
USTAR: Improved Compression of k-mer
Sets with Counters Using de Bruijn

Graphs

Enrico Rossignolo and Matteo Comin(B)

Department of Information Engineering, University of Padua, Padua, Italy
{enrico.rossignolo,matteo.comin}@unipd.it

Abstract. A fundamental operation in computational genomics is to
reduce the input sequences to their constituent k-mers. Finding a space-
efficient way to represent a set of k-mers is important for improving
the scalability of bioinformatics analyses. One popular approach is to
convert the set of k-mers into a de Bruijn graph and then find a compact
representation of the graph through the smallest path cover.

In this paper, we present USTAR, a tool for compressing a set of
k-mers and their counts. USTAR exploits the node connectivity and
density of the de Bruijn graph enabling a more effective path selection
for the construction of the path cover. We demonstrate the usefulness
of USTAR in the compression of read datasets. USTAR can improve
the compression of UST, the best algorithm, from 2.3% up to 26,4%,
depending on the k-mer size.

The code of USTAR and the complete results are available at the
repository https://github.com/enricorox/USTAR.

Keywords: k-mer set with counts · compression · smallest path cover

1 Introduction

The majority of bioinformatics analysis is performed by k-mer based tools that
provide several advantages with respect to the ones that directly process reads
or reads alignments. These tools operate primarily by transforming the input
sequence data, which may be of various lengths depending on the technology
used for sequencing, into a k-mer set that is a set of strings with fixed length
and their multiplicities, called counts.

k-mers-based methods achieve better performance in many applications. In
genome assembly, Spades [2] used k-mers-based methods to reconstruct the entire
genome from reads obtaining efficiently highly accurate results. Also the assem-
bly validation of Merqury [22] uses k-mer counts. In metagenomics, Kraken [27]
is capable to classify and identify microorganisms in complex environmental sam-
ples using k-mers and it is 900 times faster than MegaBLAST. Since the intro-
duction of Kraken, most of the tools for metagenomic classification are based on
k-mers [1,5,19,24]. In genotyping, several tools [9,13,14,26] use k-mers instead of
alignment to identify genetic variations in individuals or populations. In phyloge-
nomics, Mash [15] uses k-mers to efficiently estimate genomes and metagenomes
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 202–213, 2023.
https://doi.org/10.1007/978-981-99-7074-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7074-2_16&domain=pdf
https://github.com/enricorox/USTAR
https://doi.org/10.1007/978-981-99-7074-2_16

USTAR: Improved Compression of k-mer Sets with Counters 203

distances in order to reconstruct evolutionary relationships among organisms.
In database searching many k-mers-based methods [3,10,12,16,25] have been
proposed in order to search sequences efficiently.

Overall, k-mer-based methods have revolutionized many areas of bioinformat-
ics and they have become an essential tool for analyzing large-scale genomic data.
These tools often rely on specialized data structures for representing sets of k-
mers (for a survey, see [6]). Since modern sequencing datasets are huge, the space
used by such data structures is a bottleneck when attempting to scale up to large
databases. Conway and Bromage [8] showed that at least log

(
4k

n

)
bits are needed

to losslessly store a set of n k-mers, in the worst case. However, a set of k-mers gen-
erated from a sequencing experiment typically exhibits the spectrum-like property
[6] and contains a lot of redundant information. Therefore, in practice, most data
structures can substantially improve on that bound [7].

Since storing a k-mer set requires non-negligible space, it’s desirable to reduce
the size that can be very large. For example, the dataset used to test the BIGSI
[21] index takes approximately 12 TB to be stored in compressed form.

The best tool to compress a set of k-mers with counts is UST [21] (see
Sect. 1.1) and it uses the De Bruijn graph representation of the input k-mer set.
The problem of finding the smallest k-mer set representation is equivalent to
finding the smallest path cover in a de Bruijn graph (Sect. 2). In this paper, we
present USTAR (Unitig STitch Advanced constRuction), which follows a similar
paradigm, but implements a better strategy for exploring De Bruijn graphs.
The USTAR strategy leverages the density of the de Bruijn graph and node
connectivity, enabling a more effective path selection for the construction of the
path cover, and thus improving the compression. In Sect. 3 we reported a series
of results on several real sequencing datasets. We showed that USTAR achieves
the best compression ratio of k-mers and counts and it outperforms UST, and
other tools.

1.1 Related Works

The problem of k-mer set compression has been addressed by several researchers,
in this section we summarize the most recent findings. k-mers counters are tools
that are designed to count and store distinct k-mers, a particularly hard challenge
for large datasets. The most famous tools are Squeakr [17], KMC [11] and DSK
[23]. Squeakr is an approximate and exact k-mers counting system that exploits
Bloom filters, a probabilistic data structure, in order to efficiently store k-mers.
KMC uses disk files as bins in which divide, sort, and count k-mers. Finally,
DSK uses hash tables in order to update k-mers counters. The last two tools are
not specifically designed for compression but they are still capable to reduce the
size storing only distinct k-mers and their counts.

A k-mer set with counters can be represented by a de Bruijn graph (dBG)
that can be exploited for efficient storage. BCALM2 [7] is a tool for the low-
memory construction of dBGs that are compacted, meaning that maximal non-
branching paths are merged in a single node labeled with k-mers glued together

204 E. Rossignolo and M. Comin

and the list of the counts. Compaction not only provides advantages in terms
of memory used but also in terms of disk space. The idea, in order to compress
k-mers, is to save k − 1 characters per link. For example, given a dBG, the non-
branching path (ACT , CTG, TGA) can be replaced by a single node ACTGA.
The sequence represented by a non-branching path is called unitig and it is an
attempt to compress k-mers using dBGs.

Another way to reduce the redundancy of a k-mer set is to exploit its
spectrum-like property [6], i.e. the existence of long strings that “generate” all
the k-mers. This idea has been developed in parallel by the authors of ProphAsm
[4] and UST [21]. The authors of ProphAsm [4] refer to these long strings as sim-
plitigs and they build them by linking overlapping unitigs and k-mers during the
exploration of a dBG computed on the fly. They showed that simplitigs outper-
formed unitigs, the k-mers representation proposed by BCALM2, in terms of
computational resources and compression rate. Also UST [21] links overlapping
unitigs and k-mers, but it uses as input the compacted de Bruijn graph com-
puted by BCALM2 and it considers also k-mers counts. They find a nearly tight
lower bound for the optimal k-mers representation and they showed empirically
that in most cases their greedy algorithm is within 3% of the lower bound.

2 USTAR: Unitig STitch Advanced ConstRuction

2.1 Definitions

For the purpose of this paper, we consider a string made up of charac-
ters in Σ = {A,C, T,G}. A string of length k is called k-mer and its
reverse complement rc(·) is obtained by reversing the k-mer and replacing each
character with its complement, that is A �→ T , C �→ G, T �→ A, G �→ C. Since
we don’t know from which DNA strand it is taken, we consider a k-mer and
its reverse complement as the same k-mer. Given a string s = 〈s1, . . . , s|s|〉, we
denote the first i characters of s as prefi(s) = 〈s1, . . . , si〉 and the last i charac-
ters of s as sufi(s) = 〈s|s|−i+1, . . . , s|s|〉. We define the glue operation between
two strings u and v such that sufk−1(u) = prefk−1(v) as the concatenation of
u and the suffix of v:

u �k−1 v = u · suf|v|−(k−1)(v)

For example, given two 3-mers u = CTG and v = TGA, their gluing is u�2 v =
CTGA.

A set of k-mers can be represented by a de Bruijn graph, of which we will
give a node-centric definition, meaning that the arcs are implicitly given by the
nodes. Thus we can refer to k-mers and dBG(K) interchangeably.

Given a k-mer set K = {m1, . . . m|K|}, a de Bruijn graph of K is a directed
graph dBG(K) = (V , A) in which:

1. V = {v1, . . . , v|K|}
2. each node v ∈ V has a label lab(vi) = mi

USTAR: Improved Compression of k-mer Sets with Counters 205

3. each node v ∈ V has two different sides sv ∈ {0, 1}, where (v, 1) is graphically
represented with a tip

4. a node side (v, sv) is spelled as

spell(v, sv) =

{
lab(v) sv = 0
rc(lab(v)) sv = 1

(1)

5. there is an arc between two node sides (v, sv) and (u, su) if and only if there
are spellings that share a (k − 1)-mer. In particular, it must be
(
(v, sv), (u, su)

) ∈ A ⇐⇒ sufk−1 (spell (v, 1 − sv)) = prefk−1 (spell (u, su))

The right-hand condition is also known as (v, u)-oriented-overlap [21].

Note that nodes’ sides allow treating a k-mer and its reverse complement as
if they were the same k-mer. Furthermore, nodes can be associated with k-mer
counts.

A path p = 〈(v1, s1), . . . , (vl, sl)〉 is spelled by gluing the spelling of its node
sides:

spell(p) = spell(v1, s1) �k−1 spell(v1, s1) �k−1 · · · �k−1 spell(vl, sl)

The path p is said to be a unitig if its internal nodes have in-degree and out-
degree equal to 1. A unitig is said to be maximal if it cannot be extended
on either side. In order to decrease its memory footprint, a dBG(K) can be
compacted by replacing maximal unitigs with single nodes labeled with the
spellings of the unitigs.

An example of compacted dBG(K) with

K = {ACT,CTG, TGA,CTT, TTG, TGC}
is in Fig. 1. It has been compacted by replacing the maximal unitig (CTT, TTG)
with the node CTTG.

2.2 Vertex-Disjoint Path Cover Problem

Compressing a k-mer set K can be achieved by finding a representation S of K
made of strings of any length such that the set of its substrings of length k is
equal to K.

A natural way to measure the size of a string set S is by computing its
cumulative length defined as the sum of all the string lengths:

CL(S) =
∑

s∈S

|s|

where |s| is the length of the string s. It has been shown in [4,21] that, when S
does not contain duplicate k-mers, the cumulative length of S is proportional to
its cardinality, in particular, it holds

CL(S) = |K| + (k − 1) · |S|

206 E. Rossignolo and M. Comin

where |S| is the cardinality of the set S. Therefore our goal, finding the best
representation of a k-mer set K, is equivalent to minimizing the number of
strings in the string set S.

Consider again the example in Fig. 1. From the path p = (ACT,CTG, TGA)
we can compute its spell spell(p) = ACTGA that contains all the 3-mers ACT ,
CTG and TGA in p. Thus from a set of paths P that contains all the nodes in
dBG(K) we can derive a set S of compressed k-mers. By imposing that all the
paths are vertex-disjoint, we guarantee that k-mers are represented only once.
Therefore a vertex-disjoint path cover can be used in order to compute S for
compression.

Fig. 1. An example of a compacted de Bruijn graph. Nodes are labeled with k-mers
and their counts. Undirected arcs are used in place of two arcs with opposite directions.
UST may choose the path cover in red while USTAR is forced to choose the path cover
in green. (Color figure online)

Recalling that in order to minimize the cumulative length of a string set S
that represents K we need to minimize the number of strings |S| and that it
corresponds to the number of paths |P |, we can solve the following problem.

Problem 1. Given a de Bruijn graph dBG(K) of a k-mer set K, the minimum
vertex-disjoint path cover problem is to find the minimum number of
vertex-disjoint paths that cover the graph.

For general graphs the problem above is known to be NP-hard [4,21] since
it can be reduced from Hamilton: a graph has a Hamiltonian path if and only if
it has a vertex-disjoint path cover of cardinality 1. However, it is not clear if the
problem is still NP-hard for de Bruijn graphs.

Nevertheless, greedy and non-optimal algorithms have been proposed.
ProphAsm [4] uses a simple heuristic that takes an arbitrary k-mer in the
dBG(K), and it tries to extend it forward and backward as long as possi-
ble and it restarts until it consumes all the k-mers. Similarly, using as input
the compacted dBG(K) constructed by BCALM2, UST [21] takes an arbitrary
node, tries to extend it forward as long as possible, and restarts until there
are available nodes. In the end, UST merges linked paths. Both methods per-
form a similar strategy by picking the first available k-mer, and without con-
sidering the graph structure. If we consider the example in Fig. 1, ProphAsm

USTAR: Improved Compression of k-mer Sets with Counters 207

and UST, by choosing nodes arbitrarily, may build the path cover (in red)
P = {(ACT,CTG, TGA), (CTT, TTG), (TGC)} from which derives, by com-
puting the spelling of each path, the set of strings S = {ACTGA,CTTG, TGC}.
In this example, the cumulative length is CL(S) = 12.

In this work, we present USTAR (Unitig STitch Advanced constRuction)
that, unlike previous algorithms, exploits the connectivity of the dBG graph
and the values of counts. USTAR also implements a heuristic to compute sim-
plitigs. As UST, also USTAR takes advantage of the compacted de Bruijn graph
computed by BCALM2. Similarly to UST and ProphAsm, at each step, USTAR
selects a seed node in the graph, and then it tries to compute a path starting
from this node. A path is constructed by connecting adjacent nodes until the
path cannot be further extended. The algorithm continues with the selection
of a new seed node until all nodes have been covered by a path. The two key
operations in this algorithm are how to select a good seed node, and how to
extend a path among the available connections.

In USTAR the counts associated with each node and the topology properties
can be used to determine the best seed and how to extend it. The distribution
of counts is in general very skewed, with several low values and few very high
values. Since the counts distribution is non-uniform, and skewed, it turns out that
higher counts are harder to compress. For this reason, the exploration strategy
of USTAR chooses as seed the node that has the highest average counts. In
general neighboring nodes usually have similar counts, so that choosing the seed
based on the highest average count might improve the compression of these high
counts.

As for the path cover construction, we observe that UST and ProphAsm
might choose a highly connected node, and since this node will not be available
in the subsequent iterations, this selection may lead to isolated nodes, that will
increase the cumulative length, like in the example in Fig. 1. Instead, in USTAR
we try to avoid this scenario and, in fact, paths are extended by selecting the
node with fewer connections so that highly connected nodes are still available
for future iterations. These choices will help to have a lower CL since they create
fewer and longer simplitigs.

Following the example in Fig. 1, USTAR guarantees that while constructing
the first path, the most connected node CTG is avoided. This will produce
a cover of the dBG with the paths (in green) P ′ = {(ACT,CTT, TTG, TGA),
(CTG, TGC)} and thus a set of strings S′ = {ACTTGA,CTGC}. If we measure
the cumulative length of S′ we have that CL(S′) = 10.

CL(S′) = 10 < CL(S) = 12 < CL(K) = 18

Overall, in this example, the uncompressed k-mer set will require CL(K) =
18, with UST the k-mer set can be compressed with CL(S) = 12, whereas
USTAR will produce a better compression with CL(S′) = 10.

208 E. Rossignolo and M. Comin

3 Results

In this section, we present a series of experiments in order to find the best tool
that compresses k-mers and counts. In our evaluation, we compared USTAR
with several other tools: Squeaker, KMC, DSK, BCALM2, and UST. We used
for testing a set of real reads datasets taken from previous studies [4,7,11,17,23].
A summary of all datasets is reported in Table 1. For each dataset, we extracted
all k-mers (see Table 1) and the corresponding counts, and use this information
as input for all compression tools. For some tools, like UST and USTAR, it is
required to build a compacted dBG with BCALM2 as a preprocessing.

Table 1. A summary of the read datasets used in the experiments. Datasets are down-
loaded from NCBI’s Sequence Read Archive.

name description read length #reads size [GB]

SRR001665 Escherichia coli 36 20,816,448 9.304

SRR061958 Human Microbiome 1 101 53,588,068 3.007

SRR062379 Human Microbiome 2 100 64,491,564 2.348

SRR10260779 Musa balbisiana RNA-Seq 101 44,227,112 2.363

SRR11458718 Soybean RNA-seq 125 83,594,116 3.565

SRR13605073 Broiler chicken DNA 92 14,763,228 0.230

SRR14005143 Foodborne pathogens 211 1,713,786 0.261

SRR332538 Drosophila ananassae 75 18,365,926 0.683

SRR341725 Gut microbiota 90 2 5,479,128 1.254

SRR5853087 Danio rerio RNA-Seq 101 119,482,078 3.194

SRR957915 Human RNA-seq 101 49,459,840 3.671

In the first experiment, we ran all compression tools on all datasets for k = 21
and we reported the results in Table 2. In all cases, the stored data is additionally
compressed using MFCompress [18] for nucleotide sequences or with bzip3 for
binary data. In Table 2 are reported the dimensions of the files compressed by
the different tools.

We can observe that USTAR is on average the best compressor, and it con-
sistently outperforms the other tools on all datasets. As expected UST and
BCALM are the second and third best methods, however, USTAR shrinks the
representation by 76% over BCALM and 4.2% over UST.

Since it is clear that UST is the best competitor in the next tests we compare
USTAR with UST. We used three different evaluation metrics:

– CL: the cumulative length as defined in Sect. 2, to test the quality before the
k-mers compression with the dedicated compressor MFCompress;

– counts: the file size of counts after compression with a general-purpose com-
pressor;

USTAR: Improved Compression of k-mer Sets with Counters 209

Table 2. Datasets (with k = 21) are processed with DSK, KMC, Squeaker, BCALM,
UST, and USTAR. Nucleotide files are then compressed with MFCompress [18] while
other text or binary files are compressed with bzip3. The average file size over all
datasets is reported in the last row.

Dataset DSK KMC Squeakr BCALM UST USTAR

SRR001665 1 76,729,965 63,102,295 62,769,135 43,100,358 12,641,658 12,332,551

SRR001665 2 89,356,517 73,618,021 70,364,023 54,549,879 15,492,263 15,109,673

SRR061958 1 1,853,355,280 1,512,526,861 1,214,304,214 792,616,145 194,173,905 185,905,825

SRR061958 2 2,269,394,440 1,850,606,165 1,445,986,432 940,752,737 235,657,588 225,975,765

SRR062379 1 771,892,475 633,615,665 559,244,946 334,386,186 82,713,766 79,283,723

SRR062379 2 766,644,876 629,023,699 556,418,241 327,042,925 80,164,746 76,708,406

SRR10260779 1 594,043,132 489,620,438 459,620,233 272,605,742 64,644,700 61,724,139

SRR10260779 2 661,730,544 545,447,915 501,793,581 311,074,932 72,772,294 69,375,320

SRR11458718 1 660,336,575 547,192,385 515,587,875 278,247,157 64,694,925 61,236,404

SRR11458718 2 699,675,661 580,313,686 542,321,885 304,467,895 68,982,466 65,438,050

SRR13605073 1 286,147,403 236,056,529 244,522,615 110,324,321 25,833,347 24,546,244

SRR14005143 1 72,421,457 59,702,423 75,386,963 26,222,881 6,419,520 6,220,215

SRR14005143 2 148,413,200 121,547,826 126,063,532 51,976,493 13,117,896 12,655,430

SRR332538 1 61,647,503 50,466,675 65,343,140 21,192,576 5,737,778 5,599,034

SRR332538 2 125,336,255 100,440,228 116,698,603 77,057,667 14,410,775 13,528,977

SRR341725 1 972,617,730 799,134,833 700,565,933 262,398,076 80,436,678 78,193,253

SRR341725 2 1,005,087,513 825,643,578 719,993,731 277,159,709 84,250,689 81,877,574

SRR5853087 1 1,494,920,206 1,234,975,195 1,084,532,779 1,073,165,506 191,108,921 177,278,725

SRR957915 1 1,016,375,644 837,315,550 732,334,056 590,259,971 122,748,678 116,872,195

SRR957915 2 1,589,786,146 1,301,318,582 1,062,835,997 829,172,816 182,073,051 172,757,385

Average 760,795,626 624,583,427 542,834,396 348,888,699 80,903,782 77,130,944

– overall: the sum of compressed file sizes of k-mers and counts.

Given the metric M the improvement over UST is computed as

ΔM =
MUST − MUSTAR

MUST

where M can be CL, counts or overall.
In the next experiment, we compared USTAR and UST with these three

metrics. In Table 3 we reported the average improvements of USTAR w.r.t. UST
when tested on all the above datasets while varying the size of k-mers, using odd
lengths as previously done by other authors [4,20,21].

We can observe that for all values of k, USTAR improves over UST, for
both nucleotide and count compression. For large values of k = 31, the overall
advantage of USTAR is 2.30%, and this improvement is mainly achieved with a
better compression of counts, in fact, Δcounts = 12.70%. We suspect that with
higher values of k the compression might decrease, but more experiments are
needed to confirm this hypothesis.

If smaller values of k are considered the overall improvement increases with
k = 21 and k = 17 and it reaches the maximum value of 26.40% for k = 15.

210 E. Rossignolo and M. Comin

Table 3. Average improvements of USTAR w.r.t. UST varying the k-mer size.

k-mer size Δ CL [%] Δ counts [%] Δ overall [%]

15 33.64 12.07 26.40

17 13.61 15.85 13.92

21 2.10 14.17 4.20

31 0.97 12.70 2.30

A similar behavior can be observed for ΔCL, which increases from 0.97% with
k = 31 to 33.64% with k = 15. We can note that the count improvement is
roughly constant as k varies with an improvement of 12.07–15.85%. In general,
Δoverall is mainly driven by ΔCL.

Since USTAR exploits the structure and connectivity of the dBG graph it
is interesting to further study the behavior of USTAR w.r.t. to the number of
arcs in the graph. Recall that nodes in a dBG have two sides and that each side
can have four arcs, one per nucleotide, thus the maximum number of arcs is
2 · 4 · #nodes. Based on this observation we can define the graph density as the
number of arcs over the maximum number of arcs:

density =
#arcs

8 · #nodes

Fig. 2. Improvement on the cumulative length, w.r.t. UST, as a function of the dBG
graph density.

In Fig. 2 are shown the improvements in the cumulative length for all datasets
with different k-mer sizes, plotted against their density. Each point in the Figure

USTAR: Improved Compression of k-mer Sets with Counters 211

represents a dataset. The plot has a well-defined curve that slowly raises until
density = 35% and then increases almost linearly. ΔCL spans from 0.02%
to 48.31% showing that the compression ratio strongly increases as the density
increases. We can say that the graph density is very important in determining the
improvement in k-mers compression because, with a denser graph, we obtained
significantly higher improvements. We also considered other properties such as
the number of k-mers, the number of unitigs, the number of isolated nodes,
the read length, and the counts variance. However all these features are not as
significant as the graph density, and so they are omitted.

Indeed, a higher density graph implies that USTAR has more nodes from
which it can choose, unlike UST which picks the first connected k-mer, so that
more connected nodes can be available to paths that would have been made up of
single nodes. The higher compression ratio achieved by USTAR on denser graphs
confirms that the strategy based on node connectivity works well. The fact that
UST chooses almost randomly how to extend a path, it cannot guarantee to work
well, even with a denser graph there exists the possibility that many single-node
paths are generated, which substantially increases the number of paths and thus
the cumulative length of compressed k-mers, worsening the compression ratio.
If we decrease the k-mer size we observe a higher density: with small k there
are more k-mers and it is more likely to have more connections between k-mers
leading to an increase in density. In summary, USTAR can compress k-mers and
counts with a better compression ratio w.r.t. to several other tools. USTAR is
more effective on dense dBG graphs and for small k-mer sizes.

4 Conclusions

In this paper, we have presented USTAR, a tool for compressing k-mer sets with
counters. Our approach utilizes a vertex-disjoint path cover to find a represen-
tation of the k-mer set that minimizes the cumulative length of the compressed
data. By exploring de Bruijn graphs and making informed choices based on node
connectivity and average counts, we have achieved better compression ratios
compared to existing tools such as UST.

We have evaluated USTAR using various datasets and compared it with
several other tools. The results demonstrate that our method consistently out-
performs UST, and other tools, in terms of compression ratio, especially for
smaller k-mer sizes. The improvements range from 0.97% to 33.64% in terms of
cumulative length and it’s almost constant for counts. The overall improvement
in compressed file size is driven by the reduction in cumulative length.

Furthermore, we have observed that graph density plays a crucial role in
determining the effectiveness of USTAR. Denser graphs yield higher improve-
ments, and lowering the k-mer size contributes to increased density. These find-
ings highlight the power of our method, particularly for datasets with higher
graph density.

In conclusion, USTAR offers an effective solution for compressing k-mer sets
with counters. By leveraging de Bruijn graphs and making informed choices in

212 E. Rossignolo and M. Comin

the construction of the vertex-disjoint path cover, we have achieved superior
compression ratios compared to existing tools. Our method has the potential
to enhance the storage and processing efficiency of analysis in bioinformatics,
enabling more efficient analysis of large-scale genomic data using k-mer-based
tools.

Acknowledgments. Authors are supported by the National Recovery and Resilience
Plan (NRRP), National Biodiversity Future Center - NBFC, NextGenerationEU.

References

1. Andreace, F., Pizzi, C., Comin, M.: Metaprob 2: metagenomic reads binning based
on assembly using minimizers and k-mers statistics. J. Comput. Biol. 28(11), 1052–
1062 (2021). https://doi.org/10.1089/cmb.2021.0270

2. Bankevich, A., et al.: Spades: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012)

3. Bradley, P., Den Bakker, H.C., Rocha, E.P., McVean, G., Iqbal, Z.: Ultrafast search
of all deposited bacterial and viral genomic data. Nat. Biotechnol. 37(2), 152–159
(2019)

4. Břinda, K., Baym, M., Kucherov, G.: Simplitigs as an efficient and scalable repre-
sentation of de Bruijn graphs. Genome Biol. 22(1), 1–24 (2021)

5. Cavattoni, M., Comin, M.: Classgraph: improving metagenomic read classification
with overlap graphs. J. Comput. Biol. 30(6), 633–647 (2023). https://doi.org/10.
1089/cmb.2022.0208, pMID: 37023405

6. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent a set of k-long
DNA sequences. ACM Comput. Surv. (CSUR) 54(1), 1–22 (2021)

7. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32(12), i201–i208
(2016)

8. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large
genomes. Bioinformatics 27(4), 479–486 (2011)

9. Denti, L., Previtali, M., Bernardini, G., Schönhuth, A., Bonizzoni, P.: Malva: geno-
typing by mapping-free allele detection of known variants. Iscience 18, 20–27 (2019)

10. Harris, R.S., Medvedev, P.: Improved representation of sequence bloom trees.
Bioinformatics 36(3), 721–727 (2020)

11. Kokot, M., D�lugosz, M., Deorowicz, S.: KMC 3: counting and manipulating k-mer
statistics. Bioinformatics 33(17), 2759–2761 (2017)

12. Marchet, C., Iqbal, Z., Gautheret, D., Salson, M., Chikhi, R.: Reindeer: efficient
indexing of k-mer presence and abundance in sequencing datasets. Bioinformatics
36(Supplement 1), i177–i185 (2020)

13. Marcolin, M., Andreace, F., Comin, M.: Efficient k-mer indexing with application
to mapping-free SNP genotyping. In: Lorenz, R., Fred, A.L.N., Gamboa, H. (eds.)
Proceedings of the 15th International Joint Conference on Biomedical Engineering
Systems and Technologies, BIOSTEC 2022, Volume 3: BIOINFORMATICS, 9–11
February 2022, pp. 62–70 (2022)

14. Monsu, M., Comin, M.: Fast alignment of reads to a variation graph with applica-
tion to SNP detection. J. Integr. Bioinform. 18(4), 20210032 (2021)

15. Ondov, B.D., et al.: Mash: fast genome and metagenome distance estimation using
minhash. Genome Biol. 17(1), 1–14 (2016)

https://doi.org/10.1089/cmb.2021.0270
https://doi.org/10.1089/cmb.2022.0208
https://doi.org/10.1089/cmb.2022.0208

USTAR: Improved Compression of k-mer Sets with Counters 213

16. Pandey, P., Almodaresi, F., Bender, M.A., Ferdman, M., Johnson, R., Patro, R.:
Mantis: a fast, small, and exact large-scale sequence-search index. Cell Syst. 7(2),
201–207 (2018)

17. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: Squeakr: an exact and approx-
imate k-mer counting system. Bioinformatics 34(4), 568–575 (2018)

18. Pinho, A.J., Pratas, D.: Mfcompress: a compression tool for fasta and multi-fasta
data. Bioinformatics 30(1), 117–118 (2014)

19. Qian, J., Comin, M.: Metacon: unsupervised clustering of metagenomic contigs
with probabilistic k-mers statistics and coverage. BMC Bioinform. 20(367) (2019).
https://doi.org/10.1186/s12859-019-2904-4

20. Rahman, A., Chikhi, R., Medvedev, P.: Disk compression of k-mer sets. Algorithms
Mol. Biol. 16(1), 1–14 (2021)

21. Rahman, A., Medvedev, P.: Representation of k-mer sets using spectrum-
preserving string sets. In: Schwartz, R. (ed.) RECOMB 2020. LNCS, vol. 12074, pp.
152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45257-5 10

22. Rhie, A., Walenz, B.P., Koren, S., Phillippy, A.M.: Merqury: reference-free quality,
completeness, and phasing assessment for genome assemblies. Genome Biol. 21,
245 (2020)

23. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory
usage. Bioinformatics 29(5), 652–653 (2013)

24. Storato, D., Comin, M.: K2mem: discovering discriminative k-mers from sequenc-
ing data for metagenomic reads classification. IEEE/ACM Trans. Comput. Biol.
Bioinf. 19(1), 220–229 (2022). https://doi.org/10.1109/TCBB.2021.3117406

25. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: Allsome sequence bloom trees. J.
Comput. Biol. 25(5), 467–479 (2018)

26. Sun, C., Medvedev, P.: Toward fast and accurate SNP genotyping from whole
genome sequencing data for bedside diagnostics. Bioinformatics 35(3), 415–420
(2019)

27. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15(3), 1–12 (2014)

https://doi.org/10.1186/s12859-019-2904-4
https://doi.org/10.1007/978-3-030-45257-5_10
https://doi.org/10.1109/TCBB.2021.3117406

	USTAR: Improved Compression of k-mer Sets with Counters Using de Bruijn Graphs
	1 Introduction
	1.1 Related Works

	2 USTAR: Unitig STitch Advanced ConstRuction
	2.1 Definitions
	2.2 Vertex-Disjoint Path Cover Problem

	3 Results
	4 Conclusions
	References

