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Abstract. Clustering-based relation discovery is one of the important
methods in the field of open relation extraction (OpenRE). However,
samples residing in semantically overlapping regions often remain indis-
tinguishable. In this work, we propose an adaptive clustering method
based on a relation repository to explicitly model the semantic differ-
ences between clusters to mitigate the relational semantic overlap in unla-
beled data. Specifically, we construct difficult samples and use bidirec-
tional margin loss to constrain the differences of each sample and apply
self-supervised contrastive learning to labeled data. Combined with con-
trastive learning of unlabeled data, we construct a relation repository to
explicitly model the semantic differences between clusters. Meanwhile, we
place greater emphasis on the difficult samples located on the boundary,
enabling the model to adaptively adjust the decision boundary, which
lead to generate cluster-friendly relation representations to improve the
effect of open relation extraction. Experiments on two public datasets
show that our method can effectively improve the performance of open
relation extraction.

Keywords: open relation extraction · contrastive learning · adaptive
clustering

1 Introduction

The goal of Open Relation Extraction (OpenRE) is to mine structured infor-
mation from unstructured text without being restricted by the set of predefined
relations in the original text. Methods for dealing with open relation extraction
can be roughly divided into two categories. One is Open Information Extraction
(OpenIE), which extracts relational phrases of different relational types from
sentences. However, this approach is limited by the redundancy of different rela-
tion phrases. The other category is unsupervised relation discovery, which focuses
on unsupervised relation clustering. Furthermore, the self-supervised signal pro-
vides an optimization direction for relation clustering. Hu et al. [6] proposed
a relation-oriented clustering method to predict both predefined relations and
novel relations.

In current methods, the encoder is guided to update relation representations
using pseudo-labels generated through clustering. However, these methods still
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face challenges when dealing with difficult samples that are classified incorrectly
due to semantic overlap between clusters. Specifically, instances with highly simi-
lar contexts but different relation types tend to lie at the boundary of two clusters
in the semantic space. As a result, during training, blurred decision boundaries
lead to the generation of incorrect guidance signals, causing these instances to
oscillate between the two clusters. This phenomenon significantly impedes the
accurate semantic description of relations and the appropriate categorization of
relation types.

By integrating the instance and class perspectives, we propose a novel app-
roach that leverages a relational repository to store relation representations in
clusters after each epoch. This allows us to address the limitation of optimizing
instances and clusters simultaneously under a single perspective. We utilize clus-
ter representations to capture and model the semantic distinctions between clus-
ters, enabling the model to effectively learn and optimize the decision boundary.
In addition, the introduction of the sample attention mechanism on the decision
boundary during the training process can improve the classification of difficult
samples from the perspective of clustering.

The major contributions of our work are as follows: (1) For predefined rela-
tions, bidirectional margin loss is used to distinguish difficult samples, and
instance-level self-supervised contrastive learning is enhanced for knowledge
transfer. (2) For novel relations, cluster semantics are aligned with relational
semantics on the basis of constructing a relation repository, and weights are used
to emphasize difficult samples in training. (3) Experiment results and analyses
on two public datasets demonstrate the effectiveness of our proposed method.

2 Related Work

Open relation extraction is used for extracting new relation types. The Open
Information Extraction (OpenIE) regards the relation phrases within the sen-
tence as individual relation types, but the same relation often has multiple sur-
face forms, resulting in redundant relation facts.

Unsupervised relation clustering methods focus on relation types. Recently,
Hu et al. [6] is an adaptive clustering model to iteratively get pseudo-labels on
the BERT-encoded relation representations, and then used the pseudo-labels as
self-supervised signals to train relation classifier and optimize the encoder. Zhao
et al. [16] followed SelofORE’s iterative generation pseudo-label scheme as part
of unsupervised training. In order to obtain the relation information from the
predefined data, they learned low-dimensional relation representations oriented
to clustering constraints with the help of labeled data. This method does not
need to design complex clustering algorithms to complete the identification of
relational representations. Different from them, we proposed a method based on
relation repository to explicitly model the difference in cluster semantics.
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3 Method

The training data set D includes predefined relation data Dl = {(sli, y
l
i)}Ni=1

and novel relation data set Du = {sui }Mi=1, N and M represent the number
of relation instances in each data set, sli in Dl and sui in Du are all relation
instances, including the sentence, as well as the head entity and tail entity in
the text. And the yl

i ∈ Y l = {1, ..., Cl} is the relation label corresponding to the
instance sli, the label is visible to the model during training, and the one-hot
vector corresponding to yl

i is represented as yl
i. Cu is provided as prior knowledge

to the model.
Our goal is to automatically cluster relation instances in all unlabeled

datasets into Cu categories, in particular, Cl ∩ Cu = ∅. Considering that the
data to be predicted in real-world scenarios does not only come from unlabeled
data, we use labeled and unlabeled data to evaluate the discriminative ability of
the model during testing.

3.1 Relation Representations

Given a sentence x = (x1, . . . , xT ), where T is the number of tokens in the sen-
tence, eh and et are two entities in the sentence and marked with their start and
end positions. The combination of them forms a relation instance s = (x, eh, et).

For the sentence x of the relation instance s, each token is encoded as h ∈ Rd

by the encoder f , where d represents the output dimension. The f here is the
pre-trained language model BERT [2]. We use the maximum pooling of the token
hidden layer vectors related to the head entity and the tail entity to obtain the
hidden layer vectors of the two entities:

h1, . . . , hT = BERT(x1, . . . , xT )
hent = MAXPOOL([hs, . . . , he])

(1)

where hent ∈ Rd represents the entity representation, s and e represent the
start and end positions of an entity, respectively. The concatenation of the head
entity representation hhead and the tail entity representation htail is regarded as
a relation representation, [, ] represents the concatenation operation:

zi = [hhead, htail] (2)

where the relation representation zi ∈ R2×d.

3.2 Bidirectional Margin Loss

To create a sample with the same relation type but different contexts from the
original, we randomly substitute the head entity and tail entity with other words
of the same entity type, and the representation of new sample is recorded as z+

i .
Furthermore, we randomly choose an instance of a different relation type from
the original instance and replace its head entity and tail entity with synonyms
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found in the original instance. This allows us to construct a sample z−
i with a

similar context but a distinct relation type.
In order to measure the difference between two difficult samples in the labeled

data in the same semantic space, the loss LH is used to limit the difference
between the cosine similarity between the original sample and the two difficult
samples to the range of [−m2, −m1]:

LH = max(0, sim(zi,z
−
i ) − sim(zi,z

+
i ) + m1)

+ max(0,−sim(zi,z
−
i ) + sim(zi,z

+
i ) − m2)

(3)

where sim(, ) is calculated by cosine similarity, the negative of m1 and the neg-
ative of −m2 represent the upper and lower bounds of semantic differences, and
m1 is set to 0.1 and m2 is 0.2 during training.

3.3 Knowledge Transfer

The objective of knowledge transfer is to obtain information pertaining to rela-
tion representations from labeled data and learn relation representations that
can be used to cluster unknown categories. In this paper, contrastive learning is
used for joint training on mixed datasets to transfer relational knowledge from
labeled data to unlabeled data. First we use the positive samples in Sect. 3.2 to
construct a positive sample set.

In each batch, for relation instance si in dataset D, where i ∈ N = {1, . . . , N}
is the sample number in the same batch, after obtaining the relation represen-
tation zi through relation encoding, follow the traditional contrastive learning
strategy, using NCE [4] as the contrastive loss function between instances:

LNCE−I
i = − log

exp (cos(zi, ẑi)/τ)
∑

n 1[n�=i] exp (cos(zi, ẑn)/τ)
(4)

where ẑi represent a positive example of zi, τ is the temperature coefficient,
1[n�=i] means that the expression value is 1 if and only if n is not equal to i,
otherwise it is 0.

Unlike traditional self-supervised contrastive learning tasks, there are labeled
data in each batch, in order to fully learn the relational knowledge of these
labeled data, we use an additional loss. Except for the constructed positive sam-
ples, all instances consistent with the current instance label are regarded as more
positive samples, while other class instances of the same batch are negative sam-
ples. Since the instances of the same category are in the same positive sample
set, it indirectly constrains the distribution consistency within the class, and the
loss function is as below:

LNCE−L
i = − 1

|P (i)|
∑

p∈P (i)

log
exp (cos(zi,zp)/τ)

∑
n 1[n�=i] exp (cos(zi,zn)/τ) (5)

where P (i) = {p ∈ N \i : yp = yi} represents the set of sample numbers with the
same label with the ith instance si in a batch. For unlabeled datasets, P (i) = ∅,
LNCE−L
i = 0. We construct the contrastive learning loss:
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LCL =
1
N

N∑

i

((1 − λ)LNCE−I
i + λLNCE−L

i ) (6)

where LNCE−I only has a pair of positive samples, LNCE−L use samples of the
same relational type as the positive sample set, and constrain the encoder to
learn representations that are sensitive to the semantic features of relations.λ
is used to balance LNCE−I

i and LNCE−L
i , avoiding the overfitting of predefined

relation.

3.4 Adaptive Clustering

Adaptively adjusting the clustering boundary method is used for unlabeled data
clustering, after each training epoch, each sample’s pseudo-label is modified to
the label set Y = {ŷ1, . . . , ŷBN}, ŷi ∈ [1, Cu], where B is the batch number of
unlabeled data sets.

In order to facilitate the measurement of the association of cross-category
instances with different categories, we use a repository set of size BN/(Cu − 1)
M = {M1, . . . ,MCu} to store the enhanced instance of each category. For the
positive sample representation ẑu with the current pseudo-label ŷi, other pos-
itive sample data except Mŷi

are used as comparison sets Qi, Qi = {ẑu|ẑu ∈
Mj ∀j ∈ [1, Cu] and j �= ŷi}. After each backpropagation, the new relation
representation ẑu enters the corresponding queue Mŷi

, and the oldest representa-
tion added to the queue will be removed. The repository set maintains instances
of each category, which can be used as a basis to realize the division of relational
types. The process flow of this module for unlabeled data is shown in Fig. 1, each
category corresponds to a list to store related instances.

Decision 
Boundary

Cross 
Entropy

Fig. 1. Adaptive Clustering

In order to discover new relations using relation representations, we update
decision boundaries by maximizing the intra-cluster similarity and minimizing
the inter-cluster similarity and then updating the representations according to
the relation repository. The instance representations of each category stored
independently are used to construct the cluster center. For the current instance
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representation zu
i , we use p̃i,j to calculate the probability that it belongs to the

category j:

p̃i,j =

∑
ẑu∈Mj

exp (cos (zu
i , ẑu) /τ)

∑Cu

j′=1

∑
ẑu∈Mj′ exp (cos (zu

i , ẑu) /τ)
(7)

where τ is the temperature coefficient. This formulation measures the semantic
similarity of the current instance representation to instances of all categories.
The clustering decision boundary is shown below:

pi = Softmax
(
W�zu

i + b
) ∈ RCu

(8)

where W and b are the parameters of the decision boundary, and zu
i is mapped

to a Cu dimensional vector, each dimension represents the probability pi,j of the
corresponding category.

To align class semantics with relation categories, we minimize the cross-
entropy between the cluster assignment p̃i based on the semantic similarity in
the feature space and the prediction pi generated based on the decision boundary:

LCD = − 1
N

N∑

i=1

Cu
∑

j=1

p̃i,j log pi,j (9)

Due to the setting of relation repositories, samples are assigned to the most
similar category under the constraint of loss, while according to the adaptive
decision boundary, relation repositories are updated in time with the semantic
features corresponding to them. Following each epoch of training, the parameters
of the encoder and the decision boundary are optimized, the label of the instance
is updated by maximum likelihood estimation, and the relation repository is
updated according to the label:

ŷi = argmax
j

pi,j , j ∈ {1, . . . , Cu} (10)

During training, some samples may change label repeatedly in adjacent
epochs, which is formalized as:

sei = se−1
i + 1[ŷe

i �= ŷe−1
i ] (11)

where sei represents the instance si in the eth epoch of training. These samples
may be the difficult samples at the decision boundary. With the help of the
attention mechanism, higher weights are given to these samples so that the
model can achieve the correct prediction of the difficult samples:

we
i =

sei
∑N

j sej
(12)

where we
i represents the weight of zu

i in the eth epoch of training.
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We can update the weights in the instance discriminative loss LNCE−I , and
update LCL:

LNCE−I =
N∑

i=1

we
i LNCE−I

i (13)

LCL = (1 − λ)LNCE−I +
λ

N

N∑

i

(LNCE−L
i ) (14)

We set a cross-entropy loss in order to avoid the catastrophic forgetting
phenomenon of predefined relations in the process of guiding the discovery of
new relations. We use the softmax layer σ to map the relation representation
zl
i ∈ R

Cl

to a posterior distribution pc = σ(zl
i) with dimension Cl. The loss

function is defined as follows:

LCE = −
Cl∑

c=1

yc log(pc) (15)

The total loss is:

L = αLH + LCL + LCD + βLCE (16)

where α and β are hyperparameters used to balance the overall loss.

4 Experiments

4.1 Datasets

To assess the performance of our method, we conduct experiments on two rela-
tion extraction datasets. FewRel [5] consists of texts from Wikipedia that are
automatically annotated with Wikidata triple alignments in a far-supervised
manner followed by manual inspection. It contains 80 relation types, there are
700 instances in each type. TACRED [15] is a large-scale human-annotated
relation extraction dataset, including 41 relation types.

For FewRel, 64 types of relation in the original training set will be used as
labeled data, and the 16 types of relation in the original verification set will
be used as unlabeled data sets to discover new relations. Each type of data is
divided into the training set and the test set according to 9:1. For TACRED,
after removing instances labeled “No Relation”, the remaining 21,773 instances
are used for training and evaluation. Afterward, the 0–30 relation types are
regarded as labeled datasets, and the 31–40 relation types are regarded as unla-
beled datasets.In each dataset, 1/7 of the data is randomly selected as the test
set, and the rest of the data is divided into the train set.

We use B3 [1], V − measure [11] and ARI [7] to evaluate the performance
of the model, they are used to measure the accuracy and recall of clustering, the
uniformity and completeness of clusters, and the consistency between clusters
and the true distribution.
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4.2 Baselines

We select these OpenRE baselines for comparison:

Discrete-state Variational Autoencoder (VAE) [10]. VAE exploits the
reconstruction of entities and predicted relations to achieve open-domain relation
extraction.

HAC with Re-weighted Word Embeddings (RW-HAC) [3]. RW-HAC
utilizes entity type and word embedding weights as relational features for clus-
tering.

Entity Based URE (Etype+) [12]. Etype+ relies on entity types and uses
a link predictor and two additional regularizers on top of VAE.

Relational Siamese Network (RSN) [13]. RSN learns the similarity
of predefined relation representations from labeled data and transfers relation
knowledge to unlabeled data to identify new relations.

RSN with BERT Embedding (RSN-BERT) [13]. This method is based
on the RSN model and uses word embeddings encoded by BERT instead of
standard word vectors.

Self-supervised Feature Learning for OpenRE (SelfORE) [6]. Self-
ORE uses a large-scale pre-trained language model and self-supervised signals
to achieve adaptive clustering of contextual features.

Relation-Oriented Open Relation Extraction (RoCORE) [16].
RoCORE learns relation-oriented representations from labeled data with pre-
defined relations and uses iterative joint training to reduce the bias caused by
labeled data.

The unsupervised benchmark models include VAE, RE-HAC, EType+, the
self-supervised benchmark model is SelfORE, and the supervised benchmark
models include RSN, RSN-BERT, and RoCORE.

4.3 Implementation Details

Referring to the settings of the baseline model, we use BERT-Base-uncased to
initialize the word embedding. At the same time, in order to avoid overfitting,
we refer to the settings of Zhao et al. [16] and only fine-tune the parameters of
Layer 8. We use Adam [8] as the optimizer, 5e−4 as learning rate, and the batch
size is 100. α is 5e−4, 1e−3 on the FewRel and TACRED, β is set to 0.8, λ is
set to 0.35 on the two datasets, this parameter depends on the importance of
hard samples in predefined relations on different datasets. We use the “merge
and split” method [14] when updating pseudo-labels to avoid cluster degradation
caused by unbalanced label distribution. All experiments are trained on GeForce
RTX A6000 with 48 GB memory.

4.4 Main Results

The main results are shown in Table 1. The method proposed in this paper
exceeds the strong baseline model RoCORE on three main evaluation indicators
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Table 1. Experimental results produced by baselines and proposed model on FewRel
and TACRED in terms of B3, V-measure, ARI. The horizontal line divides unsuper-
vised and supervised methods.

Dataset Method B3 V − measure ARI

Prec. Rec. F1 Hom. Comp. F1

FewRel VAE 30.9 44.6 36.5 44.8 50.0 47.3 29.1

RW-HAC 25.6 49.2 33.7 39.1 48.5 43.3 25.0

EType+ 23.8 48.5 31.9 36.4 46.3 40.8 24.9

SelfORE 67.2 68.5 67.8 77.9 78.8 78.3 64.7

RSN 48.6 74.2 58.9 64.4 78.7 70.8 45.3

RSN-BERT 58.5 89.9 70.9 69.6 88.9 78.1 53.2

RoCORE 75.2 84.6 79.6 83.8 88.3 86.0 70.9

Ours 78.5 82.6 80.5 85.6 88.7 87.1 72.4

TACRED VAE 24.7 56.4 34.3 20.8 36.2 26.4 15.9

RW-HAC 42.6 63.3 50.9 46.9 59.7 52.6 28.1

EType+ 30.2 80.3 43.9 26.0 60.7 36.4 14.3

SelfORE 57.6 51.0 54.1 63.0 60.8 61.9 44.7

RSN 62.8 63.4 63.1 62.4 66.3 64.3 45.9

RSN-BERT 79.5 87.8 83.4 84.9 87 85.9 75.6

RoCORE 87.1 84.9 86.0 89.5 88.1 88.8 82.1

Ours 85.9 87.3 86.6 89.1 89.3 89.2 82.6

B3F1, V −measureF1 and ARI on all datasets, bringing 0.9%/0.6%, 1.1%/0.4%
and 1.5%/0.5% growth respectively. Utilizing RoCORE and conducting paired
t-tests on key performance indicators through multiple experiments, the one-
tailed p-values on the two datasets are as follows: 0.002/0.024, 0.011/0.019, and
0.004/0.005, all of which are less than 0.05 indicates that our method exhibits
significant differences from the RoCORE method in terms of the aforementioned
indicators. It reveals that the method in this paper can effectively use the relation
repository sets to model the semantic differences of different relations compared
with other models. The encoder is then encouraged to generate cluster-oriented
deep relation representations.

4.5 Ablation Analysis

In order to deeply analyze the influence of each key module on the performance of
the model, we construct some ablation experiments, and the experiment results
are the average results of multiple experiments (Table 2).

Bidirectional Margin Loss. Bidirectional margin loss can handle difficult
samples better. Comparative analysis reveals that the model’s performance on
both datasets deteriorates after removing the margin loss, with a more pro-
nounced decline observed in TACRED. This suggests that difficult samples
within predefined relations have varying effects on different datasets.

Knowledge Transfer. Knowledge transfer of predefined relations greatly facil-
itates the discovery of new relations. Notably, the impact of knowledge transfer



104 K. Chang and P. Jian

Table 2. Abalation study of our method.

Dataset Method B3 V − measure ARI

Prec. Rec. F1 Hom. Comp. F1

FewRel Ours 78.5 82.6 80.5 85.6 88.7 87.1 72.4

w/o margin loss 78.3 82.4 80.3 85.5 88.1 86.8 72.2

w/o knowledge transfer 77.1 73.8 75.4 83.3 84.7 84.0 68.7

w/o ID training 74.6 76.6 75.6 81.6 85.3 83.4 69.8

w/o weight we
i 74.6 82.4 78.3 82.3 87.2 84.7 69.3

TACRED Ours 85.9 87.3 86.6 89.1 89.3 89.2 82.6

w/o margin loss 86.4 86.0 86.2 89.2 88.6 88.9 82.1

w/o knowledge transfer 83.9 84.7 84.3 87.2 87.0 87.1 79.1

w/o ID training 85.3 79.5 82.3 85.6 87.0 86.3 78.2

w/o weight we
i 85.6 81.9 83.7 88.9 86.1 87.5 78.6

on the FewRel dataset, in the absence of supervised contrastive loss for pre-
defined relations, is more substantial than on TACRED. This underscores the
beneficial role of knowledge transfer in enabling the encoder to learn relation
representations.

Adaptive Clustering. Adaptive clustering holds equal importance in con-
junction with knowledge transfer of predefined relations. Despite employing the
knowledge within the relation repository to update pseudo-labels as a substitute,
its effectiveness remains inferior to the cluster assignment guided by the clus-
tering boundary. This highlights the efficacy of iteratively updating the decision
boundary for the clustering of new relations.

Sample Attention Mechanism. Incorporating the difficult sample attention
mechanism enhances the model’s ability to discriminate between classes. The
removal of the weighting strategy significantly diminishes the clustering effect on
different datasets, underscoring the importance of emphasizing difficult samples
with ambiguous semantics to improve the model’s class discrimination ability.

4.6 Visualization Analysis

In order to show intuitively how our method helps refine the relation represen-
tation space, t-SNE [9] is used to visualize each relation representation in the
semantic space. We randomly select 8 categories from the training set of FewRel,
with a total of 800 relation representations, and reduce the dimension of each
representation from 2×768 to 2 dimensions. The change of the relational seman-
tic space during the training process is shown in Fig. 2, after training for 10, 30,
and 52 epochs, the representation in the cluster is more compact than before,
and the boundary between each cluster is more clear, and the clusters of each
relation category have been aligned with the semantics.
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(a) (b)

(c) (d)

Fig. 2. Visualization of the relation representations

5 Conclusion

In this paper, we propose a relation repository-based adaptive clustering for
open relation extraction. Our main contribution is to enhance the model’s capa-
bility to classify difficult samples. The proposed method leverages bidirectional
margin loss and adaptive clustering to enhance the prediction performance for
both predefined and novel relations. Experiments and analysis demonstrate the
effectiveness of our method.
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