: Towards reverse-engineering black-
box neural networks (2018)

27. Olson, P.: The algorithm that beats your bank manager. CNN money, 15 March
2011

28. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practi-
cal black-box attacks against machine learning. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

29. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://doi.org/10.1007/978-3-642-33486-3_3

484 W. Jiang et al.

30. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral testing
of NLP models with checklist. arXiv preprint arXiv:2005.04118 (2020)

31. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

32. Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zamboni,
D.: Analysis of a denial of service attack on TCP. In: Proceedings. 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097), pp. 208–223. IEEE
(1997)

33. Sweeney, L.: Discrimination in online ad delivery. Queue 11(3), 10–29 (2013)
34. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199 (2013)
35. Tramer, F., et al.: Fairtest: discovering unwarranted associations in data-driven

applications. In: 2017 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 401–416. IEEE (2017)

36. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: 25th {USENIX} Security Symposium
({USENIX} Security 16), pp. 601–618 (2016)

37. Udeshi, S., Arora, P., Chattopadhyay, S.: Automated directed fairness testing.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 98–108 (2018)

38. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018
IEEE Symposium on Security and Privacy (SP), pp. 36–52. IEEE (2018)

39. Yu, H., et al.: Cloudleak: large-scale deep learning models stealing through adver-
sarial examples. In: Proceedings of Network and Distributed Systems Security Sym-
posium (NDSS) (2020)

40. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adver-
sarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, pp. 335–340 (2018)

41. Zhang, L., Zhang, Y., Zhang, M.: Efficient white-box fairness testing through gra-
dient search. In: Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 103–114 (2021)

42. Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in data release. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1335–1344 (2017)

43. Zhang, P., et al.: White-box fairness testing through adversarial sampling. In: 42nd
International Conference on Software Engineering (2020)

44. Zhang, P., et al.: White-box fairness testing through adversarial sampling (2020).
https://github.com/pxzhang94/ADF

http://arxiv.org/abs/2005.04118
http://arxiv.org/abs/1312.6199
https://github.com/pxzhang94/ADF

Graph Unlearning Using Knowledge
Distillation

Wenyue Zheng, Ximeng Liu(B), Yuyang Wang, and Xuanwei Lin

College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China

snbnix@gmail.com

Abstract. With the popularity of graph-structured data and the pro-
mulgation of various data privacy protection laws, machine unlearn-
ing in Graph Convolutional Network (GCN) has attracted more and
more attention. However, machine unlearning in GCN scenarios faces
multiple challenges. For example, many unlearning algorithms require
large computational resources and storage space or cannot be applied
to graph-structured data, and so on. In this paper, we design a novel,
lightweight unlearning method using knowledge distillation to solve the
class unlearning problem in GCN scenarios. Unlike other methods using
knowledge distillation to unlearn Euclidean spatial data, we use a sin-
gle retrained deep Graph Convolutional Network via Initial residual and
Identity mapping (GCNII) model as the teacher network and the shallow
GCN model as a student network. During the training stage, the teacher’s
network transfers the knowledge of the retained set to the student net-
work, enabling the student network to forget some or more categories
of information. Compared with the baseline methods, Graph Unlearning
using Knowledge Distillation (GUKD) shows state-of-the-art model per-
formance and unlearning quality on five real datasets. Specifically, our
method outperforms all baseline methods by 33.77% on average in the
multi-class experiments on the Citeseer dataset.

Keywords: machine unlearning · graph convolution network ·
knowledge distillation

1 Introduction

With the rapid development of artificial intelligence and graph convolution net-
work in recent years, more and more user data are stored in databases used to
train machine learning models (such as graph convolution network). The user
data may come from digital content created by online users to express opinions on
different issues, such as rating a product or movie satisfaction, traffic conditions
of a specific road section, user location or character relationship information,
etc. A substantial amount of user data can be beneficial in training a machine
learning model that is user-friendly and capable of solving various downstream
tasks: node classification, link prediction, graph classification, etc. However, the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 485–501, 2023.
https://doi.org/10.1007/978-981-99-7356-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_29&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_29

486 W. Zheng et al.

third party that collects the data may obtain sensitive data of users, such as the
user’s hobbies, character relationships, etc. It is unacceptable to users.

The General Data Protection Regulation (GDPR) issued by the European
Union and the California Consumer Privacy Act (CCPA) in the United States [1,
2] require that users have the right to forget their data. Since the trained machine
learning model remembers the training data, to comply with the corresponding
regulations or delete bad data to improve the security of the system, third parties
need to delete the user’s data from the database and forget the user data in the
machine learning model. A naive and direct way is to retrain the model, but
the training time will be very long, and the performance may drop a lot, which
does not meet the standard of an excellent unlearned model. In this context,
machine unlearning came into being. Machine unlearning [3–5] refers to using
an algorithm to obtain an unlearned model that makes it indistinguishable from
a trained model that has never seen deleted data. Although there has been a
lot of research on machine unlearning algorithms, there is very little unlearning
for prevalent GCN models dealing with non-Euclidean spaces. The following
challenges are faced in the research process:

1. Designing a lightweight unlearning method in the scenario of IoT devices
with limited computing resources or storage capacity is a complex problem.
Because sometimes unlearning necessitates the expenditure of resources [4];

2. Under the condition of limited training data, how to design a model that can
efficiently forget category data and ensure the model’s excellent performance
is a very challenging problem. This is because the problem of weak learners
is easy to come out after unlearning the category data [4,6];

3. There is a big difference between graph structure data and Euclidean space
data. Many unlearning algorithms for Euclidean space data cannot perform
well on node classification tasks based on graph convolution network [6,7].
There are many inappropriate problems.

In this paper, we consider the problem of removing one or more classes of
nodes from a node classification model. Some examples of such an unlearning
scenario are that, due to an illegal super chat or community with a specific topic,
we need to unlearn the super chat or community to improve the robustness of
the model. Alternatively, if the super chat or community contains any sensitive
information or viruses, we also need to unlearn it to protect the privacy and
security of the members. In the two scenarios, the unlearning model must dis-
card all information about the attributes of the members and their connections
with other super chat or communities. Inspired by the knowledge distillation
framework in the GNN scene and the knowledge distillation unlearning model
for processing Euclidean spatial data [8–10], we propose our single-teacher net-
work’s graph unlearning algorithm using knowledge distillation (GUKD), which
aims to solve the class unlearning problem of GCN models dealing with non-
Euclidean spatial data. In our method GUKD, we use a single deep retrained
GCNII [11] network as the teacher model and transfer the retained set knowl-
edge to the student model GCN model, making the student model GCN achieve
excellent performance and unlearning quality; The effectiveness of GUKD is

Graph Unlearning Using Knowledge Distillation 487

intensively tested on five real datasets. Experiments show that GUKD achieves
the best results.

Our contributions are summarized as follows:

– We propose the GUKD method to solve the class unlearning problem in graph
convolutional network scenarios. Under the design of GUKD, it can not only
guarantee the accuracy of the retained set but also ensure the unlearning
effect of the forgotten set.

– GUKD can obtain a lighter network and excellent performance compared with
other unlearning frameworks using knowledge distillation for GCN scenarios.
A more lightweight unlearning model allows us to quickly deploy the model
on IoT devices with limited computing resources or storage capacity.

– Our method shows superior model performance and unlearning quality in
experiments on five real datasets. Specifically, in the multi-class experiments
of the Citeseer dataset, GUKD yields a 46.67% and 20.88% improvement in
accuracy over state-of-the-art baseline methods: GraphEraser [6] and Amne-
siac [12], respectively. And GUKD has the same accuracy as Retrain on the
forgotten set.

2 Related Work

2.1 Knowledge Distillation

Hinton et al. [13] first proposed a model compression technique: knowledge distil-
lation. It aims to train a lightweight student network by using the class probabil-
ity of the complex teacher network as soft targets, enabling the knowledge of the
teacher network to be transferred to the student network. By knowledge distilla-
tion, the student model can achieve outstanding performance and be deployed in
some IoT devices with limited computing power and storage capacity. At present,
knowledge distillation is widely used in computer vision fields such as transfer
learning [14] and reinforcement learning [15]. However, only some studies have
focused on knowledge distillation for graph convolution network that deal with
off-grid data. Yang et al. [16] first filled the gap by combining the GCN model
with knowledge distillation. They utilizes the local structure preserving (LSP)
method, transferring knowledge of the teacher network to the student network.
GraphAKD [17] measures the difference between teacher and student networks
by generating dynamic distance functions through generative adversarial net-
works. The results show that this method can improve the lightweight student
model’s performance. Yang et al. [8] used GNN as the teacher model, designed
Parameterized label propagation and Feature transformation for the PLP stu-
dent model, and realized the knowledge transfer of an arbitrary pre-trained GNN
model to the student model PLP.

2.2 Machine Unlearning

Machine unlearning can be divided into approximate unlearning [5,18] and exact
unlearning [3,19]. The early work is [20] for the exact unlearning of European

488 W. Zheng et al.

spatial data. They proposed an unlearning algorithm based on a simple model
of adaptive or non-adaptive statistical query learning and converted the learn-
ing algorithm into a summation form. When there is an unlearning request, we
only need to update a small number of sums to achieve the effect of accelerated
unlearning; Bourtoule et al. [3] proposed the unlearning framework of the SISA
algorithm. Its idea is to divide the training data into shards and slices, perform
isolation and aggregation operations, and obtain an aggregation model. When
there is an unlearning request, we only need to retrain the submodel of the shard
corresponding to the forgotten data. Such a model design greatly accelerates the
unlearning process. Still, the problem is that it may have poor performance and
needs a lot of storage space. Extensive work exists on approximate unlearning
for Euclidean spatial data. Guo et al. [5] removed the impact of forgotten data
on the model by correcting a one-step Newton update and provided a theoret-
ical guarantee for ε-certified removal for this removal algorithm. Similar work
also includes [21,22]; Chundawat et al. [10] achieved approximate unlearning
through a knowledge distillation framework of two teacher models and a stu-
dent model; Kim et al. [9] used contrastive label and knowledge distillation
techniques to achieve approximate unlearning. In general, exact unlearning has
a better unlearning effect, but approximate unlearning has a faster unlearning
speed in most cases. However, our focus lies in unlearning algorithms for non-
Euclidean spatial data. The original research is GraphEraser [6] proposed by
Chen et al. It is an exact unlearning algorithm that improves the SISA frame-
work to make it suitable for the graph convolutional network scenario. However,
it also has the same problems as SISA; Chien et al. [7] proposed the first certified
graph in the GNN scene unlearning based on the correction made by Guo et al.
[5] and fills the gap of ε-certified removal in the graph convolutional network.
However, the model used mainly considers the simplified version of GCN, SGC,
which will result in weak algorithm applicability. To sum up, the unlearning
algorithm based on the graph neural network is also constantly innovating and
has achieved acceptable results, but there are still shortcomings. Therefore, the
approximate unlearning of the GCN model for processing non-Euclidean spatial
data proposed in this paper is significant.

3 GUKD Unlearning Method

3.1 Notations and Problem Formulation

Given a graph G = (V,A,X), where v ∈ V represents a node in the graph, the
number of nodes is |V | = N , A ∈ {0, 1}n×n is the adjacency matrix of the graph,
describing the topology in the graph. In the node classification task, the inputs
of the GCN model Fθ are the feature X ∈ RN×D of all nodes and the structural
feature A of the whole graph, and the output is the probability distribution of
which class each node belongs to. When users make a class unlearning request
for privacy or other reasons, we need to forget not only the nodes involved but
also the edges connected to them. We define the data that users want to unlearn
from the training dataset D as Df , and the remaining data as Dr, so that

Graph Unlearning Using Knowledge Distillation 489

Df ∪ Dr = D,Df ∩ Dr = ∅. Moreover, the retaining and unlearning graphs are
formally defined as:

Gr = (Vr, Ar,Xr) , Gf = (Vf , Af ,Xf) (1)

where the retaining graph Gr is a subgraph composed of the remaining nodes
in the training set, validation set, and test set nodes, the unlearning graph Gf

is a subgraph composed of the unlearning nodes in the training set, validation
set, and test set nodes. A GCN model trained from scratch is defined as a
retrained model. In this paper, we propose an approximate unlearning algorithm
GUKD. We aim to make the unlearning model have approximately the same
distribution as the retrained model so that the unlearned model is approximately
indistinguishable from the model that was never trained on the deleted data. The
goal of approximate unlearning is formally defined as:

P (F (G; θu) = y) ≈ P (F (Gr; θr) = y) , ∀y ∈ R (2)

where P represents the probability distribution of the machine learning model,
θu is the parameters of the unlearned model, and θr means the parameters of
the retrained model.

3.2 Motivation

Yang et al. [8] utilizes the GNN network as the teacher network to transfer
knowledge to the PLP network, enabling the PLP network to exhibit excellent
performance on the GNN task. The student network’s lightweight design also
facilitates deployment on computationally limited platforms, including mobile or
embedded systems. Inspired by the paper [8], since GCN can transfer knowledge
to the PLP network, is it also possible to transfer valuable knowledge to the GCN
network? Moreover, another motivation is that if GCN can transfer valuable
knowledge to GCN, can deep GCNII networks transfer helpful knowledge to
GCN? Due to the excellent performance of the GCNII network, using the GCNII
network as the teacher network will guarantee the performance of the student
model on the retained set Gr. On the other hand, We are motivated by the
two-teacher-one-student model of the forgetting framework [10]. To effectively
achieve approximate unlearning, we can use only one teacher network to achieve
unlearning under the premise of guaranteeing the model performance so that the
entire unlearning framework can be more lightweight. The following subsection
will introduce our forgetting framework GUKD for GCN scenarios.

3.3 Graph Unlearning Using Knowledge Distillation

In traditional convolutional neural network, two shallow teacher models can
guide a student model to forget a certain user data class [10]. In contrast, in
graph convolution network, we aim to use a deep teacher model to guide the
student model to unlearn while having superior model performance and a more

490 W. Zheng et al.

Fig. 1. The pipline of the proposed GUKD unlearning. The entire unlearning pipeline
is divided into three phases. First, the user makes a class forgetting request. Secondly,
we need to pre-train the teacher model GCNII and save the corresponding parameters.
Finally, we use the teacher model’s predicted results (logits) to guide the unlearning
model’s training on unlabeled nodes (nodes for validation and test sets). With the
above steps, we can get an unlearned model.

lightweight unlearning network. We apply the GCNII network FGCNII;θr
as the

teacher network, and use the retained set Gr to initialize the teacher model.
GCN model FGCN ;θ is utilized as the student network. The purpose of this is
that, on the one hand, the teacher model can use the information it does not
know about the class to transfer bad knowledge of the class to the student model.
On the other hand, it can pass on its useful knowledge of the retained set to
the student model so that the student model can achieve the effect of forgetting
class data. The entire unlearning process is described in Fig. 1.

For the teacher model GCNII, it first needs to use the remaining data for
training, and the teacher model training objective is formally defined as:

min
θr

L(FGCNII(Gr; θr), y), ∀y ∈ R (3)

where L denotes the cross-entropy loss in the node classification task, we use
the adam optimizer for gradient descent to find the optimal model parameters
θr. FGCNII denote the GCNII model, and y is the label of nodes. GCNII model
trained only on the remaining data will not learn information about the forgotten
set, which will benefit our unlearning.

The knowledge distillation framework in the traditional convolutional neural
network uses all the training data as the input of the teacher model, and outputs
soft target, which guides the student model to learn all the training data. We
use the training data in the graph convolutional network scenario to train the

Graph Unlearning Using Knowledge Distillation 491

Algorithm 1: GUKD
Input: The original graph G, the remaining graph Gr, teacher model

FGCNII;θr , the number of GCN model layers num layers, learning rate
η

Output: unlearned model parameters θ
1 Initialize model parameters θ;

2 Pretraining teacher model: logitsT ← (Gr, FGCNII;θr);
3 while not converge do

4 H(0) ← X;
5 for l ← 0 to num layers do

6 Update node embedding: H(l+1) ← σ(Â H(l)W (l));
7 end

8 The logits of the student model: logitsS ← H(l+1);
9 Concatenate node sets: V ′ = [val; test];

10 logitsS
V ′ ← logitsS [V ′];

11 logitsT
V ′ ← logitsT [V ′];

12 L =
∥
∥logitsS

V ′ − logitsT
V ′

∥
∥
2
;

13 Update the model parameters: θ ← θ − η ∂L
∂θ

;

14 end
15 return θ;

teacher model. After training, we apply the validation and test set as the input of
the teacher model and output the soft target to guide the student model to learn
on the validation and test set. The reason is that the GCN model is transductive,
and the input is the entire graph data rather than the training data. Therefore,
the graph data of the forgotten teacher model is inconsistent with the graph data
size of the unforgotten student model. In other words, the data dimensions of the
two are different. This makes it impossible to directly use the teacher model’s
soft target for the student model’s training. Still, because of the characteristics
of the aggregation of neighbor node features and label propagation of GCN, we
can use the soft target generated by the validation and test sets to guide the
student to learn on validation and test set. Intuitively, due to the aggregation
of neighbor node features and label propagation, the nodes in the validation
and test set have a part of the information of the training nodes so that the
student model can learn the knowledge of the teacher model. In this way, on
the one hand, due to the excellent performance of the GCNII teacher model,
the student model GCN can also achieve better performance on the retained
set. On the other hand, the teacher model has never seen the forgotten set, so
that the teacher model will perform poorly on the forgotten set. It will also
pass this terrible knowledge to the student model. In this way, we achieve class
unlearning in graph neural network scenarios. For our student model GCN, the
goal of student model optimization is formally defined as:

min
θ

∑

v∈V ′
‖FGCNII(Gr; θr)[v] − FGCN (G; θ)[v]‖2 (4)

492 W. Zheng et al.

where V ′ represents the data of the validation and test set, ‖ · ‖2 represents the
�2-norm, [·] represents the slice operation, and θ is the parameter of the student
model FGCN . Our optimization goal is to find an optimal parameter θ so that
the probability distribution of the student model FGCN and the teacher model
FGCNII are as similar as possible. The detailed algorithm process of GUKD is
given by Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets and Baseline Methods. To evaluate the effectiveness of GUKD,
we used five publicly available datasets for node classification, including Cora,
Citseer, Pubmed, CS and Reddit [23–25], the detailed dataset is described in
Table 4 in the Appendix A. Moreover, as far as we know, there are few works on
class unlearning for GCN models dealing with non-Euclidean spatial data under
the node classification task. Therefore, we use the applicable graph unlearning
method: GraphEraser, as a benchmark method for comparative analysis. At
the same time, we use the Amnesiac method to verify the performance of our
method. The introduction of the benchmark methods is as follows:

– GraphEraser [6]: This graph unlearning algorithm improved on the SISA
unlearning framework. When the user makes an unlearning request, Gra-
phEraser only need to retrain the partition model where the corresponding
node is located, which can save the unlearning time.

– Amnesiac [12]: Amnesiac is an unlearning algorithm for Euclidean spatial
data. Its main idea is to relabel the forgotten classes as randomly selected class
labels and then retrain the model. Due to its applicability to class forgetting
scenarios, it is suitable for comparison with our approach GUKD.

Evaluation Metrics. Many evaluation metrics already exist in order to eval-
uate the effectiveness of unlearning. In our work, considering the differences
between the graph convolutional network and the traditional convolutional neu-
ral network, we mainly use the following metrics to evaluate unlearning in the
scenario of the graph convolutional network model:

– Accuracy on the retained set (acc r): This metric tests the accuracy
of the unlearning model on the retained set. The higher the accuracy rate,
the better the performance of the unlearning model. Note that to visually
evaluate the quality of forgetting, we pay more attention to the accuracy of
the retained set and forget set rather than the overall accuracy of the test
set.

– Accuracy on the forget set (acc f): This metric tests the accuracy of the
unlearning model on the forgotten set. The closer the accuracy rate is to the
accuracy rate of the retrained model, the better the unlearning effect of the
model is.

Graph Unlearning Using Knowledge Distillation 493

– Unlearning time: An excellent unlearning model should restore the avail-
ability of the model as quickly as possible. We count the time to retrain
the model as our unlearning time in all experiments, and we only consider
the time of student model retraining for the forgetting method of knowledge
distillation. All time units are seconds.

– JS-Divergence: JS-Divergence is used to measure the difference in the prob-
ability distribution of the unlearning and retrained models. Its value range
is 0 ∼ 1. The closer the value is to 0, the better the unlearning quality. To
apply to class unlearning in the graph convolutional neural network scenario,
we slightly rewrite its formula, which is formally defined as:

JS(Fr, Fu) = 0.5 × 1
|V ′|

|V ′|∑

i=0

KL(Fr(G; θr)[vi]‖m)

+ 0.5 × 1
|V ′|

|V ′|∑

i=0

KL (Fu(G; θu)[vi]‖m)

(5)

where Fu, Fr denotes the unlearning model and the retrained model respec-
tively, and m = Fr+Fu

2 , KL means the KL divergence.
– Lightweight: Many unlearning methods currently require a lot of storage

space or computing power [3,6], but an outstanding unlearning algorithm
should be extremely lightweight. A lightweight network allows models to be
easily deployed on some IoT devices with limited computing power and stor-
age capacity. Therefore, the amount of model parameters is a critical evalu-
ation metric.

Experimental Settings. Our experiments are implemented using Python 3.7
and DGL 0.9.0. All experiments are run on NVIDIA GeForce RTX 3090 server
with 64G memory, 24G graphics card, and Ubuntu 20.04.4 LTS. All datasets
are divided according to public or random based on similar rules, and our task
is node classification of the GCN model. For Retrain and Amnesiac method, all
hyperparameters use default values; For the GraphEraser way, since class forget-
ting involves the forgetting of nodes with multiple partitions, the more partitions
there are, the longer the time may be. Therefore, the number of partitions for
all datasets is 4 in our experiments. BLPA and optimal aggregation are used as
the partition and aggregation methods, respectively; For our approach GUKD,
the teacher model uses the default hyperparameters of GCNII. However, in the
student model GCN, the epoch is set to 25, lr is 0.01, and other hyperparameters
are set to default values. All experimental results are averaged after running ten
experiments.

4.2 Single-Class Unlearning Experiment Results and Analysis

As shown in Table 1, we can observe that the test set accuracy of GUKD on
the retained set is much higher than the benchmark method GraphEraser and

494 W. Zheng et al.

Table 1. We show the single-class unlearning results on four datasets. acc r, acc f rep-
resent the test set accuracy of the model on the retained set and the test set accuracy
on the forget set, respectively. The Original represents the GCN model, We counted
its training accuracy on the full dataset. GCNII and Retrain are the teacher model
and the retrained model, respectively. GraphEraser and Amnesiac are our bench-
mark methods, and GUKD is our unlearning method. JS represents Jensen-Shannon
Divergence.

Dataset Cora Citeseer Pubmed CS

Type acc r acc f acc r acc f acc r acc f acc r acc f

Acc Original 81.49±0.11 73.85±1.87 72.37±1.01 35.06±2.70 77.44±0.12 77.22±1.64 92.94±0.33 84.78±1.46

Retrain 84.71±0.81 0±0.00 78.22±0.38 0±0.00 83.17±0.90 0±0.00 93.79±0.14 0±0.00

GCNII 86.32±0.19 0±0.00 78.98±0.28 0±0.00 85.49±0.08 0±0.00 95.58±0.11 0±0.00

GraphEraser 59.66±0.04 0±0.00 42.8±0.01 0±0.00 53.17±0.04 0±0.00 91.47±0.01 0±0.00

Amnesiac 82.64±0.17 12.31±2.21 73.35±0.43 15.58±2.78 80.12±0.43 48.89±1.29 92.83±0.47 5.07±1.23

GUKD 88.85±0.08 0±0.00 79.2±0.21 0±0.00 84.51±0.88 0±0.00 94.5±0.52 0±0.00

Time GraphEraser 1.9845 1.6955 1.4131 2.434

Amnesiac 0.5174 0.4477 0.568 1.1986

GUKD 0.5325 0.5394 0.4006 1.1018

Params GraphEraser 184,476 474,904 64,524 873,148

Amnesiac 46,119 118,726 16,131 218,287

GUKD 46,119 118,726 16,131 218,287

JS Amnesiac 0.1396 0.2016 0.3609 0.4208

GUKD 0.0136 0.0117 0.0136 0.1608

Amnesiac, even higher than the Retrain method. As far as we know, few other
works can be higher than the test set accuracy of the Retrain method. Specif-
ically, in the Cora dataset, our method outperforms GraphEraser by 29.19%,
Amnesiac by 6.21%, Retrain method by 4.14%, and even our teacher model
GCNII by 2.53%. This improvement occurs due to the strong performance of
the retrained teacher’s GCNII model and the fact that the Cora dataset is easy
to teach. The student model obtain a stronger performance than the teacher
model. It’s like the students’ thinking is wildly divergent and active. After the
teacher’s teaching, there may be a phenomenon that the students surpass the
teacher. Furthermore, in the Citeseer dataset, the accuracy of our way is 36.4%
higher than GraphEraser and 5.85% higher than the Amnesiac method. In the
Pubmed dataset, the accuracy of our approach is 31.34% and 4.39% higher than
GraphEraser and Amnesiac, respectively. In the CS dataset, our method GUKD
yields a 3.03% and 1.67% improvement in accuracy over GraphEraser and Amne-
siac, respectively. The visual accuracy comparison is depicted in Fig. 2a. On the
other hand, our method exhibited comparable performance to two completely
unlearning approaches (GraphEraser and Retrain) in the forgotten set based on
the results in Table 1, which means that our forgetting method is remarkably
effective. The accuracy rate of Retrain, GCNII, GraphEraser and GUKD on the
forgotten set is 0 because we use a graph that deletes one or more class nodes
for model training so that other nodes cannot learn the information about the
forgotten nodes, which is consistent with our unlearning expectations. Besides,
The JS-Divergence divergences of the four datasets is close to 0, indicating that
the probability distribution of our unlearning model is very close to that of the
retrained model and the unlearning quality is very high.

Graph Unlearning Using Knowledge Distillation 495

Fig. 2. The test accuracy of the three methods on five datasets. The left picture (a) and
the right picture (b) are the single-class and multi-class experimental results, respec-
tively. GraphEraser is marked as 0 in the Reddit dataset due to memory overflow. Our
method GUKD has the highest accuracy rate in all datasets. Especially, in the multi-
class experiments of the Citeseer dataset, GUKD is 46.67% higher than GraphEraser
and 20.88% higher than Amnesiac method.

Fig. 3. We test the kernel density distribution on different datasets. The X-axis repre-
sents the relative prediction difference between our unlearning model and the retrained
model, and the Y-axis represents the kernel density. The closer the kernel density value
is to 0, the more similar the probability distribution of our unlearning model is to the
retrained model.

To more intuitively show the quality of our method’s unlearning, Fig. 3
depicts the kernel density distribution of our unlearning and retrained models.
It is evident from the figure that the kernel density value at which the predic-
tion difference between our model and the retrained model is 0 is tremendous.
This phenomenon’s occurrence means that our model’s probability distribution
is very similar to the retrained model, further verifying the forgetting quality
of our model. Since the GraphEraser class unlearning involves multiple parti-

496 W. Zheng et al.

tions, it may not be able to obtain the effect of accelerated unlearning. From the
information presented in the table, it can be concluded that the performance
of GraphEraser is the worst. In the Pubmed and CS datasets, our unlearning
time is slightly lower than that of Amnesiac. In the Cora and Citeseer datasets,
the unlearning time is marginally higher than that of Amnesiac. This happens
because GUKD trains a few additional epochs to achieve better accuracy, which
causes a marginally longer unlearning time for some datasets. Our time will still
be somewhat less than the Amnesiac method even if we only manage to match
its accuracy. Moreover, the number of parameters of our model is equivalent
to that of the Amnesiac method. We use the pretrained teacher model, which
means that we only need to train the parameters of the student model, which
significantly reduces the number of parameters. This reduction in complexity
is crucial for deploying machine learning models on IoT devices with limited
computing power and storage capacity.

Table 2. Since the Pubmed dataset has only three categories, it is unsuitable for multi-
category unlearning. Therefore, We tested the experiment of unlearning two classes on
four other datasets. ’/’ indicates memory overflow and cannot be measured. GUKD
achieves state-of-the-art accuracy, unlearning quality, and the number of model param-
eters.

Dataset Cora Citeseer CS Reddit

Type acc r acc f acc r acc f acc r acc f acc r acc f

Acc Original 81.49±0.11 73.85±1.87 72.37±1.01 35.06±2.70 92.94±0.33 84.78±1.46 93.42±0.47 96.2±1.58

Retrain 88.32±0.24 0±0.00 84.21±0.31 0±0.00 94.37±0.16 0±0.00 94.05±0.09 0±0.00

GCNII 89.08±0.11 0±0.00 86.37±0.29 0±0.00 96.61±0.14 0±0.00 96.09±0.05 0±0.00

GraphEraser 52.87±0.02 0±0.00 38.35±0.03 0±0.00 89.96±0.21 0±0.00 / 0±0.00

Amnesiac 76.78±1.55 16.15±0.98 64.14±1.12 20.78±0.42 91.1±0.74 5.8±0.15 92.17±0.92 2.25±0.23

GUKD 90±0.30 0±0.00 85.02±0.65 0±0.00 94.58±0.13 0±0.00 94.52±0.43 0±0.00

Time GraphEraser 1.142 1.2048 1.5809 /

Amnesiac 0.3179 0.3369 1.0271 5.9398

GUKD 0.6302 0.3057 1.5515 9.9732

Params GraphEraser 184,476 474,904 873,148 82,596

Amnesiac 46,119 118,726 218,287 20,649

GUKD 46,119 118,726 218,287 20,649

JS Amnesiac 0.0697 0.0551 0.4417 1.0578

GUKD 0.0312 0.0153 0.2001 0.0233

4.3 Multi-class Unlearning Experiment Results and Analysis

We also demonstrate the effectiveness of multi-class forgetting on the Cora,
Citeseer, CS, and Reddit datasets. Table 2 shows that our method has the highest
test accuracy on the retained set among the three unlearning ways. Specifically,
GUKD outperforms GraphEraser by 37.13% and exceeds Amnesiac by 13.22%
in the Cora dataset. In the Citeseer dataset, GUKD yields a 46.67% and 20.88%
improvement in accuracy over methods GraphEraser, respectively. In the CS and
Reddit dataset, GUKD also shows different degrees of improvement. When the
number of unlearning categories increases and the training data becomes smaller,
the accuracy on the retained set increases for all datasets, but the overall test-
set accuracy decreases, which aligns with our expectations. A visual accuracy

Graph Unlearning Using Knowledge Distillation 497

comparison is shown in Fig. 2b. In addition, our model’s number of parameters is
equivalent to the Amnesiac model, which is the same as the one-class forgetting.
Thanks to the pre-training of the teacher model, we only need to train the
parameters of the student model, which dramatically reduces the number of
parameters of the model and is very important for deploying IoT devices with
limited computing power and storage capacity. For the model’s unlearning time,
the forgetting time of GUKD is slightly higher than that of Amnesiac but lower
than that of GraphEraser, which is very in line with the standard of an excellent
forgetting model. This phenomenon is because the deep GCNII model helps the
student model GCN to train faster. However, sometimes time has to be sacrificed
to improve model performance.

Fig. 4. Like single-class unlearning, we tested the kernel density distribution of the
difference between the unlearned and the retrained model on four datasets for multi-
class unlearning.

Besides, we found from Table 2 that GUKD achieved the same test set accu-
racy as the other two completed unlearning (Retrain and GraphEraser) on the
forgetting set, which shows that our unlearning is very effective. On the other
hand, JS values is close to 0, which means that the probability distribution of
GUKD and the retrained models is very similar, further illustrating the effec-
tiveness of GUKD on multi-class forgetting. Similarly, to show the quality of
the three unlearning models more intuitively, Fig. 4 depicts the kernel density
distribution map of the three models and the retrained model. We can observe
from Fig. 4 that the density value of GUKD at 0 is the largest, indicating that
the distribution of GUKD is quite similar to the retrained model.

498 W. Zheng et al.

Table 3. Comparison of different unlearning frameworks using knowledge distillation.
We tested 4 different unlearning frameworks on the Cora dataset. The teacher model
(GCN, GCN) and (GCNII, GCNII) mean that one teacher model transfers the knowl-
edge of the retained set to the student model, and the other transfers the knowledge
of the forgotten set to the student model.

Datasets Teacher model Student model Type Accuracy Time Params of teacher model Unlearning quality

Cora (GCN,GCN) GCN acc r 0 0.9463 92,238 Poor

acc f 100

(GCNII,GCNII) acc r 23.79 0.3793 17,515,022 Poor

acc f 0

GCN acc r 83.91 0.5531 46119 Good

acc f 0

GCNII acc r 88.85 0.5325 8,757,511 Excellent

acc f 0

4.4 Comparison of Different Unlearning Frameworks Using
Knowledge Distillation

Finally, as stated in the motivation in Sect. 3.2, our original idea originated from
the GNN model in the paper [8] to transfer knowledge to the PLP model. To
expand the original idea and verify the irreplaceability of our forgetting model,
We design four different unlearning frameworks using knowledge distillation. It
can be observed from Table 3 that our forgetting quality performs the best. For
the forgetting framework of two teacher models, borrowing from the idea of the
paper [10], one teacher model transfers the knowledge of the retained set to
the student model, and the other teacher model transfers the information of the
forget set to the student model. In reality, the performance of these two forgetting
frameworks is poor. The reason for this phenomenon is that the GCN model
has the characteristics of label propagation and aggregation of neighbor node
characteristics, making it challenging for the two teacher models to complete the
unlearning task effectively. The forgetting framework of the single GCN teacher
model performs well. However, GUKD outperforms it. Although the single GCN
teacher model has fewer parameters, the unlearning time of GCNII as a teacher
model is shorter than it. Therefore, designing GCNII as a teacher model is an
excellent choice.

5 Conclusion

This paper proposes a novel approach GUKD to class unlearning using knowl-
edge distillation for GCN models dealing with non-Euclidean spatial data.
Unlike other methods that use knowledge distillation to achieve unlearning for
Euclidean spatial data, we abandon the unlearning architecture of the previous
two shallow teacher models. A deep retrained GCNII model is deployed as the
teacher model to transfer the knowledge of the retained set to the student model
GCN. GUKD supports both single-class and multi-class unlearning. And due to
the small number of parameters of our unlearning model, it is easy to deploy it on
IoT devices with limited computing resources and storage capacity. Experiments

Graph Unlearning Using Knowledge Distillation 499

show that GUKD achieves state-of-the-art performance and optimal unlearning
quality on five real datasets. However, how to make GUKD support random
sample unlearning is a possible future work.

A Appendix

To evaluate the effectiveness of GUKD, we used five publicly available datasets
for node classification, including Cora, Citseer, Pubmed, CS and Reddit. Among
these datasets, Cora, Citseer, and Pubmed are citation networks. Nodes repre-
sent papers or scientific publications, and edges represent their citation rela-
tionship; CS is a co-author relationship graph. Nodes represent the authors of
articles, and an edge connecting two nodes represents the two authors who have
completed a paper together. The vertex label represents the author’s most active
field; Reddit is a social network dataset, a node represents a post in a commu-
nity, and an edge connecting two posts indicates that the same user commented
on both posts. The label suggests the community or subreddit a post belongs
to. The Statistics of the detailed datasets are summarized in Table 4.

Table 4. Dataset statistics

Dataset Nodes Edges Features Class Unlearning Type

Cora 2,708 5,429 1,433 7 single-class & multi-class

Citeseer 3,327 4,732 3,703 6 single-class & multi-class

CS 18,333 163,788 6,805 15 single-class & multi-class

Pubmed 19,717 44,338 500 3 single-class

Reddit 232,965 114,615,892 602 41 multi-class

References

1. Mantelero, A.: The EU proposal for a general data protection regulation and the
roots of the right to be forgotten. Comput. Law Secur. Rev. 29(3), 229–235 (2013).
https://doi.org/10.1016/j.clsr.2013.03.010

2. Goldman, E.: An introduction to the California consumer privacy act (ccpa). Santa
Clara Univ. Legal Studies Research Paper (2020). https://doi.org/10.2139/ssrn.
3211013

3. Bourtoule, L., et al.: Machine unlearning. In: 2021 IEEE Symposium on Security
and Privacy (SP), pp. 141–159. IEEE (2021). https://doi.org/10.1109/SP40001.
2021.00019

4. Baumhauer, T., Schöttle, P., Zeppelzauer, M.: Machine unlearning: linear filtration
for logit-based classifiers. Mach. Learn. 111(9), 3203–3226 (2022). https://doi.org/
10.1007/s10994-022-06178-9

https://doi.org/10.1016/j.clsr.2013.03.010
https://doi.org/10.2139/ssrn.3211013
https://doi.org/10.2139/ssrn.3211013
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1007/s10994-022-06178-9
https://doi.org/10.1007/s10994-022-06178-9

500 W. Zheng et al.

5. Guo, C., Goldstein, T., Hannun, A., Van Der Maaten, L.: Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030 (2019). https://
doi.org/10.48550/arXiv.1911.03030

6. Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., Zhang, Y.: Graph
unlearning. In: Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 499–513 (2022). https://doi.org/10.1145/
3548606.3559352

7. Chien, E., Pan, C., Milenkovic, O.: Certified graph unlearning. arXiv preprint
arXiv:2206.09140 (2022). https://doi.org/10.48550/arXiv.2206.09140

8. Yang, C., Liu, J., Shi, C.: Extract the knowledge of graph neural networks and go
beyond it: an effective knowledge distillation framework. In: Proceedings of the Web
Conference 2021, pp. 1227–1237 (2021). https://doi.org/10.1145/3442381.3450068

9. Kim, J., Woo, S.S.: Efficient two-stage model retraining for machine unlearning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4361–4369 (2022). https://doi.org/10.1109/CVPRW56347.2022.
00482

10. Chundawat, V.S., Tarun, A.K., Mandal, M., Kankanhalli, M.: Can bad teaching
induce forgetting? Unlearning in deep networks using an incompetent teacher.
arXiv preprint arXiv:2205.08096 (2022). https://doi.org/10.48550/arXiv.2205.
08096

11. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolu-
tional networks. In: International Conference on Machine Learning, pp. 1725–1735.
PMLR (2020). https://doi.org/10.48550/arXiv.2007.02133

12. Graves, L., Nagisetty, V., Ganesh, V.: Amnesiac machine learning. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11516–11524 (2021).
https://doi.org/10.1609/aaai.v35i13.17371

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
Comput. Sci. 14(7), 38–39 (2015). https://doi.org/10.4140/TCP.n.2015.249

14. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1),
43–76 (2020). https://doi.org/10.1109/JPROC.2020.3004555

15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

16. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph
convolutional networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7074–7083 (2020). https://doi.org/10.
1109/cvpr42600.2020.00710

17. He, H., Wang, J., Zhang, Z., Wu, F.: Compressing deep graph neural networks
via adversarial knowledge distillation. In: Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 534–544 (2022). https://
doi.org/10.1145/3534678.3539315

18. Tarun, A.K., Chundawat, V.S., Mandal, M., Kankanhalli, M.: Deep regression
unlearning. arXiv preprint arXiv:2210.08196 (2022)

19. Brophy, J., Lowd, D.: Machine unlearning for random forests. In: International
Conference on Machine Learning, pp. 1092–1104. PMLR (2021). https://doi.org/
10.48550/arXiv.2009.05567

20. Cao, Y., Yang, J.: Towards making systems forget with machine unlearning.
In: 2015 IEEE Symposium on Security and Privacy, pp. 463–480. IEEE (2015).
https://doi.org/10.1109/SP.2015.35

21. Golatkar, A., Achille, A., Soatto, S.: Eternal sunshine of the spotless net: selective
forgetting in deep networks. In: Proceedings of the IEEE/CVF Conference on

http://arxiv.org/abs/1911.03030
https://doi.org/10.48550/arXiv.1911.03030
https://doi.org/10.48550/arXiv.1911.03030
https://doi.org/10.1145/3548606.3559352
https://doi.org/10.1145/3548606.3559352
http://arxiv.org/abs/2206.09140
https://doi.org/10.48550/arXiv.2206.09140
https://doi.org/10.1145/3442381.3450068
https://doi.org/10.1109/CVPRW56347.2022.00482
https://doi.org/10.1109/CVPRW56347.2022.00482
http://arxiv.org/abs/2205.08096
https://doi.org/10.48550/arXiv.2205.08096
https://doi.org/10.48550/arXiv.2205.08096
https://doi.org/10.48550/arXiv.2007.02133
https://doi.org/10.1609/aaai.v35i13.17371
https://doi.org/10.4140/TCP.n.2015.249
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/cvpr42600.2020.00710
https://doi.org/10.1109/cvpr42600.2020.00710
https://doi.org/10.1145/3534678.3539315
https://doi.org/10.1145/3534678.3539315
http://arxiv.org/abs/2210.08196
https://doi.org/10.48550/arXiv.2009.05567
https://doi.org/10.48550/arXiv.2009.05567
https://doi.org/10.1109/SP.2015.35

Graph Unlearning Using Knowledge Distillation 501

Computer Vision and Pattern Recognition, pp. 9304–9312 (2020). https://doi.org/
10.1109/CVPR42600.2020.00932

22. Golatkar, A., Achille, A., Soatto, S.: Forgetting outside the box: scrubbing deep
networks of information accessible from input-output observations. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp.
383–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6 23

23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008). https://doi.org/
10.1609/aimag.v29i3.2157

24. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868 (2018)

25. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Adv. Neural Inf. Process. Syst. 30 (2017). https://doi.org/10.48550/arXiv.
1706.02216

https://doi.org/10.1109/CVPR42600.2020.00932
https://doi.org/10.1109/CVPR42600.2020.00932
https://doi.org/10.1007/978-3-030-58526-6_23
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
http://arxiv.org/abs/1811.05868
https://doi.org/10.48550/arXiv.1706.02216
https://doi.org/10.48550/arXiv.1706.02216

AFLOW: Developing Adversarial
Examples Under Extremely

Noise-Limited Settings

Renyang Liu1 , Jinhong Zhang2 , Haoran Li2 , Jin Zhang3 ,
Yuanyu Wang3 , and Wei Zhou2(B)

1 School of Information Science and Engineering, Yunnan University, Kunming,
China

ryliu@mail.ynu.edu.cn
2 Engineering Research Center of Cyberspace, Yunnan University, Kunming, China

{jhnova,lihaoran}@mail.ynu.edu.cn, zwei@ynu.edu.cn
3 Kunming Institute of Physics, Kunming, China

Abstract. Extensive studies have demonstrated that deep neural net-
works (DNNs) are vulnerable to adversarial attacks. Despite the signifi-
cant progress in the attack success rate that has been made recently, the
adversarial noise generated by most of the existing attack methods is
still too conspicuous to the human eyes and proved to be easily detected
by defense mechanisms. Resulting that these malicious examples cannot
contribute to exploring the vulnerabilities of existing DNNs sufficiently.
Thus, to better reveal the defects of DNNs and further help enhance their
robustness under noise-limited situations, a new inconspicuous adversar-
ial examples generation method is exactly needed to be proposed. To
bridge this gap, we propose a novel Normalize Flow-based end-to-end
attack framework, called AFLOW, to synthesize imperceptible adversar-
ial examples under strict constraints. Specifically, rather than the noise-
adding manner, AFLOW directly perturbs the hidden representation of
the corresponding image to craft the desired adversarial examples. Com-
pared with existing methods, extensive experiments on three benchmark
datasets show that the adversarial examples built by AFLOW exhibit
superiority in imperceptibility, image quality and attack capability. Even
on robust models, AFLOW can still achieve higher attack results than
previous methods.

Keywords: Adversarial Attack · Adversarial Example · Normalize
Flow · AI Security · Imperceptible Adversarial Attack

1 Introduction

Deep Neural Networks (DNNs) have shown their excellent performance in a
wide variety of deep learning tasks, such as Computer Vision (CV) [36], Natural
Language Processing (NLP) [40], and Autonomous Driving [18]. However, the
DNNs have been demonstrated to be vulnerable to adversarial examples [35],
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 502–518, 2023.
https://doi.org/10.1007/978-981-99-7356-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_30&domain=pdf
http://orcid.org/0000-0002-7121-1257
http://orcid.org/0000-0002-9906-3508
http://orcid.org/0000-0002-0409-2227
http://orcid.org/0009-0007-8545-8203
http://orcid.org/0009-0001-8595-1168
http://orcid.org/0000-0002-5881-9436
https://doi.org/10.1007/978-981-99-7356-9_30

AFLOW 503

Fig. 1. The original images and the adversar-
ial examples generated by PGD [28], stAdv
[41], Chroma-Shift [1] and the proposed
AFLOW for the ResNet-152 [15] model.

especially in CV, which usually build
by adding elaborate well-designed
noise to the original clean image.
Typically, the adversarial examples
should have the following two char-
acteristics: One is the attack abil-
ity, which means that the adversar-
ial examples can fool the well-trained
DNN models to output the wrong
predictions; the other is the imper-
ceptibility, which means the added
noise is unnoticeable to human eyes.

Recently, researchers have car-
ried out many studies on adversar-
ial examples, including adversarial
attack approaches and their corre-
sponding defense techniques. In CV,
existing attack methods usually gen-
erate adversarial examples by optimizing noise and adding them to the benign
image [4,13,16,17,29], and achieved admirable attack ability. However, these
methods ignore another critical characteristic, which constrains the perturba-
tion of a liberal policy. Most methods only consider the Lp-norm as a condition
to ensure that the perturbation is unnoticeable, e.g., Linf = {8, 16, 32, 64}, which
is the max difference value between the clean image and evil image. While the
Lp-norm is not enough to preserve the vivid details of the generated adversarial
examples, resulting in apparent adversarial noise. Some pioneer works make a
step forward on inconspicuous attacks, like stAdv [41], Chroma-Shift [1], and
FIA [25] build evil examples by spatial transform techniques or by manipulating
the image in the frequency level rather than in a noise-adding way. However,
the generated evil image still carries many burrs; thus, it can be easily detected
[3,21,22,24], which is infaust for further study of the susceptibility of DNNs and
improving the existing DNNs’ robustness.

Notably, rare research has been proposed to explore the vulnerability and
robustness of DNNs for adversarial examples built under rigorous constraints.
In this regard, designing a method to generate more inconspicuous adversarial
examples under strict constraints is essential to AI applications. It can make a
huge step forward in sufficiently exploring the fragility and guiding the robust-
ness improvement of the existing DNNs. In addition, the crafted adversarial
noise should be more invisible and challenging to be detected by the defense
mechanism.

To bridge this gap, in this paper, we intend to generate adversarial exam-
ples in the rigorous noise-limited scenario to explore the vulnerability of existing
DNNs. The noise-limited setting means that the Linf -norm of the generated
adversarial perturbation is strictly restricted, which is beneficial to improve the
imperceptibility of calculated adversarial perturbations and preserve the image

504 R. Liu et al.

quality of the generated adversarial examples as well. In order to balance the
invisibility and the attack ability of the generated adversarial examples, a novel
Normalize Flow (NF) model [43] based attack method called AFLOW, has been
proposed to deal with the issues mentioned above. Benefiting from the splendid
reconstruction capability of the NF model, we can generate adversarial exam-
ples by slightly disturbing the hidden space of the clean images. Specifically, the
AFLOW first input the clean image x into the well-trained NF model to obtain
its hidden representation z0. Next, we regard the z0 as the initial point and
optimize it to zt until it has reversed xt can attack the target model success-
fully. Empirically, the proposed AFLOW can significantly preserve the generated
adversarial examples’ image quality while achieving an admirable attack success
rate.

We conduct extensive experiments on three different computer vision bench-
mark datasets. In strict noise-limited scenarios, empirical results show that the
AFLOW can craft adversarial examples with better invisibility and excellent
image quality while achieving a remarkable attack performance. As shown in
Fig. 1, comparing with the existing methods, such as PGD [28], stAdv [41], and
Chroma-Shift [1], the adversarial examples generated by AFLOW is indistin-
guishable from the original images. The main contributions of this work could
be summarized as follows:

– We tried to improve the detection resistance and attack performance under
rigorous noise-limited settings due to the adversarial examples crafted by
existing attack methods that can be easily detected by adversarial detectors.
Moreover, in this situation, the attack performance of existing methods have
been faded significantly.

– we design a novel end-to-end scheme called AFLOW to craft adversarial
examples for noise-limited settings by directly disturbing the latent repre-
sentation of the clean examples rather than noise-adding. This method can
generate adversarial examples with high attack performance and impercepti-
bility.

– We conduct comprehensive experiments on three real-world datasets, and
the results demonstrate the superiority of AFLOW in synthesizing adversarial
examples under noise-limited attack settings. Compared to existing baselines,
the adversarial examples built by AFLOW have high attack ability, outstand-
ing invisibility and excellent image quality. Notably, AFLOW achieves up to
96.73% ASR under the constraint is Linf = 1 on the ImageNet dataset.

The rest of this paper is organized as follows. We first briefly review the
methods relating to imperceptible adversarial attacks in Sect. 2. Then, Sect. 3
introduces the details of the proposed AFLOW framework. Finally, the experi-
ments are presented in Sect. 4, with the conclusion drawn in Sect. 5.

AFLOW 505

2 Related Work

In this section, we briefly review the most pertinent attack methods to the
proposed work. The adversarial attacks and the techniques used for crafting
inconspicuous adversarial perturbations.

2.1 Adversarial Attack

The adversarial attack has already been intensely investigated in recent years.
Szegedy et al. demonstrated that it was possible to mislead the deep neural net-
works (DNNs) by adding imperceptible and well-designed perturbations to the
original benign input image. They simplified the problem of generating adver-
sarial examples by disturbing the loss function by a small margin, which was
then solved by L-BFGS [35]. Goodfellow et al. proposed an effective un-targeted
attack method called Fast Gradient Sign Method (FGSM) [13], which generated
adversarial examples under the L∞ norm limit of the perturbation. Kurakin et al.
proposed the BIM [19], which executed FGSM iteratively with a small update
step in each epoch, to ensure that the update direction of gradients could be
more accurate. Projected gradient descent (PGD) [28] could be regarded as a
generalized version of BIM. Inspired by momentum, Dong et al. [10] proposed
Momentum Iterative FGSM (MI-FGSM), which integrated momentum into the
iterative BIM process. Like L-BFGS, Carlini and Wagner proposed a set of opti-
mized adversarial attack C&W [2] to craft adversarial examples under the limit
of L0, L2, and L∞ norm.

2.2 Imperceptible Adversarial Attacks

Unlike the previous methods, which synthesize adversarial examples by adding
noise and then clipping the adversarial examples use Lp-norm based metrics
to ensure the adversarial examples’ invisibility. Xiao et al. propose a spatial
transform-based (flow field) method, stAdv [41], to generate adversarial exam-
ples. This approach is based on altering the pixel positions rather than modify-
ing the pixel value and brings a booming prospect that the DNNs can be fooled
only by pixel shifts and make a step forward to explore vulnerability more deeply.
Chroma-shift [1], which calculates the flow field in the image’s YUV space rather
than RGB space, make another step forward to fabricate adversarial examples
with higher human imperceptibility. Besides, Adv Cam [12] adopt style transfer
techniques to generate adversarial images more natural for the physical world.

The most related method to the current work is AdvFlow [9], which uses the
Normalizing Flow model to map the input image to a hidden representation z.
And then adding an optimized noise μ to z to generate the representation of the
corresponding adversarial example. Note that AdvFlow is designed for black-box
settings and generates adversarial examples in a noise-adding and limitation way,
which requires many queries to perform a successful attack.

Therefore, generating inconspicuous adversarial examples poses the request
for a method that can craft adversarial examples with strong attack ability,

506 R. Liu et al.

high imperceptibility, and high image quality. Besides, the attack strategy must
be direct, efficient, and effective to perform attacks for different models and
datasets. To achieve this goal, we know from the previous studies that the Nor-
malize Flow model can transform an image between pixel space and hidden
space. Besides, disturbing images in their hidden representations can convert to
an adversarial example at the pixel level. This could help us to explore exist-
ing models’ vulnerabilities under rigour noise constraints. Hence, we are well
motivated to develop a Normalize Flow-based scheme to generate adversarial
examples with better human visual perception.

3 Methodology

In this section, we propose our attack method. First, we take an overview of our
method. Next, we go over the detail of each part step by step. Finally, we discuss
our objective function and summarize the whole process as Algorithm 1.

3.1 Overview

The proposed AFLOW attack framework can be divided into three parts, the
first one is to map clean image x to its latent space z, which we are going to
make changes, and the second part is to disturb z to zT in an iterative manner;
the last one is doing the inverse operation to translate zT to its corresponding
RGB space counterpart, that is, the candidate adversarial example XT until it
can fool the target DNN model to make wrong decisions. The whole process is
shown in Fig. 2.

3.2 Problem Statement

Given a well-trained DNN classifier C and a correctly classified input (x, y) ∼ D,
we have C(x) = y, where D denotes the accessible dataset. The adversarial
example xadv is a neighbor of x and satisfies that C(xadv) �= y and ‖xadv − x‖p ≤
ε, where the Lp norm is used as the metric function and ε is usually a small
noise budget. With this definition, the problem of finding an adversarial example
becomes a constrained optimization problem:

xadv =

⎧
⎪⎨

⎪⎩

arg max L
‖xadv−x‖p≤ε

(C(xadv) �= y), un − targeted

arg min L
‖xadv−x‖p≤ε

(C(xadv) = t), targeted
(1)

where L stands for a loss function that measures the confidence of the model
outputs, and t is the target label.

AFLOW 507

Fig. 2. The framework of proposed AFLOW. X represent the image, among them,
X0 is the benign image, XT is the intermediate results and Xadv is the corresponding
adversarial counterpart; Z is the hidden representation of the image; among them, the
Z0 is the benign hidden value, Z1 ∼ ZT are the intermediate results, and the Zadv is
the adversarial hidden value; A represents the adversarial space and B is the benign
space; F is the well-trained Normalize Flow model and C is the pre-trained classifier.

3.3 Normalizing Flow

Normalizing Flows (NF) [43] are a class of probabilistic generative models, which
are constructed based on a series of completely reversible components. The
reversible property allows to transform from the original distribution to a new
one and vice versa. By optimizing the model, a simple distribution (such as the
Gaussian distribution) can be transformed into a complex distribution of real
data. The training process of normalizing flows is indeed an explicit likelihood
maximization. Considering that the model is expressed by a fully invertible and
differentiable function that transfers a random vector z from the Gaussian dis-
tribution to another vector x, we can employ such a model to generate high
dimensional and complex data.

Specifically, given a reversible function f : Rd → R
d and two random vari-

ables z ∼ p(z) and z′ ∼ p(z′) where z′ = f(z), the change of variable rule tells
that

p(z′) = p(z)
∣
∣
∣
∣det

∂f−1

∂z′

∣
∣
∣
∣ , p(z) = p(z′)

∣
∣
∣
∣det

∂f

∂z

∣
∣
∣
∣ (2)

where det denotes the determinant operation. The above equation follows a
chaining rule, in which a series of invertible mappings can be chained to approx-
imate a sufficiently complex distribution, i.e.,

zK = fK � ... � f2 � f1(z0), (3)

where each f is a reversible function called a flow step. Equation 3 is the short-
hand of fK(fk−1(...f1(x))). Assuming that x is the observed example and z is
the hidden representation, we write the generative process as

x = fθ(z), (4)

508 R. Liu et al.

where fθ is the accumulate sum of all f in Eq. 3. Based on the change-of-variables
theorem, we write the log-density function of x = zK as follows:

− log pK(zK) = − log p0(z0) −
K∑

k=1

log
∣
∣
∣
∣det

∂zk−1

∂zk

∣
∣
∣
∣ , (5)

where we use zk = fk(zk−1) implicitly. The training process of normalizing flow
minimizes the above function, which exactly maximizes the likelihood of the
observed training data. Hence, the optimization is stable and easy to implement.

Algorithm 1. Normalizing Flow-based Spatial Transform Attack
Input: Xtr: a batch of clean examples used for training; α: the learning rate; T : the

maximal training iterations; Q: the maximal querying number; ε: the noise budget;
Xte: a clean example used for test; C: the target model to be attacked.

Output: The adversarial example xadv is used for attack.
Parameter: The flow model fθ.
1: Initialize the parameters of the flow model fθ;
2: for i = 1 to T do
3: Optimize fθ according to Eq. 5;
4: if Convergence reached then
5: break;
6: end if
7: end for
8: Obtain optimized fθ;
9: Compute the hidden representation of examples in Xte via z = f−1(xte);

10: z
′
0 = z

11: for i = 1 to Q do
12: Optimize z

′
i via Eq. 6;

13: Compute the adversarial example candidate x
′
i via x′ = f(z

′
i);

14: Clip the example via Clip();

15: if Successfully attack C by x
′
i then

16: xadv = x
′
i

17: break.
18: end if
19: end for

3.4 Generation of Adversarial Examples

Given a well-trained flow model fθ and a normal input x, to generate an adver-
sarial example, we first calculate its corresponding latent space vector z by per-
forming a forward flow process via z = fθ(x). Once the z is calculated, we regard
z as the perturbation starting point of the latent adversarial z′, then directly
optimize it with the Adam optimizer, and finally restore the optimized z′ to the
image space through the inverse operation of the Normalizing Flow model, that

AFLOW 509

is x′ = fθ(z′), to get its perturbed example x′ in pixel level. We will repeat the
above process to optimize z′ until x′ becomes an eligible adversarial example.
For the fairness of comparison, we follow the existing attack methods which con-
strain the perturbation within a certain range. Once we obtain the adversarial
example candidate x′, we employ the clip function x′ = x′ +Clip(−ε, x′ −x, ε) to
ensure the imperceptible property of the perturbation, where ε is the acceptable
noise budget, in this paper, ε ∈ 1, 2, 4, 8.

3.5 Objective Functions

In order to take into account the attack success rate and visual invisibility of
the generated adversarial examples, which keeps it as similar as possible to the
benign image to ensure that it is imperceptible to human eyes. For adversarial
attacks, the goal is making C(Xadv) �= y, we give the objective function as:

⎧
⎨

⎩

Ladv(X, y) = max[C(Xadv)y − max
k �=y

C(Xadv)k, k], un − targeted

Ladv(X, y, t) = min[max
k=t

C(Xadv)k − C(Xadv)y, k], targeted
(6)

The whole algorithm of AFLOW is listed in Algorithm 1, which could help
readers to re-implement our method step-by-step.

4 Experiments

In this section, we evaluate the proposed AFLOW on three benchmark image
classification datasets. We first compare our proposed method with several base-
line techniques concerned with Attack Success Rate (ASR) on clean models and
robust models on three CV baseline datasets under strong constraints. Then,
we evaluate the anti-detection ability of the proposed and baseline methods.
Finally, we first provide a comparative experiment to the existing attack meth-
ods in image quality or similarity aspects with regard to LPIPS, DISTS, SSIM,
and PSNR et al. Through these experimental results, we show the superiority of
our method in attack ability, human perception, and image quality.

4.1 Settings

Dataset: We verify the performance of our method on three benchmark datasets
for the computer vision task, named Caltech-2561 [14], ImageNet-1k2 [7] and
Places3653 [45]. In detail, the Caltech256 dataset consists of 30,607 real-world
images of different sizes, spanning 257 classes (256 object classes and an addi-
tional clutter class). ImageNet-1K has 1,000 categories, containing about 1.3M

1 https://data.caltech.edu/records/nyy15-4j048.
2 https://image-net.org/.
3 http://places2.csail.mit.edu/index.html.

https://data.caltech.edu/records/nyy15-4j048
https://image-net.org/
http://places2.csail.mit.edu/index.html

510 R. Liu et al.

Table 1. Experimental results on the attack success rate of un-targeted attack on
dataset Caltech256 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 31.35 35.64 40.72 2.93 26.66 27.66 16.89 0.58 82.81

ResNet-152 37.79 41.11 51.17 6.35 28.42 40.66 26.17 1.75 88.67

MobileNetV2 48.97 46.38 59.15 7.76 32.28 36.83 26.63 3.73 91.02

ShuffleNetV2 63.75 65.49 71.46 17.22 47.11 23.38 48.90 16.67 88.67

2 VGG-19 79.59 83.50 82.91 25.29 78.42 57.71 61.91 5.13 97.27

ResNet-152 87.01 87.30 86.50 30.18 77.83 73.14 66.86 11.28 98.83

MobileNetV2 88.74 93.68 89.73 38.33 86.92 67.72 68.01 21.64 99.22

ShuffleNetV2 93.89 93.00 94.13 36.43 85.19 31.84 69.02 33.08 97.27

4 VGG-19 97.46 99.12 97.65 75.29 97.95 66.70 86.41 32.82 99.61

ResNet-152 97.07 98.54 97.07 70.31 98.34 81.25 89.36 44.19 99.61

MobileNetV2 99.11 99.31 97.92 83.35 99.41 69.63 90.92 50.78 100.00

ShuffleNetV2 99.90 99.71 99.01 75.56 99.01 33.73 83.65 55.47 99.61

examples for training and 50,000 examples for validation. The places365 is com-
posed of 10 million images comprising 434 scene classes.

In particular, in this paper, we extend our attack on the whole images of
Caltech256. And for ImageNet-1K, we carry out our attack on its subset datasets
from the NIPS2017 Adversarial Learning Challenge, and we call it NIPS2017 in
the later chapters. Regarding the Places365 dataset, we use its val 256 subset
for all the experiments.

Table 2. Experimental results on the attack success rate of un-targeted attack on
dataset Places365 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 41.43 44.59 52.29 8.15 32.20 12.98 17.99 9.3 98.05

ResNet-152 33.43 37.71 49.65 6.90 28.22 12.44 16.19 17.69 99.61

MobileNetV2 52.81 55.30 65.22 17.00 40.84 13.09 27.48 31.54 99.61

ShuffleNetV2 68.96 69.92 78.40 21.86 52.13 5.78 34.03 47.29 96.88

2 VGG-19 88.62 87.15 92.00 39.22 84.52 24.61 57.24 32.35 100.00

ResNet-152 82.60 84.49 87.46 33.23 74.75 23.44 51.83 62.02 99.61

MobileNetV2 92.59 92.44 92.94 53.97 87.92 23.99 58.07 54.62 100.00

ShuffleNetV2 95.21 95.01 94.74 46.35 88.71 10.67 58.96 55.47 100.00

4 VGG-19 98.91 99.51 99.03 82.01 99.12 27.15 84.77 71.09 100.00

ResNet-152 98.02 98.51 98.22 76.82 98.02 27.73 79.96 87.5 100.00

MobileNetV2 99.50 99.32 98.82 88.52 99.60 26.82 83.76 91.41 100.00

ShuffleNetV2 99.21 99.70 99.60 82.27 99.30 11.66 74.58 84.38 100.00

Models: For NIPS2017, we use the PyTorch pre-trained clean model VGG-19
[34], ResNet-152 [15], MobileNet-V2 [31] and ShuffleNet-V2 [26] as the victim
models. For Caltech256 and Places365, we utilize the transfer learning to train
the ImageNet pre-trained VGG-19, ResNet-152, MobileNet-V2 and ShuffleNet-
V2, with top-1 classification accuracy 93.65%, 98.43%, 96.21%, 73.85% on Cal-
tech256 and 96.63%, 98.64%, 79.71%, 65.89% on Places365, respectively.

And in terms of robust models, they are including Salman2020Do R50 [30],
Salman2020Do R18 [30], Engstrom2019Robustness [5] and Wong2020Fast [39].

AFLOW 511

All the models we use are implemented in the robustbench toolbox4 [5] and the
models’ parameters are also provided in [5]. These models showed classification
accuracy of 83.60%, 77.80%, 77.40%, 62.60%, and 63.10% on NIPS2017, respec-
tively. For all these models, we chose their Linf version parameters due to we
mainly extend Linf attack in this paper.

Baselines: We have two kind of baselines in this work. The classical meth-
ods including BIM [19], PGD [28], MIFGSM [10], TIFGSM [11], DIFGSM [42],
APGD [6] and Jitter [32]. The experimental results of those methods are repro-
duced by the Torchattacks toolkit5 with default settings. The another is the
imperceptible methods, stAdv [41], Chroma-shift [1] and the AdvFlow [9]. The
codes used in here are provided by the corresponding authors.

All the experiments are conducted on a GPU server with 4 * Tesla A100 40
GB GPU, 2 * Xeon Glod 6112 CPU, and RAM 512 GB.

Table 3. Experimental results on the attack success rate of un-targeted attack on
dataset NIPS2017 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 34.94 37.42 45.06 10.34 28.31 20.45 23.37 27.34 87.98

ResNet-152 25.64 26.38 37.50 5.72 17.48 20.02 16.84 17.76 86.97

MobileNetV2 41.8 43.17 51.25 11.50 30.98 22.21 21.30 29.96 93.97

ShuffleNetV2 54.34 53.06 65.86 13.09 40.40 13.37 23.19 41.15 96.73

2 VGG-19 82.13 83.26 85.84 31.35 75.17 47.42 56.18 54.30 98.764

ResNet-152 68.22 69.81 75.85 17.48 55.72 49.58 50.53 41.31 99.26

MobileNetV2 84.51 85.08 85.19 28.59 74.49 46.36 58.31 60.70 99.55

ShuffleNetV2 89.90 90.33 91.32 32.72 75.68 23.61 51.21 74.22 100

4 VGG-19 98.20 98.76 98.43 71.01 97.53 56.29 83.60 82.03 99.66

ResNet-152 93.75 95.34 95.13 50.32 93.01 66.95 84.42 77.43 99.79

MobileNetV2 97.84 98.86 97.72 68.91 98.29 53.30 84.62 89.84 99.87

ShuffleNetV2 98.44 98.86 98.72 67.99 97.30 25.75 71.55 92.97 100

4.2 Quantitative Comparison with the Existing Methods

In this subsection, we will evaluate the proposed AFLOW and the baselines BIM,
PGD, MI-FGSM, TI-FGSM [11], DI2-FGSM [42], APGD, Jitter, and AdvFlow
in ASR on Caltech256 and Places365 dataset and the whole NIPS2017 dataset.
We set the noise budget ε of AFLOW and the baseline methods as 1, 2, and
4, respectively, for Linf attack towards all the baseline methods under the non-
target attack settings and the target attack settings.

Table 1, 2, 3, and 4 show the ASR on Caltech256, Places365 and NIPS2017,
respectively. As can be seen, AFLOW can improve baseline methods’ per-
formance in most situations. Note that the proposed method can achieve an
admirable attack success rate in a demanding perturbation budget, like ε = 1.

4 https://github.com/RobustBench/robustbench.
5 https://github.com/Harry24k/adversarial-attacks-pytorch.

https://github.com/RobustBench/robustbench
https://github.com/Harry24k/adversarial-attacks-pytorch

512 R. Liu et al.

Table 4. Experimental results on the attack success rate of targeted attack on dataset
NIPS2017 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 8.20 10.34 20.67 0.45 6.18 11.69 3.71 4.69 13.67

ResNet-152 6.78 9.64 20.13 0.21 2.97 11.23 1.91 3.51 17.58

MobileNetV2 14.35 19.13 39.41 0.68 9.34 20.16 3.42 5.34 39.06

ShuffleNetV2 20.34 20.91 41.68 0.43 5.97 21.64 5.55 7.16 41.41

2 VGG-19 67.53 83.82 53.37 7.98 57.3 59.87 6.52 9.62 70.7

ResNet-152 63.45 83.26 53.81 5.83 42.58 70.26 3.39 7.34 86.72

MobileNetV2 85.31 93.28 83.83 9.57 66.63 87.85 6.95 7.96 91.02

ShuffleNetV2 82.79 88.05 85.78 4.98 59.74 53.69 11.66 10.18 93.36

4 VGG-19 95.51 99.44 76.07 56.52 96.07 98.65 9.44 23.56 98.83

ResNet-152 95.13 99.26 74.79 49.36 93.54 95.68 6.14 20.67 100

MobileNetV2 98.75 99.89 94.31 71.07 98.18 98.48 11.16 24.25 99.61

ShuffleNetV2 99.29 99.72 98.01 52.20 98.29 99.36 18.63 29.31 100

In contrast, other methods only get a relatively low attack success rate; take
the non-target attack on NIPS2017 as an example. The BIM, PGD, MI-FGSM,
TI-FGSM, DI2-FGSM, APGD, and AdvFlow can only achieve 25.64%, 26.38%,
37.50%, 5.72%, 17.48%, 20.02%, 16.84%, 17.76% attack success rate on ResNet-
152, respectively, vice versa, our AFLOW can achieve 86.79% attack success
rate. It is indicated that although these methods show fantastic attack perfor-
mance in large noise budget settings, once we put a relatively extreme limit on
the perturbation budget, these methods will lose their advantages completely
and show dissatisfactory results. On the contrary, the AFLOW can attack the
DNNs with smaller perturbations, in this setting, the adversarial examples gen-
erated by AFLOW are much less likely to be detected or denoised, so they are
more threatening to DNNs and meaningful for exploring the existing DNNs’
vulnerability and guiding the new DNNs’ designing.

4.3 Attack on Defense Models

Next, we investigate the performance of the proposed method in attacking robust
image classifiers. Thus we select some of the most recent defense techniques
that are from the robustness toolbox as follows, Engstrom2019Robustness [5],
Salman2020Do R18 [30], Salman2020Do R50 [30] and Wong2020Fast [39]. We
compare our proposed method with the baseline methods.

Following the results shown in Table 5, we derive that AFLOW exhibits the
best performance of all the baseline methods in terms of the attack success rate.
Especially in a lower noise budget, like ε = 1 or ε = 2, the baseline methods
range from 6.72% to 27.31% attack success rate on the Engstrom2019Robustness
model. However, the AFLOW can obtain a higher performance range from
15.21% to 28.41%. It demonstrates the superiority of our method when attacking
robust models.

AFLOW 513

Table 5. Experimental results on the attack success rate of un-targeted attack on
dataset NIPS2017 to robust models under linf noise budget is 1, 2, and 4, respectively.

Epsilon Methods BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 Engstrom2019Robustness 10.85 10.85 10.85 6.72 8.40 11.24 13.70 10.48 15.21

Salman2020Do R18 12.36 12.36 12.36 8.78 10.62 12.52 15.37 11.78 17.95

Salman2020Do R50 8.48 8.48 8.35 5.78 6.43 8.48 9.64 12.36 10.35

Wong2020Fast 10.38 10.38 10.54 8.15 8.15 10.7 11.98 12.12 12.02

2 Engstrom2019Robustness 23.77 24.03 23.26 15.50 19.51 24.55 26.74 27.31 28.41

Salman2020Do R18 25.36 25.52 24.88 18.54 22.19 25.67 29.79 30.35 31.52

Salman2020Do R50 18.12 18.12 17.74 12.21 14.91 18.25 20.69 26.92 21.61

Wong2020Fast 20.61 20.45 21.41 15.81 17.41 22.36 25.24 28.08 27.45

4 Engstrom2019Robustness 46.64 48.84 40.44 31.52 40.70 50.78 54.39 49.03 55.30

Salman2020Do R18 46.91 46.59 43.74 36.29 43.42 47.23 53.25 47.94 52.53

Salman2020Do R50 40.62 41.00 37.40 27.76 35.60 41.90 45.89 46.64 48.42

Wong2020Fast 45.85 47.12 44.09 38.02 41.85 48.72 50.16 40.62 41.50

Table 6. The detect results of AFLOW and the baselines.

Datasets Methods AUROC (%) ↑ Detection Acc. (%) ↑
FGSM BIM AdvFlow AFLOW FGSM BIM AdvFlow AFLOW

CIFAR-10 LID 99.67 96.54 59.59 52.06 99.73 90.42 55.63 58.76

Mahalanobis 96.54 99.6 66.87 58.43 90.42 97.26 65.31 64.09

Res-Flow 94.47 97.15 65.63 63.25 88.56 91.54 63.36 59.62

SVHN LID 97.86 90.55 62.57 62.13 93.34 82.6 59.21 57.65

Mahalanobis 99.61 97.14 64.84 65.36 98.62 92.49 61.57 62.56

Res-Flow 99.07 99.42 65.68 64.98 95.92 96.99 63.73 62.69

4.4 Detectability

Adversarial examples can be regarded as the data out of the distribution of the
clean data, therefore we could check whether every example is adversarial or
not. Thus, generating adversarial examples with high concealment means that
they have the same or a similar distribution as the original data [9,27]. To ver-
ify the crafted examples meet this rule, following the literature [9] and choose
LID [27] , Mahalanobis [20], and Res-Flow [46] adversarial attack detectors to
evaluate the performance of the AFLOW. For comparison, we choose FGSM
[13], BIM [19], and AdvFlow [9] as the baseline methods. The detection results
are shown in Table 6, including the area under the receiver operating charac-
teristic curve (AUROC) and the detection accuracy. From Table 6, we can find
that these adversarial detectors find it hard to detect the evil examples built
by AFLOW in contrast to the baselines in most cases. The empirical results
precisely demonstrate the superiority of our method, which generates adversar-
ial examples closer to the original clean images’ distribution than other meth-
ods, and the optimized adversarial perturbations have better hiding ability. The
classifier is ResNet-34 and the code used in this experiment is modified from
deep Mahalanobis detector6 and Residual-Flow7, respectively.

6 https://github.com/pokaxpoka/deep Mahalanobis detector.
7 https://github.com/EvZissel/Residual-Flow.

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/EvZissel/Residual-Flow

514 R. Liu et al.

Table 7. Various perceptual distances were calculated on fooled examples by
BIM, PGD, MI-FGSM, TI-FGSM, DI2-FGSM, APGD, Jitter, stAdv, Chroma-Shift,
AdvFlow and the proposed AFLOW on NIPS2017.

Metrics BIM PGD MI-FGSM TI-FGSM DI-FGSM APGD Jitter stAdv Chroma-Shift AdvFlow AFLOW

SSIM ↑ 0.9496 0.8905 0.9446 0.9193 0.9186 0.8727 0.9094 0.9565 0.9760 0.9863 0.9952

PSNR ↑ 36.6813 33.1693 36.2556 33.5426 34.6539 32.6917 33.5590 31.0612 35.1582 34.1804 36.7962

UQI ↑ 0.9821 0.9768 0.9837 0.9653 0.9839 0.9812 0.9828 11.9378 7.6892 7.8021 0.9844

SCC ↑ 0.7277 0.6085 0.7068 0.8145 0.6798 0.5919 0.6423 0.7109 0.8496 0.9041 0.9611

VIFP ↑ 0.6516 0.5393 0.6522 0.5551 0.5838 0.5172 0.5897 0.5614 0.7297 0.8027 0.8649

L2 ↓ 56.8518 84.3255 59.7074 81.5976 71.7985 89.9959 81.4444 0.9976 0.9970 0.9831 56.4112

LPIPS ↓ 0.1490 0.2133 0.1580 0.1646 0.1993 0.2391 0.1962 0.1338 0.0203 0.0226 0.0101

DISTS ↓ 0.1022 0.1383 0.1054 0.1391 0.1398 0.1545 0.1272 0.1360 0.0246 0.0263 0.0204

4.5 Evaluation of Image Similarity

In this paper, we follow the work in [1] using the following perceptual metrics
to evaluate the adversarial examples generated by our method: Learned Percep-
tual Image Patch Similarity (LPIPS) metric [44], and Deep Image Structure and
Texture Similarity (DISTS) index [8]. LPIPS is a technique that measures the
Euclidean distance of deep representations (i.e., VGG network [34]) calibrated
by human perception. Moreover, we also use the Structure Similarity Index Mea-
sure (SSIM) [38] to assess the generated images’ qualities concerning luminance,
contrast, and structure. Next, we calculate the Average L2 norm. Finally, we use
other metrics like Universal Image Quality Index (UQI) [37]. Spatial Correlation
Coefficient (SCC) [23], and Pixel Based Visual Information Fidelity (VIFP) [33]
to assess the adversarial examples’ image quality. The main toolkits we used in
the experiments of this part are IQA pytorch8 and sewar9.

The generated images’ quality results can be seen in Table 7, which indicated
that the proposed method has the lowest LPIPS, and DISTS perceptual loss
(the lower is better), are 0.0101 and 0.0204, respectively, and has the highest
SSIM, PSNR, UQI, SCC and VIFP (the higher is better), achieving 0.9952,
36.7962, 0.9844, 0.9611, and 0.8649, respectively, in comparison to the baselines
on NIPS2017 dataset. The results show that the proposed method is superior to
the existing attack methods.

In addition, we draw the gray histogram of the adversarial example generated
by BIM, PGD, and our method in Fig. 3 to show the modification of the original
image. The horizontal axis represents the pixel’s value, and the vertical axis
represents the number of pixels corresponding to each pixel value. From Fig. 3,
we can see that the adversarial examples generated by AFLOW are more similar
to the original image, and the distribution of the number of pixel values is
almost the same as the original image. While the baseline methods BIM and
PGD change the original image a lot, resulting in a significant difference in the
distribution of the number of pixel values.

To better observe the difference between the adversarial examples gener-
ated by our method and the baselines from the visual aspect, we also draw the

8 https://www.cnpython.com/pypi/iqa-pytorch.
9 https://github.com/andrewekhalel/sewar.

https://www.cnpython.com/pypi/iqa-pytorch
https://github.com/andrewekhalel/sewar

AFLOW 515

Fig. 3. The gray histogram comparison among baselines and our method between clean
example and adversarial example, with the red line represent the benign example and
the blue line indicate the corresponding adversarial one. (Color figure online)

Fig. 4. Adversarial examples and their corresponding perturbations. The first column
is the benign examples, and the followings are the adversarial noise of PGD, MI-FGSM,
TI-FGSM, DI2-FGSM, Jitter, stAdv, Chroma-shift, and our method, respectively.

adversarial perturbation generated on NIPS2107 by baselines and the proposed
method in Fig. 4, the target model is pre-trained ResNet-152. The first column
is the benign examples, and the following are the adversarial noise of PGD,
MI-FGSM, TI-FGSM, DI2-FGSM, Jitter, stAdv, Chroma-shift and our method,
respectively. Noted that, for better observation, we magnified the noise by a
factor of 10. From Fig. 4, we can clearly observe that baseline methods distort
the image without ordering. In contrast, the adversarial examples generated by

516 R. Liu et al.

our method are focused on the target object, and its noise contains more seman-
tic information, and they are similar to the original clean image and are more
imperceptible to human eyes.

5 Conclusions

In this paper, we present a novel study on the adversarial attack in a rigor-
ous noise-limited scenario, explicitly focusing on the CV task. To ensure the
perturbation is unnoticeable, we generate adversarial examples by directly dis-
turbing the images’ hidden representation rather than noise-adding. The pro-
posed method, called AFLOW, based on Normalize Flow model, has succeeded
in improving attack ability and enhancing the imperceptibility of the generated
adversarial noise. Extensive experimental results show the proposed AFLOW
can generate adversarial examples with high attack ability, admirable invisibil-
ity, and excellent image quality. This work may be a starting point for future
research on sufficiently evaluating the existing DNNs’ vulnerability. Where sev-
eral issues could be further investigated, including further helping consolidate
the existing DNNs and designing new robust DNN models.

Acknowledgments. This work is supported in part by Yunnan Province Education
Department Foundation under Grant No.2022j0008, in part by the National Natu-
ral Science Foundation of China under Grant 62162067 and 62101480, Research and
Application of Object Detection based on Artificial Intelligence, in part by the Yunnan
Province expert workstations under Grant 202205AF150145.

References

1. Aydin, A., Sen, D., Karli, B.T., Hanoglu, O., Temizel, A.: Imperceptible adversarial
examples by spatial chroma-shift. In: ADVM, pp. 8–14 (2021)

2. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: S&P (2017)

3. Chen, K., Guo, S., Zhang, T., Li, S., Liu, Y.: Temporal watermarks for deep rein-
forcement learning models. In: AAMAS, pp. 314–322 (2021)

4. Chen, K., et al.: BADPRE: task-agnostic backdoor attacks to pre-trained NLP
foundation models. In: ICLR (2022)

5. Croce, F., et al.: Robustbench: a standardized adversarial robustness benchmark.
In: NeurIPS (2021)

6. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: ICML, vol. 119, pp. 2206–2216 (2020)

7. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR, pp. 248–255 (2009)

8. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying
structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. 44(5),
2567–2581 (2022)

9. Dolatabadi, H.M., Erfani, S.M., Leckie, C.: AdvFlow: inconspicuous black-box
adversarial attacks using normalizing flows. In: NeurIPS (2020)

10. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR (2018)

AFLOW 517

11. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial
examples by translation-invariant attacks. In: CVPR, pp. 4312–4321 (2019)

12. Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial camou-
flage: hiding physical-world attacks with natural styles. In: CVPR (2020)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

14. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR, pp. 770–778 (2016)
16. He, S., et al.: Type-I generative adversarial attack. IEEE Trans. Dependable Secure

Comput. 20(3), 2593–2606 (2023)
17. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks

with bandits and priors. In: ICLR (2019)
18. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey.

IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2022)
19. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical

world. In: ICLR (2017)
20. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-

distribution samples and adversarial attacks. In: NeurIPS, pp. 7167–7177 (2018)
21. Li, G., Ding, S., Luo, J., Liu, C.: Enhancing intrinsic adversarial robustness via

feature pyramid decoder. In: CVPR, pp. 797–805 (2020)
22. Li, G., Xu, G., Qiu, H., He, R., Li, J., Zhang, T.: Improving adversarial robustness

of 3D point cloud classification models. In: Avidan, S., Brostow, G., Cisse, M.,
Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022.
LNCS, vol. 13664, pp. 672–689. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-19772-7 39

23. Li, J.: Spatial quality evaluation of fusion of different resolution images. Int. Arch.
Photogramm. Remote Sens. 33 (2000)

24. Ling, X., et al.: DEEPSEC: a uniform platform for security analysis of deep learning
model. In: S&P, pp. 673–690 (2019)

25. Luo, C., Lin, Q., Xie, W., Wu, B., Xie, J., Shen, L.: Frequency-driven imperceptible
adversarial attack on semantic similarity. In: CVPR, pp. 15294–15303 (2022)

26. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

27. Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimen-
sionality. In: ICLR (2018)

28. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR (2018)

29. Peng, W., et al.: EnsembleFool: a method to generate adversarial examples based
on model fusion strategy. Comput. Secur. 107, 102317 (2021)

30. Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially robust
imagenet models transfer better? In: NeurIPS (2020)

31. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals
and linear bottlenecks: mobile networks for classification, detection and segmenta-
tion. CoRR abs/1801.04381 (2018)

32. Schwinn, L., Raab, R., Nguyen, A., Zanca, D., Eskofier, B.M.: Exploring mis-
classifications of robust neural networks to enhance adversarial attacks. CoRR
abs/2105.10304 (2021)

https://doi.org/10.1007/978-3-031-19772-7_39
https://doi.org/10.1007/978-3-031-19772-7_39
https://doi.org/10.1007/978-3-030-01264-9_8

518 R. Liu et al.

33. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. In: ICASSP, pp.
709–712 (2004)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

35. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
36. Wang, B., Li, Y., Wu, X., Ma, Y., Song, Z., Wu, M.: Face forgery detection

based on the improved siamese network. Secur. Commun. Netw. 2022, 5169873:1–
5169873:13 (2022)

37. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett.
9(3), 81–84 (2002)

38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

39. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial
training. In: ICLR (2020)

40. Wu, S., Wang, M., Li, Y., Zhang, D., Wu, Z.: Improving the applicability of
knowledge-enhanced dialogue generation systems by using heterogeneous knowl-
edge from multiple sources. In: WSDM, pp. 1149–1157 (2022)

41. Xiao, C., Zhu, J., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adver-
sarial examples. In: ICLR (2018)

42. Xie, C., et al.: Improving transferability of adversarial examples with input diver-
sity. In: CVPR (2019)

43. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a
review. Int. J. Autom. Comput. 17(2), 151–178 (2020)

44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

45. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.
(2017)

46. Zisselman, E., Tamar, A.: Deep residual flow for out of distribution detection. In:
CVPR, pp. 13991–14000 (2020)

Learning to Detect Deepfakes via
Adaptive Attention and Constrained

Difference

Lichao Su1, Bin Wu1(B), Chenwei Dai1, Huan Luo1, and Jian Chen2

1 College of Computer and Data Science, Fuzhou University, Fujian, China
710589213@qq.com

2 College of Physics and Information Engineering, Fuzhou University, Fujian, China

Abstract. Since facial forgery techniques have made remarkable
progress, the area of forgery detection attracts a significant amount of
attention due to security concerns. Existing methods attempt to uti-
lize convolutional neural networks (CNNs) to mine discriminative clues
for forgery detection. However, most of these coarse-grained and vanilla
methods struggle to extract subtle and multiscale clues in forgery detec-
tion. To address such problems, we propose a well-designed deep learning
framework, named SCA-Net, to exploit subtle, multiscale and multiview
clues. Specifically, our framework consists of a skipped channel attention
module (SCM), a constrained difference module (CDM) and an adaptive
attention module (AAM). First, the skipped channel attention mod-
ule is used as the backbone to extract sufficient different information,
including low-level and high-level features. Then, the constrained differ-
ence module captures manipulation clues from the input image based
on constrained characteristics. Finally, the adaptive attention module
captures multiscale features represented by facial forgery. Moreover, we
introduce a combined loss to address the learning difficulty of our frame-
work. The experimental results demonstrate that the proposed model has
great detection performance compared with other face forgery detection
methods in most cases.

Keywords: Facial forgery detection · Deepfakes · Convolutional
Neural Networks

1 Introduction

Over the past few years, various face synthesis methods have achieved great
success and have received much attention in the academic community. These
methods, such as generative adversarial networks (GANs) [1] and variational
autoencoder (VAEs) [2], have enabled the generation of highly realistic videos
that are difficult to distinguish from real videos. With publicly accessible appli-
cations such as Deepfakes [3] and face2face [4], people can generate Deepfakes
videos more easily than ever. The malicious abuse of realistic forged faces in
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 519–533, 2023.
https://doi.org/10.1007/978-981-99-7356-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_31&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_31

520 L. Su et al.

Fig. 1. The general process of generating Deepfakes images.

Fig. 2. Some examples of generated faces with various sizes.

pornography or political rumours is causing great concern about public secu-
rity and privacy threats. In 2018, a realistic-looking video showed that former
president Barack Obama was cussing another former President, Donald Trump,
bringing attention to the risk of Deepfakes. In the internet era, realistic fake
images or videos have the potential to cause serious problems. Therefore, it is
essential to address the risk of Deepfakes with an effective detection method that
can identify and combat this type of content.

Different from traditional manipulation methods in which manipulators man-
ually edit images with editing software (e.g., Photoshop), Deepfakes can auto-
matically generate forged images. As shown in Fig. 1, first, an encoder-decoder
network generates the target face. Then, the original face is located and cropped
by the face detection algorithm. Finally, the original face is converted into
a manipulated face. The encoder-decoder network consists of two layers, an
encoder En and decoder De. It is trained as:

De(En(x)) = xg, (1)

where xg represents the generated face. Given the distribution X of x, En(X)
is referred to the latent space. During the manipulation process, two kinds of
sources are introduced: the target face from the generative model and the original
image. Therefore, it is important to digit the difference between the two sources.

In the last few years, there has been increasing interest in manipulation
detection. To detect traditional forgery, some handcrafted methods [5,6] have
been proposed. Ferrara et al. [5] propose a method based on color filter array
artifacts, and Bahrami et al. [6] propose a novel framework based on the partial

Learning to Detect Deepfakes via Adaptive Attention 521

blur type inconsistency. These methods have demonstrated their performance
in manipulation detection and have motivated face forgery detection. However,
the direct application of these approaches may fail for the images generated by
Deepfakes. Most existing methods regard Deepfakes detection as a binary task.
They take the face region cropped from an image as input and predict a binary
result (real/fake). Previous works [7–9] proposed spatial-based methods to detect
face forgery. However, with the rapid progress in the field of generative networks,
the performance of these works will be reduced when the given Deepfakes images
do not have the specific fingerprints that such methods depend on. Most of
these approaches use a vanilla backbone to extract forgery features, making
them struggle to high quality generation images. Some handcrafted methods
have also been developed, such as inconsistent eye blinking [10] and head pose
[11]. However, these kinds of physiological characteristics can be easily erased
by postprocessing.

Our work is motivated by some inspiration. First, generated faces with vari-
ous sizes may appear in any area of an image. As shown in Fig. 2, the sizes of the
manipulated areas vary. Figure 2 (a) indicates that the entire face is generated
by Deepfakes, while Fig. 2 (b) shows that only the mouth, part of the face, is
manipulated. Therefore, we use adaptive attention to capture various generated
faces. Second, most of the existing algorithms utilize normal convolution layers
to extract various features from RGB patterns, which are singular and sensitive
to the RGB space. In this paper, we try to digit more information (e.g., high
frequency features) via constrained patterns [12] in face forgery. By exploiting
these constrained patterns, we introduce different views in face forgery. Third,
the difference between real and generated face is subtle, which contains many
low-level features. Therefore, we want to make full use of the low-level and high-
level features [13] in Deepfakes detection.

In this paper, a fused feature model (SCA-Net) is proposed to detect face
manipulation. Given an input image, we utilize a skipped channel attention mod-
ule (SCM), a constrained difference module (CDM) and an adaptive attention
module (AAM) to extract the low-level and high-level features, the constrained
features and the multiscale features, respectively. The SCM consists of two parts:
a skip connection that preserves the low-level feature during deep learning, and
a channel attention mechanism that pays different attention to every channel.
The CDM is a constrained convolutional layer [12]. The AAM, motivated by
U-Net [14], extracts the multiscale features through downsampling convolution
and upsampling convolution. Then, these fusion features are input into the clas-
sifier module to detect whether the input image is real or fake. Moreover, to
address the learning difficulty of our framework in regard to difficult samples,
we combine the binary cross entropy loss and focal loss as our training loss.

In summary, the contributions of our work are as follows:

– We consider the task of Deepfakes detection by focusing on the various gen-
erated faces. The difference between the real and generated face is subtle and
contains many low-level features, and the generated face has different sizes.
Therefore, we use skipped channel attention and adaptive attention module to

522 L. Su et al.

adaptively capture the low-level features and the different sizes of generated
face, respectively.

– By introducing the constrained difference module, we effectively extract useful
information about the constrained differences between real and fake faces.
This allows us to avoid overfitting to scene-specific content that is associated
with the training data, and to improve the generalization of our model to new
data.

– We propose a novel network for face manipulation detection that takes a
different perspective from existing methods. Our model uses attention mech-
anisms, multiscale features, and constrained patterns to extract and fuse dif-
ferent types of information from the input data. Experimental results show
that our method performs better than other methods on both intra-dataset
and cross-dataset scenarios in most cases.

2 Related Work

2.1 Face Forgery Techniques

With the explosion of generation models, facial manipulated methods have been
applied in many software and applications, such as ZAO and FaceApp. Deepfakes
generation can be divided into four types [15]: entire face synthesis, attribute
manipulation, identity swap and expression swap. The generated models [16]
include Encoder-Decoder Networks, Convolutional Neural Network and Gener-
ative Adversarial Networks.

2.2 Face Manipulation Forensics Methods

To counter face forgery, many efforts have been made in computer vision commu-
nities. In 2017, Ying et al. [17] demonstrate a feature set of BoW as an effective
image representation for describing face features and providing distinguishable
information for face forgery detection. However, the handcrafted methods are
unsuitable for the rapid development of manipulated face. In 2018, Afchar et al.
[18] propose a CNN-based method to seek the clues in forged face. However, this
kind of vanilla structure makes it difficult to detect improved forged image. In
2019, Rossler et al. [19] introduce a realistic Deepfakes dataset and employ an
effective Xception Net to detect forgery image. In 2020, Li et al. [20] propose
a novel method that focuses on the blending boundary induced by the image
fusion process. However, when an image is entirely synthetic, it cannot work
correctly. In 2021, Chen et al. [21] propose a light-weight architecture to detect
facial forgery detection, but it requires considerable time for preprocessing. Liu
et al. [22] propose an effective method based on frequency. However, frequency
information is coarse feature, which is unsuitable for facial reenactment. In 2022,
Wang et al. [23] introduce a Transformer structure that operates on patches of
different sizes to detect local inconsistencies in images at different spatial levels.
Cao et al. [24] design a deep learning model emphasizing the common compact
representations of genuine faces based on reconstruction classification learning.
However, their performance drops considerably on image compression.

Learning to Detect Deepfakes via Adaptive Attention 523

Fig. 3. Overview of our framework.

3 Proposed

As shown in Fig. 3, the proposed network comprises a skipped channel attention
module (SCM), a constrained difference module (CDM) and an adaptive atten-
tion module (AAM). The SCM is based on a shortcut structure and channel
attention. The shortcuts can extract low-level features near the bottom layers
and high-level features near the top layers, while the channel attention mech-
anism selects the important features from all channels. The CDM is built by
constrained convolution [25], which can simultaneously suppress the content of
the images and adaptively learn the operation features. The AAM, consisting of
an encoder and a decoder, operates on feature maps of different sizes to detect
manipulated clues.

3.1 Skipped Channel Attention Module

As we know, in a deep learning network, the bottom layers learn the low-level
features (e.g., texture and shadow features) and the top layers learn the high-
level features (e.g., semantic information). Furthermore, it has been found that
the boundary between the real region and forged region mainly contains semantic
features, while a manipulated face contains shallow features. Based on this, a
residual structure is introduced to combine the low-level and high-level features,
and channel attention is applied to emphasize interdependent channel features.
The details of the SCM are shown in Fig. 4, every SCM has same structure in
our code. Given an input feature map x from the previous layer, the output of
the SCM, denoted by y, is computed by:

y = FAtt(x) + x, (2)

where FAtt represents the channel attention module. The structure of FAtt is
illustrated in Fig. 4(b), which is formulized as FAtt:

FAtt(x) = x ∗ w. (3)

524 L. Su et al.

Given x ∈ RC ∗ H ∗ W , the attention weight w ∈ RC∗1∗1 is computed by an
average-pooling layer, two convolution layers and two activation layers.

Fig. 4. Skipped Channel Attention module.

3.2 Constrained Difference Module

A normal convolution kernel is commonly used for extracting the details of the
RGB space. However, the extracted features are singular and sensitive to the
RGB space. The intrinsic reason for this is that the normal convolution kernel
prefers to learn features that represent the image content. In other words, the
normal convolution kernel has difficulty learning the features extracted from
the noise space or frequency space. This may lead to overfitting on the specific
scene content associated with the training data. Therefore, we use constrained
convolution to extract the constrained pattern to suppress the image content.
The constrained difference module aims to extract discriminative information
that is different from that provided by normal convolution. The convolution
kernel is constrained as follows:{

w(0, 0) = −1∑
m,n�=0 w(m,n) = 1,

(4)

where w represents the convolution kernel, and (m,n) represents the coordinate
of w. After the constrained convolution, the center difference of the block is
calculated as:

bd = ‖bi − bc‖2, (5)

where bd represents the difference in the block and bi represents the pixels around
the center pixel bc.

We compare the different visualization results produced by the standard con-
volution and constrained convolution as shown in Fig. 5. From left to right,
as shown in Fig. 5(a), (b) and (c) show are the input image, the feature map
extracted by the constrained convolution and the feature map extracted by the
stand convolution. It can be seen that the stand convolution learns the image
content, while the constrained convolution highlights the constrained pattern of
the image.

Learning to Detect Deepfakes via Adaptive Attention 525

Fig. 5. Constrained Convolution vs Stand Convolution.

3.3 Adaptive Attention Module

Deep convolutional neural networks (CNNs) are widely used for computer vision
tasks. The advantage of CNNs is obvious: they can extract various features from
the input image content. The features of each layer are fixed upon the com-
pletion of training and represent specific scene content. However, the difference
between the real and generated face is subtle, and the size of the generated face
is uncertain. Therefore, it is difficult for traditional networks to capture this kind
of characteristic. In this part, we propose an adaptive attention module to cap-
ture multiscale clues from the input image. The AAM architecture, illustrated in
Fig. 6, consists of an encoder part (left side) and a decoder part (right side). The
encoder has three downsampling layers, and the decoder has three upsampling
layers. The feature maps obtained from the previous downsampling layer are
connected to those from the current upsampling layer. The ith downsampling
layer is formulized as:

Di = CONVdown(Di−1), (6)

where CONVdown represents downsampling convolution. The i− th upsampling
layer is formulized as:

Ui = C(CONVup(Ui−1),Di), (7)

where CONVup represents upsampling convolution and C represents the contact
of two features.

3.4 Loss Function

In this paper, our loss function is combined with binary cross entropy loss and
focal loss [26]. To measure the performance of the proposed method, we use
binary cross entropy loss as follows:

Lce = −ylogŷ − (1 − y)log(1 − ŷ), (8)

where y ∈ {0, 1} represents the label and ŷ represents the prediction score. To
classify difficult samples, we use focal loss as follows:

Lfc =

{
−(1 − ŷ)γ logŷ, y = 1
−ŷγ log(1 − ŷ), y = 0,

(9)

526 L. Su et al.

Fig. 6. The adaptive attention module architecture.

where γ is a hyperparameter, which is set as 2 in our work, and the whole loss
is as follows:

L = Lce + αLfc, (10)

where α represents a hyperparameter that balances binary cross entropy loss
and focal loss.

4 Experiment

4.1 Experimental Settings

Datasets. We evaluate our method on the most challenging and popular
datasets: FaceForensics++ [19] and Celeb-DF [27]. To evaluate the robustness,
we follow the official method [19] to compress the raw videos at two quality lev-
els. Specifically, one quality parameter of C23 is used to generate high-quality
videos (HQ) and the other quality parameter of C40 is used to generate low-
quality videos (LQ).

FaceForensics++ is a large face forgery dataset that consists of 1000 original
videos and 4000 forged videos. The real videos are collected from YouTube, and
the fake videos are manipulated by four facial forgery methods: Deepfakes (DF)
[3], Face2Face (F2F) [4], FaceSwap (FS) [28] and NeuralTextures (NT) [29]. DF
and FS swap the identity of two people, while F2F and NT manipulate the
expressions of the target. In addition, NT only modifies the expressions related
to the mouth region.

Celeb-DF is also a large face forgery dataset that consists of 509 real videos
and 5639 fake videos. In particular, thanks to the improved Deepfakes method,
its fake videos are of high-quality.

Evaluation Metrics. We apply the accuracy rate (ACC) and the area under
the RoC curve (AUC) as our evaluation metrics, which are commonly used in
previous Deepfakes detection tasks. The ACC formula is as follows:

ACC = Ntp/Nall, (11)

Learning to Detect Deepfakes via Adaptive Attention 527

where Ntp represents the number of samples classified correctly and Nall rep-
resents the number of test samples. Since the final output of the network is a
probability value, a threshold is needed calculate the metrics. We used a fixed
threshold of 0.5 across all images to compute the metrics.

Implement Details. In the preprocessing step, we adopt RetinaFace [30] to
detect and crop the face region in the image. Our framework is implemented on
open-source PyTorch. The crop face size is fixed to 240× 240 before being input
into the model. For training, we adopt Adam with a learning rate of 2 × 10−4,
weight decay of 1 × 10−5 and batch size of 50.

Comparing Methods. We compare our model with some advanced methods
of the same type: Xception [19], F3-Net [31], Multi-Att [13], SPSL [22], M2TR
[23] and RECCE [24].

4.2 Intratesting

Evaluation on FaceForensics++. In this experiment, we train our model on
the HQ and LQ of FaceForensics++ dataset to demonstrate the performance of
our proposed method. The methods of Xception, F3-Net, Multi-Att, M2TR and
RECCE are reproduced with the same preprocessing and training settings for
comparison purposes.

The results are shown in Table 1. It can be seen that all methods show differ-
ent performance at different compression levels. All methods perform better on
the HQ images than on the LQ images, suggesting that severe compression makes
forgery detection more difficult. Under the influence of severe compression, our
method has the least decrease in AUC, which indicates the robustness of our
model. One possible explanation for this result may be that the fused feature
method performs better on low-quality data. On the HQ images, the AUC and
ACC scores obtained by our method are 99.36% and 95.93%, respectively, which
are slightly lower than those of RECCE but exceed those of the other methods.
On the LQ images, our method achieves the best AUC score, which exceeds
those of Xception, F3-Net, Multi-Att, SPSL, RECCE and M2TR by 10.46%,
2.93%, 1.82%, 9.40%, 3.68% and 1.98%, respectively. The results show that a
fixed binary classifier such as Xception is not suitable for detection in cases with
strong compression strong compression. The AUC scores of F3-Net and SPSL,
which are based on the frequency domain, drop to 89.29% and 82.82%, respec-
tively. This result reveals that this kind of coarse-grained method is greatly
influenced by compression. In contrast, the fine-grained methods (Multi-Att,
M2TR and our proposed method) perform better. None of the methods perform
well when switching from HQ to LQ data. This is because strong compression
erases the properties of generation. Nevertheless, the proposed method achieves
the best performance degradation among all the methods, which is 1.33% higher
than the second best result.

528 L. Su et al.

Table 1. Quantitative results on the FaceForensics++ dataset with different quality
settings. The best results are in bold.

Method HQ LQ Δ AUC

ACC AUC ACC AUC

Xception 92.39 94.86 80.32 81.76 −13.10

F3-Net 95.83 99.08 85.31 89.29 −9.79

Multi-Att 97.60 99.29 88.69 90.40 −8.81

SPSL 91.50 95.53 81.57 82.82 −12.71

RECCE 97.91 99.88 79.41 88.54 −11.34

M2TR 95.36 98.71 84.74 90.24 −8.47

Ours 95.93 99.36 86.60 92.22 −7.14

FF++ with Four Different Manipulation Methods. In addition, we
evaluate the performance of the proposed model and other comparison meth-
ods against different facial manipulation methods on the FaceForensics++ LQ
dataset, and the results are shown in Table 2. It can be observed from Table 2
that our proposed model achieves the best results and all methods perform best
on DF and poorly on NT. The main reason for this is that the DF images are
generated by the entire face, while NT images are only modified locally in small
areas. When strong compression makes the image blurry, the manipulation of a
small local region is more difficult to detect. Our model achieves the best ACC
and AUC scores on all subdatasets. The experiment results show that our pro-
posed model is not only suitable for whole face generation but also suitable for
local generation in a small range, indicating its generalizability.

Table 2. Quantitative results on FaceForensics++ dataset with different manipulated
methods. Best results are in bold.

Method DF F2F FS NT

ACC AUC ACC AUC ACC AUC ACC AUC

Xception 95.15 99.08 83.48 93.77 92.09 97.42 77.89 84.23

Multi-Att 95.29 99.09 87.89 95.54 91.23 97.49 80.15 88.75

SPSL 93.48 98.50 86.02 94.62 92.26 98.10 76.78 80.49

RECCE 93.93 99.02 89.88 96.81 90.84 97.25 80.31 88.96

M2TR 94.75 98.98 89.68 96.82 90.59 97.04 80.39 88.49

Ours 96.22 99.47 89.88 96.96 93.43 98.38 81.50 89.95

Learning to Detect Deepfakes via Adaptive Attention 529

4.3 Crosstesting

To further verify the generalizability of the proposed model, a cross-dataset
experiment is designed. The specific experimental process involves training the
model on FaceForensics++ and testing it on Celeb-DF, which is more challenging
due to the data distribution differences between the training and test datasets.
The experiment results are given in Table 3. We can observe from Table 3 that
our model outperforms other methods on Celeb-DF, achieving the best AUC of
78.08%. This reveals that the proposed method is more applicable under real-
world scenarios.

Table 3. Cross-dataset evaluation on Celeb-DF (AUC) by training on FF++. The
best results are in bold.

Method Celeb-DF

Xception 65.30

F3-Net 65.20

Multi-Att 67.44

SPSL 76.88

RECCE 68.71

M2TR 68.20

Ours 78.08

4.4 Ablation Study

Ablation of the Model. In this section, we implement ablation experiments
to analyze the effects of different parts of the proposed model and the results
are shown in Table 4. As previously mentioned, our model consists of three main
components. ID=1, ID=2 and ID=3 indicate the model versions without the
SCM, CDM and AAM, respectively. As shown in Table 4, only when all compo-
nents are used, the proposed model gains the best performance, and the AUC
score reaches its highest value of 92.22%. These results demonstrate that all
of the components in the proposed method are beneficial for detecting facial
forgeries.

Table 4. Ablation study for different components

ID SCM CDM AAM AUC

1 � � 89.25

2 � � 88.99

3 � � 91.23

4 � � � 92.22

530 L. Su et al.

Fig. 7. Ablation study for hyperparameter α.

Effect of the Hyperparameter α As described in the Loss function section, a
hyperparameter α is utilized to balance Lce and Lfc. In this section, we conduct
experiments to evaluate the effect of α and the results are shown in 7. It is
obvious from 7 that, the AUC score of the proposed model increases gradually
when α is less than 3 and the AUC score of the algorithm decreases gradually
when α is greater than 3. Only when α is equal to 3, the proposed model reaches
the highest AUC score of 89.95%. Lfc is suitable for network to learn difficult
samples. However, an appropriate α is crucial to the performance of model. A
minor value of α restricts the ability of Lfc to learn difficult samples, while
a large value of α influences the ability of Lce to learn the characteristics of
generalization.

4.5 Visualization

To intuitively explore the areas of interest in the CNN, we visualize the attention
maps of some samples via CAM [32]. Figure 8 shows the original image and
those produced by Xception, MAT, M2TR, and the proposed model from top
to bottom, with five examples for each image: real, DF, F2F, F2F, and NT
examples. It can be observed from Fig. 8 that the regions of interest output
by the proposed model are always concentrated on the face region. For other
methods, in addition to the face regions, the regions of interest are sometimes also
concentrated on the background or clothes. Specifically, the attention response
maps of Xception are highly concentrated on the face area in (a) and (b), but
distributed in the nonface areas in (c), (d) and (e), as shown in the second row
of Fig. 8. In the third row, the attention response map of MAT is only focused on
the face region in (b), while it is scattered in (a), (c), (d) and (e). Similarly, the
attention map of M2TR in the fourth row only focuses on the face area of (a), and
is scattered in other graphs. However, the proposed model outputs the attention
response maps that spotlight on the face region according to different types of
generated methods. Rather, the attention response maps of the proposed model
cover the full face for the whole face generation, shown in (b) and (d), and cover
the local regions for the local part generation, shown in (c) and (e). The reason

Learning to Detect Deepfakes via Adaptive Attention 531

Fig. 8. The attention maps for different detection methods.

for this is that the other methods (i.e., Xception, MAT and M2TR) overfit on
the training dataset, causing the model to capture inappropriate information.
The experiment results indicate that the proposed model can adaptively capture
the suspicious areas and has more application value in real life.

5 Conclusion

Deepfakes technologies pose a significant threat to society due to their rapid
development and potential for misuse. In response, the field of Deepfakes detec-
tion has emerged, with researchers developing various methods for identifying
and combating this type of content. However, most of these methods are coarse-
grained and vanilla, and they struggle to extract the subtle and multiscale clues
that are necessary for effective Deepfakes detection. In this paper, we propose a
well-designed model to exploit subtle, multiscale and multiview clues. Our model
consists of a skipped channel attention module, a constrained difference module
and an adaptive attention module. We employ an adaptive attention module to
adaptively capture the low-level features. The constrained difference module is
designed to extract sufficient constrained characteristics. Moreover, the adaptive
attention mechanism is used to adapt to a variety of generated face with differ-
ent sizes. Extensive experiments demonstrate that the proposed method outper-
forms most Deepfakes detection methods on both intratesting and crosstesting
scenarios. This suggests that our model may be a valuable tool for combating
the spread of Deepfakes content and protecting against its potential misuse. In

532 L. Su et al.

future work, we will develop techniques for detecting small local regions and
different data distributions to further improve the detection performance of our
method.

References

1. Goodfellow, I., et al.: Generative adversarial nets, vol. 27 (2014)
2. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013)
3. Deepfakes. (https://github.com/deepfakes/faceswap/tree/v2.0.0). Accessed 13

May 2022
4. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face:

real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

5. Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-
grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–
1577 (2012)

6. Bahrami, K., Kot, A.C., Li, L., Li, H.: Blurred image splicing localization by expos-
ing blur type inconsistency. IEEE Trans. Inf. Forensics Secur. 10(5), 999–1009
(2015)

7. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deep-
fakes and face manipulations. In: IEEE Winter Applications of Computer Vision
Workshops (WACVW), vol. 2019, pp. 83–92. IEEE (2019)

8. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video
forgery detection network. In: IEEE International Workshop on Information Foren-
sics and Security (WIFS), vol. 2018, pp. 1–7. IEEE (2018)

9. Yang, X., Li, Y., Qi, H., Lyu, S.: Exposing GAN-synthesized faces using land-
mark locations. In: Proceedings of the ACM Workshop on Information Hiding and
Multimedia Security, pp. 113–118 (2019)

10. Li, Y., Chang, M.-C., Lyu, S.: In ICTU oculi: exposing AI created fake videos by
detecting eye blinking. In: IEEE International Workshop on Information Forensics
and Security (WIFS), vol. 2018, pp. 1–7. IEEE (2018)

11. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In:
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 8261–8265. IEEE (2019)

12. Chen, X., Dong, C., Ji, J., Cao, J., Li, X.: Image manipulation detection by multi-
view multi-scale supervision. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 14185–14193 (2021)

13. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional
deepfake detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2185–2194 (2021)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

15. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deep-
fakes and beyond: a survey of face manipulation and fake detection. Inf. Fusion
64, 131–148 (2020)

16. Mirsky, Y., Lee, W.: The creation and detection of deepfakes: a survey. ACM
Comput. Surv. (CSUR) 54(1), 1–41 (2021)

https://github.com/deepfakes/faceswap/tree/v2.0.0
https://doi.org/10.1007/978-3-319-24574-4_28

Learning to Detect Deepfakes via Adaptive Attention 533

17. Zhang, Y., Zheng, L., Thing, V.L.: Automated face swapping and its detection. In:
2017 2nd International Conference on Signal and Image Processing (2017)

18. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video
forgery detection network. In: 2018 IEEE International Workshop on Information
Forensics and Security (WIFS) (2018)

19. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
Forensics++: learning to detect manipulated facial images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

20. Li, L., et al.: Face X-Ray for more general face forgery detection. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5001–5010 (2020)

21. Chen, H.S., Rouhsedaghat, M., Ghani, H., Hu, S., You, S., Kuo, C.C.J.: Defakehop:
a light-weight high-performance deepfake detector. In: 2021 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6 IEEE (2021)

22. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection
in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 772–781 (2021)

23. Wang, J., Wu, Z., Chen, J., Jiang, Y.-G.: M2TR: multi-modal multi-scale trans-
formers for deepfake detection. (2022)

24. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-
classification learning for face forgery detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4113–4122 (2022)

25. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: a new app-
roach towards general purpose image manipulation detection. IEEE Trans. Inf.
Forensics Secur. 13(11), 2691–2706 (2018)

26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

27. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging
dataset for deepfake forensics. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3207–3216 (2020)

28. FaceSwap. (https://github.com/MarekKowalski/FaceSwap). Accessed 13 May
2022

29. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis
using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

30. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: RetinaFace: single-shot
multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)

31. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery
detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58610-2 6

32. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

https://github.com/MarekKowalski/FaceSwap
https://doi.org/10.1007/978-3-030-58610-2_6

A Novel Deep Ensemble Framework
for Online Signature Verification Using
Temporal and Spatial Representation

Hewei Yu and Pengfei Shi(B)

School of Computer Science and Engineer, South China University of Technology,
Guangzhou, China

hwyu@scut.edu.cn, 202121045666@mail.scut.edu.cn

Abstract. Although considerable improvements have been made in
online signature verification (OSV) over the last decade, none of them
take both temporal and spatial information into consideration, and thus
there is still a room for boosting the performance. In this paper, we pro-
pose a novel ensemble based deep learning framework, which consists of
a convolutional neural network model and our recently designed convo-
lutional gated recurrent network (CGRN) for extracting spatial feature
and temporal feature, respectively. However, it is not easy to combine
these two types of features since temporal feature is two-dimensional with
various length while the other is a fixed-length vector. In order to incor-
porate both types of representation, we firstly introduce cosine similarity
for spatial feature to calculate the shape similarity and use dynamic time
warping (DTW) for temporal feature alignment. Thereafter, the distance
between reference signature and given signature is obtained by multiply-
ing DTW distance and similarity score. In addition, we design a novel
approach for DTW distance normalization, which significantly enhances
the verification accuracy. Our method achieves new state-of-the-art result
on DeepSignDB, and outperforms other existing OSV methods with at
least 16.2% relative improvement in finger scenario.

Keywords: Online signature verification · Convolutional gated
recurrent network · Dynamic time warping · Deep learning

1 Introduction

Biometric technology has received an extensive attention in recent years due
to its convenience and reliability on verifying people’s identity. In general, bio-
metric system can be divided in to behavior biometric and physical biometric.
Physical biometric refers to iris, face, fingerprint, etc. It is unique to each one
and will remain unchanged for a long time even for lifetime, which makes the
security systems capable to make correct and precise judgement. While behavior
biometric refers to the characteristics that are subject to vary over time, such as
voice, signature, gait, and so on [12]. Designing a reliable security system based
on behavior biometric is a challenging task.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 534–549, 2023.
https://doi.org/10.1007/978-981-99-7356-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_32&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_32

A Novel Deep Ensemble Framework for Online Signature Verification 535

As a behavior biometric, handwritten signature currently has been the most
widely used and socially-accepted method of personal identification. One of the
mainly reasons is that the signature can be acquired in a user-friendly and non-
invasive manner [1]. Signature has been applied as a conventional identification
method since hundreds of years ago, even if the authenticity and uniqueness of
signature cannot be guaranteed. From the international agreements to civil con-
tracts, it has worldwide application in administrative, financial and commercial
fields and plays a key role in validating the contract. As the important place
handwritten signature verification occupied in nowadays society, the accompa-
nying security problem has raised people’s great concern. If the forged signatures
made by criminal are not precisely differentiated, huge losses may cause to indi-
vidual and society. Hence, research on handwritten signature verification has
great significance.

In terms of data acquisition methods, handwritten signature can be classified
into two categories: online signature and offline signature. Offline signature, so
called as static signature, is the scanned image of signature written in paper.
Online signature, also named dynamic signature, is time series data acquired
by digital device such as tablets. Dynamic signals such as pressure, coordinates
and angles would be recorded while the users sign their name on digital device.
Offline signature only contains spatial information and thus it is difficult to
make correct judgments on offline signature samples whose glyphs are very sim-
ilar but do not belong to the same individual [13]. Online signature contains
dynamic information that is unique to each signature. It is because that with
the change of writer’s physical state such as age, mood, and the influence of
external environment, the dynamic signals would not be identical even both
signatures appear to be the same. This leads to high intra-individual variabil-
ity of online signatures [14]. Intra-individual variability is a phenomenon that
handwritten signature from the same individual will change due to the variation
of human’s physical state, the writing environment, and other factors. Thus, it
seems unlikely that writing two identical signatures even for the writer himself.
In this paper, we will focus on online signature verification problem.

Forgery signatures are commonly categorized as skilled and random forgery.
The skilled forgery is the signature generated by forgers who imitate the gen-
uine one with much practice, having a high degree of similarity to authentic
signature. In terms of random forgery, the forger does not know any information
about individual, and thus the forger signs his own name instead. This kind of
forgery is easy to identify even by eyes. People often make a comparison between
signatures with naked eyes. In real life, it is rare to verify signatures manually
because it requires pretty much time and effort whereas sometimes the authen-
ticity of given samples is hard to judge even for the forensic experts. Over the
last several decades, people attempt to distinguish the negative and positive sig-
nature precisely with computer assisted verification system. Many researchers
have been devoted to develop a robust and high-accuracy signature verification
system. Although great progress has been made during the last decade, signature
verification system has considerably lower accuracy compared with other physi-

536 H. Yu and P. Shi

Fig. 1. The overview of our proposed online signature verification ensemble framework.
Firstly, the input signature pairs are processed by time function and represented in a
two-dimensional (2D) form. Then, the CNN and proposed convolution gated recur-
rent network (CGRN) are used to extract the spatial feature and temporal feature
respectively. In training stage, we use different strategy to optimize these two types
of encoder. In test stage, we incorporate the temporal and spatial features with the
proposed ensemble verifier, and deliver final distance score of compared signature pair.

cal biometric-based system in deep learning area. It is the large intra-individual
variability and high degree of similarity between genuine signature and skilled
forgery that remains signature verification a challenge task.

In this paper, we propose an ensemble online signature verification (OSV)
framework based on deep learning, as shown in Fig. 1. It mainly consists of four
stages. In data preprocessing stage, the input online signatures are processed
by time functions for extracting essential dynamic properties. Then, with the
x, y coordinates in raw data, these processed time series are transformed into
two-dimensional (2D) matrices, where the element in each matrix is determined
by corresponding dynamic property. In feature extraction stage, our proposed
convolutional gated recurrent network (CGRN) is utilized to extract robust and
discriminative temporal features. In training stage, we perform average pooling
operation with stride of two on the temporal feature derived from CGRN to
balance temporal resolution with memory and time consumption [1]. Thereafter,
the distance of temporal features of input signature pair is calculated with soft-
DTW [19] and incorporated into triplet loss [18] for optimization. We believe that
the gradient provided from cross-entropy loss is capable to protect our model
from random forgery attacks. Therefore, we leverage it to optimize the backbone
of our CGRN. Our convolutional neural network (CNN) is inspired by [15], with
cross-entropy loss as well as average precision (AP) loss [16] for optimization. In
test stage, the temporal features and spatial embeddings of compared signature
pairs are fed to our cosine similarity-based ensemble verifier for deriving distance
score.

A Novel Deep Ensemble Framework for Online Signature Verification 537

The contributions of our work are as follows:

1. An effective ensemble OSV framework has been developed, which incorporates
both temporal and spatial feature with cosine similarity. To the best of our
knowledge, it is the first work that exploits the potential of combining these
two types of information in the field of OSV.

2. We design a convolutional gated recurrent network called CGRN, and opti-
mize it with triplet loss as well as cross-entropy loss for learning discriminative
and robust dynamic feature from time series, while many existing deep learn-
ing based OSV only used triplet loss for optimization. The gradient derived
from cross-entropy loss can protect the system from random forgery attacks,
and has leads to performance enhancement in random forgery scenario.

3. We proposed Path Normalization strategy for normalizing the DTW score.
The ablation study shows that our OSV performance is significantly improved
with this technique.

4. Exhaustive experiments have been conducted on the largest public online
signature database DeepSignDB [8]. The state-of-the-art result demonstrates
the effectiveness and advantage of our proposed method.

2 Related Work

Although great progress has been made in the past decade, many signature
verification system with good performance are still based on traditional method
such as dynamic time warping (DTW) [3]. Online signatures as time series data,
in most case, are different in length, and hence we cannot compare them directly
with general distance measurement approaches such as Euclidean distance. DTW
can find the optimal alignment that can minimize the difference between time
series with varying lengths under certain constraints, and calculate the distance
between aligned time series. Among a variety of methods in the literatures, DTW
is most well-known, and many of them improve the OSV system by enhancing
the DTW, indicating that DTW is well suited and may critical to the task of
online signature verification [1]. Continuous efforts in the field have been made to
improve DTW algorithm over the years. Jain A et al. [4] used DTW to compute
and investigated several approaches for obtaining the optimal threshold value.
Kholmatov A et al. [5] proposed to normalize the distance of the test signature
to the nearest, farthest and template reference signatures of the claimed user,
resulting in a three-dimensional feature vector for classification. Zhang Z et al. [6]
proposed a new variant of DTW considering shape nature of time series to tackle
an inherent problem of DTW that a single point may corresponds to a large
subsection of another time series, which will lead to pathological alignments. A.
Sharma et al. [7] explores the utility of cost matrix derived from DTW, and
combined with DTW score for better verification.

Deep learning method is good at finding a feature space that can yield stable
yet discriminative representation for input signature, and it has been the hottest
research topic in recent years. With the rapid development of deep learning the-
ory and the release of large-scale online signature datasets, OSV system inte-
grating with deep neural network grows fast and achieves the state-of-the-art

538 H. Yu and P. Shi

results [1]. As early as 1993, Bromley J et al. [9] proposed the earliest deep net-
work structure called Siamese network, which consists of two 1D convolutional
modules with shared weights, has inspired much of the subsequent research.
In general, online signature can be depicted as a global feature vector or time
series data describing various dynamic properties, depending on feature extrac-
tion method. The lengths of time series datas are not likely the same owing to
the various length of signatures.Thereby, people utilized DTW algorithm to get
the distance of compared signature pairs. The combination of DTW and deep
learning was regarded as a promising formula for signature verification, and it
has been studied recently [1,2,8,10,11]. Lai S and Jin L [2] proposed an RNN
variant namely gated auto regressive units and a new signature descriptor called
length-normalized path signature to train in the DTW framework for learning
discriminative representations. Tolosana R et al. [11] first propose to build a
signature verification system based on Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) in Siamese architecture. In addition, the bidi-
rectional scheme for both recurrent networks have been further investigated.
Tolosana R et al. [8] and X. Wu et al. [10] align the input signatures pair with
DTW first, and then fed to the Siamese network for representation learning.
The latest research can be seen in [1], where Deep soft-DTW (DsDTW) model
was proposed. Incorporating with soft-DTW, the smoothed and differentiable
formulation of DTW, and convolutional recurrent network to process the online
signatures, DsDTW has achieved state-of-the-art performance on several public
benchmarks.

Although these efforts have promoted the dynamic signature verification to
some extent, none of them take global spatial information with temporal infor-
mation into consideration. In this paper, we take a further step to explore the
performance enhancement by incorporating these two kinds of information.

3 Deep Ensemble Framework for Online Signature
Verification

In this section, the details of our proposed ensemble framework would be intro-
duced explicitly. It consists of four parts: (1) Online signature preprocessing; (2)
The detail description of our designed CGRN model; (3) A CNN based image
encoder; (4) The developed ensemble verifier based on cosine similarity.

3.1 Data Preprocessing

The online signature used in this research contains three attributes: x, y spa-
tial coordinates and pressure. Preprocessing on original online signature signal
is carried out in order to reduce the variation and enhance the signature. Each
signature is resampled at 100Hz using cubic interpolation and truncated at
frequency under 10hz with Butterworth low-pass filter. Subsequently, we empir-
ically used the following 12 time functions to process the input signature, since
the previous studies [1,16] have put in evidence about the effectiveness of them
in deep metric learning:

A Novel Deep Ensemble Framework for Online Signature Verification 539

• Horizontal and vertical velocity: vx, vy.
• Velocity magnitude: v =

√
v2

x + v2
y.

• Path-tangent angle: θ = arctan(vy/vx).
• cos(θ), sin(θ) and pressure p.
• First-order derivatives of v and θ: v̇, θ̇.
• Log curvature radius: ρ = log(v/θ̇).
• Centripetal acceleration: c = v · θ̇.
• Total acceleration: a =

√
v̇2 + c2

Notably, the concept of time function is ambiguous for the reason that func-
tion should be some kind of mapping, while numerous works in the field of
online signature verification regard time function as the processed signature.
In this study, time function refers to some kinds of projection displayed above
instead of derived time series. The obtained time series has 12 channels where
each channel describes a corresponding dynamic property of online signature.
Thereafter, the signal is normalized and have zero mean and unit variance. Spe-
cially, as the pressure information is not available in finger scenario, it will be
set to zero and normalization would not be applied.

Presenting the online signature in the form of two-dimensional (2D) is first
proposed in [13]. Different from that of vanilla approach, we leverage the time
series which contains 12 channels dynamic properties while the other uses only 3
channels of dynamic information from raw online signature. The improved result
achieves by our CNN encoder shows the superiority of our method. For having
the same size of input, we firstly perform mapping operation, which comprises
min-max normalization and rescaling. The formulas are given by:

xnorm = scalex · x − xmin

xmax − xmin
(1)

ynorm = scaley · y − ymin

ymax − ymin
(2)

The scales for x and y are empirically set to 275 and 112 to minimize geometric
distortion of various input scales. In this way, the location attribute x and y are
linearly mapped to [0, 275] and [0, 112], respectively.

We combine the spatial coordinate x, y with dynamic properties to form
12 two-dimensional matrices, where the element of each matrix corresponds to
one specific dynamic attribute. Concatenating these matrices so that the time
series data can be characterized as a feature map. In this way, the spatial trajec-
tory of online signature can be represented while retaining the critical dynamic
information.

3.2 CGRN for Local Representation Learning

Our CGRN model learns the deep representation from time series, as illustrated
in Fig. 2. Inspired by CRAN [1], the backbone of our CGRN consists of two
basic convolutional blocks and a gated recurrent unit (GRU) [17]. The essential

540 H. Yu and P. Shi

difference is that we introduce batch norm and ReLU layers, replace the max
pooling with average pooling operation, and perform feature concatenation for
aggregating the temporal feature at different scales, which accelerate the con-
vergence and enhance the performance significantly. The GRU has two layers
with dropout in between, and the update gates in it are closed for better gen-
eralization capacity [2]. We believe that the gradient provided by cross-entropy
loss can guide the backbone network to learn the latent feature space better.
Therefore, in training phase, we employ selective pooling [16] (SP) module to
pool the hidden state from GRU into a fixed-length feature vector so that the
cross-entropy loss can be applied. Intuitively, cross-entropy loss can protect the
OSV system from random forgery attack. The temporal feature is acquired after
performing a linear mapping on the backbone network.

Fig. 2. An overview of the proposed CGRN model. The number following the “1D
Conv” , “1D Batch Norm” and “Linear Layer” denotes the output channels produced
by corresponding operation. The “users“ refers to total number of signature authors in
training set. The “l”, “k”, “s” and “p” stand for the maximal length of input sequences
in each batch, kernel, stride and padding sizes, respectively.

Time series are of arbitrary length, which leads to some typical and effec-
tive distance metrics not available. DTW is an algorithm based on dynamic
programming. It can find the optimal alignment (also called wrapping path)
between two sequences so the minimal distance can be calculated to measure
the sequence similarity. Specifically, consider two sequences X = [x1, x2, ..., xl]
and Y = [y1, y2, ..., ym] with length of l and m respectively, where xi and yj

are d-dimensional vector of local features, the cost matrix is denote as D(X,Y),
where [D(X,Y)]i,j = ‖xi − yj‖22. Let A ⊂ {0, 1}l×m be the possible alignment
matrices that satisfy monotonicity, continuity and boundary conditions [3]. The
DTW distance is defined as:

A Novel Deep Ensemble Framework for Online Signature Verification 541

dtw(X,Y) := min
A∈Al,m

〈A,D(X,Y)〉 (3)

where 〈A,D(X,Y)〉 refers to the inner product of matrix A and D. In our prac-
tice, we found that use l1 norm to calculate the cost matrix leads to better
verification result. Thus, we define:

[D(X,Y)]i,j = ‖xi − yj‖1 (4)

However, the DTW is non-differentiable since it involves non-smooth min oper-
ator. To alleviate this problem, soft-DTW [19] is proposed to calculate the min-
imum value in a smoothing way. The smoothed minimal operation is defined as
follow:

minγ {a1, ..., an} :=

{
mini=1,...,n ai γ = 0
−γ log

∑n
i=1 e−ai/γ γ > 0

(5)

where γ is smoothing parameter. When γ > 0, it can be noticed that the greater
diversity of ai is, the greater difference of e−ai/γ is. Suppose am is the minimal
value, the main part of the summation would be e−am/γ if the diversity is large
enough, then the output of formulation would close to minimal value am. In this
way, we can obtain the minimal value in a differentiable manner though there is
a little inaccuracy in the calculation result. As the γ grows up, the difference of
e−ai/γ is getting smaller, resulting in the less possibility to get the real minimum
value. In this study, we empirically set γ = 1. With the smoothed formulation,
the soft-DTW can be defined as follows:

dtwγ(X,Y) := minγ {〈A,D(X,Y)〉 , A ∈ Al,m} (6)

When γ = 0, soft-DTW degenerates to DTW.
We notice that normalize the DTW distance by a factor of warping path

length can significantly improve the performance, compared to normalize it by
the sum of two sequence length in [1]. It is because the output DTW score is the
summation of distances of aligned local representation. However, the amount of
alignments is neither a constant nor the sum of two sequence length. Instead, it
is equal to length of warping path. We think that normalize the DTW by directly
sum up these two sequences length is not appropriate. Hence, we propose Path
Normalization strategy. The average pooling with stride of two would be applied
for achieving a trade-off between temporal resolution and runtime speed as well
as memory consumption [1].

We denote the CGRN as our embedding function f(·), average pooling oper-
ation as ϕ(·), the length of soft-DTW warping path as |dtwγ(·, ·)|. Then, for
the input signature pair X and Y , the following soft-DTW distance is used in
training stage:

dtwtrain(X,Y) :=
dtwγ(ϕ(f(X)), ϕ(f(Y)))
|dtwγ(ϕ(f(X)), ϕ(f(Y)))| (7)

Triplet loss is commonly used in deep metric learning, and its objective is to
separate the negative from positive sample by a given margin. We sample nw

542 H. Yu and P. Shi

different individual within a batch. For individual k, k = 1, ..., nw, we sample
one genuine signature Xk

a as anchor, another ng genuine signatures {Xk
g,i, i =

1, ..., ng} as positive samples, and nf forgeries {Xk
f,j , j = 1, ..., nf} as negative

samples. Thus, for each individual, there are ng × nf triplets in total. The loss
of a triplet(Xk

a ,Xk
g,i,X

k
f,j) is:

l(Xk
a ,Xk

g,i,X
k
f,j) = ReLU(dtwtrain(Xk

a ,Xk
g,i) + δ − dtwtrain(Xk

a ,Xk
f,j)) (8)

where δ is margin with positive value. The triplet loss of an individual is:

Lk =

∑ng

i=1

∑nf

j=1 l(Xk
a ,Xk

g,i,X
k
f,j)

1 +
∑ng

i=1

∑nf

j=1 I{l(Xk
a ,Xk

g,i,X
k
f,j)}

(9)

where I{·} is an indicator function, only those non-zero losses are considered
for optimization. Suppose signature X is from individual k, k ∈ {0, ...,M − 1},
where M is the total writer in the development set, the cross-entropy loss for
the all samples from individual k:

Lcls = −
ng∑
i=1

log(k|f(Xk
g,i)) −

ng∑
i=1

log(k|f(Xk
f,j)) −

ng∑
i=1

log(k|f(Xk
a)) (10)

The overall loss function of CGRN is given by:

L =
1

nw

nw∑
k=1

(Lk + αLcls +
λ

ng

ng∑
i=1

dtwtrain(Xk
a ,Xk

g,i)) (11)

The objective of the third term is to reduce the intra-individual variability. The
hyper-parameters α and λ are empirically set to 0.5 and 0.01 for balancing these
three losses.

In test stage, the pooling operation is not applied for higher temporal resolu-
tion, which will lead to better performance. We use following DTW to calculate
the distance between sequences:

dtwtest(X,Y) :=
dtw(f(X), f(Y))
|dtw(f(X), f(Y))| (12)

3.3 Global Feature Extraction with CNN

Our CNN architecture is inspired by sigCNN [15], as illustrated in Fig. 3. There
are two convolution blocks for extracting the feature map from the online signa-
ture represented in two-dimensional form. Within each block, two 2D convolu-
tional layers are included, and both of them share the same number of channels.
Besides, each layer is followed by batch normalization and ReLU function. Spa-
tial pyramid pooling [20] (SPP) layer is employed for pooling the feature map
with different scale into a fixed-length spatial embedding. Linear transformation
and batch normalization are applied on the embedding from SPP layer. The
embedding from these two linear layers will be concatenated and served as the
final output of the network.

A Novel Deep Ensemble Framework for Online Signature Verification 543

Fig. 3. The architecture of our CNN encoder. “SPP” denote spatial pyramid pooling
module. “n_users”, “Conv” denote the same meanings as in Fig. 2.

3.4 Cosine Similarity-Based Ensemble Verifier

The proposed ensemble verifier measures the distance of compared signatures in
test stage. We use DTW, as expressed in Eq. 12, to calculate distance of tempo-
ral feature between reference signature and test signature, and introduce cosine
similarity for spatial features to compute the glyph similarity score (in Eq. 15).
Then, we multiply DTW distance by similarity score as final distance of com-
pared signatures. It is non-trivial to combine these two kinds of features since
they are different in dimension and length, which makes it difficult for feature
fusion. Moreover, general distance measurement approaches such as Euclidean
distance are also not appropriate, because we observe that there is a large dis-
crepancy in the value range between DTW and Euclidean distance. Therefore,
we resort to cosine similarity for incorporating these two kinds of feature. The
outstanding experiment result shows the superiority of our method.

In details, given n reference signatures {Xk
1 , ...,Xk

n} from individual k, we
denote the average of pairwise DTW distances as d̄k(d̄k = 1 if n = 1). For the
test signature Y claimed to be individual k, the average and minimum DTW
distances between Y and reference signatures are:

dtwk
avg(Y) =

1
n

n∑
i=1

dtwtest(Xk
i , Y)/

√
d̄k (13)

dtwk
min(Y) = min

i=1,...,n
dtwtest(Xk

i , Y)/
√

d̄k (14)

The glyph similarity score s(X,Y) of compared signatures X and Y can be
obtained as:

s(X,Y) = ω(
g(X) · g(Y)

||g(X)||g(Y)||) (15)

where g(·) refers to our CNN encoder, and ω(·) maps the result of cosine sim-
ilarity into a positive range. Then, the average and minimum glyph similarity
score between Y and reference signatures can be obtained as:

sk
avg(Y) =

1
n

n∑
i=1

s(Xk
i , Y) (16)

544 H. Yu and P. Shi

sk
min(Y) = min

i=1,...,n

n∑
i=1

s(Xk
i , Y) (17)

Finally, the fused distance between Y and reference signatures:

d(Y) = dtwk
avg(Y) · sk

avg(Y) + dtwk
min(Y) · sk

min(Y) (18)

Given a predefined threshold t, if d(Y) < t, the test signature Y is considered
as a genuine one from individual k; otherwise, it is regarded as a forgery. By
varying the threshold t, we can obtain the equal error rates (EER) to assess the
performance of our OSV system.

4 Experiments

4.1 Dataset and Protocol

We conduct the experiments on DeepSignDB [8], the largest public online sig-
nature database to date. It consists of five well-known datasets: MCYT [21],
BiosecurID [22], Biosecure DS2 [23], e-BioSign DS1 [24] and e-BioSign DS2. Col-
lected from a total of 1016 users, there are 44472 signatures available at present.
The signatures are acquired by digital devices such as tablets and mobile phone.
Following signals are captured: x and y coordinates, pressure (not available in fin-
ger scenario) and timestamps. Two types of counterfeits are considered: random
forgery and skilled forgery. We refer the reader to [8] for more details. There is a
standard experimental protocol along with DeepSignDB, and we strictly follow
it for fairly comparing our method with the state-of-the-art approaches. Notably,
the development set of Biosecure DS2 is still not released due to certain legal
issues. Therefore, we train our framework with only four subsets yet test it on
full evaluation set.

4.2 Implementation Details

We empirically set nw = 4, ng = 5 and nf = 9. There are 3 random forgeries
and 6 skilled forgeries for each writer. We trained our CGRN model for 50
epochs using stochastic gradient descent (SGD) optimizer with momentum of
0.9. Cosine annealing schedule was applied to adjust the learning rate. The
initial and minimum learning rate was set to 0.01 and 0.001. We train our CNN
encoder for 100 epochs. The Adamax [25] optimizer and the same learning rate
as well as learning adjustment strategy was used for optimizing the network. We
empirically fixed the project function ω(·) in Eq. 15 to ω(x) = −x+2 to linearly
transform the value range of cosine similarity from [−1,1] to [0,3]. The model
that achieves the lowest EER on DeepSignDB are saved and used for evaluation
on all subsets.

A Novel Deep Ensemble Framework for Online Signature Verification 545

Table 1. EER (%) result for using l1 norm and l2 norm to calculate cost matrix.
The bold font indicates the best result. “eBS DS1(2)” is the abbreviation of e-BioSign
DS1(2) subset, and w1-w6 denote different acquisition devices.

4.3 Experimental Results on DeepSignDB

We first analyze the effect of distance metric to DTW, as in Eq. 4. We calculate
the cost matrix with l1 norm and l2 norm respectively, and observe their effect
to our framework. The experiment is conducted following the standard exper-
imental protocol, and the result on DeepSignDB is obtained after performing
all comparisons on its subsets. It is important to remark that we just use one
specific CNN and CGRN model for the whole subsets, not one specific model
per subset. The result is displayed in Tables 1, where 1vs1 and 4vs1 denote using
one reference signature and four reference signatures respectively.

From Table 1, we can observe that l1 perform best holistically. In stylus sce-
nario, it seems that l1 perform almost on par with l2 in subsets. While in the
finger scenario, l1 outperforms l2 on DeepSignDB in all aspects. We can notice
that the model achieves much higher EER in finger scenario than in stylus sce-
nario generally, which is consistent of [8]. One of the reasons should be that the
critical pressure information is not available for the signatures collected from
mobile devices. Another observation is that no one specific model can excel at
all subsets, indicating that there may be some domain shifts caused by difference
collection devices [16].

546 H. Yu and P. Shi

Table 2. Ablation study of different strategy on DeepSignDB dataset (EER, %)

4.4 Ablation Study

We perform ablation study to justify the effectiveness of our proposed ensemble
strategy and Path Normalization strategy. Because temporal feature provides
more information than spatial feature, CGRN has the capability to defeat CNN
model by far with much lower EER. Hence, we only use CGRN model for ver-
ification if the ensemble strategy is not applied. As shown in Table 2, when
both strategy is considered, our OSV system perform better on random forgery
attacks, but there is slight performance degradation when confronting skilled
forgery attacks with one reference signature. We think that there are three causes
for this: (1) The glyph of skilled forgery is close to genuine signature. (2) There
is just one reference signature is available for verification. (3) The EER is rela-
tively low in this scenario, which leaves little room for performance elevation. To
better verify the skilled forgery, it is necessary to explore a more powerful CNN
encoder that can provide more distinguishable spatial embedding. We can notice
that, when Path Normalization strategy is not employed, the performance of our
OSV system drops significantly, indicating that an appropriate normalization is
of great vital.

4.5 Comparisons with Existing Methods

In Table 3, we compare our method with the state-of-the-art DsDTW [1] model
and recently published TA-RNN [8] model on DeepSignDB dataset. Traditional
method DTW is applied on time series that only processed by time functions,
served as benchmark here.

We can see that our method significantly improves over DsDTW on finger
scenario, achieving 16.2% ((5.88-4.93)/5.88 × 100%) relative reduction on the
average EER. For stylus inputs, our method achieves lower random forgery EERs
and very competitive skilled forgery EERs. The relative average EER reduction
is 14.3% ((2.31-1.98)/2.31×100%), proving the advancement and effectiveness of
the proposed method.

A Novel Deep Ensemble Framework for Online Signature Verification 547

Table 3. Comparsion on DTW, TA-RNN [8], DsDTW [1] and the proposed method
on DeepSignDB dataset (EER, %)

Compared with TA-RNN and DTW, our method holistically surpassing them
by a large margin in both stylus scenario and finger scenario. More impor-
tantly, compared with TA-RNN, the training set of the Biosecure DS2 subset
is unavailable for us, which occupies the largest proportion of the full Deep-
SignDB database. Therefore, it is reasonable to deduce that the performance of
our method can be further elevated if the subset is released in future.

It is important to notice that our approach achieves higher performance
improvement in discriminating random forgery than skilled forgery. This is due
to random forgery is more distinct from genuine than skilled forgery, and thus
the CNN encoder can deliver more discriminative spatial feature for verification.
While the glyph of skilled forgery is so close to authentic signature, which makes
the gain from shape information diminished.

5 Conclusion and Future Work

In this paper, an ensemble-based deep learning system has been proposed for
online signature verification. We take shape information into consideration and
combine it with temporal feature, leveraging the respective strengths of convolu-
tional neural network and recurrent neural network on feature extraction. Specif-
ically, online signature pair are first processed by time functions and transformed
into multichannel feature maps with fixed size. Thereafter, these two kinds of
representations are fed to CGRN and CNN for modeling the desired feature
space. In test stage, the temporal and spatial features of compared signature
pair are sent to our cosine similarity-based ensemble verifier for final judgement.
Using this novel information incorporation method, our OSV system achieves
state-of-the-art results on DeepSignDB, the largest online signature database to
date.

Nevertheless, there is still a room for improving the proposed method. Firstly,
as the improvement on against random forgery mainly gains from spatial infor-
mation, we can develop a more advanced CNN architecture for extract more

548 H. Yu and P. Shi

distinctive global embedding. Secondly, investigate a more appropriate function
ω(·) for mapping cosine similarity score, as it is currently determined empirically
by experiments. The function ω(·) is crucial since it directly affects the effective-
ness of feature combination. Intuitively, if a well-suited mapping function has
been found, the system will be much more robust against forgery attacks.

Acknowledgements. This study is supported by Natural Science Foundation of
Guangdong Province (2023A1515012894), Key R&D Project of Guangzhou Science
and Technology Plan(2023B01J0002).

Declaration of Competing Interest. The authors declare that they have no the
conflict of interest with the Program Committee members including the chairs, nor
personal relationships that could have appeared to influence the work reported in this
paper.

References

1. Jiang, J., Lai, S., Jin, L., et al.: DsDTW: local representation learning with deep
soft-DTW for dynamic signature verification. IEEE Trans. Inf. Forensics Secur.
17, 2198–2212 (2022)

2. Lai, S., Jin, L.: Recurrent adaptation networks for online signature verification.
IEEE Trans. Inf. Forensics Secur. 14(6), 1624–1637 (2018)

3. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

4. Jain, A.K., Griess, F.D., Connell, S.D.: On-line signature verification. Pattern
Recogn. 35(12), 2963–2972 (2002)

5. Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online sig-
nature verification method. Pattern Recogn. Lett. 26(15), 2400–2408 (2005)

6. Zhang, Z., Tang, P., Duan, R.: Dynamic time warping under pointwise shape con-
text. Inf. Sci. 315, 88–101 (2015)

7. Sharma, A., Sundaram, S.: On the exploration of information from the DTW
cost matrix for online signature verification. IEEE Trans. Cybern. 48(2), 611–624
(2017)

8. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., et al.: DeepSign: deep on-line sig-
nature verification. IEEE Trans. Biometrics, Behav. Identity Sci. 3(2), 229–239
(2021)

9. Bromley, J., Guyon, I., LeCun, Y., et al.: Signature verification using a“siamese”
time delay neural network. Adv. Neural Inf. Process. Syst. 6 (1993)

10. Wu, X., Kimura, A., Iwana, B.K., et al.: Deep dynamic time warping: End-to-end
local representation learning for online signature verification. In: 2019 Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 1103–
1110. IEEE (2019)

11. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., et al.: Exploring recurrent neural
networks for on-line handwritten signature biometrics. IEEE Access 6, 5128–5138
(2018)

12. Hashim, Z., Ahmed, H.M., Alkhayyat, A.H.: A comparative study among hand-
written signature verification methods using machine learning techniques. Sci. Pro-
gram. 2022 (2022)

A Novel Deep Ensemble Framework for Online Signature Verification 549

13. Xie, L., Wu, Z., Zhang, X., et al.: Writer-independent online signature verification
based on 2D representation of time series data using triplet supervised network.
Measurement 197, 111312 (2022)

14. Shen, Q., Luan, F., Yuan, S.: Multi-scale residual based siamese neural network for
writer-independent online signature verification. Appl. Intell. 52(12), 14571–14589
(2022)

15. Jiang, J., Lai, S., Jin, L., et al.: Forgery-free signature verification with stroke-
aware cycle-consistent generative adversarial network. Neurocomputing 507, 345–
357 (2022)

16. Lai, S., Jin, L., Zhu, Y., et al.: SynSig2Vec: Forgery-free learning of dynamic sig-
nature representations by sigma lognormal-based synthesis and 1D CNN. IEEE
Trans. Pattern Anal. Mach. Intell. 44(10), 6472–6485 (2021)

17. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling (2014). arXiv:1412.3555

18. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Proceedings
of International Workshop Similarity-Based Pattern Recognition, pp. 84–92 (2015)

19. Cuturi, M., Blondel, M.: Soft-DTW: A differentiable loss function for time-series.
In: Proceedings of International Conference on Machine Learning, pp. 894–903
(2017)

20. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015)

21. Ortega-Garcia, J., et al.: MCYT baseline corpus: a bimodal biometric database.
IEE Proc. Vis. Image Signal Process. 150(6), 395–401 (2003)

22. Fierrez, J., et al.: BiosecurID: a multimodal biometric database. Pattern Anal.
Appl. 13(2), 235–246 (2010)

23. Ortega-Garcia, J., et al.: The multiscenario multienvironment biosecure multi-
modal database (BMDB). IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1097–
1111 (2010)

24. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.:
Benchmarking desktop and mobile handwriting across COTS devices: the e-
BioSign biometric database. PLoS ONE 12(5), 1–17 (2017)

25. K D P B J. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014). 1412

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980

Blockchain and Cryptocurrencies

SCOPE: A Cross-Chain Supervision
Scheme for Consortium Blockchains

Yuwei Xu1,2,3(B), Haoyu Wang1,3, and Junyu Zeng1,3

1 School of Cyber Science and Engineering, Southeast University,
Nanjing, Jiangsu 211189, China

xuyw@seu.edu.cn
2 Purple Mountain Laboratories for Network and Communication Security,

Nanjing, Jiangsu 211111, China
3 Engineering Research Center of Blockchain Application Supervision,

Nanjing, Jiangsu 211189, China

Abstract. The consortium chain is widely used in multi-organization
collaboration and data sharing in various industries due to its decentral-
ization, non-tampering, and traceability. With its popularity, supervis-
ing these distributed systems has become a challenge for governments.
The centralized supervision model destroys the distributed nature of
blockchains and cannot provide open and transparent supervision ser-
vices. Therefore, researchers propose to build a blockchain to supervise
multiple consortium chains in one industry. Under this idea, the cross-
chain supervision scheme becomes the focus of research. However, most
existing cross-chain schemes are designed for digital currency transfer.
If applied to a supervision scenario, they suffer from two shortcomings.
First, the over-coupled interchain relationship cannot meet flexible super-
visory requirements. Second, they cannot guarantee data authenticity
during off-chain transmission. Aiming at the shortcomings, we design
SCOPE, a cross-chain supervision scheme for consortium chains. The
contribution of our work lies in three aspects. Firstly, we deploy a relay
chain to implement automatic supervision based on the publish-subscribe
model, reducing cross-chain overhead. Secondly, we propose a verifica-
tion method for the authenticity of cross-chain data by calculating the
reputation value of oracle nodes and performing threshold signatures
based on reputation weights. Finally, we implement a prototype system
and test it. The results show that SCOPE provides good scalability and
achieves low latency. Compared with the verification method based on
BLS threshold signatures, SCOPE obtains a higher success rate in veri-
fying the authenticity of cross-chain data.

Keywords: Consortium blockchain · Cross-chain supervision ·
Publish-subscribe Model · Weighted threshold signature

1 Introduction

Consortium blockchains are decentralized transaction mechanisms that enable
multiple organizations to collaborate and share information. They are often
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 553–570, 2023.
https://doi.org/10.1007/978-981-99-7356-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_33&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_33

554 Y. Xu et al.

adopted in situations where multiple parties need to cooperate and exchange
data. With the improvement of smart contract development platforms, many
enterprises select consortium blockchains as the infrastructure for their busi-
ness systems [1]. Although consortium blockchains offer secure, efficient, and
transparent data exchange, it also brings new challenges to the government’s
implementation of industry supervision.

The current market relies on a centralized supervision mechanism to man-
age and oversee the behavior of all parties involved. However, it does not
work for decentralized transaction models like consortium blockchains. With
numerous consortium blockchains using different implementation technologies,
the centralized supervision model struggles to implement large-scale supervi-
sion on heterogeneous blockchains. Aiming at this issue, researchers propose a
distributed supervision architecture of consortium blockchain. One approach is
to use another consortium blockchain to supervise the consortium blockchains,
known as ‘governing the chain by chain’. The idea is for supervisory organiza-
tions to deploy a supervision chain and use cross-chain technology to implement
supervision of business chains. However, most existing cross-chain approaches
focus on the atomic token exchange across blockchains [2]. They lack support
for data element circulation among consortium blockchains and a design specif-
ically for supervision scenarios.

Applying cross-chain technology to supervision scenarios in consortium
chains faces two main challenges. On the one hand, a business chain may be
subject to supervision by multiple supervision chains, and a supervision chain
may also supervise multiple business chains. This many-to-many supervisory
relationship can lead to excessive coupling and overlapping demands between
chains, increasing system complexity and repetitive cross-chain overhead. On
the other hand, in the process of cross-chain interaction, the third party par-
ticipating in the cross-chain makes it difficult to guarantee the authenticity of
data, increasing the risk of data tampering or forgery. It may bring incorrect
information to the supervisor and affect the supervision results.

To address the challenges, we propose a cross-chain supervision scheme called
SCOPE. SCOPE contributes to the following three aspects:

• To deal with the complex and dynamic consortium chain cross-chain super-
vision scenario, we propose a publish-subscribe supervision architecture. A
relay chain is deployed as a proxy to realize the automated data inspection
between supervision and business chains. Additionally, we build an oracle
network to connect other consortium chains in a pluggable manner, reducing
interchain coupling in a large scale scenario. (In Sect. 3)

• To validate data authenticity off-chain, we propose an off-chain data authen-
ticity verification method. Oracle nodes use an RSA weighted threshold sig-
nature to verify the authenticity of data and reduce the impact of malicious
nodes in the verification process by reducing the weight of malicious nodes.
Besides, we propose a reputation evaluation method based on the EigenTrust
algorithm for weight settings. By calculating the global trust value of each
node based on its behavior, we can reflect its credibility and monitor for
malicious activity. (In Sect. 4)

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 555

• To test SCOPE, we build a proof-of-concept prototype and conduct tests
using Hyperledger Fabric. Results show that SCOPE has low cross-chain
latency and good scalability. Additionally, in the untrusted off-chain envi-
ronment, SCOPE’s weighted threshold signature has a higher success rate for
data authenticity verification. Thus, it can monitor malicious behavior and
reduce its impact on cross-chain transmission. (In Sect. 5)

2 Related Work

In this section, we introduce previous work from two aspects: cross-chain oracles
and publish-subscribe schemes using blockchain.

2.1 Cross-Chain Oracles

The blockchain is an enclosed system where interactions are limited to the data
available on it [3]. The blockchain oracles connect the world to the blockchain by
combining smart contracts implemented in the form of application programming
interfaces (API) and off-chain components for serving data requests by other
contracts [4]. Multiple academic and industry research works implemented trust
models for blockchain oracles.

Research on oracles has been ongoing in the industry, with a primary focus on
public blockchains. Provable, previously known as Oraclize, is a well-established
oracle scheme that employs a proof of authenticity file to authenticate on-chain
data using a single oracle. The proof of authenticity can be built on various
technologies such as audi‘le virtual machine and trusted execution environment
(TEE). However, centralized oracles come with risks, including single-point fail-
ures and data monopolies. To mitigate these risks, decentralized oracles use a
consensus mechanism to deliver information to smart contracts via multiple ora-
cle nodes. Chainlink [5] and DOS Network are two well-established decentralized
oracle schemes. Chainlink is a decentralized oracle network where every oracle
is a node, with on-chain and off-chain components. DOS Network is a scalable
layer 2 protocol that provides decentralized data feeds and verifiable compu-
tation for blockchains, using technologies such as verifiable random functions
and non-interactive and deterministic threshold signatures to achieve consensus
among clients. Additionally, Ares Protocol is a decentralized oracle in the Polka-
dot ecosystem that uses the Substrate framework to validate oracle data on-chain
by means of challengers and reputation committees, achieving data finality.

In academia, the authors of [6] propose a cross-chain scheme for IoT data
management using oracles to integrate multiple blockchains into one platform.
However, using notary nodes as shared nodes between the source and target
chains increases the system’s coupling. The authors of [7] propose a cross-chain
migration scheme that uses oracles for data transmission and validation between
heterogeneous chains. This paper lacks a detailed discussion of the implementa-
tion mechanism of the oracles and does not experimentally validate the feasibility

556 Y. Xu et al.

and effectiveness of the scheme. In [8], a voting-based blockchain interoperabil-
ity oracle mechanism for public chains is proposed, which may carry the risk of
unfair voting results. In [9], the authors propose CCIO, a scheme for achieving
cross-chain interoperability among consortium chains, but does not address trust
issues related to oracles, especially in cross-chain data exchange and sharing.

Existing decentralized oracle schemes for cross-chain data exchange have
some limitations. Some require token incentives, which may not be suitable for
consortium chains. Random selection of oracle nodes may also result in latency
due to poor service quality or heavy workloads. As a result, these schemes cannot
be well applied to cross-chain supervision in consortium chains. Table 1 provides
a comparison of current blockchain oracle schemes.

Table 1. Comparison of cross-chain oracle schemes

Domain Oracle
scheme

Decentralized No
tokens
issued

Reputation
Mechanism

Support for
Consortium
Blockchain

Blockchain
Agnostica

Trust Model Design
modelb

Supervision
Scenario

Industry Provable � � � � � Authenticity Proof Req/Res �

ChainLink � � � � � A Reputation-based Voting System Req/Res �

Dos
Network

� � � � � VRF & Threshold Signature Req/Res �

Ares
Protocol

� � � � � Challenger & Arbitration Counsel Model Req/Res �

Paper [6] � � � � � Notary Mechanism Req/Res �

[7] � � � � � - Req/Res �

[8] � � � � � Threshold Signature Req/Res �

[9] � � � � � Notary Relay Req/Res �

Our scheme SCOPE � � � � � Weighted Threshold Signature Pub/Sub �
aBlockchain Agnostic means that the scheme can be compatible with a variety of dif-
ferent blockchain systems without requiring major modifications or adaptive changes.
bReq/Res represents the request-response model and Pub/Sub represents the publish-
subscribe model.

2.2 Publish-Subscribe Schemes Using Blockchain

The Pub-Sub paradigm is a practical way to share data in distributed systems, as
it separates the publisher and subscriber entities [10]. This approach reduces data
redundancy and improves resource utilization compared to the request-response
paradigm. Recently, scholars have been exploring how blockchain technology can
enhance the publish-subscribe system. However, current research mainly focuses
on applying this technology in areas like IoT, supply chain, multi-tenant edge
cloud, and digital trading [11]. There’s still limited attention given to cross-chain
scenarios based on blockchain technology.

HyperPubSub [12] is a Hyperledger Fabric-based publish-subscribe system
that is focused on digital asset trading. Its topic matching and management are
implemented through chaincode, thereby preventing delivery failures and slow-
downs. Trinity [13] is a distributed publish-subscribe system that uses blockchain
technology for fault tolerance, message ordering, and immutable storage. It con-
sists of a blockchain network, proxies, and publish-subscribe clients, with the
client operating the service and the proxy facilitating communication with the
blockchain. In [14], the proposal suggests a smart contract system that uses a
vehicle blockchain to supervise a safety publish-subscribe process for autonomous

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 557

vehicles, preventing false publication, refusal to forward, and refusal to pay.
The authors of [11] propose a publish-subscribe architecture that uses agent
blockchain to create compatibility between consortium chains. Smart contracts
implement a connector that enables the blockchain to interact with different
chains. The prototype system using Hyperledger Fabric and Hyperledger Besu
was tested successfully, but there are bottlenecks in data transmission and slow
on-chain smart contract processing time.

3 Design of SCOPE

In this section, we describe SCOPE’s architecture, entities, and the on-chain and
off-chain components of the oracle for cross-chain supervision. We also summa-
rize the complete cross-chain supervision process using the SCOPE architecture.

3.1 Architecture of SCOPE

Figure 1 illustrates the SCOPE architecture, which comprises consortium chains,
oracle nodes, and Inter Planetary File System (IPFS) nodes, working together
to enable cross-chain data supervision. SCOPE is divided into three layers: the
business layer, the supervision layer, and the permission layer, which are con-
nected through the oracle network. The business layer consists of multiple busi-
ness chains, the supervision layer consists of multiple supervision chains, and the
permission layer consists of a permission chain and a private IPFS.

Fig. 1. SCOPE architecture diagram

The entities within the architecture include:
Business chain (BC): A consortium chain that jointly records enterprise orga-

nizational business data. The oracle smart contract deployed on the chain is
responsible for interacting with the corresponding oracle nodes.

558 Y. Xu et al.

Supervision chain (SC): A consortium chain deployed by a consortium of
supervisory agencies. The supervision chain deploys different supervision smart
contracts to meet various supervision requirements. The supervision chain sub-
scribing to the specific service data on the business chains through the on-chain
oracle smart contract.

Permission chain (PC): The permission chain in SCOPE refers to the con-
sortium chain that manages and grants access permissions to entities that need
to access the cross-chain supervision system. The permission chain is deployed
by higher-level supervisory agencies. It can be seen as a notary role that imple-
ments functions such as data access control, behavior record, data addressing,
and identity access authentication through smart contracts.

Inter Planetary File System (IPFS): A private IPFS established by the
deployer of the permission chain, which is used to store encrypted cross-chain
data to ensure the security and privacy of cross-chain data. The cross-chain data
is stored in IPFS and its content identifier generated is stored in the permission
chain for access control.

Oracle network (ON): The oracle network in SCOPE is a peer-to-peer net-
work consisting of multiple oracle nodes deployed by each participant of SCOPE.
While the functions of forwarding can be implemented on the blockchain peers,
using a separate oracle network helps preserve the independence of the blockchain
and reduces modifications to the peers. To forward cross-chain data, it must go
through the oracle network, but not all oracle nodes are involved in the process
each time. Instead, a group of oracle nodes is randomly selected using the ellip-
tic curve verifiable random function (ECVRF) [15] and formed into an oracle
working group. The authenticity of the data is then verified using a weighted
threshold signature. The oracle network also includes a reputation evaluation
mechanism based on the EigenTrust algorithm [16]. This mechanism helps to
eliminate malicious node interference and enhances network stability.

The oracle network, which consists of oracle smart contracts and oracle nodes,
is a key component of cross-chain communication in SCOPE and is deployed
by various institutions, as shown in Fig. 2. In SCOPE, on-chain oracle smart

Fig. 2. The structure of oracle on-chain and off-chain.

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 559

contracts comprise EventObserver, DIDQuery, WGroup, and SigVerif. EventO-
bserver monitors on-chain events and transmits them to off-chain oracle nodes.
DIDQuery queries and stores DID-related data on the chain. WGroup manages
and records workgroup information for participating oracle nodes, while SigVerif
verifies signatures for data submitted by off-chain entities.

Off-chain oracle nodes consist of an adapter module, a network and repu-
tation management module, and a cryptographic module. The adapter module
acts as a client between on-chain oracle smart contracts and off-chain oracle
nodes, listening to on-chain events and converting them to JSON format. The
network module maintains the oracle network’s routing information and com-
municates with other oracle nodes, while the cryptographic module generates
threshold signature algorithm keys for the oracle working group.

3.2 Cross-Chain Process

The SCOPE cross-chain process consists of four phases: access permission, data
publishing, data subscription, and data push. The oracle network is responsible
for data forwarding and authenticity verification, as explained in Sect. 4. Figure 3
depicts the workflow of each phase, and Tab. 2 provides the notation used in this
section.

Access Permission Phase. In this phase, all entities must use decentralized
identifiers (DIDs) to represent their identity and store them in the permission
chain. By utilizing DIDs, the network can lessen its dependence on a trusted
third party and enhance its decentralized structure [17].

DID is a decentralized identifier used to represent the digital identity of
entities in SCOPE. It is defined as {did : SCOPE : type : Hash(Hash(SK))},
where did is a fixed representation, SCOPE is a method declaration indicating
that the DID is used for the SCOPE, type represents the entity type, and the
uniqueness of the DID is identified by double hashing the DID private key.

Doc is defined as {DID,PK,Auth, SP, T imestamp, SignSK(DID ‖ PK ‖
Auth ‖ SP ‖ Timestamp)}. Auth represents authorization information, SP
represents the server endpoint, Timestamp represents the timestamp, and a
signature generated using the private key is attached to the preceding content.

For instance, when a business chain BCi applies for admission, it first creates
DIDBCi and DocBCi. Other entities follow the same process.

To admit BCi into SCOPE, BCi creates a verifiable credential V CBCi
that

is signed by ConBCi
. BCi then sends the message {DIDBCi

,DocBCi
, V CBCi

}
to PC. If PC successfully verifies V CBCi

, it means that BCi’s identity has been
approved by the corresponding consortium. At this point, DIDBCi

and DocBCi

are uploaded to the PC.

Data Publishing Phase. The EventObserver smart contract on the busi-
ness chain BCi collects blockchain information, state database data, and event
responses from other smart contracts using an event listening mechanism. Oracle
node nodeBCi

m collects on-chain data at specified intervals.

560 Y. Xu et al.

To initiate cross-chain supervisory data exchange, BCi must first obtain pub-
lishing authorization and distribute keys with PC. nodeBCi

m sends a message to
PC containing DIDBCi

, nonce1, timestamp, and a signature generated using
the private key SKBCi

.
The DIDQuery smart contract on PC verifies V CBCi

to confirm BCi’s pub-
lishing permission. Next, nodePC

m sends a message encrypted with PKBCi
to

BCi containing the allowed publishing name and expiration time, along with
encrypted nonces using PKBCi

. nodeBCi
m then uses PKPC to verify the signa-

ture, decrypts the message using SKBCi
, and sends a message to PC, which con-

tains KBCi
, encrypted with PKPC and signed using SKBCi

. nodePC
m decrypts

the message, verifies the signature, and stores KBCi
on PC.

Fig. 3. SCOPE Cross-chain Workflow

After completing the publishing authorization and key distribution, nodeBCi
m

sends messages
{
DIDBCi

,KBCi

(
M ‖ SignPKBCi

(M)
)}

to each member node
in OWGPC . The nodes in OWGPC perform data authenticity verification. The
nodePC

i who first generates the threshold signature s attaches the message with
the signature s and sends it to the SigVerif smart contract on PC for verification.
After successful verification, the message is stored in IPFS by nodePC

i , and IPFS
returns a content identifier CIDM which is stored in PC.

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 561

Data Subscription Phase. Before subscribing to data, supervision chain SCj

needs to obtain V CBCi
of business chain BCi and verify whether it has super-

visory authority over BCi. SCj can subscribe to multiple BCs simultaneously.
Next, SCj and PC need to authorize subscription permissions and distribute
data keys, similar to the data publishing phase. PC’s oracle smart contract
DIDQuery is used to query V CSCj

, and the SubCheck function is called. If
SubCheck

(
V CBCi

, V CSCj

)
= true, SCj is authorized to subscribe to the data

of BCi. The Data subscription phase ends when SCj obtains KBCi
through key

distribution.

Data Push Phase. After data is published by BCi, nodePC
m queries supervision

relationships through the oracle smart contract DIDQuery. If SCj subscribes to
BCi data, nodePC

m obtains CIDM and requests the data from IPFS, then sends
a message to each node in OWGSCj

with the format of {DIDBCi
,KBCi

(M ||
SignPKBCi

(M))}. After verification, M is sent to the supervision smart contract
for parsing.

4 Cross-Chain Security Design

This section proposes solutions to security issues in the cross-chain data process
discussed in Sect. 3.

4.1 Oracle Working Group Election Method

To forward data, SCOPE uses ECVRF to select a subset of oracle nodes to form
an oracle working group. The group handles cross-chain data forwarding for the
corresponding consortium chain. ECVRF is used to ensure fairness and secu-
rity in node selection, allowing for node verification and detection of potential
malicious behavior.

The lifecycle of an oracle working group consists of three phases: formation,
selection, and dissolution.

Formation Phase. Upon completion of DID registration, each oracle node
generates a random number ri and a random number declaration provei using
its DID private key SKnodei

and the number of times it has joined a working
group WGcount, which are sent to the permission blockchain. Using ECVRF,
the permission blockchain verifies the validity of ri and assigns WGnum, the
current working group serial number, to the node. The node with the highest
global trust value is chosen as the main node of the working group, and the
WGroup contract records and returns the working group information {WGnum,
NodeDIDset, SignParams} to all nodes in the group, including the unique
identifier of the working group, the digital identity of all oracle nodes in the
group, and some parameters and signature private keys for threshold signing.

562 Y. Xu et al.

Selection Phase. When a consortium blockchain is connected to SCOPE for
the first time and the connection is successful, the deploying organization queries
the PC for the list of available working groups, and selects the first group for the
blockchain connection. In case the blockchain is already connected to an oracle
working group, the main node of the current working group queries the queue
of available working groups and selects a new group of nodes to act as oracle
nodes for processing the next cross-chain data forwarding task for the blockchain
connection.

Dissolution Phase. After cross-chain processing of supervisory data by the
blockchain is complete, the off-chain oracle node working group enters the dis-
solution phase. The main node of the working group sends a message to dissolve
the group to other oracle nodes within the group and waits to be assigned to
the new node working group.

4.2 Reputation Evaluation Method for Oracle Node

In SCOPE, the reliability of an oracle node’s signature on cross-chain data is
determined by its trust value. The trust value is based on the node’s global trust
value, which determines the weight of its signature in the weighted threshold sig-
nature scheme. To evaluate the trust value of the oracle network, we modify the
EigenTrust algorithm to make it suitable for the oracle network. The evaluation
of reputation involves six stages and takes place in a single trust evaluation cycle.
Following this, the threshold signature with weighting is reinitialized according
to the evaluation outcomes.

Initialization. At the beginning of the oracle network, a node’s global reputa-
tion value follows a uniform distribution and is initially set to T0 = 1

n , where n
is the number of initial nodes in the network. These nodes are considered to be
the most trustworthy and are added to the trusted node group P .

Grouping. When an oracle node nodei evaluates the trust of other nodes, it
divides them into two groups: WGNodes and notWGnodes. The former refers
to nodes that have been in the same working group as nodei, while the latter
refers to nodes that haven not.

Calculate Intra-group Trust Values. Nodes in the WGNodes group
exchange node signatures within the group, making signature correctness a cru-
cial factor in determining node trustworthiness.

To account for the effect of time, we introduce a time decay coefficient. By
introducing the time decay coefficient, the activity and participation of nodes
can be reflected. Newer interactions have greater weight because they are more
reflective of the current behavior and trustworthiness of the node. The trust
value of nodes that do not interact or participate in verification operations for a

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 563

long time will gradually decrease, because nodes that are inactive for a long
time may have security risks or unreliable behaviors. For a node nodei verifying
n signatures sent by nodej , we record the timestamps of each operation and
calculate the intra-group trust value DTij using Eq. 1, where wm is the weight
of the m-th operation, α is the time decay factor (typically 0.01), tm is the
timestamp of the m-th operation, and tnow is the current timestamp in UNIX
time.

To prevent false trust values among malicious nodes in the group, we nor-
malize the original trust values and use Eq. 2 to calculate the group trust value
Cij . If a node nodei has not verified signatures with any other nodes, it trusts
the first node that accessed the oracle network and considers it trustworthy.

DTij =
∑S

m=1 wm

N
−

∑F
m=1 wm

N

wm = e−α(tm−tnow)

(1)

Cij =

⎧
⎪⎨

⎪⎩

max(sij ,0)∑
j max(sij ,0) ,

∑
j max (sij , 0) �= 0

1
n ,

∑
j max (sij , 0) = 0 and node i ∈ P

0,
∑

j max (sij , 0) = 0 and node i /∈ P

(2)

Calculate Inter-group Trust Values. To calculate the inter-group trust value
Cik for the nodek in the notWGNodes group, we can ask the nodej that has
formed a working group with both nodei and nodek. The calculation of Cik is
based on Eq. 3, which takes into account the trust values between nodei and
nodej as well as between nodej and nodek.

Cik =
∑

j

CijCjk (3)

Calculate Global Trust Values. To obtain a trust value that accurately
represents the trust level of a node, the PC contract Wgroup calculates the
global trust value Ti of the node based on its local trust values. This is done
using Eq. 4, where T ′

j is the global trust value obtained by nodej in the previous
round of calculation. By taking full advantage of interactions among all oracle
nodes in the network and dynamically changing over time, the final global trust
value can weaken cheating behaviors of malicious nodes.

Ti =
∑

j

CjiT
′
j (4)

Reliability Ranking. The PC categorizes oracle nodes into highly trusted,
moderately trusted, and low trusted groups based on their global trusted values.
A threshold can be set for the classification of trusted groups, and when the

564 Y. Xu et al.

scenario requires high node credibility, a higher threshold is set to ensure that
only highly trusted node nodes are classified as high trusted groups. However, in
the specific experimental scenario, considering the number and distribution of
oracle network nodes and the trust relationship between nodes, it is necessary to
dynamically adjust the threshold to balance the credibility and the effectiveness
of the network. These groups are assigned different weights for weighted thresh-
old signatures. If a node has been in the low trust group for an extended period,
it may be a single point of failure or exhibit malicious behavior, and it should
be promptly removed from the oracle network.

4.3 Verification Method for Off-Chain Data Authenticity

Previous distributed oracle approaches use threshold signature schemes to sign
cross-chain data. One issue with their approaches is the lack of consideration for
variations in the reliability of each node. This can result in the obstruction of data
verification due to the presence of deceitful or compromised nodes. To address
this issue, SCOPE proposes an authenticity verification scheme for the oracle
network that utilizes the RSA weighted threshold signature scheme introduced
in [18]. This section outlines the four stages of the verification process.

Initialization Parameter. After a reputation evaluation cycle, PC initializes
and generates corresponding parameters for the oracle network. The oracle nodes
node1, node2, ..., noden are divided into three credibility sets based on their global
trust values, P = {Phigh, Pmid, Plow}. The weighted threshold access structure
Γ is represented by Eq. 5, where εi is the number of nodes in the current credi-
bility set, ωi is the weight assigned to the current credibility set. The signature
threshold t is determined based on the number of selected oracle working group
nodes and the required security strength for data transmission.

For the oracle network, we construct a (ω, t, n)-Asmuth-Bloom sequence [19]
m0,m1, ...,mn. We randomly choose two prime numbers p and q and calculate
N = pq. A public key e and a private key d are chosen from Z∗

φ(N) such that
ed ≡ 1 (mod φ (N)). The sequence m1,m2, ...,mn and the public key e are
publicly available within the oracle network, while m0 is saved by PC.

Γ =

(

S ∈ P ({high,mid, low}) |
∑

i∈S

εiωi ≥ t

)

(5)

Oracle Node Signature Generation. For a qualified oracle working group
S ∈ Γ, PC calculates y ≡ d + am0, where a is a positive integer. Each nodei

in the working group requests its node private key yi = y mod mi from PC and
then calculates its own node signature si using Eq. 6. Here, MS\{i} represents
the product of mj values for all j ∈ S except i, and M ′

S,i is the multiplicative
inverse of MS\{i} in Zmi

. Ms is defined as the product of all mi values for nodes
i ∈ S. The hash function processed cross-chain data to be signed is denoted
as M .

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 565

si = MyiM
′
S,iMS\{i} mod MS mod N (6)

Oracle Node Signature Verification. During the oracle node signature veri-
fication, group node nodei calculates public key vi using Eq. 7 and announces it,
along with generator gi, within the working group. Intermediate parameters M ′,
v′

i, zi, W , and U are then calculated using Eq. 8, where r ∈ {0, . . . , 2L(mi)+256},
and L(mi) represents the bit-length of mi. Nodei generates verification informa-
tion σi and Di of the node signature using Eq. 9. Finally, nodei broadcasts sig-
nature si and verification information (σi,Di) within the oracle working group.
Group node nodej verifies nodei’s signature using Eq. 10.

vi = gyi

i mod qi (7)

M ′ = MMS\{i}

v′
i = v

M ′
S,i mod qi

i

zi = yiM
′
S,i

W = M ′r mod N

U = gr
i mod qi

(8)

σi = h (M ′, gi, si, v
′
i,W,U)

Di = r + σizi ∈ Z
(9)

σi
?= h

(
M ′, gi, si, v

′
i,M

′Dis−σi
i mod N, gDi

i v
′−σi
i mod qi

)
(10)

Weighted Threshold Signature Generation and Verification. In the
working group, a node can combine incomplete signatures s̄ (see Eq. 11) upon
receiving a successful signature verification from another node. The incomplete
signature is then corrected using a correction factor λ and the public key of the
threshold signature e (see Eq. 12). Finally, a qualified threshold signature s is
calculated by Eq. 13, where the j value of the correction operation is denoted
by δ. The first node to calculate a qualified threshold signature s sends it to
the consortium chain that receives the cross-chain data. The consortium chain
verifies the signature using the SigVerif signature verification contract in Eq. 14,
and if the verification is successful, the cross-chain data is uploaded to the chain.

s =
∏

i∈S

si mod N (11)

(
s̄λj

)e
= s̄e (λe)j ?≡ M mod N (12)

s = sλδ mod N (13)

se ?≡ M mod N (14)

566 Y. Xu et al.

5 Experimental Evaluation

In this section, we evaluate cross-chain scalability, reputation management,
and cross-chain data authenticity verification. The experimental results do not
include the overhead of data supervisory processing on the supervision chain.

5.1 Experimental Environment

We tested SCOPE’s functionality by implementing the prototype system on
four computers. We used Hyperledger Fabric 2.2 to build four business chains,
four supervision chains, and a permission chain. The oracle network was built
with the libp2p protocol. Using docker, we deployed the consortium chain and
oracle network on machines with 16 GB RAM, AMD 4800H 2.9 GHz CPU, and
Ubuntu 22.04. The permission chain consists of four nodes, and we also deployed
a four-node IPFS private cluster using go-ipfs 0.7 in the same environment as
the permission chain.

5.2 Results Analysis

Scalability in Multi-chain Scenarios. We conducted 7 controlled experi-
ments using SCOPE to test its scalability. These experiments involved vary-
ing numbers of business and supervision chains, and we measured the average
latency from the publication of cross-chain data to the successful validation of
the supervision chain. For data forwarding, we used 3 oracle nodes and set the
business chain to generate 10,000 transactions within a single interval. Each
experiment was repeated three times, and the results are presented in Fig. 4.
The graph demonstrates how different combinations of business and supervision
chains impact cross-chain transmission latency. The x-axis represents the super-
vision relationship, with the former indicating the number of business chains and
the latter indicating the number of supervision chains.

Based on the experiment results, it was observed that the number of business
chains had a considerable effect on latency. As the number of business chains
increased, the data written to IPFS also increased, which has a slower writing
speed than its reading speed, causing a rise in latency. Furthermore, the increase
in the number of business chains alongside supervision chains led to an increase
in the amount of data handled by the oracle working group, resulting in network
congestion and ultimately leading to higher latency.

SCOPE’s publish-subscribe mode is more efficient than the relay chain
scheme’s request-response mode, as it significantly reduced cross-chain latency
which was proportional to the number of supervision chains. SCOPE achieved
this by broadcasting data to multiple subscribing chains, thus eliminating the
need for the business chain to publish data repeatedly. In contrast, the relay
chain scheme required each supervision chain to query the corresponding busi-
ness chain, which increased data duplication and verification time, especially
when there were many supervision chains.

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 567

Fig. 4. Average Latency for Different Supervision Relationships

Oracle Node Reputation Evaluation. In our second experiment, we aimed
to determine if the EigenTrust algorithm-based reputation mechanism could
identify some malicious activity in oracle nodes. We selected five oracle nodes,
which consisted of two highly trusted nodes, one moderately trusted node, and
two low trusted nodes (malicious nodes). Initially, each node’s trust value was
set to 0.2, which varied based on feedback from other nodes during information
exchange. We conducted twelve rounds of trust evaluation periods, where a ran-
domly chosen group of three nodes formed an oracle working group to forward
and verify the same cross-chain data. The outcome of Experiment 2 is illustrated
in Fig. 5.

During the experiment, we noticed that highly trusted nodes reached a high
global trust value after three evaluation cycles and remained stable at around 0.8.
Moderately trusted nodes stabilized at a high trust value of about 0.6 with each
passing evaluation round. However, low trusted nodes gradually decreased in
value before stabilizing at a low range of 0.1–0.2. Based on these observations, we
can conclude that the reputation mechanism based on the EigenTrust algorithm
works effectively in identifying malicious nodes and enhancing the security and
reliability of the oracle network.

Success Rate of Cross-Chain Data Authenticity Verification. In the
third experiment, we compared the effectiveness of RSA weighted threshold sig-
natures and BLS threshold signatures in verifying cross-chain data authenticity.
We conducted this experiment in a scenario where there are malicious nodes in
the oracle network. The oracle network consisted of 10 nodes, and the proportion
of malicious nodes varied from 10% to 40%. Each working group comprised three
oracle nodes, and we set the number of working groups to three. We conducted
three experiments for each proportion of malicious nodes and took the average
of the results. In each experiment, we published 100 rounds of time intervals,
and at the end of each interval, we send 1MB of cross-chain data.

For the experiment, we determined the threshold value t for the weighted
signature using Eq. 15. The equation took into account the number of nodes in
the oracle network (n), the number of nodes in the oracle working group (m),
and the weight of each node in the network (ωi). This approach ensured that

568 Y. Xu et al.

Fig. 5. Global Trust Scores of Oracle
Nodes

Fig. 6. Success Rate of Cross-Chain
Data Authenticity Verification with
Different Malicious Oracle Node Pro-
portions

the signature was only valid if the weighted average exceeded the working group
weight. As for the BLS signature, we adjusted the threshold to 2 in order to
adhere to the principle of achieving majority agreement. Check out the results
of Experiment 3 in Fig. 6.

The experimental results show that signature methods achieve a 100% success
rate in verifying data authenticity when the number of malicious nodes in the
oracle network is 10%. However, as the proportion of malicious nodes increases,
the BLS method experiences a 14% decrease in success rate, while the RSA
method only drops by 4%. This is because the BLS method relies on a random
selection of working groups, which can lead to an invalid group signature when
too many malicious nodes are present. In contrast, the RSA method evaluates the
reputation of nodes before the threshold signature, which reduces the weight of
malicious nodes and makes it harder for them to impact the signature process.
It’s important to note that we did not remove the malicious nodes from the
network to ensure fairness, but doing so would improve the success rate.

t =
∑i=1

n ωi

n
m (15)

6 Conclusion and Future Work

In this paper, we introduce the SCOPE cross-chain supervision scheme. Our
approach involves utilizing a distributed oracle network as the cross-chain relay
network. We employ an RSA weighted threshold signature scheme and an
EigenTrust algorithm-based reputation mechanism to ensure the authenticity of
cross-chain data while detecting off-chain malicious nodes. By using a publish-
subscribe model, cross-chain data is accessed, and behavior is traced through a
permission chain, allowing for effective supervision of cross-chain data and behav-
ior. To verify the authenticity of off-chain oracle network data, we developed a
prototype system based on Hyperledger Fabric. We also tested the system’s

SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains 569

scalability in multi-chain scenarios while identifying malicious nodes. Moving
forward, we aim to enhance the security and support for heterogeneous chains
of the oracle network, reduce the computational complexity of the data authen-
ticity verification algorithm, explore other authenticity verification algorithms
and reputation evaluation mechanisms, and consider technologies like attribute-
based access control mechanisms for cross-chain data protection.

Acknowledgements. This work was supported by the National Key R&D Program
of China (No.2020YFB1005500).

Appendix A

Table 2. Cross-chain mechanism symbol notation

Notations Description

DIDx DID identifier of x

Docx DID document of x

V Cx verifiable credential of x

SKx private key of x

PKx public key of x

Kx data encryption key of x

Signx(m) signature of m using x

Encx(m) encryption of m using x

Decx(m) decryption of m using x

H(m) hash digest of m

BCx business chain with id x

RCx supervision chain with id x

Conx deployment consortium of x

nodexi oracle node with id i for x

OWGx oracle working group of x

nodexm main oracle node for x

noncei i-th nonce

M cross-chain data

CIDm content identifier of m

References

1. Liu, S., Mu, T., Xu, S., He, G.: Research on cross-chain method based on dis-
tributed digital identity. In: Proceedings of the 2022 ACM 4th International Con-
ference on Blockchain Technology, pp. 59–73. ACM (2022)

570 Y. Xu et al.

2. Liu, Z., et al.: Hyperservice: interoperability and programmability across hetero-
geneous blockchains. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 549D–566. ACM (2019)

3. Pasdar, A., Dong, Z., Lee, Y.C.: Blockchain oracle design patterns. arXiv preprint
arXiv:2106.09349 (2021)

4. Pasdar, A., Lee, Y.C., Dong, Z.: Connect API with blockchain: a survey on
blockchain oracle implementation. ACM Comput. Surv. 55(10), 1–39 (2023)

5. Breidenbach, L., et al.: Chainlink 2.0: Next steps in the evolution of decentralized
oracle networks. Chainlink Labs 1, 1–136 (2021)

6. Jiang, Y., Wang, C., Wang, Y., Gao, L.: A cross-chain solution to integrating
multiple blockchains for IoT data management. Sensors 19(9), 2042 (2019)

7. Gao, Z., Li, H., Xiao, K., Wang, Q.: Cross-chain oracle based data migration mech-
anism in heterogeneous blockchains. In: Proceedings of the 2020 IEEE 40th Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 1263–1268.
IEEE (2020)

8. Sober, M., Scaffino, G., Spanring, C., Schulte, S.: A voting-based blockchain
interoperability oracle. In: 2021 IEEE International Conference on Blockchain
(Blockchain), pp. 160–169. IEEE (2021)

9. Lu, S., et al.: CCIO: a cross-chain interoperability approach for consortium
blockchains based on oracle. Sensors 23(4), 1864 (2023)

10. Agrawal, A., Choudhary, S., Bhatia, A., Tiwari, K.: Pub-SubMCS: a privacy-
preserving publish-subscribe and blockchain-based mobile crowdsensing frame-
work. Future Gener. Comput. Syst. (FGCS) 146, 234–249 (2023)

11. Ghaemi, S., Rouhani, S., Belchior, R., Cruz, R.S., Khazaei, H., Musilek, P.:
A pub-sub architecture to promote blockchain interoperability. arXiv preprint
arXiv:2101.12331 (2021)

12. Bu, G., Nguyen, T.S.L., Butucaru, M.P., Thai, K.L.: Hyperpubsub: blockchain
based publish/subscribe. In: Proceedings of the 2019 38th Symposium on Reliable
Distributed Systems (SRDS), pp. 366–3662. IEEE (2019)

13. Ramachandran, G.S., et al.: Trinity: a byzantine fault-tolerant distributed publish-
subscribe system with immutable blockchain-based persistence. In: Proceedings
of the 2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pp. 227–235. IEEE (2019)

14. Xing, R., Su, Z., Xu, Q., Benslimane, A.: Truck platooning aided secure pub-
lish/subscribe system based on smart contract in autonomous vehicular networks.
IEEE Trans. Veh. Technol. 70(1), 782–794 (2021)

15. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint
Archive (2017)

16. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th International
Conference on World Wide Web (WWW), pp. 640–651. ACM (2003)

17. Li, X., Jing, T., Li, R., Li, H., Wang, X., Shen, D.: Bdra: blockchain and decen-
tralized identifiers assisted secure registration and authentication for vanets. IEEE
Internet Things J. (IoTJ) 1–15 (2022)

18. Guo, C., Chang, C.C.: Proactive weighted threshold signature based on generalized
Chinese remainder theorem. J. Electron. Sci. Technol. 10(3), 250–255 (2012)

19. Iftene, S.: General secret sharing based on the Chinese remainder theorem with
applications in e-voting. Electron. Notes Theor. Comput. Sci. 186, 67–84 (2007)

http://arxiv.org/abs/2106.09349
http://arxiv.org/abs/2101.12331

Subsidy Bridge: Rewarding
Cross-Blockchain Relayers with Subsidy

Yifu Geng1, Bo Qin2(B), Qin Wang3, Wenchang Shi2, and Qianhong Wu1

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{gengyifu,qianhong.wu}@buaa.edu.cn

2 School of Information, Renmin University of China, Beijing, China
{bo.qin,wenchang}@ruc.edu.cn

3 CSIRO Data61, Syndey, Australia

Abstract. Cross-chain technology aims to enable interoperability
between isolated blockchains. However, existing cross-chain solutions
cannot achieve both decentralization and incentive compatibility. In the
paper, we introduce Subsidy Bridge, a general and decentralized relay
scheme with special incentive design similar to Bitcoin mining. In Sub-
sidy Bridge, target chain carries out cross-chain validation relying on
relayers submitting new block headers of source chain, while honest
relayers obtain basic subsidy from target chain and transaction fee from
cross-chain users. The utility of honest relayers is always positive even
when users are temporarily inactive. Analysis results demonstrate that
our solution can provide decentralization, incentive compatibility, and
strong security.

Keywords: Cross-chain · Relay scheme · Incentive design

1 Introduction

Introduced by Nakamoto [24], blockchain is a decentralized and safe ledger sup-
ported by consensus, cryptography, and game theory. Blockchain technology
has grown vigorously and been widely used in many fields such as finance,
supply chain management, healthcare, and e-invoice. However, blockchains are
separated from each other and eventually form information islands because
each blockchain has adopted different data structures, consensus mechanisms,
and cryptographic algorithms for different scenarios. Fortunately, cross-chain
technology is one of the promising solutions to fill the gap of heterogeneous
blockchains, with the aim to make blockchains interoperable.

Interoperability [8], one of the essential features of blockchains, is proposed
along with cross-chain technology, which means that users on one blockchain
can freely operates on another blockchain. For example, Alice swaps her assets
on chain A for assets on chain B with Bob [14], or executes DApps across het-
erogeneous blockchains [21].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 571–589, 2023.
https://doi.org/10.1007/978-981-99-7356-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_34&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_34

572 Y. Geng et al.

To achieve interoperability, one of the key points is to enable one blockchain,
denoted as target chain to read and validate data in other blockchains, denoted
as source chain. In detail, blockchain data can be transactions, events, or states.
There are two types of solutions to carry out cross-chain verification: off-chain
and on-chain. Off-chain solutions rely on a trusted party or committee to verify
cross-chain data off-chain. This causes the loss of decentralization. In on-chain
solutions such as relay schemes, the native rules of cross-chain verification are
formatted into a smart contract called relay contract. Relying on relayers to
continuously submit new block headers of source chain to relay contract, target
chain maintains a shadow ledger of source chain and accordingly obtains the
capability of transaction cross-chain verification. Thanking to carrying out the
native verification by on-chain contract, relay schemes are the most decentralized
solution among all cross-chain solutions.

The main challenge of relay schemes is their incentive design. Existing relay
schemes rely on relayers continuously submitting block headers from source chain
to target chain. The decentralization is ensured because all data is public on tar-
get chain. However, the costs of on-chain verification are afforded by relayers and
their only incomes are limited to transaction fees from cross-chain users. Relay-
ers obtain positive rewards only when the cross-chain users are extremely active.
While usually, only a few source headers contain the cross-chain requests. In this
situation, rational relayers will stop relaying, causing a huge loss of decentral-
ization and security. Therefore, relay users will quit, and eventually, no relayers
or users remain in the systems.

Contributions. To address above challenge, in this paper, we proposed a gen-
eral and decentralized relay with the relayer subsidy named Subsidy Bridge (cf.
Fig. 1). In Subsidy Bridge, the native rules of source chain are transformed to the
relay contract on target chain and then relayers send headers of new source blocks
to the relay contract. Relayers who submit valid source headers will obtain basic
rewards as relayer subsidy along with transaction fees from relay users, which
is similar to the process of mining subsidy in Bitcoin. In addition, through a
rigorous analysis and comparison, we analyze the economy and security features
of our proposed solutions and compare them with existing mainstream schemes
in terms of performance. Here, the contributions are briefly concluded as follows:

Fig. 1. Subsidy Bridge Model

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 573

– We propose a general and decentralized relay scheme between heterogeneous
blockchains where target chain maintains a light client of source chain on
smart contract with the help of relayers and carries out cross-chain verification
on-chain.

– We propose an incentive design for our relay, where target chain issues extra
tokens to reward cross-chain relayers with subsidy. Relayers will always get
positive rewards even under the condition cross-chain users are not active.

– We give comprehensive analyses of Subsidy Bridge from the views of economic
incentive and security. Analysis results demonstrate that Subsidy Bridge can
provide decentralization, incentive compatibility, and strong security. We fur-
ther compare with several leading projects and indicate that our solution is
satisfactory for wide adoption, especially for heterogeneous blockchain sys-
tems.

Paper Organization. Firstly, we provide preliminaries in Sect. 2. Secondly, we
separately describe the relay framework (Sect. 3) and incentive design (Sect. 4) of
Subsidy Bridge. Then we evaluate Subsidy Bridge with regard to incentive and
compare it with existing relay schemes and multi-blockchain systems in Sect. 5.
Section 6 provides related studies. Finally, Sect. 7 concludes this work.

2 Preliminaries

2.1 Blockchain Model

A blockchain, denoted by C, is a sequence of blocks that are connected by
hash. A blockchain is generally viewed as a transaction-based state machine. The
state includes information such as addresses, token values, and scripts. The state
transition assists to complete the predefined logic and execution, recording the
updated state on-chain. These states are structured in a sequence of transactions
and form a persistent ledger. Meanwhile, consensus mechanisms are critical to
guaranteeing that each honest participant stores the same replication of state
or ledger. Here, a consensus protocol generally consists of a triple of algorithms
[12] as follows:

Chain validation. The validate algorithm performs a validation of the struc-
tural properties of a given chain C. On input a chain Cn = Cn−1||Bn,
the algorithm runs BlockV alidation(Bn) to validate top block and runs
BlockConnection(Cn−1, Bn) to check whether block Bn can be added to chain
Cn−1. Then, the algorithm recursively checks the validation of the chain Cn−1

and outputs 1 if all checks are passed. Here, the chain Cn begins with genesis
block G.
Main chain selection. The select algorithm is used to find the best possible chain
when given a set of chains. On inputting a set of chains {C1, C2, · · · , Ck}, the
algorithm outputs the best chain as Cmain.
Chain propagation. The propagate algorithm is responsible for the main task of
consensus protocols. It takes as input the main chain Cn−1 and attempts to
generate a new block Bn for the growth of the chain via consensus rules such as
proof-of-work [24] or proof-of-stake [19].

574 Y. Geng et al.

2.2 Light Client Protocol

Full nodes are important for an operating blockchain as they continuously store
the attached transactions and blockchain data. However, the heavy workload
are not conducive to user growth. Light nodes (or light clients) are introduced
for ease of usability. The light client protocol of Bitcoin is known as Simplified
Payment Verification (SPV, see Fig. 2). A typical block consists of two parts:
header and body. Transactions in block body are organized in a Merkle tree
[23], a data structure in which each node uses hash pointers to referring its child
nodes. Then, the Merkle root is recorded in block header with significant con-
sensus information. Light nodes only save all block headers and verify whether a
particular transaction has been included in blocks by leveraging Merkle proofs.
Such a proof consists of all tree nodes that make up a path from the transaction
(leaf) up to the root node, and can be retrieved from full nodes. When retrieving
a record, the light node recalculates the hashes along the path from the leaf up to
the root node. If the final hash matches the Merkle root in the block header, the
transaction within the corresponding block is successfully verified. Bitcoin light
nodes thus are able to verify the existence of transactions (e.g., payments) while
only consuming a fraction of the space as they do not need to store the trans-
action history. In other blockchains, light client protocols are designed based on
the combination of SPV, Merkle Tree, signature, and block header.

Fig. 2. Light Node Design in Bitcoin

2.3 The Prover and Verifier Model

Relay contract is based on the prover-verifier model of NIPoPoW [18]. The
provers aim to convince each verifier of some events in a remote chain (e.g. a
given transaction has taken place). The provers produce proofs based on their
local chains and send them to the verifier. The verifier receives a set of proofs,
and at least one of them is honestly generated. The verifier compares these
proofs and accepts the honest proof. The security of a verifier is to ensure that
the accepted proof must be generated honestly.

The NIPoPoW model is based on the backbone model [12] for proof-of-work
protocols under the synchronous setting. The synchronous setting refers that all
proofs are created by provers at the same round and the verifier will receive
these proofs at the next round. Relay schemes follow the synchronous setting
and extend the consensus of source chains (not limited to proof-of-work).

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 575

3 Subsidy Bridge Framework

This section introduces a general relay between heterogeneous blockchains, which
is the framework of Subsidy Bridge.

3.1 Design Goal

The main design goals of Subsidy Bridge are concluded as follows:

– Native validation. Data from the source chain can be correctly verified by tar-
get chain on-chain with the help of relay contract. The cross-chain validation
rule is close to the native rule of the source chain. Generally, the headers of
new blocks are submitted to the relay contract by relayers. In addition, forks
that happen in the source chain should also be relayed to the target chain,
and the main chain is selected according to the relay contract.

– Independence. Our relay scheme works without relying on external parties.
Any state required for bootstrapping the chain relay can be publicly veri-
fied by its users. In addition, the trust should be derived solely from native
consensus of source chain.

– Performance. Executing the chain relay client should be efficient in terms of
both computation and memory usage. Updating transactions should not be
beyond the execution limits of the target chain.

– Incentive compatibility. Relayers should obtain positive rewards by submitting
block headers. Thus rational relayers will keep relaying to guarantee that the
state of the relay contract will tightly follow the source chain.

We tend to design the infrastructure of cross-chain system. The correctness of
cross-chain verification is ensured by the native rules provided by source chain.
The atomicity property is ensured by application-level cross-chain protocol based
on our proposed relay.

3.2 Basic Relay Design

Entities. Two types of blockchains are connected by our subsidy bridge, sepa-
rately denoted as target chain and source chain. In particular, target chain must
support smart contract. With the help of Subsidy Bridge, data from the source
chain can be validated by the target chain, whereas reverse validation (from the
target chain to the source chain) is impossible. Subsidy Bridge is a unidirectional
relay. As shown in Fig. 1, our relay consists of a relay contract running on target
blockchain, full nodes running on source chain, relay clients and user clients
running off-chain. We also provide the main roles who participate in Subsidy
Bridge as follows.

– Relay developers. Relay developers develop relay contract based on light node
protocol of source chain and deploy it on target chain. They also need develop

576 Y. Geng et al.

and open the relay clients. Besides, if rules on source chain changes, relay
contract and clients must be updated simultaneously.

– Relayers. Relayers keeps running relay clients and full nodes of source chain.
They detect new blocks of source chain with full nodes and submit data such
as block headers of source chain to relay contract so that relay contract saves
a shadow of source chain ledger or state.

– Relay users. Relay users runs user clients and send raw transaction of source
chain with significant proof to relay contract, and pay fee for relayers.

Protocol. The basic relay design of Subsidy Bridge except incentive contains
four major stages: bridge bootstrap, shadow ledger maintenance, cross-chain ver-
ification and bridge updating.

Bridge Bootstrap. Relay developers develop the relay contract and off-chain
clients based on rules of source chain. The relay contract is designed to maintain
a shadow of the source chain ledger, defined as SL. Generally, SL is a tree of
block headers containing the source main chain and concurrent forks. Specifically,
the relay contract maintains SL by following three algorithms (details refer to
Algorithm 1):

– SetGenesis(SLInit, headerG, sign) → SL0/0. The contract creator (a.k.a.
relay developers) sets the initial state by sending the header of the gene-
sis block headerG with his signature sig to the function SetGenesis. Genesis
header headerG will be saved in an empty shadow ledger SLInit and the
function outputs new state of shadow ledger SL0 if sig is matched with the
contract creator. Otherwise, SetGenesis outputs 0.

– SubmitHeader(SLi, headerB) → SLi+1/0. The algorithm SubmitHeader firstly
checks whether a block header headerB should be stored into SL according
to the chain validation rule of source chain consensus. If headerB is valid,
SubmitHeader stores headerB in shadow ledger SLi with running the main
chain selection rule to adjust the main shadow chain and outputs new state
SLi+1.

– VerifyTx(SLi, tx, indexheader, proof) → 1/0. For (tx, indexheader, proof) sub-
mitted by relay users, VerifyTx searches the txRoot stored in SLi indexed by
indexheader and checks with proof whether the received tx is a leaf node of
transaction tree attached in txRoot. VerifyTx output 1 if all checks are passed
and the headers are confirmed by the main shadow chain of SLi.

Then, developers deploy the relay contract on the target chain. We identify
two special cases during the deployment:

– Source chain does not provide light client protocol. Developing relay contract
from full node protocols is theoretically feasible. In practice, the contract
requires complicated computational power that will be rejected by rational
miners. The solution is to carry out cross-chain verification with the help of
multi-signature.

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 577

– The light client protocol running on-chain is still heavy. In this situation,
balance between costs and decentralization should be carefully considered. For
example, if relay contract fully copies rules of header verification in Ethereum,
target chain can not afford costs of running Ethash on-chain. The solution
is to modify the logic of Ethash verification to low down the cost, which is
inspired by SmartPool [22].

Besides, the security of relay contract is affected by which source block header
is firstly submitted to relay contract in bootstrap stage. If the source chain is
Bitcoin, any block header on main chain (not limited to genesis block header) can
start the relay contract. While in some source chains depending on checkpoint,
it is better to relay the latest checkpoint as the first block. Because in these
chains, the security of light client is influenced by whether the node is online or
offline.

Shadow Ledger Maintenance. After relay contract being deployed on target
chain, any full node of source chain can run the relay client and accordingly
becomes a relayer. Relayers keep monitoring the network of the source chain.
When new block Bi = (headeri, bodyi) with index i is generated, relayers submit
the block header headeri to the relay contract via a transaction. Here, only block
headers need to be submitted because the light nodes of the source chain only
store headers for fast synchronization. On receiving block headers from relayers,
relay contract runs the algorithm SubmitHeader to check the submitted header
and updates shadow ledger SL.

Cross-Chain Verification. Once a block header headeri is submitted to the
relay contract, relay users can submit the raw transaction of source chain. The
transaction tx contains the header index indexheader and the Merkle proof proof .
Then, the relay contract runs algorithm VerifyTx to check and accepts tx if the
algorithm outputs true.

Bridge Updating. When soft forks or hard forks happen in the source chain,
relay developers must synchronously update the relay contract and client. To
update the relay contract, relay developers needs to sign and submit a new
transaction, which is similar to the bootstrap stage. To update the relay client,
relay developers only needs to open the updated version. Even if every procedure
runs well in the source chain, the relay client can still be updated at any time
for lower running cost. Different relayers may operate different versions of the
relay client, but their outputs can be all validated by the relay contract.

4 Incentive Design of Subsidy Bridge

In previous relay schemes, the costs of relay contract, namely gas, are afforded
by relayers. The only income of relayers is fee fee paid by relay users. Then, the
reward of relayers rrelayer can be calculated as rrelayer = fee−gas. Thus, if there
do not exist enough users (this means fee < gas), relayers will obtain negative
rewards by submitting block headers. In this case, rational relayers tend to stop

578 Y. Geng et al.

relaying and the shadow ledger stored in relay contract falls behind the ledger of
source chain. The slower relay further leads to a huge loss of users. Eventually,
no relayers or users remain in relay system. This may happen more likely in an
early period when initialing the system. Bitcoin addresses such issues by relying
on the miner subsidy. Block producers can afford the cost of proof-of-work and
obtain fees from transactions recorded in the block. Besides, block producers can
always obtain miner subsidy, namely 50 tokens at the early stage. With miner
subsidy, block producers can obtain positive rewards even if the block contains
no transaction. Therefore, block producers keep mining all the time.

4.1 Token Model

In Subsidy Bridge, target chain issues tokens and then allocates them to relayers
as the relayer subsidy and to block producers as block rewards. Specifically,
target chain issues tokens every epoch. For epoch with index i, the amount of
issued tokens is R = R(i). Token allocation is divided into two parts: the first
allocation and the second allocation. The first allocation refers to directly gaining
issued tokens from blockchains such as mining rewards in Bitcoin or relayer
subsidy in our design. While the second allocation refers to tokens transferred
across blockchain accounts such as transaction fees. We give the details here.

Token First Allocation. This part is the core of our incentive design. Unlike
existing cross-chain systems where only miners or block producers can obtain
issued tokens, our solution enables both miners and relayers to obtain rewards
with issued tokens. We suppose that target chain totally issues R = R(e) tokens
in the epoch e. All target block producers will obtain α · R while the relayers
can receive the rest (1−α) ·R. If ltb target blocks are generated in epoch e, each
block brings the producer

rtb =
α · R

ltb
. (1)

Similarly, if lsh source headers are relayed in epoch e, each header brings its
relayer

rsh =
(1 − α) · R

lsh
. (2)

Token Second Allocation. Here, we mainly discuss the design of transaction fee
in Subsidy Bridge. Three types of transactions related to Subsidy Bridge are
considered:.

– Transactions of Bridge Bootstrap or Updating. Relay developers submit this
type of transactions and do not need to pay any fee.

– Transactions of Shadow Ledger Maintenance. Relayers submit this type of
transactions and need to pay block producers the gas consumption of relay
contract.

– Transactions of Cross-chain Verification. Relay users submit this type of
transactions, along with paying block producers the gas consumption of relay
contract and paying relative relayers cross-chain fee. The price of cross-chain

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 579

fee is set by relay developers and usually equals to 1% of the total value with
help of price oracle.)

4.2 Extra Design Under Subsidy

Under above incentive design, relaying source block headers changes from burden
to temptation, which causes three new problems as following:

– How to treat honest relayers who submit the same block header at the same
time?

– How to treat a honest relayer who submits an orphan header?
– How to prevent free rider problem?

The first problem is noticed by designers of BTC Relay and ETH Relay. In
BTC Relay, when submitting a block header, relayers set the price of calling
(this block header). Finally, the relayer with lowest price will be recorded. While
ETH Relay proposes an idea that relayers with the same block header will share
the reward. To solve the first problem, we provide a cooperation design.

In cooperation design, nodes pledge to relay contract and register as a relayer.
All relayers who submit the latest source header within a limited time will share
subsidy and fee. Further, we hope each relayer pledges in a centralized rather
than decentralized way to prevent Sybil attack. If deposit of relayer i is di and
n relayers submit the header, the split of header reward (rsh + feecross) that
relayer i eventually, defined as wi, satisfies

wi =
d2i∑n
k=1 d2k

. (3)

Besides, if n relayers submit the same header, we set that they each pay gas
for validation header on-chain for convenience of analysis. While actually the gas
consumption of repeatedly validating a block header can be optimized.

As for the second problem, nearly all existing cross-chain schemes ask to
submit the confirmed source headers. In our design, block headers on both the
main chain and forks are valid according to the relay contract. Relayers of all
valid block headers must pay the gas but only that on main chain will bring
subsidy. On the one hand, the later the source header is submitted, the lower
the risk of relaying an orphan block header. On the other hand, the faster a
relayer submits, the more probably he is recorded by target chain. As a result,
there exist a trade-off for relayers about when to relay a source header after it is
produced in source chain. In some source chains such as Ethereum and Conflux
[20], orphan blocks may contains some reward or play a more important role
than Bitcoin. The design (only relaying main chain headers obtain subsidy) is
still reasonable for such source chains, because orphan headers are submitted as
significant evidence when relaying and confirming headers of main source chain.
The reward for orphan headers has been contained in the subsidy of main chain
headers. As a result, there is no need to set subsidies for forks.

580 Y. Geng et al.

The third problem is free riding problem. The problem refers to that a node
can obtain relayer subsidy by monitoring other relayers instead of running full
nodes of source chain. To prevent the attack, a commit mechanism must be
added to relay contract or we can utilize the anti-audit design of target chain (if
it exists).

5 Evaluation

This section evaluates Subsidy Bridge from perspectives of security and incen-
tive.

5.1 Security Analysis

For public blockchains, security normally refers to consistency (or persistence)
and liveness [12]. In Subsidy Bridge, source chain and target chain can use any
safe consensus protocols. The only two special requests are that target chain
support smart contract and source chain support a safe light client protocol.
Here, we will discuss the security influence among source chain, target chain,
and Subsidy Bridge.

Theorem 1. The security of Subsidy Bridge is guaranteed when the following
conditions hold:

– Consensus protocols in the target chain are safe.
– Consensus protocols in the source chain are safe.
– At least one honest full node of the source chain will join as the relayer.
– The set of relay developers is majority honest.

Theorem 1. When consensus of source chain is safe, light client satisfies safe
by interacting with at least one honest full node after trusted bootstrap. When
target chain is safe and relay developers are majority honest, Subsidy Bridge is
bootstrapped and contains native rules similar to light client of source chain.
When target chain is safe and at least one honest relayer exists, Subsidy Bridge
can receive source header from honest full node timely and satisfies safe. �

Though our security relies on that relay developers are majority honest which
is similar to the assumption of some off-chain cross-chain solutions, it does not
mean our design is centralized or weak decentralized. Relay developers mainly
verify the correctness of rules while the committee of off-chain cross-chain solu-
tions verifies the correctness of data. The decentralization of the process of val-
idating rules need blockchain government, which is our future work.

Theorem 2. The security of target chain will not be influenced by security inci-
dents occurring on the source chain under the assumption that the set of relay
developers is majority honest.

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 581

Theorem 2. When security incidents occurs, source chain does not meet its
security assumption and turns unsafe. When relay developers are majority hon-
est, they will stop Subsidy Bridge in time by process of bridge updating. There-
fore, security of target chain will not be influenced. �

We also hope the security of source chain is not influenced by target chain or
Subsidy Bridge like Theorem 2. Unfortunately, attackers can launch an attack
called Pay-To-Win [16] by deploying a bribing contract on target chain based
on bridge, which encourages double spend attack on source chain. To avoid this
attack, Subsidy requires relay developers to periodicity examine contracts calling
the relay contract.

5.2 Incentive Analysis

In this part, we will discuss Subsidy Bridge under the rational assumption instead
of honest assumption. We ignore influence of Byzantine block producers and
assume that all valid transactions from relayers can be timely recorded by target
chain. Because packing these transaction will bring block producers a positive
reward.

For relayers who submit new headers of source chain, the main expenditures
are running full nodes of source chain and gas consumption of relay contract.
In comparison, the incomes are the subsidy from target chain and cross-chain
fees from relay users. Subsidy Bridge hope to attract full nodes of source chain
join as relayers, which means the costs of running full nodes are irrelevant to the
incentive on the target chain.

We define rsh as relayer subsidy of submitting one source header in epoch e,
gas as the gas consumption of the relay contract while verifying one source
header, p as the probability of a submitted block header that is eventually
included in the main source chain, and feecross as the fee paid by cross-chain
users. Then, the utility of relayer i is:

ui = wi · p · (rsh + feecross) − gas. (4)

Two of the most popular incentive attacks on blockchains are Sybil Attack
[10] and Double Spend Attack. We also consider these two attacks on Subsidy
Bridge.

Incentive Compatibility Under Sybil Attack. We define Sybil Attack Strat-
egy as follows: The attacker splits his deposit and acts as multi honest relayers,
so that he can improve the utility or consume system resources.

Theorem 3. Attackers never improve their utility by launching a Sybil attack.

Theorem 3. Suppose relayer j with deposit dj can get wj = d2
j

d2
j+

∑
k �=j d2

k
split

initially and his utility is uj = wj · p · (rsh + feecross)− gas. If relayer j launches

582 Y. Geng et al.

a Sybil attack instead and separates his deposit into d′
j,1 and d′

j,2. The total split
turns

w′
j = w′

j,1 + w′
j,2 =

d′2
j,1 + d′2

j,2

d′2
j,1 + d′2

j,2 +
∑

k �=j d2k
(5)

while the total utility turns

u′
j = u′

j,1 + u′
j,2 = w′

j · p · (rsh + feecross) − 2 · gas (6)

The reward decline (if the utility is positive) because

w′
j = (1 −

∑
k �=j d2k

d′2
j,1 + d′2

j,2 +
∑

k �=j d2k
) ≤ wj (7)

u′
j ≤ wj · p · (rsh + feecross) − 2 · gas < uj (8)

Thus, Subsidy Bridge is safe under Sybil attack. �

Incentive Compatibility Under Double Spend Attack. We define Double
Spend Attack Strategy as follows: The attacker creates a fork of source chain
and relays to Subsidy Bridge. If the attack successes, unreal transactions on
source chain will be admitted by Subsidy Bridge and cross-chain users lose their
assets. (We assume source chain is safe and attack only successes on Subsidy
Bridge.) Here we follow the BAR-model [6] and split participated relayers into
three groups:

– Altruistic or Fully Honest Relayers: Relayers immediately relay headers
of new source blocks to target chain. In this situation, the probability p equals
1 − o, where o is the orphan rate of the source chain.

– Rational or Partially Honest Relayers: Relayers wait t time when finding
new source header and relay it after the utility is greater than 0 because the
probability p either grows to 1 or reduces to 0 after following blocks are
broadcast in source chain network. Rational relayers quit if the utility of
relaying a confirmed source header is negative.

– Byzantine Relayers or Attackers Attackers may deviate from the protocol
and relay a fork of source chain. If the attack successes, unreal transactions
on source chain will be admitted by Subsidy Bridge and cross-chain users lose
their assets.

The Subsidy Bridge game G is formally defined as (P,A,U). P = {1, 2} is a
set of two players, player indexed by 1 is rational and the other is the attacker.
(If there exists at least one altruistic relayer, the attackers will never success
and our design is safe.) A = {A1, A2} is the action set for two players. We have
A1 = {H,Q} and A2 = {H,A}, where H, Q, and A represent (i) Relay honestly,
(ii) Quit, and (iii) Attack by relaying a fork.(Attackers can actually choose the
the action quit, we omit due to space constraints and this will not affect the
conclusion.) U = {u1, u2} is the utility set for two players. The utilities of two

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 583

players under different actions are shown in Table 1. Here we mainly discuss the
worst case that no user is alive. If at least one player adopts the honest action,
the expect reward of the submitted source header is defined as esh which satisfied
esh = p · rsh ≥ (1− o) · rsh. The expect reward is allocated according to deposits
of participants, and the allocation ratios are wR and wA if both relay honestly.
Under double spend attack action with the cost of generating a fork defined as
c, the attacker (player 2) only successes and obtains reward eA when rational
relayer (player 1) quits.

Table 1. Matrix form of Subsidy Bridge game G.

H A

H wR · esh − gas, wA · esh − gas esh − gas,−gas− c

Q 0, esh − gas 0, eA − gas− c

Theorem 4. For wR · rsh > gas, strategy profile (H,H) is a Nash equilibrium
of Subsidy Bridge Game G.

Theorem 4. When wR · rsh > gas, the utility of rational relayer under action
H is always greater than action Q. And if rational relayer chooses H, the best
response of attacker is action H. So (H,H) is a Nash equilibrium and the system
remains safe.

In detail, when wR · rsh > gas
(1−o) , player 1 is fully honest and relays immedi-

ately. When gas < wR · rsh < gas
(1−o) , player 1 is partially honest and relays with

delay. �

Theorem 5. For wR · rsh < gas and eA < esh + c, strategy profile (Q,H) is a
Nash equilibrium of Subsidy Bridge Game G.

Theorem 5. When esh < gas, the utility of rational relayers under action Q is
always greater than action H. But in this situation, attacker still tends to relay
honestly(or quit) because action A does not improve the utility. So (Q,H) is a
Nash equilibrium and the system remains safe. �

Further, even when wR · rsh < gas and eA > esh + c, it does not mean
Subsidy Bridge is unsafe. Though strategy profile (Q,A) is the Nash equilibrium
in Table 1. The victim of the attack tends to relay honestly with extra motivation
and the system is mostly safe.

5.3 Compare with Other Work

In this part, we compare our solution with existing projects, including BTC
Relay, ETH Relay, Polkadot and Cosmos.

Compare with BTC Relay and ETH Relay. We firstly compare Subsidy Bridge
with BTC Relay and ETH Relay (cf. Table 2), two of the most representative

584 Y. Geng et al.

relay schemes. As the first relay scheme, BTC Relay constructs relay contract
based on Bitcoin SPV. To make our scheme general, relay contract is developed
based on light client protocol of the source chain and the deployment process is
also considered. The limitation in terms of its incentive design in BTC Relay lies
in that relayers cannot afford the costs of running Bitcoin SPV on Ethereum. In
contrast, relayers in Subsidy Bridge are paid with basic subsidy and fee. Rational
relayers are motivated to conduct the relay. This enables users to trade across
different chains all the time.

ETH Relay proposes the validation-on-demand for relay schemes on
Ethereum-based blockchains. In ETH Relay, not every block header have to
be verified by the relay contract and thus the cost of relayers is reduced. In fact,
the idea of validation-on-demand can be adapted to other blockchains besides
Ethereum-based chains. However, ETH Relay suffers from the lack of cross-
chain users, and this will constrain the incentive of existing users and relayers.
In the near future work, we may add the validation-on-demand model to Subsidy
Bridge.

Table 2. Comparison of relay in Subsidy Bridge and related designs.

Relay Scheme Source Chain Validation Decentralized Lightweight Incentive Compatible

BTC Relay [1] Bitcoin Validate every header Yes Yes Only when users are active

ETH Relay [11] Ethereum Validate on demand Yes Yes Only when users are active

Subsidy Bridge Any chain with light node Validate every header Yes Yes Yes

Compare with Polkadot and Cosmos. We then compare Subsidy Bridge with
Polkadot and Cosmos (cf. Table 3), two of the most famous multi-blockchain
systems today. In Polkadot, data from parachains can be verified by relay chain
and users can interoperate on different parachains by trusting relay chain, sim-
ilar to the structure of ours. The difference is that the security of parachains
depends on relay chain in Polkadot whereas source chain in Subsidy Bridge is
independent of target chain. In detail, the finalization of blocks in parachains
needs participation of relay chain. Existing blockchains such as Bitcoin can join
Subsidy Bridge as a source chain, which is impractical in Polkadot. The differ-
ence happens because target chain objectively records ledger of source chains
whereas relay chain subjectively controls parachains.

Similarly in Cosmos, the system consists of one hub chain and many zone
chains. Hubs directly connect to the zone chain and zones are indirectly con-
nected with each other. Different from Polkadot, the zone is fully independent
of the hub. The hub, whose consensus is based on Tendermint. Bitcoin thereby
cannot join the Cosmos ecosystem as a zone either. The motivation of Polkadot
and Cosmos is to decrease the threshold of future blockchain developers. Rel-
atively, Subsidy Bridge enables interoperable transactions for users on existing
isolated blockchains as well as future independent blockchains.

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 585

5.4 Discussion Towards Costs

The incentive design in relay schemes encourages the actions of relaying and sub-
mitting cross-chain transactions. To incentive relaying, BTC Relay on Ethereum
only verifies the block header of Bitcoin instead of the full block to reduce relay
costs. Users who submit cross-chain transactions need to pay the fees for relayers
who relay block headers. To motivate cross-chain users, the price of cross-chain
fees are competed by relayers so that the fee remains low.

Inspired by BTC Relay, existing relay schemes mostly concentrate on the
cost reduction of relay contracts that are undertaken by relayers. Waterloo
[5] proposes a general way to mitigate high validation costs for Ethereum-
based blockchains. To resist ASIC, Ethereum introduces a memory-hard hash
function called Ethash [28], which makes natively validating block headers of
Ethereum-based blockchains on-chain extremely expensive. Based on SmartPool
[22], Waterloo asks relayers to submit Merkle Root and Merkle Proof generated
in the calculation process of Ethash as extra data along with headers. Then,
ETH Relay [11] employs a validation-on-demand pattern to further reduce costs,
which makes relay schemes on Ethereum-based blockchains feasible.

Another general approach for reducing relay costs is sacrificing decentral-
ization. Instead of introducing native light node rules, PeaceRelay [3] relies on
trusted, authorized clients to submit valid headers. With Merkle Roots con-
tained in block headers, the project verifies cross-chain transactions on the relay
contract.

Besides, zero-knowledge [7] is a potential method to lower the cost of block
header validation. Relay schemes based on zero knowledge for Bitcoin and other
Bitcoin-based blockchains are proposed in zkRelay [27] and Zendoo [13]. How-
ever, this approach can only be adapted to blockchains whose consensus can be
re-constructed with zero knowledge. It is uncertain whether this approach can
be leveraged for block headers of other blockchains.

For all above relays with decentralization, though cost of validating block
headers has been reduced to a lower level, they cannot work properly in one
special situation where there do not exist enough cross-chain users and relayers
only obtain negative utility because the total cross-chain fees are lower than
relay contract costs. In this situation, rational relayers tend to stop submitting
block headers and the ledger stored in relay contracts falls behind the real ledger
in the source chain network. And the slower relay further leads to the loss of
users. Eventually, no relayers or users remain in the relay system. This situation
happens more likely in an early period of relay systems.

Table 3. Comparison of Subsidy Bridge and related multi-chain designs.

System Chain For Cross-chain Verification Chain For Application External Chains

Name Consensus Name Independent Heterogeneous

Polkadot [4] Relay-chain NPoS+BABE Parachain No Yes Across Bridge

Cosmos [2] Hub Tendermint Zone Yes No Across Peg Zone

Subsidy Bridge Target Any secure consensus Source Yes Yes Native as Source

586 Y. Geng et al.

6 Related Work

This section provides related studies from two aspects: cross-chain and relay.

Cross-Chain Technology. Generally, there exist three types of methods to
achieve the blockchain interoperability [8,17,25]: notary, hash-lock, and relay.
In notary schemes [15], chain A learns events happening on chain B through
the valid signature of a trusted party or the multi-signature of a trusted union.
In hash-lock schemes [14], Alice and Bob lock their own assets with secrets
and then realize atomic cross-chain swap through timely exchanging secrets. In
relay schemes, target chain deploys a smart contract called relay contract with
similar capabilities to light client of source chain. With the help of relay contract,
target chain can natively validate messages from source chain. Among the above
three types, notary schemes are more centralized while hash-lock schemes are
restricted by the asset cross-chain transfer scenarios. Thus, relay schemes are
the most potential solution to realize interoperability in a decentralized way. We
give more details of relay schemes.

Relay Schemes. BTC Relay [1] was the first relay solution to be operational. It
deploys a smart contract, based on Bitcoin SPV, on Ethereum and allows relay-
ing block headers from Bitcoin to Ethereum. XCLAIM proposes a mechanism
for exchanging assets based on relay and utilizes an enhanced version of BTC
Relay. Inspired by BTC Relay, Waterloo [5] attempts to provide a bi-directional
relay between Ethereum and EOS, while PeaceRelay [3] provides a bi-directional
relay between Ethereum and Ethereum Classical. Verilay [26] provides interoper-
ability between PBFT-inspired Proof of Stake blockchains (e.g. Ethereum 2 [9])
and any blockchain that is capable of executing smart contracts. ZkBridge [29]
designs an efficient relay bridge based on Zero-knowledge and is implemented
between Ethereum 2 and Cosmos.

7 Conclusion

In this paper, we introduce Subsidy Bridge, a general decentralized relay between
heterogeneous blockchains with the relayer subsidy. The rules of proposed relay
are mainly based on light client protocols of source chains, which ensure bridge a
balance between native validation and performance. All data generated by relay-
ers and relay users are publicly verifiable, which brings independence. Relayer
subsidy is introduced to incentivize relayers to obey honest strategy and keep
submitting new source headers to relay contract. Besides, incentive compatibility
is proved by qualitative analysis.

We finally evaluate Subsidy Bridge by qualitative analysis. The behaviors of
rational relayers and block producers are discussed from the view of incentive
model. And the security is guaranteed by the existence of honest relayers and
majority of honest block producers. We compare Subsidy Bridge with main-
stream projects covering BTC Relay, ETH Relay, Polkadot and Cosmos.

In the future work, we would like to apply our design to construct a multi-
blockchain system. The bootstrap of relay contract will be implemented through

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 587

governance to improve decentralization, while new incentive design will consider
the relayer subsidy for different source chains.

Apppendix A: The Relay Contract

This appendix provides a brief description of the relay contract.

Algorithm 1: Relay Contract
1 Contract RelayContract
2 address developer;
3 Struct Header;

/* defined by developers based on source chain */
4 Struct ShadowLedger
5 uint256 genesisHash;
6 uint256 topHash;
7 mapping(uint256 → Header) hTree;
8 end Struct
9 ShadowLedger SL;

10 Function SetGenesis(Header g)
11 require(msg.sender == developer);
12 uint256 hash = Hash(g);/* computes hash of source header

*/
13 SL.topHash = SL.genesisHash = hash;
14 SL.hTree[hash] = g;
15 end Function
16 Function SubmitHeader(Header h)
17 require(SL.genesisHash != 0);
18 require(ConnectionVerify(SL.hTree, h) ∧ HeaderVerify(h));
19 uint256 hash = Hash(h);
20 SL.hTree[hash] = g;
21 If getWeight(h) >getWeight(SL.hTree[SL.topHash])
22 SL.topHash = hash;
23 end If
24 end Function
25 Payable Function VerifyTx(bytes tx, uint256 headerHash,

uint256[] proof)
26 require(IsConfirmed(SL, headerHash) == 1);

/* checks if header is confirmed by shadow ledger */
27 require(MerkleVerify(SL.hTree[headerHash], tx, proof) == 1);

/* checks if transaction is a leaf of Merkle tree */

28 end Function
29 end Contract

588 Y. Geng et al.

Acknowledgement. This paper is supported by the National Key R&D Program
of China through project 2020YFB1005600, the Natural Science Foundation of China
through projects U21A20467, 61932011, 61972019, 72192801 and Beijing Natural Sci-
ence Foundation through project M21031, Z220001 and CCF-Huawei Huyanglin Foun-
dation through project CCF-HuaweiBC2021009.

References

1. BTC relay. www.github.com/ethereum/btcrelay. Accessed 29 Mar 2023
2. Cosmos. www.cosmos.network. Accessed 29 Mar 2023
3. Peace relay. www.medium.com/loiluu/peacerelay. Accessed 29 Mar 2023
4. Polkadot. www.polkadot.network. Accessed 29 Mar 2023
5. Waterloo. www.github.com/KyberNetwork/bridge eos smart contracts. Accessed

29 Mar 2023
6. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault

tolerance for cooperative services. SIGOPS Oper. Syst. Rev. 39(5), 45–58 (2005).
https://doi.org/10.1145/1095809.1095816

7. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: SP 2015, pp. 287–304.
IEEE (2015). https://doi.org/10.1109/SP.2015.25

8. Buterin, V.: Chain interoperability. R3 Res. Paper 9, 1–25 (2016). www.allquantor.
at/blockchainbib/pdf/buterin2016chain.pdf

9. Buterin, V., et al.: Combining ghost and casper. arXiv preprint arXiv:2003.03052
(2020)

10. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

11. Frauenthaler, P., Sigwart, M., Spanring, C., Sober, M., Schulte, S.: Eth relay: a
cost-efficient relay for ethereum-based blockchains. In: Blockchain 2020, pp. 204–
213. IEEE (2020). https://doi.org/10.1109/Blockchain50366.2020.00032

12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

13. Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-SNARK verifiable cross-
chain transfer protocol enabling decoupled and decentralized sidechains. In: ICDCS
2020, pp. 1257–1262. IEEE (2020). DOI: https://doi.org/10.1109/ICDCS47774.
2020.00161

14. Herlihy, M.: Atomic cross-chain swaps. In: PODC 2018, pp. 245–254. Association
for Computing Machinery (2018). https://doi.org/10.1145/3212734.3212736

15. Hope-Bailie, A., Thomas, S.: Interledger: creating a standard for payments. In:
WWW 2016 Companion, pp. 281–282. International World Wide Web Conferences
Steering Committee (2016). https://doi.org/10.1145/2872518.2889307

16. Judmayer, A., et al.: Pay to win: cheap, cross-chain bribing attacks on PoW cryp-
tocurrencies. In: Bernhard, M., et al. (eds.) FC 2021. LNCS, vol. 12676, pp. 533–
549. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-63958-0 39

17. Kannengießer, N., Pfister, M., Greulich, M., Lins, S., Sunyaev, A.: Bridges between
islands: cross-chain technology for distributed ledger technology (2020)

www.github.com/ethereum/btcrelay
www.cosmos.network
www.medium.com/loiluu/peacerelay
www.polkadot.network
www.github.com/KyberNetwork/bridge_eos_smart_contracts
https://doi.org/10.1145/1095809.1095816
https://doi.org/10.1109/SP.2015.25
www.allquantor.at/blockchainbib/pdf/buterin2016chain.pdf
www.allquantor.at/blockchainbib/pdf/buterin2016chain.pdf
http://arxiv.org/abs/2003.03052
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1109/Blockchain50366.2020.00032
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1109/ICDCS47774.2020.00161
https://doi.org/10.1109/ICDCS47774.2020.00161
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/2872518.2889307
https://doi.org/10.1007/978-3-662-63958-0_39

Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy 589

18. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

19. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August 19(1) (2012)

20. Li, C., et al.: A decentralized blockchain with high throughput and fast confir-
mation. In: USENIX ATC 2020, pp. 515–528. USENIX Association (2020). www.
usenix.org/conference/atc20/presentation/li-chenxing

21. Liu, Z., et al.: Hyperservice: interoperability and programmability across heteroge-
neous blockchains. In: CCS 2019, pp. 549–566. Association for Computing Machin-
ery (2019). https://doi.org/10.1145/3319535.3355503

22. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: SmartPool: practical decentral-
ized pooled mining. In: USENIX Security 2017, pp. 1409–1426. USENIX Asso-
ciation (2017). www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/luu

23. Massias, H., Avila, X.S., Quisquater, J.J.: Design of a secure timestamping service
with minimal trust requirement. In: the 20th Symposium on Information Theory
in the Benelux (1999)

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). www.bitcoin.
org/bitcoin.pdf

25. Robinson, P.: Survey of crosschain communications protocols. Comput. Netw. 200,
108488 (2021)

26. Westerkamp, M., Diez, M.: Verilay: a verifiable proof of stake chain relay. In: ICBC
2022, pp. 1–9. IEEE (2022). https://doi.org/10.1109/ICBC54727.2022.9805554

27. Westerkamp, M., Eberhardt, J.: zkrelay: facilitating sidechains using zksnark-based
chain-relays. In: EuroS&PW 2020, pp. 378–386. IEEE (2020). https://doi.org/10.
1109/EuroSPW51379.2020.00058

28. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction
ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014). www.files.gitter.im/
ethereum/yellowpaper/VIyt/Paper.pdf

29. Xie, T., et al.: zkbridge: trustless cross-chain bridges made practical. In: CCS 2022,
pp. 3003–3017. IEEE (2022). https://doi.org/10.1145/3548606.3560652

https://doi.org/10.1007/978-3-030-51280-4_27
www.usenix.org/conference/atc20/presentation/li-chenxing
www.usenix.org/conference/atc20/presentation/li-chenxing
https://doi.org/10.1145/3319535.3355503
www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/luu
www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/luu
www.bitcoin.org/bitcoin.pdf
www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ICBC54727.2022.9805554
https://doi.org/10.1109/EuroSPW51379.2020.00058
https://doi.org/10.1109/EuroSPW51379.2020.00058
www.files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
www.files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
https://doi.org/10.1145/3548606.3560652

Towards Efficient and Privacy-Preserving
Anomaly Detection of Blockchain-Based

Cryptocurrency Transactions

Yuhan Song1 , Yuefei Zhu1 , and Fushan Wei1,2(B)

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, China

weifs831020@163.com
2 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, China

Abstract. In recent years, a growing number of breaches targeting cryp-
tocurrency exchanges have damaged the credibility of the entire cryp-
tocurrency ecosystem. To prevent further harm, it’s crucial to detect
the anomalous behaviors hidden within cryptocurrency transactions and
offer predictive suggestions. However, details of transaction records must
be carefully analyzed for effective detection, and this information could
be exploited by adversaries to launch attacks such as de-anonymization
and model interference. As a result, it is essential to prioritize pri-
vacy preservation when designing an anomaly detection system for cryp-
tocurrency transactions. In this paper, we propose a privacy-preserving
anomaly detection (PPad) scheme for cryptocurrency transactions based
on a decision tree model, which achieves privacy preservation by using
additively homomorphic encryption and matrix perturbation techniques.
We also design and implement PPad’s underlying protocol in a cloud out-
sourcing environment. The correctness and privacy properties of PPad
have been proven through detailed analysis. Experimental results show
that our scheme can offer privacy assurance with desirable detection
effectiveness and efficiency, making it suitable for real-world applications.

Keywords: Anomaly detection · Blockchain · Privacy protection ·
Homomorphic encryption · Decision tree

1 Introduction

Cryptocurrency is widely recognized as a significant blockchain application,
which allows users to securely store monetary assets and make anonymous pay-
ments in a decentralized manner. However, the significant economic value of
cryptocurrency has made it a prime target for malicious cyber activities. While
the security and reliability of cryptocurrency are supported by a stack of cryp-
tographic technologies, potential threats can be introduced by various entities in
the cryptocurrency ecosystem, including exchange platforms, wallet providers,
and mining pools. In recent years, growing instances of breaches against Bitcoin
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 590–607, 2023.
https://doi.org/10.1007/978-981-99-7356-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_35&domain=pdf
http://orcid.org/0000-0002-6446-5865
http://orcid.org/0000-0002-9559-8783
http://orcid.org/0000-0003-2790-7254
https://doi.org/10.1007/978-981-99-7356-9_35

Privacy-Preserving Anomaly Detection of Blockchain Transactions 591

exchanges have diminished the credibility of Bitcoin ecosystem [13]. In 2014,
Mt.Gox, the leading Bitcoin exchange at that time, filed for bankruptcy as nearly
850,000 BTCs worth over $450 million were stolen. In 2016, Bitfinex reported
that 119,756 BTC valued at approximately $72 million were stolen, causing
the value of BTC to plummet by about 20%. More recently, in January 2022,
Crypto.com lost over $30 million in Bitcoin and Ethereum after being hacked
by unknown reasons. Additionally, there are many cases in which the amount of
tokens stolen is not reported. Therefore, implementing financial regulatory mea-
sures on cryptocurrency exchanges, such as transaction auditing and anomaly
detection, is essential to prevent further token theft. Anomaly detection in cryp-
tocurrency exchanges primarily concentrates on identifying fraudulent activi-
ties within transaction data and offering predictive maintenance suggestions.
Recently, various studies have been presented for anomaly detection in different
blockchain-based digital currencies [1,2,9]. In these works, the details of trans-
actional data need to be thoroughly analyzed for accurate detection. However, if
adversaries misuse this data by connecting it with offline information, the privacy
of cryptocurrency users is at high risk of being compromised. In other words,
adversaries might perform de-anonymization attacks [8]. Even worse, they could
also execute interference [7] and extraction [19] attacks against the detection
model. Therefore, it is vital to consider privacy preservation when designing an
anomaly detection scheme for cryptocurrency transactions. Unfortunately, this
issue has been largely overlooked in existing studies.

In light of this, our research is inspired by the following scenario. Suppose there
is a trusted private server that is capable of collecting cryptocurrency transaction
records, including anomalous records associated with theft activities. By extract-
ing predefined features that represent the characteristics of anomalous transac-
tions from these records, the private server can create a dataset that comprises
transaction features and their classification labels (a normal transaction as “0”
and an abnormal one as “1”). After creating the dataset, the private server trains a
detection model that is subsequently transmitted to a cloud server that provides
anomaly detection services. When a user creates a new transaction on the exchange
platform, the private server extracts its feature vector and sends it to the cloud
server for evaluation of its potential association with malicious activities. After the
cloud server analyzes the transaction, it sends the detection result back to the pri-
vate server. The private server then takes appropriate action based on the severity
of the anomaly. Based on this result, the private server informs the exchange plat-
form whether to proceed with or withdraw the transaction. In this scenario, several
privacy concerns arise. First, the cloud server should not be able to access detailed
information about transaction data. Second, to prevent interference attacks, the
detection model should be kept secret from the cloud server. Third, the detection
result should only be known to the private server.

In addition to privacy concerns, the anomaly detection scheme should also
achieve a high level of detection accuracy to effectively identify fraudulent activ-
ities in cryptocurrency transactions. Furthermore, the scheme should be efficient
enough to be used in real-world situations where large volumes of transactions
need to be processed in real-time.

592 Y. Song et al.

Our study introduces a privacy preserving anomaly detection system that
achieves both desirable detection effectiveness and efficiency. To sum up, the
main contributions of this paper are:

– We propose a general framework for privacy-preserving anomaly detection of
cryptocurrency transactions through a secure outsourced computation archi-
tecture.

– Based on this framework, we have designed a two-party protocol that employs
a decision tree classifier. To ensure privacy preservation, we adopt several
techniques, including additively homomorphic encryption and matrix multi-
plication.

– Through a comprehensive security analysis and computational complexity
assessment, we demonstrate that our design can achieve privacy preservation
without excessive computational overhead.

– A comprehensive set of experiments was conducted to evaluate the effective-
ness and efficiency of the detection system. The results indicate that our sys-
tem can be deployed in real-time bitcoin-based anomaly detection scenarios
with excellent performance.

2 Related Works

Recently, several works on anomaly detection of blockchain transactions have
been proposed. Hirshman et al. [6] made the first attempt to figure out atypical
transaction patterns in Bitcoin currency. Pham and Lee [15] used three unsuper-
vised learning methods to detect anomalies in the Bitcoin network by analyzing
the behaviors of suspicious users. However, this work only identified a few cases
of Bitcoin theft. In another work of Pham and Lee [16], they used the laws
of power degree & densification and the local outlier factor method (LOF) to
analyze two graphs of the Bitcoin network for detecting suspicious users and
transactions. Monamo et al. [12] highlighted the advantages of supervised learn-
ing models in detection accuracy. Despite the number of studies on anomaly
detection of blockchain-based transactions, only a few have considered the issue
of privacy protection. In [17], Song et al. introduced a general framework for
anomaly detection in blockchain networks and proposed a corresponding proto-
col, ADaaS. However, due to its implementation based on the computationally
expensive kNN model, the detection performance and effectiveness of ADaaS
require further improvement.

In this paper, we adopt privacy-preserving decision tree (PPDT) to construct
our anomaly detection protocol. Among existing works of PPDT, methods based
on cryptographic technologies are notable for their improved privacy and accu-
racy guarantees. Lindell and Pinkas [10] were the first to design a PPDT training
algorithm by using secure multi-party computation (MPC) and oblivious trans-
fer (OT). For PPDT evaluation, Brickell et al. [4] devised a method by combining
Homomorphic encryption (HE) and MPC. Bost et al. [3] used a fully HE-based
method and represented the decision tree as a polynomial to enable private eval-
uation. For better efficiency, Wu et al. [20] introduced additively HE (AHE)

Privacy-Preserving Anomaly Detection of Blockchain Transactions 593

and OT into their scheme. Tai et al. [18] further improved the work in [20].
More recently, Cock et al. [5] adopted secret sharing (SS) to propose a PPDT
evaluation method suitable for small trees.

3 Preliminary

This section provides an overview of the essential concepts and techniques that
underpin our design. More specifically, we will introduce the Paillier cryptosys-
tem, which offers privacy assurances, and the decision tree classifier, which is
the underlying model of anomaly detection.

3.1 Paillier Cryptosystem

In this work, we adopt the additively homomorphic encryption scheme Paillier
[14] for its efficiency and practicability. In its most basic variant, Paillier scheme
is described as follows:

– Pai.KeyGeneration Select two large prime numbers p, q. Compute n = pq
and λ = lcm(p − 1, q − 1), where lcm is the least common multiple. Select
g ∈ Z

∗
n2 as a random integer while ensuring that n divides the order of g

by checking the existence of the following modular multiplicative inverse,
μ = (L(gλmodn2))−1modn, where L(x) = x−1

n . The public key is pk = (n, g)
and the private key sk = (λ, μ).

– Pai.Encryption To encrypt a message, we first select a random integer r ∈
Z

∗
n2 . Then we get the cipher value by computing c = gm × rn mod n2.

– Pai.Decryption A message c ∈ Z
∗
n2 is decrypted by computing m =

L(cλmodn2) × μ mod n.

3.2 Decision Tree

b1b1

b2b2
b3b3

l1l1 l2l2 l3l3 b4b4

l4l4 l5l5

x1 ≤ ω1

x2 ≤ ω2 x3 ≤ ω3

x4 ≤ ω4 x4 > ω4

x3 > ω3x2 > ω2

x1 > ω1

0

0 0

0

1

11

1

Fig. 1. Decision Tree Fig. 2. Decision Table

594 Y. Song et al.

Decision Tree is a non-parametric supervised learning method used for classi-
fication and regression. Due to its interpretability, non-parametric nature, and
resilience to outliers, it can model complex, non-linear relationships and auto-
matically select the most informative features, making it beneficial for classifica-
tion tasks such as anomaly detection. In the hierarchical structure of a decision
tree model, a root note, several branches, internal nodes and leaf nodes are
included. An internal node corresponds to a partitioning rule (i.e. the threshold
of a feature), and a leaf node represents a class label. To classify an instance, the
decision tree is traversed from the root node to a leaf node by comparing with
the thresholds at each internal node to determine the path to follow. Figure 1
illustrates the decision tree for a feature vector X = [x1, x2, x3, x4] of a clas-
sification query, where the prediction label set is L = {l1, l2, l3, l4, l5}, and the
threshold vector is W = [ω1, ω2, ω3, ω4].

Here we define a boolean variable bi as a decision indicator for internal node
i. If xi ≤ ωi, bi = 0, else bi = 1. As a result, the decision path to each leaf node
can be interpreted as a boolean string. For instance, the decision path to the leaf
node with prediction label l1 in Fig. 1 is b1 = 0(x1 ≤ ω1) AND b2 = 0(x2 ≤ ω2),
i.e. b1||b2 = 00. Based on this rule, we place all the decision paths of the tree
classifier in a decision table. For the j-th row in the decision table, the first
column stores the decision path of the leaf node corresponding to lj represented
as a boolean string, while the second column stores lj . An internal node not
traveled by is represented as dummy node. We use “∗” to denote its boolean
value. Here “∗” means both 0 and 1. Therefore, each path in the decision table
is an isometric boolean string whose length is the number of internal nodes. For
example, the boolean string for leaf node with l1 in Fig. 1 is 00**, which involves
4 rows, 0000, 0001, 0010, and 0011. Hence, as shown in Fig. 2, the decision table
for the classifier in Fig. 1 has 16 rows.

4 Problem Formulation

In this work, we propose a system model with two entities that enables cloud-
outsourcing anomaly detection while maintaining the privacy of the transaction
data, detection model, and detection result.

4.1 System Model

We propose a cloud outsourcing architecture model as depicted in Fig. 3. This
architecture includes two entities: the Transaction Committer and the Cloud
Server.

Transaction Committer(TC) is a trusted private server acting as an
agent of secure data exchange between the ledger and the cloud server. The
TC is responsible for receiving large amounts of historical transactions from the
blockchain ledger and training the detection model. In addition, TC also collects
newly generated transactions from the exchange platform.

Privacy-Preserving Anomaly Detection of Blockchain Transactions 595

Exchange

Historical
transactions

Newly- created
transaction

Transaction Committer Cloud Server

Feature
vectors

Pre-processed
data

Training
dataset

Tree
model

Thresholds

Structure Decision
table

Perturbed
value

Detection
value

Detection
value

Perturbed
value

Decision
table

Boolean
String

Label

LabelDetection
result

Fig. 3. Architecture Model of the System

Cloud Server(CS) is hosted by a third-party cloud service provider. It
provides storage and computational resources for detecting anomalies in newly
generated transactions using a pre-trained model in encrypted domain.

Once received the historical transactions from cryptocurrency exchange, TC
extracts pre-defined features from each record and creates a feature vector. After
pre-processing, TC generates a dataset for training a decision tree model. To
facilitate subsequent operations, the decision tree model is processed in two
parts: the thresholds of inner nodes and the tree structure. The threshold val-
ues are encrypted by TC using the secret key provided by CS. However, since
CS holds the key of decryption,TC needs additional perturbation operation to
ensure that the returned values are not easily decrypted by CS. As for the tree
structure, TC creates a table to store all the decision paths and their corre-
sponding prediction labels. The decision table is then processed by shuffling the
paths and encrypting the labels before being sent to CS. Both of the perturbed
thresholds and the processed decision table are securely transmitted and stored
in the cloud server for later operations.

Once a new transaction is generated in the cryptocurrency exchange, it is
sent to TC and transformed into a feature vector there. The feature vector is
then encrypted and perturbed before being sent to CS for anomaly detection. CS
uses pre-stored perturbed thresholds to calculate a value and extract a boolean
string after decryption and comparison operations. The boolean string is then
searched in the decision table to find its corresponding label, which is sent to
TC for decryption. If the label indicates an anomalous transaction, an alert is
sent to the exchange to withdraw the transaction.

4.2 Threat Model

In our model, TC is an honest party while CS is semi-honest. That is to say,
it would strictly follow the protocol but may try to record intermediate results

596 Y. Song et al.

during the execution and learn additional information from them. For instance,
CS may record the encrypted feature vectors and attempt to recover the raw
transaction data by conducting de-anonymization attacks. CS may also extract
the topology and key parameters of the detection model to conduct interference
attacks by sending anomaly detection queries. To mitigate the potential threats,
we adopt encryption and perturbation techniques to prevent CS from learning
sensitive information about the data and model.

4.3 Design Goals

To ensure privacy-preserving and efficient anomaly detection for blockchain-
based transactions, the proposed scheme should satisfy the following require-
ments:
– Data privacy: The historical transaction records, newly-created transac-

tions, and detection results are confidential and must not be exposed to CS
or any other adversaries. Intermediate values during outsourcing and detec-
tion processing must also be kept private and not inferred by others.

– Detection model privacy: Model parameters such as threshold vector and
tree structure, obtained by training plaintext data, must remain confidential
from the cloud server and other adversaries.

– Detection performance: The anomaly detection system should achieve
desirable detection effectiveness while minimizing the additional overhead
caused by privacy protection operations.

5 Design and Implementation

In this section, we introduce PPad (Privacy Preserving Anomaly Detection), a
two-party privacy- preserving anomaly detection scheme based on decision tree
classifier.

5.1 Initialization

During this phase, we obtain a decision tree classification model and transform
it to a table that stores all the potential decision paths and their respective
labels. We also extract the threshold vector used for comparison operations in
the following phase.

Upon receiving a set of labeled historical transaction records, TC extracts
pre-defined features from each record to represent it as a feature vector ttti =
[ti1, ti2, ..., tif], where f is the number of features. With these feature vectors
and their labels (the label of ttti is li ∈ 0, 1, where li = 1 denotes that ttti is anoma-
lous), a dataset for training is created. Next, TC uses CART classification algo-
rithm [11] to train a decision tree classifier clf with m internal nodes and n leaf
nodes. The threshold at each internal node forms a vector W = [ω1, ω2, ..., ωm].
According to the comparison result with the each threshold, the decision path
is represented as a boolean string b1 ‖ b2 ‖ ... ‖ bm, bi is either 0 or 1. TC can
thereby create a decision table, DT, which is composed of 2 columns and 2m

rows to store all the decision paths in clf and their respective prediction labels.

Privacy-Preserving Anomaly Detection of Blockchain Transactions 597

5.2 Key Generation

During the this phase, TC randomly selects an invertible matrix M1 ∈ Zm×m

and computes its inverse M−1
1 , ensuring that M1M

−1
1 = I. M1 and M−1

1 are
used for perturbation processing in later phase. Besides, TC generates a ran-
dom permutation π to shuffle boolean variables in DT . TC also generates a pri-
vate/public key pair for a probabilistic encryption scheme that is secure against
chosen plaintext attacks (CPA). For simplicity, we do not provide the specifics
of the CPA-secure probabilistic encryption scheme.

Given the security parameter κ, CS uses Pai.Key Generation to generate
a pair of public and secret keys. After this, CS sends the public key pk = (N, g)
to TC, here N = pq. Meanwhile, the private key sk = (λ, μ) is kept by CS.

5.3 Model Outsourcing

With the vector of thresholds W = [ω1, ω2, ..., ωm] and decision table DT
obtained in Initialization phase, TC uses the encryption parameters gener-
ated in Key Generation phase to process them for meeting the requirements
of secure computation in the next phase.

Firstly, TC computes the additive inverse of each threshold ωi mod N(i =
1, ...,m) which is denoted as −ωi and uses the public key received from CS
to encrypt it as ci =Pai.Encryption(−ωi). TC applies random permutation
π to shuffle ccc = [c1, c2, ..., cm], resulting in ccc∗ = [c∗

1, c
∗
2, ..., c

∗
m]. Using c∗c∗c∗, TC

constructs a diagonal matrix C∗ as:

C∗ =

⎛
⎜⎜⎜⎝

c∗
1 0 · · · 0
0 c∗

2 · · · 0
...

...
...

...
0 0 · · · c∗

m

⎞
⎟⎟⎟⎠

TC randomly chooses a lower triangular matrix Q ∈ Zm×m, where the elements
in the main diagonal are all equal to 1. C∗ is then multiplied by Q and the
perturbation parameter M1 to obtain C as C = QC∗M1.

Next, TC applies the random permutation π to each decision path pj , (j =
1, 2, ..., 2m) in DT, generating p′

j = π(pj). Meanwhile, the classification label
lj is encrypted as with a CPA-secure probabilistic encryption algorithm as
l′j =Enc(lj).

After completing the perturbation and shuffling processes, TC sends the
resulting perturbed value C and the shuffled decision table DT’ to CS. Subse-
quently, CS stores these values locally.

598 Y. Song et al.

5.4 Anomaly Detection

For the newly generated transaction Tr, TC firstly extracts the pre-defined fea-
tures and created feature vector aaar = [ar1, ar2, ..., arf]. According to the feature
chosen at each inner node in clf , aaar is expanded to a m-dimensional vector
aaa∗

r = [a∗
r1, a

∗
r2, ..., a

∗
rm]. Following this, each component in aaa∗

r is encrypted using
Paillier algorithm as crj =Pai.Encryption(a∗

rj)(j = 1, 2, ...,m).
Secondly, TC applies random permutation π to shuffle cccr = [cr1, cr2, ..., crm]

as ccc∗
r = [c∗

r1, c
∗
r2, ..., c

∗
rm]. Using ccc∗ , TC constructs a diagonal matrix C∗

r in the
same form as C∗.

Thirdly, TC uses the perturbation parameter M−1 to compute Cr = M−1
1 C∗

r .
Cr is thereby sent to CS for subsequent detection processing.

Upon receiving the perturbed result Cr, CS uses the pre-stored matrix C to
compute D = CCr, where the diagonal element di(i = 1, 2, ...,m) is decrypted
as ei = Pai.Decryption(di).

Subsequently, ei is used to compare with N/2. The comparison result is
denoted as a boolean variant bri. If ei ≤ N/2, bri = 1, else bri = 0. As a result,
the m comparison results bri, i = 1, 2, ...,m are stored in a boolean sequence
bbbr = [br1, br2, ..., brm]. CS then searches the shuffled decision table DT ′ to find
the item that matches bbbr and obtains its corresponding label lenc. After this,
the encrypted classification label lenc is sent to TC. TC decrypts lenc to get the
final detection result rd.

Privacy-Preserving Anomaly Detection of Blockchain Transactions 599

6 Security Analysis

In this section, we will analyze the security properties of the proposed scheme.
Firstly, we will prove the correctness of PPad protocol through theoretical anal-
ysis. Secondly, we will examine the privacy properties of data processed in the
outsourcing and detection phases. Thirdly, we will demonstrate that the detec-
tion model is also kept private from the cloud server.

Theorem 1. (Correctness) If the protocols described in Sect. 5 are honestly fol-
lowed by TC and CS, TC will obtain the correct detection result eventually.

Proof. As previously mentioned, for a newly created transaction Tr, its feature
vector aaar is expanded to a m-dimensional vector aaa∗

r and each component is
encrypted by Paillier algorithm to obtain cccr. The shuffled sequence ccc∗

r = π(cccr)
is used to construct diagonal matrix C∗

r . After this, C∗
r is perturbed as Cr =

600 Y. Song et al.

M−1
1 C∗

r , where M−1
1 is the inverse of M1. During the anomaly detection phase,

CS uses Cr and the pre-stored C to computeD = CCr = (QC∗M1)(M−1
1 C∗

r) =
QC∗IC∗

r = QC∗C∗
r . Since Q is a lower triangular matrix with all elements equal

to 1 in the main diagonal, and both C∗ and C∗
r are diagonal matrices, the main

diagonal elements of D can be computed as dk = c∗
kc∗

rk, where k = 1, 2, ...,m.
For c∗

kc∗
rk = g−ωkrN

k garkr′N
k = gark−ωk(rkr′

k)
N , using the additive homomorphic

properties of Paillier algorithm, we know that the result of decrypting c∗
kc∗

rk is
ek = ark − ωk mod N , which represents the comparison between the feature
value and threshold of the corresponding inner node. Based on the properties
of modulo computation, we can infer that if ark ≥ ωk, the decryption value
ek ≤ N/2 (br = 1), else if ark < ωk, ek > N/2 (br = 0). Therefore, the boolean
sequence bbbr = [br1, br2, ..., brm] denotes the decision path in the tree model for Tr.
By searching the decision table DT ′ with bbbr, we can retrieve the corresponding
encrypted classification label lenc. After decryption by TC, the final detection
result is obtained.

Theorem 2. (Data Privacy) In the execution of our protocol, CS does not have
access to any information about the transaction to be detected.

Proof. During the anomaly detection phase, the m-dimensional feature vector
aaa∗

r of Tr is encrypted by Paillier algorithm in a similar manner to the threshold
vector during the model outsourcing phase. TC then shuffles aaa∗

r using π and
constructs a diagonal matrix C∗

r . Finally, the perturbation value Cr = M−1
1 C∗

r

is sent to CS. Since CS knows nothing about M−1
1 and its inverse M1, it cannot

obtain the shuffled ciphertext of aaar in the main diagonal of C∗
r from Cr. There-

fore, CS cannot decrypt any information about Tr. During the detection process-
ing of Tr, CS only computes the product of Cr and the pre-stored C = QC∗M1.
In this step, CS only gets the shuffled product of threshold and Tr’s correspond-
ing feature in encrypted version. Therefore, no information about the transaction
Tr is disclosed to CS.

Theorem 3. (Model Privacy) During the execution of our protocol, CS cannot
infer any additional information about the decision tree model.

Proof. TC divides the pre-trained model into two parts, the threshold vector
W , and the decision table DT . For each threshold ωi ∈ W (i = 1, 2, ...,m), TC
first encrypts it as ci = g−ωirN

i mod N2. Then, using a random perturbation
π, ccc = [c1, c2, ..., cm] is shuffled to obtain ccc∗ = [c∗

1, c
∗
2, ..., c

∗
m], which is used to

construct the diagonal matrix C∗. Finally, TC computes C = QC∗M1 and sends
it to CS. In the previous section, it was explained that the matrix Q is a lower
triangular matrix with the main diagonal consisting of m elements equal to 1,
and M1 is an invertible matrix. Even though CS possesses the decryption key,
it is still unable to decrypt the value of the thresholds without any knowledge
about M1. While during the phase of anomaly detection, TC computes the
perturbation value of Tr’s feature vector as Cr = M−1

1 C∗
r and sends it to CS.

CS can only obtain the product of perturbation values C and Cr. Since Q,

Privacy-Preserving Anomaly Detection of Blockchain Transactions 601

M1, and M−1
1 are randomly selected parameters, CS can not deduce anything

about C∗ from this product value. Therefore, it is impossible for CS to know
the plaintext version of W by decrypting C∗.

As for the decision table DT, each row in it indicates a boolean string of
decision path, which is shuffled by TC with a random permutation π. As a
result, the order of each dimension in the boolean string is disrupted in the new
decision table DT’. Even if CS or another attacker obtains DT’, they can only
guess the value of original decision path with a probability of 1

2m . Moreover,
the corresponding label of the boolean decision path is encrypted by TC who
also holds the key of decryption. Thus, both the threshold information and the
structure of decision tree are well protected and cannot be easily used by CS to
deduce additional information.

7 Experiments and Evaluation

7.1 Effectiveness and Efficiency Experiments

We used a dataset that contains 6010 Bitcoin transaction records (including 454
theft-related records), where each record is depicted as a 9-dimensional feature.
For more details, please refer to [17]. Our experimental setup consisted of two
servers, both equipped with Intel i9-9980XE 36-core 3.00GHz processor and
128 GB memory, running Windows 10. One server acted as the transaction
committer, while the other served as the cloud server. The implementation of
our system was developed in Python3, using libraries such as gmpy2, numpy, and
pandas. The decision tree model was trained non-privately using scikit-learn.
Two sets of experiments were conducted to evaluate the detection effectiveness
and efficiency of our proposed scheme PPad. The experiments were divided into
4 subgroups, each with a training dataset of size 1000, 2000, 3000 and 4206. In
each subgroup, we varied the maximum depth of decision tree, which reflects the
complexity of the model. Furthermore, we also compared our results to those
presented by Song et al. in [17] (see Apeendix).

Figure 4 illustrates the effectiveness of PPad in anomaly detection with dif-
ferent sizes of training datasets. The accuracy, precision, recall, and F1 score are
measured for 1803 randomly selected testing samples. It can be observed that
these indicators increase with max depth in most cases. The detection accuracy
stays above 95%, and as the max depth grows, it gradually approaches 100%.
The detection precision, ranging from 59% to 97%, grows consistently with max
depth. Additionally, for a given maximum depth, the model trained with more
samples achieves a higher detection precision. The recall score shows several
turning points in the plots when the size of the training set is 3000 and 4206,
which means that it does not increase with max depth within certain ranges.
However, for max depth bigger than 5, the recall score is close to 100%. In all
of these four cases, the F1 score increases steadily with max depth. It should be
noted that the maximum value of max depth for each training set varies since it
depends on the minimum number of samples required to split an internal node.

602 Y. Song et al.

accuracy
precision
recall
f1

D
et

ec
tio

n
ra

te

0.7

0.8

0.9

1.0

Max depth
2 3 4 5 6

(a) Size of training dataset=1000

accuracy
precision
recall
f1

D
et

ec
tio

n
ra

te

0.7

0.8

0.9

1.0

Max depth
2 3 4 5 6 7

(b) Size of training dataset=2000

accuracy
precision
recall
f1

D
et

ec
tio

n
ra

te

0.6

0.7

0.8

0.9

1.0

Max depth
1 2 3 4 5 6 7 8 9 10

(c) Size of training dataset=3000

accuracy
precision
recall
f1

D
et

ec
tio

n
ra

te
0.6

0.7

0.8

0.9

1.0

Max depth
1 2 3 4 5 6 7 8 9 10

(d) Size of training dataset=4206

Fig. 4. Detection effectiveness with different size of training dataset.

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(m

s)

0

50

100

150

200

Max depth
2 3 4 5 6

(a) Size of training dataset=1000

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(m

s)

0

50

100

150

200

Max depth
2 3 4 5 6 7

(b) Size of training dataset=2000

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(m

s)

0

50

100

150

200

250

Max depth
2 3 4 5 6 7 8 9

(c) Size of training dataset=3000

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(m

s)

0

100

200

300

Max depth
2 3 4 5 6 7 8 9

(d) Size of training dataset=4206

Fig. 5. Tavg of model trained with different size of training dataset.

To evaluate the efficiency of the PPad, we measure the average time for detect-
ing a single transaction record. The average detection time Tavg is defined as the
total running time divides the number of testing samples. The total running time

Privacy-Preserving Anomaly Detection of Blockchain Transactions 603

is the sum of initialization time, key generation time, model outsourcing time,
and anomaly detection time. As is shown in Fig. 5, PPad only requires millisec-
onds of time to detect a newly-created transaction. Assume the average size for
each transaction record in a bitcoin block is 550 bytes, a 1 MB block contains
about 1818 transaction records. Since the block time on the bitcoin blockchain
is roughly 10min, the upper bound of Tavg is 330 ms. As is shown in Fig. 5, Tavg

grows steadily with max depth and size of training set. The maximum value of
Tavg is 341.14 ms when the size of training set is 4206 with max depth at 9. How-
ever, except for this point, all the other experimental results are below 330 ms.
Therefore, our scheme is feasible for real-world scenarios in Bitcoin exchanges.
We have observed that there is a trade-off between detection effectiveness and
efficiency in our analysis. Better detection effectiveness is achieved at the cost
of reduced detection efficiency. Hence, it is crucial to select suitable parameters
that achieve a trade-off between effectiveness and efficiency to obtain an ideal
detection model.

7.2 Complexity Analysis

In this part, we evaluate the computation and communication complexity of
PPad scheme. With respect to computation cost, we focus on computationally
expensive operations such as encryption and decryption, while omitting the cost
of other operations such as matrix multiplication and permutation. During the
Model Outsourcing phase, TC encrypts the inverse of each threshold at m
internal nodes and uses matrix multiplication to randomize these ciphertexts.
Hence, the computation complexity of TC in this phase is m Paillier encryption
operations. During the Anomaly Detection phase, TC encrypts each dimen-
sion of an expanded feature vector. Since the number of testing samples is t,
the computation complexity of TC in this phase is mt Paillier encryption oper-
ations. As for CS, it computes the product of perturbed detection query and
then decrypts the eigenvalues. Therefore, the comutation complexity of CS dur-
ing the Anomaly Detection phase is mt Paillier decryption operations. With
respect to communication cost, we consider the bandwidth and communication
rounds. For each query, the bandwidth is O(m2) and 2 communication rounds are

Table 1. Performance Comparison (m: Number of internal nodes, n: Number of leaf
nodes, d: Max depth, f : Number of features, t: Number of detection queries.)

Schemes Privacy
Strategies

Communication
Complexity

Rounds of
Communication

Server
Complexity

Client
Complexity

[4] HE+GC O(m + n) ≈ 5 N/A N/A
[3] FHE/SWHE O(m) ≥ 6 O(mf) O((m + t)f)

[20] AHE+OT O(m) 6 O(mf + 2d) O((m + t)f + d)

[18] AHE O(m) 4 O(mf) O((m + t)f))

[5] SS O(m + n) ≈ 9 O(mf + 2d) O((m + t)f + d)

Ours AHE+Matrix
Perturbation

O(m2) 2 O(mt) O(mt)

604 Y. Song et al.

required. In Table 1, we compare the computation and communication complex-
ities of PPad with those of other related works in PPDT. The results show that
PPad has low computation complexity and communication rounds but requires
more bandwidth due to the combination of matrix multiplication and homo-
morphic encryption. However, since m is usually a small number, our protocol
achieves better computation efficiency with reasonable bandwidth.

8 Conclusion

Our paper presents an efficient privacy-preserving anomaly detection scheme
for blockchain-based cryptocurrency transactions in a cloud outsourcing envi-
ronment. The scheme is based on a decision tree model, which is pre-trained in
plaintext and sent to the cloud server after decryption and perturbation process-
ing to ensure the privacy of transaction data and the final detection result. Our
design also prevents the cloud server from inferring additional information from
the detection model, thereby protecting against potential attacks such as model
extraction or interference. Future work will focus on enhancing privacy protec-
tion during tree model training by utilizing MPC techniques and exploring the
integration of ensemble learning methods to further improve the performance
and effectiveness of our scheme.

Acknowledgement. This work was supported by the National Key Research and
Development Program of China (No. 2019QY1300), the National Natural Science Foun-
dation of China (No. 61772548, No. 62102447), the Science Foundation for the Excel-
lent Youth Scholars of Henan Province (No. 222300420099), and Major Public Welfare
Projects in Henan Province (No. 201300210200).

A Appendix

In this part, we compare PPad scheme and ADaaS in [17] through theoretical
analysis and experiments. From theoretical level, we analyze the detection model,
privacy strategies, complexities, and contribution of these two schemes, which are
summarized in Table 2. Generally speaking, Paillier operations take more time
than VHE operations due to their bit-by-bit nature. However, in the context of
this paper, the dimension of a transaction vector is 9, and the number of internal
nodes, m, is much smaller than the number of training samples, n (where m is
under 100 and n is over 1000). As a result, based on the real parameter settings,
PPad scheme is more efficient than ADaaS, a fact which is later confirmed by
experimental results.

Privacy-Preserving Anomaly Detection of Blockchain Transactions 605

Table 2. Overall comparison between ADaaS and PPad. (m: number of internal nodes,
n: number of training samples, Ev: the execution time of one VHE encryption, IPv:
the execution time of one VHE inner product, Ep: the execution time of one Paillier
encryption, Dp: the execution time of one Paillier decryption.)

Scheme Detection
Model

Privacy
Strategies

Rounds of
Communication

Computation
Complexity

Contribution

ADaaS kNN VHE+Matrix
Perturbation

2 Ev + nIPv General
framework

PPaD Decision
Tree

AHE+Matrix
Perturbation

2 m(Ep +Dp) Practical for
real-time
detection

The comparative experiments of effectiveness and efficiency are divided into
7 subgroups by varying the size of training dataset from 1000 to 4206, while
the number of testing samples is 1803. We set the maximum depth of decision
tree in PPad scheme to 5,resulting the value of m ranging from 23 to 35, and
we set the modulus number for Paillier to N = 512. As for ADaaS, we set the
nearest neighbour parameter k to 5, with VHE parameters of m′ = 11, n′ = 12.
In each subgroup, the effectiveness indicators such as accuracy, precision, recall
and F1 score are measured. For assessing the detection efficiency performance,
we measure the average detection time for each transaction record, Tavg.

Table 3. Effectiveness comparison between ADaaS and PPad.

Size of training
dataset

Method Accuracy(%) Precision(%) Recall(%) F1 score(%)

1000 ADaaS 96.73 77.92 82.76 80.27
PPad 98.28 86.54 93.10 89.70

1500 ADaaS 96.67 78.52 80.69 79.59
PPad 98.28 89.58 88.97 89.27

2000 ADaaS 97.06 80.26 84.14 82.15
PPad 98.34 91.97 86.90 89.36

2500 ADaaS 97.17 80.52 85.52 82.94
PPad 98.67 89.03 95.17 92.00

3000 ADaaS 97.34 82.55 84.83 83.67
PPad 98.61 86.14 98.62 91.96

3500 ADaaS 97.45 82.78 86.21 84.46
PPad 98.34 93.89 84.83 89.13

4206 ADaaS 97.84 85.81 87.59 86.69
PPad 98.67 88.54 95.86 92.05

606 Y. Song et al.

The results presented in Table 3 indicate that our proposed scheme PPad,
outperforms ADaaS in terms of effectiveness metrics across almost all subgroups,
except for when the training dataset size is 3500, where ADaaS exhibits slightly
higher recall. Regarding detection efficiency, as shown in Fig. 6, both schemes
have similar trends where the average detection time Tavg increases with the size
of the training dataset. However, the increase in Tavg for ADaaS is more rapid
than that of PPad. In general, PPad requires significantly less time to detect
a newly-created transaction in each subgroup. Therefore, it can be concluded
that our proposed scheme PPad offers a more practical solution than ADaaS as it
achieves better detection effectiveness and efficiency.

ADaaS
PPad

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(s

)

0

0.5

1.0

1.5

2.0

Size of training dataset
1000 2000 3000 4000

Fig. 6. Efficiency comparison between PPad and ADaaS

References

1. Awan, M.K., Cortesi, A.: Blockchain transaction analysis using dominant sets. In:
Saeed, K., Homenda, W., Chaki, R. (eds.) CISIM 2017. LNCS, vol. 10244, pp.
229–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_20

2. Bartoletti, M., Lande, S., Pompianu, L., Bracciali, A.: A general framework for
blockchain analytics. In: Proceedings of the 1st Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, SERIAL@Middleware 2017, pp. 7:1–7:6.
ACM (2017). https://doi.org/10.1145/3152824.3152831

3. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: 22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015. The Internet Society (2015). https://www.ndss-symposium.
org/ndss2015/machine-learning-classification-over-encrypted-data

4. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Proceedings of the 2007 ACM Conference on Computer and Com-
munications Security, CCS 2007, pp. 498–507. ACM (2007)

5. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vec-
tor machines and logistic regression models based on pre-computation. IEEE
Trans. Dependable Secure Comput. 16(2), 217–230 (2019). https://doi.org/10.
1109/TDSC.2017.2679189

https://doi.org/10.1007/978-3-319-59105-6_20
https://doi.org/10.1145/3152824.3152831
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://doi.org/10.1109/TDSC.2017.2679189
https://doi.org/10.1109/TDSC.2017.2679189

Privacy-Preserving Anomaly Detection of Blockchain Transactions 607

6. Hirshman, J., Huang, Y., Macke, S.: Unsupervised approaches to detecting anoma-
lous behavior in the bitcoin transaction network, 3rd ed. Technical report, Stanford
University (2013)

7. Jia, J., Salem, A., Backes, M., Zhang, Y., Gong, N.Z.: Memguard: defending against
black-box membership inference attacks via adversarial examples. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, pp. 259–274.
ACM (2019). https://doi.org/10.1145/3319535.3363201

8. Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in bitcoin-like dig-
ital cash systems. IEEE Commun. Surv. Tutor. 20(3), 2543–2585 (2018). https://
doi.org/10.1109/COMST.2018.2818623

9. Kumar, N., Singh, A., Handa, A., Shukla, S.K.: Detecting malicious accounts on
the Ethereum blockchain with supervised learning. In: Dolev, S., Kolesnikov, V.,
Lodha, S., Weiss, G. (eds.) CSCML 2020. LNCS, vol. 12161, pp. 94–109. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-49785-9_7

10. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6_3

11. Loh, W.: Classification and regression trees. WIREs Data Min. Knowl. Discov.
1(1), 14–23 (2011). https://doi.org/10.1002/widm.8

12. Monamo, P.M., Marivate, V., Twala, B.: A multifaceted approach to bitcoin fraud
detection: Global and local outliers. In: 15th IEEE International Conference on
Machine Learning and Applications, ICMLA 2016, pp. 188–194. IEEE Computer
Society (2016). https://doi.org/10.1109/ICMLA.2016.0039

13. Oosthoek, K., Doerr, C.: Cyber security threats to bitcoin exchanges: adversary
exploitation and laundering techniques. IEEE Trans. Netw. Serv. Manag. 18(2),
1616–1628 (2021). https://doi.org/10.1109/TNSM.2020.3046145

14. Paillier, P.: Public-Key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

15. Pham, T., Lee, S.: Anomaly detection in bitcoin network using unsupervised learn-
ing methods. CoRR abs/1611.03941 (2016). http://arxiv.org/abs/1611.03941

16. Pham, T., Lee, S.: Anomaly detection in the bitcoin system - A network perspec-
tive. CoRR abs/1611.03942 (2016). http://arxiv.org/abs/1611.03942

17. Song, Y., Wei, F., Zhu, K., Zhu, Y.: Anomaly detection as a service: an out-
sourced anomaly detection scheme for blockchain in a privacy-preserving manner.
IEEE Trans. Netw. Serv. Manag. 19(4), 3794–3809 (2022). https://doi.org/10.
1109/TNSM.2022.3215006

18. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-Preserving decision trees
evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66399-9_27

19. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: USENIX Security Symposium, vol. 16,
pp. 601–618 (2016)

20. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees
and random forests. Proc. Priv. Enhanc. Technol. 4, 335–355 (2016)

https://doi.org/10.1145/3319535.3363201
https://doi.org/10.1109/COMST.2018.2818623
https://doi.org/10.1109/COMST.2018.2818623
https://doi.org/10.1007/978-3-030-49785-9_7
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1002/widm.8
https://doi.org/10.1109/ICMLA.2016.0039
https://doi.org/10.1109/TNSM.2020.3046145
https://doi.org/10.1007/3-540-48910-X_16
http://arxiv.org/abs/1611.03941
http://arxiv.org/abs/1611.03942
https://doi.org/10.1109/TNSM.2022.3215006
https://doi.org/10.1109/TNSM.2022.3215006
https://doi.org/10.1007/978-3-319-66399-9_27
https://doi.org/10.1007/978-3-319-66399-9_27

Blockchain Based Publicly Auditable
Multi-party Computation with Cheater

Detection

Shan Jin1 , Yong Li1(B) , Xi Chen2 , and Ruxian Li2

1 School of Electronic and Information Engineering, Beijing Jiaotong University,
Beijing 100044, China

liyong@bjtu.edu.cn
2 Linklogis, Shenzhen 518063, China

Abstract. Secure Multi-Party Computation (MPC) allows parties to calculate a
joint function using their respective secret inputs in a distributed environment
without centralized server and has numerous applications across various fields.
However, the presence of cheaters in the MPC protocol can lead to an unfair
process. To address this issue, we propose a blockchain-based secure multi-party
computation scheme in which the entire computing process is publicly auditable,
and cheating parties can be detected. In our scheme, cheaters will be financially
punished, while honest parties will be financially compensated, thereby deterring
the cheating behaviors. The analysis demonstrates that our scheme ensures public
auditability, preserves parties’ privacy, andmaintains fairness throughout theMPC
process.

Keywords: Secure Multi-Party Computation · Blockchain · Cheater Detection ·
Publicly Auditable

1 Introduction

Secure multi-party computation (MPC) [1, 2] is an important branch in the field of
cryptography that enables multiple parties to jointly compute a pre-defined function
using their private inputs and obtain the final calculation result without revealing the
privacy of any party. Currently, MPC is primarily implemented by using garbled circuits
[1] and secret sharing [3]. MPC has been widely used across various fields, including
machine learning, electronic voting, data analysis, and more.

The MPC scheme must guarantee both the correctness of the output result and the
privacy of the parties’ inputs. While many efficient MPC schemes exist [4, 5], most
assume that parties are semi-honest or that more than half of the parties are honest.
However, in the presence of malicious parties, these protocols cannot ensure the correct-
ness of the calculation result. SPDZ [6, 7, 8, 9] is a related research area that can protect
the privacy of parties even when some of them act maliciously, which we refer to as
“cheaters” in this paper. If there are cheaters, none of the aforementioned schemes can
guarantee fairness. Malicious parties may terminate the MPC protocol prematurely or

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 608–626, 2023.
https://doi.org/10.1007/978-981-99-7356-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_36&domain=pdf
http://orcid.org/0000-0002-0689-6544
http://orcid.org/0000-0002-1419-6257
http://orcid.org/0000-0001-8553-827X
https://doi.org/10.1007/978-981-99-7356-9_36

Blockchain Based Publicly Auditable Multi-party Computation 609

submit incorrect calculation results without facing punishment, thus preventing honest
parties or all parties from obtaining the result.

In the presence of cheaters, several problems need to be addressed. The first is how
to manage situations in which cheaters deviate from the protocol. The second is how
to detect cheaters. Additionally, once identified, it is crucial to convince both parties
involved in the protocol and external parties of the cheater’s identity. Thus, guaranteeing
public verifiability or auditability of the cheater detection result is essential. Addressing
these issues is critical to deter cheaters and prevent cheating behavior effectively.

Blockchain [10] is a public, decentralized ledger that is recorded through a consensus
protocol and possesses the characteristic of immutability. Due to its immutability and
other characteristics, blockchain can be applied in various fields such as auditing [11, 12,
13], decentralized storage [14] and tamper-proof system [15]. Well-known blockchain
systems include Bitcoin, Ethereum, and Fabric. Since the launch of Ethereum, smart
contracts have becomemore popular as they enable Turing-complete calculations, which
means that the blockchain has more comprehensive on-chain computing capabilities.
Thus, blockchain can be used to achieve various functions, such as electronic voting,
on-chain data storage, processing deposits, and more.

Inspired by the economic incentive and punishment mechanisms behind blockchain,
similar mechanisms can be introduced into MPC. In reality, all parties involved in the
MPC protocol are expected to act rationally and optimize their interests. Thus, before
commencing the calculation, each party needs to pay a deposit, which will only be
returned to honest parties upon completion of the protocol. In case a cheater is identified
during the protocol, their deposits will be deducted and distributed among other honest
parties as compensation. The economic punishment mechanism helps to deter cheating
behavior and ensure fairness within the scheme.

Smart contracts on the blockchain can be used to enforce economic punishment if a
party fails to submit the correct calculation result ormisses the deadline. Thismechanism,
in conjunction with the deposit feature of the blockchain, ensures fairness within MPC
[16]. To detect cheaters without compromising the privacy of all parties and without the
need for a trusted server, an algorithm can be designed. The smart contract can execute
this cheater detection algorithm to achieve public verifiability or auditability [17].

The contributions of this paper are summarized as follows:

1. A blockchain-based MPC framework is proposed, which allows for secret sharing-
based MPC for any arithmetic circuit while preserving the privacy of all parties
involved.

2. We combine Pedersen commitment, ElGamal encryption, non-interactive zero-
knowledge proof, blockchain and smart contracts to achieve public auditability of
the MPC protocol. The smart contract is used to detect cheaters without requiring a
trusted central server, and the entire computing process is publicly auditable. Anyone
can audit the entire calculation process without revealing the input privacy of each
party, regardless of whether they are part of the protocol or not.

To be noted that, inspired by the idea of fairness with penalties [22, 23], we also
adopt the deposit mechanism within the blockchain to ensure such property. If the smart
contract detects a cheater during the calculation stage of the protocol, their deposits will
be deducted and divided equally among other parties as compensation.

610 S. Jin et al.

Paper Organization. In Sect. 2, we review some related works. Some cryptographic
primitives are introduced in Sect. 3. The blockchain based multi-party computation
scheme is described in Sect. 4. The 3PC instantiation of our scheme is demonstrated in
Sect. 5. Section 6 and 7 provide comparison and experiments analysis. Finally, Sect. 8
concludes the paper.

2 Related Works

Publicly Auditable for MPC: Publicly auditable MPC allows anyone, both inside
and outside the protocol, to verify whether a given computation was executed correctly
[29]. Rabin et al.’s verifiable secret sharing protocol [19] is only verifiable by parties
involved in the MPC protocol, making it challenging for external parties to audit the
overall secret sharing process, which does not meet the publicly auditable property.
Seo’s scheme [20] can detect cheaters, and the entire computing process is auditable,
but it requires a trusted central server, thereby failing to satisfy the publicly auditable
property. Yang et al. proposed a publicly auditableMPC scheme based on blockchain and
smart contracts [18], which utilizes garbled circuits to implementMPCwhile combining
blockchain, smart contracts, commitment, and non-interactive zero-knowledge proofs
to achieve public auditability.

Blockchain Based MPC: Previous works [22, 23] proposed a Bitcoin-based MPC
scheme to ensure each party’s honest participation by using time-limited commitments.
Specifically, each partymust submit the secret value in the commitmentwithin a specified
timeframe; otherwise, their depositswill be deducted as a penalty.However, sinceBitcoin
lacks a Turing-complete smart contract feature like Ethereum, solutions of this type can
only achieve simple functions, or modifying the basic block structure of Bitcoin is
required to implement corresponding functions. With the advent of smart contracts [17],
blockchain can now realizemore complex functions, and the variety of blockchain-based
MPC schemes has increased.

Zhu et al. proposed a publicly verifiable two-party computation scheme based on
blockchain and smart contracts [21], which is limited to only two-party participation.
While the two-party computation protocol may be extended to include more parties,
actual implementation becomes quite complex. The BFR-MPC scheme [24], which
uses blockchain and smart contracts, realizes a fair and secure multi-party computation
scheme by imposing economic penalties on parties who fail to submit results on time.
However, this scheme lacks an effective method to address intentional submission of
incorrect results. Due to the involvement of oblivious transfer, encryption, decryption of
garbled circuits, and the generation and verification of zero-knowledge proofs in every
computation, the number of interactions in Yang et al.’s publicly auditable MPC scheme
[18] will significantly increase as the number of parties grows. As a result, the protocol
becomes very complex and increases wait times. Cordi et al. [25] implemented garbled
circuits based MPC using Ethereum, but this requires converting specific problems into
a suitable form for garbled circuits, which limiting its practicality.

Blockchain Based Publicly Auditable Multi-party Computation 611

3 Preliminaries

3.1 Secret Sharing Based MPC

We provide a brief explanation of MPC based on the secret sharing scheme [6, 20].
Each party Pi splits its secret value xi into shares xi,j(j = 1, 2, ..., n) which satisfies

xi = ∑n
j=1xi,j, and distributes them to other n−1 parties. All parties compute the secret

values using shares obtained from the other parties (and one share of its own secret)
without revealing any intermediate or final result.

Every computation can be represented as a combination of addition and multiplica-
tion operations. Therefore, it is sufficient to introduce the manner in which each party
computes a new share for an addition and a multiplication of two secret values using its
shares.

In terms of addition of two secret values x1 and x2 from P1 and P2, each party Pj can
obtain the new share for x1 + x2 by computing tj = x1,j + x2,j locally. As for the new
share fora · x1, where a is a constant, party Pj can derive this by computing a · x1,j for
itself. Then each party Pj shares it’s tj to other parties. Finally, all parties can obtain the
final result by computing

∑n
j=1tj.

The multiplication of two secret values requires interactions among the parties.
Before the calculation, all parties need to pre-share n triples (ai, bi, ci) that satisfies
a = ∑n

i=1ai, b = ∑n
i=1bi, c = ∑n

i=1ci and c = ab. Parties can compute multiplication
of two secret values x1 and x2 from P1 and P2 by using these triples. For example, if
parties want to compute x1 ·x2, then Pi first computes εi = x1,i−ai, δi = x2,i−bi locally
and shares εi and δi to other parties. All parties reconstruct ε = ∑n

i=1εi, δ = ∑n
i=1δi.

Pi then compute its new share ti = ci + δ ·ai + ε ·bi and share ti to other parties. Finally,
parties can obtain the final result by computing:

δ · ε +
∑n

i=1
ti

= δ · ε +
∑n

i=1
(ci + δ · ai + ε · bi)

= (x2 − b) · (x1 − a) + c + δ · a + ε · b
= (x2 − b) · (x1 − a) + a · b + (x2 − b) · a + (x1 − a) · b
= x1 · x2.

By using a combination of addition and multiplication operations, we can perform
calculations for any arithmetic circuit.

Remark. If all parties are honest and follow the calculation rules step by step, they will
all obtain the final result. However, if some parties cheat, such as sharing incorrect local
calculation results or not sharing local calculation results at all, it can lead to a situation
where only the cheater can get the correct result, or none of the parties can obtain the
final result.

612 S. Jin et al.

3.2 ElGamal Encryption

Let p is a prime number, which makes the discrete logarithm problem intractable on

group
(
Z

∗
p, ·

)
. Let α ∈ Z

∗
p be a primitive element, define β ≡ αa mod p, k ∈ Zp−1,

where (p, α, β) is the public key, a is the private key, and k is a random number.
Encryption: Let the plaintext be x ∈ Zp. The ciphertext is C = (e1, e2) where

e1 = αk mod p and e2 = xβk mod p.
Decryption:Given a ciphertextC = (e1, e2), the decryption algorithm is to compute

x = e2(e1a)
−1mod p.

Under the elliptic curve cryptosystem, it can be expressed as follows: Let private
key and public key be k and H, H = G ∗ k, where G is the base point. The result of
encrypting the secret value x with a random number r is (e1, e2) = (G ∗ r, x + H ∗ r),
the decryption algorithm is to compute x = e2 − e1 ∗ k.

3.3 Pedersen Commitment

Let x, r ∈ Zp, g, h ∈ G are generators of group G. The Pedersen commitment
[26] is Com(x, r) = gxhr . Each Pi creates its own commitment Com(xi, ri) =
gxihri . For x, y, rx, ry, a ∈ Zp, we have Com(x, rx) · Com(

y, ry
) = gxhrxgyhry =

Com
(
x + y, rx + ry

)
and Com(x, rx)a = (Com(x, rx))a.

Under the elliptic curve cryptosystem, it can be expressed as follows:
Given an elliptic curve E, and G,H are points on the elliptic curve whose order is

a large prime p. It is assumed that x1, r1, x2, r2, a ∈ Zp. The Pedersen commitments of
secret values x1 and x2 areCom(x1, r1) = G∗x1+H∗r1 andCom(x2, r2) = G∗x2+H∗r2.
They have the following properties: Com(x1, r1)Com(x2, r2) = Com(x1 + x2, r1 + r2)
and aCom(x1, r1) = Com(a · x1, a · r1).

3.4 Non-interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK) [27] for an NP language Lwith
relation RL consists of the following four algorithms:

CRSGen
(
1λ,L

)
. On input 1λ and the description of the language L, generates a

common reference string crs, a trapdoor τ and an extraction key ek.
Prove(crs, x, w). On input crs, a statement x with witness w, output a proof π .
Verify(crs, x, π). Given crs, a statement x and a proof π , outputs a bit indicating

accept or reject.
SimProve(crs, τ, x). On input crs, a trapdoor τ and a statement x, outputs a simulated

proof π without a witness for x.
In this paper, we use sigma protocol and the Fiat-Shamir paradigmwith hash function

to replace a random oracle. The proof of completeness, soundness and zero-knowledge
can be found in [27].

Blockchain Based Publicly Auditable Multi-party Computation 613

4 Blockchain based Multi-party Computation Scheme

We propose a publicly auditable MPC scheme that can detect cheaters. The scheme
involves n parties and an initializer. The initializer is semi-honest and will not col-
lude with other parties. It may infer some additional information based on the existing
information on blockchain, such as the privacy input of the parties and so on. Its main
responsibility is to perform initialization tasks such as deploying smart contracts, pub-
lishing computing tasks, and so on. It is assumed that there is at least one honest party
involved in the scheme.

The parties complete secure multi-party computing through local computing and
mutual interacting with one another. However, there may be malicious parties, also
known as cheaters, who violate the protocol by sharing incorrect calculation results or
not submitting any calculation results at all. This can lead to a situation where only the
cheater gets the correct result, or no party involved can obtain the correct result.

Furthermore, we integrate blockchain and smart contracts into the MPC protocol.
As a public ledger, the blockchain is responsible for storing encrypted secret values,
Pedersen commitments, and non-interactive zero-knowledge proofs. The smart contract
assists each party in completing the computation task and facilitates audit completion
(cheating detection). If a party submits an incorrect calculation result or fails to submit a
calculation result within the specified time, their deposits will be deducted as a penalty.

The notations used in this paper are shown as follows. The [[x]] is defined as [[x]] =
(x1, x2 · · · , xn), where x = ∑n

i=1xi. Each party Pi holds its own secret value xi and the
Pedersen commitments Com([[x]]) = [G ∗ xi + H ∗ ri]i∈n. For x, y, a ∈ Zp, we define
the operation of this operations as follows:

[[x]] + [[
y
]] = (x1 + y1, · · · , xn + yn)

[[x]] · [[
y
]] = (x1 · y1, · · · , xn · yn)

e · [[x]] = (e · x1, · · · , e · xn)

4.1 Initialization

Before starting the calculation, the initializer generates random numbers for each party,
coordinates with all parties to generate the public key of ElGamal encryption, negotiates
the structure of the arithmetic circuit and specifies input requirements for each party. At
this stage, all parties are required to upload corresponding Pedersen commitments to the
blockchain and pay the deposits to the blockchain. The more complex the structure of
the arithmetic circuit, the more deposits parties need to pay.

1. The initializer publishes the computing task and the arithmetic circuit, deploys the cor-
responding smart contracts (including on-chain calculation, verification, etc.). Each
party Pi(i = 1, ..., n) shares its public key PKi and pays the deposit to the blockchain.

2. The initializer generates n random numbers r = (r1, r2, · · · , rn), sends ri to the party
Pi, and divides random number ri = (ri,1, ri,2, · · · , ri,n), where ri = ∑n

j=1ri,j. Then

the initializer sends
[
ri,j

]
i∈n to party Pj, computes rsum = r1+ r2+· · ·+ rn and sends

H ∗ rsum to the blockchain.

614 S. Jin et al.

3. The parties interact with each other to generate multiplicative triples (ai, bi, ci) (using
the method in MASCOT [28]), which satisfy a = ∑n

i=1ai, b = ∑n
i=1bi, c = ∑n

i=1ci
and c = ab.

4. Each partyPi interacts with each other to generate n random values ηi(i = 1, 2, ..., n),
where

∑n
i=1ηi = 0, and computes random value R = (R1, · · · ,Rn) = (r1 +

η1, · · · , rn + ηn) and R′ = (
R′
1, · · · ,R′

n

) = (r1 − η1, · · · , rn − ηn).
5. Each party Pi uploads the following commitments to the blockchain:

Com
(
ai,R′

i

)
,Com

(
bi,R′

i

)
,Com

(
ci,R′

i

)
,Com(ηi,Ri) and

Com(x) = [Com(xi, rsum)]i∈n.

6. The initializer calls the smart contract to verify whether the following equation holds:∑
Com(ηi,Ri) = G ∗ 0 + H ∗ rsum. If the equation is correct, the protocol contin-

ues. Otherwise, the protocol will be terminated, and parties will need to restart the
initialization process.

The step 4 can be achieved in the following way. Each party Pi sends ηi(i �= 1) to P1
though public key encryption. Then the party P1 choose η1 which satisfies

∑n
i=1ηi = 0.

Then parties can generate the Pedersen commitments using the n random values R =
(R1, · · · ,Rn) and R′ = (

R′
1, · · · ,R′

n

)
which satisfy

∑n
i=1 Ri = ∑n

i=1 R
′
i = rsum.

4.2 Input

In this stage, each party Pi uses random numbers ri to divide their initial secret values.
After this stage, each party has n secret shares.

1. Each party computes αi = xi − ri locally. Every party Pi(i = 2, ..., n) sends αi to the
party P1.

2. P1 calculates xi,1 = ri,1 + αi locally and other parties Pi(i = 2, ..., n) computes
xi,j = ri,j.

3. Pi generates the Pedersen commitment Com
(
xj,i,Ri

)
(j = 1, ..., n) and uploads them

to the blockchain.
4. The initializer calls the smart contract to verifywhether the following equations holds:∑

Com
(
xj,i,Ri

) = Com
(
xj, rsum

)
(j = 1, ...n). If all of the equations are correct, the

MPC protocol continues. Otherwise, the protocol will be terminated and parties will
need to restart the input stage.

4.3 Computation and Verification

In this stage, the parties calculate the arithmetic circuit by interact with blockchain and
smart contracts. The calculation process includes multiplications and additions, both
operations involve cheater detection. If the cheater uploading wrong calculation results
to the blockchain or do not uploading calculation results on time, then only the cheater
can get the correct result or all the parties can’t get the correct result. Hence, the publicly
auditable cheater detection mechanism and economic penalties can avoid cheating to a
certain extent, guarantee the fairness of the calculation.

– Addition of the secret values:

Blockchain Based Publicly Auditable Multi-party Computation 615

For example, n parties jointly calculate x1 + x2:

1. Parties calculate t = x1 + x2 = (
x1,1 + x2,1, x1,2 + x2,2, · · · , x1,n + x2,n

)
.

2. Parties calculate the following commitments on blockchain by calling the correspond-
ing smart contracts: Com(t) = [

Com
(
x1,j,Rj

)] + [
Com

(
x2,j,Rj

)]
.

– Addition of the a secret value and a constant:

For example, n parties jointly calculate x1 + k:

1. P1 calculates x1,1 = (x1,1 + x2,1, x1,2 + x2,2, · · · , x1,n + x2,n).
2. P1 calculates Com(t1) = Com

(
x1,1,R1

) + G ∗ k while other parties calculate
Com(ti) = Com

(
x1,i,R1

)
on blockchain by calling the corresponding smart contracts.

– Multiplication of the secret values:

For example, n parties jointly calculate x1 · x2:
1. Parties calculate [[ε]] = [[x1]] − [[a]] = (

x1,1 − a1, · · · , x1,n − an
)
and [[δ]] =

[[x2]] − [[b]] = (
x2,1 − b1, · · · , x2,n − bn

)
, where εi = x1,i − ai and δi = x2,i − bi.

2. Parties call the smart contracts to calculate Com([[ε]]) = Com([[x1]]) − Com([[a]])
and Com([[δ]]) = Com([[x2]]) − Com([[b]]) on chain.

3. Each party Pi encrypts εi and δi withPKj(j �= i), generates NIZK(εi) and
NIZK(δi) to prove εi and δi appeared in Enc

(
εi,PKj

)
, Com(εi,Ri) and in

Enc
(
δi,PKj

)
,Com(δi,Ri) are the same, uploads Enc

(
εi,PKj

)
, Enc

(
δi,PKj

)
,

NIZK(εi) and NIZK(δi) to the blockchain.
4. Each party Pi calls the smart contract to verify their NIZK proofs. If all the proofs

are correct, parties can proceed with the computation. Otherwise, the protocol will
be terminated, and parties will need to restart the initialization process. A party with
an incorrect proof will be considered as a cheater, and their deposits will be deducted
and distributed equally among other parties. The cheating party will be dropped
from the protocol, which will then be terminated, and parties will have to initiate the
protocol again.

5. Each party Pi decrypts the ciphertext in blockchain to get εi and δi, calculates δ′ =∑n
i=1 δi and ε′ = ∑n

i=1 εi, any party can upload δ′ and ε′ to the blockchain.
6. Initializer or every party involved in computing can call the smart contract to verify

whether the following equations holds:

{∑
Com(εi,Ri) = G ∗ ε′ + H ∗ rsum∑
Com(δi,Ri) = G ∗ δ′ + H ∗ rsum

}

. If

the equations hold, it means ε′ = ε and δ′ = δ. The protocol will not proceed until
a party uploads the correct ε′ and δ′.

7. Each party Pi calculates ti = ci + δ · ai + ε · bi locally and calls the smart contract to
calculate Com(ti) = Com(ci,Ri) + δCom(ai,Ri) + εCom(bi,Ri) on chain. Here, in
order to be consistent with the final calculation process of the addition, P1 needs to
perform an additional addition calculation between the constant and its secret share
t1, that is, at the end of the multiplication stage, the secret share obtained by the final
calculation of the participant is t1 = c1 + δ · a1 + ε · b1 + δε.

– Multiplication of a secret value and a constant:

616 S. Jin et al.

For example, n parties jointly calculate x1 · k:
1. Parties calculate [[t]] = [[x1]] · k.
2. Parties calculate Com(ti) = kCom(x1,i).

Generally speaking, the arithmetic circuit should include various linear combinations
of the four types of operations mentioned above. Whenever an addition or multiplication
operation is completed, parties will get a new secret share ti locally. The corresponding
Pedersen commitment is also stored on blockchain, and this new secret sharewill be used
as the secret input for the next addition or multiplication operation of the participant,
and so on. After all arithmetic circuit operations are completed, the secret share of the
result is denoted as yi, and each party proceeds as follows.

1. Each party Pi encrypts the yi with public keys PKj(j �= i) of other parties and gets
the ciphertext Enc

(
yi,PKj

)
(j ∈ n, j �= i).

2. Each party Pi decrypts the ciphertext Enc
(
yj,PKi

)
(j ∈ n, j �= i) and get all yi.Then

parties can get the final result by calculating
∑n

i=1yi = x1 + x2 locally.
3. Each Pi calls the smart contract to verify whether its non-interactive zero-knowledge

(NIZK) proof is correct. Only the parties whose NIZK proofs are correct can get their
deposits back upon completion of the calculation. If a party’s NIZK proof is incorrect,
it will be considered as cheating. Consequently, their deposit will be deducted and
equally distributed among the other parties.

All the above calculation processes involve NIZK proofs, and their forms are iden-
tical. All NIZK proofs are generated to prove that the same secret value exists in
both the encryption and Pedersen commitment. Inspired by [27], we provide a detailed
construction of NIZK proof.

The prover has a secret value y and has produced an encryption (e1, e2) =
(G ∗ R,G ∗ y + H ∗ R) that is an encryption of G ∗ y with randomness R. Prover has
also committed to y : C = g ∗ y + h ∗ r and wants to show that the same t appears in
the encryption and commitment.

The prover computes

a1 = G ∗ α,

a2 = G ∗ β + H ∗ α,

a3 = g ∗ β + h ∗ γ,

c = H (G,H , g, h, a1, a2, a3),
z1 = α + cRmod p,
z2 = β + cy mod p,
z3 = γ + cr mod p,

for randomly chosen α, β, γ ∈ Z
∗
p, and uploads (a1, a2, a3, c, z1, z2, z3) to the

blockchain. The verifier downloads (a1, a2, a3, c, z1, z2, z3) from blockchain and checks
if the following equations satisfy:

Blockchain Based Publicly Auditable Multi-party Computation 617

c = H (G,H , g, h, a1, a2, a3),
a1 = G ∗ z1 − e1 ∗ c,

a2 = G ∗ z2 + H ∗ z1 − e2 ∗ c,
a3 = g ∗ z2 + h ∗ z3 − C ∗ c.

If yes, the verifier accepts.

Remark. The verifier can be a party within the MPC protocol or an external party.
Anyone who can call the smart contract can verify NIZK proofs on the blockchain.

4.4 End of the Protocol

After the above stages, the calculation process ends. The final stage involves processing
the parties’ deposits.

The initializer will be rewarded for coordinating thewhole process. (Using Ethereum
as example, deploying or calling a smart contract requires a certain amount of ether. In
this case, we consider deducting a portion of all parties’ deposits as a reward for the
initializer). Once the computation is complete, the initializer can call the smart contract
and claim their reward. Afterward, every honest party can call the smart contract to
redeem their respective deposits.

5 One 3PC Instantiation of Our Scheme

Here is an example to illustrate our scheme in three parties’ settings. The overall frame
of the scheme is shown in Fig. 1. The initializer is responsible for allocating random
numbers and deploying the corresponding smart contracts. Then, the three parties obtain
multiplication triples which are only used in the multiplication stage by executing the
MASCOT protocol. Subsequently, based on three random numbers, the three parties use
three random numbers generated through interaction to calculate the random number
used for Pedersen commitment. Each party shares their secret values and calculates
their corresponding Pedersen commitments on the blockchain. The next step involves
on-chain calculation and verification. Each party calls the smart contract to calculate
the Pedersen commitment of the secret value of its local calculation result, and uploads
the real encrypted local calculation result together with its zero-knowledge proof to the
blockchain.

618 S. Jin et al.

Fig. 1. A 3PC instantiation of the scheme

6 Comparison and Analysis

6.1 Schemes Comparison

We compare our scheme with similar schemes, and the comparison results are shown
in Table 1. The proposed blockchain based MPC scheme is publicly auditable. Based
on the secret sharing, we realize a fair and privacy-preserving multi-party computation
scheme.

A prominent feature is that our scheme combines blockchain and secret sharing
to achieve publicly auditable secure multi-party computation. It supports two or more
parties to collaborate on computations, and can detect cheaters and audit the calculation
process without requiring a trusted third party. This approach benefits the process by
further deterring cheating behavior and improving its overall fairness and reliability.
If a cheater appears, it will definitely be detected without revealing anyone’s privacy.
Everyone (regardless of whether they participated in the secure multi-party computation
process) can determine the cheater’s identity.

Blockchain Based Publicly Auditable Multi-party Computation 619

Table 1. Comparison with related works

Fairness Cheater
detection

Cheater
detection
without
server

Auditable Public
auditable
with
privacy
protected

Supported
parties

Building
block

Gao et al.
[24]

√ √ √ × × ≥2 SS

Cordi
et al. [25]

√ √ √ √ × ≥2 GC

Yang et al.
[18]

× √ √ √ √ ≥2 GC

Zhu et al.
[21]

√ √ √ √ √
=2 GC

Seo [20]
√ √ × √ × ≥2 SS

Our
scheme

√ √ √ √ √ ≥2 SS

(Note. GC represents Gabled Circuits and SS represents Secret Sharing.)

Among the schemesmentioned above, only scheme [20] can identify a cheater before
they obtain the final calculation result. However, the premise is that all parties encrypt
their local calculation results and send them to a trusted central server, and then the
server judges whether there is a cheater. If there is a cheater, the MPC protocol will be
terminated, and neither the cheater nor any other party can obtain the final calculation
result. The cheater will be eliminated from the MPC protocol, and the remaining honest
parties will be coordinated by the central server to restart the protocol. If there is no
cheating, then the central server will send all encrypted local calculation results to all
parties, and all of them will get the final correct calculation result.

In this paper, our scheme guarantees that all parties can obtain the correct result or
none of them can get the result, as long as all parties submit their results on time and
the last party to submit its result is not a cheater. Because each party can verify the
NIZK proofs stored on blockchain before submitting its local result, which eliminates
the possibility of cheating. Once the cheater is detected though NIZK proof, as long as
the parties who have yet to submit their results by this time, it is guaranteed that all the
parties will not get the final correct result. In this way, we can guarantee that cheaters
will be detected before they obtain the final result in most cases.

Next, we will discuss the properties of the scheme.

6.2 Privacy Preserving

This paper assumes that the initializer is semi-honest and that at least one party is honest.
And initializer cannot collude with the parties.

620 S. Jin et al.

The initializer interacts with each party to generate random numbers and triples
during the initialization process. In this process, part of the random numbers allocated
by the initializer to each party is used in the Pedersen commitment, and the other part
is used in the split of the party’s own secret value. If following Seo’s method [20] and
letting each party use the random number allocated by the initializer to make a Pedersen
commitment of its own secret value, and store the commitment on the blockchain, then the
initializer will be aware of the random number used in the commitment. As a result, there
will be privacy leaks, and the initializer can obtain the secret value in the commitment.
However, themethod proposed in our paper avoids such instances by keeping the random
numbers Ri(i = 1, 2, ..., n) used by each party for the Pedersen commitment concealed
from the initializer, making it more secure to apply the Pedersen commitment. Based on
the hiding property of the Pedersen commitment, it will not cause any privacy disclosure
as long as the initializer does not collude with other parties.

Each party splits its own secret value in the input process. The initializer does not
know ηi(i = 1, 2, ..., n). As long as there is no collusion between the parties and the
initializer, it is impossible for the initializer or anyone outside of the protocol to obtain
the secret value of each party.

During the process of calculation and verification, the parties will upload the cipher-
texts of ElGamal encryption and the NIZK proofs to the blockchain, and the Pedersen
commitments will be calculated by the smart contracts on the blockchain. ElGamal
ciphertexts ensure that only the parties in the MPC protocol can decrypt the ciphertexts.
Pedersen commitment protect the secret values of all parties from leakage. NIZK proof
realize the publicly auditable cheater detection without disclosure the parties’ privacy.

6.3 Correctness

From the description of the calculation stage, it can be seen that the calculation results
involved in the calculation are stored on the blockchain in the form of Pedersen com-
mitments, and are calculated through smart contracts. If each party in MPC performs
corresponding calculations locally, and uploads the corresponding calculation results on
time, then based on the homomorphism of Pedersen commitment, all parties can finally
obtain the final correct result.

Taking the addition of two secret values as an example, the analysis of the correctness
of the calculation result is as follows:

For the addition of two secret values x1 and x2, according to the introduction of the
scheme, all Pedersen commitments about the secret shares stored on the chain have been
verified to be correct during the input phase. In the calculation and verification phase,
the Pedersen commitments stored on the blockchain about the secret shares of the two
secret values x1 and x2 are: Com

(
x1,i,Ri

)
(i = 1, ..., n) and Com

(
x2,i,Ri

)
(i = 1, ..., n).

The calculation of the secret share through the smart contract is to add the corresponding
commitments, that is: Com(ti) = Com

(
x1,i,Ri

)+Com
(
x2,i,Ri

)
. At the same time, each

party Pi can calculate ti locally, and ti is encrypted by public key and shared with other
parties, so that if every party honestly follows the MPC protocol, all of them can obtain
all correct ti. Finally, they can calculate

∑
ti = x1 + x2 locally.

For the multiplication of two secret values, the process is more complicated than
addition. Because it involves the use of multiplication triples, one more zero-knowledge

Blockchain Based Publicly Auditable Multi-party Computation 621

proof will be used. The correctness analysis is similar with addition, as long as all parties
follow the protocol honestly, then all of them can obtain correct calculation result.

6.4 Public Auditability

Each party needs to encrypt the corresponding intermediate result with the public key,
and verify that the encrypted value and the committed value are consistent by generating
a NIZK proof. The verification of the zero-knowledge proof is completed by the smart
contract, so that all the parties agree with the verification results. If one party’s zero-
knowledge proof fails to pass verification, he will be judged as a cheater. In addition to
the various parties within the protocol and the initializer, other nodes on the blockchain
can also call smart contracts to verify these zero-knowledge proofs, that is, party outside
the protocol can also audit the calculation process of the protocol.

In order to illustrate the specific role of non-interactive zero-knowledge proof in
achieving public auditability property, the examples of addition of two secret values x1
and x2 are given here. In the analysis of correctness, it has been concluded that as long as
each party shares the correct intermediate calculation result ti with other parties, all par-
ties can obtain the correct final calculation result. Before uploading non-interactive zero-
knowledge proof, the content stored on-chain includes: Pedersen commitments to their
secret shares by each party: Com

(
x1,i,Ri

)
(i = 1, ..., n) and Com

(
x2,i,Ri

)
(i = 1, ..., n),

Pedersen commitments to intermediate calculated value ti = x1,i + x2,i on blockchain
by each party: Com(ti) = G ∗ (

x1,i + x2,i
) + H ∗ 2Ri, public key encryption results

of intermediate values calculated locally by each party: Enc
(
ti,PKj

)
. Through non-

interactive zero-knowledge proof, anyone can verifywhether the secret value in Pedersen
commitment and public key encryption is the same and achieve public auditability.

The two non-interactive zero-knowledge proofs involved in the multiplication stage
also enable the property of publicly auditable multiplication computation. The first non-
interactive zero-knowledge proof is used to prove that the value εi in Enc

(
εi,PKj

)
and

Com(εi) is consistent (δi likewise). Based on the equation Com(εi) = G ∗ (
x1,i − ai

) +
H ∗ 0, only the corresponding party Pi knows the correct value of x1,i − ai, and using
NIZK(εi), it can be proven that the encryption result uploaded by the party Pi for εi is
correct. The second non-interactive zero-knowledge proof is used to prove that the value
ti in Enc

(
ti,PKj

)
and Com(ti) is consistent, where Com(ti) = G ∗ (ci + δai + εbi) +

H ∗ (Ri(1 + δ + ε)). Here, only the corresponding party Pi knows the correct values
ci + δai + εbi and Ri(1 + δ + ε), and through non-interactive zero-knowledge proof
NIZK(ti), it can be proven that the encryption result uploaded by the party Pi for ti is
correct.

6.5 Fairness with Penalties

This paper presents an economic punishment mechanism, in which the deposits of all
party are stored on the blockchain. Only those who complete the calculation correctly
can redeem their deposits, thus deterring cheating behaviors. During the computation
and verification phases, if a party fails to upload its calculation results on time or uploads
incorrect results (i.e., non-interactive zero-knowledge proof fails to pass verification),
it will be deemed as a cheater and its deposit will be deducted and distributed among

622 S. Jin et al.

other parties as compensation. This approach achieves fairness with penalties, ensuring
that honest parties will not be penalized and cheaters will be punished, while all honest
parties will receive financial compensation. It can also be described as follows: after
the execution of the MPC protocol, honest parties can only experience two outcomes:
obtaining the correct computation results or receiving financial compensation.

7 Experiments Analysis

The experiments were done using python and run on a PC equipped with a 4-core
I5-6300H processor at 2.30 GHz and 12 GB RAM.

It mainly includes the following four steps: public key encryption and decryption,
generation and verification of non-interactive zero-knowledge proof. The following
experiments are all completed under the elliptic curve (secp256r1) cryptographic sys-
tem. The average value is taken as the final result after multiple experiments within each
secret value range. The experimental results are shown in Fig. 2.

From the experimental results, as the secret value ranges from 102 to 106, the time
required for each process does not change significantly, all within 100 ms.

The decryption process mentioned above specifically refers to decrypting from the
ciphertext to obtainG∗x. If parties want to obtain the secret value x, they need to recover
x from G ∗ x, and the time required for this process is shown in Table 2.

From the data in the table, it can be seen that the range of ciphertext supported by
this scheme is limited, because it involves the process of decryption of G ∗ x. If it is
desired for the protocol to proceed normally, control needs to be exerted over the range
of the secret value.

Table 3 displays the number of times a specific party interacts with the blockchain,
includinguploading content to the blockchain, downloading content from theblockchain,
and calling smart contracts. These interactions occur from the input stage through to the
end stage of a single multiplication operation and a single addition operation in the
scheme. It is assumed that there are n parties in total.

Fig. 2. Time spent by the four processes

Blockchain Based Publicly Auditable Multi-party Computation 623

Table 2. Time consumption of decryption of G ∗ x

Range of x 101 102 103 104 105

Decryption time (s) 0.000495 0.008297 0.141417 2.575861 77.875623

The entire arithmetic circuit includes A times of addition between secret values, B
times of addition between a secret value and a constant, C times ofmultiplication between
secret values, and D times of multiplication between a secret value and a constant. The
specific results are shown in Table 3. As the number of parties increases, the number of
times the secret shares are encrypted, decrypted, and zero-knowledge proofs generated
increases linearly. If public key broadcast encryption can be used, then the number of
encryption and decryption involved in Table 3 and the number of times to generate
non-interactive zero-knowledge proofs will become constant.

Table 3. The number of times each step is executed

Encryption Generation of NIZK proof Decryption Interactions

(2C + 1)(n-1) (2C + 1)(n-1) (2C + 1)(n-1) A + B + 3C + D + 2

According to the requirements of the scheme, the calculation of Pedersen commit-
ments on the blockchain and the verification of non-interactive zero-knowledge proofs
are all completed by smart contracts. First, we use Ganache to build a private chain.
Then we use solidity to write smart contracts to implement elliptic curve related oper-
ations (including addition, subtraction, multiplication and hashing), and use the Truffle
framework to test the specific time required for cryptography-related operations. In order
to eliminate the waiting time for calling smart contracts and obtain the time consumed
to perform a specific operation, here we consider performing one operation and eleven
operations and getting the average time. The experimental result is shown in Fig. 3, and
the specific time required using the smart contract to complete the calculations related to
the Pedersen commitment and verify the non-interactive zero-knowledge proof is shown
in Table 4.

Table 4. Time Spent by Running Smart Contracts

Operation Addition Subtraction Multiplication of a
constant and a curve

Hash Verification of a NIZK
proof

Time(ms) 159.7 149.5 123.6 18.0 1131.5

Remark. Seo’s MPC framework [20] with cheater detection did not provide a specific
cryptographic system and the construction of zero-knowledge proof, so it is difficult

624 S. Jin et al.

Fig. 3. Execution Time of the Smart Contract

to make a comparison. In addition, Yang et al.’s publicly auditable MPC scheme [18]
utilizes garbled circuits and OT protocols to implement MPC, which are not covered in
this paper. However, we give the specific time for running smart contract. In this way,
the feasibility of our scheme can be demonstrated.

8 Conclusion

In this paper, we propose a secure multi-party computation scheme based on blockchain,
which combines Pedersen commitment and non-interactive zero-knowledge proof to
detect cheaters. Combined with smart contracts, the entire computing process is publicly
auditable. Once there exists a cheater, the cheater will definitely be detected, and both
parties inside and outside the protocol will be convinced of the cheater’s identity. In
order to further deter cheaters, we use the blockchain and smart contracts to adopt the
method of economic punishment. The parties need to pay the deposits on the blockchain
before the calculation starts. Only the parties who participated in the calculation honestly
can get their deposits back at the end of the protocol. If a party cheats, its deposit will
be deducted, and other honest parties will be compensated financially. In this way, the
overall process of secure multi-party computation is relatively fair. Through analysis, it
showed that the proposed MPC scheme is capable of protecting the privacy of all parties
involved while ensuring the accuracy of computational result. Additionally, it is publicly
auditable and achieves fairness with penalties.

Acknowledgment. Yong Li’s work is partially supported by research grant from Linklogis. The
authors wish to thank the anonymous reviewers for their insightful and helpful comments.

Blockchain Based Publicly Auditable Multi-party Computation 625

References

1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations
of Computer Science (FOCS 1982), pp. 160–164. IEEE (1982)

2. Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In: Proceedings of
the Nineteenth ACM Symposium on the Theory of Computing, STOC, pp. 218–229. ACM
(1987)

3. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
4. Boubiche, S., Boubiche, D.E., Bilami, A., et al.: Big data challenges and data aggregation

strategies in wireless sensor networks. IEEE Access 6, 20558–20571 (2018)
5. Zhao, X., Zhu, J., Liang, X., et al.: Lightweight and integrity-protecting oriented data

aggregation scheme for wireless sensor networks. IET Inf. Secur. 11(2), 82–88 (2017)
6. Damgård, I., Pastro, V., Smart, N., et al.: Multiparty computation from somewhat homomor-

phic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO
2012. CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

7. Ma, T., Liu, Y., Zhang, Z.: An energy-efficient reliable trust-based data aggregation protocol
for wireless sensor networks. Int. J. Control Autom. 8(3), 305–318 (2015)

8. Akila, V., Sheela, T.: Preserving data and key privacy in data aggregation for wireless sen-
sor networks. In: 2017 2nd International Conference on Computing and Communications
Technologies (ICCCT), pp. 282–287. IEEE (2017)

9. Wu, D., Yang, B., Wang, R.: Scalable privacy-preserving big data aggregation mechanism.
Digit. Commun. Netw. 2(3), 122–129 (2016)

10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.Decentralized Business Review,
p. 21260 (2008)

11. Suzuki, S., Murai, J.: Blockchain as an auditable communication channel. In: 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 516–522.
IEEE (2017)

12. Shen, J., Chen,X.,Wei, J., et al.: Blockchain-based accountable auditingwithmulti-ownership
transfer. IEEE Trans. Cloud Comput. (01), 1–14 (2022)

13. Chen, J., Yao, S., Yuan, Q., et al.: Certchain: public and efficient certificate audit based on
blockchain for TLS connections. In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pp. 2060–2068. IEEE (2018)

14. Tian, G., Hu, Y., Wei, J., et al.: Blockchain-based secure deduplication and shared auditing
in decentralized storage. IEEE Trans. Dependable Secure Comput. 19(6), 3941–3954 (2021)

15. Ahmad,A., Saad,M., Bassiouni,M., et al.: Towards blockchain-driven, secure and transparent
audit logs. In: Proceedings of the 15thEAI InternationalConference onMobile andUbiquitous
Systems: Computing, Networking and Services, pp. 443–448 (2018)

16. Faust, S., Hazay, C., Kretzler, D., et al.: Financially backed covert security. In: Hanaoka, G.,
Shikata, J.,Watanabe,Y. (eds.) Public-KeyCryptography – PKC2022. PKC2022. LNCS, vol.
13178, pp. 99–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_4

17. Buterin, V.: A next-generation smart contract and decentralized application platform. White
Pap. 3(37), 2–1 (2014)

18. Yang, Y., Wu, J., Long, C., et al.: Blockchain-Enabled multi-party computation for privacy
preserving and public audit in industrial IoT. IEEE Trans. Ind. Inf. 18(12), 9259–9267 (2022)

19. Rabin, T., Ben-Or,M.: Verifiable secret sharing andmultiparty protocols with honestmajority.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pp. 73–85 (1989)

20. Seo, M.: Fair and secure multi-party computation with cheater detection. Cryptography 5(3),
19 (2021)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-030-97131-1_4

626 S. Jin et al.

21. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2PC over a blockchain with
applications to financially-secure computations. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 633–650 (2019)

22. Andrychowicz, M., Dziembowski, S., Malinowski, D., et al.: Secure multiparty computations
on bitcoin. Commun. ACM 59(4), 76–84 (2016)

23. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations. In: Pro-
ceedings of the 2014 ACMSIGSACConference on Computer and Communications Security,
pp. 30–41 (2014)

24. Gao, H., Ma, Z., Luo, S., et al.: BFR-MPC: a blockchain-based fair and robust multi-party
computation scheme. IEEE Access 7, 110439–110450 (2019)

25. Cordi, C., Frank, M.P., Gabert, K., et al.: Auditable, available and resilient private compu-
tation on the blockchain via MPC. In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security,
Cryptology, andMachine Learning. CSCML2022. LNCS, vol. 13301, pp. 281–299. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-07689-3_22

26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (eds.) Advances in Cryptology — CRYPTO’91. CRYPTO 1991. LNCS, vol.
576, pp. 129–140. Springer, Berlin, Heidelberg (1991). https://doi.org/10.1007/3-540-467
66-1_9

27. Damgård, I., Ganesh, C., Khoshakhlagh, H., et al.: Balancing Privacy and Accountability in
Blockchain Transactions, p. 1511. IACR Cryptol. ePrint Arch. (2020)

28. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation
with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 830–842 (2016)

29. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In:
Abdalla,M., De Prisco, R. (eds.) Security and Cryptography for Networks. SCN 2014. LNCS,
vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-
7_11

https://doi.org/10.1007/978-3-031-07689-3_22
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-10879-7_11

Towards Quantifying Cross-Domain
Maximal Extractable Value

for Blockchain Decentralisation

Johan Hagelskjar Sjursen, Weizhi Meng(B) , and Wei-Yang Chiu

SPTAGE Lab, Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

{weme,weich}@dtu.dk

Abstract. In the research society, many solutions to solving blockchain
scaling have been tried historically, usually by compromising on decen-
tralisation. Ethereum has chosen to scale by switching to Proof of Stake
(PoS) consensus and adding data sharding to allow Layer 2 execution to
be cheaper. However, in the light of cross-domain Maximal Extractable
Value (MEV), even this strategy may have centralising forces built-in.
In this work, we focus on cross domain MEV and try to identify cross
domain arbitrage. We achieve this by extracting Uniswap data from four
different domains and analysing the dataset with two different methods.
Based on the analysis, we are successful in identifying one smart con-
tract’s address, which is deployed to multiple domains, engaging in cross
domain arbitrage. We also illustrate the difficulties when quantifying
cross-domain MEV in practice.

Keywords: Blockchain Technology · Decentralized Application ·
Maximal Extractable Value · Cross Domain · Ethereum Platform

1 Introduction

In 2008, the Bitcoin whitepaper first described a peer-to-peer (P2P) network,
which allowed for online payments without having to rely on financial institu-
tions [1]. Instead it relied on putting transactions into blocks linked with hashes
in a manner, dubbed Proof of Work (PoW). This means that users of the system
could trust that their transactions would not be reverted as long as most of the
participants in the network are not actively trying to undermine it.

In the early days, it was not used for much, but in 2010 someone bought a
pizza and the year after, it was used for the buying and selling of illicit substances
on the “Dark web” [4]. From there, Bitcoin gained popularity. At some point
blocks began filling up, previously so-called “Miners” had produced blocks for
the Bitcoin network to claim the block reward. The block reward is an amount of
Bitcoin that the miner of a block can choose to attribute to anyone they desire,
usually themselves [24]. While as usage of the network keeps increasing and space
for transactions in blocks was no longer abound, a culture of bribing miners to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 627–644, 2023.
https://doi.org/10.1007/978-981-99-7356-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_37&domain=pdf
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0002-8917-4087
https://doi.org/10.1007/978-981-99-7356-9_37

628 J. H. Sjursen et al.

include the transactions emerged. Miners would include the transactions with
the highest bribe in the blocks they produced, hence increasing the amount of
Bitcoin they earned from mining the block [16].

Some people were unhappy with having to pay fees to use the network, as it
collided with the idea of Bitcoin as Internet money. This led to multiple forks
of Bitcoin, e.g., Bitcoin Cash and Litecoin. Bitcoin Cash wanted to increase the
transaction throughput to a scale where the network could be used for day to
day transactions, e.g., buying coffee. To do this, the size and the frequency of
blocks could be increased. This means that the hardware requirements to run a
node also increased, effectively trading decentralisation for performance [22].

For the first many years of its existence, transactions and miner bribes worked
the same way on Ethereum as in the Bitcoin network. Even though transactions
on Ethereum could do more than just transferring Ether from one user of the
network to another, the sequencing of these transactions did not yet seem impor-
tant. Similarly to Bitcoin, there has been multiple forks of Ethereum with dif-
ferent goals, but are usually trying to increase transaction throughput. Some of
the earlier ones, like Tron (https://tron.network/) and EOS (https://eos.io/) are
largely out today, but the others have come up such as Solana (https://solana.
com/zh), Binance smartchain (https://www.bnbchain.org/en/smartChain) and
Avalanche (https://www.avax.network/).

As in Bitcoin, these forks sacrifice decentralisation in order to achieve scale.
This trend has also been described as the scalability trilemma [28]. The idea
being that one can not meaningfully improve on one aspect of the trilemma
(scalability, decentralisation, security) without compromising on another [21,33].
As a solution, the Ethereum Roadmap is a set of upgrades to the Ethereum
protocol, where the Ethereum foundation is working along with client teams
to actualise. The next two major upgrades coming are the merge (switching
from PoW to PoS) and data sharding, where the former being a requirement
for the latter. These upgrades aim to achieve all sides of the trilemma. In other
words, it aims to build a decentralised, secure network that can settle a lot
of transactions trustlessly. Currently, blockchain has been applied in various
fields, such as 6G [34], cyber security [25,26], transportation [18,19], eID [17],
library [20], trust filtration [27], etc.

Motivation and Related Work. In the last few years, awareness of Maxi-
mal Extractable Value (MEV) has grown steadily, which refers to the maximum
value that can be extracted by blockchain miners from generating a block pro-
duction in excess of the standard block reward and gas fees through including,
excluding, and changing the order of transactions in a block [29]. Daian et al. [3]
firstly proposed this issue, and figured out that high fees paid for priority trans-
action ordering poses a systemic risk. For protection, Weintraub et al. [35] mea-
sured the impact of Flashbots [5] – a solution by creating a private transaction
pool, and found some flaws are existed. Churiwala and Krishnamachari [2] intro-
duced a transaction protocol to eliminate MEV attacks by requesting an interac-
tion token from the on-chain counter-party. Then Malkhi and Szalachowski [23]
proposed Fino, a Directed Acyclic Graphs-based protocol that involves MEV-

https://tron.network/
https://eos.io/
https://solana.com/zh
https://solana.com/zh
https://www.bnbchain.org/en/smartChain
https://www.avax.network/

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 629

resistance features into an enhanced Byzantine fault tolerance (BFT) consensus
without degrading the performance.

The landscape has moved from Priority Gas Auctions to Flashbots bundles
and beyond. There are still many open questions about its potential impact on
decentralisation. As Ethereum’s transition to PoS consensus approaches, these
questions are more pressing than ever, with new concerns about Cross-Domain
MEV [32].

Contributions. Due to the importance, in this work, we seek to find out if
cross-domain MEV can be found, and if we can quantify it. The contributions
can be summarized as follows.

– We develop and implement a tool that can extract values from the blockchain
data and analysing the collected dataset for traces of cross-domain arbitrage.

– Based on the collected data, we perform two analysis methods and successfully
identify cross-chain arbitrages. We also raise questions about its impact on
decentralisation.

Organization. Section 2 shows the background on MEV and cross-domain
MEV. Section 3 details how we collect the data via Uniswap from four differ-
ent domains, and Sect. 4 presents our implementation details. Section 5 provides
an overview of the collected data and discusses the results. Finally, Sect. 6 con-
cludes our work.

2 Background

The Flash Boys 2.0 [3] also introduced the concept of Miner Extractable Value
(MEV). MEV has since evolved to mean Maximal Extractable Value, since the
actor with the power to sequence transactions on the Ethereum network will
soon change from miners to validators. MEV refers to the total amount of value
that block producers can extract from manipulation of transactions. With a
lower bound for how much value there is to extract, they argued that the value
is great enough to subsidise attacks on the Ethereum network.

2.1 Types of MEV

There are many different types of MEV that all arise from transaction ordering.
Some of the most prominent are the followings:

– Decentralised Exchange (DEX) Arbitrage. The prices of tokens on dif-
ferent DEX’s may be different, therefore presenting an opportunity to buy a
token cheap on one exchange and sell it for more on another.

– Liquidations. Different smart contracts on Ethereum offer the service of
lending capital against collateral. These loans are typically over-collateralised.
If the collateral of the loan depreciates in value, any user of the network
can submit a transaction to the lending contract in order to liquidate it,
effectively repaying the loan. This action aims to keep the lending contract
solvent. Examples of this are Maker [6] and Aave [7].

630 J. H. Sjursen et al.

– Sandwich Trading. When a user makes a trade against a DEX, the price of
the tokens they traded changes. If a user can see another user’s transaction
intending to sell token A for token B, the user can “sandwich” this transaction
by first selling token A for token B, then let the other user’s transaction sell
token A for token B, driving the price of A denominated in B even lower.
Then you can buy back token A for less token B than what you got from
selling token A initially. This behaviour is frowned upon, since it effectively
steals value from the other user, but is none the less profitable.

– Long tail MEV. Long tail MEV refers to all kinds of exotic ways to extract
value. It is called the long tail because most of detectable MEV is made in
the categories listed above, but there are many weird MEV strategies that
still are profitable. These are typically harder to detect and categorize.

2.2 MEV-Geth

As awareness of MEV increased, the Priority Gas Auctions (PGA) got to be more
and more competitive and the Ethereum network suffered for it. The P2P net-
work propagating transactions got congested by resubmitted transactions with
higher gas prices, and block space filled up with reverting transactions that had
lost the PGA. In order to mitigate these negative externalities of the PGA, a
research and development organisation called Flashbots made a fork of Geth (an
Etherum client written in Go) called MEV-Geth [8], which allows for a sealed
bid block space auction. It achieves this by introducing new roles in the block
building chain:

– Searchers. Searchers would look into the public mempool for transactions
that may contain MEV opportunities.

– Transaction Bundles. When a searcher finds an MEV opportunity, they
will include that transaction in a transaction bundle, along with new trans-
actions with the extracted MEV. This bundle will be submitted to a bundle
pool, a separate mempool for bundles. The bundles include a price that the
searcher is willing to pay in order to have the bundle included in certain
blocks.

– Block Templates. Miners running MEV-Geth can now include bundles in
their blocks. They choose the bundle which pays them the most, and does
not include different bundles containing the same transaction, eliminating
reverting transactions due to failed MEV extraction. The rest of the block
can be filled with transactions from the public mempool as usual.

Not all new blocks on Ethereum today have bundles, but a significant amount
do have. With MEV-Geth in the loop, the transaction lifecycle looks something
as below:

1. A users submits a transaction to the mempool
2. A searcher finds an MEV opportunity in the mempool and creates a bundle

with the transaction(s)

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 631

3. It sends the bundle to a relayer
4. The relayer propagates the bundle to miners
5. The miner takes the bundle and transactions from the mempool and includes

them in the block template
6. The miner makes a block based on the block template and gets the fee from

the MEV bundle and the gas fees from the included mempool transactions

2.3 MEV-Inspect

Along with MEV-Geth, Flashbots build another piece of open-sourced software
called MEV-Inspect. The goal was to “Illuminate the Dark Forest”. In other
words, to make data quantifying the extent of MEV extraction on Ethereum
available to everyone. It works by having a crawler to look through transactions
in order to categorise them and put them in a database for further analysis. This
was one of the best efforts attempting to set a lower bound for actualised MEV.
More precise estimations of actualised MEV is hard, because the long tail MEV
is very hard to classify.

2.4 Cross Domain MEV

In late 2021, Obadia et al. [32] shed some light on the concepts behind Cross
Domain MEV.

Domains. Traditionally when people have talked about MEV, it was in a single
domain. MEV searchers have been running their MEV bots on many different
chains, playing games to out-compete each other on latency or gas price. While
as the development of Ethereum is moving along the road map, a picture of the
modular Ethereum future becomes clearer. Ethereum today already supports
a wide range of different execution environments and many different Layer 2
solutions. These solutions submit data to Ethereum so that their state can be
verified, but are in essence based on their own chains.

Most of these domains have centralised aspects to them, e.g., Arbitrums
sequencer [9] that is run by the Arbitrum team. This means there are actors
with sequencing rights present today. As we mentioned, having the sequencing
rights is valuable, since whoever orders the transactions can extract the MEV.

Leg Risk. When a user performs an arbitrage on Ethereum today, they can
compete with other searchers on how efficiently you can do it, and on how much
of the profit you are willing to pay the miner. Users can do this by submitting
bundles, which are executed atomically, meaning that all the transactions in the
bundle are executed without failure, or all the transactions in the bundle are
reverted. This means that they are never stuck half-way through an arbitrage
with a token that users do not really want to own. When users introduce multiple
domains to arbitrage opportunities, it may reintroduce this risk. Below is an
example:

632 J. H. Sjursen et al.

1. Suppose Alice, as a searcher, observes that the price of token A is cheaper
denominated in token B in domain Y compared to domain X. Alice wants to
take advantage of this and make profit

2. Alice can swap 50 A tokens for 100 B tokens in domain X
3. Alice can transfer the newly acquired B tokens to domain Y
4. Now one of these two scenarios should wait Alice

(a) The price of token A denominated in B has not changed since Alice’s
journey started, and Alice can get the expected profit

(b) The state of domain Y has changed since Alice started the journey and
took a loss on the last leg of the arbitrage

Leg risk is present when users go between domains, with a notable exception:
if users control the sequencing of one domain, they can refrain from updating
the state of that domain. This means that Arbitrum could in theory look for the
price of a token to be favourable on another domain compared to Arbitrum, wait
for a transaction taking advantage of this to go through in the second domain,
and then finish the last leg of the arbitrage without assuming any leg risk. If we
control the sequencing of one domain, we can effectively perform atomic cross
domain arbitrages, where users that do not control sequencing assume leg risk
by doing so.

3 Data Collection and Extraction

3.1 Scope Definition

As discussed previously, there are many different types of MEV, and a long tail
of exotic ways to extract value. The most obvious and profitable way to extract
value is through arbitrage. On Ethereum, there exist many different kinds of
exchanges, but on other chains, the selection is more scarce. In the aspect of
generated fees, the most popular DEX by far is Uniswap [10]. Uniswap have
multiple versions of their DEX’es deployed on the Ethereum mainnet, but only
the third version v3 has been deployed on different Layer 2. Uniswap is also
well documented, and their smart contracts emit events that make it much more
feasible to find and organise swap data. Because of these factors, in this work,
we mainly look at Uniswap data from different domains in order to keep the
complexity of the problem under control.

3.2 Getting Data

In order to detect cross domain MEV, we need to collect data from multiple
domains. Transaction data for decentralised blockchains is public, but it does not
mean it is readily available for average consumers. While running an Ethereum
node and using it to extract data from Ethereum is relatively simple on consumer
hardware, if we want to run nodes for different blockchain networks, we need a
lot of storage space.

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 633

The initial idea was to check cross domain MEV between two domains, Main-
net Ethereum and Arbitrum, a Layer 2 (L2) scaling solution. Arbitrum [11] is
also powered by the Ethereum Virtual Machine (EVM), which enables building
software to analyse data on the two different chains easier. We rented a server
in order to sync nodes and was successful. The storage requirements for running
these nodes were however greater than expected, and this setup was costly when
increasing the number of network and domains we could analyse.

An alternative solution is to host our own nodes using an infrastructure
provider to supply the data. In our case, we had previous experience with
Infura [31], a service developed by Consensys and used by much of the Ethereum
ecosystem. Infura API allows for access to Ethereum data without running users’
own node. Using Infura, we were able to do 100,000 request/day to their API for
free, and extract data from Mainnet Ethereum, Arbitrum, Optimism [12] and
Polygon PoS [14]. All these networks are EVM compatible and have an instance
of Uniswap v3 deployed.

3.3 Smart Contract Addresses

The base Uniswap smart contracts are deployed on the same addresses across
our chosen chains, as well as all their testnets [15]. This is possible because smart
contract addresses are deterministic, given the smart contract byte code and the
nonce of the signer. The smart contract addresses of different ERC20 are however
not the same across chains. These were found manually through block explorers
of the respective chains. These can then in turn be used in conjunction with the
UniswapV3Factory smart contract to determine the addresses of the pools.

3.4 Uniswap Fee Tiers

One of the things that may be new in Uniswap v3 is the introduction of fee tiers.
The idea is that some pools are more risky to provide liquidity for others, so
liquidity providers should be rewarded accordingly. For some chains, the Uniswap
governance system has included an additional fee tier that is not present on all
chains. When getting the addresses of the pools, it needs to be considered. The
different fee tiers also result in multiple pools for each token pair.

3.5 Swap Logs

When a swap occurs in a Uniswap pool, it emits an event. Events are stored
as logs by archival nodes and can be reproduced by replaying the transaction.
Infura allows one to search for specific logs using their API. Table 1 shows an
example of Swap event. The data we are interested the most is the sending and
receiving address and the amounts of tokens that were swapped.

634 J. H. Sjursen et al.

Table 1. An example of Swap event

Name Type Description

sender address The address that initiated the swap call, and received the callback

recipient address The address that received the output of the swap

amount0 int256 The delta of the token0 balance of the pool

amount1 int256 The delta of the token1 balance of the pool

sqrtPriceX96 uint160 The sqrt(price) of the pool after the swap, as a Q64.96

liquidity uint128 The liquidity of the pool after the swap

tick int24 The log base 1.0001 of price of the pool after the swap

Fig. 1. Diagram of System Design

3.6 Blocks

To limit the amount of data, we only performed extraction from a certain period.
We chose the range from the month of June as well as the first week of July 2022.
This range was chosen partially to fall within the limits of how many transactions
were allowed to the Infura API (100,000 per day) and partially to have enough
space to store it comfortably. This timeframe was also chosen to be as recent as
possible, since the knowledge of cross domain MEV is still quite new, and we
might observe more activities the later.

3.7 Connector

In order to make it seamless to extract data from multiple domains, all of the
above peculiarities of extracting the data were to be organised in an abstract
connector. The connector’s job was to act as a simple interface that could extract
data with the same methods regardless of which domain the data was coming
from. Overall, Fig. 1 shows how to extract event data from Infura API and to
find potential cross domain MEV.

4 Implementation

In this section, we provide the implementation details including programming
language, Django models, the connector, and populating tables.

4.1 Python and Django

Django is a web framework written in Python, which has an Object Relation
Mapping (ORM), making it easy to construct SQL-like queries on data. It works
by defining models that represent rows in a table. The models can then be
handled with dictionary-like structures, which makes them easy to manipulate
with Python. In this work, we chose these tools to help manage the data.

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 635

4.2 Models

A model in Django is a class that contains variables (also fields), which can be
described as types in typical relational databases.

The top two variables in this SwapEvent class are what we called foreignkey
fields, referring to different objects. The SwapEvent is linked by foreign key to
the PoolAddress model and the TransactionMeta model. PoolAddress contains
information about the specific pool that the swap event came from, where Trans-
actionMeta holds extra information about the transaction that emitted the Swap
event to begin with. The specific objects that this foreign key points to cannot
be deleted before the SwapEvent that points to them is deleted.

The other fields are simpler. They can refer to the type of the database
column that will be used to store the value. CharFields gets converted to nvarchar
columns, and DecimalFields are used to hold numericals. We use DecimalFields
instead of IntergerFields because we need to store bigger numbers than what
IntgerFields do allows. The models can also define a subclass Meta, which allows
for the creation of indexes. The SwapEvent has an index on the foreign key to
the TransactionMeta model.

4.3 The Connector

The connector is implemented as a python class. This class has three interesting
functions as below.

The Initialiser. The initialiser takes one input, a network, a string – indicat-
ing which network the instantiator wants to interact with. We take this string
and check if it is one of the networks, and then find the corresponding ERC20
addresses of that network. These addresses are then stored in the class variable
ERC20addresses for future use. Next, the initialiser finds the correct fee tiers.
These fee tiers are then stored in the class variable fees.

Later we initialized a Web3 instance with Web3.py, which is a library used
to connect with the Etheruem and Ethereum-like networks using Python. Using
the Web3 instance that is initialised with a specific Infura url, we can connect to
the Uniswap router and factory on the specified network. Lastly, we get the pool
Application Binary Interface (ABI) and create a web3.contract instance that is
not connected to a specific smart contract on chain, but will be used to parse
event logs.

Get Pool Addresses. The purpose of this function is to return a range of
values related to the pool addresses for all ERC20 pairs of all the fee tiers in
the network. We achieved this by calling the getPool function of the Uniswap
factory on the specified network. Given two ERC20 addresses and a fee tier, it
provides the address of the pool. If the pool does not exists, getPool returns the
zero-address. If we get the zero-address back, we do not include it in the results.
If it is not the zero-address, we yield the address of the ERC20 that token0 and
token1 in the pool respectively, the fee tier and the address of the pool itself.

636 J. H. Sjursen et al.

Get Swap Events. This is the big one, which takes a pool address and collect
all the relevant swap events. First, we need the topic hash. It is the keccak256
hash of the event name and variables it includes. Using this we can query the
Infura API for only these events. Next, we initialise the block range. This is the
range of blocks that encompasses the span of days from the 1st of June to the
7th of July 2022. We got them from calling a helper function, and appended
them to a list.

We split the range into smaller bits. The Infura API returns errors if it was
going to return over 10,000 results or if the time of getting the result is greater
than 10 s. In order to get less of these, we preemptively split the range into more
sizeable chunks we can then pop off the list as needed. We then enter a while
loop, it keeps going as long as there are elements in the block ranges list. For
each block ranges element we construct a data payload using the block range
as the parameters fromBlock and toBlock. These values tell Infura in which
range we are looking for events. The Infura API only accepts these values and
hexadecimal, which is why we convert them. The data payload also includes the
method we are calling ("eth getLogs"), the address of the pool we are currently
looking at, and the Swap topic that we calculated before.

Fig. 2. Loop over Events.

We enter a try bock and submit the data payload to the Infura API using
the request library [13]. We then try to get the result from the response object,
and if we fail, we can exclude the KeyError and handle it by further narrowing
the current range under querying. As shown in Fig. 2, we later loop over all the
events we found and parse them into the Django models. We insert them in
bulks of 1000 at a time, and then insert the tail if there is one.

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 637

4.4 Populating Tables

Now for actually getting the data. First we create (or fetch) ERC20 models for
the tokens we wish to gather events from. These tokens were chosen for their
trading volume and prevalence in use by traditional MEV extraction, as shown
in Fig. 3.

Fig. 3. To Create ERC20 Models.

Fig. 4. To Create Network Models.

Then we create the objects for the network models, as shown in Fig. 4. These
objects are used mostly as a foreign key in other models so that we can filter them
by which network they belong as well. The addresses for the different tokens on
different networks are predefined in Enums. Here we extract them and create
instance of the ERC20Addresses model for each of them in turn.

Then we check any PoolAddresses may exist. If not existed, we then populate
the model with all the different pools from all the different networks. This is done
by using the get pool addresses() function as shown in Fig. 5.

Lastly as shown in Fig. 6, we can get the SwapEvents. We achieved this by
going through each pool and using the get swap events() function. This took
quite a bit of time, so some print statements were added to verify if it was indeed
getting data and monitoring the rate of the extraction.

638 J. H. Sjursen et al.

Fig. 5. Fetch all the pool addresses.

Fig. 6. Get the SwapEvents.

5 Analysis and Results

In this section, we provide an overview of the collected data and then present
the results of two analyses.

5.1 Data Overview

Firstly, we have to get an overview of the collected data. In total, we collected
events from around 3.7 million swap events. The distribution of the swap events
in different networks is shown in Fig. 7.

A certain number of swap events come from routers. This means that the
user who made the transaction has used the web-interface that corresponds to
the router in question, and is therefore most likely not used to extract cross
domain MEV. Table 2 shows the percentage of swap events initialised by routers
belonging to 1inch [30] or the Uniswap Router:

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 639

Fig. 7. Pie chart of distribution of events on the different networks

Table 2. Percentage of swap events initialised by routers.

Network All Swap Events Non-Router Router Percentage

Mainnet 632742 343182 54.24%

Arbitrum 386421 94714 24.51%

Optimism 1242960 556892 44.80%

Polygon PoS 1444252 547276 37.89%

Total 3706375 1542064 41.60 %

It is found that Arbitrum drastically reduced the amount of swap events.
The remaining events probably originate from other routers, MEV Searchers or
other advanced users. To shed a bit more light on this, we looked at distinct
sender addresses.

As depicted in Fig. 8, the amount of distinct addresses was found to be sur-
prisingly low. This is probably because end-users would never swap directly
against the pool, but may use a router.

5.2 First Analysis

To try and discover cross domain MEV extraction, we first took the union of
unique sender addresses of different networks. This yielded new sets of sender
addresses that had interacted with Uniswap pools in different networks. These
addresses were in turn inspected individually using block explores, in order to
qualitatively discern whether or not they were engaging in cross domain MEV
extraction.

The following is a list of addresses that have interacted with targeted Uniswap
pools in different networks (excluding known router addresses). Networks with
no overlap are emitted. It is worth noting that Mainnet/Optimism, Arbi-
trum/Polygon PoS and Optimism/Polygon PoS had no overlap.

640 J. H. Sjursen et al.

Fig. 8. Bar plot of distinct senders addresses on the different networks

Mainnet/Arbitrum

– 0xF25d1CeA9772e2584E0A1d4c11AbEa2AEB9B077b
– 0x00000000000B69eC332f49b7c4d2b101f93c3bed

Mainnet/Polygon PoS

– 0xbA22c1008296A16800F436000271000004AB00f2
– 0xd12bcdFB9A39BE79DA3bDF02557EFdcD5CA59e77
– 0x3310542C217300E5005B000084Ea2B44DE000063
– 0x0302c1E37200005183c900A30000Aa005eaF710C
– 0xBa03Ade9510000000D19055E260007Ec0000557c
– 0x00010033a85Db632570dCCe90D00008f000072f7
– 0x0203409f00960700C88dD236C8006000f800ea00
– 0x00Ff011B2D03222f3e00908F001300d50011f400
– 0x41684b361557E9282E0373CA51260D9331e518C9
– 0x3301000029Ae0000123BE5Eabd002e4821643800
– 0x01fF00A1F9925C590E063f68950029001E000000
– 0x010001410044C3000057fb00686C66680e354600

Arbitrum/Optimism

– 0x78B4733FEF7Ee3a5e233D9D7840ac7Af174CA2Ad
– 0x443EF018e182d409bcf7f794d409bCea4C73C2C7
– 0x755DB0A2C1041b20Ad123792181c55a3D6e2ffDE
– 0x6352a56caadC4F1E25CD6c75970Fa768A3304e64

Of the 4 addresses in common between Arbitrum and Optimism, 3 of them
seemed to be the same MEV searcher deployed to both networks. The final one
is performing something with OpenSea, which is probably unrelated to MEV.

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 641

For the addresses with Mainnet and Polygon PoS in common, most of them
seemed to be related to another address, namely

0x0000e0ca771e21bd00057f54a68c30d400000000

These addresses make arbitrages and give the profits to the other address.
The possible reason is being an MEV searcher operating in multiple domains,
but not engaging in cross domain MEV.

There are only two addresses that have swapped on both Mainnet and Arbi-
trum that are not routers. The first one appeared to be an MEV searcher that
has stopped arbitraging on Mainnet and now it does on Arbitrum instead.

The second one is more interesting, as follows, about

“0xF25d1CeA9772e2584E0A1d4c11AbEa2AEB9B077b”.

In the transactions of this address, we found some cross domain arbitrages.
We can inspect these transactions on etherscan.

Looking at the other transactions of this address on these public block explor-
ers, we found that they also did cross domain arbitrage with Gnosis Chain (pre-
viously xDai)1, which is another EVM compatible domain. We also found that
this contract was created less than a month ago, and has less than a thousand
transactions across all the domains we found it to be active. The profit of these
transactions seemed to be low, around 0.1–0.2 WETH for the cases we manually
checked.

5.3 Second Analysis

For the second analysis, we tried to find swaps for the same amount of a token
but on different chains. This was a much wider net to cast, which is why we tried
adding different constraints to it.

Firstly, we removed all the swap events that had a router address as sender,
which almost halves the amount of swap events to consider. While there were
too many hits still. The ones we checked were from Swaps of a round number
(e.g., 100 or 1000) of USDT, USDC or DAI tokens to any of the other tokens we
were tracking.

In order to reduce the amount of these types of matches, we tried adding a
temporal dimension, such that only swap events that happened within about an
hour from each other on different chains would be a match. In order to facilitate
this, we have to timestamp the swap events. This data was not part of the
get eventLogs API method that we used to get them, so we had to come up
with something else.

The event logs may contain metadata about the transactions that emit-
ted them. To place the events temporally, we used the fact that one of these
pieces of metadata was the block number of the block where the transaction
was included. Based on this, we sampled 1000 blocks from each chain, approx-
imately equally distributed across the time window we were looking for swap

1 https://www.gnosis.io/.

https://www.gnosis.io/

642 J. H. Sjursen et al.

events, in order to find the block times for at most one hour away from any
given other blocks. Figure 9 presents the distribution of timestamps across the
sampled blocks.

Fig. 9. Unix timestamp of sampled blocks

Adding this criteria did reduce the amount of matches significantly, but there
were still too many items that require manual check. The sample of matches we
had did not yield anything interesting. They were not temporally close enough
or had anything else in common that might suggest they were apart of cross
domain arbitrage.

Discussion. In the previous work [32], the authors concluded by asking five
open questions. One of the questions is “How can we identify and quantify cross-
chain MEV extraction taking place”. In this work, we have taken steps towards
and actually succeeded in identifying cross-chain arbitrages. We have also gained
deeper understanding of how difficult it is to quantify this. We limited the scope
of our current work by only looking at one DEX, namely Uniswap, in 4 domains,
all EVM compatible. The complexity of including non-EVM domains (poten-
tially including Centralised Exchanges) and a wider range of DEX architectures
is almost staggering. This, combined with the coming of PoS Ethereum and
the rise of LSD’s and centralised staking services, demonstrates a need for more
efforts to explore the effects of MEV and cross-domain MEV on decentralisation.

6 Conclusion

The research on cross domain MEV is still at a very early stage, and it is even
hard and complex to find relevant data. Motivated by this challenge, in this
work, we tried to study cross domain MEV in the wild, by sampling data from

Towards Quantifying Cross-Domain MEV for Blockchain Decentralisation 643

four different domains. Based on the collected data, we were successful in finding
examples of cross-domain arbitrages, but quantifying it proved a difficult prob-
lem. It is clear that cross domain MEV and its extraction will only become a
bigger threat to Ethereum’s decentralisation in the future.

There are many challenges in identifying and quantifying cross-domain MEV.
For example, 1) accessing and collecting the data in different domains is an issue;
2) there is a huge job to run and maintain nodes for every domain we want to
monitor; 3) storing that amount of data takes work and space; and 4) building
classifiers, potentially using machine learning or other statistics tools, would take
a lot of time.

Acknowledgments. The dataset is available at https://sptage.compute.dtu.dk. This
work was partially funded by the H2020 DataVaults project with GA Number 871755.

References

1. Nakamoto, S.: Bitcoin, a peer-to-peer electronic cash system (2008). https://www.
bitcoin.org/bitcoin.pdf

2. Churiwala, D., Krishnamachari, B.: CoMMA protocol: towards complete mitiga-
tion of maximal extractable value (MEV) attacks. CoRR abs/2211.14985, pp. 1–3
(2022)

3. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy, pp. 910–927 (2020)

4. What is Bitcoin Pizza Day, and Why Does the Community Celebrate on May 22?
https://www.forbes.com/sites/rufaskamau/2022/05/09/what-is-bitcoin-pizza-
day-and-why-does-the-community-celebrate-on-may-22/?sh=3e7c2d22fd68.
Accessed 01 Nov 2022

5. Flashbots Docs. https://docs.flashbots.net/flashbots-auction/overview. Accessed
23 Nov 2021

6. Maker Foundation, Makerdao. https://makerdao.com/en/
7. Aave Companies, Aave. https://aave.com/
8. Flashbots: Frontrunning the MEV crisis. https://ethresear.ch/t/flashbots-

frontrunning-the-mev-crisis/8251
9. The Sequencer and Censorship Resistance. https://developer.arbitrum.io/

sequencer
10. Crypto fees. https://cryptofees.info/history/2022-07-25
11. Offchain Labs, Arbitrum. https://arbitrum.io/
12. OP Labs, Optimism. https://www.optimism.io/
13. Reitz, K.: Requests: HTTP for humans. https://requests.readthedocs.io/en/v3.0.

0
14. Polygon, Polygon PoS. https://polygon.technology/solutions/polygon-pos/
15. Uniswap Labs, Uniswap contract deployments. https://docs.uniswap.org/

protocol/reference/deployments
16. Chiu, W.Y., Meng, W., Jensen, C.D.: My data, my control: a secure data sharing

and access scheme over blockchain. J. Inf. Secur. Appl. 63, 103020 (2021)
17. Chiu, W.Y., Meng, W., Li, W., Fang, L.: FolketID: a decentralized blockchain-

based NemID alternative against DDoS attacks. In: Proceedings of ProvSec, pp.
210–227 (2022)

https://sptage.compute.dtu.dk
https://www.bitcoin.org/bitcoin.pdf
https://www.bitcoin.org/bitcoin.pdf
https://www.forbes.com/sites/rufaskamau/2022/05/09/what-is-bitcoin-pizza-day-and-why-does-the-community-celebrate-on-may-22/?sh=3e7c2d22fd68
https://www.forbes.com/sites/rufaskamau/2022/05/09/what-is-bitcoin-pizza-day-and-why-does-the-community-celebrate-on-may-22/?sh=3e7c2d22fd68
https://docs.flashbots.net/flashbots-auction/overview
https://makerdao.com/en/
https://aave.com/
https://ethresear.ch/t/flashbots-frontrunning-the-mev-crisis/8251
https://ethresear.ch/t/flashbots-frontrunning-the-mev-crisis/8251
https://developer.arbitrum.io/sequencer
https://developer.arbitrum.io/sequencer
https://cryptofees.info/history/2022-07-25
https://arbitrum.io/
https://www.optimism.io/
https://requests.readthedocs.io/en/v3.0.0
https://requests.readthedocs.io/en/v3.0.0
https://polygon.technology/solutions/polygon-pos/
https://docs.uniswap.org/protocol/reference/deployments
https://docs.uniswap.org/protocol/reference/deployments

644 J. H. Sjursen et al.

18. Chiu, W.Y., Meng, W.: Towards decentralized bicycle insurance system based on
blockchain. In: Proceedings of SAC, pp. 249–256 (2021)

19. Chiu, W.Y., Meng, W.: EdgeTC - a PBFT blockchain-based ETC scheme for smart
cities. Peer-to-Peer Netw. Appl. 14(5), 2874–2886 (2021)

20. Chiu, W.Y., Meng, W., Li, W.: LibBlock - towards decentralized library system
based on blockchain and IPFS. In: Proceedings of PST, pp. 1–9 (2021)

21. Chiu, W.Y., Meng, W., Li, W.: TPMWallet: towards blockchain hardware wallet
using trusted platform module in IoT. In: Proceedings of ICNC, pp. 336–342 (2023)

22. Li, W., Meng, W., Liu, Z., Au, M.H.: Towards blockchain-based software-defined
networking: security challenges and solutions. IEICE Trans. Inf. Syst. 103–D(2),
196–203 (2020)

23. Malkhi, D., Szalachowski, P.: Maximal extractable value (MEV) protection on a
DAG. CoRR abs/2208.00940, pp. 1–10 (2022)

24. Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y., Han, J.: When intrusion detec-
tion meets blockchain technology: a review. IEEE Access 6(1), 10179–10188 (2018)

25. Meng, W., Li, W., Zhu, L.: Enhancing medical smartphone networks via
blockchain-based trust management against insider attacks. IEEE Trans. Eng.
Manag. 67(4), 1377–1386 (2020)

26. Meng, W., Li, W., Tug, S., Tan, J.: Towards blockchain-enabled single charac-
ter frequency-based exclusive signature matching in IoT-assisted smart cities. J.
Parallel Distrib. Comput. 144, 268–277 (2020)

27. Meng, W., Li, W., Zhou, J.: Enhancing the security of blockchain-based software
defined networking through trust-based traffic fusion and filtration. Inf. Fusion 70,
60–71 (2021)

28. Buterin, V.: Why sharding is great: demystifying the technical properties. https://
vitalik.ca/general/2021/04/07/sharding.html

29. Maximal Extractable Value (MEV). https://ethereum.org/en/developers/docs/
mev/

30. 1inch. https://1inch.io/
31. Infura: The world’s most powerful suite of high availability blockchain APIs and

developer tools. https://infura.io/
32. Obadia, A., Salles, A., Sankar, L., Chitra, T., Chellani, V., Daian, P.: Unity

is strength: a formalization of cross-domain maximal extractable value. CoRR
abs/2112.01472, pp. 1–13 (2021)

33. Sun, Z., Chiu, W.Y., Meng, W.: Mosaic - a blockchain consensus algorithm based
on random number generation. In: Proceedings of IEEE Blockchain, pp. 105–114
(2022)

34. Thomsen, A.L., Preisel, B., Andersen, V.R., Chiu, W.Y., Meng, W.: Designing
enhanced robust 6G connection strategy with blockchain. In: Su, C., Gritzalis, D.,
Piuri, V. (eds.) ISPEC 2022. LNCS, vol. 13620, pp. 57–74. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21280-2 4

35. Weintraub, B., Torres, C.F., Nita-Rotaru, C., State, R.: A flash (bot) in the pan:
measuring maximal extractable value in private pools. In: Proceedings of IMC, pp.
458–471 (2022)

https://vitalik.ca/general/2021/04/07/sharding.html
https://vitalik.ca/general/2021/04/07/sharding.html
https://ethereum.org/en/developers/docs/mev/
https://ethereum.org/en/developers/docs/mev/
https://1inch.io/
https://infura.io/
https://doi.org/10.1007/978-3-031-21280-2_4

BDTS: Blockchain-Based Data Trading
System

Erya Jiang1, Bo Qin1(B), Qin Wang2, Qianhong Wu3, Sanxi Li4,
Wenchang Shi1, Yingxin Bi1, and Wenyi Tang5

1 School of Information, Renmin University of China, Beijing, China
{jiangey2018202191,bo.qin,wenchang,biyingxin11}@ruc.edu.cn

2 CSIRO Data61, Eveleigh, Australia
3 Beihang University, Beijing, China

Qianhong.wu@buaa.edu.cn
4 School of Economics, Renmin University of China, Beijing, China

sanxi@ruc.edu.cn
5 University of Notre Dame, Notre Dame, USA

wtang3@nd.edu

Abstract. Trading data through blockchain platforms is hard to achieve
fair exchange. Reasons come from two folds: Firstly, guaranteeing fair-
ness between sellers and consumers is a challenging task as the decep-
tion of any participating parties is risk-free. This leads to the second
issue where judging the behavior of data executors (such as cloud ser-
vice providers) among distrustful parties is impractical in the context of
traditional trading protocols. To fill the gaps, in this paper, we present a
blockchain-based data trading system, named BDTS. BDTS implements
a fair-exchange protocol in which benign behaviors can get rewarded
while dishonest behaviors will be punished. Our scheme requires the
seller to provide consumers with the correct encryption keys for proper
execution and encourage a rational data executor to behave faithfully
for maximum benefits from rewards. We analyze the strategies of con-
sumers, sellers, and dealers in the trading game and point out that every-
one should be honest about their interests so that the game will reach
Nash equilibrium. Evaluations prove efficiency and practicability.

Keywords: Data Trading · Blockchain · Fair Exchange

1 Introduction

Data has risen to a new factor of production alongside traditional factors such as
land, labor, capital and technology. Consumers, sellers, and data trading inter-
mediaries together form a thriving data trading ecosystem, in which the con-
sumer has to pay a fortune to the seller for acquisition, the seller could make
some profits by providing the appropriate data and data trading intermediaries
earn agent fees between sellers and consumers. However, such a high density of
centralization is likely to be the weak spot to be attacked. On the one hand, any
participating roles may act maliciously in the unsupervised system. The sellers
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 645–664, 2023.
https://doi.org/10.1007/978-981-99-7356-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_38&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_38

646 E. Jiang et al.

may provide fake data for profits as they may not own data as they claimed. The
consumer may refuse to pay after receiving the appropriate data. The interme-
diaries such as cloud service providers may manipulate the stored data without
permission from users [1,2]. On the other hand, relying on centralized servers
confront heavy communication and security pressure, greatly constraining the
efficiency of the entire trading system. These challenges lead to the following
questions,

Is it possible to propose a protocol in the data trading system with guaranteed
fairness for all parties without significantly compromising efficiency?

Traditional solutions using cryptography and relying on trusted third par-
ties(TTP) [3,4] lack practical significance because finding such a TTP is reckon
hard in practice. Instead of using gradual release method1 [5,6], many solutions
[7–12] have been proposed by leveraging blockchain technologies [13] for better
decentralization. Blockchain provides a public bulletin board [14] for every par-
ticipating party with persistent evidence. A normal operating blockchain plat-
form greatly reduces the risk of being attacked like a single-point failure or
compromised by adversaries. Self-executing smart contracts always act benign
and follow agreed principles, with transparency and accountability.

Based on such investigations, we adopt the blockchain technique as our base-
line solution, with smart contracts acting as data executors. Specifically, we
implement our scheme with strict logic of fair exchange on the Hyperledger
blockchain. [15] Overall, implementing a data trading system with both exchange
fairness and efficiency for real usage is the key task in this paper. To fill the gap,
our contributions are as follows.

– We purpose BDTS, an innovative data trading system based on blockchain
(Sect. 3 & 4). The proposed scheme realizes the exchange fairness for all par-
ticipated parties, namely, consumer, seller and service provider. Each party
has to obey the rules, and benign actors can fairly obtain incentivized rewards.
Every data can only be sold once since each transaction is unique in the
blockchain systems. Notably, we use the uniqueness index mechanism [16]
and compare Merkle roots of different data to prevent someone from reselling
data purchased from others.

– We prove the security of our scheme majorly from the economical side based
on game theory (Sect. 5). Our proof simulates the behaviors of different par-
ties, which is an effective hint to show actual reflection towards conflicts as
well as real action affected by competitive participants. The proofs demon-
strate that our game reaches the subgame perform equilibrium(SPE) [17,18].

– We implement our scheme on the Hyperledager Fabric blockchain platform
with comprehensive evaluations (Sect. 6). Experimental results prove the
efficiency and practicability. Compared to existing solutions with complex
crypto-algorithms (e.g. zero-knowledge proof), our scheme is sufficiently fast
for lightweight deceives.

1 The gradual release method means each party in the game takes turns to release a
small part of the secret. Once a party is detected doing evil, other parties can stop
immediately and recover the desired output with similar computational resources.

BDTS: Blockchain-Based Data Trading System 647

2 Related Work

In this section, we provide related primitives surrounding fair exchange protocols
and blockchains. We compared the differences and main pros and cons between
the references in Table 1.

Table 1. Reference Summary

Reference [19] [16] [20–22] [7] [8,12] This work
Decentralization � � � � � �
Fairness × × × � � �
Prevent Resale × � × × × �
Multimedia Data � × × × � �

Blockchain in Trading Systems.
Due to its non-repudiation, non-
equivocation and non-frameability,
blockchain has been widely used in
trading systems [14]. Jung et al. [19]
propose AccountTrade, an account-
able trading system between customers who distrust each other. Any misbe-
having consumer can be detected and punished by using book-keeping abilities.
Chen et al. [16] design an offline digital content trading system. If a dispute
occurs, the arbitration institution will conduct it. Dai et al. [20] propose SDTE, a
trading system that protects data and prevents analysis code from leakage. They
employ trusted execution environment(TEE) to protect data in an isolated area
at the hardware level. Similarly, Li et al. [21] leverage the TEE-assisted smart
contract to trace the evidence of investigators’ actions. Automatic executions
enable warrant execution accountability with the help of TEE. Zhou et al. [22]
introduce a data trading system that prevents index data leakage where partic-
ipants exchange data via smart contracts. These solutions rely on blockchain to
create persistent evidence and act as a transparent authority to solve disputes.
However, they merely perform effectively in trading the text data, rather than
data cast in streaming channels such as TV shows and films, which are costly.
The fairness issue has neither been seriously discussed.

Fair Exchanges using Blockchain. Traditional ways of promoting fair
exchange across distrustful parties rely on trusted third parties because they
can monitor the activities of participants, judging whether they have faithfully
behaved. However, centralization is the major hurdle. Blockchain can perfectly
replace the role of TTP. The behaviors of involved parties are transparently
recorded on-chain, avoiding any types of cheating and compromising. Meanwhile,
a predefined incentive model can be automatically operated by smart contracts,
guaranteeing that each participant can be rewarded according to their contribu-
tions. Dziembowski et al. [7] propose Fairswap, utilizing the smart contract to
guarantee fairness. The contract plays the role of an external judge to resolve
the disagreement. He et al. [8] propose a fair content delivery scheme by using
blockchain. They scrutinize the concepts between exchange fairness and deliv-
ery fairness during the trades. Eckey et al. [12] propose a smart contract-based
fair exchange protocol with an optimistic mode. They maximally decrease the
interaction between different parties. Janin et al. [23] present FileBounty, a fair
protocol using the smart contract. The scheme ensures a buyer purchases data
at an agreed price without compromising content integrity. Besides, blockchains
are further applied to multi-party computations of trading systems [9,10,24].

648 E. Jiang et al.

3 Architecture and Security Model

Entities. First of all, we clarify the participating roles in our scheme. A total
of three types of entities are involved: consumer (CM), seller (SL), and service
provider (SP)2. Consumers pay for data and downloading service with cryp-
tocurrencies such as Ether. Sellers provide encrypted data as well as expose
the segment of divided data when necessary to guarantee correctness. Service
providers take tasks of storage and download services, and any participant who
stores encrypted data can be regarded as a service provider. Miners and other
entities participating in systems are omitted as they are out of the scope of this
paper.

Architecture. We design a novel data trading ecosystem that builds on the top
of the blockchain platform. A typical workflow in BDTS is that: Sellers upload
their encrypted data and description to service providers. Service providers store
received data and establish download services. Consumers decide which pieces
of data to purchase based on related descriptions. At last, the consumer down-
loads from service providers and pays the negotiated prices to sellers and service
providers. Our fair exchange scheme is used to ensure every participant can
exchange data with payments without cheating and sudden denial.

Data Upload. The seller first sends his description of data to the blockchain.
Description and other information such as the Merkle root of data would be
recorded by blockchain. Here, the seller must broadcast the Merkle root and
they are demanded to expose a certain number of plaintext data pieces. Service
providers can decide whether they are going to store it by the stated information.
At the time, the seller waits for the decision from the service providers. If a service
provider decides to store encrypted data for earning future downloading fees, he
first sends his information to the blockchain. The seller will post encrypted data
to the service provider and the service provider starts to store the data. Notably,
the seller can also become a self-maintained service provider if he can build up
similar basic services.

Data Download. The consumer decides to download or not according to the
description and exposed parts provided by the seller. Before downloading, the
consumer should first store enough tokens on the smart contract. Then, the
consumer sends a request for data from service providers. Service providers will
send it to the consumer after encrypting the data with the private key. For
security and efficiency, these processes will be executed via smart contracts,
except for data encryption and downloading.

Decryption and Appealing. The consumer should pay for data and get
the corresponding decryption key. The service provider and seller will provide
their decryption key separately. The decryption key is broadcast through the
blockchain so that it cannot be tampered with. The consumer can appeal whether
2 Service providers generally act as the role of centralized authorities such as dealers

and agencies in a traditional fair exchange protocol.

BDTS: Blockchain-Based Data Trading System 649

it is due to the receipt of a false decryption key or the verification finds that the
data has been falsified or fabricated. The smart contract will arbitrate based on
evidence provided by the consumer.

Security Assumption. We have three basic security assumptions. (i) The
blockchain itself is assumed to be safe. Our scheme operates on a safe blockchain
model with well-promised liveness and safety [25]. Meanwhile, miners are con-
sidered to be honest but curious: they will execute smart contracts correctly
but may be curious about the plaintext recorded on-chain. (ii) The basic crypto-
related algorithm is safe. This assumption indicates that the encryption and
decryption algorithm will not suffer major attacks that may destroy the system.
Specifically, AES and the elliptic curve, used for asymmetric encryption algo-
rithms, are sufficiently supposed to be safe in cryptography. (iii) Participants
in this scheme are rational. As the assumption of game theory, all players (con-
sumer, seller, and service provider) are assumed to be rational: these three types
of players will act honestly but still pursue profits within the legal scope.

Security Model. We dive into the strategies of each party.

Seller intend to obtain more payment by selling their data. In our scheme, a
seller needs to provide mainly three sectors: data, description, and decryption-
key. To earn profits, a seller would claim the data is popular and deserved to
be downloaded, but he may provide fake data. The exchange is deemed as fair
if consumers obtain authentic data that is matched with claimed descriptions.
Then, the seller can receive rewards. Encryption is another component provided
by the seller. Only the correct decryption key can decrypt the encrypted data,
whereas the false one cannot. In summary, there are four potential strategies for
sellers: a) matched data (towards corresponding description) and matched key
(towards data), b) matched data and non-matched key, c) non-matched data and
matched key, and d) non-matched data and non-matched key.

Consumer intend to exchange their money for data and downloading services.
Downloading ciphertext and decrypting it to gain plaintext is in their favor.
Consumers provide related fees in our scheme and then download encrypted
data from service providers who store the uploaded data. To earn profits, they
intend to obtain data without paying for it or paying less than expected. Paying
the full price as expected for data is a sub-optimal choice. The payment of
consumers can be divided into two parts: paying the seller for the decryption
key and paying service providers for the downloading service. Based on that,
there are four strategies for consumers: a) pay enough for sellers, b) pay less for
sellers, c) pay enough for service providers, and d) pay less for service providers.

Service Providers intend to provide the downloading service and earn profits.
Service providers are like platforms, by storing as much data as possible and
offering download service, they can ultimately attract clout and make a profit
from the download fees. For uploading, service providers can choose whether
to store data or not. Here, a seller can act as a service provider if he provides
similar services of storage and download. For downloading, service providers will

650 E. Jiang et al.

provide encrypted data and the corresponding decryption key. The strategies for
service providers are listed as follows: a) authentic correct data and matched key,
b) authentic data and non-matched key, c) fake data and matched key, and d)
fake data and non-matched key. The first two need the premise of storing the
seller’s data.

Strategy Assumption. For security, an ideal strategy for the system is to
reach a Nash equilibrium for all participants: sellers adopt the correct data and
matched key strategy, consumers adopt the pay enough for sellers, paying enough
for service providers and service providers who provide storing services adopt
the authentic correct data and matched key strategy (discussed in Sect. 5).

4 The BDTS Scheme

In this section, we provide the concrete construction. To achieve security goals
as discussed, we propose our blockchain-based trading system, called BDTS. It
includes four stages: contract deployment, encrypted data uploading, data down-
loading, and decryption and appealing. Our scheme involves three types of con-
tracts. Here, we omit the procedures such as signature verification and block
mining because they are known as common sense.

Module Design. The system contains three types of smart contracts: seller-
service provider matching contract (SSMC), service provider-consumer matching
contract (SCMC), and consumer payment contract (CPC). Table 2 outlines the
notation used in the module description.

Table 2. Notation

Notation Description

SL,SP,CM seller/service provider/consumer

Krole the key of symmetric encryption algorithm of role

Datai the i-th unit of data plaintext in binary form

Di EncAES
Ki

(Datai),the i-th unit of data encrypted by seller

DDi EncAES
Ksp

(Di),encrypted Di by service provider

Pubrole,Prirole the public/private key of asymmetric encryption algorithm of role

Arole Ethereum address of role

IProle IP address of role

IDdata the data ID, index of data in SSMC

Desc the seller’s description of data

Mtree(Δ),Mproof(Δ),Mvrfy(Δ) the Merkle tree algorithms

Tknrole the token sent by role

Price the price of entire data

Unit Price downloading price for each unit

Seller-Service Provider Matching Contract. SSMC records the descrip-
tion and the Merkle root of data. The seller is required to broadcast certain

BDTS: Blockchain-Based Data Trading System 651

parts of data and the index of these parts should be randomly generated by
the blockchain. Notably, these indexes cannot be changed once they have been
identified. Last, SSMC matches service providers for every seller.

Service Provider-Consumer Matching Contract. SCMC helps consumers
and service providers reach an agreement. It receives and stores the consumers’
data, including required data and related information. The contract requires
consumers to send payment. Then, the payment is sent to CPC.

Consumer Payment Contract. CPC works to command consumers to pay
for data and command sellers to provide the decryption key. It achieves a fair
exchange between decryption key (data downloading) and payment.

Encrypted Data Upload. In this module, a seller registers on SSMC and the
service provider stores encrypted data (cf. Fig. 1.a).

Step1. When a seller expects to sell data for profits, he should first divide data
into several pieces and encrypt them separately with different keys (denoted as
Ki, where i = 1, 2, ..., n), which is generated based on K. Such pieces of data
should be valuable so that others can judge the quality of full data with the
received segments. Here, Di = EncAES

Ki
(Datai) is the encrypted data.

Step2. The seller sends a registration demand in the form of a transaction.
The registration demand includes the seller’s information and data descrip-
tion. The seller information consists of Aseller and IPseller. Data descrip-
tion includes four main parts: content description, data size, the root rd and
the root red. Here, rd is the root of Md and red is the root of Med, where
Md = Mtree(Data1,Data2, ...,Datan) and Med = Mtree(D1,D2, ...,Dn). They
will be recorded in SSMC. Tokens will also be sent as deposit in this step and
may be lost later if the data is found resold. SSMC will reject the request if the
corresponding rd is the same as that of data recorded before. This mechanism
prevents reselling on the blockchain platform.

Step3, 4. After approving the seller’s registration demand, SSMC stores useful
information. Blockchain generates the hash of the next block and uses it as a
public random seed.

Step5, 6. The seller runs Rand(seed) to get a sequence of random numbers Irand.
The number of random numbers generated is the number of data units that need
to be exposed. We assume that this number can support semantic comparison
with the data description and data plagiarism detection without disclosing too
much plaintext data. The seller provides (DataIrand

, Pd, Ped) to SSMC, where
Pd = Mproof(Md, Irand) and Ped = Mproof(Med, Irand). The contract SSMC
checks Mvrfy(i, rd,Datai, Pdi

) == 1 and Mvrfy(i, red,Di, Ped) == 1. If not,
SSMC stops execution and returns error. Then, the exposed pieces of data will
be compared to other pieces by utilizing the uniqueness index. Data plagiarism
will result in deposit loss, preventing the reselling behavior. The authenticated
data will be assigned an ID.

Step7, 8. The SP registration demand can be divide into IPsp, Asp, IDdata and
unit price.

652 E. Jiang et al.

Step9, 10, 11. The seller sends encrypted data and Merkle proof to the service
provider according to IPsp and confirms the registration demand so that the
corresponding service provider can participate in the next stage.

Matching and Data Downloading. In this module, a consumer registers on
SCMC and selects the service provider to download data (see Fig. 1.b).

Step1, 2. The consumer queries for data description and the exposed pieces of
data. The consumer compares the description with exposed data content and
selects data once receiving feedback from SSMC.

Step3, 4, 5. The consumer stores the tuple (IPsp, Acm, IDdata) on SCMC and
sends enough tokens to pay for the download service. These tokens will be sent
to CPC and, if unfortunately the service provider or seller cheats on this trans-
action, will be returned to the consumer. When receiving the demand, SCMC
queries SSMC with IDdata to obtain price, datasize and unit price. Then, SCMC
will verify Tkncm ≥ price+size∗unit price. Failed transactions will be discarded
while the rest being broadcast. The seller can determine the piece of data and
the service providers by giving index i and the corresponding address.

Step6, 7, 8. The consumer contacts the service provider based on IPsp,
received in Step2. In Step7, a service provider encrypts data D with the
random key Ksp. The service provider will calculate Meed, where Meed =
Mtree(DD1,DD2, ...,DDn), with the Merkle root reed and upload Peedi

to
SCMC, where Peedi

= Mproof(Meed, i) and i is the index.

Step9,10. The selected service provider information is provided. It is composed
of Asp and the index of downloading pieces from service providers. The consumer
can download data from multiple providers for efficiency. The service provider
sends DD = EncAES

Ksp
D to consumers.

Step11, 12. The consumers need to verify whether or not Mvrfy(i, reed,DD,
Peedi

) == 1. If not, the (double-)encrypted data will be considered as an error
if it cannot pass the verification and the consumer, as a result, will not execute
step14.

Decryption and Appealing. In this module, the consumer pays both the
service provider and the seller.

Payment to the service provider involves the following steps. (see Fig. 1.c)

Step1, 2, 3. SSMC transfers tokens and (Acm, Asp, IDdata) to CPC. The con-
sumer generates a key pair (Pubcm, P ricm) and broadcasts Pubcm to CPC. CPC
waits for the service provider to get EncPubcm(Ksp).

Step4, 5, 6. The consumer obtains EncPubcm(Ksp) from CPC. Then, he decrypts
data with Ksp to get D

′
i. If Mvrfy(i, red,D

′
i ,Ped) �= 1, the consumer executes the

appealing phase. Appeal contains (Pricm, i,DDi). Here, Pricm is generated in
every download process. Otherwise, it indicates the decryption key and encrypted
data received by the consumer are true, and CPC will send tokens to the service
provider directly.

BDTS: Blockchain-Based Data Trading System 653

Step7, 8, 9. CPC calculates Ksp and D
′
i, where D

′
i = DecAES

Ksp
(DD) while the

decryption key Ksp = Decpricm(Encpubcm(Ksp)). Then, CPC verifies whether
Mvrfy(i, red,D

′
i, Ped) �= 1. If it passes the verification, CPC withdraws the tokens

to SSMC. Otherwise, CPC will pay the service providers.
Paying the seller is similar to paying the service providers, the differences
between mainly concentrate on Step2, Step3, Step4, Step7, and Step8 (see
Fig. 1.d).

Step2, 3, 4. The consumer generates a new public-private key pair
(Pubcm, P ricm) and broadcasts Pubcm to CPC. After listening to CPC to get
Pubcm, the seller calculates Encpubcm(Kseller) and send it to CPC.

Step7, 8. During the appealing phase, the consumer relies on his private key
to prove his ownership. CPC verifies the encryption of the corresponding data,
which is similar to the step of paying for service providers. The verification will
determine the token flow.

Fig. 1. Component Workflow

5 Security Analysis

In this section, we provide the analysis of BDTS based on game theory. The basic
model of our solution is a dynamically sequential game with multiple players. The
analyses are based on backward induction. We prove that our model can achieve
a subgame perfect Nash equilibrium (SPNE) if all participants honestly behave.

Specifically, our proposed scheme consists of three types of parties, including
seller (SL), service provider (SP), and consumer (CM) as shown in Fig. 2. These
parties will act one by one, forming a sequential game. The following party can
learn the actions from the previous. Specifically, A SL will first upload the data
with the corresponding encryption key to the SP (workflow in black line). Once
receiving data, the SP encrypts data by his private key and stores the raw data
locally while related information is on-chain. CM searches online to find products
and pay for the favorite ones both to SP and SL via smart contracts (in blue
line). Last, the SP sends the raw data and related keys to CM (in brown line).
Based on that, we define our analysis model as follows.

654 E. Jiang et al.

Fig. 2. Game and Game Tree

Definition 1. SM-SP-CM involved system forms an extensive game denoted by
G = {N ,H,R, P, ui}.

Here, N represents the participated players where N = {SL, SP,CM}; R is the
strategy set; H is the history, P is the player function where P : N × R −→ H;
and ui is the payoff function.

Table 3. Strategies and Costs (i. The cost
of -11 units are short for -11, applicable to
all; ii. Data is sold at 20 (to SL) while the
service fee is 4 (to SP))

SL Strategy Matched data Non-matched data
Matched key a, −11 b, −1
Non-matched key c, −10 d, 0
CM Strategy Sufficiently Insufficiently (to SL)
Sufficiently (to SP) e, −24 f, −(x+4)
Insufficiently Paid g, −(y+20) h, −(x+y)
SP Strategy Authentic data Non-authentic data
Matched key i, −2 j, −1
Non-matched key k, −1 l, 0

Each of participating parties, they
have four strategies as defined in Sect.3
(security model). SL has actions on
both updated data and related decryp-
tion keys (AES for raw data), form-
ing his strategies RSL, where RSL =
{a, b, c, d}. Similarly, CM has strate-
gies RCM = {e, f, g, h} to show his
actions on payments to SL or SP.
SP has strategies RSP = {i, j, k, l}
for actions on downloading data and
related keys. We list them at Table 3.
However, it is not enough for quantitative analysis of the costs of these actions
to be unknown. According to the market prices and operation cost, we suppose
that a piece of raw data worth 10 units, while generating keys compensates 1
unit. The service fee during the transactions is 1 units for each party. Thus, we
provide the cost of each strategy in the Table 3. The parameters of x and y are
actual payments from CM, where 0 ≤ x < 20, 0 ≤ y < 4, x + y < 24.

Then, we dive into the history set H that reflects the conducted strategies
from all parties before. For instance, the history aei represents all parties per-
forming honestly. There are a total of 64 possible combinations (calculated by
64 = 4 ∗ 4 ∗ 4) based on sequential steps of SL, SM, and SP. We provide their
game tree in Table 3. We omit their detailed representation due to their intuitive
induction. Our analysis is based on these fundamental definitions and knowl-
edge. We separately show the optimal strategy (with maximum rewards) for
each party, and then show how to reach a subgame perfect Nash equilibrium,
which is also the Nash equilibrium of the entire game. Before diving into the
details of calculating each subgame, we first drive a series of lemmas as follows.

BDTS: Blockchain-Based Data Trading System 655

Lemma 1. If one seller provides data not corresponding to the description, the
seller cannot obtain payments.

Proof. The description and Merkle root of data are first broadcast before the
generation of random indexes. Once completing the registration of the seller, the
blockchain generates a random index. Exposed pieces are required to match the
Merkle roots so that the seller cannot provide fake ones. Meanwhile, these pieces
ensure that data can conform to the description. Otherwise, consumers will not
pay for the content and service providers will not store it, either. ��
Lemma 2. If one seller provides a decryption key not conforming to the descrip-
tion, the seller cannot obtain payments.

Proof. The seller encrypts data (segmented data included) with his private keys.
The results of both encryption and related evidence will be recorded by the smart
contract, which covers the Merkle root of encrypted data and the Merkle root
of data. If a seller provides a mismatched key, the consumer cannot decrypt the
data and he has to start the appealing process. As Di and receipt are owned
by the consumer, if the consumer cannot obtain correct data, the consumer can
appeal with evidence. The smart contract can automatically judge this appeal.
If the submitted evidence is correct and decryption results cannot match the
Merkle root of data, the contract will return deposited tokens to the consumer.

��
Lemma 3. A consumer without sufficient payments cannot normally use data.

Proof. The consumer will first send enough tokens to SCMC and this code of
the smart contract is safe. The smart contract will verify whether the received
tokens are enough for the purchase. After the seller and consumer provide their
decryption key through the smart contract, the consumer can appeal at a certain
time, or it’s considered that the key is correct and payments will be distributed
to the seller and service providers. ��
Lemma 4. If one service provider provides data not conforming to that of the
seller, he cannot obtain payments.

Proof. This proof is similar to Lemma 1. ��
Lemma 5. If one service provider provides a decryption key not conforming to
data, he cannot obtain payments.

Here, Lemma 1 to Lemma 5 prove the payoff function of each behavior. Based
on such analyses, we can precisely calculate the payoff function of combined
strategies in our sequential game. As discussed before, a total of 64 possible
combinations exist, and we accordingly calculate the corresponding profits as
presented in Table 4. We demonstrate that the system can reach the subgame
perfect Nash equilibrium under the following theorem.

656 E. Jiang et al.

Table 4. Payoff Function and Profits (blue texts reach Nash Equilibrium)

H Payoff in the form of (SL, CM, SP)

aei (9,−4,2) bei (19,−24,2) cei (10,−24,2) dei (20,−24,2)

aej (9,−24,3) bej (19,−24,3) cej (10,−24,3) dej (20,−24,3)

aek (9,−24,3) bek (19,−24,3) cek (10,−24,3) dek (20,−24,3)

ael (9,−24,4) bel (19,−24,4) cel (10,−24,4) del (20,−24,4)

afi (x−11,16−x,2) bfi (x−1,−24,2) cfi (x−10,−24,2) dfi (x,−24,2)

afj (x−11,−24,3) bfj (x−1,−24,3) cfj (x−10,−24,3) dfj (x,−24,3)

afk (x−11,−24,3) bfk (x−1,−24,3) cfk (x−10,−24,3) dfk (x,−24,3)

afl (x−11,−24,4) bfl (x−1,−24,4) cfl (x−10,−24,4) dfl (x,−24,4)

agi (9,−y,y−2) bgi (19,−24,y−2) cgi (10,−24,y−2) dgi (20,−24,y−2)

agj (9,−24,y−1) bgj (19,−24,y−1) cgj (10,−24,y−1) dgj (20,−24,y−1)

agk (9,−24,y−1) bgk (19,−24,y−1) cgk (10,−24,y−1) dgk (20,−24,y−1)

agl (9,−24,y) bgl (19,−24,y) cgl (10,−24,y) dgl (20,−24,y)

ahi (x−11,−x−y,y−2) bhi (x−1,−24,y−2) chi (x−10,,−24,y−2) dhi (x,−24,y−2)

ahj (x−11,−24,y−1) bhj (x−1,−24,y−1) chj (x−10,,−24,y−1) dhj (x,−24,y−1)

ahk (x−11,−24,y−1) bhk (x−1,−24,y−1) chk (x−10,,−24,y−1) dhk (x,−24,y−1)

ahl (x−11,−24,y) bhl (x−1,−24,y) chl (x−10,,−24,y) dhl (x,−24,y)

Theorem 1. The game will achieve the only subgame perfect Nash equilibrium
(SPNE) if all three parties act honestly: sellers upload the matched data and
matched key, service providers adopt the authentic data, and matched decryption
key, and consumers purchase with sufficient payments. Meanwhile, the SPE is
also the optimal strategy for the entire system as a Nash Equilibrium. ��
Proof. First, we dive into the rewards of each role, investigating their payoffs
under different strategies. For the seller, we observe that the system is not sta-
ble (cannot reach Nash equilibrium) under his optimal strategies. As shown in
Table 4, the optimal strategies for sellers (dei,dej,dek,del,dgi,dgj,dgk,dgl) is to pro-
vide mismatched keys and data, while at the same time obtain payments from
consumers. However, based on Lemma 1 and Lemma 2, the seller in such cases
cannot obtain payments due to the punishment from smart contracts. These are
impractical strategies when launching the backward induction for the subgame
tree in Fig. 2. Similarly, for both consumers and service providers, the system
is not stable and cannot reach Nash equilibrium under their optimal strategies.
Based on that, we find that the optimal strategy for each party is not the optimal
strategy for the system.

Then, we focus on strategies with the highest payoffs (equiv. utilities). As
illustrated in Table 4 (red background), the strategies of aei, afi and agi hold the
maximal payoffs where uaei = uafi = uagi = 7. Their payoffs are greater than all
competitive strategies in the history set H. This means the system reaches Nash
equilibrium under these three strategies. However, multiple Nash equilibriums
cannot drive the most optimal strategy because some of them are impractical.

BDTS: Blockchain-Based Data Trading System 657

We conduct the backward induction for each game with Nash equilibriums.
We find that only one of them is the subgame perfect Nash equilibrium with
feasibility in the real world. Based on Lemma 3, a consumer without sufficient
payments, either to the seller or service provider, cannot successfully decrypt the
raw data. He will lose all the paid money (x+y). This means both afi and agi are
impractical. With the previous analyses in the arm, we finally conclude that only
the strategy aei, in which all parties act honestly, can reach the subgame perfect
Nash equilibrium. This strategy is also the Nash equilibrium for the entire BDTS
game. ��

6 Implementation and Evaluation

Implementation and Configurations. We provide the detailed implementa-
tion of three major functions, including sharding encryption that splits a full
message into several pieces, product matching to show the progress of finding a
targeted product, and payment that present the ways to pay for each participant.
Our full practical implementation is based on Go language with 5 files, realiz-
ing the major functions of each contact that can be operated on Hyperledger
platform3. We provide implementation details in Appendix A.

Our evaluation operates on Hyperledger Fabric blockchain [15], running on
a desk server with Intel(R) Core(TM) i7-7500U CPU@2.70 GHz and 8.00 GB
RAM. We simulate each role (consumer, seller and service providers) at three
virtual nodes, respectively. These nodes are enclosed inside separated dockers
under the Ubuntu 18.04 TLS operating system.

Computational Complexity. Firstly, we provide a theoretical analysis of com-
putational complexity and make comparisons with competitive schemes. We set
τE , τEA

, τD, τDA
, τM and τV to separately represent the asymmetric encryption

time, the symmetric encryption(AES) time, the asymmetric decryption time and
the symmetric encryption time, the Merkle tree merging operation time and the
Merkle proof verification time. We give our theoretical analysis of each step in
Table 5.

Firstly, at the encrypted data uploading module, the seller will divide the
entire data into several pieces of data and upload their proofs on-chain. We
assume the data has been split into n pieces, and every piece of data Datai

needs to be encrypted into Di. Then, these encrypted data have been stored at
the Merkle leaves, merging both Datai and Di to obtain Md and red. Secondly,
at the matching and data downloading module, the consumer can select service
providers to download different data segments from them. Before providing the
service, the service provider needs to encrypt the received Di with their private
keys, accompanied by corresponding Merkle proofs as in the previous step. Here,
the encryption is based on a symmetric encryption algorithm. Once completed,
multiple downloads occur at the same time. More service providers will improve
the efficiency of downloading because the P2P connection can make full use
3 https://github.com/YXJpYQ/BDTS Blockchain based Data Trading System.git.

https://github.com/YXJpYQ/BDTS_Blockchain_based_Data_Trading_System.git

658 E. Jiang et al.

of network speed. Last, at the decryption and appealing module, the consumer
obtains each encrypted piece of data and starts to decryption them. They need
to verify whether the received data and its proof are matched. If all pass, they
can use the valid keys (after payment) for the decryption. Here, the appeal time
is related to the number of appeal parts instead of the appeal size.

We further make a comparison, in terms of on-chain costs, with existing
blockchain-based fair exchange protocols. Gringotts [26] spends O(n) as they
store all the chunks of delivering data on-chain. CacheCas [27] takes the cost
at a range of [O(1),O(n)] due to its lottery tickets mechanism. FairDwonload
[8], as they claimed, spends O(1). But they separate the functions of delivering
streaming content and download chunks. Our protocol retains these functions
without compromising efficiency, which only takes O(1).

Table 5. Computational Complexity and Comparison (i is the number of segmented
data; n represents a full chunk of data)

Algorithm Complexity

Encrypted data uploading iτE + 2τM + 2τV

Matching and Data downloading iτEA + 2τM + 2τV

Encryption and appealing iτD + τDA + 2τM + 2τV

Schemes On-chain Cost

Gringotts [26] O(n)

CacheCash [27] [O(1),O(n)]

FairDwonload [8] O(1)

BDTS(Ours) O(1)

Efficiency. Then, we launch experimental tests to evaluate efficiency in multi-
dimensions. We focus on the download functionaries, the most essential function
(due to high frequency & large bandwidth) invoked by users.

Data Type. We evaluate three mainstream data types, covering text, image,
and video. The text-based file is the most prevailing data format in personal
computers. As a standard, a text file contains plain text that can be edited in
any word-processing program. The image format encompasses a variety of dif-
ferent subtypes such as TIFF, png, jpeg, and BMP, which are used for multiple
scenarios like printing or web graphics (e.g., NFT [28]). We omit subtle differ-
ences between each sub-format because they perform equivalently in terms of
download services. Similarly, video has a lot of sub-types including MP4, MOV,
MP4, WMV, AVI, FLV, etc. We only focus on its general type. From the results
in Fig. 3, we can observe that all three types of data have approximately the
same performance, under different configurations of data size and storage capac-
ity. The results indicate that the performance of the download service has no
significant relationship with the data type. This is an intuitive outcome that can
be proved by our common sense. The upload/download service merely opens a
channel for inside data, regardless of its content and types. This also shows that
our BDTS system can support multiple types of data without compromising
efficiency.

Data Size. We adjust data sizes at three levels, including 10M, 100M, and
1G, to represent a wide range of applications at each level. As shown in Fig. 3,

BDTS: Blockchain-Based Data Trading System 659

10M data (Text, 1 storage) costs at most no more than 2 s, 100M data in the
same format spends around 18 s, and 1G data costs 170 s. The results indicate
that the download time is positively proportional to its data size. The larger the
data, the slower it downloads. This can also apply to different types of data and
different storage capacities. A useful inspiration from evaluations of data size is
to ensure a small size. This is also a major consideration to explain the reasons for
splitting data into pieces in our BDTS. The splitting procedure can significantly
improve service quality either for uploading or downloading. Sharded data can
be reassembled into its full version once receiving all pieces of segments.

0 5 10 15 20

1

2

3

4

DOWNLOAD TIME (100M)/S
Video Picture TXT

0 0.5 1 1.5 2

1

2

3

4

DOWNLOAD TIME (10M)/S
Video Picture TXT

0 50 100 150 200

1

2

3

4

DOWNLOAD TIME (1G)/S
Video Picture TXT

Fig. 3. Download Times of Different Data Type, Data Size and Storage Capacity: We
evaluate three types of data formats including video (grey), image (orange), and text
(blue). For each type, we test download times in distinguished data size with 10M (left),
100M (middle) and 1G (right). Meanwhile, we also investigate the performance along
with increased number of storage devices (from 1 to 4), or equiv. the number of service
providers.

Storage Capacity. The storage capacity refers to the number of storage devices
that can provide download services. The device is a general term that can be
a single laptop or a cluster of cloud servers. If each service provider maintains
one device, the number of devices is equal to the number of participating service
providers. We adjust the storage capacity from 1 device to 4 devices in each data
type and data size. All the subfigures (the columns in left, middle and right) in
Fig. 3 show the same trend: increasing the storage capacity over the distributed
network will shorten the download time. The result can apply to all the data
types and data sizes. The most obvious change in this series of experiments is
adding devices from 1 to 2, which is almost short half of the download time.
A reasonable explanation might be that a single-point service is easily affected
by other factors such as network connection, bandwidth usage, or propagating
latency. Any changes in these factors may greatly influence the download service
from users. But once adding another device, the risk of single-point diminishes
as the download service becomes decentralized and robust. More connections
can drive better availability, as also proved by setting devices to 2, 3 and 4. This
is why BDTS allows consumers to download data from multiple providers.

Average Time. We dive into one of the data types to evaluate its i) aver-
age download times that are measured in MB/sec by repeating multiple times of
experiments under different data sizes; and ii) the trend along with the increased

660 E. Jiang et al.

Table 6. Average Download Time

Storage Data Size (Text) Average Time

1M 10M 50M 100M 500M 1G (s)

1 0.16 1.78 7.96 16.55 80.52 166.45 0.167

2 0.10 0.98 4.89 8.60 43.48 88.04 0.102

3 0.07 0.77 2.54 5.29 27.44 56.15 0.068

4 0.05 0.61 2.03 4.21 22.22 43.51 0.051

5 0.04 0.38 1.79 3.33 18.88 34.52 0.039

6 0.03 0.32 1.56 2.88 14.69 29.48 0.031
Fig. 4. Download Time

number of storage devices. Compared to previous evaluations, this series of
experiments scrutinize the subtle variations under different configurations, fig-
uring a suite of curves. As stated in Table 6, the average downloading times
under the storage capacity (from 1 to 6) are respectively 0.167s, 0.102s, 0.068s,
0.051s, 0.039s, and 0.031s. Their changes start to deteriorate, approaching a con-
vex (downward) function as illustrated in Fig. 4. This indicates that the trend
of download time is not strictly proportional to the changes in storage capacity.
They merely have a positive relation, following a diminishing marginal effect.

Practicability. We further discuss the practicality of the system. We highlight
several major features of BDTS by digging into its usability, compatibility, and
extensibility.

Usability. Our proposed scheme improves usability in two folds. Firstly, we
separately store the raw data and abstract data. The raw data provided by the
sellers are stored at the local servers of service providers, while the corresponding
abstract data (in the context of this paper, covering data, description and proof)
is recorded on-chain. A successful download requires matching both decryption
keys and data proofs under the supervision of smart contracts. Secondly, the data
trade in our system includes all types of streaming data such as video, audio,
and text. These types can cover the most range of existing online resources.

Compatibility. Our solution can be integrated with existing crypto schemes. To
avoid repeated payment, simply relying on the index technique is insufficient.
The watermarking [29] technique is a practical way to embed a specific piece
of mark into data without significantly changing its functionality. It can also
incorporate bio-information from users, greatly enhancing security. Beyond that,
the storage (encrypted) data can leverage the hierarchical scheme [30] to manage
its complicated data, as well as remain the efficiency of fast query.

Extensibility. BDTS can extend functionalities by incorporating off-chain pay-
ment techniques (also known as layer-two solutions [31]. Off-chain payment has
the advantage of low transaction fees in multiple trades with the same person.
Besides, existing off-chain payment solutions have many advanced properties
such as privacy-preserving and concurrency [32,33]. Our implementation only
set the backbone protocol for fair exchange, leaving many flexible slots to extend
functionalities by equipping matured techniques.

BDTS: Blockchain-Based Data Trading System 661

7 Conclusion

This paper explores the fairness issue in current data transaction solutions where
traditional centralized authorities are not subject to any oversight due to their
superpowers. Our proposed scheme, BDTS, addresses such issues by leveraging
blockchain technology with well-designed smart contracts. The scheme utilizes
automatically operating smart contracts to act in the role of a data executor
with transparency and accountability. Our analyses, based on strict game theory
induction, prove that the game can achieve a subgame perfect Nash equilibrium
with optimal payoffs under the benign actions of all players. Furthermore, we
implement the scheme on the Hyperleder Fabric platform and evaluated that
the system can provide users with fast and reliable service.

Acknowledgment. Thanks to Lixiaoyang Wang for his contributions to this article.
This work was supported by National Key R&D Program of China (2020YFB1005600),
National Natural Science Foundation of China (grant no.72192801), Natural Science
Foundation of China (U21A20467, 61932011, 61972019), and Beijing Natural Sci-
ence Foundation (Z220001, M21031) and CCF-Huawei Huyanglin Foundation (CCF-
HuaweiBC2021009).

Appendix A. Implementation Details

We give more implementation details by focusing on three major components.

Sharding Encryption. Based on the real scenario, data transmitted in our sys-
tem is large in scale. A promising way for transferring the data is delivering them
in segments (also known as data sharding). Data sharding in BDTS does not
affect the system consensus or consistency. Instead, data sharding is an off-chain
operation conducted by sellers that will be processed before uploading. A full
piece of data is split into several shards (or pieces, segments), being encrypted
and stored in different memories. The blockchain only reserves its sequential
orders and related evidence such as descriptions, addresses and proofs. When
a consumer confirms the purchase, he needs to download the data on service
providers according to the storage list and obtain the decryption key after suc-
cessful payment. Then, he can decrypt the data in pieces and finally resemble
them according to the sequences for the entire piece of data. We implement
the data sharding with the logic in Algm.1. Given the size of a slot (indicating
the expected size of a shard), we firstly calculate the number of data segments
(line 4). Then, a full piece of data is split into n segments (line 5). The seller
then create its encryption keys (K1,K2, ...,Kn) based on his master private key
Kseller (line 6). Once completed data splitting and key generation, the algo-
rithm starts to encrypt each data segment under the seller’s private keys (line
8–11). Encrypted data also generate its proofs for further verifications (line 10).
Last, both raw data and encrypted data are stored on the leaves of Merkle tree
to create on-chain roots MT1 and MT2 (line 12–14).

662 E. Jiang et al.

Product Matching. This function describes the process of searching for a tar-
geted source from service providers. In the context of Algm.2, the terms keyword,
choice, ProductList, SPList, MD, Data and Desc represent the searchable key-
words, user’s preferences of products, product list, service provider list, data and
product description. When a consumer inputs a keyword, the algorithm starts to
search for matched ones (line 3) by ranging all descriptions in the product list
(line 2–5). Matched products will be recommended to a channel called showlist
for consumers. The algorithm then inputs choice requested from the consumer,
and searches related sources (encrypted data, data, description) from service
providers (line 8–13). The returned information is sent to the consumer.

Payment. This function mainly describes the method of making payments. The
terms in Algm.3 cmAddr, slrAddr, spAddr and Price stand for the consumer’s
address, the seller’s address, the service provider’s address and the price of com-
modities. The result (either True or False) represents the final result on whether
the payment has been successfully executed. The algorithm inputs the addresses
of all three entities and the commodity price (line 1). If the token amount of
consumer is less than selling prices, the algorithm returns false and the trans-
action fails (line 1–3). Otherwise, the transaction proceeds. A major difference
compared to traditional exchange protocols is that the consumer needs to pay
both service providers for their on-chain services and the seller for his resources
(line 4–9) (Fig. 5).

Fig. 5. Major Functions

References

1. Wang, C., Wang, Q., et al.: Toward secure and dependable storage services in cloud
computing. TSC 5(2), 220–232 (2011)

2. Zhu, Y., Ahn, G.-J., Hongxin, H., et al.: Dynamic audit services for outsourced
storages in clouds. TSC 6(2), 227–238 (2011)

3. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 18

4. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC, pp. 12–19 (2003)

https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-642-11925-5_18

BDTS: Blockchain-Based Data Trading System 663

5. Blum, M.: How to exchange (secret) keys. TOCS 1(2), 175–193 (1983)
6. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT

2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39200-9 6

7. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: how to fairly exchange digital
goods. In: CCS, pp. 967–984 (2018)

8. He, S., Lu, Y., Tang, Q., Wang, G., Wu, C.Q.: Fair peer-to-peer content delivery
via blockchain. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021.
LNCS, vol. 12972, pp. 348–369. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88418-5 17

9. Shin, K., et al.: T-chain: a general incentive scheme for cooperative computing.
IEEE/ACM ToN 25(4), 2122–2137 (2017)

10. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an
unfair world: fair multiparty computation from public bulletin boards. In: CCS,
pp. 719–728 (2017)

11. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

12. Eckey, L., Faust, S., Schlosser, B.: Optiswap: fast optimistic fair exchange. In:
AsiaCCS, pp. 543–557 (2020)

13. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger
(2022). https://ethereum.github.io/yellowpaper/paper.pdf

14. Li, R., et al.: How do smart contracts benefit security protocols? arXiv preprint
arXiv:2202.08699 (2022)

15. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: EuroSys, pp. 1–15 (2018)

16. Chen, J., Xue, Y.: Bootstrapping a blockchain based ecosystem for big data
exchange. In: Bigdata Congress, pp. 460–463. IEEE (2017)

17. Fang, F., Liu, S., et al.: Introduction to game theory. In: Game Theory and Machine
Learning for Cyber Security, pp. 21–46 (2021)

18. Moore, J., Repullo, R.: Subgame perfect implementation. Econometrica: J. Econo-
metric Soc., 1191–1220 (1988)

19. Jung, T., et al.: Accounttrade: accountable protocols for big data trading against
dishonest consumers. In: INFOCOM, pp. 1–9. IEEE (2017)

20. Dai, W., et al.: SDTE: a secure blockchain-based data trading ecosystem. IEEE
Trans. Inf. Forensics Secur. (TIFS) 15, 725–737 (2019)

21. Li, R., Wang, Q., Liu, F., Wang, Q., Galindo, D.: An accountable decryption system
based on privacy-preserving smart contracts. In: Susilo, W., Deng, R.H., Guo, F.,
Li, Y., Intan, R. (eds.) ISC 2020. LNCS, vol. 12472, pp. 372–390. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-62974-8 21

22. Zhou, J., et al.: Distributed data vending on blockchain. In: IEEE International
Conference on Internet of Things (iThings), pp. 1100–1107. IEEE (2018)

23. Janin, S., Qin, K., Mamageishvili, A., Gervais, A.: Filebounty: fair data exchange.
In: EuroS&PW, pp. 357–366. IEEE (2020)

24. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: ACM EC, pp. 365–382 (2016)

25. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/978-3-030-88418-5_17
https://doi.org/10.1007/978-3-030-88418-5_17
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://ethereum.github.io/yellowpaper/paper.pdf
http://arxiv.org/abs/2202.08699
https://doi.org/10.1007/978-3-030-62974-8_21
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

664 E. Jiang et al.

26. Goyal, P., et al.: Secure incentivization for decentralized content delivery. In:
USENIX Workshop on Hot Topics in Edge Computing (HotEdge) (2019)

27. Almashaqbeh, G.: CacheCash: A Cryptocurrency-based Decentralized Content
Delivery Network. Columbia University (2019)

28. Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (NFT): Overview, eval-
uation, opportunities and challenges. arXiv preprint arXiv:2105.07447 (2021)

29. Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable PRFs from
standard assumptions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12170, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56784-2 20

30. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

31. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 12

32. Malavolta, G., Moreno-Sanchez, P., Kate, A., et al.: Concurrency and privacy with
payment-channel networks. In: CCS, pp. 455–471 (2017)

33. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized curren-
cies. In: CCS, pp. 473–489 (2017)

http://arxiv.org/abs/2105.07447
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

Illegal Accounts Detection on Ethereum
Using Heterogeneous Graph Transformer

Networks

Chang Xu1(B), Shiyao Zhang1, Liehuang Zhu1, Xiaodong Shen1,
and Xiaoming Zhang2

1 School of Cyberspace Science and Technology, Beijing Institute of Technology,
Beijing 100081, China
xuchang@bit.edu.cn

2 School of Cyber Science and Technology, Beihang University,
Beijing 100191, China

Abstract. Numerous applications based on Ethereum have been uti-
lized in a variety of scenarios, such as financial services. However, due to
the lack of effective regulation in the blockchain, a significant number of
illegal users cash in on the anonymity of blockchain accounts, which has
an extremely negative impact. Existing illegal account detection meth-
ods employ machine learning techniques to train fundamental account
characteristics and fail to extract efficient high-order features by graph
structures, leading to inaccuracies in account detection. To address this
issue, we propose a novel illegal account identification method based on
a heterogeneous transformer network. Specifically, we design an account-
centric heterogeneous information network model to express real trans-
action data on Ethereum for the first time. This model can describe the
network structure information more comprehensively. Additionally, we
propose to apply the graph transformer network to automatically learn
the multi-hop metapath and obtain high-order node information and
links. These features, in turn, improve the quality and performance of
our model. Finally, we employ the graph convolutional network to classify
nodes and complete the account identification task and ensure the secu-
rity of the Ethereum system. Furthermore, we compare our method with
other existing detection models. Our experiments demonstrate that the
proposed approach achieves an accuracy of 95.57%, which surpasses that
of traditional machine learning models and existing detection schemes.

Keywords: Ethereum · Illegal account · Graph transformer network

1 Introduction

Blockchain [27] has been widely used in various fields such as finance, health-
care, and product traceability [10,25,31,35], owing to its inherent features of
decentralization, transparency, openness, immutability, and anonymity. These

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 665–680, 2023.
https://doi.org/10.1007/978-981-99-7356-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_39&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_39

666 C. Xu et al.

characteristics contribute to the widespread application of blockchain technol-
ogy, but they also provide opportunities for illicit activities within the domain
of virtual assets [13,33]. Illegal users exploit the anonymity of the technology
for money laundering [16], virus extortion, terrorist financing, and other illicit
activities [19]. Ethereum [4] is an open-source public blockchain platform that
is utilized to process large amounts of funds and digital assets and can pro-
vide independence, reliability, and efficiency. The utilization of smart contracts
on Ethereum has intensified the presence of fraudulent activities that are con-
cealed within transactions, including Ponzi schemes and phishing scams, leading
to significant financial losses and privacy breaches. To safeguard the Ethereum
platform’s security and protect users’ assets, it is necessary to develop solutions
for identifying illegal users on the blockchain and timely curbing criminal activ-
ities.

Existing studies employ machine learning models to train on the basic fea-
tures of accounts and detect anomalous accounts on the blockchain through
classification results. However, these approaches do not analyze high-order cor-
relation information in graphs, resulting in poor feature effectiveness and low
detection accuracy. Additionally, existing graph structures that describe the
blockchain network are predominantly homogeneous. As a result, there is no
comprehensive heterogeneous network model that describes Ethereum from an
account-centric view. Given a large number of accounts and the diversity of
information involved in the Ethereum platform, we propose a novel identification
method to address the challenge of detecting illegal accounts in Ethereum. Our
approach is based on a heterogeneous graph transformer network, which over-
comes the low accuracy limitations observed in existing models. By leveraging
the power of graph learning, our method is able to capture richer information
and improve detection performance. We collect real Ethereum data and pro-
pose an account-centered heterogeneous network to represent node information
and links. The graph transformation networks enables the automatic learning
of meta-paths to extract high-order feature information from the graph struc-
ture. Then we used convolutional neural networks to generate node embeddings
for account identification. To improve the interpretability of the classification
results, we used t-SNE for visualization and conducted comparative experiments
on the constructed dataset to evaluate the performance of our method against
existing detection schemes. The results demonstrate that our proposed method
outperforms other account detection schemes. The specific contributions of this
paper are as follows:

– We propose an illegal account detection method based on heterogeneous graph
transformer networks to identify the accounts engaged in abnormal activities
in Ethereum with high accuracy. We use the graph node classification method
to tackle the task of illegal account detection. In contrast to previous studies,
we utilize a graph transformer network to automatically learn meta-paths for
obtaining a relationship matrix. Then we input this matrix into a convolu-
tional neural network to get the classification result.

Illegal Accounts Detection on Ethereum Using HGTN 667

– We define an account-centric heterogeneous information network model. Our
model can comprehensively express the network structure of Ethereum. To
the best of our knowledge, this is the first model that represents Ethereum
activities from the account perspective as a heterogeneous graph. It contains
various data such as account transactions, balances, blocks, and other relevant
information.

– We collect data on the Ethereum blockchain and construct a novel and infor-
mative dataset with a heterogeneous graph to describe the Ethereum net-
work. Then we evaluate our proposed approach and compare it with existing
methods on this dataset. The results show that our method achieves a high
precision of 95.57%, recall of 97.41%, F1-score of 96.31%, and node classifica-
tion accuracy of 95.57%. It has been verified by experiments that our scheme
outperforms other account detection methods.

2 Background

Illegal Digital Activities. The rapid growth of digital currencies has created
opportunities for criminal activity on decentralized networks [12]. Ethereum has
experienced a rise in virtual asset crimes, with fraudulent activities being the
most prevalent. In the early days of blockchain technology, scams were com-
monly spread through investment ads on blockchain forums, luring investors with
attractive profit returns and ultimately deceiving them. Over time, such tactics
have become increasingly sophisticated, incorporating techniques such as phish-
ing [6], smart Ponzi schemes [2,9], ICO scams [3], honeypot traps [32], and money
laundering. Phishing, in particular, constitutes more than half of all network
crimes and remains the most common type of fraud. Another widespread activ-
ity is the smart Ponzi scheme, for instance, the Rubixi, which enticed investors
with a dynamic multiplier factor of at least 1.2. However, actual manual checks
revealed that only 22 out of 112 participants, including the creator of the con-
tract, made a profit [9]. Furthermore, cryptocurrencies are often used to trade
illegal goods on the dark web, such as the Silk Road website [11], which special-
izes in the sale of weapons and drugs using digital currencies [20]. According to
Chainalysis, darknet markets generated a record-breaking $2.1 billion in cryp-
tocurrency revenue in 2021. Additionally, money launderers can use blockchain
technology to obscure the source of illicit assets, making it difficult to be traced
and ultimately reclaim them as legitimate income.

Ethereum Transaction Network Model. The widespread adoption of
Ethereum has led to a substantial increase in on-chain transactions, resulting
in the accumulation of copious amounts of transactional data that fully capture
financial activity [21]. The transparency and openness of the blockchain facili-
tate easy access to this transactional data, providing researchers with favorable
conditions for conducting more in-depth technical explorations on Ethereum
[23]. Given Ethereum’s highly interconnected structure, graph-based modeling
is a highly suitable tool for analyzing stored data, as it can comprehensively

668 C. Xu et al.

preserve the network’s data transmission relationships and provide opportuni-
ties for mining financial transactional data [5]. The existing Ethereum graph
models can be broadly categorized into two groups based on transactions and
tokens. Transaction-based graphs encompass money flow graphs (MFG), smart
contract creation graphs (CCG), smart contract invocation graphs (CIG), and
temporal graphs [1,7,22], etc. These graphs summarize the principal activi-
ties on the Ethereum blockchain. Additionally, there are other graphs based
on ERC20 tokens, including token creator (TCG), holder (THG), and transfer
(TTG) graphs [8,15,29]. Various studies have utilized directed graphs, weighted
graphs, and temporal snapshot graphs to analyze Ethereum blockchain data,
promoting further research in this field.

3 Heterogeneous Information Network for Accounts

Constructing a heterogeneous information network (HIN) centered on accounts
can help to more comprehensively mine high-order semantic information and
thus more accurately identify illegal accounts in Ethereum. This section first
introduces the concept and parameter representation of HIN, then fully ana-
lyzes the characteristics of illegal accounts, and selects appropriate account fea-
tures based on these characteristics as standards. Finally, a centered-on-account
heterogeneous network model is constructed to facilitate data preprocessing.

3.1 Preliminaries

Heterogeneous Information Network. Heterogeneous information network
(a.k.a heterogeneous graph) is commonly used to model complex systems with
diverse object types and various interaction behaviors, such as the Open Aca-
demic Graph [34] and extensive IoT networks [30]. HINs are typically repre-
sented as directed graphs G = (V,E, F,R), where each node v ∈ V and each
edge e ∈ E are associated with their type mapping functions. Specifically, node
v corresponds to the attribute τ(v): V → F , edge e corresponds to the relation
φ(e): E → R. If both node types and edge types in the network are unique, i.e.,
|F | = 1 and |R| = 1, then this figure is a homogeneous information network.
The heterogeneous graph G can be represented by a set of adjacency matrices
{At}|R|

t=1 or a tensor A ∈ RN×N×|R|, where A ∈ RN×N×|R| is an adjacency matrix
of the tth edge type and N = |V |, At[i, j] represents the weight of the tth edge
type from node i to node j.

Metapath. In heterogeneous networks, a metapath refers to a multi-hop con-
nection that is a path connecting heterogeneous edge types. Formally, it can be

represented as v1
τ(e1)−→ v2

τ(e2)−→ ...
τ(el)−→ v(l+1), where τ(e1) ∈ R represents the

type of the edge el on the metapath.

Meta Relationship. In a heterogeneous network, the meta relationship of an
edge e = (s, t) from the source node s to the target node t is expressed as

Illegal Accounts Detection on Ethereum Using HGTN 669

(τ(s), φ(e), τ(t)), where τ(s) and τ(t) represent the types of the source and tar-
get nodes, respectively, and φ(e) represents the type of the edge e. This meta
relationship provides a higher-level abstraction of the heterogeneous network,
which can be used for various tasks such as link prediction, recommendation,
and classification.

3.2 Feature Analysis

The blockchain contains various transaction features that can serve as the basis
data for detecting illegal accounts. However, analyzing a large amount of trans-
action data directly is not feasible. Therefore, we can analyze the features of ille-
gal accounts, characterize the typical indicators of abnormal behavior, extract
appropriate features, and then convert these features into a set of feature vectors
that can be inputted into the detection model. This approach can significantly
reduce the computational complexity of the detection algorithm while improv-
ing its accuracy. Based on established methods for illegal activity and analysis
of existing transaction data, we discover that illegal accounts on the blockchain
typically exhibit the following characteristics:

– Highly active and frequent transfers in short term: Illicit accounts often per-
form a high number of scattered transfers in a short period of time to take
advantage of anonymous identities and achieve their objectives of money laun-
dering or obtaining large amounts of funds, while also obscuring the flow of
funds.

– Frequent transactions between illicit accounts: Illicit accounts prefer to trans-
act with other illicit accounts, and their receiving addresses may be used to
receive funds transferred from different illicit accounts.

– Complex transaction paths of accounts: Illicit accounts often use complex
transaction paths, such as multiple accounts, to make it difficult to trace the
beneficiary account and conceal their true transaction purposes, which may
include money laundering and fund allocation.

– Large transaction amounts: Illicit accounts often transact higher amounts
than normal transactions, whether for personal money laundering or profiting
from others. Money laundering accounts often transact much larger amounts
to transfer large amounts of funds. Fraudulent and ransom accounts also
engage in large transactions to quickly gain profits.

– A large number of accounts participate in the same contract, but there is
limited intersection between accounts: Illicit accounts that engage in transac-
tions through smart contracts often aim to attract more investors to maximize
their profit. However, the victims involved in these transactions typically have
little or no prior transactional connections among themselves.

Based on the common characteristics of illegal accounts obtained through the
above analysis, combined with the feature data that can be obtained through
account and transaction information in practice, we adopt the feature types
of integer and floating-point data proposed by Steven et al. [14] to describe

670 C. Xu et al.

account features. These two types of data are more easily mapped to mathemat-
ical models for computation. These features can comprehensively describe ether
and ERC20 token virtual currencies from multiple dimensions such as trans-
action quantity, amount, and time, including the total number of ether/token
transactions, average ether/token received, and time intervals between transac-
tions.

3.3 HIN Construction

Main account operations on Ethereum, namely, initiating transactions, receiving
transactions, and creating smart contracts, are depicted in Fig. 1. To detect
illegal accounts, we construct a heterogeneous information network that includes
accounts, their associated transactions, blocks, smart contracts, and balances.
The account features selected in the previous subsection can be used to construct
the feature matrix of the account-centric HIN.

Fig. 1. Account Heterogeneous Information Network Schema.

The account HIN defines node types, edge types, relationship types, and
attribute sets. The constraints on relationship types describe the structural char-
acteristics of the network, which can be used to explore high-order semantics.
The network pattern can facilitate the mapping of unstructured data from the
real world to a standardized model, thereby enabling more accurate and effi-
cient graph model calculation in subsequent operations. The definition of a HIN
centered on accounts is presented below:

Definition 1. Account-Centric Heterogeneous Information Network.
Account-centric heterogeneous information network (AC-HIN) is denoted as
G(V,E,R,A). The set V comprises object nodes in the network, including
accounts, transactions, blocks, smart contracts, and balances. Accounts refer
to external accounts on Ethereum, transactions are signed data packages sent
from one account to another, blocks are data packets on the blockchain that
contain transactions and other data, smart contracts are codes that trigger the

Illegal Accounts Detection on Ethereum Using HGTN 671

automatic execution of contract terms, and balances indicate the balance infor-
mation of the account. The set E contains directed edges that represent the
connection relationship between nodes. R is the set of relationship types, and
each edge type in the network corresponds to a specific relationship type between
different node types. The relationship types include inclusion, creation, partic-
ipation relationships, and others. Finally, A is a collection of attributes that
describe the characteristics of the nodes and contains all attribute values. These
values are used to explore higher-order semantics of the network and to map
unstructured real-world data to a normalized graph model for faster and more
accurate graph model calculations in subsequent operations.

4 AHGTN Detection Model

In this section, we describe the data acquisition method, followed by an introduc-
tion to the principle of heterogeneous graph transformer network. We explain
the process and method of generating meta-paths and utilizing graph neural
networks to compute node embeddings, which enable account node classifica-
tion detection. The specific model’s operation flow chart is shown in Fig. 2.

Fig. 2. The Framework of AHGTN Detection Model.

4.1 Data

We retrieve account information from the Etherscam database that contains tags
indicating illegal activity. Subsequently, we employ a functional tool proposed by
Sokolowska [28] to identify common accounts that engage in transactions within
a specific range of blocks. Non-unique accounts are excluded, resulting in a list
of unique accounts that exhibit activity within a designated time frame.

To ensure that the obtained accounts are not isolated nodes in the network,
we cross-reference them with known illegal accounts. Subsequently, we verify
that they are not involved in any documented illegal activities. For more rele-
vant information, we utilize the Etherscan API to retrieve activity information

672 C. Xu et al.

for both normal and illegal accounts. This includes their participation in trans-
actions, blocks, smart contracts, and account balances.

Label Dataset Dlabels. The account nodes are partitioned into a training set
Ltr, a validation set Lval, and a test set Ltest. Thus, the dataset can be repre-
sented as Dlabels = {Ltr, Lval, Ltest}. Based on the collected account information
and activity data, the nodes are labeled as illegal account nodes (0), legal account
nodes (1), transaction nodes (2), and so on. The resulting dataset is denoted as
L = {(xi, yi) , yi ∈ [0, classnum] , i = 1, 2, ..., N}, where xi is the heterogeneous
network node, yi is the corresponding label of xi, classnum is the number of
node types in the network, and N is the total number of nodes in the network.

Edge Dataset Dedges. To capture the association information between differ-
ent types of nodes, we construct adjacency matrices. For example, the Account-
Transaction adjacency matrix, if the current account i is involved in transaction
j, the value of the corresponding element ATi,j of the adjacency matrix is 1, oth-
erwise the value is 0. By transposing this matrix, we can obtain the Transaction-
Account adjacency matrix. We repeat this process for other entity types, such
as blocks and smart contracts and construct their respective adjacency matrices.
These matrices form the Dedges edge set between different entities.

Feature Dataset Dfeatures. Based on the account characteristics outlined in
Sect. 3, we gather information on the account characteristics and create a feature
matrix of size N × F to store the account characteristics, where N represents
the number of nodes in the heterogeneous network and F indicates the dimen-
sions of the account characteristics. The characteristics of non-account nodes are
calculated by summing and averaging the characteristics of all the associated
accounts. The account node feature matrix is combined with the non-account
node feature matrix to form a complete composite feature matrix. Finally, we
scale the numerical features using normalization and standardization operations.

4.2 Classification Model

To achieve high accuracy and low false positives when identifying illegal accounts
from legitimate ones, we employ Graph Transformer Networks, one of the most
popular deep learning algorithms that has been proven to be effective in various
tasks. This section provides a brief overview of GTN and the classification model
we developed based on it.

Based on the heterogeneous network G = (V,E, F,R) constructed in Chapter
III we leverage the graph transformer layer to uncover potential associations
between accounts and other node types, thereby generating a new matrix of
relation that we use to learn a novel graph structure. The mathematical expres-
sions for this process are provided below:

M = ConV (
s∏

i=0

M̃Ati
, softmax(

→
λ))

Illegal Accounts Detection on Ethereum Using HGTN 673

where ConV refers to the convolution process, and
∏s

i=0 M̃Ati
denotes the adja-

cency matrix associated with the s-hop meta-path count. The softmax func-
tion is used to normalize the processing weights, while

→
λ represents the weight

parameter, which reflects the weight of the convolution layer.
We leverage the graph conversion network to extract meta-paths from the

HIN graph. Specifically, in the first graph conversion layer, the adjacency matrix
and weight matrix of different edge types in the HIN graph are convolved. The
classification model generates a meta-path for each layer by computing a new
weight matrix for all edge types in each channel, i.e., M̃Ati

=
∑

β
(i)
ti Ati , where

ti ∈ τet, τet represents the set of edge types, β represents the edge weights,
and β

(i)
ti Ati denotes the weight of edge type ti in the ith transformer layer. To

generate the meta-path-based adjacency matrix, we multiply the output of the
first graph conversion layer i.e., M̃At1

· M̃At2
.

The ith graph conversion layer takes the output of the previous layer and
the original edge type adjacency matrix as input, and the convolution layer in
the second and subsequent graph conversion layers operates similarly to the first
graph conversion layer. Meta-paths refer to paths consisting of different types
of edges, and the adjacency matrix is generated by multiplying the adjacency
matrix of each edge type along the path after convolution. This can be expressed
as

∏s
i=0 M̃Ati

= M̃At1
·M̃At2

· ... ·M̃Ats
. The importance score of each meta-path

is obtained based on the cumulative product of the weights of all edge types
along the path.

The obtained association information, along with the constructed datasets,
is fed into the convolutional neural network to detect account nodes. The model
can be expressed as follows:

h = ||ConV
k=1 α(MDk

(M (s)
Ak

+ I)MF MW)

where || denotes the combinatorial operation, ConV represents the number of
convolution channels, MDk

denotes the degree matrix of the adjacency matrix,
(M (s)

Ak
+ I) denotes the adjacency matrix of the sth channel of the tensor A(s),

MF denotes the feature matrix, and MW represents the trainable weight matrix
shared across channels.

5 Experiments and Results

5.1 Experimental Settings

In this section, we present the details of our experiments and their results. Specif-
ically, we begin by introducing the data source, experimental setup, and evalu-
ation metrics. Next, we describe the baseline models against which we compare
our proposed approach. Following this, we conduct classification using computed
node embeddings under different models and analyze the classification results.

674 C. Xu et al.

Datasets. The data used in this study is obtained from Etherscan1 and Ether-
scam DB2. We randomly select 800 account addresses flagged as illegal and 800
legitimate unique account addresses and extract all relevant features. The dataset
is divided into training, validation, and test sets in a 3:1:1 ratio, respectively.
The model is trained for 300 epochs using a window size of 4 and 2 transformer
layers.

Evaluation Metrics. During the experimental model training, the classifier’s
performance was evaluated using Precision, Recall, F1 Score, and Accuracy met-
rics. These metrics were computed for each training round to classify various
types of nodes. The specific calculation formula is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2 × Pre × Rec

Pre + Rec

Accuracy =
TP + TN

TP + FP + TN + FN

5.2 Classification and Data Visualization

To validate the effectiveness of the proposed model, we evaluated its performance
on a classification task. Specifically, we instantiated real transaction data from
Ethereum and constructed a heterogeneous information network centered around
user accounts. We then employed the AHGTN model to detect illicit accounts by
computing node embeddings. Embeddings are low-dimensional representations
of high-dimensional vectors that preserve semantic relationships between inputs,
allowing for easy visualization of high-dimensional data.

t-SNE (i.e., T-distributed Stochastic Neighbor Embedding), is a non-linear
dimensionality reduction algorithm used to project high-dimensional data into
a low-dimensional space while preserving the original information. It is partic-
ularly useful for visualizing high-dimensional data in two or three dimensions
and identifying clusters within the data. We apply t-SNE to reduce the dimen-
sionality of both the original feature space for and the node embedding space
after classification. By generating two-dimensional and three-dimensional scat-
ter plots, we can observe the proximity of similar instances and the separation
of different instances. This visualization technique allows us to gain insights into
the performance of our classification models.

By comparing the two-dimensional scatter plots in Figs. 3(a) and 3(b), we
observe that the account characteristic data is dispersed before applying the clas-
sification model, and the two-dimensional mapping points of the characteristic
1 http://etherscan.io.
2 http://etherscamdb.info.

http://etherscan.io
http://etherscamdb.info

Illegal Accounts Detection on Ethereum Using HGTN 675

(a) Before detection. (b) After detection.

Fig. 3. Two-dimensional scatter plot.

(a) Before detection. (b) After detection.

Fig. 4. Three-dimensional scatter plot.

data for illegal and legal accounts are relatively close, with no clear differentia-
tion. However, after applying the AHGTN model classification, we observe that
although there are still some overlaps between different types of data points, the
two account types are essentially separated into distinguishable clusters.

The effectiveness of our method can be visually expressed through the com-
parison of the original characteristic information in the three-dimensional scatter
plot representations in Fig. 4(a) and 4(b) With the exception of a few small clus-
ters of legal accounts, it is difficult to distinguish between legal accounts and
illegal accounts based on their original feature information. However, after the
implementation of the classification detection using our method, the overlapping

676 C. Xu et al.

data points in the two-dimensional scatter plot are noticeably shifted to different
positions in the three-dimensional scatter plot, demonstrating the effectiveness
of our approach.

To better demonstrate the classification performance of our model, we present
the classification results in the form of a confusion matrix in Fig. 5.

Fig. 5. Confusion Matrix.

5.3 Comparison

In this section, we conduct a comparative analysis of our proposed approach
against traditional machine learning methods as well as the state-of-the-art
works, using various evaluation metrics such as accuracy, recall, precision, and
F1-score.

Table 1. The Performance Comparison

Method Precision Recall F1 AUC

LR 0.79 0.5 0.59 0.4963

BernoulliNB 0.51 0.47 0.49 0.4749

SVM 0.93 0.51 0.65 0.5095

DT 0.65 0.51 0.52 0.5057

RF 0.62 0.56 0.56 0.5583

XGBoost 0.94 0.94 0.94 0.9375

AHGTN 0.9557 0.9741 0.9631 0.9557

Illegal Accounts Detection on Ethereum Using HGTN 677

Comparison with Machine Learning Methods. In this section, we com-
pared our proposed approach with commonly used machine learning methods,
namely LR, BernoulliNB, SVM, and decision trees. To ensure a fair comparison,
we applied these algorithms to the same dataset and evaluated their performance
based on metrics such as accuracy, recall, precision, and F1-score. The results
are presented in Table 1. Our findings indicate that the classification accuracy
of these machine learning methods is around 50%, with BernoulliNB performing
poorly and SVM achieving the best performance with an accuracy rate of 50.95%
and precision of 93%. However, the false positive rate of traditional machine
learning models is generally unacceptable, and there is still a significant gap
between their evaluation metrics and our proposed AHGTN method.

Comparison with Conventional Detection Tools. We conducted a compar-
ative study of our proposed approach with existing anomaly account detection
tools, including the random forest (RF) detection model proposed by Rahmeh et
al. [18] and the XGBoost classifier detection model proposed by Steven et al. [14].
The classification efficiency results for all models are summarized in Table 1. It
is observed that the RF detection model has an accuracy of only 55.83%, which
is slightly better than other traditional machine learning algorithms, but such
accuracy is still unsatisfactory. In contrast, the XGBoost detection model has
significantly improved accuracy. However, our proposed method performs even
better than the XGBoost model, with Precision, Recall, and F1-score of 95.57%,
97.41%, and 96.31%, and an accuracy rate of 95.57%. This is over 40% higher
than the most efficient algorithm in traditional machine learning, SVM, and
almost 2% higher than XGBoost. The AHGTN model has maintained its best
performance in all four indicators, reaching the highest level among all models.
These results demonstrate that our illegal account detection can achieve bet-
ter results than traditional machine learning algorithms and existing detection
models.

6 Related Work

In the early stages of blockchain anomalous account detection, heuristic clus-
tering algorithms were commonly used. For example, Henderson et al. [17] used
K-means and role extraction (RolX) in 2013 to automatically extract struc-
tural roles from network data and identify accounts with unusual transactions
in the Bitcoin network. Similarly, Meiklejohn et al. [26] used heuristics to clus-
ter addresses in 2016 and identified interconnections between main institutions
using a small number of addresses that were empirically marked.

In recent years, some large-scale data analysis companies and Ethereum block
explorers have released trading account types. Researchers have proposed meth-
ods to extract features based on identified account types, train machine learning
detection models, and classify and predict cryptocurrency accounts. For instance,
Lin [24] et al. incorporated temporal features to identify abnormal account
addresses, and used the LightGBM classifier model to achieve an F1 value of
87%. Kanemura [20] presented a voting-based approach to identify transactions

678 C. Xu et al.

on the dark web, which utilizes the majority vote of labels to determine the labels
of multiple addresses controlled by the same user. They employed a random for-
est classifier to detect dark web transactions. Steven et al. [14] proposed to use
the XGBoost classifier to detect illegal accounts based on Ethereum transaction
history, using 10-fold cross-validation to achieve an average accuracy of 0.963.
Additionally, Rahmeh et al. [18] proposed a machine learning framework using
the decision tree algorithm, random forest algorithm, and KNN algorithm to
detect fraudulent accounts.

7 Conclusion

Nowadays, the development of Ethereum is facing numerous bottlenecks, with
the problem of anonymous crime becoming increasingly prominent. In this paper,
we propose an illegal account detection method based on a heterogeneous graph
transformer network that can efficiently detect illegal accounts on Ethereum.
Specifically, we normalize the accounts and related information on Ethereum
into a heterogeneous network structure, and then employ the graph transformer
network to automatically learn the meta-path to extract high-order features of
the graph. Finally, we input the relationship matrix into the graph convolutional
network to obtain node embedding and achieve the purpose of account classifi-
cation detection. To validate the efficiency of the proposed method, we collected
real data on Ethereum for testing. The experimental results show that the pro-
posed method achieves high accuracy and can be used for the identification of
illegal accounts.

Acknowledgements. This research is supported by the National Key R&D Program
of China under Grant 2021YFB2700500 and Grant 2021YFB2700502.

References

1. Bai, Q., Zhang, C., Liu, N., Chen, X., Xu, Y., Wang, X.: Evolution of transaction
pattern in ethereum: a temporal graph perspective. IEEE Trans. Comput. Soc.
Syst. 9(3), 851–866 (2021)

2. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on
ethereum: identification, analysis, and impact. Futur. Gener. Comput. Syst. 102,
259–277 (2020)

3. Bistarelli, S., Mazzante, G., Micheletti, M., Mostarda, L., Sestili, D., Tiezzi, F.:
Ethereum smart contracts: analysis and statistics of their source code and opcodes.
Internet Things 11, 100198 (2020)

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White Pap. 3(37), 2–1 (2014)

5. Casale-Brunet, S., Ribeca, P., Doyle, P., Mattavelli, M.: Networks of ethereum non-
fungible tokens: a graph-based analysis of the ERC-721 ecosystem. In: 2021 IEEE
International Conference on Blockchain (Blockchain), pp. 188–195. IEEE (2021)

6. Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in
ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1–16
(2020)

Illegal Accounts Detection on Ethereum Using HGTN 679

7. Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J.C.S., Lin, X., Zhang, X.:
Understanding ethereum via graph analysis. ACM Trans. Internet Technol. (TOIT)
20(2), 1–32 (2020)

8. Chen, W., Zhang, T., Chen, Z., Zheng, Z., Lu, Y.: Traveling the token world: a
graph analysis of ethereum ERC20 token ecosystem. In: Proceedings of the Web
Conference 2020, pp. 1411–1421 (2020)

9. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting Ponzi
schemes on ethereum: towards healthier blockchain technology. In: Proceedings of
the 2018 World Wide Web Conference, pp. 1409–1418 (2018)

10. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4, 2292–2303 (2016)

11. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International Conference on World
Wide Web, pp. 213–224 (2013)

12. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues
of bitcoin. IEEE Commun. Surv. Tutor. 20(4), 3416–3452 (2018)

13. Ermakova, T., Fabian, B., Baumann, A., Izmailov, M., Krasnova, H.: Bitcoin:
drivers and impediments. Available at SSRN 3017190 (2017)

14. Farrugia, S., Ellul, J., Azzopardi, G.: Detection of illicit accounts over the ethereum
blockchain. Expert Syst. Appl. 150, 113318 (2020)

15. Gao, B., et al.: Tracking counterfeit cryptocurrency end-to-end. Proc. ACM Meas.
Anal. Comput. Syst. 4(3), 1–28 (2020)

16. Godspower-Akpomiemie, E., Ojah, K.: Money laundering, tax havens and trans-
parency: any role for the board of directors of banks. In: Enhancing Board Effec-
tiveness, pp. 248–266 (2019)

17. Henderson, K., et al.: RolX: structural role extraction & mining in large graphs. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1231–1239 (2012)

18. Ibrahim, R.F., Elian, A.M., Ababneh, M.: Illicit account detection in the ethereum
blockchain using machine learning. In: 2021 International Conference on Informa-
tion Technology (ICIT), pp. 488–493. IEEE (2021)

19. Juels, A., Kosba, A., Shi, E.: The ring of Gyges: investigating the future of crim-
inal smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 283–295 (2016)

20. Kanemura, K., Toyoda, K., Ohtsuki, T.: Identification of darknet markets’ bitcoin
addresses by voting per-address classification results. In: 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pp. 154–158. IEEE (2019)

21. Khan, A.: Graph analysis of the ethereum blockchain data: a survey of datasets,
methods, and future work. In: 2022 IEEE International Conference on Blockchain
(Blockchain), pp. 250–257. IEEE (2022)

22. Liang, J., Li, L., Zeng, D.: Evolutionary dynamics of cryptocurrency transaction
networks: an empirical study. PLoS ONE 13(8), e0202202 (2018)

23. Lin, D., Wu, J., Yuan, Q., Zheng, Z.: Modeling and understanding ethereum trans-
action records via a complex network approach. IEEE Trans. Circuits Syst. II
Express Briefs 67(11), 2737–2741 (2020)

24. Lin, Y.J., Wu, P.W., Hsu, C.H., Tu, I.P., Liao, S.W.: An evaluation of bitcoin
address classification based on transaction history summarization. In: 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310.
IEEE (2019)

25. Makhdoom, I., Abolhasan, M., Abbas, H., Ni, W.: Blockchain’s adoption in IoT:
the challenges, and a way forward. J. Netw. Comput. Appl. 125, 251–279 (2019)

680 C. Xu et al.

26. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, pp. 127–140 (2013)

27. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

28. Sokolowska, A.: How to interact with the ethereum blockchain and cre-
ate a database with python and SQL (2018). https://github.com/validitylabs/
EthereumDB

29. Somin, S., Gordon, G., Altshuler, Y.: Network analysis of ERC20 tokens trading on
ethereum blockchain. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A.,
Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 439–450. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96661-8 45

30. Sun, Y., Han, J.: Mining heterogeneous information networks: principles and
methodologies. Synthesis Lect. Data Min. Knowl. Discov. 3(2), 1–159 (2012)

31. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc. (2015)
32. Torres, C.F., Steichen, M., State, R.: The art of the scam: demystifying honeypots

in ethereum smart contracts. arXiv preprint arXiv:1902.06976 (2019)
33. Yan, C., Zhang, C., Lu, Z., Wang, Z., Liu, Y., Liu, B.: Blockchain abnormal behav-

ior awareness methods: a survey. Cybersecurity 5(1), 5 (2022)
34. Zhang, F., et al.: OAG: toward linking large-scale heterogeneous entity graphs. In:

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2585–2595 (2019)

35. Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and
opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/validitylabs/EthereumDB
https://github.com/validitylabs/EthereumDB
https://doi.org/10.1007/978-3-319-96661-8_45
https://doi.org/10.1007/978-3-319-96661-8_45
http://arxiv.org/abs/1902.06976

System and Network security

DRoT: A Decentralised Root of Trust
for Trusted Networks

Loganathan Parthipan1(B) , Liqun Chen1 , Christopher J. P. Newton1 ,
Yunpeng Li1 , Fei Liu2, and Donghui Wang2

1 University of Surrey, Guildford, UK
{loganathan.parthipan,liqun.chen,c.newton,yunpeng.li}@surrey.ac.uk

2 Huawei Technologies, Shenzhen, China
{liufei19,wangdonghui124}@huawei.com

Abstract. For many years, trusted computing research has focused on
the trustworthiness of single computer platforms. For example, how can
I decide whether I can trust my personal computer (A) or another com-
puter (B), who communicates with A? In reality, both A and B are part
of a computing network, in which there are many other computers, and
these computers’ behaviour affects the trustworthiness of any commu-
nication between A and B. Obviously, the target of trusted computing
is not only to build trusted devices but also trusted networks. Attesta-
tion is a mechanism initially designed to ascertain the trustworthiness of
a single device. To check on the trustworthiness of a network, we need
a network attestation mechanism. The basis of attestation is a root of
trust, and research on building roots of trust for individual devices has
been successful. One of the next challenges, the most important one, is
to create a root of trust for network attestation. In this paper, we intro-
duce our research on designing such a root of trust. This uses devices’
individual roots of trust and a decentralised ledger together with the
techniques of “zero trust but verify”, which means that to start with, any
entity in the system is not trusted until its functionality can be verified.
Based on the verification results, the entities can establish trust. We aim
to use such a root of trust to aggregate the attestation evidence and ver-
ification results from multiple devices in a network and to achieve trust
in the network.

1 Introduction

The inter-connected world brings many benefits, but can also open us up to
attack by malicious actors. These attacks can affect anyone from individuals to
large organisations. One mechanism used to protect systems is remote attesta-
tion. This is often implemented using a challenge-response protocol where the
device being checked is challenged to confirm that they are in a good state. The
device being challenged is the attester while the challenger is referred to as the
relying party. In outline the relying party challenges the attester who returns evi-
dence on the state of the system (attestation results). These results are checked

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 683–701, 2023.
https://doi.org/10.1007/978-981-99-7356-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_40&domain=pdf
http://orcid.org/0000-0002-5059-1449
http://orcid.org/0000-0003-2680-4907
http://orcid.org/0000-0003-1262-2192
http://orcid.org/0000-0003-4798-541X
https://doi.org/10.1007/978-981-99-7356-9_40

684 L. Parthipan et al.

by a verifier who compares them with those expected for a system in a good state
(reference values). The verifier could be the same entity as the relying party.

Underlying this mechanism is a root of trust (RoT) embedded in the attester.
For example, those provided by a Trusted Platform Module (TPM) [25], by a
Trusted Execution Environment (TEE) or, for more constrained devices, by an
implementation of a Device Identifier Composition Engine (DICE) [26]. The RoT
is responsible for measuring the state of the system, securely storing these results
and reporting them when challenged. The RoT measures the hardware and sig-
nificant software components of the device which form the device’s trusted com-
puting base (TCB). These measurements must be stored securely so that they
cannot be tampered with and when they are returned they will be signed using
an attestation key to confirm their provenance. In a network of interconnected
devices, pairwise attestation is not feasible because:

– Attesters can become swamped with multiple attestation requests and for
small constrained devices this would restrict their functionality.

– The relying parties are unlikely to have the necessary attestation results
needed to verify an attester’s response and so online verifiers would be needed.
As the number of attesters and relying-parties increases, the number of avail-
able verifiers will need to increase proportionately to avoid verification becom-
ing a bottleneck. Verifiers themselves will need to be trusted and will need to
securely store the attestation data for other devices to use.

– The current security assumptions that were made for single device attestation
may not be valid. For instance, a verifier is presumed to be beyond the reach
of an adversary. When multiple verifiers are needed, this assumption will need
to be revisited.

In this paper, we propose the concept of a root of trust for networks. We take
the design and use of the Trusted Platform Module (TPM) as an inspiration; this
provides a RoT for measurement, storage and reporting for an individual device.
Our proposed design is for a network root of trust used for measurement, storage
and reporting for the network. The measurement and storage components of our
network root of trust work together to aggregate measurements from individual
devices and store them securely. Once these results are verified they provide
evidence on the state of the devices on the network which can then be used to
decide whether the network (or some local region of it) can be trusted.

In our design, data and execution code (in the form of smart contracts) are
managed by a distributed ledger. This ensures that the system is tamper-proof
and this then forms a decentralised root of trust (DRoT) for the network. In this
paper we do not, except in a cursory way, discuss reporting from the DRoT, this
will form part of our continuing work in this area.

2 Related Work

There are several recent survey papers on remote attestation in networks. Steiner
et al. in [24] provide a useful overview of attestation and the factors that need to

DRoT: A Decentralised Root of Trust for Trusted Networks 685

be considered when assessing a system. Kuang et al. in [19] focus on IoT networks
while Sfyrakis et al. [23] consider more general network structures. Parthipan et
al. in [22] provide a survey of technologies for building trusted networks. In the
following paragraphs, we review more directly relevant work.

Individual Roots of Trust (IRoTs). These are fundamental to our proposal. With
the development of the specifications for the Trusted Platform Module [25] and
their implementation and inclusion in laptops and workstations, these devices
have often had an IRoT available. For other devices GlobalPlatform [13], as part
of their development of standards for trusted digital services, have a specifica-
tion for IRoTs which require devices to have a Trusted Execution Environment
(TEE) or an ‘embedded secure element’. More generally, for devices with less
computing resources there have been many proposals for IRoTs to be used for
attestation [7,12,14] although to be secure most require some adaptation of the
hardware to control memory access and provide a protected memory region.
Generally, mobile phones are capable of supporting software based TPMs pro-
tected by TEEs such as Arm TrustZone [1]. An improvement on this approach is
Chakraborty et al. [8] where they implement a TPM in a Subscriber Identifica-
tion Module (SimTPM). To address the binding of this removable TPM to the
device’s Root of Measurement (RTM) they establish a secure channel between
the SimTPM and the TEE of the device.

Blockchains. Since its introduction the blockchain (distributed ledger) has found
a wide range of applications. Proposals have been made for the use of blockchains
and smart contracts to build applications for the sharing of services and
resources, the implementation of workflows, secure firmware update, . . . and
attestation [9,18,21]. Of particular relevance here is the paper by Jesus [17] who
proposes using blockchain smart contracts to emulate hardware (such as a remote
virtual TPM). This emulated hardware is then used to provide an IRoT, secure
attestation and system management to an IoT device. The use of blockchains
for network attestation will be discussed in the next section.

Network Attestation. There has been increasing interest in network attestation
particularly for IoT devices. In 2015, Asokan et al. [5] proposed an attestation
protocol for self-organising collections of IoT devices (swarms) with the assump-
tion that devices only interact with their direct neighbours. In 2016, Ambrosin et
al. [3] proposed using aggregate signatures to build a network attestation service.
These approaches use static attestation, then in 2018, Conti et al. [10] proposed
an approach for attestation of interconnected IoT devices based upon control flow
attestation, and Ibrahim et al. [15] presented US-AID, an attestation scheme for
dynamic networks that have each device only assess the trustworthiness of its
neighbours. In 2020 [11], Dushku et al. proposed an asynchronous remote attes-
tation method, which allows each service to collect accurate historical data of its
interactions, and transmit asynchronously such historical data to other interact-
ing services. In 2021, Moreau et al. [20] proposed a continuous remote attestation
framework for IoT (CRAFT) which aimed to provide a generic solution suitable
for any IoT network topology and any preexisting remote attestation protocol.

686 L. Parthipan et al.

Although focused on IoT devices, a 2020 paper by Jenkins et al. [16] is rele-
vant to the work presented in this paper. Their distributed attestation network
(DAN) utilises blockchain technology to store and share attestation information.
However, they have not considered storing the verification information on the
blockchain as we do. Another recent paper published in 2022 by Ankergård et
al. [4] uses a permissioned blockchain to provide tamper proof storage of each
IoT device’s attestation results. From time to time, triggered by a randomised
timer, registered IoT devices carry out a self-attestation (the IoT device act as
both prover and verifier) and add their result to the blockchain. This allows each
interacting device to make a trust decision based on these stored results. In this
paper, we do not use self-attestation, but build a decentralised root of trust,
attesters and verifiers store their results on a distributed ledger where they can
be assessed by devices that wish to ascertain the trustworthiness of the network.

3 The Concept of DRoTS

In this section, we present the general concept of a Decentralized Root of Trust
(DRoT), which can be defined through the following definitions.

Definition 1. (An attester.) This is an entity that provides attestation evidence.

Definition 2. (Attestation evidence.) This is information provided by an
attester. It indicates the state of the attester using evidence whose authentic-
ity and integrity can be verified.

Definition 3. (An attestation service.) This is a protocol involving an attester
and a verifier. It allows the attester to generate attestation evidence and to dis-
tribute it to the verifier and further allows the verifier to check the authenticity,
integrity and correctness of this evidence. If the verification result is positive, the
verifier trusts that the attester’s behaviour will be as expected (as this is addressed
by the evidence).

Definition 4. (A root of trust.) In an attestation service, an attester can be
split into multiple components, which are chained together in a way that one
component checks and introduces the next one. In this case, from a verifier’s
point of view, the first component in the chain is the root of trust.

Definition 5. (Attestation evidence of a given network.) This is attestation evi-
dence provided by a set of attesters that form the network and indicating the
states of all these attesters.

Definition 6. (An attestation service for a given network.) This is an attesta-
tion service in which attestation evidence for a given network is generated, stored
and distributed.

Definition 7. (A root of trust for a given network.) In an attestation service
for a given network, each attester has an Individual Root of Trust (IRoT). All
the IRoTs in a given network are combined together form a root of trust for the
network.

DRoT: A Decentralised Root of Trust for Trusted Networks 687

Definition 8. (Decentralised Root of Trust (DRoT).) If the combination of a
set of IRoTs in a given network makes use of a Decentralised Ledger (DL) to
store and distribute attestation evidence from all the IRoTs, this root of trust for
the network is referred to as a Decentralised Root of Trust (DRoT).

The notion of “trust” follows the philosophy of “zero trust but verify”, meaning
that a DRoT is not trusted by a verifier without being verified. In order to let
a verifier trust the DRoT, the verifier needs to continuously verify the DRoT’s
behaviour. If the functions of a DRoT can be continuously verified by a verifier
and if the verification succeeds, the verifier trusts that the behaviour of the DRoT
is as it is expected. A DRoT involves a set of IRoTs and a DL. They also follow the
same philosophy of “zero trust but verify”. The functionalities of each IRoT and
DL can separately and continuously be verified. The trustworthiness of a DRoT is
an aggregation of the trustworthiness of all of the underlying components. In the
remaining part of this section we define a DRoT by describing its components,
algorithms, and protocols.

3.1 DRoT Components

Although there are many players in a network attestation service, such as
attesters, endorsers, verifiers, relying parties, etc., in order to define a DRoT,
we only consider two major types of DRoT components, which are a set of Indi-
vidual Roots of Trust (IRoT) and a Trusted Ledger (TL).

Individual RoT (IRoT): In a given network, an IRoT, embedded in a device,
serves as a root in a chain of trust for establishment of trustworthiness of the
device. To do this, an IRoT has the following functions: (1) A RoT for attestation
evidence measurement. (2) A RoT for attestation evidence storage. (3) A RoT
for attestation evidence report.

Trusted Ledger (TL): A ledger is a player who maintains a database L. If the
function of a ledger and its database L can be continuously verified by other
players and if the verification succeeds, these parties trust that the behaviour of
the ledger is as it is expected. In that case, we say that the ledger is a trusted
ledger (TL). The TL maintains the data integrity property of its database L.
Assume that an adversary is allowed to access (read and write) the data on L,
and any writing action is auditable for verification. We consider the following
two types of attacks: (1) Tampering attack, i.e., the adversary changes, adds or
removes information in L without being audited. (2) Back-dating attack, i.e., the
adversary claims existence of any information that had not previously existed
on L.

Definition 9. (Data integrity of L.) The database L holds data integrity, if for
any Probabilistic Polynomial Time (PPT) adversary A, the probability of making
either a tampering attack or back-dating attack is negligible.

Definition 10. (A trusted ledger (TL).) If the database L maintained by a ledger
holds the data integrity property, we say that the ledger is a trusted ledger (TL).

688 L. Parthipan et al.

In the remaining part of this paper, when there is no confusion, we will use
the simplified term “ledger” to substitute “trusted ledger”.

IRoT Status Control: A TL maintains its database L through time intervals,
each interval is called an epoch. Let I be the space of IRoTs and Iτ ⊂ I be
the set of IRoTs whose keys have appeared in the ledger’s database up to the
start of epoch τ . The secret and public key pair of an IRoT i ∈ I is denoted by
(ski, pki). The ledger maintains information on the status of pki, i ∈ Iτ , for
each epoch τ , and this information is denoted by infoi

τ . We write infoτ for the
set of all these infoi

τ with different i and infoi for the set of all these infoi
τ with

different τ . The management of infoτ depends on how a DRoT is built by using
the underlying cryptographic primitives.

Definition 11. (Key status information infoτ). The key status information
infoτ can be retrieved from the ledger’s database L. It can be used to obtain
the status, statusiτ , of any given key pki, i ∈ I. This status will be statusiτ ∈
{(pki, +), (pki, −), (pki, ⊥)}, where (pki, +) means that pki has been sub-
mitted to the ledger and can be used to provide an attestation report, (pki, −)
means that pki has been submitted to the ledger but is not allowed to be used,
and (pki, ⊥) means that pki has not yet been submitted to the ledger.

3.2 DRoT Algorithms

A DRoT includes three groups of algorithms, DRoT = ((I.keyGen, I.Attest),
(L.Setup, L.Aggregate), (V.VerAttest,V.VerAggregate)). Each group of algo-
rithms is run by one type of player, i.e., an IRoT, a TL, or a verifier.

The first group (I.keyGen, I.Attest) is performed by an IRoT:

– I.keyGen
(
1λ, i

) → (ski, pki): The key generation algorithm takes the system
security parameter λ and an IRoT identifier i ∈ I as input, and outputs a
secret signing and public verification key pair (ski, pki).

– I.Attest(ski, ae) → σi: The attestation algorithm takes the IRoT i’s sign-
ing key ski and a given attestation evidence ae as input, and outputs an
attestation report σi, which is a digital signature on ae under the key ski.

The second group (L.Setup, L.Aggregate) is performed by a TL:

– L.Setup(1λ) → (pp, info0, L): The ledger setup algorithm is run only once
at epoch τ = 0. It takes as input a security parameter λ, outputs the system
parameters pp, which indicate the identifiers of all underlying cryptographic
algorithms used in this attestation service, and sets up the ledger database L
and the information info0 to be empty. pp will be used as input in the I.Attest,
V.VerAttest, L.Aggregate, and V.VerAggregate algorithms. For simplicity,
this is often omitted.

– L.Aggregate(τ, infoτ , L, rd[M]) → (L (updated), infoτ+1): The ledger aggre-
gation algorithm is run in a certain epoch with the index τ . As described
in Algorithm 1, this algorithm allows the ledger to handle a set of received

DRoT: A Decentralised Root of Trust for Trusted Networks 689

data rd[M], where M ∈ N, let rdik denote the data from the IRoT ik ∈ I,
and then rd[M] = {rdi1 , . . . , rdiM }. To handle rdik , the ledger first retrieves
the status, statusikτ , of the corresponding key pkik from infoτ , then verifies if
rdik is valid based on this status. If the verification result is negative, this
data will be rejected, otherwise, the data together with a verification report
created by the ledger will be recorded on the database L and the status of pki

will be updated to statusikτ+1. The algorithm outputs the updated database
L, and new information list infoτ+1 to be used at the next epoch.

The last group (V.VerAttest,V.VerAggregate) is performed by a verifier:

– V.VerAttest(pki, σi, ae) → 0/1: This algorithm takes as input an IRoT i ∈
I’s public verification key pki, an attestation report σi, and an attestation
evidence ae, outputs 0 for “reject” or 1 for “accept”.

– V.VerAggregate(pki, σi, ae, infoi, L) → 0/1: This algorithm takes as input
an IRoT i ∈ I’s public verification key pki, an attestation report σi, an
attestation evidence ae, the corresponding information infoi, and the ledger’s
database L, and outputs 0 for “reject” or 1 for “accept”.

3.3 DRoT Protocols

The communications among the TL, IRoTs and verifiers are arranged in a
sequence of time periods, denoted by epochs, as follows:

1. In epoch τ = 0, the ledger runs the L.Setup algorithm to initiate the system.
2. In epoch τ > 0, a set of IRoTs submit their verification keys and attestation

reports to the ledger. The IRoT’s input is computed by using the algorithms
I.keyGen and I.Attest at any time before the submission. If a time freshness

690 L. Parthipan et al.

check is required, a standard challenge-response protocol or a time-stamping
service can be used. Upon receiving the inputs from the IRoTs, the ledger runs
the L.Aggregate algorithm to verify each received data based on the status
information list infoτ , to record all valid inputs on its database L, and then
to set up infoτ+1 to be the updated infoτ for the next epoch.

3. At any time, to verify an attestation report recorded on the ledger’s database
L, a verifier first retrieves the report along with its corresponding verifica-
tion key and status information from L, and then uses the V.VerAttest and
V.VerAggregate algorithms to verify the report.

Note that how an IRoT submits their signature verification key and attesta-
tion report(s) is dependent on the underlying IRoT in an attestation service. In
this paper, we will discuss one concrete construction by using a Trusted Platform
Module (TPM). It will be presented in Sect. 5.

4 Security Model for DRoTS

The security of DRoT can be captured through two properties: correctness and
unforgeability. Each property is defined as an experiment, which is performed
between an adversary A and a challenger C. Several global variables are used
in the experiment description: h records the honest IRoT, N is the number of
IRoTs who are invoked in the experiment, and K is the number of honest IRoTs
who attempt to add. τCurrent, τadd, τRevoke denotes the current epoch as well as
the epoch in which the honest IRoT adds and is revoked. R is the set of IRoTs
to be revoked. A can access the ledger database L and the system information
infoτ for any epoch τ .

Fig. 1. Correctness experiment for DRoT.

DRoT: A Decentralised Root of Trust for Trusted Networks 691

4.1 Correctness

Correctness of DRoT covers two points: (1) an honest IRoT can be added suc-
cessfully, despite the existence of other malicious users; (2) an attestation report
generated by an honest IRoT should always be valid during the verification (if
the IRoT has not been revoked). Formally, correctness is defined as an exper-
iment in Fig. 1. The adversary A can have access to the following oracles and
their details are shown in Fig. 2:

– AddH(): This oracle allows the adversary to add a single honest IRoT in the
experiment. In each call, it executes the key generation protocol, including
I.keyGen and L.Aggregate, by simulating the honest IRoT and the TL. The
oracle can be called at most k(λ) times where k(·) is any polynomial. Once the
IRoT is added successfully, further call will be ignored. It returns the honest
IRoT’s secret key skh and the corresponding public key pkh.

– AddC(i, pki): This oracle allows the adversary to add a corrupt IRoT i to
the system. The adversary can choose the corrupted IRoT’s secret key ski and
public key pki.

– Revoke(R): This oracle allows the adversary to update the information list
from infoτCurrent

to infoτCurrent+1, by revoking the set of IRoTs R and keeping
the remaining. If h is revoked in this oracle query, set τRevoke to τCurrent.

Definition 12. (Correctness) A DRoT is correct, that is for any PPT adversary
A, the following condition holds:

Pr[ExpCorr
DRoT,A(λ) = 1] = 1 − negl(λ) (1)

Fig. 2. AddH, AddC and Revoke oracles.

692 L. Parthipan et al.

4.2 Unforgeability

Unforgeability of DRoT means that the adversary can corrupt any number of
IRoTs except for one honest IRoT h. The adversary can query attestation reports
from h on any messages at the adversary’s choice, but can not generate a new
report of h. The adversary can generate a valid attestation report σi for a
corrupted IRoT i but this report generation must be recorded in the ledger’s
database L. Formally, unforgeability is defined as an experiment in Fig. 3. In
the experiment, the challenger C maintains two global lists iR and cR, which
are used to store respectively the attestation reports σi before it is submitted to
the ledger and the attestation report σi ∈ L. The adversary A has access to the
following oracles:

Fig. 3. Unforgeability experiment for DRoT.

– AddH(): This oracle is the same as in the correctness experiment, except it
provides the adversary with only the honest IRoT’s public key pkh.

– AddC(i, pki): This oracle is the same as in the correctness experiment.
– Attest(): This oracle allows the adversary to query for the I.Attest output

from the honest IRoT h, and it returns σh, which is recorded in the list iR.
– Aggregate(i, ...): This oracle allows the adversary to query for an attesta-

tion report stored on L for an IRoT i, and it returns the attestation report
σi ∈ L, and σi is recorded in the list cR. Note that the IRoT i can be the
honest one h or a corrupted one i �= h, who was created by the adversary
via the AddC(i, pki) oracle. If i = h, the input σh can be the output of a
L.Aggregate oracle query, and otherwise, σi is generated by the adversary.

– Revoke(R): This oracle is the same as it in the correctness experiment.

Definition 13. Unforgeability. A DRoT is unforgeable, if for any PPT adver-
sary A, the following condition holds:

SuccUnforge
DRoT,A (1λ) = Pr

[
ExpUnforge

DRoT,A (1λ) = 1
]

≤ negl(λ) (2)

DRoT: A Decentralised Root of Trust for Trusted Networks 693

5 A Concrete Construction of a DRoT

As described in Sect. 3.1, the DRoT is defined with a set of Individual Roots of
Trust (IRoT), and a Trusted Ledger (TL). The TL maintains a database L that
needs to be verified. This requires verifiers that can verify attestation claims of
IRoTs. In our construction, we consider verifiers to themselves be IRoTs which
have the function of attestation verification included in their TCB. Thus, these
verifiers can attest to themselves and this can be verified by other verifiers. Now
we look at each of the components in detail.

IRoT. We presume the IRoT to be a TCB that contains a TPM as a Root of
Trust and a software stack attested by the TPM. The TPM provides services
for measurement, storage, and reporting of attestation evidence. The software
stack resident in the IRoT mediates between the TPM and the TL. The software
includes IRoT-keygen, IRoT-attest and IRoT-dispatch. The trustworthiness of
this software is guaranteed by the IRoT’s attestation service.

– IRoT-keygen generates TPM’s keys and system security parameters. Each
legitimate TPM has an Endorsement Key (EK), which is used to authenticate
the TPM. A TPM generates a secret signing key and its corresponding public
verification key to be used in the attestation service. This key pair is called
the Attestation Identity Key (AIK). In the TPM key hierarchy, the AIK is a
child of the EK. In our construction, we store the public part of the AIK in
the TL as the IRoT’s identifier.

– IRoT-attest periodically creates an attestation report. It reads the eventlog
and obtains a quote from TPM.

– IRoT-dispatch sends an attestation report σ to the TL via the TL-gateway.

TL. Contains a Decentralised Ledger (DL) to guarantee the integrity of data
written to it. However, storing data in DL requires participants in the DL consen-
sus to access this data and the running-cost of such a DRoT will be proportional
to the size of the data. We store the data in a Content Addressable Storage
(CAS) and store the Content ID (CID) in the DL. This allows the consensus
on the CID rather than the complete data. However, this requires a trusted
verification of the CAS data of the CID.

As described in Sect. 3, a TL guarantees the integrity of data written to it.
It implements TL-setup, TL-aggregate and TL-get algorithms.

– TL-setup initialises the DL and CAS and sets up gateways for IRoTs and
verifiers to access them. It deploys TL-aggregate and TL-get smart-contracts
into the DL storage.

– TL-aggregate is a smart-contract deployed by TL-setup and realises the
L.Aggregate defined in Sect. 3.

– TL-get is a smart-contract deployed by TL-setup and used by V-retrieve to
access data held as CIDs in the DL.

694 L. Parthipan et al.

Verifier. A verifier is an IRoT with additional software components in its TCB
called V-retrieve and V-verify. As an IRoT, Verifier is also capable of sending its
own attestation reports to the TL.

– V-retrieve retrieves an attestation report σ of an IRoT and relevant informa-
tion info from the TL. To do this it retrieves the CID of the information from
the TL-get and the corresponding data from the CAS via the TL-gateway
using IRoT-cas.

– V-verify Produces an attestation result from the data retrieved by V-retrieve.
– V-dispatch is a specialised IRoT-dispatch that sends verification result to the

TL via the TL-gateway.

6 Security Analysis

Following the security model of a DRoT in Sect. 4, we now show that the con-
struction of DRoTs described in Sect. 5 holds the properties of correctness and
unforgeability.

Theorem 1. (Correctness of DRoT construction) The DRoT scheme has the
correctness property (Definition 12) assuming the correctness of the underly-
ing IRoT scheme ATTEST, which is used as the attestation scheme ATTEST =
(I.keyGen, I.Attest, V.V erAttest), and also assuming that the ledger follows
the DRoT scheme description correctly.

Proof. Based on the correctness experiment, the adversary only wins the game
in any of the following three cases: (1) The key generation process (via AddH)
fails to let the honest IRoT h register (i.e., K = k(λ) and τRevoke = ∞ and
τAdd = ∞); (2) The registered and unrevoked IRoT h is regarded to be invalid
(i.e., τAdd < τ < τRevoke and statushτ �= (pk,+)); (3) The produced attesta-
tion report (either the IRoT attestation report σ or the attestation report
released on the ledger fails to verify (i.e., V.VerAttest(pkh, σh, m) = 0 or
V.VerAggregate

(
pkh, σh, infoi, L, m

)
= 0).

Case 1 can happen if A can predict the honest IRoT’s attestation key skh and
successfully registered with the same verification key pkh in a previous session
(via AddC(i)). In AddH, the key generation protocol is executed between the
honest IRoT h and the ledger, so skh must be selected at random, and the
probability of A picking the same attestation key, i.e., ski = skh in AddC
is negligible in the security parameter. Except this, the only possibility is that
skh �= ski but pkh = pki. This means that the key generation algorithm I.keyGen
in ATTEST does not hold the key collision resistance, which contradicts the
assumption of the correctness of ATTEST. Therefore, the probability of this case
happening is negligible.

Case 2 only happens if there is another IRoT i created by A (via AddC(i))
with ski = skh and this user i is revoked when h is valid (registered but not
revoked). If the user i registered via AddC before the user h, this is discussed
in Case 1 and the probability is negligible. If the adversary attempts to add i

DRoT: A Decentralised Root of Trust for Trusted Networks 695

with ski = skh (the adversary can get skh when calling AddH therefore does
not need to guess) via AddC after the user h, it will be detected by the ledger.
Then the adversary’s attempt will always fail.

In Case 3, the condition statushτ = (pkh, +) indicates that in the epoch
τ , h has been registered and not revoked. The verification of σi should always
pass, since otherwise, it contradicts the correctness of ATTEST. According to the
description of the DRoT scheme, in the epoch τ , σi can be verified. Therefore
the probability of Case 3 happening is also negligible.

Overall, the DRoT scheme holds the correctness property.

Theorem 2. The DRoT scheme is unforgeable if the underlying IRoT scheme
ATTEST used as the individual RoT’s attestation scheme ATTEST = (I.keyGen,
I.Attest, V.V erAttest) is unforgeable and also if the underlying distributed ledger
holds the data integrity.

Proof. The adversary wins the unforgeability experiment in any one of the two
scenarios: (1) The adversary creates (pkh, σh, mh, infoh, Lh) for an honest
IRoT h, in which σh and Lh are respectively a valid attestation report and the
corresponding released attestation report of m at the epoch τ on the ledger
when statushτ = (pkh, +). (2) The adversary creates (pki, σi, mi, infoi, Li) for
a corrupted user i, who is controlled by the adversary, without getting successful
assistance from the ledger.

The proof for unforgeability is as follows. In Scenario (1), pkh is chosen inde-
pendently of skh (or any sk chosen by the adversary), so intuitively the adversary
cannot attribute an attestation report that is not generated by querying Attest
and Aggregate to h. The adversary outputs (pkh, σh, mh, infoh, Lh) and there
are some cases, which meet the following conditions:

– V.VerAttest(pkh, σh, mh) = 1∧V.VerAggregate(pkh, σh, mh, infoh, Lh) = 1.
– (σh, mh) /∈ iS ∨ (Lh, mh) /∈ cS.

1. iσh /∈ iS but σh ∈ cS. In this case, the adversary creates an attestation report
σh without a successful Attest query, meaning that either the query has
never been made or the query has been rejected because statushτ �= (pkh, +).
The adversary then generates the complete attestation report σh by calling
the Aggregate query. If this case happens, the adversary has managed to
forge σh and it contradicts the assumption that the underlying IRoT scheme
ATTEST is unforgeable, therefore the probability of this case happening is
negligible.

2. σh ∈ iS but Lh /∈ cS. This means that the adversary obtains σh by calling
the Attest query, but then creates Lh without from a successful Aggregate
query, meaning that either the query has never been made or the query has
been rejected since statushτ �= (pkh, +). The data integrity of the distributed
ledger guarantees that any valid data records in the ledger can only be added
via the Trusted Ledger and cannot be tampered with by any unauthorized
entity. If this case happens, the adversary has managed to break the data
integrity of the ledger. It contradicts the assumption that the underlying

696 L. Parthipan et al.

distributed ledger holds data integrity. Therefore, the probability of this case
happening is also negligible.

3. σh /∈ iS and Lh /∈ cS. This case is a combination of the previous two cases.
Following the discussion before, the probability of this case happening is also
negligible.

In Scenario (2) i �= h, the adversary outputs (pki, σi, mi, infoi, Li) and
there are some cases, which meet the following conditions:

– V.VerAttest(pki, σi, mi) = 1∧
V.VerAggregate(pki, σi, mi, infoi, Li) = 1.

– (Li, mi) /∈ cS.

1. statusiτ = (pki, +). In this case, the adversary has registered (i, pki) via the
AddC query, and since then pki has not been revoked.

2. statusiτ = (pki, −). In this case, the adversary has registered (i, pki) via the
AddC query but this key has been revoked.

3. statusiτ = (pki, ⊥). In this case, the adversary has not registered (i, pki) via
the AddC query.

In any of these cases, the adversary controls the IRoT i and its secret signing
key ski, so the adversary can generate a valid attestation report σi to meet the
requirement V.VerAttest(pki, σi, mi) = 1. In order to obtain Li to meet the
requirement:
V.VerAggregate(pki, σi, mi, infoi, Li) = 1, in Case 1, the adversary can
make an Aggregate query, but it will end with a record (Lh, mh) ∈ cS that
will make the game fails. In the other two cases, if the adversary makes the
Aggregate query to i, it will be rejected because statusiτ �= (pki, +). Follow-
ing this reasoning, the result of this scenario is similar to Case 2 of Scenario
(1), σh ∈ iS ∧ Lh /∈ cS. If scenario (2) happens, the adversary has managed to
break the data integrity of the distributed ledger. Because this contradicts the
assumption that the ledger holds the data integrity, so the probability of this
scenario happening is negligible.

Overall, the DRoT scheme provides unforgeability.

7 Implementation

A prototype of the construction described in Sect. 5 was implemented
(Appendix A). The data written to the CAS was uniquely represented by a
content identifier (CID) and anchored to the DL. Writes were timed (Fig. 4) and
the results showed that they are dominated by writing to the CAS while the DL
write cost was constant. In practice, a service-provider can run their own IPFS
nodes to enable them to manage this data efficiently while delegating the trust
anchor to the public blockchain.

The prototype also explored bootstrapping of IRoTs with software TPMs,
periodically writing attestation data to the DRoT and the subsequent verification

DRoT: A Decentralised Root of Trust for Trusted Networks 697

by Verifier IRoTs. We used one of possible attestation triggers where the IRoT
initiates data submission. We appreciate that multiple emulation layers will mask
issues in actual systems and further validations are required with real hardware
and sizeable DL and CAS clusters.

Fig. 4. Writes to the Trusted Ledger.

8 Conclusions

We have described a DRoT for networks. A distributed ledger is used to provide
tamper proof storage for the attestation evidence for individual devices on the
network together with the attestation results from verifiers. In the work so far,
individual devices are assumed to have their own individual TCBs and to be
able to provide their attestation evidence when required. Verifiers then assess
these and record the results on the ledger. To minimise the data stored directly
in the ledger the system uses Content Addressable Storage (CAS) for most of
the data; it is the content identifier from the CAS that attestation results are
linked to in the ledger, thus anchoring the attestation results and evidence into
the ledger. To show the viability of this approach we have implemented it using
docker containers – these make it easy for the system to be tested and explored
by other interested researchers.

Although our current design mandates that only entities with TCBs can
provide data to the DRoT, it does not preclude adding an aggregator of non-
TCB devices, as long as that aggregator can prove its trustworthiness. At the
other end of the spectrum, our design allows Trusted Execution Environments
(TEE) to be used to provide an additional layer of security and an implementer
could, for instance, mandate that verifiers should run in a TEE enclave.

We have not considered reporting in this work. Once the information is stored
on the ledger it is available for users of the network to make their own assessment
about the trustworthiness of the network. Mechanisms for doing this will form
the basis for our future work in this area. Another area for investigation is the
monitoring of traffic on the network and looking for anomalies. The results of
these assessments could also be added to the ledger to provide extra evidence
about the state of the network.

698 L. Parthipan et al.

A Implementation Overview

Fig. 5. Docker components of the test implementation.

The component TL-setup is realised with a CAS gateway (an IPFS [6] node)
that connects the Device Attesters (IRoTs) and Verifiers to an IPFS cluster;
a DL gateway that is a substrate [2] blockchain node connected to the device
networks; and a Contract manager that manages contracts with the DL and
provides contract addresses and contract interface descriptions to the device
attester and verifier. The runtime layout is illustrated in Fig. 5.

Components TL-aggregate and TL-get are realised with a substrate smart-
contract named att_root compiled to WebAssembly (WASM). In the prototype,
the contract exposes interfaces to write the attestation evidence and claims, and
to read them. The contract stores only CID of the data in the DL, along with the
hostid of the device attester, and the Nonce value for that particular attestation.
The attestation data is stored in the CAS addressable by the CID. The hostid
and nonce on the DL confirms the integrity of the data on the untrusted CAS.

Each IRoT is realised by a Device Attester container. The execution directo-
ries within the Device Attester container image is treated as the device’s Trusted
Computing Base (TCB) and an initialisation of Root of Trust for Measurement
(RTM) was realised by measuring the contents of the execution directories and
storing the hashes in an eventlog and the final hash value in the TPM by extend-
ing a PCR. This eventlog and the TPM quote of the respective PCRs then make
up the attestation evidence and be verified by the verifier. The Device Aattester
uses a software TPM2 and TPM Access Broker and Resource Manager. This
software is built as part of the TPM2 toolbox simulator. In addition, the Device
Attester uses two python utilities named tpm-talk and dl-talk commands to
interact with the TPM and DL respectively.

A Verifier is realised by a Verifier container in the implementation. The
verifier is a kind of an IRoT with the added functionality of being able to verify
attestation evidence. Thus, it contains the same software TPM stack as the
device attester. The verifier implements V-retrieve and V-dispatch with dl-
talk to retrieve attestation evidence from and return the result to the TL. It
implements V-verify with tpm-talk to perform verification of the attestation
quote.

DRoT: A Decentralised Root of Trust for Trusted Networks 699

Fig. 6. Attestation using a DRoT.

Figure 6 describes interactions between the components in the prototype sys-
tem during a typical execution.

References

1. TrustZone for Cortex-M. https://www.arm.com/technologies/trustzone-for-
cortex-m. Accessed June 2023

2. Substrate Blockchain. https://github.com/paritytech/substrate. Accessed Nov
2022

3. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security, pp. 731–
742 (2016)

4. Ankergård, S.F.J.J., Dushku, E., Dragoni, N.: PERMANENT: publicly verifiable
remote attestation for internet of things through blockchain. In: Aïmeur, E., Lau-
rent, M., Yaich, R., Dupont, B., Garcia-Alfaro, J. (eds.) FPS 2021. LNCS, vol.
13291, pp. 218–234. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08147-7_15

https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://github.com/paritytech/substrate
https://doi.org/10.1007/978-3-031-08147-7_15
https://doi.org/10.1007/978-3-031-08147-7_15

700 L. Parthipan et al.

5. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 964–975 (2015)

6. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561 (2014)

7. Carpent, X., Rattanavipanon, N., Tsudik, G.: Remote attestation via self-
measurement. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(1), 1–15
(2018)

8. Chakraborty, D., Hanzlik, L., Bugiel, S.: simTPM: user-centric TPM for mobile
devices. In: Proceedings of the 28th USENIX Security Symposium (2019)

9. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4, 2292–2303 (2016)

10. Conti, M., Dushku, E., Mancini, L.V.: Distributed services attestation in IoT. In:
Samarati, P., Ray, I., Ray, I. (eds.) From Database to Cyber Security. LNCS, vol.
11170, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
04834-1_14

11. Dushku, E., Rabbani, M.M., Conti, M., Mancini, L.V., Ranise, S.: SARA: secure
asynchronous remote attestation for IoT systems. IEEE Trans. Inf. Forensics Secur.
15, 3123–3136 (2020)

12. Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: Smart: secure and minimal
architecture for (establishing dynamic) root of trust. In: NDSS, vol. 12, pp. 1–15
(2012)

13. GlobalPlatform Technology Root of Trust Definitions and Requirements Version
1.1.1 (2022). https://globalplatform.org/specs-library/root-of-trust-definitions-
and-requirements-v1-1-gp-req_025/

14. Hristozov, S., Heyszl, J., Wagner, S., Sigl, G.: Practical runtime attestation for tiny
IoT devices. In: NDSS Workshop on Decentralized IoT Security and Standards
(DISS), vol. 18 (2018)

15. Ibrahim, A., Sadeghi, A.R., Tsudik, G.: US-AID: unattended scalable attestation of
IoT devices. In: IEEE 37th Symposium on Reliable Distributed Systems (SRDS),
pp. 21–30. IEEE (2018)

16. Jenkins, I.R., Smith, S.W.: Distributed IoT attestation via blockchain. In: 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID), pp. 798–801. IEEE (2020)

17. Jesus, V.: Blockchain-enhanced roots-of-trust. In: International Conference on
Smart Communications and Networking (SmartNets), pp. 1–7. IEEE (2018)

18. Kouzinopoulos, C.S., et al.: Using blockchains to strengthen the security of internet
of things. In: Gelenbe, E., et al. (eds.) Euro-CYBERSEC 2018. CCIS, vol. 821, pp.
90–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95189-8_9

19. Kuang, B., Fu, A., Susilo, W., Yu, S., Gao, Y.: A survey of remote attestation in
internet of things: attacks, countermeasures, and prospects. Comput. Secur. 112,
102498 (2022)

20. Moreau, L., Conchon, E., Sauveron, D.: Craft: a continuous remote attestation
framework for IoT. IEEE Access 9, 46430–46447 (2021)

21. Park, J., Kim, K.: TM-Coin: trustworthy management of TCB measurements in
IoT. In: IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops), pp. 654–659. IEEE (2017)

22. Parthipan, L., et al.: A survey of technologies for building trusted networks. In:
IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2021)

http://arxiv.org/abs/1407.3561
https://doi.org/10.1007/978-3-030-04834-1_14
https://doi.org/10.1007/978-3-030-04834-1_14
https://globalplatform.org/specs-library/root-of-trust-definitions-and-requirements-v1-1-gp-req_025/
https://globalplatform.org/specs-library/root-of-trust-definitions-and-requirements-v1-1-gp-req_025/
https://doi.org/10.1007/978-3-319-95189-8_9

DRoT: A Decentralised Root of Trust for Trusted Networks 701

23. Sfyrakis, I., Gross, T.: A survey on hardware approaches for remote attestation in
network infrastructures. arXiv preprint arXiv:2005.12453 (2020)

24. Steiner, R.V., Lupu, E.: Attestation in wireless sensor networks: a survey. ACM
Comput. Surv. (CSUR) 49(3), 1–31 (2016)

25. Trusted Platform Module (2008). https://trustedcomputinggroup.org/
26. DICE attestation architecture (2021). https://trustedcomputinggroup.org/

http://arxiv.org/abs/2005.12453
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/

Finding Missing Security Operation Bugs
via Program Slicing and Differential

Check

Yeqi Fu, Yongzhi Liu, Qian Zhang, Zhou Yang, Xiarun Chen, Chenglin Xie,
and Weiping Wen(B)

School of Software and Microelctronics, Peking University, Beijing, China
{fuyq,zhangqian0827}@stu.pku.edu.cn,

{lyz cs,yzss2019,xiar c,cony1996,weipingwen}@pku.edu.cn

Abstract. The detection of missing security operations is a complex
task in software engineering, mainly due to the semantic and contex-
tual understanding required. Prior research efforts have employed similar
path differential analysis to detect missing security operations, but these
approaches have been limited in their ability to simultaneously com-
pare the similarity of intra- and inter-procedural paths. To address this
limitation, this paper proposes a novel approach called SSD that can
detect multiple missing security operation bugs both intra- and inter-
procedurally. Our approach collects slices with similar semantics and
contexts based on four program slicing criteria, providing more versatile
construction of similar slices and more comprehensive detection than pre-
vious works. In our experiments, we have identified 65 real bugs in the
Linux kernel, of which we have verified 27 as fixed bugs and submitted
the remaining 38 for patching. The Linux maintainers have accepted 19
of these patches, confirming the effectiveness and availability of SSD.

Keywords: Bug detection · Program slicing · Security operation

1 Introduction

Large-scale software systems commonly employ a variety of security mechanisms
to ensure system safety, which include security operations such as security checks,
reference counting, resource release, and lock mechanisms. Despite the implemen-
tation of these security mechanisms, software vulnerabilities may still emerge if
essential security operations are absent. This issue frequently arises in large-scale
programs, leading to severe consequences. In fact, missing security operations
account for 61% of the vulnerabilities reported in the National Vulnerability
Database (NVD) [18]. To gain a deeper understanding of the impact of missing
security operations, we conducted an analysis of the Linux kernel, investigat-
ing vulnerabilities and their associated security implications resulting from the
absence of security operations, as reported in the CVEDetails database [1]. Our
findings reveal that these vulnerabilities can lead to significant security threats,
including but not limited to information leakage, overflow, privilege bypass, code
execution, and memory corruption, as detailed in Table 1.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 702–718, 2023.
https://doi.org/10.1007/978-981-99-7356-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_41&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_41

Finding Missing Security Operation Bugs via Program Slicing 703

Table 1. Proportion of security implications arising from missing security operations

Info Leak Overflow Priv Bypass Code Exec Mem Corrupt Dos

12.1% 16.6% 10.2% 3.8% 4.5% 51.0%

Detecting missing security operation bugs is crucial, given their potential for
causing severe consequences; however, it is a challenging task. Firstly, (1) the
identification of security operations necessitates a semantic understanding of the
code. For instance, not all if statements are security checks, as their conditions
may not directly relate to security concerns. Secondly, detecting missing security
operations often demands intricate checking rules and precise data flow analyzes
to discern the context and semantics of security operations. Although researchers
have proposed various methods, such as constructing similar code slices and
employing cross-checking or differential checking [2,7,11,19], these approaches
have limitations, particularly regarding their slice construction methods, which
may not be sufficiently general and comprehensive. Consequently, (2) construct-
ing general and comprehensive similar code slices to detect missing security
operation bugs remains a significant challenge.

To address these challenges, we propose four program slice criteria aimed at
optimizing the construction of similar slices. Specifically, we introduce SSD (pro-
gram Slice-based missing Security operation Detector), a framework designed to
effectively detect missing security operation bugs in operating system kernels.
This is achieved by constructing both inter- and intra-procedural similar slices,
which offer enhanced comprehensiveness and generality. Furthermore, we assess
whether each slice exhibits a missing security operation bug by comparing the
differences between slices. Utilizing SSD, we identified 65 missing security oper-
ation bugs within the Linux kernel, as detailed in Table 6. Many of these bugs
were reported to the Linux community maintainers, and the majority have been
fixed.

2 Background and Related Work

2.1 Missing Security Operation Bug

When properly implemented, security operations can enhance the efficiency and
safety of large software systems. However, missing security operation bugs are
particularly common in low-level languages, as they lack a generic resource
and error-handling pattern for capturing and handling errors. For instance, C
employs outdated security mechanisms like integer error codes, which complicate
resource cleanup, particularly when a program requires multiple resources and
must release previously allocated resources in case of allocation failure. As illus-
trated by a Linux memory leak bug discovered by SSD in Fig. 1, lines 11 and 17
of the code do not free the dynamic resource before returning the error code. The
fix involves adding a release operation, similar to line 20 (in the normal execution

704 Y. Fu et al.

path), to the error handling path. Figure 2 presents a null pointer dereference
bug. Line 10 erroneously assumes the success of the netvsc devinfo get func-
tion and does not check its return value, leading to the use of uncertain dev info,
which may result in a denial-of-service.

1. static ssize_t dp_dsc_clock_en_read(...) {
2. ...
3. rd_buf = kcalloc(rd_buf_size, sizeof(char), GFP_KERNEL);
4. if (!rd_buf)
5. return -ENOMEM;
6. for (i = 0; i < MAX_PIPES; i++) {
7. pipe_ctx = &aconnector->dc_link->dc->current_state->res_ctx.pipe_ctx[i];
8. ...
9. }
10. if (!pipe_ctx)
11. return -ENXIO;
12. ...
13. while (size) {
14. ...
15. r = put_user(*(rd_buf + result), buf);
16. if (r)
17. return r;
18. ...
19. }
20. kfree(rd_buf);
21. return result;
22. }

1
2

3
4

5

missing
kfree

missing
kfree

2

4

Fig. 1. A new memory leak bug detected by SSD in Linux kernel

2.2 Program Slicing

Program slicing, a widely used program analysis technique, was first introduced
by Mark Weiser in 1979 [17]. It aims to reduce program analysis complexity by
eliminating irrelevant statements, enabling analysts to concentrate on specific
program subcomponents or extract relevant statements for a given computation.
Program slicing has proven effective for debugging, testing, and maintaining
software systems.

There are various types of program slicing, including static, dynamic, for-
ward, and backward slicing. Static slicing is conducted on the source code of
program without execution, while dynamic slicing occurs during program exe-
cution. Forward slicing begins at a specific point in the program and examines
dependent statements, whereas backward slicing starts from a program output
and analyzes the statements that influence it. Each slicing type has its own
strengths and limitations, with the choice of technique depending on the analy-
sis goals.

2.3 Related Work

Missing Security Operation Detection. The work most closely related to
SSD focuses on missing security operation detection. Crix [11] and LRSan [16]
detect missing security check bugs, which are a subclass of missing security
operations. SCSlicer [8] improves on Crix for call and return instructions to

Finding Missing Security Operation Bugs via Program Slicing 705

1. static int netvsc_set_channels(...) {
2. ...
3. device_info = netvsc_devinfo_get(nvdev);
4. if (!device_info)
5. return -ENOMEM;
6. ...
7. }
8. static int netvsc_suspend(...) {
9. ...
10. ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
11. ret = netvsc_detach(net, nvdev);
12. ...
13.}
14.static struct netvsc_device_info *netvsc_devinfo_get(...) {
15. struct netvsc_device_info *dev_info;
16. dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
17. if (!dev_info)
18. return NULL;
19. ...
20. return dev_info;
21.}

null ptr
dereference

1

3

4

3

2

Fig. 2. A new null pointer dereference bug detected by SSD in Linux kernel

detect missing check bugs. IPPO [7] identifies paths of intra-procedural objects
with similar semantics to detect missing security operation bugs. FICS [2]
uses machine learning to model code slicing for detecting code inconsistency.
APISan [19] introduces an API misuse detection method that considers seman-
tic constraints, but suffers from high time costs and inaccurate semantic rep-
resentation. Although the related works have made significant contributions to
detecting missing security operations, their limitations are mainly due to the
lack of general and comprehensive slicing rules, which result in less effective
slices and restricted detection of various missing security operation bug types.

Differential Analysis in OS Kernels. Differential analysis of similar paths
can detect semantic bugs in OS kernels. Juxta [13] proposes a static anal-
ysis detection method for missing security check bugs in Linux file sys-
tems, APISan [19] uses semantic constraints to detect API abuse bugs, and
EEcatch [14] proposes a context-aware detection method for overactive error
handling. Hector [15] and RID [12] analyze inconsistent intra-procedural resource
release and reference counting operations, IPPO [7] analyzes multiple intra-
procedural security operation bugs, while Pex [20] and Crix [11] identify missing
checks in inter-procedural paths or slices. Additionally, Juxta, Crix, APISan,
Engler [6] and EECatch employ cross-checking to infer bugs, while IPPO uses
pairwise differential checking for bug detection.

3 SSD: Program Slice-Based Missing Security Operation
Detector

3.1 Motivating Example

This section demonstrates the approach of SSD in detecting missing security
operations in target programs. The first step of our approach involves identifying

706 Y. Fu et al.

security operations, which is a challenging task that necessitates a comprehensive
understanding of the semantics and contexts of the program. To illustrate our
approach, we employ two real bugs detected by SSD as examples. In Fig. 1, SSD
identifies line 4 as a security check since it creates two branches: one for normal
execution and the other for error handling. Accordingly, lines 10 and 16 are also
considered security checks, while line 13 is not, as both branches are normal
paths. Consequently, we identify line 17 as a security check in Fig. 2.

Another significant challenge is constructing comprehensive similar slices for
the detection of missing security operation bugs. To illustrate the process of
constructing similar semantic slices and detecting bugs, we use the two afore-
mentioned bugs as examples.

First, we extract critical variables from security operations and perform for-
ward and backward program slicing on them. Critical variable rd buf is extracted
from the security check in line 4 in Fig. 1, while dev info is extracted from the
security check in line 17 in Fig. 2.

Next, we establish a series of criteria for constructing slices with similar con-
texts and compare the differences between them. Given that security operations
are expected to be used consistently in slices with similar contexts, this enables
us to identify inconsistencies that may indicate the presence of missing bugs. In
Fig. 1, SSD identifies lines 10–11 and 10–21 as a pair of similar paths for the
critical variable rd buf since they share the same start and merge points. How-
ever, the pair of similar paths exhibit inconsistencies in their security operations.
While lines 10–21 have a release operation, lines 10–11 do not, indicating the
presence of a missing operation bug in lines 10–11. For Fig. 2, SSD identifies
paths 3–5 and 10–11 as similar paths, as the return values of the function calls
in lines 3 and 10 are both the critical variable dev info. Lines 3–5 have a secu-
rity check, while lines 10–11 do not, indicating that lines 10–11 miss a check,
which could lead to a null pointer dereference if allocation fails. In Sect. 3.4, we
defined four criteria for constructing similar slices for security operation. The
slice in Fig. 1 was constructed using Criterion 1, while the slice in Fig. 2 was
constructed using Criterion 2.

3.2 System Overview

The overall architecture of the SSD system is illustrated in Fig. 3. At a high level
of abstraction, the SSD workflow consists of three distinct phases:

(1) Preprocessing phase. SSD generates a global call graph and constructs
control-flow graphs, which are essential for data-flow analysis and slice con-
struction. SSD also unrolls loops and analyzes pointers.

(2) Analysis phase. SSD identifies security operations and constructs peer slices.
Security operations are primarily classified into security checks and paired
operations, and the identification of critical variables involves extracting
the parameters or return value of security operations. Subsequently, SSD
analyzes the source and use of the critical variables and constructs similar
semantic slices based on the four criteria, which are called peer slices.

Finding Missing Security Operation Bugs via Program Slicing 707

(3) Postprocessing phase. The objective of this phase is to check the peer slices
obtained from the analysis phase to detect potential missing bugs. Differ-
ential checking is utilized at this stage, which involves comparing slices
that share similar contexts and selecting slices that lack security operations
present in the majority of the others as potentially missing operation slices.

Fig. 3. The architecture of SSD

3.3 Security Operation Identification

The purpose of identifying security operations is to enable program slicing
around them, with program slicing relying on critical variables within these oper-
ations. We investigated a set of real security operations by examining reports
and fixes from Linux maintainers and further collected 440 security operations
manually from the source code of multiple modules of the Linux kernel. Based on
the intrinsic features of security operations, we have summarized the following
methods for identifying two widely-used security operations, including security
checks and paired operations (reference count increase/decrease, resource allo-
cation/release, lock/unlock).

Security Check. We examined 60 security checks gathered from the git patch
history of the Linux kernel. Our findings indicate that security checks can be
implemented as conditional statements [10], such as if and switch. Additionally,
security checks can be encapsulated into functions that involve variable checks.

We discovered that current methods [5,8,10] are unable to identify a security
check when it is encapsulated within a function. To address this issue, SSD
proposes a new method for identifying such security checks. If a function returns
an error code or other specific value to the parent function as a condition for a
branch statement, SSD considers it as a security check function. Therefore, SSD
specifies the error handling involved in such scenarios, restricting it to error-
handling functions that directly stop execution [10]. A security check function
recognized by SSD requires satisfying the following three properties:

708 Y. Fu et al.

(1) The number of function parameters is greater than or equal to one.
(2) The function body contains a security check conditional statement, and the

error-handling function, which is called by the check failure branch, can stop
execution or its return type of parent function is void.

(3) The checked variables of the security check condition statement are derived
from the function parameters.

Paired Operation. We primarily adopt the detection idea of IPPO [7] to
identify reference counting, resource allocation/release, and lock/unlock. IPPO
uses natural and programmatic semantic analysis to obtain paired operations.
For reference counting operations, we manually collected 21 widely used refcount
APIs. For resource operations, we further require that the names of resource
functions contain keywords such as “free” or “release” to improve identification
accuracy. For lock operations, in addition to containing the keywords “lock” and
“unlock”, we require that the return value of the unlock function be of type void
and have the same parameters as the lock function.

SSD extracts critical variables, including check variables, refcount variables,
resource variables, and lock variables, from operations. For security check con-
ditional statements, critical variables are obtained from if statements, and other
variables are directly collected from function arguments or return values. SSD
collects the source and use of these critical variables to check differences between
slices and perform data flow analysis. To achieve this, SSD builds on the for-
ward and backward analysis method of Crix [11]. However, Crix misses certain
load data operations, such as the LoadInst instruction, which may perform alias
passing when identifying sources. Additionally, Crix misses certain unary opera-
tions, such as forced conversion operations, which are represented in LLVM with
instructions such as bitcast and inttoptr, when identifying uses. SSD enhances
the functionality of Crix by enabling it to identify sources and uses more compre-
hensively, ensuring that important operations are not missed during data flow
analysis.

3.4 Security Operation Peer Slice Construction

This section focuses on the slice construction method by first providing a formal
definition of security operation peer slices and describing the criteria for peer
slice construction in four cases. These cases encompass peer slices that share
context across function calls, as well as within a single function.

Definition of Security Operation Slice. Security operations involve the use
of critical variables, which are the targets of security operation slices. Let CV
represent the critical variable, SO represent the security operation, and SO(CV)
denote the use of the security operation on the critical variable. Let CV S denote
the set of other statements containing CV . The beginning and end of a slice are
denoted by s and e, respectively. A security operation slice is defined as a set of
statements that begin with s and end with e, where either s or e is a SO or a
statement in the set CV S.

Finding Missing Security Operation Bugs via Program Slicing 709

Definition of Peer Slice. Two or more security operation slices are considered
security operation peer slices if they have similar semantics and contexts for the
use of CV . Consequently, the slicing criteria play a crucial role in ensuring that
peer slices exhibit similar semantics.

Slicing Criteria for Security Operation Peer Slice. We have examined
various peer slicing criteria [7,8,11], which employ forward slicing and backward
slicing for each critical variable to identify all security operation peer slices.
However, such direct approaches are susceptible to high time overhead and false
positives. We observe that (1) call and return instructions tend to generate
similar paths, and (2) the uses of critical variables are also similar if both paths
share the same starting and ending points. As a result, we have summarized the
following four semantic slicing criteria, and Fig. 4 illustrates the various cases
for generating peer slices, where EOP denotes the end of the path and SOP
represents the start of the path.

Fig. 4. Cases for peer slices. br is the branch point generated by a conditional statement
that evaluates a condition based on a non-critical variable; MP is the merge point at
the end of the conditional statement; func is the callee that takes critical variables as
parameter; icall is indirect call.

Criterion 1 (n1, CV , IV), corresponding to case A. The IV is a non-critical
variable, and n1 is the program point where a branch generated by a conditional
statement (e.g., if and switch statements) that evaluates a condition based on
IV . The peer paths start with n1 and end with a merge point, from which we
can find peer slices. When a CV is passed to each branch of the conditional
statement, each branch is semantically similar. Since each branch has a similar
source of CV , they also have similar contexts.

Criterion 2 (n2, CV), corresponding to case B. n2 denotes the program
point at which a function returns with a CV as either a return value or an output
parameter. If a callee returns a CV or uses it as an output parameter, then the
callers share similar contexts. The slice commences at n2 and is propagated to
multiple callers, ultimately concluding with a SO or EOP . Since all return values
emanate from the same callee, the callers share similar contexts.

Criterion 3 (n3, CV), corresponding to case C. n3 is the program point
where the function takes a CV as a parameter. The slice ends with a call to a
function with a CV as a parameter originating from multiple callers, and the
slice begins with a SO or SOP . When the CV comes from an argument of the

710 Y. Fu et al.

current callee, the callers are semantically similar. The callers pass the same
parameter to the callee, and then they also share similar contexts.

Criterion 4 (n4, CV), corresponding to case D. n4 is the program point
where a function with a CV as an argument is called indirectly. The slice
starts with an indirect call with a CV as a parameter, the CV is passed to
multiple target functions, and the slice ends with a SO or EOP . As shown in
Fig. 5, the indirect call dev->ops->write is like a dispatcher whose calling target
functions are semantically similar, such as ioeventfd write in eventfd.c1 and
coalesced mmio write in coalesced mmio.c2. The arguments to these callees all
come from the same caller, so they also have similar contexts.

1. static inline int kvm_iodevice_write(...) {
2. return dev->ops->write ?
 dev->ops->write(vcpu, dev, addr, l, v) : -EOPNOTSUPP;
3. }

Fig. 5. An example of how a function pointer in a struct is called

Construction of Peer Slice. In Criterion 1, we employ intra-procedural def
analysis to identify the definition of the critical variable within a function. We
then perform forward analysis to locate the conditional branch with a condition
not based on the critical variable. The starting point of the branch is denoted
as n1, while the merge point serves as the endpoint. The slices generated by
the branch are considered peer slices. However, complex control flow graphs can
lead to path explosion problems, making it difficult to distinguish between error
handling paths and normal execution paths. To address these issues, we adopt
the optimization of CFG proposed by IPPO, specifically RVG (Sub-CFGs based
on Return Values), and expand the scope to handle exception handling functions
and error code return values.

For Criterion 2, we perform forward data flow analysis to identify the propa-
gation path and dangerous usage points of critical variables. During the forward
analysis, if the critical variable is written to memory pointed to by its formal
parameter or returned as a value to a local parameter or another variable of the
caller after the function returns, the return instruction is considered as the pro-
gram point n2. Slices following the return instruction of the function are deemed
peer slices. The forward analysis is recursive until a critical variable propagation
endpoint is found or a security operation that takes it as a parameter exists.
Peer slices 3–5 and 10–11, as illustrated in Fig. 2, are generated by Criterion 2.

For Criterion 3, we perform backward data flow analysis to identify the source
of critical variables. If the critical variable is derived from a parameter of a called

1 https://github.com/torvalds/linux/blob/v5.15/virt/kvm/eventfd.c.
2 https://github.com/torvalds/linux/blob/v5.15/virt/kvm/coalesced mmio.c.

https://github.com/torvalds/linux/blob/v5.15/virt/kvm/eventfd.c
https://github.com/torvalds/linux/blob/v5.15/virt/kvm/coalesced_mmio.c

Finding Missing Security Operation Bugs via Program Slicing 711

function, the position of the function call is considered as program point n3, and
all callers of the function are treated as peer paths. The backward data flow
analysis is also recursive, with the recursion ending upon finding the source of
the dangerous variable. During the backward analysis, all callers of the function
exhibit similar semantics, and their slices are considered peer slices.

For Criterion 4, we utilize forward data flow analysis akin to Criterion 2.
If an actual parameter of an indirect call instruction is the critical variable,
the indirect call is considered as program point n4. The target functions of the
function pointer of the indirect call have similar semantics and are added to the
peer slice collection.

We have observed that the number of false positives decreases when peer
slices exhibit behaviors that impact security operations. Furthermore, critical
variables involved in paired operations in peer slices must not be assigned to
memory pointed to by their function parameters or global variables. If the crit-
ical variable propagates its value outside the function, we assume the function
exhibits a behavior of calling the corresponding paired operation. Our bug anal-
ysis and feedback from code maintainers suggest that this method is universally
applicable.

3.5 Missing Security Operation Bug Detection

SSD aims to identify missing and inaccurate security operations in software pro-
grams. By analyzing a set of security operation peer slices, it generates corre-
sponding bug reports when a majority of the slices contain a security operation,
while a minority do not. Within each slice set, the frequency of occurrence of
security operations is determined by calculating the ratio of the number of slices
performing a given security operation, represented by Ns, to the total number
of slices in the slice set, represented by N .

To detect missing security operation bugs, SSD calculates Ns for each security
operation present in the slice set. If a slice contains multiple security operations,
Ns is determined for each operation. When the majority of peer slices perform
a given security operation, its corresponding frequency of occurrence will be
higher, leading to the identification of the few slices that do not perform the
operation as missing security operations.

For inaccurate security operation bugs, SSD adjusts the frequency of occur-
rence calculation to exclude slices that do not perform any security operations.
The detection process remains similar to that for missing security operations,
with the target slices being those containing a security operation. In this case,
the frequency of occurrence is calculated as the ratio of Ns to the difference
between N and the number of slices without any security operation, represented
by Nn.

SSD can also detect missing security operation bugs in a pair of peer slices
where one slice contains a security operation and the other does not. This sce-
nario is more common in intra-procedural slices than inter-procedural slices due
to the smaller number of peer slices in the former. To avoid duplication in bug
reporting, SSD records the function and the corresponding missing operation

712 Y. Fu et al.

type for each identified bug, ensuring that each security operation bug occurs
only once within a function, thereby improving the efficiency of manual verifica-
tion.

4 Implementation

The implementation of SSD primarily relies on the LLVM framework. This imple-
mentation is based on the methods presented in Sect. 3, which involves incor-
porating seven distinct LLVM passes. These passes include the loop unrolling
pass, the global call graph generation pass, the pointer analysis pass, the secu-
rity check identification pass, the paired security operation identification pass,
the slice construction pass, and the bug detection pass. The rest of this section
presents some implementation details of SSD.

4.1 Preparing LLVM IR for SSD

SSD uses the clang compiler for a given source code, disables inline functions,
and compiles it into the LLVM intermediate language (LLVM IR). Immediately
afterward, an accurate global call flow graph is constructed, which is essential
for both data flow analysis and slice construction. To avoid path explosion, SSD
treats for and while statements as if statements and implements loop expansion
by removing the return edge and adding an edge from the trailing basic block to
the successor basic block of loop. We use the built-in CFLSteensgaard pointer
analysis algorithm of LLVM to obtain the set of variable aliases within a function.
If the analysis results in MayAlias, then the pointers are aliased to each other
to assist data flow analysis.

4.2 Identifying Indirect Call

In scenarios where critical variables are arguments for indirect calls, such as
Case D of Fig. 4, the peer slicing directly depends on the accuracy of the indirect
call identification. Due to restrictive pointer analysis [3,4], we use a multi-layer
type analysis approach to identify the targets of indirect calls, which is optimized
based on MLTA [9]. For common function pointer variables, we take a one-layer
type analysis approach to match the number and type of parameters and the
type of return value of the target function. In the Linux kernel, there are function
bodies that have only one indirect call, as shown in Fig. 5. The target functions
of such indirect calls must remove their parent function. For function pointers
stored in structures, we construct a pair (type, function) where the type not
only includes the type information of the structure but also has a memory offset.
At the time of assignment of the function pointer field of this structure, a pair
(hash(multi − layerstructuretype, offset), targetfunction) is constructed for
identifying the indirect call targets of the function pointer variables stored in
the structure.

Finding Missing Security Operation Bugs via Program Slicing 713

5 Evaluation

In order to evaluate the effectiveness of SSD, we apply them to the Linux kernel
of version 5.15-rc7, comparing the slices construction and bug finding of SSD
with other tools.

5.1 Slices Construction

This section first presents the statistical results of SSD by identifying security
operations and constructing peer slices for Linux 5.15-rc7 and then compares
them with other methods.

Statistical Results. Our SSD approach analyzed over 20 million lines of code in
the Linux kernel, with the results summarized in Table 2. SSD identified approx-
imately 500.7k security operations, including security checks (47.8%), reference
counting (10.9%), resource allocation/release (0.7%), and lock/unlock operations
(40.6%). Using the four slicing criteria outlined in Sect. 3.4, SSD constructed
8327K security operation slices and 778k peer slices. The majority (92.8%) of
the 722k peer slices were constructed using Criterion 1, which performs slice
construction based on the large number of branches within a function.

Table 2. Security operation identification and slice construction results of SSD

Target Security Operation SO Slices SO Peer Slices Criterion 1 Criterion 2 Criterion 3 Criterion 4

Security Check Resource Refcount Lock

Conditional Function

Linux 216K 23K 55K 3673 203K 8327K 778K 722K 9K 20K 27K

Comparison with Security Operation Slicing Tools. We assess the num-
ber, category, and accuracy of security operations and peer slices identified by
SSD and compare these metrics with those obtained using similar methods, such
as Crix [11] and SCSlicer [8]. Specifically, we replicate Crix and SCSlicer on Linux
5.15-rc7. To evaluate accuracy, we randomly select 100 security operations for
these tools and determine the validity of the associated peer slices based on
the definition provided in Sect. 3.4. As Crix is open source, we modify parts
of the code to implement the statistics of security operations and peer slices.
Experimental results are presented in Table 3.

Our experiments indicate that SSD outperforms the other two methods in
terms of security operation recognition accuracy and the total number of identi-
fications. This superior performance can be attributed to the security operation
identification module of SSD, which extends multiple security operation targets
and utilizes both natural and programmatic semantic analysis methods. This
approach enables SSD to identify a broader range of security operations while
maintaining high identification accuracy. Regarding slice construction, SSD pro-
duces a larger number of slices compared to the other methods, providing a
quantitative basis for subsequent differentiation analysis. However, the slicing

714 Y. Fu et al.

Table 3. Results of security operations slicing tools

Tool Security Operations Peer Slices

Number Category Accuracy Number Category Accuracy

Crix 191K 1 98.1% 39K 3 89.1%

SCSlicer 224K 2 97.5% 68K 3 93.4%

SSD 500.7K 5 98.5% 778K 4 86.5%

accuracy of SSD is not as high as that of the other two methods. The higher
accuracy achieved by Crix and SCSlicer is primarily due to their exclusive focus
on security checks, a subclass of security operations. And limited by alias anal-
ysis, these methods generate relatively few slices.

5.2 Bug Finding

Bug report auditing essentially involves verifying whether critical variables in
specific paths require the addition of security operations or not. Except for the
slices constructed using Criterion 2 and Criterion 3, which may be audited across
one or two functions, all other slices can be identified within single functions.
Consequently, bug reports can be audited with ease.

We manually audited the 214 bugs reported by SSD and confirmed 65 real
bugs, as shown in Table 4. These bugs include 15 missing security check bugs, 16
heap memory leak bugs, 32 reference count bugs, and two deadlock bugs. Among
these, 17 reference count bugs, eight missing security check bugs, and two heap
memory leak bugs have already been fixed by other developers. We submitted
patches for the remaining 38 bugs to the Linux community. The Linux main-
tainers accepted 19 patches and confirmed but has not yet fixed three patches,
with details provided in Appendix.

Table 4. Bug detection results of SSD

Type Reported Bug Real Bug

Missing security check 33 15

Heap memory leak 86 16

Refcount leak 65 32

Deadlock 30 2

Total 214 65

5.3 Comparison with Other Differential Analysis Tools

To evaluate the effectiveness of our bug detection method, we compared SSD
with four other state-of-the-art differential analysis tools: Crix [11], FICS [2],
APISan [19], and IPPO [7]. Although these tools employ different underlying

Finding Missing Security Operation Bugs via Program Slicing 715

techniques, they all use differential analysis of similar execution paths to identify
bugs. This experiment aims to demonstrate the complementary capabilities of
SSD to other tools by assessing how many bugs detected by SSD were also
discovered by the other tools.

Table 5 presents the detection results of the comparative experiment.
Notably, most of the bugs detected by SSD were not identified by the other
four tools. Crix, for instance, focuses on inter-procedural detection of missing
security checks and cannot detect the other types of bugs identified by SSD.
FICS, on the other hand, suffers from scalability issues and coarse code repre-
sentation, making it less effective in detecting bugs in large programs like the
Linux kernel. APISan models all states in program slices, but its effectiveness is
limited since only some of these states impact similarity analysis. Lastly, while
IPPO detects more security operation bugs than SSD, it is less capable of iden-
tifying inter-procedural security checks and has a narrower scope for detecting
security operations.

It is important to emphasize that the purpose of this experiment is not to
claim superiority over the other tools but rather to demonstrate the complemen-
tary capabilities of SSD to other tools. The low overlap between the bug detection
results of SSD and those of the other tools indicates that SSD is highly effective
at detecting bugs that other techniques might miss.

Table 5. Results of differential check tools

Type SSD Crix FICS APISan IPPO

Missing security check 15 12 0 0 0

Heap memory leak 16 0 0 0 4

Refcount leak 32 0 0 0 25

Deadlock 2 0 0 0 0

Total 65 12 0 0 29

6 Conclusion

In this paper, we presented SSD, a program slicing-based missing security opera-
tion bug detection system. Through the four program slicing criteria we proposed
for the peer slices of security operations, inter- and intra-procedural slices with
similar semantics and contexts are constructed. Based on the features of the peer
slices, differential checks are performed to compare the differences between the
slices and determine whether the slices have missing security operation bugs.

The experiments show that SSD outperforms existing methods in terms of
slice construction and differential analysis, as reflected by more general similar
slice construction and more comprehensive detection of security operation bugs.
Furthermore, this study detected a total of 65 authentic bugs in the Linux kernel.
Among these, 27 have been confirmed as fixed, while the remaining 38 have been
submitted for patching. Notably, the Linux maintainers have accepted 19 of these
patches, thus attesting to the effectiveness and practicality of SSD.

716 Y. Fu et al.

A Appendix

Table 6. Bugs found by SSD in Linux kernel

Filename Called function Impact Status
drm/amdgpu debugfs.c amdgpu debugfs gfxoff read Refcount leak A
drm/cdn-dp-core.c cdn dp clk enable Refcount leak F
crypto/sun8i-ss-core.c sun8i ss probe Refcount leak F
pci/pcie-qcom.c qcom pcie probe Refcount leak F
dma/stm32-dma.c stm32 dma alloc chan resources Refcount leak S
dma/edma.c edma probe Refcount leak C
pci/pcie-tegra194.c tegra pcie config rp Refcount leak F
drm/rockchip drm vop.c vop enable Refcount leak S
drm/dw-mipi-dsi-rockchip.c dw mipi dsi dphy power on Refcount leak S
soc/img-i2s-out.c img i2s out probe Refcount leak F
drm/rockchip lvds.c rk3288 lvds poweron Refcount leak S
soc/img-i2s-out.c img i2s out set fmt Refcount leak F
soc/img-parallel-out.c img prl out set fmt Refcount leak F
soc/img-spdif-out.c img spdif out probe Refcount leak F
drm/rockchip drm vop.c vop initial Refcount leak S
soc/img-spdif-in.c img spdif in probe Refcount leak F
drm/panel-samsung-atna33xc20.c atana33xc20 unprepare Refcount leak S
gpio/gpio-arizona.c arizona gpio direction out Refcount leak F
gpio/gpio-arizona.c arizona gpio get Refcount leak F
drm/etnaviv gpu.c etnaviv gpu bind Refcount leak C
soundwire/bus.c sdw nread Refcount leak F
drm/panel-simple.c panel simple unprepare Refcount leak S
soundwire/bus.c sdw nwrite Refcount leak F
crypto/sun8i-ce-cipher.c sun8i ce cipher init Refcount leak F
crypto/sun8i-ce-core.c sun8i ce probe Refcount leak F
drm/nwl-dsi.c nwl dsi bridge mode set Refcount leak A
crypto/sun8i-ss-cipher.c sun8i ss cipher init Refcount leak F
dma/shdma-base.c shdma tx submit Refcount leak S
dma/shdma-base.c dma cookie tshdma tx submit Refcount leak A
base/core.c device shutdown Refcount leak S
drm/v3d drv.c v3d get param ioctl Refcount leak S
drm/amdgpu dm debugfs.c dp link settings read Heap memleak A
drm/amdgpu dm debugfs.c dp phy settings read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc clock en read Heap memleak A
net/enetc qos.c enetc streamid hw set Heap memleak F
infiniband/hw/mlx5/devx.c subscribe event xa alloc Heap memleak A
net/dsa/ocelot/felix.c felix setup mmio filtering Heap memleak F
drm/amdgpu dm debugfs.c dp dsc clock en read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc slice width read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc slice height read Heap memleak A
scsi/fcoe/fcoe.c fcoe fdmi info Heap memleak S
drm/amdgpu dm debugfs.c dp dsc bits per pixel read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc pic width read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc pic height read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc chunk size read Heap memleak A
drm/amdgpu dm debugfs.c dp dsc slice bpg offset read Heap memleak A
drm/amdgpu dm debugfs.c dcc en bits read Heap memleak A
net/enetc qos.c enetc streamid hw set Null ptr dereference F
crypto/otx2 cptvf algs.c cpt register algs Null ptr dereference F
crypto/otx2 cptvf algs.c cpt unregister algs Null ptr dereference F
x86/kvm/mmu/mmu.c mmu free root page Null ptr dereference S
drm/i915 gem phys.c i915 gem object put pages phys Null ptr dereference S
drm/amdkfd/kfd svm.c svm range add Null ptr dereference F
drm/ast/ast mode.c ast crtc reset Null ptr dereference F
scsi/lpfc/lpfc nportdisc.c lpfc rcv plogi Null ptr dereference F
scsi/qedf/qedf main.c qedf upload connection Null ptr dereference F
iio/adc/qcom-spmi-vadc.c vadc measure ref points Null ptr dereference C
usb/cdns3/cdns3-gadget.c cdns3 gadget ep queue Null ptr dereference S
usb/cdns3/cdnsp-ring.c cdnsp cmd set deq Null ptr dereference S
wireless/marvell/mwifiex/usb.c mwifiex usb coredump Null ptr dereference S
net/hyperv/netvsc drv.c netvsc suspend Null ptr dereference A
net/ethernet/sfc/rx common.c efx init rx recycle ring Null ptr dereference F
drm/v3d gem.c v3d submit tfu ioctl Deadlock A
drm/v3d gem.c v3d submit csd ioctl Deadlock A

Note: S, C, A, and F in the status bar indicate submitted, confirmed, accepted, and fixed by other developers,
respectively.

Finding Missing Security Operation Bugs via Program Slicing 717

References

1. CVE Details (2022). https://www.cvedetails.com/
2. Ahmadi, M., Farkhani, R.M., Williams, R., Lu, L.: Finding bugs using your own

code: detecting functionally-similar yet inconsistent code. In: USENIX Security
Symposium, pp. 2025–2040. USENIX Association (2021)

3. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory
error exploits with WIT. In: 2008 IEEE Symposium on Security and Privacy (S&P
2008), 18–21 May 2008, Oakland, California, USA, pp. 263–277. IEEE Computer
Society (2008). https://doi.org/10.1109/SP.2008.30

4. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow
locking. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference, pp. 353–362. Association for Computing Machinery (2011). https://doi.
org/10.1145/2076732.2076783

5. Chen, X., et al.: VulChecker: achieving more effective taint analysis by identifying
sanitizers automatically. In: 2021 IEEE 20th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 774–
782. IEEE (2021). https://doi.org/10.1109/TrustCom53373.2021.00112

6. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
a general approach to inferring errors in systems code. SIGOPS Oper. Syst. Rev.
35(5), 57–72 (2001). https://doi.org/10.1145/502059.502041

7. Liu, D., et al.: Detecting missed security operations through differential checking of
object-based similar paths. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1627–1644. ACM (2021). https://
doi.org/10.1145/3460120.3485373

8. Liu, Y., Chen, X., Yang, Z., Wen, W.: Automatically constructing peer slices via
semantic and context-aware security checks in the Linux kernel. In: 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Work-
shops, DSN Workshops, Taipei, Taiwan, 21–24 June 2021, pp. 108–113. IEEE
(2021). https://doi.org/10.1109/DSN-W52860.2021.00028

9. Lu, K., Hu, H.: Where does it go?: refining indirect-call targets with multi-layer
type analysis. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, 11–15 November 2019, pp.
1867–1881. ACM (2019). https://doi.org/10.1145/3319535.3354244

10. Lu, K., Pakki, A., Wu, Q.: Automatically identifying security checks for detecting
kernel semantic bugs. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS
2019, Part II. LNCS, vol. 11736, pp. 3–25. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29962-0 1

11. Lu, K., Pakki, A., Wu, Q.: Detecting missing-check bugs via semantic- and context-
aware criticalness and constraints inferences. In: 28th USENIX Security Sympo-
sium, USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019, pp.
1769–1786. USENIX Association (2019)

12. Mao, J., Chen, Y., Xiao, Q., Shi, Y.: RID: finding reference count bugs with incon-
sistent path pair checking. In: Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, pp. 531–544 (2016)

13. Min, C., Kashyap, S., Lee, B., Song, C., Kim, T.: Cross-checking semantic correct-
ness: the case of finding file system bugs. In: Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, pp. 361–377. Association for Com-
puting Machinery (2015). https://doi.org/10.1145/2815400.2815422

https://www.cvedetails.com/
https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1145/2076732.2076783
https://doi.org/10.1145/2076732.2076783
https://doi.org/10.1109/TrustCom53373.2021.00112
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1109/DSN-W52860.2021.00028
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1007/978-3-030-29962-0_1
https://doi.org/10.1007/978-3-030-29962-0_1
https://doi.org/10.1145/2815400.2815422

718 Y. Fu et al.

14. Pakki, A., Lu, K.: Exaggerated error handling hurts! An in-depth study and
context-aware detection. In: CCS 2020: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, USA, 9–13 November 2020,
pp. 1203–1218. ACM (2020). https://doi.org/10.1145/3372297.3417256

15. Saha, S., Lozi, J.P., Thomas, G., Lawall, J.L., Muller, G.: Hector: detecting
resource-release omission faults in error-handling code for systems software. In:
2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 1–12. IEEE (2013)

16. Wang, W., Lu, K., Yew, P.C.: Check it again: detecting Lacking-Recheck bugs in OS
kernels. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1899–1913. Association for Computing Machinery
(2018). https://doi.org/10.1145/3243734.3243844

17. Weiser, M.D.: Program slices: formal, psychological, and practical investigations
of an automatic program abstraction method. University of Michigan (1979)

18. Wu, Q., He, Y., McCamant, S., Lu, K.: Precisely characterizing security impact
in a flood of patches via symbolic rule comparison. In: 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,
23–26 February 2020. The Internet Society (2020)

19. Yun, I., Min, C., Si, X., Jang, Y., Kim, T., Naik, M.: APISan: sanitizing API usages
through semantic cross-checking. In: 25th USENIX Security Symposium, USENIX
Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 363–378. USENIX Asso-
ciation (2016)

20. Zhang, T., Shen, W., Lee, D., Jung, C., Azab, A.M., Wang, R.: PeX: a permission
check analysis framework for Linux kernel. In: 28th USENIX Security Symposium
(2019)

https://doi.org/10.1145/3372297.3417256
https://doi.org/10.1145/3243734.3243844

TimeClave: Oblivious In-Enclave Time
Series Processing System

Kassem Bagher1,3(B), Shujie Cui1, Xingliang Yuan1, Carsten Rudolph1,
and Xun Yi2

1 Monash University, Melbourne, Australia
kassem.bagher@monash.edu

2 RMIT University, Melbourne, Australia
3 Faculty of Computing and Information Technology, King AbdulAziz University,

Jeddah, Saudi Arabia

Abstract. Cloud platforms are widely adopted by many systems, such
as time series processing systems, to store and process massive amounts
of sensitive time series data. Unfortunately, several incidents have shown
that cloud platforms are vulnerable to internal and external attacks that
lead to critical data breaches. Adopting cryptographic protocols such as
homomorphic encryption and secure multi-party computation adds high
computational and network overhead to query operations.

We present TimeClave, a fully oblivious in-enclave time series pro-
cessing system: TimeClave leverages Intel SGX to support aggregate
statistics on time series with minimal memory consumption inside the
enclave. To hide the access pattern inside the enclave, we introduce a
non-blocking read-optimised ORAM named RoORAM. TimeClave inte-
grates RoORAM to obliviously and securely handle client queries with
high performance. With an aggregation time interval of 10 s, 214 sum-
marised data blocks and 8 aggregate functions, TimeClave run point
query in 0.03 ms and a range query of 50 intervals in 0.46 ms. Compared
to the ORAM baseline, TimeClave achieves lower query latency by up
to 2.5× and up to 2× throughput, with up to 22K queries per second.

Keywords: Time Series Processing · ORAM · Intel SGX

1 Introduction

Time series data (TSD) are data points collected over repeated intervals, such as
minutes, hours, or days. Unlike static data, TSD represents the change in value
over time, and analysing it helps understand the cause of a specific pattern or
trend over time. Time series systems continuously produce massive amounts of
TSD that need to be stored and analysed in a timely manner [1]. For this, time
series databases (TSDB) have been designed and deployed on cloud platforms
to provide a high ingest rate and faster insights [2,3]. Unfortunately, adopting
plaintext TSDBs on cloud platforms can lead to critical data breaches, as several
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 719–737, 2023.
https://doi.org/10.1007/978-981-99-7356-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_42&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_42

720 K. Bagher et al.

incidents have shown that cloud platforms are vulnerable to internal and external
attacks.

One possible solution to protect TSD in the cloud is to adopt cryptographic
protocols such as homomorphic encryption (HE) and secure multi-party compu-
tation (MPC). For example, TimeCrypt [4] adopts partial HE to provide real-
time analytics for TSD, while Waldo [5] adopts MPC in a distributed-trust set-
ting. Unfortunately, those solutions have two key limitations. The first is the high
computational and network communication cost. As demonstrated in Waldo [5],
network communication adds up to 4.4× overhead to query operations. Simi-
larly, HE is orders of magnitude slower than plaintext processing [6]. The second
limitation is that cryptographic protocols, specifically HE, support limited func-
tionalities such as addition and multiplication on integers [6], where performing
complex computations on floating-point numbers adds significant overhead and
gradually loses accuracy [7]. Furthermore, basic functionalities in time series
systems (such as max and min) require a secure comparison, which is a costly
operation using HE and MPC [8].

A more practical solution is to adopt hardware-based approaches such as
Intel SGX [9] to process plaintext TSD in a secure and isolated environment
in the cloud, i.e., an enclave. However, processing TSD within the enclave is
not straightforward due to the costly context switch and access pattern leakage.
A context switch occurs when the CPU enters/exits the enclave, e.g., when
requesting encrypted data outside it, and is up to 50× more expensive than
a system call [10]. In addition, SGX-based solutions are vulnerable to access
pattern attacks, where an attacker performs a page table-based attack [11] to
observe which memory page is accessed inside the enclave. Such leakage allows
the attacker to infer which data are being accessed and when, and recover search
queries or a portion of encrypted records [11–13].

A widely adopted approach to hide access patterns is to store encrypted
data in an Oblivious RAM (ORAM). Several solutions combine Intel SGX with
ORAM to hide access patterns inside the enclave. For example, Oblix [14] and
ZeroTrace [15] deploy the ORAM controller securely inside the enclave while
leaving the ORAM tree outside the enclave, which increases the communication
between the enclave and the untrusted part. Even when deploying the ORAM
inside the enclave, these solutions adopt vanilla ORAMs, which are not optimised
to handle non-blocking clients’ queries that dominates the workload of read-
heavy systems like TSDB.

TimeClave. Motivated by the above challenges, this paper presents TimeClave,
an oblivious in-enclave time series processing system that efficiently stores and
processes TSD inside the enclave. TimeClave resides entirely inside the enclave
and adopts oblivious primitives to provide a fully oblivious in-enclave time series
processing system. TimeClave supports oblivious statistical point and range
queries by employing a wide range of aggregate and non-aggregate functions
on TSD that are widely adopted in the area of time series processing [2,3], such
as sum, max, and stdv.

TimeClave: Oblivious In-Enclave Time Series Processing System 721

To efficiently protect against access pattern leakage inside the enclave,
we introduce Read-optimised ORAM (RoORAM), a non-blocking in-enclave
ORAM. As time series systems need to store and query TSD simultaneously,
most ORAMs fail to meet such requirements. The reason is that ORAMs can
perform only one operation at a time, i.e. read or write. Regardless of the required
operation, ORAM reads and writes data back to the ORAM tree to hide the
operation type. As a result, clients’ queries are blocked during a write opera-
tion and delayed during read operations, especially in read-heavy systems. An
efficient approach to address the previous drawbacks is to decouple read and
write operations to handle non-blocking client queries. Existing solutions follow
different approaches to support non-blocking read operations and parallel access
to the ORAM [16,17]. However, these solutions require either a proxy server to
synchronise the clients with the cloud server [16] or require the client to maintain
a locally-cached sub-tree that is continuously synchronised with the cloud server
[17]. RoORAM adopts and improves PathORAM [18] to handle client queries
with better performance. RoORAM achieves this improvement by having sep-
arate ORAM trees, a read-only and a write-only tree, to decouple read- and
write operations. Unlike previous solutions [16,17], RoORAM is an in-enclave
and lightweight; hence, it does not require client involvement or a proxy server.
RoORAM adopts oblivious primitives inside the enclave to access the ORAM
controller obliviously.

To avoid the costly context switches, TimeClave integrates RoORAM to effi-
ciently and obliviously store and access TSD inside the enclave, thus, eliminating
excessive communication with the untrusted part. In detail, TimeClave leverages
the fact that TSD is queried and aggregated in an approximate manner to store
statistical summaries of pre-defined time intervals inside the enclave. By only
storing summarised TSD, TimeClave reduces the size of the ORAM tree, reduc-
ing the consumption of enclave memory and the cost of ORAM access. Such a
design allows TimeClave to store and process a large amount of TSD data with
low memory consumption while providing low-latency queries.

Performance Evaluation. We implemented and evaluated TimeClave on an
SGX-enabled machine with 8 cores and 128 GiB RAM Sect. 6. With different
query ranges of 8 aggregate functions, TimeClave runs a point query in 0.03 ms
and a range query of 50 intervals in 0.46 ms. TimeClave achieves lower query
latency of up to 2.5× and up to 2× higher throughout. Finally, TimeClave
achieves up to 17× speed-up when inserting new data compared to the ORAM
baseline.

2 Background

2.1 Intel SGX

Intel SGX is a set of commands that allow creating an isolated execution environ-
ment, called an enclave. Applications run their critical code and store sensitive
data inside the enclave. No other process on the same CPU (except the one that

722 K. Bagher et al.

created the enclave), even the privileged one (kernel or hypervisor), can access
or tamper with the enclave. SGX-based applications are divided into two parts:
untrusted and trusted parts. The two parts communicate with each other using
user-defined interface functions. In addition, SGX provides a remote attesta-
tion feature, allowing the client to authenticate the enclave’s identity, verify the
integrity of the enclave’s code and data, and share encryption keys. We refer the
readers to [19] for more details about Intel SGX.

2.2 ORAM

Oblivious RAM (ORAM) was introduced by Goldreich and Ostrovsky [20] to
protect client data on an untrusted remote machine (such as the cloud) against
access pattern attacks. The main idea of ORAM is to hide the user’s access pat-
terns by hiding the accessed memory addresses on the cloud, hence, making the
user’s access oblivious. Although many ORAM schemes have been proposed, the
most notable among them is the widely adopted PathORAM [18]. PathORAM
uses a complete binary tree of height L = [log2 N� − 1 to store N encrypted
records on untrusted storage, e.g., an untrusted cloud. Every node in the tree
is a bucket, where each bucket contains a fixed number (Z) of encrypted data
blocks. The tree contains real blocks (client’s blocks) and dummy blocks. Each
data block is randomly assigned to a leaf between 0 and 2L −1. The client main-
tains a Position Map that tracks the leaf to which each block points in the tree.
To access a block in the tree, the client retrieves all blocks on the path from the
root node to the leaf node of the required block and stores them in the stash.
The client then assigns a random leaf to the accessed/updated block, re-encrypt
them and writes them back to the tree (cloud). We adopt and enhance PathO-
RAM to support non-blocking queries while achieving high performance with a
bit of relaxation on the security guarantee (See RoORAM Sect. 4.7).

2.3 Oblivious Primitives

Oblivious primitives are used to access or move data in an oblivious manner,
i.e., without revealing access patterns. We use the following primitives from a
library of general-purpose oblivious primitives provided in [21]:

– Oblivious comparisons. The following primitives are used to obliviously
compare two variables; oless(x,y), ogreater(x,y) and oequal(x,y).

– Oblivious assignment. The oassign(cond,x,y) is a conditional assign-
ment primitive, where a value is moved from a source to a destination vari-
able if the condition is true. Typically, the oassign is used with the oblivious
comparisons primitives to compare values and return a result obliviously.

– Oblivious array access. The oaccess(op, arr, index) primitive is used
to read/write an item in an array without revealing the item’s address.

– Oblivious exists. The oexists(arr,x) primitive is used to obliviously
determine if a giving item exists in a giving array or not. oexists achieves
this by combining oaccess and oequal.

TimeClave: Oblivious In-Enclave Time Series Processing System 723

3 System Overview

TimeClave consists of 4 entities: data producers, clients, server (referred to as
the cloud or server), and the SGX enclave running on the server. Data produc-
ers, such as sensors or other devices, generate raw time series data and upload
them to the server. Clients send encrypted queries to the server. Finally, the
server (typically deployed in the cloud) stores the time series data and han-
dles clients’ queries. As depicted in Fig. 1, iis partitioned into two parts on the
server: untrusted and trusted. The untrusted part runs on the host outside the
enclave while the trusted part runs inside the enclave. The role of the untrusted
part is to facilitate the communication between the client (including the data
producer) and the enclave. To protect data and queries from the cloud, data
producers, clients, and the enclave share a secret key k during SGX Remote
Attestation (RA). The raw time series data and queries are encrypted with k
before being sent to the cloud. The trusted components of TimeClave perform
two main functionalities: storing time series data and processing client queries.

Fig. 1. TimeClave architecture. The figure illustrate how TimeClave securely and obliv-
iously stores time series data (1), and how it handles clients’ queries (2).

Supported Aggregate Functions: TimeClave supports a set of additives
aggregates, i.e., sum, count, mean, variance and standard deviation. In addi-
tion, TimeClave supports a set of more complex non-additive aggregates, i.e.,
max and min. TimeClave uses the previous functions on a set of data points
to generate summarised blocks for a pre-defined time interval (see Sect. 5.1).
These functions are used to answer simple and complex queries, where multiple
aggregated values are used in the calculations instead of raw data points (see
Sect. 5.2).

3.1 Threat Model

We consider a semi-trusted server where an adversary is interested in learning
clients’ data and queries. Furthermore, we consider an adversary who has full
control over the server except for the CPU (Intel SGX). Therefore, the adversary
can obtain the encrypted client queries and data, but cannot examine them in
plaintext. In addition, the adversary can see the entire memory trace, including
the enclave memory (at the page level). We consider trusted data producers and

724 K. Bagher et al.

clients; therefore, only authorised users can submit queries to the server. We do
not consider DoS attacks or other side-channels on the enclave, e.g., speculative
execution [22], voltage changes [23], or cache attack [24]. We discuss the security
of RoORAM briefly in Sect. 4.7, while the detailed proofs for RoORAM and
TimeClave are available at https://arxiv.org/abs/2306.16652.

4 RoORAM

In this section, we introduce our proposed ORAM, namely RoORAM, which is
integrated into TimeClave to provide oblivious data storage inside the enclave
capable of handling non-blocking read-operations (i.e., clients’ queries). Later,
we describe how TimeClave efficiently stores time series data in RoORAM and
how it is used to realise clients’ queries.

The main idea of RoORAM is to decouple the eviction process from the
read/write operation. This separation allows RoORAM to evict the accessed
paths without blocking clients’ query. Inspired by [17], RoORAM performs read-
operations (queries) on a read-only tree and write-operations (writing data and
eviction) on a write-only tree. This allows RoORAM to perform multiple read-
operations on the read-only tree (reading multiple paths) before evicting the
accessed paths. The retrieved blocks are stored in the stash. After R read-
operations, RoORAM evicts the blocks from the stash to the write-only tree
and then synchronises both trees. RoORAM notations are defined in Table 1.
However, unlike [17], RoORAM stores and obliviously accesses the controller
and components inside the enclave. Further, RoORAM does not require clients’
involvement to maintain a locally-cached sub-tree nor requires synchronisation
with the server. Such a lightweight design makes RoORAM tailored for in-
enclave read-heavy time series processing systems, which require real-time and
low-latency query processing.

Table 1. RoORAM notations. ∗ Represents notations introduced by RoORAM.

Notation Meaning

N Total number of blocks on the server

L Height of binary tree. L = [log2 N� − 1).

B Block size in bytes

Z Bucket capacity (in blocks)

P(x) Path from leaf node x to the root

P(x, �) The bucket at level � along the path P(x)

PL∗ Path lookup, a list of accessed paths’ IDs by the read operation

R∗ Eviction frequency, number of read operations before batch eviction

S Read stash

Stmp
∗ Write Stash, a temporary stash used during eviction.

SL
∗ Stash blocks lookup

pos Position map used for read operations

postmp
∗ Temporary position map used during batch eviction.

TrR Read-only tree, used for read operations

TrW
∗ Write-only tree, used during batch eviction

https://arxiv.org/abs/2306.16652

TimeClave: Oblivious In-Enclave Time Series Processing System 725

4.1 Structure and Components

Binary Tree. Similar to PathORAM, RoORAM stores data in a binary tree
data structure of height L = �log2(N)� − 1 and 2L leafs.

Bucket. Each node in the tree contains a bucket, where each bucket contains Z
real data blocks. Buckets containing less than Z blocks are filled with dummy
data.

Path. A path represents a set of buckets from the leaf node x to the root node.
P(x) denotes the path from leaf node x to the root and P(x, �) denotes the
bucket at level � along the path P(x).

Block. A block contains summarised data for a specific pre-defined time interval.
Each block is assigned a random path in the tree between 0 and 2L−1. Accessing
a block is achieved by accessing a path P(x) on the read-only tree TrR.

Stash S. When a path is accessed, blocks are stored and kept in the stash S
until batch eviction. During batch eviction, the items in the stash S are moved
to a temporary stash Stmp, allowing query operations to insert blocks into S.
Stash and temporary stash has a size of O(log2 N) · R. Notice that the stash
avoids block duplication by storing unique blocks only while replacing duplicated
blocks with dummy data to avoid information leakage.

Stash Lookup SL. Stash lookup SL contains only the IDs of the retrieved
blocks and is used to answer whether a block is in the stash or not. The cost of
accessing SL is lower than S as SL contains smaller-sized data than S. Similar
to S, SL has a worst case size of O(log2 N) · R.

Position Map pos. The position map stores the path to which each block
belongs. The position map is updated every time a block is accessed. RoORAM
stores the position map in a recursive PathORAM [18] instead of an array to
achieve obliviousness. The reason is that the position map contains large number
of items, therefore, storing these items and accessing them linearly has a high
cost compared to a recursive PathORAM.

Path lookup PL. It stores the list of accessed paths PL (leaf nodes’ IDs) that
have been accessed during read-operations (query). PL is used during a batch
eviction to write the accessed paths back to the tree. RoORAM clears the list
after each batch eviction; thus, the maximum size of the list is R.

4.2 Initialisation

Both read- and write-trees are initialised with height L = [log2 N� − 1. There-
fore, each tree contains 2L+1 − 1 buckets, where each bucket is filled with
dummy blocks. Position maps are initialised with an independent random num-
ber between 0 and 2L−1. Stash, temporary stash, and stash lookup are initialised
with empty data. Path lookup PL is initialised with empty data with size R.

726 K. Bagher et al.

Algorithm 1. Read Operation

Input: bid - Block id
Output: Summarised data block
1: function ReadAccess(bid)
2: x ← pos[bid]
3: postmp[bid] ←
4: UniformRandom(0...2L − 1)
5: if oexists(bid, SL) then
6: ReadPath(TrR, dummy)
7: oaccess(write,PL, dummy)
8: else
9: ReadPath(TrR, x)
10: oaccess(write,PL, x)
11: end if

12: oassign(true, d′, oaccess(read, S, bid))
13: return d′

14: end function

1: function ReadPath(ORAM, x)
2: for l ∈ { L,L − 1...0 } do
3: oaccess(write, S, GetBucket(P (x, l))

4: oaccess(write, SL,
5: GetBucket(P (x, l)).bid
6: end for
7: end function

Algorithm 2. Write Operation

Input: data∗ - Block data, time - block time
interval

1: function WriteAccess(data∗, time)
2: QueryLock.lock

3: x ← UniformRandom(0...2L − 1)
4: bid ← time

5: postmp[bid] ← x
6: oaccess(write, S, data∗)
7: oaccess(write, SL, bid)
8: QueryLock.unlock

9: end function

4.3 Read Operation

The details of READACCESS are shown in Algorithm 1. It is worth noting that,
aside from the distinct design variations between TimeClave and PathORAM,
the algorithmic distinctions are also demonstrated in Algorithm 1, 2, and 3,
which are highlighted in red. To access block a, given its block ID bid, RoORAM
first accesses the position map to retrieve the block’s position in TrR, such that
x := pos[bid]. Second, a new random path is assigned to block a and stored in the
temporary position map (postmp). RoORAM updates postmp instead of pos as
the accessed block will not be evicted before R read operations. Thus, avoiding
inconsistent block position for subsequent queries before a batch eviction.

The next step is to check whether block a is stored in the stash or not by
searching SL with the oblivious primitive oexists Sect. 2.3. If SL contains a,
a dummy path will be accessed; otherwise, path x is accessed. By doing so,
the adversary cannot infer whether block a is located in the stash (S) or in
the ORAM tree (TrR). In both cases, the retrieved blocks of the accessed path
are stored in the stash S, and its path ID is tracked in PL. Finally, block a
is obliviously retrieved from the stash S with oaccess and assigned to d′ with
oassign.

4.4 Write Operation

The details of WRITEACCESS is given in Algorithm 2. The data block to be written
data∗ is associated with a time interval time, and will be used as the ID of data∗.

TimeClave: Oblivious In-Enclave Time Series Processing System 727

Algorithm 3. Batch Eviction

1: function Evict()
2: let eBuckets be the IDs of evicted buck-

ets
3: QueryLock.lock

4: swap(S, Stmp)
5: SL.clear()
6: QueryLock.unlock

7: for each p ∈ PL do
8: for l ∈ { L,L − 1...0 } do
9: if !oexists(P(p, l).id, eBuckets)

then
10: S′ ← (a′, data′) ∈ Stmp :

P(postmp[a
′], l)

11: S′ ← Select min(|S′|, Z)
blocks from S′

12: Stmp ← Stmp − S′

13: eBuckets = eBuckets ∪
P(p, L).id

14: end if
15: end for
16: end for
17: eBuckets.clear()
18: QueryLock.lock

19: Copy changes from TrW to TrR
20: Copy changes from postmp to pos
21: S ← S ∪ Stmp

22: Clear Stmp

23: Clear PL

24: QueryLock.unlock

25: end function

Since the stash is accessed by both read and write operations, adding a block
to the stash requires synchronisation using a mutex (i.e., query lock). Therefore,
queries are blocked during a write operation. However, a write operation requires
few operations only, such as adding the block to stash and updating the position
map, which adds a negligible overhead. Note that if the stash is full, RoORAM
will automatically evict the blocks (see Sect. 4.5).

To write data∗ to the tree, RoORAM assigns a random path x to it by set-
ting pos[time] ← x and obliviously adds the block to the stash S with Oaccess.
Meanwhile, the block ID time is added to SL, as data∗ is stored in the stash.
Unlike other tree-based ORAMs, stash items in RoORAM are not evicted after
a write operation. Instead, stash items are evicted in batches after R read oper-
ations Sect. 4.5.

4.5 Batch Eviction and Trees Synchronisation

RoORAM performs R read operations on the read-only tree prior to a batch
eviction. As a result, RoORAM needs to write multiple paths at once in a single
non-blocking batch eviction. It is known that eviction in PathORAM is an expen-
sive process; hence, it can degrade the query performance. RoORAM addresses
this issue by blocking only queries during the execution of critical sections in
batch evictions. Note that there are a few steps during eviction where RoORAM
needs to block queries. However, these steps have a negligible impact on query
performance, making the batch eviction a non-blocking process. As shown in
Algorithm 3, RoORAM splits the batch eviction into two phases:

Path Writing Phase (Lines 3–17, Algorithm 3). During the eviction phase,
RoORAM starts by acquiring a mutex for a short period to swap S and Stmp.
Swapping stash items allows query operations (read operations on the ORAM)
to insert blocks into S while batch eviction is in process. Note that moving stash
items is achieved by a simple reference swap instead of swapping data. The
eviction process writes all the accessed paths recorded in PL to the write-only

728 K. Bagher et al.

tree (lines 7 to 17). Specifically, for each path p in PL, RoORAM greedily fills the
path’s buckets with blocks from Stmp in the order from leaf to root. This order
ensures that the blocks are pushed into TrW as deep as possible. All non-evicted
blocks remain in Stmp to be evicted in subsequent batch evictions.

When RoORAM writes multiple paths to TrW , there can be an intersection
between two paths, at least at the root level. A bucket may be written several
times during a batch eviction (e.g., the root node’s bucket), causing a buckets
collision. RoORAM avoids that by writing every bucket only once. Such an
approach can improve performance by reducing the number of evicted buckets.
However, it leaks the number of intersected buckets to the adversary. RoORAM
prevents such leakage by performing fake access to all buckets in the intersected
paths.

Synchronisation Phase (Lines 18–24, Algorithm 3). At this point, TrR
needs to be synchronised with TrW to reflect the new changes. To synchronise
the two trees with minimal query blocking (Lines 18 to 24), RoORAM copies
only the written changes (i.e., paths) from TrW to TrR instead of copying the
entire tree. In addition, RoORAM copies the changes from postmp to pos and
any non-evicted blocks in Stmp to S.

4.6 RoORAM Efficiency Analysis

RoORAM’s operation overheads involve four main operations: accessing and
updating the temporary position map postmp, stash lookup table access SL,
read-only tree TrR path reading, and path lookup access PL. Each of these
operations is associated with a computational cost. For read operations Sect. 4.3,
accessing and updating postmp and the path reading from TrR both involve an
asymptotic cost of O(log N) due to recursive PathORAM and its position map
inside the enclave. Accessing SL costs O(log N) · R, while accessing PL costs
O(R). Therefore, the overall cost for a read operation is O(log N), yielding simi-
lar asymptotic complexity to PathORAM. Nevertheless, RoORAM shows higher
performance up to 2.5 times Sect. 6. This enhancement is due to RoORAM’s
design of decoupling the non-blocking read operations from the non-blocking
eviction process. The write operation Sect. 4.4 accesses postmp, S, and SL. I.e.,
O(log N) + O(log N) · R + O(log N) · R where R is a constant. Consequently,
the overall cost is O(log N). Finally, path writing during batch eviction requires
O(logN), and tree synchronization, which involves copying O(log N) · R items,
leads to an overall cost of O(log N).

4.7 Security of RoORAM

RoORAM. To prove the security of RoORAM, we adopt the standard security
definition for ORAMs from [25]. RoORAM is similar to PathORAM but excludes
two main points: 1) RoORAM stores all components in the enclave, whereas
PathORAM stores the stash and position map in the client; 2) PathORAM evicts
the stash data after each access, while RoORAM performs batch eviction after

TimeClave: Oblivious In-Enclave Time Series Processing System 729

R read operations. Therefore, the security definition of RoORAM is captured in
the following theorem.

Theorem 1. RoORAM is said to be secure if, for any two data request sequences
�y1 and �y2 of the same length, their access patterns A(�y1) and A(�y2) are compu-
tationally indistinguishable by anyone but the enclave.

Proof (Sketch). To prove the security of RoORAM, we focus on two primary
aspects. The first is related to the components and operations of RoORAM
when it handles storage and access within the enclave. All components, including
the stash, position map, and others, are accessed using oblivious primitives.
Therefore, the adversary cannot infer which item is accessed in the position
map pos, the temporary position map postmp, the stash S, temporary stash
Stmp, stash lookup SL, and path lookup PL. The second is related to reading
a path from the tree and the eviction process. RoORAM uses a batch eviction
approach after R read operations, contrasting the one-by-one eviction in Path
ORAM. Although this approach slightly relaxes the security guarantee, we add
extra dummy accesses to a new path, that has not been accessed since the last
round of eviction. This ensures that the adversary cannot distinguish between
sequences of operations, as long as R < 2L which is always the case in practice.

The full version of this paper with detailed proofs for RoORAM and Time-
Clave is available at https://arxiv.org/abs/2306.16652

5 TimeClave

In this section, we first describe how TimeClave generates summarized time series
data blocks and how these blocks are stored inside RoORAM. Then, we describe
how TimeClave utilizes these blocks to efficiently answer clients’ queries.

5.1 Block Generation

TimeClave stores the TSD as summarised data blocks based on the supported
aggregate functions instead of the raw data points. The block summarises raw
data points of a pre-defined time interval i.e., [ti, ti+1) with a fixed interval
T = ti+1 − ti. Larger intervals provide lower query accuracy but high perfor-
mance with less storage. To support multiple accuracy levels and higher query
performance, TimeClave generates blocks at different time intervals, i.e., aggre-
gation intervals V , where V = [T1, T2,] (See Sect. 5.2). The generated data
blocks are stored in RoORAM. Each block contains the aggregated values for
the supported aggregate functions for [ti, ti+1). A block is represented by an
array, where each item in the array contains all the aggregated values. By stor-
ing summarised blocks, TimeClave reduces the ORAM tree size and the query
latency.

https://arxiv.org/abs/2306.16652

730 K. Bagher et al.

5.2 Query Realisation

Point and Range Queries. TimeClave receives encrypted queries from clients
in the form Q = Ek(〈f, (ta, tb)〉) for a range query and Q = Ek(〈f, ta〉) for a point
query, where f is the aggregate function to be executed over the time interval
from ta to tb. When TimeClave receives a query, it first decrypts the query,
i.e., Q′ = Dk(Q) where k is the client’s private key. TimeClave then extracts
ta from Q′ and retrieves the data block using RoORAM. Once the block is
retrieved, TimeClave uses the aggregates position map to find the location of
the requested f ’s value in the block.

Range queries require retrieving multiple blocks and aggregated values, which
are then fed into an aggregation function to return the final result. Functions
such as min or max are straightforward to calculate, while others like average
and variance require a more complex approach (such as the moving average)
which involves using multiple aggregate functions.

Complex Analytics. TimeClave can also combine several aggregate values to
answer complex range queries. This is possible because TimeClave retrieves all
blocks within the queried time interval (ta, tb). Unlike cryptographic approaches,
blocks’ values are stored in plaintext inside the enclave. Hence, one can easily
combine and perform arithmetic operations on the aggregate values. TimeClave
can also in principle support sketch algorithms such as Count-Min, Bloom filter
and HyperLogLog. A single- or multi-dimensional sketch table can be flattened
and represented by a one-dimensional array. This allows TimeClave to store
a sketch table inside the data block as a range of values (instead of a single
aggregate value).

Query Optimisation. In RoORAM, query latency increases linearly with the
number of accessed blocks in range queries. The reason is that each block access
in RoORAM is independent of the preceding and subsequent access. Such an app-
roach allows RoORAM to offer a stronger leakage profile but degrades query per-
formance. To prevent this performance drawback, RoORAM optimises queries
by reducing the number of accessed blocks. RoORAM achieves this by main-
taining multiple ORAM trees with different time intervals V = [T0, T1, T2, ...],
where Ti−1 < Ti < Ti+1, with Ti ∈ V . Query optimiser works by examining the
client’s query Q = 〈SUM, (t1, t6)〉 and determining the optimal combination of
aggregation intervals to minimise the total number of accessed blocks.

6 Evaluation

In this section, we evaluate TimeClave while asking the following questions: 1)
What is the performance of TimeClave compared to the non-oblivious version
and ORAM Baseline?. 2) How do the internal components of RoORAM and the
levels of aggregation affect its performance?

Implementation and Setup. We implemented TimeClave and RoORAM in
∼4,000 lines of C/C++ code. Data and queries are encrypted using AES-GCM.

TimeClave: Oblivious In-Enclave Time Series Processing System 731

We evaluated TimeClave on a local network SGX-enabled server running on Intel
Xeon CPU E-2288G @ 3.70 GHz with 8 cores, 128 GiB RAM and an enclave size
of 256 MB. We simulate a client with 1 vCPU and 3.75 GB memory. We use
the time series benchmark suite [26] to generate CPU utilization dataset. The
dataset contains a single attribute (i.e., CPU usage). We initialise TimeClave to
store 24 h of readings (i.e., CPU usage), where each data block in the ORAM tree
represents 10 s of readings (i.e., T = 10 s). Each block stores 10 aggregate values,
each value consumes 4-bytes (B = 40 bytes). Each bucket in the tree stores 4
blocks (Z = 4). Therefore, the height of each tree in RoORAM is L = 13.

ORAM Baseline. We evaluated RoORAM against the widely adopted ORAM,
i.e., PathORAM [18]. Both PathORAM and RoORAM are integrated into Time-
Clave for evaluation. For a fair evaluation, we stored the stash, position map,
and the tree in plaintext inside the enclave for PathORAM. Moreover, we store
4 blocks in each bucket (Z = 4) for both ORAMs.

Non-oblivious Baseline. To understand the overhead of oblivious operations,
we evaluate TimeClave without RoORAM and oblivious operations (referred
to as non-oblivious). In detail, we replace RoORAM with non-oblivious stor-
age. This include ORAM tree, position maps and stashes. Such a setup allows
us to evaluate the overhead of obliviousness in TimeClave, i.e., RoORAM and
oblivious operations.

6.1 Evaluation Results

Query Latency. To understand TimeClave’s performance, Table 2 shows the
query latency for different query ranges and block sizes. We evaluated Time-
Clave using reasonable small block sizes, since the size represents the number
of supported aggregates, where a block size of 27 can store up to 32 aggregate
values. As expected, the query latency increases linearly with the query range.
The reason is that for each queried time interval, TimeClave needs to access one
path in RoORAM and retrieves (L+1) ·Z blocks from the ORAM. Similarly, the

Table 2. TimeClave Query latency (ms) for point and different range queries and B
block sizes. Note that RT is a range of intervals, where each interval represents a single
aggregated data block.

Range (RT) – Block size (bytes) –

B = 23 B = 24 B = 25 B = 26 B = 27

1 0.03 0.03 0.03 0.03 0.04

10 0.12 0.12 0.12 0.13 0.15

20 0.19 0.2 0.21 0.22 0.26

30 0.28 0.28 0.29 0.31 0.38

40 0.37 0.36 0.38 0.41 0.49

50 0.46 0.46 0.46 0.5 0.59

732 K. Bagher et al.

larger the block size is, the more overhead it will add to the query performance,
which is expected in a tree-based ORAM.

Figure 2a shows the query latency breakdown with a block size B = 27. The
majority of the overhead is due to ORAM and oblivious operations for point and
range queries. By omitting the SGX overhead (as it is consistent with different
query ranges), the ORAM operations overhead comprises between 80–85% of the
query latency. On the other hand, the overhead of oblivious operations comprises
between 15–20% of the query latency. Note that the ORAM overhead is reduced
in TimeClave by query optimisation as shown in Sect. 6.1.

(a) Latency breakdown
(b) Query latency

Fig. 2. A) Query latency breakdown with different query ranges (RT). SGX overhead
includes context switch and memory allocation inside the enclave. B) Query latency
with different eviction frequencies (R) and query range = 32 intervals.

Eviction Frequency. TimeClave evicts the blocks from the stash for every R
read-operation. Figure 2b demonstrates how R affects the query latency. With a
fixed query range of 32, the query has a negligible higher latency when the value
of R is smaller than the query range, i.e., tb−ta ≤ R. However, the latency drops
significantly when R is larger than the query range. This is because RoORAM
performs read-operations from the ORAM with less evictions.

Aggregation Intervals. In Fig. 3, we show how aggregation levels reduce query
latency in TimeClave. We set T = 1s as the baseline in this evaluation, i.e.,
TimeClave generates 1 block per second. Noticeably, query latency decreases
with larger aggregation intervals as less accesses occur to the ORAM. When
T = 20s, the speedup achieved in the query latency is 67× with 20× less memory
consumption (compared to T = 1 s). Note that TimeClave supports multiple
aggregation levels by maintaining a separate ORAM tree for each level. Despite
the fact that TimeClave consumes less memory for higher aggregation levels,
such an overhead can be neglected due to the large EPC size in SGX v2.

Comparison with Baselines. Figure 4b illustrates how TimeClave’s query
latency compares to the baselines. The latency grows linearly with the query
range for TimeClave and the baselines. For point queries, the latency overhead

TimeClave: Oblivious In-Enclave Time Series Processing System 733

Fig. 3. Query latency of different aggregation intervals.

of TimeClave and ORAM baseline compared to the non-oblivious TimeClave
is 1.5× and 2.5× respectively. RoORAM achieves higher performance than the
ORAM baseline due to its non-blocking read operations and efficient batch evic-
tion design. For range queries, TimeClave and ORAM baseline adds up to 12×
overhead to the query latency compared to non-oblivious TimeClave. As dis-
cussed earlier, the majority of the overhead is due to the ORAM access and the
oblivious operations in TimeClave and ORAM baseline. However, TimeClave
remains substantially faster than the ORAM baseline by 1.7–2× for both range
and point queries.

(a) Query throughput (b) Query latency

Fig. 4. TimeClave query latency and throughout compared to baselines.

Query Throughput. In Fig. 4a, we compare TimeClave query throughput with
the baselines. For point queries, TimeClave achieves up to 22K ops/s compared
to the ORAM baselines which achieves up to 12K ops/s. For range queries,
TimeClave achieves higher throughput than ORAM baseline by up to 2×, i.e.,
1.5K ops/s for RT ≥ 20. Similar to the query latency both TimeClave and
ORAM baseline add up to 6× overhead compared to non-oblivious TimeClave.
As mentioned in Section Sect. 6.1, the majority of the overhead is caused by
ORAM access and oblivious operations. Such overhead can be reduced in Time-
Clave by maintaining multiple aggregation intervals, which reduces the number

734 K. Bagher et al.

of accessed paths in RoORAM. For this, we avoid large query ranges in our
evaluation as the main goal of TimeClave is to summarise TSD and maintain
multiple aggregation intervals to achieve low query latency.

TimeClave Compared to Cryptographic Approaches. We evaluate Time-
Clave against the cryptographic solutions TimeCrypt [4], which supports aggre-
gate functions over encrypted time-series data. Without query optimization,
TimeClave achieves up to 16x lower query latency when the number of queried
blocks is below 6,000. TimeCrypt exhibits an almost constant latency of around
185 ms. However, with query optimization using multiple aggregations intervals,
TimeClave demonstrates a significant improvement in performance in compari-
son to TimeCrypt by orders of magnitude. Although the query latency for Time-
Clave increases with the number of queried blocks, querying 8,000 blocks results
in a query latency that is approximately 200x lower than TimeCrypt.

Without query optimisation, TimeClave achieves better performance when
the number of queried blocks is smaller than 6,000, while TimeCrypt shows
almost a constant latency of around 185 ms. Nevertheless, it is clear that Time-
Clave can achieve up to 16x better performance than TimeCrypt without the
query optimiser when the number for small range queries. With query opti-
misation, TimeClave achieves better performance than TimeCrypt by orders of
magnitude. Although the query latency for TimeClave increases with the number
of queried blocks, querying 8,000 blocks has around 200x lower query latency.

7 Related Work

7.1 Secure Time Series Processing

Cryptographic protocols have been widely adopted in building secure databases
[27] to execute expressive queries on encrypted data, while another line of work
leverages SGX, such as Oblidb [28], EncDBDB [29], EnclaveDB [30] and Oblix
[14]. However, these solutions either incur significant performance overhead or
are not optimised for time series processing. The most related works to Time-
Clave in the secure time series processing systems are TimeCrypt [4], Zeph and
Waldo [5]. TimeCrypt and Zeph employ additive homomorphic encryption to
support aggregated queries on encrypted data. However, both solutions are non-
oblivious, allowing the adversary to learn sensitive information by recovering
search queries or a portion of the encrypted records [12,13]. On the other hand,
Waldo [5] offers a stronger security guarantee than [4,5] by hiding query access
patterns. As Waldo adopts MPC, the network bandwidth adds significant over-
head to the query latency. TimeClave eliminates such overhead while providing
fully-oblivious query processing. Unlike previous solutions, TimeClave can be
easily scaled to support complex analytics as it processes TSD in plaintext inside
the enclave.

TimeClave: Oblivious In-Enclave Time Series Processing System 735

7.2 ORAM with Intel SGX

Another line of prior work has explored and combined SGX and ORAM to build
secure storage. For example, ZeroTrace [15] develops a generic oblivious block-
level ORAM controller inside the enclave that supports multiple ORAMs. Addi-
tionally, ZeroTrace focuses on hiding memory access patterns inside the enclave
while leaving ORAM storage outside the enclave. Similarly, Oblix [14] builds
an oblivious search index for encrypted data by using SGX and Path ORAM.
Oblix designs a novel data structure (ORAM controller) to hide access patterns
inside the enclave. Likewise, Oblix stores the ORAM storage on the server in
unprotected memory (outside the enclave). Moreover, Obliviate [31] and POSUP
[32] adopt SGX and ORAM to develop a secure and oblivious filesystem to read
and write data from a file within an enclave. Obliviate is optimised for ORAM
write operations by parallelising the write-back process to improve performance.
MOSE [33] adopts Circuit-ORAM for a multi-user oblivious storage system with
access control. Like previous solutions, MOSE stores the ORAM controller inside
the enclave while leaving the ORAM tree outside. Although MOSE parallelises
the ORAM read process, clients’ queries are blocked until the accessed blocks
are evicted. Unlike TimeClave, previous solutions are not optimised for handling
multi-user, non-blocking queries in the time series context.

8 Conclusion

In this work, we presented TimeClave, a secure in-enclave time series processing
system. While previous works [4,5] adopt cryptographic protocols, TimeClave
leverages Intel SGX to store and process ttime series data efficiently inside the
enclave. To hide the access pattern inside the enclave, we introduce an in-enclave
read-optimised ORAM named RoORAM capable of handling non-blocking client
queries. RoORAM decouples the eviction process from the read/write operations.
TimeClave achieves a lower query latency of up to 2.5× compared to our ORAM
baseline and up to 5.7–12× lower query latency than previous works.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their valuable comments and constructive suggestions. The work was supported in
part by the ARC Discovery Project (DP200103308) and the ARC Linkage Project
(LP180101062).

References

1. Vasisht, D., et al.: {FarmBeats}: An {IoT} platform for {Data −Driven} agri-
culture. In: USENIX NSDI, pp. 515–529 (2017)

2. Amazon Timestream. https://aws.amazon.com/timestream/
3. InfluxData. Influxdb (2020). https://influxdata.com
4. Burkhalter, L., Hithnawi, A., Viand, A., Shafagh, H., Ratnasamy, S.: TimeCrypt:

encrypted data stream processing at scale with cryptographic access control. In:
USENIX NSDI, pp. 835–850 (2020)

https://aws.amazon.com/timestream/
https://influxdata.com

736 K. Bagher et al.

5. Dauterman, E., Rathee, M., Popa, R.A., Stoica, I.: Waldo: a private time-series
database from function secret sharing. Cryptology ePrint Archive (2021)

6. Poddar, R., Lan, C., Popa, R.A., Ratnasamy, S.: {SafeBricks}: shielding network
functions in the cloud. In: USENIX NSDI, pp. 201–216 (2018)

7. Viand, A., Jattke, P., Hithnawi, A.: SoK: fully homomorphic encryption compilers.
In: IEEE S&P, pp. 1092–1108 (2021)

8. Sathya, S.S., Vepakomma, P., Raskar, R., Ramachandra, R., Bhattacharya, S.: A
review of homomorphic encryption libraries for secure computation. arXiv preprint
arXiv:1812.02428 (2018)

9. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Hasp@ isca, vol. 10, no. 1 (2013)

10. Tian, H., et al.: Switchless calls made practical in intel SGX. In: Proceedings of
the 3rd Workshop on System Software for Trusted Execution, pp. 22–27 (2018)

11. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your
secrets without page faults: stealthy page {Table − Based} attacks on enclaved
execution. In: USENIX Security, pp. 1041–1056 (2017)

12. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power
of {File− Injection} attacks on searchable encryption. In: USENIX Security, pp.
707–720 (2016)

13. Liu, C., Zhu, L., Wang, M., Tan, Y.-A.: Search pattern leakage in searchable
encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

14. Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An efficient obliv-
ious search index. In: IEEE S&P, pp. 279–296. IEEE (2018)

15. Sasy, S., Gorbunov, S., Fletcher, C.W.: ZeroTrace: oblivious memory primitives
from intel SGX. Cryptology ePrint Archive (2017)

16. Sahin, C., Zakhary, V., El Abbadi, A., Lin, H., Tessaro, S.: TaoStore: overcoming
asynchronicity in oblivious data storage. In: IEEE S&P, pp. 198–217. IEEE (2016)

17. Chakraborti, A., Sion, R.: ConcurORAM: high-throughput stateless parallel multi-
client ORAM. arXiv preprint arXiv:1811.04366 (2018)

18. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious ram protocol. J.
ACM (JACM) 65(4), 1–26 (2018)

19. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)
20. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.

J. ACM (JACM) 43(3), 431–473 (1996)
21. Law, A., et al.: Secure collaborative training and inference for XGBoost. In:

PPMLP, pp. 21–26 (2020)
22. Bulck, J.V., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom with

transient out-of-order execution. In: USENIX Security (2018)
23. Chen, Z., Vasilakis, G., Murdock, K., Dean, E., Oswald, D., Garcia, F.D.: VoltPil-

lager: hardware-based fault injection attacks against intel SGX enclaves using the
SVID voltage scaling interface. In: USENIX Security (2021)

24. Gullasch, D., Bangerter, E., Krenn, S.: Cache games-bringing access-based cache
attacks on AES to practice. In: IEEE S&P, pp. 490–505 (2011)

25. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652 (2011)

26. Timescale: Time series benchmark suite. https://github.com/timescale/tsbs
27. Demertzis, I., Papadopoulos, D., Papamanthou, C., Shintre, S.: {SEAL}: Attack

mitigation for encrypted databases via adjustable leakage. In: USENIX Security,
pp. 2433–2450 (2020)

28. Eskandarian, S., Zaharia, M.: ObliDB: oblivious query processing for secure
databases. arXiv preprint arXiv:1710.00458 (2017)

http://arxiv.org/abs/1812.02428
http://arxiv.org/abs/1811.04366
http://arxiv.org/abs/1106.3652
https://github.com/timescale/tsbs
http://arxiv.org/abs/1710.00458

TimeClave: Oblivious In-Enclave Time Series Processing System 737

29. Fuhry, B., Jain, H.J., Kerschbaum, F.: EncDBDB: searchable encrypted, fast, com-
pressed, in-memory database using enclaves. In: IEEE/IFIP DSN, pp. 438–450
(2021)

30. Priebe, C., Vaswani, K., Costa, M.: EnclaveDB: a secure database using SGX. In:
IEEE SP, pp. 264–278. IEEE (2018)

31. Ahmad, A. Kim, K., Sarfaraz, M.I., Lee, B.: Obliviate: a data oblivious filesystem
for intel SGX. In: NDSS (2018)

32. Hoang, T., Ozmen, M.O., Jang, Y., Yavuz, A.A.: Hardware-supported ORAM in
effect: practical oblivious search and update on very large dataset. Proc. Priv.
Enhanc. Technol. 1, 2019 (2019)

33. Hoang, T., Behnia, R., Jang, Y., Yavuz, A.A.: MOSE: practical multi-user oblivious
storage via secure enclaves. In: ACM CODASPY, pp. 17–28 (2020)

Efficient and Appropriate Key Generation
Scheme in Different IoT Scenarios

Hong Zhao1, Enting Guo1, Chunhua Su1(B), and Xinyi Huang2

1 University of Aizu, Tsuruga, Japan
chsu@u-aizu.ac.jp

2 Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

xinyi@ust.hk

Abstract. Most Internet of Things (IoT) devices have limited comput-
ing power and resources. Therefore, lightweight encryption protocols are
essential to secure communications between IoT devices. As a promis-
ing technique, physical layer key generation has been widely used in IoT
applications to secure communication between devices. In this paper, we
propose an Efficient and Appropriate Key Generation Scheme (EAKGS)
for various IoT scenarios. According to the characteristics of the channel
data, we design the pre-judgment stage to classify the values. Considering
the key generation requirements and measured values characteristics in
different scenarios, we propose efficient key generation schemes for static
and dynamic scenarios. Furthermore, we conduct real-world experimen-
tal analysis and validation of our scheme. We analyze the feasibility of
EAKGS from key generation rate, key error rate and randomness. Our
experimental results demonstrate that EAKGS meets the requirements
for adaptability and key performance.

Keywords: Prejudgment · Appropriate Key Generation Procedure ·
Key generation · Physical Layer Key

1 Introduction

The Internet of Things (IoT) is a network that connects various wireless devices
and communicates using sensors in order to serve users intelligently. It enhances
communication between devices and the cloud as well as within devices, which
makes modern life incredibly convenient. However, the convenience of IoT tech-
nology brings new risks. Because wireless channels have inherent broadcast char-
acteristics, a large amount of private and sensitive information are particularly
vulnerable to malicious attacks via wireless transmission. As a result, how to
ensure the security of wireless devices is receiving increasing attention.

One of the most effective ways to ensure communication security is to encrypt
wireless communication. Physical layer key generation methods have drawn a lot
of interest because they use physical data to produce keys. Wireless devices can
use the inherent randomness of wireless channels to create the shared keys with-
out the involvement of a third party. A source of randomness received signal
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 738–749, 2023.
https://doi.org/10.1007/978-981-99-7356-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_43&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_43

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 739

strength (RSS) that is easy to obtain is widely used to generate keys. Using
RSS to generate keys, Mathur et al. [1] proposed a horizontal crossing scheme.
Measurements are quantified based on a 2-level quantification in this scheme.
In [2], an adaptive key generation scheme is proposed. In contrast to [1], mea-
surements in [2] are grouped, and the reference levels are computed for each
group. To increase the key generation rate, the number of quantization levels can
be increased in accordance with the range of measured values. Four-levels and
multi-levels quantitative key generation schemes are designed respectively [3–5].
According to [6], a mean quantization scheme is created. Prior to quantizing
and encoding each interval, the scheme first determines the mean and median
for each interval. In order to bring down the bit error rate, the system in [7–9]
preprocessed the measured values using discrete wavelet and cosine transform.
Additionally, group keys can be generated with RSS. Several group key estab-
lishment schemes are suggested by dispersing RSS measurements among group
members, using the example of [10,11].

Although many efficient key generation schemes have been proposed, most of
them overlook a critical issue. The majority of existing schemes do not consider
the characteristics of channel data in different scenarios and rely on a single key
generation procedure. Additionally, the requirements for key performance also
vary with the characteristics of the measured values. A general and single key
generation procedure may not always be effective in generating qualified keys
using channel data accurately. To address this issue, we propose an Efficient
and Appropriate Key Generation Scheme (EAKGS) for various IoT scenarios.
The scheme primarily comprises procedures for channel data collection, pre-
judgment, privacy amplification, and key generation. Wireless devices can select
the most suitable key generation program based on the channel data character-
istics of different IoT scenarios. Our contributions are summarized as follows:

– We propose an appropriate key generation scheme for various IoT scenarios
that takes into account the different characteristics of channel data, which
is often ignored by existing schemes. We introduce the pre-judgment stage
to classify data based on channel data characteristics of various IoT scenar-
ios. After classifying the channel data, we design the suitable key generation
process that meets different scenarios.

– We design efficient key generation programs for the two mainstream scenarios
of static and dynamic, which simplifies the traditional key generation process.
Additionally, we evaluate the performance of our proposed scheme in terms
of key generation rate, key error rate, and randomness through experimental
analysis. The results demonstrate the feasibility and practicality of EAKGS.

The rest of this paper is structured as follows. The system and purpose of the
scheme are presented in Sect. 2. Section 3 provides the specifics of key generation
scheme. We implement the scheme and evaluate the performance in Sect. 4. This
paper is concluded in Sect. 5.

740 H. Zhao et al.

2 System and Observation

The system and security of EAKGS are defined in this section. After that, we
analyze the characteristics of experimental data and key generation requirements
in different scenarios.

2.1 System and Secure Model

(a) Static scenario. (b) Dynamic scenario.

Fig. 1. The system models of static and dynamic scenario.

System Model. As shown in Fig. 1, we have system models in two scenarios
involving two legitimate devices, Alice and Bob, and an attacker, Eve. Dur-
ing the key generation process, Alice and Bob stay within half a wavelength,
leading to similar channel estimates if detection time is under coherence time.
Eve is usually positioned beyond half a wavelength, and any closer movement is
observed. In static scenarios, Alice and Bob’s positions are fixed without changes
to the surroundings (see Fig. 1(a)). In dynamic scenarios, Bob moves but remains
within half a wavelength from Alice (see Fig. 1(b)), and the distance between the
attacker and legitimate parties remains over half a wavelength.

Secure Model. Our EAKGS scheme takes into the account passive attack. Eve
has the ability to listen in on legitimate devices and measure the open channel
between legitimate devices and itself. Eve has knowledge of the key generation
algorithm and methods used by legitimate devices during the key generation
process.

2.2 Analysis of RSS Values in Different Scenarios

We use Received Signal Strength (RSS) for key generation, analyzing its values
and key performance requirements across different IoT scenarios. The IoT scenar-
ios are largely categorized into static and dynamic. RSS values exhibit different
characteristics in each scenario. In static scenarios, RSS values typically range

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 741

from −25 to −35, exhibiting high similarity, low volatility, and entropy, with
easy mutation, as illustrated in Fig. 2(a) and (b). In dynamic scenarios, Fig. 2(c)
and (d) show RSS values ranging from −30 to −70, with low reciprocity, high
volatility and entropy due to environmental noise.

(a) The RSS values static scenario. (b) The part of details in static scenario.

(c) The RSS values of dynamic scenario. (d) The part of details in dynamic sce-
nario.

Fig. 2. The RSS values of static scenario and dynamic scenario.

In addition, different key performance requirements arise from these charac-
teristics. In static scenarios, characterized by low entropy and high similarity,
key generation demands high randomness and low Key Error Rate (KER) due
to low RSS variability and sudden noise-induced changes. In dynamic scenar-
ios, where RSS values have high entropy but weak reciprocity due to noise and
multipath fading, the need is for faster key generation, high randomness, and
low KER despite usually high KER affecting Key Generation Rate (KGR).

From the above analysis, we get the characteristics of the RSS values and the
requirements for key generation in different scenarios. Additionally, the empha-
sis on key generation performance varies depending on the scenario. Therefore,
it is essential to design key generation scheme that is appropriate for various
scenarios. Our EAKGS is also designed for this purpose.

742 H. Zhao et al.

Fig. 3. Overview of EAKGS.

3 Efficient and Appropriate Key Generation Scheme

3.1 Basic Idea of EAKGS

This section describes our EAKGS for wireless devices. We outline EAKGS in
Fig. 3, which includes the following steps:

Channel Data Collection. During the channel data collection phase, Alice
initiates EAKGS protocol. Alice keeps sending index probe packets to Bob. When
Bob receives the signal, he responds with an acknowledgment signal. Alice and
Bob collect data multiple times during coherence time and record the data as
rssa and rssb, respectively.

Prejudgment of Channel Data. The wireless devices enter the pre-judgment
phase after collecting channel data. In Sect. 2.2, we obtain channel data charac-
teristics for static and dynamic scenarios, respectively. The significant difference
between them is the volatility of the measured values. Calculating the variance
is the quickest and best method for identifying differences in volatility. There-
fore, we use the variance to pre-judge the channel data. If the variance of the
measured data is less than th, it is judged to be the measured value of the static
scene and run static key generation process (SKGP). Otherwise, it is the mea-
sured value of the dynamic scene, then runs dynamice key generation process
(DKGP).

Key Generation Procedure. SKGP and DKGP make up the key genera-
tion procedure. The primary objective of this stage is to generate shared keys
through processes like preprocessing, quantization, privacy amplification, or key
reconstruction. According to the characteristics of channel data and key require-
ments in various scenarios, our EAKGS optimizes and enhances the traditional
key generation steps, as shown in Fig. 3. The details of the two key generation
procedures will be elaborated in Sect. 3.2 and Sect. 3.3.

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 743

3.2 Overview of SKGP: Static Key Generation Process

Preprocessing. In the preprocessing stage, we use amplitude limiting filters
to eliminate abrupt channel data values. This filter is mainly used for static
data, and judges whether the data has a sudden change by the increment of
adjacent measurement values. This operation can filter out the mutation data
in the stable data and reduce the error rate of key generation.

Algorithm 1: The synchronize quantization
Input: Pre − rssa = [Pre − rssa(1), Pre − rssa(2), Pre − rssa(3),...,

Pre − rssa(i)]. (Preprocessed data values by Alice), the fluctuation
factor α.

Output: KA. (the bit stream generated by Alice)
1 Initialize the threshold function Q(x)=(Q1, Q2, Q3, Q4)
2 L = Length(rssa(i))
3 while L > 0 do
4 μ ← mean(Pre − rssa), max ← max(Pre − rssa), min ← std(Pre − rssa)

5 thµ ← μ, thmax ← max, thmin ← min
6 th+ ← μ + α ∗ (max − μ), th− ← μ - α ∗ (μ − min)
7 for i= 1 to L do
8 if thmax � Pre − rssa(i) � th+

9 QA(i) ← Q1

10 else if th+ � Pre − rssa(i) � thµ

11 QA(i)) ← Q2

12 else if thµ � Pre − rssa(i) � th−

13 QA(i) ← Q3

14 else if th− � Pre − rssa(i) � thmin

15 QA(i) ← Q4

16 QA← QA(1), QA(2), ...QA(n)
17 LQ = Length(QA)
18 Num = �LQ/3�
19 for i= 1 to Num do
20 for j = 1 to 3 do
21 QANum(i) = Sum(QANum(i)(j))

22 if QANum(i) = 3 KA(i) ← 1
23 if QANum(i) = 0 KA(i) ← 0
24 else QANum(i) discard

25 KA← KA(1), KA(2), ...KA(n)

Synchronize Quantization. Following the preprocessing stage, the measured
values are fed into the synchronous quantization algorithm, which produces the
initial key bit stream. We improved Yuliana’s algorithm [12] by increasing the
threshold and making the quantized bits more uniform. Algorithm 1 shows the

744 H. Zhao et al.

full details of synchronize quantization. In the algorithm’s lines 1–15, Alice trans-
forms the channel data into bit stream of 0 and 1. Firstly, the values within the
various thresholds are coded as 00, 01, 11, and 10 in the threshold function Q(x).
Secondly, the average value μ, maximum value max, and minimum value min
should then be calculated, along with the length of rssa. This establishes the
following thresholds thµ, thmax, thmin, th+and th−. Finally, all measured values
are converted into 0 and 1 bit streams and saved in QA in accordance with the
function Q(x).

Q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

00 thmax � x� th+

01 th+ � x� thµ

11 thµ � x� th−

10 th− � x� thmin

Key synchronization is done in lines 17–25 of the Algorithm 1. If three con-
secutive bits in QA are 000 or 111, and they are converted to 1 or 0, they
should be saved again as KNum; otherwise, they should be discarded. After the
conversion, Alice records the key KA and performs a synchronization operation.
The synchronization process is the process of removing inconsistent bits between
Alice and Bob. Alice sends the discarded block index number to Bob, so that
Bob’s quantized KB and KA are consistent. The above is the whole operation
of synchronous quantization.

Privacy Amplification. Due to the volatility of static scenario channel data,
key randomness during quantization is low. Hence, we employ a random extrac-
tor to enhance the randomness of quantized keys. The random extractor gen-
erates highly random, uniform, and source-independent output from a weakly
random entropy source and a short random seed. It can be represented as:

Extractor : {0, 1}n × {0, 1}d −→ {0, 1}m (1)

Where n, d, m ∈ Z. The extractor uses a weakly random n bit input and a
uniform d bit seed to yield an m bit output that appears uniformly random. All
quantized bits in our scheme are fed into the extractor to generate keys of 128
and 256 bits.

This completes the description of our SKGP in static scenarios.

3.3 Overview of DKGP: Dynamic Key Generation Process

Preprocessing. In Sect. 2.2, we discover that the channel data of dynamic
scenes have low similarity due to noise, so we use discrete cosine transform
(DCT) to preprocess the data [8]. The DCT transform has the advantage of

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 745

discarding the signal data’s higher frequency content. The channel data of legit-
imate devices are less similar to a result of these high-frequency noises. As a
result, this operation can reduce channel data noise and raise channel data sim-
ilarity between the legitimate parties.

Algorithm 2: The adaptive iteration quantization
Input: prerssa = [prerssa(1), prerssa(2), prerssa(3), ..., prerssa(i)].

(Preprocessed data values by Alice), the fluctuation factor α.
Output: KA. (the bit stream generated by Alice)

1 Initialize the threshold function R(x)

R(x) =

{
0 x � th−

1 x � th+

2 L = Length(prerssa(i))
3 while L > 0 do
4 μk ← mean(prerssa), σk ← std(prerssa)

5 th+
k ← μk + α ∗ σk, th−

k ← μk - α ∗ σk

6 for i= 1 to L do
7 if prerssa(i) � th−

k prerssa(i) ← 0

8 if prerssa(i) � th+
k prerssa(i) ← 1

9 else prerssa(i) ← prerssa(i)

10 KA← 0 1 0 1 0 1 1...1 0 0

Adaptive Iteration Quantization. To improve the utilization of data val-
ues, we design an adaptive iterative algorithm based on lossless quantization.
We introduce Algorithm 2 using Alice as an example in detial. Alice feeds the
rssa into the algorithm. Then she computes the length L = Length(prerssa) of
the input measurements, which is the quantized termination condition for loop
iterations. Alice estimates the mean uk and variance σk of the measurements
in round k of quantization. After that, Alice computes the reference levels th+

k

= μk + α∗σk and th−
k = muk − α∗σk, where α ∈ (0, 1) is the fluctuation

factor. Alice uses the threshold function R(x) to quantify the RSS values after
completing the preceding operations. If the RSS value is greater than th+

k , it
is marked as 1, and if it is less than th−

k , it is marked as 0. For the following
round of quantification, the measurements between th+

k and th−
k are loaded as

input. Until all RSS values have been processed, the quantization process is still
in progress. After the quantification phase is complete, Alice will start recording
the bit stream KA.

Key Reconstruction. To improve the security of the initial keys, we substitute
traditional key generation steps with key reconstruction using a fuzzy extrac-
tor [13,14]. This method generates identical random bits for similar inputs [15].
Alice initializes the parameters list(S, l, t), inputs W0 ∈ S, and generates public

746 H. Zhao et al.

information P and a random key R of length l. Bob uses P and Alice-generated
W

′
to output a random key R. Alice and Bob create an identical secret for all

W0,W
′ ∈ S if d(W0,W

′
) ≤ t.

This completes our description of DKGP in dynamic scenarios.

4 Performance Evaluation and Analysis

We use an indoor setting to carry out our plan. The experiment was carried out in
a 50 m2 office space. There are three devices in our implementation: Alice, Bob,
and Eve. They are all equipped with wireless cards to connect to wireless network
via WiFi. Two legitimate wireless devices communicate through the IEEE 802.11
protocol and do not have pre-stored shared keys. With the monitoring interface
to record received packets, Alice is set up in AP mode. Bob sends and receives
data packets while operating in monitor mode as a client. We simulate static
and dynamic scenarios for data collection separately, as planned in Sect. 2.2.

Security Analysis. The security of the EAKGS system model is ensured by the
following attributes: (1) Alice and Bob can extract a shared key if they exchange
probes within the coherence time, and (2) an attacker who is more than half a
wavelength away from Alice and Bob can’t acquire valuable key information. We
experimentally test our scheme’s security by positioning the attacker at different
locations. Figure 4(a) and (b) show the channel measurements taken by Alice,
Bob, and Eve in static and dynamic scenarios, respectively. Figure 4 reveals that
Alice and Bob have nearly identical measurements, whereas Eve, the attacker,
uses distinct measurements for eavesdropping. Without the same channel data,
the attacker cannot access the shared key, even if they know all algorithms used
in the key generation process.

(a) Static scenario. (b) Dynamic scenario.

Fig. 4. The RSS values of different scenarios.

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 747

Evaluation of Prejudgment. We collect channel data at different locations
indoors for pre-judgment. The Table 1 shows the variance of the data values at
different locations. We can easily see from the table that the variance of measured
values in static scenes is less than 10, whereas the variance of measured values
in dynamic scenes is generally greater than 30. As a result, in EAKGS, we can
set the pre-judgment threshold th in the range of 10–30. If the variance of the
channel data is less than th, they are considered as the data of the static scene;
otherwise, they are considered as the data of the dynamic scene.

Table 1. The variance in various scenarios.

V ar A B C D

Static scenarios 3.1699 5.1264 4.9848 13.0836

Dynamic scenarios 40.6552 39.4399 45.3233 43.9944

Evaluation of Key Performance. To evaluate key performance, the following
metrics are utilized.

– KER: the bit error rate is the ratio of mismatched bits to total generated bits
by the key generation procedure.

– KGR: the ratio of the number of generated bits by the key generation proce-
dure to the number of RSS values.

– Randomness: the uncertainty of generated bits.

The fluctuation factor α is the main parameter in the quantization stage in
SKGP and DKGP, determining the setting of the quantization threshold. The
quantization threshold has the greatest impact on the performance of the key
generation algorithm. As a result, we concentrate on the effect of α on KGR,
KER and randomness.

(a) KGR. (b) KER. (c) The number of 0 and 1.

Fig. 5. The evaluation metrics in SKGP.

The changes in KGR, KER and randomness as α changes in SKGP are
depicted in Fig. 5. Figure 5(a) shows that with α increases, the overall change

748 H. Zhao et al.

trend of KGR increases and then decreases. When α rises from 0.1 to 0.4, KGR
rises gradually; when α rises between 0.7 and 1.0, KGR rises above 0.985; and
when α rises above 1.0, KGR begins to fall. Figure 5(b) shows that as α rises,
the overall change trend of KER rises. KER is low when α falls between 0.7 and
0.9. Figure 5(c) displays how the generated key’s number of 0 and 1 changes as
α increases. The difference between the numbers 0 and 1 becomes smaller and
then increases as α increases. The number of 0 and 1 is equal when α is 1.0.

(a) KGR. (b) KER. (c) The number of 0 and 1.

Fig. 6. The evaluation metrics in DKGP.

Figure 6 indicates the variation of various performance parameters with α in
DKGP. KGR decreases as α increases, while KER increases. The distribution
of 0 and 1 in the key is initially uniform, but then the gap widens. When α is
between 0.1 and 0.3, KGR is higher, and when α is greater than 0.3, KGR is
lower. When α is between 0.3 and 0.4, the distribution of 0 and 1 is uniform.

In SKGP, when α is in the 0.7–1.0 range, the distribution of 0 and 1 in the
key is similar, and KGR is 0.985 or higher. In DKGP, α ranges between 0.1 and
0.3, KGR exceeds 0.9, and KER is the lowest, hovering around 0.1–0.15. Taking
into account the key requirements of various scenarios, the generated keys by
our scheme are feasible.

5 Conclusion

This paper proposes an efficient and appropriate key generation scheme for var-
ious IoT scenarios. The system primarily consists of channel data collection,
pre-judgment, and key generation procedures. We introduce the pre-judgment
stage to categorize data based on the channel data characteristics of various IoT
scenarios. We design efficient key generation programs for static and dynamic
systems based on classification and critical generation requirements in different
methods. This stage’s main task is to generate essential bits from channel data
using steps like preprocessing, quantization, privacy amplification, and necessary
reconstruction. In addition, we perform the security evaluation of the scheme and
examine the key’s performance in an indoor environment. The results show that
our EAKGS is qualified in crucial performance.

Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios 749

Acknowledgment. This work was partially supported by JSPS Grant-in-Aid for Sci-
entific Research (C) 23K11103.

References

1. Mathur, S., Trappe, W., Mandayam, N.B., Ye, C., Reznik, A.: Radio-telepathy:
extracting a secret key from an unauthenticated wireless channel. In: Proceedings of
2008 the Annual International Conference on Mobile Computing and Networking,
pp. 128–139 (2008)

2. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy,
S.V.: On the effectiveness of secret key extraction from wireless signal strength in
real environments. In: Proceedings of 2009 the Annual International Conference
on Mobile Computing and Networking, pp. 321–332 (2009)

3. Abdelgader, A.M.S., Wu, L.: A secret key extraction technique applied in vehicu-
lar networks. In: Proceedings of 2014 IEEE International Conference on Compu-
tational Science and Engineering, pp. 1396–1403 (2014)

4. Zhao, H., Zhang, Y., Huang, X., Xiang, Y.: An adaptive secret key establishment
scheme in smart home environments. In: Proceedings of 2019 IEEE International
Conference on Communications, pp. 1–6 (2019)

5. Ji, Z., et al.: Physical-layer-based secure communications for static and low-latency
industrial internet of things. IEEE Internet Things J. 9(19), 18 392–18 405 (2022)

6. Li, Z., Pei, Q., Markwood, I., Liu, Y., Zhu, H.: Secret key establishment via RSS
trajectory matching between wearable devices. IEEE Trans. Inf. Forensics Secur.
13(3), 802–817 (2017)

7. Zhan, F., Yao, N.: On the using of discrete wavelet transform for physical layer
key generation. Ad Hoc Netw. 64, 22–31 (2017)

8. Margelis, G., Fafoutis, X., Oikonomou, G.C., Piechocki, R.J., Tryfonas, T.,
Thomas, P.: Physical layer secret-key generation with discreet cosine transform
for the internet of things. In: Proceedings of 2017 IEEE International Conference
on Communications, pp. 1–6 (2017)

9. Weinand, A., de la Fuente, A., Lipps, C., Karrenbauer, M.: Physical layer security
based key management for LoRaWAN. In: Workshop on Next Generation Networks
and Applications (2021)

10. Thai, C.D.T., Lee, J., Quek, T.Q.S.: Secret group key generation in physical layer
for mesh topology. In: Proceedings of 2015 IEEE Global Communications Confer-
ence, pp. 1–6 (2015)

11. Tang, J., Wen, H., Song, H.-H., Jiao, L., Zeng, K.: Sharing secrets via wireless
broadcasting: a new efficient physical layer group secret key generation for multiple
IoT devices. IEEE Internet Things J. 9(16), 15 228–15 239 (2022)

12. Yuliana, M.: An efficient key generation for the internet of things based synchro-
nized quantization. Sensors 19(12), 2674 (2019)

13. Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extrac-
tors and authenticated key agreement from close secrets. IEEE Trans. Inf. Theory
58(9), 6207–6222 (2012)

14. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

15. Li, X., Liu, J., Yao, Q., Ma, J.: Efficient and consistent key extraction based on
received signal strength for vehicular ad hoc networks. IEEE Access 5, 5281–5291
(2017)

A Fake News Detection Method Based
on a Multimodal Cooperative Attention Network

Hongyu Yang1,2, Jinjiao Zhang2, Ze Hu1(B), Liang Zhang3, and Xiang Cheng4,5

1 School of Safety Science and Engineering, Civil Aviation University of China,
Tianjin 300300, China
zhu@cauc.edu.cn

2 School of Computer Science and Technology, Civil Aviation University of China,
Tianjin 300300, China

3 School of Information, The University of Arizona, Tucson, AZ 85721, USA
4 School of Information Engineering, Yangzhou University, Yangzhou 225127, China

5 Information Security Evaluation Center of Civil Aviation, Civil Aviation University of China,
Tianjin 300300, China

Abstract. In recent years, the spread of fake news in social networks has become
a serious threat to network security. To address this problem, various fake news
detection methods have been proposed. However, most of the existing methods
cannot jointly capture the intra-modal and inter-modal correlation relationships
between image regions and text fragments, resulting in the model not making full
use of multimodal information, thus limiting their ability to detect fake news accu-
rately. To solve this limitation, we propose a novel fake news detection method
based on a multimodal cooperative attention network (MCAND). Firstly, we use
BERT andVGG19 to learn text and image representations, respectively. Secondly,
the multimodal cooperative attention network is used to generate the high-order
fusion features that fuse the image and text representations by calculating the simi-
larity between the information segments in themodalities and the inter-modal sim-
ilarity. Finally, themultimodal fusion features are input into the fake news detector
to identify fake news. The experimental results show that the proposed MCAND
has outperformed the state-of-the-art (SOTA) method in terms of performance,
demonstrating its effectiveness.

Keywords: Multimodal Fusion · Fake News Detection · Social Network

1 Introduction

In recent years, with the rapid integration of news media and Internet platforms, social
networks have become the primary source of social hot news generation and dissem-
ination. The social network platform represented by Weibo and Twitter has gradually
become one of the primary channels for the public to gain and share the news. However,
while social networks facilitate public communication, they also lead to the emergence
and proliferation of fake news. Fake news [1] refers to news posts that intentionally
mislead readers and can be proved to be fake, which are highly misleading and spread

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 750–760, 2023.
https://doi.org/10.1007/978-981-99-7356-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7356-9_44&domain=pdf
https://doi.org/10.1007/978-981-99-7356-9_44

A Fake News Detection Method 751

quickly on social networks. In the face of highly harmful fake news, if it cannot be
detected and contained in time, it is very likely to trigger a storm of public opinion,
posing a serious threat to social order and network security.

The existing fake news detection methods can be categorized as machine learning-
based methods and deep learning-based methods. The methods based on machine learn-
ing design a large number of hand-crafted features from posts content and social envi-
ronment, and classifiers such as support vector machine [2] and decision tree [3] have
been used to detect fake news. However, the content of posts is diverse and complicated,
making it difficult to comprehensively capture with hand-crafted features. The methods
[4–6] based on deep learning use neural networks to extract a high-level representation
of posts.

With the development of social networks, the proportion of news containing only text
or image continues to decline, and the posts released on social media increasingly tend
to be multimodal. The above methods only consider a portion of the content of the posts,
which prevents the models from comprehensively understanding the content and hinders
their ability to detect multimodal fake news. Therefore, multimodal fake news detec-
tion methods have become a research hotspot. However, Existing multimodal methods
are insufficient to comprehensively exploit the relationship between the information of
each modality segment and the relationship between different modal features, and fail
to extract higher-order complementary information of news, potentially affecting the
detection performance.

To solve the challenges, we propose a fake news detection method based on a mul-
timodal cooperative attention network (MCAND), which detects fake news by jointly
modeling intra-modal and inter-modal correlations in a unified model. In summary, our
contributions can be summarized as follows:

• Wepropose a fake newsdetectionmethodbasedon amultimodal cooperative attention
network (MCAND). This method only relies on text and image features and models
the fusion features of text and image in a unified model to detect fake news.

• We propose a multimodal cooperative attention network, which generates high-order
fusion features that fuse the information of text and image by co-modeling the intra-
modal and inter-modal relationships of text and image. Where the text/image block
captures the context dependency within a single modal, and the cross-block captures
the dependency between different modalities to better understand multimodal data.

• We perform experiments on two benchmark datasets. The results demonstrate that
the proposed MCAND outperforms the state-of-the-art (SOTA) method by 3.8% and
4.5% in accuracy on the two datasets, respectively.

2 Related Work

In this section, we review existing work that focuses primarily on multimodal fake news
detection.

Wang et al. [7] proposed an event adversarial neural network inspired by generative
adversarial networks,which concatenates text and image features to generatemultimodal
fusion features and uses event discriminators to capture invariant features related to
specific events. However, the method of capturing fusion features by concatenating

752 H. Yang et al.

operations cannot effectively mine the relationship between multimodal information,
which affects the detection effect of fake news. Khatter et al. [8] proposed a multimodal
variational automatic encoder for fake news detection. This model first encodes the
visual and textual information of the news, and then uses the decoder to reconstruct the
visual and textual information, to effectively fuse multimodal information more through
the reconstruction task, However, this method does not consider the unique features of
single modal, which affects detection performance.

After that, some methods use information inconsistency between modalities to iden-
tify fake news. Zhou et al. [9] proposed a similarity-aware fake news detection method
that uses the image2text model to transform visual information into textual information
and detects fake news by comparing the similarity between visual and textual informa-
tion. However, this method ignores the dependency relationship between different modal
features, which reduces detection performance.

In addition, many scholars have conducted research from the perspective of multi-
modal information enhancement [10, 11]. Chen et al. [10] proposed a multimodal fake
news detection method based on ambiguity perception, which adaptively aggregates
single-modal features and cross-modal correlation. However, this method only uses the
inter-modal alignment module to generate semantically aligned single-modal represen-
tations, which does not fully mine the important features in a single modal, making
detection performance unable to be further improved.

In summary, most existing approaches are still shortcomings in the joint modeling
of intra-modal and inter-modal correlation, which is not enough to comprehensively
fuse multimodal features. This paper proposes a fake news detection method based on a
multimodal cooperative attention network. The proposed network achieves the mutual
enhancement of differentmodal informationwhilemaintaining the uniqueness of a single
modality, and generates fusion features for fake news detection.

3 Fake News Detection Method

3.1 Overall Framework

The overall framework of MCAND is shown in Fig. 1, including multimodal feature
extraction, multimodal cooperative attention network, and fake news detector. The main
work of each part is as follows:

• Multimodal feature extraction: Given a multi-modal post that includes textual and
visual information. we use the BERT [12] model to encode the text content and
generate the embedding vectors of the words. For the image in the posts, we use the
VGG19 [13] model to extract the region features of the image information.

• Multimodal cooperative attention network: Since text and image contain most of the
key features of news and the features of different modalities can complement each
other, a multimodal cooperative attention network is proposed to fuse the text and
image features. The network can be used to model the relationship between different
modalities, to generate fusion features that fuse multi-modal information.

A Fake News Detection Method 753

• Fake news detector: Fake news detector classifies news as real or fake according to
the fusion features. At this stage, the fully connected neural network and correspond-
ing activation function are used to generate the prediction probability to determine
whether the post is fake news.

Image

Text

VGG19

BERT

V

T

C
o
n
caten

ate

f

ImageBlock

TextBlock

Image-Text
CrossBlock

Text-image
CrossBlock

Multimodal Cooperative Attention Network

vtf

tvf

1-

Multimodal Feature Extraction Fake News Detector

C
o
n
caten

ate

Fake

Real

S
ig
m
o
id

F
C
L
ay
er

Fig. 1. The overall framework of the proposed MCAND.

3.2 Multimodal Feature Extraction

Text Feature Extractor. To accurately model the semantics and context of the words,
the BERT [12] model is used to generate the embedding vectors of the text. Given a text
content, we regard it as a sequence list of text words C = {c1, …, cn} (n represents the
number of words in the text). The feature representations of C encoded by BERT are
expressed as T = {t1, …, tn}, and ti represents the embedding vectors of the word ci.

Image Feature Extractor. To extract the high-level semantic information of the image
region, the VGG19 [13] model is used to capture the features of the image. Because the
last output of the VGG19 model will ignore some detailed image information, to model
the semantic features of the image regions more accurately, we will ignore the original
VGG19 classification network, and use the output features of the feature extraction layer
as the image features.

Given picture I, the VGG19model is used to extract image region featuresV.Where,
V = {v1,…, vm} is formed by concatenating the features of various regions in the image,
m represents the number of regions in the image and vi represents the characteristics of
the i-th region in the image.

3.3 Multimodal Cooperative Attention Network

To effectively fuse the text and image features of news, a multimodal cooperative atten-
tion network is proposed to model the intra-modal and inter-modal dependencies, to
generate feature representations that integrate multimodal higher-order complementary
information. A multimodal cooperative attention network is composed of text/image
blocks and cross-blocks. Inspired by the reference [14], we designed the Text/Image

754 H. Yang et al.

Muti-Head

Attention

Add&Norm

Feed Forward

Add&Norm

Pooling

Guided Attention

Add&Norm

Feed Forward

Add&Norm

Pooling

Add&Norm

Feed Forward

Add&Norm

TextCNN

Muti-Head

Attention

Add&Norm

Feed Forward

Add&Norm

TextCNN

Positional
Encoding

Positional
EncodingK V Q K V

Q

V T

ImageBlock TextBlockImage-Text
CrossBlock

Text-Image
CrossBlock

vf tf
v tf t vf

Guided Attention

Fig. 2. Illustration of the Text/Image Block and Cross-Block architecture in a multimodal
cooperative attention network [14].

Block and Cross-Block architecture. The illustration of the Text/Image Block and
Cross-Block architecture are shown in Fig. 2.

The multimodal cooperative attention network adopts a dual-stream structure. To
capture the image and text fusion features that fuse comprehensive information, the text
representation T and image representation V are used as the input of the network.

First, the fine-grained feature representations of each modality are learned through
text block and image block respectively. The text/image block is implemented based on
the improved self-attention block [15], which is composed of a self-attention layer and a
fully connected feedforward network layer. Between each layer is a residual connection
and a layer normalization. Since the standard attention block cannot capture the position
information, positional encoding is added to the text/image block to retain the position
information in the sequence and spatial location information of the image region, respec-
tively. In addition, to aggregate the features of each modality segment, Text-CNN [16]
and pooling operations are performed on the output of multi-head attention blocks in the
text/image block. In the text/image block, the key, value, and query in the self-attention
layer come from the same modality. The fine-grained representations of each modality
are obtained by calculating the correlation between the features of the same modality
segment, which captures the rich contextual dependency within the modality.

Secondly, to fuse the inter-modal context information, the fine-grained feature rep-
resentations of text and image are input into two parallel cross-blocks to capture the
mutually enhanced features of different modalities. The cross-block is a variant of the
text/image block. The query of each modality in this block is transferred to the atten-
tion layer of another modality as input. Therefore, the guided attention layer generates
attention pool features for each modality based on another modality.

A Fake News Detection Method 755

Then, using Text-CNN, we aggregate segment features into text features of fused
image information ƒt←v, and concatenate ƒt and ƒt←v as text features ƒtv withmultimodal
context information enhancement. Similarly, the image feature representations by fusing
multimodal contextual information ƒvt obtained.

Finally, use the summation operation to fuse features ƒtv and ƒvt as the output of a
multimodal cooperative attention network, which is defined as the multimodal fusion
features ƒt↔v:

ft↔v = αftv + (1 − α)fvt (1)

where α is the balance factor between ƒtv and ƒvt in multimodal fusion features.

3.4 Fake News Detector

Using the multimodal fusion features captured by the multimodal cooperative attention
network, the fake news detector classifies each post as either real or fake. The detector
consists of a fully connected neural network layer and a sigmoid activation function.
First, the multimodal fusion feature ƒt↔v is input into the full connection layer, then the
sigmoid activation function is used to predict whether the post is real or fake, and the
prediction probability of the post label is represented by:

ŷi = σ(wfi + b) (2)

where σ(.) represents the sigmoid activation function, ŷi is the prediction probability of
classification results of post i, ƒi is the multimodal fusion feature representations of post
i, and w and b are weights and biases, respectively.

In fake news detection, the cross-entropy loss function is used as the classification
loss function:

LC(θ) = −
∑

i

yi log ŷi (3)

where yi represents the real label of post i, and θ is the parameter of the model.

4 Experimental Results and Analysis

4.1 Experimental Setup

Datasets. This paper uses two real-world datasets collected from social media: Weibo
[17] and Twitter [18]. These datasets have been extensively utilized in previous multi-
modal fake news detection work [7, 10]. All baseline methods used the same datasets for
an apples-to-apples comparison. In the experiment, the Weibo dataset is divided into the
training set and test set according to the ratio of 8:2. The Twitter dataset is released to
verify the multimedia task, which aims to detect fake posts on social media. Its training
set contains news about 17 rumors, while the testing set contains about 35 rumors. For
Twitter datasets, multiple posts may share the same image.

756 H. Yang et al.

Implementation Details. For posts, we adopt a pre-trained BERT model to encode
text and use VGG19 which was pre-trained on the ImageNet dataset to extract image
region features. Referring to the experience of existing methods [7, 10], the parameters
of the pre-trained BERT and VGG19 are kept static to avoid overfitting. Note that, our
research is based on multimodal news that includes an image and text. Therefore, for
posts without an image attached, we generate a dummy image for data alignment.

4.2 Comparative Experiments and Analysis

The experimental comparison results of the MCAND model and baseline models on
Twitter andWeibo datasets are shown in Table 1 and Table 2. The following conclusions
can be obtained by observing the experimental results:

Table 1. Results of baselines compared with MCAND on Twitter datasets.

Methods Accuracy Precision Recall F1-score

SVM-TS [2] 0.529 0.488 0.497 0.496

CNN [5] 0.549 0.508 0.597 0.549

GRU [6] 0.634 0.581 0.812 0.677

EANN [7] 0.648 0.810 0.498 0.617

MVAE [8] 0.745 0.801 0.719 0.758

SAFE [9] 0.766 0.777 0.795 0.786

CAFÉ [10] (SOTA) 0.806 0.807 0.799 0.803

MCAND (ours) 0.851 0.874 0.820 0.846

Table 2. Results of baselines compared with MCAND on Weibo datasets.

Methods Accuracy Precision Recall F1-score

SVM-TS [2] 0.640 0.741 0.573 0.646

CNN [5] 0.740 0.736 0.756 0.744

GRU [6] 0.702 0.671 0.794 0.727

EANN [7] 0.782 0.827 0.697 0.756

MVAE [8] 0.824 0.854 0.769 0.809

SAFE [9] 0.763 0.833 0.659 0.736

CAFÉ [10] (SOTA) 0.840 0.855 0.830 0.842

MCAND (ours) 0.878 0.897 0.871 0.884

A Fake News Detection Method 757

1. In two datasets, the performance of SVM-TS is the worst among all models, which
indicates that the hand-crafted features are not sufficient to identify fake news. In addi-
tion, it is found that compared with the model SVM-TS, CNN and GRUmodels have
higher detection accuracy, which reveals that the performance of the deep learning
model is better than the machine learning model. However, the performance of CNN
is inferior to most baseline methods due to its inability to capture the dependencies
between long-distance words.

2. Through experiments on two datasets using single-modal andmulti-modalmethods, it
is found that most multi-modal models have higher accuracy than single-modal mod-
els, indicating that visual information contains additional supplementary information,
which can improve the efficiency of fake news detection. For example, EANN com-
prehensively considers textual and visual features and its performance has been sig-
nificantly improved. However, eliminating the features of specific events will reduce
the ability of the model to differentiate between real and fake post features.

3. SAFE is superior to CNN in two datasets, which shows that integrating similarity
features from different modalities is effective. In addition, MVAE has a better perfor-
mance compared to other multi-modal methods. It improves the generalization ability
of the model by using the self-supervised loss of fusion feature generation. However,
neither of them takes into account the unique characteristics of each modal, which
has a certain degree of impact on detection performance. CAFE adaptively aggre-
gates single-modal features and cross-modal correlation and has superior detection
performance than other methods.

4. On the two datasets, the performance of MCAND is superior to all baseline meth-
ods, which shows that MCAND captures single-modal fine-grained features and
cross-modal fusion features simultaneously through multimodal cooperative atten-
tion network and the generated fusion features comprehensivelymine the information
contained in different modalities, which is conducive to identifying fake news.

4.3 Ablation Experiment and Analysis

Because MCAND contains many key components, the variants of MCAND are
compared from the following aspects to prove the effectiveness of MCAND:

• MCAND\V: MCAND\V deletes visual information based on the MCAND model,
and only uses the text features.

• MCAND\C: MCAND\C deletes the fusion features obtained from the multimodal
cooperative attention network in MCAND, and concatenates the text and visual
representations as fusion features.

• MCAND\I: MCAND\I deletes the output of text/image blocks in the multimodal
cooperative network, and retains the fusion features that capture from the cross-block.

• MCAND\O: MCAND\O only uses the features of the inter-modal relationship
generated by text/image blocks and deletes the cross-block.

The performance comparison for the MCAND and its variants on Twitter andWeibo
datasets are shown in Fig. 3, and the following conclusions can be drawn:

1. Effects of visual information: Comparing the results of MCAND and MCAND\V on
two datasets, it is found thatMCANDperforms better thanMCAND\V, indicating that

758 H. Yang et al.

Fig. 3. The performance comparison for the MCAND and its variants on Twitter and Weibo
datasets.

visual information can provide supplementary information to improve the detection
performance of fake news.

2. Effects of multimodal cooperative attention network: Comparing the performance of
MCAND andMCAND\C, it is discovered that the accuracy and F1-score ofMCAND
are better than those ofMCAND\C. It is proved that themultimodal features generated
by the multimodal cooperative attention network can comprehensively integrate the
relationship between different modalities, thus improving the detection performance
of the model.

3. Effects of text/image block in multimodal cooperative attention network: Comparing
the performance of MCAND and MCAND\I, and the results show that MCAND is
superior to MCAND\I. This demonstrates that the text/image block in the network
can effectively capture the fine-grained features of each modality, which contains the
unique information of each modality and is conducive to fake news detection.

4. Effects of cross-block in multimodal cooperative attention networks: Comparing the
performance ofMCANDandMCAND\O, the results indicate thatMCANDperforms
better thanMCAND\O. This suggests that cross-block can generate attention features
based on another modality for each modal, which effectively fuses information from
cross-modal, achieving mutual enhancement of different modalities of information.

4.4 Parameter Analysis

To analyze the effects of hyperparameter α values, different α values are assigned for
experiments. To find the appropriate parameter α, the accuracy and F1-score are used
as evaluation metrics to measure the performance of the model under the influence of
different α parameter values.

The impacts of α for the Accuracy and F1-score of MCAND on Twitter and Weibo
datasets are shown in Fig. 4. From the figure, when α is 0.5, MCAND has the highest
accuracy and F1-score on Weibo datasets; when α is 0.7, the accuracy and F1-score
of the model on Weibo dataset are slightly lower than when α is 0.5. However, in the
Twitter dataset, when α is 0.7, the accuracy and F1-score of the model are the highest.
Compared with when α is 0.5, the performance of the model is significantly improved
when α is 0.7. To sum up, we set α to 0.7. Based on this setting, the MCAND has quite
an outstanding performance on two real public datasets.

A Fake News Detection Method 759

Fig. 4. Impacts of α for the Accuracy and F1-score of MCAND on Twitter and Weibo datasets.

5 Conclusion

To improve the performance of fake news detection, this paper proposes an MCAND
method. First, BERT is employed to generate the embedding vectors of the text, and
VGG19 is leveraged to extract the region features of the image. Secondly, themultimodal
cooperative attention network is used to model the relationship between intra-modal and
inter-modal, and the multimodal features are comprehensively fused. Finally, the fusion
features are input into the fake news detector for detection. Experimental results demon-
strate that the proposed method can achieve mutual enhancement of different modal
information while preserving the uniqueness of a single modality, and the generated
high-order fusion features can improve the performance of fake news detection.

In the future, we will explore more effective methods to extract text and visual
information and introduce external knowledge features related to the news to further
improve fake news detection performance.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China (Grant No. 62201576), the Civil Aviation Joint Research Fund Project of the National
Natural Science Foundation of China (Grant No. U1833107), the Fundamental Research Funds
for the Central Universities (Grant No. 3122022050), the Open Fund of the Information Security
Evaluation Center of Civil Aviation University of China (ISECCA-202202), and the Discipline
Development Funds of Civil Aviation University of China.

References

1. Zhang, X., Ghorbani, A.: An overview of online fake news: characterization, detection, and
discussion. Inf. Process. Manage. 57(2), 1–26 (2020)

2. Ma, J., Gao, W., Wei, Z.: Detect rumors using time series of social context information on
microblogging websites. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 1751–1754. ACM, Melbourne (2015)

3. Liu, X., Nourbakhsh, A., Li, Q.: Real-time rumor debunking on twitter. In: Proceedings of
the 24th ACM International on Conference on Information and Knowledge Management,
pp. 1867–1870. ACM, Melbourne (2015)

760 H. Yang et al.

4. Cheng, M., Nazarian, S., Bogdan, P.: VRoC: variational autoencoder-aided multi-task rumor
classifier based on text. In: Proceedings of the Web Conference 2020, pp. 2892–2898. ACM,
Taipei (2020)

5. Yu, F., Liu, Q., Wu, S.: A convolutional approach for misinformation identification. In: Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017),
pp. 3901–3907. AAAI Press, Melbourne (2017)

6. Ma, J., Gao, W., Mitra, P.: Detecting rumors frommicroblogs with recurrent neural networks.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
pp. 3818–3824. AAAI Press, New York (2016)

7. Wang, Y., Ma, F., Jin, Z.: EANN: event adversarial neural networks for multi-modal fake
news detection. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 849–857. ACM, London (2018)

8. Khattar, D., Goud, J.S., Gupta, M.: MVAE: multimodal variational autoencoder for fake news
detection. In: TheWorldWideWeb Conference, pp. 2915–2921. ACM, San Francisco (2019)

9. Zhou, X., Wu, J., Zafarani, R.: SAFE: similarity-aware multi-modal fake news detection. In:
Lauw, H., Wong, R.W., Ntoulas, A., Lim, E.P., Ng, S.K., Pan, S. (eds.) PAKDD 2020. LNCS
(LNAI), vol. 12085, pp. 354–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
47436-2_27

10. Chen, Y., Li, D., Zhang, P.: Cross-modal ambiguity learning for multimodal fake news detec-
tion. In: Proceedings of theACMWebConference 2022, pp. 2897–2905. ACM,Virtual Event,
Lyon (2022)

11. Wu, Y., Zhan, P., Zhang, Y.: Multimodal fusion with co-attention networks for fake news
detection. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 2560–2569. ACL, Bangkok (2021)

12. Devlin, J., Chang, M.W., Lee, K.: BERT: pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

14. Qian, S.,Wang, J., Hu, J.:Hierarchicalmulti-modal contextual attention network for fake news
detection. In: Proceedings of the 44th International ACMSIGIR Conference on Research and
Development in Information Retrieval, pp. 153–162. ACM, Virtual Event, Canada (2021)

15. Vaswani, A., Shazeer, N., Parmar, N.: Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS 2017), pp. 6000–
6010. Curran Associates Inc., Long Beach (2017)

16. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the
2014Conference onEmpiricalMethods inNatural LanguageProcessing (EMNLP), pp. 1746–
1751. ACL, Lisbon (2015)

17. Jin, Z., Cao, J., Guo,H.:Multimodal fusionwith recurrent neural networks for rumor detection
on microblogs. In: Proceedings of the 25th ACM International Conference on Multimedia,
pp. 795–816. ACM, Mountain View (2017)

18. Christina B., Katerina A., Symeon P.: Verifying multimedia use at mediaeval 2015. In:
MediaEval Benchmarking Initiative for Multimedia Evaluation, pp. 1–3 (2015)

https://doi.org/10.1007/978-3-030-47436-2_27
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1409.1556

Author Index

B
Bagher, Kassem 719
Bai, Jianli 333
Bhattacharjee, Arghya 69
Bhaumik, Ritam 69
Bi, Yingxin 645

C
Cao, Xiaogang 179
Chen, Jian 519
Chen, Liqun 683
Chen, Xi 608
Chen, Xiarun 702
Chen, Yenan 451
Chen, Yincen 19
Cheng, Xiang 750
Chiu, Wei-Yang 627
Choi, Soohyeon 399
Cui, Shujie 333, 719
Cui, Yaxin 3

D
Dai, Chenwei 519
Ding, Bolin 351
Dong, Yunyun 418
Dutta, Avijit 69

F
Fan, Ningjing 267
Fang, Liming 383
Feng, Zhuohui 19
Fu, Yeqi 702

G
Gao, Xuanqi 467
Geng, Kui 179, 284
Geng, Yifu 571
Ghodosi, Hossein 235
Guo, Chao 284

Guo, Enting 738
Guo, Lei 418

H
Hamidi, Amirreza 235
He, Debiao 35
He, Wenjian 435
Hu, Yuelin 317
Hu, Ze 750
Huang, Hong 435
Huang, Tianrong 19
Huang, Xinyi 738

J
Jiang, Erya 645
Jiang, Weipeng 467
Jin, Shan 608

K
Kang, Zhaozhe 302
Kou, Wenlong 179, 284

L
Lan, Dongwan 383
Leontiadis, Iraklis 197
Li, Fenghua 179, 284
Li, Haoran 418, 502
Li, Jiangfeng 370
Li, Linsen 451
Li, Ruxian 608
Li, Sanxi 645
Li, Shuaishuai 128
Li, Xingyang 435
Li, Xuhao 383
Li, Yong 608
Li, Yunpeng 683
Liang, Xuanyu 19
Liao, Hucheng 267
Lin, Chenhao 467
Lin, Dongdai 128, 351

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
D. Wang et al. (Eds.): ICICS 2023, LNCS 14252, pp. 761–763, 2023.
https://doi.org/10.1007/978-981-99-7356-9

https://doi.org/10.1007/978-981-99-7356-9

762 Author Index

Lin, Xuanwei 485
List, Eik 69
Liu, Fei 683
Liu, Renyang 502
Liu, Sijia 35
Liu, Weiran 351
Liu, Ximeng 485
Liu, Yongzhi 702
Lu, Jiqiang 51
Luo, Huan 519
Luo, Jiacheng 383
Luo, Min 35

M
Meng, Weizhi 627
Mohaisen, David 399
Mohaisen, Manar 399

N
Nakai, Takeshi 161
Newton, Christopher J. P. 683
Nyang, Daehun 399

P
Parthipan, Loganathan 683
Peng, Cong 35

Q
Qi, Wenfeng 3
Qin, Bo 571, 645
Qu, Hongyuan 110

R
Rudolph, Carsten 719
Russello, Giovanni 333

S
Salehi-Abari, Amirali 249
Shao, Hang 333
Shen, Chao 467
Shen, Xiaodong 665
Shi, Pengfei 534
Shi, Wenchang 571, 645
Shinagawa, Kazumasa 161
Sjursen, Johan Hagelskjar 627
Song, Kehui 370
Song, Ling 19
Song, Xiangfu 333
Song, Yuhan 590

Su, Chunhua 738
Su, Lichao 519
Sun, Jun 467

T
Tan, Lin 3
Tang, Wenyi 645
Thorpe, Julie 249
Tian, Minqiu 284

V
Vaudenay, Serge 197

W
Wang, Can 51
Wang, Donghui 683
Wang, Hao 383
Wang, Haoyu 553
Wang, Jingyi 467
Wang, Lei 370
Wang, Qifan 333
Wang, Qin 571, 645
Wang, Shengqian 249
Wang, Yuanyu 502
Wang, Yuntao 146
Wang, Yuyang 485
Wei, Fushan 590
Wen, Weiping 702
Wu, Bin 519
Wu, Huangxinyue 418
Wu, Qianhong 571, 645
Wu, Xiaofei 383
Wu, Yue 317

X
Xiao, Yuting 215
Xie, Chenglin 702
Xie, Yingke 179
Xu, Chang 665
Xu, Guangwu 110
Xu, Hong 3
Xu, Li 302
Xu, Maozhi 91
Xu, Wenliang 317
Xu, Yuwei 370, 553

Y
Yang, Hongyu 750
Yang, Qianqian 19

Author Index 763

Yang, Xubo 451
Yang, Zhou 702
Yi, Xun 719
Yu, Hewei 534
Yu, Xiaoling 146
Yuan, Xingliang 719
Yuan, Yali 370

Z
Zeng, Junyu 553
Zhang, Cong 128, 351
Zhang, Jin 502
Zhang, Jinhong 418, 502
Zhang, Jinjiao 750
Zhang, Liang 750
Zhang, Qian 702

Zhang, Rui 215
Zhang, Shiyao 665
Zhang, Xiaoming 665
Zhang, Xiaowu 333
Zhang, Yuexin 302
Zhao, Chenbin 302
Zhao, Dongdong 267
Zhao, Hong 738
Zheng, Wenyue 485
Zhou, Guoqing 91
Zhou, Lu 383
Zhou, Wei 418, 502
Zhu, Liehuang 665
Zhu, Yuefei 590
Zou, Futai 317
Zou, Huan 215
Zuo, Yuting 302

	 Preface
	 Organization
	Abstracts of Keynotes
	 TEE-assisted Crypto Systems: Towards Designing Practical Data Security Solutions
	 Covert&Side Stories: Threats Evolution in Traditional and Modern Technologies
	 Contents

	Symmetric-Key Cryptography
	SAT-Aided Differential Cryptanalysis of Lightweight Block Ciphers Midori, MANTIS and QARMA
	1 Introduction
	2 Preliminaries
	2.1 The Lightweight Block Cipher Midori-128
	2.2 The Tweakable Block Cipher QARMA-64

	3 Searching the Optimal Differential Characteristics with SAT Method
	4 Differential Attack on 12-Round Midori-128
	5 Related-Tweak Differential Attack on 11-Round QARMA-64
	6 Conclusion
	References

	Improved Related-Key Rectangle Attack Against the Full AES-192
	1 Introduction
	2 Preliminaries
	2.1 Description of AES
	2.2 Rectangle Attack
	2.3 Notations

	3 Guessing Key Strategy for a Nonlinear Key Schedule
	4 Improved Rectangle Attack on AES-192
	4.1 Distinguisher of AES-192
	4.2 A Detailed Description of the Attack on AES-192

	5 Discussion and Conclusion
	References

	Block Ciphers Classification Based on Randomness Test Statistic Value via LightGBM
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Electronic Codebook Mode
	3.2 Randomness Test Statistic Value
	3.3 LightGBM

	4 Block Ciphers Classification
	4.1 Feature Selection and Extraction
	4.2 Classification Scheme Based on LightGBM

	5 Experimental Results
	5.1 Evaluation Metrics
	5.2 Experimental Results and Analysis

	6 Conclusion
	References

	Cryptanalysis of Two White-Box Implementations of the CLEFIA Block Cipher
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The CLEFIA Block Cipher

	3 Collision-Based Attack on Su et al.'s White-Box CLEFIA Implementation
	3.1 Su et al.'s White-Box CLEFIA Implementation
	3.2 Attacking Su et al.'s White-Box CLEFIA Implementation

	4 On the Security of Yao Et Al.'s White-Box CLEFIA Implementation Against Collision-Based Attack
	4.1 Yao Et Al.'s White-Box CLEFIA Implementation
	4.2 Security of Yao Et Al.'s Implementation Against Collision Attack

	5 Concluding Remarks
	References

	PAE: Towards More Efficient and BBB-Secure AE from a Single Public Permutation
	1 Introduction
	2 Preliminaries
	3 Definition of PAE
	4 Proof of Theorem 1
	5 Analysis of Good Transcripts
	5.1 Establishing a Lower Bound on p(Tr*)
	5.2 Lower Bound of p1(Tr*)
	5.3 Lower Bound of p2(Tr*)

	6 Instantiation
	7 Software Implementation for 32-bit Microcontrollers
	8 Summary
	References

	Public-Key Cryptography
	A Polynomial-Time Attack on G2SIDH
	1 Introduction
	2 Preliminaries
	2.1 Abelian Varieties and Isogenies
	2.2 G2SIDH
	2.3 Efficient Attacks on High-Dimensional SIDH

	3 Isogenies Between High-Dimensional PPAVs
	3.1 Isogeny Computation Between High-Dimensional PPAVs
	3.2 The Number of -isogenies Between Dimension g PPAVs

	4 Parameter Tweaks in 4g-attack
	4.1 Select Suitable NA' and NB'
	4.2 Generate New Public Key When Selecting NA'
	4.3 Generate New Public Key When Selecting NB'

	5 Efficiency Analysis
	5.1 General Analysis
	5.2 Concrete Attack Algorithms on G2SIDH

	6 Conclusion
	A Algorithms
	References

	Improvements of Homomorphic Secure Evaluation of Inverse Square Root
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Notations
	2.2 CKKS Homomorphic Encryption Scheme
	2.3 Approximation Theory

	3 Iterative Algorithm for Inverse Square Root
	3.1 Why Use an Iterative Approximation Algorithm Instead of Direct Approximation
	3.2 Newton's Method for Approximating Inverse Square Root

	4 Our Two Methods for Selecting Initial Value
	4.1 Taylor Expansion as Initial Value
	4.2 Rational Function as Initial Value

	5 Implementation Details and Experiments
	5.1 Implementation of Taylor Expansion Method
	5.2 Implementation of Rational Function Method
	5.3 Experiment Results

	6 Conclusion
	References

	Oblivious Transfer from Rerandomizable PKE
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Primitives

	2 Preliminaries
	2.1 Oblivious Transfer
	2.2 Rerandomizable Public-Key Encryption
	2.3 Reviewing the Previous PKE-Based OT Protocols

	3 Sender-Friendly Oblivious Transfer
	3.1 First Attempt: OT with Constant Sender-Cost and Exponential Receiver-Cost
	3.2 A Reduction from Long OT to Short OT
	3.3 Putting It All Together: OT with Sublinear Sender-Cost and Polynomial Receiver-Cost

	4 Receiver-Friendly Oblivious Transfer
	5 Comparision to the Previous OT Protocols Based on Special Types of PKE
	5.1 Comparison with Respect to 1-out-of-2 OT
	5.2 Comparison with Respect to 1-out-of-n OT

	6 Conclusion
	A From Bit-OT to String-OT
	A.1 Sender-Friendly 1-out-of-n String-OT
	A.2 Receiver-Friendly 1-out-of-n String-OT

	References

	Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model
	1 Introduction
	1.1 Contributions and Approaches
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 Lattices
	2.2 Hardness Assumption
	2.3 Lattice Algorithms

	3 Syntax of Forward Secure Ring Signature
	3.1 System Model
	3.2 Anonymity
	3.3 Forward Security

	4 Lattice-Based Construction
	4.1 Description of Key Update with Time Periods
	4.2 Our Lattice-Based Proposal
	4.3 Security Analysis

	5 Conclusion
	References

	Applied Cryptography
	Secure Multi-party Computation with Legally-Enforceable Fairness
	1 Introduction
	1.1 Backgrounds
	1.2 Related Works
	1.3 Our Contribution

	2 Preliminaries
	2.1 Basic Notations
	2.2 Public-Key Infrastructure
	2.3 Trusted Bank Functionality
	2.4 Secure Computation with Abort

	3 Existing Protocol for Two-Party Setting
	3.1 Ideal Functionality for Secure Two-Party Computation
	3.2 Two-Party Protocol with Legally Enforceable Fairness

	4 Secure Multi-party Computation with Legally Enforceable Fairness
	4.1 Ideal Functionality for Secure Multi-party Computation
	4.2 Proposed Protocol I: O(n) Rounds, O(n2) Communications, and O(n) Fees
	4.3 Proposed Protocol II: O(1) Rounds, O(n) Communications, and O(n2) Fees

	5 Conclusion
	A Security Proof for Proposed Protocol I
	References

	On-Demand Allocation of Cryptographic Computing Resource with Load Prediction
	1 Introdiction
	2 Related Work
	2.1 Resource Allocation
	2.2 Load Prediction

	3 System Model and Problem Formula
	3.1 System Model
	3.2 Problem Formula

	4 Load-Predicted-Based Cryptographic Computing Resource Allocation
	4.1 Cluster-Based Load Prediction Algorithm
	4.2 Load Prediction Based Resource Allocation Algorithm

	5 Experiment
	5.1 Experimental Setup
	5.2 Data Generate Method
	5.3 Accuracy of Load Prediction
	5.4 Performance Comparison of Resource Allocation Algorithms

	6 Conclusion
	References

	Private Message Franking with After Opening Privacy
	1 Introduction
	2 PMF: Private Message Franking
	2.1 Privacy Leakage with CEP
	2.2 Committing Nonce Based Authenticated Encryption with Partial Opening(CEPO)
	2.3 After Opening Privacy

	3 Facebook Franking
	4 CEP-AOP1
	4.1 Description
	4.2 Security Analysis
	4.3 Shortcomings for CEP-AOP1

	5 CEP-AOP2
	5.1 Description
	5.2 Security Analysis

	6 Related Work
	A Proofs
	References

	Semi-Honest 2-Party Faithful Truncation from Two-Bit Extraction
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	2.1 System Model and Security
	2.2 Basic Operations
	2.3 Parallel Prefix Adder (PPA)

	3 Two-Bit Extraction
	3.1 Defining Two-Bit Extraction
	3.2 Trivial Construction for F2Bit-Extrl, s
	3.3 Improved Construction 2Bit-Extrl, s

	4 Truncation Errors and Faithful Truncation
	4.1 Why Local Truncation Fails
	4.2 Faithful Truncation from Two-Bit Extraction

	5 Experiments
	6 Conclusions
	References

	Outsourcing Verifiable Distributed Oblivious Polynomial Evaluation from Threshold Cryptography
	1 Introduction
	1.1 Background
	1.2 Applications
	1.3 Our Contribution

	2 Preliminaries
	2.1 Secret Sharing
	2.2 Threshold Paillier Cryptosystem with a Dealer
	2.3 Message Authentication Code
	2.4 Security

	3 Our DOPE Scheme
	3.1 Setup Phase
	3.2 Computation Phase

	4 Conclusion
	References

	Authentication and Authorization
	PiXi: Password Inspiration by Exploring Information
	1 Introduction
	2 Related Work
	3 System Design
	4 User Studies
	5 Results
	5.1 Evaluation of Nudging Efficacy
	5.2 Security Analysis
	5.3 Usability Analysis

	6 Conclusion
	References

	Security Analysis of Alignment-Robust Cancelable Biometric Scheme for Iris Verification
	1 Introduction
	2 Related Work
	3 Random Augmented Histogram of Gradients (RHoG)
	3.1 Step-1: Random Augmentation
	3.2 Step-2: Gradient Orientation and Magnitude Calculation
	3.3 Step-3: Matrix Partitioning and Histogram Formalization
	3.4 Step-4: Z-Score Transformation

	4 Reversing Z-Score Transformation
	5 Linkability Attack on RHoG
	5.1 Link with c and p Directly
	5.2 Link with T and p

	6 Experimental Results and Discussion
	6.1 Experiment on Reversing Z-Score Transformation
	6.2 Experiment on Linkability

	7 Conclusion
	References

	A Certificateless Conditional Anonymous Authentication Scheme for Satellite Internet of Things
	1 Introduction
	2 Related Work
	3 System Model
	4 Definition and Security Model of CA-CL-ISE
	5 Proposed Scheme
	5.1 SM2-CL-ISE Scheme
	5.2 Authentication System

	6 Security Analysis
	7 Performance Evaluation
	7.1 Theoretical Analysis
	7.2 Practical Simulation

	8 Conclusion
	References

	BLAC: A Blockchain-Based Lightweight Access Control Scheme in Vehicular Social Networks
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Related Work
	3 Preliminaries
	3.1 Linear Secret-Sharing Scheme (LSSS)
	3.2 Practical Byzantine Fault Tolerance (PBFT)

	4 System Model and Design Goals
	4.1 System Model
	4.2 Chain Tolerance Semi-trusted Model
	4.3 Security and Performance Goals

	5 The Proposed Scheme
	5.1 Construction of BLAC
	5.2 Ciphertext Piece Storage and Recovery

	6 Security Analysis
	7 Performance Analysis
	7.1 Computational Cost
	7.2 Storage Cost

	8 Conclusion
	References

	Privacy and Anonymity
	Link Prediction-Based Multi-Identity Recognition of Darknet Vendors
	1 Introduction
	2 Related Work
	2.1 Author Attribution and Author Alias
	2.2 Multi-identity Recognition in Darknet
	2.3 Labeling of Vendor Identity

	3 Data Acquisition and Preprocessing
	3.1 Data Acquisition
	3.2 Feature Extraction
	3.3 Sample Labeling

	4 Link Prediction
	4.1 Construct the Network
	4.2 Derive the Implicit Representation
	4.3 Link Prediction

	5 Experiment and Analysis
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusion and Future Work
	References

	CryptoMask: Privacy-Preserving Face Recognition
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Face Recognition
	2.2 Encoding Method
	2.3 Homomorphic Encryption
	2.4 Key-Switching
	2.5 Secret Sharing
	2.6 Secure Comparison

	3 Overview of Our Approach
	3.1 System Model
	3.2 Threat Model
	3.3 Overview of CryptoMask
	3.4 Data Representation

	4 CryptoMask Details
	4.1 Our Encoding Method
	4.2 Enrolment Process
	4.3 Evaluation Process
	4.4 Security Analysis
	4.5 Optimizations

	5 Performance Evaluation
	5.1 Efficiency

	6 Conclusion
	A Complexity and Security Analysis
	A.1 Complexity Analysis
	A.2 Security Analysis

	B Accuracy
	References

	Efficient Private Multiset ID Protocols
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Overview of Our Techniques

	2 Preliminaries
	2.1 Security Model
	2.2 Building Blocks

	3 Deterministic-Value (Oblivious) Programmable PRF
	3.1 Definitions
	3.2 Construction of dv-PPRF

	4 Private Multiset ID
	4.1 PMID from Sloppy OPRF
	4.2 PMID from Standard OPRF

	5 Applications
	6 Implementation and Performance
	6.1 Implementation Details
	6.2 Performance Analysis

	A Proof of Partial Obliviousness
	References

	Zoomer: A Website Fingerprinting Attack Against Tor Hidden Services
	1 Introduction
	2 Related Work
	2.1 WFA Against HS
	2.2 CNN-Based WFA

	3 Design of HS Fingerprint
	3.1 Analysis of HS Access Traffic
	3.2 HS Fingerprint Generation Based on Bursts

	4 Design of WFA Model
	4.1 Model Overview
	4.2 CNN Module
	4.3 GBA Module

	5 Experiments
	5.1 Experiment Settings
	5.2 Verification of HS Fingerprint
	5.3 Verification of GBA
	5.4 Performance Comparison in Closed-World Scenario
	5.5 Performance Comparison in Open-World Scenario

	6 Conclusion
	References

	An Enhanced Privacy-Preserving Hierarchical Federated Learning Framework for IoV
	1 Introduction
	2 Threat Model and Design Goal
	3 Method
	3.1 Hierarchical Secure Federated Learning
	3.2 Detection of Malicious Tampering
	3.3 Security Analysis

	4 Experimental Results
	4.1 Experimental Settings
	4.2 Results

	References

	Security and Privacy of AI
	Revisiting the Deep Learning-Based Eavesdropping Attacks via Facial Dynamics from VR Motion Sensors
	1 Introduction
	2 Preliminaries
	2.1 Speech-Related Facial Movement Data
	2.2 Bone-Borne and Air-Borne Vibrations
	2.3 Facial Dynamics from Motion Sensors
	2.4 Facial Anthropometric Differences

	3 Related Works
	4 Attack Overview
	5 Proposed Model
	6 Data Overview
	6.1 Data Collection
	6.2 Data Selection
	6.3 Data Segmentation

	7 Experiments
	7.1 Experimental Setup
	7.2 Targeted Attack
	7.3 Untargeted Attack
	7.4 Experiment Scenarios

	8 Results
	8.1 Targeted Attacks
	8.2 Untargeted Attacks

	9 Conclusion
	References

	Multi-scale Features Destructive Universal Adversarial Perturbations
	1 Introduction
	2 Related Work
	2.1 Image-Dependent Adversarial Attacks
	2.2 Image-Agnostic Adversarial Attacks

	3 The Proposed Method
	3.1 Non-targeted Universal Attack
	3.2 Targeted Universal Attack

	4 Experiments
	4.1 Universal Attack on CIFAR-10 Dataset
	4.2 Universal Attack on ImageNet Dataset

	5 Conclusions
	References

	Pixel-Wise Reconstruction of Private Data in Split Federated Learning
	1 Introduction
	2 Related Work
	2.1 Federated Learning
	2.2 Split Learning

	3 Method
	3.1 Security Analysis
	3.2 Threat Model
	3.3 DecodeNet System Overview
	3.4 Pseudo-sample Generator Training Phase
	3.5 DecodeNet Training Phase

	4 Experiments
	4.1 Experiment Setup
	4.2 Experiments on Different Datasets
	4.3 Ablation Experiments
	4.4 Impact of Differential Privacy

	5 Conclusion
	References

	Neural Network Backdoor Attacks Fully Controlled by Composite Natural Utterance Fragments
	1 Introduction
	2 Background
	2.1 Existing Backdoor Attack on NLP
	2.2 Limitations of Existing Attacks

	3 Multi-trigger Backdoor Attacks
	3.1 Threat Model
	3.2 EBA: Enhanced Backdoor Attack
	3.3 TFCBA: Trigger Frequency Controlled Backdoor Attack

	4 Attack Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results

	5 Conclusion
	References

	Black-Box Fairness Testing with Shadow Models
	1 Introduction
	2 Background
	3 Methodology
	3.1 Initial Shadow Model Building
	3.2 Discriminative Samples Generation
	3.3 Density-Diversity-Driven Multi-subspaces Strategy

	4 Experiments
	4.1 Dataset and Experimental Settings
	4.2 Effectiveness and Efficiency
	4.3 Threats from Structures of Shadow Models
	4.4 Time Performance

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References

	Graph Unlearning Using Knowledge Distillation
	1 Introduction
	2 Related Work
	2.1 Knowledge Distillation
	2.2 Machine Unlearning

	3 GUKD Unlearning Method
	3.1 Notations and Problem Formulation
	3.2 Motivation
	3.3 Graph Unlearning Using Knowledge Distillation

	4 Experiments
	4.1 Experimental Setup
	4.2 Single-Class Unlearning Experiment Results and Analysis
	4.3 Multi-class Unlearning Experiment Results and Analysis
	4.4 Comparison of Different Unlearning Frameworks Using Knowledge Distillation

	5 Conclusion
	A Appendix
	References

	AFLOW: Developing Adversarial Examples Under Extremely Noise-Limited Settings
	1 Introduction
	2 Related Work
	2.1 Adversarial Attack
	2.2 Imperceptible Adversarial Attacks

	3 Methodology
	3.1 Overview
	3.2 Problem Statement
	3.3 Normalizing Flow
	3.4 Generation of Adversarial Examples
	3.5 Objective Functions

	4 Experiments
	4.1 Settings
	4.2 Quantitative Comparison with the Existing Methods
	4.3 Attack on Defense Models
	4.4 Detectability
	4.5 Evaluation of Image Similarity

	5 Conclusions
	References

	Learning to Detect Deepfakes via Adaptive Attention and Constrained Difference
	1 Introduction
	2 Related Work
	2.1 Face Forgery Techniques
	2.2 Face Manipulation Forensics Methods

	3 Proposed
	3.1 Skipped Channel Attention Module
	3.2 Constrained Difference Module
	3.3 Adaptive Attention Module
	3.4 Loss Function

	4 Experiment
	4.1 Experimental Settings
	4.2 Intratesting
	4.3 Crosstesting
	4.4 Ablation Study
	4.5 Visualization

	5 Conclusion
	References

	A Novel Deep Ensemble Framework for Online Signature Verification Using Temporal and Spatial Representation
	1 Introduction
	2 Related Work
	3 Deep Ensemble Framework for Online Signature Verification
	3.1 Data Preprocessing
	3.2 CGRN for Local Representation Learning
	3.3 Global Feature Extraction with CNN
	3.4 Cosine Similarity-Based Ensemble Verifier

	4 Experiments
	4.1 Dataset and Protocol
	4.2 Implementation Details
	4.3 Experimental Results on DeepSignDB
	4.4 Ablation Study
	4.5 Comparisons with Existing Methods

	5 Conclusion and Future Work
	References

	Blockchain and Cryptocurrencies
	SCOPE: A Cross-Chain Supervision Scheme for Consortium Blockchains
	1 Introduction
	2 Related Work
	2.1 Cross-Chain Oracles
	2.2 Publish-Subscribe Schemes Using Blockchain

	3 Design of SCOPE
	3.1 Architecture of SCOPE
	3.2 Cross-Chain Process

	4 Cross-Chain Security Design
	4.1 Oracle Working Group Election Method
	4.2 Reputation Evaluation Method for Oracle Node
	4.3 Verification Method for Off-Chain Data Authenticity

	5 Experimental Evaluation
	5.1 Experimental Environment
	5.2 Results Analysis

	6 Conclusion and Future Work
	References

	Subsidy Bridge: Rewarding Cross-Blockchain Relayers with Subsidy
	1 Introduction
	2 Preliminaries
	2.1 Blockchain Model
	2.2 Light Client Protocol
	2.3 The Prover and Verifier Model

	3 Subsidy Bridge Framework
	3.1 Design Goal
	3.2 Basic Relay Design

	4 Incentive Design of Subsidy Bridge
	4.1 Token Model
	4.2 Extra Design Under Subsidy

	5 Evaluation
	5.1 Security Analysis
	5.2 Incentive Analysis
	5.3 Compare with Other Work
	5.4 Discussion Towards Costs

	6 Related Work
	7 Conclusion
	References

	Towards Efficient and Privacy-Preserving Anomaly Detection of Blockchain-Based Cryptocurrency Transactions
	1 Introduction
	2 Related Works
	3 Preliminary
	3.1 Paillier Cryptosystem
	3.2 Decision Tree

	4 Problem Formulation
	4.1 System Model
	4.2 Threat Model
	4.3 Design Goals

	5 Design and Implementation
	5.1 Initialization
	5.2 Key Generation
	5.3 Model Outsourcing
	5.4 Anomaly Detection

	6 Security Analysis
	7 Experiments and Evaluation
	7.1 Effectiveness and Efficiency Experiments
	7.2 Complexity Analysis

	8 Conclusion
	A Appendix
	References

	Blockchain Based Publicly Auditable Multi-party Computation with Cheater Detection
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Secret Sharing Based MPC
	3.2 ElGamal Encryption
	3.3 Pedersen Commitment
	3.4 Non-interactive Zero-Knowledge Proofs

	4 Blockchain based Multi-party Computation Scheme
	4.1 Initialization
	4.2 Input
	4.3 Computation and Verification
	4.4 End of the Protocol

	5 One 3PC Instantiation of Our Scheme
	6 Comparison and Analysis
	6.1 Schemes Comparison
	6.2 Privacy Preserving
	6.3 Correctness
	6.4 Public Auditability
	6.5 Fairness with Penalties

	7 Experiments Analysis
	8 Conclusion
	References

	Towards Quantifying Cross-Domain Maximal Extractable Value for Blockchain Decentralisation
	1 Introduction
	2 Background
	2.1 Types of MEV
	2.2 MEV-Geth
	2.3 MEV-Inspect
	2.4 Cross Domain MEV

	3 Data Collection and Extraction
	3.1 Scope Definition
	3.2 Getting Data
	3.3 Smart Contract Addresses
	3.4 Uniswap Fee Tiers
	3.5 Swap Logs
	3.6 Blocks
	3.7 Connector

	4 Implementation
	4.1 Python and Django
	4.2 Models
	4.3 The Connector
	4.4 Populating Tables

	5 Analysis and Results
	5.1 Data Overview
	5.2 First Analysis
	5.3 Second Analysis

	6 Conclusion
	References

	BDTS: Blockchain-Based Data Trading System
	1 Introduction
	2 Related Work
	3 Architecture and Security Model
	4 The BDTS Scheme
	5 Security Analysis
	6 Implementation and Evaluation
	7 Conclusion
	References

	Illegal Accounts Detection on Ethereum Using Heterogeneous Graph Transformer Networks
	1 Introduction
	2 Background
	3 Heterogeneous Information Network for Accounts
	3.1 Preliminaries
	3.2 Feature Analysis
	3.3 HIN Construction

	4 AHGTN Detection Model
	4.1 Data
	4.2 Classification Model

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Classification and Data Visualization
	5.3 Comparison

	6 Related Work
	7 Conclusion
	References

	System and Network security
	DRoT: A Decentralised Root of Trust for Trusted Networks
	1 Introduction
	2 Related Work
	3 The Concept of DRoTS
	3.1 DRoT Components
	3.2 DRoT Algorithms
	3.3 DRoT Protocols

	4 Security Model for DRoTS
	4.1 Correctness
	4.2 Unforgeability

	5 A Concrete Construction of a DRoT
	6 Security Analysis
	7 Implementation
	8 Conclusions
	A Implementation Overview
	References

	Finding Missing Security Operation Bugs via Program Slicing and Differential Check
	1 Introduction
	2 Background and Related Work
	2.1 Missing Security Operation Bug
	2.2 Program Slicing
	2.3 Related Work

	3 SSD: Program Slice-Based Missing Security Operation Detector
	3.1 Motivating Example
	3.2 System Overview
	3.3 Security Operation Identification
	3.4 Security Operation Peer Slice Construction
	3.5 Missing Security Operation Bug Detection

	4 Implementation
	4.1 Preparing LLVM IR for SSD
	4.2 Identifying Indirect Call

	5 Evaluation
	5.1 Slices Construction
	5.2 Bug Finding
	5.3 Comparison with Other Differential Analysis Tools

	6 Conclusion
	A Appendix
	References

	TimeClave: Oblivious In-Enclave Time Series Processing System
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 ORAM
	2.3 Oblivious Primitives

	3 System Overview
	3.1 Threat Model

	4 RoORAM
	4.1 Structure and Components
	4.2 Initialisation
	4.3 Read Operation
	4.4 Write Operation
	4.5 Batch Eviction and Trees Synchronisation
	4.6 RoORAM Efficiency Analysis
	4.7 Security of RoORAM

	5 TimeClave
	5.1 Block Generation
	5.2 Query Realisation

	6 Evaluation
	6.1 Evaluation Results

	7 Related Work
	7.1 Secure Time Series Processing
	7.2 ORAM with Intel SGX

	8 Conclusion
	References

	Efficient and Appropriate Key Generation Scheme in Different IoT Scenarios
	1 Introduction
	2 System and Observation
	2.1 System and Secure Model
	2.2 Analysis of RSS Values in Different Scenarios

	3 Efficient and Appropriate Key Generation Scheme
	3.1 Basic Idea of EAKGS
	3.2 Overview of SKGP: Static Key Generation Process
	3.3 Overview of DKGP: Dynamic Key Generation Process

	4 Performance Evaluation and Analysis
	5 Conclusion
	References

	A Fake News Detection Method Based on a Multimodal Cooperative Attention Network
	1 Introduction
	2 Related Work
	3 Fake News Detection Method
	3.1 Overall Framework
	3.2 Multimodal Feature Extraction
	3.3 Multimodal Cooperative Attention Network
	3.4 Fake News Detector

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 Comparative Experiments and Analysis
	4.3 Ablation Experiment and Analysis
	4.4 Parameter Analysis

	5 Conclusion
	References

	Author Index

