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Preface

This volume contains the papers presented at CCKS 2023: the China Conference
on Knowledge Graph and Semantic Computing held during August 24–27, 2023, in
Shenyang.

CCKS is organized by the Technical Committee on Language and Knowledge Com-
puting of the Chinese Information Processing Society, and has previously been held in
Beijing (2016), Chengdu (2017), Tianjin (2018), Hangzhou (2019), Nanchang (2020),
Guangzhou (2021), and Qinhuangdao (2022). CCKS is the merger of two previously
held relevant forums, i.e., the Chinese Knowledge Graph Symposium (CKGS) and the
Chinese Semantic Web and Web Science Conference (CSWS). CKGS was previously
held in Beijing (2013), Nanjing (2014), and Yichang (2015). CSWS was first held in
Beijing in 2006 and has been the main forum for research on Semantic (Web) technolo-
gies in China for a decade. Since 2016, CCKS has brought together researchers from
both forums and covers wider fields, including the knowledge graph, the Semantic Web,
linked data, natural language processing, knowledge representation, graph databases,
information retrieval and knowledge-aware machine learning. It aims to become the
top forum on knowledge graph and semantic technologies for Chinese researchers and
practitioners from academia, industry, and government.

The theme of this year is Knowledge Graph Empowers Artificial General Intel-
ligence. Enclosing this theme, the conference scheduled various activities, including
keynotes, academic forums, industrial forums, tutorials, paper presentations, evalua-
tions, etc. The conference invited Qinghua Zheng (Professor, President of Tongji Uni-
versity, National Outstanding Youth, Chang Jiang Scholar), Jirong Wen (the dean of
the School of Information at Renmin University of China and the executive dean of
Gaoling School of Artificial Intelligence), and Denny Vrandečić (the founder of Wiki-
data, co-creator of Semantic MediaWiki, and former elected member of the Wikimedia
Foundation Board of Trustees) to present the latest progress and development trends in
Knowledge Engineering, Large Language Models, and free knowledge graphs, respec-
tively. The conference also invited industrial practitioners to share their experiences and
promote industry-university-research cooperation.

As for peer-reviewed papers, 106 submissions were received in the following six
areas,

– Knowledge Representation and Knowledge Graph Reasoning
– Knowledge Acquisition and Knowledge Base Construction
– Knowledge Integration and Knowledge Graph Management
– Natural Language Understanding and Semantic Computing
– Knowledge Graph Applications
– Knowledge Graph Open Resources

During the reviewing process, each submission was adopting a double-blind peer
review process to at least three Program Committee members. The committee decided



vi Preface

to accept 43 full papers (20 papers in English). The CCIS volume contains revised
versions of 20 English full papers.

Additionally, the evaluation track this year set up 4 topics and 7 tasks, which attracted
more than 2771 teams to participate, forming a highly influential event. Besides the
bonuses and issued certificates for the top three teams in each task, the committee
also encouraged them to submit evaluation papers. After peer review by experienced
researchers and task organizers, 8 papers were accepted (after revision) for inclusion in
this volume of proceedings.

The hard work and close collaboration of a number of people have contributed to
the success of this conference. We would like to thank the Organizing Committee and
Program Committee members for their support, and the authors and participants who
are the primary reason for the success of this conference. We also thank Springer for
their trust and for publishing the proceedings of CCKS 2023.

Finally, we appreciate the sponsorships from Global Tone Communication Tech-
nology as platinum sponsor, Baidu, Ant Group, Meituan, 360, Du Xiaoman as gold
sponsors, Top AI, Vesoft, Yunfu Technology, Zhipu AI, NiuTrans, Qutke, and HashData
as the silver sponsors.
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Dynamic Weighted Neural Bellman-Ford
Network for Knowledge Graph Reasoning

Huanxuan Liao1,2, Shizhu He1,2(B), Yao Xu1,2, Kang Liu1,2, and Jun Zhao1,2

1 The Laboratory of Cognition and Decision Intelligence for Complex Systems
Institute of Automation, Chinese Academy of Sciences, Beijing, China

liaohuanxuan2023@ia.ac.cn, {shizhu.he,yao.xu,kliu,jzhao}@nlpr.ia.ac.cn
2 School of Artificial Intelligence, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Recent studies have shown that subgraphs of the head entity,
such as related relations and neighborhoods, are helpful for Knowledge
Graph Reasoning (KGR). However, prior studies tend to focus solely
on enhancing entity representations using related relations, with little
attention paid to the impact of different relations on different entities
and their importance in various reasoning paths. Meanwhile, conven-
tional Graph Neural Networks (GNNs) utilized for KGR consider simul-
taneously neighboring nodes and connected relations of the head entity
but typically use a standard message-passing paradigm over the entire
Knowledge Graph (KG). This results in over-smoothed representations
and limits efficiency. To address the above-mentioned limitations of exist-
ing methods, we propose a Dynamic Weighted Neural Bellman-Ford Net-
work (DyNBF) for KGR, which utilizes relation weights generated from
subgraphs to compute only the most relevant relations and entities. This
way, we can integrate multiple reasoning paths more flexibly to achieve
better interpretable reasoning, while scaling more easily to more complex
and larger KGs. DyNBF consists of two key modules: 1) a transformer-
based relation weights generator module, which computes the weights
of different relations on the path with a sequence-to-sequence model,
and 2) an NBFNet-based logic reasoner module, which obtains entity
representations and conducts fact prediction with dynamic weights from
the previous module. Empirical results on three standard KGR datasets
demonstrate that the proposed approach can generate explainable rea-
soning paths and obtain competitive performance.

Keywords: Knowledge Graph Reasoning · NBFNet · Dynamic
weights · Path interpretations

1 Introduction

Knowledge Graphs (KGs) store a large number of facts, containing entities and
rich structural relations, which are usually in the form of (h, r, t), where h is
the head entity,r is the relation, and t is the tail entity. Popular public KGs

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 3–16, 2023.
https://doi.org/10.1007/978-981-99-7224-1_1
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include Freebase [2], WordNet [12] etc. KGs are widely applied to a variety of
applications such as question answering [4], recommender systems [11] etc.

However, due to the influence of artificial construction and information
extraction technology, the currently constructed KGs suffer from incomplete-
ness [21]. For example, 66% of people are lacking the relationship of birthplace
in Freebase. To enhance the completeness of the KGs, researchers have proposed
Knowledge Graph Reasoning (KGR) to discover missing facts. Recent advances
in KGR primarily work on knowledge graph embedding (KGE) by mapping
each entity and relation into a low-dimensional vector [3,18,23]. Despite steady
progress in developing novel algorithms for KGE, researchers still face a com-
mon challenge: encoding all information (e.g. semantic and structural) about
an entity into a single vector. To this end, several studies utilize Graph Neural
Networks (GNNs) [15,26,27] or attention-based approaches [20,22] to learn rep-
resentations for KGR based on both entities and their graph context. However,
these methods have limited expressiveness due to their shallow network archi-
tectures and over-reliance on message passing throughout the entire KGs, which
hampers its scalability for larger KGs. This also results in slower inference speed.

Fig. 1. Overview of the proposed DyNBF and comparison with GAT-Based and
NBFNet in aggregation.

Intuitively, for each specific query, e.g., (Ma Yun, collaborate with, ?), only
a small sub-graph [13] of the entire knowledge graph and specific relation types
like collaborate with may be relevant. Relations like award or spouse are not
useful and may introduce bias. Using relevant subgraph information as context,
more important relations for a given query can be identified and thus assigned
higher weights, thereby facilitating accurate and efficient inference.

To make better use of relevant relations and subgraph information. GAT-based
aggregation methods [25] use attention weights to learn node representations that



Dynamic Weighted Neural Bellman-Ford Network 5

are more informative than those generated by traditional GNNs without attention
weights. However, these methods aggregate information in a single way, limiting
their flexibility in understanding multiple properties of nodes. To solve the prob-
lem of a single aggregation method, the NBFNet [27] jointly learn the types and
scales of the aggregation functions used to combine neighboring nodes’ representa-
tions which are pair representations conditioned on the source node. This enables
GNNs to capture multiple properties of nodes simultaneously and is critical for
solving complex graph problems. But instead of selecting relevant relations for
different queries for reasoning, it aggregates all the surrounding information. To
address the above-mentioned issues, we explore the combination of Transformer
architecture and GNNs for KGR with dynamic weights. The proposed Dynamic
Weighted Neural Bellman-Ford Network (DyNBF) (see Fig. 1 for an overview
and comparison with existing GNNs works above mentioned) consists of two main
components: 1) a weights generator that identifies the relevant KG sub-graph as
context and generate the weights dynamically, and 2) a logic reasoner that jointly
considers the KGs and the relation weights for inferring answers. In such a way, we
can simply leverage an optimization object for KGR with high efficiency, accuracy,
and interpretability.

We evaluate DyNBF by conducting experiments on three popular benchmarks
(WN18RR [6], UMLS [8], FB15k-237 [17]). The efficacy of DyNBF is demon-
strated by the improvements observed in both performance and reduced time.

2 Related Work

Existing work on KGR can be generally classified into three main paradigms:
path-based methods, embedding methods, and graph neural networks methods.

2.1 Path-Based Methods

Random walk inferences have been extensively researched in this type of model.
For example, the PathRanking Algorithm (PRA) [9] derives the path-based log-
ical rules under the constraints of the path. Rule mining methods such as AMIE
[7] use predefined metrics such as confidence and support to prune incorrect
rules. More recently, differentiable rule learning methods based on TensorLog [5]
such as Neural-LP [24] and DRUM [14], learning probabilistic logical rules to
weight different paths. Ruleformer [22] introduced a transformer-based rule min-
ing approach to choose suitable rules for a query in a differentiable rule mining
process. However, these approaches employed the Tensorlog framework resulting
in inefficiency. Additionally, they require exploration of an exponentially large
number of paths and are restricted to extremely brief paths, such as less than
or equal to 3 edges.

2.2 Embedding Methods

Embedding methods learn a distributed representation for each node and edge
by preserving the edge structure of the graph. Most of them like TransE [3],
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ComplEx [18], DistMult [23] etc, design a scoring function to get a value for a
triplet in the embedding space. Among them, TransE [3] is the most widely used
KGE method, which views the relation as a translation from a head entity to a
tail entity. DistMult [23] employs a rudimentary bilinear formulation and devel-
ops a novel method that leverages the acquired relation embeddings to extract
logical rules. ComplEx [18] creates a composition of intricate embeddings that
exhibit robustness towards a wide range of binary relations. Despite the sim-
plicity of these works, they demonstrated impressive performance on reasoning
tasks. However, these models often ignore the neighborhood sub-graphs of the
entities and relations.

2.3 Graph Neural Networks Methods

GNNs encode topological structures of graphs and most of these frameworks
encode node representations and decode edges as a function over node pairs.
RGCN [15] deals with the highly multi-relational data characteristic of realistic
KGs. The NBFnet [27] proposed a general and flexible representation learning
framework for KGR based on the paths between two nodes to enhance general-
ization in the inductive setting, interpretability, high model capacity, and scala-
bility. This framework’s ability may be constrained by viewing every relation in
the KGs equally for different queries. Such a constraint can impede capturing of
rich information and be affected by biased training data, neglecting marginalized
entities and leading to stereotyped predictions.

3 Methodology

Knowledge Graph. A knowledge graph G can be defined as a collection of
facts F , i.e., G = {F}. Each fact f is a triplet like (h, r, t), h, t ∈ E , r ∈ R,
where E is a countable set of entities and R is a set of relations, respectively.

Link Prediction. The objective of link prediction is to deduce the absent rela-
tions amidst the entities in a given KG. To accomplish this, the model has to
rank the target entity amid the group of candidate entities, in response to a link
prediction question, either (h, r, ?) or (?, r, t).

We propose to reason answers by taking into account not only the relation
weights but also the types and scales of the aggregation function used. To this
end, we introduce our DyNBF to determine the weights of all relations at each
step, which can be utilized as edge weights for aggregation, and Fig. 2 shows the
details. Specifically, with regard to a query like (h, r, t), the sub-graph related to
the head entity h is constructed from the KG. Then, the global relational weights
for each aggregation are obtained using the Transformer weights generator, which
incorporates a relational attention mechanism. Finally, these global relational
weights are assigned to the edge weights in NBFNet to enable accurate logical
inference and prediction. The details of the two components are respectively
shown in Sect. 3.1 and Sect. 3.2.
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Fig. 2. The DyNBF framework consists of two primary components: a weights gener-
ator and a logic reasoner. The green node X in the logic reasoner part of the figure
represents our required representation, which aggregates information about the sur-
rounding nodes, while the red arrows depict the different paths from the source node
to X. Different colored nodes represent different distances from the source node, e.g.,
yellow nodes represent 2 hops away from source node h and the purple node represents
the distance from the h greater than or equal to 3. (Color figure online)

3.1 Weights Generator

The role of the weights generator module is to generate the weights dynamically
by leveraging the sub-graph of the head entity. Inspired by Ruleformer [22], we
utilize contextualized sub-graph as input sequences to encode the local structural
information.

We use a breadth-first approach to sample edges from the source entity until
the specified context budget is reached, which is noteworthy for getting the sub-
graph to enrich the query by considering relevant contextual information. To
convert the graph into a sequence for Transformer input, we employ a summation
method to combine the token embeddings, centrality embeddings, and position
embeddings (see Fig. 2):

– Token Embeddings: We initialize randomly all entities and relations in the
KG.

– Centrality Embeddings: The distribution of entity occurrences is charac-
terized by a heavy-tailed pattern that poses a challenge to the development of
suitable entity representations. In light of this, we use the degree of central-
ity as an additional signal to the neural network. To be specific, we develop
a Centrality Encoding which assigns each node two real-valued embedding
vectors according to its indegree and outdegree. As the centrality encoding is
applied to each node, we simply add it to the node features as the input.
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– Position Embeddings: It denotes the shortest distance for the current
entity to the head entity h and can help the model retain structural informa-
tion which is more likely to correspond to the final answer paths.

The input to the model is a query, e.g., (h,r,?) and the associated sub-graph
g constructed from the KG. The sub-graph consists of nodes {e1, e2, · · · , em,
· · · pad} ∈ E and edges {r1, r2, · · · , rn} ∈ R where m and n is the number
of entities and relations of the sub-graph. The input sequence is constructed
by concatenating the nodes. Then we will use the Encoder with the relational
attention mechanism and Decoder proposed by Ruleformer [22] as our weights
generator. The sub-graph and query are encoded by the variant encoder, which
makes exploit edge information and guarantees effective information exchange.
Then the decoder generates relation weights dynamically based on the encoder
output Se, until the length of the decoder output sequence Sr reaches the path
length L. Specifically, we start with the head relations r’s embedding xr for the
path sequence Sr input to the decoder, which means S0

r = xr. Consequently, a
feed-forward neural network is employed to determine the weights wi

l of relation
ri in step l. More formally, let wl+1 ∈ R

|R|+1 denote relation weights including
the self-loop relation.

wl+1 = σ(f(RelationAttention(Sl
r, Se))) (1)

where σ(·) is the sigmoid function and f(·) is a feed-forward neural network.
Sl
r is the concatenation of the head relation and the relation with the greatest

weight for each step before the l-step. Let the relation with maximum weight be
expressed as rl+1, then Sl+1

r = [Sl
r, xrl+1 ].

3.2 Logic Reasoner

To effectively answer a link prediction query, we need to perform the prediction
from (h, r, ?) to t or from (?, r, t) to h. Drawing on previous work, we can
think of this process as Knowledge Graph Completion (KGC) task and we can
deploy the Tensorlog framework to get the prediction results like Ruleformeror
or KGE methods to score triples (h, r, t) like SE-GNN [10]. We choose the
NBFNet [27] as our logic reasoner, which learns a pair representation hq(h, t)
with a generalized sum of path representations hq(P) between h and t with
a commutative summation operator ⊕. Additionally, each path representation
hq(P) is defined as a generalized product of the edge representations in the path
using the multiplication operator ⊗. After performing the above two operations,
each node representation contains information about the cumulative sum of all
paths from the source node to that node. Therefore, this information can be used
to infer the probability of arrival. In other words, this representation captures
the probability of arriving at each node, based on the paths traversed from the
source node.

Following NBFNet, the relation embeddings are first randomly initialized,
and then the source node h is initialized to the sum of the embeddings of all
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relations connected to it, while the other nodes are initialized to 0. This ini-
tialization facilitates the transfer of information from the source node to each
node on the path, which is consistent with our reasoning process. Then we per-
form message passing with entity embedding, relation embeddings, and relation
weights using Message function and Aggregate function:

(Sai
)l+1
t = Aggregate({Message((Sai

)lx, Sr, w
l) | (x, r, t) ∈ E(t)}) (2)

where ai ∈ {mean,min,max, std} denotes the different aggregators; (Sai
)lt is

the representation of t using ai aggregator in the l -th step; wl is a weight vector
as the edge weights in the l -th step; Sr is the representation for edge e = (x, r, t)
and r is the relation of the edge, E(t) denotes the triplets with tail entity t in
the KG.

After the first message passing, the representation of each node contains
information about all paths of length 1 from the source node to that node. The
process is repeated twice to retrieve information up to two hops (the path length
from the source node is 2) and so on. Then the combination function combines
the node representations of different operators to obtain sufficient information
from nodes’ neighborhoods, thus enhancing expressive power learning abilities:

el+1 = Combine({(Sai
)lt | ai ∈ {min,max,mean, std}}) (3)

where el is the node representation after aggregating l hop information. Combine
is the combination strategy where we concatenate messages from high to low
dimensions.

Finally, we can use the final representation obtained after a previously pre-
determined number of L message passing, and then reason for the query.

3.3 Optimizing

We now demonstrate the process of utilizing the learned pair representations eout

to solve the link prediction task. Specifically, we aim to estimate the conditional
likelihood of the tail entity t given the head entity h and relation r as p(t|h, r) =
σ(f(eout)). Here, σ(·) denotes the sigmoid function, while f(·) is a feed-forward
neural network. Similarly, the conditional likelihood of the head entity h can be
predicted by p(h|r−1, t) = σ(f(eout

′
)) with the same model. As prior research

[3,16], we minimize the negative log-likelihood of positive and negative triplets
(Eq. 4). The negative samples are generated through the corruption of one entity
in a positive triplet to produce a negative example.

L = −log p(h, r, t) −
n∑

i=1

1
n

log(1 − p(h′
i, r, t

′
i)) (4)

where n is the number of negative samples per positive sample and (h′
i, r, t

′
i) is

the i-th negative samples.
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4 Experiments

4.1 Datasets

We utilize well-established link prediction benchmarks: UMLS [8], FB15K-237
[17], and WN18RR [6] to assess the performance of our model. The summary
statistics of the datasets are shown in Table 1.

Table 1. This summary of statistics for the three datasets used in this study: WN18RR,
FB15K-237, and UMLS.

Dataset UMLS FB15K-237 WN18RR

Entities 135 14541 40943

Relations 46 237 11

Train Triplets 5216 272115 86835

Valid Triplets 652 17535 3034

Test Triplets 661 20466 3034

4.2 Experiment Setup

The experiments are implemented with the PyTorch framework and are trained on
RTX3090 GPU for 30 epochs. The Adam optimizer is used with 5 steps of warmups
for parameter tuning and the learning rate is set to 0.0001/0.0003/0.0015 respec-
tively for the FB15K-237, UMLS, and WN18RR.

Implementation Details. The weights generator model comprises an encoder
and a decoder block, both of which are implemented as two-layer Transformers
with default settings of six heads per layer. The entity dimension, as well as the
position encoding dimension, is set to 200. Dropout is applied with a possibility
p = 0.1. And the reasoner is the NBFNet with 6 layers, each with 32 hidden
units. The feed-forward network f(·) is set to a 2-layer MLP with 64 hidden
units. The ReLU activation function was implemented for all hidden layers in
order to optimize performance. We select models based on their performance on
the validation set.

Evaluation. We adopt the filtered ranking protocol proposed in [3] for the
Knowledge Graph Completion task. We evaluate the performance using three
widely-used metrics: mean rank (MR), mean reciprocal rank (MRR), and Hits
at N (Hits@N). Hits@N measures the proportion of correct entities ranked in
the top N.

Baselines. We compare our model DyNBF against path-based methods includ-
ing Path Ranking [9], Neural-LP [24], DRUM [14], Ruleformer [22]; Embedding
methods like TransE [3], Distmult [23], ComplEx [18] etc.; and GNNs methods
such as RGCN [15], CompGCN [19] and NBFNet [27]. There are a total of 13
baselines above for KGR.
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4.3 Main Results

Table 2 summarizes the results of the KGR. As the table shows, we observe
that our proposed approach can achieve competitive performance on all metrics
and both datasets compared with baselines. DyNBF has obvious improvement
compared to Ruleformer, which is a typical recent path-based method model.
This suggests that NBFNet can combine a greater amount of path information
in order to perform inference. The results demonstrate a significant improvement
over NBFNet, particularly on the FB15-237 dataset, when attention weights are
incorporated. This emphasizes that incorporating attention weights can assist
NBFNet in focusing on relevant information and improving inferences, rather
than simply gathering all information without discrimination.

Table 2. Knowledge graph reasoning results. The best results are in bold. † denotes
that we run these methods with the same evaluation process in our way. ‡ means that
the results are from [22]. Other results are from the published paper.

Class Method UMLS FB15K-237 WN18RR

MR MRR Hits MR MRR Hits MR MRR Hits

@1 @3 @10 @1 @3 @10 @1 @3 @10

Path-based Path Ranking [9] ‡ - 0.197 0.147 0.256 0.376 3521 0.174 0.119 0.186 0.285 22438 0.324 0.276 0.360 0.406

NeuralLP(l = 3) [24] ‡ - 0.735 0.627 0.820 0.923 - 0.239 0.160 0.261 0.399 - 0.425 0.394 0.432 0.492

DRUM(l= 3) [24] ‡ - 0.784 0.643 0.912 0.972 - 0.328 0.247 0.362 0.499 - 0.441 0.412 0.456 0.516

Ruleformer(l = 3) [22] - 0.857 0.752 0.958 0.984 - 0.342 0.255 0.374 0.513 - 0.452 0.417 0.465 0.530

Embeddings TransE [3] 1.84 0.668 0.468 0.845 0.930 357 0.294 - - 0.465 3384 0.226 - - 0.501

DistMult [23] 5.52 0.753 0.651 0.821 0.930 254 0.241 0.155 0.263 0.419 5110 0.430 0.390 0.440 0.490

ComplEx [18] 2.59 0.829 0.748 0.897 0.961 339 0.247 0.158 0.275 0.428 5261 0.440 0.410 0.460 0.510

ConvE [6] 1.51 0.908 0.862 0.944 0.981 - 0.325 0.237 0.356 0.501 - 0.430 0.400 0.440 0.520

TuckER [1] - - - - - - 0.358 0.266 0.394 0.544 - 0.470 0.443 0.482 0.526

RotatE [16] - 0.948 0.914 0.980 0.994 177 0.338 0.241 0.375 0.553 3340 0.476 0.428 0.492 0.571

GNNs RGCN [15] - - - - - 221 0.273 0.182 0.303 0.456 2719 0.402 0.345 0.437 0.494

CompGCN [24] - 0.735 0.627 0.820 0.923 197 0.355 0.264 0.390 0.535 3533 0.479 0.443 0.494 0.546

NBFNet(l = 3) [27] † 2.21 0.902 0.857 0.937 0.976 123 0.407 0.314 0.446 0.592 1195 0.519 0.473 0.540 0.609

NBFNet(l = 6) [27] ‡ 1.60 0.933 0.900 0.956 0.987 114 0.415 0.321 0.454 0.599 636 0.551 0.497 0.573 0.666

DyNBF(l= 3) 1.87 0.916 0.875 0.952 0.979 84 0.458 0.349 0.508 0.677 1552 0.499 0.445 0.529 0.599

DyNBF(l= 6) 1.50 0.956 0.933 0.973 0.992 76 0.557 0.455 0.617 0.752 691 0.543 0.481 0.568 0.660

On UMLS, the existing state-of-the-art (SOTA) performance sets a high stan-
dard. However, we still outperform RotatE by at least 0.02 units in Hits@1 and
0.008 units in MRR. This is mainly because UMLS is a relatively small dataset,
thus the embedding methods’ simple modeling approach achieves very high per-
formance, and large models can suffer from overfitting. DyNBF performs the best
on FB15K-237, which outperforms the best-compared method NBFNet(l=6) by
14% in MRR, 13% in Hits@1 and 15% in Hits@10. The primary reason for such
significant improvements is that the weights generated from the sub-graph of the
query are capable of instructing the model, providing the appropriate path and
relation to obtain the answer. Compared to the improvements made on FB15k-
237, it only achieves a performance similar to SOTA NBFNet on WN18RR. One
potential explanation is that despite the inclusion of word relationships in Word-
Net, the number of relationships provided is relatively low, with more emphasis
on abstract semantics, such as hypernyms and hyponyms. And the FB15k-237
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dataset’s graph is relatively denser with more than 200 types of relations and
each relation contains ample information (see Table 1). In this case, the relation
weights will play a more important role for larger and more complex KG to help
KGR.

4.4 Fine-Grained Analysis

Impact of Weights. We explore the influence of weights on the performance of
our model. Specifically, by adding weights to the initial k layers, we simulate the
initial k hops, thereby applying an attention weight restriction to identify and
select pertinent relational paths for effective information aggregation. Firstly,
Fig. 3 highlights a noticeable decrease in performance when random weights are
assigned to each relation in contrast to the improvement when attention weights
generated from the sub-graph are applied as demonstrated by our adopted model.
This observation indicates the effectiveness of the attention weights approach.
Additionally, Fig. 4 exhibits a linear increase in attention weights assigned to
relational edges at varying distances. This progressive increase promotes the
selection of more relevant and favorable node information during the aggregation
process in each hop, resulting in enhanced inference accuracy.

Fig. 3. Performance impact of different
weighting approaches on KGR.

Fig. 4. Performance impact of adding
attention weights to the first K hops on
KGR.

Performance by Relation Category. We classify all relations into four cate-
gories based on the cardinality of head and tail arguments following the rules by
[3]: one-to-one (1-1), one-to-many (1-N), many-to-one (N-1), and many-to-many
(N-N). We compute the average number of tails per head and the average number
of heads per tail. The category is one if the average number is smaller than 1.5 and
many otherwise. As shown in Table 3, our DyNBF not only enhances simple one-
to-one cases but also improves performance in hard cases where there are several
correct solutions for a given query. Predicting the “N” side is generally more diffi-
cult, since numerous plausible options may lead to model confusion. In addition,
the incompleteness of the knowledge graph is a challenge. Some predicted triples
could be accurate following human evaluation, especially for instance of and place
of birth 1-N relations in head entity prediction, and others.
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Table 3. Performance w.r.t. relation category. The two scores are the rankings over-
heads and tails respectively.

Method Relation Category

1-1 1-N N-1 N-N

TransE [3] 0.498/0.488 0.455/0.071 0.079/0.744 0.224/0.330

RotatE [16] 0.487/0.484 0.467/0.070 0.081/0.747 0.234/0.338

NBFNet [27] 0.578/0.600 0.499/0.122 0.165/0.790 0.348/0.456

DyNBF 0.588/0.656 0.634/0.293 0.261/0.813 0.376/0.719

4.5 Efficiency Analysis

Table 4 shows the comparison of training time and space occupation of our
method to two prominent baselines Ruleformer and NBFNet. All experiments
were performed on a single RTX3090. From the table, we can find that our
approach is clearly more efficient than Ruleformer. While our training space
occupation has been reduced, the training time has been greatly reduced, from
15 h per epoch to 2 h per epoch. For comparison with NBFNet, because our
handling of subgraphs and the generation of weights increases the space occu-
pation and training time, it is a measure of utilizing resources in exchange for
better performance. However, when used for larger KGs, the overhead of the
subgraph processing part is negligible, and the training time and space occupa-
tion gap between the two will gradually decrease, so our method is potentially
more efficient than NBFNet for large-scale KGs.

Table 4. Comparison of training time and space occupation of our approach to baseline
methods on FB15K-237. The training time indicates the time required for each epoch
of training and the training batch size indicates the training space occupation.

Method Training Time Training batchsize

Ruleformer (l = 3) [22] 15 h 32

NBFNet (l = 3) [27] 0.7 h 128

NBFNet (l = 6) [27] 1.5 h 64

DyNBF (l = 3) (Ours) 2 h 42

DyNBF (l = 6) (Ours) 3 h 28

4.6 Path Interpretations of Prediction

Followed by [27], the importance of each path is estimated by summing up the
importance of its edges, where we obtain the edge importance through auto-
differentiation. However, we calculate the differential using weights generated by
the weight generator, in contrast to the edge weights which are all equal to 1. We
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obtain the top-K path interpretations by identifying the top-k paths on the edge
importance graph, which is solvable by using Bellman-Ford-style beam search.

Table 5 visualizes path interpretations from the FB15k-237 test set. Exam-
ining the table reveals that DyNBF’s discovered rule paths are not only shorter
but also have higher path weights. These results suggest that adding relational
weights to specific queries during the inference process helps the model focus
on more pertinent information and make more precise predictions. For exam-
ple, when presented with the first query, “What is the language of Pearl Harbor
(film)”, DyNBF quickly identifies the country and region to which it belongs and
infers that the language is Japanese, rather than venturing further like NBFNet
to obtain less relevant information. Additionally, this approach yields more cred-
ible mining rules, as evidenced by the improved final path weights.

Table 5. Path interpretations and comparison of predictions on FB15k-237 test set.
For each query triplet, we visualize the Top-1 path interpretations and their weights.
Inverse relations are denoted with a superscript −1.

Query (h, r, t) NBFNet [Weight] DyNBF [Weight]

(Pearl Harbor (film),
language, Japanese)

(Pearl Harbor(film), film actor, C.-H.
Tagawa) ∧ (C.-H. Tagawa, nationality,
Japan) ∧ (Japan, country of origin,
Yu-Gi-Oh! ) ∧ (Yu-Gi-Oh!, language,
Japanese) 0.211

(pearl harbor (film), film release region,
usofa) ∧ (usofa, country of origin−1,
transformers the rebirth) ∧ (transformers
the rebirth, languages, Japanese) 0.467

(disney cartoon studios,
production companies, hopper
(a bug’s life))

(hopper (a bug’s life), film−1, andrew
stanton) ∧ (andrew stanton, film, nemo
(finding nemo)) ∧ (nemo (finding nemo),
production companies, disney cartoon
studios)0.189

(hopper (a bug’s life), titles−1, the walt
disney studio) ∧ (the walt disney studio,
child, disney cartoon studios) 0.319

5 Conclusion

In this paper, we draw attention to using context-aware weights as the edge sig-
nificance to instruct knowledge graph reasoning. We leverage the Transformer
with a relational attention mechanism, enabling the dynamic generation of atten-
tion weights from subgraphs and serving as a filter for relational importance
during query reasoning, which helps improve the accuracy and expediency of
the inference process. The conducted experiments show that our proposed app-
roach exceeds the performance of the majority of existing methods. This out-
come provides empirical evidence of the effectiveness and significance of removing
irrelevant relations during the inference phase. Despite this approach showing
promise, utilizing subgraphs would require significant memory resources and
training time. Thus, future research will be devoted to developing an efficient
method for generating weights from subgraphs while exclusively utilizing them
for information aggregation and inference.
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Abstract. Knowledge graph embedding (KGE) focuses on representing
the entities and relations of a knowledge graph (KG) into the continu-
ous vector spaces, which can be employed to predict the missing triples
to achieve knowledge graph completion (KGC). However, KGE models
often only briefly learn structural correlations of triple data and embed-
dings would be misled by the trivial patterns and noisy links in real-
world KGs. To address this issue, we build the new paradigm of KGE
in the context of causality and embedding disentanglement. We further
propose a Causality-enhanced knowledge graph Embedding (CausE)
framework. CausE employs causal intervention to estimate the causal
effect of the confounder embeddings and design new training objectives to
make stable predictions. Experimental results demonstrate that CausE
could outperform the baseline models and achieve state-of-the-art KGC
performance. We release our code in https://github.com/zjukg/CausE.

Keywords: Knowledge Graph Embedding · Knowledge Graph
Completion · Causal Inference

1 Introduction

Knowledge graphs (KGs) [2] modeling the world knowledge with structural
triples in the form of (head entity, relation, tail entity), which portrays the
relation between the head and tail entity. Expressive KGs have become the new
infrastructure of artificial intelligence (AI), which have been widely used in ques-
tion answering [18], recommender systems [20], and fault analysis [6].

KGs are usually inherently incomplete due to their vast diversity and com-
plexity. To address this issue, knowledge graph completion (KGC) has become a
popular research topic, aimed at identifying undiscovered triples in KGs. A main-
stream solution to KGC is knowledge graph embedding (KGE), which utilizes
low-dimensional continuous space to embed entities and relations from the KG.
The triple structure is modeled through a score function [3,12,17] that measures
the plausibility of each triple, forming the basis for predictions in KGC tasks.

However, in KGs, various confounding factors (such as trivial structural pat-
terns, noisy links, etc.) may mislead KGE models, resulting in spurious corre-
lations [11] being learned and non-causal predictions being made. Figure 1 pro-
vides an intuitive view of such a situation. While many existing methods propose
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 17–28, 2023.
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Fig. 1. A simple example to explain that the confounding factors like noisy links e.g.
(Human, prey on, Mouse) and trivial patterns (Both Tiger and Cat are in the family of
Felidae) might mislead the link prediction. In this case, the prediction result of (Tiger,
prey on, ?) would be misled to Mouse.

scoring functions to model different relationship patterns, they overlook the pos-
sibility that the knowledge graph data itself may contain information that could
mislead the model.

To address the mentioned problem, We decouple the embeddings of enti-
ties and relations into causal and confounder embeddings. Then we introduce
the theory of causal inference [9] to model and analyze this problem. We con-
struct the structural causal model (SCM) [10] to analyze the KGE task in the
context of causality. Meanwhile, we propose a Causality-enhanced knowledge
graph Embedding (CausE) framework to guide the KGE models to learn causal
features in the KG. In CausE, we design the intervention operator to implement
the backdoor adjustment [10], which would combine the two kinds of embed-
dings to estimate the effect of the causal and confounder embeddings. Besides,
we design two auxiliary training objectives to enhance the model. We conduct
comprehensive experiments on two public benchmarks with the link prediction
task to demonstrate the effectiveness of CausE on KGC and make further explo-
rations. The main contribution of this paper can be summarized as follows:

– We are the first work to introduce causality theory into the field of KGE.
– We propose a new learning paradigm for KGE in the context of causality

and design a Causality-enhanced knowledge graph Embedding (CausE for
short) framework to learn causal embeddings for KGE models.

– We conduct comprehensive experiments on public benchmarks to demon-
strate the effectiveness of CausE. We also make further exploration to under-
stand it deeply.

2 Related Works

2.1 Knowledge Graph Embedding

Knowledge graph embedding [15] usually represent the entities and relations of
a KG into the low dimensional continuous space to learn the structural features
in the KG. A score function is defined in the KGE model to model the triple
structure and discriminate the plausibility of triples.
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Existing KGE methods [3–5,12,14,17] focus on design elegant and expres-
sive score functions to modeling the triples. Translation-based methods [3,5,12]
modeling the relation as a translation from head to tail in the representation
space. TransE [3] treats the translation as a vector addition. RotatE [12] repre-
sents the relation as a rotation in the complex space. PairRE [5] employs two
vectors for relation representation and designs a more complicated score function
in the Euclidean space. Besides, semantic matching [14,17] models employ latent
semantic matching to score the triples, which could be regarded as implicit ten-
sor factorization. DistMult [17] treats the process as 3D tensor factorization and
ComplEx [14] further extends it to the complex space. Although various KGE
methods are proposed and achieve state-of-the-art knowledge graph completion
results, no existing methods are concerned with learning the causality of triple
structure and making knowledge graph completion better.

2.2 Causal Inference-Enhanced Graph Learning

Causal inference [9,10] is a popular statistical research topic which aims to dis-
covering causality between data. In recent years, it is becoming increasingly
visible to combine causal inference and machine learning to learn the causality
from data rather then the correlation for stable and robust prediction. As for
graph learning (GL), causal inference also brings a different perspective to the
learning paradigm of graphs. CGI [8] employs causal theory to select trustworthy
neighbors for graph convolution networks. CAL [11] proposes a causal attention
learning framework to learn the causal feature of graphs to enhance the graph
classification task. However, there is no existing work to introduce causal theory
into the knowledge graph community.

3 Preliminary

A knowledge graph can be denoted as G = (E ,R, T ), where E is the entitiy set,
R is the relation set, and T = {(h, r, t)|h, t ∈ E , r ∈ R} is the triple set.

A KGE model would embed each entity e ∈ E and each relation r ∈ R into
the continuous vector space and represent each of them with an embedding.
We denote E|E|×de and R|R|×dr as the embedding matrix of entity and relation
respectively, where de, dr are the dimensions of the entity embeddings and the
relation embeddings. Besides, a score function F(h, r, t) is defined to measure the
triple plausibility. The overall target of the KGE model is to give positive triples
higher scores and give negative triples lower scores. During training, negative
triples are generated by randomly replacing the head or tail entity for positive-
negative contrast. We denote the negative triple set as T ′ = {(h′, r, t)|(h, r, t) ∈
T , h′ ∈ E , h′ �= h} ∪ {(h, r, t′)|(h, r, t) ∈ T , t′ ∈ E , t′ �= t}. Sigmoid loss proposed
by [12] is widely used by recent state-of-the-art KGE methods, which could be
denoted as:

L =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ − F(h, r, t)) −

K∑

i=1

pi log σ(F(h′
i, r

′
i, t

′
i) − γ)

)
(1)
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where σ is the sigmoid function, γ is the margin, and K is the number of
negative triples generated for each positive triple. The negative triples for
(h, r, t) is denoted as (h′

i, r
′
i, t

′
i), i = 1, 2, . . . ,K. Besides, pi is the self-adversarial

weight [12] for each negative triple (h′
i, r

′
i, t

′
i). It could be denoted as pi =

exp(αF(h′
i,r

′
i,t

′
i))∑K

j=1 exp(αF(h′
j ,r′

j ,t′
j))

, where α is the temperature of self-adversarial weight.

4 Methodology

In this section, we first present the structural causal model (SCM) for the KGE
task. Then we further propose our causality-enhanced KGE framework CausE
to learn causal and confounder embeddings with carefully designed objectives.

4.1 SCM for KGE Task

Fig. 2. Our SCM for KGE models.

In KGE models described in Sect. 3,
each entity and relation has a single
embedding that encodes both the useful
(causal) and harmful (confounder) fea-
tures. However, as discussed in Sect. 1,
this approach is not robust enough
since some local structural information
in the KG (e.g. trivial patterns, noisy
links) can mislead embedding learning. To develop better embeddings that
account for structural causality and make accurate predictions, we introduce
the structural causal model (SCM) [10] for KGE, as shown in Fig. 2.

The SCM defines variables: the triple data T , the confounder embeddings
F , the causal embeddings C, the triple score S, and the prediction result Y .
Besides, the SCM demonstrates several causal relations among those variables:

– F ← T → C. The causal embeddings C encode the implicit knowledge about
the triple structure. The confounder embeddings F , however, have no contri-
bution to the prediction. As both of them could be learned from the KG data
T , such causal relations exist in the SCM.

– F → S ← C. S represents the score of a triple, which is based on both the
causal embeddings and confounder embeddings.

– S → Y . We denote Y as the prediction results. The overall target of a KGE
model is to predict the proper results Y based on the triple scores S in the
inference stage.

In the original KGE paradigm, the causal and confounder embedding of each
entity or relation co-exist in one embedding. With SCM, we explicitly disentan-
gle the structural embeddings from the causal and confounder embeddings and
analysis their effects on the prediction results in Y . The next question is how to
mitigate the impact of F on the final prediction Y to make causal predictions.
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4.2 Causal Intervention

According to the SCM, both the confounder embeddings C and causal embed-
dings F could be learned from the triple data, which would be all considered in
the triple score S. Thus, F ← T → C → S → Y is a backdoor path [9] and F is
the confounder between C and Y .

To make causal predictions based on causal embeddings C, we need to model
P (Y |C). However, the backdoor path creates a confounding effect of F on the
probability distribution P (Y |C), opening a backdoor from F to Y . Therefore,
it is crucial to block the backdoor path and reduce the impact of confounder
embeddings. This will allow KGE models to make predictions by utilizing the
causal embeddings fully. Causality theory [9,10] provides powerful tools to solve
the backdoor path problem.

We employ do-calculus [9,10] to make the causal intervention on the variable
C, which could cut off the backdoor path F ← T → C → S → Y . With the
help of do-calculus, the influence from the confounder F to C is manually cut off,
which means C,F are independent. Our target turns to estimate P (Y |do(C))
instead of the confounded P (Y |C). Combined with Bayes Rule and the causal
assumptions [9,10], we could deduce as follows:

P (Y |do(C)) = P (Y |S)
∑

d∈D
P (S|C, d)P (d) (2)

The above derivation shows that to estimate the causal effect of C on Y , it is
necessary to consider the scores with both causal and counfounder embeddings.
This can be understood as re-coupling the decoupled embeddings and using
them to calculate the score of the triple. In the next section, we would propose
our Causality-enhanced knowledge graph Embedding (CausE) framework and
implement the backdoor adjustments mentioned above.

4.3 CausE Framework

In this section, we would demonstrate our Causality-enhanced knowledge graph
Embedding (CausE) framework. We would first describe the basic settings of
CausE and emphasize how we implement the backdoor adjustment in the CausE.

Basic Definition. The overall framework of CausE is shown in Fig. 3. In the
embedding layer, we define two embeddings called causal embedding and con-
founder embedding for each entity and relation in the KG, aiming to achieve the
disentanglement of causal and confounder features. Specifically, for each entity
e ∈ E , we define a causal embedding ecaus and a confounder embedding econf for
it. Similarly, for each relation r ∈ R, the two embeddings are rcaus and rconf .
Such design is consistent with the SCM in Fig. 2.
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Fig. 3. The overall architecture of CausE. We disentangle the embeddings into two
parts called causal and confounder embeddings respectively while applying three score
functions. We also design five loss functions to train these embeddings while the causal
intervention is integrated into them.

As for the score function, we employ three score functions Fcaus,Fconf ,Finter,
which are called causal score, confounder score, and intervention score respec-
tively. The three score functions are in the same form but can be any general score
functions proposed by the existing KGE models. Besides, we design several loss
functions to guide the training process of CausE. We would describe the details
of the score functions and their corresponding loss functions.

Causal and Confounder Scores. The causal score function Fcaus(h, r, t) takes
the causal embeddings hcaus, rcaus, tcaus of h, r, t as input and calculate the
causal score the triple. According to our assumption, the causal embeddings
are expected to make reasonable and causal predictions. Thus, the causal score
Fcaus(h, r, t) should still follow the general rule of KGE models: positive triple
should have higher scores. We apply sigmoid loss function with self-adversarial
negative sampling as the loss function to train the causal embeddings. The causal
loss Lcaus has the same form as Eq. 1, which is based on Fcaus.

Meanwhile, the confounder score function Fconf (h, r, t) would calculate the
confounder score of the confounder embeddings hconf , rconf , tconf . Different
from the causal embeddings, we assume that confounder embeddings learn the
harmful features from the KGs and they make no positive contribution to the
reasonable prediction. Hence, the confounder score Fcaus(h, r, t) should be close
to the confounder score of negative triples, which means the KGE model is
misled by the harmful features and could not distinguish the positive triple from
high plausibility from the negative triples. Therefore, we apply the mean squared
error (MSE) loss to train the confounder embeddings. The training objective can
be denoted as:

Lconf =
1

|T |
∑

(h,r,t)∈T

(
Fcaus(h, r, t) −

K∑

i=1

piFcaus(h′
i, r

′
i, t

′
i)

)2

(3)

By the two loss functions proposed above, we could achieve the disentangle-
ment of the causal and confounder embeddings.
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Intervention Scores. As shown in Eq. 2, we need to implement the backdoor
adjustment. As we mentioned above, the formula for backdoor adjustment can
be understood as jointly measuring the triple plausibility with both causal and
confounder embeddings, while considering all possible confounder embedding.
This is equivalent to recombining the two decoupled embeddings into the original
embeddings and computing the score.

We call this score an intervention score Finter(h, r, t). Besides, we propose a
intervetion operator Φ to recombine the two embeddings and get the inter-
vention embeddings as the output. This process can be denoted as:

einter = Φ(ecaus,econf ),e ∈ {h, t} rinter = Φ(rcaus, rconf ) (4)

We employ the addition operation as the intervention operation. Hence, we could
calculate the intervetion score Finter(h, r, t) with the intervention embedding
hinter, rinter, tinter. From another perspective, causal intervention is such a pro-
cess that employs the confounder embeddings to disrupt the prediction of the
causal embeddings to estimate the causal effect of the confounder embeddings.
We expect the intervention scores could still lead to reasonable predictions. Thus,
the training objective Linter is also a sigmoid loss like 1 based on Finter.

Auxiliary Objectives. To further improve the performance of CausE, we uti-
lize the intervention score and propose two auxiliary training objectives.

As we mentioned above, the intervention embeddings can be regarded as
the causal embeddings perturbed by the confounder embeddings. Therefore, the
effectiveness of the causal scores should be worse than the causal scores but
better than the confounder scores. Based on such an assumption, we design two
auxiliary training objectives. The first auxiliary objective is between the causal
and intervention scores. We apply the sigmoid loss function to make the contrast
between them and push the causal scores higher than the intervention scores:

Laux1 =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ − Fcaus(h, r, t)) − log σ(Finter(h, r, t) − γ)

)

(5)
The second auxiliary objective Laux2 is similarly designed as Laux1 to push

the intervention scores higher than the confounder scores. In summary, the over-
all training objective of CausE is:

L = Lcaus + Lconf + Linter + Laux1 + Laux2 (6)
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5 Experiments

In this section, we will demonstrate the effectiveness of our methods with com-
prehensive experiments. We first detailedly introduce our experimental settings
in Sect. 5.1. Then we would demonstrate our results to answer the following
questions:

– RQ1: Could CausE outperform the existing baseline methods in the knowl-
edge graph completion task?

– RQ2: How does CausE perform in the noisy KGs?
– RQ3: How much does each module of CausE contribute to the performance?
– RQ4: Do the learned embeddings achieve our intended goal?

5.1 Experiment Settings

Datasets/Tasks/Evaluation Protocols. In the experiments, we use two
benchmark datasets FB15K-237 [13] and WN18RR [7].

We evaluate our method with link prediction task, which is the main task of
KGC. Link prediction task aims to predict the missing entities for the given query
(h, r, ?) or (?, r, t). We evaluate our method with mean reciprocal rank (MRR),
and Hit@K (K = 1,3,10) following [12]. Besides, we follow the filter setting [3]
which would remove the candidate triples that have already appeared in the
training data to avoid their interference.

Baselines. As for the link prediction task, we select several state-of-the-art KGE
methods, including translation-based methods (TransE [3], RotatE [12], PairRE
[5]), semantic matching methods (DistMult [17], ComplEx [14]), quaternion-
based methods (QuatE [19], DualE [4]), and neural network based methods
(ConvE [7], MurP [1]). We report the baseline results from the original paper.

Parameter Settings. We implement CausE framework to five representa-
tive score functions: TransE [3], DistMult [16], ComplEx [14], PairRE [5], and
DualE [4]. We apply grid search to tune the hyper-parameters to find the
best results of CausE. We search the embedding dimension of the KGE model
de, dr ∈ {256, 512, 1024}, the margin γ ∈ {0, 4, 6, 8}, the training batch size
∈ {512, 1024}, the temperature α ∈ {1.0, 2.0}, the negative sample number
Nk ∈ {64, 128, 256}, and the learning rate η ∈{1e−3, 1e−4, 2e−5}. We conduct
all the experiments on Nvidia GeForce 3090 GPUs with 24 GB RAM.

5.2 Main Results (RQ1)

Our main experiment results are in Table 1. From the results, we could find
that The CausE could outperform the baseline methods on the two benchmarks.
For example, CausE can achieve a relatively 1.4% Hit@1 improvement on the
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Table 1. Link prediction results on FB15K-237 and WN18RR. The best results are
bold and the second best results are underlined for each metrics.

Model FB15K-237 WN18RR

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

TransE [3] 0.279 0.441 0.376 0.198 0.224 0.520 0.390 0.022

DistMult [17] 0.281 0.446 0.301 0.199 0.444 0.504 0.470 0.412

ComplEx [14] 0.278 0.450 0.297 0.194 0.449 0.530 0.469 0.409

ConvE [7] 0.312 0.497 0.341 0.225 0.456 0.531 0.470 0.419

RotatE [12] 0.338 0.533 0.375 0.241 0.476 0.571 0.492 0.428

MurP [1] 0.336 0.521 0.370 0.245 0.475 0.554 0.487 0.436

QuatE [19] 0.311 0.495 0.342 0.221 0.481 0.564 0.500 0.436

DualE [4] 0.330 0.518 0.363 0.237 0.482 0.561 0.500 0.440

PairRE [5] 0.351 0.544 0.387 0.256 - - - -

CausE (TransE) 0.332 0.517 0.368 0.234 0.227 0.536 0.391 0.023

CausE (DistMult) 0.298 0.473 0.327 0.212 0.447 0.517 0.452 0.415

CausE (ComplEx) 0.324 0.504 0.357 0.234 0.467 0.527 0.482 0.436

CausE (SOTA) 0.355 0.547 0.392 0.259 0.486 0.562 0.502 0.446

WN18RR dataset. Such results demonstrate that CausE becomes a new state-
of-the-art KGE method.

Meanwhile, CausE is a universal framework and can be applied in various
KGE models. The results in Table 1 also demonstrate that CausE could enhance
the performance of various KGE models, compared with the corresponding base-
lines trained w/o CausE. For example, the MRR results on the FB15K-237
dataset of the TransE/DistMult/ComplEx models get relative improvement by
18.9%, 13.5%, and 16.5% respectively. We speculate that this is due to the design
defects in the early KGE models, which would mislead the model to learn the
confounder features in the KG and make non-causal predictions in the inference
stage. Overall, we show that CausE can outperform the baseline methods in
various score functions. Thus, the RQ1 is solved.

5.3 Link Prediction on Noisy KG (RQ2)

To answer the RQ2, we make further exploration on the noisy link prediction
task, aiming to validate the robustness of CausE on noisy KGs. We set a param-
eter called noisy rate λ, it is defined as λ = |Tnoisy|

|Ttrain| , where Tnoisy ⊂ Ttrain is the
noisy link set of the training set. We generate noisy KGs by randomly replacing
the positive triples and setting the noisy rate λ from 1% to 10%. We conduct
experiments on these noisy datasets with DistMult [17] and ComplEx [14]. The
results are shown in Fig. 4.

According to the noisy link prediction results, we could first observe that
the performance of KGE models is gradually declining as the noisy links in the
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training data increase. Further, the models enhanced with CausE outperform the
baseline models on different benchmarks and score functions. Such experimental
results show that our design is effective to counter the noise in the data set and
achieve better link prediction performance.

Fig. 4. The noisy link prediction results. We report the Hit@1 and MRR results for
different experiment settings. The x-axis represents the noisy rate (%) of the training
dataset.

Table 2. Ablation Study result on WN18RR dataset with ComplEx score.

Model MRR Hit@10 Hit@3 Hit@1

CausE-ComplEx 0.467 0.527 0.482 0.436

L w/o Lcaus 0.458 0.525 0.479 0.421

w/o Lconf 0.453 0.509 0.467 0.424

w/o Linter 0.427 0.494 0.452 0.407

w/o Laux1 0.454 0.508 0.466 0.426

w/o Laux2 0.446 0.497 0.460 0.419

Φ subtraction 0.454 0.507 0.464 0.426

multiple 0.439 0.494 0.454 0.409

concatenation 0.433 0.482 0.442 0.409

5.4 Ablation Study (RQ3)

To explore the RQ3, we conduct ablation studies on different components of
CausE in this section. We mainly verify the effectiveness and necessity of module
design from two aspects.

First, we remove each of the five training objectives and conduct link pre-
diction experiments. Secondly, we validate the effectiveness of the intervention
operator by replacing the addition operation Φ with other common operators.

Our ablation studies are conducted in the mentioned settings with ComplEx
score and WN18RR dataset, while keeping other hyper-parameters same. The
results are shown in Table 2. The experiment results show that all five parts
of the training objective are of great significance, as the model performs worse
when any of them is removed. The performance of the model degrades most
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when Linter is removed. Hence, the results emphasize that causal intervention
plays a very important role in CausE. Meanwhile, when the intervention operator
is changed to other settings, the performance of the model has also decreased.
Thus, we could conclude that the addition operation is a pretty good choice, as
it is simple but effective enough.

Fig. 5. Embedding visualization results with t-SNE, we assign different colors for the
entities with different types.

5.5 Visualization

To answer RQ4 and to illustrate the effectiveness of CausE intuitively, we
selected entities with several different types and visualize their embeddings with
t-SNE, which is shown in Fig. 5. We can find that the causal embedding dis-
tribution of different types can be clearly distinguished, while the confounder
embedding are relatively mixed and closer together. The distribution of the
intervention embeddings which could represent the original embeddings without
disentanglement lies between the two. This shows that our approach make causal
embeddings learn more distinguishable and achieve the designed goal.

6 Conclusion

In this paper, we emphasis that learning correlation in knowledge graph embed-
ding models might mislead the models to make wrong predictions. We resort to
causal inference and propose the new paradigm of knowledge graph embedding.
Further, we propose a novel framework called CausE to enhance the knowledge
graph embedding models. CausE would disentangle the causal and confounder
features to different embeddings and train those embeddings guided by the causal
intervention. Comprehensive experiments demonstrate that CausE could outper-
form the baseline methods achieve new state-of-the-art results. In the future, we
plan to introduce more causality theory into knowledge graph embeddings and
we attempt to apply the causal theory in more complex scenarios such as multi-
modal knowledge graphs, and temperal knowledge graphs.
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Abstract. Graph neural networks (GNNs) have gained widespread
application in various real-world scenarios due to their powerful ability
to handle graph-structured data. However, the computational power and
logical expressiveness of GNNs are still not fully understood. This work
explores the logical expressiveness of GNNs from a theoretical view and
establishes a connection between them and the fragment of first-order
logic, known as C2, which servers as a logical language for graph data
modeling. A recent study proposes a type of GNNs called ACR-GNN,
demonstrating that GNNs can mimic the evaluation of unary C2 formu-
las. Working upon this, we give a variant of GNN architectures capable
of handling general C2 formulas. To achieve this, we leverage a mecha-
nism known as message passing to reconstruct GNNs. The proposed GNN
variants enable the simultaneous updating of node and node pair features,
allowing for the handling of both unary and binary predicates in C2 for-
mulas. We prove that the proposed models possess the same expressive-
ness as C2. Through experiments conducted on synthetic and real datasets,
we validate that our proposed models outperform both ACR-GNN and a
widely-used model, GIN, in the tasks of evaluating C2 formulas.

Keywords: Graph neural networks · logical expressiveness · C2

1 Introduction

Graph neural networks (GNNs), a class of neural network architectures designed
to process graph-structured data, have been introduced to enhance a wide range
of real-world applications in fields such as social science [1], drug discovery [2]
and knowledge graphs [3,4]. While these applications benefit greatly from the
fault-tolerance and high-performance of GNN models, their inner computational
properties and logical expressive power are not yet fully understood [5,6]. Even
the currently popular large language models (LLMs) also exhibit suboptimal
performance in logical reasoning [7]. This motivates researchers to explore in
depth the expressive power of GNNs by establishing connections between GNNs
and deterministic models [8], such as classical graph algorithms [5,9] and first-
order logic languages [10]. From these connections, researchers can gain insights

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 29–40, 2023.
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into the inherent behavior of specific GNNs, which further leads to potential
improvements in the performance and interpretability of GNNs.

A recent advancement in exploring the expressive power of GNNs has estab-
lished a close connection between GNNs and a fragment of first-order logic,
known as C2 [10,11]. The logic language C2 allows a maximum of two free vari-
ables and counting qualifiers within logical formulas [12]. The work of [10] pro-
poses a class of GNNs, referred to as ACR-GNNs, which can evaluate formulas of
a limited version of C2. We refer to this limited version as unary-C2, where only
unary predicates (e.g., Red(x)) and statements of node connectivity are permit-
ted. The proposed approach is based on the finding that unary predicates can
be considered as features of graph nodes, and evaluating formulas can thus be
transferred to node classification. The authors of [10] prove that ACR-GNN is
equivalent to unary-C2 in terms of logical expressiveness. However, ACR-GNNs
have not been shown to be capable of handling user-defined binary predicates
(e.g., hasFather(x,y)). It remains unknown whether a specific type of GNNs
or its variants exist for mimicking the evaluation of general C2 formulas, taking
into account various binary predicates as well.

Our work takes a step forward in addressing the question of whether a class
of GNNs exists for evaluating general C2 formulas. Our focus on C2 stems from
its remarkable expressive power in modeling a wide range of graph theory prob-
lems [12,13]. Hence investigating the connection between GNNs and well-formed
deterministic models from the perspective of C2 offers a valuable perspective.

It is challenging to evaluate general C2 formulas directly using widely-used
GNN models, such as GIN [5], GCN [14], and ACR-GNN. The difficulty arises
from the fact that these GNN models are primarily designed to classify local
nodes or global structures of graphs. In contrast, evaluating binary predicates
within C2 formulas requires handling node pairs, which are actually sub-graph
structures. This issue prompts us to consider two questions: Can we reconstruct
GNNs to deal with node pairs, and are the reconstructed GNNs capable of eval-
uating general C2 formulas? In this paper, we aim to answer these two questions.
Our contributions are as follows:

– We propose a novel GNN architecture, named NP-GNN, to handle node pairs
in graph-structured data. NP-GNN is built upon the framework of ACR-GNN
model and incorporates a pair-wise message passing scheme to enable effective
information exchange among both nodes and nodes pairs. We show that NP-
GNN is capable of evaluating binary predicates within C2 formulas whose
variables are guarded.

– While NP-GNNs lack readout functions for global checking, we establish their
logical expressiveness by showing their equivalence to ACR-GNNs. We fur-
ther introduce NPR-GNNs, a variant of NP-GNN that incorporates readout
functions. By integrating readout functions into the architecture, NPR-GNNs
can evaluate general C2 formulas.

– We conduct experiments on synthetic and real datasets to validate the per-
formance of NP-GNNs and NPR-GNNs in evaluating C2 formulas. The exper-
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imental results show that our proposed models can evaluate C2 formulas and
outperform both ACR-GNN and a widely-used GNN model, GIN.

The rest of the paper is organized as follows. In Sect. 2, we introduce basic
notions about C2 and GNNs. We then discuss the approach of evaluating C2

formulas Sect. 3. We give NP-GNN model and NPR-GNN model in Sects. 4 and
5 respectively, and discuss their logical expressiveness in these two sections. We
report the experimental results in Sect. 6 and conclude the work in Sect. 7. The
technical report and the source code of our implementations can be found at
this address https://gitlab.com/p9324/ccks2023.

2 Background Knowledge

2.1 The Logic Basics

We study graph-structured datasets in this paper, defined as G = 〈V,C,R〉,
where V is a set of graph nodes, C is a set of unary predicates on V , and R is a
set of binary predicates on V 2. We also use v ∈ G to represent that v ∈ V . We
build first-order logic for modeling graph datasets by using V as the universe
set, with the predicate symbols in C and R, the variables x1, x2, ..., xn, logical
operators (∧, ∨, ¬, and →), and quantifiers (∀ and ∃). A fragment of first-order
logic, C2, has been studied and used for tasks built on graph-structured datasets
[12]. The formulas in C2 satisfy that (i) counting qualifiers (∃≥k) are allowed, (ii)
the appearing predicates are from C and R, and (iii) one or two free variables1

occur in formulas. A formula ϕ is called a unary (resp. binary) formula if ϕ has
one (resp. two) free variables.

We apply model theory for logical semantics by mapping the node set V to
the universe set in a model M. We say that a graph G satisfies a unary formula ϕ
if 〈M, v〉 exists such that ϕ(v) holds, denoted by (G, v) |= ϕ. Similarly, a graph
G satisfies a binary formula ϕ if 〈M, (v, w)〉 exists such that ϕ(v, w) holds,
denoted by (G, (v, w)) |= ϕ. Evaluation of C2 formulas on graphs can be seen as
logical classification [10], where a logical classifier L is set to decide whether an
assignment ω exists for ϕ such that L(G,ω) = 1 if (G,ω) |= ϕ and L(G,ω) = 0
otherwise, where ω corresponds to a node v (resp. a node pair (v, w)) if ϕ is a
unary (resp. binary) formula.

2.2 Graph Neural Network

The classical architecture of GNNs [15] involves multiple iterations that perform
aggregation and combination functions. Formally, a GNN classifier A has T
iterations, denoted by t ∈ {1, 2, ..., T}, with the input dimension dt. Given a
graph G = 〈V,C,R〉 as the input, the computation in each iteration can be
described by the following formula:

xt+1
v = Combt+1(xt

v,Aggt+1({xt
u|u ∈ NG(v)})) (1)

1 A variable x is free if it is not qualified by ∃ and ∀. See the formula ∃y.ϕ(x, y), where
variable x is free and variable y is not.

https://gitlab.com/p9324/ccks2023
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where xt
v is the feature vector of node v ∈ V in iteration t, and NG(v)(:=

{u|∀u (v, u) ∈ R or (u, v) ∈ R}) is a set of the neighborhoods of v. The aggrega-
tion function Aggt maps a multiset of input vectors in R

dt to one vector, while
the combination function Combt+1 takes input vectors in R

dt and outputs one
vector in R

dt+1 . Note that the output xT
v of the GNN A is actually the feature

vector of the node v after all the T iterations finish computation.
Suppose we have constructed a GNN model Aϕ for evaluating the target

formula ϕ given a graph G. We can then use the following formal definition to
describe the equivalent logical expressiveness between C2 and GNNs.

Definition 1. (Formula Capturing) Given a graph G, we say that a GNN
model Aϕ captures the logical classifier Lϕ with respect to the C2 formula ϕ if it
holds that, for any assignment ω, Aϕ(G,ω) = 1 if and only if Lϕ(G,ω) = 1.

3 The Basic Idea of Evaluating Formulas via GNNs

From Definition 1, one can use GNNs to evaluate C2 formulas through building a
connection between C2 logical classifiers and GNNs. This connection is based on
the following observation: evaluating a formula from its innermost subformula
to the outmost one can be viewed as a process of attaching node labels. To
illustrate it, consider the following unary formula (see (2)) as an example, which
describes all boys who have a friend.

boyWithFreind(x) ≡ child(x) ∧
φ2

︷ ︸︸ ︷

male(x) ∧ ∃ y.friend(y, x)
︸ ︷︷ ︸

φ1
︸ ︷︷ ︸

φ3

(2)

A logical classifier of handling this formula evaluates the innermost subformula
φ1, then the secondary subfomula φ2, and finally the outmost one φ3. It can also
be seen as a repeating process of attaching formulas (φ1, φ2, φ3 in the example),
as new labels, to graph nodes and node pairs. The following example shows a
case of how this process works for Formula 2.

Example 1. Suppose a GNN model A handles a graph dataset containing two
nodes v1 and v2, and a node pair (v2, v1). Initially, node v1 holds the two labels
‘child’ and ‘male’, while the node pair (v2, v1) is labeled ‘friend’. The attached
labels correspond to the predicates in Formula 2. After model A verifies that
node v1 holds the labels ‘child’ and ‘male’ and that a ‘friend’-labeled node
pair (v2, v1) exists, it then attaches the formula notation ‘boyWithFreind’ as a
label to node v1.

From the perspective of GNNs, the process of attaching formulas can be
implemented by mapping node labels to feature vectors and locally visiting
nodes to aggregation and combination functions. However, directly using GNNs
presents an issue. Unary formulas allow for the statement of isolated variables
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that are not guarded by any free variable. Consider the formula ϕ(x) ∧ ∃y.φ(y),
for example. The qualified variable y is not guarded by the free variable x. Con-
sequently, when evaluating this formula, variable y could be assigned to any
node in the given graph. This necessitates global checking in addition to the
local aggregation and combination functions. In their work, the authors of [10]
address this issue by using a global function called readout (denoted by Read),
which is placed between the aggregation and combination functions to collect
global information after each iteration of GNNs (see (3)).

xt+1
v = Combt+1(xt

v,Aggt+1({xt
u|u ∈ NG(v)}),Readt+1({xt

u|u ∈ G})) (3)

The class of GNNs consisting of aggregation, combination and readout functions
are referred to as ACR-GNNs. It has been shown by the following theorem
that, ACR-GNNs evaluate formulas of a limited version of C2. We refer to this
limited version as unary-C2, where only unary predicates and statements of node
connectivity are permitted, and various user-defined binary predicates are not
allowed.

Theorem 1 ([10]). For any unary-C2 formula ϕ whose logical classifier is Lϕ,
there exists an ACR-GNN classifier A that captures the logical classifier Lϕ.

Our objective is to evaluate general C2 formulas that involve both unary
and binary predicates. However, it is apparent that ACR-GNNs cannot achieve
this goal because they solely deal with graph nodes, while evaluating binary
predicates necessitates GNNs to classify node pairs.

bloodBrother(x, y) ≡ boy(x) ∧ boy(y) ∧ ∃z.(father(z, x) ∧ father(z, y)) (4)

Consider Formula (4), which represents all blood brothers. Suppose a logi-
cal classifier L evaluates this formula given a graph G. This classifier deals
with each node pair (v, u) in G and satisfies L(G, (v, u)) = 1 if and only if
(G, (v, u)) |= bloodBrother. Similarly, A GNN model evaluating Formula (4)
should attach the corresponding label bloodBrother to node pairs. This can
hardly be implemented using aforementioned aggregation, combination and read-
out functions, as they are restricted to dealing with nodes. This raises two ques-
tions:

(1) Can we reconstruct GNN models to classify node pairs and further evaluate
general C2 formulas?

(2) If such GNNs exist, do they offer greater logical expressiveness than ACR-
GNNs?

In the following sections, we provide our answers to these questions.

4 Evaluating General C2 Formulas via GNNs

We will now address the first question: how to reconstruct GNNs to enable them
to handle node pairs. This necessitates the development of GNNs that are capa-
ble of processing features associated with node pairs. One possible approach is
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to treat node pairs as graph edges and consider the utilization of edge features. A
notable variant of GNNs, referred to as message-passing GNNs (MP-GNNs), has
been proposed to facilitate the update of edge features [16]. MP-GNNs have also
been employed in the early stages of research in the field of quantum chemistry
[17]. In this work, we adopt the methodology given in [16] to construct our own
GNNs, leveraging the existing advancements made in ACR-GNNs as well.

One issue arises when applying MP-GNNs directly to evaluate general C2

formulas. MP-GNNs are designed to update features of existing graph edges,
but in a C2 graph dataset, it is possible for two nodes to not be connected by
any edge. For instance, consider the scenario where two boys, denoted as b1
and b2, are discovered to be blood brothers after applying Formula (4). In the
original graph, their corresponding nodes are not connected by any edge. In the
following work, we address this issue by converting the original input graphs to a
completely connected graph during the initial stage. This ensures that each node
pair has a corresponding edge. Although this conversion results in a theoretical
space complexity of O(n2), the practical computing efficiency can be guaranteed
by employing sparse matrix scheme [18].

We call our GNN models capable of handling node pairs, NP-GNNs, which
are fed with sparsely stored completely connected graphs. Specifically, given a
graph G = 〈V,C,R〉, for each node v ∈ V and node pair (v, w) ∈ V 2, let xv and
evw be the feature vectors of v and (v, w) respectively. Similar to classical GNNs,
NP-GNNs operate through several iterations. The message-passing scheme for
updating xt+1

v and et+1
vw in iteration t + 1 (t ≥ 0) can be formalized as follows:

xt+1
v = Combt+1

1 (xt
v,Aggt+1

1 ({xt
w,et

vw,et
wv|w ∈ N (v)})) (5)

et+1
vw = Combt+1

2 (et
vw,Aggt+1

2 ({et
wv,et

vu,et
uv,et

uw,et
wu,xt

v,xt
w|u ∈ V })) (6)

where the functions Aggt+1
i and Combt+1

i (i = 1, 2) represent the corresponding
aggregation and combination functions. Comparatively, NP-GNNs differ from
ACR-GNNs (3) in that both node and node pair feature vectors are simulta-
neously updated within each iteration. The functions Aggi (i = 1, 2) are spe-
cially designed for this purpose. To be specific, for a given node v, the function
Agg1 collects information not only from the node’s neighbor (i.e., xw) but also
from its related node pairs (i.e., et

vw and et
wv). Similarly, for a given node pair

(v, w), Agg2 collects information from all node pairs involving v or w (i.e.,
et

wv,et
vu,et

uv,et
uw and et

wu), as well as its related nodes (i.e., xt
v and xt

w).
Returning to our question, we address it by constructing a specific class of

NP-GNNs. We can achieve this by specifying the parameters of these models
to ensure their ability to capture logical classifiers that evaluate C2 formulas in
which all variables are guarded.

Theorem 2. For any C2 formula ϕ in which variables are guarded, with its
corresponding logical classifier denoted as Lϕ, there exists an NP-GNN model A
that captures Lϕ.

The proof can be found in the technique report. The basic idea of the con-
struction of the specific NP-GNNs is that the components in the feature vectors
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used for labelling graph nodes (resp. node pairs) represent sub-formulas of the
given unary formula (resp. binary formula). Further, if a feature component is set
1 for a node (resp. a node pair) then the corresponding sub-formula is satisfied
under the node (resp. the node pair).

5 The Logical Expressiveness of NP-GNN

While NP-GNN does not incorporate readout functions, it exhibits competitive
logical expressiveness compared to ACR-GNN as demonstrated in Proposition 1.
Consider the formula ϕ(x)∧∃y.φ(y) again, where variable y is unguarded. ACR-
GNN is capable of capturing this formula by globally collecting information
on the predicate φ through its readout functions. However, we can rewrite the
formula by introducing a watching variable z as follows, and utilize NP-GNN to
handle the revised formula without relying on readout functions:

ψ(x, z) ≡ ϕ(x) ∧ ∃y.φ′(y, z) (7)

Here, z is the newly introduced watching variable. The predicate φ′ is defined
based on the original predicate φ. Specifically, for any node pair (v, w), φ′(v, w)
holds if φ(v) holds. NP-GNNs operate by labeling node pairs with the predicate
φ′. The presence of such labels implies the satisfiability of the original sub-
formula ∃y.φ(y). In a more general sense, any unary predicate with unguarded
variables can be transformed into an equivalent binary predicate by utilizing
watching variables, making it amenable to be handled by NP-GNNs. The feasi-
bility of watching variables lies in the fact that fully connected graphs, serving as
input to NP-GNNs, naturally distribute the global information among all nodes
through node pairs.

Proposition 1. The NP-GNNs are logically expressive as the ACR-GNNs.

We will now discuss formulas with unguarded variables in binary predicates.
These types of formulas are commonly used in multi-agent systems to determine
whether a local event leads to a special situation, contingent upon the satisfaction
of a global condition. As an example, we consider the multi-agent system called
Capture The Flag [19], in which each robot endeavors to capture flags and deliver
them to designated coordinates. The termination condition of this game can be
expressed by the following formula (see 8): If any robot x delivers a flag y to the
destination, and no robot z (including x itself) can move any flag z′, then the
game round concludes with x gaining a point with flag y.

gainPoint(x, y) ≡ capture(x, y) ∧ ∀z, z′.¬move(z, z′) (8)

As we can see, the variables in the sub-formula ¬move(z, z′) are both unguarded.
To evaluate such a formula, the corresponding logical classifier must perform a
global check to verify whether, for each node pair (w, v), ¬move(w, v) holds.
In order to facilitate this global checking by GNNs, we utilize the ACR-GNN
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method and incorporate two readout functions to update the features of nodes
and node pairs, respectively, during each iteration of NP-GNNs.
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Readt+1({et
vw|(v, w) ∈ V 2}))

(9)

We refer to the modified models as NPR-GNNs, where each layer integrates
aggregation, combination and readout functions. It can be checked that NPR-
GNNs can capture general C2 formula classifiers, as shown by the following result.

Theorem 3. For any C2 formula ϕ, with its logical classifier as Lϕ, there exists
an NPR-GNN classifier A that captures Lϕ.

6 Experiments

We conducted experiments on both synthetic and real datasets to validate the
performance of the proposed models, namely NP-GNN and NPR-GNN, in eval-
uating C2 formulas. In order to compare the expressiveness of our models with
others, we also tested GIN [5] and ACR-GNN [10] on the same datasets. All of
the tested models were implemented using PyTorch Geometric Library (PyG).
The synthetic dataset used in the first set of experiments is called Family Tree,
which serves as a benchmark for inductive logic programming [20]. In the second
set of experiments, we used Planetoid, a widely-used benchmark that integrates
real-world datasets of paper citations [21]. We further evaluated the performance
of our models in node classification on the PPI dataset [22]. The accuracy results
were reported by counting the number of correctly classified nodes and node pairs
in all graphs within a dataset. In every experiment, we set up 200 epochs with
the Adam optimizer.

Family Tree. A manually generated graph of Family Tree consists of n nodes
representing different family members, and it includes six types of binary predi-
cates: hasHusband, hasWife, hasFather, hasMother, hasSon, and hasDaughter.
The objective is to deduce additional relationships among family members. One
of the reasons why we selected this dataset is that it solely contains binary pred-
icates, enabling us to transform node pairs to high-order graph nodes and binary
predicates to labels for high-order nodes according to the method given in [9].
This transformation allows us to compare our models with GIN and ACR-GNN
since they can only handle graph nodes.
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We investigated four implicit relationships, which can be described using the
original binary predicates as follows:

hasParent(x, y) ≡ hasFather(x, y) ∧ hasMother(x, y)

hasGrandParent(x, y) ≡ ∃z(hasParent(x, z) ∧ hasParent(z, y))

hasSister(x, y) ≡ ∃z(hasParent(x, z) ∧ hasDaughter(z, y) ∧ x �= y)

hasUncle(x, y) ≡ ∃z(hasGrandParent(x, z) ∧ hasSon(z, y) ∧ ¬hasFather(x, y))

In each experiment of evaluating the above four relationships, we generated
500 graphs with the numbers of family members randomly set between 10 and 20.
We divided the graphs into training and testing sets with an 80%/20% split. The
accuracy results are given in Table 1. All models exhibited high performance for
the hasParent and hasGrandParent relationships. However, for hasSister and
hasUncle, the accuracies significantly decreased for GIN and ACR-GNN, whereas
NP-GNN and NPR-GNN maintained high performance levels. This indicates that
it is more challenging for GIN and ACR-GNN to generalize negative expres-
sions (i.e., x �= y and ¬hasFather(x, y)) compared to NP-GNN and NPR-GNN.
The primary reason is that GIN and ACR-GNN treat high-order nodes trans-
formed from node pairs in isolation, whereas NPR-GNN and NP-GNN can per-
ceive the complete connections among nodes. Furthermore, as observed from the
hasSister and hasUncle results, NPR-GNN outperforms NP-GNN. Although
NP-GNN can handle the guarded variable z in the corresponding expressions, the
readout functions of NPR-GNN improve the learning effectiveness to some extent.

Table 1. The Experimental Results on Family Tree Datasets.

GIN ACR-GNN NP-GNN NPR-GNN

train test train test train test train test

hasParent 0.93 0.92 1.00 1.00 1.00 1.00 1.00 1.00

hasGrandParent 0.97 0.96 0.98 0.94 1.00 0.97 1.00 0.98

hasSister 0.87 0.84 0.91 0.89 0.97 0.94 1.00 1.00

hasUncle 0.86 0.85 0.94 0.90 0.96 0.93 1.00 0.97

Planetiod. In the second series of experiments, we evaluated the performance
of NP-GNN and NPR-GNN on the Planetoid benchmark, which comprises three
graph datasets: Cora, Citeseer, and Pub. In these datasets, each node represents
an academic paper and has a category label indicating its research direction,
while each edge represents a citation link between two papers.

To evaluate the models’ performance on tasks that incorporate both unary
and binary predicates, we extracted two types of sub-graphs from each dataset
using the following formulas, denoted as (α) and (β), respectively:

cati(y) ≡ cites(x, y) ∧ cati(x) (α)
cites(x, z) ≡ cites(x, y) ∧ cites(y, z) ∧ cati(x) ∧ cati(z) (β)
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In the sub-graphs extracted based on formula α (denoted by sub-graphs (α)),
for each paper x that cites some paper y and x is labeled by the category cati,
paper y has to be labeled by cati as well. On the other hand, the sub-graphs
extracted based on formula β (denoted by sub-graphs (β)) describe a transitive
relation among citation links. Specifically, if paper x cites paper y and y cites
another paper z, and if paper x and paper z are labeled by the same category,
then the citation relation between x and z should exist. The statistics of all
the sub-graphs for Cora, Citeseer, and Pub are presented in the following table,
including the number of nodes, edges and paper categories.

Table 2. The Statistics of Extracted Sub-graphs.

sub-graph(α) sub-graph(β)

�node �edge �cat �node �edge �cat

Cora 2,551 4,418 7 1,470 2,964 7

Citeseer 2,733 3,518 6 1,182 2,126 6

Pub 17,196 35,578 3 4,835 15,219 3

Table 3. The Experimental results of the Extracted Sub-graphs.

sub-graph(α) sub-graph(β)

train test train test

NP-GNN Cora 0.97 0.94 0.87 0.86

Citeseer 0.95 0.92 0.85 0.83

Pub 0.96 0.93 0.89 0.87

NPR-GNN Cora 0.97 0.97 0.91 0.90

Citeseer 0.95 0.91 0.89 0.86

Pub 0.98 0.95 0.92 0.89

We partitioned all sub-graphs into training and testing sets, with an
80%/20% split, respectively. In the testing data, we excluded all instances of
cati(y) (respectively, cites(x, z)) that appear on the left-hand side of formula
α (respectively, β). This was done to validate whether the models are capable
of deducing the correct facts. It is worth noting that GIN and ACR-GNN are
unable to simultaneously handle unary and binary predicates. Consequently, we
only present the performance results of NP-GNN and NPR-GNN here.

As shown in Table 3, both models have similar performance for sub-graphs
(α). NPR-GNN, however, demonstrates a noticeable increase of 3 to 4% points
compared to NP-GNN for sub-graphs (β), which can be attributed to the readout
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functions. It should be noted that neither model achieves a test accuracy exceed-
ing 0.90. Both NP-GNN and NPR-GNN models tend to quickly learn transitivity
expressions. However, in the case of formula β, it represents a conditional expres-
sion rather than a strictly defined transitivity expression. Specifically, paper x
cites paper z only when they belong to the same category, as indicated by the
presence of the sub-formula (cati(x)∧cati(z)), which impedes the learning pro-
cess of NP-GNN and NPR-GNN. Additional experiments were conducted by
modifying parameters such as increasing the number of epochs and changing
optimizers, but these changes did not yield significant improvements.

PPI. In our final set of experiments, we assessed the node classification capa-
bilities of NP-GNN and NPR-GNN using the well-known benchmark dataset,
Protein-Protein Interaction (PPI) [22], where 4,997 nodes and 129,764 edges are
included. Each node in this dataset is represented by a 50-dimensional feature
vector and assigned one of 210 classes.

Although the results obtained by NP-GNN and NPR-GNN were competitive
with those of GIN and ACR-GNN (NP-GNN: 0.76, NPR-GNN: 0.74, GIN: 0.72,
ACR-GNN: 0.76), NP-GNN and NPR-GNN did not demonstrate a significant
improvement. This can be attributed to the nature of the PPI dataset, which pri-
marily involves node connectivities rather than diverse binary predicates among
nodes. As a result, NP-GNN and NPR-GNN were unable to utilize additional
information from node pairs to enhance prediction accuracy.

7 Conclusion

We aimed at exploring a variant of GNN architectures capable of capturing gen-
eral C2 formulas. By introducing the message passing mechanism, we discovered
a type of GNNs called NP-GNNs that can handle both unary and binary predi-
cates. NP-GNNs were found to be comparable to ACR-GNNs in terms of logical
expressiveness. To handle formulas with unguarded variables, we proposed NPR-
GNNs by extending NP-GNNs with readout functions. Through various exper-
iments, we validated the logical expressiveness of NP-GNNs and NPR-GNNs.
The results showed that our models outperformed GIN and ACR-GNN on Fam-
ily Tree Datasets but did not exhibit significant improvement in PPI classifi-
cation tasks. Additionally, comparing NP-GNNs and NPR-GNNs revealed that
readout functions indeed enhance global checking capabilities.
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Abstract. To address the issue of poor embedding performance in the knowledge
graph of a programming design course, a joint representation learning model that
combines entity neighborhood information and description information is pro-
posed. Firstly, a graph attention network is employed to obtain the features of
entity neighboring nodes, incorporating relationship features to enrich the struc-
tural information. Next, the BERT-WWM model is utilized in conjunction with
attention mechanisms to obtain the representation of entity description informa-
tion. Finally, the final entity vector representation is obtained by combining the
vector representations of entity neighborhood information and description infor-
mation. Experimental results demonstrate that the proposedmodel achieves favor-
able performance on the knowledge graph dataset of the programming design
course, outperforming other baseline models.

Keywords: Knowledge Graph · Representation Learning · Entity
Neighborhood · Entity Description

1 Introduction

Knowledge graph representation learning is a method that transforms entities and rela-
tionships in a knowledge graph into low-dimensional vectors, enabling efficient compu-
tation of complex semantic associations [1]. It serves as the foundation for downstream
tasks such as knowledge reasoning and knowledge base construction. In the knowledge
graph of a programming design course, a target entity is connected to other relevant
entities through relationships, and the relationships and connected entities starting from
the target entity are referred to as its structural neighborhood. Different entities within
the neighborhood have varying degrees of importance to the tar-get entity, and entities
typically possess rich description information.

As illustrated in Fig. 1, the target entity “Array” is connected to neighboring entities
such as “Memory” and “One-dimensional Array” through relationships like “require”
and “include”.Additionally, it is accompanied by the description information “Definition
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H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 41–53, 2023.
https://doi.org/10.1007/978-981-99-7224-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7224-1_4&domain=pdf
https://doi.org/10.1007/978-981-99-7224-1_4


42 L. Xiao et al.

of an array”. Traditional representation learning methods for course knowledge graphs
typically focus on embedding individual entities without considering their neighborhood
information and description information, leading to suboptimal embedding performance.

Fig. 1. Sample Knowledge Graph of Programming Course

This paper proposes a representation learning model, named NDRL (A Representa-
tion Learning Model for Joint Entity Neighborhood Information and Description Infor-
mation), based on the characteristics of the programming design course knowledge
graph. The model aims to effectively integrate entity neighborhood information and
description information, utilizing the information within the knowledge graph to obtain
high-quality embedding representations. This model plays a significant role in subse-
quent tasks such as knowledge reasoning [2, 3], completion [4, 5], and applications [6,
7] based on the course knowledge graph.

2 Related Work

Knowledge graphs are often represented symbolically, which can lead to issues such as
low computational efficiency and data sparsity [8].With the development and application
of deep learning, there is a growing desire for more simple and efficient representations
of knowledge graphs. This has given rise to knowledge graph representation learning
methods, which aim to map the elements of knowledge graphs, including entities and
relationships, into a continuous low-dimensional vector space. The goal is to learn vec-
tor representations for each element in the vector space, thereby mapping the triplets
from a high-dimensional one-hot vector space to a continuous low-dimensional dense
real-valued vector space [9]. This approach addresses the problem of data sparsity in
knowledge bases and enables efficient computation.

Among the existing research, translation models are the most representative and
classic methods [10]. The fundamental idea behind translation models is to map entities
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and relationships into a shared vector space, where the semantic information of entities
and relationships can be represented by the similarity between vectors. However, these
methods typically independently learn the structural features of each triplet, without
incorporating the semantic information present in the knowledge graph.

To address this issue, several knowledgegraph representation learningmethods based
on semantic information have been proposed in recent years. KG-BERT [11] represent
entities and relations as their name/description textual sequences and turn the knowledge
graph completion problem into a sequence classification problem.TheRotatE [12]model
defines each relation as a rotation from the source entity to the target entity in the
complex vector space, which is able to model and infer various relation patterns. The
methods based onGraphConvolutional Neural Networks (GCN) [13] are one of themost
commonly used approaches. GCN learns the semantic relationships between entities
and relationships by performing convolutions on the graph, thereby integrating this
information into vector representations.

In recent years, researchers have proposed improved graph neural network models,
such as Graph Attention Network (GAT) [14]. GAT utilizes attention mechanisms to
learn the interaction between neighbor nodes. Compared to GCN,GAT not only captures
the complex relationships between nodes more comprehensively but also exhibits better
interpretability and generalizability.

In addition to the structural information of the triplets themselves, knowledge graphs
often contain rich additional information such as entity descriptions and attribute infor-
mation. Xie et al. [15] incorporated entity description information from the knowledge
graph into knowledge graph representation learning and proposed the DKRLmodel. The
model used both convolutional neural networks and continuous bag-of-words models
to encode entity description information. It leveraged both factual triplets and entity
description information for learning and achieved good inference performance. How-
ever, since these representations did not include the entire semantic information of entity
descriptions, there might be some loss of semantic information. Additionally, in many
large-scale knowledge graphs, there is a lack of entity descriptions for many entities. To
address this, Wang et al. [16] introduced an external text corpus and used the seman-
tic structures of entities in the text corpus as part of the entity representation, further
improving the accuracy of knowledge inference in cases of missing entity descriptions.
Reference [17] proposed a rule-guided joint embedding learning model for knowledge
graphs. It utilized graph convolutional networks to fuse context information and tex-
tual information into the embedding representation of entities and relationships, fur-
ther enhancing the representation capability of entities and relationships. Inspired by
translation-based graph embeddings designed for structural learning, Wang et al.[18]
apply a concatenated text encoder. Then, a scoring module is proposed based on these
two representations, in which two parallel scoring strategies are used to learn contextual
and structural knowledge.

In this work, we address the following issues based on existing work [15, 19]. The
following research and improvements have been conducted:

1. A representation learning model is proposed that jointly considers entity neighbor-
hood information and description information. Improved GAT and BERT models are
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used to obtain vector representations of entity neighborhood information and descrip-
tion information, respectively, to fully utilize the hidden complex entity relationship
feature vectors in knowledge graph triplets and represent the target entity.

2. Joint learning is performed on the vector representations of entity neighborhood
information and description information, training both types of representations in
the same continuous low-dimensional vector space to better utilize the two different
types of information.

3. For entities that already have rich neighborhood information, to avoid noise inter-
ference caused by the addition of description information, the concept of “entity
structure richness” is defined. Based on the magnitude of entity structure richness,
different representation learning methods are selected to obtain the optimal vector
representation. Experiments on a dataset of programming course knowledge graph
demonstrate that the proposed model outperforms other baseline models.

3 Our Model

In the entity neighborhood information representation module, we employ an improved
Graph Attention Network (GAT) model to obtain the embedding representation. In the
entity description information module, we use the BERT-WWM model and attention
mechanism to obtain the corresponding embedding representation. Different approaches
are selected to obtain the final entity vector representation based on the entity structure
richness. The model framework is illustrated in Fig. 2.

Fig. 2. Representation learningmodel with joint entity neighborhood information and description
information
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3.1 Representation Learning Based on Entity Neighborhood Information

Traditional Graph Attention Network (GAT) models learn the weights of neighboring
nodes to perform weighted summation of their features, but they do not consider the
importance of relationships for entity representation. To incorporate relationships as
important information during training and combine them with the structural features of
triplets in the knowledge graph, we enhance the GAT model by adding relationships as
significant information to the graph attentionmechanism. Specifically, to apply the atten-
tion mechanism to the target node and its neighboring nodes, we first compute weighted
sums of entities and relationships in the neighborhood. The construction methods for
the target node and its neighboring nodes are defined as Eqs. (1) and (2):

hi = ts (1)

hj = ρhs + (1 − ρ)rs (2)

Among them, hs, ts and rs represent the initial vector representations of the head
entity, tail entity, and relationship, respectively. The weight parameter ρ∈(0,1) is used
to adjust the proportion of the relationship vector compared to the entity vector when
constructing neighboring nodes. This allows both the entity and the relationship of each
triplet to participate in the computation of the graph attention model. To calculate the
influence weight of hj on the target node hi we define their attention value vij as shown
in Eq. (3):

vij = a
(
Whi,Whj

)
(3)

whereas: parameter W represents the projection matrix, and the attention mechanism
a is a single-layer feed-forward neural network. Expanding Eq. (3) yields the specific
calculation formula:

vij = LeakyRelu
(
zT

[
Whi‖Whj

])
(4)

After multiplying the projection matrix with the feature vectors and concatenating
them together, a linear transformation is applied using the weight vector z. Then, a
nonlinear activation is performed using the LeakyReLU function. Finally, the Softmax
function is applied to normalize the attention values between each node and all its neigh-
boring nodes. The normalized attention weights serve as the final attention coefficients,
as shown in Eq. (5):

αij = Softmaxj
(
vij

) = exp(vij)∑
k∈Ni exp(vik )

(5)

where Ni represents the neighboring nodes of the target node hi, which consists of the
entities hs adjacent to the target node ts and the relations rs between them as defined
in Eq. (2). The attention coefficients calculated are then weighted and summed up as
shown in Eq. (6):

h
′
i = σ

(
∑

j∈Ni

αijWhj

)

(6)
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where h
′
i represents the new feature vector for each node i based on the output of GAT,

which integrates the neighborhood information of entities in the knowledge graph. The
function σ is the activation function, and the output of the target node is related to
the feature vectors of all neighboring nodes. To enable the model to learn the features
of neighboring nodes more stably, a multi-head attention mechanism is used to obtain
different features for integration. To prevent overfitting, the vectors obtained from K-
independent attentionmechanisms are concatenated. The specific representation is given
by Eq. (7):

h
′
i =

K
‖

k = 1
σ

(
∑

j∈Ni

αk
ijW

khj

)

(7)

In the last layer of the graph attention model, the obtained vector representations are
averaged instead of concatenated. This can be expressed by Eq. (8):

h
′
i = σ

(
1
K

∑

j∈Ni

αk
ijW

khj

)

(8)

To ensure that relation vector representations have the same output dimension as
entity vector transformations, they will share the output dimension. Following a graph
attention calculation, the relation vectors undergo a linear transformation, as depicted in
Eq. (9):

R
′ = RWR (9)

The input set of relationvectors is denoted asR, andWR ∈ RT×T ′ represents the linear
transformation matrix. Here, T corresponds to the dimension of the original vectors, and
T^’ represents the dimension after transformation. However, in the process of obtaining
new entity vector representations, there is a potential loss of the original structural
features. To tackle this issue, the initial entity vectors undergo a linear transformation
and are then added to the final entity representations in the following manner:

E
′ = EWE + Ef (10)

WE∈ RTi×T f
, The parameter T i represents the initial dimension of entity vectors, while

T f represents the final dimension. E represents the set of initial input entity vectors, and
Ef denotes the set of entity vector representations learned through GAT.

3.2 Representation Learning Based on Entity Description Information

In this paper, the BERT model is introduced to represent the complete entity description
information. The entity description information serves as the direct input to the BERT
model, minimizing information loss and capturing the full semantic representation of
the entity description. The model employs a multi-layer Transformer structure, which
captures bidirectional relationships within sentences. However, since the BERT model
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masks individual characters during training and does not consider Chineseword segmen-
tation conventions, this paper utilizes the BERT-WWM model, an upgraded version of
BERT specifically optimized for Chinese tasks. It incorporates the whole-word masking
technique, allowing for better handling of the complex language structure in Chinese.
As shown in Table 1, through tokenization, the input text “数组经常被用作实际参数”
(Arrays are often used as actual parameters) is segmented into several words, such as “
数组” (arrays), “经常” (often), “被” (are), “用作” (used as), “实际” (actual), and “参
数” (parameters). Traditional BERT masking randomly selects words for masking, for
example, replacing “组” (group) and “参” (participation) with the [MASK] token. In
contrast, according to the BERT-WWM model, the “数” (number) in “数组” (arrays)
and the “数” in “参数” (parameters) would also be replaced by the [MASK] token. This
enhancement aims to improve the model’s performance.

Table 1. Example table of whole word MASK

Input text 数组经常被用作实际参数

word segentation 数组经常被用作实际参数

BERT masking mechanism 数[MASK]经常被用作实际 [MASK]数

BERT-WWM masking mechanism [MASK][MASK]经常被用作实际 [MASK][MASK]

Firstly, the entity description information is transformed into word embedding, seg-
mentation embedding, and location embedding; then it is vector stitched as the input of
the BERT-WWMmodel, and the sentence vector Si (i = 1,2,…, n) of this entity descrip-
tion information is obtained by multi-layer Transformer structure, which is represented
as the sentence vector of the i-th sentence.

After that, using the vector representation h
′
i of the target entity obtained in the entity

neighborhood representation module, the influence weight of each sentence vector Si
of the description information of the target entity is calculated in the same way as Eqs.
(3)–(8), and the attention weight of Si depends on the correlation between Si and h

′
i,

from which the attention weight distribution of each sentence vector is calculated, and
the weighted aggregation of each sentence vector representation is obtained to obtain
the entity vector representation S of descriptive information.

3.3 Obtaining the Final Embedding Representation

After obtaining the vector representations of the above two modules separately, this
paper takes two approaches to the two vector representations, one is to perform a joint
representation of the two, by combining the triadic structural information of the knowl-
edge graph and entity descriptions for the training of the model in an integrated manner.
The vector representations of entities and relations are learned in the same continuous
low-dimensional vector space. The energy function of the synthesis is defined as shown
in Eq. (11)

d = dg + dw (11)
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where dg = ‖hg+r−tg‖ 2 is the GAT-based energy function and the hg and tg sub-tables
are the GAT-based representations of the head entity and tail entity; dw is the energy
function based on the description information. To achieve unity between the two in the
same vector space, the relational representation r in GAT is used in training, and dw is
defined as in Eq. (12)

dw = dww + dwg + dgw (12)

where dww = ‖hw + r − tw‖ 2, hw and tw are the description information-based repre-
sentations of the head entities and tail entities, respectively. In dwg and dgw, one of the
head and tail entities is represented using a vector based on entity description; the other
is represented using a vector obtained from GAT training as dwg = ‖hw + r − tg‖ 2 and
dgw = ‖hg + r− tw‖ 2, respectively. The two types of representations are jointly trained
in the above way to obtain the final vector representation.

However, after our experiments, we found that when an entity has more neighboring
entities, joint representation learning is not yet as effective as using only the neighbor-
hood information module. This is because when the entity has richer neighbors, these
neighbors are already able to provide enough information to the entity, and then joined
with the description information at this time will bring some noise instead, which affects
the embedding effect. Therefore, this leads to the second treatment, which is to use
only the vector representation obtained in the neighborhood information representation
module as the final vector representation, and therefore, this involves the question of a
threshold, i.e., which entity is represented by the joint representation and which entity
is represented by the neighborhood information representation module. Therefore, we
define a concept called “entity structure richness” to measure the size of entity neigh-
borhood information, and select different representation learning methods according to
the size of entity structure richness, which is defined as shown in Eq. (13).

N (e) = ne + knNe (13)

where ne is the entity degree, nNe is the degree of entity neighbor nodes, and k is the
hyperparameter in the range of 0–1.

3.4 Loss Function

Based on the above computational analysis, the loss function is further constructed. A
boundary-based optimization method is defined and used as the training objective to
optimize this model by minimizing the loss function L. Both vector representations in
the model use this loss function.

L = ∑

(h,r,t)∈T
∑

(h′,r′,t′)∈T ′
max

(
γ + d(h, r, t) − d

(
h′, r, t′

)
, 0

)
(14)

where γ is the boundary parameter measuring the correct and incorrect triples. T is
the set of positive examples consisting of the correct triples (h, r, t) and T

′
is the set

of negative examples consisting of the incorrect triples
(
h

′
, r, t

′)
, and T

′
is defined as

shown in Eq. (15):

T ′ = {(
h′, r, t

)|h′ ∈ ε
} ∪ {(

h, r, t′|t′ ∈ ε
)}

(15)
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T
′
in Eq. (15) is obtained by randomly replacing the head entity, tail entity, or

relationship in the set of positive examples to obtain the corresponding set of negative
examples. During the training of the model, the optimization operation is performed
using stochastic gradient descent to minimize the value of its loss function.

4 Experiment

4.1 Dataset

At present, there is no public authoritative knowledge graph of programming classes in
the field of knowledge mapping representation learning. In this paper, the course knowl-
edge obtained from the “C Programming” textbook, teacher’s courseware, Baidu ency-
clopedia, etc. are used as data sources, and the course knowledge points are used as enti-
ties, the description information of knowledge points as attributes and three entity rela-
tionships between knowledge points and knowledge points are set, namely, “ include”:
indicates the inclusion relationship between entities of similar knowledge points, “re-
quire”: indicates the logical dependency relationship between knowledge points, “re-
late”: indicates the relates”: denotes the related relationship between knowledge points.
Thus, the programming course knowledge graph dataset (PDCKG) was constructed. A
total of 2685 entities and 9869 triples were obtained, and the training set, validation set,
and test set were divided according to the ratio of 7:1.5:1.5.

4.2 Parameter Settings

In obtaining the GAT-based representation, the TransE training vector based on Xavier
initialization is used as the initialized structural feature vector representation of enti-
ties and relationships. The alpha parameter of LeakyReLU is set to 0.2. In order to
prevent overfitting of the model, L2 regularization is used; in order to obtain the BERT-
WWM-based representation of entity description information, the alpha parameter of
LeakyReLU is set to 0.2. The hyperparameter k in the entity richness expression is set to
0.5, and the entity structure richness threshold is set to 12, i.e., when the entity structure
richness is not less than 12, the vector representation obtained based on the neighbor-
hood information module is used as the final representation, and vice versa, the vector
representation obtained from the joint representation is used as the final representation.
Let the learning rate λ be 0.004, the boundary value γ be 1.0, and the size of the batch
be 512 during the model training.

4.3 Link Prediction Task Experiment

Link prediction aims to test the inferential prediction ability of the model. For a given
correct triple (h, r, t), after the missing head entity h or tail entity t, the head and tail
entities are randomly selected in the original entity set to complete the set, and for the
missing positions, the scores of the reconstituted triples are calculated by the model, and
then sorted in ascending order, and the ranking of the final correct triple is recorded.
That is, the tail entity t in the missing triple (h, r, ) or the head entity h in the missing
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triple (, r, t) is predicted. Mean Rank (MR), Mean Reciprocal Rank (MRR), Hits@1,
and Hits@10 are standard evaluation measures for the dataset and are evaluated in our
experiments.

In addition, there is a problem that when constructing negative samples, the new
triple formed after replacing the head entity or tail entity may already exist in the knowl-
edge graph, which may interfere with the actual ranking of the correct triple and have
some influence on the evaluation results. Therefore, in this paper, the link prediction
experiments are divided into “raw” and “filter” according to whether to filter the exist-
ing triples or not. The experimental results of each model on PDCKG are shown in
Table 2.

Table 2. Effectiveness of link prediction for each model

Model hits@1/% hits@10/% MR MRR

Filter Raw Filter Raw Filter Raw Filter Raw

TransE 8.39 5.85 32.34 20.54 556.98 804.51 0.126 0.091

DKRL 10.11 7.64 35.79 22.66 387.25 519.55 0.185 0.156

R-GCN 10.41 7.28 28.09 17.85 679.99 906.79 0.173 0.148

RotatE 25.68 20.35 51.84 40.12 201.36 341.66 0.346 0.296

KG-BERT 22.07 17.26 48.25 39.16 190.58 301.52 0.365 0.287

KBGAT 26.87 20.96 53.25 44.15 185.62 310.19 0.304 0.245

StAR 21.06 17.34 44.38 37.91 180.55 292.36 0.283 0.251

NDRL(Ours) 28.64 21.58 64.13 50.39 105.63 198.68 0.387 0.332

It can be seen that on the filtered dataset, each model performs better than the origi-
nal dataset, which illustrates the necessity of performing filtering operations, and NDRL
outperforms other comparable models in all indexes. Compared with the DKRL model,
our model uses BERT to represent the entity description information, which can min-
imize the loss of information and obtain the entity description as much as possible.
Compared with the R-GCNmodel, our model uses the method of constructing neighbor
nodes by combining entities and relations so that the target node combines more infor-
mation about entities and relations in the neighborhood, which improves the inference
ability of the model. Compared with KBGAT, because the structure-based model only
considers the structured information of the triad, when the corresponding information
is missing, it will not be able to make predictions, the entity description information
can be used as a favorable supplement to the structure-based model, thus improving the
ability of knowledge graph representation learning and the performance of prediction,
and therefore, the model has a richer representation capability.
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4.4 Ablation Experiment

To further verify the effectiveness of the model in this paper, some modules in the model
in this paper are removed and compared with the model in this paper, Hits@1, Hits@10,
and MR are used as evaluation indexes, and the comparison models are as follows:

1. (NDRL-r): In the entity neighborhood information representation module, the tra-
ditional GAT is used to obtain the entity vector representation without adding the
relationship into the model.

2. (NDRL-a): In the entity description information representation module, after obtain-
ing the sentence vectors, the attention mechanism is not used to obtain the final vector
representation, and the traditional averaging summation method is used.

3. (NDRL-s): In the module of obtaining the final vector representation, the final result
is obtained directly by using the joint representation learning method without doing
the discriminant of entity structural richness.

The experimental results are shown in Table 3.

Table 3. Ablation experiment

Model hits@1/% hits@10/% MR MRR

Filter Raw Filter Raw Filter Raw Filter Raw

NDRL-r 25.58 18.69 58.65 44.98 150.64 272.36 0.364 0.305

NDRL-a 26.21 19.36 60.36 48.68 125.65 223.85 0.371 0.311

NDRL-s 25.28 19.10 57.01 45.54 161.27 279.35 0.349 0.296

NDRL 28.64 21.58 64.13 50.39 105.63 198.68 0.387 0.332

As can be seen from the table, for each metric, removing any of the modules from
the model makes the performance of the model decrease compared to the NDRL model,
so the effect of all modules is positive.

4.5 Error Analysis

During the experiment, we found that there are many ORC (one-relation-circle) struc-
tures on the PDCKG dataset, i.e., structures composed of some special relations such
as symmetry and propagation relations, etc. After statistics, the ORC structure data in
PDCKG accounted for 15.38% of the total data. And the translation model based on
TransE cannot handle such ORC structures. For example, for the symmetric relation r,
there exist (h, r, t) ∈ G and (t, r, h) ∈ G. In TransE, the corresponding vectors then
satisfy h + r ≈ t and t + r ≈ h, which can be mathematically introduced: h ≈ t and
r ≈ 0. This leads to the inability to model, which has a certain impact on the experi-
mental effect. In the subsequent work, other more effective modeling approaches will be
explored to deal with the ORC structure present in the data and make the model obtain
better performance.
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5 Summary

In this paper, we proposed a representation learningmodel, NDRL, for the union of entity
domain information and description information, which integrates the entity neighbor-
hood information and entity description information in the knowledge graph of pro-
gramming courses. First, a combined representation of the relationships of entities and
neighboring entities using the GAT-based representation learningmodel is used to obtain
the corresponding neighborhood information representation; then, the entity description
information is encoded and represented by the BERT-WRM model to obtain the entity
description information representation corresponding to the entities; finally, it is inte-
grated into a joint model for joint training and learning, and the experimental on the
PDCKG dataset The results show that the NDRL model proposed in this paper can
improve the performance of link prediction and triad classification tasks well compared
with other benchmark models.

In our future work, we will further investigate the representation learning method for
the knowledge graph of programming courses and hope to improve it in the following 2
aspects: 1) The model in this paper focuses on using the neighborhood information and
entity description information of entities, but it has not been utilized for the knowledge
graph such as category information and other knowledge base information, so the joint
knowledge representation learningmethod ofmultiple sources is still future research and
improvement. 2) For theORCstructures existing in the knowledgegraphof programming
courses, we will further explore other more effective modeling approaches to deal with
such structures so that the model can obtain better performance.
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Abstract. Event schema provides a conceptual, structural and formal
language to represent events and model the world event knowledge.
Unfortunately, it is challenging to automatically induce high-quality and
high-coverage event schemas due to the open nature of real-world events,
the diversity of event expressions, and the sparsity of event knowledge.
In this paper, we propose a new paradigm for event schema induction
– knowledge harvesting from large-scale pre-trained language models,
which can effectively resolve the above challenges by discovering, concep-
tualizing and structuralizing event schemas from PLMs. And an Event
Schema Harvester (ESHer) is designed to automatically induce high-
quality event schemas via in-context generation-based conceptualiza-
tion, confidence-aware schema structuralization and graph-based schema
aggregation. Empirical results show that ESHer can induce high-quality
and high-coverage event schemas on varying domains.

Keywords: Event schema induction · Pre-trained language models

1 Introduction

Event is one of the basic units for human beings to understand and experience
the world. An event is a specific occurrence involving multiple participants, such
as bombing, election, and marriage. To represent events and model the world
event knowledge, event schema provides a conceptual, structural and formal
language which can describe the types of events and the semantic roles (slots) of
specific events. Specifically, an event schema is a frame such as “Type: bombing,
Slots: perpetrator, victm, target, instrument”, which is central in event extrac-
tion, event relationship understanding, and event knowledge base construction.
Due to its importance, it is critical to automatically discover and construct
large-scale, high-quality, and high-coverage event schemas.

Event schema induction, unfortunately, is a non-trivial task due to the open
nature of real-world events, the diversity of event expressions, and the sparsity
of event knowledge. Firstly, in real-world applications, the size of event types

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Text → Schema

Terrorist attacks have killed 
over 35,000 people

More than 35,000 deaths have 
been caused by terrorist attacks

Covid-19 spreads from an 
animal to a person

Jimmy Saville who croaked 
yesterday at home

Coronavirus spreads from bats 
to civet cats to humans

Type: Die
• agent
• attacker
• instrument
• place
• time
• victim

Type: Spread
• disease
• instrument
• origin
• target
• time

Fig. 1. The event harvest paradigm for event schema induction, which induces high-
quality event schemas from diverse event expressions and dispersed event knowledge
on open domains, e.g., the top two texts on the left use different utterances to describe
the same event while the fourth text complements the slots “place” and “time”.

is very large and new types of events are constantly emerging. To address this
open problem, event schemas must be induced automatically and with a high
coverage on varying domains. Secondly, as shown in Fig. 1, events are usually
expressed using very different natural language utterances, therefore it is critical
to normalize diverse event expressions by conceptualizing and structuralizing
them into formal event schemas. Finally, due to the economic principle of lan-
guage [3], event expressions are mostly incomplete and many event arguments
are missing. To resolve this sparsity problem, an event schema induction method
must aggregate dispersed event knowledge across different expressions.

Up to recently, all most event schemas are still hand-engineered by human
experts, which are expensive and labour-intensive (e.g., schemas in ACE [4]). On
the other hand, traditional automatic event schema induction methods still can-
not overcome the open, diversity, and sparsity challenges. For instance, bottom-
up concept linking methods [5] discover event types/slots by parsing and link-
ing event expressions to external schema resources such as FrameNet, which
are limited by the quality and the coverage of external schema resources. Top-
down clustering methods [11] cluster event expressions according to pre-defined
schema templates (e.g., the 5W1H template, or the predefined number of event
types/slots), which are highly constrained by the pre-defined templates. To sum
up, it remains a critical challenge to automatically discover schemas on open
domains, normalise event schemas from diverse expressions, and aggregate dis-
persed knowledge from sparse descriptions.

In this paper, we propose a new paradigm for event schema induction –
harvesting knowledge from large pre-trained language models (PLMs), which
can effectively address the open, diversity, and sparsity challenges. The main
idea is to leverage the strong text generation and in-context learning abilities of
PLMs for discovering, conceptualizing, and structuralizing event schemas.

Specifically, we design an Event Schema Harvester (ESHer) to automat-
ically discover and normalize event types and their semantic roles via the fol-
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Type: Die
• agent
• attacker
• instrument
• victim

Type: Spread
• disease
• …

Text 5 Text 4
Text 2

Text 3

Type: Die
• agent
• attacker
• instrument
• place
• time
• victim

Type: Spread
• disease
• instrument
• origin
• target
• time

Text Conceptualization
via In-context 

Generation

Confidence-aware
Schema

Structuralization

Graph-based
Schema

Aggregation
Schema

1. Terrorist attacks 
have killed …

2. More than 35,000 
deaths have…

3. Covid-19 spreads 
from more than …

4. croaked yesterday 
at home…

5. Coronavirus 
spreads from …

......

Conceptual Schemas

� Type: die, Slots: agent; 
attacker; instrument; victim

� Type: die, Slots: agent; 
instrument; person

� Type: execute, Slots: agent; 
attacker; beneficiary; victim

Text 1

Structural Schemas Complete Schemas

Type: Decease
• agent
• dead
• instrument
• place
• timeType: Spread

• disease
• …

Type: Die
• agent
• attacker
• instrument
• victim

Text

Fig. 2. An overview of ESHer, which automatically discovers and normalizes event
types and their semantic roles via (1) text conceptualization via in-context generation,
(2) confidence-aware schema structuralization and (3) graph-based schema aggregation.

lowing components: 1) text conceptualization via in-context generation, which
can unsupervised-ly transform diverse event expressions into conceptualized
event schema candidates based on in-context demonstrations; 2) confidence-aware
schema structuralization, which structuralizes event schemas by selecting and asso-
ciating event types with their salient, reliable and consistent slots; 3) graph-based
schema aggregation, which aggregates dispersed event schemas via graph-based
clustering. In this way, the open, diversity, and sparsity challenges can be effec-
tively resolved via schema conceptualization, structuralization and aggregation.

We conducted experiments on ERE-EN [9] and additional datasets in mul-
tiple domains including finance (ChFinAnn [14]), pandemic (Cov-19 [11]), and
daily news (New York Time and People’s Daily). Empirical results show that
ESHer surpasses the traditional methods in discovering high-quality and high-
coverage event schemas and can be quickly extended to varying domains and
emerging event types.

In general, this paper’s main contributions are:

– We propose a new event schema induction paradigm, knowledge harvesting
from large-scale PLMs, which can effectively resolve the open, diversity, and
sparsity challenges.

– We design ESHer, which can automatically induce event schemas via in-
context generation-based text conceptualization, confidence-aware schema
structuralization, and graph-based schema aggregation.

– Experiments show ESHer can induce high-quality and high-coverage event
schemas on varying domains. And we believe the induced event schemas are
valuable resources which can benefit many downstream NLP tasks.

2 Event Schema Harvester

This section describes how to discover, conceptualize, and structuralize event
schemas from large PLMs so that the open, diversity and sparsity challenges
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can be effectively resolved by automatically harvesting open-domain and high-
coverage event schemas from large PLMs and leveraging the strong text gener-
ation and in-context learning abilities of large PLMs.

Formally, given an unlabeled corpus C and a PLM, our event schema induc-
tion method discovers event clusters Y = {y1, y2, ..., yN}, where N is the number
of discovered event types. For each event cluster y, we automatically conceptu-
alize it to a name t as well as its corresponding semantic roles {st1, s

t
2, ...}, where

t ∈ T , s ∈ S and T /S are open domain event type/slot names.
The framework of ESHer is shown in Fig. 2. ESHer contains three com-

ponents: 1) text conceptualization via in-context generation, which transforms
diverse event expressions into conceptualized event schemas based on in-context
demonstrations; 2) confidence-aware schema structuralization, which structural-
izes event schemas by selecting and associating event types with their salient,
reliable and consistent slots; 3) graph-based schema aggregation, which aggregates
dispersed sparse event knowledge across individual event schemas via graph-
based clustering. In follows we describe these components in detail.

2.1 Text Conceptualization via In-Context Generation

Events are usually expressed in diverse natural language utterances, which poses
a critical challenge for schema induction. For example, “Terrorist attacks have
killed over 35,000 people” and “More than 35,000 deaths have been caused by
terrorist attacks” convey the same event, but with quite different words and
syntactic structures. To address this challenge, we conceptualize diverse utter-
ances into schema candidates, which can distil event schema knowledge and
uniformly represent them. For example, our method will distil and represent the
event types and the semantic roles in the above two examples as the same schema
“Type: die, Slots: agent; attacker; instrument; victim” (as shown in Fig. 2).

To this end, this section proposes an unsupervised text-to-schema framework
by leveraging the strong in-context generation ability of PLMs. Specifically, we
model text conceptualization as an in-context generation process:

[Demonstrations;Text] → Schema

where “Demonstrations” is a list of examples used to instruct PLMs how to
conceptualize text to the schema, and each demonstration is a <text, schema>
pair’, “Text” is the event utterance we want to conceptualize, “Schema” is the
conceptualized schema represented as “Type : t, Slots: st1; st2 ...”, and “→” is a
special token that separates the text and the event schema.

We can see that, our method is unsupervised so it can effectively resolve open
and emerging events in real-world applications, and it is in-context instructed so
it can be generalized to different domains/languages by instructing PLMs with
appropriate in-context demonstrations. There are many ways to select appropri-
ate in-context demonstrations. This paper directly samples them from existing
human-annotated event datasets (e.g., ACE [4], DuEE [8], etc.) and we found
text conceptualization benefits from high-quality and diverse demonstrations.
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We believe this is because diverse demonstrations can help PLMs to better gen-
eralize to different domains, event types and event semantic roles. Furthermore,
to recall more event knowledge from an instance, we generate n schema candi-
dates c1, c2, ...cn for each text, where n is a hyperparameter.

2.2 Confidence-Aware Schema Structuralization

The text-to-schema component distils and conceptualizes event knowledge in
diverse expressions. This section describes how to structuralize these concep-
tualized event schemas by selecting and associating the salient, reliable, and
consistent slots for each event type. For instance, we can structuralize a “die”
event frame by evaluating the association between event type “die” and slots
“agent; attacker; instrument; victim” (as shown in Fig. 2).

Formally, we use O to denote the results of text conceptualization, in which
j-th instance is (textj , {cj1, c

j
2, ...c

j
n}) and {cj1, c

j
2, ...c

j
n} are n generated schema

candidates, and we use SlotSetj to denote the union of all generated slots of
instance j by summarizing slots in {cj1, c

j
2, ...c

j
n}. To select high-quality slots for

event types, we design a set of metrics to estimate the quality of slots and type-
slot associations, including Salience, Reliability and Consistency :
Salience - a salient slot of an event type t should appear frequently in the
generated schemas of t, but less frequent in other events. For example, in Fig. 2,
the slots “attacker” is more salient than “person” for the “die” event. Following
the TF-IDF idea, the salience of a slot s in j-th instance is computed as:

Salience(s)j = (1 + log(freq(s)j)2)

∗ log(
|O|

∑|O|
k freq(s)k

)
(1)

where freq(s)j is the frequency of the slot s in SlotSetj , |O| is the total number
of instances in the outputs O.

Reliability - a slot is reliable if it co-occurs frequently with other slots in mul-
tiple candidates of one instance. For example, in Fig. 2, the slot “agent” is con-
sidered reliable to “die” event because it co-occurs with all other slots. We use
PageRank algorithm to compute the slot reliability as follows:

Reliability(s)j = β

|SlotSetj |∑

k

Reliability(sk)

d(sk)

+ (1 − β)
1

|SlotSetj |

(2)

where β is a hyper-parameter, |SlotSetj | is the number of slots in SlotSetj and
d(sk) =

∑|SlotSetj |
k(s↔sk)

Reliability(sk), s ↔ sk means that slots s and sk co-occur
in the same candidate. We initialize the reliability score for all slots as 1

|SlotSetj |
and run PageRank T iterations or the change is less than ε.
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Consistency – because PLMs may generate unfaithful schemas which are
unfaithful to input event expressions, we evaluate the consistency between the
generated event schemas and event expressions using semantic similarities based
on WordNet, HowNet and BERT. And the consistency score of a slot in j-th
instance is:

Consistency(s)j = Sim(t̂j , textj |s, t̂j ∈ c) (3)

where Sim(·) is a semantic similarity function, s, t̂j ∈ o denotes that slot s and
event type t̂j are in the same schema candidate c.

The final confidence of a slot is computed by combining the salience, relia-
bility, and consistency scores:

Score(s)j = (λ1 ∗ Salience(s)j

+ λ2 ∗ Reliability(s)j)

∗ Consistency(s)j

(4)

where λ1 and λ2 are two hyperparameters.
Finally, we only retain the top-1 consistent event type for each instance and

filter all slots in that instance if their confidence scores are below a certain
threshold. In this way, we obtained structuralized event schemas such as “Type:
die, Slots: agent; attacker; instrument; victim” (as shown in Fig. 2).

2.3 Graph-Based Schema Aggregation

As described above, event knowledge is sparse in event expressions due to the
economical principle of language [3]. This section describes how to address the
sparsity issue by aggregating dispersed semantic roles across different schemas.
For example, we can obtain a more complete schema for the “die” event by
combining “Type: die, Slots: agent; attacker; instrument; victim” with “Type:
decease, Slots: agent; dead, instrument; place; time”.

To this end, this section proposes a graph-based clustering method which
first groups individual event schemas into clusters, and then aggregates event
types and slots in the same cluster. The main idea here is that event schemas
are of the same event type if their original expressions describe the same kind of
occurrence (text similarity), their predicted types are synonyms (type similarity)
and they share many common semantic slots (slot set similarity). For example,
in Fig. 2, “die” and “decease” are synonyms and “agent” and “instrument” are
common semantic roles, therefore they are highly likely the same event type.

Based on the above idea, given instances O after confidence-aware
schema structuralization, in which the j-th instance is represented as
(textj , t̂j , SlotSetj), we construct a graph to model the similarities between dif-
ferent individual event schemas. In the graph, each node is an event schema and
the similarity between two schema nodes is computed by considering the simi-
larity between their event expressions, the similarity between their event types,
and the similarity between their slot sets:
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Graph[i][j] = Graph[j][i]

= λ3 ∗ Sim(texti, textj)

+ λ4 ∗ Sim(t̂i, t̂j)

+ λ5 ∗ Sim(SlotSeti, SlotSetj)

(5)

where λ3, λ4, and λ5 are hyper-parameters, and Sim(·) is the semantic similarity
function defined in Eq. 3.

Given the schema graph, we employ the Louvain algorithm to segment and
group schemas into clusters:

Ŷ = {ŷ1, ŷ2, ..., ŷ|O|} = Louvain(Graph) (6)

where ŷj ∈ Y = {y1, y2, ..., yN} indicates that the j-th schema is assigned to the
ŷj-th event cluster and each cluster representing a distinct event type.

Finally, we aggregate all individual event schemas in the same cluster to
obtain a complete schema. Given a cluster y which can be represented as as
a tuple (Types, Slots), with Types = {t̂1, t̂2, ...} and Slots = {st1, s

t
2, ...} =

SlotSet1 ∪ SlotSet2 ∪ ... are the predicted event types/slots by summarizing
event types/SlotSets from all individual schemas. An example of such a cluster
in Fig. 2 is “(Types: {die, decease}; Slots: {agent; attacker; dead; instrument;
place; time; victim})”.

The final event type name of this cluster is normalized by selecting the most
salient prediction from {t̂1, t̂2, ...}, e.g., “die”. For event slots, there may be
synonymous slot names in Slots stand for the same semantic role, e.g., {dead,
victim} is the synonymous set in the above example. Thus, we utilize the Lou-
vain Algorithm again to identify synonymous event slots and then select the
most salient slot to represent its synonyms, e.g., “victim” is chosen as the repre-
sentative slot name of the synonymous set {dead, victim}. The final slot names
of this cluster are normalized by these selected slots, e.g., the aggregated com-
plete event schemas of the above example is “Type: die, Slots: agent; attacker;
instrument; place; time; victim” (as shown in Fig. 2).

Summary – By conceptualizing diverse event expressions, structuralizing
schemas by selecting and associating event types and their slots, and aggregating
dispersed event knowledge across different schemas, our knowledge harvesting
method can effectively address the open, diversity, and sparsity challenges, and
induce conceptual, structural, and formal event schemas from PLMs.

3 Experiments

3.1 Experimental Settings

Datasets. We use ERE-EN [12] as our primary dataset because its event
schemas are manually annotated. Furthermore, to assess event schema induc-
tion performance on different domains and languages, we further conduct exper-
iments on various datasets including finance (ChFinAnn [14]), pandemic (Cov-19



64 J. Tang et al.

Fig. 3. Schemas induced by ESHer and annotated by experts, in which bold black
denotes the directly matched event types/slots; black denotes recalled ground truths;
teal denotes the unmatched but reasonable ones; orange denotes the missing references;
red denotes the wrong predictions. (Color figure online)

Table 1. Schema Coverage Comparison on ERE-EN and ChFinAnn.

Model ERE-EN

# of Event Types # of Event Slots

Human Discover Overlap Acceptable Human Discover Overlap Acceptable Recall

ESHer 38 71 21.05% 85.92% 115 198 11.30% 44.95% 35.21%

ESHer (upper bound) 38 100 21.05% 93.00% 115 371 19.13% 59.30% 49.00%

Model ChFinAnn

# of Event Types # of Event Slots

Human Discover Overlap Acceptable Human Discover Overlap Acceptable Recall

ESHer 5 44 100.00% 72.73% 35 231 37.14% 59.31% 15.91%

ESHer (upper bound) 5 100 100.00% 96.00% 35 458 71.43% 85.81% 22.00%

and Pandemic [11]) and daily news (New York Time1 and People’s Daily 1946–
20012).

Implementation. We use BLOOM [10] in our experiments, which is a GPT-
3 like large-scale PLMs but is open-accessed. For text conceptualization, we
sample in-context demonstrations from ACE [4] and DuEE [8] for both English
and Chinese datasets, respectively.

3.2 Results of Event Schema Induction

This section assesses the event schemas induced by our method. Following [11],
we use the event type/slot matching task and both qualitative and quantitative
results show the effectiveness of the proposed ESHer.
1 https://catalog.ldc.upenn.edu/LDC2008T19.
2 http://en.people.cn.

https://catalog.ldc.upenn.edu/LDC2008T19
http://en.people.cn
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Table 2. Event mention clustering results on ERE-EN. All values are in percentage.
We run each method 10 times and report its averaged result for each metric. Note that
for ESHer and its variants, due to the huge computing cost, we only run them once.

Methods ARI NMI BCubed-F1

Kmeans 12.51 37.65 31.01

AggClus 13.11 39.16 31.20

JCSC 17.69 43.40 37.64

Triframes-CW 5.79 25.73 33.61

Triframes-Watset 7.53 47.43 24.04

ETypeClus 10.18 36.17 28.99

ESHer 56.59 67.72 62.43

- Salience 32.84 57.91 52.51

- Reliability 52.54 63.86 61.47

- Consistency 37.51 66.12 50.69

only Salience 38.75 66.34 50.69

only Reliability 33.98 62.43 51.09

For qualitative results, Fig. 3 shows several schemas induced by ESHer from
the ERE-EN and ChFinAnn datasets, and the comparison with the results of
human experts is also shown. We can see that ESHer can induce high-quality
event schemas: 1) most of the induced event types directly match the ones anno-
tated by experts; 2) there is a large overlap between the automatically induced
slots and the manually annotated ones; 3) some unmatched slots are also rea-
sonable through our manual checking. This also shows that it is very hard to
obtain high-coverage schemas only relying on experts. 4) we found some missing
golden slots have been generated in text conceptualization but dropped in the
confidence-aware structuralization step, therefore we believe the performance
can be further improved by introducing human-in-the-loop. 5) with appropriate
in-context demonstrations, ESHer can easily extend to different languages, e.g.,
English for ERE-EN and Chinese for ChFinAnn.

For quantitative results, we show the performances in Table 1. We can see
that: for event type discovery, ESHer recover 21.05% out of 38 event types in
ERE-EN and almost all (85.92%) discovered event types are acceptable. For
event slot induction, ESHer recovers 11.30% out of 115 slots, 44.95% of dis-
covered slots can be directly accepted, and 35.21% of slots can be selected
from candidates. This shows that event schema is a challenging task due to
the diversity and sparsity of event slots. On ChFinAnn, a typical dataset in the
finance domain, we can see that ESHer is more effective and not only recover
all event types but also discover lots of reasonable new types (100% Overlap
and 72.73% Acceptable). This shows that domain-specific event schemas can
be better induced, we believe this may be because domain-specific events are
more salient in domain corpus. To assess the performance of graph-based schema
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aggregation, we manually check 100 individual schemas and cluster them, and
its performance is shown as ESHer (upper bound) which can be regarded as the
upper bound of graph-based schema aggregation. We can see that the perfor-
mance gap between ESHer and ESHer (upper bound) is not large, which verifies
the effectiveness of our graph-based schema aggregation component.

Fig. 4. Event schemas are induced on varying domains, in which black denotes the
reasonable event types/slots; red denotes the rejected predictions.

3.3 Results on Event Mention Clustering

We also evaluate the effectiveness of ESHer via the event mention clustering task.
Following [11], we select 15 event types with the most mentions and cluster all
candidates into several groups for ERE-EN.

Evaluation Metrics. To evaluate whether clusters (Eq. 6) align well with the
original types, we choose several standard metrics: 1) ARI measures the simi-
larity; 2) NMI measures the normalized mutual information; 3) BCubed-F1
measures the aggregated precision and recall. For all the above metrics, the
higher the values, the better the model performance.

Baselines. We compare ESHer with the following methods: Kmeans, AggClus,
JCSC [5], Triframes-CW, Triframes-Watset and ETypeClus [11]. We set all
hyper-parameters of these clusters using the default settings of [11].

Experimental Results. Table 2 shows the overall results. For our app-
roach, we use the full ESHer and its five ablated settings: ESHer-Consistency,
ESHer-Salience, ESHer-Reliability, ESHer only Reliability and ESHer only
Salience, where Salience, Reliability and Consistency denote different estima-
tions described in confidence-aware schema structuralization. We can see that:

1. ESHer outperforms all baselines on ERE-EN on all metrics.
ESHer achieves state-of-the-art performance. We believe this is because ESHer
fully leverages the in-context learning ability of PLMs, therefore the diverse and
sparse challenges can be effectively resolved.

2. The proposed salience, reliability and consistency estimations
are all useful and complementary to each other. Compared with the full
ESHer model, all five variants show declined performance in different degrees.
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ESHer outperforms ESHer-Salience 23.75 ARI, 9.81 NMI and 9.92 BCubed-F1,
and this result verifies the effectiveness of the salience score for identifying good
slots. ESHer outperforms ESHer-Consistency 19.08 ARI, 1.60 NMI and 11.74
BCubed-F1, this shows that consistency estimation is also indispensable.

3.4 Results on Different Domains

This section assesses event schemas induced on different domains such as pan-
demic and daily news. Figure 4 shows the result schemas and we can see that
ESHer is robust in different domains and can be generalized in different settings.
Furthermore, the results also present challenges: 1) the granularity alignment
problem: the slots in the same schema may have different granularities, e.g.,
the “person” and “doctor, patient” in Schema 1 on the pandemic domain; 2) the
polysemy problem: event type “administer” in Schema 2 on pandemic domain
misdirects the slot “administrator”; 3) emotional expressions: event schema
knowledge should be objective but “instigator” conveys negative sentiment.

4 Related Work

Event Schema Induction. Traditional event schema induction methods
mostly mine event schemas from raw corpora, and two main categories of meth-
ods have been proposed: Bottom-up concept linking methods [5] discover event
types/slots by parsing and linking event expressions to external schema resources
such as FrameNet; Top-down clustering methods [11] cluster event expressions
according to pre-defined schema templates (e.g., the 5W1H template, or tem-
plates with the predefined number of event types/slots).

There were also some other studies such as script learning [2] and event
graph schema induction [6], which focus on mining event relations and narrative
schemas. This paper doesn’t address these issues and leaves them as future works.

Harvesting Knowledge from Large-Scale Language Models. Large-scale
pre-trained language models such as GPT-3 [1] and BLOOM [10] have been ver-
ified containing massive knowledge such as linguistic knowledge, factual knowl-
edge, commonsense knowledge and reasoning knowledge. Furthermore, PLMs
also have shown many emergent abilities such as in-context learning, chain-
of-thought reasoning, etc. In recent years, researchers start to learn how to
harvest resources from PLMs, such as knowledge graphs [13] and explanation
datasets [7]. In this paper, we study how to harvest open-domain, high-quality
and high-coverage event schemas from PLMs by leveraging the abilities of PLMs.

5 Conclusions

In this paper, we propose a new paradigm for event schema induction – knowl-
edge harvesting from pre-trained language models (PLMs), which can effectively
resolve the open, diversity and sparsity challenges by discovering, conceptualizing
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and structuralizing event schemas from PLMs. And an Event Schema Harvester
(ESHer) is designed to automatically induce high-quality event schemas. Empir-
ical results show that ESHer can induce high-quality and high-coverage event
schemas on different domains. Event schemas are valuable resources, we want
to harvest and release an open, large-scale event schema repository to research
communities.
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Abstract. Event argument extraction (EAE), aiming at identifying
event arguments over multiple sentences, mainly faces data sparsity prob-
lem. Cross-domain data augmentation can leverage annotated data to
augment training data, but always encounters the issue of noise. The
noise mainly consists of two aspects: boundary annotation differences and
domain knowledge discrepancy, which may significantly impact the effec-
tiveness of data augmentation. In this paper, we propose a new frame-
work NTDA (Noise-Tolerant Data Augmentation) to solve the above
two issues. For annotation differences, we introduce region-based loss
function to mitigate the model’s sensitivity towards entity boundaries.
To address the knowledge discrepancy problem, we propose a dynamic
data selection strategy. Additionally, we further combine the two denois-
ing techniques. Through conducting comprehensive experiments on three
datasets, we have demonstrated the superior effectiveness of our frame-
work compared to previous methods.

Keywords: event argument extraction · cross-domain data
augmentation · boundary annotation difference · domain knowledge
discrepancy

1 Introduction

Document-level event argument extraction (EAE) [1–3] aims to discover event
arguments over multiple sentences, always facing data sparsity problem. Cross-
domain data augmentation is a crucial way to solve data sparsity [1,4], which
can effectively leverage other annotated datasets to help train the model. As
the prompt structure received great attention in information extraction (IE)
tasks [2,5], current models can understand the semantic meaning of labels by
encoding label with input sentence, which makes the prompt-based cross-domain
data augmentation get further development [6].

However, a crucial issue in cross-domain data augmentation is the impact of
noise, which mainly includes two aspects: i) Boundary annotation differences.
The annotation of entity boundaries is always ambiguous. As shown in the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 70–82, 2023.
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left of Fig. 1, for the given sentence, the label ’place’ can have four reason-
able annotations, which will result in bad influence when training the model due
to current neural network models easily encounter over-confidence problem [7].
This noise is also inherent within a dataset itself. ii) Domain knowledge discrep-
ancy, which is the intrinsic differences between augmented data (out-of-domain
dataset) and gold data (target-domain dataset). Considering not all training
samples are equally important, we only need to select a subset of augmented
data to train the model, achieving transferring common and helpful knowledge
from out-of-domain to target domain to improve model performance.

Fig. 1. Examples of two types of noise. Boundary annotation differences (left) mean
there are several reasonable annotations for a label within a given sentence. Domain
knowledge discrepancy (right) indicates that different datasets contain varying domains
of knowledge.

In this paper, we propose a novel framework NTDA to solve the above issues.
For the annotation difference problem, we introduce region-based loss to opti-
mize the training process, which can mitigate the sensitivity of the model to the
entity boundary. For domain knowledge discrepancy problem, we propose a new
dynamic data selection strategy to alleviate domain discrepancy, which com-
pletes the process by which the model gradually approaches the target domain
from out-of-domain. Specifically, we iteratively convert the divergence between
domains into specific scores at each training epoch and select appropriate exam-
ples at that point to train the model. What’s more, our method does not need
to set thresholds when selecting training samples. Finally, we combine the above
two techniques to denoise when augmenting training data.

Our major contributions include: i) we design a novel framework NTDA to
solve noise problems encountered during cross-domain data augmentation. ii)
the method of resolving boundary annotation differences can be extended to a
self-denoise strategy, and it is easy to be incorporated into other model training
process. iii) we conduct extensive experiments and the results have justified the
effectiveness of our approach.
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2 Related Work

2.1 Cross-Domain Data Augmentation

A large number of training data is usually essential for model performance [8].
Cross-domain data augmentation has been widely used to solve data sparsity in
many tasks, such as event extraction (EE) and named entity recognition (NER).
[1] propose implicit knowledge transfer and explication data augmentation via
machine reading comprehension (MRC) structure. [5] points out that question-
answering (QA) formalization can come with more generalization capability and
further boost cross-domain data augmentation in NER.

2.2 Boundary Annotation Differences

To address annotation discrepancies, researchers have investigated the bound-
ary smoothing techniques [9–11], including regularization and model calibration
enhancement. Region-based loss has been widely employed in image segmenta-
tion [12], which is a pixel-level classification task. In contrast to boundary-based
loss, region-based loss focuses on optimizing predicted regions. [13] summarized
frequently-used region-based loss, including dice loss [14], tversky loss [15] and
log-cosh dice loss [13]. In this paper, we introduce region-based loss to mitigate
boundary annotation discrepancies.

2.3 Denoising for Domain Discrepancy

Previous works on denoising are based on the view that not all out-of-domain
data are equally important when training model. One of the research lines is
data selection, aiming at selecting examples similar to the target domain distri-
bution. Traditional data selection methods are typically static and always rely on
similarity measures [16,17], whereas current approaches tend to be dynamic and
incorporate weighting strategies, such as curriculum learning [18–20]. Another
line of research is leveraging all available data during training, including domain
adaptation strategy [21,22] and noise robust regularization method [23].

3 Methodology

In this section, we provide a detailed introduction to our method NTDA. We
first introduce our data augmentation framework (Sect. 3.1) and then detail
our denoising framework, which performs two aspects of denoising: i) boundary
annotation differences denoising (Sect. 3.2), ii) domain knowledge discrepancy
denoising (Sect. 3.3). In Sect. 3.4, we will describe how to combine two denoising
methods. The presentation of our method is also illustrated in Fig. 2.
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Fig. 2. The overview of our method NTDA.

3.1 Data Augmentation Framework

Following [1,6], we construct the model based on question answer (QA)/machine
reading comprehension (MRC) structure, which has achieved superior perfor-
mance in EAE tasks. Specifically, we append the role to the document head to
form a series of new sequences as training inputs, adding one role at a time. All
training inputs are organized by:

[CLS] role [SEP] document [SEP] (1)

where document is the original input document, role denotes a type of role, [CLS]
and [SEP] are special tokens used in BERT [24]. Next, we feed those sequences
into BERT to jointly encode the role and the document, and extract the last
hidden layer of BERT HRP as the final embedding representations of inputs:

HRP = BERT(role + document) (2)

Then we identify start position Pbegin and end position Pend of the entity:

pbegin = Softmax(HRPWbegin + bbegin) (3)

pend = Softmax(HRPWend + bend) (4)

where Wbegin, bbegin and Wend, bend are the weight matrix and bias vector for two
linear layers. The index of the largest value in pbegin and pend will be regarded as
the start position Pbegin and the end position Pend. What’s more, we notice that
the document does not necessarily contain the argument for all given labels. We
take the first special token [SEP] as fake argument under this condition.

For training the model, we first introduce out-of-domain datasets to pre-train
the model, and then fine-tune the model on the in-domain dataset.

3.2 Denoising for Boundary Annotation Differences

To address the issue of boundary annotation differences, we propose to introduce
region-based loss for adjusting the training objective. Region-based loss function
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focuses on the regional information of span instead of border information, which
can reduce the model’s sensitivity to the boundaries. Specifically, we use the dice
loss function [13], as follows:

lossdice = 1−
2

N∑

i=1

piqi

N∑

i=1

p2i +
N∑

i=1

q2i

(5)

where pi and qi represent the i-th value in gold label and predicted label respec-
tively, N is the length of input sentence.

Our model predicts the probability of each token being in gold span as follows:

pregion = (pstart + pend)/2 (6)

where the calculation of pstart and pend have been shown in Eq. 3 and Eq. 4.
In the training process, we dynamically adjust the weight of the original

boundary-based loss lossbound (generally is cross-entropy loss) and region-based
loss lossreg (we use dice loss lossdice), gradually increasing the weight of the
former and decreasing the weight of the latter:

loss = (αreg + βregt)lossreg + (αbound − βboundt)lossbound (7)

where αreg, βreg, αbound and βbound are the parameters to tune the weighs and
t denotes the training time.

3.3 Denoising for Domain Knowledge Discrepancy

Fig. 3. In Figure (a), Mb is more suitable than Ma for fine-tuning. Figure (b) shows the
iterative process of gradually approaching the target domain: Mi along with fine-tuned
Mi compute score together to select part of the out-of-domain data to retrain Mi and
get Mi+1, and we expect Mi+1 is closer to the target domain than Mi.
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Based on the two-stage data augmentation (DA) framework described in
Sect. 3.1, there is such a hypothesis: when fine-tuning model with the same in-
domain data, the closer model trained on out-of-domain data is to the target
domain in the first stage, the better model performance we get by fine-tuning
in the second stage. As shown in Fig. 3 (a), Mb is more suitable than Ma for
fine-tuning. Therefore, we provide a novel dynamic data selection strategy to
optimize DA framework by obtaining the model closer to target domain at the
first pre-training stage.

In this section, we first define a new score as the criterion for data selection
and then detail our strategy for addressing domain discrepancy, which contains
two stages: 1) warm-up stage: in this stage, we expect to get a beginning model
as close to the target domain as possible through a simple way, which is trained
on part of the out-of-domain data and will be used at the beginning of the
iterative stage. 2) iteration stage: we devise an iterative approach to accomplish
the process that model gradually approaches the target domain by dynamic
data selection, as presented in Fig. 3 (b). To better understand our method, we
summarize the training procedure in Algorithm 1.

Measuring Discrepancy. For each input, we can compute its probability vec-
tors pbegin and pend according to Eq. 3 and Eq. 4, representing the possibility of
each token as the starting position and ending position separately. We define
Score as follows:

Score = Pgolden−begin + Pgolden−end (8)

where Pgolden−begin and Pgolden−end respectively denote the value in pbegin and
pend corresponding to the start position and the end position of the golden
argument (note that it is not necessarily the maximum value in probability
vectors). Then we further define ΔScore to measure the discrepancy of each
input between out-of-domain model and target domain model:

ΔScore = Scorein − Scoreout (9)

where Scorein and Scoreout are computed on different models. ΔScore and
Score will all dynamically change with the model at the training process.

Warm-Up Stage. We first train a model with all in-domain data and use it to
calculate Score of out-of-domain data via Eq. 8 (Lines 3–4). Sentences in out-
of-domain dataset with the highest scores will be selected for training Mbegin

(Line 5).

Iteration Stage. We denote the model trained/retrained on (part of) out-of-
domain data Sout as Mout and denote the model fine-tuned on in-domain data
Din as Min. For each iteration, our target is to select samples from out-of-domain
dataset to retrain Mout and let it approach target domain. Specifically, for the
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Algorithm 1. Addressing Domain Knowledge Discrepancy
Input: in-domain data Din, out-of-domain data Sout,
Output: Model θ

1: convert Din, Sout into MRC structure
2: /* stage 1: warm-up stage */
3: Train a model on Din

4: Calculate score of Sout on model
5: Choose a subset to train Mbegin (M i=0

out )
6: /* stage 2: iteration stage */
7: while not convergence do
8: Fine-tune M i

out and get M i
in

9: Calculate ΔScore of Sout on M i
in , M i

out

10: Select subset with ΔScore > 0 to retrain M i
out and get M i+1

out

11: if iteration number > 4 then
12: break
13: end if
14: Update θ by M i

out

15: end while
16: return θ

i-th iteration, we first fine-tune the model M i
out (obtained from iteration i − 1,

Mbegin is used as M0
out for the first iterative process) on all in-domain data Din

and get M i
in (Line 8). Then Scoreiin and Scoreiout on Sout can be computed by

M i
in and M i

out based on Eq. 8. We focus on the differences between Scoreiin and
Scoreiout:

ΔScorei = Scoreiin − Scoreiout, i = 0, 1... (10)

We select the data in Sout with ΔScorei > 0 to retrain M i
out and get the model

M i+1
out , which is closer to the target domain than M i

out (Line 10). We can do
multiple iterations to make Mout gradually approach the target domain.

3.4 Combining Two Denoising Methods

It is easy to combine the above two denoising methods: we use the loss function
in Eq. 7 to train the model when addressing domain knowledge discrepancy.

4 Experiments

4.1 Experiments Settings

Datasets. We evaluate our method on three common datasets, which can
be classified into two groups: target domain dataset (RAMS [25]) and out-of-
domain dataset (ACE 2005 [26] and FrameNet [27]). RAMS is a well-established
document-level dataset in Event Argument Extraction (EAE), providing 3,194
documents and 17,026 arguments. For out-of-domain datasets, we introduce two
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datasets with different tasks: i) ACE 2005, a sentence-level dataset in EAE, con-
tains 599 sentences and 8,100 arguments. ii) FrameNet, a sentence-level dataset
in semantic role labeling (SRL) task, is annotated with 19,391 sentences and
34,219 arguments. The detailed statistics are tabulated in Table 1.

Table 1. Summary statistics of datasets.

Dataset RAMS ACE05 FrameNet

Train Dev Test Train Train

#Sentence 3,194 399 400 599 19,391

#Event 7,329 924 871 4,859 19,391

#Argument 17,026 2,188 2,03 8,100 34,219

#Role 65 60 60 22 –

Implementation. In our method, we adopt BERTcased [24] as the pre-trained
language model to conduct experiments. The model is trained for 10 epochs with
the batch size of 24. The learning rate is selected in [1e−5, 3e−5, 5e−5] and the
weights for different loss are chosen from [0.1, 0.3, 0.5, 0.7, 1]. We use Adam
optimizer [28] to optimize all parameters.

Baselines. We compare our denoising approach with the following methods:
CrossE [29] computes the cross-entropy difference between two language mod-
els for input sentences and trains the model only on data that is close to the
target domain. BertSim [18] choose training samples according to BERT rep-
resentation similarities. CurriCE [20] is a type of curriculum learning method
that dynamically selects sentences. DomainBp [30] is an effective domain adap-
tation approach.

Table 2. Performance of different strategies for addressing noise issue. Role-Prompt
and Role-PromptDA are the baseline model without denoising strategy. The results of
our approach are shown at the bottom of the table. Here ‘A’ and ‘K’ indicate denoising
for boundary annotation differences and denoising for domain knowledge discrepancy.
‘AK’ means combining the above two methods.

Method RAMS

P R F1

Role-Prompt 43.91 42.14 42.47

Role-PromptDA 46.41 40.40 43.20

CrossE 47.43 41.00 43.98

BertSim 43.32 43.60 43.46

CurriCE 44.84 42.40 43.59

DomainBp 42.49 41.90 42.20

NTDA(A) 49.49 40.85 44.75

NTDA(K) 46.05 41.70 43.77

NTDA(AK) 47.42 43.15 45.18
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4.2 Main Result

Table 2 demonstrates the main results of our denoising framework compared to
baselines. The metrics are precision (P), recall (R), and f1 score (F1). As we
can see, our method outperforms previous approaches by about 1.5% in terms of
f1 score. NTDA(A) and NTDA(K) achieve notable gains in f1, obtaining 1.55%
and 0.57% improvement respectively. Such results have verified the effectiveness
of our framework.

For our approach can beat the baselines, we speculate the main reasons are:
1) commonly used data selection methods (CrossE, BertSim, CurriCE) may be
unreasonable because some useful examples can also be filtered out. 2) pre-
vious methods are for ordinary sentences, not designed for the form of ques-
tion answer (QA)/machine reading comprehension (MRC). But our approach is
well-designed for sequences containing the role and document. We also observe
that DomainBp leads to about 1% performance degradation, which means that
the domain adaption strategy may not be suitable for noise reduction in cross-
domain data augmentation.

5 Discussion

We conduct a series of studies to further justify the effectiveness of our model,
including the effect of dice loss (Sect. 5.1) when denoising for boundary anno-
tation differences, the effect of iteration number (Sect. 5.2) when denoising for
domain knowledge discrepancy, and the denoising approach extending to a self-
denoise strategy (Sect. 5.3).

Table 3. The effect of dice loss in different settings. ‘+ loss’ denotes the training model
with dice loss and the value in ‘( )’ indicates the utilization stage of dice loss.

Setting model P R F1

In-domain Role-Prompt 43.91 42.14 42.47
+ Loss 43.21 42.95 43.08

DA Role-PromptDA 46.41 40.40 43.20
+ Loss (1-th) 46.30 43.20 44.70
+ Loss (2-th) 45.45 42.75 44.06
+ Loss (1&2) 47.42 43.15 45.18

Zero-shot Role-Prompt 27.46 18.51 22.11
+ Loss 19.50 29.00 23.32
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5.1 Effect of Dice Loss

We conduct a thorough ablation study to explore the effect of dice loss on
cross-domain data augmentation. Table 3 shows the results. Our experiments
contain three settings: 1) In-domain, training model only with the target
domain dataset RAMS. 2) DA, performing cross-domain data augmentation.
3) Zero-shot, training model only with the out of domain datasets ACE2005
and FrameNet. From the results in the settings 1) and 3), it can be observed that
training with dice loss can yield 0.5%-1% f1 improvement. Such results suggest
that our method is capable of self-denoising and we further explore it in Sect. 5.3.
For setting 2), we see that the effectiveness of the dice loss is both in the 1-th
stage and 2-th stage. Due to the larger annotation discrepancies between out of
domain dataset and target domain dataset, the use of dice loss in both stages
achieves higher performance gains.

5.2 Effect of Iteration Number

Fig. 4. Effect of iteration number. NTDA(K) is the model training only with boundary
loss and NTDA(AK) is combining boundary loss and region loss.

We conduct experiments with different iteration numbers for addressing
domain knowledge discrepancy and illustrate the results in Fig. 4. We can observe
that f1 reaches a maximum when the iteration number is set to 4 in most
cases. By training model with boundary loss and region loss together, model
performance gets further improved. By analyzing the trend, the f1 score shows a
progressive increase, indicating that the model completes the process by which
gradually approaching the target domain from out-of-domain.
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5.3 Self-Denoising

Due to the issue of boundary annotation differences also inherent within a dataset
itself, we can regard training with dice loss as a self-denoise strategy. We conduct
experiments in low-resource environments to justify it. Specifically, we randomly
select subsets for RAMS with the ratio 1%, 2%, 5%, 10%, 100% according to the
event type. We conducted 10 experiments under each setting and calculated the
average as the final results. Results are provided in Table 4. It can be observed
that training with dice loss (lossD) performs better in all low-resource settings,
which indicates that this training strategy can be extended to be a self-denoise
approach. What’s more, training with dice loss can produce more stable results
due to the reduced sensitivity of the model to different boundary annotations.

Table 4. The results of model training without dice loss (base) and with dice loss
(lossD) in different low-resource scenarios.

Setting model P R F1

1% base 15.58 7.72 10.33
lossD 16.37 9.01 11.63

2% base 15.33 10.00 12.10
lossD 17.42 11.05 13.52

5% base 29.09 22.05 25.09
lossD 29.47 24.90 26.99

10% base 33.46 31.80 32.61
lossD 34.63 32.10 33.32

100% base 43.91 42.14 42.47
lossD 43.21 42.95 43.08

6 Conclusion

In this study, we propose a novel framework NTDA to solve noise problems when
performing cross-domain data augmentation, including boundary annotation dif-
ferences and domain knowledge discrepancy. The method of resolving boundary
annotation differences can be extended to a self-denoise strategy and can be
easily integrated into any QA/MRC structure model. In addition, experimental
results show that our framework outperforms previous methods. We hope that
our work can stimulate the advancement of data augmentation research.
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Abstract. Events represent fundamental constituents of the world, and
investigating expressions of opinion centered around events can enhance
our comprehension of events themselves, encompassing their underly-
ing causes, effects, and consequences. This helps us to understand and
explain social phenomena in a more comprehensive way. In this regard,
we introduce ChatGPT-opinion mining as a framework that transforms
event-centric opinion mining tasks into question-answering (QA) utiliz-
ing large language model. We employ this approach in the context of the
event-centric opinion mining task that utilizes an event-argument struc-
ture. In our study, we primarily leverage in-context learning methods to
construct demonstrations. Through comprehensive comparative experi-
ments, we illustrate that the model achieves superior results within the
ChatGPT-opinion mining framework when the demonstrations exhibit
diversity and possess higher semantic similarity, comparable to those of
supervised models. Moreover, ChatGPT-opinion mining surpasses the
supervised model, particularly when there is limited availability of the
same data.

Keywords: Large Language Model · Opining Mining · ChatGPT

1 Introduction

Events serve as fundamental building blocks of the world [1]. In our daily lives,
we articulate, exchange, and disseminate our viewpoints on events based on per-
sonal comprehension, emotions, and attitudes. Karamebeck et al. [2] highlighted
that examining diverse viewpoints on events has the potential to trigger preju-
diced emotional responses and convictions concerning societal concerns. Thus,
the exploration of event-centric opinions bears significant social and personal
implications and warrants ample attention. Nonetheless, current research pre-
dominantly concentrates on entity-centric opinion mining, which underscores
individuals’ sentiments towards entities. In contrast, event-centric opinion min-
ing centers on the events themselves or specific facets thereof. When expressing
their opinions, users may implicitly allude to the details of events. Therefore, in
event-centric opinion mining, it becomes imperative to extract not only users’
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opinions on the events but also their opinions on specific event-related aspects.
To our best knowledge, EcoV1 [3] introduces and expounds upon the task of
event-centric opinion mining, drawing on event argument structure and expres-
sion classification theory. It suggests that users can articulate their opinions con-
cerning three types of event arguments: (1) event, (2) sub-event, and (3) entity.
Given the prevalence of large language models, we posit that these models can
extract precise event arguments by leveraging the content of users’ opinions,
while minimizing resource consumption.

Due to the recent advancements, large language models (LLMs) have exhib-
ited a remarkable capacity to in-context learning frameworks. LLMs can gen-
erate results for novel test inputs without requiring parameter tuning and by
utilizing only a limited number of task-specific demonstrations. Within the in-
context learning framework, LLMs has demonstrated favorable performance
across diverse NLP tasks, including machine translation [4,5] and question
answering [6,7]. Drawing on these indications, we redirect our focus to Chat-
GPT and present ChatGPT-opinion mining as a solution for event-centric opin-
ion mining. We transform event-centric opinion mining into a question-answering
(QA) process and steer ChatGPT towards generating more precise responses by
constructing in-context prompts. While constructing the prompts, we devised
multiple approaches, including random selection, demonstration selection based
on k-nearest neighbors (kNN), demonstration selection based on part-of-speech
(POS) tagging. Moreover, we design a task description, with the intention of
mitigating model illusions. Through these methodologies, we have conducted an
extensive array of experiments, revealing that LLMs attains optimal outcomes
when prompts exhibit diversity and higher semantic similarity, yielding results
comparable to those of supervised models.

Generally, the contributions of this paper are:

• We introduce ChatGPT-opinion mining, which, to the best of our knowledge,
represents the pioneering endeavor of utilizing ChatGPT for opinion mining
and attains results comparable to those of supervised models.

• Within ChatGPT-opinion mining, we devised multiple in-context techniques,
such as kNN selection demonstration and Pos Tagging selection demonstra-
tion, and conducted an extensive range of experiments.

• The experimental results reveal some key findings concerning in-context learn-
ing: firstly, ChatGPT-opinion mining primarily acquires knowledge regard-
ing the data structure rather than the annotation content, and secondly,
the demonstration should possess a diverse and semantically coherent space.
Moreover, ChatGPT-opinion mining outperforms the supervised model when
in the case of small amount of data.

2 Related Work

2.1 Opinion Mining

In general, opinions can be expressed on anything, and current research on opin-
ion mining has focused on entity-centric [8]. The entity-centric opinion mining
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task primarily categorizing the document holder’s sentiments towards entities
and their attributes at the document level [9,10], sentence level [11,12], aspect
level [13,14]. There are also some studies on event-related [15,16]. However, these
studies usually treat events as a special entity and do not take into account
the unique event-centric connotations. Therefore, in response to the difference
between entities and events, event-centric opinion mining is needed to better
understand the perception of events. To the best of our knowledge, most of the
publicly available datasets for opinion mining are based on the SemEval Chal-
lenge [17,18]. According to the public benchmark in the event-centric opinion
mining task, [3] helps us to perform method evaluation.

2.2 Large Language Models and In-Context Learning

The creation of Large Language Models (LLMs) [19,20] has attracted a great
deal of attention. LLMs are capable of solving a wide range of natural language
processing tasks and have achieved excellent performance [21,22]. Methods for
downstream tasks using LLMs can be divided into two categories: fine-tuning,
which performs model parameter tuning, and prompt engineering, which does
not tune parameters. The fine-tuning uses supervised learning methods to train
on a specified dataset. Select the appropriate pre-training model and add an
additional layer at the top to adjust the model to the output of the downstream
task [23–25].

Large Language Models (LLMs) demonstrate an in-context learning (ICL)
ability, that is, learning from a few examples in the context [26]. Unlike fine-
tune’s approach, ICL does not need to adjust the parameters of the model to
achieve the desired performance. Dong et al. conducted a detailed analysis and
summary of the progress of ICL and found that the demonstrated samples can
have a great impact on the output of LLMs [26]. Gonen et al. found that mutual
information is a useful selection metric. So they designed a method to construct
a prompt, which selected the example with lower perplexity as the demonstra-
tion, and the performance was significantly improved [27]. Rubin et al. scored a
demonstration through a model and selected the one with the highest score by
using the method of comparative learning [28].

3 Method

In this work, we propose ChatGPT-opinion mining framework. We focus on
Opinion Target Extraction (OTE) in event-centric opinion mining. According
to EcoV1 [3], given the event title E and the opinion expression sentence S,
OTE aims to recognize a span in E corresponding to the target argument of
S. We convert Opinion Target Extraction to QA processes, and which refer to
solving such opinion mining tasks by constructing in-context prompts with large
language models (ChatGPT) for QA. Our work follows the general paradigm
of in-context learning. The whole process is divided into three steps: (1) con-
struction of prompt: given the opinion expression sentence S with the title E,
we need to construct prompt(S,T). (2) Input the constructed prompt into the
large language model to get the text sequence W = {w1, ..., wn} returned by the
model. (3) Transform the text sequence W into the corresponding labels.
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3.1 Prompt Construction

Figure 1 is an example of prompt that includes two parts: Task Description and
Few-shot Demonstration

Task Description. The Task Description is of great help to the large language
model to understand the output task and enables the model to output the con-
tent more accurately. It contains two parts (1) the first sentence is the definition
of the task: The task is to [Task Description], for OTE, [Task Description] is to
identify the corresponding argument in the given opinion expression sentence. It
is worth noting that is that, if there is no specific task description in the prompt
and only follows the general paradigm of in-context learning, the large language
model will produce more wrong answers and will be illusory. (2)The second sen-
tence: ‘Here are some examples’, which means the end of the description, while
telling the model to perform in-context learning. From the comparison experi-
ments, we can see that the presence of task description helps the model to better
understand the event-centric opinion mining task, and it works better.

Few-Shot Demonstration. We use the Few-shot as a demonstration, com-
bined with the questions and sentences to form the in-context. There are sev-
eral advantages to this approach. The first is that the output of the large lan-
guage model can be more standardized. By providing a few-shot demonstration,
it ensures that ChatGPT is consistent across responses to similar questions.
Demonstration construct can be used to define the expected response to a par-
ticular question, thus reducing ambiguity and inconsistency in responses. The
second is the ability to allow large language models to quickly adapt to new
domains, and the models use examples of Few-shot to quickly learn the event-
centric opinion mining domain and improve performance capabilities. Demon-
stration in OTE format is:

Title : [The input title]

Sentence : [The input sentence] // [The input argument]

3.2 In-Context Demonstrations Selection

This section describes the method of in-context demonstrations selection

Random Selection of In-Context Demonstrations. One of the simplest
methods is to randomly pick k demonstrations from the training set. In this
work, we randomly select multiple demonstrations. Unlike selecting only a single
demonstration, this approach randomly selects multiple demonstrations from
the sample set as inputs to the model. By introducing multiple demonstrations,
the model can obtain more diverse input information, expand its knowledge
and linguistic expression, and provide more comprehensive responses. In the
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Fig. 1. ChatGPT-opinion mining Framework

process of random selection, we have designed 5 types of methods: (1) Random
selection of demonstrations from the overall dataset. (2) Random selection of
demonstrations from the dataset labeled as entity type. (3) Random selection of
demonstrations from the dataset labeled as sub-event type. (4) Random selection
of demonstrations from the data set labeled as event type. (5) Random selection
of demonstrations from the data set labeled as entity, sub-event, and event type.
However, this approach has a notable limitation: there is no assurance that the
chosen demonstrations are semantically similar to the input.

In-Context Demonstrations Selection Through kNN-Augmentation.
To address the problem of semantic relatedness mentioned in above section, one
solution is to retrieve the k nearest neighbors (kNN) of the input sequence from
the training set. This can be achieved by calculating representations for all train-
ing examples and then identifying the k training examples that are most similar
to the input test sequence. Also in this work, we investigate the effect of the
distance between contextual examples and test samples on ChatGPT perfor-
mance. Specifically, to find the k closest samples in the training set, We used a
pre-trained language model (Bert [23]) of [CLS] embedding as a representation
of the sentence, and use Euclidean distance to measure the similarity of the two
sentences.

dist(X,Y ) =

√
√
√
√

n∑

i=1

(xi − yi), where i = 1, 2 . . . n (1)

dist(X,Y ) refers to the distance from the test set data to the training set, and
n is set to 768. It is worth noting that for each test sample, we find the k most
similar examples in the training set as the demonstration, aiming to make the
model output more accurate.
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Enhancing In-Context Demonstrations Selection Through Pos Tag-
ging. This method serves as the primary approach within the ChatGPT-opinion
mining framework, as shown in Fig. 1. We argue that relying exclusively on
semantic similarity would introduce bias into the model’s responses. Further-
more, when users provide comments, they may refer to both the entire event
and a specific part of the event title. Based on the event-argument structure, we
classify the argument into event, sub-event, and entity. One approach to tackle
this issue is by utilizing Part-of-Speech (POS) tagging, a method that assigns
grammatical tags to individual words in a given sentence. Following the rule
that an entity comprises solely nouns, data whose argument represents an entity
is filtered out. Subsequently, the length of the argument is employed to deter-
mine its classification as an event, with the remaining set being identified as the
sub-event. We employ a Conditional Random Fields(CRF)-based algorithm for
lexical annotation. Let P (y|x) be a conditional random field and the conditional
probability of a random scalar Y taking a value of y, conditional on the variable
X taking a value of x, be of the following form:

P (y|x) =
1

Z(x)
exp(

m∑

k=1

n∑

i=1

λkfk(s, i, li, li−1)) (2)

where Z(x) =
∑

l′ exp(
∑m

k=1

∑n
i=1 λkfk(s, i, l

′
i, l

′
i−1) is normalization factor,fk

is feature functions,λk is feature weights, i represents the position of the word
in the sentence, li represents the label of the word at the current position. The
length of sentence s is n, the number of feature functions is m. Given a train-
ing set X and a corresponding sequence of labels Y, the model parameters λk

and conditional probabilities to be learned by the feature function. By utilizing
this lexical annotation, the dataset can be partitioned effectively, enabling us
to enhance the demonstrations selection process and promote greater diversity
in the demonstrations. Subsequently, the kNN method is applied to select a
demonstration from each dataset, including event, subevent, and entity, serving
as an in-context prompt. Combining each type into a demonstration mitigates
the risk of over-representing specific sentence types or inadvertently reinforcing
biases present in the in-context data.

4 Experiments

In this chapter, we will describe in detail the experiments and the analysis of the
results. We use ChatGPT(GPT-3.5) as the Large Language Model for all exper-
iment. For GPT-3.5 parameters, we set temperature: 0.5, presence penalty:0,
frequency penalty:0. It is worth noting that in the few-shot demonstration, we
use all 3-shot.

4.1 Dataset

ECO Bank [3] is a new corpus of event-centric opinion mining in both Chinese
and English. The Chinese data was collected from the social media network
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(WeChat Top Topics), which contains 14,710 opinion expressions and 821 event
titles. The English data were collected from the W2E dataset [29] and manually
shortened to meaningful text when necessary in the event title collection, which
contains 11,775 opinion expression sentences and 167 event titles.

4.2 Evaluation Metrics

To evaluate the work of opinion target extraction, we use the dataset with a
golden annotated opinion snippet. Split the snippet into sentences, and use accu-
racy as well as overlap-F1 evaluation metrics at the sentence level. Specifically,
(1) Accuracy refers to whether the extracted argument can exactly match the
annotated opinion sentence. (2) Overlap-F1, which is the F1 value of the overlap
between the predicted argument and the golden argument.

Overlap − F1 =
2 ∗ precision ∗ recall

precision + recall
(3)

Precision is the sum of the overlapping characters of the predicted argument and
its corresponding arguments in the golden set divided by the total number of
characters of the predicted argument. Recall refers to the sum of the overlapping
characters of the predicted argument and its corresponding argument in the
golden set divided by the total number of characters in the golden argument.

4.3 Main Results

This chapter focuses on the experimental comparison of the methods presented in
Sect. 3. In which we have different baselines in different comparison experiments.

Initially, following the random selection method proposed in the article, we
conducted experiments on the complete Chinese dataset due to the ChatGPT
API quota limitation. The baseline for comparison was set as random selection.
Random selection involves randomly choosing data from the training set. Ran-
dom selection (entity) specifically pertains to randomly selecting data from the
training set where the argument represents the entity.

Analysis of Table 1 reveals that (1) within the random selection in-context
demonstration, different argument types exert a significant influence on LLM.
For instance, when the demonstration includes two entities and a sub-event,
LLM exhibits a preference for the overall event as the argument, resulting in
a recall rate of 93.82. Hence, we assert that the inclusion of diverse argument
types in the in-context demonstration is crucial for the ChatGPT-opinion mining
task. (2) The best performance is attained when there is one representative
argument for each type. We contend that, in the context of ChatGPT-opinion
mining, enhancing the diversity of in-context data will yield improved results. (3)
Furthermore, we observe that LLM exhibits sensitivity to variations in content
performance under identical arguments. For instance, in the case of entities,
the standard deviation of Overlap-F1 reaches 13.113, indicating a significant
disparity.
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Table 1. Main results of in-context demonstrations

ZH EN

Method Accuracy Overlap-F1 Accuracy Overlap-F1

P R F1 P R F1

Supervised Model

SpanR 49.21 – – 77.83 26.50 – - 53.31

MRC 64.89 – – 84.89 54.29 – – 76.98

ChatGPT-opinion mining

Random Selection 42.78
± 2.097

68.94
± 3.955

93.82
± 1.905

79.34
± 2.122

– – - -

Random Selection
(entity)

29.21
± 4.370

64.79
± 10.108

62.11
± 16.002

63.32
± 13.113

– – – –

Random Selection
(sub-event)

34.74
± 9.917

71.27
± 0.925

85.37
± 8.440

77.57
± 3.586

– – – –

Random Selection
(event)

35.87
± 0.021

63.34
± 0.035

99.90
± 0.007

77.52
± 0.028

– – – –

Random Selection
(all type)

40.10
± 4.405

67.24
± 2.451

94.61
± 1.954

78.59
± 1.969

– – – –

Knn Augmentation
(title+sentence)

45.35 72.76 88.02 79.67 31.97 60.92 76.13 67.68

Knn Augmentation
(title+sentence+argument)

27.62 73.94 56.11 63.80 25.80 63.39 60.18 61.75

Pos Tagging
(ChatGPT-opinion
mining)

45.25 71.02 96.39 81.78 32.45 59.23 82.69 69.02

Secondly, we conducted additional experiments on both the Chinese and
English datasets using the proposed kNN method. In this case, the baseline was
set as the kNN method incorporating sentence+title+argument. More specifi-
cally, we directly employ the pre-trained BERT language model for sentence fea-
ture extraction. The training set extracts features for sentence+title+argument,
while the test set focuses on sentence+title features. The results demonstrate
that the kNN method using the same sentence+title combination yields the
best performance across both the Chinese and English datasets. Thus, we con-
tend that LLM leverages the in-context setting to acquire knowledge about the
underlying data structure, moving beyond a singular focus on the relationship
between input and annotation.

Finally, we employ the proposed POS tagging method to conduct experiments
on both the Chinese and English datasets, with all other methods serving as
the baseline. The training dataset is partitioned into entities, sub-events, and
events based on the argument, followed by the identification of their respective
k-nearest neighbors. This approach not only captures the diversity within the
demonstrations but also ensures semantic similarity with the test set. Analysis
of Table 1 reveals that incorporating POS tagging in the English and Chinese
datasets results in a two-percentage-point improvement over the standalone kNN
method. This finding substantiates the significance of demonstration diversity
in the task at hand.
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In summary, in the event-centric opinion mining task, ChatGPT-opinion min-
ing is sensitive to the choice of demonstrations. Experimental findings demon-
strate that the model performs optimally when the demonstrations exhibit diver-
sity and possess higher semantic similarity. Surprisingly, the results of ChatGPT-
opinion mining with Pos tagging method are comparable to the supervised model
results. In contrast, ChatGPT-opinion mining operates without the need for
fine-tuning or parameter updates, significantly reducing computational and time
requirements.

4.4 Task Description Results

Concurrently, we investigate the impact of task description on ChatGPT-opinion
mining, and the corresponding results are presented in Table 2. It can be observed
that the inclusion of the task description leads to improvements, to some extent,
in various types of demonstrations. In this context, we contend that the task
description plays a crucial role in enhancing the understanding of the task by
LLM and facilitating the generation of more precise answers. Importantly, the
task description should exhibit clarity, specificity, and comprehensiveness to
ensure the accurate comprehension of the task’s scope and objectives by the
large language model, resulting in the generation of appropriate responses.

Table 2. Main results of task description

With Task Description Without Task Description

Method Accuracy Overlap-F1 Accuracy Overlap-F1

P R F1 P R F1

Random Selection 42.78
± 2.097

68.94
± 3.955

93.82
± 1.905

79.34
± 2.122

26.66
± 15.804

67.69
± 0.656

88.36
± 7.750

76.60
± 3.359

Random Selection
(entity)

29.21
± 4.370

64.79
± 10.108

62.11
± 16.002

63.32
± 13.113

19.01
± 1.758

57.18
± 12.881

58.54
± 21.467

57.57
± 16.717

Random Selection
(sub-event)

34.74
± 9.917

71.27
± 0.925

85.37
± 8.44

77.57
± 3.586

22.86
± 7.944

63.59
± 0.832

92.32
± 5.647

75.25
± 1.609

Random Selection
(event)

35.87
± 0.021

63.34
± 0.035

99.90
± 0.007

77.52
± 0.028

35.95
± 0.042

63.22
± 0.098

99.86
± 0.049

77.42
± 0.085

Random Selection
(all type)

40.10
± 4.405

67.24
± 2.451

94.61
± 1.954

78.59
± 1.969

33.91
± 3.393

61.96
± 2.764

98.78
± 0.668

76.13
± 2.287

4.5 K-Shot Demonstration Results

We conducted experiments to evaluate the impact of different numbers of demon-
strations. The experiments were conducted using the English dataset. Due to the
computational constraints and token limitations of ChatGPT, we were able to
use a maximum of 9-shots. The results are shown in Fig. 2. The improvement of
the supervised models’ MRC is not significant as the number of shots increases.
This is because the amount of data in the k-shot setting is small, making it chal-
lenging to adjust the parameters during supervised model training. However,
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the results of ChatGPT-opinion mining exhibit an upward trend, suggesting
that performance can be improved further by incorporating additional demon-
strations.

Fig. 2. Comparisons by varying k-shot demonstrations

5 Conclusion

This paper presents ChatGPT-opinion mining, a framework that converts event-
centric opinion mining tasks into question-answering (QA) using the powerful
language model ChatGPT. We hypothesize that the large language model can
accurately extract event arguments by leveraging users’ expressed opinions, thus
achieving the mining task with reduced resource consumption. Subsequently, we
develop a task description to mitigate potential model hallucination and design
demonstrations for experimental purposes using the in-context learning app-
roach. In the selection of demonstrations, we employ both part-of-speech (POS)
tagging and k-nearest neighbors (kNN) methods. The experimental results indi-
cate that the model achieves optimal performance, comparable to supervised
models, when the demonstrations are diverse and have high semantic similarity.
However, a limitation of this framework is the lack of a fine-tuned model for
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extracting [cls] features to compute k-nearest neighbors, which may introduce
biases in the distribution of the semantic space. Considering the limitations of
ChatGPT’s input token limit, we conducted experiments with a maximum of 9
shots. We hold the belief that augmenting the number of demonstrations will
lead to further improvements in the results.
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Abstract. Clustering-based relation discovery is one of the important
methods in the field of open relation extraction (OpenRE). However,
samples residing in semantically overlapping regions often remain indis-
tinguishable. In this work, we propose an adaptive clustering method
based on a relation repository to explicitly model the semantic differ-
ences between clusters to mitigate the relational semantic overlap in unla-
beled data. Specifically, we construct difficult samples and use bidirec-
tional margin loss to constrain the differences of each sample and apply
self-supervised contrastive learning to labeled data. Combined with con-
trastive learning of unlabeled data, we construct a relation repository to
explicitly model the semantic differences between clusters. Meanwhile, we
place greater emphasis on the difficult samples located on the boundary,
enabling the model to adaptively adjust the decision boundary, which
lead to generate cluster-friendly relation representations to improve the
effect of open relation extraction. Experiments on two public datasets
show that our method can effectively improve the performance of open
relation extraction.

Keywords: open relation extraction · contrastive learning · adaptive
clustering

1 Introduction

The goal of Open Relation Extraction (OpenRE) is to mine structured infor-
mation from unstructured text without being restricted by the set of predefined
relations in the original text. Methods for dealing with open relation extraction
can be roughly divided into two categories. One is Open Information Extraction
(OpenIE), which extracts relational phrases of different relational types from
sentences. However, this approach is limited by the redundancy of different rela-
tion phrases. The other category is unsupervised relation discovery, which focuses
on unsupervised relation clustering. Furthermore, the self-supervised signal pro-
vides an optimization direction for relation clustering. Hu et al. [6] proposed
a relation-oriented clustering method to predict both predefined relations and
novel relations.

In current methods, the encoder is guided to update relation representations
using pseudo-labels generated through clustering. However, these methods still

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 95–106, 2023.
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face challenges when dealing with difficult samples that are classified incorrectly
due to semantic overlap between clusters. Specifically, instances with highly simi-
lar contexts but different relation types tend to lie at the boundary of two clusters
in the semantic space. As a result, during training, blurred decision boundaries
lead to the generation of incorrect guidance signals, causing these instances to
oscillate between the two clusters. This phenomenon significantly impedes the
accurate semantic description of relations and the appropriate categorization of
relation types.

By integrating the instance and class perspectives, we propose a novel app-
roach that leverages a relational repository to store relation representations in
clusters after each epoch. This allows us to address the limitation of optimizing
instances and clusters simultaneously under a single perspective. We utilize clus-
ter representations to capture and model the semantic distinctions between clus-
ters, enabling the model to effectively learn and optimize the decision boundary.
In addition, the introduction of the sample attention mechanism on the decision
boundary during the training process can improve the classification of difficult
samples from the perspective of clustering.

The major contributions of our work are as follows: (1) For predefined rela-
tions, bidirectional margin loss is used to distinguish difficult samples, and
instance-level self-supervised contrastive learning is enhanced for knowledge
transfer. (2) For novel relations, cluster semantics are aligned with relational
semantics on the basis of constructing a relation repository, and weights are used
to emphasize difficult samples in training. (3) Experiment results and analyses
on two public datasets demonstrate the effectiveness of our proposed method.

2 Related Work

Open relation extraction is used for extracting new relation types. The Open
Information Extraction (OpenIE) regards the relation phrases within the sen-
tence as individual relation types, but the same relation often has multiple sur-
face forms, resulting in redundant relation facts.

Unsupervised relation clustering methods focus on relation types. Recently,
Hu et al. [6] is an adaptive clustering model to iteratively get pseudo-labels on
the BERT-encoded relation representations, and then used the pseudo-labels as
self-supervised signals to train relation classifier and optimize the encoder. Zhao
et al. [16] followed SelofORE’s iterative generation pseudo-label scheme as part
of unsupervised training. In order to obtain the relation information from the
predefined data, they learned low-dimensional relation representations oriented
to clustering constraints with the help of labeled data. This method does not
need to design complex clustering algorithms to complete the identification of
relational representations. Different from them, we proposed a method based on
relation repository to explicitly model the difference in cluster semantics.
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3 Method

The training data set D includes predefined relation data Dl = {(sli, y
l
i)}Ni=1

and novel relation data set Du = {sui }Mi=1, N and M represent the number
of relation instances in each data set, sli in Dl and sui in Du are all relation
instances, including the sentence, as well as the head entity and tail entity in
the text. And the yl

i ∈ Y l = {1, ..., Cl} is the relation label corresponding to the
instance sli, the label is visible to the model during training, and the one-hot
vector corresponding to yl

i is represented as yl
i. Cu is provided as prior knowledge

to the model.
Our goal is to automatically cluster relation instances in all unlabeled

datasets into Cu categories, in particular, Cl ∩ Cu = ∅. Considering that the
data to be predicted in real-world scenarios does not only come from unlabeled
data, we use labeled and unlabeled data to evaluate the discriminative ability of
the model during testing.

3.1 Relation Representations

Given a sentence x = (x1, . . . , xT ), where T is the number of tokens in the sen-
tence, eh and et are two entities in the sentence and marked with their start and
end positions. The combination of them forms a relation instance s = (x, eh, et).

For the sentence x of the relation instance s, each token is encoded as h ∈ Rd

by the encoder f , where d represents the output dimension. The f here is the
pre-trained language model BERT [2]. We use the maximum pooling of the token
hidden layer vectors related to the head entity and the tail entity to obtain the
hidden layer vectors of the two entities:

h1, . . . , hT = BERT(x1, . . . , xT )
hent = MAXPOOL([hs, . . . , he])

(1)

where hent ∈ Rd represents the entity representation, s and e represent the
start and end positions of an entity, respectively. The concatenation of the head
entity representation hhead and the tail entity representation htail is regarded as
a relation representation, [, ] represents the concatenation operation:

zi = [hhead, htail] (2)

where the relation representation zi ∈ R2×d.

3.2 Bidirectional Margin Loss

To create a sample with the same relation type but different contexts from the
original, we randomly substitute the head entity and tail entity with other words
of the same entity type, and the representation of new sample is recorded as z+

i .
Furthermore, we randomly choose an instance of a different relation type from
the original instance and replace its head entity and tail entity with synonyms
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found in the original instance. This allows us to construct a sample z−
i with a

similar context but a distinct relation type.
In order to measure the difference between two difficult samples in the labeled

data in the same semantic space, the loss LH is used to limit the difference
between the cosine similarity between the original sample and the two difficult
samples to the range of [−m2, −m1]:

LH = max(0, sim(zi,z
−
i ) − sim(zi,z

+
i ) + m1)

+ max(0,−sim(zi,z
−
i ) + sim(zi,z

+
i ) − m2)

(3)

where sim(, ) is calculated by cosine similarity, the negative of m1 and the neg-
ative of −m2 represent the upper and lower bounds of semantic differences, and
m1 is set to 0.1 and m2 is 0.2 during training.

3.3 Knowledge Transfer

The objective of knowledge transfer is to obtain information pertaining to rela-
tion representations from labeled data and learn relation representations that
can be used to cluster unknown categories. In this paper, contrastive learning is
used for joint training on mixed datasets to transfer relational knowledge from
labeled data to unlabeled data. First we use the positive samples in Sect. 3.2 to
construct a positive sample set.

In each batch, for relation instance si in dataset D, where i ∈ N = {1, . . . , N}
is the sample number in the same batch, after obtaining the relation represen-
tation zi through relation encoding, follow the traditional contrastive learning
strategy, using NCE [4] as the contrastive loss function between instances:

LNCE−I
i = − log

exp (cos(zi, ẑi)/τ)
∑

n 1[n�=i] exp (cos(zi, ẑn)/τ)
(4)

where ẑi represent a positive example of zi, τ is the temperature coefficient,
1[n�=i] means that the expression value is 1 if and only if n is not equal to i,
otherwise it is 0.

Unlike traditional self-supervised contrastive learning tasks, there are labeled
data in each batch, in order to fully learn the relational knowledge of these
labeled data, we use an additional loss. Except for the constructed positive sam-
ples, all instances consistent with the current instance label are regarded as more
positive samples, while other class instances of the same batch are negative sam-
ples. Since the instances of the same category are in the same positive sample
set, it indirectly constrains the distribution consistency within the class, and the
loss function is as below:

LNCE−L
i = − 1

|P (i)|
∑

p∈P (i)

log
exp (cos(zi,zp)/τ)

∑
n 1[n�=i] exp (cos(zi,zn)/τ) (5)

where P (i) = {p ∈ N \i : yp = yi} represents the set of sample numbers with the
same label with the ith instance si in a batch. For unlabeled datasets, P (i) = ∅,
LNCE−L
i = 0. We construct the contrastive learning loss:
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LCL =
1
N

N∑

i

((1 − λ)LNCE−I
i + λLNCE−L

i ) (6)

where LNCE−I only has a pair of positive samples, LNCE−L use samples of the
same relational type as the positive sample set, and constrain the encoder to
learn representations that are sensitive to the semantic features of relations.λ
is used to balance LNCE−I

i and LNCE−L
i , avoiding the overfitting of predefined

relation.

3.4 Adaptive Clustering

Adaptively adjusting the clustering boundary method is used for unlabeled data
clustering, after each training epoch, each sample’s pseudo-label is modified to
the label set Y = {ŷ1, . . . , ŷBN}, ŷi ∈ [1, Cu], where B is the batch number of
unlabeled data sets.

In order to facilitate the measurement of the association of cross-category
instances with different categories, we use a repository set of size BN/(Cu − 1)
M = {M1, . . . ,MCu} to store the enhanced instance of each category. For the
positive sample representation ẑu with the current pseudo-label ŷi, other pos-
itive sample data except Mŷi

are used as comparison sets Qi, Qi = {ẑu|ẑu ∈
Mj ∀j ∈ [1, Cu] and j �= ŷi}. After each backpropagation, the new relation
representation ẑu enters the corresponding queue Mŷi

, and the oldest representa-
tion added to the queue will be removed. The repository set maintains instances
of each category, which can be used as a basis to realize the division of relational
types. The process flow of this module for unlabeled data is shown in Fig. 1, each
category corresponds to a list to store related instances.

Decision 
Boundary

Cross 
Entropy

Fig. 1. Adaptive Clustering

In order to discover new relations using relation representations, we update
decision boundaries by maximizing the intra-cluster similarity and minimizing
the inter-cluster similarity and then updating the representations according to
the relation repository. The instance representations of each category stored
independently are used to construct the cluster center. For the current instance
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representation zu
i , we use p̃i,j to calculate the probability that it belongs to the

category j:

p̃i,j =

∑
ẑu∈Mj

exp (cos (zu
i , ẑu) /τ)

∑Cu

j′=1

∑
ẑu∈Mj′ exp (cos (zu

i , ẑu) /τ)
(7)

where τ is the temperature coefficient. This formulation measures the semantic
similarity of the current instance representation to instances of all categories.
The clustering decision boundary is shown below:

pi = Softmax
(
W�zu

i + b
) ∈ RCu

(8)

where W and b are the parameters of the decision boundary, and zu
i is mapped

to a Cu dimensional vector, each dimension represents the probability pi,j of the
corresponding category.

To align class semantics with relation categories, we minimize the cross-
entropy between the cluster assignment p̃i based on the semantic similarity in
the feature space and the prediction pi generated based on the decision boundary:

LCD = − 1
N

N∑

i=1

Cu
∑

j=1

p̃i,j log pi,j (9)

Due to the setting of relation repositories, samples are assigned to the most
similar category under the constraint of loss, while according to the adaptive
decision boundary, relation repositories are updated in time with the semantic
features corresponding to them. Following each epoch of training, the parameters
of the encoder and the decision boundary are optimized, the label of the instance
is updated by maximum likelihood estimation, and the relation repository is
updated according to the label:

ŷi = argmax
j

pi,j , j ∈ {1, . . . , Cu} (10)

During training, some samples may change label repeatedly in adjacent
epochs, which is formalized as:

sei = se−1
i + 1[ŷe

i �= ŷe−1
i ] (11)

where sei represents the instance si in the eth epoch of training. These samples
may be the difficult samples at the decision boundary. With the help of the
attention mechanism, higher weights are given to these samples so that the
model can achieve the correct prediction of the difficult samples:

we
i =

sei
∑N

j sej
(12)

where we
i represents the weight of zu

i in the eth epoch of training.
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We can update the weights in the instance discriminative loss LNCE−I , and
update LCL:

LNCE−I =
N∑

i=1

we
i LNCE−I

i (13)

LCL = (1 − λ)LNCE−I +
λ

N

N∑

i

(LNCE−L
i ) (14)

We set a cross-entropy loss in order to avoid the catastrophic forgetting
phenomenon of predefined relations in the process of guiding the discovery of
new relations. We use the softmax layer σ to map the relation representation
zl
i ∈ R

Cl

to a posterior distribution pc = σ(zl
i) with dimension Cl. The loss

function is defined as follows:

LCE = −
Cl∑

c=1

yc log(pc) (15)

The total loss is:

L = αLH + LCL + LCD + βLCE (16)

where α and β are hyperparameters used to balance the overall loss.

4 Experiments

4.1 Datasets

To assess the performance of our method, we conduct experiments on two rela-
tion extraction datasets. FewRel [5] consists of texts from Wikipedia that are
automatically annotated with Wikidata triple alignments in a far-supervised
manner followed by manual inspection. It contains 80 relation types, there are
700 instances in each type. TACRED [15] is a large-scale human-annotated
relation extraction dataset, including 41 relation types.

For FewRel, 64 types of relation in the original training set will be used as
labeled data, and the 16 types of relation in the original verification set will
be used as unlabeled data sets to discover new relations. Each type of data is
divided into the training set and the test set according to 9:1. For TACRED,
after removing instances labeled “No Relation”, the remaining 21,773 instances
are used for training and evaluation. Afterward, the 0–30 relation types are
regarded as labeled datasets, and the 31–40 relation types are regarded as unla-
beled datasets.In each dataset, 1/7 of the data is randomly selected as the test
set, and the rest of the data is divided into the train set.

We use B3 [1], V − measure [11] and ARI [7] to evaluate the performance
of the model, they are used to measure the accuracy and recall of clustering, the
uniformity and completeness of clusters, and the consistency between clusters
and the true distribution.
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4.2 Baselines

We select these OpenRE baselines for comparison:

Discrete-state Variational Autoencoder (VAE) [10]. VAE exploits the
reconstruction of entities and predicted relations to achieve open-domain relation
extraction.

HAC with Re-weighted Word Embeddings (RW-HAC) [3]. RW-HAC
utilizes entity type and word embedding weights as relational features for clus-
tering.

Entity Based URE (Etype+) [12]. Etype+ relies on entity types and uses
a link predictor and two additional regularizers on top of VAE.

Relational Siamese Network (RSN) [13]. RSN learns the similarity
of predefined relation representations from labeled data and transfers relation
knowledge to unlabeled data to identify new relations.

RSN with BERT Embedding (RSN-BERT) [13]. This method is based
on the RSN model and uses word embeddings encoded by BERT instead of
standard word vectors.

Self-supervised Feature Learning for OpenRE (SelfORE) [6]. Self-
ORE uses a large-scale pre-trained language model and self-supervised signals
to achieve adaptive clustering of contextual features.

Relation-Oriented Open Relation Extraction (RoCORE) [16].
RoCORE learns relation-oriented representations from labeled data with pre-
defined relations and uses iterative joint training to reduce the bias caused by
labeled data.

The unsupervised benchmark models include VAE, RE-HAC, EType+, the
self-supervised benchmark model is SelfORE, and the supervised benchmark
models include RSN, RSN-BERT, and RoCORE.

4.3 Implementation Details

Referring to the settings of the baseline model, we use BERT-Base-uncased to
initialize the word embedding. At the same time, in order to avoid overfitting,
we refer to the settings of Zhao et al. [16] and only fine-tune the parameters of
Layer 8. We use Adam [8] as the optimizer, 5e−4 as learning rate, and the batch
size is 100. α is 5e−4, 1e−3 on the FewRel and TACRED, β is set to 0.8, λ is
set to 0.35 on the two datasets, this parameter depends on the importance of
hard samples in predefined relations on different datasets. We use the “merge
and split” method [14] when updating pseudo-labels to avoid cluster degradation
caused by unbalanced label distribution. All experiments are trained on GeForce
RTX A6000 with 48 GB memory.

4.4 Main Results

The main results are shown in Table 1. The method proposed in this paper
exceeds the strong baseline model RoCORE on three main evaluation indicators
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Table 1. Experimental results produced by baselines and proposed model on FewRel
and TACRED in terms of B3, V-measure, ARI. The horizontal line divides unsuper-
vised and supervised methods.

Dataset Method B3 V − measure ARI

Prec. Rec. F1 Hom. Comp. F1

FewRel VAE 30.9 44.6 36.5 44.8 50.0 47.3 29.1

RW-HAC 25.6 49.2 33.7 39.1 48.5 43.3 25.0

EType+ 23.8 48.5 31.9 36.4 46.3 40.8 24.9

SelfORE 67.2 68.5 67.8 77.9 78.8 78.3 64.7

RSN 48.6 74.2 58.9 64.4 78.7 70.8 45.3

RSN-BERT 58.5 89.9 70.9 69.6 88.9 78.1 53.2

RoCORE 75.2 84.6 79.6 83.8 88.3 86.0 70.9

Ours 78.5 82.6 80.5 85.6 88.7 87.1 72.4

TACRED VAE 24.7 56.4 34.3 20.8 36.2 26.4 15.9

RW-HAC 42.6 63.3 50.9 46.9 59.7 52.6 28.1

EType+ 30.2 80.3 43.9 26.0 60.7 36.4 14.3

SelfORE 57.6 51.0 54.1 63.0 60.8 61.9 44.7

RSN 62.8 63.4 63.1 62.4 66.3 64.3 45.9

RSN-BERT 79.5 87.8 83.4 84.9 87 85.9 75.6

RoCORE 87.1 84.9 86.0 89.5 88.1 88.8 82.1

Ours 85.9 87.3 86.6 89.1 89.3 89.2 82.6

B3F1, V −measureF1 and ARI on all datasets, bringing 0.9%/0.6%, 1.1%/0.4%
and 1.5%/0.5% growth respectively. Utilizing RoCORE and conducting paired
t-tests on key performance indicators through multiple experiments, the one-
tailed p-values on the two datasets are as follows: 0.002/0.024, 0.011/0.019, and
0.004/0.005, all of which are less than 0.05 indicates that our method exhibits
significant differences from the RoCORE method in terms of the aforementioned
indicators. It reveals that the method in this paper can effectively use the relation
repository sets to model the semantic differences of different relations compared
with other models. The encoder is then encouraged to generate cluster-oriented
deep relation representations.

4.5 Ablation Analysis

In order to deeply analyze the influence of each key module on the performance of
the model, we construct some ablation experiments, and the experiment results
are the average results of multiple experiments (Table 2).

Bidirectional Margin Loss. Bidirectional margin loss can handle difficult
samples better. Comparative analysis reveals that the model’s performance on
both datasets deteriorates after removing the margin loss, with a more pro-
nounced decline observed in TACRED. This suggests that difficult samples
within predefined relations have varying effects on different datasets.

Knowledge Transfer. Knowledge transfer of predefined relations greatly facil-
itates the discovery of new relations. Notably, the impact of knowledge transfer
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Table 2. Abalation study of our method.

Dataset Method B3 V − measure ARI

Prec. Rec. F1 Hom. Comp. F1

FewRel Ours 78.5 82.6 80.5 85.6 88.7 87.1 72.4

w/o margin loss 78.3 82.4 80.3 85.5 88.1 86.8 72.2

w/o knowledge transfer 77.1 73.8 75.4 83.3 84.7 84.0 68.7

w/o ID training 74.6 76.6 75.6 81.6 85.3 83.4 69.8

w/o weight we
i 74.6 82.4 78.3 82.3 87.2 84.7 69.3

TACRED Ours 85.9 87.3 86.6 89.1 89.3 89.2 82.6

w/o margin loss 86.4 86.0 86.2 89.2 88.6 88.9 82.1

w/o knowledge transfer 83.9 84.7 84.3 87.2 87.0 87.1 79.1

w/o ID training 85.3 79.5 82.3 85.6 87.0 86.3 78.2

w/o weight we
i 85.6 81.9 83.7 88.9 86.1 87.5 78.6

on the FewRel dataset, in the absence of supervised contrastive loss for pre-
defined relations, is more substantial than on TACRED. This underscores the
beneficial role of knowledge transfer in enabling the encoder to learn relation
representations.

Adaptive Clustering. Adaptive clustering holds equal importance in con-
junction with knowledge transfer of predefined relations. Despite employing the
knowledge within the relation repository to update pseudo-labels as a substitute,
its effectiveness remains inferior to the cluster assignment guided by the clus-
tering boundary. This highlights the efficacy of iteratively updating the decision
boundary for the clustering of new relations.

Sample Attention Mechanism. Incorporating the difficult sample attention
mechanism enhances the model’s ability to discriminate between classes. The
removal of the weighting strategy significantly diminishes the clustering effect on
different datasets, underscoring the importance of emphasizing difficult samples
with ambiguous semantics to improve the model’s class discrimination ability.

4.6 Visualization Analysis

In order to show intuitively how our method helps refine the relation represen-
tation space, t-SNE [9] is used to visualize each relation representation in the
semantic space. We randomly select 8 categories from the training set of FewRel,
with a total of 800 relation representations, and reduce the dimension of each
representation from 2×768 to 2 dimensions. The change of the relational seman-
tic space during the training process is shown in Fig. 2, after training for 10, 30,
and 52 epochs, the representation in the cluster is more compact than before,
and the boundary between each cluster is more clear, and the clusters of each
relation category have been aligned with the semantics.
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(a) (b)

(c) (d)

Fig. 2. Visualization of the relation representations

5 Conclusion

In this paper, we propose a relation repository-based adaptive clustering for
open relation extraction. Our main contribution is to enhance the model’s capa-
bility to classify difficult samples. The proposed method leverages bidirectional
margin loss and adaptive clustering to enhance the prediction performance for
both predefined and novel relations. Experiments and analysis demonstrate the
effectiveness of our method.
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Abstract. Graph partitioning manages large RDF datasets in various
applications such as file systems, databases and distributed computing
frameworks. Research on graph partitioning can be generally catego-
rized into two types: vertex partitioning and edge partitioning. Due to
the independent nature of vertex partitioning, which facilitates easier
management and maintenance, vertex partitioning methods have become
more practical and popular. However, most existing vertex partitioning
methods primarily focus on operating partitions in the original dimen-
sional space, overlooking the control of partition locality from different
dimensions. This oversight can adversely affect query efficiency. There-
fore, we propose a graph partitioning method based on local node fusion.
Based on constructing the co-occurrence matrix to calculate property
weight values, we utilize a greedy clustering algorithm to achieve weight-
sensitive node fusion. By constructing abstract super-nodes, we achieve
a multi-granularity RDF graph that combines regular nodes with super-
nodes. By setting a cost threshold, we iteratively apply an edge-cut selec-
tion mechanism, ultimately achieving vertex-based graph partitioning
and super-node de-fusion. Extensive experiments are conducted on syn-
thetic and real RDF datasets, validating the effectiveness of our proposed
method.

Keywords: Graph Partitioning · RDF Query · Propetry Clustering ·
Distributed Knowledge Graph

1 Introduction

Knowledge graph is a graphical model used to represent knowledge and infor-
mation. It consists of various elements, such as entities, relationships, and prop-
erties, and can describe and represent various types of knowledge and informa-
tion. The storage of knowledge graphs is based on the RDF (Resource Descrip-
tion Framework) model, which serves as the standard model for publishing and
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exchanging data on the web. RDF has been widely adopted in various applica-
tions for its ability to represent data in a standardized format. An RDF dataset
can naturally be seen as a graph, where the subjects and objects are the graph’s
vertices, and the predicates are the edges connecting the vertices. SPARQL is a
query language for querying and retrieving data from the RDF data model [1].
Answering a SPARQL query is equivalent to finding subgraph matches of the
query graph on the RDF graph.

With the development and application of the Semantic Web, RDF datasets
have been continuously growing, leading to performance issues in managing and
querying RDF data on a single machine [2]. To address this issue, distributed
solutions have emerged as well. This article focuses on optimizing a distributed
RDF system designed explicitly for evaluating SPARQL queries [3]. In this sys-
tem, the RDF graph is divided into several subgraphs, denoted as {F1, ...., Fn},
referred to as partitions distributed across multiple nodes. One critical challenge
is reducing the communication costs between different partitions during the dis-
tributed query evaluation process and enhancing partition locality to improve
query efficiency.

Most graph partitioning techniques consider dividing the data in the original
dimensional space. They only focus on achieving load balancing to reduce storage
costs or minimizing cut edges or vertices to reduce communication costs while
ignoring the control of partitioning locality in different dimensions. Only a few
methods achieve partitioning based on workload, which can assign nodes with
similar workloads to the same partition, thereby increasing locality. However,
this approach will change as query demands change and workloads evolve. On
the other hand, we propose a graph partitioning method based on local node
fusion, which leverages the similarity of property weights. The idea is to store all
nodes connected by edges with similar property weights in the same partition.
In a distributed engine, the nodes being queried should ideally reside in the
same partition. This helps to reduce the overall query performance overhead
associated with accessing nodes across different partitions.

Our contribution is introducing a novel graph partitioning approach based
on local node fusion. This method utilizes local node fusion as a critical tech-
nique for partitioning the graph, resulting in a new graph partitioning scheme.
We calculate property weights by constructing a property co-occurrence matrix
to achieve node fusion based on property similarity. Furthermore, we propose a
property clustering algorithm incorporating weight sensitivity for node fusion.
By constructing super nodes, we facilitate the creation of a multi-granularity
RDF graph. We employ an iterative edge-cut selection mechanism by setting
a cost threshold to determine which edges need to be cut. This enables the
automatic partitioning of the graph and the resolution of super-node fusion. To
evaluate the effectiveness of our proposed technique, we conducted experiments
using synthetic and real RDF datasets. We employed various performance met-
rics to assess the performance of our approach and validate its efficacy.

The remaining sections of this paper are organized as follows. In Sect. 2, we
provide a review of related work on graph partitioning techniques. Section 3 intro-
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duces the property co-occurrence matrix and the multi-granularity RDF graph,
along with our proposed greedy clustering algorithm. In Sect. 4, we present exten-
sive experiments conducted on synthetic and real RDF datasets to validate the
effectiveness of our approach. Finally, Sect. 5 concludes the paper with a sum-
mary of our contributions.

2 Related Work

The most crucial aspect in distributed systems is partitioning an RDF graph into
multiple subgraphs. Typically, graph partitioning techniques can be categorized
based on how they divide the graph data: vertex partitioning, edge partitioning,
and other approaches.

Vertex Partitioning. In distributed systems, most graph partitioning
approaches are based on vertex partitioning. This method assigns the graph’s
nodes to individual partitions, and to ensure data integrity, each partition repli-
cates the nodes at its boundaries. In vertex partitioning, nodes are the fundamen-
tal units of the graph data, and each node has certain properties or connections to
other nodes. Virtuoso [4] and SHAPE [5] are examples of hash-based partitioning
methods. In this approach, the elements of the triples are mapped to hash func-
tions and then subjected to modulo operations. The number of nodes assigned
to each partition is calculated using the equation f(v) = hash(v) mod n. This
partitioning technique can also be extended to edge partitioning by assigning
IDs to each edge and performing modulo operations for partitioning.

Edge Partitioning. This method assigns nodes of a graph to different sub-
graphs, which may result in some edges between nodes being cut off to maintain
the integrity of the subgraphs. Edge partitioning has been widely used in many
cloud-based distributed RDF systems, such as S2RDF [6], where edges with
different properties are stored in separate tables. SPARQLGX [7] is based on
vertical partitioning, where each triple element is distributed to different parti-
tions or tables, typically storing two out of the three elements of a triple instead
of the complete triple.

Other Partitioning. With the continuous improvement of partitioning tech-
niques, several other partitioning methods have emerged that consider additional
information in addition to the graph data itself [8]. For example, the DiploCloud
[9] method requires defining templates as partitioning units before partitioning
the graph data. Partout [10] utilizes query workloads to distribute RDF triples
among the desired partitions, defining the query workload as the partition. Yars2
[11] is based on range partitioning, where RDF triples are distributed based on
certain range values of the partition key.

Our approach belongs to vertex partitioning, primarily aimed at improving
partition locality. However, unlike other methods employed in workload, we uti-
lize node fusion to merge nodes with similar weights and construct super nodes.
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We can effectively reduce the number of edges cut between partitions by trans-
forming the data from a common-dimensional space into a multi-dimensional
RDF graph. We aim to optimize partition locality across dimensions while con-
sidering the connectivity between partitions.

3 Method

We will describe our method in three steps. Firstly, we introduce the overall
structure of the method. Secondly, we assign values to the dataset using a prop-
erty co-occurrence matrix and achieve node fusion through a greedy algorithm.
Lastly, we set a cost threshold and implement automatic partitioning through
an edge selection mechanism.

3.1 Model Overview

The overall architecture of LNFGP is shown in Fig. 1. It consists of several
steps: initializing RDF data, constructing a multi-granularity RDF graph, and
performing data auto-partitioning.

Fig. 1. The overall architecture diagram of LNFGP for partitioning.
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RDF data and partitioning information are first obtained in the initial-
ization phase of RDF data. Then, this information is used to initialize the
data. Subsequently, the initialized RDF data is used to build an attribute
co-occurrence list, which organizes and records the co-occurrence relationships
between node attributes. Additionally, a data dictionary enables bidirectional
conversion between the data and the dictionary, facilitating subsequent data
processing and querying.

In constructing a multi-granularity RDF graph, the previously built attribute
co-occurrence list is first transformed into an attribute co-occurrence matrix and
then normalized. Next, a greedy clustering algorithm merges weight-sensitive
nodes, forming super nodes. This process transforms the original RDF graph
into a multi-granularity RDF graph. In the data auto-partitioning phase, we set
a cost threshold and use an iterative edge selection mechanism to determine the
edges that need cut. This enables automatic data partitioning and the resolution
of super-nodes. Once the partitioning is completed, we store the information of
each partition in triple lists and utilize MPICH for bidirectional communication
between the partitions.

3.2 Property Co-Occurrence Matrix Generation

During the initialization stage of graph data, we create a property-based list
L = {L(1), ..., L(n)}, where L(i) is composed of a triplet < v, e, x >. Here,
v represents the subject in the RDF dataset, e represents the property in the

Fig. 2. Construct a multi-granularity RDF graph.
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RDF dataset, and x represents the count of occurrences when the subject and
property are the same.

As shown in Fig. 2, in the matrix, Vx represents nodes, Ey represents prop-
erties, and R(x,y) represents the number of times the node and property co-
occur in the triplets. The graph consists of a multi-granularity RDF graph
and property matrix normalization. To transform the base RDF graph into a
multi-granularity graph, we must convert the property co-occurrence list into
a property co-occurrence matrix. During the matrix normalization process, the
transformation of R(x,y) to r(x,y) is accomplished using Eq.(1):

r(x,y) =

[
(R(x,y) − Min(R(x,z)))

]ω−1

(Max(R(x,z)) − Min(R(x,z)))
(1)

where R(x,y) represents a specific element in the matrix, and we obtain the
maximum and minimum values of the row where that element belongs. The
variable ω represents the range for matrix normalization. By normalizing the
matrix, we bring all the elements to a standardized scale, eliminating differences
in dimensions among the data. The normalized values of the matrix elements
are then assigned as weights to the property edges.

Algorithm 1. Node greedy clustering algorithm
Input: Property list L, Graph G = (V, E, L), Mumber of clusters K
Output: Required clusters F = {f1, ..., fk}
1: I = |G| /n;
2: E = getGraphEdges(G);
3: i = 1;
4: while ei ∈ E do
5: V (vn, vm) = getGraphNodes(G, ei);
6: W = getWeights(L(vn, ei));
7: if |fi| < I then
8: if W < L(ei) then
9: Add (vn, vm) into fi;

10: i = i + 1;
11: else
12: continue;
13: end if
14: else
15: i = i + 1;
16: end if
17: end while

In order to enhance partition locality, we aim to merge nodes connected
by edges with similar weights into the same cluster and treat the clusters as
super nodes to construct a multi-granularity RDF graph. To achieve this, we
have adapted the greedy algorithm and proposed the Node Greedy Clustering
Algorithm.
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Algorithm 1 presents the Node Greedy Clustering Algorithm, which itera-
tively assigns nodes to clusters. It requires input parameters such as the property
list L, the graph G, and the desired number of clusters K. The algorithm starts
by initially estimating the number of nodes needed for each cluster in the first
line. Then, it obtains all property edges from the graph G and iterates through
them. Based on the 5th and 6th lines of Algorithm 1, retrieve the two vertices
vnand vmconnected by the edge and the weights of their edges. If the number
of nodes fi in a particular cluster is less than the threshold I, it is considered a
super node. This super node can then be used to construct a multi-granularity
RDF graph based on the nodes provided by the algorithm.

3.3 Edge Selection Mechanism

In this section, we will select the edges to be cut and determine the final parti-
tions. Using Algorithm 1, we obtained the multi-granularity RDF graph, which
includes super and regular nodes. However, there are different edges between
these super and regular nodes. We establish a cost threshold equation to min-
imize the number of cut edges. Given a set of properties L′ ⊆ L, the cost of
selecting L′ as the cut edge is defined as:

cost(L′) =
∑

L′⊆L

ω · 1
K

|fi| + max
L′⊆L

|e| (2)

The cost threshold is composed of two parts:
∑

L′⊆L ω · 1
K |fi| represents load

balancing, and maxL′⊆L |e| represents the maximum number of cut edges. The
parameter ω is used for normalization, K represents the size of the partitions,
and |e| represents the number of cut edges.

Algorithm 2. Edge selection algorithm
Input: Clusters F = {f1, ..., fk}, Graph G = (V, E, L), Number of partitions X
Output: Cut edge list Lc

1: Lc ← φ;
2: T = (1 + α) |V | /X;
3: Li = getEdge(F );
4: j = 1;
5: while Li �= φ do
6: if cost(Lj) < T then
7: Lc ← Lj ;
8: else
9: j = j + 1;

10: end if
11: end while

Algorithm 2 demonstrates how to perform edge cuts. First, we input the
cluster list and graph G from the previous section. Following lines 2 and 3 of
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Algorithm 2, we obtain the edges Li between each pair of clusters and the cost
threshold T . Here, V represents the number of nodes in graph G, and α controls
the balance rate. When Li is not empty, we compare the cost calculated by the
cost function with T to minimize the number of cuts. We use line 6 of Algorithm 2
to determine whether the cost is below the threshold. If it is below the threshold,
the edge is stored in the cut list; otherwise, we move on to the next edge for
evaluation.

4 Experiments

4.1 Setup

We conducted experiments on both virtual and real datasets to validate our
method. All experiments were executed in the environment of CentOS 7. The
partitioned datasets were stored in eight virtual machines, each equipped with
a CPU with 8 cores running at 2.62GHz, 32GB of RAM, and 1TB disk.

1) Datasets and Partitioning Environments. The experiments used two types
of datasets: virtual and real datasets. Virtual datasets included WatDiv [12]
and LUBM [13], while the real datasets included DBpedia [14] and YAGO4
[15]. Table 1 presents each dataset’s number of triples, entity count, property
count, and dataset size. We employed two different partitioning environments
to evaluate the partitioning techniques: distributed RDF storage environment
and a pure federated environment. Koral [16] and gStoreD [17] were used for the
distributed RDF storage environment, while FedX [18] was utilized for the pure
federated environment.

Table 1. Statistics of two types of datasets.

Categories Dataset Triples Entities Properties Size

Virtual WatDiv 110,006,886 5,212,743 86 15.7 GB
LUBM 106,827,145 65,512,368 18 14.6 GB

Real DBpedia 445,728,227 51,541,671 1721 63.5 GB
YAGO4 329,524,333 15,636,745 1628 47.6 GB

2) Partitioning Techniques and Benchmark Queries. We compared three
partitioning techniques: Subject-Based, Horizontal, and Min-Edgecut, and the
LNFGP method proposed in this paper. All of these partitioning techniques
fulfill the requirements of being configurable, applicable to RDF datasets, and
scalable to medium to large-scale datasets. We employed two query benchmarks
on the dataset. The first benchmark consists of individual BGP queries that do
not involve other SPARQL features such as OPTIONAL, UNION, and FILTER.
The second benchmark includes complex queries that involve multiple BGPs or
aggregations.
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4.2 Evaluation Metric

For the evaluation of partitioning, we will consider five aspects: partitioning exe-
cution time, query time, partition imbalance, scalability and partition ranking.
Four partitioning methods, eight partitions, and five benchmarks are included
in the evaluation. The formulas for partition imbalance and partition ranking
calculation are as follows.

Partitioning Imbalance. Assuming there are a total of n partitions, rep-
resented as {F1, F2, ..., Fn}. As the number of triples increases, the imbalance
within the partition, ranging from 0 to 1, can be represented as follows:

b :=
2
∑n

i=1(i × |Fi|)
(n − 1) × ∑n

j=1 |Fi| − n + 1
n − 1

(3)

Partition Ranking. Let t be the total number of partitioning techniques and
b be the total number of benchmark executions used in the evaluation. Let
1 ≤ r ≤ t denote the rank number and Op(r) denote the occurrences of a
partitioning technique p placed at rank r. The sorting score range of partitioning
technique p is defined between 0 and 1 as follows:

s :=
t∑

r=1

Op(r) × (t − r)
b(t − 1)

(4)

4.3 Evaluation Results

Partitioning Execution Time: Table 2 compares the total time spent gener-
ating 8 partitions using 4 datasets in the evaluation. The subject-based approach
has the lowest time cost, followed by LNFGP. The optimal results are highlighted
in bold, while the second-best results are underlined. Topic-based queries only
require scanning the dataset once to place the triples directly. In contrast, the
advantages of LNFGP in query performance can compensate for the shortcom-
ings in partitioning time, which is acceptable.

Query Time: One of the most critical evaluation results for partitioning is
achieved by assessing the runtime performance of queries using each selected
partitioning technique. We performed complete benchmark queries on data par-
titions created by all partitioning techniques and measured the time taken to
execute these benchmark queries. We randomly selected three queries for each
dataset in the benchmark, where ∗ denotes complex queries, and the rest are
individual BGP queries. The results, as shown in Table 3, demonstrate that the
execution time of WQ∗

3 in the LNFGP partition is 30% to 40% faster than
Subject-Based, thereby proving that the proposed technique outperforms other
partitioning methods in the majority of benchmark queries.
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Table 2. Execution time of partitioning methods on datasets (in seconds).

Dataset Subject-Based Horizontal Min-Edgecut LNFGP

WatDiv 1773.62 1886.29 1949.11 1776.89
LUBM 1365.79 1463.87 2672.41 1381.08
DBpedia 21147.51 31476.85 71558.36 21237.09
YAGO4 32654.31 43072.19 63765.62 38671.82

Partition Imbalance: Figure 3a, displays the partitioning imbalance generated
by the selected partitioning technique. The partitioning imbalance is calculated
using Eq. (3), and it shows that horizontal partitioning minimizes the parti-
tioning imbalance across all datasets, followed by LNFGP, Subject-Based, and
Min-Edgecut (Fig. 4).

Table 3. Execution time of different query statements (in milliseconds).

Queries WatDiv LUBM YAGO4
WQ1 WQ2 WQ∗

3 LQ1 LQ2 LQ∗
3 Y Q1 Y Q2 Y Q∗

3

SB 259 1,043 47,569 692 763 85,147 1,842 7,409 79,150
Ho 677 840 53,792 366 428 78,953 817 17,374 186,737
ME 374 946 67,284 1,382 670 94,153 1,341 25,471 97,639
LNFGP 139 253 13,657 118 275 42,564 459 3,048 61,724
SB=Subject-Based, Ho=Horizontal, ME=Min-Edgecut, ∗=complex queries.

Fig. 3. Rank scores and partitioning imbalance of the partitioning techniques.

Partition Ranking: Ranking scores indicate the overall ranking of specific
methods relative to other selected methods in the completed benchmark exe-
cutions. It is a value between 0 and 1, where 1 represents the highest ranking.
Figure 3b represents the ranking scores of each partitioning technique calculated
using Eq. (4). The results show that LNFGP has the highest ranking score, fol-
lowed by horizontal, Min-Edgecut, and Subject-Based.
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Fig. 4. Scalability of different methods on two datasets.

Scalability: We conducted scalability experiments on two virtual datasets by
continuously increasing the scale of the datasets while keeping the number of
partitions and query statements fixed. We partitioned the data using four par-
titioning techniques and measured the query time. The results indicate that
LNFGP outperforms other methods regarding query time as the dataset scales
up.

5 Conclusion

We propose a graph partitioning method based on local node fusion to achieve
this. Firstly, we calculate attribute weights by constructing an attribute co-
occurrence matrix and normalizing the weights to constrain their range. We
introduce a greedy clustering algorithm to merge nodes into super nodes. Finally,
automatic partitioning is achieved by setting a cost threshold and employing an
iterative edge-cut selection mechanism. Overall results demonstrate that the
proposed technique outperforms previous methods regarding query runtime per-
formance, overall ranking scores, and scalability. We aim to further enhance
LNFGP’s time cost during partitioning by leveraging techniques such as index
tables to expedite data loading and partitioning. Additionally, we can explore
the application of LNFGP in different attribute graphs for further research.
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Abstract. Semantics understanding is a critical aspect of Machine
Reading Comprehension (MRC). In recent years, researchers have started
leveraging the semantic knowledge provided by FrameNet to enhance the
performance of MRC systems. While significant efforts have been dedi-
cated to Frame representation, there is a noticeable lack of research on
Frame Element (FE) representation, which is equally crucial for MRC.
We propose a groundbreaking approach called the Multi-Perspective
Frame Elements Representation (MPFER) method. It aims to com-
prehensively model FEs from three distinct perspectives: FE definition,
Frame (semantic scenario), and FE relation. By considering these mul-
tiple perspectives, our proposed model significantly improves the repre-
sentation and understanding of FEs in MRC tasks. To validate the effec-
tiveness of the MPFER method, we conducted extensive experiments.
The results clearly demonstrate that our proposed model outperforms
existing state-of-the-art methods. The superiority of our approach high-
lights its potential for advancing the field of MRC and showcasing the
importance of properly modeling FEs for better semantic understanding.

Keywords: FrameNet · Frame element representation · Machine
reading comprehension

1 Introduction

Machine Reading Comprehension (MRC) involves the ability of machines to read
and understand a text passage semantically, and accurately answer questions
related to it. FrameNet [1,4], as a widely adopted knowledge base, provides
schematic scenario representation that can potentially be utilized to enhance
text understanding.

In particular, Frame (F) is defined as a composition of Lexical Units (LUs)
and a set of Frame Elements (FEs). FEs are basic semantic units of a Frame,
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Fig. 1. An Example of F-to-F and FE-to-FE. Dash lines represent F-to-F. Solid lines
represent FE-to-FE.

which are more semantically rich than traditional semantic role labels. In addi-
tion, FrameNet arranges relevant Frames into a network by defining Frame-to-
Frame (F-to-F) relations. As each Frame contains one or multiple FEs, every
F-to-F in FrameNet can thus correspond to one or more underlying FE-to-FE
relations, and the relations between FEs are the same as the corresponding
relations between Frames. For instance, in Fig. 1, FE Goods inherits from FE
Theme (solid green line, FE-to-FE) as Frame Commerce_buy inherits from
Frame Getting (dash red line, F-to-F).

Note both Frame and Frame Elements are critical for MRC. For example, in
dataset MCTest, given a passage She walked into the kitchen ... start baking when
she saw she was all out of flour. She would have to go to the store to get some,
and a question What did Jill need to buy to make her pie? machines should
have semantic knowledge that 1) Get has relation with Buy, and 2) Flour that
Jill has to get represents what Jill need to buy. Fortunately, Frame provides
rich semantics relation, e.g. Get and Buy in the given passage/question evoke
Frame Getting and Commerce_buy respectively, and they are semantically
connected as F-to-F in FrameNet. Meanwhile, FEs provide additional informa-
tion to the semantic structure of a sentence. For example, FrameNet would mark
Flour as a semantic unit Theme FE and what as a semantic unit Goods FE,
and they are semantically related as FE-to-FE (green line), as shown in Fig. 1.

Recently, there has been a growing trend among researchers to leverage Frame
semantic knowledge in order to develop models with enhanced semantic infer-
ence capabilities [5–7,19]. These studies highlight the importance of incorpo-
rating Frame information into modeling approaches. However, we observe that
these models only pay attention to Frame and ignore critical Frame Elements
(FEs) information, indicating that the current models still suffer from insufficient
semantic information and relations and can be further enhanced by incorporating
FEs knowledge.
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In this paper, we propose a novel Multi-Perspective Frame Elements Rep-
resentation (MPFER) method, which leverages three semantic perspectives to
better model FEs. In addition, we further integrate the FE representation to
MRC architecture to improve its performance. The key contributions of this
work are summarized as:

1. To our best knowledge, our work is the first attempt to encode Frame Ele-
ments into their distributed representations.

2. We propose a novel Multi-Perspective Frame Element Representation
(MPFER) method, which models FEs from three perspectives: FE defini-
tion, Frame (Semantic scenario), and FE-to-FE relations, to acquire richer
and deeper semantic understanding of sentences.

3. Extensive experimental results on MCTest dataset demonstrate our proposed
model is significantly better than ten state-of-the-art models for machine
reading comprehension.

2 Multi-Perspective Frame Element Representation
Model (MPFER)

Figure 2 depicts the comprehensive framework of our MPFER model, which
comprises four essential components:

(1) FE Definition Representation: This component encodes each Frame Ele-
ment (FE) by utilizing its corresponding definitions, resulting in the nominal
representation FEd

m. By incorporating the FE definitions, we capture the
essence and characteristics of each FE.

(2) Frame Representation: The goal of this component is to obtain the rep-
resentation of the Frame scenario, denoted as F . Building on the Frame
representation approach (FRA) [7], we leverage existing techniques to cap-
ture the semantic context and scenario associated with the Frame

(3) FE Relation Representation: Leveraging FE-to-FE relations, this com-
ponent models the semantic relationships between FEs using an attention
schema, denoted as FEr

m. By considering the connections and dependen-
cies between FEs, we enhance the understanding of the overall semantic
structure.

(4) Multi-Perspective Fusion: This component integrates the representa-
tions from FEd

m, F and FEr
m, combining them in a multi-perspective fusion

process. This integration generates a more comprehensive and meaningful
representation of the FEs, denoted as FE∗

m. By combining information from
different perspectives, we enhance the semantic inference ability and capture
a richer understanding of the text.

2.1 FE Definition Representation

FE Definition Representation (FED) module aims to represent each FE from
its definition perspective. To achieve this, we utilize the definition provided for
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each FE in resources like FrameNet. These definitions capture the essence and
characteristics of the FE. For example, in FrameNet, FE Goods is defined as
anything (including labor or time, for example) which is exchanged for Money in
a transaction. For given FEm, we feed its definition D = {d1, d2, . . . , di, . . . , dN}
into transformer-based encoder [16] to generate FEd

m. This representation cap-
tures the essential information conveyed by the FE definitions and serves as a
valuable input for further analysis and understanding in the MRC task.

FEd
m = Transformer(di)(i = 1, . . . , N) (1)

where di represents the i -th word in definition, and N is the total number of
words in D.

2.2 Frame Representation

Each FE is defined within the context of a specific Frame. Therefore, to capture
the semantic scenario perspective of each FE, we model them based on their
associated Frames. The Frame Representation (FR) module is designed to encode
each Frame in FrameNet into a vector representation, denoted as F .

To construct this vector representation F , we utilize the Frame Relation
Attention (FRA) model [7]. The FRA model leverages the relationships between
Frames, known as Frame-to-Frame (F-to-F) relations, to model the Frames using
an attention schema. By incorporating the attention mechanism, the FRA model
captures the salient features and connections between Frames, enabling a more
comprehensive understanding of the semantic scenarios they represent.

The Frame Representation module, through the use of the FRA model,
encodes each Frame into a vector representation F . This representation incor-
porates information from the associated Frames and their relationships, thereby
enhancing the semantic inference abilities of the model in the context of MRC
tasks.
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2.3 FE Relation Representation

The FE Relation Representation (FER) module serves as the core component
of our MPFER method. It aims to enhance the representation of Frame Ele-
ments (FEs) by incorporating semantic connections from the FE-to-FE relation
perspective

Given Frame Element FEm, FE+
m = {FEm,1, . . . , FEm,w, . . .} represents its

expanded FEs, including all FEs linking to FEm through FE-to-FE relations.
This expanded set includes all FEs that are linked to FEm through FE-to-FE
relations. By including these linked FEs, we capture the semantic relationships
and connections that contribute to a more comprehensive understanding of FEm.

To emphasize the relevant FEs and bridge any semantic gaps, attention
schemes are employed. These attention schemes are designed to assign higher
weights to the relevant FEs, ensuring that they receive more focus and influence
in the representation. This approach helps mitigate the influence of less rele-
vant but linked FEs, enabling the model to concentrate on the most pertinent
information for the given task.

FEr
m =

W∑

w=1

att(FEm,w) · FEm,w (2)

att(FEm,w) =
exp(FEd

m · FEm,w)∑W
k=1 exp(FEd

m · FEm,k)
(3)

Here, FEr
m is FE relation representation, and W stands for the total number

of FEs in FE+
m.

2.4 Multi-Perspective Fusion

Clearly, FED, FR and FER modules represent FEs from three different semantic
perspectives. To effectively capture and integrate these perspectives, we intro-
duce the Multi-Perspective Fusion (MPF) module, which strengthens the FE
representation.

Denote the different meaningful perspectives as Hp = [hp
1, h

p
2, . . . ;h

p
i ,

. . . , hp
M ]. hp

i is the i -th perspective of FE, and M is the number of perspec-
tives. To model the interactions between these perspectives and generate a more
comprehensive representation, we adopt source2token self-attention mechanism
[13]. This mechanism allows us to highlight the most important perspectives for
a specific FE and emphasize their contributions. The importance value ti for hp

i

is calculated by:
ti = WTσ(Whp

i + b) (4)

where σ(·) is an activation function, W is weight matrices, and b is the bias term.
Let S represents the computation scores for all perspectives in Hp. S is

computed as follows:
S = softmax(t) (5)
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Noted that
∑N

i=1 Si = 1, where Si is the weight of hp
i when computing the

representation.
The output of the attention mechanism is a weighted sum of the embedding

for all perspectives in Hp.

FE∗
m =

N∑

i=1

Si · hp
i (6)

FE∗
m is the final representation of FE that combine with multiple perspective

information.
By considering the attention weights and aggregating the perspectives

accordingly, the MPF module generates a better representation that combines
the most significant and relevant aspects of the FEs from multiple semantic
perspectives. This integrated representation helps strengthen the overall under-
standing of the FEs and enhances the performance of the model in MRC tasks.

2.5 Final Model for MRC

For all text including passage, question and option, we use SEMAFOR [2,3]
to automatically process sentences with Frame semantic annotations [9]. This
allows us to incorporate frame semantics into the analysis of the text, including
the passage, question, and answer options.

Except for the embedding lookup layer, our model is the same as the baseline
[7].

The embedding lookup layer maps F and FE to embeddings e(x). For the
FE embeddings, we employ our MPFER method to obtain more comprehensive
and meaningful representations.

Following the embedding lookup layer, a neural network are utilized to encode
sequence f(x). This encoding step captures the contextual information and pre-
pares it for further analysis.

Finally, the Softmax Linear layer is applied to select the best answer a∗ from
4 available options.

ai = softmax(f(x))(i = 1, . . . , 4) (7)

a∗ = argmax(ai) (8)

By incorporating Frame semantics and utilizing our MPFER method for FE
embeddings, our model extends the baseline architecture and enhances its ability
to understand and answer questions in the MRC task.

3 Experiments

This section presents a detailed description of our experimental setup, including
the datasets used, the results obtained, and an in-depth analysis of those results.
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Table 1. The Performance Comparison of 11 Different Models on Two MCTest
Datasets.

Method MCTest-160 (%) MCTest-500 (%)

Richardson et al. [12] 69.16 63.33
Wang et al. [17] 75.27 69.94
Li et al. [10] 74.58 72.67
Attentive Reader [8] 46.3 41.9
Neural Reasoner [11] 47.6 45.6
Parallel-Hierarchical [15] 74.58 71.00
Reading Strategies [14] 81.7 82.0
Bert [18] 73.8 80.4
BERT+DCMN+ [18] 85.0 86.5
FSR [7] 86.1 84.2
MPFER 87.5 85.5

3.1 Datasets for MRC

For evaluating the performance of our model on the multiple-choice machine
comprehension task, we utilize the MCTest dataset [12]. The MCTest dataset
comprises two subsets, namely MCTest-160 and MCTest-500.

MCTest-160: This subset of the MCTest dataset contains 160 passages
accompanied by multiple-choice questions. Each passage is followed by four
answer options, among which only one option is correct.

MCTest-500: The MCTest-500 subset expands upon the MCTest-160 dataset
and consists of 500 passages accompanied by multiple-choice questions. Similar
to MCTest-160, each passage is associated with four answer options, of which
one is correct. The questions in this subset also assess the understanding of the
passage through various types of inquiries.

By utilizing the MCTest dataset, we evaluate our model’s ability to com-
prehend passages and accurately select the correct answer from the provided
options. The dataset’s inclusion of diverse question types helps assess the model’s
capability to handle different comprehension challenges, including inference, and
logical reasoning.

3.2 Experiment Results

Table 1 shows the remarkable performance of our MPFER model in various eval-
uation metrics. Specifically, our model achieves an outstanding accuracy on the
MCTest-160 dataset, surpassing all ten state-of-the-art methods by a significant
margin. This exceptional result demonstrates the effectiveness and superiority of
our approach. Moreover, our model exhibits impressive competitiveness on the
MCTest-500 dataset, outperforming nine existing methods and performing on
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some getShe the store towould have to go to

She walked into the kitchen ... start baking when she saw she was all out of 

to make her piebuyWhat Jill need todid

Passage

Question

FE:ThemeF:GettingFE:Recipient FE:Place

FE:PurposeF: Commerce_buyFE:Goods FE:Buyer

flour

Fig. 3. A Case Study Example.

par with the BERT+DCMN+ model. This achievement underscores the robust-
ness and versatility of our MPFER model across different evaluation scenarios.

It is worth emphasizing the notable performance boost our model provides
over the Frame-based FSR model [7]. By integrating frame element semantic
knowledge, our MPFER model surpasses the Frame-based FSR model by 1.4%
and 1.3% in terms of accuracy. This result highlights the significant advan-
tages and benefits of incorporating FE semantic knowledge into the model’s
architecture. The successful integration of FE semantic knowledge enhances the
model’s understanding and reasoning abilities, leading to improved performance
in machine comprehension tasks.

Overall, the findings from our experiments not only demonstrate the superior
performance of our MPFER model compared to state-of-the-art methods, but
also highlight the potential of integrating FE semantic knowledge to achieve
remarkable advancements in the field of machine comprehension. Our research
contributes to the ongoing efforts to enhance the capabilities of natural language
processing models.

3.3 Ablation Study

Recall in Sect. 2, we proposed three different methods, namely, FED, FER, FR,
for FE representation. We conduct experiments to evaluate the effectiveness
of different semantic perspectives. Note FE embedding in w/o All are initial-
ized randomly with a uniform distribution between [–1, 1]. Table 2 shows their
detailed results:

(1) Individual Effectiveness: We found that eliminating any of the semantic
perspectives would have a detrimental impact on the model’s performance.
This observation confirms the individual effectiveness of the three different
perspectives in our proposed model. It highlights the significance of con-
sidering FE definitions, FE-to-FE relations, and Frame representations to
achieve a comprehensive understanding of text.
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Table 2. The Performance Comparison Between MPFER and Four FE Representation
Methods.

Method 160 (%) 500 (%)

MPFER 87.5 85.5
w/o FE Relation 86.6 84.6
w/o Frame 87.3 85.2
w/o FE Definition 87.0 84.9
w/o ALL 86.1 84.2

(2) Random Initialization: We compared the performance of models using
randomly initialized FE embeddings. The results indicated that the perfor-
mance significantly degraded when using random initialization. This sug-
gests that training FE vectors rather than relying on random initialization
is preferable for capturing the semantic nuances of FEs.

(3) Comparison with MPFER Model: When comparing the four models
without FE relation to our MPFER model, we observed that the absence
of FE-to-FE relations had the most detrimental effect on performance. This
finding emphasizes the critical role of leveraging FE-to-FE relations to enrich
semantic information and bridge semantic gaps in text understanding. Incor-
porating FE-to-FE relations helps establish meaningful connections between
FEs and enhances the model’s ability to capture intricate semantic relation-
ships.

3.4 Case Study

Figure 3 presents a case study example from the MCTest dataset, demonstrating
the effectiveness of our MPFER model in correctly answering questions. In this
example, the passage and questions involve the Frames “Getting” and “Com-
merce_buy”, which are semantically related. Similarly, their corresponding FEs
also have meaningful relations.

By leveraging the FE-to-FE relations in FrameNet, we can establish connec-
tions between specific FEs. In this particular case, we can infer that the FE
“Recipient” corresponds to the FE “Buyer”, and the FE “Goods” corresponds to
the FE “Theme” (with some instances of “Goods” mapping to “flour”). These
connections allow us to deduce that the answer to the question is “flour”.

This case study exemplifies how our MPFER model can leverage FE-to-FE
relations to enhance semantic understanding and facilitate accurate question
answering. By leveraging the semantic connections between FEs within Frames,
we can infer the correct answer by mapping relevant FEs from the passage to the
corresponding FEs in the question. This highlights the capability of our model
to effectively utilize semantic information encoded in Frame Elements, leading
to accurate comprehension and reasoning in MRC tasks.
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4 Conclusion and Future Work

We introduce the Multi-Perspective Frame Element Representation (MPFER)
method as a novel approach for comprehensive FE representations. To the best
of our knowledge, this is the first work that addresses the challenge of capturing
and utilizing Frame Elements (FEs) in a comprehensive manner. Through exten-
sive experiments, we demonstrate that MPFER outperforms the state-of-the-art
(SOTA) methods on two benchmark datasets. This implies that the utilization
of frame semantic knowledge enhances the model’s ability to comprehend and
reason about textual information, leading to improved performance on MRC
tasks.

In terms of future work, there are two important directions to consider.
Firstly, with the growing scale and abilities of large language models (LLMs)
like ChatGPT, leveraging these LLMs to further enhance the performance of
FE representation and MRC becomes increasingly crucial. Exploiting the vast
knowledge and context encoded within these models can lead to more accurate
and comprehensive understanding of texts. Additionally, integrating external
knowledge sources has the potential to significantly augment the model’s capa-
bilities in understanding and reasoning. By incorporating factual knowledge and
commonsense reasoning, the model can acquire a broader understanding of the
world, enabling it to make more informed predictions and generate contextually
appropriate responses. This integration of external knowledge sources can be
achieved through methods such as knowledge graph embeddings, pre-training
with external corpora, or leveraging external knowledge bases.
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Abstract. The task of Chinese Grammatical Error Diagnosis (CGED) is consid-
ered challenging due to the diversity of error types and subtypes, as well as the
imbalanced distribution of subtype occurrences and the emergence of new sub-
types, which pose a threat to the generalization ability of CGED models. In this
paper, we propose a sentence editing and character filling-based CGED strategy
that conducts task decomposition and transformation based on different types
of grammatical errors, and provides corresponding solutions. To improve error
detection accuracy, a refined set of error types is designed to better utilize train-
ing data. The correction task is transformed into a character slot filling task, the
performance of which, as well as its generalization for long-tail scenarios and the
open domain, can be improved by large-scale pre-trained models. Experiments
conducted on CGED evaluation datasets show that our approach outperforms
comparison models in all evaluation metrics and has good generalization.

Keywords: Chinese Grammatical Error Diagnosis · Model Generalization ·
Sequence Editing based Grammatical Error Correction

1 Introduction

Grammatical Error Correction (GEC) tools are used for detecting and correcting gram-
mar errors in natural language texts on sentence basis, e.g. word redundancy, missing
words or word misuse [1]. Sequence editing based models are considered the state-of-
the-art solution for GEC tasks with good interpretability and inference speed [2]. In
sequence editing based GEC models, error types and correction operations are repre-
sented as edit tags, hence, the design of edit tags becomes a critical task in the process.

A sequence editing based GEC model, GECToR [3], was originally proposed for
English, which defines a unique set of edit tags, including 1,167 token-dependent
APPEND, 3,802 REPLACE and 29 token-independent g-transformations. To train a
sequence tagging model with 5,000 different tag types, GECToR collected a large train-
ing data set of over 1 million parallel sentences from real-world data and 9 million
parallel sentences from synthetic data.
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Table 1. Common error types in CGED.

Error Types Examples

Character(s) Redundancy
我是感到非常高兴。
I am feel very happy.

Character(s) Missing
我感(到)非常高兴。
I fee(l) very happy.

Character(s) Misuse
吾感到非常高兴。
Me feel very happy.

Character(s) Out-of-order
我感到高兴非常。
I feel happy very.

GECToR is often used as the benchmark model in evaluations of Chinese Gram-
matical Error Diagnosis (CGED) [4,5]. However, Chinese grammar has many features
that are distinct from English. As shown in Table 1, grammatical errors in Chinese often
occur at the character level, resulting in irregular subtype errors (e.g., missing specific
characters), and leading to a significant long-tail problem. Based on our statistics of
10,000 cases of missing character(s), there are 1,922 subtypes, and 90% of them appear
less than 10 times, with 67% appearing only once. It is in a similar case for other
error types. Given the scarcity of annotation data for certain subtypes and the highly
unbalanced distribution of occurrences, it is challenging to train a CGED model using
data-driven approaches based on annotated data.

To address these challenges, we propose TECF, which utilizes multiple NLP tech-
niques, including Tagging, Editing, and Character Filling, and decomposes and trans-
forms the CGED problem into tasks that can effectively utilize existing resources and
pre-trained models. The main contributions of this paper are outlined below.

1) The accuracy of grammatical error detection is improved by refining error subtypes
to increase the utilization of training data.

2) The performance and generalization of error correction is enhanced by transforming
the problem to tasks of tag based editing (TbE) and character slot filling (CSF).

3) An iterative beam search mechanism is applied in CSF to provide more diverse
solutions for error correction and handle the long-tail problem of CGED.

2 Related Work

There are two main types of Grammatical Error Correction (GEC) models, which are
Sequence Generation (SG) based GEC and Sequence Editing (SE) based GEC. SG-
based GEC adopts an encoder-decoder structure, which directly generates the correc-
tion result based on the embedding of the input sentence [7,9]. A copy mechanism
was applied to speed up the decoding process by reducing the computation time of text
generation [6], because the input sequence and the target sequence often have much
duplicated content. Because of the relatively faster decoding speed and the better inter-
pretability and controllability of the output results, SE-based GECs have drawn much
attention in recent years [10]. In 2019 PIE was proposed [2], which designs four types



A Generalized Strategy of Chinese Grammatical Error Diagnosis 137

of edit operations, including ‘copy’, ‘append’, ‘delete’ and ‘replacement’, to indicate
grammatical errors and the corresponding corrections. In 2020, GECToR was proposed
by [3], in which the tag vocabulary contains 4971 basic token-level transformations and
29 token-independent g-transformations.

In existing SE-based GEC models, the operations for correcting grammatical errors
are specified in edit tags. For example, if a word misuse is detected, the edit tag suggests
a replacement word. There are two main drawbacks of such mode.

– The size of the tag vocabulary is too large to get sufficient training samples.
– The alternative correction options are limited to the pre-defined set of tags.

Due to the above drawbacks, the current SE-based GEC methods do not work well
in languages with limited annotated data or in open-domain scenarios [12].

3 Methodology

TECF has two major tasks, a refined tag set based sequence tagging for grammati-
cal error detection (RefTag) and an editing and character filling based error correction
(ECFCor), as shown in Fig. 1.

Fig. 1. Framework of TECF for Chinese grammatical errors detection and correction.

3.1 Refined Set Based Error Tagging (RefTag)

RefTag is a sequence tagging model that uses edit tags to represent the types of gram-
matical errors and the corresponding edit operations.
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Model Structure. RefTag is built on LERT1 and CRF. LERT is a pre-trained language
model trained based on multiple linguistic tasks, including dependency parsing and
named entity recognition, which are useful for grammatical analysis. In RefTag, LERT
is the underlying model for extracting and representing linguistic features.

CRF is used in the decoding layer to produce the tagging result. CRF takes the
correlation of tags into consideration [11], so it helps to eliminate ill-formed tagging
sequences involving multiple types of tags.

Given a sentence S = {s1, ... sK}, a embedding result is generated by LERT as U =
{u1, ... uK}, which passes through the CRF layer to produce a tag sequence T = {t1, ...
tK} for S, ti ∈ TS, which is the tag set (see the next section).

The Tagging Strategy. Corresponding to the four error types in Table 1, there are four
kinds of edit tags as shown in Table 2.

Table 2. Edit tags in RefTag of TECF.

Tag Error Type Correction Operation

DEL Character(s) Redundancy Delete

INS Character(s) Missing Insert one or more characters

REP Character(s) Misuse Replace with one or more characters

WP1, WP2 Character(s) Out-of-order Swap positions of WP1 and WP2

1) ‘DEL’, to label a character detected as the type of ‘Redundancy’.
2) ‘INS’, to label a character before which a ‘Character Missing’ error is detected.
3) ‘REP’, to label a character detected as the type of ‘Misuse’.
4) ‘WP1’ and ‘WP2’, to label two character sequences that need to swap positions.

‘INS’ (or ‘REP’) does not specify what characters should be inserted. In fact, the
characters to be inserted may have multiple choices. For example, if an adverb of degree
is missing before an adjective, ‘非常(very)’ and ‘很(quite)’ can be two possible options.

In addition to the above edit tags, there is another tag ‘NOE’ to represent ‘No Error’.
The tag set of RefTag is denoted as TS = {‘DEL’, ‘INS’, ‘REP’, ‘WP1’, ‘WP2’, ‘NOE’}.

Given a pair of parallel sentences (e, c), in which e is a ungrammatical sentence and
c is the corresponding correct sentence, edit tags can be generated based on an Edit Tag
Annotation algorithm based on Levenshtein distance [8] as shown in Fig. 2.

3.2 Editing and Character Filling Based Error Correction (ECFCor)

ECFCor has two main steps: tag based editing (TbE) and character slot filling (CSF).

1 https://github.com/ymcui/LERT.

https://github.com/ymcui/LERT
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Fig. 2. Algorithm of Edit Tag Annotation. Fig. 3. Algorithm of Character Slot Filling.

Tag Based Editing (TbE). Based on the edit tags obtained by RefTag, TbE performs
the following operations.

– Characters with tag ‘DEL’ are deleted;
– Characters with tag ‘WP1’ and ‘WP2’ in a clause will swith their positions.
– Each character with tag ‘REP’ is replaced with one or more ‘[MASK]’ tags;
– For each character with tag ‘INS’, one or more ‘[MASK]’ tags are added.

In a word, the errors of character redundancy and out-of-order are corrected in TbE,
and for the errors of character missing and misuse, a preliminary step are conducted for
their final correction, which will be performed in CSF.

Character Slot Filling (CSF). In TECF, the correction of ‘INS’ and ‘REP’ is trans-
formed to a task of character slot filling, i.e., filling ‘INS’ and ‘REP’ with appropri-
ate characters. Because the number of characters to be filled is unknown in advance,
1∼ λc characters are respectively filled to each ‘INS’ and ‘REP’ to select the best fill-
ing results. λc is a hyperparameter.

To balance the computation, the accuracy of correction and the variety of correction
results, an iterative beam search based CSF algorithm is designed as shown in Fig. 3.

In the CSF algorithm, a char-slot corresponds to an ‘INS’ or a ‘REP’ tag. Filling
characters to a char-slot is realized by firstly adding [MASK] tags and then predict the
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‘masked’ characters. The character prediction of a [MASK] tag is implemented based
on character embeddings of LERT.

pk = softmax(ÛkW
� + b) (1)

Ûk = LayerNorm(FFN(Uk)) (2)

pk ∈ R
|V | is probability distribution over the vocabulary V for the kth token, which

is a [MASK] tag, in the input sentence. Uk ∈ R
d is the last hidden layer representation

of LERT for the kth token, and d is the hidden size. Ûk is the result of passing Uk

through a Feedforward layer and a layer normalization.
For a specific char-slot, the score of filling m characters is calculated as:

s =
m∏

i=1

pi(ci) (3)

pi is the probability distribution calculated by Formula (1), and ci is character used
to replace the ith [MASK].

Though the character prediction of all [MASK] tags can be output at once, the
CSF algorithm makes prediction of [MASK] tags one by one in order to improve the
prediction accuracy of a [MASK] given other [MASK] tags has been predicted.

Multiple iterations of the workflow of RefTag and ECFCor can be performed to
get the final corrections for those errors that cannot be corrected by one iteration. The
maximum number of iterations is a hyperparameter denoted as λt.

4 Experimental Setup

4.1 Datasets

The experimental data was collected from CGED evaluations from 2015 to 20212. After
data denoising and deduplication, there are 52,343 parallel ungrammatical and error-
free sentences. Besides, there are 17,193 grammatical correct sentences without parallel
incorrect sentences. In sum, there are 69,536 instances of real data.

Meanwhile, 1,742,970 synthetic parallel sentences were produced based on the
probability distribution of word-parts of speech (pos) combinations of grammartical
errors in real-data sentences. The source corpus for synthetic data generation was col-
lected from THUNews3 and The People’s Daily4. Besides, a synonym set5 was used to
produce the instances of character misuse by selecting a synonym to replace the original
character. The threshold λ1 and λ2 were set to 10 and 0.075 respectively.

2 https://github.com/blcuicall/cged datasets.
3 http://thuctc.thunlp.org/.
4 http://data.people.com.cn/rmrb.
5 http://www.ltp-cloud.com/download.

https://github.com/blcuicall/cged_datasets
http://thuctc.thunlp.org/
http://data.people.com.cn/rmrb
http://www.ltp-cloud.com/download
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4.2 Evaluation Metrics

The performance of CGED models is evaluated from the following aspects. The preci-
sion, recall and F1 score of each level are evaluated respectively.

– Detection-level: Binary classification (correct or incorrect) of a given sentence.
– Identification-level: Multi-class categorization of error types in a sentence.
– Position-level: Judgement of the occurrence range of the grammatical error.
– Correction-level: Correction of error types of Character Misuse and Missing.

4.3 Implementation Details

RefTag: Training of RefTag sequence tagging was performed in two stages: 1) Pre-
trained a RefTag model based on the synthetic dataset, which was randomly divided to
95% training data and 5% dev data; 2) Based on the pre-trained RefTag model, a final
RefTag model was trained using the real dataset. The loss function was cross entropy,
the max seq length was set to 200, the batch size was 32, and the number of epochs
was 5 and 20 in pre-training and final training respectively.

ECFCor: First of all, a Masked Language Model (MLM) Finetuning was performed
on LERT based on the training data and the synthetic dataset. The masking mechanism
in MLM Finetuning is presented below.

(1) If there are ‘INS’ or ‘REP’ tags in the input sentence, m [MASK] tags are added to
the position of each ‘INS’ or ‘REP’ tag, in which m is the number of characters to
be inserted or used for replacement.

(2) Otherwise, the default masking mechanism of LERT is used.

The default parameters of MLM in LERT was kept in the MLM finetuning. The
max seq length was 512, the batch size was 16, the number of epoch was 10 and the
learning rate was 1e−5.

Iterations: The maximum number of iterations of error detection and correction, λt,
was set to 3.

4.4 Comparison Methods

A GECToR-style CGED model, named CGEDToR, was used as the baseline model.
The edit tag set of CGEDToR includes ‘DEL’, ‘WP1’, ‘WP2’, and 260 character-level
‘INS’ and 634 character-level ‘REP’. The subtypes of ‘INS’ (or ‘REP’) with 10 or more
occurrences are set to unique ‘INS’ (or ‘REP’) subtype tags (e.g., ‘INS(的)’), while all
the subtypes with less than 10 occurrences are set to a ‘INS(others)’ (or ‘REP(others)’)
tag. CGEDToR cannot give correction for ‘INS(others)’ or ‘REP(others)’, which
accounts for about 23% and 15% of the type ‘INS’ and ‘REP’ respectively. CGED-
ToR was also pre-trained on the synthetic data and finally trained on the real data.
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Meanwhile, three representative models with good performance in the CGED2020
evaluation [4] were selected as the comparison models, including YD NLP, XHJZ and
Flying. YD NLP has the best performance in precision, XHJZ has the highest recall and
Flying has the highest F1 score. To make a fair comparison, the performance of TECF
was also evaluated on the test data of the CGED2020 evaluation.

5 Experimental Results

5.1 Overall Performance on CGED2020 Dataset

The overall performance of each model on the CGED2020 test data is shown in Table 3.

Table 3. Overall performance of different models on CGED2020 test data.

Model Detection Level Identification Level Position Level Correction Level (Top1 &
Top3)a

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

YD NLP 0.9319 0.8565 0.8926 0.7623 0.5678 0.6508 0.5145 0.2965 0.3762 0.3386
0.3217

0.1259
0.1333

0.1836
0.1885(2.7%↑)

XHJZ 0.8062 0.9730 0.8818 0.5669 0.6714 0.6147 0.2993 0.2655 0.2814 0.1764
0.1764

0.1646
0.1646

0.1703 0.1703

Flying 0.9101 0.8800 0.8948 0.7356 0.6213 0.6736 0.4715 0.3536 0.4041 0.2290
0.2290

0.1575
0.1575

0.1867 0.1867

CGEDToR 0.9028 0.8424 0.8716 0.6243 0.5002 0.5554 0.4458 0.3073 0.3638 0.2193
0.2193

0.1708
0.1708

0.1803 0.1803

TECF 0.9109 0.8902 0.9004 0.6855 0.6594 0.6721 .4430 0.3847 0.4118 0.2467
0.3103

0.2220
0.2792

0.2337
0.2939(25.8%↑)

a In the cells below, the first row is the result of Top1 correction, and the second row is the result
of Top3 correction.

The most significant difference between TECF and the comparison models is the
performance in correction. In addition to a higher F1 score, TECF got a 25.8% increase
in F1 of the Top3 correction result compared with that of the TOP1 result, whereas
YD NLP only has a 2.7% increase (the results of Top1 and Top3 of other models are
the same). Although the design details of the CGED2020 models are unknown, we can
reason out that, based on the results of CGEDToR, the GECToR-style pre-defined tag
set is the major limiting factor of performance improvement in the Top3 corrections,
as the second drawback of GECToR mentioned in Sect. 2. A separate evaluation of the
CSF module shows that the F1 value of the Top1, Top3 and Top5 predictions for ‘INS’
and ‘REP’ tags are 0.575, 0.723 and 0.782 respectively.

In terms of error detection, Fig. 4 shows a comparison of the performance in the
position level between TECF and CGEDToR. On the types of ‘INS’ and ‘REP’ with
scattered subtypes, the performance of GECToR has a significant decline compared
with that of TECF. (Detailed analysis can be found in Sect. 5.3).
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Fig. 4. Position-level performance comparison.

The following conclusions can be obtained based on the above analysis.

1) Refinement of edit tags is helpful for improving the performance of error detection.
2) CSF is helpful for giving more accurate and diverse correction suggestions.

5.2 Effects of Model Pre-training

To measure the effects of model pre-training and finetuning, the following ablation
experiments were conducted.

RefTag w/o pre-train is a variation of RefTag for which the step of pre-training
based on the synthetic data is removed.

ECFCor w/o MLM finetune is a variation of ECFCor for which the step of MLM
finetuning based on the synthetic data is removed.

Figure 5 shows the performance comparison of position-level error detection of Ref-
Tag with or without pre-training. The values in the figure are the ratios of the perfor-
mance of RefTag to that of RefTag w/o pre-train. RefTag pre-training is helpful for
improving the recall for all error types, while it also leads to lower precision because
more false positive predictions were made.
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Fig. 5. Ablation analysis of RefTag pre-training.

Table 4 shows the F1 value of error correction (for error types ‘INS’ and ‘REP’) of
ECFCor with or without MLM finetuning. MLM finetuning is conducive to advancing
the ranking of effective corrections. The performance of Top1 corrections has a higher
increase than that of Top3 and Top5.

Table 4. F1 of ECFCor with or w/o MLM finetune.

Model Top1 Top3 Top5

ECFCor w/o MLM finetune 0.536 0.694 0.761

ECFCor 0.575(7.28%↑) 0.723(4.18%↑) 0.782(2.76%↑)

5.3 Analysis of Model Generalization

To analyze model generalization, an experiment of evaluating the model performance
on different classes of data was conducted. The subtypes of character missing and char-
acter misuse are categorized into 9 classes based on their occurrences in the dataset.
Class ‘>500’ contains the subtypes with at least 500 occurrences, and class ‘300–500’
contains the subtypes with at least 300 and up to 500 occurrences, and so on. The recall
on the position level and correction level of each class was evaluated separately. The
recall on the correction level was evaluated based on the tokens that were correctly
labeled on the position level, i.e., it is in fact the recall of the CSF model. The experi-
mental results are shown in Fig. 6.

The performance of models on the position level, CGEDToR Pos and TECF Pos,
does not have much difference in the trends on different classes of data. However, on
the correction level, the recall of CGEDToR (CGEDToR Cor in the figure) has a sig-
nigicant decline in the classes of subtypes with few occurrences, while the performace
of TECF (TECF Cor(Top3) in the figure) is more stable. Especially for class ‘<10’,
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Fig. 6. Model generalization comparison.

which contains subtypes with less than 10 occurrences, CGEDToR cannot give cor-
rections because the corresponding edit tag, ‘INS(others)’ or ‘REP(others)’, does not
contain correction suggestions.

Another serious problem for CGEDToR is that it cannot give correction suggestions
for the subtypes of character missing and character misuse that never appear in the train-
ing dataset, thus it does not perform well in the open domain, while TECF can still have
a consistent performance. A study of correction-level performance in the open domain
was conducted. A set of sentences, in which each case of character missing or character
misuse has 0 occurrence in the dataset of CGED evaluations, was constructed based on
the synthetic dataset. Such set of sentences contains 36,359 cases of character missing
and 80,376 missing. TECF achieved a recall of the Top1, Top3 and Top5 predictions for
‘INS’ and ‘REP’ tags are 0.2015, 0.2513 and 0.2755 respectively.

Based on the above analysis, we come to the following conclusion: TECF has a
more stable performance both in the long-tail scenarios and in the open domain, thus it
has better model generalization, compared with GECToR-style CGED models.

5.4 Case Study of Correction Diversity

Compared with GECToR which achieved a F1 value of 62.5% for correcting English
grammatical errors [3], TECF has a much lower performance for CGED. An important
factor of the low F1 values of CGED models is that the correction of Chinese gram-
matical errors has multiple choices in many cases, i.e., the ground-truth answers are
often not the unique solution. A study of the perplexity (PPL) value comparison was
conducted, which shows that ratios of the PPL value of the ground-truth answer lower
than the corrections of TECF, if they are not identical, are: 1.37% (for Top1 correction),
6.13% (for Top3 correction) and 15.83% (for Top5 correction).

Two examples of diverse corrections for CGED are shown below.
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1) Input: ‘现在社会粮食是很多(There are abundant food in the morden society.)’
The ground-truth correction is deleting ‘是(are)’, and the Top1 correction of TECF
is inserting ‘的’ before ‘。’. The correction given by TECF is also reasonable, but it
is considered wrong on the identification level and position level (it does not count
for the correction level because it is not of type ‘INS’ or ‘REP’ in the ground-truth
tagging).

2) Input: ‘我们应该珍惜保护环境(We should cherish protect the environment.)’

The ground-truth correction is inserting ‘并(and)’ before ‘保护(protect)’. TECF
correctly identifies the error type (‘INS’) and the occurrence position. The Top5 correc-
tion suggestions given by TECF are:

– No. 1: ‘并且(and also)’
– No. 2: ‘和(and)’
– No. 3: ‘并(and)’
– No. 4: ‘并共同(and also together)’
– No. 5: ‘它并且(it and also)’

The No. 1 and No. 2 suggested words to insert are synonyms of ‘并(and)’, and
the No. 4 and No. 5 suggestions provide effective correction and slightly expand the
semantics of the original text.

The diverse correction options and the relatively limited ground-truth answers are
the bottleneck for improving the performance of CGED models. In practical scenarios,
people often have different choices for correcting an ungrammatical sentence, based on
their understanding of the sentence and pragmatic habits. The flexibility of TECF for
giving multiple correction suggestions makes it more suitable in industrial applications.

6 Conclusions

In this paper, we put forward a strategy of Chinese grammatical errors diagnosis by
task decomposition and transformation, namely turning the problem into an error tag
based sentence editing and character filling task. Based on our evaluation on CGED
datasets, the proposed approach has achieved better performance, higher generalization
and flexibility in error detection and error correction tasks. However, there are still
much room for improvements in terms of accuracy of identification of error types and
determination of error locations.

In future work, a fundamental and primary task is to construct a higher-quality and
larger-scale evaluation dataset, as well as a more effective evaluation methodology of
the correction results. In addition, the study of more types of grammatical errors, such
as improper collocation of sentence components, is also a valuable attempt.
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Abstract. Conversational Search (CS) aims to retrieve relevant pas-
sages from multiple documents based on the questions given by the user
in conversations. Since users ask questions and get answers step by step
through multiple rounds of conversations, conversation history is usually
utilized to enhance retrieval accuracy. Existing methods rely too heavily
on conversation history to retrieve while ignoring the semantics of the
current question. However, the conversation history is not fully relevant
to the current question, which includes some document information irrel-
evant to the current question. It is challenging to extract utterances infor-
mation relevant to the current question from the conversation history to
facilitate retrieval without breaking semantic coherence. We propose the
reranker based on the Utterance-Mask-Passage (UtMP) post-training
method to address this challenge, which includes three training tasks:
passage relevance classification, utterance correlation classification, and
context mask. Our method decomposes complex conversation history
into short contexts, learns fine-grained semantic associations between
utterances and document passages through three training tasks based
on multi-task learning, and further learns correlations between conver-
sation history and document passages based on contrastive learning. On
the MultiDoc2Dial dataset, our results are 1.1% and 1.2% higher than
the SOTA on the Recall@1 and MRR@10 metrics, respectively, which
verifies the improvement of our method on retrieval performance. Exten-
sive experiments show that our method helps deal with conversation
histories with multiple documents information.

Keywords: Conversational Search · multiple documents ·
post-training

1 Introduction

In recent years, with the development of natural language processing technology,
researchers have shown widespread interest in developing conversational systems
applicable to various fields. Conversational Search (CS) is considered to be an
important task in this domain. CS aims to retrieve the most relevant passage
from multiple documents based on the conversation history of multiple rounds
of natural language interactions between the user and the agent, so as to better
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 148–159, 2023.
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meet the information seeking needs of users [5,8]. Compared with single round
question answering tasks or machine reading comprehension tasks given only a
single document (passage), CS assumes that users ask questions and get answers
step by step in a conversation. Therefore, the conversation history is crucial to
understand the user’s current question and performing relevant passage retrieval
[11].

As the questions asked by the user change, different documents may need to
be retrieved during the conversation to answer the user’s question. Therefore,
the conversation history will include information related to multiple documents.
However, it will also contain information about documents that are not rele-
vant to understanding the user’s current question (interfering documents), and
this information does not actually provide useful help or even has a negative
impact [4]. Most of the current approaches are inspired by the field of informa-
tion retrieval [18], Bansal et al. [1] use sparse retrievers to retrieve based on the
entire conversation history in a lexical-based manner. In [9,12,16], authors flat-
ten and concatenate the conversation history based on a dense retriever to fully
utilize the information in the conversation history. In addition, Tran et al. [14]
use discourse segmentation to delete utterances irrelevant to the current ques-
tion from the conversation history and perform retrieval to avoid the influence
of interfering documents.

However, these approaches do not address the problem of semantic coher-
ence. During the retrieval process, on the one hand, the current model may tend
to rely on partial historical information to retrieve passages, ignoring the current
question, resulting in poor retrieval performance when multiple documents are
involved in the conversation history. On the other hand, the discourse segmen-
tation method may destroy the conversation’s structure, resulting in incoher-
ent semantic information, making it difficult to improve retrieval performance.
Therefore, how to extract utterances related to the current question from the
conversation history without breaking semantic coherence is challenging.

To address these issues, we propose the reranker based on the Utterance-
Mask-Passage (UtMP) post-training method. Considering that complex conver-
sation histories involve information from multiple documents, we propose a series
of training tasks to enhance the model’s ability to distinguish passages in inter-
fering documents. First, we split the entire conversation history into multiple
short context segments and introduce the passage relevance classification task.
At the same time, we introduce the utterance correlation classification task and
the context mask task to enable the model to learn the semantic information
inside the utterance to enhance the modeling of complex conversation history.
In addition, we use a multi-task learning method to train multiple tasks and
integrate the feature information learned in each task. Finally, we fine-tune the
model using contrastive learning to better learn the correlation between conver-
sation history and passages.

Our contributions can be summarized as follows:

– To enhance the model’s ability to model complex conversation histories and
identify passages in interfering documents, we propose the Utterance-Mask-



150 S. He et al.

Passage (UtMP) post-training method based on passage relevance classifica-
tion, utterance correlation classification task, and context mask task;

– To integrate the feature information learned in different tasks, we comprehen-
sively learn multiple training tasks based on the multi-task learning method
and dynamically adjust weights to balance the learning speed of different
tasks;

– To better learn the correlation between conversation histories and passages,
we employ contrastive learning to fine-tune the model.

2 Related Works

2.1 Conversational Search

Inspired by recent developments in retriever architectures [18], some methods use
bi-encoder DPR [10] as the retriever in single-stage retrieval. Feng et al. [5] fur-
ther use BM25 to construct negative samples, and Jang et al. [7] explore strate-
gies such as data augmentation using synonym enhancers. To better achieve
recall and rerank performance, CPII-NLP [12] expands the retrieval into two
phases, using DPR as the retriever, and the reranker is an ensemble of three
cross-encoder models, including BERT, RoBERTa, and ELECTRA. UGent-
T2K [9] divides the retrieval into two stages: document retrieval and passage
retrieval. The model uses the LambdaMART [2] algorithm combined with TF-
IDF and term-matching techniques to synthesize passage scoring and ranking.
R3 [1] replaces the dense retriever with a sparse retriever based on DistilSplade,
adds a RoBERTa-based cross-encoder passage reranker, and uses MS-MARCO
and pseudo-labels from the cross-encoder model as additional training data.
Besides, Tran et al. [14] assume that retrieval performance will be improved
when only utterances related to the current question are included in the con-
versation history, and proposes PC (Passage Checking model), which deletes
utterances irrelevant to the current question in the conversation history during
retrieval and reuses the model probability score as a re-ranking indicator.

Although our work also employs a two-stage retrieval framework, we focus
on improving the reranker’s learning ability for complex conversation histories,
thereby enhancing the model’s ability to handle conversation histories that con-
tain multiple documents information.

2.2 Response Selection

The retrieval-based response selection task aims to select the most appropriate
response from a set of response candidates based on the conversation history to
construct an open-domain conversational system. DAM (Deep Attention Match-
ing network) [17] captures complex dependency information in utterances, using
self-attention mechanisms and cross-attention strategies to learn representations
of context and response candidates. PHMN (Personalized Hybrid Matching Net-
work) [11] considers that the existing model is stuck in the dilemma of learning
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matching signals from context and response, introducing the wording behavior
of a specific user in the conversation history and personalized attention weights
for candidate responses as additional information. CFC (Contextual Fine-to-
Coarse) [3] argues that although various complex models have been proposed to
calculate the fine-grained similarity [6,15] between queries and candidates, their
performance will still be limited by the quality of the candidate list and proposes
to use coarse-grained retrieval.

But these methods aim to improve the performance on response selection
tasks, where conversation histories and responses have similar representations.
However, we focus on the retrieval of passages, where the conversation his-
tory and the expression of passages have greater differences containing different
amounts of information, and bringing greater challenges.

3 Method

As shown in Fig. 1, our method mainly includes two parts: (1) Utterance-Mask-
Passage post-training. We enhance the model’s ability to learn complex con-
versational histories and to identify passages in interfering documents through
multiple tasks, and integrate the feature information learned in different tasks
based on multi-task learning. (2) Contrastive fine-tuning. Our model further
learns the correlation between conversation history and passages to improve the
model’s retrieval performance on downstream tasks.

Do you need to show proof of
the child's identity?

Conversation

How does voter registration on
NYS DMV's website work?  To
register to vote online you will
need your  NYS Driver License

……

How do I know if I'm eligible to
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New York State you must  be a
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……

……
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Fig. 1. The overview framework.

3.1 Preliminaries

Given the conversation history {u1, . . . , ut−1}, the user’s current question ut and
the collection of multiple documents D = {D0, . . . , Dm}, where m is the number
of documents. Each document is divided into passages based on the structure of
the document or a fixed-size sliding window. That is, for each document Di ∈ D,
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the segment set Pi = {pi0, ..., pij} is obtained, where j is segmentation number
of passages of document i . The goal is to retrieve the most relevant passage
to ut from the collection of passage sets P = P1 ∪ · · · ∪ Pm obtained from all
document segmentations based on {u1, . . . , ut−1} and ut.

3.2 Utterance-Mask-Passage Post-training

To improve the retrieval performance of the model when multiple documents
are involved in the conversation history, the Utterance-Mask-Passage (UtMP)
post-training method is proposed, which enables the model to learn semantic
associations between complex conversation history and passages in interfering
documents. Our model learns features at a fine-grained level within conversa-
tions, between conversational contexts and passages through the passage rele-
vance classification task, the utterance correlation classification task and the con-
text mask task. At the same time, we integrate the feature information learned
by different tasks based on multi-task learning.

Passage Relevance Classification. We innovatively propose this training
task to enable the model to better learn the semantic associations between con-
versation history and passages containing information from multiple documents.
Our approach is based on the following insight, in the conversation, the closer the
utterances are to the current question, the more relevant they are. This char-
acteristic is more evident when the conversation contains multiple documents
information. Therefore, we split the conversation into multiple short context
segments. That is, for a given conversation {u1, . . . , ut−1, ut}, we segment the
short context segment Cj = {uj , . . . , uj+d}, where d is the length of the short
context segment, and its embedding vector represents as hcj . Then for each short
context segment, the passage in the three categories of labels is randomly sam-
pled from the corpus, and its embedding vectors are denoted as hp. The three
categories are: 1. the correct passage, 2. other passage in the same document, and
3. passage in other documents in the same domain, where a domain includes mul-
tiple documents. We train this task using the cross-entropy loss function LPRC ,
where xi is a symbolic function and MLP denotes a multi-layer perceptron.

LPRC = −
t−d∑

j=1

3∑

i

xilog(MLP (hcj , hp)i) (1)

Utterance Correlation Classification. To learn more fully the semantic asso-
ciations and transitions between internal utterances in a multi-round conversa-
tion history, we introduce the task of utterance correlation classification. Similar
to the passage relevance classification task, first, we split the conversation into
multiple short context segments, and randomly sample the next utterance corre-
sponding to three categories: 1. the correct next utterance, 2. a random utterance
in the same conversation, 3. utterance in other conversations in the same domain.
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It enhances the modeling of complex conversation histories by learning irrelevant
or coherent relations between two utterance segments. We train this target using
the cross-entropy loss function LUCC , where hu denotes the embedding vector
of sampled utterance and yi is a symbolic function.

LUCC = −
t−d∑

j=1

3∑

i

yilog(MLP (hcj , hu)i) (2)

Context Mask. To more fully learn the contextual representation between
conversation utterances, the Whole Word Masking method is introduced. By
randomly masking the entire word, the model learns long-distance context depen-
dence and obtains more semantic information. The corresponding loss function
is denoted as LCM . Where C represents a short context segment, and mask(C)
represents a set of words using [MASK] token random masked.

LCM = −
∑

Ĉ∈mask(C)

logP (Ĉ|C\mask(C)) (3)

Multi-task Post-training. By utilizing the similarity and internal correlation
between different tasks, we adapt a multi-task learning strategy to jointly opti-
mize the above training tasks, and integrate the feature information. We use the
following loss function to optimize the model.

LUtMP = w1LUCC + w2LCM + w3LPRC (4)

where wi, i ∈ {1, 2, 3} are the weights of the corresponding tasks, we use Dynamic
Weight Averaging (DWA) [13] to adaptively and dynamically adjust the weights,
so as to balance the learning speed of different tasks. Specifically, using the
following formula to calculate the change of the continuous loss of each task,
which is used as the learning speed of the task, and the weight of each task is
obtained after normalization.

ri(s − 1) = L(s − 1)/L(s − 2) (5)

wi(s) = Nexp(ri(s − 1)/T )/
∑

j

exp(rj(s − 1)/T ) (6)

where L ∈ {LUtMP , LUCC , LPRC}. s is an iteration index. N represents the
number of tasks, and T represents a temperature which controls the softness of
task weighting. As T increases, the weights between tasks will gradually become
uniform. When T is large enough, wi ≈ 1, at this time, each task is weighted
equally.
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3.3 Contrastive Fine-Tuning

For enabling the model to better learn the similarity between conversation histo-
ries and passages, we introduce the contrastive learning to optimize it. By pulling
similar samples closer and dissimilar samples farther away, our model can learn
semantic representations that are more suitable for similarity matching, which
helps to improve the retrieval performance of the model on downstream tasks.

Specifically, for {u1, . . . , ut−1} and current question ut, we concatenate them
together in reverse order. ut and {u1, . . . , ut−1} are separated by [SEP ] special
token, inside the conversation history is separated by “||”, and information related
to the current role is added before each utterance.

query = [CLS]ut [SEP ] role : ut−1|| . . . ||role : u1 [SEP ] (7)

During fine-tuning, for each query, we first obtain top-K results from the
retriever, from which M hard-negative passages are sampled. Then use the model
trained after UtMP to encode the query, positive and negative passages, and the
obtained vectors are respectively recorded as hq, hp+ and

{
hp−

1
, . . . hp−

M

}
. Then,

using the transformer self-attention mechanism to calculate the cross-attention
between the query and each passage, obtain the aggregate representation to
calculate the score, which is denoted as score(hq, hp). The results are optimized
using the following contrastive loss function.

Lreranker = −log
exp(score(hq, hp+))

∑M
i=1 exp(score(hq, hp−

i
)) + exp(score(hq, hp+))

(8)

4 Experiments

4.1 Experimental Settings

Dataset. We consider that other relevant datasets lack fluent conversations, or
are based only on single documents or web pages. In order to better verify the
retrieval performance of our method in conversations containing multiple docu-
ments information, we choose the MultiDoc2Dial [5] as the evaluation dataset.
The dataset contains a total of 488 documents and 4796 conversations from four
domains (ssa, va, dmv, and studentaid), each conversation contains an average
of 14 turns, and each document contains an average of about 800 words. We
follow MultiDoc2Dial’s method of dividing and constructing the dataset, and
follow CPII-NLP [12] to preprocess the document data to ensure the fairness of
the evaluation results. The specific data information is shown in Table 1.

Evaluation Metrics. In order to quantify the retrieval performance, we
use Recall@k (k = 1/5/10), and MRR@k (k = 5/10) as the evaluation metrics.
Recall@k is a measure to evaluate how many correct passages are recalled at top
K results. MRR@k is a measure to evaluate the position of the most relevant
passage in the top K ranking result.
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Table 1. MultiDoc2Dial data statistics. #doc and #dial represent the number of docu-
ments and conversations in the corresponding domain respectively. single-doc, two-doc
and >two-doc represent the number of conversations containing different documents.

domain #doc #dial single-doc two-doc >two-doc

ssa 109 1191 302 701 188
va 138 1337 198 648 491
dmv 149 1328 290 781 257
studentaid 92 940 158 508 274
total 488 4796 948 2638 1210

Parameter Settings. We use the BERT-base model to implement our retriever
and reranker. We adopt a representation-based approach to construct the
retriever, using in-batch samples as negative samples. During the training pro-
cess of the retriever, we use a batch size of 32 and a maximum sequence length
of 256. And we use a learning rate of 2e-05 using Adam, linear scheduling with
warmup and dropout rate of 0.1. In the post-training and fine-tuning stages of
the reranker, we both use a learning rate of 1e-05 using Adam, linear scheduling
with warmup and dropout rate of 0.1. The batch size is 8 and the maximum
sequence length is 512. In the post-training stage, the short context segment
length d = 3, temperature T = 2.0 for adjusting the weight of loss. And M = 7,
K = 100 for the fine-tuning stage.

4.2 Performance Comparison

We compare the evaluation results with the following models on this dataset:
RAG [5] uses the bi-encoder model DPR pre-trained on the NQ dataset as

the retriever, and G4 [16] uses another dense retrieval bi-encoder model ANCE;
CPII-NLP [12] follows the baseline setting, uses DPR as the retriever, and uses
a collection of three cross-encoder models as the reranker, and achieves the SOTA
results on the dataset; PC [14] builds a classification model to retain the utter-
ances related to the current question in the conversation history for retrieval,
and reuses the probability score of the classification model as a reranking index;
R3 [1] replaces the dense retriever with a sparse retriever based on DistilSplade,
and adds a cross-encoder passage reranker based on RoBERTa; UGent-T2K
[9] divides the retrieval part into document retrieval and passage retrieval, using
LambdaMART algorithm combined with TF-IDF and other methods to score
comprehensively.

4.3 Experimental Results

We experiment on the validation set of MultiDoc2Dial to verify the retrieval
effect of our model, and the results are shown in Table 2.



156 S. He et al.

Table 2. Results on MultiDoc2Dial validation set.

Models Recall@1 Recall@5 Recall@10

G4 0.395 0.685 0.773
RAG 0.490 0.723 0.800
PC 0.525 0.754 0.823
R3* 0.558 0.767 0.847
UGent-T2K 0.570 0.821 0.883
CPII-NLP* 0.614 0.821 0.881
UtMP(Ours) 0.625 0.837 0.892
∗ indicates the results we reproduced based on the
parameters in their paper.

The results show that our model achieves improvements on all metrics. This
means that our model effectively enhances the ability to learn complex conver-
sation histories and identify passages of inferring documents, allowing for more
efficient retrieval of passages.

In order to verify the improvement of our post-training method on the effect
of reranking, we further compared with the SOTA model CPII-NLP on the
MRR@k metric, and the results are shown in Fig. 2.

Fig. 2. Comparison with the SOTA model CPII-NLP at MRR@k (k=5/10).

The results show that our model outperforms CPII-NLP, which means our
method can rank more relevant passages at higher positions.

4.4 Ablation Experiment

To further explore the effects of each training task in the UtMP post-training
method, as shown in the Table 3, we use the model that has not been post-trained
and directly fine-tuned as the baseline, and add our training tasks before fine-
tuning one by one.

According to the Table 3, it can be seen that the utterance correlation clas-
sification task has the greatest impact on the results, significantly improving
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Table 3. Multi-task ablation experiment. +UCC indicates that only the utterance
correlation classification task is used; +CM and +PRC indicate that the context mask
task and passage correlation classification task are further used, respectively.

Models MRR@10 Recall@1 Recall@5 Recall@10

BERT 0.665 0.579 0.791 0.859
+UCC +2.6% +2.6% +2.8% +1.6%
+CM +0.6% +0.8% +0.6% +0.6%
+PRC +1.9% +1.2% +1.2% +1.1%

the four metrics, indicating that better learning of utterance interactions within
the conversation history can make better use of implicit semantic information
between utterances. The passage relevance classification task brings slightly less
improvement, but also shows that the method is helpful. The improvement
brought by the context mask task is smaller, probably because its main role
is to assist in modeling the utterance interaction inside the correlation history.

4.5 Further Analysis

Improvement Effect of Multiple Documents CS. To verify the improve-
ment of our method when the conversation history contains multiple documents
information, we divide the Mutidoc2dial dataset into several subsets accord-
ing to the number of documents involved in the conversation. The number of
documents involved only indicates how many documents have been used in the
conversation history, and the entire conversation process may repeatedly switch
among these documents. We use the model that has not been post-trained and
the model that has been post-trained to perform retrieval on the subset and
count the retrieval results.

The results are shown in Fig. 3(left). Our method has better boosting effect
when the conversation history involves multiple documents. This indicates that
our post-training method enhances the model’s ability to identify passages in
inferring documents and reduces the impact of irrelevant conversation history
on retrieval.

Fig. 3. Improvement effect of multiple documents CS (left) and proportion of error
types changes after post-training (right).



158 S. He et al.

Proportion of Error Types Changes After Post-training. We divide the
retrieval errors into three parts: domain retrieval errors (i.e. incorrect retrieval
results in passages from other domains), document retrieval errors (i.e. incorrect
retrieval results in passages from other documents under the same domain),
and passage retrieval errors (i.e. incorrect retrieval results in passages under
the same document). We use the model without post-training as a comparison
and make statistics on the three types of errors in the top-1 results, as shown
in Fig. 3(right). The result demonstrates a significant decrease in the number
of document retrieval errors and a certain decrease in the number of passage
retrieval errors for the post-trained model. However, there is a slight increase
in the number of domain retrieval errors, which may be due to the fact that we
focus more on improving the ability to distinguish between passages under the
same domain during the post-training process.

5 Conclusion

For enhancing the model’s ability to learn complex conversation histories and
to identify passages in interfering documents, we propose a reranker based on
the Utterance-Mask-Passage (UtMP) post-training method. By completing the
passage relevance classification, utterance correlation classification and context
mask training tasks, our model is able to learn features between conversation
history and passages at a fine-grained level, which in turn improves retrieval
performance. In addition, multi-task learning and contrastive learning are intro-
duced to dynamically adjust the task weights to balance the learning rate of
different tasks and to better learn the relevance between conversation histo-
ries and passages, respectively. Experiments on the MultiDoc2Dial demonstrate
the effectiveness of our approach and reflect that a fine-grained exploitation of
conversation history is beneficial for improving retrieval accuracy in the CS of
multiple documents situations. In future work, we will further investigate more
effective post-training task, as well as explore more complex cases where there
is more than one correct passage.
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Abstract. Fraud detection is a critical issue in the field of finance, as
it can help to prevent fraud and minimize losses caused by fraud. Deep
learning techniques learn the intrinsic knowledge of huge data, build
explainable transaction knowledge graphs, and effectively predict poten-
tial fraudulent transactions, making it an essential technique in finan-
cial fraud detection. In this paper, we systematically review the existing
financial fraud detection technologies, focusing on deep learning-based
financial fraud detection methods. To the best of our knowledge, our work
is the first to systematically introduce financial fraud detection meth-
ods based on transformer models, including the most recent pre-training
transformer models, which can be thought of as parametric knowledge.
Finally, we also analyze and summarize the challenges of financial fraud
detection research, to promote its future development of research.

Keywords: Deep Learning · Financial fraud Detection · Pre-training
transformer model · Knowledge

1 Introduction

Financial fraud is a problem that has a wide impact on social development and
daily life. It will not only affect people’s sense of trust in all walks of life but also
damage their living security. Moreover, it will cause huge economic losses and
even serious damage to the economy and society. West et al. [1] defined financial
fraud as “the intentional use of illegal methods or practices for the purpose of
obtaining financial gain”. Achieving efficient and accurate fraud detection ahead
of various fraud methods of criminals is a relevant research problem for the
improvement of the financial sector and society [2,3]. To solve this problem,
financial fraud detection techniques have become an important technical means
of fraud prevention.

The evolution of financial fraud detection technologies can be classified into
three stages: manual audit and expert guidelines-based methods, conventional
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 163–177, 2023.
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machine learning-based methods, and deep learning-based methods. Manual
audit and expert standards-based approaches mainly depend on prior informa-
tion and are unable to adapt to intricate and shifting fraud patterns. Conven-
tional machine-learning techniques [4] like logistic regression, decision trees, sup-
port vector regression, and others are gradually being used in the area of financial
fraud detection. In accordance with conventional machine learning techniques,
a sizable amount of user and transaction data is mined, statistical features are
extracted from various aspects, such as user profiles and historical behaviour,
and the internal laws and representations of sample data are learned. This allows
for establishing models such as classification prediction to achieve fraud identi-
fication. However, when data becomes more complex, diverse, and large-scale,
fraud data is even more unbalanced, and statistical machine-learning methods
struggle to provide reliable fraud detection.

Deep learning techniques, which use multi-layer neural networks to learn
implicit representations of data, have been shown to perform much better when
the data is large and more complex. With the explosive growth of financial trans-
action data and financial fraud becoming more hidden, deep learning techniques
have consistently become a popular topic and emphasize financial fraud detec-
tion. Convolutional neural networks are one of the earliest neural networks used
in financial fraud detection, using convolution to record local features of transac-
tions, but they lack a long-term memory mechanism; recurrent neural networks,
on the other hand, can memorize long-term sequences of transaction records and
have achieved great success in fraud detection. Graph neural network uses graph
structure to represent transaction network topology and entities, which can bet-
ter capture the internal relationships in graph data, perform complex reasoning
and prediction in the graph, and is widely used in financial fraud detection. The
transformer was first employed as a sequence-to-sequence model in the field of
natural language processing [5], modeling global context information with a self-
attention mechanism. The pre-training model based on the transformer imple-
ments State-Of-the-Art performance in various fields [6]. Subsequently, the large-
scale pre-training model generative pre-training transformer-3 (GPT-3) with a
scale of 100 billion parameters has achieved amazing results, establishing the
large-scale pre-training transformer model as an essential research direction in
the field of artificial intelligence.

In this paper, we discuss the widely used deep learning techniques and their
applications in financial fraud detection from the standpoint of deep learning.
Fraud detection has been studied in reviews [7,8], which cover credit card fraud,
insurance fraud, financial statement fraud, and cryptocurrency fraud. However,
they mainly integrate and analyze research on machine learning models in arti-
ficial intelligence (AI). There are few current survey articles on fraud detection
with neural network-related deep learning, specifically transformer-based mod-
els. Compared with the existing related works, our main significant contributions
in this review paper are as follows:

– We provide a comprehensive overview of financial fraud detection based on
deep learning, which focuses on the latest research on deep learning in fraud



Financial Fraud Detection Based on Deep Learning 165

detection and makes up for the lack of comprehensive discussion on financial
fraud detection based on deep learning in previous reviews.

– To the best of our knowledge, our work is the first to systematically intro-
duce financial fraud detection methods based on transformer models, we also
present the latest pre-training transformer models for financial fraud detec-
tion.

– We discuss the difference between our work and the previous surveys, the
challenges, and the future research directions regarding AI-oriented financial
fraud detection.

The remainder of this paper is structured as follows: Sect. 2 focuses on the
development of deep learning-based financial fraud detection technology, and
sorts out six types of deep learning models. Section 3 introduces the applications
of deep learning fraud detection methods in the financial field. Section 4 sum-
marizes some publicly available data sets for financial fraud detection research.
Section 5 expounds on the challenges and prospects. Finally, Sect. 6 summarizes
this article.

2 Deep Learning Financial Fraud Detection Methods

With the diversification of transaction forms, the scale and structure of the
analyzed transaction data are becoming larger and more complex, which brings
great challenges to traditional fraud detection methods. Deep learning techniques
can process large-scale and complicated data more efficiently than classic fraud
detection methods. This opens new research directions and opportunities for
developing financial fraud detection technologies. Deep learning-based financial
fraud detection research has grown in importance as a subject of financial fraud
detection research in recent years due to the fast growth of deep learning theory.
The following describes deep learning models and how they are used to detect
financial fraud.

2.1 Auto-encoder

Auto-encoder (AE) is the general unsupervised and semi-supervised learning
model. This goal is to learn and obtain the low-dimension feature from the
information in the input data. The autoencoder hopes that the reconstructed
data is as similar as possible to the original data, so its objective function is to
minimize the Euclidean distance of the sum.

AE can be utilized to extract implicit information from data and reduce
dimensionality to reduce the computation required for subsequent tasks. AE
can also be applied to unsupervised learning to reduce data labeling costs. How-
ever, AE has the disadvantages of requiring a large amount of computation and
a lengthy training period, and the training process may lead to overfitting and
gradient disappearance. Based on AE, researchers further proposed a variety of
self-encoding methods, which are widely used in numerous industries, such as
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risk assessment and the detection of financial misconduct. Kolli et al. [9] used
a deep stack autoencoder based on Harris Gray Wolf to manage data imbal-
ance and identify fraud in banking transactions. Kumar et al. [10] used deep
belief network-based autoencoders for fraud detection on bank credit and insur-
ance data. Gradxs et al. [11] suggested the HGW-Deep stacked autoencoder,
which shows promise in the areas of precision for detecting credit card transac-
tion fraud. To increase the effectiveness of fraud detection for credit card fraud,
Fanai et al. [12] suggested a framework incorporating supervised deep learn-
ing algorithms, deep autoencoders as dimensionality reduction approaches, and
unsupervised neural networks.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are feedforward neural networks evolved
from multi-layer perceptrons. Typically, the input layer, convolutional layer,
pooling layer, and fully connected layer make up a deep CNN model. The con-
volutional layer’s goal is to extract specific local features from the data. The
input data map is subjected to a dot product operation with the convolution
kernel in the convolutional layer, and the convolutional feature mapping is then
acquired through the activation function’s output. Typically, the pooling layer
follows the convolutional layer and corresponds to each convolutional layer indi-
vidually. It down-samples the feature map after convolution, reduces the data
dimension and the amount of calculation, and avoids overfitting. The CNN con-
volution operation’s parameter-sharing feature significantly lowers the number
of parameter optimizations and boosts training effectiveness.

CNN can either be used explicitly for end-to-end model training or as a fea-
ture extractor to combine with other classification, prediction, and other mod-
els. Singh et al. [13] used a hybrid CNN-MRFO model, where the CNN model’s
hyperparameters are tuned by an MRFO learning method, to forecast finan-
cial statement fraud. Abakarim et al. Zioviris et al. [14] proposed a multi-stage
hybrid model that combines CNN and an autoencoder to identify fraudulent
credit card transactions. [15] proposed a novel text2IMG conversion technique
for producing small pictures, and deep features are used to minimize the compu-
tational complexity of machine learning classifiers. Illanko et al. [16] used a CNN
to find fraudulent credit card transactions. Synthetic minority oversampling and
random resampling technology were employed to lower false negative and false
positive rates in order to address the issue of data imbalance. Gambo et al.
[17] suggested a CNN model for identifying credit card fraud and resolving data
imbalance with an adaptive synthesis sampling technique. Murugan et al. [18]
proposed a CNN-based technique for identifying potentially fraudulent patterns
in credit card transactions. This technique involved turning each transaction’s
data into a feature matrix so that the CNN model could detect any inherent
flaws.
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2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are well-known deep learning model for mod-
eling sequence data, which can effectively deal with long-distance dependencies
in sequences. RNN uses a time-based backpropagation algorithm for parame-
ter training. These long-term relationships in the sequence can be effectively
captured by an RNN, which also has the power to characterize the sequen-
tial information in the sequence, using a way of cyclically updating the hidden
state. As the analyzed data sequence length increases, RNN is likely to have
gradient disappearance or explosion problems in practical applications. Based
on this, scholars introduced the gating mechanism into RNN. They proposed a
long short-term memory model (LSTM) and a Gated Recurrent Unit (GRU) to
make up for the defects of RNN.

Early research on credit card transaction fraud only considered single trans-
actions. Jurgovsky et al. [19] focused on the characteristics of credit card transac-
tion information over time and used LSTM to analyze user transaction sequence
data to realize fraudulent behaviour and normal behaviour. Esenogho et al. [20]
proposed a deep learning ensemble classifier utilizing the AdaBoost method and
the LSTM neural network as the foundation learner.

Considering that users’ transactions have the characteristics of staggered
occurrence and irregular intervals, Branco et al. [21] proposed an interleaved
GRU model that incorporates transaction intervals as features together with
transaction data to realize the classification of credit card fraud users and nor-
mal users. Xie et al. [22] designed two time-aware gates in the recurrent neural
network unit to learn the user’s LSTM trading behaviours, respectively, and to
record the variations in behaviour brought on by various time intervals between
the user’s ongoing transactions. According to experiments, this strategy is effec-
tive at separating fraudulent from legitimate conduct, which enhances the effi-
cacy of credit card fraud detection according to several evaluation criteria.

Due to the limitations of a single model, the current trend in RNN-based
fraud detection research is to combine multiple models. Roseline et al. [23] com-
bined an RNN with LSTM to detect credit card fraud; LSTM replicates the
sequential dependencies between credit card transactions, and over time, the
hidden state of LSTM shifts between neural network nodes. Geetha et al. [24]
proposed a hybrid method using CNN and RNN along with an adaptive feature
selection method that has a good reliability and recognition rate for credit card
transaction fraud detection. Xia et al. [25] proposed a deep learning model that
incorporates CNN, LSTM, and DNN for detecting car insurance fraud. This
model can capture more abstract features and avoid potential problems with
typical machine learning methods, which are overly dependent on the intricate
feature extraction procedures of domain specialists.

2.4 Graph Neural Network

RNNs and CNNs have produced successful results on Euclidean spatial data.
Non-Euclidean spatial data, like social networks and information networks, exist
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in the actual world. Researchers developed the abstract graph in graph theory
to represent non-Euclidean structured data in answer to this issue and proposed
the Graph Neural Network (GNN) to mine it. GNN has the benefits of simple
inference and interpretability and is a popular topic of research in deep learning
today [26]. Researchers have proposed a number of GNN variants to develop
and expand GNN, including graph convolution networks (GCN), graph atten-
tion networks (GAN), graph autoencoders, graph generation networks (GGN),
CARE-GNN [27], PC-GNN [28], and graph spatial-temporal networks, etc.

Graph structure data also exists widely in the financial field, and the trans-
action behaviours of users and various institutions in banks constitute a large
amount of graph data [29,30]. Mao et al. [31] employed the GNN to generate
forecasts after connecting listed corporations and their linked parties in a het-
erogeneous graph to provide a complete transaction picture. Zhang et al. [32]
presented health insurance data as dynamic heterogeneous graphs and intro-
duced hierarchical multimodal fusion GCN, which can embed longitudinal and
multimodal entities in addition to learning topological information, to enhance
the effectiveness of fraud detection. The work of Wang et al. [33] provided a
GNN with feature augmentation for isolated portions, which included the proce-
dures of policy label propagation, graph creation, and graph splitting. All nodes
are categorized into a number of groups based on where they are and how they
are connected. Long et al. [34] proposed a GNN fraud detection approach with
a neighbour sampler and attributes extractor, using under-sampling to address
the issue of class imbalance. Pan et al. [35] proposed a federated graph learning
two-stage method called 2SFGL, this framework uses the FedAvg method to
train the GNN model on virtual fused graphs.

Due to the outstanding performance of GNN-type models, GNN-based meth-
ods are widely used in cryptocurrency trading networks for fraud detection. Li et
al. [36] proposed a graph learning algorithm for detecting fraudulent Ethereum
transactions that can learn the topological properties and payment amount char-
acteristics of the network of transactions. Li et al. [37] proposed a GNN-based
detection approach to effectively discriminate between legitimate accounts and
phishing accounts in the Ethereum transaction network. Mo et al. [38] proposed
the Motif-signed Temporal Graph Convolutional Network for Bitcoin transaction
network fraud detection, which is a discrete temporal GCN model that simul-
taneously considers the temporal, local structure and balance in the signature
network information. Qiao et al. [39] introduced an autoencoder-based dynamic
graph representation learning technique. In order to create low-dimensional fea-
ture vectors, the encoder uses a GCN to collect local features. Hall et al. [40]
modelled transaction records and systems as graph data, used semi-supervised
graph convolutional networks for fraud detection, and verified the effect of the
model in Bitcoin and Ethereum transaction networks.

2.5 Transformer

Transformer is a deep learning model that is built on the self-attention mecha-
nism and was originally utilized in natural language processing tasks with great
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results. It is made up of encoding and decoding components, as well as connec-
tions between them. The encoding component is made up of a series of encoders,
and the decoding component is made up of a series of decoders, with an equal
number of encoders and decoders. Through the self-attention layer, the encoder
pays attention to context information. A feed-forward neural network follows
the self-attention layer, and each unit utilizes the same feed-forward network
independently. The decoder additionally includes a self-attention layer and a
feed-forward neural network. Through the self-attention technique, Transformer
can perform fast parallel model training, overcoming the problem of slow RNN
training. Transformer makes use of the DNN model’s multi-level properties to
deepen the network and improve model accuracy.

The use of transformers in the identification of fraud is becoming increasingly
popular. Yuan et al. [41] proposed a two-stage fraud feature selection approach
that integrates machine learning and deep learning, as well as a new multi-stage
strategy that retains key characteristics while filtering out unimportant data
in the first stage. The second level employs a feature extractor based on the
transformer structure, and the last layer employs a binary classifier to predict
whether or not there is fraud. Through the analysis of transaction data, Zhang
et al. [42] discovered that fraudulent transactions are highly correlated with
continuous non-discrete transaction activities, and proposed a dynamic graph
embedding method DynGraphTrans, which uses smooth attention layers and
time interval-aware relative position encoding to process time interval informa-
tion and improve multi-head attention ability. Rodŕıguez et al. [43] trained the
Transformer model using transaction data analogy and language data to predict
the next transaction based on the user’s past transaction records, compared the
predicted transaction with the actual transaction, and flagged the actual trans-
action as fraudulent if the difference is greater than a threshold. Zhang et al. [44]
proposed a hybrid model for credit card fraud detection that combines TabNet
and XGBoost, in which TabNet implements feature selection using the attention
transformer layer and then uses the Feature transformer layer to calculate the
features chosen by the attention transformer layer. This strategy combines the
benefits of model interpretability with sparse feature selection.

2.6 Pre-training Transformer Model

The pre-training transformer model first executes self-supervised learning on a
large-scale data set to generate a pre-trained model that has nothing to do with
downstream tasks, and then the downstream tasks just need to be fine-tuned to
finish the learning. The pre-training model utilizes a large amount of unlabeled
data and has the advantages of strong generalization ability and fast convergence
speed. The effect of the model is far better than that of direct training on
small data sets without prior knowledge. Therefore, it has achieved excellence
in various tasks and has become a significant milestone in the development of
artificial intelligence technology.

As Bert and other transformer-based pre-training models achieved consider-
able success in numerous disciplines, researchers began to employ pre-training
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models in the field of anomaly detection. Abakarim et al. [45] suggested com-
bining CNN and pre-trained CNN models, stacking the CNN architecture in
parallel with the CNN model utilizing bagged ensemble learning, extracting the
results of the CNN model alone using an SVM classifier, and combining the
results using the majority round-robin technique. When combined, these fac-
tors maximize accuracy and increase the effectiveness of vehicle insurance claim
fraud detection. Padhi et al. [46] proposed the TabBERT pre-training model
for learning the time series representation of the table, training the TabBERT
model on a synthetic credit card transaction data set, and using the learned code
to validate the model’s effectiveness in the downstream transaction fraud detec-
tion task. TabBERT encapsulated transactions hierarchically, capturing internal
links between table column data and temporal dependencies between table rows.
Hewapathirana et al. [47] evaluated the performance of TabBERT model-based
embedding in credit card transaction fraud detection using three supervised
learning methods and two unsupervised learning algorithms, TabBERT-based
embedding increased the fraud detection performance of supervised machine
learning algorithms and some unsupervised techniques. Hu et al. [48] proposed
the first general-purpose pre-training model BERT4ETH for Ethereum fraud
detection. The model generated seven features for each transaction, including
address, account type, input-output type, amount, count, timestamp, and loca-
tion, using three effective strategies, namely reducing duplication, mitigating
skewness, and modeling heterogeneity, to achieve significant improvements in
phishing account detection and deanonymization tasks. Gai et al. [49] developed
a large-scale pre-training model BLOCKGPT for Ethereum transaction anomaly
detection using 68 million Ethereum transactions as training data. This model
employs custom data encoding to convert transactions into vectors and trans-
formers to learn the entire intrinsic structure of the transaction network, and the
experimental results demonstrate that the model is quite effective at detecting
fraudulent transactions.

3 Applications of Deep Learning Fraud Detection

Financial fraud detection requires analyzing and mining data from commercial
organizations. Due to the different forms of business and transactions, there are
various and complex financial frauds. In this section, we will mainly introduce
the applications of deep learning fraud detection.

Credit Card Fraud. Credit card fraud is the most common and widespread
fraud in the financial industry. Since the vast majority of credit card transactions
are normal transactions, the proportion of fraudulent transactions is low. So
solving the problem of data imbalance to detect credit card fraud is a top priority
that cannot be delayed. Teng et al. [50] proposed a generative adversarial network
framework called BalanceGAN to detect online bank fraud on highly unbalanced
data. Langevin et al. [51] proposed utilizing generative adversarial networks to
provide artificial sample augmentation data, a method for detecting credit card
fraud. El et al. [52] utilized a new oversampling technique based on generative
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adversarial neural networks to enhance the processing of credit card transaction
imbalance data.

Money Laundering. Money laundering negatively impacts national and global
social security and financial management order. Wu et al. [53] introduced a
general-purpose message-passing neural network protocol that can produce both
node and edge representations on directed multigraphs at the same time. The
research [54] used the DEGSO and LSTM bionic algorithms to identify money
laundering threats. Krvzmanc et al. [55] found that gradient boosting and multi-
layer perceptrons have good performance in money laundering detection. Yu et
al. [56] proposed a graph convolutional network model named MP-GCN using
message passing for phishing scam detection on Ethereum. Tang et al. [57] advo-
cated using message passing and a graph convolutional network model called
MP-GCN for detecting phishing scams on Ethereum.

Insurance Fraud. Due to the large number of insured objects involved and
the high or frequent compensation amounts, auto and health insurance have
always been the focus of fraud detection research. Gangdhar et al. [58] used
variational encoder-based methods for fraud detection of health insurance fraud
and auto insurance data. Xia et al. [25] mixed DNN, LSTM, and CNN to present
a deep learning model for detecting auto insurance fraud. Abakarim et al. [45]
suggested mixing pre-trained CNN models to maximize accuracy and increase
the effectiveness of auto insurance claim fraud detection.

Financial Statement Fraud. Financial statement fraud is the act of deceiving
the users of relevant financial reports in financial accounting by related parties.
Liu et al. [59] suggested using a two-way LSTM model to detect and warn of
financial statement fraud threats, which can assist investors, audit departments,
and state regulations departments in accurately identifying the financial fraud
activity of publicly traded corporations. Fukas et al. [60] used GANs to detect
fraud events on listed company financial datasets.

4 Financial Fraud Detection Datasets

For financial fraud detection studies to move forward, they need real and reli-
able research data. For privacy and safety reasons, banks, stock brokerages,
and insurance companies often don’t share information about their customers
and their transactions. Therefore, scholars often cannot obtain real and reliable
research data. Some studies [50,51] utilize artificially synthesized data for model
training and to evaluate the performance of the proposed method. However, this
cannot accurately reflect the performance and robustness of the proposed fraud
detection method when applied to real complex transaction data. Through the
review of numerous articles, this paper summarizes some publicly available real
financial fraud datasets in Table 1.
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Table 1. Datasets for financial fraud detection research.

Dataset Name Description Source

European Credit Card
Fraud Dataset

284,807 samples, 31 features, 492
fraud cases

www.kaggle.com/mlg-ulb/
creditcardfraud

IEEE CIS Fraud
Detection Dataset

590,000 samples, 434 features, 3.5%
fraud cases

www.kaggle.com/c/ieee-fraud-
detection

The Abstract credit
card fraud dataset

3075 samples, 12 features, 448 fraud
cases.

www.kaggle.com/shubhamjoshi2130of

Mobile Money
Transaction Data

574,255 samples, 10 features, 271
fraud cases

www.kaggle.com/ealaxi/paysim1

Target2-Slovenija
Dataset

8 million transactions from 2007 to
2017

www.bsi.si/placila-in-infrastruktura/
placilni-sistemi/target2-in-target2-
slovenija

Bitcoin OTC Dataset Bitcoin trading users, positive cases
comprise 89%

snap.stanford.edu/data/soc-sign-
bitcoin-otc.html

Bitcoin Alpha Dataset Bitcoin users, positive samples is
93%

snap.stanford.edu/data/soc-sign-
bitcoin-alpha.html

Ethereum Transactional
Dataset

20,000 Ethereum addresses, 7000
fraudulent accounts

www.kaggle.com/datasets/
hamishhall/labelled-ethereum-
addresses

Ethereum Dataset 2,973,382 nodes, 1157 fraud cases https://etherscan.io/accounts/label/
phish-hack

Center for Medicare
Services Dataset

8304 samples, 8 features, 895
fraudulent samples

data.cms.gov/

Vehicle Insurance Fraud
Dataset

15,420 samples, 923 fraudulent
samples

www.kaggle.com/datasets/
khusheekapoor/vehicle-insurance-
fraud-detection

Vehicle Insurance Claim
Fraud Detection

American insurance business and
15,420 samples

www.kaggle.com/datasets/shivamb/
vehicle-claim-fraud-detection

Medical insurance data 100,000 samples, 27 features www.datafountain.cn/datasets/5068

Financial Accounting
Dataset

146,000 samples, less than 1%
fraudulent

github.com/JarFraud/FraudDetection

Financial Statement
DataSet

739 fraud cases, 4994 legitimate
cases

www.kaggle.com/datasets/securities-
exchange-commission/financial-
statement-extracts

5 Challenges and Prospects

Existing financial fraud detection methods have achieved good results, but there
are still a lot of problems worthy of further thought and research. We have listed
some problems and challenges, summarized as follows.

Data Integrity. Research on the detection model of financial fraud under the
influence of missing data. In actual situations, user data collected by banks,
securities companies, and other financial institutions often have certain deficien-
cies. The lack of user data may be caused by a variety of reasons. For example,
users may submit personal information with different degrees of completeness to
financial institutions according to their own circumstances and needs. Early users
and new users of financial institutions may have different degrees of information
integrity. Financial institutions have different levels of mastery over customer

www.kaggle.com/mlg-ulb/creditcardfraud
www.kaggle.com/mlg-ulb/creditcardfraud
www.kaggle.com/c/ieee-fraud-detection
www.kaggle.com/c/ieee-fraud-detection
www.kaggle.com/shubhamjoshi2130of
www.kaggle.com/ealaxi/paysim1
www.bsi.si/placila-in-infrastruktura/placilni-sistemi/target2-in-target2-slovenija
www.bsi.si/placila-in-infrastruktura/placilni-sistemi/target2-in-target2-slovenija
www.bsi.si/placila-in-infrastruktura/placilni-sistemi/target2-in-target2-slovenija
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses
www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses
www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses
https://etherscan.io/accounts/label/phish-hack
https://etherscan.io/accounts/label/phish-hack
https://data.cms.gov/
www.kaggle.com/datasets/khusheekapoor/vehicle-insurance-fraud-detection
www.kaggle.com/datasets/khusheekapoor/vehicle-insurance-fraud-detection
www.kaggle.com/datasets/khusheekapoor/vehicle-insurance-fraud-detection
www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection
www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection
www.datafountain.cn/datasets/5068
https://github.com/JarFraud/FraudDetection
www.kaggle.com/datasets/securities-exchange-commission/financial-statement-extracts
www.kaggle.com/datasets/securities-exchange-commission/financial-statement-extracts
www.kaggle.com/datasets/securities-exchange-commission/financial-statement-extracts
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information at different levels, and so on. How to use missing user data for fraud
detection is an important issue. Existing models such as GANs and VAE have
attracted the attention of relevant scholars because of their data generation capa-
bilities, and are used to fill in missing data. Furthermore, how to consider filling
in data reliability and data defect locations to provide user-related information
is worthy of follow-up exploration and thinking.

Data Annotation. Research on unsupervised and deeply weakly supervised
financial fraud detection models. The label of the data directly determines the
structure and evaluation indicators of the detection model, which is of great
significance to the research of anti-fraud issues. The need for many tagged sam-
ples and the emphasis on detecting fraud category examples that have appeared
in training are the foundations for the high accuracy of several present fraud
detection techniques. Typically, data labelling for financial institutions requires
expert determination, consuming time and money. Large-scale data labels are
often not available. Therefore, for the research on financial fraud detection prob-
lems, the more challenging situation is how to use a lot of unlabeled data or a bit
of abnormally labelled data to carry out various fraudulent behaviour detections.

Data Quality. With the rise of technologies like big data, artificial intelligence,
and blockchain, financial fraud detection technology will develop in a direction
that is more intelligent, credible, and explicable. In various disciplines, technolo-
gies such as ChatGPT have demonstrated their usefulness, and the detection of
financial misconduct will make greater use of these technologies in the future.
The pre-training model algorithm based on Transformer has high requirements
on the amount of data. How to effectively generate the large amount of high-
quality data required by the model is a current problem, especially when the
data in the financial field is relatively precious. The existing generative adver-
sarial networks solve this problem to a certain extent, and more methods will
appear in the future.

Existing single-modality data cannot completely utilize the detection technol-
ogy’s benefits because fraudulent transactions are highly concealed. The detec-
tion of fraud using multimodal data, such as images, texts, and videos, will be
a significant area of research. Due to the paucity of fraud samples, the combi-
nation of unsupervised and weak supervision is a crucial direction of research in
financial fraud detection. Cryptocurrency has the characteristics of anonymity
and decentralization, it plays an essential role in the financial transaction sys-
tem, and it is receiving more and more attention. Moreover, detecting fraud on
transaction networks is becoming a relevant research topic.

6 Conclusion

Financial fraud is a significant problem for the financial industry, and the
research on detection technology has important social and economic implica-
tions for the development of the financial industry. This paper begins with a
discussion of the financial fraud detection problem and the development route
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of financial fraud detection technologies. Furthermore, it explores the financial
fraud detection technology based on deep learning and introduces typical deep
learning model frameworks and their applications in various types of financial
fraud detection tasks. Finally, we present the challenges in the field of financial
fraud detection and discuss the development trend of fraud detection technology.
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Abstract. Subgraph matching is used to determine whether a query
graph exists within a target graph, and appears in a lot applications
of domains including social sciences, chemistry, biology and database
systems. Existing subgraph matching approaches can be broadly cate-
gorized into two types: exact matching and approximate matching. Due
to allowing for slight variations between the target and query graphs,
approximate matching has become a more practical solution with the
introduce of graph neural networks (GNN). However, when dealing with
large-scale target and query graphs, existing GNN-based approximate
matching approaches still have to face the challenge that how to fur-
ther improve the accuracy and promote the query efficiency. Therefore,
we propose the GERNS, a graph embedding with repeat-free neighbor-
hood structure for subgraph matching optimization. Through extract-
ing subgraphs from the target graph based on a specified hop count
limit, we incorporate and embed a repeat-free neighborhood structure
using a two-layer GNN. Then we generate the relation constrains of sub-
graphs based on vector order embedding to form the embedding space.
Finally, approximate subgraph matching can be realized based on graph
embedding. Extensive experiments on both public graph datasets and
real-world datasets show the effectiveness of our approach.

Keywords: Subgraph Matching · Approximate Match · Graph Neural
Network · Graph Embedding

1 Introduction

Given a query graph, subgraph matching determines whether the query graph
is isomorphic to a subgraph part of a larger target graph. If the graph data
structure contains node and edge features, topology and features should match.
Subgraph matching is a critical problem in many biological, social network
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and knowledge graph applications [1–4]. For example, social and biomedicine
researchers compute network structures of given graph data to study their criti-
cal subgraph structures [5]. In the knowledge graph, query the essential subgraph
structure in the large-scale target graph [1,6] to extract subgraphs for research
and analysis.

Existing methods mainly utilize efficient search algorithms [7–9], match-
ing optimization strategies, efficient pruning operations, and specified pattern-
matching strategies. But due to the NP-complete nature of the problem, the
scalability is poor in large-scale cases, the cost of graph embedding is high, and
the query time is expensive. When expanding to large-scale subgraph match-
ing capabilities, the embedding space will have some repeated neighborhood
structures of nodes, resulting in a suboptimal spatial structure for graph embed-
ding, resulting in a longer query time. This section comprehensively analyzes the
embedding process of the target graph Gt. In Fig. 1, it can be observed that the
target graph Gt is extracted into subgraphs within 2-hop and embedded with
two layers of GNN. The constraint relationship between the subgraphs is guar-
anteed, but vectors with the same coordinates appear in the embedding space.
Then, in the face of large-scale target graphs being embedded in this way, the
accuracy rate may be reduced, and the query efficiency is affected.

Fig. 1. Target graph embedding problem with repeated neighborhood structure.

In this paper, we propose to embed the space of repeat-free neighborhood
structures for efficient subgraph matching query, combined with a graph neu-
ral network to optimize the embedding mechanism and conduct model training
with subgraph relationship constraints on public datasets. Its core is to extract
the target graph Gt and combine GNN and our embedding optimization algo-
rithm to quickly calculate whether the neighborhood structure between nodes
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needs to be embedded. Our method is mainly in the embedding stage, extract-
ing the subgraph Gu within the k-hop in the target graph Gt, using a 2-layer
GNN and using a repetitive-free neighborhood structure algorithm to calculate
ui(i = 1, 2, ......, n) and the neighborhood structure between uj(j = 1, 2, ..., k)
to determine whether embedding is needed, to ensure the efficiency of subgraph
matching.

Our contributions are as follows: 1) An efficient and accurate subgraph
matching solution GERNS is proposed, which solves the problems existing in
existing methods. 2) We propose a space-optimized algorithm for embedding
repetitive-free neighborhood structures to speed up the time for subgraph match-
ing. 3) Many experimental results show that GERNS and the current similar
methods have remarkable performance.

The rest of the paper is organized as follows. Section 2 reviews common
approaches to speed up subgraph matching and related work. Section 3 addresses
methods for embedding repeating-free neighborhood structure spaces, and we
implement algorithms for embedding repeating-free neighborhood structure
spaces. Our proposed technique is evaluated in Sect. 4. Finally, we end with
conclusions in Sect. 5.

2 Related Work

Subgraph matching has been extensively studied in the literature. One key issue
is how to make subgraph matching faster and more accurate. The research on
subgraph matching algorithms originated from Ullmann’s backtracking algo-
rithm [9], which iteratively maps query vertices to target vertices to check
whether the query graph Q is embedded in the target graph. Existing algo-
rithms of this kind, which aim to find all embeddings in large-scale target graphs,
include, QuickSI [10], GraphQL [11], SPath [12], STW [13], and TurboIso [14].
Existing algorithms for accelerating subgraph matching mainly involve match-
ing access order optimization strategies, pattern matching strategies, and neural
graph matching strategies, as described below:

Matching Access Order Optimization Strategies. The traditional Ull-
mann algorithm [9] does not consider the matching order of query vertices and
only focuses on the structure of the graph itself. VF2 [7] starts with a randomly
selected vertex and chooses the next vertex connected to already matched query
vertices. QuickSi [10] utilizes a global statistical measure of vertex label frequen-
cies and proposes a matching order that accesses query vertices with infrequent
vertex labels as early as possible. In contrast to the global matching order selec-
tion in QuickSi, TurboIso [14] divides the candidate region into separate can-
didate regions and computes a local matching order for each candidate region.
STW [13] and TurboIso both assign higher priority to query vertices with higher
degrees and fewer labels.
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Pattern Matching Strategies. Spath [12] proposed matching one graphical
pattern at a time instead of the traditional vertex-based approach. The graph
pattern used in Spath is a path. Turboiso [14] rewrites the query graph into an
NEC tree, which matches query vertices with the same neighborhood structure
simultaneously.

Neural Graph Matching Strategies. Early work [15] has demonstrated the
capability of Graph Neural Networks (GNNs) in small-scale subgraph matching.
Graph neural networks [16–18] have been proposed for subgraph matching and
have achieved state-of-the-art results. However, since there is no one-to-one map-
ping between query and target graph nodes, these methods cannot be directly
applied to subgraph matching.

Our approach is to improve the performance of subgraph matching, the core
of which is to embed ordered and repetitive-free neighborhood structures to
improve the performance of subgraph matching. Furthermore, similar works,
including NeuroMatch, use GNN models to constrain subgraph relations. How-
ever, it does not consider the neighborhood structure issue in the embedding
space. In contrast, our method uses GNN for model training to constrain the
subgraph relationship in the embedding space and optimizes the algorithm of
the graph embedding space so that it can be embedded in a space with a non-
repeating neighborhood structure, thus speeding up the performance of subgraph
matching.

3 Proposed Method

In this section, we propose the optimized embedding vector technique with
repeated neighborhood structure to accelerate subgraph matching, improve the
accuracy of similarity and reduce the cost of computation and storage, thus
adding subgraph matching. The proposed optimization technique consists of
three steps:

3.1 Embedding of Target Graph

The purpose of this method is to embed a given target graph Gt into the space
Zu of repeat-free neighborhood structure and accelerate the speed of subgraph
matching. The embedding type adopts subgraph embedding in 2-hop, starting
from any node in the graph, traversing and extracting and executing the embed-
ding method until all nodes in the graph are traversed. Figure 2 shows an example
of a method for extracting a target graph Gt from the beginning to embedding
a repetitive-free neighborhood space Zu.

Let the given target graph be Gt, perform 2-hop subgraph extraction on the
target graph, generate G1, G2, ..., Gu subgraphs to be embedded, and continu-
ously optimize our model by updating GNN parameters to improve our gen-
eralization performance and prediction ability. Use the high-dimensional sparse
matrix m1 to reduce the dimension to the low-dimensional dense adjacency
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Fig. 2. An example of the process of extracting subclasses from the target graph to
the embedding space of the repeat-free neighborhood graph.

matrix m2. Some useful inferences and predictions are made in graph data by
using the feature smoothing properties. In addition, the feature smoothness prop-
erty also provides a key optimization objective for GNNs to better learn feature
propagation and information aggregation among nodes. Then, it is embedded
in the space Zu of the repetitive-free neighborhood structure and recorded as
a t1 vector. When the t2 vector subgraph is embedded, according to our pro-
posed method, that is, similarity matrix discrimination, it is judged whether
the next embedded subgraph neighborhood structure is embedded. During the
entire embedding process, we also used two layers of GNN for embedding, one is
the linear layer Linear(1, 2), and the other is the LogSoftmax layer (dim=-1).
Through this process, the Gu(u = 1, 2, ..., 7) subgraph is extracted from Gt, and
each subgraph is constrained by the subgraph relationship in the specified order
in the repeat-free neighborhood structure space t1, t2, ..., t7 vectors enter into
the embedding space in turn.

3.2 Optimize Embedding Vectors

In the process of subgraph matching, the embedding stage lays the foundation
for the response of subgraph matching and optimizes the embedding vector to
improve the accuracy and time of subgraph matching. In the embedding pro-
cess, the nodes in the target graph Gt are first extracted by 2-hop subgraphs
to form several small subgraphs Gu, which is not only a subgraph of Gt, but
also a repeated neighborhood structure of u node in Gt, and the graph neural
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network is used to embed G1, ..., Gu, GNN embeds the neighborhood structure
Gu of node u into Zu space. The details that need to be paid attention to in
the design of embedding are: when embedding each node u, the actual embed-
ded Gu is also the neighborhood structure of u. In the comparison process, we
only need to compare whether u1 and u2 are subgraphs, in other words, the
matching relationship between the neighborhood structure of u1 and Gu and
the neighborhood structure of u2.

Commonly used algorithms for graph embedding, such as the Deepwalk algo-
rithm, calculates the similarity between nodes based on whether there are edges
connected. The LINE algorithm uses another calculation method, introducing
first-order similarity and second-order similarity.

First-order Similarity Optimization: For each edge(i, j) of the undirected
graph G(V,E), we define its first-order similarity for the two connected vertices
vi and vj :

pi(vi, vj) =
1

1 + exp(−uT
i · uj)

(1)

For all vertices V , the KL divergence is introduced to measure the similarity
between the empirical distribution and the first-order similarity:

d(p̂1, p1) = −
∑

(i,j)∈E

[
p̂1(vi, vj) logp1 (vi, vj)

]
+

∑

(i,j)∈E

[
p̂1(vi, vj) logp̂1 (vi, vj)

]
(2)

Second-order Similarity Optimization: Applicable to both undirected and
directed graphs. Its purpose is: an Embedding that a vertex itself wants to learn,
and a vertex is an Embedding that a node is a neighbor of other nodes. Therefore,
put this. Two vertices are represented by two vectors. So for any edge(i, j), define
the conditional probability of the content vj under vi:

p2(vj | vi) =
exp(u′T

j · ui)
∑|V |

k=1 exp(u′T
k · ui)

(3)

To make the graph model consider the first-order and second-order similarity at
the same time, the vector representations of the two similarities are first trained
separately and then combined (directly spliced) for use together. For the second-
order similarity, direct optimization is relatively difficult. The negative sampling
method is adopted, and the optimization objective function of each edge(i, j) is
transformed into:

loss = logσ(u′T
j · ui) +

K∑

n=1

Evn∼Pn(v)

[
logσ(−u′T

n · ui)
]

(4)

where σ is the sigmoid function, K is the number of negative sampling edges,
which are actually K target vertices, which are composed of query vertices Vi.
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Algorithm 1: Optimizing Embedding Vectors
input : Target graph Gt, graph embeddings Zu of subgraph

Gu(u = 1, ..., s) ∈ Gt

output: Optimized embedded vectors Zj

1 for v in G.nodes() do
2 S ← Set()
3 neighbors1 ← G.neighbors(v)
4 S.add(frozenset([v]))
5 for u in neighbors1 do
6 S.add(frozenset([u, v]))
7 neighbors2 ← G.neighbors(u)
8 for w in neighbors2 do
9 if w �= v and w �= u and ({w, u}) /∈ S then

10 S.add(frozenset([v, u, w]))

Pn(v) ∝ d
3/4
v , dv is the out-degree of vertex v. Second-order similarity optimiza-

tion is used as an undirected graph, which captures more global information. In
addition, undirected graphs can use two methods to obtain two types of Embed-
ding, which are used in Concat. The denominator needs to be calculated for the
number of full nodes, and negative sampling is generally used for optimization. If
you want the two distributions to be consistent, use KL dispersion optimization,
and the optimization goal is:

min

⎡

⎣−
∑

(i,j)∈E

wij log p2 (vj | vi)

⎤

⎦ (5)

3.3 Vector Generation in Embedded Space

Converting graph data into embedding vectors is a common operation in graph
neural networks. And this process is called the graph embedding process, which
maps the nodes or subgraphs in the graph into a low-dimensional continuous vec-
tor space for subsequent analysis and prediction. The data nodes or subgraphs
as graph structures are mapped into a low-dimensional continuous vector space,
which is convenient for subsequent analysis and prediction. Subgraphs or nodes
are transformed into embedding vectors. First, a graph neural network model
suitable for graph embedding is designed. For example, models such as Graph-
SAGE, GCN, GAT, etc., can be used for graph embedding tasks. These models
are able to aggregate and convey information through neighbor relationships
between nodes. Model training using large-scale graph data.
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Fig. 3. Mapping between optimized embedding vector and subgraph relationship.

During the training process, the model will learn the constraint relationship
of nodes or subgraphs, which makes similar nodes or subgraphs closer in the
embedding space. After the model is trained, the nodes or subgraphs in the
graph can be converted into embedding vectors using the already trained graph
neural network model. For node embedding, you can directly use the output
of the intermediate layers of the model as the representation of the nodes. For
subgraph embedding, the relationship representation between subgraphs can be
obtained by aggregating the embedding vectors of all nodes in the subgraph. The
generated embedding vectors can be applied to different tasks such as similarity
computation, clustering, classification, etc. We adopt a neural network model
with the ability to constrain subgraph relationships and a neural network model
for embedding and constraining relationships between subgraphs. The graph
embedding model is used to convert the graph into an embedding vector, and the
order relationship between the subgraphs is judged by calculating the difference
between the embedding vectors.

In the embedding space, Fig. 3 shows the correct relationship between the
subgraphs. Yellow points represent embeddings with larger graph sizes, and
orange points represent embeddings with smaller graph sizes. Blue points rep-
resent our example, where we observe that generating vectors in the embedding
space is able to carry out constraints on subgraph relations. This allows us to
avoid extra overhead during the query phase.

4 Experiments

This section introduces our experiments. The purpose of experiment 2 is to evalu-
ate (1) the accuracy and query efficiency of two subgraph matching methods, the
SOTA method NeuroMatch [19] and our GERNS, in public datasets at different
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scales, (2) the performance improvement of backtracking algorithms combined
with our method.

4.1 Experimental Setup

Implementation and runtime environment. We implemented Algorithm 1 with a
repetitive-free neighborhood structure during embedding. We evaluate the per-
formance of our method using five algorithms and methods that optimize graph-
structured data embeddings to improve query efficiency: nearest neighbor search
algorithm, GraphSAGE, graph index structure, incremental update strategy, and
distributed computing.

Table 1. Graph datasets

Datasets Graphs Classes Avg. Nodes Avg. Edges
Malonaldehyde 893228 R(1) 9.00 36.00
Benzene 527984 R(1) 12.00 64.94
Reddit-Threads 203088 2 23.93 24.99
Triangles 45000 10 20.85 32.74

GraphSAGE is a common algorithm that we can use, and the overall perfor-
mance is good, while distributed computing is a popular technique to deal with
large-scale graph structure data and calculate it on multiple computers at the
same time. These algorithms and methods have improved query efficiency. All
the algorithms are implemented in Python language, and all the experiments
are run on 128G memory, 2TB SSD, Intel Xeon Gold 6240 2.6GHz CPU and
NVIDIA GeForce RTX 3080 Ti.

Datasets. We used four publicly available datasets in our experiments: Malon-
aldehyde, Benzene, Reddit-Threads, and Triangles. These datasets are sourced
from a collection of benchmark datasets for graph classification and regression.
We utilized these datasets for preliminary validation and evaluation. Table 1
provides an overview of the datasets.

Query Sets. We generated query graphs by randomly extracting subgraphs of
different sizes from the target graph. We ensured that our query graphs were
subgraphs of the target graph. The size of the query graphs can be set randomly
or custom-defined, and we chose the custom-defined approach to specify their
sizes. Each query set consists of ten query files, and each query file contains
query graphs of different sizes.
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4.2 Accuracy and Query Time Evaluation

We perform experiments by varying between 900,000 and 8 million vertices, that
is, four data sets. The largest graph has 8 million nodes and 32.15 million edges.
The evaluation metric is generated by utilizing our custom graph size generator.
We use a generator to partition in scale for each graph dataset. Only one query
set is used for each dataset to evaluate the precision of our subgraph matching.

Fig. 4. Performance of subgraph matching execution on two methods, NeuroMatch
and GERNS, on graph datasets. The x-axis represents different data set sizes.

Figure 4 shows the comparison of accuracy before and after optimization of
neural subgraph matching under four datasets. Because we embed a space of
repeat-free neighborhood structure, with the continuous increase of node scale,
the accuracy of each dataset shows a linear growth trend. In the case of small
scale, the accuracy of subgraph query optimization can almost keep very good.
This shows that our method can maintain good accuracy regardless of the scale
change in the space of embedding repetitive-free neighborhood structures.

4.3 Evaluation Results

We analyzed the comparison results of NeuroMatch and GERNS, two methods
of subgraph matching on four data sets, mainly comparing the results of the
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two methods in terms of accuracy and query time. To comprehensively evaluate
our experiments, each dataset is split by scale to verify the effectiveness of sub-
graph matching on GERNS under the two methods. The results of the overall
performance after graph embedding optimization with repeat-free neighborhood
structure are compared in Table 2.

Table 2. Comparison of Evaluation Results

Datasets NeuroMatch GERNS Improvement
Malonadehyde 6.34 s 70.4% 4.87 s 82.3% 1.47 s 11.9%
Benzene 5.9 s 52.4% 3.2 s 60.7% 2.7 s 8.3%
Reddit-Threads 3.6 s 53.4% 2.54 s 51.5% 1.47 s —
Triangles 1.67 s 87.6% 0.78 s 92% 0.89 s 4.4%

The comparative experimental results of NeuroMatch and GERNS before and
after optimization of the embedding space are shown. We use the same dataset
and the same graph scale before and after optimization. The main purpose is to
verify the accuracy and query time of subgraph matching. Optimized subgraph
matching query time As the graph size decreases, the query time also decreases.
Even when the optimized repeat-free neighborhood structure space has a large
scale, The performance is better than the unoptimized embedding space.

5 Conclusion

In this paper, we conduct an analysis of the whole process of object graph
embedding into space. We found that the embedding space will have repeated
neighborhood structures, which are meaningless and greatly degrade the perfor-
mance of subgraph matching in subgraph matching. To address the emergence
of this repeated neighborhood structure, we propose an algorithm for the opti-
mization of graph embeddings with repeated-free neighborhood structures. Our
formulated strategy extracts subgraphs from the target graph according to the
specified hop limit and uses 2-layer GNNs to embed them in the repetitive-free
neighborhood structure space. Using model training in this process to constrain
the relationship between subgraphs in the embedding space, we refer to this
optimized graph embedding method as graph embedding with repeat-free neigh-
borhood structure for subgraph matching optimization.

Through extensive experiments, we show that optimization based on graph
embeddings can speed up subgraph matching. Extensive experiments on pub-
lic graph datasets and real-world datasets demonstrate the effectiveness of our
approach.

Acknowledgements. The work was supported by the program under Grant No.
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Abstract. Answering complex natural language questions requires com-
prehensive reasoning about the question context and related knowledge.
There are two main problems with the existing LM (language model)
+KG (knowledge graph) methods. Firstly, they ignore the impact of neg-
ative words on Q&A inference. Secondly, they do not consider the effects
of contextual entities on relation weight. Taking into account the above
issues, we propose a method for Feature Enhanced Structured Reasoning
(FESR) that exploits a two-branch graph neural network to improve the
structured reasoning ability of question answering. Specifically, FESR
first sets feature constraints and changes the attention scores between
nodes, thereby strengthening the processing of negative-type question
answering, and then optimizes the relation weights to enhance the effect
of relations on question-answering inference by introducing contextual
entities. We evaluate our model on three datasets in the fields of common-
sense reasoning and medical question answering, and the experimental
results indicate the effectiveness of our method.

Keywords: Question answering · Structured reasoning · Feature
enhanced

1 Introduction

Question-answering reasoning is a challenging task that aims to reason about
answers from various knowledge based on natural language questions. Currently,
there are two approaches for question-answering tasks: using pre-trained lan-
guage models to implicitly encode unstructured textual knowledge and combin-
ing pre-trained language models with knowledge graphs for comprehensive rea-
soning. For the former, for example, Petroni et al. [15] verify that pre-training
language models on large text corpora can improve the accuracy of question-
answering tasks. But the predictions obtained by such methods are not inter-
pretable, and they perform poorly when handling structured reasoning.

Combining pre-training language models and knowledge graphs is the main-
stream method for question-answering reasoning. The language model is used
to obtain the initial representation of the question and answer, combined with
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 190–203, 2023.
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the knowledge graph for joint reasoning, and finally get a reasonable answer.
Previous research have demonstrated the effectiveness of this approach. Bao et
al. [1] propose constraint rules based on the knowledge graph, using the rules to
constrain complex problem entities, splitting the problem into simple problems
to get the answer. Sun et al. [19] combine knowledge base and entity-linked text,
enabling question answering to extract answers from question-specific subgraphs
containing text and knowledge base entities and relations. Feng et al. [4] con-
structs a subgraph from the knowledge graph and combines GNN to perform
multi-hop reasoning on the subgraph. Similarly, Yasunaga et al. [23] propose a
correlation score for subgraph redundant nodes, and introduce a message-passing
mechanism in GNN. Zhang et al. [24] fuse encoded feature representations from
pre-trained LMs and graph neural networks on multi-layer modality interaction
operations to achieve reliable reason on structured knowledge. These methods
effectively combine LM and KG, but face two challenges: on the one hand, atten-
tion scores between nodes do not consider specific contextual states (positive
sentence or negative sentence). On the other hand, the effect of context on edge
weight calculation is not fully considered.

Based on the above problems, we introduce a Feature Augmented Structured
Reasoning Network, or FESR for short, that leverages a two-branch network for
structured reasoning on question answering. Specifically, in one branch, we set
two states of 0 and 1 for entity concept description, and introduce negation word
features into node attention computation. In another branch, we weigh the con-
text with the head and tail entities of an edge, so that the weight of an edge is
related to the specific question answer. Finally, the features of the two branches
are fused for final reasoning. Experiments on the three data sets of Common-
senseQA, OpenbookQA, and MedQA-USMLE show that the performance of
FESR is better than other models with the same amount of parameters. Our
contributions are as follows:

• We propose a method for Feature Enhanced Structured Reasoning (FESR)
to perform question-answering reasoning, and experimental results on three
datasets (CommonsenseQA, OpenbookQA, MedQA-USMLE) to verify the
advancement of our approach.

• We propose a method to calculate the attention scores between nodes com-
bined with the specific context type (positive or negative) and then update
the node feature representation, improving the model’s sensitivity to negative
features.

• We weigh the context nodes and the related relations to obtain relation
weights, and use a two-branch strategy to encode two parts of node features,
enriching node feature information sufficiently.

2 Description

We use a pre-trained language model and a structured knowledge graph to
answer natural language questions and perform interpretable reasoning on their
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Fig. 1. The overall framework of FESR.

paths. For a question and answers in the context of question answering, we
first obtain the conceptual description of the entity and then use the function
fconcat(x) to convert x (the concatenated description of the entity and the ques-
tion) into a vector form. Finally, we apply the function fscore(x) to calculate
a correlation score from this vector. This score can be used to delete the unre-
lated nodes of the knowledge graph. The knowledge graph (KG) is defined as
G = (V,E), where V is all entities in the knowledge graph. E ⊆ V × R × V
means a collection of edges, where R is a collection of relation types.

Correspond the entities Vq and Va in question q and answer a to the knowl-
edge graph to obtain the initial subgraph (Vq, Va ⊆ V ). We use contextual infor-
mation to compute node-to-question relevance scores, simplifying subgraphs. At
the same time, feature constraints and recalculated edge weights are used to
enhance the features of nodes. Finally, the pre-trained context, the context fea-
tures of the GNN network, and the pooled reasoning path are comprehensively
adopted to reason the question and answer, making the question and answer
reasoning more reasonable and robust.
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3 Method

Figure 1 is the main architectural diagram of our model. For a given natural lan-
guage question q and its options a, we take the question and options as context
(Con). The specific process of FESR is as follows: We first retrieve the knowl-
edge graph subgraph according to the context, calculate the relevance score of the
node and the question, and delete irrelevant nodes in the subgraph based on this
score to obtain the question answering subgraph (Gsub). To strengthen the struc-
tured reasoning of question answering, we design a two-branch GNN network to
update node features. Finally, we use the pre-trained QA context features, the
pooled inference path, and the QA context features of the GNN network to make
the final prediction through the Multi-Layer Perceptron (MLP ).

3.1 Subgraph Construction

To simplify the path of reasoning and improve the efficiency of model reasoning.
We retrieve the QA subgraph according to the context, calculate the correlation
score between the nodes and the context in the subgraph and obtain the highly
relevant QA subgraph Gsub. Firstly, question and answer entities in the question
answer context are linked to the knowledge graph KG, and all entities on the
question-to-answer path are retrieved, up to four entities on one path. In this
way, we get a QA subgraph with many entities, while some entities (paths) have
little correlation with the QA. Then, we get the conceptual description vc

i of
each node vi according to the external dictionary library Wiktionary. We use
the pre-trained language model to calculate the correlation score between the
concept description of the node and the context. The whole process is formalized
as follows:

Svi
= fscore(fconcat([Con; vc

i ])), (1)

where the size of Svi
indicates how relevant this entity is to the question.

We only retain the top n (n = 200) scores nodes in the subgraph. We retrieve
all the nodes ranked in the top n and then connect all the edges between any two
nodes to obtain a knowledge graph subgraph (Gsub) that is highly relevant to
the question and answer, where Gsub = (Vr, Er), and Vr = {Vq, Va, Vother} and
Er means the edge after deletion. Vother does not include head and tail nodes.

3.2 Two-Branch GNN Network

To perform better reasoning on Gsub, we propose a two-branch GNN Network,
which is divided into feature constraints and weight optimization to update
the feature representation of nodes. The former uses additional states of the
context to constrain nodes, thereby affecting the attention score between nodes.
The latter uses context to optimize the weight representation of edges, thereby
affecting the features of edge-based nodes. The final node features obtained in
this way not only fully consider local neighbor features, but also consider context
and additional state features from a global perspective.
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Feature Constraints. In this subsection, we additionally compute the feature
influence of neighboring entities on the central entity by constraining words.
Specifically, we first add an additional state: 0 or 1 to the conceptual descriptions
of all entities in the context through context constraints (such as “not”, “no” in
negative sentences). For example, for the context: “If it is not used for hair, a
round brush is an example of what ?”, an extra state 0 is added after the concept
description of “hair”, and an extra state 1 is added after the concept description
of “round brush”. Non-contextual entity description in Gsub is added an extra
state in this way. Then, we calculate the constraint score Sij between two nodes
according to the additional state, and obtain the node feature Nf1 based on the
neighbor nodes. The whole calculation process is as follows:

g = fsore(fconcat([vc
i ; v

c
j ])), (2)

−→vi = fconcat(vi), (3)

Sij = Att(−→vi ,−→vj ) × e±g, (4)

Nf1 = ΔK
k=1

∑
j∈Ni

SijW
l
kh

l
j , (5)

where −→vi is the vector of vi passed through the language model. Att represents the
dot product attention mechanism: first splicing (−→vi ,−→vj ) two vectors for feature
dimension increase, and then with the defined feature matrix-vector of the same
dimension

−→
t to do dot product. ΔK

k=1xi represents the concatenation of features
from x1 to xk. W l

k represents the weight matrix in the attention mechanism, and
hl
j is the feature of the corresponding neighbor node. Ni represents the neighbor

node of vi. K represents the number of layers of attention. g means the score
between the concept descriptions of two nodes, if the state is the same, it is
positive, otherwise it is negative.

Optimization Weights. Gsub consists of different entities and relations. For
question answering, different relationships should have different weights when
updating node features [5]. Relationships between entities are often related to
head and tail entities. In this subsection, we first get the edge weight score
Sht by weighting the head and tail entities of the edge and the context entity.
Specifically, the calculation method is as follows:

Gh =
n∑

j=1

Att(−→vh,−→vi ), (6)

Gt =
n∑

j=1

Att(−→vt ,−→vi ), (7)

Sht = Gh+Gt

2∗num , (8)

where Gh is the normalized attention score of the head node and context nodes.
Gt is the normalized attention score of tail node and context nodes. num repre-
sents the number of context entities. vh and vt represent the head node and tail
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Fig. 2. The final feature representation diagram of nodes. Vj1 and Vj2 means the
neighbor nodes of node vi. Above all, our approach obtains the feature Nf1 between
nodes based on the impact of the additional state on inter-node attention scores. Then,
utilizing the influence of context on edge weights to obtain edge-based node features
Nf2. Finally, the two parts are fused to get the final node feature hvi .

node of the edge, respectively. By computing the correlation between an edge
(determined by its dependent head and tail nodes) and the context node, the
weight score of the context node to the relation is obtained.

Then we get the attention scores of the relation and its dependent nodes and
weight the two parts to obtain the final relation weight GR. We finally obtain the
node features Nf2 according to the relation weights. The formula is as follows:

Srel = σ(frelu(RijWm1 + bm1)Wm2 + bm2), (9)

GR = γ1
exp(Srel)

Ni∑

j=1
exp(Srel)

+ γ2Sht, (10)

Nf2 = ΔM
m=1

∑
j∈Ni

GRW l
mhl

j , (11)

where σ represents sigmoid. frelu is the function representation of relu. W l
m is

the transformation matrix parameter corresponding to the node. m represents
the number of attention layers. Rij represents the edge (relationship) between
node vi and node vj . γ represents the feature parameter, assigning the proportion
of the two-part score in the edge weight update, γ ∈ (0, 1), γ1 + γ2 = 1.

3.3 Feature Fusion

As shown in Fig. 2, after the entity in the knowledge graph passes through the
two-branch GNN network and performs a feature update, the final node feature
hvi

can be calculated. The two parts of features are fused into a unified node
feature, reducing the amount of parameters, so that updating the node features
reasonably. To acquire the enhanced node features, we concatenate Nf1 and
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Nf2, then obtain the final node features through a full connection and activation
function. The mathematical representation is as follows:

Nf3 = Concat[Nf1, Nf2], (12)

hvi
= frelu(Wl+1Nf3 + bl+1). (13)

3.4 Answer Selection

Contextual information is undoubtedly the most indispensable information in
the QA reasoning process. It can not only distinguish the types of nodes (ques-
tion entities, answer entities, and other entities) but also serve as a piece of
important media information to affect the feature representation of nodes, and
ultimately affect the correctness of QA reasoning. Some methods [23] apply con-
text to the question-and-answer entities to continuously update the contextual
representation. However, since we introduce the relevance score, each node in the
subgraph is closely related to the context so that the context information can
fully interact with other nodes. Therefore, we apply the context node to each
node, thereby enhancing the features of each node, and enriching the represen-
tation of the context, making the information required for the final reasoning
more comprehensive.

For a given natural language question and answer, we can aggregate informa-
tion from the following three aspects and infer the probability P (a|Q) that an
option a is the correct answer. Three aspects of information: (1) the contextual
knowledge combined by the question and answer of the language model (CLM ),
(2) a certain path pooled in the subgraph (

∨
path), (3) the context obtained by

aggregating the context features of all nodes on the path (CGNN ), at this time,
the context information is fully integrated by the nodes on the local path, making
the context information more abundant. The specific formula is as follows:

CLM = fconcat(Con), (14)

CGNN = 1
t

∑t
i=1 V f

i , (15)

where t means the number of nodes on the path, V f
i represents the contex-

tual feature in each node on the path. The final probabilities are calculated as
P (a|Q) ∝ exp(MLP (CLM , CGNN ,

∨
path)).

4 Experiment

4.1 Datasets and Knowledge Graph

Datasets. We evaluate our model FESR on three diverse datasets across two
domains: CommonsenseQA (CSQA) [20], OpenBookQA (OBQA) [13], MedQA-
USMLE [6]. CommonsenseQA is a question-answering dataset of 12,102 ques-
tions that require background commonsense knowledge beyond surface language



Feature Enhanced Structured Reasoning for Question Answering 197

understanding. OpenBookQA is a 4-way question-answering dataset that tests
elementary scientific knowledge. It contains 5,957 questions along with an open
book of scientific facts. We split the official 2018 data [14]. CommonsenseQA
creates questions from ConceptNet entities and relations. OpenBookQA probes
elementary science knowledge from a book of 1,326 facts. MedQA-USMLE, which
consists of 12,723 questions, is a 4-way multiple-choice medical QA task. We split
the original dataset using the method of [23].

Table 1. Performance comparison on CommonsenseQA in-house split. Experiments
are controlled using same seed LM.

Model IHdev (%) IHtest (%)

RoBERTa-large 73.1 68.7

+ GconAttn [21] 72.6 68.6

+ RGCN [2] 72.7 68.4

+ KagNet [10] 73.5 69.0

+ MHGRN [4] 74.5 71.1

+ RN [17] 74.6 69.1

+ QA-GNN [23] 76.5 73.4

+ GREASELM [24] 78.5 74.2

+ FESR (our) 79.2 76.1

Knowledge Graph. For our public domain QA datasets CommonsenseQA and
OpenbookQA, we use a general domain knowledge graph ConceptNet [18] as
our structured knowledge source to build a subgraph. It has 799,273 nodes and
2,487,810 edges in total. For MedQA-USMLE, we use a knowledge graph built by
Yasunaga [23] in 2021. The knowledge graph contains 9958 nodes and 44561 edges.
Entity descriptions are derived from the “original form” option in Wiktionary.

4.2 Baseline Methods

Fine-Tuned LMs. To explore the impact of knowledge graphs on question
answering, we compare FESR with vanilla fine-tuned LMs without knowledge
graphs. For the CommonsenseQA and OpenBookQA datasets, we use the lan-
guage models RoBERTa [12] and AristoRoBERTa [3] for processing, respectively.
For MedQA-USMLE, we adopt the state-of-the-art biomedical language model
SapBERT [11].

LM+KG Models. We also evaluate FESR’s ability to exploit its state con-
straints and edge weight optimization by comparing with existing LM+KG
methods: GconAttn [21], KagNet [10], MHGRN [4] QA-GNN [23], Relation Net-
work [17] RGCN [2], GREASELM [24], etc. Under the LM+KG method, the
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performance of GREASELM is the best above. The biggest difference between
our method and these baseline models is that we not only consider the impact
of negative words in computing node attention scores but also fully consider the
impact of context on edge weights.

Table 2. Test accuracy comparison to public OpenBookQA model implementations
(B = billion, M = million).

Model Test (%) #Params

ALBERT+KB [10] 81.0 ∼235M

HGN [22] 81.4 ≥361M

QA-GNN [23] 82.8 ∼360M

T5 [16] 83.2 ∼3B

GREASELM [24] 84.8 ∼359M

UnifiedQA [8] 87.2 ∼11B

FESR (our) 85.4 ∼360M

4.3 Experimental Results

As shown in Table 1, FESR conducts experiments on the training set and test set
of CommonsenseQA. FESR outperforms the fine-tuned language model by 7.4%
and outperforms the state-of-the-art model GREASELM by 1.9%. Experimental
results show that our method has some advantages when we use the same pre-
trained model.

Table 2 shows that FESR is 4.4% higher than ALBERT+KB and 0.6% higher
than the same type of method (GREASELM). Although there is a slight gap
with the state-of-the-art model (UnifiedQA), our number of parameters is 1/30
of it. FESR is currently the best model with the same parameters.

Table 3 represents the performance of FESR on the medical dataset (MedQA-
USMLE). Our model outperforms BioBERT-LARGE by 7.3% and outperforms
GREASELM by 5.6%. The possible reason is that the external knowledge
descriptions of entities in medical datasets are usually related to the answers.
Moreover, in the medical knowledge graph, the correlation between edges and
QA is easily demonstrated under the guidance of context. The attention scores
between medical entities are more significantly affected by additional status
words because the direction (directionality) between medical entities is obvious.
So the improvement is obvious.

Table 4 demonstrates that when we use the same LM(AristRoBERTa), FESR
achieves good results on OpenbookQA compared to other models. The boost
over other methods suggests that FESR makes better use of KGs by optimizing
edge weight and regulating inter-node attention scores using state constraints to
perform joint reasoning than existing LM+KG methods. To some extent, it also
proves the effectiveness of the method.
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Table 3. Test Accuracy compari-
son on MedQA-USMLE.

Model Test (%)

BioBERT-base [9] 34.1

BERT-base [7] 34.3

BioBERT-LARGE [9] 36.7

SapBERT-Base [11] 37.2

QA-GNN [23] 38.0

GREASELM [24] 38.5

FESR (ours) 44.0

Table 4. The results of the test
on OpenBookQA. (The same seed
LM).

Model Test (%)

AristoRoBERTa [3] 78.4

+RN [17] 75.6

+RGCN [2] 74.6

+QA-GNN [23] 82.8

+MHGRN [4] 80.6

+GREASELM [24] 84.8

FESR (ours) 85.4

Table 5. Performance of FESR on the CommonsenseQA IH-dev set on negative ques-
tions.

Model Negation (%)

RoBERTa-large (w/o KG) 63.8

QA-GNN [23] 66.2

GREASELM [24] 69.9

FESR (our) 71.1

Table 5 shows our FESR’s ability to handle negative issues on Common-
senseQA. Obviously, FESR outperforms LM+KG models with the same archi-
tecture (QA-GNN and GREASELM) in dealing with negative problems, demon-
strating its excellent structured reasoning ability. One of the most important
reasons is that state constraints regulate the attention scores between nodes.

4.4 Ablation Experiment and Analysis

Table 6 and Table 7 summarize the ablation study conducted on the two parts
of whether to introduce the two-branch GNN network, and the optimization of
edge weights in GNN to verify our work effectiveness further, using the dev set
of the CSQA.

Table 6. Ablation experiments of edge weights.

Ablation Part Dev-acc (%)

w/o edge weights 76.5

w/o context entity 77.1

FESR 79.2
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Table 7. Ablation experiment of two-branch GNN Network.

Ablation Part Dev-acc (%) Neg-acc (%)

Only Feature Constraints 77.9 68.7

Only Optimize Weights 77.4 67.9

FESR 79.2 71.1

Optimization of Edge Weights. The experimental results in Table 6 mean
that when GNN updates node features without considering edge weights, the
experimental results drop by 2.7%. When considering the edge weight, the per-
formance of the model will be improved. We can observe that the model perfor-
mance improves by 0.6% when using edge weights compared to not using edge
weights. On this basis, we introduce the influence of context information on edge
weights, and the model performance is improved by 2.1%, indicating that con-
text can enhance node features by optimizing edge weights, thereby improving
the accuracy of inference.

Two-Branch GNN Network. As shown in Table 7, when we only use feature
constraints, the model performance drops by 1.3%, and for negative sentences,
the model performance drops by 2.4%. When only edge weights are used to
enhance node features, the model performance drops by 1.8%, and for negative
sentences, the model performance drops by 3.2%. We believe that when the
extra state is adopted, the LM model can handle negative sentences well. Then,
after the subsequent feature fusion, the reasoning path of negative sentences is
strengthened, and the accuracy of the model is improved. The enhancement of
node features by edge weights also strengthens the reasoning of the model.

4.5 Case Analysis of Structured Reasoning

As shown in the first example in Table 8, when neighbor nodes are employed
to enhance node features, if there is no feature constraint, that is, no state is
added, the model tends to choose “bored”. When feature constraints are used
and negative words are in the context, the corresponding “you” status will be set
to 0. Since the status of “dry book” is 1, the status word limits the attention score
between nodes and then enhances node features through edge weights, causing
the model to tend to the correct answer “interested”. The second example is
similar to the first example, but since the “dry book” and “you” state words are
both 0, it has no effect on the attention score between nodes, making the model
still biased towards the correct answer “bored”.

This case illustrates the process of setting the state words to constrain the
node features, strengthening the structured reasoning of the question-answering
path, which indirectly demonstrates the effectiveness of our method.
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Table 8. Example in Commonsense for case study. FESR correctly handles negative
question answering.

CSQA Question(Negation ver1):

If you have to read a book that is very dry you may not become what?

Some Options:

A:interested B:bored

CSQA Question(double negation):

If you have to read a book that is not very dry you may not become what?

Some Options:

A:interested B:bored

5 Conclusions

In this paper, we propose a method for Feature Enhanced Structured Reasoning
(FESR) that exploits a two-branch graph neural network to improve the struc-
tured reasoning ability of question answering. In the two-branch graph neural
network, one branch uses state features for attention score calculation between
nodes, which strengthens the model’s ability to handle negative questions and
answers, and the other branch factors contextual knowledge into edge weights
to optimize the edge calculation of weights. Extensive experimental results show
that our method performs well on two public datasets and one domain-specific
(medical) dataset compared to previous LM+KG and LM methods. In the future,
we look forward to applying the proposed augmented structured reasoning net-
work to some question answering related tasks.
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Abstract. Facts are conditionally established in most cases. How-
ever, current Knowledge Graph (KG) techniques only focus on the mod-
eling and representations of facts, neglecting the presence of conditions,
which are necessary to establish the validity of facts. In this paper,
we propose Conditional Knowledge Graph (Conditional-KG), which
employs a three-layer hierarchical network to incorporate both facts
and conditions. To facilitate research on the automatic construction of
Conditional-KG, we manually annotate an innovative large-scale dataset
named HACISU. Based on the Conditional-KG design and HACISU,
we propose a simple construction model to benchmark HACISU. Experi-
mental results show that our benchmark model outperforms several base-
lines but still has a considerable margin with human performance. We
highlight the significance of HACISU, as it is the first carefully annotated
dataset with conditional information. Our dataset is publicly available in
http://101.200.120.155:5555/, hoping to serve as a challenging testbed
and an ideal benchmark for Conditional-KG construction.

Keywords: Conditional Knowledge Graph · Knowledge
representation · Open information extraction

1 Introduction

Conditions and facts are of equal gravity in providing knowledge. Without con-
ditions, facts cannot be utilized concretely in the downstream tasks. However,
current Knowledge Graphs (KGs) are simply constructed upon facts, resulting in
what are known as factual Knowledge Graphs [1]. Mainstream Information
Extraction (IE) techniques only extract facts from given text, while disregarding
other attached information such as conditions [2]. Actually, facts are conditional
rather than absolute. For instance, the fact “ginger syrup treats colds” only
sticks under the condition “colds are wind-heat type”. The condition here both
acts as a fact and complements another fact. Inspired by this insight, we adopt
a uniform structure, namely tuples, to depict conditions and facts separately.
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Note that KGs composed of facts without conditions provide limited service
to knowledge-intensive tasks. In this scenario, KGs that incorporate conditions
are desirable for comprehensive exploration. Many research [3,4] shows facts in
the science domain are conditionally dependent, building upon which, we pro-
pose Conditional Knowledge Graph (Conditional-KG). However, the flat net-
work structure of conventional KGs poses a challenge in involving both facts and
conditions, necessitating a new representation. Meanwhile, previous research [3]
have primarily focused on the scientific domain rather than the general domain.
The relations between facts and their conditions have yet to be explicitly repre-
sented in the KGs, limiting practical applications. Therefore, we carefully design
a hierarchical representation for the proposed Conditional-KG, with a specific
framework in the same manner as an ordinary triple to involve conditions.

Fig. 1. An intuitive comparison between the traditional Knowledge Graph (left) and
the Conditional Knowledge Graph (right). In the traditional KG, a severe conflict
arises, as it is unclear whether the ARM processor is superior to the Intel processor.
Yet the Conditional-KG can resolve the conflict by including the relevant condition.

We construct Conditional Knowledge Graph as three-layer networks, includ-
ing outer layer , middle layer and core layer (shown in Fig. 1). (1) Outer
layer comprises entity nodes and attribute nodes. Each entity node has mul-
tiple links to its attribute nodes. No links exist between any pair of entity nodes
in this layer. Entity nodes are colored green and attribute nodes are colored red
in Fig. 1. (2) Middle layer is composed of relation nodes, where each relation
serves as an individual node that connects the nodes in the outer layer as a sub-
ject or object (tagged ‘subj.’ and ‘obj.’). The relation nodes are colored orange
in Fig. 1. Using these links, we can obtain the information tuples (defined in
Sect. 3) from the previous two layers. (3) Core layer is composed of Knowledge
Units (defined in Sect. 3). It assigns a “fact” or “condition” tag to the informa-
tion tuples by annotating the links to related nodes in the middle layer. Each
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Knowledge Unit node, which is colored purple in Fig. 1, links one fact tuple and
an arbitrary number of associated condition tuples.

We annotate a large-scale dataset to support the study of Conditional-KG,
named HACISU, which stands for a Universal dataSet targetIng Conditional
knowledge grApH. The nomination is a tribute to Manchu, because HACISU

means “condition” in Manchu. HACISU comprises 5,141 sentences, 15,565
tuples and 8,451 conditional relation pairs. Each sentence is annotated with
tuples and their conditional relations.

Based on the Conditional-KG framework and HACISU, we introduce the
Conditional-KG construction task, which aims to extract tuples and their rel-
evant conditional relations between tuples from a single sentence (as formally
defined in Sect. 3). We propose a preliminary construction model to benchmark
HACISU. Our model is inspired by [5] and comprises three modules: Predicate
Extraction Module, Argument Extraction Module and Condition Discriminant
Module. Experimental results demonstrate the effectiveness of our model.

2 Related Work

The limited verifiability and semantic integrity of factual knowledge hinder the
extensive use and development of KGs in downstream tasks. Incorporating con-
ditional information into Knowledge Graphs can enhance the verifiability of facts
and improve semantic integrity. Prior research has recognized the significance of
conditions. For instance, MinIE [6] supplements conditions to KGs by adding
annotations to triples. Graphene [7] proposes adding a CONDITION field to
triples to include conditions. NESTIE [8] employs a nested representation to
model the relations between triples, including conditional relations. IMoJIE [9]
utilizes a Ranking-Filtering framework to incorporate conditional annotations
from multiple OPENIE systems. MacroIE [10] constructs a token span-based
graph to extract factual and conditional triplets separately.

Prior works have proposed overly complicated structures to incorporate both
facts and conditions, resulting in a significant disparity with the triple structure
of current KGs. In contrast, our Conditional Knowledge Graph structure can
seamlessly integrate with existing KGs. Additionally, previous methods rely on
intricate rules to extract conditions, whereas we adopt an end-to-end model
trained with our dataset, which is more efficient and generalizable.

3 Conditional Knowledge Graph

Informally, a Conditional Knowledge Graph (Conditional-KG) is a KG that
incorporates both facts and their conditions in its network representation. To this
end, we provide formal definitions of essential components of Conditional-KG.

Definition 1 (Tuple). Tuple is the primary unit of knowledge in Conditional-
KG. An instanced tuple in a Conditional-KG is formally defined as follows:

t = ({ent1 : attr1}, p, {ent2 : attr2}) (1)
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where t represents the instanced tuple, {ent1 : attr1} and {ent2 : attr2} denote
the subject and object respectively, and p is the predicate that indicates the
relation between them. In this definition, {ent : attr} represents an entity ent
and one of its attribute attr. We define ent ∈ {null} ∪ E and attr ∈ {null} ∪ A,
where E , A are the sets of entities and attributes, respectively.

Definition 2 (Conditional Relation). We use the variable ri,j to denote a
conditional relation. If tuple ti provides validation and supplementation to tuple
tj , there is a conditional relation from tuple ti to tuple tj , and ri,j is assigned 1.

In traditional KG, a tuple can only refer to a fact. However, in Conditional-
KG, we consider facts and conditions as different roles played by a tuple.
Whether a tuple represents a fact or a condition depends on its role in the
conditional relation. Given rj,i = 1, ti is a fact and tj is a condition .

Definition 3 (Knowledge Unit). A Knowledge Unit (KU) is an information
carrier that contains a fact ti and all its conditions, providing complete knowl-
edge about the fact. We formally define a KU as follows:

ki = {ti, Ci} (2)

where ti represents the fact and Ci = tj |rji = 1 represents the conditions for ti.

Definition 4 (KU-based Representation). A sentence can be represented
as a set of KUs, known as KU-based Representation (KU-Rep). We formally
define KU-Rep as follows:

KU -Rep = {k1, k2, k3, ..., kn} (3)

where n represents the number of KUs in the sentence.

Definition 5 (Conditional Knowledge Graph). It organizes entities,
attributes, tuples and Knowledge Units in a hierarchical manner. A Conditional-
KG is formed as G = {L1, L2, L3, E1,2, E2,3}, where Li denotes the i-th layer
and Ei,j denotes the connections between Li and Lj . Figure 1 is the visualization
of the Conditional-KG.

– The outer layer is denoted by L1 = {E ,A, EE,A}. A link (e, a) ∈ EE,A is
created (tagged as “attr.”) from the green entity node e ∈ E to the red
attribute node a ∈ A if a is an attribute of e.

– The middle layer is denoted by L2 = T where T is the set of tuples. Each tuple
is represented as an orange node tagged with its corresponding predicate. For
a tuple ti, (subject, ti) ∈ E1,2 is tagged as “subj.” and (object, ti) ∈ E1,2 is
tagged as “obj.”, where subject and object are entity node or attribute node
in L1.

– The core layer is denoted by L3 = K, where K is the set of Knowledge Units.
Each Knowledge Unit is represented as a purple node. For a Knowledge Unit
ki, (ti, ki) ∈ E2,3 is tagged as “fact”. {(tj , ki) | (tj , ki) ∈ E2,3, rji = 1, i �= j}
are tagged as “condition”.
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Fig. 2. The process of annotating Conditional Knowledge Graph datasets.

Definition 6 (Conditional-KG Construction). The construction of a large-
scale Conditional-KG involves two essential steps: (1) extracting the KU-Rep of
each sentence; and (2) merging the KU-Reps of all sentences to form a complete
Conditional-KG. In this work, we consider the first step as the most critical step
in Conditional-KG construction and treat it as equivalent to Conditional-KG
construction. The second step is left for future works.

4 HACISU: a Universal Dataset

To facilitate the automatic construction of Conditional-KG, we annotate a large-
scale dataset named HACISU. The annotated dataset aims to enable models to
process general literature.

4.1 Data Annotation Process

Aiming at the annotation of conditional information in general literature, we
selected AG News [11] due to its three advantages: (1) the data in AG News is
presented in the form of titles and head sentences of news, containing an aver-
age of 2.1 sentences, 6.4 tuples, and 3.5 conditional relations. (2) The data in
AG News has complete grammatical structures, with longer sentences contain-
ing compound structures and fewer informal language features. (3) AG News
contains 127,600 pieces of training data and 7,600 pieces of test data, covering
various domains.

We acquired 2,440 documents from AG News using stratified sampling,
including 440 manually-annotated gold-standard documents. These documents
served as expert ground truth to assess the annotating performance.

The annotation process is illustrated in Fig. 2, in which we employed a two-
round annotation strategy to ensure the quality of the dataset. In the first
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round, we allocated the 2,440 documents equally among the volunteers, the loca-
tion of which was concealed from the volunteers. We assessed their performance
on the gold-standard data and selected the ten best-performing volunteers for
the next round. In the second round, ten volunteers were tasked with annotating
44 gold-standard documents each. The volunteers cross-checked their previous
annotations and rectified any errors. We re-evaluated the volunteers’ perfor-
mance on the gold-standard data.

4.2 Annotation Rules

Completeness and Atomicity are the two main metrics of the annotation
rules. Completeness requires volunteers to attempt to extract all facts and con-
ditions from the sentence. Atomicity requires each tuple to be an indivisible unit.
Volunteers are supposed to obey the following sequential steps:

1. Identify all possible entities, attributes, and predicates in the given sentence
to form fact or condition tuples (Components Identification).

2. Extract fact tuples for the given sentence using the obtained components,
mainly from the main body of the sentence (Facts Extraction).

3. Extract condition tuples for the given sentence using the obtained compo-
nents, which are mainly from the modified or conditional parts of the sentence
(Conditions Extraction).

4. Recognize the conditional relations between fact tuples and condition tuples
and annotate them for the given sentence (Conditional relations Recog-
nition).

4.3 Analysis of Annotations

To assess the quality of the tuples, we employed the script proposed by [12],
which utilizes two metrics: area under the curve (AUC) and F1-score (F1). AUC
corresponds to the area under the receiver operating characteristic (ROC) curve,
whereas F1-score is the harmonic mean of precision and recall values. We cal-
culated the F1-score for the conditional relation (ConRel-F1) by comparing the
volunteers’ annotations with our gold-standard data. AUC and F1 provide a
measure of the tuple annotation quality, while ConRel-F1 indicates the accu-
racy of conditional-relation labeling.

Table 1. Measure on the two annotation rounds.

AUC F1 ConRel-F1

Round 1. 73.4 87.6 89.0

Round 2. 77.9 94.3 96.7

Improvement 6.1%↑ 7.6%↑ 8.7%↑
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Table 2. Comparisons of the three datasets used in the experiment.

Dataset #Sent. #Tuples #ConRel Manual Completeness

OPENIE4 1,109,411 2,175,294 ✗ ✗ ✗

CaRB 1,282 5,263 ✗ ✔ ✗

HACISU 5,141 15,603 8,449 ✔ ✔

Table 1 presents the quality of the two annotation rounds. It reveals a signif-
icant improvement in accuracy in the second round, which reinforces the relia-
bility of our dataset. These results demonstrate the effectiveness and necessity
of adopting a two-round annotation strategy.

We conducted a comparative analysis of our new dataset with two popular
OpenIE datasets in general domain. Table 2 provides an overview of the datasets.
The OpenIE4 dataset is extracted by the OpenIE4 model [11]. The CaRB [12]
is generated via human annotation based on the sentences in the OIE2016 [13]
dataset. Notably, HACISU includes not only tuples but also conditional rela-
tions and aims for maximal information completeness.

5 Preliminary Construction Model

Model Overview. The input to our model is a sentence W = (w1, w2, ..., wn),
where wi represents the i-th token, n is the sequence length. Our model extracts
a sentence’s Conditional-KG in three steps. First, all predicates from the input
sentence are identified using the Predicate Extraction (PE) module fpred. Sec-
ond, the Argument Extraction (AE) module farg is used to extract entities and
attributes associated with each identified predicate, which we refer to as argu-
ments of the predicate [5]. Third, the Condition Discriminant (CD) module
fcond is applied to extract the conditional relation between tuples. The PE and
AE modules use the sequence labeling paradigm [14] to extract tuples by pre-
dicting a set of tags. The PE module predicts a predicate tagset T̂pred = {ti|ti ∈
{PB , PI , PO}, i ∈ {1, 2, 3, ...n}}. The AE module extracts an argument tagset
Targ = {ti|ti ∈ {bB , bI , bO}, i ∈ {1, 2, 3, ...n}, b ∈ {ent1, attr1, ent2, attr2}}
based on W and T̂pred. Finally, the CD module predicts the conditional relation
R between tuples based on W and T̂pred. Our model maximizes the following
log-likelihood formulation:

n∑

i=1

(log p(tpi |W ; θpred) +
n∑

i=1

log p(tai |W, T̂pred; θpred, θarg))

+
n∑

i=1

n∑

j=1,j �=i

(log p(rij |W, T̂pred; θpred, θcond))

where θpred, θarg and θcond are trainable parameters from fpred, farg and fcond
respectively. Note that fpred also contributes to the extraction of arguments
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and conditional relations, and the loss and gradients obtained from these two
modules are propagated to θpred.

5.1 Predicate Extraction Module

The input is a sentence tokenized by SentencePiece, denoted as W = w1, w2...wn.
The BERT model [15] encodes W and the final hidden states H ∈ Rn×d are fed to
a predicate classifier. The predicate classifier is composed of a position-wise feed-
forward layer(two linear transformations surrounding a ReLU normalization)
and a softmax layer that generates logits for each token being {PB , PI , PO}.
The predicted tagset T̂pred is obtained by applying the argmax operation to the
softmax outputs. Finally, the per-token cross-entropy loss Lpred is calculated.

5.2 Argument Extraction Module

The Argument Extraction (AE) Module is designed to extract arguments for
one predicate at a time, and the process is repeated for multiple predicates. To
ensure stable training, we use the golden predicate tagset Tpred instead of T̂pred.

The AE module consists of a Transformer Encoder [16] and an argument
classifier with the same structure as the predicate classifier discussed in Sect. 5.1.
The module takes H and EP as inputs, where H is the same as the last hidden
states of BERT, as discussed in Sect. 5.1, and EP is a positional embedding
of binary values that indicate whether each token is included in the predicate
span [5]. The two features are concatenated to obtain X ∈ R

n×dmh , where dmh =
d + dpos, and dpos is the dimension of the position embedding EP . Then, X is
divided into query and key-value pairs and fed to the Transformer Encoder, with
X serving as the query and subsets of X derived from predicate positions serving
as the key-value pairs. The output of the Transformer Encoder is then fed into
the argument classifier. The process for obtaining a predicted argument tagset
T̂arg and the corresponding argument loss Larg is the same as that described in
Sect. 5.1.

5.3 Condition Discriminant Module

The Conditional Discriminant (CD) module is designed to target one predicate
pair (pi, pj) at a time, and the process is repeated for multiple predicate pairs.

The CD module consists of a Transformer Encoder and a binary classifier.
Similar to the AE module, we concatenate H and EP to obtain Y ∈ R

n×dmh ,
where dmh = d + dpos. dpos is the position embedding of ternary values that
indicates whether each token is included in the first or the second predicate
span. We then divide Y into query and key-value pairs and feed them to the
Transformer Encoder, with Y serving as the query and subsets of Y derived
from predicate pair positions serving as the key-value pairs. The arithmetic mean
vector of the Transformer Encoder’s output is calculated and fed to the binary
classifier. We obtain the predicted relation label r̂ij using the argmax operation
and calculate the corresponding cross-entropy loss, denoted as Lcond.
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The final loss for parameter updating is the summation of Lpred, Larg, and
Lcond, and the training process follows a multi-task learning schema.

Table 3. The results of the 10-fold cross-validation of CaRB and HACISU. Statistics
show that the consistency of HACISU is better than that of CaRB.

Dataset Measure AUC F1 ConRel-F1

CaRB mean 37.4 60.2 -

variance 3.9 4.8 -

HACISU mean 32.9 51.3 69.9

variance 1.7 2.9 0.9

Table 4. The performance of our benchmark model and baselines on HACISU. The
higher the score, the better the performance.

Method AUC F1 ConRel-F1

Stanford 11.0 18.8 -

ClausIE 15.2 27.1 -

OpenIE4 17.5 31.5 -

SpanOIE 28.6 45.4 48.8

BERT+BiLSTM 29.7 46.2 51.3

Multi2OIE 30.9 48.3 57.4

Our model 32.2 50.7 66.9

HUMAN performance 71.6 84.2 85.8

6 Experiments

6.1 Experimental Setup

Dataset & Validation. As discussed in Sect. 4, we use HACISU dataset for
Conditional-KG construction. We split the dataset into training, validation, and
test sets in a ratio of 6:1:3, based on the number of sentences. We repeat the
experiment five times and report the average results on the test set.

Evaluation Metrics. We evaluate the performance of Conditional-KG con-
struction models based on the extracted tuples and conditional relations. For
tuple evaluation, we use AUC and F1 metrics mentioned in Sect. 4.3. For evalu-
ating conditional relation extraction, we use ConRel-F1 mentioned in Sect. 4.3.
The evaluation is conducted by comparing the model’s extraction results with
the golden data.
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Table 5. The results of cross-domain experiments of our model under different cate-
gories. The higher the score, the better the performance.

Source ⇒ Target AUC F1 ConRel-F1

Three ⇒ World 30.4 46.5 63.5

Three ⇒ Sports 29.6 44.0 61.1

Three ⇒ Business 29.9 46.7 62.9

Three ⇒ Sci/Tech 30.3 45.3 62.3

Implementation Details. We select the best performing model on the vali-
dation set and evaluate it on the test set. The Transformer Encoder consists of
six multi-head attention blocks with eight attention heads, and a 64-dimensional
position-embedding layer. We train our model with the AdamW optimizer [17],
using a base learning rate of 2e−5 and a batch size of 128. The dropout rate
used in our experiments is 0.1.

6.2 Data Consistency

Inspired by cross-validation in model selection [18], we employ our preliminary
model to conduct 10-fold cross-validation on HACISU and report the results in
Table 3. We inspect the comparison with CaRB since it was manually annotated.
We have three main observations:

First , the variance of F1 and AUC on HACISU is significantly smaller than
that of CaRB, indicating that the consistency of HACISU is superior. Second ,
the ConRel-F1 score on HACISU has a higher mean and a smaller variance,
which demonstrates that our model can effectively identify the conditional rela-
tions between tuples. Third , the F1 and AUC scores obtained on HACISU are
slightly lower than those on CaRB. One possible explanation is that constructing
a Conditional-KG is more challenging than constructing a general graph because
it requires extracting more tuples, including both facts and conditions.

6.3 Comparison of Construction Models

Baselines. For unsupervised open IE methods, namely Stanford OpenIE [19],
ClausIE [20], OPENIE4 [11], ConRel-F1 metrics are not applicable since they
cannot generate conditional information between tuples. Conversely, supervised
open IE models like SpanOIE [21], BERT+BiLSTM [15] and Multi2OIE [5], can
only extract facts and cannot detect conditional relations. Therefore, we resort
to conditional annotations to train the Condition Discriminant Module, extract
the facts, and then detect the conditional relations.
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Human Upper Bound. For an estimate of human performance on HACISU,
we recruit two volunteers who were not involved in the annotation process. They
are asked to extract tuples and conditional relations from the test set. As shown
in Table 4, the volunteers achieved results of 71.6% and 84.2% for AUC and F1,
respectively, and 85.8% for ConRel-F1. These results serve as a reference for the
upper bound of performance that can be achieved on our dataset.

Results. We report the performance of our model on the task of Conditional-KG
construction in Table 4, with AUC, F1, and ConRel-F1 metrics. Our model out-
performs the strongest baseline by 1.3%, 2.4% on AUC and F1, and achieves sig-
nificant promotion on the ConRel-F1 measure by 9.5%. This can be attributed to
two factors: (1) Our model effectively solves the entity overlap problem. (2) Our
model employs a multi-task learning schema, which allows for mutual benefits
between tuple extraction and conditional relation extraction. The performance
gaps between our model and human performance are 39.4% and 33.5% in AUC
and F1, and 18.9% in ConRel-F1, indicating significant room for improvement.

6.4 Generalization Analysis on HACISU

We are concerned about the generalization of HACISU, as it is declared as a
universal dataset in general domain. To investigate whether a model trained on
HACISU can perform well on unknown domain literature, we conduct experi-
ments where the model is trained on three categories of literature and test on the
remaining category. Results are reported in Table 5, with two findings observed.

First , the performance across different categories is fairly consistent, and
comparable to the results obtained by our model in Table 4 where training and
testing are done in the same domain. Second , our model performs best on the
World field and worst on the Sports field. One possible reason is that the data
in the sports category differs from the other categories in the feature space.
However, the performance differences between categories are not significant.

6.5 Case Study

We utilize our model to annotate sentences in OPENIE4 dataset, and obtain
a Conditional-KG comprising of 1,023,602 fact tuples and 500,898 conditional
tuples. Figure 3 illustrates one case constructed by the Conditional-KG. In this
particular case, the fact “Intel is still winning” is constrained by the condition
“in gaming and mainstream computing”. This example serves as evidence of the
effectiveness of our proposed model in extracting tuples and conditional relations,
which can be applied to other datasets and real-world scenarios.
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Fig. 3. A case constructed by the Conditional-KG.

7 Conclusion

The importance of conditions in knowledge representation cannot be overlooked.
However, current KGs only focus on representing facts while ignoring their cor-
responding conditions. This paper proposes the Conditional-KG that takes into
account both facts and conditions, which is a departure from existing KGs. To
facilitate further research in this area, we manually annotate a large-scale dataset
named HACISU, which is the first to annotate conditional information on gen-
eral domain literature. We also propose a preliminary construction model trained
on HACISU to demonstrate the feasibility of constructing a Conditional-KG.
The results indicate that our model outperforms the strongest baselines, pro-
viding an improved approach to constructing KGs that captures both facts and
conditions. Overall, the proposed Conditional-KG provides a promising direction
for future research in knowledge representation and reasoning.
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Abstract. Effective management of massive electronic documents is one
of the hot topics for social services. There exist several knowledge bases
of documents published for researchers to explore downstream appli-
cations such as PubLayNet and DocBank. Nevertheless, these datasets
are mainly designed for document layout analysis and do not consider
the linkages among documents. To improve this issue, in this paper,
we present an official document knowledge graph, namely ODKG, which
aims to collect the offical documents for effective management. We design
a lightweight ontology of official documents. It can bring a well-defined
schema of collected documents so that they could share more linkages
with each other. We present the algorithms of element extraction, docu-
ment archiving, and knowledge alignment during the process of ODKG
construction, and further evaluate the corresponding algorithms based on
our constructed datasets. Experimental results show that several algo-
rithms can be competent to above tasks to some extent. Finally, we list
three use cases of ODKG that are helpful for managers to improve the
efficiency of their document management.
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ments stored in the database is not enough to satisfy the various requirements
such as document circulation, document approval, and auxiliary decision-making
[1]. However, there exist few researchers that pay attention to intelligent pro-
cessing and knowledge discovery tailored for official documents. Meanwhile, high-
quality official documents with both labeled elements and textual information
are still insufficient. Therefore, it is essential to construct an official document
knowledge graph that freely provides for the research community so that more
approaches will be further investigated and improved.

There exist several knowledge bases of documents that are constructed in
recent years such as PubLayNet [2], DocBank [3]. On the other hand, several
works focused on the relation extraction for governmental documents. Cui et al.
[4] proposed a method based on distant supervision for element relation extrac-
tion, which combined ALBERT pre-training language model with a capsule net-
work to extract the person names and position relationships in the official docu-
ments. Xu et al. [5] designed a model based on reorganizing and extracting the
elements according to the structural logic of official documents. In these ways,
the performances of element extraction have been improved to some extent.

Although these works are proposed for the intelligent processing of offi-
cial documents, they still suffer from several limitations. For PubLayNet and
DocBank, the main purposes of them are to provide a fair comparison for docu-
ment layout analysis and other downstream applications, so they are not knowl-
edge bases tailored for official documents. On the other hand, the data sets of the
works that focus on document element extraction are not open source. Besides,
the timeliness of these official documents is not considered.

To fill the above gaps, we dedicate a continuous effort to collect official docu-
ments from three domains and construct a official document knowledge graph,
namely ODKG, for the research of effective documents management. Precisely,
we design a lightweight ontology that brings a well-defined schema of collected
documents, including 39 basic classes, 10 relations and 30 properties. It not only
can make official documents from different sources share more linkages, but also
can bring better services for effective management such as document circulation,
document recommendation and so on. We design corresponding algorithms for
element extraction and document archiving during the process of ODKG con-
struction and generate lots of structured triples. Moreover, we utilizes knowledge
alignment models to generate correspondences among values of documents from
different documents and employ high-quality reasoner to verify the timeliness of
offical documents so that more reliable linkages of documents can be shared. We
evaluate the designed algorithms based on our constructed datasets and analyze
their performances. Finally, three use cases are listed based on ODKG, which
are helpful for users to improve the efficiency of document management.

2 Related Work

Zhong et al. [2] is one of the first groups that constructed the dataset called Pub-
LayNet dataset for document layout analysis, which contains more than one mil-
lion PDF articles that are publicly available on PubMed CentralTM. The authors
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demonstrated its value for downstream applications, including recognizing the
layout of scientific articles by deep neural networks and their transferability on
a different document domain by transfer learning.

Subsequently, Li et al. [3] developed a benchmark dataset that contains 500K
document pages with fine-grained token-level annotations for document layout
analysis, called DocBank. The authors constructed it in a simple way with weak
supervision from the LATEX documents published on arXiv.com. Benefited from
it, various proposed models from different modalities could be evaluated fairly,
and more multi-modal approaches would be further investigated and optimized.

Zhang and Wu [6] collected 26,660 science and technology policies, and con-
structs the corresponding knowledge graph. The authors employed Bi-LSTM
deep learning model to extract structured triple, and utilized the graph database
to store knowledge and achieve graphical retrieval. This constructed method can
enhance an alternative idea of KG for the science and technology policies domain.

In addition, several researchers focused on the relation extraction for govern-
mental documents. Cui et al. [4] proposed a method based on distant supervision
for entity relation extraction, which combined ALBERT pre-training language
model with capsule network to extract the names of persons and position rela-
tionships in official documents. Experiments showed that it could effectively
improve the performances of relation extraction with fewer labeled official docu-
ments. Xu et al. [5] designed a structure tree model to reorganize and extract the
elements of official documents according to the structural logic of documents.
The authors put forward a structured graph network to realize the extraction
and management of these documents.

Nevertheless, the above research efforts still suffer from some limitations.
PubLayNet and DocBank are not knowledge bases tailored for official docu-
ments. Their main purpose is to provide a fair comparison for document lay-
out analysis and other downstream applications. Although other research works
focus on the relation extraction of documents, their related data sets are not open
source. In addition, the timeliness of these official documents is not considered.
To the best of our knowledge, ODKG is the first open-source knowledge graph
of official documents, in which the issue of timeliness among official documents
is solved.

3 The Construction of Official Document Knowledge
Graph

Figure 1 shows the framework of ODKG construction, which contains four layers,
including the data layer, extraction layer, knowledge layer and application layer.

– Data Layer. The primary problem of knowledge graph construction is to
collect massive suitable data. To achieve this goal, we combine real projects
and focus on the domains of military, security and technology, whose docu-
ments are crawled from the Ministry of Industry and Information Technology,
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Fig. 1. The framework of ODKG construction.

the Nuclear Safety Administration, the Ministry of Science and Technology,
and the Government Official Website.

– Extraction Layer. It mainly includes ontology design, knowledge mining
and element extraction. The ontology is mainly based on the elements in view
of different classifications for official documents. The task of knowledge mining
is to generate fine-grained categories and rules. Element extraction is designed
to identify the value of specified elements defined in official documents.

– Knowledge Layer. It is based on the methods of relation extraction and
document archiving, which transforms the contents of document to struc-
tured triples. Further, the ODKG will continuously update and align the
elements from new crawled official documents by the high-quality reasoner
and alignments models.

– Application Layer. It mainly provides services through ODKG, including
semantic query, association discovery, and auxiliary decision-making.

3.1 Ontology Design

To model a well-defined schema of official documents for effective document man-
agement, we focus on the domain of military, security, and technology because
of the requirements of real projects. We discuss with related managers for doc-
ument management and conclude two kinds of official documents, which are
general official documents and business ones.

For general official documents, there exist fifteen sub-categories that cover
twenty elements. Relatively, for business ones, they are divided into some special
domains that focus on several elements in view of the event conceptual, including
subject, object, location, finished time, purpose/task, and origin. Therefore, we
choose to conceptualize these categories and elements, and further define a set
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Fig. 2. The overview of lightweight ontology

of relations and properties by protégé1 to build the relationships among them,
which can enrich instantiate extracted triples for our knowledge graph.

Figure 2 shows an overview of our lightweight ontology, where blue ones rep-
resent subclassof that are basic relations. Overall, we define 39 basic concepts,
10 relations and 30 properties in the ontology. Benefited from a well-defined
schema, It not only can make official documents from different sources share
more linkages, but also bring better services for effective management such as
document archiving, document recommendation, auxiliary decision-making.

3.2 Documents Crawling

With the help of scrapy framework, we mainly crawl the descriptive information
of documents that have been published on official websites, such as the Min-
istry of Industry and Information Technology2, Nuclear Safety Administration3,
Ministry of Science and Technology4, and Government Official Website5

Finally, we crawled 1335 official documents from the above origins and divide
them into several sub-categories. Table 1 lists the statistics of these official doc-
uments.

3.3 Element Extraction

As most official documents are unstructured texts, it is hard to improve the effi-
ciency of document management and satisfy the various requirements. Therefore,
1 https://protege.stanford.edu/.
2 https://www.miit.gov.cn/.
3 https://nnsa.mee.gov.cn/.
4 https://www.most.gov.cn/.
5 http://www.gov.cn/.

https://protege.stanford.edu/
https://www.miit.gov.cn/
https://nnsa.mee.gov.cn/
https://www.most.gov.cn/
http://www.gov.cn/
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Table 1. The statistics of offical documents

Categories Sub-categories Number

Military Construction Approval Documents 116

Battle Rewards Documents 59

Personnel Appointment Documents 9

Conscription Notice Documents 7

Security Environmental Protection Documents 397

Cyber Security Documents 35

Quality Supervision Documents 28

Technology Innovation Reform Documents 198

New Energy Documents 40

Technology Exploration Documents 32

Government Document —– 414

we try to extract important elements and their value in official documents from
the business perspective and general one.

For business elements, we select 6 elements (i.e., subject, object, location, fin-
ished time, purpose/task, origin) according to the designed ontology. Relatively,
for general elements, we mainly consider 9 elements from 20 defined properties
because more than half of the values of elements usually do not appear in our
crawled documents, the final elements are title, issue-agency, document-number,
index-number, finished-date, published-date, topic-words, website-type, general-
type.

We mainly consider the following strategies to parse official documents and
obtain the values of elements in official documents as soon as possible.

– Template-based extraction. It is one of the effective methods to obtain
huge values of general elements and some business ones, Moreover, we employ
TextCNN [7] for sentence clusters among official documents, so that the num-
ber of manually defined templates could be reduced.

– Named entity recognition. For the defined elements (e.g., Subject, Object,
Purpose) in our designed ontology, we evaluate several methods of named
entity recognition [8] and select AutoNER [9,10] to capture the business ele-
ments of documents, which is a robust positive-only distant training method
for phrase quality estimation to minimize the human efforts.

– Relation extraction. For several important elements (e.g., issue-agency,
published-date) in our designed ontology, we employ promising relation
extraction models from DeepKE [11] and select the best model according
to our labeled corpus to achieve our goal.

Finally, we obtained a total of 3394 business elements and 4820 general ones
from crawled official documents.
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3.4 Document Archiving

Document archiving is the one of key functions of official document management.
As shown in Table 1, we need to archive the crawled documents to one of the
defined sub-categories. To reduce the heavy burden of managers, we design an
automatic archiving method based on a pre-training model tailored for Chinese
texts6, which mainly includes two steps:

– Feature Selection. Except for the main body of official documents, we select
some of the general elements usually asserted in documents and refine them to
a set of features. In this way, the performances of methods could be improved
to some extent.

– Feature Learning. We feed labeled corpus on the pre-training model BERT
[12] to learn the feature presentation of documents and optimize it for the
task of Chinese text classification.

Finally, we train a model to achieve document archiving, whose average accuracy
is more than 90% (see Sect. 4.1).

3.5 Knowledge Alignment

As the topics and sources of official documents are different, so some extracted
values with the same semantics are heterogeneous. Therefore, it is essential to
find the correspondences among these elements, which can share more linkages
and enhance the performances of some applications for document management.
To achieve this goal, we try to employ the following approaches for knowledge
alignment.

– Rule miner method [13]. It is a semi-supervised learning algorithm to
iteratively refine matching rules and discover new matches of high confidence
based on these rules.

– Knowledge graph embedding-based method [14]. It encodes entities
and relations of the knowledge graph in a continuous embedding space and
measures entity similarities based on the learned embeddings.

Based on the above models of knowledge alignment, we finally obtain the align-
ments among extracted values of elements (e.g., subject) and build a synonym
dictionary to maintain these alignments.

3.6 Knowledge Storage and Update

After we utilized the extracted values to instantiate the properties based on
our designed ontology, we transform them into structured triples {(h, r, t)} with
a specified URL by Jena7. For knowledge storage, we employ Neo4j8 to store
6 https://github.com/NLPScott/bert-Chinese-classification-task.
7 http://jena.apache.org/.
8 https://neo4j.com/.

https://github.com/NLPScott/bert-Chinese-classification-task
http://jena.apache.org/
https://neo4j.com/
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the transformed triples, which is one of the efficient graph bases for storing the
RDF triples and provides one convenience query language called Cypher. After
we finished the normalization of the value of elements by our built synonym
dictionary, we obtain 7332 entities and save 16133 triples in Neo4j.

To keep ODKG in sync with the websites, we try to periodically crawl the
updated official documents and record the updated logs. Moreover, we employ
the high-performance reasoning engine Drools9 to verify the timeliness of official
documents. Correspondingly, two rules are defined as follows.

R1: (x, state, invalid) : −(x,FinishDate, t1) ∧ (x,CurrentDate, t2) ∧ (t1, <, t2)
R2: (x, state, invalid) : −(x,RelatedDocName, n) ∧ (y,RelatedDocName, n)
∧ ((y,TimelessKeyWords, “abolish”) ∨ (y,TimelessKeyWords, “cease”)

The first rule is verifying the timeliness of official documents by their finished
date. If the current date is less than the finished date, then this document is
invalid. The second rule is abolishing the old official document when a new
one with the same name is published with some trigger words (e.g., “abolish”,
“cease”).

4 Evaluation and Application

4.1 Evaluation

In this section, we mainly evaluate techniques of element extraction, document
archiving, and document recommendation that are utilized to obtain abundant
structured triples of documents and enrich ODKG. The evaluation is conducted
on a desktop computer with an Intel(R) CoreTM i9-12900KF (3.4 GHz) which
has 64GB memory and RTX 3080 GPU.

To verify the effectiveness of above techniques, we randomly divide the
labeled official documents into the training set and test set, in which there are
1054 official documents in the training set (79.0%), and the number of test data
set is 281 (21.0%).

Evaluation of Element Extraction. For the element extraction, we employ
precision, recall, and F1-measure for evaluation in the following tables. Table 2
and Table 3 list the results of business element extraction and general element
extraction. From these two tables, we can observe that:

– Our designed method can identify the value of business elements existing in
the texts of documents. The average precision of this task is 89.3%, the recall
is 65.6%, and the F1-measure is 73.3%. Nevertheless, the extracted results
of “Object” and “Purpose” are not well because there are more than one
values for them in the documents that need to be extracted.

9 https://www.drools.org/.

https://www.drools.org/
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– The performances of general elements are better than the ones of business
elements. We notice that there exist some semi-structural lists asserted in
documents, which can complement the lacked values of general elements to
some extent. Nevertheless, the performance of “Published Date” for the
general element extraction is not satisfactory, the main reason is that the
boundary recognition between “Published Date” and “Finished Date” is
not clear, so it is easy to be confused during the general element extraction.

Table 2. The results of business element extraction

Element Type �Labeled �Extracted �Correct Precision Recall F1-measure

Subject 1280 1056 998 0.935 0.771 0.845

Object 3631 2481 2076 0.836 0.571 0.679

Purpose 1475 921 858 0.931 0.581 0.716

Finished Time 914 755 725 0.960 0.793 0.868

Location 203 255 197 0.875 0.970 0.920

Origin 199 255 198 0.880 0.995 0.934

Total 7702 5663 5042 0.893 0.656 0.733

Table 3. The results of general element extraction

Element Type �Labeled �Extracted �Correct Precision Recall F1-measure

Title 401 401 381 0.950 0.950 0.950

Issue Agency 401 389 373 0.958 0.930 0.944

Document Number 401 385 384 0.997 0.957 0.977

Index Number 205 205 205 1.000 1.000 1.000

Finished Date 187 271 102 0.376 0.545 0.445

Published Date 401 102 102 1.000 0.254 0.406

Topic Word 61 61 61 1.000 1.000 1.000

Website Type 225 225 225 1.000 1.000 1.000

General Type 401 294 277 0.942 0.690 0.797

Total 2683 2333 2110 0.904 0.752 0.827

Evaluation of Document Archiving. The results of document archiving
are listed in Table 4. Overall, the average accuracy of this task for 10 sub-
categories is 90.0%. We observe that the results of several sub-categories of
“Battle Rewards”, “Conscription Notice”, “Personnel Appointment”,
“Technology Explo-ration” are satisfied because of their clear boundary. On
the contrary, the performances of “Quality Supervision ”, “CyberSecurity”
and “New Energy ” are not well. We analyze that the boundary of these cat-
egories are vague, so it is easy to be confused for document archiving. It will be
optimized in our future work.
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Table 4. The results of document archiving about our method

Categories Sub-categories Test Number Correct Number Accuracy

Military Construction Approval 49 49 0.857

Battle Rewards 17 17 1.000

Personnel Appointment 3 3 1.000

Conscription Notice 2 2 1.000

Security Environmental Protection 121 120 0.992

Cyber Security 7 4 0.571

Quality Supervision 9 5 0.556

Technology Innovation Reform 58 50 0.862

New Energy 14 9 0.643

Technology Exploration 1 1 1.000

Total Number – 281 253 0.900

Evaluation of Document Recommendation. To further evaluate the per-
formances of document recommendation, we employ several classic unsupervised
methods, including TF-IDF, DeepWalk [15], LINE [16], Node2Vec [17]. In this
task, we introduce two metrics from the field of information retrieval to evaluate
that are formally defined as follows.

Top@n =
1
n

n∑

i=1

f(Ri) = Ri ∈ S?1 : 0 Rankmin =
1
n

n∑

i=1

arg min
l

Rankil.

The first metric is Top@n which denotes the proportion of correct documents
ranked in the top n. If the ith similar document belongs to the standard set
S, then f(Ri) = 1. Otherwise, the value is 0. The second metric, written by
Rankmin, is defined as the minimum rank of similar documents in descending
order for each given document. The larger Top@n is, the closer of the similar
search list is to the ideal one. Relatively, the smaller Rankmin is, the earlier
people can see similar documents.

Table 5 lists the recommended results by several classic unsupervised meth-
ods with two existing strategies [18]. The main differences between these two
strategies are whether to integrate the value of extracted elements. For one
document in the test set, we need to obtain the vector representations of text
and elements, receptively. For the vector representation of text, we employ the
arithmetic mean of the learned vectors of entities in the text, denoted by Vtext.
Relatively, for the vector representations of extracted elements, we concatenate
the vectors together, denoted by VE .

Vtext =
1
l

l∑

i=1

V i
ent, VE = [V 1

ele⊕, ...,⊕V m
ele],
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where V i
ent and V m

ele are the vector representations of entities and extracted
values in documents, ⊕ is a concatenate operation R

a×d ⊕ R
b×d → R

(a+b)×d, l
is the number of entities in the new document and m is the number of extracted
elements. Notice that, some extracted values for elements are empty, we set these
values to zero vectors with the same dimension. For the strategy with text and
extracted elements, we still need to concatenate Vtext and VE together, denoted
by [Vtext ⊕ VE ].

Table 5 lists comparison results in terms of Top@n and Rankmin. From the
table, we can observe that:

– For the training set with single texts, the results of TF-IDF outperform the
ones of LINE and Node2Vec. We discover that the constructed network on
the segmented tokens is not enough to obtain fine-grained correlations among
documents.

– For the training set with texts and extracted elements, the performances of
TF-IDF are better than the original ones. Benefited from extracted elements,
more than half of the performances of NE-based models are improved because
more values of extracted elements can be shared in the constructed networks.

– Overall, the results of NE-based models are better than ones of TF-IDF with
help of extracted elements, but their performances are not stable. We analyze
that the ratio of extracted values of elements and the designed concatenation
strategy may restrict the performances of NE-based models. It makes sense
to optimize these two aspects for document recommendation.

Table 5. The results of document recommendation with two strategies

Categories Training Set Test Set Rankmin Top 10

TF-IDF DeepWalk LINE Node2Vec TF-IDF DeepWalk LINE Node2Vec

Government Doc 414 Texts 339 7.60 8.28 7.76 8.13 1.40 1.57 1.60 1.41

Environmental Doc 393 Texts 313 9.88 9.92 9.78 9.96 1.00 1.01 1.01 1.00

Innovation Reform Doc 198 Texts 155 6.05 5.35 5.44 5.77 1.62 2.47 2.72 2.19

Construction Approval Doc 116 Texts 92 9.25 9.63 8.75 9.46 1.21 1.13 1.54 1.23

Battle Rewards Doc 59 Texts 48 9.36 9.36 8.91 9.45 1.81 1.00 1.00 1.00

New Energy Doc 40 Texts 30 5.20 2.90 3.80 3.40 1.90 4.80 3.40 2.90

CyberSecurity Doc 35 Texts 29 1.67 1.83 1.33 1.67 7.16 6.00 7.33 6.00

Technology Exploration Doc 29 Texts 24 5.20 4.40 3.00 4.00 1.00 2.20 1.60 1.20

Quality Supervision Doc 28 Texts 22 0.67 1.17 0.17 0.83 50.50 17.60 33.00 26.17

Government Doc. 414 Texts +Extracted Elements 339 7.72 7.67 7.80 7.73 1.43 1.78 1.76 1.93

Environmental Doc. 393 Texts + Extracted Elements 313 9.87 9.94 10.00 9.93 1.00 1.00 1.00 1.00

Innovation Reform Doc. 198 Texts + Extracted Elements 155 6.13 4.76 5.12 4.93 1.60 2.72 1.93 2.00

Construction Approval Doc. 116 Texts + Extracted Elements 92 9.45 9.83 9.88 9.83 1.13 1.04 1.00 1.00

Battle Rewards Doc. 59 Texts + Extracted Elements 48 9.45 9.72 8.36 9.27 1.09 1.00 1.00 1.00

New Energy Doc. 40 Texts + Extracted Elements 30 5.50 2.80 3.60 3.70 1.70 6.50 5.60 6.30

CyberSecurity Doc. 35 Texts + Extracted Elements 29 1.33 2.16 1.67 2.00 8.50 4.33 5.33 4.17

Technology Exploration Doc. 29 Texts + Extracted Elements 24 5.20 5.80 6.00 7.20 1.20 1.00 1.00 1.00

Quality Supervision Doc. 28 Texts + Extracted Elements 22 0.67 0.17 0.33 0.17 45.33 51.83 33.50 45.50

4.2 Application

We list three use cases that benefited from ODKG (shown in Fig. 1) for effective
management.
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– Semantic Retrieval. It can achieve semantic retrieval. For example, if users
query one document, ODKG can display its comprehensive structured infor-
mation in the form of knowledge cards. Benefited from this service, managers
can quickly understand the key contents of documents.

– Association Discovery. It can recommend some similar documents for
managers, which is helpful for them to further evaluate the reliability of other
news and analyze current situation.

– Auxiliary Decision-Making. Its comprehensive information and above
services can assist managers to make better decisions. Nevertheless, it still
depends on the scale of ODKG and the ratio of extracted values of defined
elements.

5 Conclusion

In this paper, we presented an official document knowledge graph, namely
ODKG. Our work is to collect documents from main domains (e.g., military,
security, technology). According to our designed lightweight ontology, lots of
structured triples are obtained by our designed methods of element extraction
and document archiving. We further employ knowledge alignment models to
generate correspondences among values from different documents so as to they
are able to share more linkages. The result is a high-quality official document
dataset, which is helpful to enhance the efficiency of document management for
users and provides an open data resource to researchers for further investigating
and optimizing the related methods for its potential services.

In the future work, our plan is to broaden the official documents, so that
ODKG becomes more comprehensive and covers more topics. Besides, we try to
explore promising algorithms for the use-cases so as to provide better services
for managers.
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Abstract. This work present CCD-ASQP, a cross-domain Aspect Sen-
timent Quadruple prediction(ASQP) dataset in chinese. Based on e-
commerce scenario, this dataset lables 15,878 sentiment quadruples out
of 3,700 reviews across 6 life domain and 10 product entities. Multiple
baselines have been test on CCD-ASQP in terms of ASQP task, and per-
formances have been compared with ChatGPT. Deep learning models’
dramatic decline of accuracy of when shifting to out-of-distribution data
shows the lack of domain adaptiveness. ChatGPT achieves relatively
consistent cross-domain performance in few-shot setup. Error analysis
suggests effect of Chinese language forms on ASQP task. CCD-ASQP
leaves great space for sentiment analysis tasks in Chinese language and
perspectives from other disciplines are helpful.

Keywords: Fine-grained Aspect-Based Sentiment Analysis ·
Sentiment Quadruple · Dataset Construction · ChatGPT

1 Introduction

Traditional sentiment analysis don’t distinguish the entity that the sentiment
is ascribed to, which is necessary in practical use [8,10]. So, the task of aspect-
based sentiment analysis (ABSA), a fine-grained sentiment analysis subtask has
been proposed to mine sentimental information from opinion texts (social media
tweets, product reviews...) together with its targeted entity and domain attribute
(collectively referred to as aspect) [9,16]. The four key elements of ABSA task are
(1) aspect term (2) aspect category (3) opinion term and (4) sentiment polarity.

As [6,15] pointed out that the correlation between the aspect term and the
opinion term is helpful for better ABSA. Later studies in this domain include
extracting multi-elements at one time with newly proposed PLMs [4,11,19,20]

The dataset can be obtained from https://github.com/blcunlp/CCD-ASQP.
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and eventually develop into the Aspect Sentiment Quad Prediction (ASQP)
task [21]. The ASQP task extracts 4 sentimental elements at one time and pro-
vide the most complete attributive sentimental information.

However, after reviewing previous ASQP tasks, we have found 2 major prob-
lems with data (details of ABSA and ASQP tasks and datasets provided in Part
2):

Cross-Domain Issue: most studies focus on single or few product domains, but
they overlook that the same opinion term can express different sentiment in dif-
ferent domains. And there is no study or datasets discussing this phenomenon
from socio-linguistic perspective. For example,” big size” is basically positive
when describing a car, but it is likely to be a negative emotional polarity when
describing a laptop. Lack of high-quality data in Chinese: As shown in
Table 1, the prevalent ASQP datasets ACOS and ABSA-QUAD are both based
on English texts. There is no ASQP datasets in Chinese which extract 4 senti-
mental elements at one time.

To mitigate the effect of the mentioned problems, there is a need to test cur-
rent approaches on a qualified Chinese multi-domain aspect dataset. This article
presents CCD-ASQP, the first comprehensive cross-domain sentiment analysis
dataset in Chinese. It comprises of 15,878 manually tagged sentiment quadru-
ples based on both explicit and implicit sentiment texts. We also conduct ASQP
experiments on our dataset with several common approaches of sentimental anal-
ysis and compare the result with the-state-of-the-art LLM, ChatGPT. Results
have been analyzed in socio-linguistic perspectives. With the relatively unsatis-
factory metrics, we finally conclude that CCD-ASQP stands a challenging and
meaningful dataset which calls for further investigation.

The main contributions of this work are as follows: (1) We present an original
and demanding ASQP dataset in Chinese. With 15,878 manually annotated
sentiment quadruples, ASQP experiments were carried out on this dataset, the
unsatisfactory performances of overall baselines show there is still a great space
for improving current sentiment analysis approaches.

(2) Results demonstrate that model with fine tuning Paraphrase outperforms
ChatGPT few-shot in training data, sweeping machine domain. But ChatGPT
achieves consistent performance across all domains while fine-tuned models meet
dramatic decline. It shows poor generalization ability of current approaches.

(3) we find the superior performance of CCD-ASQP. Additionally, we anal-
yse this phenomenon from socio-linguistic views and find the effect of language
structure and social phenomenon on sentimental analytic modeling.

2 Related Work

Aspect-based sentiment analysis (ABSA) [2] aims to predict sentiment
polarities on all aspect categories mentioned in the text. Pontiki et al., 2015
defines aspect category as a combination of an entity type and an attribute
type (e.g., Food/Style Options). Early studies focus on the prediction of a sin-
gle element such as extracting the aspect term, for example, Bu et al. detect
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Table 1. The prevalent sentiment analysis datasets

Dataset Language Domain Type

SemEval-2014 English Laptops, restaurants ABSA

SemEval-2015 English Laptops, restaurants ABSA

SemEval-2016 Multilingual Electronics, hotels, restaurants ABSA

TOWE English Laptops, restaurants ABSA

ASC-QA Chinese Bags, cosmetics, electronics ABSA

MAMS English Restaurants ABSA

ASAP Chinese Restaurants ABSA

ACOS English Laptops, restaurants ASQP

ABSA-QUAD English Restaurants ASQP

aspect categories in Chinese reviews [2]. More recently, the extraction of mul-
tiple emotional element tasks are proposed in ABSA. Peng et al. proposed the
aspect sentiment triplet extraction task (ASE) to extract aspect items, opinion
items and sentiment polarity in text [11], Wan et al. introduced the target aspect
sentiment detection (TASD) task, aiming to predict the aspect category, aspect
term, and sentiment polarity simultaneously [17].

Aspect Sentiment Quad Prediction (ASQP) [21] is a fine-grained ASBA
tasks that are proposed recently. Cai et al. introduced two new datasets anno-
tating sentimental quadruples [3]. Zhang et al. proposed a Paraphrase model-
ing strategy, which transformed the target sequence into the obtained natural
language sequence by combining the pre-established template with the labeled
ASQP quadruples [21]. Bao et al. introduced a opinion tree generation model to
reveal a comprehensive attribute-level sentiment structure [1].

Datasets: As shown in Table 1: The series of SemEval sentiment analysis
datasets [12–14] have been widely used and pushed forward related research.
Compiling user reviews from e-commerce websites, they are small size but qual-
ified domain sentiment analysis datasets (SA) datasets. The restaurant subset
includes 5 aspect categories (i.e., Food, Service, Price, Ambience and Anec-
dotes/Miscellaneous) and 4 polarity labels (i.e., Positive, Negative, Conflict and
Neutral). MAMS [7] tailors SE-ABSA14 to make it more challenging, in which
each sentence contains at least two aspects with different sentiment polarities.
TOWE [5], ASC-QA [18] are high-quality datasets respectively oriented at aspect
opinion term extraction and Q&A form ABSA tasks; The ASAP [2] dataset is the
largest Chinese ABSA dataset consisted of 46370 restaurant comments, with 18
aspect categories and aspect-based sentiment polarity annotated; The ACOS [3]
and the ASBA-QUAD [21] datasets are proposed to solve ASQP tasks.

3 Dataset Collection and Analysis

The following facts may be helpful for understanding the dataset construction.
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3.1 Data Source and Domain

CCD-ASQP dataset comes from JD.com, one of China’s mainstream e-commerce
platforms, which allows users to post coarse-grained reviews on restaurant items
they have purchased. Monitoring customer feedback can be automated with
Aspect Level Sentiment Classification (ALSC) which allows us to analyse specific
aspects of the products in reviews.

In order to test domain difference in terms of sentimental information, we
selected 6 domain data with low correlation and covering common categories to
construct a cross-category dataset. They are the car domain, beauty makeup and
skin care domain, food domain, sports domain, jewelry domain and smart home
domain. Then, for each domain we chose no less than 1 product to represent
the domain. That is, there are 10 sub-domains in total, namely bicycles for car,
lipsticks and perfumesfor beauty and skin care, milk for food, skipping rope for
sports,ear stud and ear clip for jewelry, cooking machine, smart switch, smart
doorbell and sweeping robot for smart home. To facilitate later processing, data
cleaning was performed before data annotation.

3.2 Sentiment Quadruple

To fulfill ASQP task, the complete 4 sentimental elements need to be annotated
manually from the above source domain, namely:

(1) aspect term: the entity or entity aspect mentioned explicitly or implic-
itly in the text. (2) aspect category: the category to which the aspect items
mentioned in the article belong. (3) opinion term: the opinion description of
the aspect term mentioned in the text. (4) sentiment polarity: the emotional
description of the aspect items mentioned in the article.

Their language representations are illustrated in Fig. 1:

Fig. 1. The ABSA sentiment quadruple

3.3 Aspect Categories

In CCD-ASQP, we extract 14 common aspects for the 10 subdomains, namely
price, merchant service, appearance design, functional effect, quality, material,
capacity, component function, installation and use, sound, safety, taste, produc-
tion date, portability and user experience. It should be pointed out that since it
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is a cross-domain dataset, even the same aspect category may represent different
information in different domains.Taste refers to whether it tastes good in the
milk category, but it refers to whether it smells good in the perfume category,
as shown in Table 2.

Table 2. Different semantics of Taste aspect across domains. The meaning of “更香
浓的牛奶味” is ”have rich milk taste”, and the sentiment quadruple is (taste, taste,
positive, rich), the meaning of 这味道真是一点都不好闻 is ”it smells really bad”, and
the sentimen quadruple is (smell, taste, negative, bad)

Domain Example Sentiment quadruple

Milk 更香浓的牛奶味 (牛奶味,味道,positive,香浓)

Perfume 这味道真是一点都不好闻 (味道,味道,negative,不好闻)

3.4 Sentiment Data Ratio Control

In real life, the distribution of positive and negative reviews in different domains
may be inconsistent with the distribution of existing datasets. In order to test
the adaptive ability of known data of current approaches on different domains,
the ratio of positive and negative in the verification set and test set is manu-
ally controlled to different proportions. The details of the positive and negative
reviews in the 10 domains are shown in Table 3.

Table 3. The details of the sentiment polarity in the 10 domains.

Sweeping Robot Bicycle Lipstick Jumping Rope Smart Switch

Pos vs. Neg none 144:156 57:243 193:106 193:106

Ratio none 1:1 2:8 6:4 6:4

Smart Doorbell Milk Perfume Cooking Machine Ear Stud

Pos vs. Neg 205:95 190:110 24:176 71:229 89:211

Ratio 7:3 6:4 1:9 2:8 3:7

3.5 Annotation Guidelines and Process

2 annotators need to consider the predefined 14 aspect categories and annotate
the sentiment quadruple from cleaned row data. Only positive and negative are
considered when labelling the sentiment polarity. The work flow of the labeling
process is shown in Fig. 2. The F1 value between quadruples marked by the two
annotators is 75.1%, which shows that there is a substantial agreement between
the annotators in the extraction of sentimental quadruples.
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Fig. 2. Labeling process, an overview

3.6 Dataset Analysis

CCD-ASQP consists of 3,700 real user reviews out of 7,440 sentence, with 15,878
manually-labelled sentiment quadruples. Table 4 shows the number of quadruples
in the 10 subdomains and average quadruple distribution of CCD-ASQP.

Table 4. The statistics and label distribution of CCD-ASQP.

Sweeping robot Bicycle Lipstick Jumping rope Smart switch

Average quadruple per review 4.54 4.59 4.94 5.64 3.63

Average tokens per review 90.62 91.65 74.11 79.77 78.77

Pos-aspect: Neg-aspect 723:196 722:338 258:1137 441:832 486:585

Number of quadruples 4543 1379 1483 1692 1090

Smart doorbell Milk Perfume Cooking machine Ear stud

Average quadruple per review 3.06 3.53 4.65 4.15 3.57

Average tokens per review 77.70 70.44 88.20 87.02 60.01

Pos-aspect: Neg-aspect 723:196 722:338 258:1137 441:832 486:585

Number of quadruples 919 1060 1395 1246 1071

The average number of aspects per review in the 10 subdomains are all
around 5, the highest is 5.64 for the skipping rope subdomain, and the lowest
is 3.06 for the smart doorbell subdomain. Except for ear stud and ear clips, the
average tokens per review of each other subdomains is about 70%–90%, it means
CCD-ASQP has a large amount of data, which alleviates the problem of data
sparseness. As shown in Table 3, the ratio of positive aspects and negative ones
among all domains is deliberately set as different.

In a nutshell, CCD-ASQP is based on concrete resource with dense sentiment
information. And its sentiment polarity ratio have been carefully conditioned to
monitor different real-world situation.
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4 Experiments

4.1 Experimental Setup

Dataset Split. The entire dataset is divided into 10 subdomains. We use models
fine-tuned on the sweeping robot subdomain to predict the other 9 subdomains,
which consist in out-of-distribution data. Data split can be seen from Table 5.
Training set, validation set and test set refer to data of the sweeping robot
subdomain.

Table 5. Detailed data split. The OOD represents data from the other 9 subdomains,
respectively bicycles, skipping ropes, perfumes, lipsticks, milk, cooking machines, ear
studs and ear clips, smart switches and smart doorbells. Each consists of 300 data.

Train Dev Test OOD Dev OOD Test

700 200 100 200 100

Evaluation Metrics. We adopt the F1 score as the main evaluation metric. A
sentiment quadruple prediction is correct if and only if all predicted elements
are exactly the same as the gold label. At the same time, the precision and recall
scores of the ASQP task are also used as evaluation indicators.

Experiment Details. The model parameters are optimized by Adam with a
learning rate of 3e−4. The batch size is 16. Our experiments are carried out with
an Nvidia RTX 3090 GPU. The experimental results are obtained by averaging
20 runs with random initialization.

Experiment on ChatGPT. We conducted experiments using the gpt-3.5-
turbo model by OpenAI, with temperature being the default value of 1. Instruc-
tions are as follows: You are a useful assistant for extracting emotional quads,
understanding and remembering the following concepts: The Concept of Emo-
tional Quads and specific examples. Please identify the emotional quads con-
tained in the following sentence. Due to the unique format of the task, we con-
ducted experiments based on three settings: one-shot, three-shot, and five-shot.
The experimental results were calculated using a matching method.1

4.2 Baselines

Since the ASQP task has not been explored previously, in addition to choosing
two models for experiments on the English dataset, we also selected two models
with better effect on the extraction of triplets, and made some modifications to
them and used them on the ASQP task.
1 The “aspect category” and “sentient polarity” items were accurately matched, while

the “aspect term” and “opinion” items were fuzzily matched, that is, they are correct
as long as they contain key information.
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– TASO-BERT [17]. TAS is proposed to extract (ac, at, sp) triplets, it reduces
the problem of joint detection to two sub-problems of text classification and
sequence labeling question. By changing the labeling scheme in sequence
labeling, the model can predict aspect items and opinion items at the same
time.

– GAS [22]. It is the first work to deal aspect level sentiment analysis with
generative method. Its basic model is the pre trained language model T5.
We improve it by changing its base model to mT5 and taking the emotion
quadruple sequence directly as the target sequence.

– Extract-Classify [3]. It implements quadruple extraction in two steps. The
first step is to extract aspect-opinion binary groups in comments, and then
obtain aspect category and sentiment polarity based on aspect-opinion clas-
sification.

– Paraphrase [21]. It is also a generation-based method. It proposes a new
paraphrase modeling paradigm, transforming the ASQP task into a para-
phrase generation problem, and transforms the sentiment quadruple q = (c,
a, o, p) through the projection function “Pc(c) is Pp(p) because Pa(a) is Po
(o)” is linearly transformed into a natural language sentence. Both input and
output are natural language sentences, which can more naturally utilize the
rich knowledge in the pre-trained generative model.

Table 6. The F1 value for ASQP task for baseline and ChatGPT in 10 subdomains

Sweeping robot Bicycle Lipstick Jumping rope Smart switch

TSAO-BERT 42.67 22.10 18.68 22.34 29.16

GAS 45.69 16.53 2.13 24.04 19.35

Extract-Classify 17.89 15.03 10.96 16.44 16.91

Paraphrase 67.14 22.24 10.37 28.57 35.47

ChatGPT-oneshot 42.39 28.53 18.12 22.27 22.70

ChatGPT-threeeshot 45.80 27.34 21.17 31.33 28.40

ChatGPT-fiveshot 44.54 27.48 19.73 26.95 23.68

Smart doorbell Milk Perfume Cooking machine Ear stud

TSAO-BERT 36.23 13.24 24.07 22.34 18.45

GAS 33.33 10.37 2.45 8.26 13.41

Extract-Classify 17.28 16.87 12.82 12.44 17.95

Paraphrase 45.21 16.36 10.76 16.01 26.43

ChatGPT-oneshot 28.57 19.27 30.23 29.20 23.81

ChatGPT-threeeshot 35.47 19.97 34.72 24.75 29.55

ChatGPT-fiveshot 31.33 20.92 31.82 26.12 25.38
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Fig. 3. The F1 value for ASQP task based on ChatGPT (%). ChatGPT-1/3/5 repre-
sents providing corresponding cases for each category

4.3 Main Results

As shown in Table 6 and Fig. 3, all models achieve the best f1 on the test set of
sweeping robots, and the change into other domain will affect the extraction of
sentiment quadruples. The unsatisfactory results in the other 9 domains show
that the migration ability of the model on OOD dataset is not strong. Second,
ChatGPT perform the best 7 of 10 times, and for current approaches Paraphrase
performs slightly better.

Further analyse on domain change, we find model’s performance on sentiment
analysis is affected by the ratio of sentiment polarity. For example, milk and
jumping rope subsets belong to different domain, but their F1 values are similar,
while smart doorbell and smart switch don’t show the situation. As shown in
Table 3, milk and jumping rope share the similar sentiment polarity distribution.

T5-based generative model (i.e., GAS and Paraphrase) performs slightly bet-
ter than Bert-based models. Which shows that encoding natural language tags
into the target output through a unified generative architecture can make full
use of label semantics.

When more context is given in the few-shot setting (one-shot to three-shot),
ChatGPT learned this task form from the example and the effect is improved.
However, as the context further increases (from three-shot to five-shot), the
effectiveness of ChatGPT fluctuates slightly, which may be due to existing cases
interfering with ChatGPT’s understanding of the task. ChatGPT performs best
on the test set of sweeping robots, as the example of instruction comes from
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the training set of sweeping robots. This indicates that ChatGPT lacks domain
generalization ability in ASQP tasks.

4.4 Error Analysis

By observing the error quadruple labels predicted by the best performing model
paraphrase in the baselines, the following conclusions can be drawn. The specific
cases of error analysis are shown in Table 7.

Table 7. The specific cases of error analysis of paraphrase model in CCD-ASQP.
Red colored fonts represent failed predictions and the correct sentiment elements in
quadruples.

Review Predicted label Target label

The overall is designed
with
magnetic absorption,
don’t
worry about the use of a
long
time will not fasten

(use experience,
use,
negative,
will not fasten securely)

(use experience,
use,
positive,
don’t worry about
not fasten securely)

This smell is very special,
a little heady, others
don’t
know, but I can not
accept
it

(taste,
smell,
positive,
special)

(taste,
smell,
negative,
special)

The map construction is
fast,
but a little incomplete,
but
the efficiency of the map
construction is still high

(functional effect,
build,
positive,
incomplete)

(functional effect,
build,
negative,
incomplete)

Double Negation Affects Polarity Judgment. In Chinese, double negation
affects the judgment of sentiment polarity in that double negation means the
contrary. The model fails to recognize the first negation and only recognize the
second. Therefore, in the judgment of polarity of emotion, the positive emotion
will be judged as the negative emotion. For example, as in review 1, there are
other contents mixed with used for a long time between the first negative don’t
worry and the second negative not fasten, and the model only recognizes the
second negative not fasten. That is why the emotional polarity judgment given
by the model is negative. But in fact, it means positive it can be fastened after
a long time.
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The Context Influences the Judgment of Sentiment Polarity. In Chi-
nese, situational context also affects the judgment of sentiment polarity. It is
hard to judge the correct polarity simply by word semantics. However, if the
context is complex or obscure, the model may not be accurate in the recogni-
tion of the sentiment, which will lead to the wrong prediction. For example, in
review 2, the adjective special refers to unusual and different, if we judge emo-
tion polarity only by its word meaning, it is easy to be misjudged as positive,
but in Chinese cultural context, a little heady is a more subtle way of saying
I’m not comfortable with the smell while I’m not comfortable with it anyway is
a more obvious negative emotion. Therefore, judging from the context, special
here expresses a negative emotion.

The Predictive Express Different Sentiment Connotation with Differ-
ent Noun Head. In Chinese, the same predictive has both positive and nega-
tive meaning, depending on the noun head. Therefore, the sentiment polarity of
the former evaluation has an impact on the latter. For example, in review 3, the
words related to map construction include fast, incomplete and high (efficiency).
For map construction, fast and high (efficiency) are positive evaluation, while
incomplete is negative evaluation. However, because incomplete is sandwiched
between fast and high (efficiency), the model is influenced by the positive emo-
tions before and after the recognition, so incomplete is also judged as a positive
emotion.

5 Conclusions and Limitation

ASQP task has become a popular task in sentiment analysis of NLP, but there is
still no studies on Chinese datasets. We built a Chinese cross-domain sentiment
dataset, and conducted sentiment quadruple extraction task on it. Comparison
has been done between current ASQP approaches and popular LLM, ChatGPT.
Together with error analysis from a linguistic perspective, the unsatisfactory
results suggest poor domain adaptation for current methods and call for deeper
investigation on this dataset.

As far as we are considered, the limitation of our research may cover (1)
domain richness, this article attempts to test cross-domain generalization abil-
ity of current approaches, however, the entities included are not comprehen-
sive enough, and the conclusion may not be reusable when replaced with other
domains. (2) The sentiment analysis of Chinese dataset may be strongly affected
by unique Chinese rhetorical techniques and social context also, which we have
not considered in our dataset construction. Beyond that, performing ASQP tasks
on Chinese remains a challenging problem that deserves further exploration.
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Abstract. Move analysis is a primary research topic in computational
linguistics that relates to pragmatics. It plays a crucial role in analyzing
the intent and coherence of the text. This paper introduces a innovative
exploration of move analysis to scientific papers and presents a novel
task - move structure recognition in scientific papers. Existing datasets
are inadequate to support this task. Thus, we manually annotated a
dataset called Scientific Abstract Moves Dataset (SAMD). The implicit
mixture and counterfactual reasoning in the move structure’s content has
led to poor performance in move recognition. This research examines the
issue in depth and presents a new concept of move saliency attribution,
which can illuminate the contribution of words to specific move struc-
tures. On this foundation, we design a new move recognition training
mechanism, which fully consider the context information of the move to
achieve promising performance on SAMD and NLPContributionGraph
shared task dataset (NCG). This is the first attempt at interpretability of
move recognition, giving us the possibility to understand how the model
makes decisions and identify potential biases or errors in the model.

Keywords: move structure recognition · saliency attribution ·
scientific papers

1 Introduction

Move analysis, proposed by Swales et al. in 1981, has gained significant attention
in the field of academic discourse research [14]. Moves refer to rhetorical units
that serve as complete communicative expressions, representing segmented dis-
course fragments with consistent linguistic orientation [15]. This paper aims to
apply move analysis to scientific papers and introduces a new task called move
structure recognition in scientific papers.
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The goal of this task is to employ automated techniques for the recognition
of move structures in scientific papers at the sentence level. Move structure
recognition is essentially a text classification problem. An example diagram is
shown in Fig. 1. This research lays the foundation for subject knowledge mining,
and also provides the possibility to give more accurate feedback and evaluation
on the move structure and language characteristics of scientific writing.

Fig. 1. An example of move recognition in a scientific paper abstract, each sentence
corresponds to one or more move labels.

The existing datasets only focus on the abstract of structural rules, which
means they have limited domain coverage. The move shows different character-
istics depending on the field. Therefore, it is necessary to develop a large-scale
dataset with manual labeling to accelerate research on scientific move recogni-
tion. We construct a high-quality moves corpus for abstracts of scientific papers
(SAMD). This corpus marked the move structure labels of the paper, such as
background, gap, method, purpose, result, conclusion, contribution and impli-
cation.

In irregularly structured abstracts of scientific papers, a common challenge
arises where the content encompassing move structures is implicitly intertwined.
This often results in the blending of multiple move elements and counterfactual
reasoning within a single sentence. For example, consider the following sentence:
“We propose neural models that simulate the distributions of these response
offsets, taking into account the response turn as well as the preceding turn [10]”
While the sentence structure aligns with the purpose move, its actual meaning
is more closely associated with the method move. This phenomenon leads to
blurring of the boundaries of move determination, which brings difficulties to
the automatic move recognition of scientific papers.
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To solve the above problems, this paper introduced the concept of move
saliency attribution. Drawing inspiration from feature attribution methods [11,
13], we treat each word as a feature and compute its contribution (saliency value)
towards predicting the move label, Fig. 2 illustrates the key idea. Then, this
paper design a training mechanism based on saliency attribution. The proposed
strategy fully considers the contextual information and forcing the model to
focus on the most significant text related to the label [12], which can be seen as
a more stringent version of attention.

Fig. 2. An illustration of move saliency attribution, which assigns a saliency value to
each word to measure its impact on the overall semantic meaning of a move.

We have conducted extensive experiments on SAMD and NCG (NLPCon-
tributionGraph shared task1). According to the results: contextual information
effectively assists the judgment of the move function of the current sentence,
the saliency attribution method captures the underlying model and explains
the model prediction well. On the two tasks, the F1 gains are 1.8% and 1.9%
compared to the baseline method.

Our contributions can be summarized: we propose a novel task, step structure
recognition in scientific papers, and manually labeled a new dataset (SAMD).
We propose a move structure recognition method for abstracts of scientific
papers with saliency attribution, which uses sentence position characteristics
and adjacent preceding and following sentences as contextual information, and
uses saliency as evidence to enhance learning. Experimental results show that
our method is significantly better than the baseline method in many aspects and
achieves better performance.

2 Related Work

2.1 Move Structure Recognition Dateset

Only a few datasets have been built for move structure recognition. Wang et
al. constructed a standard abstract dataset selected from the Applied Linguis-
tics [17]; Ding et al. constructed a structured dataset of abstracts of scien-
tific papers in various disciplines including natural sciences, social sciences, and
1 https://ncg-task.github.io/.

https://ncg-task.github.io/
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humanities [4]; Dayrell et al. constructed a corpus of abstracts in the fields of
Physical Sciences and Engineering, Life and Health Sciences [3]; Liakata et al.
constructed the ART Corpus, which consists of the full text of papers in the
fields of physical chemistry and biochemistry [6].

2.2 Feature Attribution

The aim of feature attribution (FA) is to identify the features or inputs in a
model that have the most significant impact on its output or prediction [8]. It
is important for people to understand how the model makes decisions and iden-
tify potential biases or errors in the model. Formally, suppose we have an input
vector x = (x1, x2, ..., xn) ∈ Rn and a function F : RN → (0, 1) that represents
a deep network. The attribution value of x, with respect to the output F(x), is
defined as a vector AF(x) = (a1, a2, ..., an) ∈ Rn, where ai measures the contri-
bution of xi to F(x) [13]. There are two technical routes for feature attribution.
The first approach involves computing the gradient of the output for the correct
class, with respect to the input vector of a given model. This gradient is then
used as an attribution value map for the masked input, enabling the identifica-
tion of the input features that contribute the most to the model’s output [1].
Another research approach is to use a locally additive model to approximate
the interpretable model. This helps in explaining the variation in the model’s
output compared to a predetermined “reference” output, based on the differ-
ence between the input and the corresponding “reference” input [2]. FA have
been used to interpret model predictions in applications including image classi-
fication [11], machine translation [5], text classification [2], event detection [8]
and others. We made the first attempt on the interpretability of move structure
recognition.

Integrated Gradients is a specific attribution method, which regards the fea-
ture dependent value as the cumulative gradient between the model input x and
the baseline x′ (for text models the baseline could be the zero embedding vec-
tor) [13]. Compared with other FA methods, the integral gradient method has
high computational efficiency and is very effective in dealing with a wide range
of text-based tasks.

3 Move Structure Recognition with Saliency Attribution

This paper proposes a method for recognizing the move structure in scien-
tific paper abstracts with saliency attribution. Specifically, each sentence is first
assigned a semantic move label that expresses the overall semantics. Then, each
word is considered as a feature and its contribution (saliency value) to a specific
move type is calculated. Finally, saliency values are used as evidence to enhance
learning for move structure recognition.

This paper call a complete model that fully considers contextual information
and uses saliency values as embedding enhancement learning as Saliency SR. The
framework is illustrated in Fig. 3, and technical specifics are presented below. We
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model the move structure recognition task as a single-sentence-based multi-label
classification problem, for each sentence s = [w1, w2, ..., wn], one or more move
labels y are assigned, where y belongs to T , T is a set that includes all the
predefined move types.

Fig. 3. The overview of our move structure recognition model (Saliency SR). The back-
bone of the model is BERT. Based on the full consideration of contextual information,
the model uses word saliency embeddings to enhance learning.

3.1 Sentence-Level Move Classification

First, each sentence s is assigned a sentence-level move label GS that conveys the
overall semantic meaning of the move. Let the label be Gs = [g1, g2, ..., g|T |] ∈
R|T |, where gi ∈ {0, 1} indicates whether s can be (gi = 1) or not (gi = 0)
assigned a move label of the ith move type. Next, a sentence-level move classifier
is created to learn the mapping from s to GS .

Notably, abstracts of scientific papers usually use some common structures to
organize the information. Inspired by the encoding of positional information in
words, we design a BERT-based sentence classifier that considers adjacent pre-
ceding and following sentences and positional information. Specifically, (1) each
sentence is spliced with its adjacent preceding and following sentences and input
into bert for encoding to obtain a text representation. (2) Use a combination of
numerical features (the offset of the sentence relative to the chapter, the offset
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divided by the number of sentences in the chapter) to characterize the position
of each sentence in the document. (3) Concatenate the text representation with
the location feature to obtain the sentence representation and input it into two
dense layers. The classification function uses sigmoid and the loss function uses
multi-label binary cross-entropy loss:

L (Gs;Xs) = − 1
|T |

|T |∑

i=1

gi · log (os
i ) + (1 − gi) · log (1 − os

i ) (1)

where Xs represents the input embedding of s in BERT, os ∈ R|T | is the logits
vector computed by the classifier, and os

i refers to the ith element of os.

3.2 Word-Level Saliency with Move

Based on the sentence-level move classifier, we employ Integrated Gradient [13]
to compute the contribution (saliency value) of each word to the prediction. The
integrated gradient defines the attribution of the ith input feature as the path
integral of the straight line path from the baseline xi

′ to the input xi :

IntegratedGradsi(x) ::= (xi − xi
′) ×

∫ 1

a=0

∂F(x′ + a × (x − x′))
∂xi

da (2)

where F : RN → (0, 1) stands for a neural network and ∂F(x)
∂xi

is the gradient of
F(x) in the ith dimension [9].

To compute the saliency of each word wi, more precisely, its BERT represen-
tation xi ∈ Xs, we utilize the loss function as our desired model and evaluate it
accordingly [16]:

αwi
= (xi − x′

i) ×
∫ 1

α=0

∂L (Gs;X ′ + α × (Xs − X ′))
∂xi

dα (3)

where X ′ is a sequence of all-zero vectors (serving as a reference input), and Xi
′

denotes the ith element in X ′. We then normalize αwi
as a scalar value awi

with
a sentence-wise normalization:

awi
= e‖αwi‖2/

∑N
n=1e

‖αwn‖2 (4)

where ‖‖ denotes the L2 norm.
In actuality, we may not be interested in a word’s saliency to the general

move semantic GS , but instead in a specific move type T ∈ T . Therefore, we
replace GS with the one-hot representation of T in Eq. 3 for evaluation. Finally,
we represent the word-level saliency of wi with respect to the move type T by
awi

.
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3.3 Saliency Enhanced Move Structure Recognition

Using move saliency attribution, we develop a novel training approach for move
structure recognition.

Recognizing that each word may have a different impact on predicted move
labels, we incorporate a mechanism called word saliency embeddings (WSEs)
into our model to capture such patterns. Specifically, we quantified the impor-
tance of each word to the move label as a value from 0 to 1 based on awi

, and
then combined the saliency values into the model using a single embedding vec-
tor. This is similar to word embedding to increase the focus on words that are
more important when recognizing the move structure. As shown in Fig. 4, the
final input of the BERT is summed by four embedding vectors, namely Token
Embeddings, Segment Embeddings, Position Embeddings and Saliency Embed-
dings.

Fig. 4. The final input of the BERT.

4 Experimental Setup

4.1 Datasets

Scientific Abstract Moves Dataset. We have created a new dataset
called the Scientific Abstract Moves Dataset (SAMD) by manually annotating
abstracts of conference papers in the field of NLP. The dataset consists of 1,500
abstracts and 8,934 sentences, sourced from conferences such as ACL, EMNLP,
and NAACL, which are part of the ACL Anthology2.

The manual annotation process strictly followed the move analysis method,
which is a widely recognized approach in the field of English for Specific Pur-
poses (ESP) research. In this process, each sentence was considered as the small-
est annotation unit, and a combination of top-down and bottom-up annotation
methods was employed to determine the move label for each sentence. The anno-
tation task was carried out by six professional annotators from the School of
Foreign Languages, and the inter-annotator agreement was measured using the
2 https://aclanthology.org/.

https://aclanthology.org/
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Kappa coefficient. The resulting Kappa coefficient was calculated to be 0.785,
indicating substantial agreement among the annotators. This level of agreement
implies that approximately 93.375% of the corpus was independently annotated
consistently. The annotation scheme used in this study consists of an eight-move
structure, which is as follows:

1) Background: The background section highlights the content of the literature
review, background information, and relevant research.

2) GAP: The gap section identifies the knowledge gaps in previous research
and illustrates aspects that were not covered in earlier studies, which is the
motivation for conducting this research.

3) Method: The method section explains the methods, tools, and procedures
used in the study, as well as the experimental design on which the study is
based.

4) Purpose: The purpose section outlines the research objectives and research
questions.

5) Result: The result section presents the study’s findings and analysis, as well
as the implications of the results.

6) Conclusion: The conclusion section indicates the contribution of the research
to the discipline and summarizes the research’s importance to the field.

7) Contribution: The contribution section emphasizes the research’s impact on
the discipline and is used to summarize the research’s significance.

8) Implication: The implication section highlights the potential implications of
the research results for future studies or their impact on practice.

Table 1. Statistics of the dataset for each move structure class, where BAC, GAP,
MTD, PUR, RST, CLN, CTN and IMP represent Background, GAP, Method, Purpose,
Result, Conclusion, Contribution and Implication respectively.

Statistical BAC GAP MTD PUR RST CLN CTN IMP

#Sen 1,773 1,026 2,441 1,447 1,110 748 321 78

Percentage(%) 19.8 11.5 27.3 16.2 12.3 8.4 3.6 0.9

The data volume statistics for each move in SAMD are shown in Table 1. Due
to the characteristics of the writing style of nlp scientific papers, the data volume
of each move label is unbalanced. The number of sentences introducing “method”
and “purpose” is high, and the number of sentences introducing “contribution”
and “implication” is relatively small.

NLPContributionGraph Dataset. In addition, in order to further verify
the effectiveness of our method, relevant experiments were performed on the
NLPContributionGraph Shared Task Dataset (NCG)3. NCG is a public dataset
covering 24 NLP domain tasks, which defines 12 more fine-grained contribution
sentence types. Table 2 presents the data statistics for both datasets in detail.
3 https://ncg-task.github.io/.

https://ncg-task.github.io/
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Table 2. Statistics of SAMD and NCG, where #Type, #Doc, and #Sen indicate the
number of move types, documents, and sentences respectively.

Dataset #Type #Doc Split #Sen

SAMD 8 1,500 Training 7,147

Test 1,787

NCG 12 287 Training 4,200

Test 1,051

4.2 Evaluation Metrics

This paper uses the following metrics to evaluate model performance: (i) Preci-
sion (P), Recall (R), and (Micro) F1, which are commonly used to assess move
structure recognition models. (ii) (Macro) F1, which represents the average of
class-wise F1 scores, and is lower for models that perform poorly on rare types
compared to common types.

4.3 Implementations

Our move saliency attribution method employs a sentence-level classifier built
on BERT-base with a batch size of 16 and a learning rate of 1e−5. For the
move structure recognition model, we use BERT-base architectures with a
batch size of 16. The word saliency embeddings are set to a dimension of
100 based on empirical analysis. Our dataset and code are made available at
https://github.com/ljk1228/Saliency SR.

5 Results and Analysis

5.1 Overall Results

To evaluate the effectiveness of Saliency SR, the paper conducted comparisons
with other models on two different datasets. (1) For SAMD, this model com-
pare with BERT and BERT+Context, where the BERT+Context uses position
information and the preceding and following sentences as additional contextual
features. (2) For NCG, this model compare with UIUC BioNLP [7], which uses
BERT to encode the original sentence and its title in a parameter-sharing man-
ner, and incorporates positional features of the sentence. This is also the best
performing method in the NLPContributionGraph (NCG) shared task. In the
variant models, +WSE means to supplement UIUC BioNLP with word saliency
embeddings. For the model and its variationswe conduct three runs, and calcu-
late the average of their performance and standard deviations. Table 3 displays
performances of different models.

Overall, we make the following observations: (1) Saliency SR achieves the
best Micro F1 score (78.53%) on SAMD, with an improvement of 1.81% over

https://github.com/ljk1228/Saliency_SR
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Table 3. Results on SAMD and NCG, where P �, R �, and F1 � indicate Precision,
Recall, and Micro F1 respectively.

Dataset Method P� R� F1�
SAMD BERT 74.06 79.58 76.72

BERT+Context 74.55 81.23 77.60

Saliency SR 75.01 82.34 78.53

NCG UIUC BioNLP 69.31 68.68 68.99

UIUC BioNLP+WSE 69.80 72.08 70.92

BERT and 0.93% over BERT+Context. We believe that the model not only bet-
ter considers the order constraint relationship between context information and
move labels, but also forces the model to focus on the more important part of
the recognition results of specific move types. These two points effectively solve
the problem of implicit combination of content corresponding to move struc-
ture. (2) UIUC BioNLP+WSE shows good results on the NCG dataset, with
improvements of 0.49%, 3.4%, and 1.93% in P, R, and Micro F1, respectively.
These further prove that the method has good robustness and generalization
capabilities.

5.2 Ablation Study

We undertake an ablation study in Table 4. In the variant models, +WSE and
+Context denote supplementing BERT with word saliency embeddings and con-
textual information, respectively.

Table 4. Ablation study of different components. P �, R �, and F1 � indicate
Precision, Recall, and Micro F1 respectively; F1 � denotes Macro F1.

Method P� R� F1� F1�
BERT 73.78 80.22 76.81 68.17

BERT+WSE 74.07 80.41 77.11 69.98

BERT+Context 74.55 81.23 77.60 69.73

BERT+Con+WSE 75.01 82.34 78.53 70.56

The results showed that: (1) combining word saliency embeddings can
improve the performance (P+0.29, R+0.19, Micro F1+0.30, and Macro
F1+1.81). Saliency attribution can capture the importance of individual words
or phrases in a sentence or text and help the model learn to identify key struc-
tural elements and relationships in a piece of text. This is especially important
for tasks that heavily rely on understanding the order and organization of infor-
mation. (2) Furthermore, context information is also helpful (P+0.77, R+1.01,
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Micro F1+0.79, and Macro F1+1.56). It can provide background knowledge of
the context and help the model better understand the meaning and function of
words or phrases in a sentence. (3) When the two are combined, the best results
are achieved. These two factors help the model learn the complex relationship
between syntactic structure and contextual information, and ultimately enhance
the robustness and generalization ability of the move recognition model.

5.3 Camparison with ChatGPT

In addition, we selected 30 abstracts of scientific papers and applied our model
and ChatGPT for the recognition of the move structure. When calling the gpt-
3.5-turbo API for experimentation, we first need to define a function for batch
processing. The function is able to receive multiple sentences as input and return
the result of move recognition for each sentence. At the beginning of the conver-
sation, we provided the following instructions to gpt-3.5-turbo to ensure profes-
sionalism and accuracy of the experiment, as shown in the Table 5 below.

Table 5. The requested text content is provided in the form of a dictionary. “system”
is used to give ChatGPT a statement at the beginning of the session, and “user”
represents the content of the user’s question. Inputinfo represents a sentence.

Role Content

“system” The move structure of a scientific paper refers
to the categorical composition of the linguistic
rhetorical components of the academic discourse
in the paper. Move recognition is essentially a
classification problem in sentences. Now the
moves are background, gap, method, purpose,
result, conclusion, contribution, implication.
Here are a few examples of move recognition:
Detecting emotion in text allows social and
computational scientists to study how people
behave and react to online events. [background]
However, developing these tools for different
languages requires data that is not always
available. [gap] This paper collects the available
motion detection datasets across 19 languages.
[purpose] We train a multilingual emotion
prediction model for social media data,
XLM-EMO. [method] The model shows
competitive performance in a zero-shot setting,
suggesting it is helpful in the context of
low-resource languages. [results] We release our
model to the community so that interested
researchers can directly use it. [contribution]
Below I will give you some sentences, these
sentences are from scientific papers, please
complete the step recognition.

“user” “Inputinfo” + What is the move of this
sentence?



Move Structure Recognition in Scientific Papers with SA 257

We also asked domain experts to evaluate the results without knowing which
model produced them, using a percentage-based scoring system. Our model
received a score of 80, while ChatGPT received a score of 65. These results
indicate that Saliency SR is better able to learn the relationships between syn-
tactic structures and contextual information in text. Furthermore, fine-tuning
the model for specific tasks enables it to be optimized specifically for that task,
which results in better performance compared to more general pre-trained mod-
els like ChatGPT.

6 Conclusion

In this study, we proposed a new task – move structure recognition in scientific
papers, and manually constructed a dataset SAMD. In addition, we analyze the
causes of poor move recognition and build a Saliency SR model. Experiments
are conducted on two datasets and the results show that the proposed method
achieves significant improvements and proves its effectiveness and generality. In
future work, we will consider combining move structure recognition and review
generation to automatically evaluate scientific paper abstracts, such as giving
writing suggestions and providing reference sentences to help study, etc.
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Abstract. Moral judgments, including moral polarity judgments, moral
intensity judgments, and moral type judgments, are important in help-
ing people to understand the moral characteristics of behaviors. Moral
judgments do not rely on all elements in behavior, but on those strongly
related to them, which are named as moral essential elements in this
paper. By conducting research on the moral essential elements in machine
morality, it can help machines adapt to downstream tasks such as elim-
inating moral bias while making existing artificial intelligence more eth-
ical. Existing research on machine morality knowledge contains moral
vocabulary, moral sentences, etc. This information has been able to help
machines achieve relatively good results when making moral judgments,
but there are still problems such as incomplete injection of informa-
tion and multiple actions present in a sentence with different moral
judgments. To address the above problems, this paper summarizes and
designs a moral judgments system, proposes the concept of moral essen-
tial elements, constructs a moral essential elements dataset containing
more than 10,000 behaviors, identifies behavioral words and their moral
essential elements in sentences using the traditional model and the large
model ChatGPT respectively, then makes moral judgments.

Keywords: artificial intelligence ethics · moral judgment · moral
essential elements

1 Introduction

With the development of AI technology, the ethical issues of machines have
received more and more attention, and at the same time become an urgent issue
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of AI ethics. So what kind of ethics is needed for the moral judgments made
by machines, and what information does it need to circumvent immorality so
as to avoid negative impacts on human beings and society, while breaking the
restrictions on the development of AI?

Currently, in previous work, such as the Moral Foundations Dictionary
(MFD), [5] used the classification system of moral foundations theory and polar-
ity labels to label moral words. These datasets contain much information. How-
ever, we found that moral judgments do not depend on all elements in the sen-
tences, but only on some of them, as shown in Fig. 1. And different elements of
behavior lead to various moral judgments. We name some of the specific elements
as moral essential elements on which these moral judgments depend.

Fig. 1. The essential elements of moral judgment.

To address the above issues, this paper summarizes and designs a moral
judgment system, and proposes the concept of moral essential elements, which
refers to the elements of behavior that are strongly related to moral judgment.
It includes morally relevant subjects, places, and other elements of the behavior,
which are important information in the task of machine moral judgment. Mean-
while, we constructed a machine moral judgment essential elements dataset MEE
(moral essential elements dataset) with more than 10,000 behaviors, aiming to
investigate the identification of the essential elements of behavioral moral judg-
ment. The dataset is shown in Fig. 2. Then, we identify the words indicating
behavior in the sentences, the moral essential elements, and the moral judg-
ments they form on the traditional and large language models. Our data can be
found at https://github.com/blcunlp/MEE.

https://github.com/blcunlp/MEE.
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Fig. 2. An example of the dataset.

2 Related Work

In recent years, textual morality has gradually come to the attention of
researchers in the field of natural language processing research. Currently, [4]
attempted to learn a priori knowledge of moral value orientations using comic
pictures. [14] proposed a moral judgment system including the moral word
extraction stage and moral judgment stage. [1] classified moral judgments into
two valence classes: positive and negative valence. [8] introduced the description
of moral dilemmas as utility functions. Later [3] introduce moral stories.

Moral-related datasets can help researchers gain insight into human moral
behaviors and decisions. The moral corpus collected by [15] consists of a set
of sentences labeled as “positive” or “negative” from a moral perspective. [9]
followed the principle of consequentialism and other principles [11], constructed
sentence-level moral sentences. [6] present a corpus called “MFTC”, which col-
lects 35,108 tweets on Twitter. [12] collected 16,123 comments on Reddit and
proposed a Reddit corpus called “MFRC”. [13] constructed a Chinese moral
dictionary that uses universal social norms to classify words by type and label
separately.

There are also a few existing studies on moral essential elements such as
comprehensive and non-redundant moral information that complement moral
judgments, for which we construct a relevant dataset for a more in-depth inves-
tigation.
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3 Theory

3.1 Moral Judgment System

The moral judgment system covers three moral judgments: moral polarity, moral
type, and moral intensity. Moral polarity refers to the conformity of behavior
to moral norms and can be divided into positive moral polarity and negative
moral polarity. We also focus here on these two moral polarities, namely positive
morality and negative morality.

Moral intensity specifically refers to the moral pressure or urgency involved
in the ethical issue itself, [7] divides moral intensity into six dimensions, severity
of consequences, social consistency, and so on. This paper divides moral intensity
into four dimensions: very immoral, immoral, moral, and very moral.

Moral types are the different types of behavior involved and can form a
variety of classifications based on different criteria. The moral types discussed in
this paper are divided into three categories according to the sphere of influence,
responsible for one’s own behavior, responsible for the behavior of others, and
responsible for the behavior of society, i.e., person and self, person and others,
person and society, and referring to [13]’s delineation of ethical behavior at the
level of the scenario environment, then subdivided. In this paper, the moral
judgment system is designed inductively to distinguish the different impacts of
different moral behaviors. The moral judgment system designed in this paper is
summarized as shown in Table 1. In particular, for example, the moral type of
“遵纪守法的行为” and “不遵纪守法的行为” are marked as “遵纪守法”. For we
have made a distinction between them in moral polarity.

Table 1. Classification of moral judgment systems.

道道道德德德判判判断断断体体体系系系 道道道德德德判判判断断断体体体系系系的的的分分分类类类

道德极性 正向，负向

道德强度 非常不道德，不道德，道德，非常道德

道德类型 人与自己：诚实守信，文明礼貌，爱岗敬业，奉献

人与他人：助人为乐，尊老，爱幼

人与社会：遵纪守法，办事公正，保护环境，爱护公物

3.2 Definition of Moral Essential Elements

Moral essential elements refer to those elements of the behavior elements that
are strongly related to morality and that will have an impact on the moral
judgment of the behavior. We define moral essential elements mathematically:
for a sentence S, the set of words indicating behaviors is E = {e1, e2...}, then
for each act e ∈ E, the set of argument elements is denoted as W = {w1, w2...},
then the moral essential elements, denoted as the set A = {a1, a2...}, A ⊆ W .
The textual definition of moral essential elements is shown in Table 2.
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Table 2. The defination of moral essential elements.

道道道德德德要要要件件件 道道道德德德要要要件件件的的的定定定义义义

主体要件 与道德判断相关的施事

客体要件 与道德判断相关的受事

时间要件 与道德判断相关的时间

地点要件 与道德判断相关的地点

原因要件 与道德判断相关的原因

结果要件 与道德判断相关的后果

方式要件 与道德判断相关，发出行为的方式

工具要件 与道德判断相关，发出行为使用的工具

背景要件 与道德判断相关，发出行为时所处状态

修饰语要件 与道德判断相关，修饰行为词的词语，如“虚
假诊疗”中的“虚假”，大多为副词

频率要件 与道德判断相关，行为产生的次数

4 Dataset Construction

4.1 Data Sources

The dataset of machine moral judgment was intercepted from the part of CMOS
dataset [9] labeled with positive and negative polarity. In addition, since the
source of the CMOS dataset could not cover all the moral types we designed,
we additionally expanded part of the dataset by collecting news from various
sections of websites such as China Good People Website and Southern Website
through crawling techniques.

Secondly, the format of collected data by crawling websites could not be
directly labeled for format and other problems, so we pre-selected and cleaned the
collected dataset, removing sentences with incomplete and unknown meanings,
such as “台湾商人到西安参，瓶可乐醒来400万珠宝没了”, and “黑出租车计价器
跳得，子上车就没手机信号”, they were both removed to reduce the propagation
of errors in the subsequent manual annotation.

4.2 Data Annotation

Annotating Rules. We recruited 13 annotators with linguistic backgrounds for
the annotation. They should mark five areas: moral polarity, moral type, moral
intensity, words indicating behaviors, and moral essential elements. For some
issues that arise in the annotation process, we make the following provisions:

Special Sentences Ignore Syntactic Structure. This includes special sen-
tences such as “把字句” and “被字句”. For example, “她正在读医学院的22岁女
儿，在健身房锻炼时，“因被误认成黑帮成员女友被枪杀”.
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Avoid the Problem of Disambiguation. The denotational phenomenon can
avoid the problems of bloated and redundant utterances caused by the repeated
occurrence of the same words [2]. In order to reduce the impact of the problem,
we stipulate that the subject and object elements are marked to the most specific
words, such as “刘启荣在东升金海岸大门边的街道上散步，突然走上来一对老
夫妇握着他的手，动情地说：刘书记，感谢你”. “刘启荣” and ”刘秘书” refer
to the same person, so we mark “刘启荣” as the subject essential element.

4.3 Annotating Results

Moral Judgement. Statistically, the distribution of the number of moral judg-
ments is shown in Table 3, Table 4, and Table 5. Among all moral sentences,
sentences containing multiple behaviors account for 15% of them. Among the
multi-behavior sentences, each sentence containing different moral judgments
accounted for 87% of them. Because the collected corpus belongs to the sen-
tence level, the percentage of sentences containing multiple behaviors is rela-
tively small, but it can be seen from the moral types varying in a sentence that
the probability of different moral judgments in a multi-behavior sentence is much
greater than the probability of the same.

Table 3 indicates that in the MEE dataset, the amount of negative data is
about 1.4 times more than positive, and the data distribution is fairly balanced
in this dimension. And in the statistics of moral intensity, the largest propor-
tion of moral behaviors and a very small proportion of very moral behaviors
indicate the trend of moral judgment in news reports. From Table 4, it can be
seen that the moral type parent category of “人与社会” has the largest range
of moral influence; among the subcategories of moral types, the type of “遵纪守
法” accounts for about 50%, and the data are extremely unbalanced. The rea-
sons for this are the one-sidedness of the collected data and the fact that the
news reports in real society mostly focus on the moral type of “遵纪守法” while
reflecting the moral orientation of human beings concerned with social life.

Table 3. The number of each moral tendency.

道道道德德德倾倾倾向向向 负向 正向

数数数量量量 9738 6795

Table 4. The number of each moral intensity.

道道道德德德强强强度度度 不道德 道德 非常不道德 非常道德

数数数量量量 9738 6795 2111 282
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Table 5. The number of each moral type.

道道道
德德德
类类类
型型型

道德类型父类 道德类型子类

人
与
社
会

人
与
他
人

人
与
自
己

遵
纪
守
法

助
人
为
乐

爱
岗
敬
业

奉
献

文
明
礼
貌

尊
老

诚
实
守
信

办
事
公
正

爱
幼

保
护
环
境

爱
护
公
物

数数数
量量量

10269 5307 3350 9859 2541 2076 1367 1354 610 510 199 199 145 66

Moral Essential Elements. From Table 6, we conclude that for moral judg-
ment, in addition to “主体要件” and “客体要件”, “方式要件” and “修饰语要
件”, etc. are all important influencing factors for moral judgment.

Table 6. The number of each moral essential elements.

要要要
件件件
分分分
类类类

主
体
要
件

客
体
要
件

方
式
要
件

修
饰
语
要
件

原
因
要
件

结
果
要
件

状
态
要
件

地
点
要
件

工
具
要
件

频
率
要
件

时
间
要
件

数数数
量量量

18040 16998 2614 2525 2192 2104 1788 1503 1168 985 782

5 Experiments and Analysis

In this paper, we follow the event extraction model Casee [10] and use the large
language model ChatGPT to identify words indicating behaviors and moral
essential elements， determine the corresponding moral parent type, moral sub-
type, moral tendency, and moral intensity in zero-shot and few-shot scenarios.
In the experiment of ChatGPT, we give sentences, and definitions of moral judg-
ments, then let the model generate answers from the original text, such as “句
子A。道德要件是指对道德判断产生影响的行为要素。道德极性有正向和负
向。用原文回答句子A中有哪些行为词？这些行为词各自的道德极性是什么？
用原文回答影响每个行为词道德极性的道德要件有哪些？” and for the few-shot
scenario, we give three standard test samples that have been labeled.

The results of the conventional model under different subtasks, words indi-
cating behaviors and moral essential element identification and moral judgment,
and the results of the large model in the zero-Shot, few-shot scenarios, respec-
tively, are shown in Table 7, 8, 9 and 10.

From the above table, we can see that the traditional model Casee does not
solve the task of moral judgment and identification of moral essential elements
very well. The reasons for this are, first, the data problem, whether it is the
moral tendency, moral type, or moral intensity, our data are unbalanced, so the
recall of the model is low. Second, we use a cascade decoding model, and the
pipeline propagation will lead to cascade errors. Third, the complexity of the
Chinese language leads to the fact that the real span of marked words indicating
behaviors and moral essential elements is more difficult to identify.
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Table 7. The performance of models in words indicating behavior and moral essential
elements identification and moral tendency.

Models 行为词识别 道德极性判断 道德要件识别

P R F1 P R F1 P R F1

casee 50.9 68.0 58.2 49.4 67.3 56.9 55.9 50.2 52.9

ChatGPT-zero shot 63.2 67.5 65.6 64.3 70.7 67.1 60.4 58.3 59.1

ChatGPT-few shot 67.3 65.2 66.2 70.8 67.7 68.9 67.2 65.5 67.3

Table 8. The performance of models in words indicating behavior and moral essential
elements identification and moral intensity.

Models 行为词识别 道德强度判断 道德要件识别

P R F1 P R F1 P R F1

casee 51.4 59.8 55.3 35.4 48.4 40.9 38.6 44.1 41.2

ChatGPT-zero shot 61.2 67.3 64.8 43.2 42.7 42.9 45.2 58.3 51.2

ChatGPT-few shot 68.3 65.2 67.0 47.1 43.7 45.1 50.1 50.0 49.9

Table 9. The performance of models in words indicating behavior and moral essential
elements identification and moral parent type.

Models 行为词识别 道德父类判断 道德要件识别

P R F1 P R F1 P R F1

casee 49.7 63.1 55.6 38.7 54.2 45.2 43.3 45.0 44.2

ChatGPT-zero shot 55.3 62.1 58.4 45.6 57.8 50.6 45.2 58.3 51.1

ChatGPT-few shot 63.3 67.2 65.5 54.9 66.4 60.2 53.4 57.8 55.1

Table 10. The performance of models in words indicating behavior and moral essential
elements identification and moral subtype.

Models 行为词识别 道德子类判断 道德要件识别

P R F1 P R F1 P R F1

casee 74.0 50.7 60.1 56.2 43.5 49.1 58.8 30.9 40.5

ChatGPT-zero shot 72.4 58.3 65.2 58.7 46.5 47.9 62.3 40.1 50.2

ChatGPT-few shot 78.7 62.4 75.5 63.4 51.2 56.9 69.8 45.2 54.5
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Figure 3 is a response about moral subtype from ChatGPT in a few-shot
scenario. We can see that its response is incomplete. But in terms of overall
performance, ChatGPT improves in most metrics in both zero-shot and few-
shot scenarios. In zero-shot scenarios, there are problems in that ChatGPT’s
responses do not match the original meaning. For example, in the sentence “从
私家车的车窗里，不停地有橘子皮被扔出来. . . . . . ”, the result essential element
of ChatGPT feedback is “私家车被扔了很多橘子皮” which is totally different
from the meaning of “私家车中扔出橘子皮”. In the few-shot scenario, ChatGPT
showed some shortcomings, but also strong learning ability. After inputting the
sentence “4名男子专抢滴滴司机” and the prompt of the question, ChatGPT
answered “其道德要件包括：主体要件：“4名男子”，客体要件：“滴滴司机”，
方式要件：“专抢”，时间要件：未明确说明”, a response that demonstrates
ChatGPT’s strong natural language understanding.

Fig. 3. A response of ChatGPT.

6 Summary and Future Work

The main work of this paper is to construct a behavior-oriented moral judgment
imperative dataset with tens of thousands of levels and identify moral judgments
and moral essential elements of words indicating behaviors. In the experimental
part, we use the traditional model and the large model to complete the identifica-
tion task and get the preliminary results, respectively. As we can see, we are not
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yet able to perform the recognition effectively because of the cascading errors
of the model and the complexity of Chinese. In the future, we will make full
use of the constructed dataset to optimize the model approach and design high-
performance recognition models. Also, try to identify the essential elements of
machine moral judgment more efficiently with better prompt learning and other
methods.
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Abstract. Knowledge graph construction (KGC) aims to build the
semantic network which expresses the relationship between named enti-
ties. Despite the success of prior studies, it is struggling to accommodate
existing KGC models with evolving entity-relation knowledge schema.
In this paper, we propose a schema-adaptive KGC method driven by
the instruction-tuning large language models (LLM). We fine-tune a
LLM with tailored KGC corpus, through which the generalization abil-
ity of LLMs are transfered for KGC with evolving schema. To alleviate
the bias of a single LLM, we integrate the superiority of several expert
models to derive credible results from multiple perspectives. We further
boost KGC performances via an elaborately designed schema-constrained
decoding strategy and a LLM-guided correction module. Experimental
results validate the advantages of our proposed method. Besides, our
method achieved the first place in the first task of CCKS-2023 Knowledge
Graph Construction.

Keywords: Large language models · Knowledge graph construction

1 Introduction

Knowledge Graph (KG) [12] is a semantic network which expresses the seman-
tic relationship between named entities. Since KG facilitates various applica-
tions [15], KG Construction [12] has gain great research attention in recent years.

Despite of the success of prior studies [2,7,11], it is struggling to achieve
flexible knowledge updates across different knowledge schema, since these KGC
models are developed via once-and-for-all training. Nevertheless, as the volume
of data increases across scenarios and domains, it is significant to accommodate
KGC models with evolving knowledge schema. To address the above challenge,
it is intuitive to incrementally re-train the KGC models with new-class data,
namely incremental learning [3]. However, they are subject to the catastrophic

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Wang et al. (Eds.): CCKS 2023, CCIS 1923, pp. 273–284, 2023.
https://doi.org/10.1007/978-981-99-7224-1_21
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forgetting [10] problem, as a cost of adaption to new schema. Fortunately, recent
studies show that large language models (LLMs) maintain a great generaliza-
tion ability in various downstream tasks, which can perform adaptively across
scenarios with instruction-tuning.

Motivated by this, we intend to fine-tune a fundamental LLM (e.g. LLaMA)
model with elaborately designed KGC corpus and instructions, to construct
an Instruction-Driven Adaptive Knowledge Graph. However, there are extra
issues in relational triplets across schema. For instance, the requirements for
prior knowledge in RTE differ with the schema. Besides, the interdependence
of the elements in a relation triplet varies with the schema. Hence, it is crucial
to aggregate relational triplets predicted by different models and prompts to
facilitate the KGC procedure.

In this paper, we propose a method towards Adaptive Knowledge Graph Con-
struction with evolving schema. Our method consists of three main components.
First, we fine-tune KGC-tailed LLMs with elaborately designed corpus for adapt-
able KGC. Second, inspired by the superiority of ensemble learning, we enhance
the prediction results with parametric knowledge utilizing distinct LLMs. Finally,
we design a schema-constrained decoding strategy with automated correction,
in order to mitigate the general errors and further improve the prediction qual-
ity. We conduct extensive experiments on the InstructKGC task. The experi-
mental results demonstrate that our method exhibits desirable generalization,
accuracy, and completeness in low-resource, cross-task scenarios. Our approach
achieves 5.28% improvement comprehensively over the baseline method, with
7.22% improvement in terms of F1 score and 4.23% improvement in terms of
Rouge-2 score. Our method won the first place with a significant advantage in
the CCKS2023 instruction-driven adaptive knowledge graph construction task.

Our contributions are summarized as follows:

– We develop a KGC-tailored large language model with strong generalization
capabilities across knowledge schema.

– We introduce a Multi-view Experts (MvE) framework, which integrates dif-
ferent expert models from multiple views, to mitigate the generative bias for
KGC.

– We propose the GPT-guided Supervision and Schema-constrained Decoding
method which can effectively correct general errors in reasoning results.

– Experimental results demonstrate that our method achieves highly competi-
tive performance and secures the first-place position in the competition.

2 Task Definition

Instruction-Driven Adaptive Knowledge Graph Construction (InstructionKGC)
is a task that updates and optimizes the structure of a knowledge graph based
on user instructions. The goal of this task is to renew the content of the knowl-
edge graph according to user requirements, achieving more accurate and efficient
information retrieval and reasoning.

In this task, we mainly refer to the objectives defined in the CCKS2023
competition. The model extracts entities and relationships of specific types based
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on the instructions provided by the user, in order to construct a knowledge graph.
Unlike conventional triplet extraction tasks, the specified entities and categories
are more diverse and may not be fully present in the training set. Additionally,
10% of the data in the test set contains some missing information, which requires
the model to excavate own reasoning abilities for inference as well as completion.
The competition provides a comprehensive definition of the task and evaluation
metrics, along with a training set of 5000 samples and a test set of 1000 samples
without ground truth. The detailed descriptions are displayed here1.

3 Method

In this section, we propose a novel method to tackle the above-mentioned chal-
lenges, which mainly consists of three essential components. Specifically, first,
we collect diverse instruction data and then fine-tune a large language model
in an efficient way, which enables to adapt generalization ability to downstream
KGC task. Next, we design a MvE (Multi-view Experts) module, which combines
multiple models to promote performance utilizing their respective strengths. In
this way, we alleviate the accumulation errors and instability during the gen-
eration process. To address the general errors existed in distinct models, we
employ schema-constrained decoding strategy and devise a supervised model for
correction, achieving a significant improvement on results.

3.1 KGC-Tailored Large Language Models

Since large language models, such as ChatGPT, are mainly devised for dialogue
scenarios, apparently it is inconsistent with downstream information extraction
tasks, leading to low accuracy and completeness. Taking the powerful generaliza-
tion ability of LLMs into account, we tend to fine-tune a specific large language
model for knowledge graph construction with various information extraction
tasks. Specifically, Fig. 1, the overall procedure can be divided into three stages:
data pool construction, instruction pool construction, and multi-task instruction
fine-tuning. We elaborate the details as follows.

Data Pool Construction. In this sub-module, we aim to collect a substantial
amount of data for information extraction tasks, which includes: the collection
of 32 publicly available datasets, covering three types of IE tasks [1]; the CCKS
Instruction KGC competition [5], which provide around 5000 knowledge graph
data samples as training sets. During the dataset construction process, we aim to
ensure balance in task types and domains. We design dozens of prompt templates
to transform the datasets into a unified instruction set following a consistent
standard.

Instruction Pool Construction. It is well-known that improving the qual-
ity of instructions, especially the diversity characteristics, is beneficial to gather
1 https://tianchi.aliyun.com/competition/entrance/532080/information.

https://tianchi.aliyun.com/competition/entrance/532080/information
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Fig. 1. The overall process of fine-tuning large models for knowledge graph construction
tasks.

high-quality data and further promote the downstream tasks. To be specific, our
instructions consist of three key components: task descriptions, constraints, and
inputs. The task descriptions provide concrete information on how to perform
extraction process. Constraints define the valid output labels and guide the map-
ping from predicted outputs to semantic concepts and the inputs are the original
texts. Notably, we first construct instructions manually as seeds and then utilize
Prompt GPT3.5 to obtain enhanced instruction prompts. Finally we filter the
results manually and select the appropriate instructions to ensure the quality of
instructions.

Considering that the model is not explicitly trained with structured infor-
mation generation tasks during pretraining. We decompose complex tasks into
sub-tasks. For instance, in the Relation Extraction task, we introduce entity pair
extraction and entity pair relation recognition. The introduction of these sub-
tasks provides the model with more diverse training signals, thereby improving
the model’s performance and generalization ability.

Multi-task Instruction Fine-Tuning. The instruction fine-tuning frame-
work consists of two components: the base model and fine-tuning methods. The
base model is a large-scale, open-source language model pre-trained on exten-
sive datasets. We thoroughly investigated existing open-source base models and
curated a GitHub repository2. After extensive research, we selected KnowLM-
ZhiXi [9] and ChatGLM [13] as the base models. KnowLM-ZhiXi was a further
pre-trained LLaMA model on Chinese corpora to boost its Chinese compre-
hension. ChatGLM was selected as the base model due to its advantages in
deployment, sequence length, and training capabilities.
2 https://github.com/Longyichen/Alpaca-family-library.

https://github.com/Longyichen/Alpaca-family-library
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To adapt the pre-trained models to downstream tasks, we employ LoRA [6]
technique to fine-tune the fundamental model, which is an efficient manner to
reduce computation costs and facilitate practicability. Especially, LoRA freezes
the pre-trained parameters and introduces trainable layers (low-rank decomposi-
tion matrices) to Transformer blocks. The implementation details are described
in Sect. 4.2. Through fine-tuning, we achieved the following improvements:

– Augmented the model’s proficiency in adhering to multifaceted instructions.
– Elevated the model’s capacity to synthesize structured information.
– Amplified the comprehensiveness of the information generated.
– Enhanced the efficacy in the execution of specialized tasks.

3.2 Multi-view Expert Models Ensembling

We observed that the model’s performance is highly sensitive to different instruc-
tions [4]. Existing generative methods for triple extraction suffer from sequential
generation and overlook interdependencies among triple elements, making them
susceptible to autoregressive noise. Specifically, the following problems exist:

– Paradigm differences: Triple extraction is not a sequence generation task.
Modeling structured information as sequence generation can lead to issues
like incomplete or erroneous generation.

– Element importance: The significance and importance of elements in
extracted triples vary greatly and are strongly correlated with the correspond-
ing relationships. However, this correlation is challenging to learn through
instruction, demonstration, and sequence generation fine-tuning.

– Instability: Language models are highly sensitive to different prompts. Thus,
some error generation can be attributed to noise introduced by prompts.

– Error accumulation: Predictive errors from autoregressive models accumulate
and affect subsequent predictions. This manifests as decreased accuracy in
subsequent predictions and issues like repeated generation

Drawing inspiration from how humans cooperate from different perspectives
and roles to solve challenging problems [14], we use both KnowLM-ZhiXi and
ChatGPT models and introduce instruction methods based on different prompts
and decoding methods to control the generation order of head and tail enti-
ties. By permuting elements, we eliminate the error accumulation and instabil-
ity in the generation process, allowing the extraction model to capture com-
mon understanding from the input. We find that KnowLM-ZhiXi and ChatGPT
generate results that are highly complementary. KnowLM-ZhiXi provides more
complete results, while ChatGPT demonstrates stronger capabilities in under-
standing challenging samples and achieving higher accuracy. By integrating the
diverse output results from both models and filtering out individual errors, we
strike a balance between accuracy and comprehensiveness (Fig. 2).
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Fig. 2. We designed various instruction prompt models to extract text content using
multiple methods. During inference, we employed the Multi-view of Experts method
to integrate common features from different expert models’ outputs, obtaining more
accurate answers.

Prompts Construction for Multi-view Experts Generation. To enable
the extraction of triplets from multiple perspectives, MvE introduces a genera-
tive structural prompting mechanism. Specifically, we design the task objective
as multiple generation tasks with different structures and orders, and prompt
the model to complete these tasks. For instance, given a standard triplet array
[[A,B,C],[D,E,F]], we transform the task objective into generating specific for-
matted content such as B : A,C;E : D,F and {‘head′ : A,′ relation′ : B, ‘tail′ :
C}. We construct 10 different instructions and 8 distinct generation tasks. These
are randomly combined to form a training set of 20,000 pairs. Subsequently, we
utilize the prompting mechanism to guide the model’s attention towards differ-
ent views of the input during the inference process. Our prompts, along with the
model trained on our dataset, effectively adhere to the instructions and accom-
plish the task objectives across multiple perspectives.

Multi-view Inference of Experts Models. For reasoning, the MvE method
guides models to accurately and consistently generate multiple triples following
a predefined structure and order. For pre-trained models, instructions are suffi-
cient. With ChatGPT, we select the three most relevant instances for each input
and construct demonstrations. Through context-based learning, ChatGPT pro-
ficiently generates multiple tuples with precision. Ultimately, we aggregate all
outcomes to obtain the most rational tuples.

Weighted Voting for Ensemble of Multiple Output Results. Due to
our guidance for each expert model to predict tuples from multiple task views,
we first aggregate all the prediction results. Subsequently, after evaluating the
performance of each task, we weight the predicted tuples of the model based on
the relative task performance. We set a threshold and consider tuples with votes
exceeding a specific threshold as the final result. Overall, for an input sentence
x, assuming we prompt m experts models to generate from a selected set of n
permutations, the predicted tuple set for each permutation pi is denoted as Tpi

,
which may contain one or multiple sentiment tuples. The voting weight for this
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set is denoted as αi. We set the voting weight as θ, and thus we obtain the final
aggregated result T ′

MvE.

T ′
MvE =

{
t | t ∈

m∗n⋃
i=1

T ′
pi

and

(
m∗n∑
i=1

α�T ′
pi

(t) ≥ θ

)}

3.3 Automatic Correction with Schema Constraints and GPT
Guidance

Due to the presence of noisy training data, task complexity, and the difficulty
for the model to fully understand instructions and data patterns, the integrated
results still contain common errors from the models. To address this, we lever-
aged the relation schema mined from the training set and an “observer” model
to constrain and effectively correct the model’s output. This led to better per-
formance.

As shown in the Fig. 3, the overall implementation architecture can be divided
into four parts: training set relation-library construction, context demonstration
recommendation, and instruction building, diverse instruction prediction result
integration, and GPT-guided post-processing.

Fig. 3. Method Implementation Overall Architecture. The method implementation can
be divided into four parts: training set relation library construction, contextual demon-
stration recommendation and instruction construction, diverse instruction prediction
result integration, and GPT-guided post-processing.

Recommending Contextual Demonstrations. We processed each sample
in the training dataset and constructed the relation library. Each sample contains
a list of relations. For each relation, we extracted matching triples and sample
information were added to the relation library. Based on the type and relations
of each input, we recommend corresponding prompts.

Schema Constrained Decoding Despite guiding the model to generate the
target from different perspectives, the generated results may not conform to the
target pattern format. Therefore, we have designed a pattern-based constraint
decoding. First, we ensure that the generated elements are within the respective
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vocabulary sets. Secondly, we check whether the elements in the triple satisfy
the pattern constraints for specific patterns, such as the order of head and tail
entities. Third, we determine the plausibility by comparing them against rela-
tionship patterns from the training set.

GPT-Guided Error Correction. For errors that are difficult to handle using
rule-based methods, we first filter them out. Then, we design a “checkprompt”
approach to convert them into single-choice questions in the form of reading
comprehension. We use ChatGPT to complete the checkprompt task and correct
the results. The corrected results from ChatGPT are considered as the final
results.

4 Experiment

4.1 Datasets

The chatGLM (LORA) [13] model was fine-tuned using 5,000 official provided
data samples. We augmented the official dataset to 25,000 samples by employing
diverse instructions and combined it with Chinese DUIE data for further refine-
ment of the chatGLM (LORA) [13] model. Various techniques such as instruction
diversification, data cleaning, and filtering methods were applied on the 5,000
official samples, Chinese DUIE data, as well as NER, relation extraction, and
event extraction data from different categories available on the Tianchi platform.
This enabled us to construct a bilingual dataset with a Chinese to English ratio
of 2.3:1 which served as training input for our DITING model. The performance
evaluation of all models was conducted using the official test set consisting of
1,000 samples.

4.2 Implementation Details

We trained the model on two A100 80G GPUs. We utilized the AdamW opti-
mizer to tune the model. During the training process, the DITING model was
trained for 5 epochs with the learning rate of 1e-4 and LORA rank of 16. After
the DITING model was trained for 4,000 steps, we achieved an eval loss of 0.031,
and the final learning rate was decayed to 20% of the peak learning rate. The
ChatGLM model was trained for 50,000 steps with learning rate of 2e-5 and
LORA rank of 32.

During the inference process, our KnowLM-ZhiXi(MvE) model utilized the
results from chatGPT with five instructions and KnowLM-ZhiXi with four
instructions for voting. During inference, we set the temperature of KnowLM-
ZhiXi to 0 and the number of beams to 5. For ChatGPT, we set the temperature
to 0.2. To balance the votes between chatGPT and KnowLM-ZhiXi, we assigned
a weight of 2 to the KnowLM-ZhiXi votes that used JSON instructions and set
the voting threshold to 3.
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4.3 Evaluation Metrics

We employ ROUGE-2 and F1 as evaluation metrics, utilizing F1 to gauge the
model precision in generating entity triplets, while serializing the triplet results
for assessment using ROUGE-2. Ultimately, we compute the average of both
metrics to derive the final Score.

4.4 Baseline

In our research, we compared our model with the following models:

– ChatGLM [13]: A bilingual language model with 6.2 billion parameters based
on the GLM architecture. It has undergone extensive pretraining on both
Chinese and English corpora, along with longer sequence length capabilities.

– KnowLM-ZhiXi [9]: A model based on LLaMA-13B, further pretrained on
Chinese and English corpora to enhance the model’s Chinese language capa-
bilities while retaining its English language capabilities.

4.5 Main Result

Table 1. Main Result:‘LORA’ means that the model is fine-tuned using the LORA
method [6], ‘p-tuning’ means that the model is fine-tuned using the p-tuning method [8]

model F1 ROUGE-2 Score

ChatGLM-6B(LORA) [13] 32.97 77.69 55.33

ChatGLM-6B(p-tuning) [13] 34.12 78.23 56.18

KnowLM-ZhiXi(LORA) [9] 52.32 79.33 65.83

DITING(LORA) 56.47 79.61 68.04

KnowLM-ZhiXi(MvE) 59.54 82.68 71.11

As presented in Table 1, our KnowLM-ZhiXi(MvE) model demonstrates signifi-
cant enhancements in F1, ROUGE-2, and overall score compared to the baseline
KnowLM-ZhiXi model, with improvements of 13.51, 3.35, and 5.28 respectively.
The notable improvement in F1 highlights the effectiveness of our MvE approach
in mitigating biases arising from diverse instructions and models. Moreover, our
DITING model surpasses KnowLM-ZhiXi with a score improvement of 2.21,
showcasing the efficacy of incorporating additional training corpora. It is impor-
tant to note that fine-tuning ChatGLM solely using the available data falls short
when compared to KnowLM-ZhiXi due to its extensive training on tens of thou-
sands of data as opposed to only a few thousand instances used for ChatGLM’s
fine-tuning process. The increase in data volume significantly contributes to both
capabilities and performance enhancement.
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Table 2. Abalation Study: Gradually removing each module.

model F1 ROUGE-2 score

KnowLM-ZhiXi(MvE) 59.54 82.68 71.11

- Schema 58.78 82.46 70.62

- gpt fixed 57.08 82.54 69.81

- MvE 54.66 79.00 66.83

- chatGpt 52.32 79.33 65.83

4.6 Abalation Study

To further evaluate the effectiveness of each component in our proposed method,
we conduct the ablation experiments and report the results in Table 2. After
removing Schema Constrained Decoding, F1 is reduced by 0.76, and ROUGE2
is reduced by 0.2, which proves that it can effectively repair common errors in
model results. After removing the GPT correction module, F1 dropped by 1.7,
indicating that the design hints that GPT can be a good supervisor in KG con-
struction. After removing the MVE method, F1 decreased by 2.42, and ROUGE2
decreased by 3.54, which shows that it can effectively extract the correct consen-
sus of the model under different perspectives, and also shows that our method
can effectively remove the noise in the generation. After removing ChatGPT, F1
dropped by 2.34, indicating that using different models can effectively supple-
ment the results and improve the accuracy of predictions.

4.7 Case Study

According to Table 3, it can be observed that in Example 1, KnowLM-ZhiXi
exhibited confusion between the head and tail entities of the triples; however,
this issue was resolved upon implementing MvE. Furthermore, both Example
1 and Example 2 demonstrate that KnowLM-ZhiXi(MvE) generated a higher
number of accurate triples compared to the individual KnowLM-ZhiXi model.
This significant improvement in performance can be attributed to the incorpora-
tion of the MvE module. Nevertheless, despite employing multiple expert models
for voting in Example 1, it still introduced some erroneous triples. This occur-
rence arises from certain expert models struggling with precise determination of
entity boundaries, resulting in partial errors. Addressing this concern remains
an important aspect for future research.
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Table 3. Case study: ✔ means the tirplet is right, ✘ means the triplet is wrong.

Exp 1: People’s Square, located in Haigang District of Qinhuangdao City, Hebei Province,

is the landmark building of Qinhuangdao City.

KnowLM-ZhiXi

(People’s Square, is located in, Haigang District)✔

(Hebei Province, is located in, Qinhuangdao City)✘

(Qinhuangdao City, is located in, Haigang District)✘

(People’s Square, achievement, landmark building of Qinhuangdao City)✔

KnowLM-ZhiXi(MvE)

(People’s Square, is located in, Qinhuangdao City)✔

(People’s Square, is located in, Haigang District)✔

(People’s Square, achievement, landmark buildings in Qinhuangdao City)✔

(Qinhuangdao City, is located in, Hebei Province)✔

(Haigang District, is located in, Qinhuangdao City)✔

(People’s Square, achievement, landmark buildings)✘

Exp2: On January 7, 1987, Zhao Yazhi and Huang Jinshen’s son, Huang Kaijie, was born.

KnowLM-ZhiXi

(Zhao Yazhi, spouse, Huang Jinshen)✔

(Huang Kaijie, parent, Zhao Yazhi)✔

(Huang Kaijie, parent, Huang Jinshen)✔

(Huang Kaijie, was born on, January 7, 1987)✔

KnowLM-ZhiXi(MvE)

(Zhao Yazhi, spouse, Huang Jinshen)✔

(Huang Jinshen, spouse, Zhao Yazhi)✔

(Huang Kaijie, parent, Zhao Yazhi)✔

(Huang Kaijie, parent, Huang Jinshen)✔

(Huang Kaijie, was born on, January 7, 1987)✔

5 Conclusion

In this paper, we propose a method which performs knowledge graph construc-
tion adaptively with evolving knowledge schema. Three key ingredients con-
tribute to the success of our method. First, a KGC-tailored large language model
(LLM) is built, where the generalization ability of LLM is transferred for KGC.
Second, a multi-model integration strategy is designed to mitigate the bias of a
single LLM. Finally, schema-constrained decoding and LLM-guided correction
improve KGC performances via the automatic error corrections. Experiments
show the superiority of our method. In the future, we would like to extend our
methods to related tasks including knowledge graph completion.
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Abstract. In this paper, we introduce our solution for the inductive
knowledge graph reasoning task organized by the 2023 China Conference
on Knowledge Graph and Semantic Computing (CCKS 2023). Specifi-
cally, this inductive knowledge graph reasoning task has two main chal-
lenges, namely 1) How to predict the entities that are not in the train-
ing set, and 2) How to train and reason more efficiently. To deal with
these challenges, we adapt the Neural Bellman-Ford Networks (NBFNet)
with grid search strategy for achieving the best performance. Along this
line, we further refine this solution with ensemble learning and post-
processing. Extensive experiments have demonstrated the effectiveness
of our solution, which won the first place in the competition. Code is
publicly available at https://github.com/smart-lty/CCKS-2023-Task2

Keywords: Inductive Knowledge Graph Reasoning · Representation
Learning · Graph Neural Network

1 Introduction

Recent years have witnessed the rapid development of Knowledge Graph (KG)
techniques, which stores quantities of structured human knowledge in the form
of factual triples, and further benefits various downstream domains, like natu-
ral language processing [1], recommendation Systems [2], and question answer-
ing [3]. In the context of real-world knowledge graphs, continuous emergence
of new entities, such as users and products in e-commerce, leads to the persis-
tent incompleteness of KG. For instance, even widely-used large-scale knowledge
graphs, like Freebase [4], Wikidata [5], and Yago3 [6] suffer from this problem.
To that end, several knowledge graph completion models, including RotatE [7]
and R-GCN [8], have been developed. Unfortunately, they encounter difficulties
in dealing with emerging entities due to their reliance on observing test entities
during training. Consequently, there is a growing interest in the field of inductive
link prediction, which aims to address this challenge by predicting missing links
in evolving knowledge graphs [9].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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https://doi.org/10.1007/978-981-99-7224-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7224-1_22&domain=pdf
https://github.com/smart-lty/CCKS-2023-Task2
https://doi.org/10.1007/978-981-99-7224-1_22


286 D. Huang et al.

Indeed, the fundamental concept underlying inductive relation prediction on
knowledge graphs revolves around the learning of logical rules, which capture co-
occurrence patterns between relations in an entity-independent manner, enabling
seamless generalization to previously unseen entities [10,11]. Although exist-
ing models like AMIE+ [12] and Neural LP [13] explicitly reveal logical rules,
thereby offering interpretability [13], their performance is constrained by the
extensive search space and discrete optimization requirements [14,15]. Recently,
a promising alternative is represented by subgraph-based methods, exemplified
by GraIL [10], TACT [11], and CoMPILE [16], which introduce implicit rule
mining through reasoning over the subgraph induced from the target link. These
innovative approaches leverage the power of Graph Neural Networks (GNNs) [8]
to learn subgraph representations, effectively encoding all mined rules. However,
there are still some irrelevant rules [17] within the subgraph.

At the same tine, we realize that NBFNet, a path-based Method, can
solve this problem. NBFNet drawing inspiration from conventional path-based
methodologies, proposes to represent a pair of nodes by employing a general-
ized sum of all path representations between them. Each path representation is
defined as the generalized product of the edge representations along that par-
ticular path. Intriguingly, various well-known link prediction methods, including
Katz index [18], personalized PageRank [19], graph distance [20], and classical
graph theory algorithms such as widest path [21] and most reliable path [21],
can be viewed as special instances of our path formulation, distinguished by the
specific summation and multiplication operators employed. Motivated by the
efficiency of the polynomial-time algorithm for the shortest path problem [22],
they demonstrate that our formulation lends itself to an efficient solution via the
generalized Bellman-Ford algorithm [21], even under mild conditions, making it
highly scalable for large graphs.

To that end, we adapt NBFNet framework with improved grid-search-based
training strategies, and further refine this solution with weighted ensemble learn-
ing and post-processing. Extensive experiments have demonstrated the effective-
ness of our solution, which won the first place in the inductive knowledge graph
reasoning competition of CCKS 2023.

2 Related Works

In recent academic explorations, link prediction within knowledge graphs (KGs)
has emerged as a focal area of research, largely due to the inherent incomplete-
ness in many existing graphs. Generally, this task can be categorized into two
primary classifications: transductive link prediction and inductive link predic-
tion. At present, four predominant paradigms for KG link prediction have been
identified: rule-based approaches, path-based approaches, embedding-based tech-
niques, and graph neural networks.
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2.1 Rule-Based Approaches

Rule-based approaches predominantly focus on the formulation of rules to reason
and predict new triples. The AIME model [23] is illustrative of this, as it predicts
rules for each relation through the introduction of both dangling and closing
atoms, thereby extending the rule set of the relation. Despite its commendable
interpretability and capability to automatically discern reasoning rules, its vast
search space constrains performance. The DRUM methodology [24], an end-to-
end differentiable approach, offers another perspective by learning weights of
specific paths through probabilistic logical rule sets, leveraging the relation’s
adjacency matrix for single-hop graph calculations.

2.2 Path-Based Approaches

Historical path-based techniques such as Katz [18] and PageRank [19] have
employed path features for link prediction purposes. Within the domain of
knowledge graphs, models can utilize paths between entity pairs to ascertain
and predict direct 1-hop relations. Path-RNN [25], for instance, encodes and
amalgamates paths using recurrent neural networks to subsequently predict rela-
tions. Similarly, the Path Ranking Algorithm (PRA) [26] conceptualizes paths
as features analogous to specific Horn clauses, allowing for logical rule-based
inferences. Notably, the NBFNet model [27], which forms the foundation for our
research, is another path-centric technique leveraging the Bellman-Ford algo-
rithm for path determinations.

2.3 Embedding Techniques

Embedding techniques aim to learn distributed representations of KG entities
and relations, employing these representations to compute triple scores. Contem-
porary knowledge graph embedding methodologies like TransE [28], DistMult
[29], and RotatE [7] have demonstrated considerable efficacy in link prediction,
even in expansive graphs. Nonetheless, one salient limitation of these embedding
techniques is their transductive nature, rendering them ineffective with previ-
ously unseen entities and relations.

2.4 Graph Neural Networks (GNNs)

Several GNN-inspired knowledge graph embedding techniques have been devel-
oped to address link prediction challenges. GNNs inherently capture the topo-
logical intricacies of graphs, translating entities into embeddings. Decoders then
employ these embeddings to predict the interrelations between nodes. SEAL
[30], as an exemplar, extracts a k-hop subgraph surrounding each target link
and subsequently assigns integer labels to each node as supplementary features.
A graph neural network is then deployed for link existence predictions. It is also
worth noting that GraIL [10], which stands as the benchmark model for this
competition, is rooted in GNN methodologies.
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3 Methodology

In the pursuit of optimal results, this study adopts NBFNet as its foundational
model and strategically employs a weighted ensemble technique.

3.1 Insight into NBFNet

NBFNet serves as the primary modeling framework for our methodology. With
its roots in path-based link prediction techniques and the sophisticated General-
ized Bellman-Ford algorithm, NBFNet incorporates a single-source Graph Neu-
ral Network (GNN) for the inductive inference of links. This discourse delves
into the theoretical underpinnings of the Generalized Bellman-Ford algorithm
and elucidates the structural intricacies of NBFNet.

Theoretical Framework of the Generalized Bellman-Ford Algorithm.
Consider a knowledge graph represented by G = (V, E ,R). Within this frame-
work, V delineates entities, E typifies relations within the Knowledge Graph
(KG), and R signifies the diverse relation types present in the graph. For the
purpose of this discussion, let N (u) signify the neighbors of entity u and E(u)
denote the relations associated with u.

Construct of Path Definition. Within the realm of this research, the objective of
link prediction can be stated as follows: given a primary entity, denoted by u, and
a specific query relation q, the aim is to ascertain the tail entities, symbolized by
v, that are congruent with the established facts in the KG. For methodologies
rooted in path-based techniques and GNNs, discerning the subgraph structure
interlinking u and v is paramount for deducing their relational dynamics. The
representation of this subgraph structure, given a query relation q, is designated
as hq(u, v). Conventional practice leverages the product operator for deducing
the representation of a singular path bridging u and v, while employing the sum
operator to amalgamate representations from diverse paths.

Define Puv as set of paths from u to v and wq(ei) as the representation of
edge ei. The representation of subgraph structure between u and v is:

hq(u, v) = hq (P1) ⊕ hq (P2) ⊕ . . . ⊕ hq

(
P|Puv|

)∣∣
Pi∈Puv

�
⊕

P∈Puv

hq(P ) (1)

And the representation of a single path is:

hq

(
P =

(
e1, e2, . . . , e|P |

))
= wq (e1) ⊗ wq (e2) ⊗ . . . ⊗ wq

(
e|P |

)
�

|P |⊗

i=1

wq (ei)

(2)
This process is similar to Depth-First Search (DFS), where it explores all pos-

sible paths and combines their representations. As a result, it is transductive and
can be applied to various graphs. ⊕ and ⊗ is a general sum and multiplication
that different algorithms could replace.
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Generalized Bellman-Ford Algorithm. Bellman-Ford algorithm is a famous algo-
rithm for finding the shortest paths of a single source using the idea of dynamic
programming. Every node aggregates all the information from its neighbors and
updates its information. Since the number of paths grows exponentially with the
path length, it’s expensive to calculate representations path by path. NBFNet
uses a more scalable solution. Generalized Bellman-Ford algorithm is defined as
follows:

h(0)
q (u, v) ← 1q(u = v) (3)

h(t)
q (u, v) ←

⎛

⎝
⊕

(x,r,v)∈E(v)
h(t−1)
q (u, x) ⊗ wq(x, r, v)

⎞

⎠ ⊕ h(0)
q (u, v) (4)

1q(u = v) is the indicator function which judges if u = v. It’s used for
boundary conditions. The current representation of the path depends on prior
neighbors’ representation and representation of edge e = (x, r, v). Given entity
u and query relation q, the algorithm can compute pair representation hq(u, v)
for all v ∈ V in parallel.

3.2 Single Source Path-Based GNN

If we have a source node u, we can determine the relationships between the
nodes. In this competition, if we’re given source node u and query relation q,
we’ll calculate the representations of all nodes. Then, we’ll calculate the likeli-
hood of the node v having relation q with u. When working with u and q, the
probability of v is determined by the equation p(v|u, q) = σ(f(hq(u, v))). Here,
σ(.) represents the sigmoid function, and f() refers to a feed-forward neural
network.

The training for this model needs to be done carefully.

h(0)
v ← INDICATOR(u, v, q) (5)

h(t)
v ← Aggragate

({
Message

(
h(t−1)
x ,wq(x, r, v)

)
| (x, r, v) ∈ E(v)

})
(6)

In the knowledge graph, MESSAGE could be the translation and scaling
used in TransE and DistMult, respectively. Translation is summation of h(t−1)

x

and wq(x, r, v) and scaling is multiplication. Consider different edges have dif-
ferent contribution to different query so edge representations for wq(x, r, v) is
defined as wq(x, r, v) = W rq + br.

We design the AGGREGATE operator using methods in GNNs such as sum,
mean, or max. Then a transformation and activation are used to produce the
final state.

The INDICATOR operator needs to give a representation of source node
u. To make the initial state of queries different, we learn a query embedding q
and define the operator as 1(u = v) ∗ q

After defining all the operators used in the method, we can convert the
reasoning task to a single source message-passing process. And every node will
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learn its representation based on source node u, then the relations between them
will be determined.

For this contest, when given source node u and query relation q, we calculate
the representations of all nodes. Then the conditional likelihood of the node v
has relation q with u is p (v | u, q) = σ (f (hq(u, v))), where σ()̇ is the sigmoid
function and f() is a feed-forward neural network.

The training process minimizes the negative log-likelihood of positive and
negative triples. The negative triples are generated using Partial Completeness
Assumption (PCA) [23]. And the loss is defined as follows:

LKG = − log p(u, q, v) −
n∑

i=1

1
n

log (1 − p (u′
i, q, v

′
i)) (7)

4 Insights and Methodology

4.1 NBFNet Parameter Investigation

The NBFNet framework, characterized by its singular source initialization
methodology, serves as a general message-passing framework. In our pursuit of
optimizing performance within the context of the CCKS competition, an empir-
ical exploration of specific hyperparameters within the NBFNet architecture has
been undertaken.

Exclusion of Trivial Edges. In the course of training, a pivotal operation
that significantly enhances model performance involves the temporary exclusion
of trivial edges within the training graph. In essence, given a graph denoted as
G, alongside a target link represented by τ = (u, rq, v), the link τ is temporarily
removed from G. To illustrate, when faced with a scenario where the training
graph G encompasses three links, namely e1, e2, and e3, yielding G = (e1, e2, e3),
the endeavor to predict the link e1 necessitates the temporary removal of e1
from G. Thus, the modified input transforms from (G = (e1, e2, e3), e1) to (G =
(e2, e3), e1).

This parameterization serves the purpose of facilitating the unobstructed
propagation of information along reasoning paths. Failing to eliminate facile
edges during the model’s training phase results in a suboptimal learning outcome.

Utilization of Layer Normalization. Layer Normalization (LayerNorm), a
normalization technique frequently deployed in the realm of Graph Neural Net-
works (GNNs), assumes significance. The employment of normalization tech-
niques, such as LayerNorm, is pivotal in stabilizing the learning trajectory and
expediting the process of convergence.

Within the ambit of GNNs, LayerNorm can be applied iteratively to node
features at each layer of the network. This normalization procedure is conducted
across the feature dimension for individual nodes, as opposed to a collective
normalization across nodes, reminiscent of techniques like Batch Normalization.
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In the context of NBFNet, LayerNorm is implemented post the execution
of each AGGREGATE function, thereby augmenting the training velocity of
the NBFNet model. Its role is to harmonize the dimensional disparities among
diverse samples, while simultaneously preserving the relative dimensional rela-
tionships between distinct features.

Incorporation of Shortcut Connections. Shortcut connections, recognized
alternately as residual connections or skip connections, constitute a technique
initially introduced within the architecture of ResNet, tailored to convolutional
neural networks. NBFNet adopts this mechanism to expedite model training.

Given a transformation denoted by F (x), the layer output is expressed as
F (x)+x, diverging from the solitary transformation F (x). This construct, termed
a “ortcut,”forges a direct pathway from input to output, circumventing inter-
vening transformations.

Within the realm of GNNs, shortcut connections can be seamlessly integrated
at each network layer. They prove instrumental in alleviating the quandary of
vanishing gradients that may beset deep network training. Additionally, they
facilitate facile learning of identity functions for node transformations and the
preservation of input feature-derived information.

Negative Sampling Strategy. The incorporation of negative samples within
NBFNet adheres to the principles of Partial Completeness Assumption (PCA).
This entails generating negative samples through the substitution of one entity
within a ground truth triple. The overarching training objective involves maxi-
mizing the discrepancy between the loss incurred by positive and negative triples.

4.2 Grid Search Procedure

For the fine-tuning of parameters within the NBFNet framework, a systematic
grid search methodology is employed to identify the optimal model configuration,
thereby corroborating the findings outlined in Sect. 4.1.

Experimental endeavors reveal that the exclusion of trivial edges and the
application of layer normalization yield discernible enhancements in model per-
formance. Concurrently, the integration of shortcut connections accelerates train-
ing. As regards negative sampling, the dimensionality of 32 is ascertained as
optimal.

In light of these determinations, the aforementioned parameters are held
constant, while the broader spectrum of parameters undergoes examination via
grid search. The ensuing parameters subjected to this investigation are presented
in Table 1.
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Table 1. Parameters under Grid Search Analysis

Model ID Dependency Removal of One-Hop Adversarial Temperature Message Function

23 True False 1 Distmult

30 False False 0.5 Distmult

54 True False 0.5 RotatE

58 False True 0.5 RotatE

59 False True 1 RotatE

62 False False 0.5 RotatE

4.3 Model Ensemble Strategy

To harness the complementary attributes inherent to individual models and
enhance the overall predictive prowess, the imperative of model ensemble
emerges. The chosen strategy for this purpose is labeled as “ingle model weighted
voting.” Within this paradigm, models operating with distinct parameter config-
urations yield distinct score files, encapsulating predictive scores for edge estab-
lishment. Subsequent to their generation, these scores are subjected to diverse
weights prior to aggregation, culminating in the synthesis of the ultimate output.

5 Experiments

5.1 Dataset

Our experimentation is conducted upon the CCKS 2023 inductive knowl-
edge graph reasoning competition dataset. The initial training set encom-
passes 26,874 triples, involving 46 relationships and 4,050 entities. Each triplet
(head, relation, tail) is numerically represented. Similarly, the preliminary test
set contains 3,533 entities and 43 relationships. Within this, the support set
consists of 11,960 triples, while the query set comprises 2,110 triples.

The support set encapsulates triplets (head, relation, tail), wherein the
numerical identifiers correspond to entities and relationships. While the relation-
ship identifiers align with the training set, the entity identifiers differ. Entities
within the test set represent novel instances not encountered during training.
The support set configuration closely mirrors that of the training set.

The query set is composed of tuples (head, relation) along with a list of
candidate tail entities. The entity numbering is coherent with the support set
structure. The primary task involves ranking the candidate tail entities based
on their likelihood of being true.

5.2 Data Pre-processing

Preliminary data pre-processing involves constructing entity dictionaries and
relational dictionaries for all training set and support set triples. This entails
encoding entities and relationships, appending previously unrecorded entities
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and relationships to the dictionaries. Consequently, a new knowledge graph is
formed featuring encoded nodes, facilitating the segregation of training and val-
idation sets.

5.3 Experimental Configuration

The NBFNet model serves as the foundational architecture for our experiments.
To enhance the model’s capacity to learn relation representations, we augment
the number of triples. For each (h, r, t) triplet, a corresponding (t, r−1, h) triplet
is introduced, thereby incorporating an inverse edge. Subsequently, when pre-
dicting the score of a given edge (h, r, t) within the input graph G, the edge’s
presence in G’s training set necessitates temporary removal. Residual connec-
tions are employed to mitigate gradient vanishing. Parameter settings involve
a random seed of 1024, PNA as the aggregate function, a hidden dimension
of [32, 32, 32, 32, 32, 32], input dimension of 32, Adam optimizer, learning rate of
0.005, and further details are found in Table 1. An ensemble approach is adopted
to ascertain the optimal model.

5.4 Experimental Outcomes

To ensure the identification of the optimal model, grid search is employed. The
principal outcomes derived from the validation set are documented in Table 2.

Table 2. Key Results on the Validation Set and Final Test Set

Model ID Hits@3 Hits@10 Validation MRR Final Score

23 0.7697 0.8498 0.7065 0.6320

30 0.7313 0.8641 0.6558 0.6480

54 0.7892 0.8857 0.7204 0.6410

58 0.7280 0.8589 0.6558 0.6240

59 0.7301 0.8844 0.6602 0.6230

62 0.7959 0.9028 0.7139 0.6400

Subsequently, employing a weighted ensemble, we determine the optimal out-
put, we use the model that performs best on the validation set for the ensemble.
Our most successful submission combines Model No. 30 with a weight of 3, Model
No. 54 with a weight of 1, and Model No. 62 with a weight of 1. This ensemble
achieves a score of 0.6510 in the final test set, consequently securing the first
prize in the competition.



294 D. Huang et al.

6 Conclusion

In this paper, we improved NBFNet framework with utilizing a single source
path-based graph neural network to complete the inductive knowledge graph
reasoning competition of CCKS2023. Specifically, with integrating a weighted
ensemble strategy, we achieved the score as 0.6510 and won the first prize.
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Abstract. In recent years, with the continuous progress of knowledge graph tech-
nologies, lots of large-scale knowledge graph have been applied to a variety of
downstream tasks, including question answering and information retrieval. How-
ever, even the largest knowledge graph at present is still incomplete. Specially, in
an open environment, the knowledge graph itself is dynamic, and new knowledge
graph are constantly being constructed. Therefore, it is necessary to complete the
knowledge graph with relation prediction methods. However, since the transduc-
tive relation predictionmethod assumes that the entities in the testing samples have
appeared in the training samples, it is impossible to perform relation prediction on
unseen entities. This paper propose a new inductive knowledge graph completion
method called EGraIL, in which the entity embeddings are initialized by the sur-
rounding relation embeddings and then calculate the possibility of triples through
conventional knowledge graph embedding score function. The model is trained
on the triple classification and relation prediction task at the same time. Finally,
the results are significantly better than baseline method GraIL, and achieve good
rank in the Inductive Knowledge Graph Relation Prediction Task in CCKS2023.

Keywords: knowledge graph · knowledge graph complement · relation
prediction

1 Introduction

With the deepeningof research onknowledge graphs, even the state-of-the-art knowledge
graphs suffer from incompleteness and incorrectness issue: 1)Incompleteness issue, such
as persons in graphs have no career information, which may be caused by data missing
or emergence of new entities.; 2)Incorrectness issue, like incorrect attribute or relation
between entities, which may be caused by information extraction.

Relation prediction aims to predict the missing part in known triples, and triple clas-
sification aims to judge whether a given triplet is correct or not. Both of them are impor-
tant tasks in knowledge graph completion. Compare to transductive methods, inductive
methods have been probed to have higher practical value.

The-state-of-art inductive methods for link prediction and triple classification are
a series of graph neural networks (GNNs) based methods. GraIL [1] and its following
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works construct enclosing subgraph from source knowledge graph and learn to predict
relation from the subgraph structure around candidate relation.

However, in the InductiveKnowledgeGraphRelation PredictionTask inCCKS2023,
GraIL suffer from over fitting, due to the too small amount of source KGs in training. To
alleviate it, we propose several modifications based on GraIL, and build a new inductive
graph learning method, termed Enhanced GraIL (EGraIL). In EGraIL, we apply a new
entity node initializationmethod inspired byMorsE [2], to replace the GNN scoringwith
knowledge graph embedding(KGE) model, and joint strategy for training. Experiments
show that EGraIL outperforms GraIL baseline method and achieve 3rd rank in the finals
of this task.

2 Background: GraIL

For inductive relation prediction, GraIL is the first method proposed to model enclosing
subgraph structure around the target triple based on GNNs. The overall task is to score
a triple (h, r, t) to predict the likelihood of a possible relation r between a head entity
node h and tail entity node t in a KG. The framework mainly consists of three sub-tasks:
1) Subgraph Extraction, extracting the enclosing subgraph around the target nodes; 2)
EntityNode Initialization, initializing the entity nodes in the extracted subgraph; 3)GNN
Scoring, obtaining representation of enclosing subgraph by GNN.

2.1 Subgraph Extraction

Given target triple (h, r, t), the enclosing subgraph is defined as the graph generated by
all the nodes that occur on a path between h and t. There are three steps for subgraph
extraction in GraIL. Firstly, getting the node sets of k-step neighborhood, N k(h) and
N k(t) for node h and t respectively. Secondly, taking intersection between N k(h) and
N k(t) as the enclosing subgraph. Finally, filtering out isolated nodes or nodes that are
more than k away from any target node.

2.2 Entity Node Initialization

GNNs require a node feature matrix X as input to initialize the neural message passing
algorithm. GraIL adopt the double radius vertex labeling scheme. Firstly, caculating the
shortest distance from h and t, d(i, h) and d(i, t), for each node i in the subgraph around
nodes h and t.While h and t are represented as (0,1) and (1,0) respectively, the final repre-
sentation vector of node i is concatenated by one-hot representation, like [one-hot(d(i, h))
⊕ one-hot(d(i, t))], where ⊕ denotes concatenation. However, the initialization method
probably suffer from sparsity, due to one-hot.

2.3 GNN Modulation and Scoring

The Given the extracted and labeled subgraph around the target nodes set G(h, t, r), to
score the likelihood of triple. GraIL adopt aGNNbased generalmessage-passing scheme
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work, in the scheme, a entity node representation is updated iteratively by combination
with the aggregation of neighbors representation. The k-th layer of GNN:

akt = AGGREGATEk
({

hk−1
s : s ∈ N (t)

}
, hk−1

t

)

hkt = COMBINEk({hk−1
t , akt })

where akt is the aggregated message from the neighbors, hkt is the hidden representation
of entity node t in the k-th layer, N (t) is the set of immediate neighbors of node t. For
any node i, h0i is the initialization for the node features. The GNN architectures consist
of AGGREGATE and COMBINE.

AGGREGATE for modulation is defined as:

AGGREGATE =
R∑

r=1

∑
s∈N r(t)

αk
rrt stW

k
r h

k−1
s

COMBINE for scoring is defined as:

COMBINE = ReLU
(
Wk

self h
k−1
t + akt

)

where R is the relations number of knowledge graph, N r(t) denotes the immediate
outgoing neighbors set of node t with relation r, W k

r is the transformation matrix to
propagate messages in the k-th layer over relation r; αk

rrt st is the edge attention weight
in the k-th layer corresponding to the relation r edge connecting nodes s and t. This
attention weight fuction is defined as:

αk
rrt st = σ

(
Ak
2s + bk2

)

s = ReLU
(
Ak
1

[
hk−1
s ⊕ hk−1

t ear e
a
rt

]
+ bk1

)

where hks and h
k
t denote the hidden node representation of the nodes in the k-th layer of

the GNN, ear and eart denote trainable attention embeddings of the relations.

3 Proposed Enhanced GraIL

We propose a new inductive graph learning framework, EGraIL, which is the enhanced
modifications based on GraIL. In this framework, we replace entity node initialization,
remove GNN scoring and combine with KGE model to calculate triple score, and apply
joint strategy for training.

3.1 Entity Node Initialization

Relation representation consists of two part: rin and rout, from in-direction and out-
direction. We initialize entity embeddings with the surrounding relations.

He =
∑M

i=1 r
in + ∑N

j=1 r
out

M + N

where M is the number of in-direction relation around entity, N is the number of out-
direction relation around entity.
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3.2 GNN Modulation

Compare to GraIL, we remove GNN Scoring to obtain the final entity embedding for
each entity node directly, which will be used to feed into KGE.

3.3 Ensemble KGE

Following the GNNModulation, we feed entity embedding into KGEs to calculate triple
score instead of scoring in GraIL. Given a triple (h, r, t), we use three KGE models in
this paper, including TransE [3], TransR [4], and RotatE [5] as below:

TransE, a simple and effective method for knowledge graph embedding, which
encodes entities and relations of a knowledge graph into a low-dimensional embedding
vector space. TransE takes a relation as translation from head entity to tail entity. For a
relation triplet (h, r, t), TransE requires the embedding of entities h, t and the embedding
of relation rmeet the formula h + r≈t. During training, the score function is defined as

f (h, r, t) = ‖h + r − t‖22
The score is lowwhen (h,r,t) is a golden triplet, and high otherwise. TransE achieives

outstanding performance in 1-to-1 relations.However,when dealingwith 1-to-N,N-to-1,
N-to-N relations, its performance is not so good as expected.

TransR, a modification based on TransE, which sets a mapping matrix for every
relation r to help project entities from entity space to relation space.

hr = hMr, tr = tMr

Then the score function is defined as

f (h, r, t) = ‖hr + r − tr‖22
RotatE, which is inspired by Euler’s identity, maps the head and tail entities h, t to

the complex embeddings, and considers each relation as a rotation from the head entity
to the tail entity in the complex vector space.

t = h ◦ r, where |ri| = 1

Then the score function is defined as

f (h, r, t) = ‖h ◦ r − t‖
Ensemble KGEs, in testing, given entity and relation embeddings from GNN mod-

ulation, we expect significant gains to be obtained by ensembling different KGE model
on reciprocal rank metrics, called late fusion.

mrrensemble = 1

N

N∑
i=1

M∑
j=1

1

rankkj

where N is the size of the query set in testing, M is the number of KGE models, rankkj
is the rank of correct entity in the ranking of the predicted candidate entities list for test
triple i, with KGE model j.
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3.4 Joint Training

We joint triple classification and relation prediction tasks for training, while apply binary
cross entropy loss function for triple classification task and self-adversarial negative
sampling loss function referred to RotatE on query triples for relation prediction task.

The loss function of triple classification task is defined as:

Ltriple classification = −
∑

(h,r,t)∈T
log σ(f (h, r, t))

where σ denotes sigmoid function, T denotes triples including positives and negatives.
The loss function of relation prediction task is defined as:

Li =
∑

(h,r,t)∈Qi

− log σ(γ + f (h, r, t)) −
k∑

i=1

p
(
h′
i, r, t

′
i

)
log σ

(−γ − f
(
h′
i, r, t

′
i

))

p
(
h′
j, r, t

′
j

)
=

expβf
(
h′
j, r, t

′
j

)
∑

i expβf
(
h′
i, r, t

′
i

)

where σ denotes sigmoid function; γ is a fixed margin; k is the number of negative
samples for each triple;

(
h′
i, r, t

′
i

)
is the i-th negative triple by corrupting head or tail

entity; β is the temperature of sampling.
The final learning objective of our work is defined as the combination of the above

two:

L = αLtriple classification + (1 − α)Lrelation prediction

where α controls the contribution of loss of the above two task. With this joint training
strategy, our model is capable of modeling subgraph with complete relations while
capturing neighboring relations aware of both local and global structural information.

4 Experiments

4.1 Data Sets

In this task, we evaluate our system with the Inductive Knowledge Graph Relation
Prediction Task dataset in CCKS2023, and Table 1 lists some statics of the dataset.

Table 1. Statics for the datasets used

DataSet #Rel #Source Ent #Support Ent

CCKS2023 46 4050 3533
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4.2 Training Details

In the experiment, we select learning rate for SGD among {0.05, 0.01, 0.005},themargin
γ among {4, 8, 10, 16}, the dimensions of entity embedding k and relation embedding
d among {32, 64, 128}, the batch size B among {32, 64, 128}. The best experimental
setting obtained by valid set are: λ = 0.01, γ = 10, k = 32, d = 32, B = 128. All
experiments are implemented by PyTorch and run on Nvidia Tesla V100 16GB.

To compare fairly with the prior methods, we use Mean Reciprocal Rank(MRR)
metrics as evaluation protocol, which is defined as:

MRR = 1

N

N∑
i=1

1

ranki

where N is the size of the query set in testing, ranki is the rank of correct tail entity in
the ranking of the predicted candidate tail entities.

4.3 Main Results

Table 2. The test result in primary and final dataset

Method Test dataset

Primary Final

GraIL 0.828 0.562

EGraIL(TransE) 0.835 0.576

EGraIL(TransR) 0.851 0.613

EGraIL(RotatE) 0.845 0.587

As can be seen from Table 2, combining GNNmodulation with KGEmodel TransE,
TransR and Rotate, all perform better than GraIL. EGraIL(TransR) obtain the best result
both in test primary dataset which is ranked 4th on the leaderboard, and achieve rank
3rd in test final.

5 Conclusion and Future Work

In the Inductive Knowledge Graph Relation Prediction Task, we propose a new induc-
tive graph learning framework, EGraIL, which is the enhanced modifications based on
GraIL. In this framework, we replace entity node initialization, removeGNN scoring and
combine with KGE model to calculate triple score, and apply joint strategy for training.
It capable of modeling subgraph with complete relations while capturing neighboring
relations aware of both local and global structural information.

Experiments demonstrate that thismethodhas goodperformance in inductive relation
inference scenarios, and achieve good ranks both in test primary section and test finals.
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We think the following issues should be further studied as bellow: First, all the entities
in different relations share the same mapping matrix in TransR.But as known, the types
and attributes of the entities are distinct. We think it would be difficult for one universial
mapping matrix to character these different attributions hidden in different entities.
Second, when the amount of relations become very large, the amount of multiplication
computations between Matrix or Vector in KGEs would become much larger, thus it
would take lots of time for training the whole model. Both of these two issues should be
well studied in the future.
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Abstract. Knowledge base question answering (KBQA) aims to answer natu-
ral language questions using structured knowledge bases. Common approaches
include semantic parsing-based approaches and retrieval-based approaches. How-
ever, both approaches have some limitations. Retrieval-based methods struggle
with complex reasoning requirements. Semantic parsing approaches have a com-
plex reasoning process and cannot tolerate errors in earlier steps when generating
the final logical form. In this paper, we proposed a large language model (LLM)-
based SPARQL generation model, which accepts multiple candidate entities and
relations as inputs, reducing the reliance on mention extraction and entity linking
performance, and we found an entity combination strategy based on mentions,
which can produce multiple SPARQL queries for a single question to boost the
chances of finding the correct answer. Finally, our model achieves state-of-the-art
performance in the CCKS2023 CKBQA competition, F1 score is 75.63%.

Keywords: KBQA · Large Language Model · SPARQL Generation

1 Introduction

Knowledge based question answering (KBQA) [1] has recently gained research interest,
as it provides an intuitive way to access factual knowledge. The KBQA system makes
use of structured knowledge bases such as Freebase,Wikidata, andDBpedia, which have
logically organized entities and relations. A knowledge base typically contains a large
number of triples, which can be represented as (head, relation, tail), the head refers to
main entity, the tail refers to another entity or a literal value, and the relation is a directed
relationship between head and tail [2]. KBQA systems can infer answers to questions
by matching relevant entities and relations.

The existing KBQA approaches can be divided into two main categories: retrieval-
based methods [3–9] and semantic parsing-based methods [10–23]. Retrieval-based
methods directly represent and rank entities parsed from the input question. Among
them, some methods first extract a subgraph containing only question-relevant entities
from the knowledge base before performing reasoning. By narrowing the focus to a sub-
set of KB, these methods can reduce the space for reasoning and be more efficient, while
still struggling with complex questions. In contrast, semantic parsing-based (SP-based)
methods parse a question into a logic form like SPARQL [10], Lambda-DCS [11], and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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KoPL [12] that can be executed against the KB. However, these methods rely heavily
on expensive annotations of intermediate logic forms and tend to be limited to narrow
domains. With the advance of pre-trained language models (PLMs), many works have
reformulated the semantic parsing task as a sequence-to-sequence (Seq2Seq) logical
expression generation problem, which directly translate natural language queries into
logical forms.

More recently, Large language models(LLM) have made significant advancements
in natural language processing (NLP), such as GPT-3 [24], PaLM [25], LLaMA [26],
which has proven to be an effective technique for improving performance on a wide
range of language tasks [27]. Considering the large scale of the knowledge graph to
process, containing 66,630,393 triplets, 11,327,935 entities, and 408,794 relations, we
adopt a semantic parsing-based method with LLM as CKBQA solution. Like tradi-
tional semantics-based approaches, our method adopts a staged pipeline architecture.
Traditional semantic parsing pipeline comprises mention extraction, entity linking, and
SPARQL generation. However, for extremely large knowledge graphs, SPARQL gener-
ation performance by traditional semantic parsing pipeline often decreases substantially
due to error propagation across pipeline. Due to the outstanding capabilities of large lan-
guage models (LLMs) [20], we proposed large language model (LLM)-based SPARQL
generation model that accepts multiple candidate entities and relations as inputs, which
helps to reduce the reliance on mention extraction and entity linking performance. We
incorporate an entity relation selection model into the pipeline to prune noisy inputs for
the generation model. Additionally, we implement an entity combination strategy based
onmentions, which can produce multiple SPARQL queries for a single question to boost
the chances of finding the correct answer.

The main contributions of this paper are summarized below:

• This work represents the first attempt at leveraging large pre-trained language mod-
els (LLM) for SPARQL generation to address Chinese knowledge graph ques-
tion answering, achieving top-1 ranking performance in the CCKS2023 CKBQA
competition.

• Wepropose an effective SPARQLgenerationmethod based on large languagemodels,
utilizing mention extraction, entity linking, attribute selection models, and entity
combination to provide high-quality inputs for the language models, significantly
improving SPARQL generation quality. The model process is shown in Fig. 1.

• Ablation experiments were conducted to assess the importance of each module in
SPARQL generation for our approach.

2 Related Work

Retrieval-Based Methods. Zhang et al. proposed a subgraph retriever (SR) separate
from the subsequent reasoner for KBQA. The SR was designed as an efficient dual-
encoder capable of updating the question representation when expanding the path, as
well as determining when to stop the expansion [3]. He et al. proposed a teacher-student
approach for multi-hop KBQA. The teacher network utilized bidirectional reasoning
to produce reliable intermediate supervision signals that improved the reasoning of the
student network and reduced spurious reasoning [4].
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Fig. 1. SPAEQL generation with selected entity and relations. Mentions (highlighted in white
boxes) need to be linked to entites which are from knowledge base. There are two entities (high-
lighted in green boxes), we need to obtain all the relations or attributes of each entity, and then
use attribute/relation rank model to sort them. The selected entities (in green boxs) and relations
(in red boxes) will as input to the SPARQL generation model. The given textual mentions can
be utilized to construct focused SPARQL queries, incorporating the most relevant entities and
relations.

Semantic Parsing-Based Methods. Purkayastha et al. [13] used a Seq2Seq model to
generate SPARQL query sketch, and then apply entity and relation linkers to fill in the
sketch and produce a complete SPARQL query. Lambda-DCS (lambda dependency-
based compositional semantics) [11] is a tree-structured logical Forms, which propose
to reduce the complexity in compositionally creating the logical form of a sentence. Cao
et al. [12] first parse the original question into the skeleton of KoPL program, a sequence
of symbolic functions, and then train an argument parser to retrieve corresponding
arguments of these functions.

Seq2SeqMethods.Nie et al. proposed aunified intermediate representation (GraphQ IR)
that bridges the semantic gap between natural language queries and formal graph query
languages. GraphQ IR can produce intermediate representation sequences using com-
position rules consistent with English to capture natural language semantics while main-
taining fundamental graph structures [14]. Cao et al. proposed a Line Graph Enhanced
Text-to-SQL (LGESQL) to extract relational features from text without having to con-
struct meta paths. The Line Graph representation allowed messages to propagate more
efficiently by considering not just connections between nodes, but also the topology of
directed edges [15]. Das et al. first identify different queries with semantically equiva-
lent components, and then construct a new logical form by combining these matching
components from the discovered queries [21]. Huang et al. utilize a large model-based
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algorithm to identify entities and relations within a question, and then generate a query
structure with placeholders, which are then populated in a post-processing step [22].
Xiong et al. utilize advanced generative pre-trained language models to generate ques-
tions from logical form and then make predictions, the auto-prompter has the ability to
paraphrase predicates in a consistent and fluent manner [23].

LLM-Based Methods. LLM with billions of parameters have achieved state-of-the-art
results on many NLP benchmarks by learning powerful contextual representations of
language from large amounts of text data. One key development in LLM is the use
of self-attention mechanism [28] and transformer architectures [29]. Another important
development is the use of pre-training, wheremodels are first trained onmassive datasets
and then fine-tuned on downstream tasks. LLM transfers broad linguistic knowledge that
significantly improves performance across many language understanding tasks. One
remarkable recent development is the launch of ChatGPT [30], a conversational AI
system powered by LLMs. ChatGPT has gained widespread public attention for its
ability to engage in surprisingly natural conversations, which highlight the substantial
progress LLMs have made in language understanding and generation that allows them
to partake in coherent human-like dialogue.

3 Method

As shown in Fig. 2, The methodology we propose comprises four fundamental compo-
nents: 1) extracting textual mentions from the input, 2) linking mentions to entities in the
knowledge graph, 3) selecting relevant attributes and relations from these entities, and
4) combining these entities to generate SPARQL queries. The specific implementations
of each module will be described fully in subsequent sections. The complete descrip-
tions of the individual modules’ specific implementations will be provided in subsequent
sections.

3.1 Mention Extraction

Mention Extraction is the task of identifying the mention span of all entities in the ques-
tion [31]. Each such span is referred to as an entity mention. The word or sequence of
words that refers to an entity is also known as the surface form of the entity. An utterance
may contain multiple entity, often also consisting of more than one word. Addition-
ally, a broader classification of entities, such as person, location, and organization, can
sometimes be assigned.

Our mention extraction model architecture is composed of a BERT encoder with
a token-level classifier on top followed by a Linear-Chain CRF. We first use BERT to
encode user question and outputs a sequence of encoded token representations, then a
classification model projects each token’s encoded representation to the tag space. We
also framemention extraction as a generative task, and attempt to extract mentions using
ChatGLM [35].
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Fig. 2. Method Flow: (a) Mention extraction is carried out on the question. (b) For each mention,
top-5 candidate entities are selected from the knowledge graph by using Elasticsearch and rules,
and then ranked by the entity linking model. (c) Relation selection is applied to choose the most
relevant relations for entities from the previous entity linking results. (d) Candidate entities across
different mentions are combined and fed into the SPARQL generation model to produce multiple
SPARQL queries.

3.2 Entity Linking

The task of Entity Linking involves establishing connections between annotated men-
tions in a given utterance and their corresponding entities within a knowledge base
[32–34]. This task was addressed by using popular knowledge bases such as DBpedia,
Freebase orWikipedia. Entity linking serves as a bridge between textual spans and struc-
tured entities within a knowledge base, thereby will be beneficial to various downstream
tasks like question answering and knowledge extraction. EL aims to link entity mentions
in unstructured text to their corresponding entities in a designated knowledge base.

Our entity linking model is trained to assign a score to each candidate entity as
shown in (1). Specifically, given the question q and the candidate entity e_text, we use
a BERT-based encoder to generate a score indicating the confidence of the link [29].

el_score = sigmoid(AVG(BERT ([q : e_text]))) (1)

For every mention, we will select top-5 entities according to their linking confidence
scores for the next phase.
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3.3 Entity Attribute/Relation Select

When given an entity and its relations, Entity Attribute/Relation Select model can select
question related relations, thus themodel also learns to score each entity relation. Specifi-
cally, given the question q and the candidate entity relations r_text, we also use a BERT-
based encoder to generate a correlation score between the question and either entity
attributes or relations.

es_score = sigmoid(AVG(BERT ([q : r_text]))) (2)

The entity and its relation are represented by triples consisting of the entity, relation-
ship, and tail. For each entity, wewill select top-5 relationships based on their correlation
score for the next phase.

3.4 Entity Combination and SPARQL Generation

After the phase of entity linking and entity attribute/relation select, we have obtained
top-5 entities for each mention, and each entity has top-5 relations, as key supporting
evidence. In the SPARQL generation stage, we attempted different methods.

Method 1: The question and all key supporting evidence from different mentions are
concatenated as input to the SPARQL generation model, resulting in a single expression.

Method 2: Entities from different elements are combined and concatenated within
each combination to generate multiple SPARQL queries, which ca be executed against
the KB. Unlike Method 1, the approach will produce multiple SPARQL expressions.

Taking the question “What are the hotels affiliated with Sheraton in Jiangyin?” as an
example, after mention extraction, entity linking, and entity attribute/relation selection,
we obtaine the most relevant knowledge related to this question from the knowledge
graph. In Method 1, we filled all relevant information into the prompt, obtaining the
complete prompt as shown below.
请根据问题:\”隶属于喜来登的酒店在江阴有哪几家?\”,和候选实体信息:[0]

名称: <喜来登 >,属性集:酒店品牌名称,类型,隶属,公司性质,公司名称,附近酒店,
成立时间;[1]名称: < 江阴 >,属性集:城市,市花/市树,所属地区,隶属,所属城市,出
生地,gdp,城市网站,隶属于,位置,市长,所在城市,适用地区,分布
区域,所属地区,著名景点,位于,行政区域,属于,家乡;[2]名称: <江阴黄嘉喜来登酒
店 >,属性集:实体名称,酒店品牌名称,酒店入住开始时间,是否有鲜花店,是否有酒
吧,是否有接机服务,是否有接机服务-营业时间,是否有接送服务-营业时间,是否有
温泉,是否有桑拿浴室,是否有允许带宠物,是否有茶室,是否有会议室,是否有桌球
室,是否有管家服务,是否有熨衣服务,是否有图书馆,是否
有wifi服务,是否有游戏室,是否有礼宾服务;[3]名称: < 镇江富力喜来登酒店 >,属
性集:实体名称,酒店品牌名称,房型名称,是否有鲜花店,是否有桑拿浴室,酒店入住
开始时间,是否有允许带宠物,是否有温泉,是否有高尔夫球场,是否有保龄球馆,是
否有租车服务,是否有大堂吧,是否有多功能厅,是否有网球场,是否有婚宴服务,是
否有叫醒服务,是否有礼宾服务,是否有KTV,是否有图书馆,是否有会议室;[4]名
称:\”喜来登\”,属性集:中文名称,公司名称,对应查询图谱的Sparql的语句为:

Please follow the question: \”Which hotels are affiliated to Sheraton in Jiangyin?\”,
and candidate entity information: [0] Name: < Sheraton >, attribute set: hotel brand
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name, type, affiliation, company nature, company Name, nearby hotels, establishment
time; [1] Name: < Jiangyin >, attribute set: city, city flower/city tree, region, affiliation,
city, place of birth, gdp, city website, affiliation, location, city Length, city, applica-
ble area, distribution area, belonging area, famous scenic spot, location, administra-
tive area, belonging to, hometown; [2] name: < Jiangyin Huangjia Sheraton Hotel >,
attribute set: entity name, hotel brand name, hotel Check-in start time, whether there
is a flower shop, whether there is a bar, whether there is a pick-up service, whether
there is a pick-up service-opening hours, whether there is a pick-up service-opening
hours, whether there is a hot spring, whether there is a sauna, whether pets are allowed,
whether there is a tea room, whether there is a meeting room, whether there is a billiard
room, whether there is a butler service, whether there is an ironing service, whether
there is a library, whether there is wifi service, whether there is a game room, whether
there is a concierge service; [3] name: < Sheraton Zhenjiang Hotel >, attribute set:
entity name, hotel brand name, room type name, whether there is a flower shop, whether
there is a sauna, hotel check-in start time, whether pets are allowed, whether there is a
hot spring, whether there is a golf course, Is there a bowling alley, is there a car rental
service, is there a lobby bar, is there a multi-function hall, is there a tennis court, is
there a wedding banquet service, is there a wake-up call service, is there a concierge
service, is there a KTV, is there a book Museum, whether there is a conference room; [4]
Name: \”Sheraton\”, attribute set: Chinese name, company name, the Sparql statement
corresponding to the graph is:

In Method 2, we combined entity information from different mentions, then filled
each combination into the prompt, so we could obtain multiple prompts to generate
SPARQL statements. For the combination < Sheraton >, < Jiangyin >, the complete
prompt is shown below.
请根据问题:\”隶属于喜来登的酒店在江阴有哪几家?\”,和候选实体信息:[0]

名称: <喜来登 >,属性集:酒店品牌名称,类型,隶属,公司性质,公司名称,附近酒店,
成立时间;[1]名称: < 江阴 >,属性集:城市,市花/市树,所属地区,隶属,所属城市,出
生地,gdp,城市网站,隶属于,位置,市长,所在城市,适用地区,分布区域,所属地区,著
名景点,位于,行政区域,属于,家乡,对应查询图谱的Sparql的语句为:

Please follow the question: \"Which hotels are affiliated to Sheraton in Jiangyin?\”,
and candidate entity information: [0] Name: < Sheraton >, attribute set: hotel brand
name, type, affiliation, company nature, company Name, nearby hotels, establishment
time; [1] Name: < Jiangyin >, attribute set: city, city flower/city tree, region, affiliation,
city, place of birth, gdp, city website, affiliation, location, city Length, city, applica-
ble area, distribution area, area, famous scenic spot, location, administrative area,
belonging, hometown, the Sparql statement corresponding to the graph is:

After obtaining the complete prompt, we feed it to the LLM to generate SPARQL.
We select ChatGLM-6B1 [35] as the SPARQL generation models. ChatGLM-6B is a
pre-trained large language model with 6.2 billion parameters, based on the General
Language Model (GLM) architecture. ChatGLM-6B was trained on around 1 trillion
tokens of Chinese and English corpus, with additional supervised fine-tuning, feedback

1 https://github.com/THUDM/ChatGLM-6B.

https://github.com/THUDM/ChatGLM-6B
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bootstrap, and reinforcement learning using human feedback. This enables ChatGLM-
6B to generate answers that are aligned with human preference, with fluency in both
English and Chinese.

We use low-rank adaptation (LoRA) to finetune ChatGLM-6B for SPARQL
Generation [36]. The parameter settings used for LoRAfine-tuning are shown in Table 1.

Table 1. Knowledge Graph Information.

Item Quantity

lora_alpha 32

lora_dropout 0.1

lora_rank 8

lora_target query_key_value

4 Results

The key statistics for the knowledge graph and training data used in this work are
presented in Table 2. The knowledge graph contains 66,630,393 triplets, 11,327,935
entities, and 408,794 relations. The training data is comprised of 7,625 examples.

Table 2. Knowledge Graph and Data Information.

Item Quantity

Triplet 66,630,393

Entity 11,327,935

Relation 408,794

Train Case 7,625

4.1 Mention Extraction Result

We compared several mention extraction methods on CKBQA dataset, including BERT
+CRF, Roberta+CRF, and ChatGLM-6b(LoRA). As shown in Table 3, the ChatGLM-
6b(LoRA) model achieved the highest F1 score.

4.2 Entity Linking Result

We compared Bert and Roberta on entity linking task. As shown in the Table 4, RoBerta
achieved the higher F1 score of 94.48%, compared to 93.64% for Bert. This indicates
RoBerta is more effective for this entity linking task, outperforming Bert by 0.84% in
terms of F1 score.
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Table 3. Mention Extraction Result

Method F1 Performance (100%)

Bert + CRF 84.5

Roberta + CRF 85.2

ChatGLM-6b(LoRA) 89.4

Table 4. Entity Linking Result

Method F1 Performance (100%)

Bert 93.64

RoBerta 94.48

4.3 Entity Attribute/Relation Select

F1 scores for Bert and RoBerta models on an entity attribute/relation selection task are
presented in Table 5. RoBerta model achieved the higher F1 score of 95.17%, compared
to 94.12% for Bert model, indicating RoBerta is more effective for extracting entity
attributes and relations, outperforming Bert model by 1.05% based F1 evaluation metric.

Table 5. Entity Attribute/Relation Select Result

Method Performance (100%)

Bert 94.12

RoBerta 95.17

4.4 Entity Combination and SPARQL Generation

At this stage, we compared the impact of different entity combination methods on
SPARQL generation. Using the same ChatlGLM-6B model and LoRA fine-tuning
parameters, we trained and fine-tuned two SPARQL generation models with different
entity combination approaches. Table 6 shows the performance of the two entity com-
bination methods on the training and validation set, whis is evaluated using ROUGE-1,
ROUGE-2, ROUGE-L [37]. To evaluate the correctness of SPARQL, we introduced the
Pass Rate metric. ChatGLM-6b-Method2 achieved higher scores across all metrics, with
notably large improvements in ROUGE-2 (90.11%vs 85.96%) and Pass rate (68.9%
vs 61.5%). This suggests that ChatGLM-6b-Method2 is more effective for SPARQL
generation.

The pass rate metric measures the ratio of generated SPARQL queries that are
syntactically valid and return correct answers on test set.
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Table 6. Entity Combination and SPARQL Generation Result.

Method Acc Performance (100%)

ROUGE-1 ROUGE -2 ROUGE -L Pass Rate

ChatGLM-6b-Method1 91.72 85.96 89.09 61.5

ChatGLM-6b-Method2 94.89 90.11 91.72 68.9

4.5 End to End Performance

We conducted ablation experiments to evaluate the importance of each module in our
pipeline. The results of these experiments are shown in Table 7.

Table 6 shows the incremental impact of on KBQA system from adding different
knowledge graph components. We evaluated five system variations (V1-V5) on the
CKBQA training dataset.

System V1 uses only a mention extraction (ME) model and SPARQL generation
(SG) module, achieving an F1 score of 45.11%. The lack of entity linking, relation
selection, and entity combining modules limits its performance. By analyzing the gener-
ated SPARQL, we found that errors often occur due to inconsistent entity formats with
the knowledge base, making it impossible to obtain answers through SPARQL.

System V2 adds an entity linking (EL) module using RoBerta, improving perfor-
mance to 66.45% F1. Linking mentions to knowledge graph entities provides useful
contextual information.

System V3 further incorporates an entity attribute/relation selection (ERS) module
based on Roberta. This model eliminates interference from irrelevant attributes and
relationship of entities in the input, increasing F1 to 69.23%.

System V4 adds an entity combination (EC) module. Through this module, we
can assemble entity information from different mentions to generate multiple SPARQL
queries. Concurrently, we can determine the relevance of each SPARQL query based on
relatedness between entities. The most relevant SPARQL that can retrieve results from
the knowledge graph is selected as the final generated query. By utilizing this method,
we improved the performance of our system to 73.93% F1 score.

Even after System V4, we still found a limited number of questions for which it was
not possible to generate an accurate SPARQL query that could retrieve answers from the
knowledge graph. Therefore, we supplemented with an additional KBQAmethod based
on triple retrieval. By integrating this approach, we further improved our system’s score
to 75.63%.
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Table 7. Knowledge Graph Information. ME means Mention Extract Model; EL means Entity
Linking Model; ERS means Entity attribute/relation Select Model and EC means Entity Combi-
nation Module and SG means SPARQL Generation, and Retrieval means Retrieval Method For
KBQA.

System ME EL ERS EC SG Retrieval Acc (100%)

V1
√ × × × √ × 45.11

V2
√ √ × × √ × 60.45

V3
√ √ √ × √ × 69.23

V4
√ √ √ √ √ × 73.93

V5
√ √ √ √ √ √

75.63

5 Conclusion

In this paper, we proposed large language model (LLM)-based SPARQL generation
model, which accepts multiple candidate entities and relations as inputs, reducing the
reliance on mention extraction and entity linking performance. And we found an entity
combination strategy based on mentions, which can produce multiple SPARQL queries
for a single question to boost the chances of finding the correct answer. Finally, we get
1st place in CCKS2023 CKBQA competition with F1 score of 75.63%. In the future,
we will delve into research on SPARQL query generation with large language models,
especially focus on multiple hops and multi constraints query.
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Abstract. Knowledge Base Question Answering (KBQA) is a signif-
icant task in natural language processing, aiming to retrieve answers
from structured knowledge bases in response to natural language ques-
tions. NL2Cypher is crucial for accurately querying answers from knowl-
edge bases, but there is limited research in this area or the results are
unsatisfactory. Our work explores the convergence of advanced natural
language processing techniques with knowledge base question answering
(KBQA), focusing on the automated generation of Cypher queries from
natural language queries. By leveraging the capabilities of large language
model (LLM), our approach bridges the gap between textual questions
and structured knowledge representations. The proposed methodology
showcases promising results in accurately formulating Cypher queries.
We achieved substantial performance in the CCKS2023 Foreign Military
Unmanned Systems Knowledge Graph Reasoning Question-Answering
Evaluation Task. Our method achieved an F1 score of 0.94269 on the
final testing dataset.

Keywords: KBQA · LLM · Cypher

1 Introduction

Knowledge Base Question Answering (KBQA) has attracted much attention
(Barent et al. (2013) [1]) in the field of artificial intelligence and knowledge
graph, it aims to extract pertinent entities and relations from a pre-established
knowledge graph (KG) to accurately answer natural language questions. KBQA
is an effective way of using structured knowledge for information retrieval, but
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it also faces some challenges, including natural language understanding, entity
linking, relation extraction.

Recent progress in deep learning and natural language processing has led to
the emergence of large language models (LLM) like GPT-3 [2], BERT [3], etc.
These models have demonstrated impressive performance across diverse lan-
guage tasks, acquiring extensive linguistic knowledge and semantic representa-
tions through self-supervised learning on vast quantities of unlabeled text.

This paper introduces an approach for KBQA that utilizes large language
models. In particular, the proposed method focuses on employing LLM to extract
entities and relations from natural language questions, facilitating semantic
comprehension and subsequent transformation into structured Cypher queries,
which ultimately enables the retrieval of answers from the knowledge base. This
methodology capitalizes on the robust semantic comprehension and generaliza-
tion capabilities of large language models, effectively enhancing the performance
of Knowledge Base Question Answering tasks.

1.1 KBQA

Knowledge Base Question Answering (KBQA) systems, designed to fetch rele-
vant entities and relations from a knowledge graph to answer natural language
queries, present challenges including understanding natural language, entity link-
ing, and relation extraction. Three predominant KBQA methods exist: template-
based, semantic parsing-based, and information retrieval-based (Lan et al. (2021)
[4]).

Template-based methods employ pre-defined templates to match queries,
thus generating formalized queries. Despite their quick response time and accu-
racy, they require a substantial library of templates to accommodate diverse user
queries, making them labor-intensive.

Semantic parsing-based methods utilize semantic parsing to understand the
semantics of natural language queries, transforming them into equivalent logical
forms. These forms are then queried and processed by a query engine to obtain
answers. This method can accurately return query results if parsing is successful,
but errors or ambiguities in parsing can lead to inaccuracies or failure.

Information retrieval-based methods identify the central entity of a query,
generate candidate answers, and use scoring and ranking to determine the most
suitable answer. This method, whilst effective for simple queries, assumes the
query to be simple and the answer to be proximate to the central entity in the
knowledge graph.

1.2 LLM

Large language models (LLMs) are a type of artificial intelligence that can pro-
cess and generate natural language texts based on massive amounts of data.
LLMs are usually built with deep neural networks, such as transformers, that
can learn from large-scale unlabeled or semi-labeled text corpora, such as the
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Internet. LLMs can perform various natural language tasks, such as understand-
ing, summarizing, translating, predicting, and creating texts, by taking an input
text and repeatedly predicting the next token or word (Zhao et al. (2023) [13]).

LLMs have achieved remarkable results in many natural language processing
(NLP) applications, such as question answering, text classification, sentiment
analysis, machine translation, text generation, and more. For example, GPT-4
[6] has been tested on various professional and academic benchmarks, and it has
shown human-level performance on many of them. Open source model such as
LLaMA-2 [10] has shown competitive abilities in common sense reasoning and
reading comprehension.

1.3 KBQA with LLM

Existing mainstream KBQA methods often require significant resources for fine-
tuning on question-answer pairs and understanding complex semantics. Addi-
tionally, domain-specific approaches struggle with seamless adaptability to dif-
ferent domains. Leveraging the semantic comprehension capabilities of LLMs
offers the advantage of efficiently identifying named entities within questions
and grasping the underlying intent. This enables a more effective utilization
of semantic cues in question understanding for KBQA. Furthermore, the robust
generalization capabilities inherent to LLMs facilitate the straightforward exten-
sion of this approach to diverse domains. Consequently, the need for extensive
domain-specific fine-tuning can be alleviated, thereby enhancing the versatility
and applicability of KBQA techniques.

2 Related Work

2.1 KBQA

In recent years, KBQA has attracted much attention as a technique that lever-
ages the structured information in knowledge graphs to answer natural language
questions. KBQA involves question analysis, candidate generation, ranking, and
answer generation. KBQA finds applications like Meituan’s query services and
medical knowledge graph-based health assistance. It’s a vital research area in
natural language processing and knowledge graphs.

Recent methods mainly focus on utilizing knowledge from the KG itself. Ye
et al. (2022) [12] proposes a ranking-and-generation approach that uses a con-
trastive ranker to rank candidate logical forms, and then introduces a customized
generation model to combine the final logical form based on the question and
the top-ranked candidate logical forms. Saxena et al. (2022) [8] demonstrate the
Transformer model can serve as a scalable and generic knowledge graph embed-
ding (KGE) model for knowledge graph completion (KGC) and knowledge graph
question answering.
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2.2 In-Context Learning

Since the emergence of LLMs, many studies were conducted to show the power
of in-context learning. Min et al. (2022) [5] explored in-context learning with
large language models like GPT-3 for new tasks using limited input-label pairs.
They discovered that successful in-context learning hinges on input character-
istics rather than real demonstrations. Wang et al. (2023) [11] compared in-
context learning with supervised learning using identical pre-trained models and
demonstrations. The research demonstrated that gold labels significantly affect
in-context performance, particularly for larger models.

3 Our Method

Our method comprises two integral modules: Named Entity Recognition (NER)
and NL2Cypher. The NER Module serves to identify and link entities mentioned
in questions to corresponding entities in the knowledge graph, forming a foun-
dational step for query generation. The NL2Cypher Module serves as the core
of our approach, converting natural language questions into structured Cypher
queries. The large language model used in this module is ChatGPT. This con-
version process draws on the enriched information provided by the NER mod-
ule. To accomplish this, our methodology employs a series of prompts, including
Instruction, NER, Scheme, Question, Few-Shot, and Check prompts, collectively
guiding the transformation process. The full process is shown in the following
Fig. 1

Fig. 1. Full process of KBQA, NL2Cypher is the core module



Robust NL-to-Cypher Translation for KBQA 321

3.1 Name Entity Recognition

Substring Match. The core objective of Substring Matching is to identify
potential mentions from the questions and accurately link them to the knowl-
edge graph. By applying this method, we have accomplished a precision level of
0.9 in correctly identifying the mentioned terms along with their respective labels
within the training dataset. This method involves five types of mentions, namely
entity name, entity label, relationship, attribute label, and attribute label value.
Initially, we adopt a simple approach, to perform exact matches between the
mentioned terms in the question and the entries in three files: entity.csv, rela-
tion.csv, and attribute.csv. Substring matching is deemed successful only when
every character aligns accurately. In instances where direct matches cannot be
established, the task is passed on to the subsequent entity linking module for
further processing.

Entity Linking. Entity linking is the task of identifying and linking the enti-
ties mentioned in a natural language question to the corresponding entities in
the knowledge graph. Entity linking is an essential step for natural language
to Cypher conversion, as it enables the system to map the natural language
expressions to the graph elements.

To perform entity linking, we first use OpenAI’s API of ChatGPT to extract
possible entities from the given question. ChatGPT is a large language model
that captures context and semantics. The question is combined with a com-
mand prompt to generate relevant entities. For example, given the question
“Who are the actors who played in movies directed by Steven Spielberg?”, Chat-
GPT may generate a list of entities like “Tom Hanks, Harrison Ford, Jurassic
Park, Schindler’s List, etc.”

Next, we match the extracted entities to the entity list in the knowledge graph
using Sentence-BERT [7], which computes semantic similarity between phrases.
Sentence-BERT embeddings of knowledge graph entities are pre-computed. For
each extracted entity, we compute the embedding and find the closest match by
cosine similarity.

Finally, we check matches using the matched length ratio between extracted
and candidate entities. This filters out false positives or ambiguous matches. By
extracting, matching, and filtering entities, we can effectively link entities from
natural language to the knowledge graph.

Label Fixes. Due to the significant reliance of our generated Cypher statements
on the labels of elements within the graph database, the preceding NER phase
holds vital importance. Errors in this phase can propagate to subsequent stages,
including downstream llm models. The objective here is not only to accurately
identify mentions but also to assign accurate labels. This part aims to rectify
label inaccuracies for certain multi-labeled mentions.

Specifically, for certain mentioned terms, such as “ability”, “chinese name”,
“alias”, “English full name”, etc., they play distinct roles as both relationship
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and attribute labels in different questions. Therefore, we need to perform label
correction for the mentioned terms identified during entity linking. The specific
approach involves starting from the mentioned entity names and entity labels in
the question and conducting a subgraph query to narrow down the scope. This
subgraph query aims to retrieve all relationships and attribute labels within a
one-hop or two-hop range. These labels are then stored in a list. Subsequently,
the list is traversed, and if the label associated with the mentioned term differs
from the matching result obtained during entity linking, the new result overrides
the original one.

3.2 NL2Cypher

As demonstrated by Zhao et al. (2021) [14], tailoring prompts to specific domains
enhances the performance of large language models in generating reasonable
answers.

In order to fully explore the potential of large language model while ensuring
their compliance with our task requirements, we have devised a series of prompts
to provide guidance and instructions to the model. These prompts are carefully
designed to elicit specific responses aligned with the objectives of our task. The
overall structure is depicted in the following Fig. 2.

Instruction Prompt. Due to the inherent diversity and variability in outcomes
produced by large language models, the application of prompts becomes essential
to constrain and guide the model’s outputs towards the desired objectives of
the task at hand. The objective of this section is to teach the large language
model the specific goals and output requirements of our task, in order to obtain
compliant and standardized output results.

NER Prompt. The purpose of this section is to furnish our Named Entity
Recognition (NER) results to the large language model. The generation of
Cypher statements that correspond precisely to entries within the knowledge
graph is imperative for accurate result retrieval. Therefore the NER results will
aid the Language Model in generating Cypher query statements with greater
precision.

Schema Prompt. The goal of this part is to query the surrounding informa-
tion of related entities to provide LLM for reasoning. Specifically, extract the
subgraph Schema involved in the entity, and obtain the list of label, name, prop-
erty, and relation. Through this schema, the large language model can better
understand the context of the entity to achieve better generation results.

Question Prompt. This part aims to judge the type of the query problem
through the method of keyword matching, including single-hop/multi-hop rela-
tionship query, quantity query, attribute query, maximum value query, etc. The
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Fig. 2. Framework of NL2Cypher process: Takes natural language question and its
NER results as input, combined with different prompts to generate a Cypher statement
to get answer from Knowledge Graph

Cypher statements corresponding to identical query types exhibit remarkable
similarity. Thus, furnishing the specific query type to the large-scale model can
substantially enhance the efficiency of Cypher statement generation.

Few-Shot Prompt. Su et al. (2022) [9] shows that large language models
can perform in-context learning, where they learn a new task from a few task
demonstrations, without any parameter updates. In the realm of specialized
domain tasks, the utilization of few-shot learning frequently results in notewor-
thy enhancements in performance, surpassing the outcomes achieved through
zero-shot methodologies. To facilitate in-context learning, a collection of 3–4
representative samples per question type is curated for input into the large lan-
guage model. This approach further refines the model’s grasp of distinct query
types and yields commendable improvements.

Check Prompt. For the result that the query result is empty, provide error
correction ideas for LLM. The following scenarios are encompassed:
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1. Misplaced Entity Names: Incorrectly using the entity name as the entity label,
resulting in queries resembling “MATCH (n:‘entity name’)”, the correct result
is “MATCH (n:‘entity label’)”.

2. Missing Entity Name Symbols: Overlooking special symbols like “/”, “ ”, or “”
within the entity name.

3. Wrong Result Type: Generating non-boolean outcomes (e.g., n, n.name) in
comparative statements, where accurate true or false boolean expressions are
required.

Additionally, proposed are correction strategies for the above scenarios, along
with illustrative examples showcasing the contrasts between the erroneous and
rectified formulations.

4 Experiment

4.1 Dataset

The question-answering dataset for this evaluation was constructed through a
combination of expert involvement and template generation. The annotation
process was not reliant on specific templates. The organizers of the task engaged
domain experts to provide guidance on corpus style and question patterns. The
questions within the dataset encompass a wide range of domains and cover both
straightforward inquiries (single queries related to entity attributes and relation-
ships) and intricate queries (explicit constraints, implicit constraints, compar-
isons, Boolean operations, multi-hop queries, etc.).

The primary knowledge base utilized is derived from the fusion of knowledge
graphs formed through the construction and evaluation tasks of the CCKS2021
and CCKS2022 Foreign Military Unmanned Systems Knowledge Graphs. This
task includes a training dataset of 4,000 instances, a validation dataset of 1,000
instances, and a testing dataset of 1,000 instances. The annotated data comprises
questions, Cypher queries, and corresponding answers.

4.2 Results

In this section, we present the comprehensive results of our proposed approach
on both the validation and test sets, each composed of 1000 question-answer
pair. Our model achieved promising performance, as indicated by the F1-scores
on the validation and test sets respectively as presented in Table 1.

Table 1. Results on Validation dataset and Test dataset

Metrics Validation Test

Accuracy 0.91137 0.94437

Recall 0.90978 0.94278

F1-score 0.90969 0.94269
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These results underscore the effectiveness of our approach in addressing the
challenges posed by the dataset. Notice that there is a gap between results on
two datasets, that is because we improved prompt quality in the process.

To further assess the contribution of individual components within our model,
we conducted ablation experiments on the training dataset, demonstrating the
effectiveness of different type of prompts. The results of these experiments reaf-
firm the significance of each prompt in enhancing the model’s performance.
Detailed summaries of the ablation experiments are presented in Table 2.

Table 2. Ablation Study

Prompt Removed F1-score

w/o NER Result Prompt 0.867
w/o Schema Prompt 0.886
w/o Question Type Prompt 0.870
w/o Few-Shot Prompt 0.895
w/o Check Prompt 0.886
All Prompts 0.907

It can be concluded that all types of prompt contribute to the final result,
with NER prompt and Question Type prompt being the most impactful, which
is consistent with intuitive expectations.

5 Conclusion

In conclusion, our work has effectively showcased the potential of integrating
large language model with knowledge base question answering, as evidenced by
our top-ranking achievement in the CCKS2023 Knowledge Graph Reasoning
Question-Answering Evaluation Task. A significant contribution of our work lies
in the innovative design of prompts for large language models. We tailored our
prompts to capture domain-specific intricacies, thereby enhancing the model’s
ability to generate relevant and accurate Cypher queries. This innovative prompt
design played a pivotal role in achieving our outstanding performance, under-
scoring the potential for optimizing large language models for task-specific appli-
cations in knowledge graph reasoning and question answering.
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Abstract. Knowledge Base Question Answering (KBQA) aims to
answer factoid questions based on knowledge bases. However, generating
the most appropriate knowledge base query code based on Natural Lan-
guage Questions (NLQ) poses a significant challenge in KBQA. In this
work, we focus on the CCKS2023 Competition of Question Answering
with Knowledge Graph Inference for Unmanned Systems. Inspired by
the recent success of large language models (LLMs) like ChatGPT and
GPT-3 in many QA tasks, we propose a ChatGPT-based Cypher Query
Language (CQL) generation framework to generate the most appropri-
ate CQL based on the given NLQ. Our generative framework contains
six parts: an auxiliary model predicting the syntax-related information
of CQL based on the given NLQ, a proper noun matcher extracting
proper nouns from the given NLQ, a demonstration example selector
retrieving similar examples of the input sample, a prompt constructor
designing the input template of ChatGPT, a ChatGPT-based generation
model generating the CQL, and an ensemble model to obtain the final
answers from diversified outputs. With our ChatGPT-based CQL gener-
ation framework, we achieved the second place in the CCKS 2023 Ques-
tion Answering with Knowledge Graph Inference for Unmanned Systems
competition, achieving an F1-score of 0.92676.

Keywords: ChatGPT · Chain-of-Thought · In-Context Learning

1 Introduction

As an important task in Natural Language Processing (NLP), Knowledge Base
Question Answering (KBQA) aims to generate accurate and complete query
statements from user-provided natural language questions (NLQs), and these
query statements are then used to retrieve relevant information from the knowl-
edge base and provide accurate answers. In this work, we focus on the CCKS
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Fig. 1. Illustration of an example in the evaluation task.

2023 Question Answering with Knowledge Graph Inference for Unmanned Sys-
tems competition, which is a KBQA evaluation task where cypher query lan-
guage (CQL) serves as the query statements. Figure 1 gives an example of the
CCKS2023 competition.

In the literature, most existing studies on KBQA can be categorized into two
types: information retrieval-based (IR-based) approaches and semantic parsing-
based (SP-based) approaches. Both of them require first identifying the subject
within the NLQ and linking it to an entity in the knowledge base (KB). The
former line of work aims to derive answers by reasoning within a question-specific
graph extracted from the KB with the assistance of those linked entities [1,2],
whereas the latter line of work aims to obtain answers by executing a parsed
logic form based on the linked entities [3,4]. Since the annotation in the dataset
of the CCKS2023 competition contains manually annotated CQLs, we follow the
latter line of approaches in this work.

However, the majority of existing SP-based approaches are built upon LSTM
or pre-trained models like BERT, which are constrained by their scale or their
pre-training data and may encounter challenges in effectively generating suitable
knowledge base query codes based on NLQs. With the recent advancements of
pre-trained language models, many Large Language Models (LLMs) have been
shown to achieve surprisingly good performance on many question answering
datasets under zero-shot or few-shot settings. These LLMs have also showcased
an impressive capacity to deeply comprehend sentence semantics and accurately
translate them into multiple languages, and even generate code when required.
Therefore, we aim to explore the potential of LLMs on the Chinese KBQA task
for unmanned systems.

Specifically, we propose a ChatGPT-based CQL generation framework, con-
sisting of six parts. The first part involves an auxiliary model that takes the given
NLQ as input and predicts structural information for each clause separately. The
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second part comprises a proper noun matcher, which identifies explicitly men-
tioned proper nouns existing in the KB from the given NLQ. The third part
consists of a demonstration example selector that employs a key-information-
based similarity calculation criterion to retrieve demonstration samples for the
given NLQ based on the aforementioned results. The fourth part encompasses
a prompt constructor that constructs input text by integrating demonstration
samples, NLQ, and task-specific prior knowledge. The fifth part incorporates a
ChatGPT-based generation model, which inputs the constructed text into Chat-
GPT to generate CQL. Subsequently, post-processing is applied to the generated
CQL. Lastly, the sixth part introduces an ensemble model, in which multiple
answers retrieved from the knowledge base by the post-processed CQL are com-
bined through a voting mechanism to obtain the final result.

We conduct experiments on the dataset provided by the competition, and
the results show the high efficiency of our generative framework. Therefore, we
achieved the second place in the CCKS 2023 Question Answering with Knowl-
edge Graph Inference for Unmanned Systems competition with an F1-score of
0.92676.

2 Related Work

2.1 Large Language Model

Large Language Models (LLMs) typically possess a vast number of learnable
parameters and undergo extensive training on enormous text datasets, examples
of which include ChatGPT [5], LLaMA [6], OPT [7], PaLM [8], CodeX [9], and
so on. With the advancement of LLMs, traditional pre-trained models like BERT
[10], RoBERTa [11], BART [12], T5 [13], have faced great challenges. The ability
of LLMs to adapt to downstream tasks without the need for retraining, but task-
specific instructions, has greatly reduced the cost of solving downstream tasks.

2.2 In-Context Learning

As mentioned in Sect. 2.1, LLMs typically demonstrate emergent abilities [14,15]
with increasing model and corpus size, i.e., the ability to learn from the given
examples present in the context, known as In-Context Learning (ICL). This
ability helps LLMs in better adapting to downstream tasks. While solely relying
on task-specific instructions may not lead to superior performance compared to
fine-tuned models in some downstream tasks, introducing ICL can often result
in considerable improvements in LLMs’ performance on downstream tasks.

2.3 Chain-of-Thought

Chain-of-Thought (CoT) [16] is an extremely efficient and easy prompting strat-
egy that endows LLMs with reasoning capabilities, enabling LLMs to decompose
and comprehend complex tasks. Specifically, CoT leverages several given exam-
ples with inferred answers to assist LLMs in comprehending the reasoning process
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of complex tasks, thus performing reasoning on the target problem and obtain-
ing results. In general, CoT leverages several pre-given exemplars with inferred
answers to help LLMs understand the reasoning process of intricate tasks.
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Fig. 2. The overall architecture of our ChatGPT-based KBQA framework.

3 Methodology

Recently, LLMs have showcased robust generalizability across a diverse spectrum
of tasks by leveraging few-shot in-context learning. Notably, LLMs possess the
capability to transform unstructured sentences into structured and executable
code, rendering them valuable assets in KBQA [17].

However, the CQL solely generated by ChatGPT falls short of our expecta-
tions. Therefore, we observe CQL’s overall structure and summarize empirical
knowledge to design processing techniques and auxiliary tasks. These aid Chat-
GPT in capturing key information and parsing CQL structures from NLQs,
enabling it to adapt to downstream tasks and generate high-quality CQL.

In general, our ChatGPT-based CQL generation framework consists of six
steps (excluding KB construction and answer retrieval), as illustrated in Fig. 2
and Fig. 3 provides a visualized example of using our generative framework to
generate CQL from NLQ.

1. Three auxiliary tasks to predict structural information for CQL clauses.
2. Bidirectional maximum matching-based proper noun matching for NLQ.
3. Selecting demonstration examples based on the aforementioned results.
4. Combining NLQ, demonstration examples, and prior knowledge into CoT

format as input text.
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Fig. 3. A visualized example of generating CQL from NLQ.

5. ChatGPT generates CQL based on the constructed input text, followed by
post-processing of the generated CQL.

6. Voting for the answers retrieved from the given KB by CQLs.

The overall workflow is as follow:
Firstly, within the auxiliary model, the structural information of different

clauses in CQL (pred resulti) is predicted based on NLQ (Questioni). Mean-
while, the proper noun matcher identifies the proper nouns (match resulti)
explicitly mentioned in Questioni and existing in the KB.

Subsequently, both pred resulti and match resulti are fed into the demon-
stration example selector to compute the similarity between different sam-
ples, thereby selecting demonstration examples (i1, i2 . . . , ik) for each sample.

Following that, within the prompt constructor, the Questioni,
pred resulti, and match resulti are firstly combined into CoT format to obtain
CoT Senti. Next, Prior Knowledge, CoT Senti, and corresponding demonstra-
tion examples (CoT Senti1 , . . . , CoT Sentik) are combined to form inputi. Then,
inputi is fed into ChatGPT to generate CQL, followed by post-processing.

By repeating the aforementioned steps, multiple CQLs (CQL0, . . . , CQLn)
are acquired. Executing these CQLs in the given KB yields multiple answers
(Answer0, . . . , Answern). Employing a voting mechanism on these answers
yields the most reliable response as the final outcome (Answerfinal).
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3.1 Auxiliary Tasks

Upon analyzing CQLs and evaluating the task instructions, we summarize four
execution intent categorized by the content of the RETURN clause: 1. Entity-
Attribute retrieval; 2. Entity counting; 3. Conditional sorting; 4. Attribute-value
comparison. These diverse execution purposes impact the overall CQL structure.
Furthermore, the CQL structure is influenced by the number of relations and
conditions, referring to the number of entity jumps in the MATCH clause and
the restrictive conditions in the WHERE clause.

Due to the potential impact of the aforementioned information on the CQL
structure and the difficulty in directly obtaining them from NLQs or other related
sources, we design three auxiliary tasks for corresponding predictions:

• Intent classification (cls).
• Relation count classification (rn).
• Condition count classification (cn).

The aforementioned auxiliary tasks take NLQs as input and predict the intent
(0/1/2/3), relation number (0/1/2), and condition number (0/1/2) of the CQL.
For example, given the CQL in Fig. 1, the output of the three auxiliary tasks are
0, 0, and 1, respectively. These values signify that the intent of the CQL is to
retrieve an entity’s attribute, there are no relations mentioned in the CQL, and
there is one condition specified.

Notably, these three auxiliary tasks share NLQs as input and yield similar
outputs, all treated as simple classification results, thus allowing them to utilize
a consistent model architecture. Any pre-trained model like BERT-chinese and
mT5 can be used to extract global features from the text, followed by a feed-
forward network for output prediction of the auxiliary tasks.

3.2 Proper Noun Matcher

In NLQs, some proper nouns are either explicitly or implicitly mentioned, which
are likely to appear in the CQLs. Therefore, it is essential to extract the men-
tioned proper nouns from NLQs. To this end, we employ the bidirectional maxi-
mum matching based on the given proper noun vocabulary to all NLQs, obtain-
ing the proper nouns that appear in them.

During bidirectional maximum matching, we observed that unconstrained
execution could introduce noise into the matching process for relation and
attribute proper nouns. Although designing a universal set of constraints is
challenging, creating NLQ-specific constraints is more feasible. Therefore, our
approach gives precedence to extracting entities and tags from the NLQ. Sub-
sequently, by leveraging relevant knowledge from KB, we integrate the entities
corresponding to the tags into the matched entities. Taking the entities as the
starting point and considering two-hop relations as the scope, all the involved
entities are referred to as entity set, and all the involved relations are referred to
as candidate relation set. Using the entity set, we retrieve associated attributes
from the given knowledge base, creating a candidate attribute set.
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The NLQ’s bidirectional maximum matching results in the matched attribute
and relation sets. The final matching results for attribute and relation sets are
obtained by intersecting the candidate sets with the matched sets.

3.3 Demonstration Example Selector

For NLQ-specific demonstration example selection, an appropriate similarity cal-
culation criterion is vital. The conventional method, such as using BERT or
similar models for cosine similarity computation between global features (GF-
Sim), may not yield accurate similarity results due to substantial noise present
in NLQs. This noise considerably affects the results of GF-Sim. With approxi-
mately 35% of the text containing valid information (proper nouns) while the
rest being noisy, the impact on GF-Sim is significant.

Based on the above findings, we propose a key-information-based similarity
criterion (KI-Sim) for NLQs. It focuses on key components in NLQ like proper
nouns and other influential details impacting CQLs, which is computed as fol-
lows:

Similarity(i, j) =
e,t,r,a,v∑

k

wk ∗ IoU(ik, jk) +
cls,rn,cn∑

k

wk ∗ (ik == jk) (1)

where, i, j represent NLQs’ id, e, t, r, a, v stand for entity, tag, relation, attribute,
and value, cls, rn, cn indicate the predicted intent, relation number, and condi-
tion number, ik, jk refer to proper nouns or auxiliary task predictions from NLQs
with id i, j, and wk signifies the corresponding similarity weight.

3.4 Prompt Constructor

Prior Knowledge. To bolster ChatGPT’s grasp and alignment with the down-
stream task, we propose to incorporate task-specific prior knowledge and inte-
grate it into text (see Appendix 1) to feed into ChatGPT. These prior knowledge
are derived from observations of CQLs and hold general applicability for this
downstream task, rather than being specific to any particular NLQ.

In-Context Learning. To enhance ChatGPT’s CQL generation, we utilize KI-
Sim (Sect. 3.3) to select demonstration examples for ICL. This aids ChatGPT
in CQL generation, thereby improving the quality of the generated CQLs.

Chain-of-Thought. Intuitively, directly generating CQL from NLQ is chal-
lenging. Yet, analyzing the composition and syntax of CQLs and NLQs reveals
a high likelihood of shared proper nouns. Drawing inspiration from the CoT
method, we split the CQL generation task into two sub-tasks:

1. Matching relevant proper nouns from NLQ.
2. Generating CQL based on NLQ and the matched proper nouns.
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As elucidated in Sect. 3.2, with the completion of sub-task 1, ChatGPT now
focuses on addressing sub-task 2. To achieve this, a template was devised (see
Appendix 2) that integrates matched proper nouns and NLQ following the CoT
approach, presenting them jointly to ChatGPT.

3.5 ChatGPT-Based Generation Model

After inputting the constructed text into ChatGPT, it generates the correspond-
ing CQL for the given NLQ. Concerning the CQL, three common situations arise:

• Entities matched are mis-classified as tags.
• The number of relation does not match the results from auxiliary tasks.
• Matching with unprovided proper nouns.

Among these situations, the first two can result in inaccurate CQL execution
and should be prevented or rectified. In contrast, the third situation is favorable.
As described in Sect. 3.2, only explicit proper nouns can be matched, leaving
implicit ones unmatched. This implies ChatGPT’s successful identification of
implicit proper nouns in the NLQ. In this case, post-processing methods can be
used to map non-proper nouns to the provided vocabulary for correction.

Consequently, we present three post-processing methods to address these
situations to get the final ChatGPT-generated CQL:

• Reclassify the mis-classified tags as entities and position them correctly.
• Use condition truncation and filling for isolated condition clause correction.
• Utilize fuzzy matching to map implicit proper nouns to vocabulary and make

CQL modifications correspondingly.

3.6 Ensemble Model

Executing CQL in the KB doesn’t always ensure correct answers, and sometimes
no answers are found. However, generating new CQLs could enhance the retrieval
success. Thus, for each NLQ, we generate multiple CQLs, retrieve corresponding
answers, and apply a voting mechanism to ascertain the final answer.

4 Experiment

4.1 Dataset

We conduct experiments based on the competition’s dataset, which encompasses
knowledge base construction data, as well as training, validation (preliminary
round), and test (final round) datasets. The training set includes annotations,
while validation’s annotations are released with the un-annotated test set in the
final round. Annotations include answers and the CQL used for retrieval from
KB. We will validate our generative framework on this dataset.
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4.2 Evaluation

In the experiments, the main evaluation concern is precise answer retrieval for
NLQs. The evaluation metrics include Macro Precision (Eq. (2)), Macro Recall
(Eq. (3)), and Averaged F1 (Eq. (4)), which are defined below:

P =
1

|Q|
|Q|∑

i=1

Pi, Pi =
|Ai ∩ Gi|

|Ai| (2)

R =
1

|Q|
|Q|∑

i=1

Ri, Ri =
|Ai ∩ Gi|

|Gi| (3)

F1 =
1

|Q|
|Q|∑

i=1

2PiRi

Pi +Ri
(4)

where |Q| denotes the number of NLQs in the dataset, Ai, Gi denotes the player’s
and ground-truth answer sets to the question whose id is i, respectively.

4.3 Implementation

Similarity. During similarity computation, entity weights are set to 5, tag
weights to 3, relation weights to 3, attribute weights to 1, value weights to 0.5,
cls weights to 0.5, rn weights to 0.3, and cn weights to 0.3.

ChatGPT. The ChatGPT we used in this paper is gpt-3.5-turbo-0613. It should
be noted that we set the temperature parameter to 1 (default) to ensure the
diversity of CQLs when ChatGPT generates responses multiple times.

Auxiliary Task. We use the mT5-large as the pre-trained model. For the aux-
iliary tasks, the global random seed is 33. The batch size is 32, trained for 100
epochs. Initial learning rates for the backbone and non-backbone part are set at
1e−6 and 1e−4, respectively. Cross-entropy loss is employed for loss calculation.

4.4 Main Results

In Table 1, the performance of ChatGPT with different processing techniques is
presented, where the last row shows the performance of our proposed ChatGPT-
based CQL generation framework.

In the preliminary round, with only prior knowledge and voting mechanism,
our F1 score on the validation set is 0.83865, obtaining the second place. In
the final round, our ChatGPT-based CQL generation framework achieves an F1
score of 0.92676 on the test set, obtaining the second place.
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Table 1. Main Results. Note the Prior indicate the prior knowledge, the Ensemble
indicate the ensemble model, the Post indicate the post-processing in ChatGPT-based
Generation Model.

+Prior +Ensemble +ICL+CoT +Post Averaged F1
(Validation)

Averaged F1
(Test)

� × × × 0.72539 \
� � × × 0.83865 0.86204
� � � × \ 0.91561
� � � � \ 0.92676

4.5 Ablation Study

As shown in Table 1, all different processing techniques can improve the final
performance, but their effects are different:

Ensemble Model. The essence of this technique is to allow ChatGPT to gen-
erate multiple CQLs and vote on the answers. The multiple generations can help
ChatGPT re-understand NLQ and increase the diversity of generated CQLs.

ICL+CoT. The essence of this technique is to enable ChatGPT to capture
and learn implicit relations that may exist in downstream tasks based on given
demonstration examples. By using the decomposed sub-tasks, ChatGPT can
achieve a deeper understanding of the downstream task and adapt to it, gener-
ating higher quality and more robust CQLs.

Post-processing. The essence of this technique is to manually correct the
generation errors of ChatGPT without interfering with its process of generating
CQLs. Instead, it intervenes in the results generated by ChatGPT, ensuring that
the results do not contain factual errors.

4.6 Auxiliary Task Results

Table 2. The performance on three auxiliary tasks

Auxiliary Tasks Accuracy (%)

Intent classification 99.0
Relation count classification 97.0
Condition count classification 98.2
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Based on the performance of the auxiliary tasks in Table 2, we can find that
the proposed model performs well on the three auxiliary tasks. Therefore, it is
generally useful to incorporate the auxiliary task-related information into our
generative framework.

4.7 Similarity Comparison

To verify KI-Sim’s effectiveness (Sect. 3.3), we present the demonstration exam-
ples in Table 3. The global features are extracted from bert-base-chinese.

Table 3. Demonstration examples based on different similarity calculation criterion

NLQ
Original Translated

最最最大大大飞飞飞行行行速速速度度度小于等于460的实体有几个？ How many entities have a maximum
flying speed less than or equal to 460?

GF-
Sim

top1 阿阿阿姆姆姆德德德-500M/2M沉沉沉底底底水水水雷雷雷的产产产国国国是哪个？ What is the origin country of
the AMD-500M/2M Submarine Mine?

top2 94式式式90毫毫毫米米米轻轻轻迫迫迫击击击炮炮炮的口口口径径径是多少？ What is the caliber of the
Type-94 90mm Light Mortar?

top3 弹弹弹径径径为1.37的舰舰舰地地地（（（潜潜潜地地地）））导导导弹弹弹有哪些？ Which Ship-to-Ground (Submarine-to-
Ground) Missile has a caliber equal to 1.37?

KI-
Sim

top1 最最最大大大飞飞飞行行行速速速度度度大于252的实体有几个？ How many entities have a maximum
flying speed greater than 252?

top2 最最最大大大飞飞飞行行行速速速度度度等于850的实体有几个？ How many entities have a maximum
flying speed equal to 850?

top3 最最最大大大飞飞飞行行行速速速度度度等于745的实体有几个？ How many entities have a maximum
flying speed equal to 745?

Key information in the NLQs is highlighted using bold, with scolid and
dashed underlines denoting their presence and absence in the top NLQ, respec-
tively. It is evident that the demonstration examples selected by KI-Sim are
more similar to the top NLQ. This underscores the effectiveness of KI-Sim.

5 Conclusion

In this paper, we proposed a ChatGPT-based CQL generation framework, which
consists of six components: an auxiliary model that predicted structural infor-
mation for CQLs based on given NLQs, a proper noun matcher that extracted
explicit proper nouns, a demonstration example selector that used KI-Sim to
select demonstration examples, a prompt constructor that concatenated the
NLQ, demonstration examples, and prior knowledge in the form of a Chain-of-
Thought, a ChatGPT-based generation model that generated CQLs using the
concatenated text, and an ensemble model that produced more reliable results
by voting on diversified answers. Experimental results validate the effectiveness
of our generative framework, achieving a remarkable second-place rank in the
CCKS 2023 Question Answering with Knowledge Graph Inference for Unmanned
Systems competition.
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Appendix 1

Given a Chinese question for querying a knowledge graph, the question includes
simple queries about entity attributes and relationships, as well as complex
queries involving explicit and implicit constraints, comparisons, boolean logic,
and multi-hop scenarios. Emulating the provided code style and syntax, the
analysis encompasses entities, attributes, labels, and relationships to generate
Cypher Query Language (CQL) for knowledge graph answers. CQL consists
of several sections: MATCH, identifying nodes and relationships with specified
types, properties, and directions; WHERE, filtering results with logical and com-
parison operators; RETURN, providing query outcomes using aggregation, sort-
ing, and limiting functions; and WITH, forwarding results to subsequent clauses.
You need to identify entities, attributes, labels, relationships, and constraint con-
ditions in the question. In CQL syntax, use parentheses () to represent nodes,
square brackets [] to represent relationships, colons : to represent tags, peri-
ods . to represent attributes, and arrows -> to indicate relationship directions.
For example: [r:Technology Used], [r:Manufacturer Capability], n.Weight, (n)-
[r:Origin Country]->(m)-[r1:Military Branch Involved Project]->(l). Operators
such as =, <, >, AND, OR, NOT are used to compare values and filter results.
Functions such as count(), min(), max(), avg(), sum() are used to perform cal-
culations on results. Note that if the question is boolean in nature, the CQL’s
return value is either True or False. For example, question: “Was MQ-4C first
flown in 2013?” Return value: True. If the question involves comparing entities
and inquiring about an entity, the CQL’s return value is the entity name. For
example, question: “In comparison to the caliber of the M1 anti-aircraft gun, is
the caliber of the M29 81mm mortar smaller?” Corresponding CQL: MATCH
(n) where n.name = “M29 81mm Mortar” or n.name = “M1 Anti-Aircraft Gun”
RETURN n.name ORDER BY n.‘caliber’ asc limit 1 Return value: M29 81mm
Mortar. If the question involves comparing entity attribute values, the CQL’s
return value is True or False. For example, question: “Is the delivery quantity of
the ScanEagle UAV greater than that of the MQ-1 Predator UAV?” Correspond-
ing CQL: MATCH (n), (m) where n.name = “ScanEagle UAV” and m.name =
“MQ-1 Predator UAV” RETURN n.‘delivery quantity’ > m.‘delivery quantity’
Return value: False. Please independently determine the question type, analyze
logical relationships in the question, and generate CQL accordingly.

Appendix 2

Given the original question text: “{question}”, let’s think step by step: From the
original text, we can extract: Entity: {entity}, Tag: {tag}, Attribute: {attribute},
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Value: {value}, Relation: {relation}, Condition Count: {cn}, Relation Count:
{rn}. Based on the extracted results, the corresponding CQL can be obtained
as: {cql}.
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Abstract. With the rise of big language model technology, the application of big
models in the military field is increasingly being valued. How to combine big
language models with knowledge graph technology to improve the effectiveness
of knowledge Q&A is currently a key research direction for improving military
knowledge services. Based on the big language model technology, this paper
implements knowledge Q&A in the military field by using template learning and
template matching methods. For the key steps of knowledge linking and template
matching, this paper uses the knowledge linking and semantic matching technol-
ogy enhanced by the big language model. Finally, experimental verification was
conducted in the test set provided by the CCKS (China Conference on Knowledge
Graph and Semantic Computing) conference, and F1 reached 0.869. In summary,
this paper provides a new solution for natural language Q&A in the military field
using a large language model. This method achieves high accuracy while reducing
dependence on training corpus data.

Keywords: Big language model · military knowledge Q&A · knowledge
linking · template matching

1 Introduction

As a structured knowledge representation method, a knowledge graph can accurately
capture the correlation and semantic information between entities, providing strong
support for knowledge integration, query, and inference. Knowledge Q&A technology
is a key technology in the field of knowledge graphs, which canmatch and fuse structured
knowledge in theknowledgebasewith natural language toobtain question answers. Since
the emergence of the ChatGPT large model [1], pre-training on large-scale text data has
enabled the model to learn richer semantic information. Large model technology has
demonstrated outstanding capabilities in semantic understanding and generation tasks.
How to combine these two and utilize their respective advantages to build a powerful
knowledge Q&A system, achieving intelligent management and application of massive
knowledge, is a research hotspot in the current field.
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The military field is a typical professional business field, with a vast and complex
knowledge systemand a large number of professional terms in relevant texts. Themassive
amount of military knowledge is difficult to simply meet diverse military needs through
traditional manual retrieval and analysis, especially in the rapidly changing battlefield.
There is an urgent need for more intelligent and precise knowledge acquisition and
application methods. This paper conducts military domain Q&A research based on large
models and knowledge graphs to address this challenge.

The main contributions of this paper are as follows:

(1) In the knowledge linking process, this paper uses small sample prompt learning
technology based on a large language model to achieve automatic recognition of
knowledge elements in the question, based on precise knowledge element matching.
Similar calculations are embedded in the large language model to link the identified
knowledge elements to the knowledge in the knowledge base.

(2) In the process of identifying knowledge elements and linking them to knowledge
in the knowledge base, to improve the accuracy of knowledge linking, this paper
uses the LoRa fine-tuning method to fine-tune the knowledge linking task of large
language models.

(3) In the template matching process, this paper first replaces the identified knowledge
elements to obtain templates with slots or user questions and then uses similar cal-
culations based on large language model embedding to obtain the optimal template
corresponding to the user question.

The remaining part of this paper is organized as follows: Sect. 2 introduces the work
related to knowledge Q&A and large model technology, Sect. 3 introduces the method
and model proposed in this paper, Sect. 4 introduces the experiments and results, and
Sect. 5 summarizes the work of this paper.

2 Related Work

2.1 Knowledge Q and A Technology

Knowledge graph question answering technology, as one of the important research direc-
tions in the field of natural language processing, aims to organically integrate structured
knowledge in the knowledge graph with natural language questions, thereby achieving
intelligent question answering [2]. Knowledge Q&A connects the entities, relationships,
and attributes in the knowledge graph with natural language, enabling intelligent query
and inference of structured knowledge. Ultimately, complex questions raised by users
are transformed into accurate answers through graph databases and query languages.
In terms of technical implementation, there are currently three main types of main-
stream methods [3]: rule-based question-answering methods [4], information retrieval-
based question-answeringmethods [5], and semantic analysis-based question-answering
methods [6]. In recent years, knowledge graph-based question-answering systems have
achieved significant results in fields such as healthcare and finance, providing new ideas
for the military question answering questions.
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2.2 Combining Big Models with Knowledge Q and A

Large model technologies such as BERT and GPT pre-train models on large-scale text
data through deep learning, enabling them to learn richer semantic representations and
demonstrate strong capabilities in question-and-answer tasks. These large models can
understand context, make inferences, and generate fluent natural language responses. In
the field of question and answer, big model technology has made significant progress in
machine reading comprehension, dialogue generation, and other areas.

By combining a large model with a knowledge graph, the accuracy and intelligence
level of a question-answering system can be further improved. By deeply analyzing the
semantics and context of the question, the large model can accurately identify the entity
information in the user’s question and link it to the corresponding entity in the knowledge
base, thus achieving accurate question answering. At the same time, the large model can
also identify the implicit intentions of users, help determine the response strategy of the
system, and provide information that is more in line with user needs. This application not
only improves the intelligence level of the question-answering system but also provides
users with a more efficient and accurate interactive experience.

Although instruction fine-tuning is more efficient than pre-training (only requiring
the processing of fine-tuning datasets), full fine-tuning of all parameters still requires a
significant amount of computational power. There are currentlymultiple efficient param-
eter tuning schemes that can significantly reduce tuning costs while achieving the same
performance as full parameter tuning. Parameter Efficient Fine Tuning (PEFT) can only
fine-tune small or additional model parameters and fix most of the pre-training param-
eters, greatly reducing training costs [7]. Current research shows that compared to full
parameter tuning, PEFT performs slightly worse on large language models that have not
been tuned, but its performance is close to models that have already been tuned.

PEFT methods are mainly divided into three categories: Adapter Tuning, Prefix
Tuning [8], and P-Tuning [9, 10].

3 Method

To construct an efficient and accurate military domain knowledge Q&A method based
on large language model technology, this paper will provide a detailed introduction
to the overall architecture of the method, mainly including building the Template and
fine-tuning LLM, template matching for the question, and CQL generation, as shown in
Fig. 1, Fig. 2, and Fig. 3.

3.1 Building the Template and Fine-Tuning LLM

The goal of template construction is to extract common question templates from training
data to cover diverse questions in military Q&A. These question templates cover various
question types, entities, relationships, and attributes. Through in-depth analysis and
careful organization of training data, we can extract a series of question templates,
providing strong support for the subsequent template-matching stage. Template learning
mainly includes the following tasks:
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3.1.1 Building a Key Information Dictionary Based on Graph Files

Establishing a dictionary of key elements helps to capture key information in the question
more accurately. By parsing the graph file, we can extract entity names, entity types,
relationships, attributes, attribute values, and corresponding association relationships
from the graph. Organize this key information into key-value pairs and store them in



344 Y. Liu et al.

a dictionary as the basis for extracting key information. This dictionary construction
process provides strong support for subsequent Q&A processing.

3.1.2 Entity, Relationship, Attribute, Attribute Value, and Entity Type Extraction

In practical applications, users’ natural language questions typically cover key informa-
tion related to military equipment, related attributes, and relationships. To accurately
analyze these issues, template learning is particularly important in this context, with
the primary task being to efficiently extract these key information from questions. The
extraction of this type of information is a key step in building a powerful Q&A sys-
tem, which can assist the system in better understanding questions, accurately locating
entities, and ultimately generating accurate and accurate answers.

In the process of information extraction, we adopt various strategies to capture
question content involving military entities, attributes, and relationships.

Firstly, we utilized a pre-built knowledge base for entity recognition through dic-
tionary matching. This knowledge base contains rich military equipment entities and
their related information, which can quickly identify the entity names, key attributes,
and relationships involved in questions.

Secondly, we also utilized the powerful capabilities of large models to fully uti-
lize domain training data through domain fine-tuning for military domain knowledge
extraction tasks.We adopted the prompt method for zero sample entity extraction, which
enables the largemodel to have the ability to identifymilitary entities, attributes, and rela-
tionships in the question. After large-scale pre-training, such a large model has learned
rich semantic representations and can understand and infer contextual information in
questions. By cleverly constructing appropriate prompts, we guide the large model to
automatically identify and extract military entities, attributes, and relationships involved
in the question based on the context of the question. This innovative method enables
our system to extract useful information from questions without clear training samples,
thereby better-understanding user intentions.

3.1.3 Generate Template

The method is as follows:
One is to generate key information based on the above, replace the key information

in the question with a special string, and generate a question template.
The second is to generate key information based on the above, replace the key

information in the CQL with a special string, generate a CQL template, and associate it
with the question template to save.

3.1.4 Fine Tuning of Military Large Models

Despite the excellent processing and learning capabilities of the universal large model,
it may not necessarily be the best choice in certain specific, vertical industry application
scenarios. Therefore, in response to this situation, industry-customized large models are
gradually emerging. These industry-customized large models have been optimized and
adjusted specifically for specific business scenarios and applications to provide better
performance in specific contexts.
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Furthermore, the limitations of large models are not always fundamental issues.
Although large models exhibit excellent performance on widely used data and tasks,
their effectiveness may not be as expected in specific and highly personalized scenarios.

Based on the above considerations, this study conducted a fine-tuning operation on
the general largemodel to create an industry-specific largemodel suitable for themilitary
industry. Through this step, we aim to better meet the needs of specific fields and provide
more precise and efficient solutions for Q&A tasks in the military industry.

(1) Building a fine-tuning dataset
When constructing a large-scale military domain model based on graph Q&A,

we adopted a series of key steps aimed at fully utilizing large-scalemodel technology.
Firstly, we constructed a fine-tuning dataset for text extraction and text linking based
on rich training data to ensure that the model performs well in military applications.

The dataset we constructed mainly includes two aspects, namely key element
extraction data and entity link data. In the process of constructing key element extrac-
tion data, we borrowed Chatie’s technical route and constructed effective prompts,
and extracted key information by training the question text and key elements in the
data. This step helps guide themodel to better understand the question and accurately
extract the required information from the text.

On the other hand, the construction of entity link data is carried out through
training files. We compared the text in the question with the text in CQL to construct
a dataset of entity links. This step aims to establish an association between the
semantic information in the question and the entities in the graph, providing support
for subsequent knowledge queries.

(2) Large model fine-tuning
The fine-tuning method is a strategy for fine-tuning a pre-trained large language

model on a natural language format instance set. This method is closely related to
supervised fine-tuning and multi-task prompt training methods. In the fine-tuning
process, we first need to collect or construct instances that are suitable for the instruc-
tion format. Next, we use these formatted instances to fine-tune the large language
model in a supervised manner (for example, using sequence-to-sequence loss for
training). Through this instruction fine-tuning method, the large language model
exhibits excellent generalization ability on tasks that have not been touched before,
even in multilingual environments.

Although fine-tuning is a more efficient method compared to pre-training (as
only the fine-tuning dataset needs to be processed), full parameter instruction fine-
tuning still requires significant computational resources [11]. However, there are
currently multiple efficient parameter tuning schemes that can significantly reduce
the cost of tuning while maintaining the same performance as full parameter tuning.

In this study, we used the LoRa fine-tuning method [12]. The basic idea is to
add a channel next to the original pre-training weights, which is processed through
dimensionality reduction and dimensionality enhancement operations [13]. Dur-
ing the training process, we maintain the pre-training weights unchanged and only
adjust the dimensionality reduction matrix A and the dimensionality increase matrix
B. However, the input and output dimensions of the model remain unchanged,
and when outputting, the dimensionality reduction matrix B and dimensionality
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increase matrix A are overlaid with the parameters of the pre-trained weights. In
the actual fine-tuning process, the dimensionality reduction matrix A and dimen-
sionality increase matrix B are usually at the MB level, while the weight of large
language models is usually at the GB level. By using the LoRa fine-tuning method,
we can effectively reduce the computational burden during the fine-tuning process
while maintaining high performance. The fine-tuning process of this paper is shown
in Fig. 4.

Fig. 4. Fine-tuning process of information extraction and knowledge linking in the military field
for a large model

3.2 Template Matching for the Question

In the template matching stage, we matched the user’s natural language questions with
the constructed question template. By fully utilizing the semantic understanding ability
of large models, our system can accurately identify entities, relationships, and attributes
in question sentences, and map them to corresponding templates. Once the matching
is successful, the system will generate corresponding CQL (Cypher Query Language)
query statements for information retrieval in the knowledge graph.

This template-matching process is a meaningful connection between the user’s nat-
ural language question and the existing question template. By mapping the elements in
the question to the template structure, we canmore accurately grasp the user’s intentions,
thus laying a solid foundation for subsequent knowledge graph queries. The semantic
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understanding ability of large models plays a crucial role here, enabling our system to
efficiently analyze questions and retrieve information, providing users with accurate and
satisfactory answers.

3.2.1 Dictionary-Based Information Extraction and Linking

We used dictionaries to extract key information in response to user input issues. This
key information is matched with the information in the knowledge graph, resulting in
meaningful linking results.

The extraction of key information plays a crucial role in this process. By extracting
key elements from user questions, we can more accurately capture users’ query inten-
tions. Subsequently, comparing this key information with the entities, relationships, and
attributes in the knowledge graph established a valuable connection with the knowl-
edge graph. This connection process helps to provide users with relevant and in-depth
answers, while also injecting higher intelligence and accuracy into our graph-based
question-answering system.

Therefore, dictionary-driven key information extraction plays a crucial role in the
framework of the entire question-and-answer system, providing an important bridge for
the effective connection between knowledge graphs and user questions.

3.2.2 Extraction and Linking Based on Large Models

We use fine-tuned specialized military domain large-scale models to extract key infor-
mation for the issues provided by users. The extracted key information will then be
matched and associated with the information in the knowledge graph (KB) file. If no
corresponding matching terms are found during the matching process, we will vectorize
the extracted key information and calculate the similarity with the information vectors in
the knowledge graph. In this process, we will select the key information with the highest
score, construct a prompt with the extracted key information, and then input it into a
large model to obtain the link results of the key information.

In this process, fine-tuning the military field’s large model plays a crucial role. By
fine-tuning themodel to address issues in themilitary field, we havemade it more profes-
sional and accurate. This provides strong support for the extraction of key information,
enabling us to better understand the user’s query intent.

Meanwhile, the vectorization and similarity calculation of key information provides
us with an effective way to handle situations where direct matches cannot be found
in the knowledge graph. By calculating the similarity between key information and
knowledge graph information in vector space, we can find the most relevant information
and constructmore guiding prompts, further guiding the largemodel to generate accurate
link results.

Overall, this method integrates fine-tuning techniques, vectorization calculations,
and large-scale model processing, providing a powerful solution for key information
extraction and linking based on graph question-answering systems.
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3.2.3 Key Information Fusion and Replacement

Merge the final results in Sects. 3.2.1 and 3.2.2, and if there is a conflict, first consider
trusting the results obtained in Sect. 3.2.1. Subsequently, we use special characters to
replace the key information that appears in the merged question, to obtain the question
template.

The main purpose of this consolidation process is to summarize the results of two
independent steps to form a more comprehensive and consistent question template. In
situations where there may be conflicts, we prefer to use the results of Sect. 3.2.1 as they
are given a higher level of trust throughout the entire process.

We have achieved the construction of a question template by embedding the merged
key information into the question text in the form of special characters. This process
provides a strong foundation for subsequent template matching and question analysis,
helping the system to accurately understand the user’s query intention and generate more
accurate answers.

3.2.4 Template Similarity Matching

The templates obtained in Sect. 3.2.3 will be calculated for similarity with each template
in the pre-established template library. In this process, we will evaluate the similarity
between each template and the resulting template, and ultimately select the template
with the highest similarity score as our extraction template.

This step aims to find the template that best matches the template we generated from
the existing template library. By calculating similarity, we can quantitatively compare
the similarity between various templates to determine the optimal extraction template.
This method ensures that we have selected the template with the most adaptability and
matching degree,which helps to providemore accurate guidance for subsequent question
matching and information extraction.

3.3 CQL Generation

In the knowledge graph question answering system, CQL (Cypher Query Language)
is a query language used to query information in graph databases. To achieve effective
knowledge graph Q&A, we first map the natural language questions raised by users to
the corresponding CQL templates through question template matching. Next, we replace
the key information in the question with fixed symbols in the CQL template to generate
the final CQL query statement.

3.3.1 Matching Question Templates to CQL Templates

A question template is a predefined series of question types, each of which is associated
with a corresponding CQL template. The question template captures the different ways
and semantics of user questioning, while the CQL template defines how to construct
query statements to obtain the required knowledge graph information. By matching
question templates, the system can quickly select suitable CQL templates based on the
type of question entered by the user, thereby reducing query space and improving query
efficiency.
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For example, the question template: “What are the concepts A with attribute A less
than or equal to the numerical value A?” can be matched to the corresponding CQL
template: “MATCH (n: ‘Concept A’) where n. ‘Attribute A’ < = numerical value A
RETURN n. name”.

3.3.2 Key Information Replacement and CQL Generation

Once the question template is successfully matched, the next key step is to fill in the
key information from the question into the CQL template, which includes replacing the
entities, attributes, relationships, and other information involved in the question with the
corresponding positions in the CQL template. For example, the key information in the
example is: {“Attribute A”: “Speed”, “Concept A”: “Nuclear Submarine”, “Value A”:
“10”}.

By replacing key information, we obtained a complete CQL query statement:
“MATCH (n: ‘Nuclear Submarine’) where n. ‘Speed’ < = 10 RETURN n. name”.
It can be directly executed in the knowledge graph database to obtain information that
matches user issues.

Finally, execute the CQL query statement and return the final result.

4 Experiments and Results

4.1 Experimental Data

TheExperimental dataset used in this paper is an opendataset providedby theCCKS2023
Conference’s Foreign Military Unmanned System Knowledge Graph Reasoning Ques-
tion and Answer Evaluation Task. The training set of this dataset contains a total of
4000 question-and-answer pairs, and the test set contains a total of 1000 questions. The
sample data for Q&A is shown in Table 1.

Table 1. The sample data for Q&A.

No Question sentence CQL Answer

1 Is the crew of the xxx armored
vehicle 3 people?

MATCH (n) where n.name = \ “XXX
armored vehicle \” RETURN n.‘
passengers ‘ = 3

True

2 How many entities have a maximum
range greater than 3900?

MATCH (n) where n.‘ Range‘ > 3900
RETURN count(n)

200

4.2 Evaluation Indicators and Results

TheCCKSconference provided 1000questions as test data and released evaluationmeth-
ods, with evaluation indicators including Macro Precision, Macro Recall, and Average
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F1 value. The final ranking is based on the Average F1 value. Set it as the set of ques-
tions, the set of answers given by the contestant to the question, and the standard set of
answers to the question. The relevant calculation formula is as follows:

MacroPrecision = 1

|Q|
∑|Q|

i=1
Pi,Pi = |Ai

⋂
Gi|

|Ai| (1)

MacroRecall = 1

|Q|
∑|Q|

i=1
Ri,Ri = |Ai

⋂
Gi|

|Gi| (2)

AveragedF1 = 1

|Q|
∑|Q|

i=1

2PiRi

Pi + Ri
(3)

According to the official final evaluation results, the final rating of this experiment
is shown in Table 2.

Table 2. The results of this experiment.

Model P R F1

llm-kbqa 0.86919 0.8722 0.86902

From the results, it can be seen that by introducing key technologies such as template
construction, template matching, CQL generation, and fine-tuning entity linking and
knowledge extraction using large models, our system can efficiently meet users’ Q&A
needs, providing strong support for knowledge acquisition and decision support in the
military field.

In the template construction phase, we systematically organized the problem tem-
plates to cover a variety of problem types and scenarios. Next, in the template match-
ing process, we intelligently match the user’s natural language questions with the
pre-constructed template to capture the core elements of the problem.

In the process of generating CQL, we use Cypher Query Language, a specialized
query language, to construct knowledge graph query statements. This helps to accurately
locate relevant information in the knowledge graph.

In addition, we have also introduced largemodel technology to fine-tune the system’s
professionalism and accuracy in the military field through entity linking and knowledge
extraction. This enables our system to better understand themeaning behind the problem,
effectively link to key information in the knowledge graph, and provide users with more
accurate answers and decision support.

In summary, the military domain question and answer method based on large models
and knowledge graphs proposed in this paper achieves efficient knowledge query and
information extraction in complex fields through the fusion of multiple technical means.

5 Conclusion

This study delves into the implementation of a military domain knowledge base question
answering system, fully utilizing the powerful capabilities of largemodel technology, and
providing innovative solutions for solving knowledge acquisition and decision support
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questions in complex fields. Through the integration of key technologies such as tem-
plate construction, template matching, CQL generation, entity linking of large models,
and fine-tuning of knowledge extraction, we have successfully implemented an effi-
cient Q&A system. Experiments have shown that the system performs well in handling
complex questions in the military field, providing users with high-quality and accurate
answers and support.

However, there are still some issues worth further research and exploration in
this study. Firstly, although large model technology has achieved significant results in
question-answering systems, there are still certain challenges in terms of domain adapt-
ability and data scarcity. Future research can further explore how to further improve the
performance of large models in military Q&A through more targeted data and training
methods.

In addition, this study can also consider how to further optimize the construction
and maintenance of knowledge graphs to adapt to the constantly changing needs of the
militaryfield.At the same time,we can explore how to introducemultimodal information,
such as image and video data, to further enrich the context and content of the question,
and enhance the diversity and practicality of the system.

Finally, with the continuous development of artificial intelligence technology, we
can integrate graph-based question-answering systems with other advanced technolo-
gies such as natural language generation and emotion analysis to create a more intelli-
gent and user-friendly military question-answering system, providing users with more
comprehensive and personalized services.
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Abstract. PromptCBLUE is a Chinese medical NLP benchmark that
converts sixteen different medical NLP tasks into text generation task
through prompt learning. It requires completing all tasks with just one
large language model backbone and keeping the fine-tuning parameters
under 1% of the model size, posing huge challenges. To address this
issue, we have proposed an innovative approach. Initially a two-stage
fine-tuning process is employed. For intricate tasks, a task-decomposition
prompting construction method is introduced, enhancing algorithmic
efficacy. Moreover, the integration of focus loss is explored to further
amplify algorithm performance. Using this approach, a score of 72.28 was
achieved in the CCKS2023 PromptCBLUE general competition track.
This research contributes new insights to the advancement of large lan-
guage models in the medical field.

Keywords: LLM · PromptCBLUE · AIGC · prompt learning

1 Introduction

With the introduction of ChatGPT and GPT-4, a new wave of the large language
model revolution is sweeping across the globe. The launch of the PromptCBLUE
benchmark has further expanded the scope of CBLUE [12] (Chinese Biomedical
Language Understanding Evaluation) by encompassing 16 sub-tasks, including
information extraction, medical concept normalization, medical text classifica-
tion, medical dialogue understanding and generation. This compilation estab-
lishes the first large language model (LLM) benchmark tailored to Chinese med-
ical scenarios.

The prevailing approach typically involves employing pre-trained language
models as encoder or decoder components and developing distinct downstream
task models or separate fine-tuning for each sub-task. However, this method
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necessitates constructing an individual model for each downstream task, leading
to complexity, and poses challenges in enabling multi-task training across multi-
ple models. CCKS2023 PromptCBLUE introduces a framework for instructing
large language models, accomplishing the unification of Chinese medical natu-
ral language processing (NLP) tasks, and paving the way for optimizing large
language models for medical applications.

In alignment with this trajectory, we have also introduced a medical-oriented
large language model named HuimeiGPT. In response to the PromptCBLUE
evaluation task within the context of the CCKS competition, this paper presents
a diverse array of refined fine-tuning strategies tailored to the HuimeiGPT model.
Notably, our model achieved a score of 72.28 on the final leaderboard of the
general competition track, underscoring its pronounced efficacy.

The main contributions of this article are as follows:

– To captures shared representations from diverse subtasks and enhance per-
formance across three sub-categories, we introduce a hierarchical two-stage
fine-tuning strategy.

– To address complex tasks, we introduce a task-decomposition-based prompt
learning strategy, which enhances the model’s performance on these tasks.

– For information extraction tasks, we employ a multi-loss function approach
to enhance the model’s focus on specific entities.

2 Related Work

2.1 Medical Information Extraction

The field of medical information extraction has gained traction in enhancing clin-
ical decision-making and research. Approaches include Named Entity Recogni-
tion (NER) for medical terms, Relation Extraction for knowledge graphs, Event
Extraction for clinical events, and Deep Learning for context-rich understand-
ing. Challenges persist in handling unstructured texts and domain variations. In
recent years, medical information extraction has predominantly centered around
transformer-based pre-trained language models [4,9].

2.2 Prompt Learning and Parameter-Efficient Tuning

With the development of large language models, many open-source models
have been swiftly applied across diverse domains, including ChatGLM [2,11],
LLaMA [8], etc. As the parameter scale of large language models reaches several
billions, the cost of fine-tuning all parameters becomes increasingly prohibitive.
This has promoted research into prompt engineering, where task instructions are
formulated as natural language prompts to elicit desired model behaviors with-
out updating parameters. For instance, the 175B-parameter GPT-3 [1] lever-
ages prompt engineering to achieve strong performance on many NLP tasks
through few-shot prompting, without any gradient update. Meanwhile, recent
research shows that efficient parameter fine-tuning techniques like LoRA [3] or
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P-Tuning [6,7] can yield considerable results on specific datasets. These methods
often require only a small number of fine-tuned parameters to achieve signifi-
cant performance gains. However, directly applying prompt engineering or effi-
cient fine-tuning methods like P-Tuning-V2 and LoRA often leads to mediocre
performance.

3 Methodology

CCKS released the PromptCBLUE benchmark by re-developing the CBLUE
benchmark and converting 16 different medical NLP tasks into prompt-based
language generation tasks, forming the first Chinese medical LLM benchmark.
94 instructional fine-tuning templates were adopted with the input field as string
input to the LLM and the target field as the string output that the LLM needs
to generate. The difficulty lies in completing the 16 different tasks using only
one LLM backbone and keeping the total parameters of the efficient fine-tuning
module under 1% of the LLM backbone.

Our methods propose three optimization approaches to enhance the perfor-
mance of large language models. First, a hierarchical two-stage fine-tuning is
utilized to improve the overall model effectiveness. Second, building on the opti-
mized overall performance, two customized optimization techniques are designed
for certain task characteristics: For complex tasks that can be decomposed into
several simpler sub-tasks, a task-decomposition prompting method is employed
to increase model scores. For tasks with critical information, a focus loss is inte-
grated into the loss calculation.

3.1 Hierarchical Two-Stage Fine-Tuning

As illustrated in Fig. 1, the entire process is divided into two stages. In the first
stage, we utilize HuimeiGPT as the base model, employing the LoRA [3] tech-
nique to fine-tune the model across all 16 subtasks. This initial integration cap-
tures shared representations and promotes cross-task knowledge transfer. We use
the model fine-tuned by LoRA as a new base model. Subsequently, in the second
stage, we capitalize on identified subtask categories. We categorize all tasks into
three main classes: Information Extraction, Classification or Textual Entailment,
and Others. Then we perform efficient parameter fine-tuning (P-Tuning [6,7])
separately for these three major categories. This stratified approach allows us to
optimize model performance for each task type effectively. This process enables
the model to capture nuanced task characteristics for each subcategory, enhanc-
ing overall performance. In the end, three P-Tuning fine-tuned models were gen-
erated, with the overall fine-tuning parameters being less than 1% of the LLM
backbone parameters, meeting the competition requirements.

Experimental results underscore the effectiveness of our hierarchical two-
stage fine-tuning method, showcasing superior performance compared to con-
ventional single-stage fine-tuning and other multi-task learning approaches. This
method not only advances multi-task learning but also offers insights into hier-
archical modeling for diverse task sets.
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Fig. 1. A Two-Stage Fine-Tuning Approach

3.2 Task-Decomposition Prompting

Drawing insights from the work of CoT [10] and Zero-Shot CoT [5]. In the realm
of complex tasks within CBLUE, like CMeIE, CHIP-CDEE, and IMCS-V2-SR,
a fruitful approach involves breaking them down into two distinct sub-tasks. For
instance, let’s consider the IMCS-V2-SR task, which entails identifying entities
like disease symptoms from conversational content and determining whether it
is positive or negative at the same time.

As illustrated in Fig. 2, in the original training data, the input consists
of medical dialogues between patient and doctor, while the output involves
diverse symptom-related information and polarity classifications. The model’s
predictions may occasionally deviate from accuracy, particularly in cases where
it fails to identify all relevant symptoms. To address this, we applied a task-
decomposition prompting approach. Initially, the model is provided with infor-
mation about four distinct symptoms, following which it is prompted to perform
polarity classifications for each symptom. Remarkably, we observed that through
this structured methodology, the model’s performance was enhanced, even when
specific symptoms were not explicitly provided within the validation data.

3.3 Objective Function

Token loss is a baseline loss calculation method for large language models. It
involves tokenizing the label sentences into individual tokens. The cross-entropy
loss is then computed between the tokens generated by the model and the tokens
from the labels. This loss derived from comparing tokens one-by-one is referred to
as token loss. It provides a basic training signal for language models by evaluating
the token-level probability distribution. The token loss solely relies on all tokens
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Fig. 2. Task-Decomposition Prompting

cross-entropy, while the enhancement stems from the assimilation of losses tied
to the positions of entity and relation types. This incorporation enables the
model to hone its focus on pivotal information. For instance, in the sentence:
<Head and tail entity pairs with laboratory test relations are as follows: the head
entity is myeloma, and the tail entity is serum calcitonin. Head and tail entity
pairs with surgical treatment relations are as follows:>. The focus information
is: <laboratory test> <myeloma> <serum calcitonin> <surgical treatment>
(as depicted in Fig. 3).

Fig. 3. The loss function of the model we have designed is obtained by weighted sum-
ming the token loss and the focus loss.

Vector a is used to represent the token loss part. Since cross entropy loss
needs to be calculated for each token position, a is a vector of length number of
tokens with all values equal to 1.
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a =
[
1 1 · · · 1] (1)

Vector mask represents the focus loss. The elements mi only have two pos-
sible values, 0 or 1. 0 indicates tokens that are not of interest, while 1 indicates
tokens that are of interest for the task. Multiplying by coefficient λ represents
the proportional weight of the focus loss.

mask =
[
m0 m1 · · · mn

]
(2)

Finally, multiplying by the cross entropy loss, where the cross entropy i rep-
resents each token position, len is the number of tokens, c is the index of words
in the dictionary, M is the dictionary size. The total loss is represented by the
following formula:

(a + λ · mask)×
len∑

i

M∑

c=1

yiclog(Pic) (3)

4 Experiments

4.1 Datasets and Evaluation Metrics

The datasets consists 16 subtasks in medical text information extraction (entity
recognition, relation extraction, event extraction), medical concept normaliza-
tion, medical text classification, medical sentence semantic relation judgment,
medical dialog understanding and generation. As depicted in the Fig. 4, each
subtask is accompanied by a dataset consisting of a substantial volume of data
ranging from 3000 to 6000 instances.

The majority of subtasks are evaluated using the Micro-F1 metric, however,
the CHIP-CTC and KUAKE-QIC subtasks utilize the Macro-F1 metric. For the
generation-based tasks, MedDG and IMCS-V2-MRG, the evaluation employs
the ROUGE metric. The final score is obtained by averaging the scores of all
individual subtasks.

4.2 Experimental Setup

We tune hyper-parameters based on the validation datasets. Setting the learning
rate to 5e-5 with a cosine learning rate decay strategy. The model was trained for
5 epochs. For the LoRA fine-tuning, rank is set to 8, and the target module was
configured as <Q,K,V>. Then the LoRA fine-tuned model serves as the back-
bone model. For certain tasks, we apply P-Tuning-V2 for specialized fine-tuning,
allowing further improvement on those task performances. P-Tuning-V2 has
trainable prefix encodings that are concatenated to the key and value layers of
each transformer layer. There is a hyperparameter called prefix sequence length
that controls the length of the prefix encodings. Through extensive experiments,
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Fig. 4. Number of Training Data for Each Subtask

we find prefix sequence length of 128 works the best. Setting it too small makes
the prefix encodings not effective enough, while setting it too large makes the
attention mechanism focus too much on the prefix encodings and too little on
the original key and value layers, both leading to inferior performance.

4.3 Medical Information Extraction

For the medical information extraction task, we optimized the model objective
function and proposed adding two losses, as Eq. 3 shown. How to set the value
of the λ is the key issue. Through experimentation, we found the optimal perfor-
mance with λ of Focus Loss set to 0.25. Setting λ too high causes the model to
overfocus on the salient information, inadvertently disregarding the instruction
template in the output. On the other hand, setting λ too low is equivalent to
solely computing the token loss. Experimental results demonstrate that our focus
loss strategy significantly enhances the performance of such tasks, as illustrated
in Table 1.

4.4 Overall Experiments Result

Experimental overall performance are presented in Table 2. In the baseline, only
LoRA is used for supervised fine-tuning, with an average score of 68.25 on 16
tasks. First, using hierarchical two-stage fine-tuning improves the average score
to 70.57 (+2.32). Second, based on the task-decomposition prompting, further
improving the average score to 71.46 (+0.89). Finally, incorporating focus loss,
the average score is fixed at 72.28 (+0.82).
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Table 1. Information Extraction Performance

Task LoRA SFT (baseline) Focus Loss

CMeIE 48.62 54.96
CMeEE-V2 66.43 68.25
IMCS-V2-NER 86.28 89.78
CHIP-CDEE 64.43 67.05

Table 2. Overall Performance

Model Overall Performance

LoRA SFT (baseline) 68.25
H-MS 70.57
H-MS + TD-P 71.46
H-TSa + TD-Pb + FLc 72.28

aH-TS refers to Hierarchical Two-Stage.
bTD-P refers to Task-Decomposition Prompting.
cFL refers to Focus Loss.

5 Conclusion

This paper proposes a novel approach for the PromptCBLUE benchmark, uti-
lizing the large language model (LLM) developed by Huimei Technology. Firstly,
model performance is enhanced through the construction of a hierarchical two-
stage fine-tuning process. Secondly, for intricate tasks, a task-decomposition
prompting construction method is introduced. Finally, the incorporation of an
important word loss mechanism is integrated into the model’s loss calculation.
This research introduces innovative ideas for the advancement of large models
in the medical field. Ultimately, our model achieved a score of 72.28 on the final
leaderboard of the general competition track.
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