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Abstract. Artificial Intelligence (AI) is undergoing a significant trans-
formation. In recent years, the deployment of AI models, from Analyti-
cal to Cognitive and Generative AI, has become imminent; however, the
widespread utilization of these models has prompted questions and con-
cerns within the research and business communities regarding their trans-
parency and interpretability. A primary challenge lies in comprehend-
ing the underlying reasoning mechanisms employed by AI-enabled sys-
tems. The absence of transparency and interpretability into the decision-
making process of these systems indicates a deficiency that can have
severe consequences, e.g., in domains such as medical diagnosis and finan-
cial decision-making, where valuable resources are at stake. This survey
explores Explainable AI (XAI) techniques within the AI system pipeline
based on existing literature. It covers tools and applications across var-
ious domains, assessing current methods and addressing challenges and
opportunities, particularly in the context of Generative AI.

Keywords: Explainable Artificial Intelligence · Artificial Intelligence ·
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1 Introduction

The rapid development of Artificial Intelligence (AI) and the supporting domain
including Big Data and high-performing computational infrastructure has trig-
gered a tectonic shift. The substantial refinement of deep learning-based sys-
tems including foundation models(e.g. Transformer, GPT-4, Bard, DALL-E,
RoBERTa, etc.) has equipped the AI-based systems to penetrate high-stake
applications. These applications span across various critical domains, including

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
F. Zhang et al. (Eds.): WISE 2023, LNCS 14306, pp. 915–925, 2023.
https://doi.org/10.1007/978-981-99-7254-8_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7254-8_71&domain=pdf
https://doi.org/10.1007/978-981-99-7254-8_71


916 A. Hanif et al.

healthcare, finance, law enforcement, and agriculture [35,39]. This speedy pene-
tration has sociotechnical, privacy, and safety implications associated with these
intelligent systems and is categorized as an existential threat to the human race.
One of the key contributions to the scepticism is the non-transparent nature of
these models. The opaqueness of the ML algorithms restricts trust and resists
deployment in vulnerable domains.

AI is defined as a set of approaches to mimic human behaviour in general
whereas by and large, Machine Learning (ML) algorithms are predictive models
using existing data features to build class mapping during the learning phase.
This learning phase is based on the data retrieved from the usual user activ-
ities (e.g. online shopping, medical history, social interactions, customer pro-
files, etc.). This enormous amount of data is liable to contain human biases
and predispositions. So the decision models also have the innate ability to have
presumptions on the learning which can lead to wrong decisions. As black box
models are extensively developed and tested on huge datasets, numerous stake-
holders emphasize system transparency [23,24]. In general, people are restrained
from using techniques that are not justifiable and transparent, which results
in demanding ethical AI [38]. The increasing complexity of these opaque sys-
tems enhances performance, yet they still lack transparency. While designing
and developing the ML model, keeping transparency as a design consideration
drive impartial decision-making and can guarantee to use of important variables
to generate the model predictions.

As a consequence, Explainable Artificial Intelligence (XAI), an emerging fron-
tier of AI, is pertinent due to its ability to help answer the raised concerns and
mitigate the associated risks. XAI gives a suite of ML techniques to generate
an explainable model and develop a trustworthy human-understandable system.
Various communities are using explanations for Model decisions. The objectives
and perspectives of the developed various XAI system vary as per the need for
explanations. The contribution of this paper is summarized below. This paper
begins by providing an overview of the key requirements in the field and sub-
sequently conducts a comprehensive review of explainable artificial intelligence
(XAI) approaches for the machine learning (ML) pipeline. The review specifi-
cally focuses on different stages of the ML lifecycle to analyze and evaluate the
effectiveness of XAI techniques. This is an extension of our previous survey on
XAI techniques [16].

The paper is organized as follows. In Sect. 2, we discuss the terminology of
the domain. Following that, Sect. 3 contributes to providing the overview of the
approaches in XAI, and the evaluation and discussion on these approaches are
presented in Sect. 4. Lastly, the conclusion is highlighted in Sect. 5.

2 Desiderata for Explainable Artificial Intelligence

As the domain is emerging and we don’t have enough context, some research
works [6,21], are using the terms interpretability and explainability interchange-
ably, preventing the creation of common grounds. There is communal agreement
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Table 1. This table elucidates essential terminology within the XAI literature, serving
as a reference for clarifying the concepts explored in this study.

Terms Definition

Domain

Artificial Intelligence It refers to a branch of computer sciences focusing on developing the

machines capable of mimicking human intelligence.

Machine Learning It is the subset of AI techniques focused on learning from Experience with

respect to some classes of tasks and performance measures.

Explainable Artificial The capacity of the system to explain the results generated by the

Intelligence AI system [15]

Interpretable The ability of the models to be fundamentally human understandable

Machine Learning due to simpler nature [21].

Explainability It refers to the capacity of the AI system to cater to the specific

requirements of the audience in the explanations [28].

Explanation This term is defined as the outcome of the model to explain or clarify

its internal functionalities [5,20].

Interpretability It defines as a tendency of the system to produce the human-intelligible

understanding of the model decision making [21].

Ethical Terms

Fairness (unbiased) It refers to the ethical principle to treat individuals and groups

equitable [27].

Model Evaluation Measures

Transparency The degree to which a model can explain the route to reach the

decision [8].

Robustness The capacity of the model to be persistent in the model decision with

the minor input perturbations [2].

Trustworthy It defines the confidence in a system’s performance when facing

a given problem [35]

Completeness The system is complete when the system behavior can be anticipated

in more situations [13].

on the necessity for a formal definition of the nomenclature [1,14]. In this section,
we will outline the definitions that we adopt to comprehend the techniques within
the domain. This understanding will allow us to assess the capabilities of the
explanation system and evaluate its alignment with the responsible AI frame-
work.

Explainability has varying definitions; for this study, we refer to the defini-
tion: “Explainability aims to bridge the gap between the algorithm and human
interpretation of the decision-making process. It is capable of enhancing trust
by answering the how and why of the system” [28].

Interpretability from a user-centric view, is the human-intelligible expla-
nation of the model system output [7]. For different users understanding of the
system varies. A point of caution is reliance on human evaluations can lead to
persuasive systems rather than transparent systems. This limits the ability to
define the appropriate scope of interpretation. The selected terminology and the
definitions are listed in Table 1.
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3 Explainable Artificial Intelligence Methods

These days ML tends deep learning systems are complex and comprise many
more layers and huge training data and have achieved high accuracy [28]. Despite
these successes, the associated risks are a reluctance to adopt these models. The
challenge of the hour is to develop trustworthy systems with these complex sys-
tems with escalating performance to help the user to understand the why of
the decision to mitigate the associated risks. Now the next challenge is build-
ing trustworthy systems. So now with this development, we have achieved high
accuracy. There are numerous surveys on XAI [1,5,7,13,14,21] and explainable
deep learning [25,41]. All of these surveys cover a large body of work in dif-
ferent dimensions. A standard ML pipeline consists of several phases as shown
in Fig. 1. In this paper, We will analyze each phase and will discuss the XAI
approaches in the literature to address the various problems of each stage. As
various stakeholders are involved in the different stages of the pipeline. The
appropriate explanation to answer the various questions associated with the dif-
ferent phases of the ML pipeline.

Fig. 1. A snapshot of a standard machine learning lifecycle.

3.1 Data Collection and Preparation

The foremost and most crucial stage of the ML lifecycle. It refers to the process
of gathering and organizing data for utilization in machine-learning applications.
This is a multi-step phase to ensure data relevance, reliability, and accuracy of
the data using data cleaning, transformation, and integration techniques. The
generation of explanations for data sources can address different aspects. We
will classify these aspects into two categories: i) Detection of Data Bias, and iii)
Annotation and Labeling of Data.

Detection of Data Bias. Counterfactual explanations often take the form of
statements such as, “You were denied a loan due to an annual income of X. If
your income had been X+Y, you would have been approved for the loan” [37].



Comprehensive Survey XAI: Exploring Transparency and Interpretability 919

The goal of a counterfactual statement is to identify the smallest modification
in feature values that can yield the desired prediction.

Annotation and Labeling of Data. XAI can play a role in data annotation by
providing transparency and interpretability to the annotation process. Forward
Propagation-Based study [10] retrieved the feature importance with perturba-
tion and identified the accountable mask for the results. Altering or blurring
these salient features directly impacts the original classification outcome. These
predictions can then be analyzed and interpreted using various XAI techniques
to gain insights into the decision-making process of the model and understand
the factors influencing the predictions.

3.2 Feature Engineering and Selection

Feature Interaction Analysis. Saliency Based Approaches highlight the
importance of the region in the systems. These methods employ saliency maps
to comprehend the contribution and significance of features in specific deci-
sions. Visualization support aids in facilitating the comprehension of a diverse
audience, allowing them to discern which feature influenced the decision. Promi-
nent approaches proposed to calculate salience maps includes Integrated Gradi-
ents [34], SmoothGrad [32].

Outlier Detection. Automatic rule extraction Decompositional approaches
work on the neurons to mimic the rules from the network architecture. Studies
on transforming the neural network to the fuzzy rule are also available, the main
work is on the extraction of approximation from the neurons [43]. Rule extraction
techniques are valuable for identifying behavioural patterns, despite not being
completely faithful to the models. As a result, there’s a requirement for further
research on explainability to address this limitation. Adversarial Examples will
provide the interpretable model understanding. Most approaches suggest reduc-
ing the gap between the antagonistic example and the instance to be controlled
while adjusting the prognosis to the desired outcome of the system. This method
allows for diagnosing the outlier in the data [40].

3.3 Model Training

Propagation Based Approaches supports the identification of important
regions. The output of the model is feedback to the system. The robustness of the
system helps to understand the stability of the decision. Backpropagation-based
methods take derivatives of the output w.r.t. input and the system gradients.
These approaches are intrinsic as they are based on the important regions and
rely on the model structure to understand the important region. DeepLift [31], an
example approach assigns the positive and negative contributions to the features
based on the actual and retrieved output difference.
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3.4 Model Evaluation

One of the accepted convenient ways to explain networks is to develop proxy
models that can approximate the behavior of these networks, such methods are
referred to as ’model-agnostic’ approaches. Ribeiro et al. have exemplified the
proxy model by developing LIME(Local Interpretable Model-agnostic Explana-
tions) [26]. Whereas SHAP(SHapely Additive exPlanations) method [18] sup-
ports interpretability by assigning feature scores to each attribute. The under-
lying mechanism of these models is to use the input to generate the linear proxy
model to predict the behaviour by probing and perturbation. These models can
be evaluated for their faithfulness to the original models. Decision Trees, another
accepted type of proxy model, generate insights of Neural networks in equivalent
Decision Trees [4]. The tree equivalence holds for fully connected, convolution,
recurrent, and activation layers to satisfy the faithfulness. Although the gener-
ated trees are faithful these computations are computationally expensive and
take substantial computational resources and time to develop.

Attention Mechanisms are neural networks that learn to assign weights to
inputs or internal features, enabling them to focus on relevant information. These
approaches have demonstrated incredible success in various complex tasks [36].
While attention units are not explicitly trained to generate human-readable
explanations, they inherently provide a map of the information flow within the
network, which can be interpreted as a form of explanation.

Knowledge Infused Explanations are general knowledge and knowledge-
based methods. General Knowledge is generally referred to as a body of informa-
tion or facts acquired through intellectual processes and diversity is the key trait.
In this section, we will analyze the XAI techniques employing general knowledge
for enrichment. Kim et al. [17] utilize the Concept Activation Vector(CAV) and
analyze the importance of a concept in the task.

Knowledge-base (KB) Methods are deployed to enrich the model with human
knowledge using available corpora explanations, which are suitable for specific
situations. The KBs are generally represented as Knowledge Graphs(KG). The
knowledge graph can be employed in the model design to enrich the feature enti-
ties and system rules to improve the model performance and explain the deci-
sions. This is a known strategy for the recommender systems [19] to enrich the
relation to identifying the similarity. A knowledge-based system can be employed
after modeling to enhance reasoning, potentially through abductive reasoning,
by utilizing its knowledge base to provide richer explanations [12,29].

3.5 Model Optimization

Gradient-based explanation helps to understand the vector representation at
the system and the intermediate layer level. These layer-based vector representa-
tions support the ’transfer learning’ mechanism for the other problems to learn
from the underlying vector representation. These are not the real explanation
of the system, these are intermediate vectors for the system to understand and
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resolve similar problem understanding and learning patterns. CAM [42], and
GradCAM [30] are to name a few.

Explanation Generation Systems are designed to generate their own explana-
tion units. The primary working principle is to generate the ‘because’ part with
the model decision-making. These explanations are not directly interpretable
and need proper evaluation to have faith in the model-generated answers.
TEXTVQA [22], an extension of VQA a system that generates the multimodel
explanation for the image captioning system can be visual as well as textual to
help to understand why a certain caption is generated for the visual.

3.6 Deployment

The explanation without the training data can be categorized into human col-
laboration and policy abstraction-based binary categories.

Human Alliance: The studies [3,9] proposed methods to automatically
build the explanation corpus for the system agents to guide humans. The net-
work learns to translate the action to the natural language generation. These
beginning steps to experiential studies and exploring the machine learning pat-
tern leads to a formal evaluation of the explanations to provide the information
related to the events based on the experience gained throughout the processes.

Policy Abstraction highlights the policy information from the experience
of the player. The generated summary is capable to enrich the context to under-
stand the explanation of a specific action in the circumstances. A few relevant
studies are [3,33] the former study proposes the framework for abstraction and
the latter support various abstraction levels for the same to be used in the system
for the following action plan generation.

3.7 Monitoring and Maintenance

XAI can help detect and understand data drift by supplying explanations for
model predictions, identifying changes in feature importance, and monitoring
shifts in underlying patterns, enhancing the model’s adaptability. incremental
Permutation Feature Importance(iPFI) on the interpretation of the complex fea-
ture is proposed by [11].

4 Discussion

The utilization of XAI techniques is crucial for algorithm transparency and inter-
preting model decisions, leading to improvements in the machine learning lifecy-
cle. These techniques aid in understanding the decision-making process of models
at different stages of the pipeline and enable achieving transparency objectives
based on system requirements. We will summarize the approaches at the vari-
ous stages of the ML pipeline in Table 2. Applying XAI techniques can indeed
provide numerous benefits across various aspects of machine learning models.
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Table 2. An overview of selective XAI approaches across various stages of the ML
pipeline.

Data TypeML

Pipeline

XAI

Methods

Type of

Explanation
Inter. Trans.

T I Te G

Counterfactual Instance-Based o o � � � �Data

Collection Forward Prop. Prop. Based o x � � � �
Van. Grad Saliency Based o o � � � �
Integ. Grad. Saliency Based o o � � � �
SmoothGrad Saliency Based x o � �
DeepRed Autom. Rule Extr. o o �
DIFFI Isolation Forest o o � �
FuzzyRules Autom. Rule Extr. o o �

Feature

Engineering

and

Selection

Advers.Ex. Insatnce Based o o � � � �
LRP Gradient Based o o � � � �
DeepLift Gradient Based o o � � �
Atten. Rollouts Attention Based o x � �
SHAP (Game Theory) o x � � � �
LIME MA Perturb. based o x � � �
Decision Trees Intr. Rule Based o o � � �

Model

Training

Capture attention Self-atten. Net. o o � �
Model Eval. CAV/TCAV Knowledge Based o x � � �

Semantically corr. Knowledge Based o x � � �
GradCAM Gradient Based o o �

Model

Optimization

and Tunning TEXTVQA Multimodel Expla. o x �
Human Alliance Experience Based o x - - - -

Deployment
Policy Abstraction Experience Based o x - - - -

Monitoring PFI Feature Importance o o � �

Through XAI, data quality can be evaluated, quantified, and remedied. Expla-
nations aid in data selection, identifying valuable information for improvement,
and enabling adjustments to ensure fairness and equity in the model’s perfor-
mance. XAI techniques have the tendency to support data discretization and
feature interaction analysis. The integration of XAI with data discretization and
feature interaction analysis enhances our understanding and enhances the reli-
ability of the machine learning models. Moreover, XAI techniques contribute
to privacy protection. XAI techniques allow for the interpretation of models
without compromising individual privacy. In conclusion, applications of XAI
techniques bring several benefits to machine learning models. XAI techniques
enhance transparency, fairness, and reliability. By leveraging XAI, organizations
can make informed decisions, address ethical concerns, and build robust and
trustworthy AI systems.

5 Conclusion and Future Directions

In this paper, a comprehensive and systematic review of the development of XAI
approaches for the machine learning pipeline is presented. XAI posed several
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challenges, from complex infrastructure to computational cost, but the strategic
choices of the explanation techniques with the defined objective are beneficial
and can mitigate the risks associated with the high-stake application. Deploy-
ing the right approach for the explanation of the model decisions can not only
enrich the business processes but help to build faith in the system results. In these
times of generative AI and the foundation models, systems are suffering from
the inaccessibility to system understanding, and XAI can fill the gap in human
understanding and model decision-making in high stake decisions. The expla-
nation generation and evaluation framework for the machine learning pipeline
can strengthen the downstream applications even derived from the foundation
models. Appropriate XAI techniques with the relevant metrics for computational
and cognitive evaluations of the model are a key step to proceed.

Acknowledgement. We acknowledge the Centre for Applied Artificial Intelligence
at Macquarie University, Sydney, Australia, for funding this research.

References

1. Adadi, A., et al.: Peeking inside the black-box: a survey on Explainable Artificial
Intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Alvarez-Melis, D., et al.: On the Robustness of Interpretability Methods. arXiv
preprint arXiv:1806.08049 (2018)

3. Amir, O., et al.: Summarizing agent strategies. Auton. Agent. Multi-Agent Syst.
33(5), 628–644 (2019)

4. Aytekin, C.: Neural Networks are Decision Trees. arXiv preprint arXiv:2210.05189
(2022)

5. Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

6. Cabitza, F., Campagner, A., Ciucci, D.: New frontiers in explainable AI: under-
standing the GI to interpret the GO. In: Holzinger, A., Kieseberg, P., Tjoa, A.M.,
Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 27–47. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29726-8 3

7. Doshi-Velez, F., et al.: Towards A Rigorous Science of Interpretable Machine Learn-
ing. arXiv preprint arXiv:1702.08608 (2017)
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