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Preface

The 19th International Symposium on Bioinformatics Research and Applications
(ISBRA 2023) was held on October 9–12, 2023, at Łukasiewicz Research Network
- PORT Polish Center for Technology Development, Wrocław, Poland. The symposium
provides a forum for the exchange of ideas and results among researchers, developers,
and practitioners working on all aspects of bioinformatics and computational biology
and their applications. The technical program of the symposium included 28 full papers
and 16 short papers, selected by the Program Committee from 88 submissions received
in response to the call for papers.

We would like to thank the Program Committee members and external reviewers
for volunteering their time to review and discuss symposium papers. We would like to
extend special thanks to the Steering and General Chairs of the symposium for their
leadership, and to the Finance, Publication, Publicity, and Local Organization Chairs for
their hard work in making ISBRA 2022 a successful event. Last but not least we would
like to thank all authors for presenting their work at the symposium.

September 2023 Xuan Guo
Serghei Mangul

Murray Patterson
Alexander Zelikovsky
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Unveiling the Robustness of Machine
Learning Models in Classifying
COVID-19 Spike Sequences

Sarwan Ali1, Pin-Yu Chen2, and Murray Patterson1(B)

1 Georgia State University, Atlanta, GA, USA
{sali85,mpatterson30}@gsu.edu

2 IBM Research, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
pin-yu.chen@ibm.com

Abstract. In the midst of the global COVID-19 pandemic, a wealth
of data has become available to researchers, presenting a unique oppor-
tunity to investigate the behavior of the virus. This research aims to
facilitate the design of efficient vaccinations and proactive measures to
prevent future pandemics through the utilization of machine learning
(ML) models for decision-making processes. Consequently, ensuring the
reliability of ML predictions in these critical and rapidly evolving sce-
narios is of utmost importance. Notably, studies focusing on the genomic
sequences of individuals infected with the coronavirus have revealed that
the majority of variations occur within a specific region known as the
spike (or S) protein. Previous research has explored the analysis of spike
proteins using various ML techniques, including classification and clus-
tering of variants. However, it is imperative to acknowledge the pos-
sibility of errors in spike proteins, which could lead to misleading out-
comes and misguide decision-making authorities. Hence, a comprehensive
examination of the robustness of ML and deep learning models in classi-
fying spike sequences is essential. In this paper, we propose a framework
for evaluating and benchmarking the robustness of diverse ML methods
in spike sequence classification. Through extensive evaluation of a wide
range of ML algorithms, ranging from classical methods like naive Bayes
and logistic regression to advanced approaches such as deep neural net-
works, our research demonstrates that utilizing k-mers for creating the
feature vector representation of spike proteins is more effective than tra-
ditional one-hot encoding-based embedding methods. Additionally, our
findings indicate that deep neural networks exhibit superior accuracy and
robustness compared to non-deep-learning baselines. To the best of our
knowledge, this study is the first to benchmark the accuracy and robust-
ness of machine-learning classification models against various types of
random corruptions in COVID-19 spike protein sequences. The bench-
marking framework established in this research holds the potential to
assist future researchers in gaining a deeper understanding of the behav-
ior of the coronavirus, enabling the implementation of proactive measures
and the prevention of similar pandemics in the future.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 1–15, 2023.
https://doi.org/10.1007/978-981-99-7074-2_1
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Keywords: Adversarial Attack · Protein Sequences · k-mers ·
Classification

1 Introduction

In January 2020, a new RNA coronavirus was discovered, marking the onset of
the ongoing COVID-19 pandemic. Through the utilization of sequencing tech-
nology and phylogenetic analysis, the scientific community determined that this
novel coronavirus shares a 50% similarity with the Middle-Eastern Respira-
tory Syndrome Coronavirus (MERS-CoV), a 79% sequencing similarity with
the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), commonly
known as “SARS,” and over 85% similarity with coronaviruses found in bats.
Subsequent research confirmed bats as the probable reservoir of these coron-
aviruses; however, due to the ecological separation between bats and humans, it
is believed that other organisms might have served as intermediate hosts. Based
on comprehensive scientific evidence, the International Committee on Taxonomy
of Viruses officially designated the novel RNA virus as SARS-CoV-2 [26,31,32].

RNA viruses commonly introduce errors during the replication process,
resulting in mutations that become part of the viral genome after multiple repli-
cations within a single host. This leads to the formation of a diverse population
of viral quasispecies. However, SARS-CoV-2 possesses a highly effective proof-
reading mechanism facilitated by a nonstructural protein 14 (nsp14), resulting in
a mutation rate approximately ten times lower than that of typical RNA viruses.
On average, it is estimated that SARS-CoV-2 acquires 33 genomic mutations per
year. Some of these mutations confer advantages, leading to the emergence of
more infectious variants of SARS-CoV-2. These variants can be distinguished
by a small number of specific mutations, and the relatively slow accumulation
of mutations makes it unlikely for minor sequence perturbations or errors to
cause confusion between different variants. Additionally, most of these muta-
tions occur in the S gene, which encodes the spike protein responsible for the
surface characteristics of the virus. Consequently, characterizing variants based
on the spike proteins transcribed from the genome is sufficient for the classifica-
tion task [21,25,28].

The decreasing cost of next-generation sequencing (NGS) technology has
significantly facilitated SARS-CoV-2 whole-genome sequencing (WGS) by
researchers worldwide. The Centers for Disease Control and Prevention (CDC)
in the United States have provided comprehensive resources, tools, and pro-
tocols for SARS-CoV-2 WGS using various sequencing platforms such as Illu-
mina, PacBio, and Ion Torrent. Additionally, the Global Initiative on Sharing
All Influenza Data (GISAID) hosts the largest SARS-CoV-2 genome sequencing
dataset to date, encompassing millions of sequences. This unparalleled volume
of genomic data generation and its easy accessibility have enabled researchers
to delve into the molecular mechanisms, genetic variability, evolutionary pro-
gression, and the potential for the emergence and spread of novel virus variants.
However, the sheer magnitude of this data surpasses the capabilities of existing
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methods like Nextstrain [16] and even the more recent IQTREE2 [24] by several
orders of magnitude, presenting a significant Big Data challenge. Consequently,
alternative approaches focusing on clustering and classification of sequences have
emerged in recent literature [2,3,5,23], demonstrating promising accuracy and
scalability properties. These methods offer viable solutions for identifying major
variants and addressing the challenges associated with the extensive volume of
genomic data.

However, several challenges persist in studying the evolutionary and trans-
mission patterns of SARS-CoV-2 [6,13] and other viruses. One of these challenges
arises from sequencing errors, which can be mistakenly identified as mutations
during analysis. These errors can result from various sources, including contami-
nation during sample preparation, sequencing technology limitations, or genome
assembly methodologies. To address this issue, computational biologists typi-
cally employ filtering techniques to remove sequences with errors or mask specific
sequence fragments that exhibit errors. For instance, in the case of GISAID [14]
sequences, each sequence represents a consensus sequence derived from the viral
population within an infected individual. This consensus sequence averages out
minor variations present in the population, providing a representative snapshot
of the SARS-CoV-2 variant carried by the patient. Although this consensus
sequence accurately captures the predominant variant, it comes at the cost of
losing valuable information about these minor variations. However, given enough
time and within an immunocompromised individual, these minor variations can
undergo significant evolution and become dominant, as observed in the emer-
gence of the Alpha variant [12].

What this means is that many machine learning approaches towards clus-
tering and classification of sequences [2,3,5] have been operating under rather
idealized conditions of virtually error-free consensus sequences. Moreover, these
methods rely on a k-mer based feature vector representation — an approach
that does not even rely on the alignment of the sequences, something which
can also introduce bias [15]. Such a framework should easily cope with errors
as well — something machine learning approaches can do very naturally [11].
There is hence a great need for some way to reliably benchmark such methods
for robustness to errors, which is what we carry out in this paper.

We highlight the main contributions of this paper as follows:

– We propose several ways of introducing errors into spike sequences which
reflect the error profiles of modern NGS technologies such as Illumina and
PacBio;

– We demonstrate that the k-mer based approach is more robust to such errors
when compared to the baseline (one-hot encoding); and

– We show that deep learning is generally more robust in handling these errors
than machine learning models.

Moreover, we extend our error testing procedure as a framework for benchmark-
ing the performance of different ML methods in terms of classification accuracy
and robustness to different types of simulated random errors in the sequences.
The two types of errors that we introduce are “consecutive” and “random”
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errors (see Sect. 3.4). Random errors are just point mutations, which happen
uniformly at random along the protein sequence, simulating closely the behavior
of Illumina sequencing technolgies [30]. Consecutive errors on the other hand,
are small subsequences of consecutive errors, which can model insertion-deletion
(indel) errors which are common in third generation long-read technologies such
as Pacific Biosciences (PacBio) SMRT sequencing [10].

This paper is structured as follows. In Sect. 2, we discuss related work. In
Sect. 3 we discuss some approaches we benchmark, and then how we benchmark:
the type of adversarial attacks we use. Sect. 4 details the experiments, and Sect. 5
gives the results. Finally, we conclude this paper in Sect. 6.

2 Related Work

The evaluation and benchmarking of the robustness of machine learning (ML)
and deep learning (DL) approaches through adversarial attacks have gained
popularity in the field of image classification [17]. However, there are related
works that focus more specifically on molecular data. For instance, in [29], the
authors present a set of realistic adversarial attacks to assess methods that pre-
dict chemical properties based on atomistic simulations, such as molecular con-
formation, reactions, and phase transitions. Additionally, in the context of pro-
tein sequences, the authors of [18] demonstrate that deep neural network-based
methods like AlphaFold [19] and RoseTTAFold [7], which predict protein con-
formation, lack robustness. These methods produce significantly different pro-
tein structures when subjected to small, biologically meaningful perturbations
in the protein sequence. Although our approach shares similarities with these
works, our goal is classification. Specifically, we investigate how a small num-
ber of point mutations, simulating errors introduced by certain types of next-
generation sequencing (NGS) technologies, can impact the downstream classifi-
cation performed by various ML and DL approaches.

When it comes to obtaining numerical representations, a common approach
involves constructing a kernel matrix and using it as input for traditional machine
learning classifiers like support vector machines (SVM) [20,22]. However, these
methods can be computationally expensive in terms of space complexity. In
related works [3,21], efficient embedding methods for spike sequence classifica-
tion and clustering are proposed. Nevertheless, these approaches either lack scal-
ability or exhibit poor performance when dealing with larger datasets. Although
some effort has been made to benchmark the robustness of machine learning
models using genome (nucleotide) sequences [4], no such study has been con-
ducted on the (spike) protein sequences (to the best of our knowledge).

3 Proposed Approach

In this section, we start by explaining the baseline model for spike sequence
classification. After that, we will explain our deep learning model in detail.
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3.1 One-Hot Encoding (OHE) Based Embedding

Authors in [21] propose that classification of viral hosts of the coronavirus can
be done by using spike sequences only. For this purpose, a fixed-length one-
hot encoding-based feature vector is generated for the spike sequences. In the
spike sequence, we have 21 unique characters (amino acids) that are “ACDE-
FGHIKLMNPQRSTVWXY”. Also, note that the length of each spike sequence
is 1273 with the stopping character ‘*’ at the 1274th position. When we design the
OHE-based numerical vector for the spike sequence, the length of the numer-
ical vector will be 21 × 1273 = 26733. This high dimensionality could create
the problem of “Curse of Dimensionality (CoD)”. To solve the CoD problem,
any dimensionality reduction method can be used, such as Principal Compo-
nent Analysis [1]. After reducing the dimensions of the feature vectors, classical
Machine Learning (ML) algorithms can be applied to classify the spike sequences.
One major problem with such OHE-based representation is that it does not pre-
serve the order of the amino acids very efficiently [2]. If we compute the pair-wise
Euclidean distance between any two OHE-based vectors, the overall distance will
not be affected if a random pair of amino acids are swapped for those two fea-
ture vectors. Since the order of amino acids is important in the case of sequential
data, OHE fails to give us efficient results [2]. In this paper, we use OHE as a
baseline embedding method.

3.2 k-mers Based Representation

A popular approach to preserve the ordering of the sequential information is
to take the sliding window-based substrings (called mers) of length k. This k-
mers-based representation is recently proven to be useful in classifying the spike
sequences effectively [2]. In this approach, first, the k-mers of length k are com-
puted for each spike sequence. Then a fixed length frequency vector is generated
corresponding to each spike sequence, which contains the count of each k-mer
in that sequence. One advantage of using k-mers based approach is that it is
an “alignment-free” method, unlike OHE, which requires the sequences to be
aligned to the reference genome.

Remark 1. Sequence alignment is an expensive process and requires reference
sequence (genome) [8,9]. It may also introduce bias into the result [15].

The total number of k-mers in a given spike sequence are:

N − k + 1 (1)

where N is the length of the sequence. The variable k is the user-defined param-
eter. In this paper, we take k = 3 (decided empirically). Since we have 1273
length spike sequences, the total number of k-mers that we can have for any
spike sequence is 1273 − 3 + 1 = 1271.
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Frequency Vector Generation. After generating the k-mers, the next step
is to generate the fixed-length numerical representation (frequency vector) for
the set of k-mers in a spike sequence. Let the set of amino acids in the whole
dataset is represented by alphabet Σ. Now, length of the frequency vector will
be |Σ|k (all possible combinations of k-mers in Σ of length k). Recall that in
our dataset, we have 21 unique amino acids in any spike sequence. Therefore,
the length of frequency vector in our case would be 213 = 9261 (when we take
k = 3).

Note that CoD could be a problem in the case of k-mers based numerical
representation of the spike sequence. To deal with this problem, authors in [3]
use an approximate kernel method that map such vectors into low dimensional
euclidean space using an approach, called Random Fourier Features (RFF) [27].
Unlike kernel trick, which compute the inner product between the lifted data
points φ (i.e. 〈φ(a), φ(b)〉 = f(a, b), where a, b ∈ Rd and f(a,b) is any positive
definite function), RFF maps the data into low dimensional euclidean inner
product space. More formally:

z : Rd → RD (2)

RFF tries to approximate the inner product between any pair of transformed
points.

f(a, b) = 〈φ(a), φ(b)〉 ≈ z(a)T z(b) (3)

where z is low dimensional representation. Since z is the approximate repre-
sentation, we can use it as an input for the classical ML models and analyse
their behavior (as done in Spike2Vec [3]). However, we show that such approach
performs poorly on larger size datasets (hence poor scalability).

3.3 Keras Classifier

We use a deep learning-based model called the Keras Classification model (also
called Keras classifier) to further improve the performance that we got from
Spike2Vec. For keras classifier, we use a sequential constructor. It contains a
fully connected network with one hidden layer that contains neurons equals to
the length of the feature vector (i.e. 9261). We use “rectifier” activation function
for this classifier. Moreover, we use “softmax” activation function in the output
layer. At last, we use the efficient Adam gradient descent optimization algo-
rithm with “sparse categorical crossentropy” loss function (used for multi-class
classification problem). It computes the crossentropy loss between the labels
and predictions. The batch size and number of epochs are taken as 100 and
10, respectively for training the model. For the input to this keras classifier, we
separately use OHE and k-mers based frequency vectors.

Remark 2. Note that we are using “sparse categorical crossentropy” rather than
simple “categorical crossentropy” because we are using integer labels rather than
one-hot representation of labels.
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3.4 Adversarial Examples Creation

We use two types of approaches to generate adversarial examples so that we
can test the robustness of our proposed model. These approaches are “Random
Error generation” and “Consecutive Error generation”.

In random error generation, we randomly select a fraction of spike sequences
(we call them the set of errored sequences for reference) from the test set (i.e.
5%, 10%, 15%, and 20%). For each of the spike sequence in the set of errored
sequences, we randomly select a fraction of amino acids (i.e. 5%, 10%, 15%,
and 20%) and flip their value randomly. At the end, we replace these errored
sequences set with the corresponding set of original spike sequences in the test
set. The ideas is that this simulates the errors made by NGS technologies such
as Illumina [30].

In consecutive error generation, the first step is the same as in random error
generation (getting random set of spike sequences from the test set “set of errored
sequences”). For this set of errored sequences, rather than randomly flipping a
specific percentage of amino acid’s values for each spike sequence (i.e. 5%, 10%,
15%, and 20%), we flip the values for the same fraction of amino acids but
those amino acids are consecutive and at random position in the spike sequence.
More formally, it is a consecutive set of amino acids (at random position) in the
spike sequence for which we flip the values. At the end, we replace these errored
sequences set with the corresponding set of original spike sequences in the test
set. The idea is that this simulates indel errors, which are frequently found in
third generation long-read technologies such as PacBio [10].

Using the two approaches to generate adversarial examples, we generate a
new test set and evaluate the performance of the ML and deep learning models.
To measure the performance, we also apply two different strategies. One strategy
is called Accuracy and the other is called robustness. In the case of the Accuracy,
we compute the average accuracy, precision, recall, F1 (weighted), F1 (Macro),
and ROC-AUC for the whole test set including adversarial and non-adversarial
examples. For our second strategy (robustness), we only consider the adversarial
examples (set of errored spike sequences) rather than considering the whole test
set and compute average accuracy, precision, recall, F1 (weighted), F1 (Macro),
and ROC-AUC for them.

4 Experimental Setup

All experiments are conducted using an Intel(R) Xeon(R) CPU E7-4850 v4 @
2.10 GHz having Ubuntu 64 bit OS (16.04.7 LTS Xenial Xerus) with 3023 GB
memory. Our pre-processed data is also available online1, which can be used after
agreeing to terms and conditions of GISAID2. For the classification algorithms,
we use 10% data for training and 90% for testing. Note that our data split and
pre-processing follow those of [3].
1 https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?

usp=sharing.
2 https://www.gisaid.org/.

https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://www.gisaid.org/
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4.1 Dataset Statistics

We used the (aligned) spike protein from a popular and publicly available
database of SARS-CoV-2 sequences, GISAID. In our dataset, we have 2, 519, 386
spike sequences along with the COVID-19 variant information. The total number
of unique variants in our dataset are 1327. Since not all variants have signifi-
cant representation in our data, we only select the variants having more than
10, 000 sequences. After this preprocessing, we are left with 1, 995, 195 spike
sequences [3].

5 Results and Discussion

In this section, we first show the comparison of our deep learning model with
the baselines. We then show the results for the two approaches for adversarial
examples generation and compare different ML and DL methods. Overall, we
elucidate our key findings in the following subsections.

5.1 Effectiveness of Deep Learning

Table 1 contains the (accuracy) results for our keras classifier and its comparison
with different ML models namely Naive Nayes (NB), Logistic Regression (LR),
and Ridge Classifier (RC). For keras classifier, we use both OHE and k-mers-
based embedding approaches separately. We can observe from the results that
keras classifier with k-mers based frequency vectors is by far the best approach
as compared to the other baselines.

Table 1. Variants Classification Results (10% training set and 90% testing set) for top
22 variants (1995195 spike sequences).

Approach Embed.

Method

ML Algo. Acc. Prec. Recall F1 weigh. F1 Macro ROC- AUC Train.

runtime

(sec.)

ML Algo. OHE NB 0.30 0.58 0.30 0.38 0.18 0.59 1164.5

LR 0.57 0.50 0.57 0.49 0.19 0.57 1907.5

RC 0.56 0.48 0.56 0.48 0.17 0.56 709.2

Spike2Vec NB 0.42 0.79 0.42 0.52 0.39 0.68 1056.0

LR 0.68 0.69 0.68 0.65 0.49 0.69 1429.1

RC 0.67 0.68 0.67 0.63 0.44 0.67 694.2

Deep

Learning

One-Hot Keras

Classifier

0.61 0.58 0.61 0.56 0.24 0.61 28971.5

k-mers Keras

Classifier

0.87 0.88 0.87 0.86 0.71 0.85 13296.2

To test the robustness of these ML and DL methods, we use both “consecutive
error generation” and “random error generation” separately. Table 2 shows the
(accuracy) results (using keras classifier with k-mers because that was the best
model from Table 1) for the consecutive error generation method (using different
fraction of spike sequences from the test set and different fraction of amino acids
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Table 2. Accuracy results for the whole test set (consecutive error seq.) for Keras
Classifier with k-mers and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1

(weighted)

F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% 0.86 0.87 0.86 0.85 0.72 0.85 15075.72

10% 0.83 0.88 0.83 0.83 0.68 0.83 15079.3

15% 0.85 0.86 0.85 0.85 0.7 0.84 13747.5

20% 0.86 0.87 0.86 0.85 0.71 0.84 11760.21

10% 5% 0.85 0.87 0.85 0.84 0.68 0.83 11842

10% 0.8 0.86 0.8 0.82 0.69 0.83 14658.17

15% 0.79 0.85 0.79 0.8 0.65 0.81 13783.92

20% 0.84 0.84 0.84 0.82 0.67 0.82 13159.47

15 % 5% 0.85 0.86 0.85 0.84 0.68 0.83 15426.38

10% 0.77 0.86 0.77 0.79 0.64 0.8 8156.5

15% 0.76 0.86 0.76 0.79 0.65 0.81 16241.72

20% 0.75 0.87 0.75 0.79 0.66 0.8 15321.63

20 % 5% 0.73 0.86 0.73 0.77 0.65 0.8 15930.54

10% 0.76 0.87 0.76 0.79 0.64 0.79 14819.38

15% 0.76 0.88 0.76 0.79 0.65 0.8 13764.76

20% 0.8 0.81 0.8 0.77 0.63 0.78 10547.96

Table 3. Robustness (only error seq. in the test set) results (consecutive error seq.)
for Keras Classifier with k-mers and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1 (weighted) F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% 0.6 0.57 0.6 0.54 0.1 0.55 13882.03

10% 0.15 0.62 0.15 0.1 0.04 0.52 8297.78

15% 0.12 0.51 0.12 0.03 0.01 0.5 11943.5

20% 0.6 0.44 0.6 0.48 0.07 0.53 13511.4

10% 5% 0.53 0.62 0.53 0.53 0.09 0.54 9475.31

10% 0.31 0.62 0.31 0.32 0.1 0.54 7137.31

15% 0.25 0.6 0.25 0.27 0.07 0.53 13399.18

20% 0.55 0.35 0.55 0.42 0.06 0.52 13232.93

15% 5% 0.43 0.76 0.43 0.46 0.24 0.61 13588.11

10% 0.54 0.58 0.54 0.54 0.11 0.56 14147.05

15% 0.06 0.63 0.06 0.02 0.02 0.51 13729.87

20% 0.06 0.64 0.06 0.03 0.02 0.5 13596.25

20% 5% 0.17 0.68 0.17 0.18 0.1 0.54 13503.11

10% 0.48 0.63 0.48 0.48 0.09 0.55 10777.34

15% 0.47 0.59 0.47 0.49 0.09 0.55 13550.35

20% 0.49 0.39 0.49 0.33 0.03 0.5 11960.26

flips in each spike sequence). We can observe that keras classifier is able to
perform efficiently even with higher proportion of error.

The robustness results for the consecutive error generation method are given
in Table 3. Although we cannot see any clear pattern in this case, the keras
classifier is giving us comparatively higher performance in some of the settings.

Table 4 contains the accuracy results for the keras classifier (with k-mers
based frequency vectors as input) with random errored sequences approach. We
can observe that our DL model is able to maintain higher accuracy even with
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Table 4. Accuracy results for the whole test set (random error seq.) for Keras Classifier
with k-mers and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1 (weighted) F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% 0.85 0.88 0.85 0.84 0.69 0.84 9338.87

10% 0.84 0.87 0.84 0.85 0.72 0.85 14365.47

15% 0.84 0.87 0.84 0.83 0.70 0.84 14996.06

20% 0.82 0.84 0.82 0.81 0.68 0.83 10958.00

10% 5% 0.84 0.86 0.84 0.84 0.69 0.83 15465.50

10% 0.83 0.87 0.83 0.84 0.68 0.82 15135.49

15% 0.79 0.87 0.79 0.82 0.67 0.82 14675.58

20% 0.83 0.85 0.83 0.83 0.69 0.83 14758.57

15% 5% 0.77 0.83 0.77 0.77 0.64 0.80 16573.58

10% 0.75 0.83 0.75 0.77 0.66 0.80 16472.99

15% 0.76 0.86 0.76 0.79 0.65 0.80 16799.43

20% 0.76 0.84 0.76 0.77 0.67 0.81 15495.56

20% 5% 0.77 0.87 0.77 0.81 0.67 0.81 15932.48

10% 0.80 0.86 0.80 0.81 0.65 0.81 15823.57

15% 0.82 0.83 0.82 0.80 0.64 0.79 14597.92

20% 0.73 0.82 0.73 0.74 0.63 0.79 8885.70

Table 5. Robustness results for the whole test set (random error seq.) for Keras Clas-
sifier with k-mers and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1 (weighted) F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% 0.18 0.64 0.18 0.16 0.10 0.55 11832.46

10% 0.08 0.65 0.08 0.06 0.02 0.51 9405.35

15% 0.28 0.58 0.28 0.28 0.07 0.53 9912.31

20% 0.56 0.36 0.56 0.43 0.06 0.52 13029.71

10% 5% 0.62 0.59 0.62 0.54 0.10 0.55 13840.43

10% 0.61 0.55 0.61 0.52 0.09 0.54 14016.53

15% 0.49 0.54 0.49 0.49 0.07 0.54 14038.03

20% 0.58 0.45 0.58 0.50 0.09 0.54 14202.82

15% 5% 0.27 0.65 0.27 0.26 0.06 0.54 14790.52

10% 0.16 0.10 0.16 0.07 0.05 0.52 14539.64

15% 0.19 0.56 0.19 0.18 0.04 0.52 13956.71

20% 0.04 0.48 0.04 0.03 0.01 0.50 13321.69

20 % 5% 0.60 0.71 0.60 0.58 0.14 0.57 14172.11

10% 0.22 0.58 0.22 0.19 0.08 0.53 12912.32

15% 0.46 0.57 0.46 0.43 0.05 0.52 8594.60

20% 0.03 0.59 0.03 0.01 0.01 0.50 13884.36

20% of the spike sequences having some fraction of error in the test set. Similarly,
the robustness results are given in Table 5.

To visually compare the accuracy of the average accuracy for the consecutive
errored sequences approach, we plot the average accuracies in Fig. 1a. Similarly,
Fig. 2 contains the robustness results for the same two approaches.

The accuracy and the robustness results for the other ML models (using the
Spike2Vec approach) are given in Tables 6 and Table 7, respectively. From the
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Fig. 1. (a) Accuracy Comparison of the Consecutive error generation and Random
error generation approaches for different fractions of adversarial spike sequences. (b)
Accuracy (x-axis) vs Robustness (y-axis) plot (for average accuracy values) for different
ML and DL methods for 10% adversarial sequences from the test set with 10% amino
acids flips.

Fig. 2. Robustness Comparison of the Consecutive error generation and Random error
generation approaches for different fractions of adversarial spike sequences.

results, we can conclude that our deep learning-based model is more accurate
and robust than other compared machine learning models. Another interesting
outcome from the results is that the k-mers-based feature vector is more robust
than traditional one-hot embedding. This is a kind of “proof of concept” that
since k-mers preserve the order of the amino acids in a spike sequence (as order
matters in genomic sequence data), it outperforms the traditional OHE by a
significant margin.
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Table 6. Accuracy results for the whole test set (random error seq.) for ML models
with Spike2Vec approach and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1 (weighted) F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% NB 0.40 0.80 0.40 0.51 0.40 0.68

LR 0.68 0.68 0.68 0.64 0.68 0.69

RC 0.67 0.67 0.67 0.62 0.67 0.67

10% NB 0.40 0.80 0.40 0.51 0.40 0.68

LR 0.67 0.67 0.67 0.64 0.67 0.69

RC 0.66 0.67 0.66 0.62 0.66 0.67

15% NB 0.40 0.75 0.40 0.50 0.40 0.68

LR 0.68 0.68 0.68 0.64 0.68 0.68

RC 0.67 0.67 0.67 0.62 0.67 0.67

20% NB 0.40 0.80 0.40 0.51 0.40 0.68

LR 0.67 0.67 0.67 0.64 0.67 0.69

RC 0.67 0.67 0.67 0.62 0.67 0.67

10% 5% NB 0.38 0.79 0.38 0.49 0.38 0.67

LR 0.67 0.67 0.67 0.63 0.67 0.68

RC 0.66 0.66 0.66 0.61 0.66 0.66

10% NB 0.39 0.80 0.39 0.49 0.39 0.67

LR 0.66 0.66 0.66 0.62 0.66 0.68

RC 0.65 0.64 0.65 0.60 0.65 0.66

15% NB 0.38 0.80 0.38 0.49 0.38 0.67

LR 0.67 0.67 0.67 0.63 0.67 0.68

RC 0.65 0.66 0.65 0.61 0.65 0.66

20% NB 0.66 0.66 0.66 0.62 0.46 0.68

LR 0.65 0.66 0.65 0.61 0.43 0.66

RC 0.36 0.79 0.36 0.46 0.36 0.66

15% 5 % NB 0.36 0.79 0.36 0.46 0.36 0.66

LR 0.65 0.66 0.65 0.61 0.65 0.67

RC 0.65 0.64 0.65 0.60 0.65 0.65

10% NB 0.36 0.75 0.36 0.46 0.36 0.66

LR 0.66 0.66 0.66 0.61 0.66 0.67

RC 0.65 0.65 0.65 0.60 0.65 0.65

15% NB 0.36 0.80 0.36 0.47 0.36 0.66

LR 0.64 0.65 0.64 0.60 0.45 0.67

RC 0.63 0.63 0.63 0.58 0.40 0.65

20% NB 0.36 0.75 0.36 0.46 0.35 0.66

LR 0.65 0.65 0.65 0.61 0.44 0.67

RC 0.64 0.64 0.64 0.59 0.41 0.65

20% 5% NB 0.34 0.80 0.34 0.45 0.34 0.65

LR 0.63 0.64 0.63 0.59 0.63 0.66

RC 0.63 0.63 0.63 0.58 0.63 0.64

10% NB 0.34 0.75 0.34 0.45 0.34 0.65

LR 0.64 0.65 0.64 0.60 0.64 0.66

RC 0.63 0.63 0.63 0.58 0.63 0.64

15% NB 0.34 0.75 0.34 0.44 0.34 0.65

LR 0.62 0.63 0.62 0.58 0.43 0.66

RC 0.60 0.60 0.60 0.56 0.39 0.64

20% NB 0.34 0.8 0.34 0.45 0.34 0.65

LR 0.64 0.64 0.64 0.6 0.43 0.66

RC 0.61 0.61 0.61 0.56 0.39 0.64



Unveiling the Robustness of Machine Learning Models 13

Table 7. Robustness results for the whole test set (random error seq.) for ML models
with Spike2Vec approach and different % of errors.

% of Seq. % of Error

in each

Seq.

Acc. Prec. Recall F1 (weighted) F1

(Macro)

ROC-

AUC

Train.

runtime

(sec.)

5% 5% NB 0.02 0.03 0.02 0.01 0.02 0.50

LR 0.46 0.29 0.46 0.35 0.46 0.50

RC 0.46 0.28 0.46 0.34 0.46 0.50

10% NB 0.02 0.00 0.02 0.00 0.02 0.50

LR 0.41 0.27 0.41 0.32 0.41 0.50

RC 0.43 0.28 0.43 0.33 0.43 0.50

15% NB 0.02 0.05 0.02 0.01 0.02 0.50

LR 0.46 0.28 0.46 0.34 0.46 0.50

RC 0.46 0.28 0.46 0.34 0.46 0.50

20% NB 0.02 0.03 0.02 0.00 0.02 0.50

LR 0.41 0.26 0.41 0.31 0.41 0.50

RC 0.41 0.25 0.41 0.31 0.41 0.50

10% 5% NB 0.02 0.01 0.02 0.01 0.02 0.50

LR 0.46 0.29 0.46 0.35 0.46 0.50

RC 0.47 0.30 0.47 0.36 0.47 0.50

10% NB 0.02 0.00 0.02 0.00 0.02 0.50

LR 0.41 0.27 0.41 0.31 0.41 0.50

RC 0.41 0.27 0.41 0.31 0.41 0.50

15% NB 0.02 0.01 0.02 0.01 0.02 0.50

LR 0.41 0.26 0.41 0.31 0.41 0.50

RC 0.42 0.26 0.42 0.31 0.42 0.50

20% NB 0.02 0.01 0.02 0.01 0.01 0.5

LR 0.47 0.3 0.47 0.36 0.04 0.51

RC 0.48 0.31 0.48 0.37 0.05 0.51

15% 5% NB 0.02 0.03 0.02 0.01 0.02 0.50

LR 0.46 0.29 0.46 0.35 0.46 0.50

RC 0.41 0.26 0.41 0.31 0.41 0.50

10% NB 0.02 0.03 0.02 0.01 0.02 0.50

LR 0.41 0.27 0.41 0.32 0.41 0.50

RC 0.37 0.26 0.37 0.30 0.37 0.50

15% NB 0.02 0.01 0.02 0.01 0.01 0.50

LR 0.48 0.31 0.48 0.36 0.05 0.51

RC 0.48 0.31 0.48 0.36 0.05 0.51

20% NB 0.01 0.02 0.01 0.01 0.01 0.50

LR 0.30 0.22 0.30 0.25 0.03 0.49

RC 0.36 0.24 0.36 0.29 0.03 0.50

20 % 5% NB 0.02 0.03 0.02 0.01 0.02 0.50

LR 0.36 0.25 0.36 0.28 0.36 0.49

RC 0.36 0.24 0.36 0.28 0.36 0.49

10% NB 0.02 0.02 0.02 0.01 0.02 0.50

LR 0.36 0.25 0.36 0.29 0.36 0.50

RC 0.36 0.26 0.36 0.28 0.36 0.49

15% NB 0.03 0.03 0.03 0.01 0.01 0.50

LR 0.41 0.28 0.41 0.32 0.04 0.50

RC 0.46 0.29 0.46 0.35 0.04 0.50

20% NB 0.02 0.06 0.02 0.01 0.01 0.50

LR 0.47 0.31 0.47 0.36 0.04 0.51

RC 0.42 0.29 0.42 0.33 0.04 0.50
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The accuracy vs robustness comparison (for average accuracy values) of dif-
ferent ML and DL methods for 10% adversarial sequences from the test set with
10% amino acids flips is given in Fig. 1b. We can see that keras classifier per-
forms best as compared to the other ML methods. This shows that not only
our DL method show better predictive performance, but is also more robust as
compared to the other ML models.

6 Conclusion

One interesting future extension is using other alignment-free methods such as
Minimizers, which have been successful in representing metagenomics data. Since
an intra-host viral population can be viewed as a metagenomics sample, this
could be appropriate in this context. Another future direction is introducing
more adversarial attacks resembling, in more detail, the error profiles of specific
sequencing technologies. One could even fine-tune this to the particular exper-
imental setting in which one obtained a sample, similar to sequencing reads
simulators such as PBSIM (for PacBio reads).
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29. Schwalbe-Koda, D., Tan, A., Gómez-Bombarelli, R.: Differentiable sampling of
molecular geometries with uncertainty-based adversarial attacks. Nat. Commun.
12(5104) (2021)

30. Stoler, N., Nekrutenko, A.: Sequencing error profiles of Illumina sequencing instru-
ments. NAR Genom. Bioinform. 3(1) (2021)

31. Wu, F., et al.: A new coronavirus associated with human respiratory disease in
china. Nature 579(7798), 265–269 (2020)

32. Zhang, Y.Z., Holmes, E.C.: A genomic perspective on the origin and emergence of
SARS-CoV-2. Cell 181(2), 223–227 (2020)

https://doi.org/10.1016/S1473-3099(21)00170-5
https://doi.org/10.1016/S1473-3099(21)00170-5
https://www.gisaid.org/about-us/history/
https://www.gisaid.org/
https://doi.org/10.1093/molbev/msm176
https://doi.org/10.1007/978-3-030-79290-9_11
https://doi.org/10.1007/978-3-030-79290-9_11
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html


Efficient Sequence Embedding
for SARS-CoV-2 Variants Classification

Sarwan Ali1(B), Usama Sardar2, Imdad Ullah Khan2, and Murray Patterson1

1 Georgia State University, Atlanta, GA, USA
{sali85,mpatterson30}@gsu.edu

2 Lahore University of Management Sciences, Lahore, Pakistan
imdad.khan@lums.edu.pk

Abstract. Kernel-based methods, such as Support Vector Machines
(SVM), have demonstrated their utility in various machine learning
(ML) tasks, including sequence classification. However, these methods
face two primary challenges:(i) the computational complexity associated
with kernel computation, which involves an exponential time require-
ment for dot product calculation, and (ii) the scalability issue of storing
the large n × n matrix in memory when the number of data points(n)
becomes too large. Although approximate methods can address the com-
putational complexity problem, scalability remains a concern for conven-
tional kernel methods. This paper presents a novel and efficient embed-
ding method that overcomes both the computational and scalability chal-
lenges inherent in kernel methods. To address the computational chal-
lenge, our approach involves extracting the k-mers/nGrams (consecu-
tive character substrings) from a given biological sequence, computing
a sketch of the sequence, and performing dot product calculations using
the sketch. By avoiding the need to compute the entire spectrum (fre-
quency count) and operating with low-dimensional vectors (sketches) for
sequences instead of the memory-intensive n × n matrix or full-length
spectrum, our method can be readily scaled to handle a large number
of sequences, effectively resolving the scalability problem. Furthermore,
conventional kernel methods often rely on limited algorithms (e.g., ker-
nel SVM) for underlying ML tasks. In contrast, our proposed fast and
alignment-free spectrum method can serve as input for various distance-
based (e.g., k-nearest neighbors) and non-distance-based (e.g., decision
tree) ML methods used in classification and clustering tasks. We achieve
superior prediction for coronavirus spike/Peplomer using our method on
real biological sequences excluding full genomes. Moreover, our proposed
method outperforms several state-of-the-art embedding and kernel meth-
ods in terms of both predictive performance and computational runtime.

Keyword: Sequence Analysis; SARS-CoV-2; Spike Sequence Classifica-
tion
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1 Introduction

The global impact of the coronavirus disease (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significant,
affecting the lives of people worldwide. As of August 14th, the number of infec-
tions from this virus alone has reached approximately 595 million, with around
6 million deaths reported across 228 countries and territories1. In the United
States, the number of confirmed cases stands at 92,560,911, with approximately
1,031,426 lives lost as of August 20222. The rapid spread of the coronavirus
has led to the collection of a massive amount of biological data, specifically
SARS-CoV-2 genomic sequencing data. This data, freely available to researchers,
presents an invaluable resource for studying the virus’s behavior, developing
effective vaccines, implementing preventive measures to curb transmission, and
predicting the likelihood of future pandemics.

Fig. 1. An example of SARS-CoV-2 genome. Coronavirus exhibits a disproportionately
high mutation rate in the S region.

In biology, it is widely recognized that a significant portion of the muta-
tions associated with SARS-CoV-2 primarily occurs within the spike region,
also known as the peplomer protein, of the complete genome [3,14]. The struc-
ture of the SARS-CoV-2 genome, including the spike region, is depicted in Fig. 1.
With a genome length of approximately 30 kilobases (kb), the spike region spans
the range of 21–25 kb and encodes a peplomer protein consisting of 1273 amino
acids, which can be further divided into sub-units S1 and S2. Databases such
as GISAID3 provide freely accessible sequence data related to coronaviruses.
Due to the disproportionate occurrence of mutations in the peplomer protein,
analyzing protein data to gain insights into the virus’s behavior poses consid-
erable challenges. Focusing on the peplomer protein instead of the full-length
genome can save computational time when analyzing coronavirus data due to
the high occurrence of mutations in this region, the sheer volume of sequences,
which amounts to millions, makes it challenging to apply traditional methods like
phylogenetic trees for sequence analysis [10]. Consequently, ML techniques have
emerged as an appealing alternative [14,18]. However, since most ML models
operate on fixed-length numerical vectors (referred to as embeddings), utilizing

1 https://www.worldometers.info/coronavirus/.
2 https://www.cdc.gov/coronavirus/2019-ncov/index.html.
3 https://gisaid.org/.

https://www.worldometers.info/coronavirus/
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://gisaid.org/


18 S. Ali et al.

raw peplomer sequences as input is not feasible. Hence, the development of effi-
cient embedding generation methods is a crucial step in ML-based classification
pipelines [12]. Notable approaches, such as Spike2Vec [2] and PWM2Vec [1],
have been proposed by researchers to address this challenge. Sequence align-
ment also plays a significant role in sequence analysis due to the importance
of amino acid order. While alignment-based methods like one-hot encoding [14]
have proven efficient in terms of predictive performance, there is growing inter-
ested among researchers in exploring alignment-free methods, such as Spike2Vec,
to avoid the computationally expensive sequence alignment operations typically
performed as a preprocessing step [5]. Alignment-free methods often employ the
use of k-mers (or n-grams in the field of natural language processing) to gen-
erate spectra (vectors based on the frequency count of k-mers) [3]. Although
existing alignment-free embedding methods show promising predictive results,
they still pose computational challenges in terms of generation time and the high
dimensionality of vectors, particularly for very long sequences and large values
of k.

In contrast to traditional embedding generation methods, which are often
referred to as “feature engineering” based methods, deep learning (DL) models
offer an alternative approach for sequence classification [7]. However, DL meth-
ods have not achieved significant success when it comes to classifying tabular
datasets. Tree-based models like random forests and XGBoost have consistently
outperformed DL methods for tabular data [4].

The use of a kernel (gram) matrix in sequence classification, especially
with kernel-based machine learning classifiers like SVM, has shown promising
results, as reported in prior research [8]. Kernel-based techniques have dis-
played favorable outcomes when compared to traditional feature engineering-
based approaches [3]. These methods operate by computing kernel (similarity)
values between sequences, creating a matrix based on the matches and mis-
matches among k-mers [16]. This resulting kernel matrix can also be employed
for data classification with non-kernel-based classifiers, such as decision trees (by
using kernel PCA [11]). However, there are two challenges associated with the
kernel-based approach.

– Computing pairwise sequence similarity is expensive
– Storing n×n dimensional kernel matrix in memory (where n represents num-

ber of sequences) is difficult when n is very large. Hence, the kernel-based
method cannot be scaled on a large number of sequences.

The use of the “kernel trick” can address the challenge of computing pairwise
sequence similarity. However, the storage problem of storing an n × n dimen-
sional matrix in memory remains a significant concern. To tackle these issues,
our paper proposes a novel hashing-based embedding technique. This method
combines the advantages of kernel methods, particularly in computing pairwise
similarity between sequences, while also addressing the storage limitation. When
given a peplomer protein sequence as input, our method generates embeddings
by utilizing k-mers/nGrams (substrings of consecutive characters) and comput-
ing sequence sketches, followed by a dot product operation to avoid full spec-
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trum computation (frequency count). By operating on low-dimensional vectors
(sketches) instead of an n × n matrix or full-length spectrum encompassing all
possible k-mer combinations, our method enables scalability to handle a large
number of sequences, effectively resolving the scalability problem. Our fast and
alignment-free method seamlessly integrates with machine learning algorithms.
It supports classification and clustering tasks, including k-nearest neighbors and
decision trees. This paper presents the following contributions:

1. We introduce a fast, alignment-free, and efficient embedding method
that rapidly computes low-dimensional numerical embeddings for protein
sequences.

2. Our method combines kernel method benefits, addressing the scalability chal-
lenge for pairwise similarity.

3. Our Experiment achieves up to 99.6% faster embedding generation reduction
in computation time compared to state-of-the-art (SOTA) methods.

4. Our results show that our method outperforms existing methods, achieving
accuracy and ROC-AUC scores of up to 86% and 85%, respectively.

5. Visualization shows the similarity of our method’s embeddings to SOTA.

In the upcoming sections, we provide literature review in Sect. 2, proposed
model ins Sect. 3, experimental setup in Sect. 4, results in Sect. 5, and conclusion
in Sect. 6.

2 Related Work

The feature engineering-based methods, such as Spike2Vec [2] and PWM2Vec [1],
leverage the concept of using k-mers to achieve satisfactory predictive perfor-
mance. However, these methods encounter the challenge known as the “curse of
dimensionality.” Specifically, as the value of k increases, the resulting spectrum
(frequency count vector) becomes increasingly sparse, with smaller k-mers occur-
ring less frequently. Consequently, the likelihood of encountering a specific k-mer
again decreases. To address this issue of sparse vectors, the authors in [9] propose
the utilization of gapped or spaced k-mers. Gapped k-mers involve extracting
g-mers from larger k-mers, where g is a value smaller than k. In this approach,
a g-mer consists of the first g characters (amino acids), while the remaining
characters are disregarded.

The computation of pair-wise similarity between sequences using kernel
matrices has been extensively studied in the field of ML [13], which can be
computationally expensive. To address this issue, an approximate method was
proposed by authors in [8], involving computing the dot product between the
spectra of two sequences. The resulting kernel matrix can then be utilized as
input for SVM or non-kernel classifiers using kernel PCA [11] for classification
purposes. In a different approach, authors in [19] introduced a neural network-
based model that employs the Wasserstein distance (WD) to extract features. It
is worth noting that feature embeddings have applications in various domains,
including product recommendations [12].
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Feature engineering-based methods, while achieving improved predictive per-
formance, often struggle to generalize effectively across different types of input
sequences. Deep learning-based methods offer a potential solution to this prob-
lem [4]. In [22], authors use the ResNet for classification. However, deep learn-
ing methods generally do not yield promising results when applied to tabular
data [20]. Converting protein sequences into images for input in existing image
classification deep learning models is an alternative approach [17], yet preserving
all pertinent information during the transformation remains a challenging task.

3 Proposed Approach

In this section, we delve into the specifics of our sequence representation and
conduct an analysis of the computational complexities involved. As mentioned
earlier, sequences typically exhibit varying lengths, and even when their lengths
are identical, they might not be aligned. Consequently, treating them as straight-
forward vectors is not feasible. Even in the case of aligned sequences with equal
lengths, treating them as vectors fails to account for the sequential order of ele-
ments and their continuity. To address these challenges comprehensively, one
of the most successful approaches involves representing sequences with fixed-
dimensional feature vectors. These feature vectors comprise the spectra or counts
of all k-mers, which are strings of length k, found within the sequences [15].

Consider a scenario where we have at our disposal a collection of
spike/peplomer protein sequences denoted as S, composed of amino acids. Now,
for a fixed positive integer k, let’s define Σk as the set comprising all strings with
a length of k formed from characters in Σ (essentially, all conceivable k-mers).
Consequently, there would be a total of s = |Σ|k possible k-mers in this set.
The spectrum, denoted as Φk(X), associated with a sequence X ∈ S can be
envisioned as a vector spanning s dimensions. Each dimension corresponds to
the count of a specific k-mer occurring within the sequence X. In more precise
terms,

Φk(X) = (Φk(X)[γ])γ∈Σk =

(∑
α∈X

I(α, γ)

)
γ∈Σk

, (1)

where

Ik(α, γ) =

{
1, if α = γ

0, otherwise
(2)

It’s essential to note that Φk(X) represents a vector with s = |Σ|k dimensions.
In this vector, each coordinate, denoted as γ and belonging to the set Σk, holds
a value equal to the frequency of γ within the sequence X. Specifically, for
peplomer sequences, where |Σ| = 20, the length of the feature vector grows
exponentially with increasing k. However, in the case of other sequences like
discretized music signals or text, Σ might be considerably larger, leading to a
substantial increase in the space required to represent these sequences, which
can become impractical.
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In the realm of kernel-based machine learning, a vital component is the “ker-
nel function.” This function calculates a real-valued similarity score for a pair
of feature vectors. Typically, this kernel function computes the inner product of
the respective spectra.

K(i, j) = K(Xi,Xj) = 〈Φk(Xi), Φk(Xj)〉
= Φ(Xi) · Φ(Xj) =

∑
γ∈Σk

Φk(Xi)[γ] × Φk(Xj)[γ] (3)

The utilization of a kernel matrix, also known as pairwise similarities, serves
as input for a conventional support vector machine (SVM) classifier. This app-
roach has proven to deliver outstanding classification performance across various
applications [8]. However, the so-called kernel trick aims to bypass the explicit
computation of feature vectors. While this technique is advantageous in terms
of avoiding the quadratic space requirements for storing the kernel matrix, it
encounters scalability issues when dealing with real-world sequence datasets.

Proposed Representation: In our proposed approach, denoted as Φ′
k(X) for

a sequence X, we provide an approximation of the feature vector Φk(X).
This approximation enables the application of machine learning methods based
on vector space. Importantly, we establish a close relationship between the
Euclidean distance of a pair of vectors and the aforementioned kernel-based
proximity measure. For a sequence X within the set S, we represent Φ′

k(X)
as an approximate form of the spectrum Φk(X). To calculate Φ′(·), we employ
2-universal hash functions.

Definition 1 (2-Universal Hash Function). A family H of functions of the
form h : Σk �→ [w] is called a 2-universal family of hash functions, if for a
randomly chosen h ∈ H

∀α �= β ∈ Σk, P r[h(α) = h(β)] = 1/w

Definition 2 (Linear Congruential Hash Functions). For an integer w,
let p > w be a large prime number. For integers 0 < a < p and 0 ≤ b < p, and
α ∈ Σk (represented as integer base |Σ|), the hash function ha,b : Σk �→ [w] is
defined as

ha,b(α) =
(
(a(α) + b) mod p

)
mod w

It is well-known that the family H = {ha,b : 0 < a < p, 0 ≤ b < p} is
2-universal. For an 0 < ε < 1, let w > 2/ε be an integer. Suppose h1 = ha1,b1 ∈
H is randomly selected. Φ′

k(X) is a w-dimensional vector of integers. The ith
coordinate of Φ′

k(X) is the cumulative frequency of all k-mers α that hash to
the bucket i by h1, i.e.

Φ′
k(X)[i] =

∑
α:h(α)=i

Φk(X)[α]. (4)
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Next, we show that the dot-product between the approximate representa-
tion of a pair of sequences X and Y closely approximates the kernel similarity
value given in (3). Then we extend this basic representation using multiple hash
functions to amplify the goodness of the estimate.

We are going to show that for any pair of sequences X and Y , Φ′
k(X)·Φ′

k(Y ) 

Φk(X) · Φk(Y ). For notational convenience let u = Φk(X),v = Φk(Y ),u′ =
Φ′

k(X), and v′ = Φ′
k(Y ), we show that u′ · v′ 
 u · v.

Theorem 1. u · v ≤ u′ · v′ ≤ u · v + ε‖u‖1‖v‖1 with probability ≥ 1/2

Theorem 1 Proof:

Proof.

u′ · v′ =
w∑

i=1

u′
iv

′
i =

s∑
i=1

uivi +
s∑

i=1

s∑
j>i

1h(i)=h(j)uivj (5)

where 1h(i)=h(j) is the indicator function for the event h(i) = h(j). Since
entries in u and v are non-negative integers, we get that the first inequal-
ity holds certainly. For the second inequality, we estimate the error term∑s

i=1

∑s
j>i 1h(i)=h(j)uivj

E

[ s∑
i=1

s∑
j>i

1h(i)=h(j)uivj

]
=

s∑
i=1

s∑
j>i

uivjE
[
1h(i)=h(j)

]

By the 2-university of h, we get E[1h(i)=h(j)] = 1/w Using w ≥ 2/ε, we get that

E [u′ · v′] ≤ u · v + 2ε

s∑
i=1

s∑
j>i

uivj ≤ u · v +
ε

2
‖u‖1‖v‖1,

where the last inequality uses the Cauchy-Shwarz inequality. By the Markov
inequality, with probability at most 1/2 the error is more than ε‖u‖1‖v‖1, hence
the statement of the theorem follows. �

Mathematical Proofs: 1. asserts that x̂ · ŷ is an unbiased estimate for the
kernel similarity. While 2. provides a bound on the deviation of the estimate.

E
[
x̂ · ŷ]

= E
[ t∑

i=1

x̂iŷi

]
= E

[ t∑
i=1

∑
α∈X

h(i)(α)
∑
β∈Y

h(i)(β)
]

= E
[1
t

t∑
i=1

∑
α∈Σk

x[α]h(i)(α)
∑

β∈Σk

y[β]h(i)(β)
]

= E
[1
t

t∑
i=1

∑
α∈Σk

x[α]y[α]
[
h(i)(α)

]2 +
∑

α�=β∈Σk

x[α]y[β]h(i)(α)h(i)(β)
]
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= E
[1
t

t∑
i=1

[ ∑
α∈Σk

x[α]y[α] × 1 +
∑

α�=β∈Σk

x[α]y[β] × 0
]]

= E
[1
t

t∑
i=1

x · y]
= x · y = Φk(X) · Φk(Y ) = K(X,Y ),

Note that the upper bound on the error is very loose, in practice we get far
better estimates of the inner product. In order to enhance the result (so the
error is concentrated around its mean), we use t hash functions h1, . . . , ht from
the family H. This amounts to randomly choosing t pairs of the integers a and b
in the above definition. In this case, our representation for a sequence X is the
scaled concatenation of t elementary representations. For 1 ≤ i ≤ t, let Φ

′(i)
k (X)

be the representation under hash function hi (from Equation (4)). Then,

Φ′
k(X) =

1
t

t�

i=1

Φ
′(i)
k (X) =

1
t

(
Φ

′(1)
k (X) ‖ . . . ‖ Φ

′(t)
k (X)

)
, (6)

where ‖ is the concatenation operator. The quality bound on the approximation
of (3) holds as in Theorem 1. Note that the definition of our representation
of (4) is derived from the count-min sketch of [6], except for they take the
minimum of the inner products over the hash functions and attain a better
quality guarantee. Since we want a vector representation, we cannot compute
the “non-linear” functions of min and median.

Remark 1. It’s worth highlighting that our representation as expressed in (6)
for a given sequence X can be computed efficiently in a single linear scan over
the sequence, as detailed in Algorithm 1. Consequently, the runtime required to
compute Φ′

k(X) is proportional to tnx, where nx denotes the number of char-
acters in sequence X. Regarding the space complexity associated with storing
Φ′

k(X), it can be described as 2t/ε, with both ε and t being parameters under the
user’s control. Additionally, it’s important to note that within the error term,
|u|1 = nx − k + 1, with u representing the spectrum of the sequence X.

Subsequently, we demonstrate a close connection between the Euclidean or
�2-distance commonly utilized in vector-space machine learning techniques such
as k-NN classification or k-means clustering and the kernel similarity score
defined in (3). This alignment allows our approach to harness the advantages
of kernel-based learning without incurring the time complexity associated with
kernel computation and the space complexity required for storing the kernel
matrix. Through appropriate scaling of the vectors Φ′

k(·), we derive detailed
evaluations, which can be found in the supplementary material.

d2(u′,v′) = 1 + 1 − 2
u · v

||u||||v|| = 2 − 2 Cos θuv, (7)

where u,u′ are convenient notation for Φk(X) and Φ′
k(X), as defined above and

d(·, ·) is the Euclidean distance. Thus, both the “Euclidean and cosine similarity”
are proportional to the ‘kernel similarity’.
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The pseudocode of our method is given in Algorithm1. For simplicity, we use
a Python-like style for the pseudocode. Our algorithm takes a set of peplomer
sequences S, integer k, m, p, alphabet Σ, and number of hash functions h. It
outputs a sketch Φ, which is a low dimensional fixed-length numerical embedding
corresponding to each peplomer sequence. The method starts by initializing Φ as
an empty array (line 4), m with 210 in line 5 (where we can take any integer power
of 2), and p with 4999 (where p is any four-digit prime number and p > m). Now
we iterate each sequence one by one (line 7) and generate a set of k-mers (line
8). Note that we take k = 3 here using the standard validation set approach. In
the next step, for multiple hash functions h, where h is any integer value ≥ 1,
we need to compute a numerical representation for each k-mer and store their
frequencies in a local sketch list. The length of the local sketch list (for each
sequence) equals to m (line 12). Since our idea to store the values in sketch is
based on hashing, we initialize two variables a1 (random integer between 2 and
m − 1) and b1 (random integer between 0 and m − 1) in line 13 and 14. To
compute the integer number corresponding to each k-mer, we first compute each
k-mers characters (amino acids) positions in the alphabet Σ (line 18), where
Σ comprised of 21 characters ACDEFGHIKLMNPQRSTVWXY. We then sort
the characters in k-mers (line 19) and note their position (line 20). Finally,
we assign a numerical value to a character, which comprised of its position in Σ
times |Σ|its position in the k-mer (line 21). This process is repeated for all characters
within a k-mer (loop in line 17) and storing a running sum to get an index value
for any given k-mer. Similarly, the same process is repeated for all k-mers within
a sequence (loop in line 15). Now, we define the hash function (line 23):

(a1 ∗ q + b1)( mod p)( mod m) (8)

where q is the integer value assigned to the k-mer. After getting the hash value
using Eq. 8, we increment that index (integer hash value) in the local sketch array
by one (line 24). This process is repeated for all k-mers within a sequence. We
normalize the local sketch list by first dividing it by the total sum of all values
in the list and then dividing it by h, which is the number of hash functions (line
26). This process is repeated h times (loop in line 11) for all hash functions
and all local sketch lists are concatenated to get the final sketch Φs for a single
sequence.

4 Experimental Evaluation

In this section, we discuss the dataset used for experimentation and introduce
state-of-the-art (SOTA) methods for comparing results. In the end, we show the
visual representation of the proposed SOTA embeddings to get a better under-
standing of the data. All experiments are performed on a core i5 system (with a
2.40 GHz processor) having Windows OS and 32 GB memory. For experiments,
we use the standard 70-30% split for training and testing sets, respectively. We
repeat each experiment 5 times to avoid randomness and report average results.
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Algorithm 1. Proposed method computation
1: Input: Set of Sequences S, integers k, m, p, Σ,h
2: Output: Φ
3: function ComputeSketch(S, k, m, p, Σ,h)
4: Φ = []
5: m = 210 � take integer power of 2
6: p=4999 � any 4 digit prime number, p > m
7: for s ∈ S do � for each sequence
8: kmersSet = buildKmers(s,k)
9: LSketchArr = [] � Local Sketch Array

10: � starting loop for multiple hash functions for each s
11: for hashLoop ← 1 to h do � # of Hash Func.
12: LocalSketch = [0]*m
13: a1 = RandomInt(2, m-1) � range 2 to m-1
14: b1 = RandomInt(0, m-1) � range 0 to m-1
15: for kmer ∈ kmersSet do � kmers in s
16: NumKmer = 0
17: for kmersIndex ∈ kmer do
18: charPosition = Σ.index(kmersIndex)
19: sKmer = sort(kmer)
20: position = sKmer.index(kmersIndex)
21: pos = charPosition × (|Σ|position)
22: NumKmer = NumKmer + pos

23: hVal = ((a1 * NumKmer + b1) % p) % m
24: LocalSketch[hVal] ++

25: denum = sum(LocalSketch) × h
26: nLocalSketch = LocalSketch

denum
� point-wise divide

27: LSketchArr.Concat(nLocalSketch)

28: Φ.append(LSketchArr)

29: return Φ

Dataset Statistics: We extracted the spike sequences from a popular database
called GISAID4. The total number of sequences we extracted is 7000, represent-
ing 22 coronavirus variants (class labels) [3].

Remark 2. Note that we use the lineages (i.e., B.1.1.7, B.1.617.2, etc., as the
class labels for classification purposes). That is, given the embeddings as input,
the goal is to classify the lineages using different ML classifiers.

For classification purposes, our study employs a variety of classifiers, includ-
ing Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron
(MLP), K-Nearest Neighbors (KNN), Random Forest (RF), Logistic Regression
(LR), and Decision Tree (DT) models. To assess the performance of these diverse
models, we employ a range of evaluation metrics, including average accuracy,
precision, recall, weighted F1 score, macro F1 score, Receiver Operator Char-
acteristic Curve (ROC) Area Under the Curve (AUC), and training runtime.
4 https://www.gisaid.org/.

https://www.gisaid.org/
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In scenarios where metrics are designed for binary classification, we employ the
one-vs-rest strategy for multi-class classification.

State-of-the-Art (SOTA) Models: We use five state-of-the-art methods,
namely Spike2Vec [2], PWM2Vec [1], String Kernel [8], Wasserstein Distance
Guided Representation Learning (WDGRL) [19], and Spaced k-mers [21], for
comparison of results.

5 Results and Discussion

In this section, we report the classification results for our method and compare
the results with SOTA methods.

Increasing Number of Hash Functions: Results for our method with an
increasing number of hash functions is shown in Table 1. In this experimental
setting, we use k = 3 for the k-mers. We can observe that although there is not
any drastic change in results among different numbers of hash functions h, the
random forest classifier with h = 2 outperforms all other classifiers and values
of h for all but one evaluation metric. For training time, since the sketch length

Table 1. Classification results showing the effect of changing number of hash functions
with k=3 for k-mers. Best values are shown in bold.

Parameter h Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (sec.)

Number of
Hash
Functions: 1

SVM 0.845 0.848 0.845 0.836 0.675 0.837 4.034

NB 0.612 0.739 0.612 0.635 0.447 0.731 0.708

MLP 0.819 0.820 0.819 0.813 0.604 0.800 12.754

KNN 0.806 0.821 0.806 0.801 0.616 0.797 0.965

RF 0.854 0.855 0.854 0.844 0.680 0.836 1.705

LR 0.482 0.243 0.482 0.318 0.030 0.500 3.492

DT 0.841 0.844 0.841 0.833 0.663 0.829 0.327

Number of
Hash
Functions: 2

SVM 0.848 0.858 0.848 0.841 0.681 0.848 9.801

NB 0.732 0.776 0.732 0.741 0.555 0.771 1.440

MLP 0.835 0.825 0.835 0.825 0.622 0.819 13.893

KNN 0.821 0.818 0.821 0.811 0.616 0.803 1.472

RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627

LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907

DT 0.845 0.856 0.845 0.841 0.683 0.839 0.956

Number of
Hash
Functions: 3

SVM 0.842 0.845 0.842 0.832 0.678 0.840 14.189

NB 0.639 0.741 0.639 0.655 0.474 0.736 2.100

MLP 0.817 0.816 0.817 0.809 0.608 0.802 18.490

KNN 0.811 0.812 0.811 0.804 0.616 0.797 1.981

RF 0.852 0.852 0.852 0.841 0.689 0.842 2.966

LR 0.482 0.233 0.482 0.314 0.030 0.500 8.324

DT 0.841 0.846 0.841 0.833 0.679 0.837 1.279
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for h = 1 is the smallest among the others, it took the least amount of time to
train classifiers.

Comparison With SOTA: A comparison of our method with SOTA algo-
rithms is shown in Table 2. For these results, we report our method results for

Table 2. Classification performance of SOTA and Our methods.

Embeddings Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (sec.)

Spike2Vec [2] SVM 0.855 0.853 0.855 0.843 0.689 0.843 61.112

NB 0.476 0.716 0.476 0.535 0.459 0.726 13.292

MLP 0.803 0.803 0.803 0.797 0.596 0.797 127.066

KNN 0.812 0.815 0.812 0.805 0.608 0.794 15.970

RF 0.856 0.854 0.856 0.844 0.683 0.839 21.141

LR 0.859 0.852 0.859 0.844 0.690 0.842 64.027

DT 0.849 0.849 0.849 0.839 0.677 0.837 4.286

PWM2Vec [1] SVM 0.818 0.820 0.818 0.810 0.606 0.807 22.710

NB 0.610 0.667 0.610 0.607 0.218 0.631 1.456

MLP 0.812 0.792 0.812 0.794 0.530 0.770 35.197

KNN 0.767 0.790 0.767 0.760 0.565 0.773 1.033

RF 0.824 0.843 0.824 0.813 0.616 0.803 8.290

LR 0.822 0.813 0.822 0.811 0.605 0.802 471.659

DT 0.803 0.800 0.803 0.795 0.581 0.791 4.100

String
Kernel [8]

SVM 0.845 0.833 0.846 0.821 0.631 0.812 7.350

NB 0.753 0.821 0.755 0.774 0.602 0.825 0.178

MLP 0.831 0.829 0.838 0.823 0.624 0.818 12.652

KNN 0.829 0.822 0.827 0.827 0.623 0.791 0.326

RF 0.847 0.844 0.841 0.835 0.666 0.824 1.464

LR 0.845 0.843 0.843 0.826 0.628 0.812 1.869

DT 0.822 0.829 0.824 0.829 0.631 0.826 0.243

WDGRL [19] SVM 0.792 0.769 0.792 0.772 0.455 0.736 0.335

NB 0.724 0.755 0.724 0.726 0.434 0.727 0.018

MLP 0.799 0.779 0.799 0.784 0.505 0.755 7.348

KNN 0.800 0.799 0.800 0.792 0.546 0.766 0.094

RF 0.796 0.793 0.796 0.789 0.560 0.776 0.393

LR 0.752 0.693 0.752 0.716 0.262 0.648 0.091

DT 0.790 0.799 0.790 0.788 0.557 0.768 0.009

Spaced
k-mers [21]

SVM 0.852 0.841 0.852 0.836 0.678 0.840 2218.347

NB 0.655 0.742 0.655 0.658 0.481 0.749 267.243

MLP 0.809 0.810 0.809 0.802 0.608 0.812 2072.029

KNN 0.821 0.810 0.821 0.805 0.591 0.788 55.140

RF 0.851 0.842 0.851 0.834 0.665 0.833 646.557

LR 0.855 0.848 0.855 0.840 0.682 0.840 200.477

DT 0.853 0.850 0.853 0.841 0.685 0.842 98.089

Ours (k = 3) SVM 0.848 0.858 0.848 0.841 0.681 0.848 9.801

NB 0.732 0.776 0.732 0.741 0.555 0.771 1.440

MLP 0.835 0.825 0.835 0.825 0.622 0.819 13.893

KNN 0.820 0.818 0.820 0.811 0.616 0.803 1.472

RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627

LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907

DT 0.845 0.856 0.845 0.843 0.683 0.839 0.956
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Table 3. Classification results showing the effect of k for k-mers with h = 2 for
proposed method. The best values are shown in bold.

Parameter k Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time (sec.)

k = 3 SVM 0.848 0.858 0.848 0.841 0.681 0.848 9.801

NB 0.732 0.776 0.732 0.741 0.555 0.771 1.440

MLP 0.835 0.825 0.835 0.825 0.622 0.819 13.893

KNN 0.821 0.818 0.821 0.811 0.616 0.803 1.472

RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627

LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907

DT 0.845 0.856 0.845 0.841 0.683 0.839 0.956

k = 5 SVM 0.850 0.847 0.850 0.836 0.680 0.839 8.827

NB 0.640 0.715 0.640 0.640 0.463 0.721 1.432

MLP 0.826 0.823 0.826 0.816 0.629 0.813 13.375

KNN 0.818 0.824 0.818 0.812 0.621 0.801 1.319

RF 0.857 0.853 0.857 0.843 0.690 0.842 2.322

LR 0.483 0.237 0.483 0.315 0.030 0.500 7.219

DT 0.844 0.840 0.844 0.833 0.667 0.834 0.987

k = 7 SVM 0.853 0.854 0.853 0.841 0.691 0.846 9.782

NB 0.642 0.721 0.642 0.644 0.452 0.721 1.398

MLP 0.831 0.826 0.831 0.821 0.634 0.818 13.363

KNN 0.823 0.827 0.823 0.817 0.637 0.816 1.378

RF 0.856 0.854 0.856 0.844 0.692 0.845 2.644

LR 0.485 0.236 0.485 0.317 0.030 0.500 7.942

DT 0.842 0.841 0.842 0.833 0.656 0.830 1.090

k = 9 SVM 0.849 0.847 0.849 0.838 0.676 0.836 10.099

NB 0.644 0.714 0.644 0.651 0.437 0.707 1.540

MLP 0.833 0.830 0.833 0.825 0.625 0.810 12.938

KNN 0.820 0.826 0.820 0.815 0.622 0.802 2.842

RF 0.853 0.852 0.853 0.842 0.679 0.835 3.127

LR 0.485 0.236 0.485 0.317 0.030 0.500 8.140

DT 0.836 0.836 0.836 0.828 0.647 0.821 1.127

h = 2 because it showed best performance in Table 1. We can observe that the
proposed method (with h = 2 and k = 3) outperforms all the SOTA methods for
all but one evaluation metric. In the case of training runtime, WDGRL performs
the best.

Effect of k for k-mers: To evaluate the effect of k for k-mers on the results
of our method, we report the results of our model with varying values of k in
Table 3. We can observe that RF classifier with k = 3 outperforms other values
of k for all but one evaluation metric. In terms of training runtime, decision tree
classifiers take the least time.

Embeddings Generation Time: To illustrate the efficiency of our approach
regarding embedding computation time, we conducted a runtime comparison
with state-of-the-art (SOTA) methods, as summarized in Table 4. Our proposed
method stands out by requiring the shortest time, completing the feature vector
(sketch) generation in just 47.401 seconds, outperforming the SOTA alterna-
tives. Among the alternatives, PWM2Vec, while not an alignment-free approach,
emerges as the second-best in terms of runtime. In contrast, generating feature
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vectors with spaced k-mers consumes the most time. We also present the percent-
age improvement in runtime achieved by our method compared to PWM2Vec
(the second-best in runtime) and Spaced k-mers (the slowest). To calculate this
improvement, we use the formula: %improvement = RSOTA−ROurs

RSOTA
× 100.

Here, RSOTA represents the runtime of SOTA embedding methods (PWM2Vec
and Spaced k-mers), while ROurs corresponds to the runtime of our method’s
embedding computation. Table 4 clearly illustrates that our proposed method
enhances runtime performance significantly, improving it by 70.9% and 99.6%
compared to PWM2Vec and Spaced k-mers, respectively.

Table 4. Embedding generation runtime for different methods. The best value is shown
in bold. The percentage improvement of the runtime is also given for our method.

Embeddings Runtime (Sec.)

Spike2Vec [2] 354.061

PWM2Vec [1] 163.257

String Approx. [8] 2292.245

WDGRL [19] 438.188

Spaced k-mers [21] 12901.808

Ours 47.401

% Improv. of our method from PWM2Vec 70.9%

% Improv. of our method from Spaced k-mers 99.6%

6 Conclusion

This paper introduces a novel approach for rapidly generating protein sequence
sketches that are both efficient and alignment-free, leveraging the concept of
hashing. Our method not only exhibits swift sketch generation but also enhances
classification outcomes when compared to existing methodologies. To validate
our model, we conducted extensive experiments using real-world biological pro-
tein sequence datasets, employing a variety of evaluation metrics. Our method
demonstrates an impressive 99.6% enhancement in embedding generation run-
time compared to the state-of-the-art (SOTA) approach. Future endeavors will
involve assessing our method’s performance on more extensive sets of sequence
data, potentially reaching multi-million sequences. Additionally, we aim to apply
our approach to other virus data, such as Zika, to further explore its utility and
effectiveness.
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Abstract. Jaro similarity is widely used in computing the similarity (or
distance) between two strings of characters. For example, record linkage
is an application of great interest in many domains for which Jaro simi-
larity is popularly employed. Existing algorithms for computing the Jaro
similarity between two given strings take quadratic time in the worst
case. In this paper, we present an algorithm for Jaro similarity compu-
tation that takes only linear time. We also present experimental results
that reveal that our algorithm outperforms existing algorithms.

Keywords: String similarity · Jaro similarity · Linear time
algorithm · Record linkage

1 Introduction

Several domains in science and engineering have to process string data. A general
problem in analyzing strings is that of computing the similarity (or distance)
between a pair of strings. For instance, in biology, quite frequently scientists
have to measure how similar two given genomic sequences are. Similarities can
be characterized as a function of the distance between the pair of strings.

Numerous distance metrics can be found in the literature for strings. Some
popular ones are: edit distance (also known as the Levenshtein distance), q-gram
distance, Hausdorff distance, etc. Jaro is one such popular distance metric that
is being widely used for applications such as record linkage [5,11,12].

Let R1 and R2 be any two strings of lengths �1 and �2, respectively. Algo-
rithms known for computing the Jaro similarity between R1 and R2 take Ω(�1�2)
time in the worst case. In this paper, we offer an algorithm that takes only
O(�1 + �2) time.
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We demonstrate the applicability and effectiveness of the proposed algorithm
in two different applications, namely, record linkage and gene sequence similarity
measurement.

The problem of record linkage is to take as input a collection of records and
cluster them such that each cluster consists of records belonging to one and only
one entity. An entity could refer to an individual, a family, a business, etc. A
record can be thought of as a collection of attributes such as First Name, Last
Name, Date of Birth, Gender, etc. If none of the records contains any errors
in any of the (primary) attributes, the problem of record linkage is trivial to
solve and database JOIN algorithms can be used. Unfortunately, records of the
same person might look different owing to errors introduced by typing, phonetic
similarity, differences in data collection, missing data, reversal of first and last
names, etc. Thus record linkage is a challenging problem.

There are numerous applications for record linkage. For example, in the busi-
ness domain, entrepreneurs’ decisions about where to locate their businesses rely
heavily on record linkage outputs. Record linkage can be employed to exam-
ine the variability of medical laboratory results by patient ethnicity and other
variables [2]. Records from multiple data centers have been linked to identify
disease origin and diversity [6]. Statistics about the U.S. population and econ-
omy obtained using entity resolution and record-linkage are routinely used for
Congressional apportionment, redistricting, and distribution of public funds.

Computing the distance (or similarity) between two strings is a ubiquitous
problem in bioinformatics. Pairwise distance computations are employed in solv-
ing many problems including biological data compression, phylogeny tree com-
putation, metagenomic clustering, multiple sequence alignment, etc.

Note: In this paper we use the words distance and similarity interchangeably.
Depending on the context, it will be clear which of these two is relevant.

2 Preliminaries

In this section, we define the Jaro similarity and describe the existing algorithms
for computing this similarity.

Let s1 and s2 be any two strings from an alphabet Σ. Also let σ = |Σ|, �1 =
|s1|, and �2 = |s2|.

The Jaro similarity between the strings s1 and s2 is defined as follows

SJ (s1, s2) =
1
3

(
m

|s1| +
m

|s2| +
(m − t)

m

)
.

where m is the number of character matches and t is the number of transpositions
divided by 2. A character from s1 and a character from s2 are matching if these
two characters are the same and their positions do not differ by more than
r =

⌊
max(|s1|,|s2|)

2

⌋
− 1, which is referred as the range of search. A transposition

refers to a pair of matching characters that are not in the right order.



On Computing the Jaro Similarity Between Two Strings 33

When s1 and s2 do not have any matching characters, i.e., m = 0, then
SJ(s1, s2) = 0 and if these two strings are identical, then, SJ (s1, s2) = 1.

As an example, let s1 = farming and s2 = misbegin. In this case, the range
of search is r = 3. The matching characters are m, i, n,, and g. Thus m = 4. The
matching characters that are out of order are n and g and hence t = 1. As a
result, SJ (s1, s2) = 1

3

[
4
7 + 4

8 + 3
4

]
= 0.6071.

Existing algorithms for computing Jaro similarity can be described in the
following pseudocodes:

1) Let �1 = |s1|; �2 = |s2|; r =
⌊
max(|s1|,|s2|)

2

⌋
− 1; m = 0;

2) Array A[0 : �1 − 1] has the characters of s1 and the array
3) B[0 : �2 − 1] has the characters of s2;
3) Match1[0 : �1 − 1] and Match2[0 : �2 − 1] are bit arrays initialized

to zeros;
4) // Match1[i] will be set to 1 if A[i] has a match in s2;
5) // Match2[j] will be set to 1 if B[j] has a match in s1;
6) for i = 0 to �1 − 1 do
7) low = max{0, i − r}; high = min{�2 − 1, i + r};
8) for j = low to high do
9) if Match1[i] �= 1 and Match2[j] �= 1 and A[i] = B[j] then
10) Match1[i] = 1; Match2[j] = 1; m = m + 1; break;

The above pseudocode computes the value of m. Clearly, the run time of the
above algorithm is O(�r) where � = min{�1, �2}. This run time is also O(�1�2),
since r = Θ(max{�1, �2}). Please note that we can choose s1 to be the shorter
of the two input strings. If �1 = �2 = �, the run time is O(�2). We can compute
the value of t in O(�1 + �2) time as shown in the following pseudocode.

1) t = 0; k = 0;
2) for i = 0 to �1 − 1 do
3) if (Match1[i] = 1) then
4) for j = k to �2 − 1 do
5) if Match2[j] = 1 then {k = j + 1; break;}
6) if A[i] �= B[j] then t = t + 1;

The above algorithmic segment takes O(�1 + �2) time. As a result, we arrive at
the following:

Lemma 1. The Jaro similarity between two strings of length �1 and �2, respec-
tively, can be computed in O(�1�2) time.

3 A Linear Time Algorithm

In this section, we present the details of our linear time algorithm. Let the size
of the alphabet under concern be σ. We will employ two arrays P1 and P2 of
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lists. Each of these arrays is of size σ. Each list in P1 (P2) corresponds to a
character in the alphabet. For example, if the alphabet Σ = {a, b, . . . , z}, the
first lists of P1 and P2 will correspond to the character a, the second lists of P1
and P2 will correspond to the character b, and so on.

Table 1. Position lists for the
strings s1 = mississippi and s2 =
cincinnati

Character s1 s2

a 8

b

c 1, 4

.

.

.

i 2, 5, 8, 11 2, 5, 10

.

.

. .

m 1

n 3, 6, 7

o

p 9, 10

.

.

.

s 3, 4, 6, 7

t 9

.

.

.

In one pass through the string s1, for
every character α present in s1, we create
a list of positions in s1 in which the char-
acter α occurs. We store this list as P1[α].
We do the same thing for the string s2. For
example, let s1 = mississippi and s2 =
cincinnati. There are 4 distinct characters
in s1 and hence there will be 4 lists. The list
P1[m] for the character m will be 1. The list
P1[i] for the character i will be 2, 5, 8, 11.
The list P1[s] for s is 3, 4, 6, 7. Finally, the
list P1[p] for p is 9, 10.

We can create position lists for s2 also in
a similar manner. See Table 1. Followed by
this, we scan through the characters in the
shorter string. In our example, s2 is shorter.
For every character α in s2 we merge the
two lists P1[α] and P2[α] to get the number
of matches corresponding to this character
α. For example, when α is the character i,
P1[α] = 2, 5, 8, 11 and P2[α] = 2, 5, 10. In
our example, the range of search r = 4.

In general let α be any charac-
ter and P1[α] = i0, i1, i2, . . . , iu−1 and
P2[α] = j0, j1, j2, . . . , jv−1. Without loss of generality, let P1[α] be shorter than
P2[α]. We start with i0 in P1[α] and look for a match in P2[α]. This is done by
comparing i0 with j0. If j0 ∈ [i0 − r, i0 + r], then j0 is a match for i0. In this
case, we move to i1 and look for a match in P2[α] starting from position j0 + 1.
If j0 is not a match for i0, we see if j1 is a match. If j1 is a match, we move to i1
and look for a match for i1 in P2[α] starting from j2, etc. If i0 does not have a
match in P2[α] we’ll realize it when we compare jk with i0 (for some k). In this
case, we move on to i1 and look for a match in P2[α] starting from jk.

For the example lists, we proceed as follows. We start with 2 in P1[α]. It
matches with 2 in P2[α]. Thus we move to the next element in P1[α] which is
5. This 5 matches the 5 in P2[α]. We move to the next element 8 in P1[α]. This
matches the 10 in P2[α]. We move to 11 in P1[α] and there is no match for it.
Thus we stop with the conclusion that there are three matches between s1 and
s2 with respect to the character i. We do this for all the other characters. In our
example, there are no matches with respect to any of the other characters, and
hence m = 3. In this example, t = 0, and hence the Jaro similarity is 0.5242.
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A pseudocode for this algorithm follows.

1) m = 0; Let s1 be the shorter of s1 and s2; Let �1 = |s1| and �2 = |s2|;
2) The characters of s1 and s2 are stored in arrays A and B.
3) For instance, A[i] is the character of s1 in position i, 0 ≤ i ≤ �1 − 1;
4) for i = 0 to (�1 − 1) do
5) Insert i at the tail of the list P1[A[i]];
6) for i = 0 to (�2 − 1) do
7) Insert i at the tail of the list P2[B[i]];
8) for every distinct character α in s1 do
9) // Merge the two lists P1[α] and P2[α];
10) k = 0; Let P1[α] = i0, i1, i2, . . . , iu−1 and P2[α] = j0, j1, j2, . . . , jv−1;
11) // Refer to the z th element in P1[α] (P2α) as

// P1[α, z] (P2[α, z]), ∀z;
12) for q = 0 to (u − 1) do
13) while k < v do
14) if P2[α, k] ∈ [P1[α, q] ± r]
15) then {m = m + 1; k = k + 1; exit};
16) else if P2[α, k] > (P1[α, q] + r)
17) then exit;
18) else k = k + 1;

Lemma 2. The above algorithm computes the number of matches correctly and
in O(�1 + �2) time.

Proof. The for loops of lines 4 and 6 take a total of O(�1 + �2) time. In
the for loop of line 8, we process the lists for every distinct character in
s1. Consider any character α present in s1. Let the corresponding lists be
P1[α] = i0, i1, i2, . . . , iu−1 and P2[α] = j0, j1, j2, . . . , jv−1. In the for loop of
line 12, whenever an element of P1[α] is compared with an element of P2[α],
either the value of q is incremented by one, or the value of k is incremented by
one, or the values of both q and k are incremented by one. This means that the
entire for loop of line 12 runs in time O(u + v). Adding this over all the charac-
ters in s1, we realize that the for loop of line 8 has a run time of O(�1 + �2). As
a result, the run time of the entire algorithm is O(�1 + �2).

Clearly, P1[α] and P2[α] are in sorted order. Also, with respect to the same
character, the sequence of matches are monotonous. Specifically, if p1 and p′

1 from
P1[α] are matched with p2 and p′

2, respectively, in P2[α] (for some character
α and when p1 < p′

1), then p2 will be less than p′
2. In the above example,

P1[i] = 2, 5, 8, 11 and P2[i] = 2, 5, 10. The matches are: (2, 2), (5, 5) and (8, 10).
5 and 8 from P1[i] are matched with 5 and 10 from P2[i]. 5 < 8 and 5 < 10.

Consider a case in which P2[α, k] ∈ [P1[α, q] ± r] in line 14. In this case we
increment both k and q by one. Due to monotonicity, the remaining matches
between P1[α] and P2[α] will be to the right of P1[α, q] in P1[α] and to the
right of P2[α, k] in P2[α] and hence this is a valid move.
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In line 16, if P2[α, k] > (P1[α, q] + r) it means that there is no possibility of
finding a match for P1[α, q] in P2[α] and hence we exit from the while loop of
line 13 and move onto the next value of q.

Let q be any integer in the range [0, u − 1]. If there is no match for P1[α, q]
in P2[α], we’ll get to know this if P2[α, k] > (P1[α, q] + r) for some k ≤ (v − 1)
or if k ≥ v. In the former case, we move on to the next value P1[α, (q + 1)] and
look for a match starting from P2[α, k]. Can there be a match for P1[α, (q + 1)]
to the left of P2[α, k]? This is not possible since there is no unmatched element
in P2[α] that lies in the interval [P1[α, q] − r, P1[α, q] + r] and P2[α, k] is the
nearest element to P1[α, q] + r in P2[α]. In other words, there is no unmatched
element in P2[α] that lies in the interval [P1[α, q] − r, P2[α, k]). Note also that
P1[α, q + 1] > P1[α, q].

Line 18 applies when we are trying to find a match for P1[α, q] in P2[α] and
for the current value of k there is no match and also P2[α, k] < (P1[α, q] + r).
This means that there could still be a match for P1[α, q] in P2[α] to the right
of P2[α, k]. Thus we increment k by 1.

4 Experimental Results

We have applied our algorithm in two different applications: record linkage of
real people data and computing the similarity among genes of Escherichia Coli
bacteria. We have compared the performance of our algorithm against an existing
implementation [3] for the Jaro similarity computation. The applications of our
interest involve the repeated computation of distances between pairs. We have
implemented our algorithm in such a way that requires the initialization of the
auxiliary data structures only once. Subsequently, values in these data structures
are reset only when needed.

The existing implementation of the Jaro similarity [3] maintains two arrays
of the size of the two comparing strings and initializes the value corresponding
to each index to 0 for each comparison. For a fair evaluation, we have modi-
fied this implementation to set the size of those arrays to the maximum string
length and initialized them only once for the whole experiment instead of once
for each distance calculation. Also, we reset values at certain indices only if nec-
essary similar to the implementation of our algorithm. Both implementations
are available at https://github.com/joyantabasak13/LinearJaro.

All the experiments were carried out in a server machine with 6 Intel(R)
Core(TM) i5-8400 2.80GHz CPU cores, 32GB DDR4 RAM, and 1TB of local
storage running on Ubuntu 22.04.1 LTS. The programs were written in standard
C++17.

4.1 Record Linkage

There are various algorithms for record linkage [7]. A key part of the record link-
age algorithms is comparing the records to find their similarity. Linking records
can be done in two phases. In the first phase, we define rules for deciding if two

https://github.com/joyantabasak13/LinearJaro
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records belong to the same entity or not. For example, a rule could state that
two records R1 and R2 belong to the same entity if and only if the distance
between R1 and R2 is no more than a user-defined threshold τ . In the second
phase we can use these rules to efficiently link the records.

Given a set of n records, a straightforward algorithm then could compute the
similarity or distance between every pair of records and determine the linking
pairs of records. The run time of this algorithm is O(n2). When n is large, this
run time could be prohibitive. To speed up this algorithm several techniques have
been proposed in the literature. One such technique is blocking (see e.g., [7]).

The idea of blocking is to group the records such that pairwise distance
calculations are done only within the groups. The groups may or may not be
disjoint. The grouping should be done in such a way that if two records belong
to the same entity then they are very likely to fall together into at least one of
the groups. Different blocking techniques are discussed in [7].

One of the blocking techniques we have frequently used employs k-mers.

1. Let R be a record. We think of each record as a string of characters. Each
attribute in a record can be thought of as a string of characters and a record
can be thought of as a concatenation of the attributes in it.

2. For some relevant k, we generate all the k-mers of R.
3. There will be a total of sk blocks, where s is the size of the alphabet.
4. R will be placed in the blocks corresponding to all the k-mers in it.

The above blocking idea exploits the fact that if two records belong to the
same individual, then, the records are very likely to share a k-mer (for a relevant
value of k). Note that the blocks created above are not disjoint. Assume that we
are able to group the records into 10 disjoint groups each of size n

10 . In this case
the number of distance calculations performed in each group is

(
n/10
2

)
. The total

number of distance calculations across all the groups will be 10
(
n/10
2

)
. If we did

not do any blocking, the total number of distance calculations will be
(
n
2

)
, which

is nearly 10 times more!
In our experiments we have employed the record linkage algorithm presented

in [1]. The key steps in this algorithm can be summarized as follows:

1. Collect all the records from all the data sources and put them in a list L.
2. Concatenate all or some common attribute strings in the same order for each

record in L. Sort L by the concatenated strings. Group records that are iden-
tical in all selected attributes. Take one representative record from each group
and put it in a list L’.

3. Do blocking on L’. In our experiments, we used the superblocking technique
[1] with the k-mer k = 3.

4. Do single linkage clustering of the records in each block obtained in step 3.
Specifically, begin with each record in a separate cluster. If records r1 and r2
are assigned to a common block, compute the Jaro similarity between each
common attribute of r1 and r2. If the similarity for each compared attribute
is above a threshold τ , then merge the clusters of r1 and r2.
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5. Do complete linkage clustering of the records in the single linkage clus-
ters obtained in step 4. Given a single linkage cluster C containing records
r1, r2, ..., rn, compare all record pairs and obtain complete linkage clusters
C ′

1, C
′
2, ...C

′
m where all the records in a complete linkage cluster C ′

i have Jaro
similarity over a threshold τ for attributes used in obtaining the single linkage
cluster.

6. Add identical copies of a record found in step 2 to the corresponding complete
linkage clusters.

7. Output the complete linkage clusters. Each record belongs to only one cluster
as per the algorithm and the algorithm claims that all the records in each
cluster represent one entity.

We applied both our linear time and existing Jaro similarity algorithms as
the similarity computation procedure of the record linkage algorithm (steps 4
and 5). We applied the record linkage algorithm on two different datasets. The
first dataset is collected from Soliman, et al. [9]. It contains 1 million records
of deceased persons. In this dataset, each person has five records, one of which
is corrupted. Each record in this dataset contains 5 attributes – id, first name,
last name, date of birth, and date of death. The second dataset is collected
from Saeedi, et al. [8]. It contains 5 million records including corrupted copies
of records originally collected from North Carolina Voter information. In this
dataset, each person may have up to 5 records where multiple of the records
belonging to a person can be corrupted. Here, each record contains five attributes
– id, first name, last name, suburb, and postcode. In both datasets, the attribute
‘id’ is only used for performance evaluation, not as an attribute in the record-
linking process.

In both dataset 1 and dataset 2, any attribute string in a record can be
comprised of characters from the English alphabet or digits or both. In our
experiments, we set the alphabet size to 256, permitting any ASCII character
to be present in the strings. In our experiments, we found the record linkage
algorithm spends most of its time (>90%) in step 4. To keep the runtime fea-
sible for the large datasets used in our experiments, we modified step 4 of the
record linkage algorithm to distribute the workload over multiple cores in a sin-
gle machine. This problem of load balancing (distributing blocks to cores) is
known to be NP-hard. We applied an approximate load-balancing strategy. Let
q be the number of blocks. Let ni be the number of records in the i-th block
(for 1 ≤ i ≤ q) and m be the number of available cores. The number of pairwise
similarity computations that have to be performed in the i-th block is

(
ni

2

)
. This

is the work to be done in the i-th block. The loads across the cores have to
be balanced with respect to this metric. Hence, we sort the blocks in ascending
order based on the corresponding possible number of similarity computations.
Let N =

∑q
i=1

(
ni

2

)
. We assigned the largest p blocks from the end of the sorted

list and the smallest r blocks from the start of the sorted list to core j such that∑p
i ni < N

m and
∑r

i ni > N
m −∑p

i ni. Note that, the similarity comparisons done
after this multicore modification are exactly the same for both the linear Jaro
algorithm and the quadratic Jaro similarity computation algorithm.
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We ran the modified multicore record linkage algorithm with 6 cores for both
dataset 1 and dataset 2 with Jaro similarity thresholds τ = 0.95 and τ = 0.8,
respectively. For both datasets, all the attributes except ‘id’ was used to compute
the similarity between records. We report the comparative runtime performance
of the linear Jaro similarity algorithm and the quadratic Jaro similarity algo-
rithm in Table 2. Precision is the ratio of the true matches to the predicted
matches, recall is the ratio of correctly predicted matches to the total predicted
matches, and the reported F1-score is the harmonic mean between the preci-
sion and recall. As both Jaro similarity computation algorithms find similarities
between the same records, the F1-score of the record linkage algorithm is the
same for both algorithms on both datasets.

In our experiment with dataset 1, the ‘last name’ attribute is used as the
blocking string. However, when comparing the records, the ‘first name’ and the
‘last name’ strings were concatenated to a single ‘name’ string as it results in
a better f1-score. For dataset 2, the blocking string is formed by concatenating
the first two characters of last name, suburb, postcode, and first name attributes
respectively. These blocking strings as well as the value of similarity threshold
τ were chosen as such that the resultant F1-score is comparable to the best
reported in the literature. Soliman et al. [9] report an F1-score of 97% compared
to 98.86% in our experiment on dataset 1. Saeedi et al. [8] provides a graph
of the linking performance where the F1-score is around 87% on dataset 2. We
achieved 87.34% F1-score.

Table 2. Comparative performance of linear and quadratic Jaro similarity computation
for record linkage.

Method #Comparisions Runtime (seconds) F1-Score

Dataset 1 Linear Jaro 21.2 Billion 476.5 98.86%

Quadratic Jaro 551.2

Dataset 2 Linear Jaro 72.4 Billion 2579.7 87.34%

Quadratic Jaro 2489.9

The runtime performance of the Jaro similarity computation algorithms
relates to the length of the strings to be compared. The linear algorithm is
expected to run faster than the quadratic algorithm when strings are sufficiently
large. However, in the record linkage problem, the comparing strings are gen-
erally small in length. Table 3 shows the lengths of the relevant attributes of
dataset 1 and dataset 2. In the case of dataset 1, the average comparing strings
is between 8 to 13 characters long. Record linkage with the linear algorithm
runs 13.6% faster than the quadratic algorithm. The average length of compar-
ing strings in dataset 2 is between 5 to 9 characters long and record linkage with
the linear algorithm runs 3.6% slower than the quadratic algorithm. It shows
that the linear Jaro similarity computation algorithm is a faster choice when
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string lengths are not very small (≥ 10) and its performance is comparable even
when comparing strings that are small.

Table 3. Attribute string lengths of the records in Dataset 1 and Dataset 2.

Attributes Minimum Length Maximum Length Average Length

Dataset 1 Name 3 23 12.57

Date of Birth 8 8 8

Date of Death 8 8 8

Dataset 2 First Name 1 15 5.98

Last Name 1 20 6.37

Suburb 2 19 8.74

Zip Code 4 9 4.99

Fig. 1. Average elapsed time per million comparisons of certain lengths of E.Coli
genome subsequences by linear time and quadratic time Jaro comparison algorithms.

4.2 Gene Sequence Similarity

Finding similarity or distance between genome or protein sequences is an impor-
tant step for numerous biological problems such as phylogenetic tree recon-
struction, motif search, genome assembly evaluation, etc. We collected the E.
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Coli bacteria K-12 substrain genome from NCBI website (Genbank ascension
no: U00096) and conducted four experiments on this genome. This genome has
4,639 annotated genes of varying sizes. In the first experiment, we considered
each gene as a separate sequence and computed the Jaro similarity between all
pairs of genes. As these genes can be several hundred to several thousand charac-
ters long, the range in the Jaro similarity algorithm can be large. In another set
of experiments, we cut the genome sequence into non-overlapping subsequences
of lengths 1000 to 100, decreasing the string length by 100 in each subsequent
experiment, and computed Jaro similarity among all pairs of subsequences in
each experiment. The results are shown in Table 4. Figure 1 shows the time
taken per million comparisons by the two Jaro algorithms for experiments 2 to
11 in Table 4.

Table 4. Jaro similarity computation for E.Coli genome subsequences.

Method Average String Size #Comparisions (millions) Runtime (seconds)

Experiment 1 Linear Jaro 899.25 10.75 81.6

Quadratic Jaro 2226.91

Experiment 2 Linear Jaro 1000 10.76 111.47

Quadratic Jaro 3327.34

Experiment 3 Linear Jaro 900 13.29 126.03

Quadratic Jaro 3391.06

Experiment 4 Linear Jaro 800 16.82 142.32

Quadratic Jaro 3468.47

Experiment 5 Linear Jaro 700 21.97 163.44

Quadratic Jaro 3573.70

Experiment 6 Linear Jaro 600 29.91 191.85

Quadratic Jaro 3700.91

Experiment 7 Linear Jaro 500 43.08 228.26

Quadratic Jaro 3891.68

Experiment 8 Linear Jaro 400 67.32 291.49

Quadratic Jaro 4158.12

Experiment 9 Linear Jaro 300 119.68 376.86

Quadratic Jaro 4534.68

Experiment 10 Linear Jaro 200 269.29 600.52

Quadratic Jaro 5367.02

Experiment 11 Linear Jaro 100 1077.19 1231.23

Quadratic Jaro 7763.37

Clearly, the linear Jaro similarity computation algorithm outperforms the
quadratic one. The linear algorithm can compute millions of comparisons
between large strings in several minutes, making experimenting with Jaro simi-
larity a viable option for numerous biological problems.
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Table 5. Runtime comparison between linear time and quadratic time Jaro similarity
computation algorithms for datasets with varying string lengths and alphabet sizes.

String Length Alphabet Size Linear Algorithm runtime (seconds) Quadratic Algorithm Runtime (seconds)

25 5 17.36 55.19
10 21.60 62.49
15 24.55 63.51
20 25.54 62.03
26 25.12 58.99

50 5 29.58 152.28
10 33.82 178.66
15 38.71 189.96
20 43.63 195.43
26 47.96 197.95

75 5 42.13 271.43
10 44.93 326.37
15 50.22 352.62
20 55.93 367.65
26 62.92 378.38

100 5 55.26 412.08
10 56.37 500.10
15 63.01 548.24
20 68.48 577.49
26 76.29 600.77

125 5 68.40 560.40
10 68.43 678.48
15 74.34 749.33
20 80.46 797.54
26 87.70 837.25

4.3 Effects of Alphabet Size

We conducted a set of experiments to assess the impact of alphabet size on the
runtime of our proposed algorithm. In these experiments, we generated strings
of certain lengths by randomly sampling from the first 5, 10, 15, 20, and 26
characters of the English alphabet. We fixed the string lengths to 25, 50, 100,
and 125 characters. For each pair of alphabet size and string length, we generated
5 datasets each containing 10,000 randomly generated strings. All pairs of records
in each dataset were compared among themselves to calculate Jaro similarity.
This required 49.99 million comparisons for each dataset. The average runtime
for the linear algorithm and the quadratic Jaro similarity computation algorithm
is shown in Table 5.

Consider the quadratic algorithm for computing the Jaro similarity. Let R1

and R2 be any two strings. Let c be the character in position i of R1 (for any i).
The algorithm looks for a match for c in R2 in positions in the range [i−r, i+r],
where r is the range defined in Sect. 2. If the characters are generated uniformly
randomly from the alphabet, then we would expect to see a match for c within
s characters in this range (where s is the size of the alphabet). As soon as a
match is found for c, the algorithm moves to find a match for the next character
in R1. Thus we see that there is a linear dependence of the run time on s, in
expectation.
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5 Conclusions

In this paper we have presented a linear time algorithm for the computation
of the Jaro similarity between two given strings. The previous best algorithm
had a quadratic run time. Specifically, if the strings are of lengths �1 and �2,
respectively, then the best previous run time was Ω(�1�2). In comparison, our
algorithm takes only O(�1 + �2) time. We have compared our algorithm with the
previous algorithms in the context of two important applications namely record
linkage and biological string similarities computation. Experiments demonstrate
that our algorithm has significantly less run times, especially when the average
length of the strings is large.

Pairwise distance calculation between strings is a common problem. Several
distance measures have been introduced by scientists. Examples include edit
distance, Jaro distance, Hausdorff distance, Jaccard distance, etc. Depending
on the application, one distance measure might be more appropriate than the
others. Traditionally, for each specific problem, scientists tend to favor a spe-
cific distance measure. It will be an interesting exercise to see the effect of other
distance measures in solving the given problem. For example, in the bioinfor-
matics domain, the edit distance happens to be popular. Not many works have
been reported where other distance measures have been employed. We feel that
experimentation with other distance measures is worthwhile.

The run times for computing these different distances vary as well. For exam-
ple, the edit distance is typically computed using dynamic programming and
takes quadratic time (see e.g., [4]). Until this paper, Jaro distance computation
also took quadratic time. Even if one wants to employ edit distance, the Jaro
distance can be used as a pruning technique since it takes much less time than
the edit distance. For example, let R1 and R2 be two strings and assume that
we are interested in computing the edit distance between them. There are many
applications (including record linkage) where we are not interested in calculating
the distances exactly. We are only interested in knowing whether the distance
between R1 and R2 is less than a given threshold. In this case, we can first com-
pute the Jaro distance between R1 and R2. If this distance is larger than τ ′, for
some suitable τ ′, we can omit the edit distance calculation between R1 and R2.
If the Jaro distance between R1 and R2 is ≤ τ ′, we may not be sure if the edit
distance between R1 and R2 will also be ≤ τ . In this case, we may compute the
edit distance between R1 and R2. This idea of using another distance measure
for pruning has been employed successfully before (see e.g., [10]).
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Abstract. MiRNAs play an important role in the occurrence and devel-
opment of human disease. Identifying potential miRNA-disease associa-
tions is valuable for disease diagnosis and treatment. Therefore, it is very
urgent to develop efficient computational methods for predicting poten-
tial miRNA-disease associations in order to reduce the cost and time
associated with biological wet experiments. In addition, although the
good performance achieved by graph neural network methods for predict-
ing miRNA-disease associations, they still face the risk of over-smoothing
and have room for improvement. In this paper, we propose a novel model
named nSGC-MDA, which employs a modified Simple Graph Convolu-
tion (SGC) to predict the miRNA-disease associations. Specifically, we
first construct a bipartite attributed graph for miRNAs and diseases by
computing multi-source similarity. Then we adapt SGC to extract the
features of miRNAs and diseases on the graph. To prevent over-fitting,
we randomly drop the message during message propagation and employ
Jumping Knowledge (JK) during feature aggregation to enhance feature
representation. Furthermore, we utilize a feature crossing strategy to get
the feature of miRNA-disease pairs. Finally, we calculate the prediction
scores of miRNA-disease pairs by using a fully connected neural network
decoder. In the five-fold cross-validation, nSGC-MDA achieves a mean
AUC of 0.9502 and a mean AUPR of 0.9496, outperforming six compared
methods. The case study of cardiovascular disease also demonstrates the
effectiveness of nSGC-MDA.
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1 Introduction

MicroRNA (miRNA), a single-stranded non-coding RNA, ranges in length from
18 to 26 nucleotides [1]. The abnormal expression of miRNAs plays a crucial
role in the onset and progress of human diseases. Identifying miRNA-disease
associations (MDAs) is essential for understanding the underlying pathogenic
mechanism of diseases and developing new therapeutic approaches. Traditionally,
biological wet experiments like microarray analysis [2] and northern blotting [3]
have been used to identify MDAs. However, these methods generally are often
associated with long experimental periods and high costs.

With the advancement of biotechnology, many databases related to miR-
NAs and diseases have been constructed [4,5]. Based on these databases, some
successful computational methods have been proposed for predicting MDAs.
MiRNAs with similar functions are more likely to be associated with phenotypi-
cally similar diseases. Based on this hypothesis, researchers have proposed some
similarity-based approaches [6,7]. Traditional machine learning and matrix fac-
torization techniques are also effective models to predict MDAs. Li et al. [8] devel-
oped an effective computational model (called MCMDA) for MDAs predicition.
This model aimed to predict miRNA-disease associations by updating a low-
rank miRNA-disease association matrix. Chen et al. [9] utilized inductive matrix
completion model to predict potential MDAs by integrating miRNA and disease
similarity data. However, traditional machine learning methods are unable to
capture the deep features of miRNA and disease nodes in predicting MDAs.

Recently, deep learning-based methods have been developed for MDAs pre-
diction due to its powerful representational learning capabilities. For example,
Xuan et al. [10] utilized convolutional neural networks to predict MDAs by fusing
biological premises and similarity information of miRNAs and diseases. Ji et al.
[11] proposed a novel approach in which two independent models were trained
to extract the features of miRNA and disease nodes separately. In addition,
graph neural network (GNN) has proven to be a successful approach in predict-
ing MDAs due to its capacity to efficiently handle graph-structured data and
extract intricate topological characteristics. Zhang et al. [12] proposed a node-
level attention graph auto-encoder model to predict latent MDAs. Ning et al. [13]
proposed a method based on attention aware multi-view similarity networks and
hypergraph learning for MDA identification. Ding et al. [14] obtained the non-
linear representations of miRNAs and disease by using variational graph auto-
encoder with matrix factorization. Although the previous works have achieved
good performances, they also have some limitations. On the one hand, most of
models only focus on functional and Gaussian interaction profile kernel (GIP)
similarity of miRNAs. The role of similarity information obtained from other
similarity-based metric strategies is ignored. On the other hand, Graph Neural
Networks (GNNs) have limitations in effectively handling noisy information in
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the graph and avoiding over-fitting. This is primarily due to their reliance on a
fixed feature propagation and fusion method.

In this study, we propose a novel MDAs prediction model (named nSGC-
MDA) based on Simple Graph Convolution (SGC) with message dropping strat-
egy and Jumping Knowledge (JK). Firstly, we construct a bipartite attributed
graph by integrating known miRNA-disease association information and multi-
ple similarity matrices which includes miRNA sequence similarity, target simi-
larity, family similarity and disease semantic similarity and Gaussian interaction
profile kernel similarity. Secondly, after mapping miRNA and disease node fea-
tures into a unified common space, we employ the Simple Graph Convolution to
extract the features of miRNAs and diseases with a data augmentation strategy.
To be specific, during node messages propagation, the messages are randomly
dropped to prevent over-fitting. The final feature representations are obtained
by using the Jumping Knowledge method, which incorporates the feature infor-
mation from intermediate layers directly into the last layer to avoid information
loss. Thirdly, we utilize dot product to obtain the interaction features between
miRNAs and diseases, and then concatenate them. At last, the concatenated
features of miRNA-disease pairs are fed into the decoder to calculate the associ-
ation scores. Outstanding performance results of experiments demonstrate that
our proposed model is beneficial for predicting potential MDAs.

2 Materials and Methods

2.1 Datasets

We obtain known miRNA-disease associations from the human miRNA disease
database (HMDD v3.2), which provides experimentally validated miRNA-disease
associations (MDAs) [4]. We also utilize other databases, including miRBase [15],
mirTarBase [5] and MeSH descriptors [16], to calculate miRNA sequence and
family similarity, miRNA functional similarity and disease semantic similarity.
To ensure the data continuity and consistency, we preprocess the data by remov-
ing duplicates and isolated entities. At last, we obtain 14,550 miRNAs-disease
associations between 917 miRNAs and 792 diseases.

2.2 The Overall Flow of the Model

In this paper, we propose a novel simple graph convolution method, which com-
bines a message propagation mechanism and feature aggregation mechanism for
miRNA-disease association prediction (nSGC-MDA). The flowchart of nSGC-
MDA model is shown in Fig. 1, which consists of four steps: (1) constructing
bipartite attributed graph by integrating known MDAs and multi-source similar-
ity information; (2) applying feature propagation with random message dropping
mechanism; (3) employing jumping knowledge network to aggregate features to
enhance feature representations; (4) using feature-crossing to obtain interactions
of miRNAs and disease and predict their associations using a MLP.
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2.3 Problem Formulation

Given p miRNA nodes M = {m1, · · · mp} and q disease nodes D = {d1, · · · dq},
the heterogeneous graph is expressed as G = (V,E), where V is the set of miRNA
and disease nodes defined as V = {M ;D}. E is the set of all edges in G. The
adjacency matrix of G is denoted as A. If miRNA i is associated with disease j,
Aij is set to 1, otherwise 0. Our task is to identify potential MDAs.

Fig. 1. The flowchart of nSGC-MDA.

2.4 Disease Semantic Similarity

We utilize Mesh descriptors to describe each disease as a directed acyclic graph
(DAG), for a disease d, the DAG of it includes the ancestor nodes of d, the
direct edges from parent to child nodes and d itself. Using this structure, we can
calculate the contribution of any disease v in the DAG of d to d as follows:{

Cd(v) = 1, if v = d

Cd(v) = max {μ ∗ Cd (v′) | v′ ∈ children of v} , if v �= d
, (1)

where μ is the semantic attenuation factor, which is set to 0.5 in this paper [17].
The larger the proportion of DAG shared by two diseases, the more seman-

tically similar the two diseases are. Based on this hypothesis, the formula for
calculating the similarity between disease di and dj is shown as follows:

Sd
sem(di, dj) =

∑
v∈(Ndi

∩Ndj
)(Cdi

(v) + Cdj
(v))∑

v∈Ndi
Cdi

(v) +
∑

v∈Ndj
Cdj

(v)
. (2)

2.5 Gaussian Interaction Profile Kernel (GIP) Similarity

The Sd
sem matrix is sparse, which impacts the quality of feature representation.

Therefore, we fill the zero values in Sd
sem by calculating the GIP similarity. The
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GIP similarity for diseases between disease di and disease dj is calculated as
follows:

Sd
gip(di, dj) = exp(−αd||IP (di) − IP (dj)||2), (3)

where IP (di) is the feature of di, which equals the i-th column in A. αd controls
the kernel bandwidth, which is calculated as:

αd = α
′
d/(

1
p

∑p
i=1||IP (di)||2), (4)

where p indicates the number of diseases and α
′
d is a bandwidth parameter.

Similarly, we can obtain the GIP similarity of miRNAs, denoted as Sm
gip.

2.6 MiRNA Sequence Similarity

To obtain sequence information of miRNAs, we utilize the data from miRBase
[15] database. We calculate miRNA sequence similarity by using the Levenshtein
distance [18]. For miRNAs mi and mj , the sequence similarity of them is calcu-
lated as follows:

Sseq(mi,mj) = 1 − distance(mi,mj)
max(len(mi), len(mj))

, (5)

where distance(·) denotes the Levenshtein distance between miRNA i and
miRNA j, and len(·) represents the sequence length of miRNA.

2.7 MiRNA Functional Similarity

The functional similarity of miRNAs can be estimated by computing the simi-
larity between the two gene sets corresponding to the two miRNAs. The target
gene set of miRNAs is obtained from miRTarBase. We utilize Yu’s method [19]
to calculate miRNAs functional similarity, which infers gene sets similarity based
on Best-Match Average (BMA). The calculation is defined as follows:

Sfun(mi,mj) =

∑
1≤i≤Ni

max(S
′
i) +

∑
1≤j≤Nj

max(S
′
j)

Ni + Nj
, (6)

where S
′
i and S

′
j are functional similarity of gene i and gene j in target gene

sets, respectively; Ni and Nj are the target gene number of miRNA mi and mj ,
respectively.

2.8 MiRNA Family Similarity

The family information of miRNAs is also acquired from miRBase. When miRNA
i and miRNA j belong to the same family, the corresponding position in the
family similarity matrix Sfam is assigned as 1.
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2.9 Integrated Similarity

To obtain disease integrated similarity matrix Sd, we combine the disease seman-
tic similarity with the GIP similarity of diseases. The matrix Sd is defined as
follows:

Sd(di, dj) =
{

Sd
gip(di, dj), if Sd

sem(di, dj) = 0
Sd
sem(di, dj), otherwise

, (7)

where Sd
sem denotes the disease semantic similarity matrix and Sd

gip is the GIP
similarity matrix of the diseases.

For miRNAs, we initially integrate miRNA sequence similarity, functional
similarity and family similarity as Sint defined as below:

Sint(mi,mj) =
{

λ1Sseq + (1 − λ1)Sfun, if Sfam(mi,mj) = 0
λ2(λ1Sseq + (1 − λ1)Sfam) + (1 − λ2)Sfun), otherwise , (8)

where λ1, λ2 are parameters for balancing the similarity matrice, Sseq, Sfun, Sfam

are sequence similarity, functional similarity and family similarity, respectively.
Subsequently, we integrate them and the GIP similarity of miRNAs using a
disease-like approach. The final integrated similarity of miRNAs can be calculated
as:

Sm(mi,mj) =
{

Sm
gip(mi,mj), if Sint(mi,mj) = 0

Sint(mi,mj), otherwise , (9)

where Sm
gip is GIP similarity of miRNAs.

2.10 Constructing Bipartite Attributed Graph

By utilizing the node similarities calculated in Subsect. 2.3 and the filtered
miRNA-disease association information, we construct a miRNA-disease bipartite
attributed graph that consists of 917 miRNA nodes and 792 disease nodes. The
edges in the graph are defined with 14,550 validated miRNA-disease associations
and the integrated miRNA similarity Sm and disease similarity Sd are regarded
as their node features, respectively. To eliminate heterogeneity, we apply a node-
specific transformation matrix W to project both miRNA nodes and disease
nodes, which originally exist in different feature spaces, into a unified space.
The specific process of miRNA nodes is shown as follows: X̃m = Wm · Sm. We
obtain the transformation feature matrix of the disease in a similar way, which
is defined as: X̃d = Wd · Sd.

2.11 Feature Propagation

In the message passing framework of GNN, nodes send messages to their neigh-
bors while receiving messages from their neighbors. The propagated messages
can be defined as a message matrix M ∈ R

k×c, where k is the edge number
in the graph and c is the dimension number of the messages. The propagated
message from node i to node j in the l-th layer can be expressed as:

M
(l)
i = AGGj∈N(i)(h

(l)
i , h

(l)
j , ei,j), (10)
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where h
(l)
i denotes the hidden representation of node vi in the l-th layer, and

N(i) is a set of nodes adjacent to node vi; ei,j represents the edge between node
i and j.

To avoid over-reliance on specific neighboring nodes during node feature
propagation, we employ the DropMessage [20] strategy. This strategy involves
randomly dropping some node messages on the propagated messages on the
graph, which allows the same node to propagate different messages to its dif-
ferent neighbors. More specifically, DropMessage strategy conducts dropping on
the message matrix with the dropping rate δ, which means that δ|M | elements of
the message matrix will be masked in expectation. The process can be expressed
as:

M̃i,j =
1

1 − δ
ηi,jMi,j , (11)

where ηi,j ∼ Bernoulli(1-δ) is an independent mask to determine whether ele-
ment Mi,j will be preserved or not. The node representations are updated based
on node feature information and messages from neighbors, which can be formu-
lated as: h

(l+1)
i = h

(l)
i + M̃i.

We define the normalized adjacency matrix as in GCN, L = D̃
1
2 ÃD̃

1
2 , where

Ã = A + I and D̃ is the degree matrix of Ã. The l-th layer information of the
nodes can be obtained as Hk = LHk−1W k, where H0 = X̃.

Inspired by Simple Graph Convolution (SGC) [21], in order to emphasize
the benefit arises from the local averaging, we remove the nonlinear transition
functions between each layer. The final softmax is kept to obtain probabilistic
outputs, and the l-th simple graph convolution can be defined as:

H(l) = softmax(L . . . LLX̃W (1) . . . W (l)). (12)

The repeated multiplication with the normalized adjacency matrix L can be
collapsed in to a single matrix Ll. The H(l) can be simply expressed as
H(l) = softmax(L(l)X̃W ), where W = W (1)W (2) . . . W (l) is the cumulative
multiplication of parameters of each layer.

2.12 Feature Aggregation

In neighbor-hood aggregation networks, each layer increases the size of the influ-
ence distribution by aggregating neighborhoods from the previous layer. We
employ the Jumping Knowledge (JK) network [22] to aggregate the representa-
tions of intermediate layer to the last layer (named jumping), which is defined
as:

H̃ =
∑l

i=1ωiH
(i), (13)

where ωi is the weight coefficient of layer i when aggregating features. This
selective combination of different aggregations can adaptively adjust the influ-
ence range of each node.
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2.13 Feature Crossing and Association Prediction

To extract cross-feature information of each miRNA-disease pair, we employ
the element-wise dot product operation. The formula is Hcross = H̃m � H̃d,
where H̃m and H̃d are the final feature representations of miRNAs and diseases,
respectively.

The final prediction is obtained by a fully connected neural network decoder:

Ŷ = sigmoid(f(H̃m ⊕ H̃d ⊕ Hcross)), (14)

where f(·) indicates the fully connected layer. Subsequently, we utilize the cross-
entropy loss function to compute the loss between predicted value and the true
label:

L(A, Ŷ ) = −
∑

i,j∈(Y +∪Y −)

(Ai,j log(Ŷi,j) + (1 − Ai,j)log(1 − Ŷi,j)), (15)

where Ai,j denotes the true association between miRNA i and disease j, while
Ŷi,j denotes the result predicted by our model.

3 Experiments and Results

3.1 Experiment Settings

Our model is implemented in the DGL framework of PyTorch and Adam algo-
rithm is applied to optimize the model. In addition, we determine the optimal
combination of parameters through a grid search. After the search, we set the
learning rate to 0.001, dropout rate to 0.5, and layer number l to 4 to obtain the
best results.

We take 14,550 known associations as positive samples. In order to ensure
the balance of samples, we randomly select the same number miRNA-disease
pairs from unknown associations as negative samples. The 5-fold cross-validation
method is used to evaluate the model’s performance. In each fold, we use 20%
of the samples as the test set and the rest as the training set. To quantify the
average performance of the model, we employ AUC and AUPR as the primary
evaluation metrics. In addition, we also use four evaluation metrics accuracy
(Acc), precision (Pre), recall and F1-score (F1) to comprehensively evaluate the
model performance.

3.2 Comparison with Baseline Methods

To demonstrate the superior performance of nSGC-MDA, we compare it with
six compared models that also utilize the HMDD v3.2 dataset. TDRC [23] is a
matrix decomposition-based method. MDA-CF [24] is a method which based on
traditional machine learning. AGAEMD [12], AMHMDA [13], GRPAMDA [25]
and VGAMF [14] are all GNN-based methods. In addition, VGAMF uses the
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linear features extracted by matrix decomposition to enhance the feature rep-
resentation of miRNA-disease pairs. Both TDRC and AGAEMD use only two
types of miRNA similarities and other models use multiple similarity informa-
tion.

To ensure the fairness of comparison, the experimental results of these models
are conducted on condition of the optimal parameters provided in their original
articles. The MDA-CF does not provide a code implementation, so we directly
utilize the results from its paper. The comparison results are shown in Table 1,
where the best results are in bold and the second are underline. From Table 1
we can see the followings: (1) All the other models are better than TDRC and
AGAEMD, which indicates that fusing more similarity information can improve
the performance of the model. (2) VGAMF achieved the second highest AUC and
AUPR, suggesting that additional features can improve the quality of miRNA-
disease pair feature representations. (3) The performance of nSGC-MDA is supe-
rior to other GNN-based methods (AGAEMD, AMHMDA, GRPAMDA and
VGAMF). The reason is that nSGC-MDA uses the modified SGC, which effec-
tively mitigates the effect of noise in the graphs. Moreover, the utilization of
jumping knowledge mechanism enhances the representation of nodes.

Table 1. Comparison results with baseline methods.

AUC AUPR Acc Pre Recall F1

TDRC 0.9109 0.9246 0.8544 0.8522 0.8578 0.8549

AGAEMD 0.9205 0.9283 0.8617 0.8695 0.8513 0.8603

AMHMDA 0.9401 0.9364 0.8626 0.8549 0.8733 0.8651

GRPAMDA 0.9443 0.9404 0.8719 0.8644 0.8749 0.8706

VGAMF 0.9470 0.9409 0.8616 0.8729 0.8669 0.8714

MDA-CF 0.9464 0.9401 0.8766 0.8818 0.8698 0.8757

nSGC-MDA 0.9502 0.9496 0.8812 0.8863 0.8747 0.8804

3.3 Performance Comparison of Different Components

To verify the effectiveness of each componets in nSGC-MDA, we also conduct
ablation experiments. Firstly, we test the contribution of the Jumping Knowledge
(JK). Furthermore, we compare the impact of different message dropping meth-
ods, including Dropout, DropEdge, DropNode, and without dropout (WOD).
Dropout performs random dropping operation on the node feature matrix.
DropEdge and DropNode discard edges and nodes, respectively. WOD means
that there are no discard operations. The comparison graphs of AUPR and
AUC are shown in Fig. 2.

As can be seen from the results, the performance of the model with JK is
significantly higher than without JK, with an AUC of 95.02%. Random dropping
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Fig. 2. Comparison results of different dropping methods

method consistently outperforms SGC without random dropping. Besides, the
model prediction performance vary over different dropping methods. DropMes-
sage achieves overall better results on all metrics and Dropout achieves model
performance second only to DropMessage. These indicate that the perturbation
strategy can enhance the feature representation when aggregating node feature
information, while DropMessage retains the integrity of the features when dis-
carding information. DropEdge and DropNode causes a lot of damage to the
structure information of the original graph due to the high discarding rate.

3.4 Case Study

To validate the utility of nSGC-MDA in practical application, we conduct case
study and choose cardiovascular disease as the subject of our case study. We
divide the edges between miRNAs and diseases into two sets: the test set and
the training set. The test set comprises all the edges related to cardiovascular
disease, while the training set consists of the remaining edges. The top 10 pre-
dicted miRNAs with the highest association scores are considered as the model’s
predictions. We conduct verification by published literatures in PubMed. The
experimental results are presented in Table 2.

Table 2. The results of the case study.

num miRNA evidence (PMID) num miRNA evidence (PMID)

1 hsa-mir-21 19043405, 28944900 6 hsa-mir-126 28065883

2 hsa-mir-155 24475727, 34506226 7 hsa-mir-145 28379027

3 hsa-mir-146a 25865299, 33297927 8 hsa-mir-17 24212931, 30338905

4 hsa-mir-223 24573468, 29845432 9 hsa-mir-150 30260095, 35071356

5 hsa-mir-34a 20627091 10 hsa-mir-221 28379027, 35668131

MicroRNA 21 (hsa-mir-2) promotes the development of cardiac fibrosis,
hypertrophy and heart failure. Zhang et al. [26] showed that in human failing



Identifying miRNA-Disease Associations 55

heart tissues, microRNA 21 levels were elevated. They also demonstrated that
circulating microRNA 21 has potential to be a biomarker of heart failure by sta-
tistically analyzing relevant patients. This shows that nSGC-MDA has potential
and application value in predicting the miRNA-disease association.

4 Conclusion and Future Work

Identifying the associations between miRANs and diseases is crucial for under-
standing the underlying pathogenic mechanism of diseases. In this study, we
propose an novel MDAs prediction method based on Simple Graph Convolu-
tion with feature perturbation strategy. Random dropping methods can mitigate
over-fitting in GNNs by randomly masking part of the input. During the message
passing, the propagated messages are directly discarded to preserve the graph
structure and provide comprehensive feature representations for the prediction
task. Feature aggregation is achieved by adopting the Jumping Knowledge Net-
work, which aggregates features from each layer based on adaptive weights to
obtain a final, more informative feature representation compared to higher-order
features. The case study shows the reliability of our model.

However, bipartite graphs have limitations in terms of the information they
can provide, and leveraging more comprehensive networks can enhance the accu-
racy and effectiveness of predictions. In future MDA prediction tasks, it would be
beneficial to utilize more complex heterogeneous networks that provide a better
representation of the biological associations between miRNAs and diseases.
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Abstract. Information on the structure of molecules, retrieved via bio-
chemical databases, plays a pivotal role in various disciplines, such
as metabolomics, systems biology, and drug discovery. However, no
such database can be complete, and the chemical structure for a given
compound is not necessarily consistent between databases. This paper
presents StructRecon, a novel tool for resolving unique and correct
molecular structures from database identifiers. StructRecon traverses
the cross-links between database entries in different databases to con-
struct what we call an identifier graph, which offers a more complete
view of the total information available on a particular compound across
all the databases. In order to reconcile discrepancies between databases,
we first present an extensible model for chemical structure which sup-
ports multiple independent levels of detail, allowing standardisation of
the structure to be applied iteratively. In some cases, our standardisation
approach results in multiple structures for a given compound, in which
case a random walk-based algorithm is used to select the most likely
structure among incompatible alternates. We applied StructRecon to
the EColiCore2 model, resolving a unique chemical structure for 85.11%
of identifiers. StructRecon is open-source and modular, which enables
the potential support for more databases in the future.

Keywords: Standardisation · Chemical structure identifiers ·
Small-molecule databases · Cheminformatics

1 Introduction

As the volume of available biochemical information grows, databases have
become indispensable resources for researchers, enabling advances in various
fields, including metabolomics, systems biology, and drug discovery. These
databases are curated and maintained by different organisations and research
groups, each employing their own data collection methods, annotation standards,
and quality control procedures. However, as the collective amount of information
stored in the databases expands, so does the amount of errors within databases,
and in particular, inconsistencies between them [1,24]. Discrepancies between
biochemical databases pose a significant challenge to researchers performing
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large-scale analyses, in particular when integrating data from multiple databases
[25]. In this work, we focus on incompleteness and inconsistencies in the chemi-
cal structures within and between database entries, which can pose a significant
problem in applications such as drug discovery, quantitative structure-activity
relationship, and atom tracing [6,26].

The entries in each database may contain quantitative information about the
compounds, structural information on these compounds, as well as references to
related entries in other databases. A starting observation behind our contribution
is that the cross-database references can be traversed in order to get a fuller view
of the properties of a compound. In the best case, the databases complement each
other, making up for the incompleteness of each and allowing the identification
a chemical structure of each compound of interest, even if not all of these are
contained in any single database.

However, integrating entries from several databases will invariably introduce
discrepancies in the chemical structure. In many cases, these discrepancies are
simply caused by a difference in the representation of what is intended to be
identical chemical structures [15]. Other times, different structural isomers are
present under the same name, for example 5-deoxy-D-ribose, which appears in
cyclic and linear forms, depending on the database, as depicted in Fig. 1. Over the
years, considerable efforts have been directed towards the development of stan-
dards and guidelines for chemical structure representation. Structural identifiers
such as Standard InChI [10] and Standard SMILES [21–23] aim to provide an
unambiguous and standardised structural identifier. However, ambiguity is not
completely prevented, as sources may wish to denote chemical structures in vary-
ing levels of detail, e.g., whether to denote stereochemistry, tautomerism, charge,
and more. SMILES makes no distinction whether such features are explicitly rep-
resented, while the layered structure of InChI [20] makes it clear which features
are to be explicitly represented in some cases.

Fig. 1. An example of structural discrepancy between databases: the linear (PubChem,
ECMDB) and cyclic (ChEBI, MetaNetX, MetaCyc, KEGG) form of 5-deoxy-D-ribose.

The problem of comparing chemical structures from entries with different
notation and level of standardisation is one of the main challenges of this work.
It is evident that for biochemical problems, an automatic method for retrieving
correct chemical structures, up to some degree of standardisation, is needed. Our
goal is to use the combined resources from several databases in order to create
a more complete mapping between database identifiers and chemical structures
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than any single database provides, while automatically handling discrepancies
between these identifiers.

To our knowledge, there are no other tools which give such a consolidated
view of the structural information on compounds in databases. While some
databases, such as ChEBI and PubChem, present data collected from other
databases, this is still susceptible to issues such as incompleteness and incorrect-
ness of individual entries. Furthermore, given a type of identifier, e.g. BiGG, this
may not be present in a given database. For this reason, it is desirable to develop
a flexible and extensible system which can in principle be made compatible with
any database, while taking into account potential discrepancies.

In Sect. 2, we establish a model for representing the chemical structure of
compounds, with the goal of being able to describe, and compare across, the var-
ious levels of detail to which chemical structures are given by databases. Next, in
Sect. 3, we present StructRecon, a tool for programmatically retrieving chem-
ical structures from database identifiers, by traversing database cross-references
and using cheminformatics methods for analysing, comparing, and standardising
structural representations based on the model developed in Sect. 2. Finally, in
Sect. 4, we apply the tool to a set of compounds established by genome sequenc-
ing of E. coli and analyse the resulting network of identifiers and structural
representations.

2 Multi-level Modelling of Chemical Structures

In this section, we introduce a model for chemical structures which allows rep-
resentation at multiple levels of detail and formalises the standardisation func-
tions which transform structures between these levels. Compared to established
models, such as SMILES and InChI, this model places a particular focus on
extensibility, formal specification, and standardisation of structures.

We call the levels of detail features. The seven features used throughout this
work will be introduced one-by one as the necessary theory is established. We
categorise identifiers into two classes: structural identifiers, which directly encode
a chemical structure, and from which the structure can be recovered algorithmi-
cally (e.g. InChI, SMILES), and symbolic identifiers, which are generated more
or less arbitrarily, and do not carry direct meaning, but reference an entry in
the corresponding database (e.g. PubChem CID, BiGG ID).

Depending on the application, the exact definition of a chemical structure
may vary. We wish to model the connectivity of atoms in a molecule, and option-
ally stereo-chemical information, while the full spatial information is not taken
into account. For this application, the classical method in cheminformatics is
the graph-based approach: a structure is, in its most basic form, an unlabelled
graph G = (V,E), in which atoms are represented by vertices, and (covalent)
bonds are represented by edges. A graph-based structure is linearly encoded by
established structural identifiers, such as SMILES and InChI; even the system-
atic IUPAC name may be described as a graph-based identifier [11]. We may
wish to describe additional features, e.g., charge, isotopic labelling, stereochem-
istry, or tautomerism. In broad terms, a chemical feature is a class of information
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about a structure which we may or may not wish to account for when modelling,
depending on the input and application.

We will establish a unified model for graph-based chemical structures. This
provides a consistent view of chemical structure, regardless of the features rep-
resented, to which structural identifiers can be mapped. The underlying simple
graph structure is, for our purposes, always assumed to be present, but even
basic information such as the chemical element of each atom and the order of
covalent bonds, are considered optional features. First, we formally define the
notion of a feature.

Definition 1 (Feature). A feature Φ is a pair Φ = (ΦV ,ΦE), where ΦV and
ΦE are sets of possible values for the attribute on atoms and bonds respectively,
each of which must contain a special ‘nil’-element, ε, indicating that the value is
unspecified or not applicable.

We will define and apply seven such features in this work. Starting with the most
essential, the element of each atom can be expressed as a feature E, with

E := ({ε,H,He,Li, . . . }, {ε}).

For a given structure, each vertex will either be assigned ε, indicating that no
indication is given as to the element of that atom, or it will be assigned a specific
element. Edges can only be assigned ε, indicating that this feature assigns no
attribute to edges. Similarly, bond types are expressed as the feature

B := ({ε}, {ε,−,=,≡}).

This feature can be expanded to also indicate other bond types, such as aromatic
or ionic, if needed. The isotope of each atom can be stated as

I := ({ε} ∪ N, {ε}),

where the vertex attribute indicates the atomic weight of each atom. Before
describing the remaining features, we need a precise definition of chemical struc-
ture. Combining the sets of values for all features, we can define the overall
feature space, which is needed for a formal definition of a chemical structure.

Definition 2 (Feature space). Given a set of features {Φ1, . . . ,Φn}, the
feature space for vertices and edges, FV and Fe, respectively, is the combined
attribute space of the features, where FV = Φ1V × · · · × ΦnV and FE = Φ1E ×
· · · × ΦnE.

Definition 3 (Chemical structure). A chemical structure is an undirected
graph G = (V,E,AV , AE), where V is the set of atoms, E is the set of covalent
bonds, and AV : V → FV (resp. AE : E → FE) is an attribute function, assigning
to each vertex (resp. edge) a value for each feature in the feature space.

Let G be the set of all such chemical structures. Simultaneously working in
several levels of detail, i.e., features, naturally raises the problem of how to
compare equivalence of structures between different sets of features. For this, we
introduce, for each feature, a standardisation function.
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Definition 4 (Standardisation function). Given a feature Φ, the standardi-
sation function w.r.t. Φ is SΦ : G → G. The function is required to be idempotent,
and all vertices and edges of the resulting structure should have ε as value for
feature Φ in the attribute function.

We extend the definition to sequences of features, resulting in a composition of
standardisations, i.e., SΦ1...Φn = SΦn ◦ · · · ◦ SΦ1 .

For a structure G, the image SΦ(G) is the corresponding standardised struc-
ture, which does not contain any information about feature Φ. For a sequence
of features Φ1, . . . ,Φn, we define GΦ1...Φn ⊆ G as the set of structures which are
standardised according to the of features. That is, all applicable atom and bond
attributes are ε these features, and they are their own image in the standardis-
ation function:

G ∈ GΦ1...Φn ⇐⇒ SΦ1...Φn(G) = G.

For the features described so far, E, B, and I, the trivial standardisation
function is sufficient. This function simply erases the attributes by setting them
to ε. In some cases, the trivial standardisation function is not sufficient. For
example, we define the charge feature as

C := ({ε} ∪ Z, {ε}),

where the vertex attribute indicates the charge of the atom. The process of stan-
dardising the charge of a given molecule may be limited by chemical constraints,
such as is the case in RDKit [17] and InChI [20]. The function may, among other
modifications, add and/or remove hydrogen atoms, trying to remove charges
from each atom in a chemically valid way. We will not further discuss the intri-
cacies of this operation, as it is implementation-dependant.

For some features, the definition even depends entirely on the standardisation
function. E.g., the fragment feature [15]:

F := ({ε}, {ε}).

In this case, no information is explicitly encoded in the graph, but we still want a
way to standardise w.r.t. fragments. We define SF(G) to be the largest connected
component of G (measured by the number of non-hydrogen atoms), with an
implementation-specific method for breaking ties based on other attributes of
each connected component.

Tautomerism is similarly difficult to define due to the complexities involved
in determining the tautomers of any given structure. Let

T := ({ε}, {ε}).

Again, we have no features, instead relying on the standardisation function:
assume a chemical oracle, which given a structure G, returns the set of all
tautomeric structures, according to some definition. Then, let a deterministic
method choose a canonical representative from among these structures. The
standardised structure ST(G) is this canonical tautomer.
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For stereochemistry, there are multiple methods for encoding information
about local geometry at the vertex and edge level [2,3,16] Any method for
encoding such information can be used to generate the feature S. The trivial
standardisation function will in most cases be sufficient for standardising struc-
tures with respect to stereochemistry.

Finally, we define equivalence of chemical structures: With the notation
G1 =Φ1...Φn G2, we denote that the structures G1 and G2 are equivalent up to
standardisation of Φ1, . . . ,Φn, i.e., they are equal when the features Φ1, . . . ,Φn

are not considered. Formally

G1 =Φ1...Φn G2 ⇐⇒ SΦ1,...,Φn (G1) = SΦ1,...,Φn (G2).

As an example, consider the structures for methanol and methoxide, where
CH3OH 
=FICTS CH3O−, but CH3OH =FITS CH3O−.

We have now described the features which are considered in this contribution,
based on the FICTS features [19]: (E) elements, (B) bonds, (F) fragments, (I)
isotopes, (C) charge, (T) tautomerism, and (S) stereoisomerism. It should be
noted that some of these features depend upon each other, e.g., it would not
make sense to specify the isotope of an atom without also specifying the element.
The standardisation functions can not be expected commute with each other in
general. For this reason, StructRecon needs a defined order in which the
standardisation functions will be applied.

3 Algorithms and Implementation

In this section, we describe the ideas and algorithms of StructRecon, based
on the model developed in Sect. 2.

Data Sources. We used six sources of data: BiGG [14], ChEBI [5], the E.
Coli Metabolome Database (ECMDB) [8,18], KEGG [12], MetaNetX [7], and
PubChem [13]. These were selected based on their programmatic accessibility
and relevance to metabolic modelling. StructRecon is modular, making it
easy to add more data sources in the future.

MetaNetX uses a versioning system in which entries present in one version
are not necessarily present in another. Inter-database references do not typically
specify which version of MetaNetX is referenced, but MetaNetX keeps a record
of deprecated entries. Following the chain of deprecations, it is possible to obtain
the newest entries corresponding to any given entry. The deprecation relationship
can both split and merge entries in between versions.

Construction of the Identifier Graph. The interconnected nature of identi-
fiers within and between databases is represented as a directed graph, called the
identifier graph. In the identifier graph, vertices correspond to identifiers, while
arcs represent relationships between these. Each vertex contains as attributes,
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the type of ID (e.g. PubChem CID, BiGG ID, SMILES) called the identifier
class, as well as the actual ID. Each edge is annotated with the source database.

A number of procedures are specified, each being a subroutine which takes
identifiers as input, and finds associated identifiers in chemical databases. By
executing the procedures in an order which seeks to minimise overhead, the
identifier graph is built iteratively, starting with the input vertices which are
directly obtained as input. The resulting graph will contain symbolic identifiers
as well as the structural identifiers as they appear in the respective databases.
For an example of a complete identifier graph, refer to Fig. 2.

Structure Standardisation. When a structural identifier (SMILES, InChI)
is added to the identifier graph, it is first converted to an internal graph-based
representation, in accordance with Definition 3. From this point, we assume that
the atom (A) and bond (B) features are always implicitly represented, and
will therefore refer to the remaining features as FICTS. As the standardisation
functions are not expected to commute, in general, we enforce a particular order
on the features defined by the user, by default F, I,C,T,S. This was chosen as
the default ordering, as it produces the greatest number of uniquely resolved
structures which a lesser degree of standardisation.

We assign to each structural identifier G, an attribute specifying for which
features a structure is standardised. For features F, I, and S, it is simple to
guarantee that it is standardised by inspecting the structure. Checking F is
simply examining the connectivity of the graph, and I, S, inspecting for all
vertices and edges whether they have the equivalent of ε as attribute. For C
and T, we check whether a structure is standardised by applying the respective
standardisation functions.

When the links to new databases is exhausted, in many cases, there will be
multiple different structural identifiers associated with each compound. We aim
to achieve a unified representation of the compounds by iteratively applying the
standardisation functions: For any structure G, which is not fully standardised,
that is, G /∈ GFICTS, let Φk be the first feature in which G is not standardised
according to the feature ordering. That is, SΦ1...Φk−1

(G) = G, but SΦ1...Φk
(G) 
=

G. Then produce G′ = SΦk
(G), adding this new structure to the identifier graph,

with an arc (G,G′). If G′ is equivalent to an existing structure H, then no new
vertices are created, but the arc (G,H) is added instead. The standardisation
process is visualised in the output of StructRecon (Fig. 2) in which the blue
nodes represent structures, and purple nodes represent maximally standardised
structures.

Structure Selection. While the identifier graph is a general digraph, consid-
ering only the structural identifiers yields a forest of in-trees, as standardisa-
tion functions are many-to-one, and may therefore merge structures, but never
split. For each input, the transitive and reflexive closure of the forest of in-trees
imposes a partial order on the reachable structures. In this partial order, struc-
ture G1 precedes G2 if G2 is a more standardised identifier, reachable from G1



Reconciling Inconsistent Molecular Structures from Biochemical Databases 65

by applying standardisation functions. Maximal elements are fully standardised
structures, G ∈ GFICTS.

For each input identifier i, StructRecon should resolve the input to a
single structure. The vertices reachable from i represent symbolic and structural
identifiers which are related to i through database links, as well as structural
identifiers which can be derived from these by standardisation. Denote by S(i)
the partial order of structures reachable from i.

If S(i) has one maximal (greatest) element, then we say that S(i) is resolved
and consistent—all sources for the compound can agree on a structure, at least
up to the highest degree of standardisation. That is, G =FICTS G′ for any
pair of structures G, G′ in the reachable database entries. If there are multiple
maximal elements, then the sources cannot agree, and we call S(i) inconsistent.
If S(i) contains no structures at all, then the compound is unresolved. In the
case where S(i) is consistent, we want to select the most specific element on
which all sources agree. In the partial order, this is the supremum of the set of
structures which were found directly in the databases.

If S(i) is inconsistent, resolving i requires a choice between the maximal
structures. This choice can be made automatically by a scoring algorithm which,
for each input, assigns a confidence score to all vertices reachable from the input
vertex. The scoring algorithm essentially computes the probability that a random
walk in the identifier graph, starting at the input vertex, will arrive at each
vertex. The algorithm is based on PageRank [4], with the key differences that
the initial probability distribution is 1 for the input vertex, and 0 for all other
vertices, and that sink vertices only loop back to the input vertex, rather than
all vertices. After assigning a confidence score to each vertex, the confidence
scores of each maximally standardised structure is evaluated. The confidence
ratio is computed, the confidence of the second-most likely structure over the
confidence of the most likely structure. If this value is below a given threshold (0.5
by default), then the vertex with the highest confidence score is automatically
selected. Otherwise, no structure can be chosen with high enough confidence,
and the input is marked for manual disambiguation.

Implementation. StructRecon was implemented in Python, and is available
at https://github.com/casbjorn/structrecon. The accompanying web interface
can be accessed at https://cheminf.imada.sdu.dk/structrecon. Our model for
chemical structure is implemented using RDKit [17], which furthermore provides
functions for uncharging structures and computing the canonical tautomer.

https://github.com/casbjorn/structrecon
https://cheminf.imada.sdu.dk/structrecon
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4 Results

The tool was tested on the metabolic network model EColiCore2 [9]. The model
contains 2138 identified compounds, with associated BiGG IDs We chose this
dataset for evaluation, as the selected databases have a particular focus on bio-
chemistry, and because of the well-established nature of the E. coli genome.

Of the 2138 inputs, 136 (6.36%) were identified as macromolecules, based on
string-matching BiGG IDs and names found in databases to an incomplete list
of substrings associated with macromolecules, such as “tRNA” and the names
of various proteins and enzymes. We consider the handling of macromolecules
to be out of the scope of this work. In the identifier graph, an average of 31.70
vertices are reachable from each input vertex. Of the non-macromolecule inputs,
1459 (72.88%) resolved to exactly one structure up to maximal FICTS stan-
dardisation, while only 492 (24.58%) had only one structure up to FICT stan-
dardisation.

Of the non-macromolecule inputs, 57 (2.85%) yielded no structure at
all. Examples of this category includes bis-molybdopteringuaninedinucleotide
(BiGG: M bmocogdp), Hexadecanoyl-phosphate(n-C16:1) (BiGG: M hdceap), and
2-tetradec-7-enoyl-sn-glycerol-3-phosphate (BiGG: M 2tdec7eg3p).

A total of 486 inputs (24.28%) yielded multiple maximally standardised struc-
tures, and needed to be disambiguated based on the confidence ratio. In our
experimentation, we found 0.5 to be a reasonable threshold, meaning that we
select the structure with the highest confidence if it has at least twice the confi-
dence of any other structure. With a threshold of 0.5, an additional 245 inputs
were uniquely resolved, for a total of 1704 consistent inputs (85.11%), leaving
241 compounds for manual disambiguation. The effect of different choices of
confidence ratio threshold is displayed in Fig. 3.

We will proceed to describe some concrete examples of identifier graphs which
serve to demonstrate both the problem of database inconsistency and the solu-
tion provided by StructRecon. One example is 5-methylthio-D-ribose. The
associated identifier graph is displayed in Fig. 2. Database interconnections do
not necessarily make distinctions between this compound and S-methyl-5-thio-
D-ribose. The confidence ratio between these two maximised structures is 0.59,
indicating a relatively high degree of interconnection between the associated
database entries. While the correct structure has the highest confidence score,
the default threshold of 0.5 would mark this discrepancy for manual disambigua-
tion.
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Fig. 2. The identifier graph generated by the BiGG ID M 5mtr c. Each vertex displays
the type of identifier, the identifier itself, and the confidence assigned by the scoring
algorithm. For structures, the set of features in which the structure is standardised is
also displayed, along with a graphical representation. The green vertex is the input
vertex. The turquoise vertices are symbolic identifiers found directly within the input
file, in this case the EColiCore2 model. The light blue vertices are other symbolic iden-
tifiers. The dark blue vertices represent structural identifiers, either found in databases,
or obtained by standardisation. The violet vertices represent maximally standardised
structures. Arcs with no direction are shorthand for one arc in each direction. (Color
figure online)

Unexpectedly, the simplest and most prevalent molecules turns out to be
inconsistent, but easy to reconcile based on the confidence ratio. A good example
is water, as displayed in Appendix A. The conventional structure H2O is found in a
multitude of databases, however, the ChEBI identifier 29356 (oxide(2-)) is asso-
ciated with the generic BiGG identifier for water through the BiGG database.
However, as this is the only connection, that structure is assigned a smaller
confidence score than the conventional structure by the scoring algorithm. This
graph therefore has a low confidence ratio of 0.07, representing a high degree of
support of the conventional structure, which is chosen by StructRecon.
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Fig. 3. For several choices of confidence ratio threshold (the confidence of the second-
most likely structure over the confidence of the most likely structure), shows the number
of inputs, out of 486, which resolve to a unique structure in the ECC2 model. Struc-
tRecon uses a default threshold of 0.5. Setting the threshold to 0.0 would mean only
choosing a structure if no alternatives exist, while a threshold of 1.0 results in picking
one of the structures with the highest confidence arbitrarily.

5 Conclusion

In this work, we propose a model for chemical structure, which supports multi-
ple levels of standardisation. Based on this model, we present StructRecon,
a novel tool which identifies and reconciles the chemical structure of compounds
based on the traversal of interconnections between biochemical databases. We
applied the tool to EColiCore2, a metabolic model of E. coli. In 85.11% of
cases, a chemical structure could be uniquely identified with reasonable confi-
dence, demonstrating that StructRecon can be a valuable tool for structure-
based approaches in bioinformatics and related fields. StructRecon is open-
source and developed with modularity in mind, making integration of additional
databases and procedures possible.

Acknowledgements. This work is supported by the Novo Nordisk Foundation grants
NNF19OC0057834 and NNF21OC0066551.

Appendix A

See Fig. 4.
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Abstract. YY1-mediated chromatin loops play substantial roles in
basic biological processes like gene regulation, cell differentiation, and
DNA replication. YY1-mediated chromatin loop prediction is important
to understand diverse types of biological processes which may lead to the
development of new therapeutics for neurological disorders and cancers.
Existing deep learning predictors are capable to predict YY1-mediated
chromatin loops in two different cell lines however, they showed lim-
ited performance for the prediction of YY1-mediated loops in the same
cell lines and suffer significant performance deterioration in cross cell
line setting. To provide computational predictors capable of performing
large-scale analyses of YY1-mediated loop prediction across multiple cell
lines, this paper presents two novel deep learning predictors. The two pro-
posed predictors make use of Word2vec, one hot encoding for sequence
representation and long short-term memory, and a convolution neural
network along with a gradient flow strategy similar to DenseNet archi-
tectures. Both of the predictors are evaluated on two different benchmark
datasets of two cell lines HCT116 and K562. Overall the proposed predic-
tors outperform existing DEEPYY1 predictor with an average maximum
margin of 4.65%, 7.45% in terms of AUROC, and accuracy, across both
of the datases over the independent test sets and 5.1%, 3.2% over 5-
fold validation. In terms of cross-cell evaluation, the proposed predictors
boast maximum performance enhancements of up to 9.5% and 27.1% in
terms of AUROC over HCT116 and K562 datasets.
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1 Introduction

In living organisms proteins are essential to perform diverse types of cellular
activities and dysregulation of proteins lead towards development of multifari-
ous diseases such as cancer, neurological, and immunological disorders [1]. Pri-
marily, the production of proteins depends upon the regulation of genes. The
process of gene regulation is mediated by different regulatory elements that are
distributed in the DNA i.e., enhancers, and promoters. Mainly, extra-cellular
signals or transcription factors bind with the enhancer regions to regulate gene
expression of nearby or distant genes by forming physically connected chromatin
(DNA) loops among enhancers and promoters [2]. These interactions between
proximal promoters and distal enhancers often lead to higher order chromatin
structure known as topologically associated domains which may contain several
chromatin loops [3]. These chromatin loops play a substantial role in performing
insulation function to stop the process of transcription.

Different transcription factors are involved in the formation of chromatin
loops, such as 11-zinc finger protein (CTCF), and Ying Yang-1 protein (YY1).
“Figure 1” illustrates the formation of chromatin loops with the involvement of
two different transcription factors CTCF and YY1. YY1-mediated chromatin
loops are usually shorter in length, and may bind to smaller motifs of size 12, on
the other hand CTCF mediated chromatin loops are larger in length and they
form in the regions containing CTCF motifs of 19 nucleotide bases.

Fig. 1. The generic phenomenon of chromatin loop formation due to the interactions
between enhancers, promoters, DNA binding proteins (CTCF or YY1), and Cohesion
protein.

Several studies reveal the importance of YY1-mediated chromatin loops in
certain disorders such as, neurodevelopmental disorders [4], Gabriele–de Vries
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Syndrome [5], ischemic damage, Parkinson and Alzheimer disease [6]. In addi-
tion, YY1 can act as a tumor suppressor or stimulator in the case of pancre-
atic cancer, melanoma, and glioma [6]. These disorders or diseases arise due to
the dysregulation at the genetic level caused by the YY1 protein. Despite the
importance of gene regulation, cell identity and cell development, the roles of
YY1 transcription factor and YY1 mediated chromatin loops are not properly
characterized and understood yet.

The identification of generic enhancer promoter interactions provide an
abstract level information related to the gene regulation, but such identifica-
tions lack information regarding the DNA binding proteins that are involved in
initiating such interactions. On the other hand, TF specific enhancer-promoter
(EP) interaction and chromatin loops identification can assist in understanding
underlying phenomena such as cell-cell communication, and extracellular sig-
nalling, which may help out in dealing with complex disorders and cancers or
tumors.

Different in-silico and wet lab methods are utilized to identify chromatin
interactions and DNA proteins binding sites such as, chromatin interaction
analysis by pair-end tagging (ChIA-PET) [7], Chromatin immunoprecipitation
(ChIP) [8], High-through chromosome conformation capture (Hi-C), protein-
centric chromatin conformation method (HiChIP), chromatin-interacting pro-
tein mass spectrometry (ChIP-MS) [6], and proteomics of isolated chromatin
segments (PICh) [9]. However, it is laborious, expensive, and time-consuming to
identify chromatin interactions at large number of cell types purely based on such
experiments. Particularly, with the avalanche of the sequence data produced at
the DNA sequence level, it is highly compelling to develop computational meth-
ods for fast, and effective analyses of chromatin loops.

Artificial intelligence (AI) has been a key area of research in genomics to ana-
lyze DNA sequence data. Several AI-based methods have been developed with an
aim to analyze different chromatin interactions. Majority of these approaches are
based on the identification of CTCF mediated loops along with their genomic sig-
natures [10,11] or generic enhancer promoter interactions. In comparison, there is
a scarcity of AI-based predictors for YY1 mediated chromatin loops, for instance
only one AI-based method has been developed for the prediction of YY1 medi-
ated chromatin loops namely, DEEPYY1 [12]. DEEPYY1 made use of Word2vec
embeddings for encoding DNA sequences and a convolutional neural network for
the prediction of YY1 mediated chromatin loops. DEEPYY1 predictor was eval-
uated on DNA sequence data obtained from HiChip experiments related to two
different cell types i.e., HCT116 (colon cell line), and K562 (lymphoblasts from
bone marrow). DEEPYY1 predictor failed to produce better performance over
the same and cross-cell line data. Therefore, there is a need to develop a more
generic and high-performance YY1-chromatin loop predictor to perform analysis
over different cell lines data.

The paper in hand proposed two deep learning based approaches named
densely connected neural network (DCNN) and hybrid neural network (hybrid).
Following the observations of different researchers that deep learning based pre-
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dictors perform better when they are trained on large datasets and considering
the unavailability of DNA sequences annotated against YY1-mediated chromatin
Loops, DCNN-YY1 predictor utilize the idea of transfer learning to generate pre-
trained k-mer embeddings. Further, in order to extract diverse types of discrim-
inative features, DCNN-YY1 makes use of convolutional layers in two different
settings shallow and deep. With an aim to reap the benefits of both types of
layers and to avoid gradient vanishing and exploding problems in the process of
training, we provide alternative paths for gradient flow among different layers
through identity functions which are commonly used in DenseNet architectures
[13]. On the other hand, in order to capture positional information of nucleotides
the hybrid model makes use of one hot encoding approach for sequence repre-
sentation. Whereas, the hybrid model itself is comprised of convolution neural
network (CNN) and long short terms memory unit (LSTM), to capture discrim-
inative higher spatial and nucleotide level information.

Proposed predictors are evaluated over two different cell lines benchmark
datasets. Jointly, over both datasets, experimental results reveals the superior-
ity of the proposed predictors over state-of-the-art DEEPYY1 predictor with
average maximum margin of 4.65%, 7.45% in terms of AUROC, and accuracy,
across both of the datasets over the independent test sets and 5.1%, 3.2% over
5-fold validation. To explore whether proposed predictors are capable to predict
YY1-mediated chromatin loops in different cell lines, we also performed experi-
mentation in cross domain setting in which predictors are trained over sequences
of one cell line and evaluation is performed over sequences of other cell line. In
cross domain setting proposed predictors outperformed state-of-the-art predic-
tor by a maximum margin of 28% and 10.7% in terms of AUROC, and 22.4%,
and 7.01% across accuracy, over HCT116 and K562 datasets.

2 Material and Methods

This section briefly demonstrates the working paradigm of the proposed YY1
chromatin loop predictors, benchmark datasets, and the evaluation metrics.

2.1 CNN and LSTM Based YY1-Mediated Chromatin Loop
Predictor

The working paradigm of the proposed hybrid (CNN+LSTM) model can be
divided in two main stages. At the first stage, one hot encoded vectors are
generated from the nucleotides of DNA sequences. At the second stage, the
hybrid model utilizes these vectors to predict YY1-mediated chromatin loops.
The working paradigm of one hot encoding and the hybrid model are discussed
in the following sections.

One Hot Encoding. One hot encoding is a simplified yet effective way of rep-
resenting genomic sequences for classification, which may encode the nucleotide
composition information. In this method, out of four different nucleotides, each
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Fig. 2. The graphical illustration of the proposed (hybrid) architecture.

nucleotide is represented by a vector of size 4 with 1 representing the presence
and 0 referring to the absence of a particular nucleotide.

LSTM and CNN. Convolutional neural networks (CNNs) are used widely in
the domain of computer vision and natural language processing [14]. A CNN
is comprised of three different layers: convolution, pooling, and fully connected
layers, which allow it to capture spatial features from the input. The convolution
operation leads to the formation of feature maps, whereas the pooling operation
reduces the dimension of the feature maps by taking either average or maximum
value. CNNs are commonly used for DNA analysis problems to learn local fea-
tures such as, motifs in the case of DNA sequences and are often referred as local
feature learning layers. On the other hand, CNN ignores the dependence present
within the inputs which deteriorates their power to model NLP-based problems
accurately.

Therefore, recurrent neural networks and their variants i.e., long short-term
memory (LSTM), and gated recurring units (GRUs) are used to learn such long-
term dependencies. LSTM contains a series of memory cells, which are dependent
on three different gates to compute the output i.e., input, forget, and output gate.
The input gate adds the input to the current cell state by the use of two non-
linear activation functions i.e., sigmoid and tanh. Sigmoid assigns a probability
to the inputs where tanh transforms them in the range of -1 and 1. The forget
gate is responsible for the removal of undesired information from the inputs,
it achieves this by taking two different inputs i.e., ht−1, and Xt. These inputs
are multiplied with the weights and a bias is added in them. The output of the
multiplication operation is followed by a sigmoid operation that transforms these
values in the range of 0 (forget) and 1 (remember). The output gate gives the
output of the LSTM cell based on the sigmoid and tanh activation functions.

In the current setting, we make use of one hot encoding to represent DNA
sequences in the form of vectors. One hot encoded DNA sequences are passed
through the convolution, and max-pooling layers to extract the local features,
which is followed by the LSTM layer to learn long-term sequence dependencies
and a fully connected layer for classification.
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2.2 Densely Connected Neural Network Based YY1-Mediated
Chromatin Loop Predictor

The working paradigm of the proposed DCNN-YY1 predictor can be divided in
two different stages. At the first stage, pretrained k-mer embeddings are gen-
erated in an unsupervised manner using well known Word2vec model [15]. In
second stage, DCNN-YY1 utilizes pretrained k-mer embeddings and raw DNA
sequence to predict YY1-mediated chromatin loops.

The working paradigm of Word2vec algorithm is summarized in the Subsect.
2.2. Furthermore, CNNs and dense connectivity are comprehensively discussed
in Subsect. 2.2.

Word2vec. Word2vec is a two-layered neural network model that is capable to
learn associations of k-mers from the raw DNA sequence data [16]. Word2vec
takes DNA sequences as an input and transforms the sequence data into a numer-
ical vector space, where each k-mer is represented by a N-dimensional vector.
Such vectors include important characteristics related to k-mers with respect to
four unique nucleotides i.e., semantic relationships and contexts. Moreover, the
k-mers that are similar or semantically close to each other they lie closer in the
continuous vector space.

Two common methods are used in a Word2vec model for the generation of
embeddings namely, common bag of words (CBOW), and skipgram [16]. CBOW
works by predicting the target k-mer when provided with the distributed repre-
sentations of the sequence k-mers. Whereas, the skipgram model tries to predict
the context of a k-mer which is opposite to the working paradigm of CBOW
model.

We generate 7 different overlapping k-mers from range 1 to 7. Iteratively, for
each k-mer we generate 100 dimensional k-mer embeddings using CBOW model.
Based on the size of k-mer we obtain 100 dimensional vectors associated to each
unique k-mer. For instance, for 1-mer there exist 4 unique 1-mers A, C, G, T,
so we obtain 4, 100 dimensional vectors. For 2-mers we obtain 16 and for 3-mers
we obtain 64 vectors and so on. K-mer embeddings are generated separately for
enhancer and promoter sequences.

Convolutional Neural Networks and Dense Connectivity. We utilize
CNN based architecture for YY1-mediated chromatin loop prediction, “Figure 3”
shows the complete architecture of the proposed predictor. The network consists
of three 1-dimensional (1-D) convolutions, 2 dropout and 4 fully connected layers.

We generate k-mers of enhancer and promoter sequences and transform
enhancer k-mer sequences to 100 dimensional statistical vectors by taking aver-
age of k-mers pretrained vectors that are generated over enhancer sequences.
Similarly, promoter k-mer sequences are transformed to 100 dimensional vectors
by utilizing precomputed k-mer vectors over promoter sequences. Statistical vec-
tors of both sequences are concatenated to generate single 200 dimensional vec-
tor for each sample. This statistical vector is passed through 1-D convolutional
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Fig. 3. The graphical illustration of the proposed (DCNN) architecture.

layers to extract robust and meaningful features for further processing i.e., the
output size (200 × 32) remains same across each convolution due to the usage
of paddings. Each 1-D convolution layer is followed by an activation layer which
uses rectified linear unit (ReLU) as an activation function throughout the net-
work except for the last fully connected layer which utilizes Sigmoid function for
binary classification.

We further amplify the representational power of the proposed YY1-mediated
chromatin loop predictor by the use of dense connectivity that is inspired by the
concept of identity mapping or skip connections [17]. Skips connections allow
to train the network in a more efficient way. In skip connections the input of a
layer is added to the output of a layer, but in terms of dense connections [13] the
input of a layer is concatenated to the output of the layer thus offering multiple
advantages such as, less vanishing-gradient problem, better feature propagation,
and substantial reduction in the number of parameters. “Figure 3” illustrates 4
dense connections namely, C1, C2, C3, and C4 for better feature propagation
throughout the network.

2.3 Experimental Setup

The proposed predictors are implemented in Keras. Adam is used as an optimizer
with a learning rate of 0.01, and binary cross-entropy is used as the loss function.
For the experiments of this study, the DCNN model is trained only for 6 epochs
with a batch size of 32. Whereas, the hybrid model is trained for 20 epochs in
cross-validation and independent test settings. In addition, the parameters of
CNN and LSTM layers are provided in the Figs. 3, and 2.

2.4 Dataset

We utilized the datasets of DEEPYY1 [12] related to two different cell lines i.e.,
K562, and HCT116. The datasets were collected from the HiChip experiments
of Weintrub et al., [18]. As the details related to the preprocessing of the DNA
sequences are given in the study of DEEPYY1 [12], therefore we summarize
here the number of positive and negative samples in the train and test sets of
HCT116 and K562 cell lines. The datasets of both cells are well balanced in
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terms of positive and negative samples, and “Table 1” demonstrates the number
of positive and negative samples in train and test sets of HCT116 and K562.

Table 1. Statistics of benchmark datasets.

Cell Type Set +EPIs −EPIs

K562 Train 3863 3866

Test 1657 1657

HCT116 Train 2095 2097

Test 898 898

3 Evaluation

To evaluate the integrity and predictive performance of the proposed predic-
tor, following the evaluation criteria of the state-of-the-art [12], we utilized two
different measures, i.e., accuracy (ACC), and area under the receiver operating
characteristic curve (AUROC).

Accuracy (ACC) measures the proportion of correct predictions in relation
to all predictions. Area under receiver operating characteristics (AUROC) cal-
culates performance score by using true positive rate (TPR) and false positive
rate (FPR) at different thresholds, where true positive rate (TPR) gives the pro-
portion of correct predictions in predictions of positive class and false positive
rate (FPR) is the proportion of false positives among all positive predictions
(the sum of false positives and true negatives).

f(x) =

⎧
⎪⎨

⎪⎩

ACC = (TP + TN )/(TP + TN + FP + FN )
TPR = TP /(TP + FN )

FPR = FP /(TN + FP )
(1)

In the above cases, TP denotes the true positive predictions, TN shows true
negative predictions. Whereas, FP and FN refer to the false predictions related
to the positive and negative classes.

4 Results

This section demonstrates the performance of the proposed and state-of-the-art
DEEPYY1 [13] predictor using two benchmark datasets sets in 5-fold cross-
validation setting and independent test sets.
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4.1 Proposed DCNN Predictor Performance

Figure 4 shows the effect of different k-mers on the performance values of the
proposed predictor. Lower-sized k-mers yield frequent and less unique patterns in
the DNA sequences which lead to low performance of the proposed predictor i.e.,
K = 1, · · · , 3. As, K-mer size is increased the performance scores also increase,
where the performance scores are maximum at K=6, as higher k-mers lead to
unique patterns in the DNA sequences which are crucial for the generation of
discriminative sequence representations. For K=7 the performance deteriorates
due to the formation of rare patterns. Hence, the value of K=6 is selected for
further experiments and performance comparisons.

Fig. 4. Proposed predictor performance analyses at different k-mers.

4.2 Predictive Performance Analyses over K562 and HCT116

Figures 5 and 6 compare accuracy and AUROC values produced by proposed
(hybrid, and DCNN) and state-of-the-art DEEPYY1 predictors at 5-fold cross-
validation and independent test sets

Figure 5 shows that the proposed hybrid (CNN+LSTM) predictor achieves
AUROC values of 98.2% and 95.7% across K562 and HCT116 datasets. Whereas,
in terms of accuracy the proposed predictor achieves 92.9% and 88.5% across
K562 and HCT116 datasets. Overall, in comparison to the state-of-the-art
DEEPYY1 [12], the proposed predictor shows performance improvements in
terms of AUROC and ACC with the average margins of 3.02% and 5.05% across
both K5652 and HCT116 datasets, via 5-fold cross-validation. Figure 5 shows
that the proposed DCNN predictor achieves AUROC values of 94.1% and 95.4%
across K562 and HCT116. Whereas, in terms of accuracy the proposed predictor
achieves 86.5% and 87.0% across K562 and HCT116 datasets. Overall, in com-
parison to the state-of-the-art DEEPYY1 [12], the proposed predictor shows
performance improvements across AUROC and ACC with the average margin
of 1% and 1.1% across both of the datasets, via 5-fold cross-validation.
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Fig. 5. Performance comparison of the proposed and state-of-the-art predictors on two
benchmark datasets using 5-fold cross-validation.

Figure 6 shows proposed hybrid (CNN+LSTM) predictor produces 98.5%,
and 98.3% AUROC values over K562 and HCT116 independent test sets.
Whereas, in terms of accuracy the proposed hybrid predictor shows ACC val-
ues of 94.0% and 93.0%. Overall, the proposed predictor provides performance
improvements in terms of ACC and AUROC with significant margins i.e., 7.45%
and 4.65% in comparison to the state-of-the-art DEEPYY1 predictor. Figure 6
shows proposed DCNN predictor produced 94.1%, and 95.7% AUROC values
over K562 and HCT116 independent test sets. Whereas, in terms of accuracy the
proposed DCNN predictor shows ACC values of 86.1% and 88.3%. Overall, the
proposed predictor provides average performance improvements over ACC and
AUROC i.e., 2.3% and 1.15% in comparison to the state-of-the-art DEEPYY1
predictor.

Fig. 6. Performance comparison of the proposed and state-of-the-art predictors on two
independent test sets.
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4.3 Performance Analyses over Cross Cell Data

To assess the generalizability of the models over different cell lines data, we train
the models for chromatin loops in a cross-cell manner such that the models are
trained on K562 cell data and predictions are performed on second cell HCT116
data and vice versa. Table 2 demonstrates the AUROC and ACC performance
values of proposed and DEEPYY1 predictors.

The proposed hybrid predictor outperforms DEEPYY1 by a margin of 9.5%
in terms of AUROC over train-test set of K562-HCT116 and 27.1% over a train-
test set of HCT116-K562. Overall, the proposed hybrid predictor shows consis-
tent and better performance in cross-cell evaluation in terms of AUROC. Simi-
larly, in terms of accuracy, the proposed hybrid predictor outperforms DEEPYY1
by 11.0% over HCT116 test set and 25.2% over K562 test set, which shows the
generalizability power of the proposed approach.

The proposed DCNN predictor outperforms DEEPYY1 by a margin of 7.01%
in terms of AUROC over train-test set of K562-HCT116 and 22.4% over train-
test set of HCT116-K562. Overall, the proposed DCNN predictor shows con-
sistent and better performance in cross cell evaluation in terms of AUROC.
Similarly, in terms of accuracy, the proposed predictor outperforms DEEPYY1
by 6% over HCT116 test set and 23.2% over K562 test set, which shows the
generalizability power of the proposed approach.

The better performance offered by the proposed DCNN predictor is subjected
to the use of dense connectivity in the CNN, as it allows the model to learn in
a more suitable manner due to the better feature propagation in the deeper lay-
ers. In comparison, the lower performance of the DEEPYY1 is because of the 1
layer CNN which does not possess enough learning power for complex genomic
sequences, and the use of max-pool layer which often ignores very crucial infor-
mation in terms of textual data. Similarly, the proposed hybrid approach takes
in to account nucleotide composition information and learns the dependencies
of nucleotides with an incorporated LSTM which makes it superior to the other
approaches.

Table 2. Performance values of the proposed and existing predictors on the basis cross
cell line testing.

Method Training Data Testing Data Accuracy AUC

DEEP-YY1 K562 HCT116 80.0 87.9

HCT116 K562 66.0 70.1

DCNN K562 HCT116 86.0 94.1

HCT116 K562 84.2 92.5

Hybrid K562 HCT116 91.0 97.4

HCT116 K562 91.2 97.2
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5 Conclusion

This study presents two new YY1-mediated chromatin loop predictors based on
CNNs, and RNNs and dense connectivity. It illustrates the impact of different
k-mers on the predictive performance of the proposed DCNN predictor, where
6-mer lead to the best performance. The analyses shows that both the proposed
predictors are able to generalize well on similar and cross-cell datasets. It also
demonstrates that the proposed predictors offer performance superiority over the
state-of-the-art DEEPYY1. Overall the proposed predictors outperform existing
DEEPYY1 predictor with an average maximum margin of 4.65%, 7.45% in terms
of AUROC, and accuracy, across both of the datases over the independent test
sets and 5.1%, 3.2% over 5-fold validation. In terms of cross-cell evaluation, the
proposed predictors boast maximum performance enhancements of up to 9.5%
and 27.1% in terms of AUROC over HCT116 and K562 datasets. The proposed
predictors can assist in understanding the process of transcriptional regulation,
and multiple disorders which are related the YY1-mediated chromatin loops.
Furthermore, in the future, this approach can be leveraged for large-scale cellular
chromatin loops analyses and also for other chromatin loops predictions.
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Abstract. Arrhythmia is a common cardiovascular disease that can
cause sudden cardiac death. The electrocardiogram (ECG) signal is often
used to diagnose the state of the heart. However, most existing ECG diag-
nostic methods only use information from a single perspective, ignoring
the extraction of fusion information. In this paper, we propose a novel
Multi-Perspective feature Fusion Network (MPFNet) for ECG arrhyth-
mia classification. In this model, two independent feature extraction
modules are first deployed to learn one-dimensional and two-dimensional
ECG features from the original one-dimensional ECG signals and its
corresponding recurrence plots. At the same time, an interactive feature
extraction module based on bidirectional encoder-decoder is designed to
further capture the interrelationships between one-dimensional and two-
dimensional perspectives, and combine them with independent features
from two different perspectives to enhance the completeness and accuracy
of the final representation by utilizing the correlation and complemen-
tarity between perspectives. We evaluate our method on a large public
ECG dataset and the experimental results demonstrate that MPFNet
outperforms the state-of-the-art approaches.

Keywords: Arrhythmia classification · Attention mechanism ·
Bidirectional encoder-decoder · Multi-perspective

1 Introduction

Arrhythmia is a common type of cardiovascular disease, and electrocardiogram
(ECG) is usually used as one of the most important diagnostic criteria in clini-
cal practice [1]. Traditional ECG analysis is mainly subjectively judged by doc-
tors based on their own experience and knowledge. However, many subtle fea-
tures may be hidden in ECG signals that do not conform to traditional medical
knowledge and are challenging to detect with the naked eye [2]. It makes how
to quickly and accurately detect arrhythmias based on ECG a difficult task
with important clinical significance. In recent years, the advancement of com-
puter and artificial intelligence technology has opened a new era of healthcare.
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Many computer-assisted diagnostic systems based on machine learning have been
widely applied to automatic ECG analysis and related clinical decision-making,
and have achieved promising results.

Early classification of arrhythmia mainly relies on manual feature extraction
by signal processing and statistical techniques, which requires the high medical
expertise of researchers. For example, many ECG intervals are important time-
domain features that are most commonly extracted and applied [3,4]. In addition
to the waveform characteristics of the ECG structure itself, the time domain
signal characteristics can also be represented by the statistical characteristics of
the maximum value, minimum value, standard deviation, and average value over
time to realize the ECG classification [5,6]. Due to the inherent non-stationary
characteristics of ECG signals, there are also some studies using frequency-based
technology to extract time-frequency features for ECG analysis [7–9]. However,
these methods typically require sophisticated feature design and selection, which
is extremely cumbersome and highly dependent on knowledge and experience.
Therefore, it greatly affects their effectiveness and generalization.

In recent years, the development of deep learning technology provides a new
idea for the automatic classification of arrhythmia. In most existing studies, the
original one-dimensional ECG signal is usually directly used as the input of the
deep model to achieve end-to-end classification. For example, Sellami et al. [10]
adopted a CNN with a dynamic batch weighting function, which achieve high-
performance classification in both inter-patient and intra-patient paradigm. Niu
et al. [11] proposed a multi-view convolutional neural network that used sym-
bolic representations of heartbeats to automatically learn features and classify
arrhythmias. Yildirim et al. [12] used a new wavelet sequence model based on
deep bidirectional LSTM network to classify five types of heart rhythm in the
MIT-BIH arrhythmia database. Jin et al. [13] used a dual attention convolutional
long short-term memory network to detect intra-patient and inter-patient atrial
fibrillation on the MIT-BIH atrial fibrillation database. Hannun et al. [14] used
a 34-layer DNN model similar to ResNet to classify 12 types of heart rhythm,
and achieved a recognition level similar to that of cardiologists.

In addition, some studies have found that the two-dimensional processing
of ECG signals can provide more abundant potential features, and is con-
ducive to exerting the feature learning ability of deep models such as two-
dimensional convolutional neural networks. For example, Xia et al. [15] converted
one-dimensional ECG signals into two-dimensional signals through short-time
Fourier transforms and stationary wavelet transforms and then input them into
a two-dimensional CNN model for feature extraction and classification. Naz et
al. [16] converted ECG signals into two-dimensional images and then adopted
transfer learning to give full play to the advantages of classical models such
as VGG to achieve arrhythmia classification. Huang et al. [17] converted the
original ECG signals into time-frequency spectra through a short-time Fourier
transform and then fed them into a two-dimensional CNN to classify five arrhyth-
mias. In fact, the original one-dimensional ECG signals and their corresponding
two-dimensional images can be seen as different perspectives on the heart health
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status of patients during the same period. Most of the above methods only con-
sider extracting relevant features hidden in ECG data from a single perspective
without fully utilizing the complementarity between the information contained
in the two perspectives, thus limiting the comprehensiveness and accuracy of
ECG feature representation to some extent.

In order to make full use of the characteristics of one-dimensional perspec-
tive and two-dimensional perspective, we propose a novel Multi-Perspective fea-
ture Fusion Network for ECG arrhythmias classification, which fully integrates
multi-perspective features from the raw one-dimensional ECG signal and its cor-
responding two-dimensional image to effectively improve the accuracy of ECG
feature representation. The main contributions of this paper are summarized as
follows:

(1) We design two independent feature extraction modules to learn ECG
features from different perspectives in the raw one-dimensional ECG signal and
its corresponding two-dimensional image, respectively.

(2) We propose an interactive feature extraction module based on bidi-
rectional encoder-decoder to capture the interrelationships between one-
dimensional and two-dimensional ECG data, and combine them with indepen-
dent features from two different perspectives to obtain a more accurate and
comprehensive ECG representation.

The rest of this paper is organized as follows: Section 2 introduces the
methodology, while Sect. 3 presents experimental details and results. In Sect. 4,
we discuss data imbalance and interpretability issues. Finally, Sect. 5 concludes
the paper and outlines future research directions.

2 Method

As shown in Fig. 1, the overall architecture of MPFNet consists of four com-
ponents. The one-dimensional perspective feature extraction module and the
two-dimensional perspective feature extraction module extract ECG features
from the original one-dimensional ECG signals and their corresponding two-
dimensional spectral images. Moreover, the interaction feature extraction mod-
ule captures the interaction relationship between one-dimensional and two-
dimensional perspective features through an improved Transformer based on a
bidirectional encoder-decoder structure. Finally, the independent features from
the two perspectives are combined with their interactive features and fed into
the classification module to obtain the final classification results. The detailed
structure of each module is described below.

2.1 One-Dimensional Perspective Feature Extraction Module

We first use a 1D-CNN to convert the original one-dimensional ECG signal into
the initial one-dimensional input embedding Xs. Then, a Conv BiLSTM network
is applied to capture a one-dimensional perspective ECG feature. Specifically,
the initial one-dimensional input embedding Xs will be sequentially fed into five
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Fig. 1. The overall architecture of MPFNet model for ECG arrhythmia classification

Double Conv blocks to extract corresponding spatial features. The Double Conv
block consists of a two-tier 1D-CNN module with a batch normalization layer
and a LeakyReLU activation layer in between. The LeakyReLU and MaxPooing
layers follow the second convolution layer. Then, four stacked BiLSTM layers are
employed to learn the relevant temporal features. Finally, a ReLU and a Layer-
Norm followed by a full connection layer are used to obtain the one-dimensional
perspective feature vector Gs.

2.2 Two-Dimensional Perspective Feature Extraction Module

To facilitate the extraction of two-dimensional perspective features, we first con-
vert the original one-dimensional ECG signal into the corresponding recurrence
plot (RP) [18]. Let q (t) ∈ Rd be a time series, the recurrence plot can be defined
as equation (1).

RP = θ(ε − ||q(i) − q(j)||) (1)

where ε is a threshold, θ is the Heaviside function, i and j are different points
in time series. Then, we utilize the HA-ResNet model, proposed in our previ-
ous work [19], to learn the hidden ECG features in two-dimensional RP images.
Specifically, in the HA-ResNet model, an embedding block consisting of a 2D
convolutional layer followed by a BatchNorm layer, a ReLU layer, and a Max-
Pooling layer is first employed to generate the initial two-dimensional input
embedding Xd of the RP image. After that, Xd will be fed into four hidden atten-
tion modules (HAMs) with different parameters to extract the deep spatiotem-
poral features. Each HAM contains a residual block and a bi-directional Con-
vLSTM(BConvLSTM) block. We adopt the Squeeze-and-Excitation(SE) block
to give different weights to different channels of the feature maps. After the
SE block feature extraction, we begin to focus on timing-dependent features of
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ECG signals. So, we use BConvLSTM to consider the data dependency of the
two directions. Finally, the deep feature representation is sequentially input to an
average pooling layer to obtain the two-dimensional perspective feature vector
Gd.

2.3 Interactive Feature Extraction Module

To better integrate the ECG features learned above, inspired by Bert [20],
we design an interactive feature extraction module based on an improved
Transformer, which utilizes a bidirectional encoder-decoder network to capture
the bidirectional interaction relationships between one-dimensional and two-
dimensional perspective features. Specifically, the bidirectional encoder-decoder
consists of two structurally identical parts (a forward association extractor and
a backward association extractor). Take the forward association extractor as an
example, the encoder part consists of three identical encoder blocks, each con-
sisting of a 1D CNN layer and a GLU layer (as shown in Fig. 2(c)). This structure
can ensure feature extraction and avoid the overfitting phenomenon caused by
the high complexity of the model. The decoder part composes of three iden-
tical decoder blocks, each of which mainly includes a multi-head self-attention
module, a dropout layer, a residual connection layer, and a feedforward neural
network (as shown in Fig. 2(b)).

We first take the one-dimensional embedding vector Xs and the two-
dimensional embedding vector Xd as the encoder and decoder inputs of the
forward association extractor, respectively, and learn the forward association
feature Gfwd from one-dimensional to two-dimensional perspectives. Similarly,
we take the two-dimensional embedding vector Xd and one-dimensional embed-
ding vector Xs as the encoder and decoder inputs of the backward association
extractor, respectively, to obtain the backward association feature Gbwd from
the two-dimensional perspective to the one-dimensional perspective. Finally, we
splice forward and backward correlation features to get the final interaction fea-
ture Ginter.

2.4 Arrhythmia Classification Module

Finally, the one-dimensional and two-dimensional perspective features and their
interactive features are concatenated and input into a fully connected layer with
a Softmax activation function to generate the corresponding classification result
Ŷ , as shown in (2).

Ŷ = δ(Wout[Gs;Ginter;Gd] + bout) (2)

where δ is the Softmax function, Wout and bout is the learnable parameter, Ŷ is
the predicted label.
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3 Experiments and Results

3.1 Data Description

We collect experimental data from a large ECG dataset published by Zheng et
al. [21], which includes 12-lead ECG signals with a high sampling rate of 500 Hz
for 10,646 individual subjects. We first filter out the invalid (only containing
zero values) or incomplete (missing lead values) recordings and exclude four cat-
egories of arrhythmia signals (AT, AVNRT, AVRT, and SAAWR) with too small
a sample size. The final dataset included 438 atrial flaps(AF), 1,780 atrial fibrilla-
tion(AFIB), 397 sinusoidal irregular rhythms(SI), 3,888 sinus bradycardia(SB),
1,825 sinus rhythm(SR), 1,564 sinus tachycardia(ST), and 544 supracentricular
tachycardia(SVT), for a total of 10,436 ECG records.

Fig. 2. Overview of the two-dimensional perspective feature extraction module

3.2 Experimental Setting

In our study, all the methods are implemented in Python 3.6.0 with Keras 2.2.2
and trained by Adam optimizer with a learning rate 0.0001. We conduct the
experiments on a server with Intel(R) Xeon(R) Gold 6,230 CPU @2.10 GHz,
126 GB memory, and six GeForce RTX cards. We train each model by 10-
fold cross-validation to enhance the generalization performance of models. The
microaverage Accuracy, Precision, Recall, and F1 Score are used to evaluate the
performance of our methods. Adasyn is only applied to the training set during
each fold to address the data imbalance issue without compromising the test set.
For all the methods, we repeatedly conduct experiments ten times and finally
report the mean evaluation metrics.
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3.3 Baseline Method

CNN+LSTM [22]: It mainly comprises six convolution layers and a 128-unit
LSTM block is included in the model for sequential learning. This model effi-
ciently captures the ECG signal’s local and global features.

HIT [7]: It utilizes a directed acyclic graph based on Homeomorphically Irre-
ducible Tree (HIT) for feature generation and maximum absolute pooling for
signal decomposition. Finally, they use SVM to classify arrhythmia.

SVM [5]: It proposes the fusion algorithm of fractional-Fourier-transform and
two-event related moving-averages to detect R, P, and T peaks and then extract
different features in ECG data, such as PR, and RT interval, and finally use
SVM for classification.

ResNet50+Logistic Regression [23]: It transforms ECG signals into wavelet
transform images and ECG grayscale images for fine-tuning the pre-trained
ResNet-50 model. Logistic regression is employed as meta-learners for training
using the stacking integration approach.

3.4 Performance Comparison with Baselines

Table 1 presents the performance comparison results of our proposed MPFNet
with other baselines. It can be observed that our method achieves the best per-
formance compared to the baselines, with an F1 Score of 94.2%. The main reason
is that our method fully combines the original one-dimensional signal from the
electrocardiogram and the relevant features of the two-dimensional image to
effectively improve the integrity of the patient’s electrocardiogram representa-
tion, thereby enhancing the classification ability of the model. In contrast, several
other comparison methods based on single perspective ECG features are signifi-
cantly inferior to our method. Among them, the F1 Score of the three methods
(SVM, HIT, and CNN+LSTM) that only consider the one-dimensional perspec-
tive features in the original ECG signals do not exceed 86%, which is more than
8.9% lower than that of our method. HA-ResNet+RP and ResNet50+Logistic
Regression achieve relatively better classification performance by using two-
dimensional perspective features in ECG images. Especially for the latter, it
combines the two-dimensional perspective features from multiple images (wavelet
transform images and ECG grayscale images) converted from the original ECG
signals and obtains an F1 Score of 93.6%, which is second only to our method.
This to some extent indicates that the two-dimensional transformation of ECG
signals can indeed improve the richness of feature information in ECG data.

3.5 Ablation Experiments

To further investigate the impact of various modules in our method on the final
classification performance, we compare MPFNet with its several variants.

MPFNet (only 1d): It is a model obtained by removing the interactive fea-
ture extraction module and the two-dimensional perspective feature extraction
module from our MPFNet.
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Table 1. Performance comparison between mpfnet and existing advanced methods

Methods Acc(std) Precision(std) Recall(std) F1 Score(std)

CNN+LSTM [22] 92.2(0.006)% 80.3(0.007)% 80.2(0.006)% 80.2(0.003)%

HIT [7] 93.0(0.02)% 90.2(0.01)% 81.0(0.02)% 85.3(0.01)%

SVM [5] 82.7(0.05)% 78.0(0.02)% 80.2(0.05)% 80.1(0.03)%

HA-ResNet+RP [19] 88.2(0.01)% 87.6(0.04)% 88.2(0.02)% 88.0(0.007)%

ResNet50+Logistic Regression [23] 93.9(0.006)% 93.7(0.007)% 94.0(0.006)% 93.6(0.003)%

MPFNet 94.3(0.002)% 94.0(0.003)% 94.3(0.01)% 94.2(0.02)%

MPFNet (only 2d): It is a model obtained by removing the interactive fea-
ture extraction module and the one-dimensional perspective feature extraction
module from our MPFNet.

MPFNet (only inter): It is a model obtained by removing the one-dimensional
perspective feature extraction module and the two-dimensional perspective fea-
ture extraction module while only retaining the interactive feature extraction
module.

MPFNet (no inter): It is a model obtained by removing the interactive feature
extraction module from MPFNet.

From the results in Fig. 3, it can be seen that the two variant models
MPFNet(only 1d) and MPFNet(only 2d) that only use a single perspective fea-
ture perform relatively poorly, and their performance are significantly lower than
that of other models which combine two perspectives of ECG features. It fully
proves that integrating features from one-dimensional and two-dimensional per-
spectives can achieve effective complementarity, thereby improving the accu-
racy of patient ECG representation. MPFNet (only inter) directly utilizes the
interactive feature extraction module to learn the interrelationships between
one-dimensional and two-dimensional perspective features and achieves multi-
perspective feature fusion representation. Therefore, its performance is signifi-
cantly superior to the above two variant models that only use single perspec-
tive features. However, compared to MPFNet, it lacks independent extraction
modules for one-dimensional and two-dimensional perspective features, which to
some extent reduces its ability to capture the specificity of corresponding per-
spective features, thus affecting the final classification performance. In addition,
when we retain the feature extraction modules for one-dimensional and two-
dimensional perspectives and remove the interactive feature extraction mod-
ule, the performance of MPFNet (no inter) also shows a significant decrease
compared to MPFNet. This also strongly demonstrates the important role of
extracting interactive features between different perspectives in improving the
effectiveness of feature fusion representation.
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Fig. 3. Experimental results of MPFNet and its variants

4 Discussion

4.1 Comparative Analysis of Imbalance Processing Methods

In this section, we select four representative imbalance processing methods (class
weight adjustment [24], Adasyn [25], Smote [26], Facolloss [27]) and analyze the
impact of different imbalance processing methods on the performance of our
model. The experimental results are shown in Fig. 4.

We can see from the figure that not all imbalance processing methods can
have a positive impact on the final performance of the model. For instance, self-
defined weight and Facolloss do not exhibit promising results for this study and
even reduce the overall performance. On the contrary, after data synthesis using

Fig. 4. Results of different imbalance processing methods
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Smote and Adasyn, the performance of the model in terms of all metrics shows a
significant improvement. Among them, Adasyn brings the greatest performance
increase. Therefore, in all performance evaluation experiments in this paper, we
ultimately choose it to alleviate the problem of data imbalance.

4.2 Visualization Analysis

To further demonstrate the effectiveness of our method in feature representation,
we used the t-distributed random neighborhood embedding (t-SNE) [28] to visu-
alize the feature representations of data samples obtained by HA-ResNet and
MPFNet, respectively. As shown in Fig. 5, the points with different colors repre-
sent different categories of data samples. From the results of the t-SNE diagrams,
it can be seen that our method can more clearly distinguish samples of different
categories and make samples of the same class gather relatively closely. This
fully proves that MPFNet can indeed enhance the effectiveness of ECG feature
representation by utilizing the complementarity and fusion of multi-perspective
features.

Fig. 5. t-SNE visualization; 0–6 represents atrial flutter (orange), atrial fibrillation
(yellow), sinus bradycardia (green), sinusoidal irregular rhythm (dark green), sinus
rhythm (blue), sinus tachycardia (purple), and supracentral tachycardia (pink)
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5 Conclusion

In this model, while extracting independent perspective features from the origi-
nal one-dimensional ECG signal and two-dimensional ECG image, we also design
an interactive feature extraction module to further capture the interrelationships
between different perspectives and achieve effective fusion of multi-perspective
features. In this way, it fully utilizes the complementarity between different per-
spectives to enhance the integrity and accuracy of ECG feature representation,
thereby effectively improving the model’s ability to classify arrhythmia. The
experimental results demonstrate the effectiveness of our method. In the future,
we will research further to improve the classification performance by fusing more
perspectives of information or knowledge into the embedding representation of
heartbeat.
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Abstract. Circular RNA (circRNA) is an RNA molecule different from linear
RNA with covalently closed loop structure. CircRNAs can act as sponging miR-
NAs and can interact with RNA binding protein. Previous studies have revealed
that circRNAs play important role in the development of different diseases. The
biological functions of circRNAs can be investigated with the help of circRNA-
protein interaction. Due to scarce circRNA data, long circRNA sequences and the
sparsely distributed binding sites on circRNAs,much fewer endeavors are found in
studying the circRNA-protein interaction compared to interaction between linear
RNA and protein. With the increase in experimental data on circRNA, machine
learning methods are widely used in recent times for predicting the circRNA-
protein interaction. The existing methods either use RNA sequence or protein
sequence for predicting the binding sites. In this paper, we present a new method
PCPI (Predicting CircRNA and Protein Interaction) to predict the interaction
between circRNA and protein using support vector machine (SVM) classifier. We
have used both the RNA and protein sequences to predict their interaction. The
circRNA sequences were converted in pseudo peptide sequences based on codon
translation. The pseudo peptide and the protein sequences were classified based
on dipole moments and the volume of the side chains. The 3-mers of the classified
sequences were used as features for training the model. Several machine learn-
ing model were used for classification. Comparing the performances, we selected
SVM classifier for predicting circRNA-protein interaction. Our method achieved
93% prediction accuracy.
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1 Introduction

Circular RNA (circRNA) is an RNAmolecule different from linear RNAwith covalently
closed loop structure produced by joining a downstream 3′ splice donor site and an
upstream 5′ splice acceptor site [1–3]. CircRNAs are more stable than linear RNAs and
conserved across species [4]. They can act as spongingmiRNAs [5] and can interact with
RNA binding protein [6]. Several studies have identified that circRNAs play important
role in the development of different diseases [7–13]. The functions of majority of the
identified circRNAs are unknown. The study of interaction between circRNAand protein
is helpful in exploring the biological functions of the circRNAs [14, 15].

Several computational methods have been developed for predicting the RNA-protein
interaction based on high throughput sequencing data. For example, RBPgroup is a
soft-clustering method to group RNA binding proteins that bind to same RNAs based
on CLIP-seq data [16]. Another approach is used to identify regulatory interactions
between circRNAs and protein through cross-linking and immunoprecipitation followed
by CLIP-seq data [17]. Machine learning methods are also used for predicting the RNA-
protein interactions by large scale experimental data [18]. So far developed methods
for the prediction of RNA-protein interactions can be classified into two categories:
identification of binding sites in RNA chain and protein chain respectively. A large
number of studies perform prediction in protein domain utilizing the abundant domain
knowledge of protein databases [19–22]. The prediction in the RNA domain is relatively
difficult due to limited information resources of RNA sequences and a few efforts have
been made in RNA domain for predicting RNA-protein interactions [23, 24]. Instead of
linear RNA our focus is on circRNA-protein interaction prediction. Compared to linear
RNA-protein interaction, much fewer studies are conducted to predict the binding sites
on circRNAs [25, 26]. The reasons behind this are scarce circRNA data, long circRNA
sequences and the sparsely distributed binding sites.

RNA binding proteins are involved in generation [27], post transcriptional regu-
lation [28], and functional execution [29] of circRNAs. Several previous studies have
revealed that the circRNA-protein interaction has an important impact on disease devel-
opment and may be potential biomarkers for different diseases [30–33]. Therefore,
predicting circRNA-protein interaction is of great interest. Gradually, the circRNA
research is drawing more attention and the experimental data on circRNA are increas-
ing. There is a circRNA-protein interaction database CircInteractome [29] which gath-
ered RBP/miRNA-binding sites on human circRNAs. Due to the availability of data,
machine/deep learning methods are being used in predicting circRNA-protein interac-
tions. CRIP is a deep learning method which predicts the circRNA-RBP binding sites
using the RNA sequences by a hybrid convolution neural networks and recurrent neural
networks [34]. PASSION [25] is anothermethod for identifying the binding sites ofRBPs
on circRNAs which combines several statistical sequence features and selects important
features by feature selectionmethods to improve the prediction accuracy. GraphProt [35]
learns from the secondary structure of proteins and uses SVM for predicting binding
sites and affinity of RBPs. RNAcommender [36] applies the recommender system to
predict RBP-RNA interactions utilizing the protein domain composition and the RNA
predicted secondary structure. Deep-Bind is a deep learning method which uses convo-
lutional neural network (CNN) to predict DNA and RNA binding proteins and achieves
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better performance [37]. iDeepE is another deep learning method and it uses the global
CNN to predict the binding sites utilizing the RNA sequences [38]. DeCban predicts
the circRNA-RBP interaction sites by a hybrid double embeddings sequence represen-
tation scheme and a cross-branch attention neural network [39]. CRBPDL predicts the
circRNA-RBP interaction sites by an ensemble neural network approach [40]. The above
mentioned methods either use RNA sequences or protein sequences. But none of these
methods use both RNA and protein sequences for predicting the interactions.

In this paper, we developed a new method PCPI (predicting circRNA and protein
interaction) using SVM algorithm to predict the interaction between circRNA and pro-
tein. The existingmethods for predicting the binding sites on circRNAsuse only circRNA
sequences and predicted whether there is binding sites on the circRNA or not. In our
method, we utilized both circRNA and protein sequences and predicted whether the
circRNA and protein sequences are interacted with a specified probability of interac-
tion. The alternative representation of the RNA and protein sequences were adopted for
feature generation. The amino acid sequences of protein were converted into 7 letters
sequences according to the 7 classes based on dipole moments and the volume of the side
chains. The circRNAsequenceswere represented as pseudo peptide sequences. Then, the
pseudo peptide sequences were further converted as 8 letters (7 amino acid classes plus
1 stop codon) sequences. The 3-mers of the 7 letters and 8 letters sequences were used as
features for training themodel. Several machine learning algorithmswere used and com-
pared their prediction performances. Finally, we selected SVM algorithm for predicting
the circRNA-protein interaction utilizing both circRNA and protein sequences.

2 Methodology

2.1 Data Description

To assess the effectiveness of our method PCPI, we collected circRNA-protein interac-
tion data from the circinteractome (https://circinteractome.nia.nih.gov/) database [29].
As our model is based on sequence information and the sequence similarity may produce
incorrect interaction prediction, we removed the redundant sequences by CD-Hit [41]
with the threshold similarity parameter 0.9. After removing the redundant sequences,
we got a total of 29623 circRNAs interacted with 35 proteins. We considered 29623
interactions with 29623 circRNAs and 35 proteins as positive samples. Then, with the
29623 circRNAs and 35 proteins, we randomly selected 29622 interactions as negative
samples in such a way that the same interaction in positive sample was not selected as
negative sample. Finally, we got a total 29623 + 29622 = 59245 interactions with the
positive-to-negative interaction ratio 1:1. We used 41471 (70%) interactions for training
and 17774 (30%) interactions for testing the model. The circRNA and protein sequences
were downloaded from circbase (http://circbase.org/) and UniPort (https://www.uniprot.
org/) databases respectively.

2.2 Feature Generation

The amino acids of the protein sequences were classified according to dipole moments
and the volume of the side chains. According to these criteria, the amino acids were

https://circinteractome.nia.nih.gov/
http://circbase.org/
https://www.uniprot.org/
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classified into 7 categories as shown in Table 1. The 20 letter amino acids sequences
were then converted into 7 letter sequences. Then, 3-mers of the 7 letter sequences were
generated. It produced the 7 × 7 × 7 = 343 all possible 3-mers. A total of 343 features
were used to encode a protein. The frequencies of these 343 features were used as value
of the features.

Table 1. Classification of amino acid sequences.

Category Symbol Short Name Full Name

1 A, G, V ala, gly, val Alanine, Glycine, Valine

2 I, L, F, P ile, leu, phe, pro Isoleucine, Leucine, Phenylalanine, Proline

3 Y, M, T, S tyr, met, thr, ser Tyrosine, Methionine, Threonine, Serine

4 H, N, Q, W his, asn, gln, trp Histidine, Asparagine, Glutamine, Tryptophan

5 R, K arg, lys Arginine, Lysine

6 D, E asp, glu Aspartic Acid, Glutamic Acid

7 C cys Cysteine

For each circRNA, the 4 letter nucleotide sequences were converted into 21 letter
(20 amino acids and 1 stop codon) pseudo peptides. Next, the 21 letters pseudo pep-
tide sequences were converted into 8 (7 amino acid classes plus 1 stop codon) letters
sequences. Then, 3-mers of the 8 letter sequences produced a total of 8×8×8 = 512 all
possible 3-mers. In total, 512 features were used to encode a circRNA. The frequencies
of these 512 features were used as value of the features.

2.3 Machine Learning Models

After feature generation, we used several machine learning models including Support
vector machine (SVM), the least absolute shrinkage and selection operator (LASSO),
Decision tree (DT) and Naïve Bayes (NB) for predicting circRNA-protein interaction.
Based on the prediction performance, we selected the best classification model.

2.4 Evaluation Metrics

Weused the training data to fit differentmachine learningmodels and used the test data to
evaluate the model performances. We used four evaluation metrics precision, sensitivity,
accuracy and F-measure for the evaluation of different models defined as follows.

Precision = TP

TP + FP

Sensitivity = TP

TP + FN

Accuracy = TP + TN

TP + TN + FP + FN
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F − measure = 2 ∗ precision ∗ sensitivity

precision + sensitivity

Here TP, TN, FP and FN were the number of true positives, true negatives, false
positives and false negatives respectively.

3 Results

3.1 Prediction of Interaction Using Different Models

We got a total of 855 (343 + 512) features from the alternative representation of the
circRNA and protein sequences. We counted the frequencies of the features and con-
structed the data matrix. We observed that there were zero column sums for several
columns of the data matrix which implied that for several features all the values were
zero. We deleted such type of features which resulted a total of 500 features. We used
these 500 features for training different models.

At first, we used support vector machine to predict the interaction between circRNA
and protein. In SVM, there are two types of parameter to be optimized: the accuracy
parameter C and the kernel type K. Radial basis function (RBF) kernel was used in this
study. The parameter optimization was done using grid search. A total of 5763 support
vectors were used for classification. The training and test accuracies were 93.76% and
93.52% respectively. The misclassification errors for the training and test data were
6.24% and 6.48% respectively.

Then, we used LASSO model for predicting the circRNA-protein interaction. In
LASSO model, the regression parameters are estimated by minimizing the sum of
squared residuals with the constraint that

∑k
i=1 |βi| ≤ λ, where λ > 0 is a param-

eter indicating the amount of shrinkage. The best lambda was obtained using cross
validation. The training and test accuracies were 93.22% and 93.06% respectively. The
misclassification errors were 6.78% and 6.94% for training and test data respectively.

Next, we used decision tree utilizing the tree r package for fitting decision tree model
and making prediction. The accuracy and misclassification error for training data were
92.79% and 7.21% whereas the accuracy and misclassification error for test data were
92.49% and 7.51%.

Finally, we used Naïve Bayes classifier using e1071 r package. The accuracy for the
training and test datawere 87.83%and88.02%respectivelywhereas themisclassification
error for training and test data were 12.17% and 11.98% respectively.

3.2 Comparison of Different Models’ Performance

We provided the circRNA and protein sequences as inputs in our model. Using the
alternative representation of the sequences, a total of 855 featureswere obtained.With the
frequencies of the features, we constructed the data matrix. We modified the data matrix
by deleting the columns (features) having zero column sum. To compare the performance
of the models, we used the evaluation metrics precision, sensitivity, accuracy and F-
measure. The values of the different evaluation metrics were given in Table 2.
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Table 2. Calculation of different evaluation metrics.

Model Training/Test TP FP TN FN Precision
(%)

Sensitivity
(%)

Accuracy
(%)

F-measure

SVM training 19444 1295 19440 1292 93.76 93.77 93.76 0.94

test 8309 574 8313 578 93.54 93.50 93.52 0.94

LASSO training 19198 1276 19459 1538 93.77 92.58 93.21 0.93

test 8223 570 8317 664 93.52 92.53 93.06 0.93

DT training 19752 2007 18728 984 90.78 95.25 92.79 0.93

test 8470 917 7970 417 90.23 95.31 92.49 0.93

NB training 18166 2476 18259 2570 88.01 87.61 87.83 0.88

test 7812 1055 7832 1075 88.10 87.90 88.02 0.88

From Table 2, we observed that the training and test precisions of SVM (93.76% and
93.54%) were higher than that of other models (Table 2). The sensitivities for training
and test data of DT (95.25% and 95.31%) were higher than that of other models. The
accuracies of the training and test data of SVM (93.76% and 93.52%) were greater than
that of other models. Again, SVM achieved higher F-measure (0.94) than other models.

The precision of SVM was greater than that of other models (see Fig. 1A). The sen-
sitivity of DT was higher than that of other models (see Fig. 1B). Again, SVM achieved

Fig. 1. Performance comparison of different models. (A) Precision, (B) Sensitivity, (C) Accuracy
and (D) F-measure for different models in training and test datasets.
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highest accuracy (see Fig. 1C). And SVM gained largest F-measure among all the mod-
els (see Fig. 1D). Overall, we found that SVM classifier showed better performance than
other models.

4 Discussion

CircRNAs play important role in gene regulation and development of different diseases.
The study of circRNA-protein interaction can reveal the biological functions of the
circRNAs. Several computation methods have been developed for the study of circRNA-
protein interactions. These methods mainly fall into two categories: identification of
binding sites in RNA chain and protein chain. No existing methods use both RNA
and protein sequences for predicting the interaction. We utilized both the circRNA and
protein sequences for predicting their interactions.

Different schemes are developed for the representation of biological sequences. The
sequence representation methods fall into two categories: one is feature engineering and
the other is sequence encoding. In some studies [42, 43], the k-mer frequencies of the
sequences were used as feature and the SVM and random forest models were used as
classifiers. Some other studies [37, 44, 45] used one-hot encoding for feature extraction
and deep learning methods for classification. One-hot encoding has several limitations
including low dimensional feature representation and sequence context information is
not encoded properly. With the increase in machine learning and deep learning methods,
the traditional feature extraction methods have been replaced by the sequence encoding
schemes. We used alternative representation of the circRNA and protein sequences.

The existingmethods for predicting the binding sites on circRNAs use only circRNA
sequences and predicted whether there is binding sites on the circRNA or not. In our
method, we utilized both circRNA and protein sequences and predicted whether the
circRNA and protein sequences are interacted with a specified probability of interaction.
As we used a new approach, our method is not comparable to the existing methods. We
computed the performance of our method and found that our method achieved 93%
prediction accuracy. We believe that our method will add an additional value in the
study of circRNA and protein interactions.

The limitation of our method is that there is a limited number of proteins in the
training dataset. So far, there is only one circRNA-protein interaction database named
circinteractome. After deleting redundancy, there are 29623 interactions with 29623
circRNAs and 35 proteins. The number of proteins are very limited compared to the
number of circRNAs. This is the limitation of the current method.

5 Conclusion

We developed a method PCPI to predict the interaction between circRNA and protein.
The existing methods use either RNA sequences or protein sequences to predict the
interaction. But our method PCPI used both the circRNA and protein sequences to
predict the interaction between them. Several machine learning algorithms were used
for classifying the circRNA-protein interaction. Among them, SVM performed better
than the other algorithms and we selected SVM as the classifier for our method. Our
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method gained 93% prediction accuracy. We developed an R package for our method
which is freely available at https://github.com/tofazzalh/PCPI.

Funding. This work was partly supported by the Key Research and Development Project
of Guangdong Province under grant No. 2021B0101310002, National Key Research and
Development Program of China Grant No. 2021YFF1200100, Strategic Priority CAS Project
XDB38050100, National Science Foundation of China under grant No. 62272449, the Shenzhen
Basic Research Fund under grant, No. RCYX20200714114734194, KQTD20200820113106007
and ZDSYS20220422103800001. We would also like to thank the funding support by the Youth
Innovation Promotion Association (Y2021101), CAS to Yanjie Wei.

References

1. Li, L., et al.: Comprehensive analysis of CircRNA expression Bprofiles in humans by RAISE.
Int. J. Oncol. 51, 1625–1638 (2017). https://doi.org/10.3892/ijo.2017.4162

2. Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., Kjems, J.:
The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691
(2019)

3. Li, X., Yang, L., Chen, L.L.: The biogenesis, functions, and challenges of circular RNAs.
Mol. Cell 71, 428–442 (2018)

4. Jeck, W.R., et al.: Circular RNAs are abundant, conserved, and associated with ALU repeats.
RNA 19, 141–157 (2013). https://doi.org/10.1261/rna.035667.112

5. Hansen, T.B., et al.: Natural RNA circles function as efficient microRNA sponges. Nat. 495,
384–388 (2013). https://doi.org/10.1038/nature11993

6. Hentze, M.W., Preiss, T.: Circular RNAs: splicing’s enigma variations. EMBO J. 32, 923–925
(2013). https://doi.org/10.1038/emboj.2013.53

7. Li, G.F., Li, L., Yao, Z.Q., Zhuang, S.J.: Hsa_circ_0007534/MiR-761/ZIC5 Regulatory loop
modulates the proliferation and migration of glioma cells. Biochem. Biophys. Res. Commun.
499, 765–771 (2018). https://doi.org/10.1016/j.bbrc.2018.03.219

8. Han, D., et al.: Circular RNA CircMTO1 acts as the sponge of MicroRNA-9 to suppress
hepatocellular carcinoma progression. Hepatol. 66, 1151–1164 (2017). https://doi.org/10.
1002/hep.29270

9. Huang, W.J., et al.: Silencing Circular RNA Hsa_circ_0000977 suppresses pancreatic ductal
adenocarcinoma progression by stimulating MiR-874-3p and inhibiting PLK1 expression.
Cancer Lett. 422, 70–80 (2018)

10. Chen, J., et al.: Circular RNA profile identifies CircPVT1 as a proliferative factor and prog-
nostic marker in gastric cancer. Cancer Lett. 388, 208–219 (2017). https://doi.org/10.1016/j.
canlet.2016.12.006

11. Xu, T., Wu, J., Han, P., Zhao, Z., Song, X.: Circular RNA expression profiles and features in
human tissues: a study using RNA-Seq data. BMC Genomics 18 (2017). https://doi.org/10.
1186/s12864-017-4029-3

12. Tucker, D., Zheng, W., Zhang, D.-H., Dong, X.: Circular RNA and its potential as prostate
cancer biomarkers. World J. Clin. Oncol. 11, 563–572 (2020). https://doi.org/10.5306/wjco.
v11.i8.563

13. Li, Z., Chen, Z., Hu, G.H., Jiang, Y.: Roles of circular RNA in breast cancer: present and
future. Am. J. Transl. Res. 11, 3945–3954 (2019)

14. Du, W.W., Zhang, C., Yang, W., Yong, T., Awan, F.M., Yang, B.B.: Identifying and
characterizing CircRNA-Protein interaction. Theranostics 7, 4183–4191 (2017)

https://github.com/tofazzalh/PCPI
https://doi.org/10.3892/ijo.2017.4162
https://doi.org/10.1261/rna.035667.112
https://doi.org/10.1038/nature11993
https://doi.org/10.1038/emboj.2013.53
https://doi.org/10.1016/j.bbrc.2018.03.219
https://doi.org/10.1002/hep.29270
https://doi.org/10.1016/j.canlet.2016.12.006
https://doi.org/10.1186/s12864-017-4029-3
https://doi.org/10.5306/wjco.v11.i8.563


PCPI: Prediction of circRNA and Protein Interaction 105

15. Zang, J., Lu, D., Xu, A.: The interaction of CircRNAs andRNAbinding proteins: an important
part of CircRNA maintenance and function. J. Neurosci. Res. 98, 87–97 (2020)

16. Li, Y.E., et al.: Identification of high-confidence RNA regulatory elements by combinatorial
classification of RNA-protein binding sites. Genome Biol. 18 (2017). https://doi.org/10.1186/
s13059-017-1298-8

17. Yang, Y.C.T., et al.: CLIPdb: a CLIP-Seq database for protein-RNA interactions. BMC
Genomics 16 (2015). https://doi.org/10.1186/s12864-015-1273-2

18. Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding MiRNA-CeRNA,
MiRNA-NcRNA and protein-RNA interaction networks from large-scale CLIP-Seq data.
Nucleic Acids Res. 42 (2014). https://doi.org/10.1093/nar/gkt1248

19. Zhao, H., Yang, Y., Zhou, Y.: Prediction of RNA binding proteins comes of age from low
resolution to high resolution. Mol. Biosyst. 9, 2417–2425 (2013)

20. Fornes, O., Garcia-Garcia, J., Bonet, J., Oliva, B.: On the use of knowledge-based potentials
for the evaluation of models of Protein-Protein, Protein-DNA, and Protein-RNA interactions.
Adv. Protein Chem. Struct. Biol. 94, 77–120 (2014). ISBN 9780128001684

21. Kauffman, C., Karypis, G.: Computational tools for Protein-DNA interactions. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2, 14–28 (2012)

22. Liu, L.A., Bradley, P.: Atomistic modeling of Protein-DNA interaction specificity: progress
and applications. Curr. Opin. Struct. Biol. 22, 397–405 (2012)

23. Choi, S., Han, K.: Predicting Protein-binding RNA nucleotides using the feature-based
removal of data redundancy and the interaction propensity of nucleotide triplets. Comput.
Biol. Med. 43, 1687–1697 (2013). https://doi.org/10.1016/j.compbiomed.2013.08.011

24. Panwar, B., Raghava, G.P.S.: Identification of Protein-Interacting nucleotides in a RNA
sequence using composition profile of Tri-Nucleotides. Genomics 105, 197–203 (2015).
https://doi.org/10.1016/j.ygeno.2015.01.005

25. Jia, C., Bi, Y., Chen, J., Leier, A., Li, F., Song, J.: PASSION: an ensemble neural network
approach for identifying the binding sites of RBPs on CircRNAs. Bioinformatics 36, 4276–
4282 (2020). https://doi.org/10.1093/bioinformatics/btaa522

26. Wang, Z., Lei, X.: Matrix factorization with neural network for predicting CircRNA-RBP
interactions. BMC Bioinform. 21 (2020). https://doi.org/10.1186/s12859-020-3514-x

27. Conn, S.J., et al.: The RNA binding protein quaking regulates formation of CircRNAs. Cell
160, 1125–1134 (2015). https://doi.org/10.1016/j.cell.2015.02.014

28. Abdelmohsen, K., et al.: Identification of HuR target circular RNAs uncovers suppression
of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017). https://doi.org/10.
1080/15476286.2017.1279788

29. Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K., Gorospe, M.:
Circinteractome: a web tool for exploring circular RNAs and their interacting proteins and
MicroRNAs. RNA Biol. 13, 34–42 (2016). https://doi.org/10.1080/15476286.2015.1128065

30. Okholm, T.L.H., et al.: Transcriptome-wide profiles of circular RNA and RNA-binding pro-
tein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
Genome Med. 12 (2020). https://doi.org/10.1186/s13073-020-00812-8

31. Zhou, H.L., Mangelsdorf, M., Liu, J.H., Zhu, L., Wu, J.Y.: RNA-binding proteins in
neurological diseases. Sci. China Life Sci. 57, 432–444 (2014)

32. Pereira, B., Billaud, M., Almeida, R.: RNA-binding proteins in cancer: old players and new
actors. Trends in Cancer 3, 506–528 (2017)

33. Prashad, S., Gopal, P.P.: RNA-binding proteins in neurological development and disease.
RNA Biol. 18, 972–987 (2021)

34. Zhang, K., Pan, X., Yang, Y., Shen, H.: Bin CRIP: predicting CircRNA-RBP-binding sites
using a codon-based encoding and hybrid deep neural networks. RNA 25, 1604–1615 (2019).
https://doi.org/10.1261/rna.070565.119

https://doi.org/10.1186/s13059-017-1298-8
https://doi.org/10.1186/s12864-015-1273-2
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1016/j.compbiomed.2013.08.011
https://doi.org/10.1016/j.ygeno.2015.01.005
https://doi.org/10.1093/bioinformatics/btaa522
https://doi.org/10.1186/s12859-020-3514-x
https://doi.org/10.1016/j.cell.2015.02.014
https://doi.org/10.1080/15476286.2017.1279788
https://doi.org/10.1080/15476286.2015.1128065
https://doi.org/10.1186/s13073-020-00812-8
https://doi.org/10.1261/rna.070565.119


106 Md. Tofazzal Hossain et al.

35. Maticzka, D., Lange, S.J., Costa, F., Backofen, R.: GraphProt: modeling binding preferences
of RNA-binding proteins. GenomeBiol. 15 (2014). https://doi.org/10.1186/gb-2014-15-1-r17

36. Corrado, G., Tebaldi, T., Costa, F., Frasconi, P., Passerini, A.: RNAcommender: genome-wide
recommendation of RNA-Protein interactions. Bioinformatics 32, 3627–3634 (2016). https://
doi.org/10.1093/bioinformatics/btw517

37. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities
of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
https://doi.org/10.1038/nbt.3300

38. Pan, X., Shen, H.: Bin predicting RNA-Protein binding sites and motifs through combining
local and global deep convolutional neural networks. Bioinformatics 34, 3427–3436 (2018).
https://doi.org/10.1093/bioinformatics/bty364

39. Yuan, L., Yang, Y.: DeCban: prediction of CircRNA-RBP interaction sites by using double
embeddings and cross-branch attention networks. Front. Genet. 11 (2021). https://doi.org/10.
3389/fgene.2020.632861

40. Niu, M., Zou, Q., Lin, C.: CRBPDL: identification of CircRNA-RBP interaction sites using
an ensemble neural network approach. PLoS Comput. Biol. 18 (2022). https://doi.org/10.
1371/journal.pcbi.1009798

41. Fu, L., Niu, B., Zhu, Z.,Wu, S., Li,W.: CD-HIT: accelerated for clustering the next-generation
sequencing data. Bioinformatics 28, 3150–3152 (2012). https://doi.org/10.1093/bioinform
atics/bts565

42. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information.
Proc. Natl. Acad. Sci. U.S.A. 104, 4337–4341 (2007). https://doi.org/10.1073/pnas.060787
9104

43. Muppirala, U.K., Honavar, V.G., Dobbs, D.: Predicting RNA-protein interactions using
only sequence information. BMC Bioinform. 12 (2011). https://doi.org/10.1186/1471-2105-
12-489

44. Pan, X., Shen, H.: Bin RNA-protein binding motifs mining with a new hybrid deep learning
based cross-domain knowledge integration approach. BMCBioinform. 18 (2017). https://doi.
org/10.1186/s12859-017-1561-8

45. Pan, X., Rijnbeek, P., Yan, J., Shen, H.: Bin prediction of RNA-protein sequence and structure
binding preferences using deep convolutional and recurrent neural networks. BMCGenomics
19 (2018). https://doi.org/10.1186/s12864-018-4889-1

https://doi.org/10.1186/gb-2014-15-1-r17
https://doi.org/10.1093/bioinformatics/btw517
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1093/bioinformatics/bty364
https://doi.org/10.3389/fgene.2020.632861
https://doi.org/10.1371/journal.pcbi.1009798
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1186/1471-2105-12-489
https://doi.org/10.1186/s12859-017-1561-8
https://doi.org/10.1186/s12864-018-4889-1


Radiology Report Generation via Visual
Recalibration and Context Gating-Aware

Xiaodi Hou, Guoming Sang, Zhi Liu, Xiaobo Li, and Yijia Zhang(B)

School of Information Science and Technology, Dalian Maritime University, Dalian 116026,
Liaoning, China

zhangyijia@dlmu.edu.cn

Abstract. The task of radiology report generation aims to analyze medical
images, extract key information, and then assist medical personnel in generating
detailed and accurate reports. Therefore, automatic radiology report generation
plays an important role in medical diagnosis and healthcare. However, radiol-
ogy medical data face the problems of visual and text data bias: medical images
are similar to each other, and the normal feature distribution is larger than the
abnormal feature distribution; second, the accurate location of the lesion and the
generation of accurate and coherent long text reports are important challenges.
In this paper, we propose Visual Recalibration and Context Gating-aware model
(VRCG) to alleviate visual and textual data bias for enhancing report generation.
We employ amedical visual recalibrationmodule to enhance the key lesion feature
extraction. We use the context gating-aware module to combine lesion location
and report context information to solve the problem of long-distance dependence
in diagnostic reports. Meanwhile, the context gating-aware module can identify
text fragments related to lesion descriptions, improve the model’s perception of
lesion text information, and then generate coherent, consistent medical reporting.
Extensive experiments demonstrate that our proposed model outperforms exist-
ing baseline models on a publicly available IU X-Ray dataset. The source code is
available at: https://github.com/Eleanorhxd/VRCG.

Keywords: Medical Visual Recalibration · Context Gating-aware · Report
Generation

1 Introduction

Radiology report generation has emerged as a systematic research area in medical imag-
ing technology and clinical decision-making tasks. In clinical practice, the conventional
approach of radiology report generation involves trained and experienced doctors man-
ually reviewing images and then composing detailed reports to describe their findings.
This process typically takes an average of 10 min or more for a radiologist to com-
plete a full report [1]. Moreover, with the exponential growth of medical imaging data,
the inconsistent proficiency of clinicians in editing medical diagnoses poses significant
challenges to the quality of radiology report generation [3].
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However, recent advancements in deep learning have profoundly impacted the
field of medicine and healthcare, offering innovative solutions for automated radiol-
ogy report generation. Leveraging generative models based on deep neural architectures
can automatically extract key information from images, generating accurate and con-
sistent reports. This technological breakthrough significantly enhances the efficiency
and precision of radiology report generation, thereby reducing the likelihood of human
misdiagnosis and missed diagnoses.

Most existing models [3, 7, 8] employ image captioning methods and adopt encoder
and decoder frameworks [9, 10]. Oriol et al. [4] designed amodel, Neural Image Caption
(NIC), which utilizes a Convolutional Neural Network (CNN) as an encoder to represent
image features compactly and leverages aRecurrentNeuralNetwork (RNN) for decoding
to generate corresponding text descriptions of the image. In contrast to NIC, Chen
et al. [5] incorporated patch features learned from CNN into the transformer encoder
layer to capture rich visual information in medical images. The authors utilized the
transformer decoder to align visual features with corresponding text features. Notably,
the authors designed a relational memory module to record key information during
training and ultimately integrated it into the transformer decoder. Subsequently, Chen
et al. [6] enhanced their previous work by introducing memory query and memory
response mechanisms to facilitate sufficient interaction between images and texts.

However, automatic radiology report generation still faces numerous challenges,
one of which is the issue of text and visual data bias [11]. In clinical practice, radi-
ologists often tend to describe the overall coarse-grained features of the image, with
a predominant focus on describing normal areas. The problem of text data bias arises
from the imbalanced distribution of normal and abnormal descriptions, which may lead
the model to excessively emphasize normal descriptions during training, causing it to
struggle to generate descriptions accurately specific to anomaly discovery. Additionally,
pathological or abnormal areas in radiologic images typically occupy a small portion of
the entire image, and these abnormal regions may sometimes appear somewhat blurry.
Severe visual bias issues significantly hamper the model’s ability to identify abnormal
areas accurately.

To address the above challenges, we propose a Visual Recalibration and Context
Gating-aware (VRCG) model to mitigate text and visual data bias issues. This paper
introduces a Medical Vision Recalibration module (MVR) to extract advanced features
from radiological images, thereby enhancing the representation of lesion areas. More-
over, considering the significant text data bias in radiology reports, we design a Context
Gating-aware Module (CGM) to recognize disease-specific text descriptions while cap-
turing the contextual dependencies of input sequences. Our specific contributions can
be categorized into the following three aspects:

This paper designs a Medical Vision Recalibration module (MVR) to capture rich
visual information in radiological images, which can enhance the model’s ability to
represent visual features and lesion areas.

The Context Gating-aware Module (CGM) is designed to recognize disease-specific
text descriptions, capture the contextual dependencies of input sequences, and generate
coherent and consistent medical reports.
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The experimental results show that our model has been compared with several strong
baseline models on different evaluation indicators on the widely used IU X-Ray dataset,
achieving state-of-the-art (SOTA) performance.

2 Method

Automatic report generation is a multi-modal process that combines image and text
information. This task utilizes deep learning methods to analyze and understand input
radiology medical images Img = {i1, i2, . . . , iNd } to extract key information and gen-
erate corresponding radiology medical reports Y = {y1, y2, . . . , yNr }. The Nd and Nr

represent the total of the radiology medical images and reports.
This paper proposes a Visual Recalibration and Context Gating-aware model

(VRCG) for radiology report generation, which composes a Vision Features Extractor
(VFE), aMedical Vision Recalibration module (MVR), a Context Gating-awareModule
(CGM) and a Report Generator (RG). The overall architecture is shown in Fig. 1.
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2.1 Visual Features Extractor

The visual features extractor employs the Medical Visual Embedding module (MVE)
and theMedical Visual Recalibration module (MVR) to focus on the lesion position in
the medical images and enhance the fine-grained extraction of abnormal visual features,
which could alleviate the data bias phenomenon.

Medical Visual Embedding
The MVE takes a patient’s anteroposterior and lateral radiological medical images
Img = {i1m, i2m} ∈ R

D as input, and the size of each image is 3 × 224 × 224. Fol-
lowing previous work [5], we use the pre-trained model ResNet-101 [12] as the encoder
of the CNN to extract the visual features of radiological medical images. Typically, the
MVE extracts anteroposterior and lateral visual features v1 from the last convolutional
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layer. Consequently, we acquire a series of visual feature representations, denoted as
V = {

v1, v2, . . . , vNd

} ∈ R
d , where vNd represents extracted visual features and d is

the size of the feature vector. The visual embedding module’s process is as follows:

V = {
v1, v2, . . . , vNd

} = fvem(Img) (1)

where fvem(·) denotes the visual embedding module.

Medical Visual Recalibration
After MVE, we extract a series of visual features of radiological medical images. Then,
we introduce a Medical Visual Recalibration module (MVR) to strengthen the model’s
ability to perceive key structures and lesion locations in medical images and improve
the accuracy and reliability of the visual features on lesion locations.

Due to data bias and the unbalanced distribution of features in medical images,
normal visual features occupy most areas of medical images, and abnormal parts only
account for a small number. As the network depth becomes deeper, low-level image
features are easily erased by too-deep layers. However, residual blocks introduce skip
connections, allowing the network to pass input features to subsequent layers when
needed directly. This mechanism extends the representation capability of the network,
enabling the network to capture low-level features and high-level semantic information
simultaneously. Therefore, MVR introduces residual blocks to capture key information
in medical images for more accurate diagnosis and analysis of radiological medical
images. We can effectively capture the positive visual features information in medical
images with the residual block, thus improving the model’s performance.

We feed the obtained visual features V = {
v1, v2, . . . , vNd

}
to the residual module.

The calculation process is as follows:

U = {
u1, u2, . . . , uNd

} = ReLu(f res(V ))# (2)

where fres(·) denotes the residual function, which is used to learn radiological visual
feature information.

In addition, MVR also adopts channel attention and spatial attention to enhance the
model’s ability to extract abnormal features, which can adaptively increase the attention
to key features in the input visual features. Channel attention can adaptively learn the
lesion visual features of visual features to better capture the key information related to
diseases in medical images and improve the expressiveness and discrimination of visual
features. For the channel attention module, we send the visual features obtained through
the residual module to the channel attention module. The process is as follows:

U
∧

= AvgPool(U )# (3)

X
∧

= Fc2(Fc1(U
∧

))# (4)

X = σ
(
X
∧)

# (5)

where AvgPool(·) represents the adaptive average pooling operation, Fc(·) represents
the full connection, and σ(·) represents the sigmoid activation.
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Spatial attention can preserve the spatial structure information of the original image,
can better utilize the local spatial information in the image, and preserve the structural
details and context information. For the spatial attention module, we send the visual
features obtained through the residualmodule to the spatial attentionmodule.Theprocess
is as follows:

Y = Conv3×3(U )# (6)

where Conv3×3(·) denotes the 3 × 3 convolution.
The joint action of the attention mechanism helps to capture the abnormal visual

features in medical images accurately.

H = V ⊕ ((X ⊕ Y ) ⊗ U )# (7)

where ⊗ is element-wise product, ⊕ is element-wise addition. The H =
{h1, h2, . . . , hNd } ∈ R

d .

2.2 Report Generator

The report generator is composed of a standard transformer encoder and transformer
decoder [13]. In the transformer decoder, we use the Context Gating-aware Module
(CGM) to combine lesion characteristics and key information of the report context to
solve the problems of long-distance dependence and data bias in generating reports.

Transformer Encoder
The inputmedical image data are further encoded and feature extracted through the trans-
former encoder to provide strong support for radiological analysis and diagnosis. Each
encoding layer consists of a multi-head self-attention mechanism and a fully connected
feed-forward network. The multi-head self-attention mechanism captures key disease
information of visual features by calculating the internal structure of input features.

We feed the enhanced visual features H = {h1, h2, . . . , hNd } into the encoder. First,
the input visual feature sequence is linearly transformed to obtain queryQ ∈ R

Gq×dk ,
key K ∈ R

Gk×dk and value V ∈ R
Gk×dk .

Q = HWqK = HWkV = HWv# (8)

where Wq,Wk ,Wv are learnable weight matrices.
Next, we calculate the attention score for each attention head and then use the atten-

tion score to perform a weighted summation to obtain the output of each attention head.
The calculation process is as follows:

Atti(Q,K) = softmax
(
QKT√
dk

)
# (9)

head i = AttiV# (10)

where softmax is used to normalize the attention score to a probability distribution, and√
dk is the scaling factor.
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Finally, the output of all attention heads is concatenated to obtain the final output of
multi-head self-attention.

M = MHA(head1, head2, . . . , headh)WO# (11)

where WO is the learnable weight matrix.
After the multi-head self-attention mechanism, the final output is obtained through

residual connection and layer normalization operations:

V
′ = LN (Res(M + V ))# (12)

where Res(·) and LN (·) denotes residual connection and layer normalization operations,
respectively.

Transformer Decoder
We employ the transformer decoder to generate medical reports. At the decoder level,
we introduce CGM to capture positive disease contextual information in medical report
sequences to improve the model’s ability to extract lesion information. Therefore, the
decoding process is expressed as:

yt = fd
(
v

′
1, ..., v

′
Nd

,CGM
(
y1, . . . , yNr−1

))
# (13)

where fd (·) denotes the transformer decoder. The detailed process of CGM is introduced
in the following subsections.

After the above process, the entire report generation process can bewritten as follows:

p(Y |Img) = ∏
t=1 p

(
yNr |y1, y2, . . . , yNr−1, Img

)
# (14)

where Y = {y1, y2, . . . , yNr } is the target sequence.
Context Gating-Aware Module
We employ a Context Gating-aware Module (CGM) in the decoder layer to enhance the
transformer encoder’s ability to perceive contextual information. CGM could alleviate
the text data bias and the long-distance dependency problem in text reports. The CGM
introduces information gate and state gate to solve the long text dependency problem
and capture the context information of text reports. Due to the unbalanced distribution
of lesion information, CGM can identify and correlate this information, improve the
model’s ability to extract key information about the disease (including lesion location,
shape, size, etc.,), and then generate accurate and coherent radiology medical imaging
reports.

The decoder first feeds the report word embedding to Masked Multi-Head Attention
to obtain the contextual representation of the position of each word E = {e1, . . . , eNr } in
the medical text report. After obtaining the contextual representation of each location,
it enters the CGM.

At time step t, an information gate is entered to control information flow and enhance
the importance of lesion information. The calculation process is as follows:

E = MHA(y1, . . . , yNr−1)# (15)
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El = σ(Wi · [yi, ei] + bi)# (16)

Y c = Act(N (L(Y )))# (17)

C = Y c � El# (18)

where σ(·), L(·),N (·) and� denotes sigmoid function, linear layer, normalization oper-
ation, element-wise multiplication, respectively. Y c represents the sequence obtained by
context attention, C is the context representation adjusted by information gating.

Then, the C is taken into the state gate. It is introduced to adjust the encoder state of
the current position and determine how much information about the current position is
retained. It produces an adjusted encoder state by element-wise multiplying the context
representation with the previous encoder state. The calculation process is as follows:

S = σ
(
Ws · [

yi, ci
] + bs

)
# (19)

S
′ = Y � S# (20)

where Wi, bi,Ws, bs are learnable parameters.
Finally, the output of the context gating-aware module is:

G = C ⊕ S ′ (21)

where ⊕ is element-wise addition. G is the output of the entire process at the step t.

3 Experiment Settings

This section introduces the datasets required for our experiments, evaluation metrics and
implementation details.

3.1 Datasets

IU X-Ray: We conducted experiments using the publicly available IU X-Ray dataset
[14]. IU X-Ray is a widely used medical imaging dataset collected by Indiana Univer-
sity, comprising 7,470 medical radiological images and 3,955 related medical reports.
Within this dataset, most patients have provided both a medical report and lateral and
anteroposterior medical images. Each medical image contains a diverse range of disease
categories and information, including pneumonia, tuberculosis, pneumothorax, abnor-
mal lung texture, and more. The medical reports consist of findings, impressions and
other relevant details.

To adhere to the settings of our previous work, the proposed model VRCG randomly
divides the IU X-Ray dataset into training, testing, and validation sets, with proportions
of 70%, 20%, and 10%, respectively.
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3.2 Evaluation Metrics

Toassess the quality of the reports generated by the proposedVRCGmodel,we employed
several natural language generation (NLG) indicators for evaluation, including BLEU
[15],METEOR [16], andROUGE-L [17]. BLEU encompassesmultiple variants, includ-
ing BLEU-1, BLEU-2, BLEU-3, and BLEU-4, which are utilized to gauge the sim-
ilarity between the generated medical reports and the ground truth. METEOR evalu-
ates the resemblance between the generated text and the reference text by calculating
matches at both theword and phrase levels. ROUGE-Lmeasures the quality of automatic
summarization and text generation tasks.

3.3 Implementation Details

To ensure consistency between our proposed VRCG model and previous methods, we
employed two radiological medical images as inputs to generate reports on the IU X-
Ray dataset. For the radiology visual feature extraction, we utilized the pre-trained
ResNet-101 model as the backbone CNN model. MVR extracted each patch feature
with a dimensionality of d = 2048. As for the report generator module, we adopted
a transformer architecture with three layers and eight attention heads as the encoder-
decoder. During the training process, we employed the Adam [18] optimizer and utilized
the cross-entropy loss function to optimize our proposed model VRCG. The visual
extractor parameters were set to 5e − 5, while the other parameters were set to 1e − 4.

4 Results and Analysis

4.1 Performance Comparison with Other Models

We compared our experimental results with the previous radiology report generation
models on the IU X-Ray dataset. As shown in Table 1, our proposed model VRCG
achieved state-of-the-art (SOTA) performance on the IU X-Ray dataset. According to
Table 1, when compared to the PPKED model, our model outperformed it in several
key metrics. Specifically, BLEU-1, BLEU-2, BLEU-3, BLEU-4 are increased by 1.6%,
2.8%, 1.9%, and 1.2%, respectively. These results indicate that our model effectively
filters out irrelevant information and places more emphasis on generating accurate and
comprehensive disease descriptions.

Furthermore, our model shows improvement in other evaluation indicators as well.
The METEOR score is 2.8% higher than that of PPKED, suggesting that our model
excels in generating radiology medical reports that are both accurate and fluent. The
ROUGE-L evaluation metric also reveal a 3.5% improvement for VRCG over PPKED,
demonstrating that our model has made significant progress in generating coherent dis-
ease descriptions. In summary, our proposed VRCG model exhibits advancements in
capturing longer phrases, and enhancing accuracy, fluency, and coherence in disease
descriptions.
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Table 1. Comparison of the proposed model with previous studies on the test sets of IU X-Ray
with respect to NLG metrics.

MODEL BL-1 BL-2 BL-3 BL-4 MET RG-L

NIC* [4] 0.216 0.124 0.087 0.066 – 0.306–

SA&T* [20] 0.339 0.251 0.168 0.118 – 0.323

HRGR [2] 0.438 0.298 0.208 0.151 – 0.322

COATT [3] 0.455 0.288 0.205 0.154 – 0.369

R2Gen [5] 0.470 0.304 0.219 0.165 0.187 0.371

CMN [6] 0.475 0.309 0.222 0.170 0.191 0.375

PPKED [9] 0.483 0.315 0.224 0.168 0.190 0.376

VRCG 0.499 0.343 0.243 0.180 0.218 0.411

The best values are highlighted in bold.

4.2 Ablation Experiments

To verify the effectiveness of the medical visual recalibration and context gating-aware
module, we conducted experiments on each module on the dataset IU X-Ray.

Effect of the Medical Visual Recalibration Module
To verify the effect of the medical visual recalibration module, we only add the visual
recalibration module to the base model and use BLEU, METEOR and ROUGE-L to
evaluate the module. It can be seen from Table 2 that after adding the medical visual
recalibration module, BLEU-1, BLEU-2, BLEU-3, and BLEU-4 are 9.6%, 7.7%, 6.4%,
and 4.5% higher than BASE, respectively. In addition, METEOR and ROUGE-L are
3.4% and 2.6% higher than BASE, respectively. Among them, BLEU-4 reaches the
highest, which shows that the medical visual recalibration module can capture abnormal
findings in radiologymedical images, strengthen the visual features of abnormal findings,
and alleviate data bias.

Effect of the Context Gating-Aware Module
To prove the effect of the context gating-aware module, we removed the medical visual
recalibration module from the model and only included CGM experiments on the IU X-
Ray dataset. The results in Table 2 clearly demonstrate the effectiveness of incorporating
the context gating-aware module. With the inclusion of this module, we observe notable
improvements across various metrics. Specifically, BLEU-1, BLEU-2, BLEU-3, and
BLEU-4 show increases of 7.9%, 6.9%, 5.4%, and 3.9%, respectively. Furthermore,
METEOR is higher 5.5% and ROUGE-L is higher by 5% than BASE. The experimental
results show that the CGM module can effectively utilize the contextual information
between reports to generate coherent and consistent radiology reports.
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Table 2. Result of the ablation experiment.

MODEL BL-1 BL-2 BL-3 BL-4 MET RG-L

BASE 0.396 0.254 0.179 0.135 0.164 0.342

BASE + MVR 0.492 0.331 0.243 0.180 0.198 0.368

BASE + CGM 0.475 0.323 0.233 0.174 0.219 0.392

VRCG 0.499 0.343 0.243 0.180 0.223 0.411

The best values are highlighted in bold. The Base denotes transformer model.

Input

Transfor
-mer

CMN

VRCG

Ground 
truth

The cardiomediastinal silhouette 

is within normal limits for 

appearance. No focal areas of 

pulmonary consolidation. 

Calcified lymph XXXX are 

identified in the left infrahilar 
region. No pneumothorax. No 

pleural effusion. No acute, displaced 

rib fractures identified.

The silhouette is normal limits for 

appearance. No focal areas of 

pulmonary consolidation. No 

pneumothorax. 

The cardiomediastinal silhouette 

is within normal limits for 

appearance. No focal areas of 

pulmonary consolidation.  No 

pneumothorax. No pleural effusion. 

No acute, displaced rib fractures 

identified.

The mediastinal silhouette and 

heart pulmonary are within normal 

limits for appearance. There is no 

pleural effusion or no 

pneumothorax. There is no focal air 

space opacity to suggest a 

pneumonia. Calcified lymph XXXX 

are identified in the left infrahilar 
region.  No acute displaced rib 
fracture found. There are mild 

degenerative changes of the spine.

The lungs are clear. The heart and 
pulmonary XXXX are normal. The 

pleural spaces are clear. Mediastinal 

contours are normal. Bony overlap 

in the lung apices could obscure a 

small pulmonary nodule.

The lungs are clear. No Pleural 

effusion. The heart and pulmonary  
are normal. The pleural spaces are 

clear. 

The lungs are very clear. Heart and 
lung XXXX are normal. Pleural 

space is clear. The contour of the 

mediastinum is normal. The small 

pulmonary nodules are blurry.

The heart size is normal. The lungs 
are clear.  There is no focal airspace 

opacity.  The silhouette is normal in 

size and contour .the right upper 

lobe, the cardiomediastina no focal 

consolidation pneumothorax or 

large pleural effusion. The heart 
and mediastinum are normal. Bony 

overlap in the lung apices could 

obscure a small pulmonary nodule.

Heart size mildly to moderately 

enlarged, distal tip dual-lumen 
catheter near the caval atrial 

junction. Mild vascular 
cephalization, no definite 

interstitial changes of pulmonary 
edema, no focal alveolar 

consolidation. No pleural effusion 

XXXX demonstrated.

Mild to moderate increase in heart 
size. Mild vascular capitation, no 

definite interstitial changes of 

Pulmonary edema, no focal 

alveolar consolidation.

The cardiomediastinal silhouette is 

within normal limits for appearance. 

No focal areas of pulmonary 
consolidation.  No pneumothorax. 

No pleural effusion. No acute, 

displaced rib fractures identified.

The size of the heart is slightly to 

moderately enlarged, and there is a 

distal double lumen catheter near 

the cavoatrial junction. There is a 

certain catheter between the heart 
and the heart chamber, and there is a 

slight vascular capitation. There is 

no clear interstitial change of 

pulmonary edema and focal 

alveolar solidification. XXXX no 

pleural effusion  

Fig. 2. Examples of the generated reports

5 Case Study and Visualization

To verify the effectiveness of our proposed model, we randomly selected three examples
of generating reports on the test set, as shown in Fig. 2. We compare the proposed
VRCG model with ground truth, transformer and CMN models. In the report, the red
font indicates the organs found in the report, and the orange font indicates that it is the
same as the ground truth.

The first example shows that the report generated by VRCG is closer to the ground
truth, while the transformer model does not accurately identify “cardio medical”. It is
worth noting that VRCG can identify the key abnormal findings in medical images:
“There are mild degenerative changes of the spine”, which are not found in the other
two models. This shows that the proposed model VRCG pays more attention to anomaly
detection in medical images.
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In the second example, we can observe that the report generated by VRCG gives a
more comprehensive and detailed description of the findings in medical images than the
other two models. In addition, our model can also identify “bony overlap in the lung
apices could observe a small monetary nodule”, which is not recognized and generated
by the transformer model.

In the third example, the generated report is still more specific and accurate than the
reports of the other twomodels and can identify and generate exceptions not found in the
transformer and CMNmodels: “fatal tip dual lumen catheter near the caval atmospheric
junction”.

Through the above analysis, the proposed model VRCG in this paper can capture
lesion information and describe abnormal findings in radiologymedical images in detail.
The generated radiology medical report can consider the report context information and
accurately locate abnormal findings.

6 Future Work

In recent years, deep learning has performed well in radiology report generation. How-
ever, further research is needed in many areas, such as the interpretability of models and
data privacy protection. The radiology report generation system should provide inter-
pretable results and reasoning processes. The interpretability generation process will
help doctors and clinical teams understand and trust the reports generated by the system,
promoting their application in clinical decision-making. In addition, radiology reports
contain sensitive medical information. Researchers need to develop appropriate privacy
protection measures to ensure the safe storage, transmission and processing of medical
images and related data.

7 Conclusion

This paper proposes a novel VRCG model, which utilizes a visual recalibration mod-
ule and a context-gated perception module to address visual and text data bias issues
in radiology report generation. We designed a medical visual recalibration module to
enhance the model’s ability and capture lesion features, thereby alleviating visual bias
and improving model performance. We use a context gating-aware module to aggregate
relevant contextual parts and extract text descriptions related to lesions, which makes
the model suppress irrelevant information and alleviate the problem of text data bias.
The experimental results on the IU X-Ray dataset indicate that our proposed model
significantly exceeds other advanced baselines.

Acknowledgment. This work is supported by grant from the Natural Science Foundation of
China (No. 62072070).
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Abstract. Prokaryotic evolution is often described as the Spaghetti of
Life due to massive genome dynamics (GD) events of gene gain and loss,
resulting in different evolutionary histories for the set of genes compris-
ing the organism. These different histories, dubbed as gene trees provide
confounding signals, hampering the attempt to reconstruct the species
tree describing the main trend of evolution of the species under study.
The synteny index (SI) between a pair of genomes combines gene order
and gene content information, allowing comparison of unequal gene con-
tent genomes, together with order considerations of their common genes.
Recently, GD has been modelled as a continuous-time Markov process.
Under this formulation, the distance between genes along the chromo-
some was shown to follow a birth-death-immigration process. Using clas-
sical results from birth-death theory, we recently showed that the SI
measure is consistent under that formulation. In this work, we provide
an alternative, stand alone combinatorial proof of the same result. By
using generating function techniques we derive explicit expressions of
the system’s probabilistic dynamics in the form of rational functions of
the model parameters. This, in turn, allows us to infer analytically the
expected distances between organisms based on a transformation of their
SI. Although the expressions obtained are rather complex, we establish
additivity of this estimated evolutionary distance (a desirable property
yielding phylogenetic consistency). This approach relies on holonomic
functions and the Zeilberger Algorithm in order to establish additivity
of the transformation of SI.
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1 Introduction

The dramatic advancements in sequencing technologies have made realistic bio-
logical tasks seemed imaginary only a decade ago. Inferring the evolutionary
history of thousands of species, is among the most fundamental tasks in biology
with implications to medicine, agriculture, and more. Such a history is nd is
called a phylogeny. Leaves of that tree correspond to contemporary (i.e. extant)
species and the tree edges (or branches) represent evolutionary relationships.
Despite the impressive advancement in the extraction of such molecular data,
and of ever increasing quality, finding the underlying phylogenetic tree is still a
major challenge requiring reliable approaches for inferring the true evolutionary
distances between the species at the tips (leaves) of the tree. The tree sought
should preserve the property that the length of the path between any two organ-
isms at its leaves equals the inferred pairwise distance between these two organ-
isms. When such a tree exists, these distances are called additive, as does the
distance matrix storing them.

Modern approaches in systematics rely on statistical modelling in which a
model fitting optimally the data is sought. The challenges under this frame-
work, are both statistical, i.e. accurately modelling the data, and computational
for efficient model inference and selection from given data. In phylogenetics,
maximum likelihood seeks for a tree under which the probability of observ-
ing the given leaf sequences is maximised [8,9,12–14]. Normally, the data for
this task is taken from few ubiquitous genes, such as ribosomal genes, that
reside in every species and are immune for GD events. Such genes are typically
highly conserved by definition and hence cannot provide a strong enough sig-
nal to distinguish the shallow branches of the prokaryotic tree. Nevertheless, GD
events, gene gain in the form of horizontal gene transfer (HGT), a mechanism by
which organisms transfer genetic material not through vertical inheritance, and
gene loss, seem to provide valuable evolutionary information that can be har-
nessed for classification [7,20,23]. Approaches relying on GD are mainly divided
into gene-order-based and gene-content-based techniques. Under the gene-order-
based approach [11,24,33], two genomes are considered as permutations over the
gene set, and distance is defined as the minimal number of operations needed to
transform one genome to the other. The gene-content-based approach [10,29,30]
ignores entirely gene order, and similarity is defined as the size of the set of
shared genes. Although a statistical framework was devised for part of these
models [4,25,26,31] to the best of our knowledge no such framework accounted
for HGT.

The synteny index (SI) [1,27,28] captures both existence and locality, i.e. gene
content and order respectively, by summarising gene neighbourhoods across the
entire genome. An attractive property of the SI measure is the relaxation of
the equal gene content requirement, in which genomes are permutations of the
gene set. Under the attempt to model SI in a statistical framework, the Jump
model was defined to account for gene order variation between evolving genomes.
The Jump operation moves a gene to a random location in the genome. In the
Jump model, every gene jumps, in a Poisson process. Under that framework,
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a genome is defined as a continuous-time Markov process (CTMP) [2]. Conse-
quently, gene distance along the genome can be described as a (critical) birth-
death-immigration process. The setting poses intrinsic hurdles such as overlap-
ping neighbourhoods, non-stationarity, confounding factors, and more. There-
fore, trees were constructed from evolutionary distances inferred heuristically
based on exponential decay modelling.

In a recent paper [19] we have used classical tools for the birth-death field such
as spectral theory and orthogonal polynomials, to derive analytical expressions
for deriving the model transition probabilities and hence expected evolutionary
distances. These analytical expressions yielded model consistency - an attractive
property in systematics, implying that a measure infers accurate distances under
a given model of evolution.

In this work, we provide an alternative, standalone combinatorial deriva-
tion for the model parameter and the proof of consistency. We first define the
system in terms of a generating function, and extract transition probabilities
as a function of time since divergence. However, the complexity of the expres-
sions obtained to infer distances, could not readily imply consistency for the
SI. By showing that these expressions satisfy the conditions for holonomic func-
tions [32,35] and applying the Zeilberger Algorithm [34] we prove consistency of
the SI measure under the jump model. We believe that this alternative proof,
besides its independent interest, confers better understandings of the system and
might prove useful for future extensions of the model, handling richer models
such as unequal gene content or jumps of several genes.

Due to space considerations, several proofs were omitted and will appear at
the journal version.

2 Preliminaries

We provide preliminary definitions and concepts to be used throughout the
paper. We start with the Jump Model that comprises of a Jump operation oper-
ating on a single gene, and a stochastic process acting on the genomic ensemble
of genes.

The Jump Model. In this work we consider the genome as a gene list, that
is, the basic unit of resolution is an entire gene. Let G(n) = (g1, g2, . . . , gn) be a
sequence of ‘genes’ (see Fig. 1). For the sake of ignoring the tips of the sequence
G(n), we assume n is large enough compared to other sizes defined below.

Let G(n)(0) be a genome at time zero and WLOG let G(n)(0) =
(g1, g2, . . . , gn). Now consider the following continuous-time Markovian process
G(n)(t), t ≥ 0 on the state space of all n! permutations of g1, g2, . . . , gn. Each
gene gi is independently subject to a Poisson process transfer event (at con-
stant rate λ) in which gi is moved (or simply Jumps) to a different location in
the sequence, with each of these possible n − 1 locations selected uniformly at
random (see Fig 2).
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For example, if G(n)(t) = (g1, g2, g3, g4, g5), and then g1 jumps and lands
between g3 and g4 then the sequence yielded is G(n)(t + δ) = (g2, g3, g1, g4, g5).
Note, that gi can also move to one of the tips of the genome.

Fig. 1. A Genome as Gene List: The basic unit of resolution is a gene and a genome
is defined as a sequence of genes.

Fig. 2. The Jump operation: Gene g2 jumps into the space between genes g5 and
g6.

Since the model assumes a Poisson process, the probability that gi is trans-
ferred to a different position between times t and t+δ is λδ+o(δ), where the o(δ)
term accounts for the possibilities of more than one transfer occurring in the δ
time period (these are of order δ2 and so are asymptotically negligible compared
to terms of order δ as δ → 0). Moreover, a single transfer event always results
in a different sequence.

The Synteny Index. Let k be any constant positive integer (note it may
be possible to allow k to grow slowly with n but we will not explore such an
extension here). Then, for j ∈ k + 1, . . . , n − k the 2k-neighbourhood of gene gj

in a genome G(n), N2k(gj ,G(n)) is the set of 2k genes (different from gj) that
have distance, in terms of separating genes along the chromosome, at most k

from gj in G(n). Consider genomes G(n)
1 and G(n)

2 , with the restriction that G(n)
1

and G(n)
2 share the same gene set. Let SIj(G(n)

1 ,G(n)
2 ) be the relative intersection

size between N2k(gj ,G(n)
1 )) and N2k(gj ,G(n)

2 ), or formally

SIj(G(n)
1 ,G(n)

2 ) =
1
2k

|N2k(gj ,G(n)
1 ) ∩ N2k(gj ,G(n)

2 )|

(this is also called the Jaccard index between the two neighbourhoods [15]). See
Fig. 3 for example of a gene neighbourhood and the synteny index of a particular
gene.
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For the special case of our stochastic process, we define SIj(t) to be the SI
for gene gj between G(n)(0) and G(n)(t), 1

2k |N2k(gj ,G(n)(0)) ∩ N2k(gj ,G(n)(t)).
Let SI(G(n)

1 ,G(n)
2 ) be the average of these SIj(G(n)

1 ,G(n)
2 ) values over all genes

gj for j between k + 1 and n − k. That is,

SI(G(n)
1 ,G(n)

2 ) =
1

n − 2k

n−k∑

j=k+1

SIj(G(n)
1 ,G(n)

2 ).

Finally, we equivalently define SI(G(n)(0),G(n)(t) be the average of these
SIj(t) values between G(n)(0) and G(n)(t), over all j from k + 1 to n − k.

SI(G(n)
1 ,G(n)

2 ) =
1

n − 2k

n−k∑

j=k+1

SIj(t). (1)

Fig. 3. The synteny Index The two gene neighbourhoods induced by gene g
in genomes G1 and G2 and the synteny Index between G1 and G2 for gene g,
SIg(G(n)

1 ,G(n)
2 ) = 1

2k
|N2k(g,G(n)

1 ) ∩ N2k(g,G(n)
2 )|. As genes e, f and i are shared

between the two neighbourhoods induced by gene g in G1 and G2, we obtain
SIg(G(n)

1 ,G(n)
2 ) = 1

2
.

In the sequel, when time t does not matter, we simply use SI or simply SI
where it is clear from the context.

2.1 Genome Permutations as a State Space

We now introduce a random process, that will play a key role in the analysis of
the random variable SI(G(n)(0),G(n)(t)). Consider the location of a gene gi, not
being transferred during time period t, with respect to another gene gi′ . WLG
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assume i > i′ and let j = i − i′. Now, there are j ‘slots’ between gi′ and gi in
which a transferred gene can be inserted, but only j − 1 genes in that interval,
that can be transferred. Obviously, a transfer into that interval moves gi′ one
position away from gi, and transfer from that interval, moves gi′ closer to gi.
The above can be modelled as a continuous-time random walk on state space
1, 2, 3, . . . with transitions from j to j + 1 at rate jλ (for all j ≥ 1) and from j
to j − 1 at rate (j − 1)λ (for all j ≥ 2), with all other transition rates 0. This
is thus a (generalised linear) birth-death process, and the process is illustrated
in Fig 4. As the process is not affected by the specific values of i and i′ (rather
by their difference), we can ignore them and let Xt denote the random variable
that describes the state of this random walk (a number 1, 2, 3 etc.) at time t.

Fig. 4. The Markov Chain as a Birth-Death process Transitions between the
states in the linear birth-death process with linear rate’s growth/decrease.

The process Xt is slightly different from the much-studied critical linear birth-
death process, for which the rate of birth and death from state j are both equal
to j (here the rate of birth is j but the rate of death is j − 1), and for which 0 is
an absorbing state (here there are no absorbing states). However, this stochastic
process is essentially a translation of a critical linear birth-death process with
immigration rate equal to the birth-death rate λ. This connection is key to the
analysis of divergence times that we establish below.

Phylogenetic Trees and Distances. For a set of species (denoted taxa) X ,
a phylogenetic X -tree T is a tree T = (V,E) for which there is a one-to-one
correspondence between X and the set L(T ) of leaves of T . A tree T is weighted
if there is a weight (or length) function associating non-negative weights (lengths)
to the edges of T . Along this work we will use the term length as it corresponds
to number of events or time span. Edge lengths are naturally extended to paths
where path length is the sum of edge lengths along the path. For a tree T over
n leaves, let D(T ) (or simply D) be a symmetric n × n matrix where [D]i,j
holds the path length (distance) between leaves i and j in T . A matrix D′ is
called additive if there is a tree T ′ such that D(T ′) = D′. A distance measure is
considered additive on a model M if it can be transformed (or corrected) to the
expected number of events generated under M .
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3 Asymptotic Estimation of the Model Parameters

In order to reconstruct maximum likelihood trees, we need to estimate the model
parameters, in a way that maximises their likelihood. We here establish the
main theoretical result of this work, by defining the problem parameters as a
generating function and use rules from this area. That in turn yields an analytical
expression of divergence times. Recall that we wish to link SI to our model
parameter Xt which is the expected value (state) of the model. Such a linkage
was established in [27] that we restate explicitly below. While this expression
is essential for the analysis, it is not stated in terms of the parameters of the
model, specifically the time since divergence, and therefore has limited power.

We start with some essential definitions that are central in the analysis. Let
pi,j(t) be the transition probability for Xt to be at state j given that at time 0
it was at state i. Formally,

Definition 1. For each ordered pair i, j ∈ {1, 2, 3 . . . , } let pi,j(t) = P(Xt = j |
X0 = i).

pi,j(t) is the most basic variable and on which more special variables are defined.
Now denote

qi,k(t) =
k∑

j=1

pi,j(t) (2)

the conditional probability that Xt ≤ k given that X0 = i, as qi,k(t).
Also let qk(t) denote the probability that for a gene at an initial state i (i.e.,

distance from a reference gene) chosen uniformly at random between 1 and k,
the process X∗ is still between 1 and k after time t, or formally:

qk(t) :=
1
k

k∑

i=1

qi,k(t) =
1
k

k∑

i=1

k∑

j=1

pi,j(t). (3)

Having defined these variables, we can restate the fundamental theorem we
proved in [27]:

Theorem 1. For any given value of t, and as n grows:

SI(G(n)(0),G(n)(t))
p−→ exp(−2λt)qk(t),

where
p−→ denotes convergence in probability.

Theorem 1 is important as it links between SI, event rate, and probabilities
of genes staying at their original neighbourhoods. Nevertheless, these factors
are confounded in the sense that qk(t) depends on t, and therefore it would be
desirable to arrive at an expression stated in the parameters of the model, i.e.
time and rate solely, so divergence times, or alternatively number of events, can
be estimated and trees can be reconstructed. The rest of the section is devoted
to this.
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3.1 Finding the Model Transition Probabilities

The transition probabilities of the Markov Model defined above are fundamental
for our goal - analytical expressions of the expected synteny index between two
genomes in terms of their divergence time. Hence, finding an explicit expression,
in terms of i, j, and t, is our first task.

Theorem 2.

pi,j(t) =
1

(t + 1)i+j−1
·
min(i,j)∑

�=1

(i + j − � − 1)!
(i − �)!(j − �)!(� − 1)!

(
1 − t2

)�−1
ti+j−2�. (4)

The next step uses a lemma from [27] that adapts the Forward Kolmogorov
Equation [2] to our special setting.

Lemma 1. [27]

(a) The transition probabilities pi,j(t) satisfy the following tri-diagonal differen-
tial system

1
λ

dpi,j(t)
dt

= −(2j − 1)pi,j(t) + jpi,j+1(t) + (j − 1)pi,j−1(t), (5)

subject to the initial condition:

pi,j(0) =

{
1, if i = j;
0, if i �= j.

(b) The expected value of Xt grows as a linear function of t. Specifically,

E[Xt | X0 = i] = i + tλ. (6)

Our first aim is to solve the above infinite system of differential Eq. (5).
Without loss of generality, we assume λ = 1 and introduce the following

definition making use of a generating function.

Definition 2. For each i ≥ 1, we define a generating function fi(t, z) =∑∞
j=1 pi,j(t)zj .

Lemma 2.

fi(t, z) =
ti−1

(t + 1)i

∞∑

j=1

(−1)j−1zj

(
t

t + 1

)j−1 min(i,j)∑

�=1

(i − 1

� − 1

)( −i

j − �

) (
t2 − 1

t2

)�−1

(7)

The full proof of Lemma2 is deferred to the journal version.
We are now in a position to prove Theorem 2.
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Proof of Theorem 2: From Definition 2 and Lemma 2 above, we have two
equal power series. Therefore, by the uniqueness of generating functions [22], we
conclude that the coefficients are pairwise equal, hence:

pi,j(t) = (−1)j−1 ti−1

(t + 1)i

(
t

t + 1

)j−1

·
min(i,j)∑

�=1

(i − 1

� − 1

)( −i

j − �

) (
t2 − 1

t2

)�−1

= (−1)j−1

(
1

t + 1

)i+j−1

·
min(i,j)∑

�=1

(i − 1

� − 1

)( −i

j − �

) (
t2 − 1

)�−1
ti+j−2�

=

(
1

t + 1

)i+j−1

·
min(i,j)∑

�=1

( −i

j − �

) (i − 1)!

(i − �)!(� − 1)!
(−1)j−1

(
t2 − 1

)�−1
ti+j−2� (8)

Recalling that the generalisation of the binomial coefficient to negative integers
−n is: (−n

k

)
= (−1)k

(
n + k − 1

k

)

we obtain from (8):

pi,j(t) =

(
1

t + 1

)i+j−1
·
min(i,j)∑

�=1

(−1)
j−� (i + j − � − 1)!

(i − 1)!(j − �)!

(i − 1)!

(i − �)!(� − 1)!
(−1)

j−1
(

t
2 − 1

)�−1
t
i+j−2�

=
1

(t + 1)i+j−1
·
min(i,j)∑

�=1

(i + j − � − 1)!

(i − �)!(j − �)!(� − 1)!
(−1)

2j−�−1
(

t
2 − 1

)�−1
t
i+j−2�

=
1

(t + 1)i+j−1
·
min(i,j)∑

�=1

(i + j − � − 1)!

(i − �)!(j − �)!(� − 1)!

(
1 − t

2
)�−1

t
i+j−2�

. (9)

�	
From Theorem 2 we can see the following:

Corollary 1. For any i, j, and t it holds that pi,j(t) = pj,i(t).

3.2 Expectation and Variance of Xt

Having explicit expression for pi,j(t) allows us to confirm other derived values.
Therefore we here note by passing the expected value and variance of Xt. By
the definition of Xt we have

E(Xt | X0 = i) =
∞∑

j=1

jpi,j(t)

.
Also, from Definition 2 we have

d

dz
fi(t, z) =

d

dz

∞∑

j=1

pi,j(t)zj =
∞∑

j=1

jpi,j(t)zj−1

Using the generating functions we have

E(Xt | X0 = i) =
d

dz
fi(t, z)

∣∣∣
z=1

= i + t (10)
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in agreement with Lemma 1b.
We also have

E(Xt(Xt − 1) | X0 = i) =
d2

dz2
fi(t, z)

∣∣∣
z=1

= 2t2 − 2t + (4t − 1)i + i2.

Hence

E(X2
t | X0 = i) = E(Xt(Xt − 1) | X0 = i) + E(Xt | X0 = i) = 2t2 − t + 4ti + i2.

Hence

V ar(Xt | X0 = i) = E(X2
t | X0 = i) − E(Xt | X0 = i)2

= 2t2 − t + 4ti + i2 − (i + t)2

= t2 + (2i − 1)t. (11)

3.3 Explicit Expression for qk(t)

As stated above, Theorem 1 (originally from [27]) gives an explicit expression
for SI between two genomes, G0 and Gt. Nevertheless we could not derive an
expression only in terms of the number of events occurred during time t, or
alternatively a path along the tree of length λt “separating” genomes Gi and Gj ,
as we could not arrive at an explicit expression for qk (also in terms of (λt). As
here we obtained explicit expression for pi,j(t) we can aim now at expressing qk.

Lemma 3.

qk(t) =
1
k

k−1∑

�=0

k−�−1∑

i=0

k−�−1∑

j=0

(i + j + �)!
i!j!�!

ti+j(t + 1)−i−j−2�−1
(
1 − t2

)�
. (12)

The full proof of Lemma3 is deferred to the journal version.

4 Additivity of the SI Measure

Our goal now is to prove the monotonicity of the SI measure for any t and,
by Theorem 1, of the expression hk(t) = e−2tqk(t) in t ∈ [0,∞). In fact we
will prove that qk(t) itself is monotone decreasing, which obviously implies that
hk(t) is monotone decreasing. To do so we first obtain expressions for q′

k(t). As
qi,k(t) =

∑k
j=1 pi,j(t), we get dqi,k(t)

dt =
∑k

j=1
dpi,j(t)

dt .
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Lemma 4.
dqi,k(t)

dt
= kλ[pi,k+1(t) − pi,k(t)]. (13)

The full proof of Lemma 4 is deferred to the journal version.
Now, as by Lemma 4 we have q′

i,k(t) = k[pi,k+1(t) − pi,k(t)], hence

q′
k(t) =

1
k

k∑

i=1

q′
i,k(t) =

k∑

i=1

[pi,k+1(t) − pi,k(t)] (14)

Using the explicit expressions for pi,j(t), we have, for i ≤ k:

pi,k(t) =
1

(t + 1)i+k−1
·

i∑

�=1

(i + k − � − 1)!
(i − �)!(k − �)!(� − 1)!

(
1 − t2

)�−1
ti+k−2�, (15)

and

pi,k+1(t) =
1

(t + 1)i+k
·

i∑
�=1

(i + k − �)!

(i − �)!(k + 1 − �)!(� − 1)!

(
1 − t

2
)�−1

t
i+k+1−2�

=
1

(t + 1)i+k−1
·

i∑
�=1

(i + k − � − 1)!

(i − �)!(k − �)!(� − 1)!
· i + k − �

k + 1 − �
· t

t + 1

(
1 − t

2
)�−1

t
i+k−2� (16)

hence

pi,k+1(t) − pi,k(t) =
1

(t + 1)i+k−1
·

i∑
�=1

(i + k − � − 1)!

(i − �)!(k − �)!(� − 1)!
·

(
k + i − �

k + 1 − �
·

t

t + 1
− 1

) (
1 − t

2)�−1
t
i+k−2�

so that

q
′
k(t) =

k∑
i=1

[pi,k+1(t) − pi,k(t)] (17)

=
k∑

i=1

1

(t + 1)i+k−1
·

i∑
�=1

(k + i − � − 1)!

(i − �)!(k − �)!(� − 1)!
·

(
k + i − �

k + 1 − �
·

t

t + 1
− 1

) (
1 − t

2)�−1
t
i+k−2�

.

We would like to prove that q′
k(t) < 0 for all k ≥ 1, t > 0. This is not clear from

the above expression. In the next section we prove this by advanced computer
algebra tools.

4.1 Computer Proof of a Double-Sum Identity

This section is dedicated to the proof of the following identity:

q′
k(t) = − 1

(t + 1)2k

k−1∑

m=0

(
k − 1

m

)(
k

m

)
t2m. (18)

By (17) we need to prove that

k∑
i=1

(t+1)
k−i

i∑
�=1

(i + k − � − 1)!

(i − �)!(k − �)!(� − 1)!
·
(
1 − i − 1

k + 1 − �
· t

) (
1 − t

2
)�−1

t
i+k−2�

=

k−1∑
m=0

(
k − 1

m

)(
k

m

)
t
2m

(19)
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The strategy is as follows: we first prove that the right-hand side of (19)
satisfies a second-order recurrence in k (Lemma 5), then we derive a recurrence
equation for the left-hand side (Lemmas 7 and 8). Since it turns out that these
two recurrences are the same, the equality is established by comparing a few
initial values. A key component in the proof is Zeilberger’s algorithm [34]. It
takes as input a parametric sum of the form F (n) :=

∑
k f(n, k) where n is a

(discrete) parameter and k runs from −∞ to +∞, or between summation bounds
that are linear expressions in n (the most common situation is k = 0, . . . , n).
Moreover, the summand f(n, k) needs to be hypergeometric in both variables,
that means, the quotients f(n+1, k)/f(n, k) and f(n, k+1)/f(n, k) are bivariate
rational functions in n and k. As output, Zeilberger’s algorithm produces a linear
recurrence equation with polynomial coefficients for F (n), i.e., a linear relation
of the form cd(n)F (n + d) + . . . + c1(n)F (n + 1) + c0(n)F (n) = 0 where the ci

are polynomials in n, that is satisfied for all n ∈ N.
For our calculations below, we have employed the Mathematica package Holo-

nomicFunctions [21].

Theorem 3. For all k ∈ N and t a parameter, identity (19) holds.

Before we prove Theorem 3 we state few auxiliary lemmas.

Lemma 5. The right-hand side of (19), i.e., the expression

Rk(t) :=
k−1∑

m=0

(
k − 1

m

)(
k

m

)
t2m (20)

satisfies the recurrence

(k + 2)(2k + 1)Rk+2 − 2
(
2k

2
t
2
+ 2k

2
+ 4kt

2
+ 4k + 2t

2
+ 1

)
Rk+1 + k(2k + 3)(t − 1)

2
(t + 1)

2
Rk = 0

for all k ∈ N.

The full proof of Lemma 5 is deferred to the journal version.
The proof of the following lemma uses the same strategy as the one of

Lemma 5.

Lemma 6. The inner sum of the left-hand side of (19), i.e., the expression

Mk,i(t) :=
i∑

�=1

(t + 1)k−i (i + k − � − 1)!
(
k + 1− � − (i − 1)t

)
(1− t2)�−1 ti+k−2�

(i − �)! (k − � + 1)! (� − 1)!

satisfies the following bivariate recurrences:

(k + 1)t(i − k)Mk+1,i − it(t + 1)2(i − k − t − 1)Mk,i+1

+ (t − 1)(t + 1)2
(
i2 − 2ik − it − i + k2 + k

)
Mk,i = 0,

(i + 1)t(t + 1)(i − k)Mk,i+2

+
(−2i2t2 + i2 + 2ikt2 − 2ik − 2it2 + i + k2 + kt2 − kt − k

)
Mk,i+1

+ i(t − 1)t(i − k + 1)Mk,i = 0.
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Lemma 7. The left-hand side of (19) can be simplified to a single sum, i.e.,
the following identity holds for all k ∈ N:

k∑

i=1

Mk,i(t) = Lk(t) :=
1+k∑

�=1

k(1 − t)�−1t1+2k−2�(1 + t)�−2(2k − �)!
(1 + k − �)!(2 + k − �)!(� − 1)!

× (
(1 + k − �)(2 + k − �) + (2 + k − �)t +

(
1 − k2

)
t2

)

with Mk,i(t) as introduced in Lemma 6.

The full proof of Lemma 7 is deferred to the journal version.
The proof of the following lemma uses the same strategy as the one of

Lemma 5.
Lemma 8. The sum Lk(t) defined in Lemma 7 satisfies the recurrence

(k + 2)(2k + 1)Lk+2 − 2
(
2k

2
t
2
+ 2k

2
+ 4kt

2
+ 4k + 2t

2
+ 1

)
Lk+1 + k(2k + 3)(t − 1)

2
(t + 1)

2
Lk = 0

for all k ∈ N.

Proof (Proof of Theorem 3). We have shown that both sides of (19) satisfy the
same second-order linear recurrence equation (Lemma 5 and Lemma 8). Since
the leading coefficient (k + 2)(2k + 1) is nonzero for all k ∈ N, it suffices to
verify that (19) holds for k = 0 (indeed: both sides evaluate to 0) and for k = 1
(indeed: both sides evaluate to 1).

Theorem 3 justifies Eq. (18), which in turn implies that the function hk(t) =
exp(−λt)qk(t) is monotone decreasing with t and thus has an inverse (h−1

k ).
Moreover, hk(t) can be exactly calculated (using the explicit expression for qk(t)
given by Eq. (12)), and so, by Theorem 1, the time separating two sequences of
genes involving n genes (where n is large) can be estimated by applying h−1

k to
the SI for the two gene sequences. Since the expected number of transfer events
is additive on the tree (and proportional to t), we conclude the following:

Corollary 2. The topology of the underlying unrooted tree T can be recon-
structed in a statistically consistent way from the SI values by applying the
transformation h−1

k , followed by a consistent distance-based tree reconstruction
method such as Neighbour-Joining (NJ).

5 Conclusions

In this paper, we have provided an alternative derivation for the system vari-
ables of the birth-death formulation of the synteny index (SI) distance measure.
The classical approach for this task uses the so-called Karlin-McGregor spec-
tral representation, that is based on a sequence of orthogonal polynomials and
a spectral measure [3,16–18]. The approach presented here is a self-contained
derivation, based on generating functions representation and a subsequent com-
binatorial treatment, leading to an application of tools from symbolic algebra.
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Although the biological contribution of this work is seemingly less pronounced,
as it merely arrives at the same expressions for the transition probabilities as the
traditional approach, we believe that the derivation presented here not only has
independent interest for mathematical biology, but may also be key to future
rigorous extensions of the Jump model.

One such immediate follow-up extension we see as important is to augment
the pure Jump process, with more realistic genome dynamic events such as
external gene gain, in which a novel gene is acquired from a different genome,
leading to an extension of the gene repertoire of the organism, and events of
gene loss. Both these evens potentially cause a divergence in genome content
between the analysed genomes, and require special treatment that, based on
initial attempts, is non-trivial.

Regarding the mathematical aspect, the symbolic algebra tools as we apply
here, have been proved useful in other applications of mathematical biology [5,6]
leading to accurate expressions of quantities known to be derived heuristically
before. We are hopeful that this new derivation is a basis for the extensions we
consider in the future.
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Abstract. Recently, in the medical domain, visual-language (VL) rep-
resentation learning has demonstrated potential effectiveness in diverse
medical downstream tasks. However, existing works typically pre-trained
on the one-to-one corresponding medical image-text pairs, disregarding
fluctuation in the quantity of views corresponding to reports (e.g., chest
X-rays typically involve 1 to 3 projection views). This limitation results
in sub-optimal performance in scenarios with varying quantities of views
(e.g., arbitrary multi-view classification). To address this issue, we pro-
pose a novel Text-guided Cross-view Semantic Alignment (TCSA) frame-
work for adaptive multi-view visual representation learning. For arbi-
trary number of multiple views, TCSA learns view-specific private latent
sub-spaces and then maps them to a scale-invariant common latent sub-
space, enabling individual treatment of arbitrary view type and normal-
ization of arbitrary quantity of views to a consistent scale in the com-
mon sub-space. In the private sub-spaces, TCSA leverages word context
as guidance to match semantic corresponding sub-regions across multi-
ple views via cross-modal attention, facilitating alignment of different
types of views in the private sub-space. This promotes the combination
of information from arbitrary multiple views in the common sub-space.
To the best of our knowledge, TCSA is the first VL framework for arbi-
trary multi-view visual representation learning. We report the results of
TCSA on multiple external datasets and tasks. Compared with the state
of the art frameworks, TCSA achieves competitive results and generalize
well to unseen data.
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Fig. 1. Illustration of text-guided cross-view medical semantic alignment framework
TCSA. Same color represent consistent semantics between words and sub-regions, while
white indicate inactive features.

1 Introduction

Large-scale annotated medical image datasets facilitate the advancement of med-
ical image understanding based on deep learning. However, the inherent chal-
lenges of establishing large-scale annotated data in the medical field pose signif-
icant obstacles to the progress of current research [1–4]. Recently, deep learning
has witnessed the rise of visual-language (VL) representation learning, which
is pre-trained on large-scale naturally occurring paired image-text and demon-
strates general effectiveness across various VL downstream tasks with limited
labeling (e.g., image-text retrieval) [5]. Inspired by the remarkable success of VL
representation learning in natural domain, researchers attempt to transfer it to
the medical domain to alleviate the inherent challenges of establishing large-scale
annotated data [6–8].

However, migrating VL representation learning frameworks from the natu-
ral domain to the medical domain is challenging due to the following reasons:
(1) Unlike natural domain where text and image mostly exhibit one-to-one cor-
respondence, medical imaging examinations involve the acquisition of diverse
numbers of views based on each patient’s distinct clinical attributes and indi-
vidualized clinical needs. (2) Pathology in medical images typically occupies a
minuscule fraction. Capturing subtle yet crucial visual cues in medical images
is essential. In summary, for medical VL representation learning, it is crucial to
handle the fluctuation in the number of medical views, capture subtle yet cru-
cial visual cues on medical images, and achieve fine-grained semantic alignment
among multiple views.

Existing works have attempted to address the aforementioned issues through
various approaches. To address the fluctuation in the number of views, one effec-
tive approach is to selectively employ a subset of studies that maintain a definite
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number of views as training data [6–8]. However, this leads to poor performance
in various downstream tasks that involve arbitrary numbers of views (e.g., arbi-
trary multi-view classification). GLoRIA [7] and ConVIRT [9] are pre-trained on
one-to-one image-text pairs, and in tasks involving multiple views, they either
select one of multi-view or treat each view as an independent sample, which
results in its poor performance due to the absence of visual information. While
the works based on fixed multi-view report generation allows for generating
reports by incorporating multi-view information, it fails to cope with the fluc-
tuation of the number of views in medical scenarios [10,11]. Furthermore, the
fixed-view approach also results in low data utilization rates. To capture subtle
yet crucial visual cues in medical images, GLoRIA leverage CNNs [12] and atten-
tion to align word and sub-region to capture subtle but critical visual cues on
medical images. MGCA [13] achieves multi-granularity alignment by incorporat-
ing instance-wise alignment, token-wise alignment, and cross-modal disease-level
alignment. However, these works only consider the correspondence between indi-
vidual view and text, whereas most downstream tasks usually require aligning
fine-grained semantics among multiple views to effectively integrate information
and make accurate predictions.

To address these issues, we propose a Text-guided Cross-view medical Seman-
tic Alignment (TCSA) framework for adaptive multi-view visual representation
learning. As shown in Fig. 1, to address the challenge of arbitrary multiple views,
we introduce the View Adaptive Network, which aims to learn view-specific pri-
vate latent sub-spaces tailored to different types of views and efficiently filter out
irrelevant information through attention mechanisms, followed by aggregation in
a multi-view common sub-space. To align fine-grained semantics across multiple
views, TCSA maps view-specific sub-spaces to a scale-invariant common latent
sub-space based on guidance at both the report-level and word-level. TCSA lever-
ages Cross-Modal Attention Alignment to match word context with semantically
consistent sub-regions across multiple views, enabling arbitrary multi-view fine-
grained semantic alignment via word-level guidance improving sensitivity of the
representations. As shown in the Cross-Modal Attention Alignment of Fig. 1, we
utilize the word embedding of “Pneumothorax” to weight multi-view features
via attention map, obtaining “Pneumothorax” weighted visual representation.
Report-level guidance capture more comprehensive information. The main con-
tributions of this paper can be summarized as follows:

1. We propose a text-guided cross-view medical semantic alignment framework
TCSA for adaptive multi-view visual representation learning, which leverages
text guidance to align the fine-grained semantics across multiple views, pro-
moting the extraction of both consistency and complementary features among
the views. To the best of our knowledge, this is the first VL representation
framework for medical arbitrary multi-view visual representation learning.

2. We offer an effective solution for handling arbitrary numbers of multi-view
problems in real-world medical scenarios. TCSA provides flexibility in pro-
cessing any number of multi-view based on diagnostic requirements, enhanc-
ing the applicability of VL representation learning in real medical settings.
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Fig. 2. Overview of TCSA framework.

We pre-trained TCSA on a large-scale dataset of medical image-report pairs
i.e., MIMIC-CXR [14] and validated it on multiple external datasets and down-
stream tasks. Experimental results consistently demonstrate that TCSA outper-
forms state of the art models across various tasks with stability.

2 Method

2.1 Overview

The main objective of this work is to learn generalized visual representations
for arbitrary multi-view by aligning fine-grained semantics of arbitrary multi-
view based on text guidance, benefiting various VL downstream tasks with lim-
ited labeled data. As shown in Fig. 2, this framework is primarily divided into
three components. The first component is report and image encoding, the sec-
ond component is Cross-Modal Attention Alignment (CMAA), and the third
component is the overall training objective. In the image encoding, we propose
a View Adaptive Network (VAN) to address the issue of varying numbers of
views. Furthermore, we extract image and sub-regions representations to facili-
tate global and local alignment. In the text encoding, we also extract report rep-
resentation and word representations as global and local representations, respec-
tively. After obtaining global and local representations of images and text, we
input the local representations into the CMAA for fine-grained semantic align-
ment across arbitrary multi-view. CMAA contrasts the words in the report with
attention-weighted sub-regions from multiple views, allowing for the matching
of sub-regions of interest across multiple views based on the given word. This
enables word-guided fine-grained semantic alignment. The global representation
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is utilized to align the entire arbitrary multi-view and report, aiming to obtain
a more comprehensive representation. The entire framework optimizes network
parameters by minimizing local and global contrastive losses.

2.2 Medical Imaging Encoding

View Adaptive Network: As shown in Fig. 2, we propose a simple but effective
view adaptive network VAN to handle the issue of varying number of views.
For medical imaging with K types, VAN generates K private latent sub-spaces
to capture view-specific features. Given an arbitrarily multi-view with k ≤ K
views and corresponding reports {xv, xt}. xv is mapped into the corresponding
k private sub-spaces: {z1, z2, ..., zk} based on the type of the view. The critical
information in medical images is typically subtle and not easily perceptible, such
as pathological features, while a substantial quantity of information may be
irrelevant to the task. After extracting view-specific features, we utilize spatial-
channel attention to highlight key features and suppress irrelevant ones.

Specifically, VAN employs shared convolution fsrd(·) (first three layers of
ResNet18 [12]) to learn view-specific private latent sub-spaces. The property of
weight sharing across views link multiple private latent sub-spaces. TCSA uti-
lizes text guidance to encourage features from different views to have consistent
semantic meanings within the same channel. Therefore, VAN aggregates fea-
tures from multiple views by summing them within the same channel and uses
layer normalization ln(·) to normalize aggregated result to v1, which enhance
the shared feature representation and capture complementary features across
multiple views. This is summarized as follows:

v1 = ln(fagg(fsrd(xv))), v1 ∈ R
c1×w×h, (1)

where c1 is the number of channels, w and h are the width and height, fagg(·)
denotes channel-wise aggregation. Next, we leverage a spatial-channel attention
[15] to highlight critical features and suppress minor ones. In the channel atten-
tion module, we generate two different spatial context information by applying
max pooling and average pooling. Then, the resulting feature is fed into a shared
Multi-Layer Perceptron (MLP) to generate the channel attention map Mc(v1).
This is summarized as follows:

Mc(v1) = σ(MLP (AvgPool(v1)) + MLP (MaxPool(v1))), (2)

where σ(·) denotes the sigmoid function. Spatial attention primarily emphasizes
the spatial position information by weighting features from different locations.
Specifically, we perform average pooling and max pooling along the channel
dimension, and then concatenate the resulting feature maps. Finally, a convolu-
tion operation is applied to generate the spatial attention map:

Ms(vc
1) = σ(f7×7([AvgPool(vc

1);MaxPool(vc
1)])), (3)

where vc
1 = Mc(v1), σ denotes the sigmoid function and f7×7 represents convo-

lution with the filter size of 7 × 7.
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Vision Encoder. We use ReseNet50 [12] as the main visual encoder fv(·) to
map the representations of arbitrary multi-view xv in private sub-spaces to a
multimodal common sub-space z, aligning them with corresponding reports. We
extract global representations vg and local representations vl from arbitrary
multi-view and set a consistent multimodal dimension dm to achieve alignment
at both the global and local levels with report. We first project the output fg
of the global average pooling layer of ResNet50 via a learnable linear function
Lgv(·) to dm as the global representation. Then we extract and vectorize M
feature maps from the intermediate layer of fv(·) as local representation vl and
leverage a learnable linear function Llv(·) to transform the feature dimension to
dm. This is summarized as follows:

vg = Lgv(fg), vl = Llv(fl), vg ∈ R
dm , vl ∈ R

M×dm . (4)

2.3 Medical Report Encoding

We use BioClinicalBERT [16] as encoder ft(·) to extract sentence embeddings
and word embeddings as global and local representations from report xt and
project to the consistent multimodal dimension dm, respectively. For a sentence
with W words, assume that each word is tokenized to ni sub-words. The tokenizer
generate N =

∑W
i=0 ni word piece embeddings. Then ft(·) extract features for

each word piece embedding. The output t′l ∈ R
dk×N of ft(·) is the word embed-

ding as the text local representations, where dk is the encoding dimension of
word embeddings. The sentence embedding is defined as the aggregation of all
the word-embedding t′g =

∑N
i=0 t′l. Finally, we employ learnable linear functions

Lgt, Llt to project the word embedding and the sentence embedding dimension
into dm, respectively. As follows:

tg = Lgt(l′g), tl = Llt(t′l), tg ∈ R
dm , tl ∈ R

N×dm . (5)

2.4 Cross-Modal Attention Alignment

We propose a cross-modal attention alignment method CMAA for word-based
cross-view semantic alignment. CMAA matches the regions of interest across
multiple views based on the given words by contrasting the words in the report
with attention-weighted sub-regions of multiple views. Given a corresponding
text with W words for xt, an attention map Matt is constructed by computing the
similarity between each word embedding and all sub-region representations. For
each word, all sub-region representations are weighted by the attention map to
aggregate as the attention-weighted local visual representation ci ∈ R

dm . Firstly,
we compute the dot-product similarity of W word embeddings tl ∈ R

W×dm and
M sub-region representations vt ∈ R

dm×M to generate similarity matrix. Next,
we normalize the similarity matrix twice to get attention map Matt. As follows:

Matt = Sv−t(St−v(vT
t · tl)),Matt ∈ R

W×M , (6)
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where St−v(·) denotes similarity normalization of each sub-region to all words,
St−v(·) denotes similarity normalization of each word to all subregions. Next we
obtain the attention-weighted local visual representation ci by aggregating all
sub-regional representations according to attention weights aij ∈ Matt:

ci =
M∑

j=1

aijvj , vatt = {c1, c2, ..., cW }, vatt ∈ R
W×dm , (7)

where vatt represents W attention-weighted local visual representations gener-
ated based on W word guidance, attention weight aij denotes the normalized
similarity for a word across all sub-regions.

2.5 Loss

Local Loss: We use a feature matching function Z to aggregate similarity across
all word embedding ti and corresponding attention-weighted local visual repre-
sentations ci.

Z (xv, xt) = log

(
W∑

i=1

exp (〈ci, ti〉 /τ3)

)τ3

, (8)

where τ3 is the scaling temperature, 〈ci, ti〉 represents the cosine similarity
between ci and ti. The matching function Z (xv, xt) yields the similarity between
ci ∈ vatt and ti ∈ tl. The local contrast loss can be defined as the posterior prob-
ability based on the matching function Z(xv, xt). We also maximize the posterior
probability of the word embedding ti given its corresponding attention-weighted
representations ci. For N samples, the above can be defined as follows:

L
(v|t)
l =

N∑
n=1

− log

(
exp (Z (xn

v , xn
t ) /τ2)∑N

k=1 exp
(
Z

(
xn

v , xk
t

)
/τ2

)
)

,

L
(t|v)
l =

N∑
n=1

− log

(
exp (Z (xn

t , xn
v ) /τ2)∑N

k=1 exp (Z (xn
t , xk

v) /τ2)

)
.

(9)

Global Loss: We apply contrastive loss functions following [5,7,9] to maximize
the posterior probability of the global image representation vn

g given its corre-
sponding text representation tng . We also maximize the posterior probability of
the text. The above is summarized as follows:

L(v|t)
g =

N∑
n=1

− log

(
exp

(〈
vn

g , tn
g

〉
/τ1

)
∑N

k=1 exp
(〈

vn
g , tk

g

〉
/τ1

)
)

,

L(t|v)
g =

N∑
n=1

− log

(
exp

(〈
tn
g , vn

g

〉
/τ1

)
∑N

k=1 exp
(〈

tn
g , vk

g

〉
/τ1

)
)

,

(10)

where τ1 ∈ R is scaling temperature;
〈
vn
g , tkg

〉
is the cosine similarity of the vn

g

and tkg ;
〈
vn
g , tng

〉
is the cosine similarity of the vn

g and tng .
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Total Loss: To achieve local and global contrastive losses jointly optimize the
whole framework, the overall loss L is defined as follows:

L = L(t|v)
g + L(v|t)

g + L
(t|v)
l + L

(v|t)
l . (11)

3 Experiments and Results

We perform zero shot, classification and image-text retrieval tasks on multiple
datasets to compare with state of the art models to verify the effectiveness of
TCSA. TCSA can input any number of views, while previous medical VL models
only input one view (single-view models). For multi-view imaging classification
task with k > 1 views, single-view models predicts k labels for k views, while
TCSA predicts one label for all k views. For fair comparison, we provide two
methods to calculate the evaluation metrics of TCSA. Method 1: for multi-
view imaging with k views, TCSA predicts one label and assigns it to k views,
resulting in k views having k consistent labels. Method 2: calculate evaluation
metrics directly without assigning labels (results with ∗).

3.1 Datasets

MIMIC-CXR [14]: The MIMIC Chest X-ray (MIMIC-CXR) Database v2.0.0
is a large publicly available dataset of chest radiographs in DICOM format with
free-text radiology reports. We pre-trained TCSA on the MIMIC-CXR 2.0.0
dataset, which contains 377,110 images corresponding to 227,835 radiographic
cases.

CheXpert [3]: CheXpert dataset contains a total of 224,316 chest radiographs
from 65,240 patients. According to the distribution of studies with varying num-
bers of views of CheXpert, we sampled 3,000 samples (5,000 chest radiographs)
from CheXpert, comprising a mixture of imaging studies with varying number
of views.

CheXpert 5×200 [7]: CheXpert 5× 200 is a subset of CheXpert consisting of
1,000 chest radiographs from 1,000 studies.

3.2 Baseline

Random: ResNet50 [12] model with default random initialization parameters.

ImageNet [17]: ResNet50 model with weights pre-trained on the standard Ima-
geNet ILSVRC-2012 task.

DSVE [18]: Previous methods require a pre-trained object detection model for
local feature extraction, which is unsuitable for medical images. Therefore, we
compared with DSVE on image and text retrieval task.

VSE++ [19]: VSE++ achieves the best performance for image-text retrieval
by using only global representations.
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Table 1. Image-text retrieval results on CheXpert 5 × 200 and top K Precision metrics
are reported for K = 5, 10, 100.

Method Prec@5 Prec@10 Prec@100

pre-trained on CheXpert

DSVE [18] 40.6 32.8 24.7

VSE++ [19] 44.3 36.8 26.9

pre-trained on MIMIC-CXR

ConVIRT [9] 37.8 36.6 30.8

GLoRIA(MIMIC) [7] 42.9 41.6 35.2

TCSA 46.0 43.6 35.7

ConVIRT [9]: ConVIRT proposed a framework based on contrast learning for
medical images and reports, which only uses global representation. Since the
code for ConVIRT [9] and report part of CheXpert is not publicly released, we
replicated it to pre-trained on MIMIC-CXR based on their paper.

GLoRIA(MIMIC) [7]: GLoRIA proposed cross-modal local feature alignment
to enable the model to extract local features and demonstrate state of the art
performance. Since the report part of CheXpert is not publicly released, we
implement GLoRIA based on the official source code1 on the MIMIC-CXR and
denoted as GLoRIA(MIMIC).

3.3 Image-Text Retrieval Result

In the image-text retrieval task, the closest matching text is located by lever-
aging a query image as the input and is decided by the similarity of their rep-
resentations. The Precision@K metric was employed to evaluate whether the
chosen reports belonged to the same category as the query image to calculate
the precision of the top K reports retrieved. We reproduced ConVIRT and GLo-
RIA(MIMIC) under the same settings as TCSA. Table 1 shows the results of the
image-text retrieval task on CheXpert 5× 200. GLoRIA [7] observed that the
performance of GLoRIA and ConVIRT for image-text retrieval in internal val-
idation (pre-training and testing on the CheXpert) far outperforms DSVE and
VSE++. Therefore, we compare the results of TCSA, ConVIRT, and GLoRIA
on external datasets (pre-training on MIMIC-CXR and testing on CheXpert
5× 200) with the internal validation results of DSVE and VSE++. The results
in Table 1 show that even tested on an external dataset, TCSA, GLoRIA, and
ConVIRT achieve comparable performance with DSVE, VSE++, with TCSA
achieving the best results.

Due to the fact that medical reports are typically generated based on mul-
tiple views, while baseline models can only handle single views, there exists

1 https://github.com/marshuang80/gloria.

https://github.com/marshuang80/gloria
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Table 2. Zero-shot classification results (AUROC) †.

Method CheXpert CheXpert 5 × 200

ConVIRT [9] 61.8 62.8

GLoRIA(MIMIC) [7] 62.1 66.6

TCSA 65.8 64.9* 69.9

[1] * Indicates AUROC obtained by Method 2. [2] † It
is worth noting that we did not directly use the results
reported by GLoRIA [7]. The detailed reasons are described
in Sect. 3.4 Zero-shot Classification Results.

an information gap between reports and images, leading to sub-optimal per-
formance in medical image-text retrieval task. TCSA leverages text-guided and
VAN mechanisms to comprehensively analyze arbitrary multi-view, eliminating
the information gap between reports and medical images. As a result, TCSA
achieves superior results in image-text retrieval task.

3.4 Zero-Shot Classification Result

We followed GLoRIA [7] to perform zero-shot classification to evaluate TCSA
on CheXpert and CheXpert 5× 200. The prediction goal is to input image xv

and predict the label y of xv; even the classifier is not trained with class labels
y. We used the area under the ROC curve (AUROC) as the evaluation metric.

The results in Table 2 indicate that TCSA shows significant improvement
compared to GLoRIA and ConVIRT, which can be attributed to the integration
of multi-view information.

It is worth noting that we did not directly use the results reported by GLo-
RIA [7] for the following two reasons: (1) As described in Sect. 3.2 Baseline for
GLoRIA(MIMIC), GLoRIA [7] reported its model’s performance from internal
validation on CheXpert [3] by conducting pretraining and zero-shot classifica-
tion. Internal validation (pretraining and validation are performed on the same
dataset) tends to yield better performance. However, the report section of the
CheXpert [3] dataset is not publicly available, preventing us from performing
pretraining on CheXpert [3]. Consequently, we conducted pretraining on MIMIC-
CXR and performed zero-shot classification on the external dataset CheXpert
to validate the generalization performance of TCSA. External validation can
result in performance lower than the internal validation reported by GLoRIA
[7]. (2) As described in Sect. 3.1 Datasets, considering the distribution of single
and multi-view in real medical scenarios, we resampled the CheXpert dataset as
our validation dataset. However, the validation set used by GLoRIA [7] filters
out a majority of multi-view samples. This leads to a higher inclusion of multi-
view samples in our validation dataset. Since handling multi-view data poses
a challenge for GLoRIA, this further contributes to the decrease in GLoRIA’s
performance under our experimental setup.
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Table 3. CheXpert supervised classification result (AUROC) based on different por-
tions of training data: 2%, 10%, 100%. We averaged the results from five individual
runs to account for the variation in outcomes from randomly sampling training data
†.

Method Portion

2% 10% 100%

TCSA(no pretraining) 52.3 61.6 67.6

Random 52.9 57.2 68.1

ImageNet 61.3 64.4 69.8

ConVIRT [9] 63.7 64.7 74.1

GLoRIA(MIMIC) [7] 66.1 72.0 74.4

TCSA 68.1 69.3* 74.6 72.9* 78.6 79.3*

[1] * Indicates AUROC obtained by Method 2. [2] † It is worth noting
that we did not directly use the results reported by GLoRIA [7]. The
detailed reasons are described in Sect. 3.5 Supervised Classification
Result.

Table 4. CheXpert supervised classification ablation experiment result (AUROC)
based on different portions of training data: 2%, 10%, 100%.

Pretraining Spatial Channel Attention VAN 2% 10% 100%

× � � 52.3 61.6 67.6

� × � 67.4 71.7 75.6

� � × 66.1 72.0 74.4

� � � 68.1 74.6 78.6

3.5 Supervised Classification Result

We followed GLoRIA [7] to perform supervised image classification on CheXpert
using fine-tuning and different amounts of training data (2%, 10%, and 100%).
We matched GLoRIA’s image count, using 3000 samples with 5000 images. The
change was increasing from 1% to 2%. This adjustment was needed as, at 1%,
TCSA could only sample 30 mixed multi-view and single-view training samples
(compared to GLoRIA’s 50 images at 1%). The limited training samples at 1%
made it hard to cover all labels effectively, leading to training failure. We used
AUROC as the evaluation metric.

As explained in Sect. 3.4, due to the unavailability of the report section of the
CheXpert [3] dataset, we were unable to directly compare TCSA with GLoRIA in
the same setting. Therefore, we resorted to external validation by pretraining on
MIMIC [14] and validation on CheXpert [3]. This external validation approach
resulted in lower performance compared to the reported results of GLoRIA [7].
Furthermore, considering the real medical scenario, our resampled validation
set includes more multi-view samples, which poses a challenge for GLoRIA. In
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Fig. 3. Highlighted pixels represent higher activation weights by the corresponding
word.

Fig. 4. t-SNE representation visualization of CheXpert 5 × 200 images by ConVIRT
and TCSA.

conclusion, we present results that are inconsistent with GLoRIA [7] due to these
reasons.

Table 3 shows that TCSA outperforms all baselines on training data of differ-
ent sizes. Furthermore, TCSA trained with only 2% of the data achieves similar
performance to imagenet-initialized trained with 100%. To validate the effec-
tiveness of text-guided mechanisms, we employed randomly initialized VAN and
ResNet50 as baselines for the supervised classification task, denoted as TCSA(no
pretraining). TCSA(no pretraining) aligns with TCSA in its capability to accom-
modate arbitrarily multi-view inputs. However, TCSA (no pretraining) demon-
strates notably inferior performance compared to pre-trained TCSA, achiev-
ing results akin to a randomly initialized ResNet50. This disparity suggests
that TCSA(no pretraining), though capable of processing arbitrarily multi-view
inputs, struggles to effectively exploit the information from multi-view. This
suggests that the performance improvement of text-guided TCSA is not solely
reliant on the implementation of arbitrary multi-view inputs, but rather bene-
fits from the integration of the text-guided mechanism and arbitrary multi-view
inputs.
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3.6 Analysis of Our Framework

Visualization: As shown in Fig. 3, we visualize attention weights to evaluate
the proposed method’s representation qualitatively. TCSA can accurately iden-
tify important visual regions for a particular word. We also compare the rep-
resentations of CheXpert 5× 200 generated by ConVIRT and TCSA via t-SNE
visualization. Due to the high inter-class similarity of medical images, clustering
images in our setup is more challenging compared to clustering in typical object
classification settings. As shown in the Fig. 4, TCSA demonstrates relatively
better cluster separation compared to ConVIRT, indicating that TCSA presents
superior clustering representation.

Ablation Studies: As shown in Table 4, we systematically remove each com-
ponent one at a time while keeping the others fixed to observe the effect on the
model’s performance, thus demonstrating the necessity of each component.

4 Conclusion

Existing VL models in the medical domain have overlooked the varying num-
bers of views in real medical scenarios. To extend VL representation learning
to image-text pairs with varying numbers of views, we propose a text-guided
cross-view semantic alignment framework TCSA for adaptive multi-view visual
representations learning. We evaluated TCSA on multiple tasks and datasets,
demonstrating its effectiveness in various medical VL downstream tasks.
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Abstract. Whole slide images (WSIs) are high-resolution and lack
localized annotations, whose classification can be treated as a multiple
instance learning (MIL) problem while slide-level labels are available.
We introduce a approach for WSI classification that leverages the MIL
and Transformer, effectively eliminating the requirement for localized
annotations. Our method consists of three key components. Firstly, we
use ResNet50, which has been pre-trained on ImageNet, as an instance
feature extractor. Secondly, we present a Transformer-based MIL aggre-
gator that adeptly captures contextual information within individual
regions and correlation information among diverse regions within the
WSI. Thirdly, we introduce the global average pooling (GAP) layer
to increase the mapping relationship between WSI features and cate-
gory features. To evaluate our model, we conducted experiments on the
The Cancer Imaging Archive (TCIA) Clinical Proteomic Tumor Analysis
Consortium (CPTAC) dataset. Our proposed method achieves a top-1
accuracy of 94.8% and an area under the curve (AUC) exceeding 0.996,
establishing state-of-the-art performance in WSI classification without
reliance on localized annotations. The results demonstrate the superior-
ity of our approach compared to previous MIL-based methods.

Keywords: Multiple instance learning · Transformer · Whole slide
image · Global average pooling

1 Introduction

Recently, with the emergence of digital scanners, it is capable of capturing biopsy
slides as gigapixel whole slide images (WSIs) while preserving the original tis-
sue structure. The advent of WSI, with its diverse nuclear, cytoplasmic, and
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extracellular matrix features, has made up for the shortcomings of traditional
biopsy slides that are prone to breakage, difficult retrieval, and poor diagnostic
repeatability, driving pathology into a new stage of development and resulting
in a substantial amount of clinical and research interest in the analysis of digital
pathology.

Tasks related to pathological image analysis can be broadly categorized into
classification, registration, detection, segmentation, localization, and generation
[5]. Among the various tasks in pathological image analysis, WSI classification
is widely regarded as a crucial task. Its importance primarily stems from its
versatility, as it serves as the foundation for other tasks such as nuclei localization
[22], mitosis detection [17], gland segmentation [3], pathological image retrieval
[25], and pathological image registration. Furthermore, WSI classification can
be employed to address intricate problems by transforming them into analogous
classification tasks, as exemplified by the challenge of identifying the primary
site of cancer of unknown primary (CUP).

Deep learning-based image classification methods have proven effective in
the fields of natural and medical images. However, traditional deep learning
methods are not suitable for the automatic classification of WSIs due to their
high resolution, subtle differences in image features, overlapping cells, and color
variations. An approach is to train models using high-resolution image patches
and predict the label of a WSI based on the predictions made at the patch-
level in supervised learning [23]. However, obtaining fine-grained labeled data,
such as patch-level labels in WSI is an expensive and challenging task, and
pathologists need to manually annotate region-of-interest (ROI) of WSI based
on prior knowledge, which is not only time-consuming and labor-intensive but
also requires extensive experience.

In the course of annotating the dataset, pathologists provide slide-level labels
for WSI based on visual inspection. This procedure results in the absence of posi-
tional labels for the tumor-relevant regions, which poses a challenge in identifying
the crucial local areas that significantly influence the slide-level WSI classifica-
tion results. These characteristic highlights that the use of weakly supervised
methods may be more suitable for addressing the classification tasks of WSIs.
The pioneering research in weakly-supervised WSI classification has predomi-
nantly employed the framework of multiple instance learning (MIL), wherein a
WSI is regarded as a collection, also referred to as a bag, of smaller image patches,
known as instances. An approach is to extract and aggregate patch-level features
or scores, followed by obtaining WSI-level labels through an embedding-level
classifier or instance-level classifier. Recently, several MIL studies have leveraged
convolutional neural networks (CNNs) for feature extraction and aggregation,
leading to excellent performance in WSI classification.

Recently, a straightforward approach is to apply pooling operations to patch-
level features or scores extracted by CNNs. MIL pooling methods include Max-
pooling [7], Mean-pooling [16], Noisy-AND [12], and attention mechanisms. The
first three methods are pre-defined and challenging to train, thus limiting the
adaptability of MIL methods. In contrast, the attention mechanism offers a pli-
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ant pooling approach that can be trained concurrently with other model com-
ponents. This mechanism provides high flexibility and interpretability, making
it a promising alternative for MIL-based WSI classification. Based on the fun-
damental theorem of symmetric functions, Ilse et al. [9] outlined the usefulness
of deep learning for modeling permutation-invariant bag scores and proposed
a gating-based attention MIL pooling that assigns different trainable attention
weights to each instance within a bag to calculate the WSI-level representation.
The underlying idea of DSMIL [13] was to construct two different branches.
The first branch of the proposed method utilizes an instance-based approach to
compute scores for each instance, which are then aggregated using max-pooling
to obtain the bag score. In the second branch, non-local attention is employed
by computing the similarity between the key instance with the highest score
in the first branch and the remaining instances, with each instance assigned a
distinct attention score. The algorithm fuses the bag scores of the two branches
for model training, effectively combining the advantages of instance-based and
embedding-based methods. CLAM [15] employed attention-based MIL to auto-
matically identify subregions which have high diagnostic values to accurately
classify WSI. What sets CLAM apart from previous approaches is the use of
instance-level clustering on a restricted set of representative regions. This clus-
tering process serves to constrain and refine the feature space, further enhancing
the classification performance.

The aforementioned studies have contributed to the advancement of WSI
applications in routine clinical diagnosis, serving as valuable assistive tools for
pathologists. However, all these methods assume that all instances are indepen-
dent in the bag. A pertinent query arises as to whether pathologists can make
valuable decisions for patients without considering the spatial information and
morphological features of different instances in WSIs. In the context of MIL
research, it is advantageous to consider the inter-instance relationships within
WSI when constructing a model. In particular, the Transformer architecture [20]
has achieved remarkable success in various visual recognition tasks, including
image classification [6] and object detection [2]. Furthermore, the self-attention
module in the Transformer architecture plays a crucial role in capturing the cor-
relations among different instances, allowing for a linear combination of instance
features within the bag. As a result, the transformer is well-suit for WSI clas-
sification, the results of which are closely related to the distribution of tissue
regions in the WSIs. However, with higher magnification, the WSIs will gen-
erate a considerably larger number of patches, forming longer sequences that
inevitably present significant challenges in terms of computational and mem-
ory requirements. In this study, we propose a novel model called TMG, which
incorporates the Transformer-based Multiple instance learning with Global aver-
age pooling into histopathological images to achieve accurate WSI classification,
with lower computational requirements and supporting for longer sequences. The
main contributions of this study are as follows:

1. The traditional self-attention module can globally aggregate all instances
of information when updating an instance; however, its time complexity is



Multi-class Cancer Classification 153

O(n2). We integrated linear-attention into TMG, which can effectively reduce
the model’s time complexity to O(n) without degrading the performance.

2. We propose the convolution-based multidimensional conditional position
encoding (CMCPE), which can generate position information for WSIs of dif-
ferent resolution sizes. In comparison to traditional position encoding meth-
ods, the advantages of using CMCPE are summarised as follows: making the
input sequence permutation-variant but translation-invariant; being capable
of dealing with sequences longer than those during the training period; and
providing the ability to encode absolute positions to a certain extent. What’s
more, it is simple and lightweight, which is easily plugged into transformer
blocks.

3. To make the conversion between the feature map and the final classification
result more natural, we propose using the global average pooling (GAP) layer
in the vision transformer (ViT) to classify WSIs, leading to enhanced model
robustness. Our experimental results demonstrate the effectiveness of GAP.

4. Experiments on histopathological images demonstrate the superiority of TMG
in the The Cancer Imaging Archive (TCIA) Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) datasets, compared to other state-of-the-art meth-
ods.

2 Methods

2.1 Transformer Network-Based Multiple Instance Learning

The MIL is a powerful tool for solving weakly supervised problems. It treats each
WSI as a collection (called a bag) of smaller image patches (called instances).
The entire WSI can be used as a research object without manually extracting
the ROI. In our method, TMG, we define the ith patch obtained from gigapixel
WSIs as an instance xi, and the set of all patches in the WSI is taken as a bag
(B = {xi|i = 1, . . . , n}). The classification result y for the entire WSI B is:

y (B) = g(h (f (x1) , f (x2) , . . . f (xi) , . . . , f (xn))), i = 1, . . . , n (1)

where, xi ∈ RD denotes the ith instance in bag B. As shown in Fig. 1, TMG
contains f(·), h(·) and g(·), which are separately used as an instance feature
extractor, a Transformer and MIL-based feature aggregator named TM, and
GAP, respectively. In this study, the instance feature extractor consisted of
a ResNet50 truncated after the third residual block, whose parameters were
acquired through pretraining on ImageNet32.

To capture the long-term dependencies among different instances in WSIs, we
employ the Transformer encoder structure in ViT as an aggregator for MIL and
change the position where positional encoding is added. As shown in Fig. 1, each
transformer encoder layer is composed of a multihead self-attention (MHSA) and
a multi-layer perceptron (MLP) block. We follow ViT, adding the class token
(Class0(B)) and set of key features M ⊆ f(x1), . . . f(xi), . . . , f(xn) selected in
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Fig. 1. Detailed overview of the TMG for the classification of WSI. The TMG consists
of instance feature extractor, a feature aggregator TM, and GAP. The input histology
image is divided into patches, which is feeding into the instance feature extractor to
obtain the compact low-dimensional feature vector of length of 1024. The obtained
features are the input into the feature aggregator TM to capture the local space infor-
mation and morphological features in WSIs. The outputs of the TM are further input
into the GAP to establish the association between the key information extracted by
TM and the final predicted category information.

the feature extractor f(·) to the input instance token group. The input token
embedding z0 ∈ RN×D can be represented as

z0 = [Class0 (B) , f (x1) , f (x2) , . . . f (xi) , . . . , f (xn) ,M ] , i = 1, . . . , n (2)

In MHSA, we initially transform instance embedding into query Q, key K,
and value V , following which we compute the similarity between the query and
key vectors to obtain the attention matrix. Each value in the matrix records the
correlation between a pair of instances. The output of the MHSA is the weighted
average sum of all values, the weight of which is the attention matrix calculated
by the query and key. The transformer encoder module is composed of L stacked
layers, LN represents the layernorm, and MLP includes two fully connected
layers with a nonlinear GELU activation function, which can be expressed as
follows:

z′
l = MHSA (LN (zl−1)) + zl−1, l = 1, . . . , L (3)

zl = MLP (LN (z′
l)) + z′

l, l = 1, . . . , L (4)

The MHSA contains aggregation information that aggregates the contribu-
tion of each instance in the bag to the final WSI classification; however, its
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time complexity is O(n2). Methods such as Longformer [1], Linformer [21] and
Reformer [11] can reduce the time complexity to O(n) or O(nlogn), which rely on
additional constraints or assumptions to reduce the complexity of the model and
do not provide rigorous theoretical proofs. Performer [4] provided fast attention
via the positive orthogonal random features approach (FAVOR), thus achieving
an unbiased estimation of the attention matrix under linear space-time complex-
ity and not depending on sparsity or low-rankness assumptions. Specifically, the
original attention formula can be expressed as:

Att(Q,K, V ) = softmax(
QKT

√
d

)V = D−1AV (5)

Here, A = softmax(QKT

√
d

), D = diag(A1L), 1L = (1)L×L, and L is the length
of embedding. In Performer, by applying a function mapping, matrix A can be
decomposed into the product of two smaller matrices.

A = exp(QKT ) ≈ φ(Q)φ(K)T = Q′(K ′)T (6)

Here, Q′,K ′ ∈ RL×r, r represents the dimension of the sequence after low-
dimensional mapping. This mapping function preserves the inner product rela-
tionship between vectors and approximates the attention mechanism by perform-
ing dot product operations. The approximate self-attention Y of the Performer
can be defined as [19]:

Y = D−1(Q
′
((K ′)TV )) (7)

Here, D = diag(Q′((K ′)T 1L)). Performer does not show the calculation of
A = exp(QKT ), which can reduce the time complexity of attention calculation
to linear. In our method, we replace the self-attention module with Performer,
which can effectively reduce the model complexity to O(n) without degrading
performance. In the multiple variants of ViT, the number of blocks used by the
transformer encoder module is 12, 24, and 32. According to different model sizes,
we use a block number of 2 to further reduce the complexity of the model.

For the self-attention module, the spatial position and edge information of
the image is ignored. The absolute position encoding adopted by the trans-
former add the absolute positional encodings to the input embedding as new
input embeddings. There are several choices for the absolute encoding in trans-
former, such as fixed encodings by sine and cosine with different frequencies and
learnable encodings through training parameters [8]. In terms of classifying WSI,
the number of patches contained in each WSI may vary, and the absolute posi-
tion encoding of the ViT cannot provide position encoding information of the
dynamic length, limiting the translation of the model and sequence length of the
training images. Previous research findings have revealed that the enhancement
of readout for absolute positional information is bolstered by the integration of
larger receptive fields or the application of non-linear strategies to interpret posi-
tional nuances. Therefore, in this study, we transform the MLP into CMCPE,
which can generate position information for WSIs of different resolution sizes.
CMCPE can introduce the locality, two-dimensional neighbourhood structure,
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and translation invariance of convolution operations, thereby providing the abso-
lute position of the image [10]. Given the different bag sizes (number of patches
in each WSI), we proposed CMCPE to comprehensively consider the spatial
information and morphological characteristics of different patches in the WSI.
CMCPE operate on a bag of feature embeddings, denoted as x ∈ R(N+1)×D,
where N is determined by the number of patches in a WSI and the number of
key features after feature extraction, and it is dynamically changed. The purpose
of this module is to enhance the positional encoding information of input features
by utilizing convolutional layers with different kernel sizes. This intuitive oper-
ation aims to better capture the spatial relationships between features, thereby
enhancing the model’s understanding and representation of spatial information.

After feeding the input token embedding through L transformer encoder lay-
ers, we obtain the output token embedding zL ∈ R(N+1)×D, where D represents
the dimension of the token embedding. Prior to being fed into the GAP layer, the
morphological features and local spatial location information extracted through
the L transformer encoder layers are further consolidated using the self-attention
module to obtain a comprehensive representation zL. In subsequent experiments,
ClassL (B) = zL[0] is the input token embedding of the MLP head in ViT, and
bL = zL[1, 2, . . . , N ] is the descriptive vector representation of the WSI, in which
the instance embedding bL can be used as the input of the GAP layer.

2.2 Global Average Pooling

In the ViT architecture, ClassL (B) = zL[0] is used as an input of the MLP
Head for WSI classification. In the experiment, we constructed an association
between the WSI feature map and the category feature map by introducing the
GAP to achieve better classification results.

For image classification, the convolutional layer is typically used to extract
two-dimensional feature information from images, which is converted into a one-
dimensional vector and then fed into the fully connected layer to predict various
categories. In WSI classification task, the WSI descriptive feature vector bL ∈
RN×D obtained by the transformer encoder is first reconstructed into a 2D
image feature map bf ∈ R(

√
N×√

N)×D. Then, convolution with a kernel size of
1 is applied to obtain a feature map with the same number of channels as the
number of categories C, followed by applying the GAP, and finally rescaling the
newly generated sequence to the serialised information format as the output. A
schematic of GAP is shown in Fig. 2.

3 Results

3.1 Details of Implementation

Datasets. We acquired pathology slides and corresponding labels for WSIs con-
taining tumour tissues corresponding to the eight grouping categories for WSI
classification via TCIA CPTAC Pathology Portal. To ensure that the model
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Fig. 2. Schematic diagram of global average pooling.

could effectively learn the distinctive features of tumours for precise classifica-
tion of WSI, slides without tumour were excluded from the analysis, and only
representative diagnostic slides of the tumour were included. In total, we obtain
6037 WSIs from the CPTAC study.

WSI Processing. Given the enormous bag sizes (numbers of patches in each
WSI) in CPATC, we first used the CLAM library to segment tissues, which
is publicly available over GitHub (https://github.com/mahmoodlab/CLAM),
thereby obtaining a segmentation mask which contains enough tissue cells.
CLAM mainly included the following processing steps: first, it converted the
image from an RGB to HSV colour space and applied binary thresholding to
the downsampled saturation channel of the image to calculate the binary mask
of the tissue area. Second, 256 × 256 patches (without overlap) were cropped
from the segmented tissue contours as instances. In the final step, we employed
a truncated ResNet50 model that was pre-trained on the ImageNet dataset to
convert each RGB image patch of size 256×256×3 into a discriminative feature
representation with a length of 1024. Significantly, we save each instance in the
hierarchical data format hdf5 which contains an array of extracted features along
with their corresponding patch coordinates.

Training. The model parameters were updated following each min-batch using
the Adamax optimizer with an L2 weight decay of 1 × 10−5 and a learning rate
of 2×10−4. The running average of the first and second moments of the gradient
was calculated with β1 set to 0.9 and β2 set to 0.999. Additionally, to ensure
numerical stability, the ε term 1 × 10−8 was added to the denominator as the
default setting.

Model Selection. The training process was limited to a maximum of 200
epochs, with continuous monitoring of the performance of the model on the vali-
dation set was monitored after each epoch. To prevent overfitting, early stopping

https://github.com/mahmoodlab/CLAM


158 H. Luan et al.

was applied when the validation loss for the WSI classification did not decrease
for 20 consecutive epochs beyond epoch 50. The best model, which achieved low-
est validation loss was selected to evaluate the performance on the dependent
test set.

Evaluation. To validate the performance of the proposed TMG in classifying
WSI, we evaluated it using CPTAC dataset. The classification prediction of
the network was the argmax of the class probability predicted by TMG. We
evaluated the performance of the model using the following classification metrics:
precision, recall, F1-score, mean average precision (mAP), AUC-ROC for each
category, and aggregation for all classes by micro-averaging, macro-averaging,
and weighted averaging (Fig. 3a, Fig. 3b, Table 1). In addition, with TMG, WSI
classification yielded an AUC value over 0.99.

Fig. 3. Model performance of the TMG. a. Performance for the classification prediction
of WSI on the CPTAC hold-out test set for 8 categories. Per precision and recall are
plotted next to the confusion matrix. The columns of the confusion matrix represent
the true category of the tumour and the rows represent the category predicted by
the TMG. b. The AUC on the CPTAC hold-out test set of TMG in predicting eight
tumours. c.Top-k model accuracies for WSI classification prediction on the CPTAC
hold-out test set for k ∈ 1, 3, 5.

Computational Hardware and Software. All WSIs were processed on an
Intel(R) Xeon(R) Gold 5218R CPU @ 2.10 GHz, equipped with two GeForce
RTX 2080 Ti graphics processing units (GPUs). The WSI processing pipeline
was implemented in Python (3.7.7) using the CLAM package. CLAM utilized



Multi-class Cancer Classification 159

Table 1. Test performance for WSI classification prediction

category Precision Recall F1-score mAP AUC-ROC

Lung 0.857 0.947 0.900 0.971 0.998

Skin 0.976 0.909 0.941 0.991 0.998

Kidney 1.000 0.857 0.923 0.965 0.997

Endometrial 0.939 1.000 0.969 0.994 0.999

Pancreas 0.833 0.882 0.857 0.910 0.985

Soft tissue 0.979 0.939 0.958 0.991 0.998

Head and neck 0.944 0.971 0.958 0.997 1.000

Brain 0.948 0.948 0.948 0.984 0.997

Micro average 0.936 0.936 0.934 0.977 0.996

Macro average 0.950 0.948 0.948 0.985 0.997

Weighted average 0.857 0.947 0.900 0.971 0.998

openslide-python (1.1.2) for WSI reading and opencv-python (4.1.1.26) for image
processing. Each deep learning model was implemented on a GPU using the
Pytorch (1.13.0) deep learning library. The scikit-learn (1.0.2), a scientific com-
puting library, was used to calculate metrics for evaluating classification per-
formance, including precision, recall, F1-score, and mAP. It was also utilized to
evaluate the overall performance of the mode using the AUC-ROC metric. Addi-
tionally, numpy (1.18.1) was used for the numerical calculation and matplotlib
(3.1.1) was used for plotting.

3.2 Performance Evaluation

Based on the CPTAC dataset, we compared TMG with state-of-the-art methods
including MIL [9], CLAM [15], TOAD [14], and TransMIL [18]. To ensure com-
parability between the different methods, the feature extraction of the above
method uses truncated ResNet50, whose parameters are pretrained on Ima-
geNet32. Table 2 showcases the top-k accuracy of the model, where k = 1,3,5,
which is a metric that evaluates how often the ground truth is found in the
k-highest confidence predictions made by the model. It is also displayed the test
error and ROC. In Fig. 3c, we can observe that the top-k accuracy of the TMG for
k = 1,3,5 is 94.8%, 98.0%, and 100%. Our proposed TMG method achieved the
best performance, outperforming the second-best method TransMIL by approx-
imately 2.6% in top-1 accuracy, and had the lowest error rate of 5.21% on the
hold-out test set.

3.3 Ablation Study

We conducted ablation experiments to study: (1) the selection of key features
of the input token in the backbone network; (2) CMCPE captured the location-
encoded neighbourhood information using convolution kernels of different sizes;
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Table 2. Classification performance for each category. The top-k accuracy for k = 1,3,5,
test error, and area under the curve (AUC) are shown for different methods, such as
TOAD, MIL, CLAM-sb, CLAM-mb, TransMIL, and TMG.

method top-1 top-3 top-5 test error AUC

TOAD 0.899 0.974 0.997 0.10098 0.98838

MIL 0.827 0.935 0.977 0.17264 0.97262

CLAM-sb 0.883 0.980 1.000 0.11726 0.98865

CLAM-mb 0.886 0.987 1.000 0.11401 0.98859

TransMIL 0.922 0.980 0.997 0.07818 0.99370

TMG 0.948 0.980 1.000 0.05212 0.99643

and (3) where the GAP layer was added. To evaluate the impact of selecting key
features in the input token for WSI classification prediction, we selected the first
M or last M token features obtained from the feature extractor and spliced them
into the original morphological features that combine with the class token. The
experimental results of the ablation study were listed in Table 3. The results
indicated that selecting the last M token features as key features could bet-
ter classify WSI at various resolutions, and the top-1 accuracy and AUCs values
had positive effects (Top-1 accuracy: 0.948 vs. 0.945; AUC:0.997 vs. 0.992). Next,
to further verify the effectiveness of adding multidimensional position encoding
and the superiority of the superposition of different dimensions of multidimen-
sional position encoding, we captured the position information with different
neighbourhood sizes by changing the size of the convolution kernel. The results
showed that simultaneously capturing the position information with the neigh-
bourhood of convolution kernel sizes of 1, 3, and 5 could significantly improve the
top-1 accuracy of TMG and achieve an AUC value of 0.997 when achieving the
WSI classification. Lastly, to evaluate the benefit of adding GAP, we addition-
ally experimented with adding GAP to the class feature map or the WSI feature
map. The experimental results demonstrate that the addition of the GAP layer
to the class feature map could effectively enhance the correlation between the
WSI feature map and the class feature map, leading to a noteworthy improve-
ment of 2% in the top-1 accuracy performance (0.948 vs. 0.928). As shown in
Table 3, all models used the same hyperparameter settings as those reported
throughout the entire study. For all experiments, the cases were partitioned into
70:10:20 splits for training:validation:testing.

3.4 Model Convergence

In Fig. 4, we presented the training/validation accuracy and training/validation
loss of TMG, as well as the latest MIL methods including TransMIL, TOAD,
MIL, CLAM-mb, and CLAM-sb at different epochs. Unlike these methods, TMG
leverages the morphological and spatial information among instances. Despite
having a larger number of model parameters, TMG achieves comparable perfor-
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Table 3. Ablation study. The top-k accuracy for k = 1,3,5 (represented by top-1, top-3,
and top-5 in the below table), test error, and area under the curve (AUC) are shown for
different experiments: 1) The key features are obtained from the first or last M-token
features of the morphological features from the feature extractor, as shown in tests 1
and 2; 2) The location information in the neighbourhood of convolution kernel sizes of
1, 3, 5, or its combination, and without the location information, as shown in tests 2,
4, 5, 6, 7, 8, and 9; 3) Where the global average pool (GAP) layer is added-the class
or the whole slide image (WSI) feature map, as shown in Tests 2 and 3.

Test Key feature Kernel size GAP top-1 top-3 top-5 Test error AUC

1 first 1,3,5 � 0.945 0.987 1.000 0.055375 0.995291

2 last 1,3,5 � 0.948 0.980 1.000 0.052117 0.996643

3 last 1,3,5 × 0.928 0.987 1.000 0.071661 0.995544

4 last × � 0.919 0.987 0.997 0.081433 0.994768

5 last 1 � 0.932 0.977 0.997 0.068404 0.993394

6 last 3 � 0.938 0.990 1.000 0.061889 0.997234

7 last 5 � 0.925 0.977 0.993 0.074919 0.994470

8 last 7 � 0.935 0.984 0.990 0.065147 0.992559

9 last 3,5,7 � 0.938 0.984 0.997 0.061889 0.996415

mance in terms of training loss and accuracy to other MIL methods. Moreover,
it outperforms existing MIL methods in terms of validation loss and accuracy.

Fig. 4. The training/validation accuracy and training/validation loss of TMG, as well
as the latest MIL methods.

3.5 t-SNE Visualization

To assess the effectiveness of adding the GAP layer, we conducted evaluations
on the hold-out test dataset, specifically focusing on models that incorporated
GAP into the category feature maps and WSI feature maps. We extracted fea-
tures from eight types of tumors and utilized t-SNE, a non-linear dimensionality
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reduction method, to visualize the features in two dimensions. Figure 5 demon-
strates that the inclusion of a GAP layer in the category feature map leads to
improved WSI classification performance.

Fig. 5. The t-SNE visualization on the feature representation vector of WSI. The left
figure illustrates the t-SNE visualization results when GAP is applied to the WSI
feature maps, while the right figure demonstrates the t-SNE visualization results when
GAP is applied to the category feature map.

4 Discussion and Conclusion

In this paper, we introduced TMG, a novel method based on Transformer and
MIL, which shows promise in enhancing the classification performance of WSIs.
The TMG is composed of three components: an instance feature extractor, a
feature aggregator TM based on Transformer and MIL, and GAP. The instance
feature extractor encodes each instance into a low-dimensional feature vector
via a truncated ResNet50. TM is the backbone of the entire model, capturing
the spatial information and morphological features in WSIs. GAP establishes
the association between the key feature information extracted by TM and the
final predicted category information. TMG demonstrated exceptional perfor-
mance by achieving AUC values exceeding 0.996 in accurately predicting eight
distinct tumour classes when testing on the hold-out CPTAC dataset. Using a
single GeForce RTX 2080 Ti GPU, the average runtime (in seconds) for inference
(including tissue segmentation, patching, feature extraction, and WSI classifica-
tion prediction) on the dependent test set was 13.14 s (std, 6.06 s). Through
extensive experiments, we demonstrate that our proposed method can achieve
excellent performance, compared with previous methods, such as MIL, CLAM,
TOAD, and TransMIL.

Although TMG has demonstrated excellent performance in predicting the
type of cancer, further testing of its generalizability is needed. For example, we
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will assess the performance of TMG in subtype classification and compare it
with novel methods such as GTP [24]. Furthermore, we are actively exploring
the application of TMG to generalized classification problems, including the
diagnosis of CUP and the prediction of tumor markers. Besides, we will persist in
refining our method. Subsequently, we anticipate the integration of pathological
images with multi-omics data in our model, thereby enhancing its performance.
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dation of China (grant numbers 92259101) and the Strategic Priority Research Program
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Availability. The pathology slides and corresponding labels for WSIs are avail-

able from the CPTAC Pathology Portal. All source code used in our study was

implemented in Python using PyTorch learning library, which are available at
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Abstract. The mobile element variant is a very important structural variant,
accounting for a quarter of structural variants, and it is closely related to many
issues such as genetic diseases and species diversity. However, few detection
algorithms of mobile element variants have been developed on third-generation
sequencing data.We propose an algorithm ricME that combines sequence realign-
ment and identity calculation for detecting mobile element variants. The ricME
first performs an initial detection to obtain the positions of insertions and deletions,
and extracts the variant sequences; then applies sequence realignment and identity
calculation to obtain the transposon classes related to the variant sequences; finally,
adopts amulti-level judgment rule to achieve accurate detection ofmobile element
variants based on the transposon classes and identities. Compared with a repre-
sentative long-read based mobile element variant detection algorithm rMETL, the
ricME improves the F1-score by 11.5 and 21.7% on simulated datasets and real
datasets, respectively.

Keywords: mobile element variants · sequence realignment · identity
calculation · third-generation sequencing data

1 Introduction

Transposons areDNA sequences that canmove autonomously across the genome. Trans-
posons show an important component of the human genome, which occupy approxi-
mately half of the human genome [1]. The transposons that have been verified to remain
active in the human genome include three classes, Alu, LINE-1 (L1) and SINE-VNTR-
Alu (SVA) [1]. The variants caused by transposon position changes are called mobile
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element (ME) variants, which can be divided into mobile element insertion (MEI) vari-
ants and mobile element deletion (MED) variants. ME variants have demonstrated to
be closely associated with various human genetic diseases such as hemophilia and neu-
rofibromatosis [2, 3]. In addition, ME variants account for about a quarter of the overall
structural variants [4]. Therefore, it is of great practical importance to carry out research
on the detection algorithm of ME variants.

The representative algorithms for detectingMEvariants on next-generation sequenc-
ing (NGS) data are Tea [3], MELT [4], Mobster [5], and Tangram [6]. Tea alignments
the paired-end reads with the reference genome and the assembled sequences composed
of ME sequences respectively, and extracts repeat-anchored mate reads and clipped
reads based on the alignment information to determine the insertion mechanism of MEs
[3]. MELT uses discordant read pairs from NGS data alignment information to detect
MEI variants, filters ME variants based on proximity to knownME variants, sequencing
depth, and mapping quality of reads; and finally uses discordant sequence pairs and split
reads to determine the type of ME variants and precise breakpoints [4]. Mobster uses
the discordant reads in the NGS data as the signals of MEI variants, and then extracts
the variant sequences based on the signals and compares the variant sequences with
the transposon consensus sequence (TCS) to determine the type of ME variations [5].
Tangram designs different ME variation features extraction methods for the read pair
and split read in the NGS data alignment information respectively, and then determines
the position and type of MEI variants according to the features [6].

Third-generation sequencing (TGS) data has great potential for structural variant
detection. It has been shown that structural variant detection algorithms based on TGS
data are better than those based on NGS data [7, 8]. rMETL [9] is a representative
long-read based ME variant detection algorithm, which is divided into four steps. The
first step extracts the candidate ME variant sequences from the long-read alignment
file. The second step clusters the candidate variant sequences to determine the ME
variant positions. The third step uses the read alignment tool NGMLR [10] to realign
the candidate variant sequences with transposon consistency sequences. And the final
step counts the transposon classes of the mapped sequences and selects the transposon
class with the highest frequency as the type of the ME variant.

However, the existing long-read based ME variant detection algorithms encounter
the following problems:

(1) Some insertions (INSs) or deletions (DELs) were not effectively detected, which
will directly affect the recall of the final removable element variant detection;

(2) Some of the variant sequences could not be successfully realigned by NGMLR,
which could not provide more judgment basis for the final ME variant detection to
improve the recall and accuracy of the final detection results.

(3) If the maximum number of transposon class is zero, i.e., all the variant sequences
are not mapped with the TCS, the variant may be missed as a false-negative mobile
component variant. And if the transposon class with the highest number of occur-
rences is not unique, the variant may be misclassified as a false positive ME variant
when randomly selecting a transposon as the final ME class.
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To address the above-mentioned issues, we propose an ME variants detection algo-
rithm ricME using sequence realignment and identity calculation to effectively improve
the performance of detecting ME variants.

The remainder of this paper is organized as follows. Section2details the proposedME
variant detection algorithm ricME. Section 3 describes the experimental environment,
dataset, results and analysis. Section 4 concludes the paper.

2 Method

Our proposed ricME algorithm comprises the following four steps.
Firstly, the long-read based structural variant detection algorithm cnnLSV [11] is

executed on the read alignment file Dset to obtain the initial detection result Cset con-
taining only INSs and DELs. Secondly, the ricME applies different sequence extraction
methods according to the characteristics of INSs and DELs to extract variant sequences
within Cset, and save the sequences into the set S. Thirdly, all variant sequences in the
set S are realigned with TCS using the tool NGMLR. For the variant sequences that can
be successfully aligned, the transposon class te mapped by the sequences is stored in
the set Tset; for the variant sequences that are not aligned, the ricME calculates their
identity with TCS, and the potential transposon class pte corresponding to the maximum
identity is selected and deposited into the set Tset. Finally, the ricME uses a multilevel
judgment rule to determine the final class of ME based on the distribution of te, pte and
identity in the set Tset. Figure 1 shows the process of algorithm ricME.

2.1 Initial Variant Position Detection

Since ME variants are caused by transposons moving autonomously across the genome,
ME variants are essentially special INSs and DELs. And the sequences of variants are
highly similar to transposon families including Alu, L1 and SVA. Therefore, the first
step of algorithm ricME is to initially identify INS and DEL position.

In our previous work, we proposed an algorithm called cnnLSV [11] to detect struc-
tural variants by encoding long-read alignment information and modeling convolutional
neural network. Experiments have shown that the algorithm cnnLSV has a high overall
F1-score compared to other existing algorithms. We use cnnLSV to detect the structural
variants on sequence alignment file Dset, and save the INSs and DELs to the set Cset.

2.2 Variant Sequence Extraction

The algorithm ricME using the following method to extract the variant sequences for
INS and DELs in Cset.

Variant Sequence Extraction for INSs. As shown in Fig. 2(a), the ricME extracts
variant sequences using intra- and inter-alignment signatures.

(1) Extracting variant sequences based on intra-alignment signatures. The flag “I” in the
CIGAR strings in the alignment information indicates the INS, while the number
preceding the flag represents the length of the variant. The ricME searches all read
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alignment information around the INSs in Dset to obtain the variant sequences with
a length of more than 50 base pairs (bps) within the CIGAR strings, and saves the
information about the variant sequences seq to the FA format file.

(2) Extracting variant sequences based on the inter-alignment signatures. When long-
reads are aligned to the reference genome, long-reads that span structural variants
may split into multiple segments. According to the characteristics of INSs, the dis-
tance between two segments from the same read will change before and after the
alignment, and the redundant segments that cannot be aligned are exactly the INS
variant sequence seq. In addition to the above case, a read alignment situation around
the INS is also mentioned in the algorithm rMETL. When the sequencing reads
cannot span the whole INS segment, there will be a fragment that can be aligned
successfully, and the adjacent fragment is clipped off because it is located at the
boundary of the variant region. The sequence is clipped off, and it is exactly the INS
sequence seq. The ricME extracts the variant sequences according to the above two
cases, and saves the information related to the variants to the FA format file.

Variant Sequence Extraction for DELs. Unlike the existing algorithm rMETL, which
searches for variant features before detecting variant position, our algorithm ricME uti-
lizes the detection results Cset of the existing structural variant detection algorithm
cnnLSV to obtain the initial positions of DELs. Therefore, the ricME can directly inter-
cept the variant sequence seq in the corresponding region of the reference genome based
on the chromosome number chr, variant position pos, and variant length svl where the
DEL occurs in the Cset, as shown in Fig. 2(b). And last, the ricME saves the information
of the DEL to the FA format file.

2.3 Sequence Realignment and Identity Calculation

In algorithm rMETL, sequence realignment means that the variant sequences extracted
from the long-read alignment information are realigned to TCS by NGMLR to obtain
the transposon class te. The rMETL could judge the ME variant class according the
distribution of the te.

However, some of the variant sequences were discarded because they could not be
successfully aligned to TCS by NGMLR, i.e., they could not provide more basis for ME
variant type judgment. In addition, relying only on the distribution of te to determine the
ME class may lead to accidental errors. As shown in Fig. 3(a), three sequences seq1, seq3
and seq6 are finally judged as the Alu class, and the other three sequences seq4, seq7 and
seq8 are aligned to the L1 class, i.e., the number of variant sequences supporting Alu and
L1 classes are of equal sizes, which will lead to the difficulty for the algorithm rMETL to
determine the final ME variant class. To solve the above problem, the algorithm ricME
introduces the sequence identity calculation based on sequence realignment, as shown
in Fig. 3(b).

Sequence identity reflects the degree of similarity between two sequences. The
premise of sequence identity calculation is to align two sequences [12, 13]. The two-
sequence alignment algorithms include global-based and local-based alignment. Due
to the large differences between the lengths of the three transposons and the lengths
of each variant sequence, if the global based approach is used to calculate the identity,
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Fig. 1. Procedure of proposed mobile element variant detection algorithm ricME
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I

intra-alignment signatures

(CIGAR strings)

CIGAR strings

seq

inter-alignment signatures

(Split read)

INS variant sequence

reference

genome

split read

seq

(a)Extracting INS variant sequenc

(b)Extracting DEL variant sequence

chr

pos svl

seq

(c) Saving variant sequence

>chr1_1337322_352_INS_1

TTAGTCCAGGGATGCAGATGGCTCACGCCTGAA…TCCCCAGCACTTTGGGAGCGGCCGAGGGC

>chr1_1337322_352_INS_2

GACAATTGCCAGGTGCAGTGGCTCTCACGCCTG…ATGCCCAGCCTTGTTTGGAGCTCGAGGCAT

reference genome

Fig. 2. Variant sequence extraction and storage in FA format

Fig. 3. Example of sequence realignment and identity calculation

the longer variant sequence will always get a higher identity with the longer transposon
sequence. To avoid this bias caused by sequence length, the algorithm ricME uses the
local-based alignment algorithm based on affine gap penalty to calculate the identity of
two sequences. The ricME calculates the identity between unmapped variant sequences
and the TCS to obtain the potential ME class pte and the corresponding identity identity,
and stores the te, pte, and identity in the set Tset.
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2.4 Mobile Element Variant Determination

In order to avoid the random selection error caused by the same frequency of transposon
class te, the algorithm ricME introduces the potential variant classpte and identity identity
as judgment factors, and proposes a multi-level judgment rule based on three factors of
te, pte and identity to accurately detect the ME variant.

The process of the ME class judgment rule is as follows.

(1) To improve the accuracy of detection, the ricME defines the identity threshold
identity0 and eliminates the pte with identity < identity0 within Tset.

(2) The ricME constructs 3 triples TAlu, TL1 and TSVA according to the distribution of te,
pte and identity within Tset, where the triple Tme = (nte, npte, score),me ∈ {Alu, L1,
SVA}, nte denotes the number of te in Tset with class me, npte denotes the number
of pte, and score denotes the sum of identity corresponding to the pte of class me.

(3) A multilevel judgment rule is used to determine the ME variant class. The ricME
ranks the three tuples TAlu, TL1 and TSVA in the order of priority of nte, npte, and
score.

(4) The ricME stores the ME variant information and transposon class to the VCF file
as the final detection output.

3 Experiment

3.1 Experimental Environment and Data

Experimental Environment. The experiment was carried out on the computing node
X580-G30 with CPU 2 × Intel Xeon Gold 6230, GPU 2 × Tesla T4, and main memory
192GB DDR4 of Sugon 7000A parallel computer cluster system at Guangxi University.
The running operating system is CentOS 7.4. The proposed method was implemented
by Python3.8 programming. The PyTorch was used to train and test the constructed
network model.

Datasets

Simulated Datasets. Referring to the work of rMETL [9], the simulated datasets were
generated as follows. Firstly, the 20,000 real ME variants of classes Alu, L1 and SVA,
respectively, were collected from the database RepeatMasker [14]. And the sequences
corresponding to the positions of the selected ME variants were deleted in chromosome
1 of the human reference genome. We extracted the sequence of chromosome 1 of the
normal reference genome as seq1, the sequence of chromosome 1 containing the MED
variants as seq2, and recorded the chromosomes, positions, lengths and classes of the
real ME variants as the ground truth set. Secondly, we executed the tool PBSIM [15]to
simulate sequencing reads for seq1 to generate 4 PacBio CLR datasets with coverage
of 50×, 30×, 20×, and 10×, respectively, and executed read alignment tool NGMLR
to map the 4 datasets to the seq2 to generate 4 long read alignment files for detecting
MEI variants. Thirdly, we also used the PBSIM to simulate sequencing reads for seq2
to generate 4 datasets with coverage of 50×, 30×, 20×, and 10×, respectively, and
executed NGMLR to align the 4 datasets to the seq1 to generate 4 read alignment files
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for detectionMED variants. Finally, we used SAMtools [16] to sort and generate indexes
for the 8 simulated datasets.

Real Datasets. The real dataset used is the HG002 CCS [17] dataset generated by the
PacBio platform, which relates to the ground truth set that is a portion of theME variants
of HG002 dataset validated in [18]. This ground truth set contains 1353 Alu, 197 L1,
and 90 SVA ME variants.

3.2 Detecting Performance Evaluation Metrics

The experiments use the precision Pre, recall Rec and F1-score F1 as the detection
performance evaluation metric.

In the determination of true positive ME variant, when the detected ME variant call
and the ME variant base of the ground truth set satisfy Eq. 1, then call is considered a
true positive variant, otherwise it is a false positive variation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

callt = baset
callm = basem
callc = basec

min(calle + 1000, basee) − max(calls − 1000, bases) ≥ 0
min(calll ,basel)
max(calll ,basel)

≥ 0.7

(1)

where callt , callm, callc, calls, calle and calll denote variant type, ME class, chromo-
some, start position, end position and the length of variant call, respectively, and baset ,
basem, basec, bases, basee and basel represent variant type, ME class, chromosome,
start position, end position and the length of variant base, respectively, callm ∈ {Alu,
L1, SVA} and basem ∈ {Alu, L1, SVA}.

3.3 Experimental Results

Experiments on Simulated Datasets. The experiments were conducted on eight sim-
ulated datasets, including four datasets containing MEI variants with coverages of 50×
, 30×, 20×, and 10×, respectively, and four datasets containing MED variants with
coverages of 50×, 30×, 20×, and 10×, respectively.

Firstly, to verify the effectiveness of the algorithm ricME in detecting the initial
variant position, we looked at the detection results of simple INSs and DELs. The results
are shown in Table 1, where TP-call indicates the number of correctly detected variants
in the detection results, and TP-base represents the number of correctly detected variants
in the ground truth set.

From Table 1, it can be concluded that for the cases of INSs and DELs, the F1-
score of the algorithm ricME is about 12–17% higher than that of the algorithm rMETL.
For the INSs, the detection performance of algorithm rMETL, especially the recall,
decreases significantly as the coverage of the dataset decreases. In contrast, algorithm
ricME performed significantly better than algorithm rMETL in terms of recall Rec,
especially at low coverage, and could detect more than 4000 INSs and had about 23%
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higher recall than rMETL. Even though the Pre was slightly lower than that of rMETL
under partial coverages, the larger recall by the ricME results in a significant higher F1
values. For the DELs, both algorithms rMETL and ricME achieved very high detection
accuracy on the datasets with different coverages, especially rMETL could reach 99%. In
terms of recall Rec, the algorithm ricME had a significant advantage over the algorithm
rMETL, especially in the low coverage dataset, with a lead of about 13%. The F1 values
of ricME were also higher than that of algorithm rMETL by about 6–8%. Compared
with the similar algorithm rMETL, ricME had higher F1 values in the detection of INSs
and DELs.

Table 1. Results of algorithms in detecting INSs and DELs on simulated datasets

Type Coverage Algorithm TP-
Call

TP-
Base

FP FN Pre (%) Rec (%) F1 (%)

INS 50 × rMETL 13942 15013 1128 4987 92.515 75.065 82.881

ricME 18493 18692 694 1308 96.383 93.46 94.899

30 × rMETL 13100 14168 1046 5832 92.606 70.840 80.274

ricME 18218 18482 624 1518 96.688 92.410 94.501

20 × rMETL 12182 13235 916 6765 93.007 66.175 77.329

ricME 18038 18433 573 1567 96.921 92.165 94.483

10 × rMETL 9949 10944 636 9056 93.991 54.720 69.170

ricME 14980 15408 399 4592 97.406 77.040 86.034

DEL 50 × rMETL 16472 16804 129 3196 99.223 84.02 90.991

ricME 18999 19017 574 983 97.067 95.085 96.066

30 × rMETL 16630 16919 171 3081 98.982 84.595 91.225

ricME 19026 19072 619 928 96.849 95.360 96.099

20 × rMETL 16318 16658 122 3342 99.258 83.290 90.576

ricME 18808 18913 441 1087 97.709 94.565 96.111

10 × rMETL 13500 13918 60 6082 99.558 69.590 81.919

ricME 16388 16583 259 3417 98.444 82.915 90.015

Note that the values in bold represent the best results.

Next, the performance of two algorithms rMETL and ricME is compared for
detecting ME variants. The experiment results are shown in Table 2.

From Table 2, we can see that the performance of the algorithm ricME was signif-
icantly better than that of the algorithm rMETL in detecting MEI variants and MED
variants on datasets with different coverages, with 8–11% higher F1 values. For MEI
variants, in terms of the detection precisionPre, the ricME slightly outperformed rMETL
on high coverage datasets, while both performed comparably on low coverage datasets.
In terms of recall Rec, the algorithm ricME was significantly higher than rMETL, espe-
cially about 15% higher on the low-coverage datasets. In addition, the value of metric
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TP-base also shows that the ricME detected about 3000more true positives than rMETL.
For the overall performance metric F1-score, the ricME also obtained higher F1 values
due to the high precision and recall. For the MED variants, in terms of the detection
precision Pre, the rMETL achieved a high detection precision on all datasets, which
was about 2% higher than that of ricME. However, in terms of recall Rec, algorithm
ricME achieved significantly higher than rMETL on the datasets with each coverage,
namely about 7–8% higher. In terms of the F1 values, the algorithm ricME obtained
higher F1 values due to the overall high precision and recall, namely about 2–5% higher
than the algorithm rMETL. The combined experiment results in Table 2 show that the
algorithm ricME had a better performance in terms of recall Rec and was comparable
to the algorithm rMETL in terms of detection precision Pre. This indicates that the pro-
posed algorithm ricME is able to detect more ME variants than the algorithm rMETL,
and has higher accuracy in the variant class judgment stage. The above results show that
the proposed algorithm ricME use the sequence realignment and identity calculation to
enhance the basis for variant class judgment, which improves the detection precision,
recall and F1-score to achieve higher detection performance.

Table 2. Results of algorithms in detecting mobile element variants on simulated datasets

Type Coverage Algorithm TP-
call

TP-
base

FP FN Pre
(%)

Rec
(%)

F1
(%)

MEI 50 × rMETL 13785 14837 1285 5163 91.473 74.185 81.927

ricME 16894 17432 1235 2568 93.188 87.16 90.073

30 × rMETL 12964 14017 1182 5983 91.644 70.085 79.428

ricME 16643 17150 1294 2850 92.786 85.750 89.129

20 × rMETL 12047 13085 1051 6915 91.976 65.425 76.461

ricME 16314 16861 1428 3139 91.951 84.305 87.962

10 × rMETL 9831 10807 754 9193 92.877 54.035 68.321

ricME 13397 13911 1148 6089 92.107 69.555 79.258

MED 50 × rMETL 16388 16717 213 3283 98.717 83.585 90.523

ricME 17696 17875 677 2125 96.315 89.375 92.715

30 × rMETL 16542 16830 259 3170 98.458 84.150 90.744

ricME 17715 17914 724 2086 96.074 89.570 92.708

20 × rMETL 16238 16577 202 3423 98.771 82.885 90.133

ricME 17507 17742 586 2258 96.761 88.710 92.561

10 × rMETL 13437 13858 123 6142 99.093 69.290 81.554

ricME 15273 15562 400 4438 97.448 77.810 86.529

Note that the values in bold represent the best results.

Experiments on Real Datasets. We used the tool SAMtools to downsample the long-
read alignment file HG002 CCS 28× to generate a new dataset with 10× coverage, then
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executed the algorithms ricME and rMETL to detect ME variants on the two datasets,
and compared the detection results with the ground truth set to evaluate the detection
performance. The detection results of the two algorithms rMETL and ricME are shown
in Table 3, where “\” indicates that the calculation of F1 is meaningless in the case that
both metrics Pre and Rec are zero.

Table 3. Detection results of algorithms rMETL and ricME on dataset HG002

Type Coverage Algorithm TP-
call

TP-
base

FP FN Pre
(%)

Rec
(%)

F1
(%)

28 × Alu rMETL 4 4 364 1349 1.087 0.296 0.465

ricME 589 589 1898 764 23.683 43.533 30.677

L1 rMETL 14 14 292 183 4.575 7.107 5.567

ricME 59 59 946 138 5.871 29.949 9.817

SVA rMETL 1 1 101 89 0.98 1.111 1.042

ricME 32 32 1011 58 3.068 35.556 5.649

All rMETL 19 19 757 1621 2.448 1.159 1.573

ricME 680 680 3855 960 14.994 41.463 22.024

10 × Alu rMETL 2 2 55 1351 3.509 0.148 0.284

ricME 657 657 2198 696 23.012 48.559 31.226

L1 rMETL 1 1 65 196 1.515 0.508 0.76

ricME 62 62 1053 135 5.561 31.472 9.451

SVA rMETL 0 0 14 90 0 0 \

ricME 26 26 1133 64 2.243 28.889 4.163

All rMETL 3 3 134 1637 2.19 0.183 0.338

ricME 745 745 4384 895 14.525 45.427 22.012

Note that the values in bold represent the best results.

As can be seen from Table 3, the overall detection performance of the algorithm
ricME was significantly higher than that of the algorithm rMETL for the detection of
the all classes of ME variants on the real datasets with coverages 28 × and 10 ×. The
F1-scores of ricME was about 20% higher than that of rMETL. In terms of recall Rec,
the ricME was much higher than rMETL, especially for the detection of Alu transposon
class, which are 40% higher. In terms of precision Pre, although the Pre of the ricME
was higher than that of rMETL in all classes, both performed less well. For the rMETL,
the main reason is that the rMETL detected fewer true positive variants, i.e., insufficient
detection of ME variants. For the algorithm ricME, the main reason for the low accuracy
is the high number of false positive variants detected. However, it is worth noting that
despite the high frequency and importance of ME variants, there are still few studies
and annotations on ME variants [19, 20]. The ground truth set corresponding to the real
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dataset HG002 used in the experiments is the validated information ofME variants given
in the work [18], and this ground truth set only contains some of the ME variants with
a high confidence. This means that the false positives detected by the ricME may not
actually mean that no variants have occurred.

4 Conclusion

Mobile element variant is a very import structural variant that is closely associated with
a variety of genetic diseases. We propose the ricME, an algorithm for detecting the
variation of movable components that integrates re-matching and sequence consistency
calculation, to improve the existing representative ME variation detection algorithm
rMETL. The ricME has the following features and innovations. First, the ricME use
the detection results of algorithm cnnLSV to obtain the initial results with high recall.
Secondly, the ricME extracts the variant sequences of all INSs and DELs in initial
results. Thirdly, the ricME realigns and calculates identity between variant sequences
with transposon consistency sequences to obtain the corresponding transposon classes
and the identities. Finally, the ricME applies a multi-level judgment rule to determine the
final ME class based on transposon classes, potential transposon classes and identities.
The experiment results show that the proposed algorithm ricME outperforms the existing
representative algorithm for ME variant detection in general. In the future, we will
investigate algorithms for detecting more types of structural variants on more types of
datasets.
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Abstract. Single-cell RNA sequencing (scRNA-seq) technology offers the
opportunity to study biological issues at the cellular level. The identification of
single-cell types by unsupervised clustering is a basic goal of scRNA-seq data
analysis. Although there have been a number of recent proposals for single-cell
clustering methods, only a few of these have considered both shallow and deep
potential information. Therefore, we propose a graph autoencoder-based single-
cell integration clusteringmethod, scGASI.Basedonmultiple feature sets, scGASI
unifies deep feature embedding and data affinity recovery in a uniform framework
to learn a consensus affinity matrix between cells. scGASI first constructs mul-
tiple feature sets. Then, to extract the deep potential information embedded in
the data, scGASI uses a graph autoencoder (GAEs) to learn the low-dimensional
latent representation of the data. Next, to effectively fuse the deep potential infor-
mation in the embedding space and the shallow information in the raw space,
we design a multi-layer kernel self-expression integration strategy. This strategy
uses a kernel self-expression model with multi-layer similarity fusion to learn a
similarity matrix shared by the raw and embedding spaces of a given feature set,
and a consensus learningmechanism to learn a consensus affinity matrix across all
feature sets. Finally, the consensus affinity matrix is used for spectral clustering,
visualization, and identification of gene markers. Large-scale validation on real
datasets shows that scGASI has higher clustering accuracy than many popular
clustering methods.

Keywords: scRNA-seq · Clustering · Graph Autoencoder · Multi-layer Kernel
Self-expression Integration · Multi-layer Similarity Fusion · Consensus Learning

1 Introduction

Single-cell RNA sequencing (scRNA seq) technology can provide transcriptome profiles
of individual cells. Therefore, scRNA-seq data processing enables researchers to trace
the evolution of various cell lines, uncover complicated and uncommon cell subpopula-
tions, and disclose various gene regulatory relationships between cells [1]. Unsupervised
clustering is a key task in the analysis of scRNA-seq data. scRNA-seq data clustering
aids in the discovery of novel cell types and clarifies intercellular heterogeneity.

Many traditional clustering techniques have been developed by researchers, such as
K-means [2] and spectral clustering (SC) [3]. Some dimensionality reduction techniques
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have also been applied to reduce the dimensionality of single-cell data, mostly to select
highly variable genes (HVGs) [4–7]. Indeed, scRNA data are high-dimensional, sparse,
and noisy. Because of this, conventional analysis techniques frequently fail to yield the
expected outcomes. Therefore, it is imperative to create novel clustering techniques to
allow for precise single-cell type identification.

Recently, several methods have been developed for clustering single cells. Among
them, most of the methods emphasize on learning the similarity between the cells in
the original feature space. For example, Mei et al. proposed RCSL, which constructs a
similaritymatrix bymeasuring the global and local relationships between cells [8]. Since
the multiple kernel learning technique tends to capture rich data structures, Wang et al.
and Park et al. proposed SIMLR and MPSSC, respectively, by combining 55 different
Gaussian kernels [9, 10]. To capture the complex relationships among cells, based on
the low-rank self-expression model, the subspace clustering methods SinNLRR and
NMFLRR are successively proposed [11, 12]. Furthermore, in order to achieve better
clustering performance, somemethods integrate different similarity or clustering results,
such as SC3 and Seurat [13, 14]. Recently, SCENA, which learns a consistent affinity
matrix for clustering by constructing multiple gene (feature) sets, was presented by
Cui et al. [1]. The selection of multiple feature sets significantly improves clustering
performance and stability compared to single feature set learning such as PCA.

However, the above methods usually only consider shallow information in scRNA-
seq data. Recently, researchers have developed some deep learning-based clustering
methods that are able to extract deep information hidden in scRNA-seq data. In particu-
lar, the autoencoder, which automatically learns the potential low-dimensional represen-
tation (embedding) of the data in an unsupervised manner, has received much attention.
For example, scDeepCluster and scGMAI use an autoencoder to reconstruct the data
and extract deep information [15, 16]. However, the autoencoder does not explicitly
characterize the relationships between cells during the learning process and only con-
siders gene expression patterns. TheGraphConvolutional Networks (GCN) can take into
account both content information (gene expression information) and structural informa-
tion (cell-cell relationship information) of the data, and also learn how to represent nodes
in the graph by propagating neighborhood information. The Graph Autoencoder (GAEs)
model was created by Wang et al. by stacking multiple layers of GCN to integrate struc-
tural and content data in a deep learning framework [17]. Based on GAEs, Zhang et al.
proposed scGAC,which combinesmultiple feature sets selection and consensus learning
to learn the consensus affinity matrix for spectral clustering [18].

Although the above clusteringmethods have achieved goodperformance, the existing
single-cell clustering methods lack a comprehensive consideration of the shallow infor-
mation and the deep information. This tends to lead to suboptimal performance. There-
fore, we propose a graph autoencoder-based single-cell integration clustering method
scGASI. scGASI combines deep feature embedding and the multi-layer kernel self-
expression integration strategy to learn an exact consensus affinity matrix between
cells. And the consensus affinity matrix is used for spectral clustering, visualization,
and identification of gene markers. To summarize, the main contributions made are as
follows:
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(1) scGASI selects multiple feature sets using the variance method. This preprocessing
ensures that more accurate data information is captured and reduces the effect of
noise on feature embedding and data affinity recovery. Moreover, we use GAEs
to further mine deep information that comprehensively considers gene expression
information and cell-cell relationship information in scRNA-seq data.

(2) To effectively extract and preserve shallow information in the original feature space
and deep information in the embedding space, we propose a multi-layer kernel self-
expression integration strategy. For a feature set, this strategy uses an enhanced
kernel self-expression model to learn a common similarity matrix shared by the
original and embedding spaces, and passes this matrix to the GAEs to guide feature
learning.

(3) To improve the learning capability of the kernel self-expression model, we introduce
a multi-layer similarity fusion term. The multi-layer similarity fusion term uses
cosine similarity and Euclidean distance to characterize relationships among cells
in the original and embedding spaces, and passes this information to the similarity
matrix to guide its learning. Moreover, to enable interactive learning of multiple
feature sets and to achieve learning of the consensus affinity matrix for multiple
feature sets, we add a consensus learning term to the kernel self-expression model.

2 Related Work

2.1 Kernel Self-Expression Model

The task of self-expression learning is to approximate each data point in the union of
subspaces as a linear combination of the other points located in the same subspace i.e.
xi = ∑

j xjcij. The fundamental idea is that the weight cij should be high if xi and xj are
similar. As a result, C is often referred to as the similarity matrix. The learning problem
for the self-expression learning model is shown below:

min
Z

1

2
‖X − XC‖2F + β‖C‖2F s.t. C ≥ 0. (1)

Here, β ≥ 0 is the regularization parameter, and C ≥ 0 ensures that samples are similar
in a non-negative way.

However, the model (1) can only deal with linearly structured data and can-
not capture the nonlinear relationships hidden in the data. Therefore, it is neces-
sary to extend (1) to the kernel space to solve the nonlinear problem. The matrix
X in the case of multiple kernel learning (MKL) can be represented as ψω(X) =
[√u1ψ1(X),

√
u2ψ2(X), ...,

√
uQψQ(X)], where u = [u1, ..., uQ]T is the coefficient

of Q base kernel functions {κq(·, ·)}Qq=1. As a result, the kernel self-expression model is
obtained as shown below.

min
C,u

1

2
Tr

(
K − 2KC + CTKC

)
+ β‖C‖2F

s.t. C ≥ 0,K =
∑Q

q=1
uqKq,

∑Q

q=1

√
uq = 1, uq ≥ 0.

(2)

Here, (Kq)ij = κq(xi, xj) = ψq(xi)Tψq(xj), and K is the consensus kernel matrix.
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3 Method

3.1 The Framework of scGASI

scGASI combines deep feature embedding and multi-layer kernel self-expression inte-
gration mechanism to learn a consensus cell-cell affinity matrix for downstream analysis
such as clustering. Firstly, gene filtering and normalization are performed on the raw
expression matrix to minimize the impact of noise on the clustering performance. Sec-
ondly, based on the preprocessed expression matrix X ∈ Rm×n (m genes, n cells), to
circumvent learning limitations of a single feature set, we use the variance method [1]
to construct multiple feature setsXv ∈ RTv×n(Tv < m; v = 1, 2, ...,V ). That is, all fea-
tures are sorted by variance in descending order and instead of using a single feature set,
we used V multiple feature sets (top T1, top T2, …, top Tv). Meanwhile, we construct
the KNN graph { Av ∈ Rn×n} V

v=1 corresponding to the multiple feature set {Xv}Vv=1
as the initial input to the GAEs. Third, the GAEs is used to extract deep information
containing gene expression information and cell-cell relationship information. Fourth,
we use the multi-layer kernel self-expression integration mechanism to learn a common
similarity matrix Cv ∈ Rn×n for a single feature set, and a consensus affinity matrix
S ∈ Rn×n shared by multiple feature sets. Finally, iterating the above steps yields the
final affinity matrix S. And S is used for spectral clustering, visualizing and identifying
gene markers. Figure 1 shows the framework of scGASI.
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Fig. 1. The framework of scGASI.

3.2 Graph Autoencoder

To construct our GAEs in this paper, we choose the stacked GCN proposed by Wang
et al. [17]. For the data matrix Xv, we first calculate the similarity matrix Wv between
samples using the normalized Euclidean distance. We then construct an undirected K-
nearest neighbor (KNN) graph by selecting the top K similar points of each sample as
its neighbors. Thus, we obtain the adjacency matrix Av from the non-graphical data Xv.
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Based on the data matrix X ∈ RTv×n (Tv genes, n cells) and its corresponding
adjacency matrix A ∈ Rn×n, GCN learns a embedding Hl+1 ∈ Rp×n(p ≤ Tv) and a
weight matrixWl ∈ Rn×n. This process can be described as follows:

Hl+1 = f (Hl,A) = σ(A′HlWl)=σ(D−1/ 2(A + In)D−1/ 2HlWl). (3)

Here, f (HlA) is the spectral convolution function. l ∈ {0, 1, ...,L}, L refers to the layer
number of theGCN.H0 = X is the input ofGCN,Hl is the input of the l−th convolution,
and Hl+1 is the embedding from the l − th layer. Wl Represents the weight matrix of
the l − th layer that will be optimized during the training process. σ(·) represents an
activation function. D is degree matrix, and Dii = ∑

k (A + In)ik is the element within
it. In ∈ Rn×n is the identity matrix.

Thus, we obtain a single-layer GAE in scGASI as follows.

min
H ,W

‖H − A′HW‖2F + λ‖W‖2F , (4)

where λ > 0 is a parameter. In this paper, we choose the linear activation function.
Build a deep learning framework GAEs in scGASI after expanding the single-layer

GAE to multiple layers, as follows.

Hl+1 = A′HlWl . (5)

By making the partial derivative of (4) with respect toW equal to 0, the optimization
formula for W can be obtained as:

W = HTA′H
(
HTA′TA′H + λIn

)
. (6)

3.3 Multi-Layer Kernel Self-Expression Integration Mechanism

Both the raw data {Xv}Vv=1 and the embeddings {Hv}Vv=1 generated from GAE are used
as input to this section. Based on (3), we can obtain the kernel self-expression model in
scGASI:

min
Cv,ulq

∑V

v=1

{

β
∥
∥Cv

∥
∥2
F + 1

2
Tr

(
Kv − 2KvCv + (

Cv)TKvCv
)}

s.t. Cv ≥ 0, Kv =
∑2

l=1

∑Q

q=1
ulqK

l
q,

∑2

l=1

∑Q

q=1

√
ulq = 1, ulq ≥ 0.

(7)

Here, Cv is the similarity matrix shared by the original data Xv and the embedding Hv,
Kv denotes the consensus kernel matrix formed by the 2Q kernel matrices of Xv and
Hv, and K1

q (or K
2
q) denotes the q − th kernel matrix constructed from Xv (or Hv).

Then,we furthermine the similarity information between cells in raw and embedding
spaces to improve the learning ability of model (7). In particular, we use the cosine
measure and the normalized Euclidean distance to evaluate the non-linear and linear
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relationships between the cells. The similarity f v(hvi , h
v
j ) between cells hvi and hvj is

defined as follows.

Fv(hvi , h
v
j ) = (1 − α)

(
∑m

q=1

∣
∣
∣hviq − hvjq

∣
∣
∣
2
)2

max
i,j

(
∑m

q=1

∣
∣
∣hviq − hvjq

∣
∣
∣
2
)2

+ α
< hvi , h

v
j >

∥
∥hvi

∥
∥ × ∥

∥hvi
∥
∥
, (8)

where α ∈ (0, 1). The calculation of f v(xvi , x
v
j ) is the same as f v(hvi , h

v
j ). Thus, we

obtain the fusion similarity Fv
ij = 0.5 × (f v(hvi , h

v
j ) + f v(xvi , x

v
j )). Then, we introduce

the similarity constraint term
∑

i,j F
v
ijc

v
ij into (7) and obtain the kernel self-expression

model with multi-layer similarity fusion, as shown below.

min
Cv ,ulq

∑V

v=1

{

β
∥
∥Cv

∥
∥2
F + 1

2
Tr

(
Kv − 2KvCv + (

Cv)TKvCv
)

+
∑

i,j
Fv
ijc

v
ij

}

s.t. cvij ≥ 0, cvii = 0, 1T cvij = 1,Kv =
∑2

l=1

∑Q

q=1
ulqK

l
q,

∑2

l=1

∑Q

q=1

√
ulq = 1, ulq ≥ 0.

(9)

However, in (9), information from different feature sets cannot be shared during the
learning process. In order to guide the interaction acrossmultiple feature sets and develop
a consistent solution, we additionally add a consensus learning term

∑V
v=1 ωv‖S − Cv‖2F

to (9). And (9) is further rewritten as follows:

min
Cv,S,ωv,ulq

∑V

v=1

{

β
∥
∥Cv

∥
∥2
F + 1

2
Tr

(
Kv − 2KvCv + (

Cv)TKvCv
)

+
∑

i,j
Fv
ijc

v
ij

}

+
∑V

v=1
ωv

∥
∥S − Cv

∥
∥2
F

s.t. cvij ≥ 0, cvii = 0, 1T cvij = 1, sij ≥ 0, 1T sij = 1,

Kv =
∑2

l=1

∑Q

q=1
ulqK

l
q,

∑2

l=1

∑Q

q=1

√
ulq = 1, ulq ≥ 0.

(10)

whereωv is the weight used formeasuring the difference between S andCv. In this paper,
we refer to the strategy of obtaining the similarity matrix Cv and the affinity matrix S
via (10) as the multi-layer kernel self-expression integration strategy.

Then, we apply the alternating direction method of multipliers to solve the objective
function (10), since it is a non-convex optimization problem. The secondary variables
Jv ∈ Rn×n and Zv ∈ Rn×n are introduced and the following optimization problem is
obtained:

min
Cv ,Zv ,Jv ,S,ωv ,ulq

∑V

v=1

⎧
⎪⎨

⎪⎩

β
∥
∥Jv

∥
∥2
F + 1

2
Tr

(
Kv − 2KvCv + (

Cv)TKvCv
)

+
∑

i,j
Fv
ijz

v
ij

+ωv
∥
∥S − Cv

∥
∥2
F + μ

2

∥
∥Cv − Jv + Yv

1

/
μ

∥
∥2
F + μ

2

∥
∥Cv − Zv + Yv

2

/
μ

∥
∥2
F

⎫
⎪⎬

⎪⎭

(11)

Here, Y v
1 and Y v

2 are Lagrange multipliers, μ > 0 is the regularization parameter. Then,
we update each variable according to the alternatingmethod. The rules for updating each
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variable can be obtained as follows:

Jv = Dη(Cv + Yv
1

/
μ). (12)

Cv = [Kv+2μIn + 2ωvIn]−1[β(Kv)T + μ(Zv + Jv) + 2ωvS − Yv
1 − Yv

2)]. (13)

ωv = 1
/
2
√

‖S − Cv‖2F , v = 1, 2, ...,V . (14)

ulq = (hlq

L×Q∑

j=1

1
/
hj)

−2, hlq = Tr(Kl
q − 2βKl

qC
v + (

Cv)TKl
qC

v)
/
2. (15)

Furthermore, the updates of Zv and S can be solved by efficient iterative algorithms
[19] and [18], respectively.

4 Results and Discussion

Table 1. Details of the seven scRNA-seq datasets.

Datasets No. of cells No. of genes Class Sparsity (%) Species

Li_islet 60 4494 6 0.00 Homo sapiens

Goolam 124 40315 5 68.00 Mus musculus

Deng 135 12548 7 31.85 Mus musculus

Engel4 203 23337 4 80.46 Homo sapiens

Usoskin 622 17772 4 78.10 Mus musculus

Kolod 704 10684 3 27.87 Mus musculus

Tasic 1727 5832 48 32.70 Mus musculus

In the experiment, the evaluation criteria we used are the Normalized Mutual Infor-
mation (NMI) [20] and the Adjusted Random Index (ARI) [21]. Seven different scRNA-
seq datasets are used, including Li_islet [22], Goolam [23], Deng [24], Engel4 [25],
Usoskin [26], Kolod [27] and Tasic [28]. Details are given in Table 1. In addition, we use
5 (Q = 5) different kernel functions, which are linear, polynomial, Gaussian, sigmoid,
and inverse polynomial. And all kernel matrices are normalized to the range [0,1] to
avoid inconsistent values.

4.1 Parameter Analysis

First, determine the parameters involved in the pre-processing step. In our model, 5
(V = 5) feature sets are selected empirically, denoted as { Xv} V

v=1 [1]. The size of
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the feature set is set automatically according to the total gene count m. The choice of
parameter K in KNN is automatically set according to the cell count n.

Then, determine the parameters λ and L in the GAE, β and α in the model (10). The
grid search technique is used to find the optimal parameters. To simplify the experiment,
we fix L = 3, α = 0.4, logλ ∈ [−3, 1] and logβ ∈ [−3, 1].

Table 2. NMI of fourteen clustering methods on seven scRNA-seq datasets

Methods Li_islet Goolam Deng Engel4 Usoskin Kolod Tasic Avg.R

PCA 0.5779 0.5547 0.7037 0.7178 0.5676 0.7935 0.4174 9.7

SC 0.9670 0.7253 0.6271 0.7082 0.6377 0.7784 0.4078 8.9

SC3 1.0000 0.7757 0.6459 0.8544 0.8126 1.0000 0.3856 5.3

Seurat - 0.7597 0.6962 0.7589 0.7436 0.8407 0.4391 6.7

SIMLR 0.8000 0.5693 0.7422 0.7413 0.7476 0.9915 0.0731 8.0

MPSSC 0.8060 0.5639 0.7554 0.5465 0.5465 0.5130 0.4657 9.3

SinNLRR 1.0000 0.8885 0.7389 0.6932 0.8472 0.7856 0.4655 4.9

NMFLRR 1.0000 0.7253 0.7258 0.5372 0.5637 0.9849 0.4588 7.0

SCENA 0.9735 0.7977 0.7705 0.2275 0.6550 1.0000 0.3607 6.4

RCSL 0.5520 0.8371 0.7705 0.3189 0.6247 0.7238 0.2160 9.3

scDeepCluster 0.522 0.69 0.5277 0.552 0.5827 0.7403 0.4447 10.6

scGMAI 0.6735 0.6630 0.6664 0.8254 0.5156 0.8330 0.3882 9.7

scGAC 0.8390 0.7218 0.6989 0.9689 0.8972 1.0000 0.4264 5.1

scGASI 1.0000 0.9065 0.7715 0.9640 0.9248 1.0000 0.4725 1.1

4.2 Comparative Analysis of Clustering Results

The clustering performance of scGASI is verified in this section. We select 14 compar-
ison methods, including two basic methods, PCA (average of 100 experiments) and SC
(clustering affinity matrix by Pearson correlation coefficient), three integrated clustering
methods, SC3, Seurat, and SCENA, five similarity learning-based clustering methods,
SIMLR,MPSSC, SinNLRR, NMFLRR, and RCSL, and three deep learning-based clus-
tering methods, scDeepCluster, scGMAI, and scGAC. For the sake of fairness, the main
parameters are carefully adjusted and the data preprocessing instructions are followed
for all comparison methods. In particular, the number of input clusters is set to the true
number of clusters for all methods in order to make comparisons more fair.

The clustering results are shown in Tables 2 and 3, where “Avg.R” indicates the
average ranking of each method, the optimal or suboptimal performance on each dataset
is shown in bold, and “-” indicates datasets that could not be processed by this method.
As shown in Tables 2 and 3, scGASI obtains the best performance on the six datasets and
has the highest average ranking (Avg.R(NMI) = 1.1, Avg.R(ARI) = 1.3), significantly
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superior to SinNLRR with the sub-optimal ranking (Avg.R(NMI) = 4.9, Avg.R(ARI)
= 4.7). Specifically, on the highly sparse Engel4 and Usoskin datasets, the clustering
accuracy of scGASI is clearly better than other methods. What this suggests is that the
clustering performance of scGASI is less susceptible to the effects of data sparsity. In
conclusion, scGASI has more advantages than other clustering methods.

Table 3. ARI of fourteen clustering methods on seven scRNA-seq datasets.

Methods Li_islet Goolam Deng Engel4 Usoskin Kolod Tasic Avg.R

PCA 0.2541 0.4070 0.4484 0.6299 0.5372 0.7694 0.1143 9.3

SC 0.9650 0.5439 0.3327 0.6741 0.6695 0.7273 0.1149 8.1

SC3 1.0000 0.6874 0.4221 0.7970 0.8453 1.0000 0.1063 5

Seurat - 0.5821 0.5497 0.7087 0.6088 0.7232 0.1344 5.7

SIMLR 0.9020 0.2991 0.4565 0.6682 0.6830 0.9982 0.0010 8.6

MPSSC 0.6350 0.3046 0.4783 0.4377 0.0030 0.4957 0.1243 10.3

SinNLRR 1.0000 0.9097 0.4706 0.6533 0.8773 0.7291 0.1326 4.7

NMFLRR 1.0000 0.5440 0.4720 0.4436 0.4406 0.9920 0.1222 7.1

SCENA 0.9678 0.6132 0.5261 0.2057 0.4772 1.0000 0.0622 7.3

RCSL 0.3168 0.8600 0.5261 0.2455 0.5206 0.6191 0.0060 9.3

scDeepCluster 0.3554 0.5156 0.3379 0.4451 0.4462 0.5813 0.1442 9.9

scGMAI 0.5364 0.3518 0.4230 0.7332 0.4115 0.6993 0.1032 10.3

scGAC 0.7764 0.6296 0.4349 0.9740 0.9374 1.0000 0.1114 5.1

scGASI 1.0000 0.9141 0.5504 0.9716 0.9503 1.0000 0.1405 1.3

4.3 Visualization

Uniform manifold approximate and project (UMAP) is one of the most popular tools
to visualize scRNA-seq data [6]. Here, we use the consensus affinity matrix S as input
to UMAP to visually distinguish cell subpopulations. Figure 2 shows the visualization
results of affinity matrices from Pearson correlation coefficient, SinNLRR, NMFLRR,
RCSL, and scGASI on the Engel4 [25] and Kolod [27] datasets. As shown in Fig. 2,
scGASI has larger interclass distances and smaller intraclass distances. scGASI com-
pletely distinguishes the three subpopulations on the Kolod dataset and partitions the
majority of cells on the Engel4 dataset into their corresponding clusters. In conclusion,
it can be said that scGASI has a greater potential to achieve the correct division of cell
types.

4.4 Gene Markers

In this section, we apply the affinity matrix to the bootstrap Laplacian score [9] to select
gene markers in each subpopulation. Figure 3 shows the top ten gene markers in the
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Fig. 2. Visualization of affinitymatrices for Pearson correlation coefficient, SinNLRR,NMFLRR,
RCSL and scGASI on (A) Engel4 and (B) Kolod datasets.

Engel4 dataset. In Fig. 3, eight of the ten genes we have detected are highly expressed
genes in specific subpopulations, as demonstrated by Engel et al. [25]. Among them,
Serpinb1a gene a peptidase inhibitor (Serpinb1a), which may be a negative feedback
regulator of IL-17-producing T cells (including NKT17 cells) [25]; Tmem176a and
Tmem176b are associated with the immature state of dendritic cells [29]; Blk encodes
a kinase of the Src family that plays an important role in B-cell development [30]. In
addition, 1300014I06Rik and Stmn1 genes are protein-coding genes that have not yet
been identified and may be the focus of further research.

Average

Expression

Percent

Expressed

Fig. 3. The top ten gene markers in the Engel4 dataset.
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5 Conclusion

Unsupervised clustering is one of the key issues in scRMA-seq data analysis, which
can effectively differentiate cell subpopulations and help discover new cell subtypes.
In this paper, we propose a new single-cell clustering method scGASI. scGASI com-
bines multiple feature sets learning and the multi-layer kernel self-expression integra-
tion mechanism to learn an accurate consensus affinity matrix for downstream analysis.
scGASI achieves superior clustering performance compared to fourteen downscaling or
clustering methods on seven scRNA-seq datasets.

Although scGASI can effectively identify single cell types, GAE can be further
developed. In the future, we plan to refine the GAE to better match the distribution of
scRNA-seq data and enhance the scalability of scGASI.

Acknowledgment. This work is supported by the National Natural Science Foundation of China
(No. 62172253), and jointly supported by the Program for Youth Innovative Research Team in the
University of Shandong Province in China (No.2022KJ179).

References

1. Cui, Y., Zhang, S., Liang, Y., Wang, X., Ferraro, T.N., Chen, Y.: Consensus clustering of
single-cell RNA-seq data by enhancing network affinity. Briefings Bioinform. 22, bbab236
(2021)

2. Sinaga, K.P., Yang, M.-S.: Unsupervised K-means clustering algorithm. IEEE Access 8,
80716–80727 (2020)

3. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)
4. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst.

2, 37–52 (1987)
5. Laurens,V.D.M.,Hinton,G.:Visualizing data using t-SNE. J.Mach. Learn.Res. 9, 2579–2605

(2008)
6. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection

for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)
7. Wang, C.-Y., Gao, Y.-L., Kong, X.-Z., Liu, J.-X., Zheng, C.-H.: Unsupervised cluster analysis

and gene marker extraction of scRNA-seq data based on non-negative matrix factorization.
IEEE J. Biomed. Health Inform. 26, 458–467 (2021)

8. Mei, Q., Li, G., Su, Z.: Clustering single-cell RNA-seq data by rank constrained similarity
learning. Bioinformatics 37, 3235–3242 (2021)

9. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis
of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416
(2017)

10. Park, S., Zhao, H.: Spectral clustering based on learning similarity matrix. Bioinformatics 34,
2069–2076 (2018)

11. Zheng, R., Li, M., Liang, Z., Wu, F.-X., Pan, Y., Wang, J.: SinNLRR: a robust subspace
clustering method for cell type detection by non-negative and low-rank representation.
Bioinformatics 35, 3642–3650 (2019)

12. Zhang, W., Xue, X., Zheng, X., Fan, Z.: NMFLRR: clustering scRNA-seq data by integrat-
ing nonnegative matrix factorization with low rank representation. IEEE J. Biomed. Health
Inform. 26, 1394–1405 (2021)

http://arxiv.org/abs/1802.03426


scGASI: A Graph Autoencoder-Based Single-Cell Integration Clustering Method 189

13. Kiselev, V.Y., et al.: SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods
14, 483–486 (2017)

14. Stuart, T.: Comprehensive integration of single-cell data. Cell 177, 1888–1902. e1821 (2019)
15. Tian, T., Wan, J., Song, Q., Wei, Z.: Clustering single-cell RNA-seq data with a model-based

deep learning approach. Nat. Mach. Intell. 1, 191–198 (2019)
16. Yu, B., et al.: scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data

based on deep autoencoder. Briefings Bioinform. 22, bbaa316 (2021)
17. Wang, C., Pan, S., Long, G., Zhu, X., Jiang, J.: MGAE: marginalized graph autoencoder

for graph clustering. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 889–898. (2017)

18. Zhang, D.-J., Gao, Y.-L., Zhao, J.-X., Zheng, C.-H., Liu, J.-X.: A new graph autoencoder-
based consensus-guided model for scRNA-seq cell type detection. IEEE Trans. Neural Netw.
Learn. Syst. (2022)

19. Huang, J., Nie, F., Huang, H.: A new simplex sparse learningmodel to measure data similarity
for clustering. In: Twenty-Fourth International Joint Conference on Artificial Intelligence
(2015)

20. Strehl, A., Ghosh, J.: Cluster ensembles–-a knowledge reuse framework for combining
multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)
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Abstract. The detection of epistatic interactions among multiple single-
nucleotide polymorphisms (SNPs) in complex diseases has posed a significant
challenge in genome-wide association studies (GWAS). However, most exist-
ing methods still suffer from algorithmic limitations, such as high computational
requirements and low detection ability. In the paper, we propose an artificial bee
colony algorithm with adaptive exploitation (ABCAE) to address these issues in
epistatic interaction detection for GWAS. An adaptive exploitation mechanism is
designed andused in the onlooker stage ofABCAE.Byusing the adaptive exploita-
tion mechanism, ABCAE can locally optimize the promising SNP combination
area, thus effectively coping with the challenges brought by high-dimensional
complex GWAS data. To demonstrate the detection ability of ABCAE, we com-
pare it against four existing algorithms on eight epistaticmodels. The experimental
results demonstrate that ABCAE outperforms the four existing methods in terms
of detection ability.

Keywords: Adaptive exploitation · Artificial bee colony · Complex disease
Epistatic interaction

1 Introduction

Genome-wide association studies (GWAS) play a crucial role in finding the genetic
mechanisms behind complex diseases [1, 2]. The advent of high-throughput sequencing
technologies has enabled the identification of millions of single-nucleotide polymor-
phisms (SNPs) associated with various diseases [3, 4]. These high-dimensional SNP
datasets have provided valuable insights into the genetic mechanism of diseases, but
they have also presented challenges for detecting epistatic interactions among SNPs
[5–7].

In the field of GWAS, several algorithms have recently been tried to uncover epistatic
interactions from SNP data [8, 9]. For example, Jing and Shen introduced a heuris-
tic optimization framework that combines logistical regression and Bayesian network
(MACOED) to detect epistatic interactions [10]. Tuo et al. proposed a niche harmony
search algorithm (NHSA) that uses joint entropy as a heuristic factor to detect epistatic
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interactions [11]. Zhang et al. proposed a selectively informed particle swarm optimiza-
tion algorithm (SIPSO) that employs mutual information as its fitness function to detect
epistatic interactions [12]. Aflakparast presented a cuckoo search epistasismethod (CSE)
specifically designed for detecting epistatic interactions [13]. However, these algorithms
often face limitations such as curse of dimensionality and insufficient detection ability
detecting potential epistasis [14]. Moreover, these limitations make it difficult to develop
powerful algorithms for detecting epistatic interactions in GWAS [15].

To tackle the aforementioned challenges, an artificial bee colony algorithmwith adap-
tive exploitation (ABCAE) is proposed. Our algorithm is specifically used for detecting
epistatic interactions in GWAS data. In this algorithm, an adaptive exploitation mech-
anism is designed and used in the onlooker stage of ABCAE. As a result, the pro-
posed algorithm can locally optimize the promising SNP combination area. We conduct
experiments using eight small epistatic models, providing empirical evidence to validate
the effectiveness of the proposed algorithm. The results indicate that ABCAE outper-
forms other four epistatic interaction detection algorithms, highlighting its potential for
advancing epistatic interaction detection in GWAS.

2 Materials

2.1 Artificial Bee Colony Algorithm

Inspired by the foraging behavior of honey bee swarms, the artificial bee colony (ABC)
algorithm consists of three types of bees: employed bees, onlooker bees, and scout bees
[16]. The colony is divided into two equal halves: employed bees and onlooker bees. If
a food source is not optimized within a given limited number of times, the employed
bee corresponding to the food source will become the scout bee, looking for a new food
source. The employed bees are responsible for finding new food sources and then passing
the information to onlooker bees. The onlooker bees choose high-quality food sources
from the information they receive. The scout bees discard food sources and choose new
food sources according to preset conditions.

2.2 Fitness Function

Mutual information (MI) is used to evaluate the association between epistatic interactions
and disease phenotype [17], and MI is defined as

MI(A,B) = H (A) + H (B) − H (A,B) (1)

where A is an epistatic interaction, B is the disease phenotype, H(A) is the entropy of A,
H(B) is the entropy of B, and H(A, B) is the joint entropy of A and B. Here, H(A) and
H(A, B) are defined as follow:

H (A) = −
∑

a∈A
p(a)log(p(a)) (2)

H (A,B) = −
∑

a∈A

∑

b∈B
p(a, b)log(p(a, b)) (3)

A high MI value indicates a high correlation between epistasis and disease.
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3 Method

In this section, we put forward a novel and effective ABCAE algorithm to the complex
task of detecting genetic interactions.

3.1 Overview Framework

At the onset of ABCAE, we initialize the process by creating a population of potential
solutions within the feasible space. To ensure a diverse initial population, we employ a
random generation process. Specifically, each food source contains K SNPs, and each
SNP is generated by

xij = xminj + rand(0, 1)(xmaxj − xminj ) (4)

where i= {1,…,M}, j = {1,…,K}.M is the population size;K is the number of SNPs in
an epistatic interaction; rand(0, 1) is a random number uniformly distributed between 0
and 1. Additionally, xmax and xmin correspond to the upper and lower boundaries respec-
tively for each dimension. The creation of the randomly generated population serves
as a foundation for subsequent iterations and evolutionary processes. As the algorithm
progresses, food sources within the population will undergo evaluation, selection, and
modification, leading to the emergence of superior solutions over time.

Following the initialization phase, the employed bees take charge of searching for
the food sources. Each employed bee generates a new position by incorporating the
information from its previous position, leading to the discovery of a novel food source.
This process can be succinctly described as

vij = xij + δij(xij − xkj) (5)

where δij is a randomly generated number between 0 and 1. The index k, belonging to
the set {1,…, M}, is randomly selected.

When acquiring a new food source Vi, ABCAE performs a selection process to
compare it with the previous food source Xi. If Vi demonstrates improved results over
Xi, the employed bees adopt Vi and discard the previous one. Otherwise, Xi is retained
within the population. The specific formula is described as

Xi(t) =
{
Vi(t) fit(Vi(t) ) > fit(Xi(t) )

Xi(t) otherwise
(6)

Then, the onlooker bee searches for new food sources according to the probability
value Pi corresponding to Xi. The detailed search process of onlooker bees and the
calculation of Pi will be described in the next section.
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Algorithm 1 ABCAE

Input: maximum number of function evaluations nevalmax, population size M, parameter limit 
Output: detected epistatic interactions

1. Nevalmax = 0;

2. t = 0;

3. for i =1 to M then
4. Randomly initialize the food source Xi (t);
5. Calculate the fitness value of Xi (t);
6. end for
7. Rank M food sources in descending order according to fitness values.

8. while nevalmax  is not reached do
9. ***  employed bee stage ***
10. for i = 1 to M/2 then
11. for j =1 to D then
12. Generates a new SNP vij(t);
13. end for
14. Calculate the fitness value of Vi (t);
15. if f(Vi (t)) > f(Xi (t)) then
16. Xi (t) = Vi (t);
17. end if
18. end for
19. *** end employed bee stage ***
20. ***  onlooker bee stage ***
21. for i = M/2 to M then
22. Calculate Pi related to Xi;

23. for j =1 to D then
24. Generate a random number r;

25. if r < Pi then
26. Generates a new SNP xij(t);
27. end if
28. end for
29. end for
30. *** end onlooker bee stage ***
31. ***  scout bee stage ***
32. while limit is not reached do
33. Update Xbest (t); 
34. end while
35. *** end scout bee stage ***
36. t = t +1;

37. end while
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Once all onlooker bees finish this process, a decision will be made regarding the
retention of the best food source Xbest . by examining the scout bee. The scout bee tries
to change the SNPs in Xbest limit times. If the best food source Xbest cannot be improved,
Xbest is discarded.

3.2 Adaptive Exploitation Mechanism

ABCAE gives each food source Xi of the population a probability of being selected by
the onlooker bees, and the probability corresponding Pi to Xi is calculated as

Pi =
∣∣∣∣
fit(Xi) − fitavg
fitmax − fitmin

∣∣∣∣ (7)

where fit(Xi) is the fitness function value for Xi, fitavg is the average fitness function
value for all the food source in the population, fitmax is the fitness function value for the
best food source, and fitmin is the fitness function value for the worst food source in the
population.

Fig. 1. Schematic diagram of adaptive exploitation mechanism

Inorder to understand adaptive exploitationmechanismeasily, the schematic diagram
of the calculation process of this mechanism is shown in Fig. 1. Suppose there are five
food sources that can be selected by following bees: X1, X2, X3, X4 and X5, and their
fitness values are fit(X1) = 0.00335, fit(X2) = 0.00206, fit(X3) = 0.00202, fit(X4) =
0.00177, and fit(X5) = 0.00091, respectively. fitavg, fitmax and fitmin for the five food
sources are 0.00202, 0.00335 and 0.00091. Thus, the difference between the fitness value
of each food source and the average fitness value can be obtained by calculation, which
are 0.00133, 0.00004, 0.00000, –0.00025, and –0.00111 respectively. Furthermore, the
Pi associatedwith eachXi can be obtained, which areP1 = 1.00000,P2 = 0.03007,P3 =
0.00000, P4 = 0.18797, and P5 = 0.83459, respectively. It can be observed that the food
source with larger or smaller fitness value ( fit(X1) = 0.00335 and fit(X5) = 0.00091) is
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more likely to be selected by the onlooker bees, while the other food sources ( fit(X2) =
0.00206, fit(X3) = 0.00202, and fit(X4) = 0.00177) are less likely to be selected by the
onlooker bees.

The adaptive exploitation mechanism is beneficial to improve the diversity of popu-
lation, and the reasons are as follows. The solutions with low fitness values are easy to
be chosen by onlooker bees to find better solutions, which gives them the opportunity
to improve their own quality. The solutions with high fitness values are also easy to be
selected by the onlooker bees, which can avoid the premature convergence caused by its
large advantage in the population.

4 Experiments

4.1 Dataset

This paper utilizes eight different epistatic models to detect specific two-locus epistatic
interactions. The detailed information of these models is shown in Table 1. Each model
is generated by varying the strength of the marginal effect while maintaining a fixed
interaction structure. The minor allele frequency (MAF) varies from 0.05 to 0.5. 100
different datasets are produced by each epistatic model, each of which consists of 1000
SNPs, 2000 cases and 2000 controls. These datasets are generated using the EpiSIM
software [18].

Table 1. Details of eight different epistatic models

AA Aa aa AA Aa aa

Model 1 BB 0.087 0.087 0.087 Model 2 BB 0.078 0.078 0.078

Bb 0.087 0.146 0.190 Bb 0.078 0.105 0.122

bb 0.087 0.190 0.247 bb 0.078 0.122 0.142

Model 3 BB 0.084 0.084 0.084 Model 4 BB 0.092 0.092 0.092

Bb 0.084 0.210 0.210 Bb 0.092 0.319 0.319

bb 0.084 0.210 0.210 bb 0.092 0.319 0.319

Model 5 BB 0.072 0.164 0.164 Model 6 BB 0.067 0.155 0.155

Bb 0.164 0.072 0.072 Bb 0.155 0.067 0.067

bb 0.164 0.072 0.072 bb 0.155 0.067 0.067

Model 7 BB 0.000 0.000 0.100 Model 8 BB 0.000 0.020 0.000

Bb 0.000 0.050 0.000 Bb 0.020 0.000 0.020

bb 0.100 0.000 0.000 bb 0.000 0.020 0.000

4.2 Parameter Setting and Evaluation Metric

Toevaluate the detection ability ofABCAE,weconduct experiments using eight different
types of datasets. In the case of ABCAE, the initial population is randomly generated
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in the search space. We set the population size 200, which consists of 100 employed
bees and 100 onlooker bees. Furthermore, the parameter limit is set to 10. With regard
to the stop condition, the maximum number of fitness function evaluations Nevalmax
is set to 50,000 for each dataset. Additionally, each algorithm is executed 10 times
independently on each epistatic model. By averaging the results of these 10 independent
runs, we compute the average values for performance comparisons.

For the convenience of comparing the ability of different algorithms to detect epistatic
interactions, we utilize Power as the evaluation metric, which is defined as

Power = W

Z
(8)

whereW denotes the number of datasets where epistatic interactions are identified, while
Z denotes 100 datasets produced using the same model.

4.3 Detection Power Comparison

In this section, ABCAE compares its detection power with four existing algorithms for
two-locus epistatic interaction detection. Thesemethods includeMACOED [10], NHSA
[11], SIPSO [12] and CSE [13]. The detection power values of the five algorithms are
summarized inFig. 2.Based on the experimental results, several noteworthy observations
can be made as follows.

Fig. 2. Power of five algorithms on eight epistatic models

For Model 1, ABCAE obtains the best power value, whereas CSE performs the
lowest power value.NHSAyields the best performance among the remaining algorithms.
Additionally, MACOED and SIPSO yield almost the same power value for that epistatic
model. For Model 2 and Model 4, ABCAE offers the best solutions, whereas SIPSO
provides lowest power value. In Model 3, ABCA and MACOED provide almost the
same power values, whereas SIPSO yields the worst results. Similarly, for Model 5 and
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Model 6, ABCAE consistently outperforms other algorithms. In the case of Model 7,
our proposed algorithm, ABCAE, continues to exhibit superior performance. Regarding
Model 8, NHSA obtains the best power value. In this figure, the term Average means the
overall performance of five algorithms on eight models. For the average power value,
the ranking is as follows: ABCAE, NHSA, MACOED, SIPSO, and CSE. Therefore,
ABCAE demonstrates superior performance compared to other algorithms, including
MACOED, NHSA, SIPSO, and CSE.

4.4 Parameter Analysis

Population Size (M). Population size is a significant aspect to consider in ABCAE.
In this section, we aim to use eight models to analyze the impact of population size on
our proposed algorithm. Each model comprises 1000 SNPs with 2000 cases and 2000
controls. In the experiment, ABCAE is executed with six different population sizes:M =
50,M = 100,M = 150,M = 200,M = 250, andM = 300. The remaining parameters are
consistent with those introduced in Sect. 4.2. The experimental results are summarized
in Fig. 3. For the average detection power, M = 200 yields the best solution, whereas
M = 50 obtains the poorest among the other population settings. In summary,M = 200
brings ABCAE the best detection ability when considering Nevalmax = 50,000.

Fig. 3. Power of ABCAE with different population size

Control Parameter limit. For ABCAE, limit plays a crucial role in determining which
food source to give up. If the changed SNP fails to show further improvement beyond
the limit threshold, the corresponding food source is discarded. Consequently, the scout
bee discovers a new food source to replace the abandoned food source. The control
parameter limit affects the detection ability of ABCAE. In this section, we vary limit
from the set {5, 10, 15, 20, 25, 30} to compare the detection ability of the algorithm
under different settings. The experimental results are summarized in Fig. 4. It is observed
that the control parameter limit set to 10 produces superior models compared to other
limit settings. Conversely, limit of 5 yields the poorest performance. Additionally, the
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control parameter limit set to 20 demonstrates similar average values to those obtained
with limit set to 25. In summary, it can be concluded that selecting limit = 10 enhances
the detection ability of ABCAE when considering Nevalmax = 50,000.

Fig. 4. Power of ABCAE with different limit.

4.5 Age-Related Macular Degeneration Studies

In this section, we utilize our proposed ABCAE algorithm to perform two-locus epista-
sis detection from the age-related macular degeneration (AMD) study [19]. The AMD
dataset contains 103,611 SNPs from96 case samples and 50 control samples. The param-
eter setting for ABCAE is described in Sect. 4.1. All the output epistasis generated by
ABCAE, include the SNPs belonging to the CHF gene and other SNPs located on the
respective genes. As shown in Table 2. The almost epistasis obtained by our algorithm
involves rs380390 and rs1329428.The twoSNPsbelonging to theCHFgene andhas been
validated to be related AMD [20]. In the epistatic interaction (rs1329428, rs1822657),
rs1822657 belonging to the NCAM2 gene related to Alzheimer’s disease [21]. In the
epistatic interaction (rs380390, rs2224762), SNP rs2224762belongs to theKDM4Cgene
related to Glioblastoma [22]. For the epistatic interaction (rs1394608, rs3743175), SNP
rs1394608 belongs to the SGCD gene which is reported to be related to the AMDdisease
[23]. SNP rs3743175 is located in the SCAPER gene, and SCAPER is related to syn-
dromic intellectual disability [24]. In the epistatic interaction (rs1394608, rs9328536),
SNP rs9328536 is located in theMED27 gene, andMED27 is associated with melanoma
[25, 26]. For the epistatic interaction (rs1740752, rs943008), SNP rs943008 is located
in the NEDD9 gene, and NEDD9 plays a role in cancer metastasis [27]. In the epistatic
interaction (rs3775652, rs725518), SNP rs3775652 belongs to the INPP4B gene related
to ovarian cancer [28], and SNP rs725518 belongs to the RRM1 gene related to lung
cancer [29]. In addition, ABCAE also identifies some interactions contain SNPs in
the non-coding region (N/A), such as rs1363688, rs1374431, rs10512937, rs7294734,
rs2402053, and rs1740752.
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Table 2. Epistatic interactions detected by ABCAE on AMD data

Epistatic interaction Related genes Associated disease

rs380390 CFH Age-related macular degeneration

rs1363688 N/A None

rs380390 CFH Age-related macular degeneration

rs2224762 KDM4C Glioblastoma

rs1329428 CFH Age-related macular degeneration

rs1822657 NCAM2 Alzheimer’s disease

rs380390 CFH Age-related macular degeneration

rs1374431 N/A None

rs1394608 SGCD Age-related macular degeneration

rs3743175 SCAPER Syndromic intellectual disability

rs380390 CFH Age-related macular degeneration

rs2402053 N/A None

rs1329428 CFH Age-related macular degeneration

rs7294734 N/A None

rs1329428 CFH Age-related macular degeneration

rs9328536 MED27 Melanoma

rs1740752 N/A None

rs943008 NEDD9 Cancer metastasis

rs3775652 INPP4B Ovarian cancer

rs725518 RRM1 Lung Cancer

5 Conclusion

The paper addresses detecting epistatic interaction detection inGWAS through the appli-
cation of an artificial bee colony algorithmwith adaptive exploitation (ABCAE). By inte-
grating the principles of artificial bee colony optimization, our algorithm takes advantage
of the collective intelligence of bee colonies and their efficient foraging behavior. This
enables us to efficiently explore the vast search space of epistatic interactions. To further
enhance the performance of ABCAE, an adaptive exploitation mechanism is designed
andused in the onlooker stage ofABCAE.Byusing the adaptive exploitationmechanism,
ABCAE is able to optimize the promising SNP combination area, effectively tackling
the challenges posed by high-dimensional and complex GWAS data. A comprehensive
evaluation involving eight epistatic models is conducted. The detection ability of various
algorithms, includingMACOED,NHSA, SIPSO, andCSE is compared againstABCAE.
Through extensive experiments and evaluations on different datasets, we demonstrate
the efficacy and superiority of our proposed algorithm in detecting epistatic interactions.
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Furthermore, through parameter analysis, the reason why the algorithm sets the parame-
ter value is explained. Overall, ABCAE represents a significant advancement in the field
of epistatic interaction detection. It offers a promising avenue for researchers to gain
deeper insights into the complex genetic mechanisms underlying various diseases and
opens up new opportunities for precision medicine and personalized treatments.
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Abstract. A fundamental operation in computational genomics is to
reduce the input sequences to their constituent k-mers. Finding a space-
efficient way to represent a set of k-mers is important for improving
the scalability of bioinformatics analyses. One popular approach is to
convert the set of k-mers into a de Bruijn graph and then find a compact
representation of the graph through the smallest path cover.

In this paper, we present USTAR, a tool for compressing a set of
k-mers and their counts. USTAR exploits the node connectivity and
density of the de Bruijn graph enabling a more effective path selection
for the construction of the path cover. We demonstrate the usefulness
of USTAR in the compression of read datasets. USTAR can improve
the compression of UST, the best algorithm, from 2.3% up to 26,4%,
depending on the k-mer size.

The code of USTAR and the complete results are available at the
repository https://github.com/enricorox/USTAR.

Keywords: k-mer set with counts · compression · smallest path cover

1 Introduction

The majority of bioinformatics analysis is performed by k-mer based tools that
provide several advantages with respect to the ones that directly process reads
or reads alignments. These tools operate primarily by transforming the input
sequence data, which may be of various lengths depending on the technology
used for sequencing, into a k-mer set that is a set of strings with fixed length
and their multiplicities, called counts.

k-mers-based methods achieve better performance in many applications. In
genome assembly, Spades [2] used k-mers-based methods to reconstruct the entire
genome from reads obtaining efficiently highly accurate results. Also the assem-
bly validation of Merqury [22] uses k-mer counts. In metagenomics, Kraken [27]
is capable to classify and identify microorganisms in complex environmental sam-
ples using k-mers and it is 900 times faster than MegaBLAST. Since the intro-
duction of Kraken, most of the tools for metagenomic classification are based on
k-mers [1,5,19,24]. In genotyping, several tools [9,13,14,26] use k-mers instead of
alignment to identify genetic variations in individuals or populations. In phyloge-
nomics, Mash [15] uses k-mers to efficiently estimate genomes and metagenomes
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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distances in order to reconstruct evolutionary relationships among organisms.
In database searching many k-mers-based methods [3,10,12,16,25] have been
proposed in order to search sequences efficiently.

Overall, k-mer-based methods have revolutionized many areas of bioinformat-
ics and they have become an essential tool for analyzing large-scale genomic data.
These tools often rely on specialized data structures for representing sets of k-
mers (for a survey, see [6]). Since modern sequencing datasets are huge, the space
used by such data structures is a bottleneck when attempting to scale up to large
databases. Conway and Bromage [8] showed that at least log

(
4k

n

)
bits are needed

to losslessly store a set of n k-mers, in the worst case. However, a set of k-mers gen-
erated from a sequencing experiment typically exhibits the spectrum-like property
[6] and contains a lot of redundant information. Therefore, in practice, most data
structures can substantially improve on that bound [7].

Since storing a k-mer set requires non-negligible space, it’s desirable to reduce
the size that can be very large. For example, the dataset used to test the BIGSI
[21] index takes approximately 12 TB to be stored in compressed form.

The best tool to compress a set of k-mers with counts is UST [21] (see
Sect. 1.1) and it uses the De Bruijn graph representation of the input k-mer set.
The problem of finding the smallest k-mer set representation is equivalent to
finding the smallest path cover in a de Bruijn graph (Sect. 2). In this paper, we
present USTAR (Unitig STitch Advanced constRuction), which follows a similar
paradigm, but implements a better strategy for exploring De Bruijn graphs.
The USTAR strategy leverages the density of the de Bruijn graph and node
connectivity, enabling a more effective path selection for the construction of the
path cover, and thus improving the compression. In Sect. 3 we reported a series
of results on several real sequencing datasets. We showed that USTAR achieves
the best compression ratio of k-mers and counts and it outperforms UST, and
other tools.

1.1 Related Works

The problem of k-mer set compression has been addressed by several researchers,
in this section we summarize the most recent findings. k-mers counters are tools
that are designed to count and store distinct k-mers, a particularly hard challenge
for large datasets. The most famous tools are Squeakr [17], KMC [11] and DSK
[23]. Squeakr is an approximate and exact k-mers counting system that exploits
Bloom filters, a probabilistic data structure, in order to efficiently store k-mers.
KMC uses disk files as bins in which divide, sort, and count k-mers. Finally,
DSK uses hash tables in order to update k-mers counters. The last two tools are
not specifically designed for compression but they are still capable to reduce the
size storing only distinct k-mers and their counts.

A k-mer set with counters can be represented by a de Bruijn graph (dBG)
that can be exploited for efficient storage. BCALM2 [7] is a tool for the low-
memory construction of dBGs that are compacted, meaning that maximal non-
branching paths are merged in a single node labeled with k-mers glued together
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and the list of the counts. Compaction not only provides advantages in terms
of memory used but also in terms of disk space. The idea, in order to compress
k-mers, is to save k − 1 characters per link. For example, given a dBG, the non-
branching path (ACT , CTG, TGA) can be replaced by a single node ACTGA.
The sequence represented by a non-branching path is called unitig and it is an
attempt to compress k-mers using dBGs.

Another way to reduce the redundancy of a k-mer set is to exploit its
spectrum-like property [6], i.e. the existence of long strings that “generate” all
the k-mers. This idea has been developed in parallel by the authors of ProphAsm
[4] and UST [21]. The authors of ProphAsm [4] refer to these long strings as sim-
plitigs and they build them by linking overlapping unitigs and k-mers during the
exploration of a dBG computed on the fly. They showed that simplitigs outper-
formed unitigs, the k-mers representation proposed by BCALM2, in terms of
computational resources and compression rate. Also UST [21] links overlapping
unitigs and k-mers, but it uses as input the compacted de Bruijn graph com-
puted by BCALM2 and it considers also k-mers counts. They find a nearly tight
lower bound for the optimal k-mers representation and they showed empirically
that in most cases their greedy algorithm is within 3% of the lower bound.

2 USTAR: Unitig STitch Advanced ConstRuction

2.1 Definitions

For the purpose of this paper, we consider a string made up of charac-
ters in Σ = {A,C, T,G}. A string of length k is called k-mer and its
reverse complement rc(·) is obtained by reversing the k-mer and replacing each
character with its complement, that is A �→ T , C �→ G, T �→ A, G �→ C. Since
we don’t know from which DNA strand it is taken, we consider a k-mer and
its reverse complement as the same k-mer. Given a string s = 〈s1, . . . , s|s|〉, we
denote the first i characters of s as prefi(s) = 〈s1, . . . , si〉 and the last i charac-
ters of s as sufi(s) = 〈s|s|−i+1, . . . , s|s|〉. We define the glue operation between
two strings u and v such that sufk−1(u) = prefk−1(v) as the concatenation of
u and the suffix of v:

u �k−1 v = u · suf|v|−(k−1)(v)

For example, given two 3-mers u = CTG and v = TGA, their gluing is u�2 v =
CTGA.

A set of k-mers can be represented by a de Bruijn graph, of which we will
give a node-centric definition, meaning that the arcs are implicitly given by the
nodes. Thus we can refer to k-mers and dBG(K) interchangeably.

Given a k-mer set K = {m1, . . . m|K|}, a de Bruijn graph of K is a directed
graph dBG(K) = (V , A) in which:

1. V = {v1, . . . , v|K|}
2. each node v ∈ V has a label lab(vi) = mi
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3. each node v ∈ V has two different sides sv ∈ {0, 1}, where (v, 1) is graphically
represented with a tip

4. a node side (v, sv) is spelled as

spell(v, sv) =

{
lab(v) sv = 0
rc(lab(v)) sv = 1

(1)

5. there is an arc between two node sides (v, sv) and (u, su) if and only if there
are spellings that share a (k − 1)-mer. In particular, it must be
(
(v, sv), (u, su)

) ∈ A ⇐⇒ sufk−1 (spell (v, 1 − sv)) = prefk−1 (spell (u, su))

The right-hand condition is also known as (v, u)-oriented-overlap [21].

Note that nodes’ sides allow treating a k-mer and its reverse complement as
if they were the same k-mer. Furthermore, nodes can be associated with k-mer
counts.

A path p = 〈(v1, s1), . . . , (vl, sl)〉 is spelled by gluing the spelling of its node
sides:

spell(p) = spell(v1, s1) �k−1 spell(v1, s1) �k−1 · · · �k−1 spell(vl, sl)

The path p is said to be a unitig if its internal nodes have in-degree and out-
degree equal to 1. A unitig is said to be maximal if it cannot be extended
on either side. In order to decrease its memory footprint, a dBG(K) can be
compacted by replacing maximal unitigs with single nodes labeled with the
spellings of the unitigs.

An example of compacted dBG(K) with

K = {ACT,CTG, TGA,CTT, TTG, TGC}
is in Fig. 1. It has been compacted by replacing the maximal unitig (CTT, TTG)
with the node CTTG.

2.2 Vertex-Disjoint Path Cover Problem

Compressing a k-mer set K can be achieved by finding a representation S of K
made of strings of any length such that the set of its substrings of length k is
equal to K.

A natural way to measure the size of a string set S is by computing its
cumulative length defined as the sum of all the string lengths:

CL(S) =
∑

s∈S

|s|

where |s| is the length of the string s. It has been shown in [4,21] that, when S
does not contain duplicate k-mers, the cumulative length of S is proportional to
its cardinality, in particular, it holds

CL(S) = |K| + (k − 1) · |S|
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where |S| is the cardinality of the set S. Therefore our goal, finding the best
representation of a k-mer set K, is equivalent to minimizing the number of
strings in the string set S.

Consider again the example in Fig. 1. From the path p = (ACT,CTG, TGA)
we can compute its spell spell(p) = ACTGA that contains all the 3-mers ACT ,
CTG and TGA in p. Thus from a set of paths P that contains all the nodes in
dBG(K) we can derive a set S of compressed k-mers. By imposing that all the
paths are vertex-disjoint, we guarantee that k-mers are represented only once.
Therefore a vertex-disjoint path cover can be used in order to compute S for
compression.

Fig. 1. An example of a compacted de Bruijn graph. Nodes are labeled with k-mers
and their counts. Undirected arcs are used in place of two arcs with opposite directions.
UST may choose the path cover in red while USTAR is forced to choose the path cover
in green. (Color figure online)

Recalling that in order to minimize the cumulative length of a string set S
that represents K we need to minimize the number of strings |S| and that it
corresponds to the number of paths |P |, we can solve the following problem.

Problem 1. Given a de Bruijn graph dBG(K) of a k-mer set K, the minimum
vertex-disjoint path cover problem is to find the minimum number of
vertex-disjoint paths that cover the graph.

For general graphs the problem above is known to be NP-hard [4,21] since
it can be reduced from Hamilton: a graph has a Hamiltonian path if and only if
it has a vertex-disjoint path cover of cardinality 1. However, it is not clear if the
problem is still NP-hard for de Bruijn graphs.

Nevertheless, greedy and non-optimal algorithms have been proposed.
ProphAsm [4] uses a simple heuristic that takes an arbitrary k-mer in the
dBG(K), and it tries to extend it forward and backward as long as possi-
ble and it restarts until it consumes all the k-mers. Similarly, using as input
the compacted dBG(K) constructed by BCALM2, UST [21] takes an arbitrary
node, tries to extend it forward as long as possible, and restarts until there
are available nodes. In the end, UST merges linked paths. Both methods per-
form a similar strategy by picking the first available k-mer, and without con-
sidering the graph structure. If we consider the example in Fig. 1, ProphAsm
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and UST, by choosing nodes arbitrarily, may build the path cover (in red)
P = {(ACT,CTG, TGA), (CTT, TTG), (TGC)} from which derives, by com-
puting the spelling of each path, the set of strings S = {ACTGA,CTTG, TGC}.
In this example, the cumulative length is CL(S) = 12.

In this work, we present USTAR (Unitig STitch Advanced constRuction)
that, unlike previous algorithms, exploits the connectivity of the dBG graph
and the values of counts. USTAR also implements a heuristic to compute sim-
plitigs. As UST, also USTAR takes advantage of the compacted de Bruijn graph
computed by BCALM2. Similarly to UST and ProphAsm, at each step, USTAR
selects a seed node in the graph, and then it tries to compute a path starting
from this node. A path is constructed by connecting adjacent nodes until the
path cannot be further extended. The algorithm continues with the selection
of a new seed node until all nodes have been covered by a path. The two key
operations in this algorithm are how to select a good seed node, and how to
extend a path among the available connections.

In USTAR the counts associated with each node and the topology properties
can be used to determine the best seed and how to extend it. The distribution
of counts is in general very skewed, with several low values and few very high
values. Since the counts distribution is non-uniform, and skewed, it turns out that
higher counts are harder to compress. For this reason, the exploration strategy
of USTAR chooses as seed the node that has the highest average counts. In
general neighboring nodes usually have similar counts, so that choosing the seed
based on the highest average count might improve the compression of these high
counts.

As for the path cover construction, we observe that UST and ProphAsm
might choose a highly connected node, and since this node will not be available
in the subsequent iterations, this selection may lead to isolated nodes, that will
increase the cumulative length, like in the example in Fig. 1. Instead, in USTAR
we try to avoid this scenario and, in fact, paths are extended by selecting the
node with fewer connections so that highly connected nodes are still available
for future iterations. These choices will help to have a lower CL since they create
fewer and longer simplitigs.

Following the example in Fig. 1, USTAR guarantees that while constructing
the first path, the most connected node CTG is avoided. This will produce
a cover of the dBG with the paths (in green) P ′ = {(ACT,CTT, TTG, TGA),
(CTG, TGC)} and thus a set of strings S′ = {ACTTGA,CTGC}. If we measure
the cumulative length of S′ we have that CL(S′) = 10.

CL(S′) = 10 < CL(S) = 12 < CL(K) = 18

Overall, in this example, the uncompressed k-mer set will require CL(K) =
18, with UST the k-mer set can be compressed with CL(S) = 12, whereas
USTAR will produce a better compression with CL(S′) = 10.
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3 Results

In this section, we present a series of experiments in order to find the best tool
that compresses k-mers and counts. In our evaluation, we compared USTAR
with several other tools: Squeaker, KMC, DSK, BCALM2, and UST. We used
for testing a set of real reads datasets taken from previous studies [4,7,11,17,23].
A summary of all datasets is reported in Table 1. For each dataset, we extracted
all k-mers (see Table 1) and the corresponding counts, and use this information
as input for all compression tools. For some tools, like UST and USTAR, it is
required to build a compacted dBG with BCALM2 as a preprocessing.

Table 1. A summary of the read datasets used in the experiments. Datasets are down-
loaded from NCBI’s Sequence Read Archive.

name description read length #reads size [GB]

SRR001665 Escherichia coli 36 20,816,448 9.304

SRR061958 Human Microbiome 1 101 53,588,068 3.007

SRR062379 Human Microbiome 2 100 64,491,564 2.348

SRR10260779 Musa balbisiana RNA-Seq 101 44,227,112 2.363

SRR11458718 Soybean RNA-seq 125 83,594,116 3.565

SRR13605073 Broiler chicken DNA 92 14,763,228 0.230

SRR14005143 Foodborne pathogens 211 1,713,786 0.261

SRR332538 Drosophila ananassae 75 18,365,926 0.683

SRR341725 Gut microbiota 90 2 5,479,128 1.254

SRR5853087 Danio rerio RNA-Seq 101 119,482,078 3.194

SRR957915 Human RNA-seq 101 49,459,840 3.671

In the first experiment, we ran all compression tools on all datasets for k = 21
and we reported the results in Table 2. In all cases, the stored data is additionally
compressed using MFCompress [18] for nucleotide sequences or with bzip3 for
binary data. In Table 2 are reported the dimensions of the files compressed by
the different tools.

We can observe that USTAR is on average the best compressor, and it con-
sistently outperforms the other tools on all datasets. As expected UST and
BCALM are the second and third best methods, however, USTAR shrinks the
representation by 76% over BCALM and 4.2% over UST.

Since it is clear that UST is the best competitor in the next tests we compare
USTAR with UST. We used three different evaluation metrics:

– CL: the cumulative length as defined in Sect. 2, to test the quality before the
k-mers compression with the dedicated compressor MFCompress;

– counts: the file size of counts after compression with a general-purpose com-
pressor;
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Table 2. Datasets (with k = 21) are processed with DSK, KMC, Squeaker, BCALM,
UST, and USTAR. Nucleotide files are then compressed with MFCompress [18] while
other text or binary files are compressed with bzip3. The average file size over all
datasets is reported in the last row.

Dataset DSK KMC Squeakr BCALM UST USTAR

SRR001665 1 76,729,965 63,102,295 62,769,135 43,100,358 12,641,658 12,332,551

SRR001665 2 89,356,517 73,618,021 70,364,023 54,549,879 15,492,263 15,109,673

SRR061958 1 1,853,355,280 1,512,526,861 1,214,304,214 792,616,145 194,173,905 185,905,825

SRR061958 2 2,269,394,440 1,850,606,165 1,445,986,432 940,752,737 235,657,588 225,975,765

SRR062379 1 771,892,475 633,615,665 559,244,946 334,386,186 82,713,766 79,283,723

SRR062379 2 766,644,876 629,023,699 556,418,241 327,042,925 80,164,746 76,708,406

SRR10260779 1 594,043,132 489,620,438 459,620,233 272,605,742 64,644,700 61,724,139

SRR10260779 2 661,730,544 545,447,915 501,793,581 311,074,932 72,772,294 69,375,320

SRR11458718 1 660,336,575 547,192,385 515,587,875 278,247,157 64,694,925 61,236,404

SRR11458718 2 699,675,661 580,313,686 542,321,885 304,467,895 68,982,466 65,438,050

SRR13605073 1 286,147,403 236,056,529 244,522,615 110,324,321 25,833,347 24,546,244

SRR14005143 1 72,421,457 59,702,423 75,386,963 26,222,881 6,419,520 6,220,215

SRR14005143 2 148,413,200 121,547,826 126,063,532 51,976,493 13,117,896 12,655,430

SRR332538 1 61,647,503 50,466,675 65,343,140 21,192,576 5,737,778 5,599,034

SRR332538 2 125,336,255 100,440,228 116,698,603 77,057,667 14,410,775 13,528,977

SRR341725 1 972,617,730 799,134,833 700,565,933 262,398,076 80,436,678 78,193,253

SRR341725 2 1,005,087,513 825,643,578 719,993,731 277,159,709 84,250,689 81,877,574

SRR5853087 1 1,494,920,206 1,234,975,195 1,084,532,779 1,073,165,506 191,108,921 177,278,725

SRR957915 1 1,016,375,644 837,315,550 732,334,056 590,259,971 122,748,678 116,872,195

SRR957915 2 1,589,786,146 1,301,318,582 1,062,835,997 829,172,816 182,073,051 172,757,385

Average 760,795,626 624,583,427 542,834,396 348,888,699 80,903,782 77,130,944

– overall: the sum of compressed file sizes of k-mers and counts.

Given the metric M the improvement over UST is computed as

ΔM =
MUST − MUSTAR

MUST

where M can be CL, counts or overall.
In the next experiment, we compared USTAR and UST with these three

metrics. In Table 3 we reported the average improvements of USTAR w.r.t. UST
when tested on all the above datasets while varying the size of k-mers, using odd
lengths as previously done by other authors [4,20,21].

We can observe that for all values of k, USTAR improves over UST, for
both nucleotide and count compression. For large values of k = 31, the overall
advantage of USTAR is 2.30%, and this improvement is mainly achieved with a
better compression of counts, in fact, Δcounts = 12.70%. We suspect that with
higher values of k the compression might decrease, but more experiments are
needed to confirm this hypothesis.

If smaller values of k are considered the overall improvement increases with
k = 21 and k = 17 and it reaches the maximum value of 26.40% for k = 15.
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Table 3. Average improvements of USTAR w.r.t. UST varying the k-mer size.

k-mer size Δ CL [%] Δ counts [%] Δ overall [%]

15 33.64 12.07 26.40

17 13.61 15.85 13.92

21 2.10 14.17 4.20

31 0.97 12.70 2.30

A similar behavior can be observed for ΔCL, which increases from 0.97% with
k = 31 to 33.64% with k = 15. We can note that the count improvement is
roughly constant as k varies with an improvement of 12.07–15.85%. In general,
Δoverall is mainly driven by ΔCL.

Since USTAR exploits the structure and connectivity of the dBG graph it
is interesting to further study the behavior of USTAR w.r.t. to the number of
arcs in the graph. Recall that nodes in a dBG have two sides and that each side
can have four arcs, one per nucleotide, thus the maximum number of arcs is
2 · 4 · #nodes. Based on this observation we can define the graph density as the
number of arcs over the maximum number of arcs:

density =
#arcs

8 · #nodes

Fig. 2. Improvement on the cumulative length, w.r.t. UST, as a function of the dBG
graph density.

In Fig. 2 are shown the improvements in the cumulative length for all datasets
with different k-mer sizes, plotted against their density. Each point in the Figure
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represents a dataset. The plot has a well-defined curve that slowly raises until
density = 35% and then increases almost linearly. ΔCL spans from 0.02%
to 48.31% showing that the compression ratio strongly increases as the density
increases. We can say that the graph density is very important in determining the
improvement in k-mers compression because, with a denser graph, we obtained
significantly higher improvements. We also considered other properties such as
the number of k-mers, the number of unitigs, the number of isolated nodes,
the read length, and the counts variance. However all these features are not as
significant as the graph density, and so they are omitted.

Indeed, a higher density graph implies that USTAR has more nodes from
which it can choose, unlike UST which picks the first connected k-mer, so that
more connected nodes can be available to paths that would have been made up of
single nodes. The higher compression ratio achieved by USTAR on denser graphs
confirms that the strategy based on node connectivity works well. The fact that
UST chooses almost randomly how to extend a path, it cannot guarantee to work
well, even with a denser graph there exists the possibility that many single-node
paths are generated, which substantially increases the number of paths and thus
the cumulative length of compressed k-mers, worsening the compression ratio.
If we decrease the k-mer size we observe a higher density: with small k there
are more k-mers and it is more likely to have more connections between k-mers
leading to an increase in density. In summary, USTAR can compress k-mers and
counts with a better compression ratio w.r.t. to several other tools. USTAR is
more effective on dense dBG graphs and for small k-mer sizes.

4 Conclusions

In this paper, we have presented USTAR, a tool for compressing k-mer sets with
counters. Our approach utilizes a vertex-disjoint path cover to find a represen-
tation of the k-mer set that minimizes the cumulative length of the compressed
data. By exploring de Bruijn graphs and making informed choices based on node
connectivity and average counts, we have achieved better compression ratios
compared to existing tools such as UST.

We have evaluated USTAR using various datasets and compared it with
several other tools. The results demonstrate that our method consistently out-
performs UST, and other tools, in terms of compression ratio, especially for
smaller k-mer sizes. The improvements range from 0.97% to 33.64% in terms of
cumulative length and it’s almost constant for counts. The overall improvement
in compressed file size is driven by the reduction in cumulative length.

Furthermore, we have observed that graph density plays a crucial role in
determining the effectiveness of USTAR. Denser graphs yield higher improve-
ments, and lowering the k-mer size contributes to increased density. These find-
ings highlight the power of our method, particularly for datasets with higher
graph density.

In conclusion, USTAR offers an effective solution for compressing k-mer sets
with counters. By leveraging de Bruijn graphs and making informed choices in
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the construction of the vertex-disjoint path cover, we have achieved superior
compression ratios compared to existing tools. Our method has the potential
to enhance the storage and processing efficiency of analysis in bioinformatics,
enabling more efficient analysis of large-scale genomic data using k-mer-based
tools.
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Abstract. Phage display technique has a multitude of applications such
as epitope mapping, organ targeting, therapeutic antibody engineering
and vaccine design. One area of particular importance is the detection
of cancers in early stages, where the discovery of binding motifs and
epitopes is critical. While several techniques exist to characterize phages,
Next Generation Sequencing (NGS) stands out for its ability to provide
detailed insights into antibody binding sites on antigens. However, when
dealing with NGS data, identifying regulatory motifs poses significant
challenges. Existing methods often lack scalability for large datasets, rely
on prior knowledge about the number of motifs, and exhibit low accuracy.
In this paper, we present a novel approach for identifying regulatory
motifs in NGS data. Our method leverages results from graph theory to
overcome the limitations of existing techniques.

Keywords: Phage display · Next Generation Sequencing ·
Microbiome · Regulatory motif · Graph theory

1 Introduction

Phage display (or biopanning) is a technique for studying different protein inter-
actions including protein-DNA, protein-peptide and protein-protein interactions
using bacteriophage (a type of virus that only infects bacteria) [31]. In this tech-
nique, antibody genes are combined on a strand of DNA. The DNA is then
packaged in a protein coat made from bacteriophage. The antibody genes make
the antibody hat (receptor), which is attached to the top surface of the virus
coat. The virus is called phage and the combination is called phage antibody.
Each phage antibody hat is unique and binds to a specific target molecule (for
example an antigen, an epitope, or a peptide). Target refers to the substance
that is used to scan phage library and template is considered its natural part-
ner. Only the antibody phage hat that fits the shape of a disease target will bind
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to the target molecule. Changing the antibody genes will change the type of anti-
body hat and what it can bind to (antigen, or epitope). Many of these antibody
phages have been made and the pool contains billions of unique antibody phages.
Together all these antibody phages are called phage display library. This pool of
antibody phages contains unique receptors for specific target binding and thus,
can be screened to reveal specific disease targets. For example, cancer patients’
serum can be incubated with phage library to reveal cancer specific epitopes.
Once antibody phages bind with specific targets, they can be pulled out and
further replicated using a host bacteria [22].

Geysen et al. [12] first identified peptide binding to target and mimicking the
binding site on the template, which was called mimotope. Mimotope is useful
in many applications such as epitope mapping [32], vaccines [16], therapeutics
[21], defining drug target [27], protein network detection [33,34]. As a result of
exposure to antigenic proteins, patient’s immune system produces antibodies,
which could be used as biomarkers for cancer or viral infection detection [38].
Molecular interactions between antigen’s epitope and antibody are often medi-
ated by short linear motifs of the amino acid sequence of the antigen [9,18].
Such interactions could be experimentally detected using random peptide phage
display libraries.

Traditional phage display is laborious and prone to finding false positive hits.
In recent years, many studies have been devoted to taking advantage of Next
Generation Sequencing (NGS) technique in the analysis of phage display screens
[7,26]. NGS enables phage display screening to produce huge number of outputs
(short peptides). Another contribution of NGS to the analysis of phage display
screening is that it accelerates and improves selection process and therefore,
avoids repetitive selections and restricts the number of false positive hits, in
contrast with traditional phage display [36]. In effect, a library of all possible
peptides of fixed length is generated, and peptides recognized by antibodies
contained in the human serum are selected, amplified in bacteria and sequenced
using NGS [5,11]. Such methods produce data sets consisting of hundreds of
thousands of peptide sequences. The computational problem consists in discovery
of true binding motifs corresponding to epitopes related to the diagnosed disease.

The problem of detection of epitope-specific binding motifs from NGS data
is computationally challenging for several reasons. The generated data is large
and usually noisy, as a result of biopanning; mimotopes which are considered
as desired signals are mixed with target unrelated peptides (TUPs) that are
undesired signals. Thus, a significant portion of sequenced peptides is not related
to the repertoires of antibody specificities, but produced by nonspecific binding
and preferential amplification in bacteria [11]. High heterogeneity of antigen and
antibody populations, as well as antibody-antigen recognition poly-specificity
manifests itself in presence of multiple binding motifs of various lengths within
the same data set [18,35].

The development of regulatory motif finding algorithms began in the late
1980s and early 1990s, when researchers began using computational methods to
identify and analyze patterns in DNA sequences. Early motif finding algorithms
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used sequence patterns to identify conserved motifs. One of the first algorithms
was Gibbs Sampling, developed by Lawrence et al. in 1993 [19]. This algorithm
used a probabilistic approach to identify common patterns in a set of DNA
sequences. In the mid-1990s, researchers developed a new way to represent motifs
called position weight matrices (PWMs). PWMs show the probability of each
nucleotide at each position in a motif. This information can be used to develop
algorithms like MEME [4] and AlignACE [29], which can find motifs in DNA
sequences. In addition, machine learning techniques have been used to develop
new motif finding algorithms that are based on classification and regression
models. These models, such as support vector machines (SVMs), hidden Markov
models (HMMs), and neural networks, have been used to discover motifs in DNA
sequences. Some examples of machine learning-based algorithms include SVMotif
[17], MDscan-Motif [20], and DeepBind [1].

The tools that have been developed to address the limitations of existing
motif finding methods use a variety of algorithmic techniques, such as clustering
[11,18], Gibbs sampling [2,24], artificial neural networks [23], and mixture model
optimization [15]. However, these methods face serious challenges, when dealing
with NGS data: many of them are not scalable for large data sets, require prior
knowledge about the number of motifs to identify, and have low accuracy [11,18].
For instance, MEME [4] requires the number of motifs to be known as an input
parameter, and it has low accuracy on random peptide phage display libraries
(RPPDL).

We introduce a method for finding regulatory motifs, which relies on results
from graph theory. In order to evaluate our method, we generated samples of
sequences with different lengths. We planted predefined motifs into the samples
and applied our algorithm to simulated data. We also applied our method to
mouse microbiome data including two groups of 5 mice. Results indicate that
our graph-based approach successfully identifies motifs in replicates samples.

In the following, we will introduce our method. We will then validate our
approach on both simulated and real data, and analyze the results.

2 Method

Our graph-based method uses the concept of graphs in mathematics to formulate
the problem of motif discovery. In this method, we construct a directed graph in
which nodes are k−mers. We assume that k = 4 and thus, we deal with 4−mers
in this research. The reason is that all peptides are of length 7 and according to
[14] choosing k = 4 results in more statistically significant motifs.

For given set of peptides, we find all 4−mers of that set. By 4−mer we mean
a string of amino acids of length 4 in which the first and the last positions
occupied by amino acid and the second and the third positions either amino
acid or gap (dash). In other words, at most, one deletion is allowed in the 2nd
or 3rd positions. We build a graph in which vertices are 4−mers. Two vertices
are connected by an edge, if there are enough M number of peptides supporting
simultaneously both 4−mers. The value of M is a parameter that can be adjusted
depending on how many peptides we expect to form a motif.
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Let u, x be two 4−mers belonging to the same peptide P , and the first
position of u strictly precedes the first position of x in P . Then there is a directed
edge u → x. Together u and x can make a 5−, 6− or 7−subset k − ux inside P .
This k− subset forms an edge (k − ux), if the first amino acid belongs to u and
the last belongs to x. The support of an edge (k−ux) is equal to the number of
peptides containing k− subset k − ux. We consider only edges with the support
greater than M .

Fig. 1. Schematic of the Graph-based method. a) A sample directed graph made from
4−mers as vertices. Two vertices are connected if they both belong to a peptide. Direc-
tion of the edge is from the 4−mer that fills lower indexes to the 4−mer that occupies
higher indexes when align to the peptide. b) Peptides that contribute to particular
part of the graph. c) Examples of paths of length 2 (2− hops) in the graph. 4−mers
are aligned and as a result, k− subsets corresponding to paths are created.

After building the graph, we extract all paths of the graph with length equal
to 2, i.e. we find all 2-hop paths of the graph (see Fig. 1−c). Each path uxv
contains two directed edges with (k1 − ux) and (k2 − xv) subsets with enough
number of M supports. Together (k1−ux) and (k2−xv) make a (k−uxv) subset
of the whole path. We assume that support of a path uxv is equal to minimum of
{support (ux), support (xv)}. In the next step, we align all peptides that support
the path and align them to the achieved k−subset (k − uxv). As a result, for
each path of length 2, we obtain a set of aligned peptides which accounts for a
motif and we can represent this motif with a position probability matrix. The
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following formula is used to calculate probability P (Aa) of each amino acid at
an individual position of the motif

P (Aa) =
NAa + p

n∑
N + p

(1)

where NAa is the number of amino acid at each position, N is the total number
of peptides contributing in motif, p is the pseudo count which is added to the
nominator and denominator of the fraction (in this study value of p is considered
to be 1), and n is the total number of amino acids (n= 20). The reason for
applying pseudo counts to the formula above is that in some positions, counts
of one particular amino acid would be zero (in contrast with other positions),
which results in probability of some significant motifs to be zero.

In studying motifs, some positions might be more important and subse-
quently, contain more information. To explore this, information content matrix
is calculated based on Shannon entropy equation [3]. Alternatively, in some
researches, information content is represented as relative entropy, Kullback-
Leibler divergence (KL divergence). In contrast with Shannon entropy, KL diver-
gence takes into account the non-uniform background frequencies. The relative
entropy is calculated using the following equation:

IC(Aa) = P (Aa) × log2
P (Aa)
BAa

(2)

in which BAa is the background frequency of amino acid a. In this study, we
accounted for the non-uniform background frequencies of amino acids (i.e., the
probability of each amino acid is not equal). To do this, we calculated the fre-
quency of each amino acid at each position of 7−mers in each sample. In equa-
tion 2, IC can take negative values. In order to avoid negative values, we simply
replace them with zero.

2.1 Motif Validation

Methods of quantifying similarity between motifs include (but not limited to)
Pearson Correlation Coefficient (PCC) [25], Average Log-Likelihood Ration
(ALLR) [37], Fisher-Irwin exact test (FIET) [30], Kullback-Leibler divergence
(KLD) [28], Euclidean distance [6] and Tomtom (E value) [13]. We used Pear-
son Correlation Coefficient to measure if two motifs are identical. The Pearson
correlation coefficient (PCC) is a measure of the linear relationship between two
motifs. It is calculated by comparing the occurrence profiles of the two motifs
across a set of sequences. A high positive PCC indicates that the two motifs are
similar, while a low or negative PCC indicates that they are dissimilar. To this
end, we selected a threshold correlation number correlation ≥ 0.75. Any two
motifs with PCC greater than 0.75 are assumed identical motifs. Accordingly,
we calculated the number of retrieved motifs. The reason we used the Pearson
correlation coefficient over other alternative approaches in this study is that we
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represent motifs as position probability matrices. Employing the Pearson cor-
relation coefficient for comparing two matrices aligns most effectively with our
graph-based methodology.

In order to verify the discovered motifs obtained through our graph-based
method, we conducted tests using simulated data. The simulated data was gen-
erated by creating several position probability matrices, which were used to
generate sets of 7-mers. These 7-mers served as the intentionally placed motifs
within our simulations. If any gaps were present in the motifs, we filled them
with random amino acids. Subsequently, we applied a graph-based approach to
analyze the simulated set of peptides. We utilized simulated data to evaluate
the performance of our graph-based method in detecting the target motifs. By
creating position probability matrices and generating corresponding peptides,
we introduced noise and assessed the algorithm’s ability to identify the desired
motifs in the presence of such noise.

1

2

3

4

A

B

C

D

E

U

V

Fig. 2. Set U represents set of true planted motifs, set V represents set of retrieved
motifs. When motifs are retrieved (in set V ), Gale-Shapley algorithm [10] is used to
do matching between set U and set V . Each motif in set U is matched with only one
motif in set V with whom it has highest Pearson Correlation Coefficient

In Fig. 2, the U set represents the planted motifs, while the V set represents
the collection of all retrieved motifs. To determine the correlation between the
members of set U and set V , we employed the Pearson correlation coefficient.
The matching between the two sets was accomplished using the Gale-Shapley
algorithm [10] (Table 1).
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Table 1. Confusion matrix built after matching related to Fig. 2

Actual

Positive Negative

Predicted Positive A,B,E C,D

Negative 3 NotApplicable

3 Results and Discussion

3.1 Data Set

Our mouse microbiome data is the mixture of the 3 libraries: M2, L2 and M1.
M means that the IgM antibodies were used for analysis and the L means
that antibody were isolated from the same serum samples by using protein L,
which do not discriminate between classes of antibodies. With IgM antibodies
the experiment was repeated with the same serum samples two times, this is
why there are the M2 and the M1 libraries. L library include all antibodies
(IgG, IgA, IgE) except the IgM. We expect that IgM repertoire is the most
sensitive to the environment changes and we should find real differences in the
IgM repertoire that is in the M2 and the M1 samples. So, totally we have 3
libraries M2, L2 and M1. Each library consist of 24 serum samples obtained
from two groups of mice. Prior to time t = 0, all mice from both groups were
maintained at 22 ◦C. At t = 0, serum samples were collected from mice in both
groups, resulting in samples S1–S6 and S7–S12. Each group initially contained
5 mice, but the serum samples from mouse 5 in the first group and mouse 10
in the second group were duplicated as technical replicas. Thus, there were 6
profiles in each group.

After the initial bleeding, the first group of mice was kept at 22 ◦C, and the
second bleeding occurred after 6 weeks (t = 6w) at the same temperature, pro-
ducing samples S13–S18. Again, serum samples from mouse 5 were duplicated.
Meanwhile, the second group of mice was kept at 30 ◦C, and after 6 weeks at
t = 6w, samples S19–S24 were collected. Serum from mouse 10 was duplicated
in this case (Fig. 3).

The phage DNA used for insert sequencing was derived from antibody-
bound phages immediately after the initial incubation of the phage library with
serum antibodies. This process was carried out without amplifying the isolated
antibody-binding phages in bacteria. Consequently, the number of sequencing
reads cannot serve as a quantitative measure of the antibody titer. This limita-
tion arises because, in many cases, the number of corresponding antibodies far
exceeds the number of their specific targets.

To create quantitative profiles, we propose quantifying the number of dis-
tinct peptide sequence variants or determining the size of the peptide family
related to each motif. This approach allows us to calculate how frequently each
motif appears in each profile, enabling the generation of a motif signature that
can differentiate between housing at 22 ◦C and 30 ◦C. In summary, to discern
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Fig. 3. Mouse microbiome data

the impact of temperature conditions, we focus on measuring motif occurrences
and constructing signature profiles rather than relying on sequencing reads or
antibody titers.

3.2 Results

Simulated Data: In order to confirm the motifs identified through our graph-
based method, we conducted tests using simulated data. The simulated data
was generated by using multiple position probability matrices, which were then
utilized to generate sets of 7-mers. Essentially, we created a pool of diverse
position probability matrices, each representing an identical motif with varying
levels of information content associated with it. We did this by collecting all
of the position probability matrices that were generated when we applied our
method to real data. Subsequently, we randomly selected a specific number of
matrices from this pool and generated a corresponding number of 7-mer peptides
based on each selected matrix.

Fig. 4. Whisker bar plot of the simulated data. Number of planted motifs is on the x
axis while the y axis shows recall and precision for each group.
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To address any gaps within the motif, we inserted random amino acids,
thereby introducing noise to the simulated data. Next, we applied a graph-based
approach to analyze the set of generated peptides. The objective was to deter-
mine whether the graph-based algorithm was able to detect the intended target
motifs or not. We conducted a series of experiments involving the insertion of
sets of 4, 8, 16, and 32 motifs. Each set was tested 100 times, and the recall
(sensitivity) was calculated for each experiment. Figure 4 visualizes the results
of all simulations through a whisker bar plot.

Real Data: The primary objective of our research was to investigate any quali-
tative or quantitative differences in the profiles associated with the second bleed-
ing of both the first and second groups of mice, which were respectively kept at
22 ◦C and 30 ◦C. The focus was to determine if variations in both time and tem-
perature would lead to significant differences or patterns indicating an increase
or decrease in motifs within the samples. However, our analysis did not reveal
any significant differences or discernible patterns that would suggest an increase
or decrease in motifs across the samples. Despite the variations in time and
temperature, the motifs in the samples did not exhibit notable changes in their
quantity or quality.

Fig. 5. Two technologically inserted motifs were successfully identified in all 24 samples
with graph-based method

To further explore the data, we employed 4−mer sequences instead of motifs,
as most motifs comprised consensus sequences of 4 amino acids. There were a
total of 160, 000 distinct 4-mers, and for each profile, we calculated the number of
occurrences of each tetra peptide. This involved determining how many different
7−mer sequences contained a particular tetra peptide in each profile, generating
a signature of tetra peptides related to housing at 30 ◦C. The tetra peptides
could exhibit either increased or decreased numbers with the temperature shift.
However, we did not find a meaningful relationship between the samples in terms
of increasing or decreasing tetra peptides.

It’s important to note that although no significant differences were observed
in this study, negative results are valuable as they contribute to the understand-
ing of the regulatory motifs’ behavior under specific conditions. These findings
indicate that the specific motifs we investigated were not significantly affected by
the time and temperature variations in the experiment. Additionally, it is worth
highlighting that our method successfully identified two technologically inserted
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motifs (“IGLAEIP” and “AETVESC”) in all of the samples (see Fig. 5). This
discovery suggests that our method is valid and capable of detecting important
motifs. Comparatively, we also applied a well-known motif discovery method
called MEME [4] to analyze all 24 samples. However, MEME failed to identify
these two motifs in all of the 24 samples.

In Fig. 6, we have summarized a number of discovered motif logos using our
graph-based and MEME.

Fig. 6. The first row shows some sample motifs discovered by our graph-based method.
The second row is assigned to motifs discovered by MEME. The logos of the first row
was created using a version of WebLogo [8] modified to display aligned pairs of Logos

3.3 Discussion

To evaluate the results, we obtained a set of results for different values of three
critical parameters: the number of peptides that support a two-hop path in the
graph (which we call the “support path”), the information content of the planted
motifs, and the correlation number. These parameters are all assumed to have a
significant impact on the measurements.

We first hypothesized that increasing the path support would result in
stronger motifs that were easier to retrieve. We started with a path sup-
port of 4 and increased it from there. We saw that the number of extracted
motifs increased until we reached a certain point. However, the results remained
unchanged when we chose higher values for the path support. This is because
target motifs are mainly clustered in groups of a certain number of peptides. For
example, if we start with a path support of 4, meaning that there are at least
4 peptides supporting the path, as we increase the path support, more target
motifs will be detected by the graph-based method. However, from a certain
number of path support onward, we get plenty of non-targeted motifs and the
number of successfully detected target motifs will not increase.

We planted a variety of motifs with different information contents in our
simulated data. As we expected, motifs with higher information contents were
more likely to be retrieved than those with lower information contents.
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Our graph-based motif discovery model has several advantages over existing
methods. First, it is scalable to large datasets, making it possible to find motifs
in hundreds of thousands of peptides in a reasonable amount of time. Second,
it does not require prior knowledge of the number of motifs, unlike the MEME
method. Third, it has been shown to be more accurate on simulated data than
the MEME method.

In summary, our research did not yield significant differences or patterns in
the quantity or quality of motifs or tetra peptides when comparing the serum
samples collected after 6 weeks and between samples kept at 22 ◦C and 30 ◦C.
These results suggest that the temperature shift did not have a noticeable impact
on the identified motifs or tetra peptides in the samples.
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5. Bratkovič, T.: Progress in phage display: evolution of the technique and its appli-

cations. Cell. Mol. Life Sci. 67(5), 749–767 (2010)
6. Choi, I.G., Kwon, J., Kim, S.H.: Local feature frequency profile: a method to

measure structural similarity in proteins. Proc. Natl. Acad. Sci. 101(11), 3797–
3802 (2004)

7. Christiansen, A., et al.: High-throughput sequencing enhanced phage display
enables the identification of patient-specific epitope motifs in serum. Sci. Rep.
5(1), 1–13 (2015)

8. Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E.: Weblogo: a sequence logo
generator. Genome Res. 14(6), 1188–1190 (2004)

9. Dinkel, H., et al.: The eukaryotic linear motif resource elm: 10 years and counting.
Nucleic Acids Res. 42(D1), D259–D266 (2014)

10. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)
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Abstract. Nanobodies (Nb) are monomeric heavy-chain fragments
derived from heavy-chain only antibodies naturally found in Camelids
and Sharks. Their considerably small size (∼3–4 nm; 13 kDa) and favor-
able biophysical properties make them attractive targets for recombinant
production. Furthermore, their unique ability to bind selectively to spe-
cific antigens, such as toxins, chemicals, bacteria, and viruses, makes
them powerful tools in cell biology, structural biology, medical diagnos-
tics, and future therapeutic agents in treating cancer and other seri-
ous illnesses. However, a critical challenge in nanobodies production is
the unavailability of nanobodies for a majority of antigens. Although
some computational methods have been proposed to screen potential
nanobodies for given target antigens, their practical application is highly
restricted due to their reliance on 3D structures. Moreover, predicting
nanobody-antigen interactions (binding) is a time-consuming and labor-
intensive task. This study aims to develop a machine-learning method
to predict Nanobody-Antigen binding solely based on the sequence data.
We curated a comprehensive dataset of Nanobody-Antigen binding and
non-binding data and devised an embedding method based on gapped
k-mers to predict binding based only on sequences of nanobody and anti-
gen. Our approach achieves up to 90% accuracy in binding prediction and
is significantly more efficient compared to the widely-used computational
docking technique.

Keywords: Nanobody · Antigen · Classification · k-mers · Binding
Prediction

1 Introduction

Nanobodies (Nbs) are single-domain antibodies (sdAb), derived from heavy-
chain only antibodies naturally occurring in Camelids and Sharks. They repre-
sent a unique class of proteins/antibodies having a molecular weight of 12–15
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kDa that combine the advantageous characteristics of conventional antibodies
with desirable attributes of small-molecule drugs. Nbs are remarkably adaptable
to various applications and offer several advantages over conventional antibod-
ies [6]. Every Nb contains the distinct structural and functional properties found
in naturally-occurring heavy-chain antibodies. They have a naturally low poten-
tial for causing immune responses and exhibit high similarity to variable regions
of the heavy chain (VH) in human antibodies, making them excellently suited for
therapeutic and diagnostic applications. Due to their small size, unique struc-
ture, and high stability, Nbs can access targets that are beyond the reach of con-
ventional antibodies and small-molecule drugs [7,23]. Nbs Structure prediction
and modeling are still challenging tasks [5,29]. Hundreds of Nb crystallographic
structures have been deposited in the Protein Data Bank (PDB) [3,4]. Despite
this, the current representation falls short of capturing the vast structural and
sequence diversity observed in Nb hypervariable loops. Moreover, Nbs display a
greater range of conformational variations, lengths, and sequence variability in
their CDR3 compared to antibodies [17]. This makes modeling and prediction
of their 3D structure more complex.

Machine Learning (ML) plays a crucial role in predicting nanobody-
antigen(Nb-Ag) interactions. ML offers a powerful and effective approach to
analyzing and comprehending complex patterns within extensive datasets [8].
Traditional non-computational methods for determining Nb-Ag interactions can
be both costly and time-consuming. ML provides a faster and more cost-
effective alternative, enabling scientists to prioritize potential nanobodies candi-
dates for further research [28]. The large amount of training data that is easily
accessible when utilizing sequence-based ML techniques is advantageous. Even
though there is an increasing amount of data on protein structures, most Nb-
Ag sequences still lack validated structural details, even though the number of
protein sequence entries is still rising quickly [11,26].

ML algorithms are capable of handling a vast amount of data, encompass-
ing nanobodies and antigen sequences, structural information, and experimen-
tal binding data. Through the examination of this data, ML algorithms can
find complex relationships and patterns that might be hard for people to see
on their own. These methods can automatically extract relevant details from
raw data, such as structural information or amino acid sequences. This feature
extraction method makes it easier to spot important molecular traits that influ-
ence antibody and Nb-Ag interaction [20,30]. ML models can gain knowledge
from large databases of training samples and produce precise predictions. By
being trained on known Nb-Ag binding data, these models may understand the
underlying principles and patterns regulating binding interactions. This allows
them to make accurate predictions for previously undiscovered Nb-Ag combi-
nations. Traditional experimental techniques, on the other hand, need a lot of
time and money to determine Nb-Ag binding. To arrange possible antibody
candidates for further investigation, ML offers a quicker and more economical
alternative [16,22,30,31].
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Nanobody-antigen binding play a significant role in the immune response.
By predicting and studying these bindings, researchers can gain insights into
how nanobodies recognize and neutralize specific antigens. This understanding
is fundamental for elucidating immune mechanisms and developing strategies
for diagnostics to combat infectious diseases, autoimmune diseases, and cancer.
Predicting Nb-ag binding can aid in discovering and engineering nanobodies
with desired properties. Binding helps identify the essential antigens for vaccine
development, effective vaccine formulations, and understanding the mechanisms
of immune protection.

Predicting binding interactions enables the selection of highly specific
nanobodies and antigens for accurate and sensitive diagnostic tests. Binding can
guide the rational design of therapeutic nanobodies or nanobodies-based drugs
and diagnostic tests. Scientists can modify or engineer nanobodies to improve
their affinity, selectivity, and therapeutic potential by understanding the binding
interactions between nanobodies and their target antigens. This approach can
be applied in areas such as diagnostic tests and cancer immunotherapy, where
nanobodies are designed to target specific tumor antigens [27].

The input in our study is nanobody sequences and antigen sequences and
the output is binding/docking score (Yes/No).In this paper, we trained ML on
nanobodies and antigen sequences extracted from the single-domain antibody
(sdAb) database to determine binding. We make the following contributions.

– We have performed the comparison of various ML approaches for predicting
nanobody-antigen binding from sequences only.

– We evaluated the impact of various sequence features (e.g., isoelectric point,
hydrophilicity) on the prediction accuracy of ML models.

– We have curated a dataset of nanobody-antigen pairs for training and testing
machine-learning models and made it publicly available for further research.

The rest of the paper is organized as follows: Sect. 2 explores the existing
research and highlights the research gaps. Section 3 explains the data collection,
feature extraction, and data visualization. The proposed embedding is discussed
in Sect. 4. Section 5 describes the ML models and evaluation metrics. We discuss
our results in Sect. 6. Finally, we provide the conclusion and future directions in
Sect. 7.

2 Related Work

Antibodies (Abs) are crucial tools in biological research and the biopharma-
ceutical industry due to their exceptional binding specificity and strong affinity
for target antigens. The effectiveness of the immune system directly reflects the
diversity of antigens against which specific tightly binding ‘B-lymphocyte anti-
gen receptors (BCRs) can be generated. The vast range of binding specificity is
achieved through sequence variations in the heavy chain (VH) and light chain
(VL), resulting in an estimated diversity of BCRs in humans [18] that surpasses
the population size of B-lymphocytes in an individual. However, it is still unclear
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how this immense sequence diversity translates into antigen specificity. Although
not every unique combination of VH-VL sequences leads to a distinct binding
specificity, predicting the number and positions of amino acid mutations required
to change binding specificity has proven challenging [21].

A more manageable system is offered by heavy-chain antibodies found in
camelid species like camels, llamas, and alpacas, where the light chain is absent.
These antibodies, known as nanobodies (Nbs), consist of an isolated variable
VHH domain that is about ten times smaller than conventional Abs but retains
comparable binding specificity [19].

Both Nbs and Abs face the fundamental challenge of deciphering the molec-
ular code that links amino acid sequence, particularly the choice of paratope
residues, to the binding specificity of the folded molecule. In regular Abs, the
paratope is situated at the interface of the VH and VL domains, typically com-
prising residues from up to six distinct hypervariable loop regions. The VH and
VL domains can dock together in various ways, allowing the antibody to max-
imize the diversity of potential antigen-binding surfaces. In contrast, the Nb
paratope is entirely contained within the VHH domain, significantly limiting
the range of possible antigen-binding surfaces without seemingly affecting the
diversity of resulting binding specificities. Indeed, Nbs typically bind their target
antigens with affinities comparable to classical monoclonal Abs [18].

Several studies have been conducted to generate antibodies/nanobodies
using non-computational methods. Experimental techniques such as hybridoma
technology and phage display [25] are used to generate specific antibod-
ies/nanobodies, but these have limitations and challenges. Hybridoma technol-
ogy involves immunizing animals with an antigen and fusing B cells from the
immunized animal with cancer cells to create hybridoma cells that produce spe-
cific antibodies. However, this method raises ethical concerns due to animal cru-
elty and is time-consuming, labor-intensive, and limited in antibody/nanobody
diversity. On the other hand, phage display utilizes bacteriophages to display
antibody fragments, but it also has time-consuming rounds of selection and
amplification, labor-intensive requirements, and high costs.

Several ML methods are used to predict nanobody-antigen binding.
Sequence-based methods utilize amino acid sequences, extracting features such
as physio-chemical properties, sequence motifs, and sequence profiles [28]. These
features are then used as input for machine learning algorithms like support vec-
tor machines (SVM), random forests, or neural networks. Structure-based meth-
ods employ three-dimensional structures obtained from experimental techniques
like X-ray crystallography or homology modeling. Structural features like solvent
accessibility, electrostatic potential, or shape complementarity are extracted and
fed into machine-learning models. Hybrid methods combine sequence-based and
structure-based features, integrating both sequence and structural information
to capture a broader range of characteristics. Deep learning methods, such as
convolutional neural networks (CNN) and recurrent neural networks (RNN),
learn complex patterns and relationships from large datasets, including sequence
and structural information, for accurate predictions [5]. Docking-based methods
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use molecular docking algorithms to predict the binding orientation and affinity
by calculating a binding score based on the optimal spatial arrangement of the
interacting molecules [22].

3 Proposed Approach

The proposed pipeline comprised different steps, including data collection, Nb-
Ag sequence analysis, numerical embedding generation, and optimal feature
extraction from the Nb and Ag sequences. We discuss each step in detail.

3.1 Data Collection

We collected 47 Ag sequences from UniProt1, and for each, we collected all bind-
ing Nbs from Single Domain Antibody Database2, which are total 365, as shown
in Table 1 along with the basic statistics for the length of the antigen sequences
including average, minimum, and maximum lengths, etc. A basic summary of
the number of nanobodies binding to antigens is given in Table 2

Table 1. Sequence length statistics for antigen and nanobody sequences.

Type Count Sequence Length Statistics

Mean Min Max Std. Dev. Median

Antigens 47 671.51 158 1816 421.24 480

Nanobodies 365 122.84 104 175 8.87 123

Table 2. Statistics for nanobody sequences binding to each antigen.

Type Mean Min Max Std. Dev. Median

Nanobodies in each antigen 7.77 1 36 9.28 4

3.2 Features Extracted from Sequences

We performed basic protein sequence analysis using the ‘bioPython’ package3

on each nanobody and antigen sequence to determine their features. These fea-
tures include charge at pH, Grand Average of Hydropathy (GRAVY), molecu-
lar weight, aromaticity, instability index, isoelectric point, secondary structure

1 https://www.uniprot.org/.
2 http://www.sdab-db.ca/.
3 https://biopython.org/docs/dev/api/Bio.SeqUtils.ProtParam.html.

https://www.uniprot.org/
http://www.sdab-db.ca/
https://biopython.org/docs/dev/api/Bio.SeqUtils.ProtParam.html
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fraction (helix, turn, and sheet), and molar extinction coefficient (reduced and
oxidized).

Charge at pH: The charge of a protein at a pH is determined by the presence
of charged amino acids (aspartic acid, glutamic acid, lysine, arginine, histidine,
and cysteine) and their ionization state. These amino acids gain or lose protons
at different pH values, resulting in a net charge. The charge at pH affects the
protein’s solubility, interaction with other molecules, and biological function.

Grand Average of Hydropathy (GRAVY): GRAVY [14] measures the over-
all hydrophobicity or hydrophilicity of a protein, calculated by averaging the
hydropathy values of its amino acids. Positive GRAVY values indicate hydropho-
bic, while negative values represent hydrophilic regions and provide insights into
protein stability, membrane interactions, and protein-protein interactions.

Molecular Weight: Molecular weight refers to the sum of the atomic weights
of all atoms in a protein molecule. It is calculated based on the amino acid
composition of the protein sequence. Molecular weight impacts various protein
properties, such as protein folding, thermal stability, and mobility, and is crucial
for protein identification, characterization, and quantification.

Instability Index: The instability index [9] is a measure of the propensity
of a protein to undergo degradation or unfold. Higher instability index values
indicate increased susceptibility to degradation and decreased protein stability.
The index is useful for evaluating protein expression, protein engineering, and
predicting potential regions of protein instability.

Isoelectric Point: The isoelectric point (pI) is the pH at which a protein has a
net charge of zero. It is determined by the presence of charged amino acids and
their ionization states. The pI influences protein solubility, crystallization, and
electrophoretic mobility. Knowledge of the pI is crucial for protein purification,
protein characterization, and protein separation techniques based on charge.

Secondary Structure Fraction (Helix, Turn, and Sheet): The secondary
structure fraction [10,12,13] refers to the proportions or percentages of different
secondary structure elements (helices, turns, and sheets) in a protein sequence.
These elements are determined by the pattern of hydrogen bonds between amino
acids. The secondary structure fraction provides insights into the protein’s fold-
ing, stability, and functional properties. Different secondary structure fractions
contribute to the unique 3D structure and biological function of the protein.

Molar Extinction Coefficient (Reduced and Oxidized): The molar extinc-
tion coefficient is a measure of the ability of a molecule to absorb light at a spe-
cific wavelength. It quantifies the efficiency of light absorption by the molecule.
The molar extinction coefficients can be different for reduced and oxidized forms
of a protein due to changes in the chromophores. These coefficients are useful
for protein quantification, monitoring protein folding/unfolding, and studying
protein-protein interactions.

Remark 1. We compute classification results with and without these features for
all embedding methods, including the proposed and baseline methods.
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3.3 Obtaining Non-Binding Nb-Ag Pairs

We created the proximity matrix of these sequences using Clustal Omega4

to evaluate the pairwise edit distance between antigens and nanobodies. This
pairwise distance is used to identify further binding pairs and non-binding
pairs of antigens and nanobodies. There are three pairs of antigens with very
high similarity (distance < .25), namely, antigen green fluorescent protein
(GFP) and Superfolder green fluorescent protein (sfGFP), (pairwise distance
= 0.05042), RAC-gamma serine/threonine-protein kinase pleckstrin homology
domain (Akt3PH) and RAC-alpha serine/threonine-protein kinase pleckstrin
homology domain (Akt1PH) (pairwise distance = 0.19833), Glioblastoma mul-
tiforme dihydropyrimidinase-related protein 2 (DPYSl2) and/or methylenete-
trahydrofolate dehydrogenase l (MTHFD1) and Glioblastoma multiforme col-
lapsin response mediator protein l (CRMP1) (pairwise distance = 0.0.236014).
For these pairs, if a nanobody binds with one of them, we assume it also binds
to the other. Thus, we add 1388 of additional binding pairs that bind with each
other.

The non-binding pairs are obtained as follows: Suppose we have two binding
Nb-Ag (ni, gj) and (n�, gk). Then both the pairs (ni, gk) and (n�, gj) are candi-
dates for being declared as non-binding pairs if the distance between gi and gj

is more than a certain threshold (we set the threshold ∈ {.8, .85, .9}. A random
sample of such candidate pairs is added to the dataset as non-binding pairs,
which consist of 1728 such pairs in total.

Data Visualization: In order to visually assess the proximity of similar points
in the Spike2Vec-based embeddings, we employ the t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique to obtain two-dimensional representa-
tions of the embeddings. These representations are then plotted using a scatter-
plot [15]. The t-SNE plots for the Nanobody and Antigen-based embeddings are
depicted in Fig. 1. The colored data points show the different antigen categories
(47 in total). Although the data points are scattered in the whole plot, we can
observe small grouping for different labels, which shows that the embedding cap-
tures the hidden hierarchical and structural information inherent in the protein
sequences.

4 Representation Learning for Nb-Ag Binding Prediction

We learn various machine learning models on the training data of binding and
non-binding pairs. To train the classifiers for the binary classification problem,
we generate the feature vector (also called embeddings) for the nanobody and
antibody in pairs. The corresponding feature vectors are a concatenation of
the features extracted from the sequence as outlined above and feature vector
embedding of the whole nanobody and antigen sequences, using state-of-the-art
sequence2vec models discussed below.

4 https://www.ebi.ac.uk/Tools/msa/.

https://www.ebi.ac.uk/Tools/msa/
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Fig. 1. t-SNE plots for Nanobody and Antigen Embeddings using Spike2Vec approach.
The figure is best seen in color. (Color figure online)

Embedding Generation: To generate the fixed length numerical embedding
from the variable length protein sequences, we use the idea of gapped k-mers.
The gapped k-mers are a representation of biological sequences, such as DNA
or protein sequences, that capture patterns while allowing for flexibility in the
positioning of the k-mer elements (i.e., nucleotides or amino acids). In gapped
k-mers, there are gaps or missing positions between the elements of the k-mers.
These gaps introduce variability and enable the capture of more diverse and
complex patterns compared to traditional contiguous k-mers.

The spectrum generated from gapped k-mers refers to the collection of all
possible (unique) gapped k-mers (along with their count) that can be formed
from a given protein sequence. These k-mers counts are then added into the
numerical vector, which is generated based on all possible k-mers for the given
alphabet Σ that corresponds to ACDEFGHIKLMNPQRSTVWXY-. Note that
in Σ, the character ‘–’ is used to include the gap in the k-mers. For example, for a
k-mer ‘ACD’, the gapped k-mers will comprise of ‘-CD’, ‘A-D’, ‘AC-’, and ‘ACD’.
An important point to note here is that we generated 4 k-mers from just 1 original
k-mer. This extra information helps us to preserve more information, which
eventually helps in the downstream supervised analysis. The pseudocode for
generating gapped k-mers-based spectrum is given in Algorithm 1. The spectrum
provides a comprehensive representation of the sequence, taking into account
both conserved elements and the flexibility introduced by the gaps. Each gapped
k-mer in the spectrum represents a distinct pattern or subsequence present in
the sequence, capturing variations and relationships between elements that may
be important for various biological processes. Using gapped k-mers offers several
advantages compared to other typical biological methods:

Increased Sensitivity: Gapped k-mers can capture more complex patterns
and relationships compared to traditional contiguous k-mers. Gapped k-mers can
capture conserved elements that are not necessarily adjacent in the sequence by
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Algorithm 1. Gapped k-mers Spectrum
1: Input: Set of sequences S, alphabet Σ, k is size of k-mer
2: Output: Spectrum V
3: combos = GenerateAllCombinations(Σ, k) � all possible combinations of k-mers

4: V = [0] * |Σ|k
5: for s in S do
6: Gkmers = GappedKmers(s,k) � compute all possible gapped k-mers
7: for i ← 1 to |Gkmers| do
8: idx = combos.index(Gkmers[i])
9: V [idx] ← V [idx] + 1

10: return(V )

allowing gaps. This increased sensitivity can be crucial for identifying motifs or
regions of interest but may exhibit variable spacing.

Enhanced Flexibility: Gapped k-mers offer flexibility in terms of the spacing
between elements. This flexibility allows for the inclusion of different variations
and insertions, providing a more comprehensive representation of the sequence.
Gapped k-mers can accommodate diverse patterns and handle insertions or dele-
tions more effectively than traditional contiguous k-mers.

Comprehensive Motif Representation: The spectrum generated from
gapped k-mers provides a comprehensive representation of the sequence by cap-
turing a wide range of conserved patterns and variations. This allows for a more
detailed analysis of complex motifs or functional regions that involve specific
arrangements of elements.

Improved Specificity: Gapped k-mers can help improve specificity by reducing
false-positive matches. By considering both conserved elements and gaps, gapped
k-mers can differentiate between true motifs and random matches that may occur
by chance in traditional k-mers.

After generating the embeddings using gapped k-mers spectrum, we use those
embeddings as input to the machine learning classifiers for binary classification
to predict the binding of Nb-Ag pairs binding.

5 Experimental Setup

In this section, we discuss the dataset statistics and evaluation metrics along
with baseline models. All experiments are carried out using Python on a system
equipped with a 2.4 GHz Core i5 processor, 32 GB of memory, and the Windows
10 operating system. For experiments, we randomly divide the data into 70–
30% training and testing set and use 10% of the data from the training set
as the validation data. The experiments are repeated 5 times, and we show
average results to eliminate any biases in the random splits. For the sake of
reproducibility, our code and preprocessed datasets can be accessed online5.

5 https://github.com/sarwanpasha/Nanobody Antigen.

https://github.com/sarwanpasha/Nanobody_Antigen
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Baseline Models: To evaluate the proposed embedding, we compare their
results with several popular baseline models from the literature. The baselines
includes Spike2Vec [2], Minimizers [24], and PWM2Vec [1].

Spike2Vec [2]: The objective of this approach is to generate numerical embed-
dings for input protein sequences, facilitating the utilization of machine learning
models. To achieve this, the method begins by creating k-mers from the given
spike sequence. k-mers are employed due to their ability to retain the sequential
information of the protein sequence.

Definition 1 (k-mers). K-mers refer to sets of consecutive amino acids (called
mers) of length k in a given sequence. The consecutive k-mers are computed using
the sliding window approach, where the next k-mer is 1 window to the right of
the previous k-mer. In the domain of natural language processing (NLP), they
are referred to as n-grams.

All possible k-mers that can be generated for a given sequence of length N are
N −k+1. Spike2Vec calculates the frequency vector based on k-mers to convert
the alphabetical information of k-mers into a numerical representation. This
vector captures the occurrence counts of each k-mer in the sequence, also called
k-mers spectrum.

Minimizers [24]: The Minimizer-based feature vector is a method that involves
computing a minimizer of length m (also called m-mer) for a given k-mer. In the
case of m-mer, we have m < k. The m-mer is determined as the lexicographically
smallest sequence in both the forward and reverse order of the k-mer. A fixed-
length frequency vector is constructed from the set of minimizers, where each
bin in the frequency vector represents the count of a specific minimizer. This
method is also referred to as m-mers spectrum. The length of each vector is
determined by the alphabet size Σ (where Σ contains all possible characters or
amino acids in protein sequence i.e. ACDEFGHIKLMNPQRSTVWXY ) and the
length of the minimizers denoted as m (we set m to 3, which is decided using
the standard validation set approach). Hence, the length of the vector is |Σ|m.

PWM2Vec [1]: The PWM2Vec is a feature embedding method that transforms
protein sequences into numerical representations. Instead of relying on the fre-
quency of k-mers, PWM2Vec assigns weights to each amino acid within a k-mer.
These weights are determined using a position weight matrix (PWM) associated
with the k-mer. By considering the position-specific importance of amino acids,
PWM2Vec captures both the relative significance of amino acids and preserves
the ordering information within the sequences.

Evaluation Metrics: To assess the performance of embeddings, we employ sev-
eral evaluation metrics, including accuracy, precision, recall, F1 score (weighted),
F1 score (macro), Receiver Operating Characteristic (ROC) curve, Area Under
the Curve (AUC), and training runtime. For metrics designed for binary classi-
fication tasks, we adopt the one-vs-rest approach for multi-class classification.

Machine Learning Classifiers: Supervised analysis entails the utilization of
diverse linear and non-linear classifiers, such as Support Vector Machine (SVM),
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Table 3. Classification results (averaged over 5 runs) for different evaluation metrics.
The best values for each embedding are underlined, while the overall best values among
all embeddings for different evaluation metrics are shown in bold.

Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time (sec.) ↓
Without Sequence Fea-
tures

Spike2Vec SVM 0.818 0.824 0.818 0.818 0.818 0.819 5.662

NB 0.813 0.815 0.813 0.813 0.813 0.813 0.103

MLP 0.844 0.846 0.844 0.844 0.844 0.844 4.075

KNN 0.892 0.893 0.892 0.892 0.892 0.892 1.290

RF 0.906 0.911 0.906 0.906 0.906 0.906 3.725

LR 0.813 0.815 0.813 0.813 0.813 0.814 2.417

DT 0.878 0.878 0.878 0.878 0.877 0.878 1.293

Minimizers SVM 0.824 0.826 0.824 0.823 0.823 0.823 5.444

NB 0.791 0.792 0.791 0.790 0.790 0.790 0.091

MLP 0.844 0.845 0.844 0.844 0.844 0.844 2.997

KNN 0.880 0.880 0.880 0.880 0.880 0.880 1.257

RF 0.892 0.898 0.892 0.892 0.892 0.893 4.000

LR 0.811 0.812 0.811 0.811 0.811 0.811 1.343

DT 0.851 0.851 0.851 0.850 0.850 0.850 1.677

PWM2Vec SVM 0.810 0.812 0.810 0.809 0.809 0.809 5.732

NB 0.792 0.793 0.792 0.792 0.792 0.792 0.095

MLP 0.820 0.821 0.820 0.820 0.819 0.820 3.730

KNN 0.875 0.875 0.875 0.875 0.875 0.875 1.232

RF 0.892 0.899 0.892 0.891 0.891 0.892 3.746

LR 0.804 0.805 0.804 0.804 0.804 0.804 7.137

DT 0.866 0.866 0.866 0.866 0.866 0.866 1.692

Gapped k-mers SVM 0.814 0.816 0.814 0.813 0.813 0.812 5.740

NB 0.798 0.798 0.798 0.797 0.797 0.796 0.087

MLP 0.824 0.825 0.824 0.824 0.824 0.824 2.886

KNN 0.885 0.886 0.885 0.885 0.885 0.885 0.995

RF 0.907 0.912 0.907 0.894 0.894 0.908 3.755

LR 0.812 0.813 0.812 0.812 0.812 0.812 4.395

DT 0.872 0.872 0.872 0.872 0.871 0.872 1.777

With Sequence Features Spike2Vec SVM 0.791 0.796 0.791 0.790 0.790 0.790 8.804

NB 0.695 0.737 0.695 0.680 0.678 0.691 0.085

MLP 0.811 0.814 0.811 0.811 0.811 0.811 2.326

KNN 0.844 0.845 0.844 0.844 0.844 0.844 0.953

RF 0.897 0.903 0.897 0.896 0.896 0.898 3.890

LR 0.827 0.827 0.827 0.827 0.826 0.827 1.183

DT 0.847 0.848 0.847 0.847 0.847 0.847 1.246

Minimizers SVM 0.778 0.783 0.778 0.777 0.777 0.777 10.938

NB 0.674 0.736 0.674 0.649 0.647 0.670 0.094

MLP 0.801 0.806 0.801 0.800 0.800 0.800 3.228

KNN 0.842 0.842 0.842 0.842 0.842 0.842 0.827

RF 0.896 0.902 0.896 0.896 0.896 0.897 3.801

LR 0.823 0.823 0.823 0.823 0.823 0.823 1.167

DT 0.846 0.846 0.846 0.845 0.845 0.845 1.297

PWM2Vec SVM 0.766 0.770 0.766 0.765 0.765 0.766 9.569

NB 0.679 0.726 0.679 0.659 0.657 0.674 0.087

MLP 0.811 0.813 0.811 0.811 0.811 0.811 2.889

KNN 0.828 0.828 0.828 0.827 0.827 0.827 0.768

RF 0.893 0.901 0.893 0.892 0.892 0.894 3.765

LR 0.819 0.819 0.819 0.819 0.819 0.819 1.495

DT 0.851 0.851 0.851 0.851 0.851 0.850 1.279

Gapped k-mers SVM 0.785 0.792 0.785 0.784 0.783 0.784 9.270

NB 0.720 0.745 0.720 0.712 0.711 0.718 0.086

MLP 0.807 0.810 0.807 0.806 0.806 0.806 2.432

KNN 0.839 0.839 0.839 0.839 0.838 0.838 0.753

RF 0.895 0.901 0.895 0.894 0.894 0.895 3.468

LR 0.823 0.823 0.823 0.823 0.823 0.823 1.123

DT 0.860 0.861 0.860 0.860 0.860 0.860 0.955

Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN),
Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT).
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6 Results and Discussion

The classification results for different evaluation metrics with and without the
sequence features are reported in Table 3. We observe (bold values) that the
gapped k-mers spectrum outperforms all embeddings in the case of average
accuracy, precision, recall, and ROC-AUC using the random forest classifier.
For Weighted and Macro F1, the baseline Spike2Vec performs better than other
embeddings using the random forest classifier. One interesting observation is that
the random forest classifier consistently outperforms different classifiers for all
embeddings and evaluation metrics, as shown with underlined values in Table 3.

Comparing embeddings with and without sequence features, we observe that
using these features degrades classifiers’ accuracy. This degradation is due to
redundancy and feature dimensionality as some features might capture similar
information as the k-mers spectrum. For example, the charge at pH, aromatic-
ity, or GRAVY may already encode certain aspects of protein sequence patterns.
Including redundant features can lead to multicollinearity, where the features are
highly correlated, making it difficult for the classifier to distinguish their contri-
butions. In the case of feature dimensionality, adding new features increases the
dimensionality of the input space. With more features, the classifier faces the
curse of dimensionality. Insufficient training data or a limited number of sam-
ples in each class relative to the feature space can result in overfitting, reduced
generalization performance, and decreased accuracy.

7 Conclusion

This study aimed to develop an ML approach to predict Nb-Ag binding solely
based on sequences, thereby reducing the need for computationally intensive
techniques such as docking. The proposed method utilized an embedding app-
roach using gapped k-mers to generate a spectrum, which was then used for
supervised analysis. Experimental evaluation of our approach demonstrates that
the gapped k-mers spectrum outperformed competing embeddings. Our app-
roach offers a more efficient and cost-effective alternative for screening potential
Nbs and holds promise for facilitating the development of Nb-based diagnos-
tics and therapeutics for various diseases, including cancer and other serious ill-
nesses. Future research involves evaluating the proposed model on more extensive
datasets and also working on the generalizability and robustness of the model.
Additionally, exploring the integration of additional features and considering
other machine learning algorithms could further enhance predictive performance.

References

1. Ali, S., Bello, B., Chourasia, P., Punathil, R.T., Zhou, Y., Patterson, M.:
PWM2Vec: an efficient embedding approach for viral host specification from coro-
navirus spike sequences. Biology 11(3), 418 (2022)



Sequence-Based Nanobody-Antigen Binding Prediction 239

2. Ali, S., Patterson, M.: Spike2vec: an efficient and scalable embedding approach
for covid-19 spike sequences. In: IEEE International Conference on Big Data (Big
Data), pp. 1533–1540 (2021)

3. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242
(2000)

4. Burley, S.K., et al.: Rcsb protein data bank: biological macromolecular structures
enabling research and education in fundamental biology, biomedicine, biotechnol-
ogy and energy. Nucleic Acids Res. 47(D1), D464–D474 (2019)

5. Cohen, T., Halfon, M., Schneidman-Duhovny, D.: Nanonet: rapid and accurate end-
to-end nanobody modeling by deep learning. Front. Immunol. 13, 958584 (2022)

6. Cortez-Retamozo, V., et al.: Efficient cancer therapy with a nanobody-based con-
jugate. Can. Res. 64(8), 2853–2857 (2004)

7. Deffar, K., Shi, H., Li, L., Wang, X., Zhu, X.: Nanobodies-the new concept in
antibody engineering. Afr. J. Biotechnol. 8(12), 2645–2652 (2009)

8. Farhan, M., Tariq, J., Zaman, A., Shabbir, M., Khan, I.: Efficient approximation
algorithms for strings kernel based sequence classification. In: Advances in Neural
Information Processing Systems (NeurIPS), pp. 6935–6945 (2017)

9. Guruprasad, K., Reddy, B.B., Pandit, M.W.: Correlation between stability of a
protein and its dipeptide composition: a novel approach for predicting in vivo
stability of a protein from its primary sequence. Protein Eng. Des. Sel. 4(2), 155–
161 (1990)

10. Haimov, B., Srebnik, S.: A closer look into the α-helix basin. Sci. Rep. 6(1), 38341
(2016)

11. Hou, Q., et al.: Serendip-ce: sequence-based interface prediction for conformational
epitopes. Bioinformatics 37(20), 3421–3427 (2021)

12. Hutchinson, E.G., Thornton, J.M.: A revised set of potentials for β-turn formation
in proteins. Protein Sci. 3(12), 2207–2216 (1994)

13. Kim, C.A., Berg, J.M.: Thermodynamic β-sheet propensities measured using a
zinc-finger host peptide. Nature 362(6417), 267–270 (1993)

14. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character
of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

15. Van der M., L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
(JMLR) 9(11), 2579–2605 (2008)

16. Miller, N.L., Clark, T., Raman, R., Sasisekharan, R.: Learned features of antibody-
antigen binding affinity. Front. Mol. Biosci. 10, 1112738 (2023)

17. Mitchell, L.S., Colwell, L.J.: Analysis of nanobody paratopes reveals greater diver-
sity than classical antibodies. Protein Eng. Des. Sel. 31(7–8), 267–275 (2018)

18. Mitchell, L.S., Colwell, L.J.: Comparative analysis of nanobody sequence and struc-
ture data. Proteins Struct. Funct. Bioinf. 86(7), 697–706 (2018)

19. Muyldermans, S.: Nanobodies: natural single-domain antibodies. Ann. Rev.
Biochem. 82, 775–797 (2013)

20. Myung, Y., Pires, D.E., Ascher, D.B.: Csm-ab: graph-based antibody-antigen bind-
ing affinity prediction and docking scoring function. Bioinformatics 38(4), 1141–
1143 (2022)

21. Peng, H.P., Lee, K.H., Jian, J.W., Yang, A.S.: Origins of specificity and affinity in
antibody-protein interactions. Proc. Natl. Acad. Sci. 111(26), E2656–E2665 (2014)

22. Ramon, A., Saturnino, A., Didi, K., Greenig, M., Sormanni, P.: Abnativ: vq-vae-
based assessment of antibody and nanobody nativeness for engineering, selection,
and computational design. In: bioRxiv, p. 2023-04 (2023)

23. Revets, H., De Baetselier, P., Muyldermans, S.: Nanobodies as novel agents for
cancer therapy. Expert Opin. Biol. Ther. 5(1), 111–124 (2005)



240 U. Sardar et al.

24. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

25. Rossant, C.J., et al.: Phage display and hybridoma generation of antibodies to
human cxcr2 yields antibodies with distinct mechanisms and epitopes. MAbs 6(6),
1425–1438 (2014)

26. Schwede, T.: Protein modeling: what happened to the “protein structure gap”?
Structure 21(9), 1531–1540 (2013)

27. Sormanni, P., Aprile, F.A., Vendruscolo, M.: Rational design of antibodies target-
ing specific epitopes within intrinsically disordered proteins. Proc. Natl. Acad. Sci.
112(32), 9902–9907 (2015)

28. Tam, C., Kumar, A., Zhang, K.Y.: Nbx: machine learning-guided re-ranking of
nanobody-antigen binding poses. Pharmaceuticals 14(10), 968 (2021)

29. Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Jiménez-Gutiérrez, D.E., Moreno,
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Abstract. Many tools from Computational Biology compute distances
between genomes by counting the number of genome rearrangement
events, such as reversals of a segment of genes. Most approaches to model
these problems consider some simplifications such as ignoring nucleotides
outside genes (the so-called intergenic regions), or assuming that just
a single copy of each gene exists in the genomes. Recent works made
advancements in more general models considering replicated genes and
the number of nucleotides in intergenic regions. Our work aims at adapt-
ing those results by applying some flexibilization to match intergenic
regions that do not have the same number of nucleotides. We propose
the Signed Flexible Intergenic Reversal Distance problem, which seeks
the minimum number of reversals necessary to transform one genome
into the other and encodes the genomes using flexible intergenic region
information while also allowing multiple copies of a gene. We show the
relationship of this problem with the Signed Minimum Common Flexible
Intergenic String Partition problem and use a 2k-approximation to the
partition problem to show a 8k-approximation to the distance problem,
where k is the maximum number of copies of a gene in the genomes.

Keywords: Rearrangement Distance · Intergenic Regions · Partition ·
Reversal

1 Introduction

In comparative genomics, the genetic changes caused by global mutations are
the main features used to infer the distance between genomes of different species.
These global mutations are called genome rearrangements, and they can change
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gene order or the genetic material of a genome. The most studied rearrangements
are the reversals [7], which invert a segment of the genome, and the transposi-
tions [1], which exchange the position of two adjacent segments.

The sequence of genes in a genome is often modeled as a string, in which each
character corresponds to a gene. Besides, each character has a plus or minus sign
that indicates gene orientation, when such information is available.

When comparing two genomes using rearrangements, we seek the minimum
number of rearrangements necessary to transform the sequence of genes of the
source genome into the sequence of genes of the target genome. This number
is the so-called distance between the genomes. Considering the use of reversals,
the problem of calculating such distance can be solved in polynomial time [7],
if no gene has more than one copy. Otherwise, the problem is NP-hard [10] and
the best known approximation for it has approximation factor Θ(k) [8], where
k is the maximum number of copies of a gene in the genomes.

Recent studies started considering the distribution of intergenic regions in the
genomes [6,9]. These studies only used sizes (number of nucleotides) of intergenic
regions, because it is difficult to find correlations between intergenic regions
of distinct genomes. Moreover, genome rearrangements often break intergenic
regions [2,3]. To model intergenic regions, we use a list of non-negative integers,
where each value is the size of an intergenic region. In this way, a genome is
represented by a string, modeling gene order, and a list, modeling intergenic
region sizes. In genome rearrangement distance problems considering intergenic
regions, beyond transforming one string into the other, the rearrangements must
be capable of transforming the intergenic region sizes from the source genome
into the intergenic region sizes of the target genome.

Considering gene orientation and no gene repetitions, Oliveira et al. [9]
showed that the Signed Intergenic Reversal Distance problem is NP-hard and
introduced a 2-approximation algorithm. Later, Siqueira et al. [11] studied the
problem allowing gene repetition. This version of the problem is also NP-hard
and the authors presented a Θ(k)-approximation algorithm, where k is the max-
imum number of copies of a gene in the genomes. Their work uses the Signed
Minimum Common Intergenic String Partition problem to approximate the dis-
tance problem, but there is a flaw when they claimed a 2k-approximation for
the partition problem, which is fixed in the present work.

Recently, Brito et al. [4,5] introduced a new version of the problem with
flexible intergenic regions in genomes without gene repetition. Each element of
the target intergenic list in this version is a range of values. They presented
an NP-hardness proof and a 2-approximation algorithm for the Signed Flex-
ible Intergenic Reversal Distance problem, considering genomes without gene
repetition.

In this work, we investigate the Signed Flexible Intergenic Reversal Distance
(SFIRD) problem when more than one copy of each gene is allowed. In Sect. 2, we
present the basic notations and definitions for the distance problem. In Sect. 3,
we present an approximation algorithm for the SFIRD problem. And, in Sect. 4,
we conclude the paper and we present directions for future works.
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2 Definitions

For any set L of elements, we adopt the usual notation |L| for the number of
elements in L. If such set has some ordering of its elements, as in the case of a
string or a sequence, the element in the i-th position of L is denoted by Li.

Fig. 1. On top, a rigid genome G = ([+I −A +B +B −A −B +F ], [3 4 1 0 1 0]) fol-
lowed by one of its subgenomes X and the genome rev(X ). On the bottom, a flexible
genome H = ([+I −A +B +B −A −B +F ], [(1, 2) (4, 4) (1, 3) (0, 2) (0, 2) (0, 1)]) fol-
lowed by one of its subgenomes Y.

In our genome representation, we include some information extracted from
the intergenic regions. We will use two representations for intergenic regions:
the rigid representation, which represents the intergenic regions by their sizes,
and the flexible representation, which uses an interval of possible values for the
intergenic region sizes instead of only one number. A genome G = (S, S̆) is a
signed string S and a list of intergenic regions S̆. Each character of the string S
represents a gene, and a + or − sign is associated with the character to represent
the gene orientation. If G is a rigid genome then S̆ is a list of |S̆| = |S|−1 integers,
such that S̆i represents the size of the intergenic region between genes Si and
Si+1. If G is a flexible genome then S̆ is a list of |S̆| = |S| − 1 pairs of integers,
such that S̆i = (S̆min

i , S̆max
i ) represents an interval [S̆min

i , S̆max
i ] that contains

the size of the intergenic region between genes Si and Si+1. In Fig. 1, genome G
is rigid, and genome H is flexible.

A subgenome X = (A, Ă) of G = (S, S̆) is a genome that appears at some
position of G, more precisely A is a substring of S and the intergenic regions in S̆
between characters of S are equal to Ă. We use the notation X ⊂ G to represent
the subgenome relation. In Fig. 1, X is a subgenome of G and Y is a subgenome
of H.

The reverse of a genome G = (S, S̆) is a genome rev(G) = (P, P̆ ), such that
Pi = −S|S|−i+1,∀1 ≤ i ≤ |S| and P̆i = S̆|S̆|−i+1,∀1 ≤ i ≤ |S̆|.

We call two genomes G = (S, S̆) and H = (P, P̆ ) co-tailed if S1 = P1 and
S|S| = P|P |. When sequencing a real genome G = (S, S̆), we have intergenic
regions at the beginning and at the end of the genome, so for our representation
we artificially insert two genes, corresponding to the initial gene S1 = +I and the
final gene S|S| = +F in G. Consequently, always choosing the same characters to
insert, we ensure that any two genomes being compared are co-tailed. For that
reason, henceforward we assume that all genomes, excluding subgenomes, are
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co-tailed. For example, in Fig. 1, any of the two genomes G and H is co-tailed,
because both start with +I and end with +F .

The occurrence of a gene (character) α in a genome G = (S, S̆), denoted
by occ(α,G), is the number of characters in S that are equal to α disregarding
the signs. We denote the largest value of occ(α,G) for any α by occ max(G).
In genome G of Fig. 1, we have occ(I,G) = occ(F,G) = 1, occ(A,G) = 2 and
occ(B,H) = 3, so occ max(G) = 3.

Fig. 2. A signed common flexible intergenic partition between two genomes G = (S, S̆)
and H. Note that the cost of the partition is 4 and the breakpoints of G are S̆1 = 3,
S̆3 = 2, S̆6 = 0, and S̆7 = 3.

Let G = (S, S̆) be a rigid genome and H = (P, P̆ ) be a flexible genome. We
say that G and H are balanced if for any gene in G or in H, we have occ(α,G) =
occ(α,H), and

∑|P̆ |
i=1 P̆min

i ≤ ∑|S̆|
i=1 S̆i ≤ ∑|P̆ |

i=1 P̆max
i . We say that G and H are

fully compatible if S = P and P̆min
i ≤ S̆i ≤ P̆max

i ,∀1 ≤ i ≤ |S̆|. We say that
G and H are partially compatible if they are fully compatible or G and rev(H)
are fully compatible. The genomes G and H of Fig. 1 are balanced but not fully
compatible, because S̆1 > P̆max

1 . On the other hand, the subgenomes X and Y
are fully compatible and the subgenomes rev(X ) and Y are partially compatible.

Two rigid genomes G = (S, S̆) and H = (P, P̆ ) are balanced if occ(α,G) =
occ(α,H) for every character α in G or in H, and

∑|S̆|
i=1 S̆i =

∑|P̆ |
i=1 P̆i.

A partition of a genome G = (S, S̆) is a sequence S composed of subgenomes
of G, such that G can be broken into the subgenomes in S. Formally, there is
a sequence B = (b1, b2, . . . , b|B|) of |B| = |S| − 1 intergenic regions of S̆, called
breakpoints, such that, S1 is the subgenome to the left of breakpoint b1, and
Si,∀2 ≤ i ≤ |B|, is the subgenome between breakpoint bi−1 and bi, and S|S| is
the subgenome to the right of breakpoint b|B|.

Given two balanced rigid genomes G and H, a signed common intergenic
partition of G and H is a pair (S,P), such that S is a partition of G, P is a
partition of H, and we can reorder the elements of S to obtain P.

Given a rigid genome G and a flexible genome H, such that G and H are
balanced, a signed common flexible intergenic partition of G and H is a pair
(S,P), such that S is a partition of G, P is a partition of H, and we can reorder
the elements of S to obtain a sequence P

′ such that P
′
i is partially compatible

with Pi, for all 1 ≤ i ≤ |P|. Figure 2 shows an example of such common partition.
We use only the term common partition, when the type of common partition

is clear by the context or the text applies to either type of partition. The cost
of a common partition P = (S,P), denoted by cost(P) (or cost((S,P))) is the
number of breakpoints in S, which is equal to the number of breakpoints in P.
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The Signed Minimum Common Intergenic String Partition (SMCISP) prob-
lem seeks a signed common intergenic partition between two rigid genomes
with minimum cost. Similarly, the Signed Minimum Common Flexible Intergenic
String Partition (SMCFISP) problem seeks a signed common flexible intergenic
partition between a rigid genome and a flexible genome with minimum cost.

Given a rigid genome G = (S, S̆) and the integers i, j, x, y, with 2 ≤ i ≤
j ≤ |S| − 1, 0 ≤ x ≤ S̆i−1, and 0 ≤ y ≤ S̆j . The reversal ρ

(i,j)
(x,y) is an

operation that transforms G into a genome G.ρ
(i,j)
(x,y) = (S′, S̆′), where S′ =

[S1 . . . Si−1 −Sj . . .−Si Sj+1 . . . S|S|] and S̆′ = [S̆1 . . . S̆i−2 x + y S̆j−1 . . . S̆i x′ + y′

S̆j+1 . . . S̆|S̆|], with x′ = S̆i−1 − x and y′ = S̆j − y.
Given a rigid genome G and a flexible genome H. The Signed Flexible

Intergenic Reversal Distance problem seeks the minimum number of reversals
(denoted by dFR(G,H)) necessary to transform G into a genome H′ fully com-
patible with H.

We also need some definitions from graph theory. Given a graph G = (V,E),
with vertex set V and edge set E. We say that G is bipartite if we can separate V
into two sets V1 and V2, such that there is no edge of E connecting two vertices
of the same set. A bipartite graph G admits a perfect match if there is a bijective
function f from V1 to V2, such that v and f(v) are connected by an edge.

A vertex cover of a graph G = (V,E) is a subset V ′ of V , such that any edge
in E is incident to at least one vertex of V ′. The Minimum Vertex Cover problem
seeks a vertex cover with minimum size. Finding such cover is a known NP-hard
problem that admits a simple 2-approximation, which consists of repeating the
process of picking an uncovered edge and including both vertices incident to it
in V ′ until a cover is found.

3 Approximating the Distance Problems

In this section, we propose an algorithm with approximation factor 2k for the
SMCFISP poblem and a proof that it can also be used to approximate the SFIRD
problem. The algorithm adapts ideas from the algorithm for rigid intergenic
regions [11]. Some of these ideas were originally proposed in a context without
intergenic regions by Kolman and Waleń [8].

For the algorithm, we need a structure that codifies the compatibility between
subgenomes. Given a rigid genome G and a flexible genome H, such that G and
H are balanced, the block compatibility graph B(G,H) = (V,E) is defined by the
vertex set V and edge set E. The vertices from V correspond to each possible
subgenome of G and H. For the set E, there is an edge ev,u ∈ E between vertices
v, corresponding to a subgenome X ⊂ G, and u, corresponding to a subgenome
Y ⊂ H, if X and Y are partially compatible. Figure 3 shows some connected
components of the block compatibility graph between two genomes.

We can generalize the block compatibility graph to work with partitions of
genomes. Let S be a partition of G and P a partition of H. The graph B(S,P) is
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constructed by removing from B(G,H) all the subgenomes that contain a break-
point of S or P. Note that B(G,H) = B([G], [H]) (here [G] denotes a partition
with a single sub-genome [G]).

Fig. 3. A rigid genome G and a flexible genome H followed by some components of
the block compatibility graph B(G,H). We include colors in some genes to help the
identification of the positions of subgenomes. We are showing all components that are
not a single element (as these components do not admit a perfect match) and that do
not have vertices with a single gene (as these components admit a perfect matching
because the genomes are balanced). From the shown components C1, C3, and C4 admit
a perfect matching while C2 and C5 do not. The propagation of the intergenic region
(1, 1) in the component C5 is shown in red. (Color figure online)

One important property is that B(S,P) is a bipartite graph, because two
vertices corresponding to subgenomes of G, or two vertices corresponding to
subgenomes of H, are never connected with edges. Consequently, each connected
component of B(S,P) is also a bipartite graph. We say that a subgenome belongs
to a connected component if it corresponds to a vertex in that component. The
following lemma relates the connected components with the possible common
partitions.

Lemma 1. Let G be a rigid genome and H be a flexible genome, such that G
and H are balanced. Given a partition S of G and a partition P of H. Then
P = (S,P) is a common signed flexible partition of G and H, if and only if all
components of B(S,P) admit a perfect matching.

Proof. First, we prove that if there is a common signed flexible partition P =
(S,P) of G and H, then a component C of B(S,P) must admit a perfect matching.

Consider a correspondence between the blocks of S and P and a subgenome
X of G that belongs to C, X must be a subgenome of a block from S. So there
exists a unique subgenome Y from C in a block of P corresponding to the block
of X whose vertex is connected to the vertex of X . We are going to construct
the perfect matching by matching each X with its correspondent Y.
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Let us show that for any two subgenomes X1 and X2 of G that belong to C the
matching subgenomes Y1 and Y2 are distinct, which ensures that our matching
is possible. Let B1, B2, B′

1, and B′
2 be the blocks of P containing X1, X2, Y1,

and Y2, respectively. If B1 �= B2, then B′
1 �= B′

2, and consequently Y1 �= Y2. If
B1 = B2, then B′

1 = B′
2. In that case, X1 and X2 are in two distinct positions of

B1, which means Y1 and Y2 are in two distinct positions of B′
1, so Y1 �= Y2.

We now prove that if all connected components of B(S,P) admit a perfect
matching, then P is a common signed flexible partition. To ensure that P is
a common partition, we must show that there is a one-to-one correspondence
between the blocks of S and the blocks of P.

The proof is by induction on the size of the sequences S and P. If both
sequences have a single block, then the blocks of both sequences must be equal,
otherwise the largest of the two blocks would be the only one in its component,
and that component would not have a perfect matching.

Now consider that one of the sequences has more than one block. In that case,
both sequences must have more than one block, otherwise either the component
of the block in the sequence with one block or the component of some block
of the other sequence would not admit a perfect matching. Take the largest
block in any one of the two sequences. Without loss of generality, assume that
this is a block B from S. Once the connected component of B admits a perfect
matching, there must be a substring B′ from H that is partially compatible with
B, and does not have a breakpoint from P. The substring B′ must be a block
of P, because it does not have a breakpoint and there is no block in P bigger
than B′. If we remove the block B from S and the block B′ from P, we have
two sequences S

′ and P
′ such that B(S′,P′) admits a perfect matching, because

after removing B and B′ we only removed pairs of vertices from the matches
of the components from B(S,P). By induction hypothesis, there is a one-to-one
correspondence between the blocks of S′ and the blocks of P′. By including B
and B′ we have a one-to-one correspondence between the blocks of S and the
blocks of P. �

Let us define some ideas to work with connected components of the block
compatibility graph. For any subgenome X in a block of S or P, let BC(S,P,X )
be the connected component of B(S,P) containing X . We recursively define the
propagation of an intergenic region Ăi in a subgenome X = (A, Ă) from the
component C = BC(S,P,X ) as the set prop(Ăi, C) of intergenic regions, such
that Ăi ∈ prop(Ăi, C) and, for a genome (B, B̆) ∈ BC(S,P,X ) corresponding
to a vertex u, the intergenic region B̆j is in prop(Ăi, C) if there is a genome
(C, C̆) ∈ BC(S,P,X ) corresponding to a vertex v, such that there is an edge ev,u

in B(S,P), and there is a intergenic region C̆k ∈ prop(Ăi, C), such that k = j
and (B, B̆) and (C, C̆) are fully compatible or k = |B̆| − j + 1 and (B, B̆) and
rev((C, C̆)) are fully compatible. In Fig. 3, we indicate the propagation of one
intergenic region as an example.

We say that two connected components C and C ′ of B(S,P) intersect if there
are two subgenomes X and Y such that C = BC(S,P,X ), C ′ = BC(S,P,Y), and
X has at least one intergenic region in common with Y. Any such intergenic
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region and intergenic regions in their propagations are said to be in the intersec-
tion between C and C ′. Let us extend the notion of subgenomes to connected
components of B(S,P). We say that C ⊂ BC(S,P,X ) if Y ⊂ X for some Y, such
that C = BC(S,P,Y). In Fig. 3, we have C2 ⊂ C5 and C4 ⊂ C5. If for two com-
ponents C and C ′ the relation C ⊂ C ′ is not true, we use the notation C �⊂ C ′.
The next lemma shows that the definition of ⊂ for components is not dependent
on the choice of X .

Lemma 2. Given a rigid genome G and a flexible genome H, such that G and
H are balanced. Let S be a partition of G and P be a partition of H. Given
two subgenomes X and Y from blocks of S or P, if Y ⊂ X then for every X ′

corresponding to a vertex of BC(S,P,X ) there is a genome Y ′ corresponding to
a vertex of BC(S,P,Y), such that Y ′ ⊂ X ′.

Proof. The proof is by induction on the number of vertices in the connected
component BC(S,P,X ). For the base case, if BC(S,P,X ) has a single vertex,
then X ′ must be X and we can take Y ′ = Y.

Now consider a connected component BC(S,P,X ) with k ≥ 2 vertices. Let
v be a vertex of BC(S,P,X ) corresponding to a genome X ′. If X ′ = X , we can
take Y ′ = Y. Otherwise, let u be a vertex from BC(S,P,X ) corresponding to a
genome X ′′, such that there is an edge eu,v in B(S,P).

If we remove v, by induction hypothesis, there is a genome Y ′′ corresponding
to a vertex of BC(S,P,Y), such that Y ′′ ⊂ X ′′. Once X ′′ and X ′ are partially
compatible, there must be a subgenome Y ′ of X ′ that is partially compatible
with Y ′′ and consequently corresponding to a vertex of BC(S,P,Y). �

Let TS,P be the set of all connected components of B(S,P) that do not admit
a perfect matching, and consider the subset Tmin

S,P = {C ∈ TS,P|C ′ �⊂ C,∀C ′ ∈
TS,P and C ′ �= C}. By Lemma 1, (S,P) is a common partition if and only if
TS,P is empty. If that is not the case, we must add at least one breakpoint in
one genome from each component of TS,P. Note that, to include a breakpoint
in some genome corresponding to a vertex on a component C ′ ∈ TS,P \ Tmin

S,P ,
it suffices to include a breakpoint in some genome of a component C ∈ Tmin

S,P .
Considering the genomes of Fig. 3, in Tmin

[G],[H] we have the component C2 and the
components corresponding to the following subgenomes (each with a single ver-
tex): ([+I −A +A], [2 3]), ([+B −B], [0]), ([−C +F ], [4]), ([+I −A +A], [(0, 2) (1, 1)]),

([+B +C], [(1, 2)]), and ([+B +F ], [(2, 3)]).
There is a useful property of the intersection of components in Tmin

[G],[H]. We
describe it in the following lemma.

Lemma 3. Given a rigid genome G and a flexible genome H, such that G and H
are balanced. Let C,C ′ ∈ Tmin

[G],[H] be two components, such that C and C ′ inter-
sect. Then there is a component C ′′ of B(G,H) that admits a perfect matching
and whose genomes contain every intergenic region from the intersection between
C and C ′.
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Proof. By the definition of intersection, there are two subgenomes X and Y such
that C = BC([G], [H],X ), C ′ = BC([G], [H],Y), and X has at least one intergenic
region in common with Y. The subgenome W in the intersection of the genomes
X and Y has at least one intergenic region, and it is a subgenome of X and Y.
Consequently, the component C ′′ = BC([G], [H],W) is a subcomponent of C and
C ′. By definition of Tmin

[G],[H], C ′′ must admit a perfect matching. Furthermore,
by definition of a subcomponent and by Lemma 2, the genomes of C ′′ contain
every intergenic region from the intersection between C and C ′. �

The next lemma describes the possible intersections of elements from Tmin
[G],[H].

Fig. 4. A rigid genome G and a flexible genome H followed by some components of
the block compatibility graph B(G,H). We include colors in some genes to help the
identification of the positions of subgenomes. Component C1 intersects component C2

(the intergenic regions of that intersection are shown in red) and component C3 (the
intergenic regions of that intersection are shown in blue). (Color figure online)

Lemma 4. Given a rigid genome G and a flexible genome H, such that G and
H are balanced. For every component C ∈ Tmin

[G],[H], one of the following cases is
true.

1. C does not intersect any other component of Tmin
[G],[H].

2. There is at least one intergenic region Ăi in every genome (A, Ă) of C, such
that genomes of every component of Tmin

[G],[H] that intersects C contain an

intergenic region in prop(Ăi, C).
3. There are two intergenic regions Ăi and Ăj in every genome (A, Ă) of C,

such that genomes of every component of Tmin
[G],[H] that intersects C contain

an intergenic region in prop(Ăi, C) or in prop(Ăj , C).

Proof. We are going to prove the lemma by showing that if cases 1 or 2 do
not occur, then case 3 is true. Note that, for any component C ′ ∈ Tmin

[G],[P] that

intersects C ′ we have C ′ �⊂ C and C �⊂ C ′. So the genomes X = (A, Ă) from
C and Y from C ′ that intersect must include either Ă1 or Ă|A|. Note that the
set prop(Ă1, C) ∪ prop(Ă|A|, C) contains every first and last intergenic regions
in the genomes of C, and the lemma follows. �
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The original algorithm for rigid intergenic regions [11] does not consider
the intersections from case 3, which is a flaw in the (claimed) proof of the 2k-
approximation. We fix such flaw using the block intersection graph I(G,H) to
describe such intersections. The vertices of this graph are the intersection from
components of Tmin

[G],[H] including at least one component from case 3, and two
vertices are connected with an edge if their corresponding intersections include
the same connected component. Note that we need to add a breakpoint in the
elements of a vertex cover of this graph to be able to add a breakpoint in all
components from case 3. For example, the components from Fig. 4 result in two
vertices (the intersections of {C1, C2} and of {C1, C3}) connected by one edge
(resulting from the component C1).

For every genome X such that BC([G], [H],X ) is in Tmin
[G],[H], let us asso-

ciate to X a set break(X ,G,H) with one or two intergenic regions, that will
become breakpoints. The association depends on the cases in Lemma 4. In case 1,
break(X ,G,H) has only one arbitrary intergenic region of X . In cases 2 and 3,
break(X ,G,H) has the intergenic regions of X described in the respective cases.

Let us extend this definition to include the new possibilities that appear when
we start to build the partitions of G and H. Consider the breakpoints from a
partition S of G and a partition P of H. For a subgenome X = (A, Ă) belonging to
a component C ∈ Tmin

S,P , we will associate a set with one or two intergenic regions,
denoted by break(X ,S,P), defined as follows. If X is in a component of Tmin

G,H
then break(X ,S,P) = break(X ,G,H). Otherwise, there must be a breakpoint
in some other subgenome from BC([G], [H],X ) that made this component part of
Tmin

S,P . So break(X ,S,P) is an intergenic region Ăi ∈ prop(B̆j ,BC([G], [H],X )),
such that B̆j is a breakpoint from a genome (B, B̆) ∈ BC([G], [H],X ).

Now consider Algorithm 1, that inserts breakpoints in the genomes according
to the elements of Tmin

S,P and the values of break. Let us prove that this strategy
for the construction of a common partition ensures an approximation.

Theorem 1. Algorithm 1 has an approximation factor of 2k for the SMC-
FISP problem between a rigid genome G and a flexible genome H, where
k = occ max(G).

Proof. By Lemma 1, if Tmin
Si−1,Pi−1 = ∅ then (S,P) = (Si−1,Pi−1) is a common

signed flexible intergenic partition between G and H. So we just have to ensure
that the algorithm inserts at most 2kR∗ breakpoints, where R∗ is the number
of breakpoints in an optimal common partition.

Let us look at the breakpoints in an optimal common partition (S∗,P∗) of
G and H. We know that there must be at least one breakpoint in a genome of
each component of C ∈ Tmin

[G],[H], we will denote the set of breakpoints in C by
break∗(C,G,H).

Consider the breakpoints break(X ,Si−1,Pi−1) inserted in the subgenome
X = (A, Ă) during the i-th iteration of the algorithm. Note that we have two
cases: (i) X is in a component C ∈ Tmin

[G],[H] that does not yet have any breakpoint
in its genomes; (ii) during some previous iteration j, we included a breakpoint
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Algorithm 1: 2k-approximation for SMCFISP
In: A rigid genome G and a flexible genome H, such that G and H are balanced
Out: A signed common flexible intergenic partition between G and H

1 (S0,P0) ← ([G], [H])
2 i ← 0

3 while Tmin
Si−1,Pi−1 �= ∅ do

4 i ← i + 1

5 Choose a subgenome X of G or H that belongs to a component in Tmin
Si−1,Pi−1

6 (Si,Pi) ← S
i−1 and P

i−1 with the breakpoints in break(X , Si−1,Pi−1).

7 return (Si,Pi)

B̆m in some subgenome Y = (B, B̆) from the component BC([G], [H],X ) that
caused that component to no longer admit a perfect matching.

Let us count the number R of breakpoints inserted in all instances of case
(i) and compare it with R∗. For that, we look at the different cases from
Lemma 4. In case 1, C does not intersect any other component of Tmin

[G],[H],
so there is no other component of C ′ ∈ Tmin

[G],[H], such that break∗(C,G,H) =
break∗(C ′,G,H). In this case, we count one breakpoint for both R and R∗.
In case 2, break(X ,Si−1,Pi−1) has only the intergenic region Ă�, such that
every component C ′ ∈ Tmin

[G],[P], with break∗(C,G,H) = break∗(C ′,G,H), con-

tains an intergenic region in prop(Ă�, C). In this case, we also count one
breakpoint for R and one breakpoint for R∗. All other components C ′ with
break∗(C,G,H) = break∗(C ′,G,H) will no longer appear in case (i).

Let us consider all occurrences of case 3, by looking at the graph I(G,H). Let
V C∗ be the size of a minimum vertex cover of I(G,H). We know that the optimal
common partition needs at least V C∗ breakpoints to include all components of
case 3. Besides, by Lemma 3, for each such breakpoints we are removing a genome
from at least one component with perfect matching from B(G,H), so the optimal
common partition will have at least one other breakpoint in these components
of Tmin

[G],[H]. By definition of break(X ,Si−1,Pi−1), we are including breakpoints
in the two vertices from the edge corresponding to the component C in I(G,H).
That process corresponds to the classical 2-approximation algorithm for the
minimum vertex cover problem, so we are including at most 2V C∗ vertices. In
all occurrences of this case, we count at most 2V C∗ breakpoints for R and 2V C∗

breakpoints for R∗. Considering all three cases, we can see that R ≤ R∗.
Now, we look at the breakpoints inserted in case (ii). By definition of break,

we include the breakpoint in prop(B̆m,BC(Sj ,Pj ,X )), so it will be between genes
equal to Bm and Bm+1. As we only have k copies of each gene in G, k copies of
each gene in H, and in case (i) we add less than R∗ breakpoints, we will have at
most 2kR∗ breakpoints in the resulting common partition. �

It is worth noting that, by setting the intervals corresponding to every flex-
ible intergenic region to a single number, our algorithm also ensures a 2k-
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approximation for the SMCISP problem. Besides by setting the intergenic regions
to zero, our algorithm ensures a 2k-approximation to the variant of the problem
that does not consider intergenic regions.

Now, we present a relation between SMCFISP and the distance problems
that allows us to adapt an approximation for the SMCFISP problem to obtain
an approximation for the SFIRD problem.

Theorem 2. Let G be a rigid genome and H be a flexible genome, such
that G and H are balanced. Let (S,P) be the signed common flexible intergenic
partition between G and H returned by an �-approximation for the SMCISP
problem. If there is an algorithm that produces a sequence of d reversals, with
d ≤ r · cost((S,P)), capable of transforming G into a genome fully compatible
with H, then it is a 2r�-approximation for the SFIRD problem.

Proof. Let (S∗,P∗) be a minimum cost signed common flexible intergenic parti-
tion between G and H. An �-approximation algorithm for the SMCFISP prob-
lem returns a common signed flexible intergenic partition (S,P), such that
cost(S∗,P∗) ≤ cost(S,P) ≤ �cost(S∗,P∗).

Consider a sequence of reversals that turns G into a genome H′ compat-
ible with H. We know that if there is a common intergenic partition P of
minimum cost between G and H′, then any sequence of reversals that trans-
forms G into H′ must have size at least cost(P)

2 [11, Lemma 5]. As H′ is fully
compatible with H, there must also be a common flexible intergenic partition
between G and H with cost cost(P). Once (S∗,P∗) has minimum cost, we have
that cost((S∗,P∗)) ≤ cost(P). Consequently, any sequence of reversals that
transforms G into a genome fully compatible with H must have size at least
cost((S∗,P∗))

2 (in other words, dFR(G,H) ≥ cost((S∗,P∗))
2 ). As we can turn G into

a genome fully compatible with H using k ≤ r · cost((S,P)) reversals, we have
dFR(G,H) ≤ k ≤ 2r�dFR(G,H). �

Corollary 1. An �-approximation for the SMCFISP problem ensures a 4�-
approximation for the SFIRD problem.

Proof. Let G = (A, Ă) be a rigid genome and H be a flexible genome, such
that G and H are balanced. Let (S,P) be the signed common flexible intergenic
partition between G and H returned by an �-approximation for the SMCFISP
problem.

We can use the correspondence between the blocks in (S,P) to derive a cor-
respondence between the genes, such that we can treat G and H as if they did
not have replicas.

In that scenario, Brito et al. [4, Theorem 3.12] showed an algorithm that
find a sequence R of 2(|S̆| − f(G,H)) reversals that turns G into a genome
fully compatible with H, such that f(G,H) is the number of free cycles from
a structure called Flexible Weighted Cycle Graph. What is important to our
proof is that there is one such cycle for each intergenic region of Ă that is not a
breakpoint in S. Consequently, 2(|S̆|−f(G,H)) < 2cost((S,P)), and the theorem
follows by setting r = 2 in Theorem 2. �
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4 Conclusion

In this work, we proposed a 2k-approximation for the Signed Minimum Com-
mon Flexible Intergenic String Partition problem and showed that it can also be
used to approximate the Signed Flexible Intergenic Reversal Distance (SFIRD)
problem with a factor of 8k. The relationship between the problems can be used
as well to directly convert any improvement in the partition problem approxi-
mation (resp. in the distance problem approximation) without gene repetition,
into an improvement in the approximation for the distance problem with gene
repetition.

Future works in problems involving flexible intergenic regions could establish
similar relationships considering other rearrangement events such as transposi-
tion, deletion, and insertion. Another path is to study other approaches to the
partition problem, such as heuristics or exact algorithms for particular sets of
instances.
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Abstract. This study is motivated by the Discretizable Molecular Dis-
tance Geometry Problem (DMDGP), a specific category in Distance
Geometry, where the search space is discrete. We address the challenge
of ordering the DMDGP constraints, a critical factor in the performance
of the state-of-the-art SBBU algorithm. To this end, we formalize the
constraint ordering problem as a vertex cover problem, which diverges
from traditional covering problems due to the substantial importance of
the sequence of vertices in the covering. In order to solve the covering
problem, we propose a greedy heuristic and compare it to the ordering of
the SBBU. The computational results indicate that the greedy heuristic
outperforms the SBBU ordering by an average factor of 1,300×.

1 Introduction

The Discretizable Molecular Distance Geometry Problem (DMDGP) is a notable
combinatorial optimization problem encountered in the determination of three-
dimensional molecular structures using a set of interatomic distances [3]. This
problem has attracted growing attention in computational chemistry and struc-
tural biology due to its extensive applications in molecular modeling [5].

The primary goal of the DMDGP is to identify a protein conformation that
adheres to a collection of distance constraints, which are usually obtained from
experimental data such as Nuclear Magnetic Resonance (NMR) spectroscopy [8].
The computational complexity of the DMDGP persists as a challenge, especially
for large and flexible molecules.

The graph representation of the DMDGP offers valuable insights into the
problem’s structure and has proven useful in developing efficient solution
techniques [3]. There is considerable research on vertex ordering in DMDGP
instances [1]. However, research on the importance of edge ordering is still incip-
ient. Recently, researchers have examined the connections between the DMDGP
and the edge ordering of the associated graph, discovering that the problem
becomes more manageable when the graph edges are ordered in a particular
manner [2].

The formal definition of the DMDGP can be given as follows [3].
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Definition 1 (DMDGP). Given a simple, undirected, weighted graph G =
(V,E, d), |V | = n, with weight function d : E → (0,∞) and a vertex order
v1, . . . , vn ∈ V , such that

– {v1, v2, v3} is a clique;
– For every i > 3, vi is adjacent to vi−3, vi−2, vi−1 and

d(vi−1, vi−3) < d(vi−1, vi−2) + d(vi−2, vi−3),

the DMDGP consists in finding a realization x : V → R
3, such that

∀{u, v} ∈ E, ||xu − xv|| = d(u, v), (1)

where || · || denotes the Euclidean norm, xv := x(v), and d(u, v) := d({u, v})
(each equation in (1) is called a distance constraint).

Assuming the vertex ordering of the DMDGP definition and denoting the
edge e = {vi, vj} by e = {i, j}, we define the discretization edges by

Ed = {{i, j} ∈ E : |i − j| ≤ 3}

and the pruning edges by
Ep = E − Ed.

The origin of the adjectives “pruning” and “discretization” in edge classi-
fication is linked to the Branch-and-Prune (BP) method, the first algorithm
proposed for solving the DMDGP [4]. In the BP, the discretization edges are
used to represent the search space as a binary tree, and the pruning edges, on
the other hand, are used as pruning in a depth-first search for viable realizations.

For many years, BP was the most efficient approach for solving DMDPG,
but recently the SBBU algorithm has taken over this position [2]. However, its
performance is strongly dependent on the order given to the pruning edges and
this issue is an open problem [2].

Given a permutation π = (e1, . . . , em) of the pruning edges, the central idea
of the SBBU is to reduce the DMDGP to a sequence (P (e1), . . . , P (em)) of
feasibility subproblems, each of them associated with a different pruning edge.
The set of (binary) variables of each subproblem P (e) is given by [e] = [{i, j}] =
{bi+3, . . . , bj} and its computational cost grows exponentially with the number of
variables. The subproblems may share variables and the efficiency of the SBBU
comes from the fact that the variables of each solved subproblem can be removed
from all subsequent subproblems.

In the following, we give an example that will be used throughout the paper
to facilitate understanding of the concepts presented.
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Example 1: Let G = (V,E, d) be a DMDGP instance given by

V = {v1, v2, . . . , v15} and Ep = {e1, e2, e3, e4},

where

e1 = {v1, v8},

e2 = {v5, v15},

e3 = {v6, v14},

e4 = {v11, v15}.

If we take the permutation π = (e1, e2, e3, e4), the SBBU will solve the
sequence of subproblems (P (e1), P (e2), P (e3), P (e4)), whose the sets of vari-
ables are {b4, b5, . . . , b8}, {b8, b9, . . . , b15}, {b9, b10, . . . , b14}, and {b14, b15},
respectively.

After solving the first subproblem P (e1), built from the edge e1 = {1, 8},
we can remove the variable b8 from the set of variables of remaining
subproblems. For the same reason, after solving the second subproblem,
i.e., P (e2), there will be no more available variables and the remaining
subproblems are already solved.

In the worst case scenario, the cost of solving the sequence of subproblems
(P (e1), P (e2), P (e3), P (e4)) will be

F (π) = 2|{b4,b5,b6,b7,b8}| + 2|{b9,b10,b11,b12,b13,b14,b15}|

= 25 + 27

= 160.

Another permutation, given by π̂ = (e4, e3, e2, e1), has cost

F (π̂) = 2|{b14,b15}| + 2|{b9,b10,b11,b12,b13}| + 2|{b8}| + 2|{b4,b5,b6,b7}|

= 22 + 25 + 21 + 24

= 54,

since the related subproblems P4, P3, P2, P1 would have, respectively, the
variables {b14, b15}, {b9, b10, . . . , b13}, {b8}, and {b4, b5, b6, b7}.

Our primary contribution is to formulate the SBBU pruning edge ordering prob-
lem as a graph covering problem. In addition to that, we propose a greedy heuris-
tic to find such ordering and compare it to the ordering of the SBBU algorithm.
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2 Preliminary Definitions

This section provides the definitions necessary to formalize the SBBU pruning
edge ordering problem, called the Ordered Covering Problem (OCP).

Definition 2 (Edge Interval).
Given a graph G = (V,E), for each e = {i, j} ∈ E, we define the edge interval

�e� = {i + 3, . . . , j}
and

�E� =
⋃

e∈E

�e�.

Definition 3 (Equivalence Relation in �E�).
Given i, j ∈ �E�, we say that

i ∼ j ⇐⇒ {e ∈ Ep : i ∈ �e�} = {e ∈ Ep : j ∈ �e�}.

In the Example 1, the vertex u = 9 is equivalent to vertex v = 10, because
both belong to the same edge intervals, namely �e2� and �e3�. However, w = 14
is not equivalent to u = 9, because u = 9 /∈ �e4�, but w = 14 ∈ �e4�.

Definition 4 (Segment).
Let S = {σ1, . . . , σk} be the partition of �E� induced by the equivalence relation
of Definition 3. A segment is any element of the partition S.

In the Example 1, we have the partition S = {σ1, σ2, σ3, σ4, σ5} (see Fig. 1),
where

σ1 = {4, 5, 6, 7},

σ2 = {8},

σ3 = {9, 10, 11, 12, 13},

σ4 = {14},

σ5 = {15}.

Definition 5 (Pruning Edge Hypergraph). Given a DMDGP instance with
pruning edges EP = {e1, . . . , em} and a segment partition S = {σ1, . . . , σk}, we
define the hypergraph of the pruning edges by H = (EP , T ), where the set of
vertices is EP and, for each segment σi in S, there is an hyperedge τi ∈ T given
by τi = {e ∈ EP : σi ⊂ �e�}.

In other words, the vertices of the pruning edge hypergraph are the pruning
edges of the DMDGP graph and each of its hyperedge τi is the set of pruning
edges whose intervals contain the segment σi. Also, note that there is a bijection
between the set T of hyperedges in H and the set of segments in S. For simplicity,
we will replace τi by σi in all representations and H = (Ep, T ) by H = (Ep, S).
Figure 2 illustrates the concepts given in Definition 5 associated to Example 1.
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Fig. 1. Segments of the graph defined in Example 1.

Fig. 2. Graph of Example 1 (restricted to the pruning edges) and the related hyper-
graph H = (EP , S).

3 The Ordered Covering Problem (OCP)

Before the definition of the OCP, we need additional concepts.

Definition 6 (Vertex Cover).
A hypergraph H = (EP , S) is said to be covered by W ⊂ Ep if every hyperedge
in S has at least one element in W .

In a conventional context, a vertex cover is a subset of vertices. However, in
our application, the sequential arrangement of elements within the cover holds
significance. Therefore, rather than a subset of vertices, our interest lies in an
ordered list.

Definition 7 (Ordered Vertex Cover).
Given a pruning edge hypergraph H = (Ep, S), a tuple π = (π1, . . . , πk) is an
ordered vertex cover if H is covered by π.

For instance, considering the graph G = (V,E) of Example 1, possible ordered
covers are (e1, e2) or (e1, e3, e4). However, (e1, e3) is not a cover, since the seg-
ment σ5 = {15} remains uncovered (see Fig. 2).

In the SBBU algorithm, every pruning edge ei gives rise to a subproblem
on binary variables. Each binary variable within this subproblem is uniquely
associated with an element from �ei�. Leveraging DMDGP symmetries [7], binary
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variables from resolved subproblems can be eliminated, thereby retaining only
those associated with vertices not included in earlier subproblems.

So, given a tuple π = (π1, . . . , πk) of pruning edges, we define

Γ (πi) = �πi� −
⋃

j<i

�πj� (2)

and the size of the search space for the subproblem corresponding to edge πi is
given by:

f(πi) = {2|Γ (πi)|, if Γ (πi) �= {} and 0, otherwise}. (3)

Revisiting the Example 1, for the tuple π = (π1, π2) = (e1, e2), the cost
associated with each edge is computed as follows:

f(π1) = 2|{4,5,6,7,8}| = 25,
f(π2) = 2|{9,10,11,12,13,14,15}| = 27.

Likewise, the size of the search space for π̂ = (e4, e3, e2, e1) is given by

f(π̂1) = 2|{14,15}| = 22,
f(π̂2) = 2|{9,10,11,12,13}| = 25,
f(π̂3) = 2|{8}| = 21

f(π̂4) = 2|{4,5,6,7}| = 24.

The example above suggests the following definition.

Definition 8 (Ordered Covering Cost).
Given a segment hypergraph H = (Ep, S), the total cost associated with the tuple
π = (π1, . . . , πk) of pruning edges is calculated as:

F (π) =
k∑

i=1

f(πi), (4)

where f is the partial cost function defined in Eq. (3).

Finally, we can now define the Minimum Ordered Covering Problem.

Definition 9 (Ordered Covering Problem (OCP)).
Given a DMDGP instance G = (V,E), with a pruning edge set EP and a segment
hypergraph H = (EP , S), the goal is to find:

π� = arg min
π∈Π(H)

F (π), (5)

where Π(H) represents all possible ordered vertex covers in H.

In the context of the graph represented in Fig. 2, the optimal solution is
π� = (e4, e3, e2, e1), with a total cost F (π�) = 22 + 25 + 21 + 24 = 54.
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4 A Greedy Heuristic for the OCP

In this section, we propose a greedy heuristic (GD) to the OCP. GD is a sequen-
tial algorithm which begins by calculating the costs associated with each avail-
able pruning edge. The pruning edge with the lowest cost is selected, and its
incident hyperedges are removed. The costs of the remaining available pruning
edges are updated and the process repeats, each time selecting the pruning edge
with the lowest cost until no edges remain. The pseudo-code for the GD heuristic
is provided in Algorithm 1.

Algorithm 1. GD heuristic
1: procedure GD(Ep)
2: Let W = Ep, π = (), i = 1
3: while |W | > 0 do #While W is not empty
4: c̄i = ∞
5: for e ∈ W do #Select the edge with the minimal cost
6: πi = e, ci = f(πi)
7: if ci < c̄i then
8: ē = e, c̄i = ci
9: end if
10: end for
11: W = W − {ē}
12: πi = ē, i = i + 1
13: end while
14: return π #π is a permutation of Ep

15: end procedure

Figure 3 offers a visual representation of the GD heuristic in action. Initially,
the algorithm picks the pruning edge with the lowest current cost, specifically
edge e4 with a cost of 4. After removing the segments σ5 = {15} and σ4 = {14},
and updating the costs, edges e1 and e3 are now the cheapest, both carrying
a cost of 32. The algorithm, adhering to its greedy strategy, selects edge e1,
as it comes first among the lowest-cost options. Upon removing the segments
σ1 = {4, 5, 6, 7} and σ2 = {8}, the remaining edges, namely e2 and e3, now
bear a cost of 32. The algorithm sticks to its strategy and selects the pruning
edge e2. Since all segments are now covered, the remaining edge costs nothing.
Consequently, the sequence generated by the GD heuristic is (e4, e1, e2, e3) with
a total cost of 68, which equals the sum of 4, 32, 32, and 0.

5 Analyzing Results and Discussion

This section presents a comparative analysis of the GD heuristic (see Algoritm
1) and the pruning edge ordering implemented in the SBBU algorithm as intro-
duced by [2]. To provide a comprehensive comparison, we also include the exact
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Fig. 3. Edge selection of GD heuristic, with steps (A), (B), (C), and (D).

solution obtained by brute force (BF), i.e., derived from scrutinizing all conceiv-
able permutations of pruning edges.

These experiments were performed on a system equipped with an Intel Core
i7-3770 CPU running at a clock speed of 3.40 GHz, supported by 8 GB of RAM,
and utilizing Ubuntu 20.04.6 LTS. The heuristic was implemented in Python
3.10.6.

Our tests involved 5,000 randomly generated instances, each with 30 vertices
and 5 pruning edges, where one of them was {1, 30} and the remaining four
edges were randomly generated. For each random pruning edge {i, j}, we selected
vertex i from the set {1, 2, . . . , 26} and j from the range {i+4, . . . , 30} at random.
The edge {1, 30} is the hardest constraint, since it has the largest search space
[6].

We assessed the algorithms’ efficiency using the following metric:

gap(π) =
F (π) − F (π�)

F (π�)
,

where π represents a permutation of pruning edges and π� indicates the optimal
permutation of pruning edges computed via brute force (BF).

Table 1 illustrates the results for all instances, summarizing details about the
number of vertices, pruning edges, and segments of each instance, alongside the
cost of the optimal solution and the gaps related to the GD heuristic (gapGD)
and the SSBU ordering (gapSB).

These results highlight the sub-optimality of GD and the SBBU ordering,
showing their potential to produce solutions inferior to the optimal ones. The
GD heuristic generated results that were, in the worst scenario, about 1.5× the
optimal solution’s cost (gapGD = 0.5). The performance of the SBBU ordering
was much worse, with over a quarter of its results costing more than twice as
much as the optimal solution, with some even reaching nearly 6,500×.
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Table 1. Algorithmic cost comparison.

—V— —Ep— —S— costBF gapGD gapSB

mean 30 5 7.62 4.6E+4 1.0E−3 1.3E+1

std 0 0 0.94 2.9E+5 1.5E−2 1.4E+2

min 30 5 5 2.6E+2 0 0

25% 30 5 7 9.0E+2 0 0

50% 30 5 8 2.2E+3 0 1.0E−3

75% 30 5 8 8.5E+3 0 9.9E−1

max 30 5 9 8.4E+6 5.3E−1 6.5E+3

Despite the clear GD heuristic’s average advantage, it only outperformed the
SBBU ordering slightly over half of the 5K instances (in exact 2742 instances).
That is, the SBBU ordering low average performance is the result of extreme
gaps such as its maximum value of 6.5K. So, we can say that the great advantage
of GD heuristic is its robustness.

Table 2 showcases the four instances where the GD heuristic produced the
worst results. The instance labeled as test650 is noteworthy because the GD
heuristic’s gap was larger than the SBBU ordering gap. Figure 4 represents the
hypergraph H(Ep, S) for each of the instances highlighted in Table 2.

Table 2. Worst results of the GD heuristic.

ID —V— —Ep— —S— costBF gapGD gapSB

test374 30 5 8 720 0.525 0.525

test3007 30 5 7 2310 0.345 0.345

test3267 30 5 9 624 0.314 0.314

test650 30 5 9 2374 0.301 0.000

Table 3 outlines the four instances in which the SBBU ordering yielded its
worst results. Figure 5 provides a graphical representation of the hypergraph
H(Ep, S) for each of the instances in Table 3.



264 M. Souza et al.

Fig. 4. Hypergraphs H(Ep, S) for the instances test374, test3007, test3267, and test650
of Table 2.

Fig. 5. Hypergraphs H(Ep, S) for the instances test1675, test4351, test213, and
test4562.
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Table 3. Worst results of the SBBU ordering.

ID —V— —Ep— —S— costBF gapGD gapSB

test1675 30 5 8 2586 0.000 6486.71

test4351 30 5 8 416 0.000 5040.28

test213 30 5 8 652 0.000 3215.51

test4562 30 5 8 4168 0.000 2011.62

6 Conclusion

Despite the SBBU marked superiority over the BP algorithm, it is strongly
dependent on the ordering of pruning edges [2]. We have formalized the pruning
edge ordering problem associated with the SBBU algorithm, framing it as a
vertex cover problem.

Distinct from traditional covering problems, the sequence of vertices in our
cover problem holds significant relevance. To address this, we have introduced a
greedy heuristic specifically designed to tackle this pruning edge ordering prob-
lem.

Through a series of computational experiments conducted on over 5,000
instances, we evaluated the efficiency of the proposed heuristic in comparison
with the ordering used in the SBBU algorithm. The results were promising: on
average, the cost of solutions derived from our heuristic was a mere 0.1% higher
than the optimal solutions, with a standard deviation of 1.5%. Conversely, the
average cost of the solutions derived from the SBBU ordering was staggering:
1,300× higher than the optimal cost with an alarming deviation of 14,200%.

These results are highly encouraging, suggesting the considerable potential
of our proposed heuristic to enhance the performance of the SBBU algorithm.
As we move forward, our future work will focus on examining the performance
of the SBBU algorithm using our proposed heuristic in scenarios with larger and
more intricate instances.
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30,35]. Individual family members nevertheless may exhibit structural variations
that leave few conserved base pairs. In response, the Rfam database reports
multiple families collected in a common “clan” [7]. On the other hand, it is well
known that accuracy of secondary structure prediction for single sequences is
limited [12] but can be improved drastically by comparative methods that enforce
a consensus structure [8]. In order to accommodate the variability within such a
family of related structures, one may use the consensus structure predicted from
an alignment as constraint for the structure prediction of an individual sequence.
A typical workflow for predicting structures for a set of related sequences thus
comprises the following steps:

1. construction of a multiple sequence alignment (MSA) A of related sequences
that includes the sequence X of interest.

2. computation of the consensus structure C for the alignment A.
3. projection of the consensus structure C onto the sequence X by removing

from C all positions in which X has a gap in A. A base pair is removed from
C if either paired position corresponds to a gap of X in A.

4. prediction of the secondary structure of X using the projection CX of the
consensus structure C onto X as a hard constraint.

A prototypical implementation for the second step is RNAalifold, which extends
the thermodynamic model from single sequences to alignments by averaging
energy contributions over alignment columns [1,14]. In the same vein, Pfold
[17,27] uses aligned sequences and phylogeny to compute a global consensus
structure with the help of stochastic context free grammars. The first two
steps can also be combined to computing a structure-based alignment using e.g.
locarna [35,36]. Instead of using an MSA cmalign starts from a pre-computed
covariance model (CM) for an RNA family and aligns the sequence of interest X
to this CM. The CM in turn is obtained from an (often manually curated) mul-
tiple sequence alignment annotated by a consensus secondary structure C. The
result is thus again a projection of the consensus structure C onto the sequence
X. This workflow is used e.g. by the R2DT pipeline [29] for predicting and visual-
izing RNA secondary structures in RNAcentral. A prototypical implementation
of the last step is the script refold.pl, which is part of the utilities distributed
through the ViennaRNA github site1.

A shortcoming of this approach is that it enforces the consensus structure
even if individual structures may not fit well to the consensus, or if the consensus
only applied to part of the structure. TurboFold [13] takes a different approach
and uses position-specific modifications of the standard energy model [32] to
include extrinsic information that summarizes structural information on related
sequences. The “proclivity” for a base pair (i, j) is obtained by aggregating the
probabilities that sequences positions potential homologous to i and j in other
sequences form a base pair. The “proclivity” is then converted into a pseudo-
energy added to every secondary structure of x that contains the base pair (i, j).

1 https://github.com/ViennaRNA/ViennaRNA/blob/master/src/Utils/refold.pl.

https://github.com/ViennaRNA/ViennaRNA/blob/master/src/Utils/refold.pl
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Pseudo-energies were used already in early implementations of mfold [38]
and the ViennaRNA Package [15] as a means of forcing or excluding base pairs
and to encode exceptions to general energy rules. An example for the latter were
bonus energies for extra-stable tetraloops [22]. RNAalifold uses optional bonus
energies for sequence covariation [14], and TurboFold uses such terms to reward
conservation of local structures. The use of pseudo-energies in RNA folding has
become common-place with the advent of large-scale chemical probing data. For
instance, SHAPE reactivities have been converted to position-specific stabilizing
energies for unpaired bases using an empirical fit [3,11,37]. The same approach
has been used for other types of chemical probing e.g. using DMS [2], for lead
probing [18] and for enzymatic probing such as PARS [16,33]. Bonus energies can
also be determined indirectly from the optimal balance of experimental signal
and the thermodynamic folding model [34]. Instead of pseudo-energies, SCFG-
based folding algorithms such as PPfold [27] and ProbFold [26] modify the
emission probabilities to incorporate external evidence including probing data.
A fully probabilistic model approach has been suggested in [5].

The effectivity of pseudo-energy contributions derives from the fact that the
standard energy model for RNA secondary structures is a very good approxi-
mation [32]. As a consequence, it is unlikely that the biologically relevant RNA
structure deviates dramatically from the predicted groundstate as far as its pre-
dicted free energy is concerned, even if the predicted structure may be very
different. A moderate “bonus” thus is sufficient to nudge the ensemble of alter-
native structures towards features that are expected to be present according to
the empirically determined evidence.

Evidence for evolutionary conserved RNA features can also be extracted from
sequence alignments. Given sufficient data, covariance and mutual information
measures can detect consensus base pairs. MIfold, for instance, uses column-wise
scores of this type as a replacement for an energy model [6]. Direct evidence for
the presence of individual helices is computed in ShapeSorter using a proba-
bilistic model [31]. It is also possible, however, to convert mutual information
values directly into pseudo-energies for base pairs.

In this contribution we consider the use of pseudo-energy contributions
for extrinsic information on conserved secondary structures in detail. Such
approaches are attractive because the ViennaRNA package features a generic
interface for the position- and base pair-specific pseudo-energies [21], making
them easy to implement. Section 2 revisits the pertinent theory. We then pro-
ceed to showing that pseudo-energies derived from an alignment-based consen-
sus structure substantially improve the predictions of individual structures and
investigate the influence of alignment quality.

2 Theory

Secondary Structures and Their Features. Throughout this contribution
we fix an RNA sequence of interest X and a (pairwise or multiple) sequence
alignment A that we assume to contain X. A secondary structure s (on X or
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A) is a set of base pair such that every base or alignment position is contained
in at most one base pair. Two base pairs (i, j) and (k, l) are said to be crossing
if k < i < l < j or i < k < j < l. Throughout, we consider only crossing-free
secondary structures.

A secondary structure s is compatible with X, if every base pair adheres
to certain “base pairing rules”. In the standard RNA model, only GC, CG,
AU, UA, GU, and UG pairs are allowed, all other conditions of nucleotides are
forbidden. Analogously, s is compatible with A if, for each base pair (i, j) ∈ s,
the corresponding alignment columns Ai and Aj are allowed to pair. In the case
of the RNAalifold model, for instance, Ai and Aj are allowed to pair if the
nucleotides Ai(S) and Ai(S) in row (sequence) S form one of the six possible
base pairs. (The current implementation of RNAalifold tolerates a small number
of exceptions, see [1]). The set of all secondary structures that are compatible
with X will be denoted by Ω = Ω(X). Analogously, we write Ω(A) for the set
of all structures compatible with the alignment A.

A “feature” μ in an RNA secondary structure is most generally defined simply
as a subset of the set of secondary structures. More intuitively, a feature com-
prises a pattern of base pairs and/or unpaired bases that is present in a secondary
structure s. Simple examples include paired or unpaired single positions, specific
base pairs, and the loops that appear in the recursions for secondary structure
prediction. More complex examples are entire helices or abstract shapes (in sense
of [9]). Here, we will be interested in features that are individual base pairs (i, j),
or the pairing status of single positions. We will write (i) to designate the paired
position i and ¬(i) for an unpaired position. Furthermore, we write s ∈ μ if the
secondary structure s has the feature μ, i.e., we formally treat μ simply as a set
of structures.

Definition 1. Two features μ′ and μ′′ are incompatible if μ′ ∩ μ′′ = ∅.
For example, crossing base pairs are incompatible features. Similarly, the base
pair (i, j) is incompatible with each of the unpaired positions ¬(i) and ¬(j).

Pseudo-Energies. In their most general form, a pseudo-energy Γμ for a feature
μ is an additive contribution to the energy G(x) of every secondary structures
x with feature μ. Thus G(x) = G0(x) + Γμ if x ∈ μ, while G(x) = G0(x) for
x /∈ μ. Here, G0(x) denotes the energy of secondary structure x according to the
standard energy model [32]. Additivity ensures that pseudo-energies Γμ may be
considered simultaneously for an arbitrary set M of features:

G(x) = G0(x) +
∑

μ∈M

Γμ (1)

For example, TurboFold considers pseudo-energies of the form Γ(i,j) =
−a ln Π(i,j) derived from pairing “proclivities” Π(i,j) that in turn are computed
from the base pair probabilities of related sequences [13]. The recursions of the
dynamic programming algorithms underlying RNA folding readily accommodate
certain pseudo-energy contributions. In particular, contributions for unpaired
positions (i) and base pairs (i, j), but also entire hairpins enclosed by pair (i, j)
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or interior loops between the pairs (i, j) and (k, l) are consistent with the fold-
ing algorithms [21]. A general issue is the conversion of quantities that mea-
sure extrinsic information a into energies. In general, empirical expressions are
employed [3,13].

A more principled approach is available if the extrinsic information can be
quantified as probability p[μ] or p[¬μ] that a feature μ is present or absent,
respectively. Following [2], the pseudo-energy for feature μ is then given by the
scaled odds-ratio

Γμ = −RT ln
p[μ]

p[¬μ]
(2)

In the case of chemical probing data, p[μ] can be estimated by comparing empir-
ically determined probing signals with known secondary structures [19,28]. For
consensus structures, however, it is possible to obtain probabilities p[(i, j)] of
base pairs from a probabilistic model of the consensus structure for an align-
ment. In this contribution we use the partition function version of RNAalifold
[1]. Pfold [17] or LocaRNA-P [35] could be used in the same manner.

In principle it is also possible to convert empirical base pair propensi-
ties into feature probabilities. To this end, one first converts the data to
energy-like base pair propensities εij . These can then be interpreted as energy
model for a maximum matching model [24], whose partition functions over
the structures on intervals are readily computed recursively as Zij = Zi+1,j +∑

i<k≤j Zi+1,k−1Zk+1,j exp(−βεij), with the inverse temperature β = −1/RT .
The backward recursion of McCaskill’s algorithm [23] then yields base pair prob-
abilities p[(i, j)]. As in the case RNAalifold -P, Pfold or LocaRNA-P, these
derive from an ensemble of crossing-free RNA secondary structures Ω.

Feature Probabilities from Ensembles of Secondary Structures. Let Ω
be an ensemble of (non-crossing) secondary structures and denote by p(x) the
probability of secondary structure x. Then the probability of feature μ is p[μ] :=∑

x∈μ p(x). The probabilities of not observing feature μ is then p[¬μ] = p[Ω\μ] =
1−p[μ]. Feature probabilities of this form are of interest because they have some
mathematically appealing and practically useful properties.

We call a feature dominating if p[μ] > p[¬μ], i.e., if p[μ] > 1/2.

Lemma 1. Let D be a set of dominating features. Then D does not contain a
pair of incompatible features.

Proof. Suppose μ′ and μ′′ are incompatible and μ′ ∈ D, i.e., p[μ′] > 1/2. Then
μ′′ ⊆ Ω \ μ′ and thus p[μ′′] ≤ p[¬μ] = 1 − p[μ] < 1/2 and thus μ′′ /∈ D.

The notion of incompatible features provides a simple general argument for the
centroid of an ensemble of secondary structures being crossing-free, because base
pairs of a centroid structure satisfy p[(i, j)] > 1/2 [4].

Corollary 1. The dominating set of base pairs C = {(i, j) | p[(i, j)] > 1/2} is
crossing-free.
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Now consider the special case that p[μ] is obtained also from a Boltzmann
ensemble of secondary structures {s} with corresponding energies ε(s). Note
that this model is not the energy model for RNA folding but instead incorpo-
rates the external information. Here, we use the energy model of RNAalifold
for this purpose. Using the partition functions Zε :=

∑
s exp(−ε(s)/RT ) and

Zε[μ] :=
∑

s∈μ exp(−ε(s)/RT ) yields p[μ] = Zε[μ]/Zε. A short computation
then yields the identity

Γμ = −RT ln
p[μ]

p[¬μ]
= Gε[μ] − Gε[¬μ] , (3)

where Gε[μ] and Gε[¬μ] are the free energies of ensembles w.r.t. the model
ε constrained to structures containing and not containing μ, respectively. The
difference Gε[μ] − Gε[¬μ] thus quantifies the evidence for the presence of μ and
serves as bonus energy contribution.

Restrictions on Bonus Terms for Consensus Structures. In the setting
of global consensus structures, a position i appears as unpaired both if it is
unpaired in all contributing structures and if it is paired with different, and
therefore incompatible pairing partners. That is, an unpaired position in a con-
sensus structure may simply reflect the absence of a conserved base pair. This
will always be the case if there is a certain part of the RNA that does not support
a consensus structure. A large value of p[¬(i)], therefore, is not evidence of con-
served unpairedness. In particular, alignments of many random sequences will
not result in the prediction of consensus base pairs in RNAalifold and similar
models, see Fig. 1.

Fig. 1. Consensus base pairs in sets of random sequences. The number of base pairs
predicted by RNAfold and the number of bases with a base pair probability > 0.5
was computed for N = 1...20 sequences with 80% similarity to a randomly generated
reference sequence of length 80 nt. As expected, larger alignments yield consensus
structures without significant base pairs.

This reasoning has also served as motivation for the definition of the “struc-
ture conservation index” (SCI) [10] as the ratio of the consensus folding energy
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and the average energy of the (unconstrained) secondary structure of the indi-
vidual sequences. The SCI is in essence an estimate for the fraction of the folding
energies that is explained by the consensus structure. Since the open structure
without base pairs has energy 0, it quantifies consensus base pairs. We argue,
therefore, that only the information on base pairs in the consensus structure
can be used, while it remains open whether an unpaired position in the con-
sensus is unpaired in the related sequences, or whether it is merely involved in
non-conserved base pairs.

In a general setting, we assume that it is possible to determine the presence
of a feature μ in the consensus, while it is not possible to distinguish the absence
of μ from missing data. Clearly, there is support for μ only if p[μ] > p[¬μ], i.e.,
if μ is a dominating feature. The bonus energy for μ therefore takes the form

Γμ = min
{

−RT ln
p[μ]

p[¬μ]
, 0

}
(4)

Here we have used that Γμ < 0 is equivalent to requiring p[μ] > p[¬μ] = 1− p[μ]
and thus p[μ] > 1/2. In the case of the RNAalifold model, therefore, we consider
only the set C of dominating base pairs, which as argued above, coincides with
the centroid structure in the RNAalifold model.

3 Implementation and Evaluation

In order to demonstrate that the inclusion of consensus structure information is
useful we implemented the following simple workflow.

(i) We selected nine seed alignments A from Rfam that contained the largest
number of seed sequences with known 3D structures and were free of pseu-
doknots. Alignments were augmented by the focal sequence X using mafft
unless X was already included in A. Then sequences with a similarity
of more than 80% to other sequences were excluded because very similar
sequences are expected to have very similar secondary structures and thus
a single reprensative sequence suffices. The lengths of the focal sequences
X varied between 74 and 184 nucleotides.

(ii) The consensus structure ensemble for A is computed using RNAalifold -p.
From the corresponding base pair probability matrix, the set C of centroid
base pairs and the corresponding probabilities p(i′, j′) for the alignment
columns i′ and j′ are retrieved. From these, we compute probability pi′ :=∑

j′<i′ p(j′, i′) +
∑

j′>i′ p(i′, j′).
(iii) The columns i′ and j′ of the alignment A are translated to the correspond-

ing sequence positions i and j in X. If row X of A shows a gap in alignment
column i′ or j′, then the consensus base pair (i′, j′) is discarded. Similarly, if
the nucleotides Xi and Xj at positions i and j cannot form a Watson-Crick
or wobble pair, we ignore the constraint. As a result we obtain a set CX of
base pairs. The corresponding consensus probabilities p[(i, j)] are converted
into bonus energies Γ(i,j). Analogously, we convert the probability pi′ that
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the alignment column containing position i of X is paired in the consensus
into a bonus energy Γi for position i being paired. In the following we refer
to these bonus energies as phylogenetic soft constraints.

(iv) We use RNAfold to compute the secondary structure of X using Γ(i,j) for
(i, j) ∈ CX as soft constraint. Alternatively, the Γi < 0 for paired positions
are used as soft constraints. The code and implementation details can be
accessed by visiting www.github.com/ViennaRNA/softconsensus.

Fig. 2. Inclusion of phylogenetic soft constraints improves the accuracy of structure
predictions. L.h.s.: Bonus energies Γ(i,j) RNAalifold centroid base pairs. R.h.s.: Bonus
energies Γi for paired position with pi > 0.5 in the RNAalifold ensemble of consensus
structures. Bonus energies were obtained from Rfam seed alignments, see Electronic
Supplement for details on the data set.

For benchmarking, we retrieved the reference structure of the focal sequences
X from RNAcentral. Details can be found in the Electronic Supplement2. The
accuracy of a predicted secondary structures was quantified by Matthews’s cor-
relation coefficient (MCC) based on the comparison of predicted base pairs and
the base pairs of the reference structures.

In Fig. 2 we compare the predictions with and without the phylogenetic bonus
energies. Using consensus base pairs (l.h.s.), we observe that for the majority of
cases there is an improvement in accuracy, consistently reaching a level of at least
80% and sometimes perfect predictions, upon inclusion of phylogenetic informa-
tion. The average improvement in MCC is 0.29 (SD = 0.28) overall and 0.45
(SD = 0.23) for sequences where unconstrained folding yields an MCC < 0.8.
We have not encountered a case where the phylogenetic information is mislead-
ing, i.e., where the prediction deteriorates upon inclusion of the bonus energy
terms. Using only the probability pi that position i is paired in the consensus also
improves the predicted structures. However, the improvement is more moderate
with an average improvement of 0.26 (SD = 0.25) overall and 0.41 (SD = 0.20)

2 www.bioinf.uni-leipzig.de/publications/supplements/23-002.

www.github.com/ViennaRNA/softconsensus
www.bioinf.uni-leipzig.de/publications/supplements/23-002
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where MCC unconstrained < 0.8. For both features, no improvement is observed
when the accuracy of the unconstrained prediction is more than 80%.

Figure 3 compares the distribution of MCC differences between unconstrained
and constrained folding. We find that using hard constraints (i.e., enforcing or
forbidding a base pair or unpaired position [21]) instead of bonus energy occa-
sionally enforces incorrect base pairs. Furthermore, we observe that the pairing
status of individual nucleotides conveys nearly as much information as the cen-
troid base pairs of the consensus. We suspect, however, that the good perfor-
mance in particular of paired nucleotides is in part the consequence of highly
accurate, manually curated Rfam seed alignments.

In order to test the influence of size and quality of the alignment A we first
sub-sampled the Rfam seed alignments by retaining only a number N of rows.
Alternatively, we randomly selected N rows, removed the gaps and re-aligned
the sequences with mafft. In both cases the focal sequence X is included in
every subset. The accuracy of secondary structure predictions in dependency
on the number N of sequences in the MSA A is illustrated in Fig. 4. Pseudo-
energies derived from sub-sampled Rfam alignments already result in nearly the
maximal improvement for two or three sequences. However, if sequences are
realigned, larger samples are needed to reach the same accuracy, emphasizing the
importance of high-quality alignments for the inference of consensus secondary
structures. Pairwise alignments convey little improvement in this situation, pre-
sumably due to biases in the gap patterns and ambiguities in the alignment of
more divergent regions.

We tested whether the MSA can be replaced by the superposition of base
pair probabilities computed from individual sequences Xi of pairwise alignments
(X,Xi). Averaging the base pair probabilities after projection to sequence X,
however, yields few base pairs with p[(i, j)] > 0.5, and thus little improvement.
The comparably poor performance of pairwise alignments may explain why the
use of averaged base pair probabilities from pairwise sequence alignments of X
with another related sequence does not improved structure prediction.

Fig. 3. Quantitative comparison of the effect of consensus information. Consensus infor-
mation can be incorporated as hard (HC) or soft constraint (SC). Hard constraints
can occasionally enforce misleading base pairs. Using the pairing status of individual
nucleotides instead of the centroid base pairs occasionally leads to a smaller improve-
ment of the MCC.
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Fig. 4. Sequence-based mafft alignments without manual curation require 15–20
sequences to fully exploit the consensus structure information. Subsampling of Rfam

seed alignments, on the other hand, already leverage the full information contained
in the consensus structure with about 4 sequences; larger alignments do not seem to
provide a further gain accuracy.

4 Discussion

Consensus base pairs inferred from phylogenetically related sequences are a pow-
erful source of information to guide the prediction of accurate secondary struc-
ture. We have shown here that consensus structures computed from MSAs yield
pseudo-energies that provide a theoretically well-founded and computationally
efficient framework for this purpose. Moreover, we have seen that only “posi-
tive information”, i.e., paired position and base pairs in the consensus structure
can be used, since unpaired positions may arise simply from the lack of a con-
sensus. It is also possible to use MSAs to superimpose independent secondary
structure predictions. Preliminary data indicate, however, that this requires a
sophisticated integration procedure, e.g. as implemented in the iterative scheme
of TurboFold. The beneficial effect of consensus base pairs, finally, depends
strongly on the accuracy of the alignment.

The approach taken here still assumes a single consensus structure. Some
structured RNAs, however, function through structural transitions. A prime
example are riboswitches relying on the alternative formation of a terminator
to an anti-terminator hairpin. To handle such cases, alternative, usually incom-
patible, structures need to be considered. As noted e.g. in [25], conserved alter-
native conformations sometimes can be found as suboptimal local minima in
the Boltzmann ensemble, and it may be possible to obtain direct evidence for
the conservation of helices that are incompatible with the most stable structure
[31]. An interesting generic approach to handle such cases is the ensemble tree
proposed in [20].
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Abstract. The study of immunopeptidomics requires the identification
of both regular and mutated MHC-I peptides from mass spectrometry
data. For the efficient identification of MHC-I peptides with either one
or no mutation from a sequence database, we propose a novel work-
flow: NeoMS. It employs three main modules: generating an expanded
sequence database with a tagging algorithm, a machine learning-based
scoring function to maximize the search sensitivity, and a careful target-
decoy implementation to control the false discovery rates (FDR) of both
the regular and mutated peptides. Experimental results demonstrate that
NeoMS both improved the identification rate of the regular peptides over
other database search software and identified hundreds of mutated pep-
tides that have not been identified by any current methods. Further study
shows the validity of these new novel peptides.

Keywords: Neoepitope · MHC · Mass Spectrometry · Machine
Learning

1 Introduction

In adaptive immunity, the major histocompatibility complex (MHC) presents
a class of short peptides (also known as MHC peptides or HLA peptides) on
the cell surface for T-cell surveillance. The systematic study of the MHC pep-
tides is also referred to as immunopeptidomics. Two major classes of MHC exist:
MHC-I and MHC-II. MHC-I molecules are expressed on all nucleated cells and
MHC-II molecules are expressed on antigen-presenting cells. Normally, peptides
presented by MHC-I are derived from endogenous proteins which are neglected
by the cytotoxic T lymphocytes. However, the MHC-I of infected or tumor cells
may present exogenous or mutated peptides (neoantigens) derived from either
the viral proteome or cancer-related mutations, leading to the activation of spe-
cific cytotoxic T lymphocytes to eliminate the neoantigen-presenting cells. These
abnormal MHC-I peptides also serve as excellent targets for immunotherapy,
such as TCR-T [1] and cancer vaccines [2]. For these reasons, a method that
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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can systematically determine all the MHC-I peptides becomes extremely useful
for studying infectious diseases, developing novel cancer immunotherapy, and
choosing the right immunotherapy for individual patients. Currently there are
two main approaches to identifying abnormal MHC-I peptides: genomics and
proteogenomics. In genomics, the identification of somatic mutations on neoepi-
topes is often performed using whole exome sequencing (WES) or transcriptome
sequencing data [3]. On the other hand, the proteogenomics approach involves
analyzing tissue samples using liquid chromatography tandem mass spectrome-
try (LC-MS/MS) and searching the obtained spectra against a personalized pro-
tein database constructed from exome sequencing or RNA sequencing data [4].
However, since there’s no evidence or statistical validation, the false positives of
both methods can be high.

Proteomics approaches that rely solely on MS spectra for peptide identifica-
tion provide direct experimental evidence, reducing false discoveries and allowing
for statistical validation of the False Discovery Rate (FDR). Traditional database
search methods, including Peaks [5], Comet [6], and MaxQuant [7], are widely
used for peptide identification, especially for spectra generated from tryptic-
digested peptides. Tryptic digestion occurs when proteins are cleaved at the C-
terminal of lysine (K) and arginine (R) residues. However, these methods often
exhibit limited performance when applied to more complex MHC peptides, which
undergo non-tryptic digestion. Non-tryptic digestion refers to protein cleavage
occurring at various sites, not restricted to specific amino acid residues. To
enhance the identification rates for non-tryptic peptides, current efforts focus
on rescoring the database search results. Percolator [8] is a widely used tool that
employs an SVM-based semi-supervised machine learning approach to rescore
Peptide-Spectrum Matches (PSMs), thereby enhancing sensitivity in peptide
identification. MHCquant [9] integrates Percolator into an immunopeptidomics
data analysis workflow for MHC peptide identification, benefiting from improved
sensitivity and accuracy. Recent advances in peptide property prediction, such
as retention time (RT), MS/MS spectrum, and collisional cross sections, have
enabled innovative workflows like DeepRescore [10], Prosit [11], MS2Rescore [12],
and AlphaPeptDeep [13]. These workflows utilize prediction tools to generate
PSM features and leverage Percolator for improved performance. However, a
significant limitation of these tools is their inability to identify mutated pep-
tides not present in the sequence database. This hinders their applicability in
detecting novel peptides with mutations. De novo sequencing methods [14,15]
can identify mutated peptides as they do not rely on a reference database. How-
ever, these methods suffer from a higher error rate and the lack of a universally
accepted result validation method, which undermines confidence in the identi-
fied sequences. Open-search methods such as MSFragger [16], Open-pFind [17],
TagGraph [18], and PROMISE [19] provide techniques for identifying peptides
with post-translational modifications (PTMs), but not for mutation.

To confidently identify MHC peptides, we have developed a novel workflow
called NeoMS that combines de novo sequencing and PSM rescoring techniques.
NeoMS generates a candidate neoepitope database using de novo sequencing
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and k-mer tagging. To enhance peptide identification, we employ a trained light-
GBM model instead of using semi-supervised learning to avoid overfitting. To
ensure the accuracy of identified mutated peptides, NeoMS implements rigor-
ous false discovery rate (FDR) control measures. The performance of NeoMS is
evaluated using publicly available mass spectrometry data for MHC peptides. In
comparison to other tested methods, NeoMS outperforms them by identifying a
greater number of peptides. Importantly, NeoMS confidently identifies hundreds
of mutated MHC-I peptides, providing high-confidence results. By combining
de novo sequencing, PSM rescoring, and stringent FDR control, NeoMS offers
a powerful and accurate approach for MHC peptide identification, including
the detection of mutated peptides. This workflow has the potential to advance
research in immunopeptidomics and facilitate the development of personalized
cancer immunotherapy.

2 Methods

2.1 Datasets

Two LC-MS/MS datasets of human HLA I peptides: PXD000394 and
PXD004894 were downloaded from the proteome change repository. The first
dataset is used for training our lightGBM model and the second dataset is used
for testing. The two datasets are derived from separate experiments, resulting
in no overlap between them.

– Pride PXD000394 was acquired from a Thermo Q-Exactive instrument and
contained 41 MS raw files [20]. It is a collection of six cell lines: JY,
SupB15WT, HCC1143, HCC1937, Fib, and HCT116. All 41 MS raw files
(12.6 million MS/MS spectra) were used for training our machine learning
model.

– Pride PXD004894 was acquired from a Thermo Q-Exactive HF instrument [4].
This is a survey conducted on tissue samples associated with melanoma-
associated tumors. A total of 25 melanoma patients were included in the
study, and we specifically focused on three patients: Mel5, Mel8, and Mel15.
To test our software, we utilized 24 MS raw files, which consisted of 1.12
million MS/MS spectra associated with these three patients. Among these
files, 16 were associated with Mel15, containing 720,557 spectra. There were
4 raw files associated with Mel5, comprising 118,003 spectra, and another 4
raw files associated with Mel8, comprising 132,297 spectra.

2.2 Overall Workflow

The whole workflow of NeoMS is shown in Fig. 1. The input of the workflow is
the peptide MS/MS spectra and a reference protein sequence database. The raw
MS file is converted to the mgf format using msConvert [21] before the analysis.
There are four main steps of the analysis:
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Fig. 1. The overall workflow of NeoMS.

1. Expanded database generation: Generate an expanded sequence database
that consists of both the original sequences and possibly mutated sequences.
To generate the mutated sequences, de novo sequence generated by Novor [22]
is used to locate the possible point mutations.

2. Database search: Conduct database search analysis with Comet [6] by using
the input spectra and the expanded sequence database.

3. PSM Rescoring: Rescore the PSMs found by the database search with newly
computed scoring features and a machine-learning scoring function.

4. Result analysis: Control the FDR of the identified regular and mutated pep-
tides.

These steps are further elaborated on in the following sections. Each step is
dockerized, and the whole workflow is compiled in Nextflow [23]. The code is
available on GitHub (https://github.com/waterlooms/NeoMS).

2.3 Generation of Expanded Database

The MS/MS spectra are de novo sequenced by Novor [22]. For each spectrum,
Novor computes a peptide sequence and a positional confidence score for each
amino acid of the peptide. Within the de novo sequences, a confident sequence
tag is defined as a length-k substring (continuous subsequence) where each amino
acid has a confidence score above a threshold t. By default, NeoMS sets k = 7
and t = 60, which were selected empirically.

These tags are searched in a target/decoy database to find approximate
matches. This target sequence database is human protein database downloaded
from uniprot [24]. Considering the non-tryptic manner of searching, the decoy is
generated by random shuffling target protein sequences. Hence, the target/decoy
database is the concatenation of these two database. A hit to a tag is a length-k
substring in the database that approximately matches the tag with exactly one

https://github.com/waterlooms/NeoMS
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amino acid mutation. For each hit, a mutated sequence is constructed by con-
catenating the at-most n amino acids immediately before the hit, the mutated
amino acids, and the at-most n amino acids immediately after the hit. By default,
NeoMS sets n = 12. Since MHC-I peptides have lengths up to 13, this choice of
n allows the inclusion of every mutated MHC-I peptide that has a confident de
novo tag covering the point mutation.

The newly generated mutated sequences are appended to the target/decoy
database to form an expanded database. Note that a hit can be either from
a target or a decoy sequence. The target and decoy hits are treated equally
throughout the analysis until the FDR control step. In the end, the resulting
expanded database contains the target sequences and the decoy sequences, as
well as the mutated sequences generated from the target and decoy sequences.

2.4 Database Search in the Expanded Database

Comet [6] is then used for the database search analysis by using the input MS/MS
spectra and the expanded sequence database. We used the default Comet high-
high parameter and made three adjustments:

1. Set num_output_lines to 10. Up to 10 candidate peptides are computed
for each spectrum. These candidate peptides are further evaluated in the
downstream rescoring analysis to choose the optimal one for each spectrum.
For a certain spectrum, some true peptides with lower Comet scores could
have higher rankings after rescoring. Meanwhile, the statistical relations of
peptides for one spectrum produce important features for rescoring. It is
noticed that in practice, any other database search tool that allows the output
of multiple candidates per spectrum can be used in lieu of Comet as the base
engine of NeoMS.

2. Set enzyme to cut_everywhere. By default, Comet searches peptides in tryp-
tic digestion that only cut cleaves the C-terminal to lysine (K) and arginine
(R). We set it as cut_everywhere to search in a non-tryptic manner.

3. Set mass_tolerance to 0.02 Dalton. To narrow down the search space and
filters out the incorrect PSMs.

2.5 Rescoring

For each spectrum S, the top 10 peptide candidates P1, P2, . . . , Pn. Five comet
computed values: xcorr, delta_cn, sp_score, mass_error, and e_value are
taken as features. Here the e_value score is converted to log(e_value) before
using it in machine learning. Besides, the following set of peptide features is
computed for each Pi:

1. The absolute difference between predicted RT for Pi and the experimental
RT of the spectrum S. AutoRT [25] was used to make the prediction.

2. The similarity between S and the MS/MS spectrum predicted for Pi by
pDeep2 [26]. The feature is computed by the Pearson correlation coeffi-
cient between the predicted b and y-ion intensities and their experimental
intensities.
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3. The similarity between S and the MS/MS spectrum predicted for Pi by Pred-
Full [27]. PredFull predicts a sparse vector of length 20,000, where each dimen-
sion represents the maximum peak intensity in an m/z bin of width 0.1 mass
units. The experimental spectrum is also converted to such a sparse vector.
The feature is the Cosine Similarity of two vectors.

This list comprises eight peptide features. In addition, for the log(e_value) and
the 3 peptide features above, three spectrum features are computed: maximum,
mean, and variance of the feature’s values on the top 10 peptides for the spec-
trum. In total, there are 4×3 = 12 features, consisting of 8 peptide features and
12 spectrum features. A machine learning model based on LightGBM is used to
calculate a numeric score based on the 20 features.

2.6 FDR Control

The target-decoy approach [28] is adapted for controlling the FDR. The tar-
get and decoy databases are combined and analyzed together. After the NeoMS
search, the regular and mutated peptides are separated, and their FDRs are
also controlled separately. The score thresholds of the regular and mutated pep-
tides are usually different because of their different distributions. In addition, a
user can choose to use different FDR thresholds for the regular and mutated pep-
tides, respectively. In our experiment, due to the higher complexity of identifying
mutated peptides compared to regular peptides, we established distinct thresh-
olds for each category: 1% for regular peptides and 5% for mutated peptides.

2.7 Training of the Scoring Function

The scoring function training is performed as a separate step of the scoring
process itself. In contrast to Percolator’s semi-supervised learning approach, we
employ supervised learning, eliminating the need to train on testing data. The
training is conducted only once using training data and remains unchanged for
future analyses. The Lightgbm package is utilized to support the training process
with specific parameter settings: max_depth as 9 and num_leaves as 51. The
training is performed iteratively over several iterations to optimize the model’s
performance.

Before our training, we do not have precise positive and negative labels for
PSMs. In the first iteration, the target peptides in Comet’s search results with
1% FDR comprise the initial positive set, and the same amount of top-ranked
decoy peptides constitute the initial negative set. Lightgbm is used to learn
the initial GBM model. In each of the following iterations, the GBM model
learned from the previous iteration is used to conduct the search. Then the target
peptides with 1% FDR are added to the current positive set with deduplication,
and the same amount of top-ranked decoy peptides are added to the current
negative set with deduplication as well. Finally, the model is learned by using
the accumulated positive and negative sets. The process is repeated a few times
until the performance does not improve anymore.
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3 Results

3.1 NeoMS Identified More Regular Peptides Than Other Methods

The performance of NeoMS was benchmarked against four other database search
methods: Comet [6], MaxQuant [7], PeaksX [5], and DeepRescore [10]. Three
patients’ data (Mel5, Mel8, and Mel15) in PXD004894 and the human sequence
database (UniProt UPID: UP000005640) were used to test the performance.
For Comet, we use the default parameter setting with 3 changes mentioned
in 2.4. DeepRescore is set to use the default parameter for Comet. PeaksX’s
database search results provided from the database searching part of an individ-
ual immunopeptidomes [14] on the same datasets were used, while MaxQuant’s
results provided by dataset paper [4] were used. As the other software does
not search for mutated peptides, the mutation finding function was turned off
in NeoMS here for a fair comparison. The number of PSMs and the number of
peptides identified at 1% FDR by each software are plotted in Fig. 1. From both
the perspective of peptide number and PSM number, NeoMS outperformed the
other methods. For the three samples, our NeoMS have improved the identifi-
cation number 2 to 3 times than our base database search method Comet. In
comparison with other rescoring methods, NeoMS identifies 5% to 10% more
than the second-best methods. To further analyze the authenticity of the iden-
tified peptides as MHC-bound peptides, we utilized MHCflurry [29] for binding
affinity prediction. Following established methodologies, peptides are considered
to bind to MHC I if their predicted affinity falls within the top 2% of the strongest
binding peptides for any allele in the sample. In the Mel 15 experiment, NeoMS
identified a total of 37,135 peptides, of which 33,810 (91.05%) were predicted
to be MHC-bound. Comparatively, DeepRescore identified 32,600 MHC-bound
peptides. It is important to note that while there is a significant overlap between
the results of NeoMS and DeepRescore, each search engine also identified a con-
siderable number of novel peptides. Among the 2,316 novel peptides exclusively
identified by NeoMS, 1,955 (84.41%) were predicted to be MHC-bound, which
reinforces the reliability of NeoMS in accurately identifying MHC-associated
peptides.

3.2 NeoMS Identified Mutated MHC I Peptides

NeoMS demonstrates the capability to identify both MHC-I peptides with and
without mutations in a unified search. In Fig. 3(A) and (B), the number of
mutated peptides and PSMs identified by NeoMS on the Mel15 dataset (from
PXD004894) is presented, respectively. The search was conducted on 16 MS
files, comprising a total of 164,844 spectra, using the Uniprot human sequence
database. The identification of mutated and unmutated peptides was performed
independently, with separate FDR controls. NeoMS identified 37,042 peptides
(393,871 PSMs) without any mutations at 1% FDR and 544 mutated peptides
(4,028 PSMs) with exactly one amino acid mutation at a 5% FDR. The other
two samples, Mel5 and Mel8, yielded the identification of 191 and 86 mutated
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Fig. 2. A, B: Performance comparison in terms of identifying MHC-I peptides without
mutations. Three patients’ samples (Mel5, Mel8, Mel15). The x-axis indicates the num-
ber of PSM (A) and unique peptide (B) identifications at 1% FDR. NeoMS’ mutation
finding function is turned off for a fair comparison. We compared our identified peptides
with four methods: Comet, MaxQuant, PeaksX, and DeepRescore. Since MaxQuant’s
PSM number is not provided, we compare our PSM number with the other 3 methods.
C, D, E: Venn diagram of the unique peptides identified at 1% FDR on Mel15(C),
Mel5(D), and Mel8(E) by the three search engines, NeoMS, DeepRescore, and Comet,
respectively. The number in each area indicates the number of identified peptides.

Fig. 3. The number of mutated peptides/PSMs identified by NeoMS from the Mel15
sample in dataset PXD004894. Panel (A) is the number of peptides and (B) is for the
number of PSMs. The x-axis is the FDR threshold and the y-axis is the number of
peptides and PSMs, respectively
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peptides, respectively, at a 5% FDR. These results highlight NeoMS’s ability
to efficiently identify MHC-I peptides, both with and without mutations, in
large-scale datasets. The accurate and comprehensive identification of mutated
peptides opens up new avenues for investigating their associations with tumor
cells and their potential as targets for T lymphocytes in cancer immunology
research.

Fig. 4. Affinity comparison between the mutated peptides and their corresponding
original peptides in the sequence database. Each data point corresponds to a pair of
mutated and original peptides. The y and x-axes are their predicted affinity scores,
respectively. The upper left area contains the peptides with both a high score and a
high score increase caused by the single amino acid mutation.

3.3 The Mutation Increases Binding Affinity

For each mutated peptide identified with a 5% FDR threshold by NeoMS, we
retrieved its corresponding original peptide in the sequence database. The pair
of peptides differ by only one amino acid. Their MHC-I binding affinities were
predicted by MHCflurry, using the six alleles provided together with the dataset
in the paper [4]. The maximum affinity of a peptide from the six alleles was
used as the affinity for the peptide. Figure 4 shows the scatter plot of the pre-
dicted affinity scores of the identified peptide pairs. Among these, there were 81
mutated target peptides with binding affinity scores increased by at least 0.1.
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In contrast, only 8 have binding affinity scores decreased by at least 0.1. These
clearly show that the single amino acid mutation in these mutated peptides
generally improved the binding affinity.

4 Discussion

Immunopeptidomics studies require the identification of MHC-I peptides con-
taining amino acid mutations with high confidence from a sequence database
and MS data. The lack of protease specificity with the consideration of muta-
tions together increased the search space as well as the spectrum complexity.
Both a better scoring function and rigorous result validation are required. In this
work, we proposed a novel computational workflow, NeoMS to meet the needs
for MHC-I peptide identification. Based on a de novo-based approach to detect
mutations and to expand the sequence database, NeoMS could identify both
the regular peptides that do not contain mutations and the mutated peptides
containing exactly one amino acid mutation in a unified and efficient search work-
flow. For the identification of regular peptides, NeoMS outperformed all other
search engines: under the same FDR constraints, NeoMS identifies most PSMs
and peptides. These peptides are further examined by MHC-Flurry and more
than 90% of our peptides are bound to MHC. A distinct advantage of NeoMS
is that it can identify MHC-I peptides with a single amino acid mutation. In
our melanoma dataset, NeoMS identifies 544 mutated peptides. We examine the
binding affinities of these peptides before mutation and after mutation. Most of
the peptides binding affinity are increased by the mutation.

Indeed, there are certain limitations in the current NeoMS workflow. One
of the limitations is that it can only identify peptides with a single mutation.
While MHC-I peptides are typically short, there is still research value in iden-
tifying peptides with multiple mutations, as they can provide valuable insights
into tumor heterogeneity and immune response. Another limitation is that the
current NeoMS method is specifically designed for MHC-I peptides and does
not address the identification of MHC-II peptides. MHC-II molecules primarily
interact with immune cells, and their peptide length ranges from 13 to 25 amino
acids. The longer length of MHC-II peptides adds complexity to the identifi-
cation of mutated peptides. Future work should focus on improving NeoMS to
enable the identification of mutated peptides in the context of MHC-II.
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Abstract. Transposition is a well-known genome rearrangement event
that switches two consecutive segments on a genome. The problem of
sorting permutations by transpositions has attracted a great amount of
interest since it was introduced by Bafna and Pevzner in 1995. However,
empirical evidence has reported that, in many genomes, the participation
of repeat segments is inevitable during genome evolution and the break-
points where a transposition occurs are most likely accompanied by a
triple of repeated segments. For example, a transposition will transform
r x r y z r into r y z r x r, where r is a relative short repeat
appearing three times and x and y are long segments involved in the
transposition. For this transposition event, the neighbors of segments x
and y remain the same before and after the transposition. This type of
transposition is called flanked transposition.

In this paper, we investigate the problem of sorting by flanked transpo-
sitions, which requires a series of flanked transpositions to transform one
genome into another. First, we present an O(n) expected running time
algorithm to determine if a genome can be transformed into the other
genome by a series of flanked transposition for a special case, where each
adjacency (roughly two neighbors of two element in the genome) appears
once in both input genomes. We then extend the decision algorithm to
work for the general case with the same expected running time O(n).
Finally, we show that the new version, sorting by minimum number of
flanked transpositions is also NP-hard.

Keywords: Genome rearrangement · flanked transpositions · decision
algorithm · NP-hard
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dates back to the 1930 s, when Sturtevant and Dobzhansky found inversions on
the genome of drosophila [1,2]. With the development of DNA sequencing, more
and more genome rearrangement phenomena were discovered [3–5]. Sankoff et
al. described the genome rearrangement events with some basic operations on
the genomes, e.g., reversals, transpositions, block-interchanges and transloca-
tions [6], where reversals and transpositions occur the most frequently. Since
then, the problems of transforming one genome into another by some rearrange-
ment operations have been attracting a lot of attention in computational biology.

The problem of sorting by reversals has been investigated extensively. Watter-
son et al. pioneered the research on sorting by reversals [7]. For signed genomes,
Hannenhalli and Pevzner proposed an O(n4) time exact algorithm, where n is
the number of genes in the given permutation [8]. Sorting unsigned genomes by
reversals was shown to be NP-hard by Caprara [9], and APX-hard by Berman
et al. [10]. Other algorithmic improvements on sorting by reversals can be found
in [11–15,31].

The progress on sorting by transpositions is relatively slow. Before the estab-
lishment of its NP-hardness, Bafna and Pevzner presented the first approxima-
tion algorithm for this problem, which guarantees an approximation ratio of 1.5
and runs in O(n2) time, where n is the length of the input genomes [16]. Hart-
man and Shamir simplified their algorithm, and also improved the running time
to O(n1.5

√
log n) [17]. Consequently, Feng and Zhu proposed a data structure

called “permutation tree”, resulting in a running time of O(n log n) [18]. So far
as we know, Elias and Hartman’s algorithm holds the best approximation ratio
of 1.375 [19]. In 2012, Bulteau et al. proved that sorting by transpositions is NP-
hard, settling the complexity of this long standing open problem [20]. Another
interesting aspect of sorting by transpositions is the “transposition diameter”,
which is to find the genome of length n that consumes the largest number of
transpositions. Eriksson et al. presented an upper bound of the corresponding
diameter [21].

The above model assumes that the rearrangement events could occur at
any position of a genome. Statistics analysis showed that breakpoints, where
rearrangements occur, are often associated with repetitive segments [22,23].
In fact, this phenomenon has been independently discovered by some previ-
ous works since 1997 [24–27]. Recently, studies on Pseudomonas aeruginosa,
Escherichia coli, Mycobacterium tuberculosis and Shewanella further verified
that rearrangement events are associated with repeats and that repeat neighbors
of rearrangement segments remain the same before and after the rearrangement
events [28,29]. An example in [29] revealed that the transposition event swaps
the two consecutive segments 47 ∼ 60DS1 and 18 ∼ 46DS2 of two scaffolds
of Pseudomonas aeruginosa strains, where the repeats +R appear at the three
breakpoints. That is, one strains contains +R47 ∼ 60DS1 + R18 ∼ 46DS2 + R
and the other contains +R18 ∼ 46DS2+R47 ∼ 60DS1+R. Therefore, whether
there exist repeats at the breakpoints of rearrangement events such that the
repeat neighbors of rearrangement segments remain the same before and after
the rearrangement event may give us a clue on whether the calculated rearrange-
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ment scenarios are biologically meaningful. Other rearrangement events also fol-
lows the same rule. For example, the reversal transforming +y + B + x − B + z
into +y + B − x − B + z also have repeats +B and -B at the ends of x. The
neighbors of x remain the same before and after the reversal. Similar examples
were also found for block-interchanges, etc [28,29].

In this paper, we investigate the problem of sorting by flanked transposi-
tions, which requires a series of flanked transpositions to transform one genome
into another. For example, a transposition will transform r x r y z r into
r y z r x r, where r is a relative short repeat appearing three times and
x and y are long segments involved in the transposition. For this transposition
event, the neighbors of segments x and y remain the same before and after the
transposition. This type of transposition is called flanked transposition.

First, we present an O(n) expected running time algorithm to determine
if a genome can be transformed into the other genome by a series of flanked
transposition for a special case, where each adjacency appears once in both
input genomes. We then extend the decision algorithm to work for the general
case with the same expected running time O(n). Finally, we show that the new
version, sorting by minimum number of flanked transpositions is also NP-hard.

This paper is organized as follows. In Sect. 2, we give some preliminary defini-
tions. In Sect. 3, we present the decision algorithm for the simple case. In Sect. 4,
we extend the decision algorithm for the general case. The NP-hardness results
for the optimization version of the new model is given in Sect. 5. Section 6 gives
the conclusion. Due to space restriction, we put the proofs of this lemma and
some of the following lemmas and theorems in the appendix.

2 Preliminaries

In the literature on transposition, a genome is a permutation of integers from
N = {1, 2, . . . ,m}, where each integer stands for a gene (or a long segment of
DNA sequence).

For flanked transposition, let N = {1, 2, . . . ,m} be the set of genes and
R = {x1, x2, . . . , xk} be a set of distinct repeats, where each repeat represents a
(relatively) short DNA segment. A genome π is a string of length n over N ∪R,
where each x ∈ N appears once and every x ∈ R appears at least once. Each
repeat x ∈ R may appear more than once and the appearance of x is referred to
as its occurrence. The number of occurrences of the repeat x on π is its duplicate
number on the genome, denoted by dp[x, π]. The duplicate number of a genome
π, denoted by dp[π], is the maximum duplicate number of the repeats on the
genome. For example, the genome π = [x, y, x, 1, y, x] contains one gene and two
repeats x and y, where dp[1, π] = 1, dp[x, π] = 3, and dp[y, π] = 2. Thus, then
dp[π] = 3.

Two genomes π and τ over N∪R are related if the duplicate number of each
element is identical, i.e., for each element x ∈ N ∪ R, dp[x, π] = dp[x, τ ].

For simplicity, we set G = N ∪ R, and we can also assume that a genome π
is a sequence of length n over G, where every element x ∈ G with dp[x, π] = 1 is
a gene and every element x ∈ G with dp[x, π] > 1 is a repeat.
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A transposition swaps two consecutive segments on a genome. A transposition
ρ(i, j, k) will transform the genome π = [x1, . . . , xi−1, xi, . . . , xj−1, xj , . . . , xk−1, xk, . . . , xn]

into π′ = [x1, . . . , xi−1, xj , . . . , xk−1, xi, . . . , xj−1, xk, . . . , xn], where 1 ≤ i < j <

k ≤ n. For convenience, we use ρ(xi, xj , xk) or ρ(i, j, k) interchangeably to denote
π. A transposition is called a flanked transposition if xi = xj = xk. Note that, the
right neighbor of xi, xj and xk remain the same before and after the transposition.

Let π = [x1, x2, . . . , xn] be a genome, each element in π, say xi (1 ≤ i ≤ n),
can be represented by a pair of ordered nodes, xl

i and xr
i . Consequently, π can

also be described as [xl
1, x

r
1, x

l
2, x

r
2, . . . , x

l
n, xr

n]. Moreover, xr
i and xl

i+1 form an
adjacency, denoted by 〈xr

i , x
l
i+1〉, for 1 ≤ i ≤ n − 1. Let A[π] represent the set

of n − 1 adjacencies of π. A genome π is simple if the n − 1 adjacencies in A[π]
are distinct.

For the sake of unification, we add “0” to the two ends of every genome. Let’s
take the genome π = [0, 2, 3, 2, 1, 2, 3, 0] as an example to illustrate the above
notations. The set of adjacencies is A[π] = {〈0r, 2l〉, 〈2r, 3l〉, 〈3r, 2l〉, 〈2r, 1l〉,
〈1r, 2l〉, 〈2r, 3l〉, 〈3r, 0l〉}. π can also be viewed as [0l, 0r, 2l, 2r, 3l, 3r, 2l, 2r, 1l, 1r,

2l, 2r, 3l, 3r, 0l, 0r]. π is not simple since the adjacency 〈2r, 3l〉 appears twice.
Now, we formally define the problems investigated in this paper.

Definition 1. Sorting by flanked transpositions ( SFT). Instance: Two
related genomes π and τ , such that dp[π] = dp[τ ] ≥ 3. Question: Is there
a sequence of flanked transpositions that transforms π into τ?.

Definition 2. Sorting by the minimum number of flanked transpositions
(SMFT). Instance: Two related genomes π and τ , such that dp[π] = dp[τ ] ≥ 3.
Question: A sequence of flanked transpositions ρ1, ρ2, . . . , ρk that transforms
π into τ , such that k is minimized.

Hereafter, we assume that π = [x0, x1, . . . , xn, xn+1] and τ = [y0, y1, . . . ,
yn, yn+1] are two related genomes, where x0 = xn+1 = y0 = yn+1 = 0. Note
that, each xi is an occurrence of an element in π and each yj is an occurrence
of an element in τ . The indices i and j indicate their location in π and τ ,
respectively.

Since a flanked transposition always contains three occurrences xi, xj , and
xk of the same element(repeat), the following lemma is obvious.

Lemma 1. Let π be a genome and π′ be the genome obtained from π after a
flanked transposition. A[π] = A[π′].

Lemma 1 implies a necessary condition for answering SFT.

Theorem 1. π cannot be transformed into τ by a series of flanked transpositions
if A[π] 
= A[τ ].

3 An O(n) Expected Time Decision Algorithm
for the Simple Case

As a warm-up, in this section, we solve the problem of SFT in the case that π
and τ are simple and A[π] = A[τ ].
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3.1 The 2-Color and 3-Color Cycle Graphs

If an adjacency 〈xr
i−1, x

l
i〉 of π is identical to an adjacency 〈yr

j−1, y
l
j〉 of τ , i.e.,

xi−1 = yj−1 and xi = yj , we define a mapping f such that f(〈xr
i−1, x

l
i〉) =

〈yr
j−1, y

l
j〉. Since both π and τ are simple and A[π] = A[τ ], there is a unique

bijection mapping between A[π] and A[τ ].
Let f : A(π) → A(τ) be the bijection mapping. The adjacency 〈xr

i−1, x
l
i〉 in

π is matched to an adjacency 〈yr
j−1, y

l
j〉 in τ , where xi−1 and yj−1 (xi and yj)

are occurrences of the same element. That is,

f(〈xr
i−1, x

l
i〉) = 〈yr

j−1, y
l
j〉. (1)

Note that each adjacency 〈xr
i−1, x

l
i〉 in π is represented by the occurrences

of elements in π, e.g., xr
i−1 and xl

i, while each adjacency in τ is represented by
the occurrences of elements in τ , say, yr

j−1 and yl
j . The equality (1) holds, when

xi−1, xi, yj−1 and yj are represented by the names of their elements. (instead of
names of occurrences of elements).

Based on this bi-jection mapping f , we can construct the 2-color cycle graph
G(π, τ, f) as follows. For each xi (0 ≤ i ≤ n + 1) in π, we construct a red edge
(xl

i, x
r
i ), labelled by xi. For each yk (0 ≤ k ≤ n + 1) in τ , if f(〈xr

i−1, x
l
i〉) =

〈yr
k−1, y

l
k〉, and f(〈xr

j , x
l
j+1〉) = 〈yr

k, yl
k+1〉, then we connect xl

i and xr
j with a

blue edge labeled by yk. Specially, xl
0 and xr

0 (as well as xl
n+1 and xr

n+1) are
connected by a blue edge and a red edge. An example is shown in Fig. 1.

Fig. 1. The cycle graph G(π, τ, f). (Color figure online)

In fact, each occurrence of an element in π corresponds to a red edge, and
each occurrence of an element in τ corresponds to a blue edge in G(π, τ, f).

Note that each node in G(π, τ, f) is incident to one red edge and one blue
edge. Thus, G(π, τ, f) is composed of disjoint cycles, on which the red edges and
blue edges appear alternatively. Let s be an integer. A cycle composed of s blue
edges (also s red edges) is called an s-cycle, s is called the length of the cycle.
An s-cycle is an even (resp. odd) cycle if s is even (resp. odd). An s-cycle is a
long cycle when s ≥ 4.

The cycle graph constructed here for flanked transposition are quite different
from the original version.
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Lemma 2. All the nodes in the same cycle of G(π, τ, f) are from the occurrences
of the same element (repeat).

Thus, we will say that a cycle in the 2-color graph G(π, τ, f) corresponds to
an element. Now, we add the third color edges to a 2-color graph by connecting
each pairs of nodes xr

i and xl
i+1 (for all 0 ≤ i ≤ n) with a directed green edge

(xr
i , x

l
i+1)in G(π, τ, f) to form a 3-colored graph.

Lemma 3. If we connect each pairs of nodes xr
i and xl

i+1 (for all 0 ≤ i ≤ n)
with a directed green edge (xr

i , x
l
i+1)in G(π, τ, f), then all the blue edges and

green edges form a directed path P , where the directions of all green edges are
the same in P and the directions of blue edges are determined by the direction
of P accordingly, and the sequence of elements along the path is identical to
τ = (y0, y1, . . . , yn+1).

Hereafter, we use G(π, τ, f) to represent the 3-color graph and simply call
it cycle graph. A path with alternative blue and green edges is a directed path
and a cycle with alternative blue and red edges are undirected. Through the
cycle graph, we can obtain the condition that two related simple genomes are
identical.

Lemma 4. Given two related genomes ν and μ with A[ν] = A[μ]. then ν and
μ are identical, if and only if there exists a bijection f between A[ν] and A[μ],
such that the 2-color graph G(ν, μ, f) is composed of 1-cycles.

Lemma 4 provides an alternative away to transform π into τ , i.e., performing
a series of flanked transpositions to transform π into π∗, and find a bijection f∗

between π∗ and τ , till G(π∗, τ, f∗) only contains 1-cycles. Next, we show that
how a flanked transposition impacts G(π, τ, f).

Lemma 5. Let xi, xj and xk be three occurrences of the same element in π. Let
(xl

i, x
r
i′), (xl

j , x
r
j′), and (xl

k, xr
k′) be blue edges labeled by ya, yb, and yc, respec-

tively in G(π, τ, f). Let ρ(i, j, k) be a flanked transposition that transforms π
into π′. Then, there exists a bijection f ′ between A[π′] and A[τ ], such that
G(π′, τ, f ′) is different from G(π, τ, f) with blue edges (xl

i, x
r
i′), (xl

j , x
r
j′) and

(xl
k, xr

k′) being replaced by blue edges (xl
j , x

r
i′), (xl

k, xr
j′), and (xl

i, x
r
k′), and green

edges (xr
i−1, x

l
i), (xr

j−1, x
l
j) and (xr

k−1, x
l
k) replaced by green edges (xr

i−1, x
l
j),

(xr
j−1, x

l
k), and (xr

k−1, x
l
i), respectively. Moreover, other edges remain the same

in G(π′, τ, f ′).

Lemma 5 also shows that once we perform a flanked transposition, we will
also get a new bijection.

From Lemma 2, each cycle in G(π, τ, f) corresponds to exactly one element.
Since a flanked transposition always contains three occurrences of the same ele-
ment, a flanked transposition can only affect cycles corresponding to the same
element.

In the traditional transposition model, each gene appears exact once and
a transposition can affect more than one cycle, where each cycle may contain
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more than one element. Consequently, a genome can always be transformed into
the other by a series of transpositions. For the sorting by flanked transposition
problem, it is not always possible to transform one genome into the other by
using a series of flanked transpositions. Thus, the decision problem needs to be
solved first.

Suppose that ρ is a flanked transposition that transforms π into π′, and
the bijection changes from f to f ′ accordingly. Let c(π, τ, f) (resp. c(π′, τ, f ′)),
co(π, τ, f) (resp. co(π′, τ, f ′)) and ce(π, τ, f) (resp. ce(π′, τ, f ′)) denote the num-
ber of cycles, odd cycles, and even cycles in the 2-color graph G(π, τ, f) (resp.
G(π′, τ, f ′) ). We define Δo(ρ) = co(π′, τ, f ′) − co(π, τ, f), Δ(ρ) = c(π′, τ, f ′) −
c(π, τ, f). Bafna and Pevzner showed the following important property of trans-
positions, which still holds for flanked transpositions.

Lemma 6. [16] For every (flanked) transposition ρ, Δ(ρ) ∈ {2, 0,−2} and
Δo(ρ) ∈ {2, 0,−2}.

Now, we present another necessary condition for SFT.

Theorem 2. Let π and τ be two related simple genomes with A(π) = A(τ), and
f be the bijection between A(π) and A(τ). π cannot be transformed into τ by
a series of flanked transpositions if there exists some element x such that the
number of even cycles corresponding to x in G(π, τ, f) is odd.

Hereafter, we assume that the number of even cycles corresponding to every
element/repeat is even. In the following part of this section, we will show that the
condition is also sufficient by modifying all the cycles into 1-cycles. See Lemma
7.

The outline to convert all cycles into 1-cycles is the same as [16], where we
first repeatedly split long cycles so that there are only 2-cycles and 3-cycles left.
We then remove 2-cycles. After that we remove 3-cycles. The way to remove
2-cycles is simple and identical to that in [16]. The ways to split long cycles and
remove 3-cycles contain brand new techniques and are totally different here.

3.2 Splitting Long (Red and Blue) Cycles

Let us consider an arbitrary long (red and blue) cycle, C = (xl
p, x

r
p, x

l
i, x

r
i , x

l
j ,

xr
j , x

l
k, xr

k, xl
q, x

r
q, . . . , x

l
p) with length s such that s ≥ 4 in G(π, τ, f), where q = p

when s = 4. From Lemma 2, all the xi in C are occurrences of the same element,
say, x. Recall that, each blue edge is labeled with an occurrence of the element
in τ . We assume that the blue edge (xr

i , x
l
j) in C is labeled with yb and the blue

edge (xr
k, xl

q) in C is labeled with ya, where ya and yb are both occurrences of x
in τ .

By adding an occurrence of x at proper positions of π and τ , respectively,
We will obtain π′ and τ ′ such that in G(π′, τ ′, f ′)(where f ′ is a bijection between
A(π′) and A(τ ′) ), C is split into an (s − 2) cycle and a 3-cycle. Repeating the
process, we can obtain a pair of new genomes π′ and τ ′, as well as a bijection
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f ′ between A(π′) and A(τ ′), such that all the cycles in G(π′, τ ′, f ′) are of length
s ≤ 3.

Consider an arbitrary occurrence, say, xi, of the element x in the long cycle
C. By adding a new occurrence xi′ of the common element x in C at the position
right to xi in π, we get a new genome π′.

Starting from xr
i , we can through nodes/edges in the long cycles C in the

order xl
j , xr

j , xl
k, xr

k, xl
q, and xr

q. Consider the blue edge (xr
k, xl

q) in G(π, τ) that
is labeled with ya, where ya is an occurrence of x in τ . Let f be the bijection
between A(π) and A(τ). We have f(〈xr

k, xl
k+1〉) = 〈yr

a, yl
a+1〉, where xk+1 and

ya+1 are occurrences of some elements on the right of xk and ya in π and τ ,
respectively. Similarly, we have f(〈xr

q−1, x
l
q〉) = 〈yr

a−1, y
l
a〉. Recall that , the blue

edge (xr
i , x

l
j) is labeled with yb. Then we have, f(〈xr

j−1, x
l
j〉) = 〈yr

b−1, y
l
b〉 and

f(〈xr
i , x

l
i+1〉) = 〈yr

b , yl
b+1〉.

Finally, by adding a new occurrence ya′ of the common element x in C at
the position right to ya in τ , we get a new genome τ ′.

It is easy to see that A(π′) = A(τ ′). In fact, A[π′] = A[π] − {〈xr
i , x

l
i+1〉} +

{〈xr
i , x

l
i′〉, 〈xr

i′ , xl
i+1〉}, and A[τ ′] = A[τ ] − {〈yr

a, yl
a+1〉} + {〈yr

a, yl
a′〉, 〈yr

a′ , yl
a+1}.

Though π′ and τ ′ could no longer be simple, we can still obtain a bijection f ′

between A(π′) and A(τ ′) by changing f as follows:

– Remove 2 the mapping f(〈xr
k, xl

k+1〉) = 〈yr
a, yl

a+1〉 and f(〈xr
i , x

l
i+1〉) =

〈yr
b , yl

b+1〉 from f .
– Add 3 new matches, (1) f ′(〈xr

k, xl
k+1〉) = 〈yr

a′ , yl
a+1〉, (2) f ′(〈xr

i , x
l
i′〉) =

〈yr
a, yl

a′〉, and (3) f ′(〈xr
i′ , xl

i+1〉) = 〈yr
b , yl

b+1〉 in f ′.

Using f ′, we can obtain G(π′, τ ′, f ′). The only reason that we define f ′ in
the above way is that G(π′, τ ′, f ′) is constructed from f ′, the long cycle C in
G(π, τ, f) is decomposed into a (s−2)-cycle and a 3-cycle in G(π′, τ ′, f ′). In fact,
G(π, τ, f) is changed into G(π′, τ ′, f ′) (see Fig. 2) as follows:

(a) Add two new nodes xl
i′ and xr

i′ , which are connected by a red edge.
(b) Remove the two blue edges (xr

k, xl
q) and (xr

i , x
l
j), since the two matches

f(〈xr
k, xl

k+1〉) = 〈yr
a, yl

a+1〉 and f(〈xr
i , x

l
i+1〉) = 〈yr

b , yl
b+1〉 don’t belonging to

f ′, .
(c) Add a blue edge (xl

i′ , xr
k), which is labeled by ya′ , due to the two new

matches (1) and (2). Add a blue edge (xl
q, x

r
i ), which is labeled by ya,

due to the match f(〈xr
q−1, x

l
q〉) = 〈yr

a−1, y
l
a〉, which still exists in f ′, and

(2). Add a blue edge (xr
i′ , xl

j), which is labeled by yb, due to the match
f(〈xr

j−1, x
l
j〉) = 〈yr

b−1, y
l
b〉, which still exists in f ′, and (3).

As a result, in G(π′, τ ′, f ′), (xl
i′ , xr

i′ , xl
j , x

r
j , x

l
k, xr

k, xl
i′) is a 3-cycle, while

(xl
p, x

r
p, x

l
i, x

r
i , x

l
q, xr

q, . . . , x
l
p) becomes an (s − 2)-cycle.

Lemma 7. If π can be transformed into τ by m flanked transpositions, then π′

can be transformed into τ ′ by at most m + 1 flanked transpositions. If π′ can be
transformed into τ ′ by m′ flanked transpositions, then π can be transformed into
τ by at most m′ flanked transpositions.
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Fig. 2. Splitting a long cycle: We illustrate the general case of a long cycle, where
dashed lines represents the nodes/edges after xr

q in C. In order to draw the figure,
we arbitrarily fixed the order of the relative positions of the occurrences of the same
element x (i.e., xi, xj , xk, xp, and xq)in π. This will not affect the general scenario if
we just focus on the order of edges in the cycles. (Color figure online)

After long cycle splitting, let the resulting genomes be π̂ and τ̂ , and the
bijection be f̂ . Then G(π̂, τ̂ , f̂) only contains 1-cycles, 2-cycles and 3-cycles.
Moreover, the numbers of even cycles in G(π̂, τ̂ , f̂) is still even.

The way that we handle long red and blue cycle is different from that in [16]
due to the fact that each flanked transposition corresponds to three occurrences
of the same element.

3.3 Removing (Red and Blue) 2-Cycles

From Theorem 2, for each element x, the number of even (red and blue) cycles
must be even.

Lemma 8. In G(π̂, τ̂ , f̂), any two red and blue 2-cycles corresponding to the
same element can be transformed into a 1-cycle and a 3-cycle by a flank trans-
position.

By use of Lemma 11, all the 2-cycles can be transformed into 3-cycles and
1-cycles, provided that the number of even cycles corresponding to each element
in G(π̂, τ̂) is even. Let the resulting genome be π̄, and the bijection becomes f̄ ,
then there are only 1-cycles and 3-cycles in G(π̄, τ̂ , f̄).

The above way to handle 2-cycle is similar to that in [16] except that two
2-cycles correspond to the same element.

3.4 Handling (Red and Blue) 3-Cycles

Given a (red and blue) 3-cycle C = (xr
i , x

l
j , x

r
j , x

l
k, xr

k, xl
i) in G(π̄, τ̂ , f̄), there are 6

permutations of xi, xj and xk. They are classified into two groups. C is oriented
if i < k < j or j < i < k or k < j < i, and C is unoriented if i < j < k or
j < k < i or k < i < j. As shown in Fig. 3, the 3-cycle in (a) is oriented, and
the 3-cycle in (b) is unoriented.

The following observation is well-known in the literature of genome rear-
rangement, which was first proposed as Lemma 3.3 in [16].

Observation 1. Performing a flanked transposition on an oriented 3-cycle will
transform it into three 1-cycles, and performing a flanked transposition on an
unoriented 3-cycle will transform it into another unoriented 3-cycle.
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Fig. 3. Two types of a 3-cycle C = (xr
i , x

l
j , x

r
j , x

l
k, xr

k, xl
i), where (xr

i , x
l
j), (xr

j , x
l
k), and

(xr
k, xl

i) are blue edges, and (xl
i, x

r
i ), (xl

j , x
r
j ), and (xl

k, xr
k) are red edges. (Color figure

online)

In the previous studies on sorting genomes by transposition [16,17], once
there is an unoriented 3-cycle (assume the indices of the three occurrences are i,
j and k, where i < j < k), then a transposition ρ(a, b, c), such that i < a < j <
b < k < c or a < i < b < j < c < k, will transform this unoriented 3-cycle into
an oriented 3-cycle. In other words, it only needs one additional transposition to
generate an oriented 3-cycle. For the flanked transposition model, this method
does not work, since the three occurrences involved by a flanked transposition
must be of the same element. In the following, we present a new method to
generate an oriented 3-cycle by a series of flanked transpositions.

Let (xα
i , xβ

j ) and (xα′
i′ , xβ′

j′ ) be two blue edges in G(π̄, τ̂), where i < j, i′ < j′

and {α, β} = {α′, β′} = {l, r}. We say that (xα
i , xβ

j ) and (xα′
i′ , xβ′

j′ ) cross if
i < i′ < j < j′ or i′ < i < j′ < j. Note that the blue edge of 1-cycle does not
cross any other blue edge, the three blue edge of an oriented 3-cycle cross with
each other, and any two of the three blue edges of an unoriented 3-cycle cross.
Two cycles C and C′ cross with each other if there exist two blue edges e ∈ C
and e′ ∈ C′, such that e and e′ cross.

Lemma 9. In G(π̄, τ̂ , f̄), an unoriented 3-cycle must cross with at least one
other 3-cycle. Equivalently, a 3-cycle that does not cross with any other cycle
must be oriented.

An unoriented 3-cycle can be represented as C = (xl
i, x

r
i , x

l
j , x

r
j , x

l
k, xr

k, xl
i)

with i < j < k. (See Fig. 4.) For an unoriented 3-cycle C, we obtain a graph
G(π̄, τ̂ , f̄)(C) by deleting all the nodes and edges in C from G(π̄, τ̂ , f̄), and con-
necting xr

i and xl
j , where xi and j are the two adjacent nodes of any two con-

secutive occurrences in π (after deleting) via a green edge. If the blue edges and
green edges still form a path connection all the nodes in G(π̄, τ̂ , f̄)(C), we say
that C is reducible, and the path is called the remaining path of C; otherwise, C
is irreducible. We give an example to show reducible and irreducible 3-cycles in
Fig. 4.

Constructing a Pair of New Genomes by Deleting a Reducible 3-Cycle
C:



302 H. Xu et al.

Fig. 4. An example to illustrate how an irreducible 3-cycle becomes recducible by a
flanked transposition. (Color figure online)

Let C = (xl
i, x

r
i , x

l
j , x

r
j , x

l
k, xr

k, xl
i) with i < j < k be a (unoriented) reducible

3-cycle in G(π, τ, f), where there are only 3-cycles and 1-cycles in G(π, τ, f). Let
G(π, τ, f)(C) be the graph obtained from G(π, τ, f) by deleting all the nodes and
edges in C and adding green edges as in the definition of reducible 3-cycle. Since
C is reducible, there exists a blue and green path connecting all the nodes in
G(π, τ, f)(C).

Let the blue edges (xr
k, xl

i), (xr
i , x

l
j) and (xr

j , x
l
k) be labeled by yp, yq and yr

in τ , respectively. Let π′ be the genome obtained by deleting xi, xj and xk from
π. Let τ ′ be the sequence of labels (ya’) of blue edges along the blue and green
path in G(π, τ, f)(C).

Lemma 10. There is a bijection f ′ between A[π′] and A[τ ′], such that
G(π′, τ ′, f ′) is the same as G(π, τ, f)(C).

Any irreducible unoriented 3-cycle can be represented as C = (xl
i, x

r
i , x

l
j , x

r
j ,

xl
k, xr

k, xl
i), with i < j < k.

Lemma 11. An irreducible unoriented 3-cycle C = (xl
i, x

r
i , x

l
j , x

r
j , xl

k, xr
k, xl

i) in
G(π, τ, f) will be transformed into a reducible unoriented 3-cycles by the flanked
transposition ρ(i, j, k).

Proof. Let the blue edges (xl
i, x

r
k), (xl

j , x
r
i ) and (xl

k, xr
j)x

l
k) are labeled by yp, yq

and yr in τ , respectively. From Lemma 3, the 3-colored graph G(π, τ, f) contains
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a blue and green path P corresponding to τ , where the left end of P is yl
0 and

the right end of P is yr
n+1. Along this direction, τ = [y0, . . . , yn+1]. Let (xl

t, x
r
i−1)

be the blue edge incident to xr
i−1, where xt in π and xr

i−1 are occurrence of the
same element. So the path must be of the form [. . . , xl

t, x
r
i−1, x

l
i, x

r
k, . . .] according

to the direction, then the directed blue edge (xl
t, x

r
i−1) must be labeled by yp−1.

Note that, each xr
i / xl

i is incident to an unique blue edge and an unique green
edge as well. Similarly, the blue edges incident to xr

j−1, xl
j+1, xr

k−1, and xl
k+1 are

labeled by yq−1, yr+1, yr−1, and yp+1, respectively (Fig. 4-(a)). Next, we show
that C is reducible if and only if p < q < r or q < r < p or r < p < q.

We use a, b and c to indicate the minimum, medium, and maximum number
in {p, q, r}, respectively. Then, τ = [y0, . . ., ya−1, ya, ya+1, . . ., yb−1, yb, yb+1,
. . . , yc−1, yc, yc+1, . . ., yn+1]. After deleting ya, yb, and yc, τ is partitioned into
four sub-sequences: (P1) [y0, . . ., ya−1], (P2) [ya+1, . . ., yb−1], (P3) [yb+1, . . . ,
yc−1], and (P4) [yc+1, . . ., yn+1]. In G(π, τ, f)(C), the three new green edges
(xr

i−1, x
l
i+1), (xr

j−1, x
l
j+1) and (xr

k−1, x
l
k+1) connect the three pairs yp−1 and

yq+1, yq−1 and yr+1, and yr−1 and yp+1, respectively. Based on the order of p,
q, r in τ , we have the following cases.

Case (1): p < q < r (i.e.,a = p, b = q, c = r), q < r < p (i.e.,a = q, b = r,
c = p), or r < p < q (i.e.,a = r, b = p, c = q). In each of the three cases, the three
pairs ya−1 and yb+1, yb−1 and yb+1, and yc−1 and ya+1 are connected by the
three new green edges (xr

i−1, x
l
i+1), (xr

j−1, x
l
j+1) and (xr

k−1, x
l
k+1), connecting

the three pairs ya−1 and yb+1, yb−1 and yb+1, and yc−1 and ya+1. Then the
four sub-sequences can form a new genome τ ′ = [y0, . . . , ya−1,yb+1, . . . , yc−1,
ya+1, . . . , yb−1, yc+1, . . . , yn+1]. Thus, in this case, C is reducible.

Case (2): r < q < p (i.e.,a = r, b = q, c = p), p < r < q (i.e.,a = p, b = r,
c = q) , or q < p < r (i.e.,a = q, b = p, c = r). In each of the three cases, the
three pairs ya−1 and yb+1, yb−1 and yb+1, and yc−1 and ya+1 are connected by
the three new green edges (xr

i−1, x
l
i+1), (xr

j−1, x
l
j+1) and (xr

k−1, x
l
k+1), connecting

the three pairs ya−1 and yb+1, yb−1 and yb+1, and yc−1 and ya+1. Then the four
sub-sequences can not form a new genome. Instead, they form a linear sequence
[y0, . . . , ya−1, yc+1, . . . , yn+1], and two circular sequences [ya+1, . . . , yb−1], and
[yb+1, . . . , yc−1], where yb−1 connects ya+1 and yc−1 connects yb+1, respectively.
Thus, in this case, C is irreducible.

Since C is irreducible, we only have to consider Case(2).
By performing ρ(i, j, k), π′ = π•ρ(i, j, k). From Lemma 8, blue edges (xl

i, x
r
k)(

labeled by yp), (xl
j , x

r
i ) (labeled by yq) and (xl

k, xr
j)(labeled by yr) are replaced

by (xl
j , x

r
k) (labeled by yp), (xl

k, xr
i ) (labeled by yq), and (xl

i, x
r
j) (labeled by yr),

respectively. Also we can obtain a bijection f ′ as in the proof of Lemma 8. Thus,
C = (xl

i, x
r
i , x

l
j , x

r
j , xl

k, xr
k, xl

i) in G(π, τ, f) becomes C′ = (xl
j , x

r
j , x

l
i, x

r
i , x

l
k, xr

k, xl
j)

in G(π′, τ, f ′). Other edges remain the same in G(π′, τ, f ′). Again, the blue and
green path P ′ in G(π′, τ, f ′) also lead to τ = y0, y1, . . . , yn+1 according to the
order of their blue edges in P ′. Again, by deleting C′, τ is partitioned into four
sub-sequences: (P1) [y0, . . ., ya−1], (P2) [ya+1, . . ., yb−1], (P3) [yb+1, . . . , yc−1],
and (P4) [yc+1, . . ., yn+1]. Moreover, the three new green edges (xr

i−1, x
l
j+1),

(xr
j−1, x

l
k+1) and (xr

k−1, x
l
i+1) (after applying ρ(i, j, k) on π) connect the three
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Algorithm 1. decision algorithm for the simple case
Input: two related simple genomes π and τ .
Output: Yes/No (whether π can be transformed into τ by a series of flanked
transpositions).

1: Set up an arbitrary bijection f between A[π] = A[τ ].
2: if there exist an unmatched adjacency then
3: return No
4: end if
5: Construct the cycle graph G(π, τ) based on the bijection f .
6: for each element x do
7: Count the number ce(x, π, τ, f) of even cycles corresponding to x in G(π, τ, f).
8: end for
9: if there exist an element x, such that ce(x, π, τ, f) is odd. then

10: return No.
11: else
12: return Yes.
13: end if

pairs yp−1 and yr+1, yr−1 and yq+1, and yq−1 and yp+1 in G(π′, τ, f ′)(C′), respec-
tively.

In each of the three cases (r < q < p, p < r < q, or q < p < r), the three
pairs ya−1 and yb+1, yb−1 and yb+1, and yc−1 and ya+1 are connected by the
three new green edges (xr

i−1, x
l
j+1), (xr

j−1, x
l
k+1) and (xr

k−1, x
l
i+1), connecting

the three pairs yp−1 and yr+1, yr−1 and yq+1, and yq−1 and yp+1. Then the
four sub-sequences can form a new genome τ ′ = [y0, . . . , ya−1,yb+1, . . . , yc−1,
ya+1, . . . , yb−1, yc+1, . . . , yn+1]. Thus, C′ is reducible.

Lemma 12. For any pair of genomes π and τ with f being a bijection between
A[π] and A[τ ], if there are only 3-cycles and 1-cycles in G(π, τ, f), then there
exist a series of flanked transpositions to convert all the 3-cycles into 1-cycles
and thus transform π into τ .

Theorem 3. Given two related simple genomes π and τ , π can be transformed
into τ by a series of flanked transpositions if and only if A[π] = A[τ ] and the
number of even cycles corresponding to each repeat in G(π, τ, f) is even, where
f is the bijection between A[π] and A[τ ].

The pseudo-code are shown in Algorithm 1.

Analysis of the Running Time of Algorithm 1: While setting up the bijec-
tion mapping, we can put the adjacencies of A[π] into a hash table, then search
for each adjacency of A[τ ] in this hash table, if the search fails, then A[π] 
= A[τ ],
we will return “No”. The expected running time of this process is O(n). Once
we have obtained the bijection mapping f , the nodes and red edges of the cycle
graph G(π, τ, f) can be constructed in linear time, the blue edges can also be con-
structed by traversing the occurrences in τ one by one in linear time. By travers-
ing all the blue edges and red edges, we can figure out the number ce(x, π, τ, f) of
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even cycles corresponding to each element x, which takes O(n) time. Therefore,
Algorithm 1 has an expected running time O(n).

4 Extension to the General Case

In this section, we handle the general case when π and τ might not be simple,
i.e., A[π] is no longer a set but a multi-set, and so is A[τ ]. We assume that
A[π] = A[τ ].

Let xi and xj be two different occurrences of element u in π and xi+1 and
xj+1 be two different occurrences of element v in π. Then the adjacency between
xi and xi+1 is the same as the adjacency between xj and xj+1. and they appear
twice in A(π). In the general case, an adjacency may appear in A(π) more than
once. To handle this case, for any consecutive occurrences xi, and xi+1 of element
x, we will add a new element z between xi and xi+1 in π. Here each z appears
once in the genome. If there are a total number of q consecutive occurrences of
different elements in π, We will introduce q new letters.

Lemma 13. Let π = [x0, . . . , xi−1, xi, . . . , xn+1], τ = [y0, . . . , yj−1, yj , . . . ,
yn+1], where xi−1, xi, yj−1, and yj are all occurrences of some element. Let z
be a new element not appearing in π and τ , π′ = [x0, . . . , xi−1, z, xi, . . . , xn+1],
τ ′ = [y0, . . . , yj−1, z, yj , . . . , yn+1]. Then, π can be transformed into τ by a series
of flanked transpositions, if and only if π′ can be transformed into τ ′ by a series of
flanked transpositions.

From Lemma 13, We can scan π from left to right, once there exist two
consecutive occurrences of the same element, we insert an occurrence of a new
element between them in π, then find two consecutive occurrence of the same
element in τ , also insert an occurrence of the same new element between them in
τ . We will obtain two new genomes, such that there is no consecutive occurrences
of the same element in both. We still use π and τ to denote the two genomes.

As A[π] = A[τ ], there are a lot of bijections between A[π] and A[τ ]. According
to an arbitrary bijection f , we can construct the cycle graph G(π, τ, f). From
Theorem 3, we would be lucky if the number of even cycles corresponding to each
element is even. Otherwise, we have to try some other bijections. An element is
safe under a bijection f if there are an even number of even cycles corresponding
to it in G(π, τ, f); otherwise, it is unsafe. The safety of an element refers to
whether it is safe or not.

Intuitively, it is nearly impossible to find a proper bijection, under which all
the elements are safe, since there could be an exponential number of bijections,
but the following lemma gives us a critical clue to a proper bijection.

Let 〈xr
i , x

l
i+1〉 and 〈xr

j , x
l
j+1〉 be two identical adjacencies in A[π], and accord-

ing to the bijection f , 〈xr
i , x

l
i+1〉 is matched to 〈yr

p, yl
p+1〉 and 〈xr

j , x
l
j+1〉 is

matched to 〈yr
q , yl

q+1〉. Let f ′ be another bijection, in which 〈xr
i , x

l
i+1〉 is matched

to 〈yr
q , yl

q+1〉, 〈xr
j , x

l
j+1〉 is matched to 〈yr

p, yl
p+1〉, and all the other matches in

f ′ are the same as f . Assume that xi, xj , yp, and yq are occurrences of the
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element u, and xi+1 xj+1, yp+1,yq+1 are occurrences of the element v. Let cf
e (u)

and cf ′
e (u) denote the number of even (blue and red) cycles corresponding to the

element u in G(π, τ, f) and G(π, τ, f ′) respectively. Then, we have,

Lemma 14. cf ′
e (u) − cf

e (u) ∈ {−1, 1}, and cf ′
e (v) − cf

e (v) ∈ {−1, 1}.
Proof. There must be two occurrences of u, say xa and xb, such that (xl

a, xr
i )

(labeled by yp) and (xl
b, x

r
j) (labeled by yq) are blue edges in G(π, τ, f). Then,

we have
f(〈xr

a−1, x
l
a〉) = 〈yr

p−1, y
l
p〉, f(〈xr

i , x
l
i+1〉) = 〈yr

p, yl
p+1〉,

f(〈xr
b−1, x

l
b〉) = 〈yr

q−1, y
l
q〉, f(〈xr

j , x
l
j+1〉) = 〈yr

q , yl
q+1〉.

Based on f , there are two blue edges (xl
a, xr

i ) (labeled by yp) and (xl
b, x

r
j) (labeled

by yq) in G(π, τ, f ′). When the bijection changes from f to f ′, we have,

f ′(〈xr
a−1, x

l
a〉) = 〈yr

p−1, y
l
p〉, f ′(〈xr

j , x
l
j+1〉) = 〈yr

p, yl
p+1〉,

f ′(〈xr
b−1, x

l
b〉) = 〈yr

q−1, y
l
q〉, f ′(〈xr

i , x
l
i+1〉) = 〈yr

q , yl
q+1〉.

The rest part of f ′ is the same as f . Based on f ′, the two new blue edges
(xl

a, xr
j) (labeled by yp) and (xl

b, x
r
i ) (labeled by yq) in G(π, τ, f ′) replace two

blue edges (xl
a, xr

i ) (labeled by yp) and (xl
b, x

r
j) (labeled by yq) in G(π, τ, f ′).

Now, we consider two cases:
Case (I): xi and xj are in the same cycle, say C, in G(π, τ, f): Since both xl

i

and xr
i are in C, let us start with node xl

i.
There is a path P1 from xl

i to xr
b not including xl

a in C. Similarly, there is
another path P2 from xl

j to xr
a not including xr

b in C, where the P! and P2 are
node disjoint. See the dashed lines in Fig. 5 (a), where xr

a and xl
i are connected

via two red edges with the blue edge (xl
a, xr

i ) (labeled by yp) in the middle, and
xr

j and xb =l are connected via two red edges with the blue edge (xr
b , x

l
j) (labeled

by yq) in the middle.
When the bijection is changed from f to f ′, the paths P1 and P2 still exist in

G(π, τ, f ′). P1, the blue edge (xl
b, x

r
i ), and the two red edges (xl

i, x
r
i ) and (xl

b, x
r
b)

form a cycle C′ = (xl
b, x

r
b , P1, x

l
i, x

r
i , x

l
b). Also, P2, the blue edge (xl

a, xr
j), and the

two red edges (xl
j , x

r
j) and (xl

a, xr
a) form a cycle C′′ = (xl

a, xr
a, P2, x

l
j , x

r
j , x

l
a). See

Fig. 5 (b).
Assume that C is an s-cycle, C′ is an s′-cycle and C′′ is an s′′-cycle, then

s = s′ + s′′. If s is even, s′ and s′′ are both even or both odd. Thus, cf ′
e (u) −

cf
e (u) ∈ {−1, 1}. If S is odd, one of s′ and s′′ is even and the other is odd. Thus,

cf ′
e (u) − cf

e (u) ∈ {−1, 1}. Therefore, cf ′
e (u) − cf

e (u) ∈ {−1, 1} in any case.
Case (II): xi and xj are in two different cycles, say C′ and C′′, in G(π, τ, f).
In C′, xr

a and xl
i are connected via two red edges with the blue edge (xl

a, xr
i )

(labeled by yp) in the middle. Thus there must be a path P1 from xl
i to xr

a on
C′. In C′′, xr

b and xl
j are connected via two red edges with the blue edge (xl

b, x
r
j)

(labeled by yq) in the middle. Thus, there must be a path P2 from xl
j to xr

b on
C′′. See the dashed lines in Fig. 5 (c)
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Algorithm 2. decision algorithm for the general case
Input: two related simple genomes π and τ .
Output: Yes/No (whether π can be transformed into τ by a series of flanked
transpositions).

1: Set up the bijection f between A[π] = A[τ ].
2: if there exist an unmatched adjacency then returnNo
3: end if
4: Construct the cycle graph G(π, τ, f) based on the bijection f
5: for each element x do
6: count the number ce(x, π, τ, f) of even cycles corresponding to x in G(π, τ, f).
7: if ce(x, π, τ, f) is odd then
8: mark x as unsafe.
9: end if

10: end for
11: Construct the multi-common adjacency graph MCA(π) of π.
12: for each connected component in MCA(π) do
13: if the number of unsafe vertices is odd. then returnNo.
14: elsereturnYes.
15: end if
16: end for

When the matching is changed from f to f ′, the paths P1 and P2 still exist,
and form a cycle C together with the two blue edges (xl

b, x
r
i ) and (xl

a, xr
j), and the

four red edges (xl
a, xr

a), (xl
b, x

r
b), (xl

i, x
r
i ) and (xl

j , x
r
j), in G(π, τ, f ′), i.e., C = (xl

a,
xr

a, P1, xl
i, xr

i , xl
b, xr

b , P2, xl
j , xr

j , xl
a). (As shown in Fig. 5-(d).) Assume that C

is an s-cycle, C′ is an s′-cycle and C′′ is an s′′-cycle, then s′ + s′′ = s. Similarly,
we can verify that cf ′

e (u) − cf
e (u) ∈ {−1, 1}.

A similar proof can show that cf ′
e (v) − cf

e (v) ∈ {−1, 1}.

Now we construct the multi-common adjacency graph MCA(π) of π. Con-
struct a vertex for each element, and there is an edge between a pair of vertices
u and v if and only if the adjacency 〈ur, vl〉 or 〈vr, ul〉 appears more than once
in A[π].

Theorem 4. Let π and τ be two related genomes, and f be an arbitrary bijec-
tion between A[π] and A[τ ]. π can be transformed into τ by a series of flanked
transpositions if and only if A[π] = A[τ ] and the number of unsafe elements in
each connected component of MCA(π) is even.

The pseudo-code of the algorithm for the general case is shown in Algorithm
2.

Analysis of the Running Time of Algorithm 2: Step 1 to 11 of Algorithm
2 is the same as Algorithm 1. Thus the expected running time of these steps is
O(n). Since the length of input genomes is n + 1, the number of elements and
adjacencies are less than n + 1, so the number of common adjacencies also less
than n + 1. Thus, in the multi-common adjacency graph MCA(π) of π, both
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Fig. 5. Two cases while changing the matching of two common adjacencies. (Color
figure online)

the number of vertices (represent elements) and the number of edges( represent
common adjacencies) are O(n). The breadth-first search of MCA(π) will find
out all the connected components of MCA(π), which takes O(n) time. Finally,
it takes O(n) time to count the number of unsafe vertices in each connected
component of MCA(π). Therefore, the time complexity of Algorithm 2 is O(n)
expected time.

Finally, in the next section we show that sorting by the minimum flanked
transpositions is NP-hard.
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5 Hardness Result for the Optimization Version

In this section, we show that the optimization version of the sorting by flanked
transpositions problem SMFT is NP-hard, even if the two input genomes are
simple and both of them have a duplicate number of three. Firstly, we recall the
traditional problem of sorting by transpositions.

Definition 3. Sorting by transpositions, abbreviated as SBT.
Instance: A permutation χ = [χ0, χ1, . . . , χn], where χ0 = 0, χn = n,

χi ∈ {1, 2, . . . , n − 1} for 1 ≤ i ≤ n − 1, and χi 
= χj if i 
= j, an identity
permutation ι = [0, 1, . . . , n].

Question: A sequence of transpositions ρ1, ρ2, . . . , ρK that transform χ into
ι, such that K is minimized.

As introduced in [16], we can construct a breakpoint graph BP (χ) as follows.
Construct two nodes, named χl

i and χr
i , for each χi (0 ≤ i ≤ n). Connect χr

i and
χl

i+1 with a red edge, and connect ir and (i+1)l with a blue edge. The breakpoint
graph BP (χ) is composed of disjoint cycles, on which red edges and blue edges
appear alternatively. The breakpoint graph also fulfills the proposition that, all
blue and green edges form an path while connecting χr

i and χl
i+1 with a green

edge, for 1 ≤ i ≤ n. An s-cycle is a cycle that contains s red edges and s blue
edges. A permutation is called a 3-permutation if all the cycles in its breakpoint
graph are 3-cycles [30]. In [20], whether a 3-permutation of length n + 1 can be
sorted by n/3 transpositions is shown to be NP-hard.

Theorem 5. It is NP-hard to find a minimum number of flanked transpositions
to transform a genome π into another genome τ when the transformation is
possible, even if π and τ are simple and dp[π] = dp[τ ] = 3.

6 Discussion and Conclusion

It has been observed that transpositions are associated with 3 identical repeats
at the ends of the two swapped segments in many cases. Thus, the proposed
model (flanked transposition) is biological meaningful compared with the tradi-
tional model. However, it is worth to point out that some repeats may disappear
due to various reasons. Thus, it is perhaps only of theoretical interest, if we
merely consider flanked transpositions. A more interesting open problem is to
add minimum number of occurrences of elements to the two input genomes so
that the two new genomes can be transformed by flanked transpositions from
one to the other.
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Abstract. Single-cell RNA-seq (scRNA-seq) is a powerful technique for assaying
transcriptional profile of individual cells. However, high dropout rate and overdis-
persion inherent in scRNA-seq hinders the reliable quantification of genes. Recent
bioinformatic studies switched the conventional gene-level analysis to APA (alter-
native polyadenylation) isoform level, and revealed cell-to-cell heterogeneity in
APAusages andAPAdynamics in different cell types. The additional layer of APA
isoforms creates immense potential to develop cost-efficient approaches for dis-
secting cell types by integratingmultiplemodalities derived from existing scRNA-
seq experiments. Herewe proposed a pipeline called scAPAfuse for enhancing cell
type clustering and identifying of novel/rare cell types by combing gene expres-
sion and APA profiles from the same scRNA-seq data. scAPAfuse first maps gene
expression and APA profiles to a shared low-dimensional space using partial least
squares. Then anchors (i.e., similar cells) between gene and APA profiles were
identified by constructing the nearest neighbors of cells in the low-dimensional
space, using algorithms like hyperplane local sensitive hash and shared nearest
neighbor. Finally, gene and APA profiles were integrated to a fused matrix, using
the Gaussian kernel function. Applying scAPAfuse on four public scRNA-seq
datasets including human peripheral blood mononuclear cells (PBMCs) and Ara-
bidopsis roots, new subpopulations of cells that were undetectable using the gene
expression or APA profile alone were found. scAPAfuse provides a unique strat-
egy to mitigate the high sparsity of scRNA-seq by fusing gene expression and
APA profiles to improve cell type clustering, which can be included in many other
routine scRNA-seq pipelines.

Keywords: single-cell RNA-seq · cell type clustering · alternative
polyadenylation

1 Introduction

Single-cell RNA-seq (scRNA-seq) is a powerful technique for assaying transcriptional
profile of individual cells, which can be utilized for discovering cell types, reconstructing
developmental trajectories, and spatially modeling complex tissues [1]. Unsupervised
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clustering based on the transcriptome similarity is probably a central component of most
scRNA-seq analytical workflows to identify putative cell types. However, high dropout
rate and overdispersion inherent in scRNA-seq hinders the reliable quantification of
genes, especially the lowly and/or moderately expressed ones [2, 3], resulting in an
extremely sparse and noisy gene expression profile. Consequently, little satisfactory
overlap of expressed genes can be observed among cells, affecting the performance of
computational methods that are solely based on the gene expression profile.

Recent bioinformatic analysis [4–6] has been extended to extract information on
transcript levels at single-cell resolution from diverse scRNA-seq protocols, such as
10x Genomics [7], Drop-seq [8], and CEL-seq [9]. Approaches, such as scAPAtrap
[10], Sierra [11], and scAPA [12], began to emerge for identifying and quantifying
polyadenylation [poly(A)] sites in single cells [13]. These pioneering studies switched
the conventional gene-level analysis to APA (alternative polyadenylation) isoform level,
and revealed cell-to-cell heterogeneity in APA usages and APA dynamics in different
cell types. Although both genes and poly(A) sites were identified from the same scRNA-
seq data, latest tools, like scAPAtrap [10], can efficiently capture poly(A) sites at the
whole genome level, including those poorly expressed or minor isoforms caused by lack
of coverage in low-expression regions. In contrast, most routine scRNA-seq pipelines
for gene expression analysis normally require fairly good read coverage to detect genes
and tend to discard lowly expressed genes in the quality control step. A considerable
number poly(A) sites are present in genes that may be discarded or unrecognized in
traditional scRNA-seq pipelines [13, 14], providing valuable information about cell-cell
associations that are missing in the standard gene-cell expression matrix. We anticipate
that this additional layer of APA isoforms may encapsulate complementary information
about cell-cell associations that is not manifested by the conventional gene expression
profile from the same scRNA-seq data, which creates immense potential to develop cost-
efficient approaches for dissecting cell types by integrating multiple modalities derived
from existing scRNA-seq experiments.

Here we proposed a pipeline called scAPAfuse for enhancing cell type clustering
and identifying of novel/rare cell types by combing gene expression profiles with an
additional layer of APA knowledge derived from the same scRNA-seq data. By employ-
ing partial least squares for dimensionality reduction, scAPAfuse maps gene expression
and APA profiles to a shared low-dimensional space. Then anchors (i.e., similar cells)
between gene and APA profiles were identified by constructing the nearest neighbors
of cells in the low-dimensional space, using algorithms like hyperplane local sensitive
hash and shared nearest neighbor. Finally, gene and APA profiles were integrated to a
fused matrix, using the Gaussian kernel function. We applied scAPAfuse on four public
scRNA-seq datasets fromhuman andArabidopsis. Results showed that scAPAfuse found
new subpopulations of cells in peripheral blood mononuclear cells (PBMCs) and plant
roots that were undetectable using the gene expression or APA profile alone. scAPAfuse
provides a unique strategy to mitigate the high sparsity of scRNA-seq by fusing gene
expression and APA profiles to improve cell type clustering, which can be included in
many other routine scRNA-seq pipelines.
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2 Materials and Methods

2.1 Data Preprocessing

We used four public scRNA-seq datasets from human peripheral blood mononuclear
cells (PBMCs) [7] and Arabidopsis roots [15]. The corresponding gene-cell expres-
sion matrices (hereinafter referred to as GE-matrix) were obtained from the respec-
tive public sources (10xgenomics.com for PBMCs; Accession Nos. GSM4212550 and
GSM4212551 for roots). Poly(A) sites of each cell from these scRNA-seq datasets
were identified by scAPAtrap [10]. Expression levels of poly(A) sites of the same gene
in each cell were summed to form a gene-level matrix (hereinafter referred to as PA-
matrix) also by scAPAtrap. Finally, for each paired GE and PA-matrix, common genes
were retained to make the two matrices of the same dimension (m genes and n cells).
The L2 standardization (Eq. 1) was applied for each matrix.

z = ||x||2 =
√∑n

i=1
x2i (1)

2.2 Joint Dimensionality Reduction Based on Partial Least Squares

We used partial least squares (PLS) for dimensionality reduction, which can map GE-
and PA-matrix to a shared low-dimensional space. Let G denote the GE-matrix and P
the PA-matrix (Eq. 2).

G =
⎡
⎢⎣
x11 · · · x1m
...

. . .
...

xn1 · · · xnm

⎤
⎥⎦ P =

⎡
⎢⎣
y11 · · · y1m
...

. . .
...

yn1 · · · ynm

⎤
⎥⎦ (2)

The first principal component (PC) can be extracted (Eq. 3).

{
t1 = G × w1

u1 = P × v1
(3)

Here, the variance of t1 and u1, and the correlation coefficient of t1 and u1 should be as
large as possible. The maximum covariance of t1 and u1 is then calculated (Eq. 4).

Cov(t1, u1) = wT
1 × GT × P × v1 (4)

Then we established a regression model of G and P versus t1. Here p and r are
parameter vectors, and G1 and P1 are residual matrices.

⎧⎪⎨
⎪⎩
G = t1pT1 + G1

P = t1rT1 + P1

(5)
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Above steps were repeated by replacing the residual matrix G1 and P1 with G and
P to extract the second PC until the absolute value of all elements of the residual matrix
P1 approached 0.

⎧⎪⎨
⎪⎩
G = t1pT1 + t2pT2 + G2

P = t1rT1 + t2rT2 + P2

(6)

We implemented the above process using the PLSRegression function of the
sklearn.cross_decomposition library in python.

2.3 Identification of Anchor Correspondences Between GE-Matrix
and PA-Matrix

After dimensionality reduction, we corrected the expression matrix at different levels
by constructing the nearest neighbors of cells between GE-matrix and PA-matrix in a
low-dimensional space. The mutual nearest neighbors (called anchors) are cells with a
high degree of similarity. In order to quickly identify nearest neighbors, we referred to a
method of calculating K nearest neighbors [16] called annoy in Annoy python package,
which conducted an approximate search based on locality sensitive hashing (LSH),
where multiple trees of random hyperplanes, used as hash functions, divided the search
space of the points in the query set, for accomplishing more efficient nearest neighbor
identification. Moreover, in order to enhance the effect of data integration, we used cell
label or cell type information to filter anchors to ensure that each anchor comes from
the same cell group. If the cell type is given, the anchors can be filtered and calculated
directly according to the cell type.Otherwise, cell labelswere obtained by clusteringwith
Seurat v3 process. Moreover, to filter more representative anchors between datasets, we
further implemented a graph-based anchor scoring algorithm, shared nearest neighbor
(SNN) [17]. That is, for anchors fromGE and PAG-matrix, find their K nearest neighbors
(K= 30) in GE and PAG-matrix respectively, so we got 4 neighborhood matrices, which
we combined to form a neighborhood graph. For anchors, we calculate their shared
neighborhood, call this value “anchor score”, and use 0.01 and 0.9 quantiles to adjust
the anchor score to between 0–1. Deleted the anchors with an anchor score of 0 to make
our anchors accurate enough. Anchor scores of SNN adds an extra level of robustness
to edge recognition by detecting the consistency of the edges between cells in the same
local neighborhood.

2.4 Data Integration

After determining anchors between GE-matrix and PA-matrix, the two matrices can be
integrated to a fused matrix. First, we used the Gaussian kernel function [16, 18] to
construct the weight matrix. Considering GE-matrix, PA-matrix, and a set of matching
vectorsMij, we denoted gene expression values and poly(A) expression levels as Ematch

i
and Ematch

j , with each row of Ematch
i and Ematch

j corresponding to a pair of anchors in

Mij. The matching vectors were therefore the rows of Ematch
j − Ematch

i . To integrate the
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GE-matrix or PA-matrix using either matrix as the reference, we calculated the weight
between GE-matrix and matching vectors Mij by Gaussian kernel function, which as
well as following procedures was also appropriate for PA-matrix. We computed weights
between the cells in GE-matrix and the matched cells in GE-matrix (Eq. 7), letting Ei

be the vectors of GE-matrix.

γi = exp(−σ

2
‖Ei − Ematch

i ‖22) (7)

Here σ is set to 15 by default. Then we constructed the bias according to the average
value of the matching vector of the Gaussian smoothing matrix (Eq. 8).

bias = γi(Ematch
j − Ematch

i )∑
γ i

(8)

Then, the corrected matrix of GE-matrix was obtained (Eq. 9).

Ei

∧

= Ei + bias (9)

Finally, after the same process of PA-matrix, Fused-matrix was averaged over two
corrected matrices.

2.5 Single-Cell Clustering

In this article, we referred to the Seurat v3 [19] process to perform cluster analysis
on GE-matrix, PA-matrix and the integrated Fused-matrix with scAPAfuse. We used
the Louvain method in the FindClusters function for cell clustering which contained a
parameter resolution that set the resolution of the downstream cluster, resulting in an
appropriate quantity of clusters with referring to number of cell types in PBMCs or
Arabidopsis roots. In actual operation, set the resolution of PBMC4K, TAIR-WT1 and
TAIR-WT2 to 1, and set the resolution of PBMC8K to 1.1. Cell types in PBMCs was
provided by CellMarker website in which we obtained their marker genes either, while
with regard to Arabidopsis roots, we consulted former research to determine.

3 Results

3.1 Overview of the Integrative Framework Pipeline

See Fig. 1.
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Fig. 1. Schema of scAPAfuse. scAPAfuse consists of four modules: (a) The input module. (b)
Find anchors. (c) Anchors Filter. (d) Data integration.

3.2 Single-Cell APA Profile Distinguishes Cells

It is a routine step to perform clustering on the GE-matrix, while it would be interesting
to examine whether the PA-matrix can also be used to distinguish cell types and/or
discover new cell populations. Here we compared clustering results obtained from PA-
matrix and GE-matrix of the PBMC4K data. In total, 15 clusters corresponding to 12 cell
types (Fig. 2a) and 14 clusters corresponding to 12 cell types (Fig. 2b)were obtained from
the GE-matrix and PA-matrix, respectively. Eleven cell types were common in the two
clustering results. Particularly, using the PA-matrix, some T cell subtypes were detected,
including CD4+ Memory T cell, Naïve CD8 T cell, and Naïve CD4 T cell. Two B cell
subtypes were also detected, Naïve B cell and Memory B cell. Next, we calculated
differentially expressed poly(A) sites (DEPAs) from the PA-matrix and differentially
expressed genes (DEGs) from the GE-matrix by DEseq2 [20] (adjusted P value <

0.05; log2FC > 1). A total of 318 genes were common in DEPAs and DEGs between
Monocytes and B cells, while 44 DEPAs were exclusively found by the PA-matrix
(Fig. 2c). For example,TNFSF13 is rarely expressed inGE-matrix. In contrast, according
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Fig. 2. Clustering and DE analysis using the PA-matrix and GE-matrix of PBMC4K data. (a)
Clustering based on the GE-matrix. A total of 15 clusters were obtained, and 14 clusters were
annotated according to known marker genes. Naïve CD4+ T (1), Naïve CD8+ T (5, 9), CD4+
Memory T (2), CD8+ T (4, 6), NK (8), Naïve B (3), Memory B (7), CD14+ Monocytes (0),
CD16+ Monocytes (10), Monocyte Derived Dendritic (11), Megakaryocyte Progenitors (13),
Plasmacytorid Dendritic (12). The dashed circle is the cluster not identified by the PA-matrix.
(b) Clustering based on the PA-matrix. A total of 14 clusters were obtained. Naïve CD4+ T (1),
Naïve CD8+ T (4), CD4+ Memory T (2), CD8+ T (5, 6), Regulatory T (13), NK (8), Naïve B (3),
Memory B (7), CD14+ Monocytes(0, 12), CD16+ Monocytes (9), Monocyte Derived Dendritic
(10), PlasmacytoridDendritic (11). The dashed circle is the cluster not identified by theGE-matrix.
(c) DEGs between Monocytes and T cells or Monocytes and B cells. (d) TNFSF13 is not a DEG
between Monocytes and B cells, but it has at least one DEPA. (e) CORO1B is not a DEG between
Monocytes and T cells, but it has at least one DEPA.
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to the PA-matrix, this gene has a poly(A) site PA6713 (coordinate: 7561617), which is
much higher expressed in Monocytes than in B cells (Fig. 2d). Similarly, CORO1B has
higher expression level inMonocytes based on the GE-matrix. However, it has a poly(A)
site PA2510 (coordinate: 67435508) which is much higher expressed in T cells than in
Monocytes (Fig. 2e).

3.3 scAPAfuse Identifies Subtypes in PBMC

Next, we applied scAPAfuse to integrate GE-matrix and PA-matrix from the PBMC4K
data. A total of 16 clusters were obtained (Fig. 3a). Notably, a small cell sub-type was
found, Regulatory T cells (cluster 13 with the marker gene FOXP3). We also observed
two marker genes of Megakaryocyte Progenitors (cluster 15), PPBP and PF4.

In order to further verify the effectiveness of scAPAfuse in integrating different
datasets, we conducted a similar analysis on PBMC8K. And we further applied scAPA-
fuse to integrate the four matrices – PBMC4K’s GE-matrix, PA-matrix and PBMC8K’s
GE-matrix and PA-matrix. Clustering using this integrated data generated all cell types
identified in individual PBMC4K and PBMC8K experiments (Fig. 4a). According to the
expression of CCR10 and PPBP, cluster 13 is determined as Regulatory T cell (Fig. 4b),
and cluster 17 is Megakaryocyte Progenitors (Fig. 4b).

3.4 scAPAfuse Identifies Subtypes in Arabidopsis Root Cells

We obtained 6049 single-cell transcriptomes from two replicates (WT1 and WT2) of
wild-type Arabidopsis root tip protoplasts. Using the fused GE- and PA-matrix of WT1,
a total of 28 clusters were obtained (Fig. 5.a). Referring to the marker genes given in
the published literature [21, 22], we assigned cell type labels to these clusters –Tri-
choblasts/hair (clusters 3, 4, 8, 15, 25), Atricholblasts/non-hair (clusters 2, 13, 16, 19),
LRC (cluster 7), Columella (cluster 27), Cortex (clusters 6, 21, 24), Endodermis (clus-
ters 0, 1, 7), Phloem (cluster 9), Phericycle (clusters 5, 10, 12, 22), Xylem (18, 23, 26),
Procambium (clusters 11, 14). Particularly, cluster 20 is the junction of Trichoblasts/hair
and Atricholblasts/non-hair, indicating that it may be the origin of the common devel-
opment of the two epidermal cell types, i.e., the root tip meristem. For comparison, a
cluster analysis was also performed on the GE-matrix of WT1, and 24 clusters were
obtained. We found that cluster 27 was exclusively identified by scAPAfuse, which was
not recognized only using the GE-matrix. The expression profile of the marker gene
AT4G34970 confirmed that the cluster is a sub-type of Columella in Root Cap (Fig. 5b).
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Fig. 3. scAPAfuse identifies hidden subpopulations of cells fromPBMC4K. (a)UMAP represents
the clustering result of the fused matrix of GE- and PA-matrix, and a total of 16 clusters were
obtained. Naïve CD4+ T (1), Naïve CD8+ T (0), CD4+Memory T (2), CD8+ T (6, 7), Regulatory
T (13), NK (8), Naïve B (3),Memory B (9), CD14+Monocytes (4, 5, 12), CD16+Monocytes (10),
Monocyte DerivedDendritic (11), Plasmacytorid Dendritic (14),Megakaryocyte Progenitors (15).
The arrow points to the cell type exclusively identified by scAPAfuse. (b) The gene expression
of FOXP3 distinguishes Regulatory T cell from other T cell types. The gene expression of PF4
distinguishesMegakaryocyte Progenitors fromother cell types. The bar charts show the expression
ratio of FOXP3 and PF4 in each cluster.

Next, we applied scAPAfuse on WT2 and obtained 19 clusters (Fig. 5c) – Tri-
choblasts/hair (clusters 3, 9), Atricholblasts/non-hair (clusters 7, 10), LRC (clusters 0,
2), Columella (cluster 18), Cortex (clusters 11, 13, 16), Endodermis (clusters 4, 5, 6),
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Fig. 4. scAPAfuse identifies hidden cell subtypes from integrated data of PBMC4K and PBMC-
8K. (a) After integrating the four matrices in PBMC4K and PBMC8K, a total of 19 clusters were
obtained. Naïve CD4+ T (0), Naïve CD8+ T (2), CD4+Memory T (1), CD8+ T (6, 8), Regulatory
T (13), NK (9), Progenitor NK (16), Naïve B(5), Memory B (7, 14), CD14+ Monocytes (3, 4,
12), CD16+ Monocytes (10), Monocyte Derived Dendritic (11), Plasmacytorid Dendritic (15),
Megakaryocyte Progenitors (17). (b) Fraction of cells shows the expression ratio of CCR10 and
PPBP in each cluster, distinguishing Regulatory T cell andMegakaryocyte Progenitors from other
cell subtypes.

Phloem (cluster 12), Phericycle (cluster 1), Xylem (clusters 14, 17), Procambium (clus-
ter 8). By observing the expression profile of the marker genes of QC and SCN in RAM
(e.g., AT3G15357) (Fig. 5d), it is confirmed that this cluster 25 is RAM. These results
demonstrate that integration of GE- and PA-matrix by scAPAfuse can better distinguish
cell types that are not easily distinguishable using only gene expression profiles.

3.5 scAPAfuse Identifies Rare QC Cells in Arabidopsis Root Cells

In order to evaluate the ability of scAPAfuse in identifying cell populations of small
size, we re-clustered RAM cells which are composed of QC and SCN cells of WT1 and
WT2, respectively (Figs. 6a and 6b, top). Based on the 52 QC marker genes provided in
Ryu [22] (Figs. 6a and 6b, bottom), we found that QC cells are more dominant in cluster
0 of WT1 and cluster 1 of WT2. UMAP visualization of meristem and epidermal tissues
in both WT1 and WT2 showed that QC was located in the lower part of RAM (Figs. 6c
and 6d), providing additional evidence for the cell type clustering results by scAPAfuse.
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Fig. 5. scAPAfuse recognizes hidden sub-types in Arabidopsis root tips. (a) Clusters using the
fused GE- and PA-matrix of WT1 (left) and cell type annotations according to the collected
marker gens (right). The arrow points to the new sub-types identified by scAPAfuse compared
to using only the GE-matrix. (b) According to the UMAP visualization of the gene expression
profile, the gene expression of AT4G34970 distinguishes Columella from other cell types. The
detailed information in the dashed box is displayed in the solid box (left). The bar chart shows the
expression of AT4G349970 in each cluster (right). (c) Applying scAPAfuse on WT2 obtained 19
clusters (left), and 11 cell types are annotated (right). The arrow points to cell types that are only
recognized by scAPAfuse but not by theGE-matrix. (d)The gene expression profile ofAT3G15357
distinguishes RAM from other cell types. The detailed information in the dashed box is displayed
in the solid box (left). The bar chart shows the expression of AT3G15357 in each cluster (right).
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Fig. 6. scAPAfuse recognizes a rare cell type in the root tip of Arabidopsis, the quiescent center
cell (QC). (a) Re-clustering the RAM cells identified by scAPAfuse in WT1 generated two sub-
clusters (top). Expression profiles of a QCmarker gene (AT3G16150) in the two clusters (bottom).
(b) As in (a) except that WT2 was analyzed. (c) UMAP visualization of meristem and epidermal
tissues of WT1 showed that QC was located in the lower part of RAM. (d) As in (c) except that
WT2 was analyzed.

4 Conclusion

The layer of APA isoforms identified from scRNA-seq encapsulates complementary
information about cell-cell associations that is not manifested by the conventional gene
expression profile, which creates potential to improve cell type dissection by integrating
multiple modalities. We proposed a pipeline called scAPAfuse for enhancing cell type
clustering and identifying of novel/rare cell types by combing gene expression and
APA profiles from the same scRNA-seq data. scAPAfuse combines several algorithms,
including PLS, LSH, SNN, and Gaussian kernel function, to fuse gene and APA profiles
to the same low-dimensional space. Results by applying scAPAfuse on several scRNA-
seq datasets showed that scAPAfuse can effectively identify new subpopulations of
cells that were undetectable using the gene expression or APA profile alone. scAPAfuse
provides a unique strategy to improve cell type clustering, which can be included in
many other routine scRNA-seq pipelines.
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China (Grant No. T2222007 to XW).
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Abstract. Cryo-Electron Microscopy (cryo-EM) is a revolutionary tech-
nique for determining the structures of proteins and macromolecules.
Physical limitations of the imaging conditions cause a very low Signal-
to-Noise Ratio (SNR) in cryo-EM micrographs, resulting in difficulties in
downstream analysis and accurate ultrastructure determination. Hence,
the effective denoising algorithm for cryo-EM micrographs is in demand
to facilitate the quality of analysis in macromolecules. However, lacking
rich and well-defined dataset with ground truth images, supervised image
denoising methods generalize poorly to experimental micrographs.

To address this issue, we present a Simulation-aware Image Denois-
ing (SaID) pre-trained model for improving the SNR of cryo-EM micro-
graphs by only training with the accurately simulated dataset. Firstly,
we devise a calibration algorithm for the simulation parameters of cryo-
EM micrographs to fit the experimental micrographs. Secondly, with the
accurately simulated dataset, we propose to train a deep general denois-
ing model which can well generalize to real experimental cryo-EM micro-
graphs. Extensive experimental results demonstrate that our pre-trained
denoising model can perform outstandingly on experimental cryo-EM
micrographs and simplify the downstream analysis. This indicates that a
network only trained with accurately simulated noise patterns can reach
the capability as if it had been trained with rich real data. Code and
data are available at https://github.com/ZhidongYang/SaID.
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1 Introduction

Cryo-Electron Microscopy (cryo-EM) is a prominent imaging technique provid-
ing convincing proof of determining structures of proteins and macro-molecules
at near-atomic resolution. However, visualization of biological specimens cap-
tured by cryo-EM is affected by the low electron dose conditions which are
required to overcome the radiation damage to proteins. Consequently, the low
Signal-to-Noise Ratio (SNR) in cryo-EM micrographs usually exists in exper-
imental cryo-EM data. The typical SNR of cryo-EM is estimated to be only
as high as 0.1 [2], which may have side-effect on downstream tasks like particle
picking and alignment. To address this issue, denoising will be a reasonable solu-
tion to improving the quality of cryo-EM micrographs. With decades of research,
image denoising has been an essential and fundamental task in the field of low-
level computer vision and signal processing. The research on image denoising
started by removing the additive white Gaussian noise (AWGN) [3]. Numerous
iterative traditional methods are proposed to solve this problem with outstand-
ing performance [3,6,14]. However, noise in the real imaging system emerges from
several sources (like shot noise and dark current noise). Moreover, the noise in
cryo-EM micrographs will be additionally affected by the interactions between
electrons and biological specimens, which may be more sophisticated than the
situations in the imaging system of natural images.

Various methods have been proposed to deal with the complex noise in cryo-
EM micrographs denoising. The methods start from traditional filtering algo-
rithms, such as median filter, low-pass filter [17] and Wiener filter [19]. Nonlin-
ear anisotropic diffusion (NAD) [24] is a procedure based on nonlinear evolution
partial differential equations that can be applied to denoising. Non-local mean
[3] and BM3D [6] are two methods that can reduce the noise via averaging
the non-local patches. Most of the traditional methods depend on the thorough
formulation of the noise model in an image. The performance of such meth-
ods will be limited by the complexity of the noise model in noisy images. As
the noise model in cryo-EM micrographs varies in different biological specimens
with corresponding configurations, conventional methods using the pre-defined
prior knowledge can not correctly distinguish the signal from complex noise in
cryo-EM micrographs. Consequently, conventional denoising methods may not
be well generalized to cryo-EM micrographs in some special configurations.

With the advances in deep convolutional neural networks (CNNs), the per-
formance of image denoising has been significantly improved [15,20,28,29],
such deep CNNs-based denoisers mainly advance the performance of removing
AWGN. However, when removing the non-AWGN or non-additive noise, such
deep denoisers can not well generalize to the images with complex noise and tend
to be over-fitted to Gaussian noise. To tackle this issue, several improved deep
denoisers introduced a real-world noise modeling module to improve the general-
ization to sophisticated noise. [5] firstly proposed a GAN-CNN deep denoiser to
model the noise in real noisy images using a patches-based strategy. [7] general-
ized this issue to blind real-world image denoising. The proposed denoiser incor-
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porates a sub-network to directly estimate a feature map with spatial-invariant
noise which will be additional input for the training of the denoising network.

Due to the unavailable ground truth in experimental cryo-EM imaging, most
of the deep denoiser based on supervised learning are not suitable. A straightfor-
ward solution is to learn the signal from only noisy dataset. Consequently, self-
supervised denoisers are proposed. [12] firstly propose a deep learning framework
called Noise2Noise to recover the signal from noisy image pairs with the same
signal. [11] goes a step further by introducing blind-spot inference to implement
constructing noisy pairs from the single noisy image, such a method is applied
to cryo-ET denoising with limited performance. Recently, several improvements
are tried to enhance the performance of self-supervised denoisers [1,8,23].

With the advances in Noise2Noise framework, [2] proposed a pre-trained gen-
eral deep learning model called Topaz-Denoise for cryo-EM and cryo-ET denois-
ing. Especially, [27] proposed a self-supervised sparsity constrained network for
the restoration of cryo-ET volume. However, the hypothesis of Noise2Noise is
quite ideal in most cases, that is, the noise in the noisy dataset is zero-mean,
identically distributed, and independent from the signal. Consequently, the gen-
eral model in Topaz-Denoise based on this hypothesis only probably removes
the detector noise. To circumvent this problem, [13] developed a novel proto-
col called NoiseTransfer2Clean (NT2C) by introducing Generative Adversarial
Network (GAN) to directly learn the noise pattern in cryo-EM micrographs and
transferring the noise pattern to simulated clean signal with re-weighting tech-
nique. The NT2C protocol solved the problem of introducing supervised learning
to deep denoiser for cryo-EM, but such a solution is not suitable to be integrated
into the pipeline of single particle analysis (SPA) because of its complicated pro-
cedures.

In this work, we summarize the currently existing problems in the design of
deep denoiser for cryo-EM micrographs into two folds: (i) Firstly, it is confirmed
that supervised learning can achieve better performance for a deep denoiser, but
the pre-trained supervised denoiser for cryo-EM micrographs is not available
due to the lack of well-defined dataset; (ii) Secondly, if the noise characteristics
in simulated micrographs are homogeneous to real micrographs, the supervised
denoiser will be available. But the current simulation of cryo-EM micrographs
has a bias between real experimental and simulated cryo-EM micrographs.

To address these issues, we propose a supervised pre-trained denoiser with
a large-scale simulated cryo-EM micrographs dataset, called Simulated-aware
Image Denoising (SaID) framework for experimental cryo-EM micrographs. The
proposed SaID framework includes two essential contributions: (i) A simulation
strategy to generate dataset homogeneous to experimental cryo-EM datasets
by calibrating the simulation parameters to fit the distribution of experimental
micrographs is proposed; (ii) A simulation-aware pre-trained denoising network
for experimental cryo-EM micrographs is proposed with an outstanding perfor-
mance.
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2 Method

2.1 Process Overview

The complete workflow of the proposed SaID method can be summarized as
following three steps: (i) calibration of the simulation parameters to fit the noise
characteristics in experimental cryo-EM micrographs; (ii) simulating the cryo-
EM micrographs with calibrated parameters; (iii) training and inference of the
denoising network. Figure 1 illustrates the overall processing pipeline of the pro-
posed SaID framework.

Fig. 1. Overall processing pipeline of the proposed SaID framework.

2.2 Simulation of cryo-EM Micrographs

In order to correctly simulate ground truth and noisy cryo-EM micrographs
according to experimental parameters, we utilize the software InsilicoTEM [22]
to synthesize micrographs according to physical imaging principles. Figure 1. (a)
shows the main pipeline of simulation. The simulation is based on the parameters
matching the experimental conditions during data collection, which includes
voltage, electron dose, defocus values, type of detector, pixel size and etc. With
well-defined ground truth, the adoption of supervised learning will be possible
for cryo-EM micrographs.
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2.3 Calibration of the Parameters for Simulation

With our observation, we notice that the naive simulation with InsilicoTEM
under the experimental parameters has the issue that the simulated micrographs
have a bias on contrast compared with the real experimental micrographs. This
bias mainly depends on the defocus values and may hinder the training of the
denoising network. To address this issue, we propose a calibration algorithm on
defocus values to reduce this bias. Firstly, the defocus values is initialized with
the experimental parameters reported by each utilized PDB structure. Secondly,
we will evaluate the SNR [13] of simulated and experimental micrographs. Then,
the defocus values will be updated with step length δstep in a loop. The loop will
be interrupted when the SNR of simulated micrographs has reached the SNR of
experimental micrographs. Algorithm 1 presents the complete procedure.

Algorithm 1: Procedure of calibrating the parameters for simulation
Input: Initial experimental defocus values di

min, di
max;

Simulated noisy micrograph with initial experimental parameters IIS ;
Real experimental micrograph IN

Output: Calibrated defocus values dc
min, dc

max.
1 Procedure Calibration(di

min, di
max, IIS):

2 SNRs ← SNR(IIS);

3 SNRr ← SNR(IN );

4 dt
min ← di

min;

5 dt
max ← di

max;
6 if SNRs ≤ SNRr:

7 δstep ← −0.1 × di
min;

8 else:

9 δstep ← 0.1 × di
min;

10 while True:

11 dt
min ← di

min + δstep;

12 dt
max ← di

max + δstep;

13 Simulated a noisy micrograph IS with updated dt
min, dt

max;

14 SNRs ← SNR(IS);
15 if |SNRs − SNRr| → 0:
16 dc

min ← dt
min;

17 dc
max ← dt

max;
18 break;
19 return dc

min, dc
max;

2.4 Detailed Architecture of the Denoising Network

In the SaID framework, the backbone network is improved from a UNet-based
structure [18], as shown in Fig. 1. (b). The denoising network is trained in a super-
vised learning manner only with our calibrated simulated cryo-EM datasets.
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During the inference phase, the pre-trained model will be directly fed with exper-
imental cryo-EM micrographs to denoise.

The noisy micrographs will be first fed into the encoders. Six levels of
encoders are adopted in the denoising network. Each encoder consists of a
3 × 3 bias-free convolutional layer together with an affined BatchNorm and a
LeakyReLU whose slope k = 0.1. Especially, the sixth encoder plays the role of
bottleneck layer with abundant features, the BatchNorm and LeakyReLU layers
are removed. Five levels of decoders are adopted in the denoising network, the
decoder in each level consists of the nearest interpolation to execute up-sampling
and then followed by two CONV blocks with a 3×3 convolutional layer together
with an affined BatchNorm and a LeakyReLU whose slope k = 0.1. To promis-
ingly recover structural information in the images, a skip-connection operation
is used between encoder and decoder blocks at corresponding spatial resolution.

2.5 Loss Function

SaID is an end-to-end deep-learning-based framework for cryo-EM micrograph
denoising. The denoising network in SaID is completely trained in a supervised
manner, utilizing simulated noisy and clean cryo-EM micrographs generated with
experimental parameters. The mathematical formulation of the loss function is
shown as follows:

θ̂ = arg min
θ

1
N

N∑

i=1

||Fθ(ÎSN
i ) − ISG

i ||22 + R(θ), (1)

where θ̂ is the optimal parameter set of the denoising network in SaID. F (·)
denotes the denoising network. R(θ) denotes the regularization term to avoid
over-fitting. ISN and ISG denote the simulated noisy (SN) micrograph and sim-
ulated ground truth (SG) micrograph separately. With the trained network F (·),
real experimental cryo-EM micrographs IN will be denoised with Fθ̂(·). That is:

Î = Fθ̂(I
N ). (2)

3 Experimental Results

3.1 Implementation Details

The denoising network in SaID was implemented by PyTorch. For all the exper-
iments, the model was trained on two NVIDIA Tesla A100 GPUs in a patches-
based manner. The batch size was set to 32 with a 640 × 640 patch size during
the training phase [13]. The model was trained by 100 epochs with simulated
micrograph pairs requiring 2 h. The optimizer of denoising network is Adam [10]
parameterized by β1 = 0.5 and β2 = 0.999. The learning rate was set to 0.001.
450 pairs of simulated cryo-EM micrographs sized by 4096×4096 are synthesized
for the pre-training of denoising network. 80% of the simulated micrographs were
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randomly selected as the training set, and 20% of them were randomly selected
as the validation set. The denoising network is trained in a patches-based man-
ner, each micrograph is cropped into a patch sized by 640 × 640. During the
test phase, the real experimental cryo-EM micrographs will be denoised with
the pre-trained denoising network.

3.2 Dataset

Training Simulated Datasets. The denoising network in the proposed SaID
framework utilizes a large number of simulated cryo-EM datasets. The training
dataset consists of 450 pairs of simulated cryo-EM micrographs with the size
of 4096 × 4096. The micrographs are generated with the following PDB struc-
tures: 5LZF.pdb, 7ABI.pdb, 1RYP.pdb. The parameters of the simulation are
summarized in Table 1 as follow.

Table 1. Parameters for the simulated training dataset.

Protein Dose (e−/Å2) Voltage (kV) Calibrated

Defocus

(µm)

Original

Defocus

(µm)

Pixel Size (Å) Detector Size

5LZF 20 300 2.1–3.8 0.9–2.6 1.16 K2 4096 × 4096

7ABI 45 300 1.4–3.8 0.9–3.3 1.16 FalconII 4096 × 4096

1RYP 53 300 1.0–1.5 0.9–2.4 0.66 K2 4096 × 4096

Experimental Datasets. To evaluate the performance of SaID, five experi-
mental cryo-EM datasets captured in real experimental environments are evalu-
ated and compared in our experiments. Table 2 describes the biological structure
information of each cryo-EM dataset.

Table 2. Real experimental cryo-EM datasets utilized in the experiments.

Dataset Biological structure

EMPIAR [9]-10025 [4] Thermoplasma acidophilum 20S proteasome

EMPIAR-10028 [25] Plasmodium falciparum 80S ribosome

EMPIAR-10077 [16] Elongation factor SelB on the 70s ribosome complexes

EMPIAR-10090 [26] Activated human 26S proteasome

EMPIAR-10616 [21] Human pre-Bact spliceosome

3.3 Results

Proposed SaID Can Improve the SNR and Contrast of Micrographs.
In this experiment, BM3D [6], Lowpass Filter, Gaussian Filter, Topaz-Denoise
[2] and NT2C [13] are selected as methods for comparisons. The selections of
the parameters of BM3D, Lowpass Filter, and Gaussian Filter follow the selec-
tions in previous work [2,13]. The evaluation metric is SNR, detailed definition
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Table 3. Quantitative results of the real experimental cryo-EM datasets for comparison
methods estimated by SNR (in dB, the larger means the better).

Methods Experimental cryo-EM dataset

EM25 EM28 EM77

Noisy –0.16 –0.34 0.14

BM3D 0.07 –0.27 0.30

Lowpass Filter –0.04 –0.24 0.33

Gaussian Filter –0.14 –0.18 0.53

Topaz-Denoise 0.21 1.04 0.55

NT2C 4.88 7.65 6.29

Ours 5.58 7.57 6.93

Fig. 2. The benchmark results of the proposed SaID and other comparison methods.
Comparisons between each method are evaluated on EM28, EM25, and EM77 datasets.
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of SNR can be found in [13]. The datasets EM28 [25], EM25 [4] and EM77 [16]
are tested in our experiment. Figure 2 shows visualized results of all benchmark
datasets. Table 3 gives the SNR results of all experimental results in our exper-
iments. Judging from the visualized results in Fig. 2, we can conclude that the
background noise is nearly completely removed by our proposed SaID compared
with Topaz-Denoiser and the other non-learning-based methods. Although the
Topaz-Denoise method is a general model trained with enormous paired noisy
micrographs, the background noise is not completely removed due to the lacking
of prior knowledge of noise. The SaID method has solved this problem. Com-
pared with NT2C, the SaID method achieves a better performance in recovering
the particle without missing the structure, as shown in the results of EM77.
Judging from the quantitative results assessed by SNR, we can conclude that
the SaID method achieved almost the best performance in most cases. Because
the signal in EM28 is easy to be recovered, NT2C and SaID both perform well
on this dataset, the SaID can recover high-frequency information better than
NT2C (shown in Fig. 1).

Proposed SaID Can Improve the Interpretability of Microgrpahs. In
this part, we select the experimental dataset EM90 [26] for the illustration.
Although the noise within this dataset is relatively weak, some of the projections
of specific orientations remain blurred. As shown in Fig. 3, we can find that the
region pointed out by the red arrow is blurred. The results recovered by Topaz
lose too much signal because of the blur. The signal recovered by our proposed
SaID is more clear.

Fig. 3. Denoising with SaID improves the interpretability of real experimental cryo-EM
micrographs. Comparisons between each method are evaluated on the EM90 dataset.

Proposed SaID Can Simplify the Particle Picking. The particle picking
is affected by the high noise in micrographs thus benefiting from the denoising.
Figure 4 shows the results of the particle picking in the micrographs denoised
by our SaID method. We can find that, with a cleaner micrograph denoised
by our method, the wrongly picked particles are reduced, which simplifies the
particle picking. Although the NT2C [13] achieved a similar goal in this task,
SaID provides a set of pre-trained models which will be more flexible to be
integrated into a SPA pipeline and simplifies the particle picking.
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Fig. 4. The particle picking results for original micrograph and SaID denoised. The
algorithm of particle picking is Auto-Picking in Relion [30]. The results show that,
with better interpretability in micrographs, the wrongly picked particles are reduced.

4 Discussion and Conclusion

In this article, we proposed a simulation-aware image denoising (SaID) frame-
work for cryo-EM micrographs. The contributions of this work can be summa-
rized in two folds: (i) A calibration algorithm for the simulation parameters is
proposed to provide a reliable simulated training dataset; (ii) A novel supervised
training framework for the denoising of cryo-EM micrographs is proposed, result-
ing in pre-trained denoising model for the recovery of signal in real micrographs.
This work proved that with accurate simulation, the deep denoiser only trained
with simulated dataset can well generalize to the experimental dataset. Compre-
hensive experimental results have demonstrated that the pre-trained model pro-
vided by the SaID framework can promisingly enhance the signal and suppress
the noise in experimental cryo-EM micrographs. The current SaID framework
performs well on protein particles with relatively stable structures, in future
work, we will improve our method from two perspectives: (i) The extension of
biological structures for the simulation of the training dataset, in order to ensure
that our method can be applied to more various dataset; (ii) The improvement of
the calibration algorithm. Defocus values are currently regarded as the main fac-
tor for the simulation. We will take more imaging parameters into consideration
in our algorithm, in order to improve the quality of simulation.
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Abstract. Existing computational approaches for studying gene family evolu-
tion generally do not account for domain rearrangement within gene families.
However, it is well known that protein domain architectures often differ between
genes belonging to the same gene family. In particular, domain shuffling can lead
to out-of-order domains which, unless explicitly accounted for, can significantly
impact even the most fundamental of tasks such as multiple sequence alignment
and phylogeny inference.

In this work, we make progress towards addressing this important but often
overlooked problem. Specifically, we (i) demonstrate the impact of protein
domain shuffling and rearrangement on multiple sequence alignment and gene
tree reconstruction accuracy, (ii) propose two new computational methods for
correcting gene sequences and alignments for improved gene tree reconstruction
accuracy and evaluate them using realistically simulated datasets, and (iii) assess
the potential impact of our new methods and of two existing approaches, MDAT
and ProDA, in practice by applying them to biological gene families. We find that
the methods work very well on simulated data but that performance of all meth-
ods is mixed, and often complementary, on real biological data, with different
methods helping improve different subsets of gene families.

1 Introduction

Protein domains, or just domains for short, are independently folding structural and/or
functional units that recur across multiple protein coding gene families [4]. Domains
can be viewed as recurrent building blocks of proteins and are known to play an impor-
tant role in the function and evolution of many gene families [20,28,29]. In fact, it
is estimated that the majority of protein coding genes in eukaryotes and almost half
of protein coding genes in prokaryotes contain at least one domain [10,12]. Known
domain sequences can be clustered into different domain families and many thousands
of distinct domain families have already been identified [5].

As a gene evolves, one or more of its domains can get duplicated or be lost, and
new domains can be acquired from other genes. The resulting gain and loss of domains
during gene family evolution can lead to genes from the same gene family having dif-
ferent domain contents and architectures (i.e., sequential orderings). This is illustrated
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 337–350, 2023.
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Fig. 1. Different domain architectures within a gene family. The four depicted fly proteins
belong the same gene family but show different domain architectures (orderings). In particular,
the order of “srcr” and “ldl recept a” domains appears to be inverted between D. erecta and D.
ananassae. Also observe that the gene from D. sechellia does not have the “cbm2” domain. Note
that the figure does not depict the exact location or length of any domain and only shows domain
orderings.

in Fig. 1. Such changes in domain content and architecture through domain shuffling
are believed to be key drivers of protein evolution and proteome complexity [6]. As a
result, mechanisms of domain shuffling and domain architecture evolution have been
extensively studied in the literature [2,7,8,11,17,25].

A frequent outcome of domain content and architecture changes within gene fam-
ilies is that genes belonging to the same gene family can have incompatible domain
orders. For example, a gene in some gene family may have two domains A and B
(from different domain families) in the order 〈A,B〉, while a different gene from the
same gene family may have those domains in the order 〈B,A〉. This could occur, for
example, if there is a tandem duplication of domains A and B, resulting in domain
order 〈A,B,A,B〉, followed by losses of the first and last domains, resulting in the
order 〈B,A〉. Such domain rearrangements, unless explicitly accounted for, can signif-
icantly impact even the most fundamental of tasks such as multiple sequence alignment
and phylogeny inference. Yet, traditional approaches for computing multiple sequence
alignments (MSAs) and reconstructing gene trees do not account for domain rearrange-
ment within gene families. This is because traditional MSA algorithms perform a linear
alignment of the given sequences, assuming that any variation in gene sequences is a
result of point mutations or indels [1]. Domain rearrangements can violate this assump-
tion, directly affecting the quality of the resulting MSA and of any gene trees inferred
using that MSA.

Previous Work. To the best of our knowledge, only three multiple sequence align-
ment methods, ABA [23], ProDA [22], and MDAT [13], currently exist that explic-
itly take domain contents and architectures into account. ABA represents a sequence
alignment as a directed (possibly cyclic) graph [23], which allows for domain architec-
ture changes and rearrangements to be detected and taken into account when analyzing
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evolutionary relationships between the aligned sequences. However, to our knowledge,
ABA does not compute a global multiple sequence alignment, as needed for gene tree
reconstruction, and the ABA software is no longer available. ABA was also shown to
have poor residue level accuracy when applied to gene families with rearranged, out-
of-order domains [22]. ProDA [22] takes as input a set of unaligned sequences, uses
local alignment and clustering to identify all homologous regions appearing in one or
more sequences, and outputs a collection of local multiple alignments for the identified
homologous regions. ProDA was shown to work well at detecting conserved domain
boundaries and clustering domain segments, and at recovering known domain orga-
nizations [22]. ProDA can detect local protein homology and construct local multiple
alignments, but it cannot be directly used to obtain a global alignment when the input
gene sequences contain multiple domain copies from any domain family. The more
recent method MDAT [13] seeks to compute more accurate MSAs by computing mul-
tiple domain alignments and restricting the global alignment such that domains from
different families cannot align to each other. A limitation of MDAT is that it respects
the linear arrangement of domains within each input sequence and cannot correct for
rearranged, out-of-order domains. Importantly, despite the development of these previ-
ous methods, the impact of domain rearrangement on MSAs and subsequent gene tree
reconstruction has not been systematically evaluated and remains largely unknown.

Our Contribution. In this work, we propose two new, easy-to-apply computational
methods to mitigate the impact of rearranged, out-of-order domains on gene tree recon-
struction. We also carefully assess the impact of the new and previous methods on real
biological data. Specifically, we first use simulated gene families, modeled after real fly
gene families, to assess the impact of domain shuffling and rearrangement on MSA
and gene tree reconstruction accuracy. Second, we propose two new computational
approaches, referred to as Door-S and Door-A (where Door is short for “domain orga-
nizer”), for correcting gene sequences and alignments for improved gene tree recon-
struction accuracy. The key idea behind our two methods is to identify known domains
within the input gene sequences and then reorganize the domains to remove any domain
ordering incompatibilities between the different gene sequences. This allows for an
improved MSA inference for that gene family, leading to improved gene tree recon-
struction. Essentially, our methods leverage the fact that standard phylogeny inference
algorithms assume that sites evolve independently of each other and treat each column
(site) of an MSA independently. Thus, homologous sites within gene sequences can be
rearranged (together) without affecting phylogeny inference. Third, we demonstrate the
impact of applying Door-S and Door-A on realistically simulated gene families. And
finally, we carefully evaluate the applicability and impact of Door-S, Door-A, and the
previous methods MDAT and ProDA, on biological gene families from 12 fly species.
We find that the new methods result in an almost 70% average reduction in gene tree
reconstruction error for the simulated gene families. However, we find that the per-
formance of all methods is mixed when applied to the biological gene families, with
the best performing methods resulting in significantly improved gene tree reconstruc-
tion for about a quarter of the gene families but showing either comparable or worse
reconstruction accuracy for the other gene families. Interestingly, the performance of
the different methods on biological data is often complementary, with different meth-
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ods helping improve different subsets of gene families. Scripts implementing Door-S
and Door-A are freely available from https://github.com/suz11001/Door/tree/main.

2 Description of Methods

2.1 Proposed Methods: Door-S and Door-A

Both Door-S and Door-A seek to identify and reorganize domains within each input
gene sequence to enable and improve the alignment of homologous regions in the final
global MSA. The main steps in the Door-S and Door-A methods are as follows:

1. Identification of domain families present within the gene family.
2. Identification of domain sequence boundaries and non-domain regions within each

gene sequence.
3. Ordering of non-domain regions and domain families for each gene.
4. Ordering of domains copies from same domain family within each gene.
5. Computation of final global MSA.

Door-S andDoor-A differ only in their implementation of Step 5 above. Specifically,
Door-S uses a traditional multiple sequence aligner, such as MUSCLE [9], to glob-
ally align the reorganised gene sequences, while Door-A separately aligns the different
domain families and non-domain regions and concatenates these alignments to create
a global concatenated alignment for the gene family. Figure 2 illustrates the shared and
individual steps of Door-S and Door-A. We elaborate on these steps below.

1. Identification of domain families present: Domain families present within gene
sequences can be identified using protein domain databases or tools such as Pfam [19],
SMART [26], PANTHER [18] or InterPro [21]. For our biological dataset from 12 fly
species, we used UniProt gene IDs to determine their protein domain constituents from
the Pfam A database.

2. Identification of domain sequence boundaries and non-domain regions: Domain
annotations are imperfect and the domain sequences found in PFAM or any other
domain database may not be an exact match to the domain sequence present in the
gene. We therefore align each annotated domain sequence back to the gene and extract
the precise genic region where the annotated domain aligns. In case multiple annotated
domains from different domain families overlap in the genic space, we duplicate the
regions of alignment where the domains overlap. Once all the domain regions of the
gene have been identified, these domain regions are removed from the gene sequences
and are placed as domain sequences as part of their respective domain families.

3. Ordering of non-domain regions and domain families: The domain and non-
domain (genic) regions within each gene sequence of a gene family are ordered such
that the genic regions appear first, followed by the domain family sequences in a fixed
order. This ensures that the ordering of domain family sequences remains consistent
between all genes belonging to the same gene family. This is illustrated in the top half
of Fig. 2.

4. Ordering of domain copies from same domain family: If a gene sequence con-
tains multiple domain copies from the same domain family then we place these copies

https://github.com/suz11001/Door/tree/main
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Fig. 2. Overview of Door-S and Door-A. The key difference between the two methods is that
Door-S first concatenates all genic (non-domain) and domain sequences in a consistent order
across all gene sequences and then performs global sequence alignment of the resulting, reordered
gene sequences as the final step (see bottom left of figure). In contrast, Door-A first separately
aligns the genic sequences and sequences from each domain family and concatenates the result-
ing alignments, introducing gaps for sequences with domain losses, to obtain the final global
alignment (see bottom right of figure).

contiguously in the same order as in the original gene sequence. A different approach
was used for the simulated gene families since we did not explicitly simulate domain
orderings in the gene sequences; specifically, for each domain family, we choose a ref-
erence gene gref with the most number of domain copies of that domain family and
greedily align the domain copies in the other genes from that gene family to the most
similar domain copy in gref .

5. Computation of final global MSA. Door-S and Door-A take different approaches
for this final step, as illustrated in the bottom half of Fig. 2. Door-S concatenates the
reordered genic and domain region sequences within each gene to create a reordered
version of each original gene sequence. These reordered gene sequences, all from the
same gene family, are then globally aligned using a standard global aligner. In this work,
we used MUSCLE v. 3.8.31 [9] with default parameters to compute all alignments.
Instead of first concatenating the reordered genic and domain regions and then aligning
the resulting concatenated sequences, Door-A first aligns the genic regions and each
domain family separately, and then concatenates the resulting alignments to obtain a
final global alignment of the reordered gene sequences. As part of this process, to ensure
a well-formed final global alignment, gaps are artificially introduced if a domain family
is completely absent from a gene sequence.
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2.2 Existing Methods: MDAT and ProDA

We also evaluate the two related previous methods ProDA [22] and MDAT [13]. Even
though MDAT cannot correct for rearranged, out-of-order domains, it can be directly
used to compute a global sequence alignment for multi-domain gene families. MDAT
relies on protein domain annotations generated using a specific version (version 27)
of the Pfam domain database and uses this annotation to restrict the global align-
ment, ensuring that domains belonging to different domain families cannot be aligned
together.

ProDA takes as input a set of unaligned sequences and uses local alignment and
clustering to identify all homologous regions appearing in one or more input sequences.
It outputs a collection of local multiple alignments for the identified homologous
regions. However, ProDA does not compute a global sequence alignment and cannot
be directly used to compute one based on the output alignment blocks. For instance,
some sequence segments, or even entire genes, do not appear in any output alignment,
and each alignment block can contain multiple homologous regions from the same gene
sequence. Nonetheless, ProDA’s effectiveness at identifying regions of local homol-
ogy can be leveraged to identify and correct for out-of-order domains or other regions.
Accordingly, to apply ProDA to this problem, we use a scheme similar to that used for
Door-A to compute global sequence alignments from ProDA’s output: First, we modify
each block of homologous sequences by identifying domain copies from the same gene
sequence and arrange them linearly according to their ordering in the gene sequence.
This step is similar to Step 3 of Door-S and Door-A. Second, we compute a sequence
alignment (using MUSCLE) for each modified block of homologous sequences (simi-
lar to Step 5 of Door-A). Third, we add back the genes not represented in the resulting
alignment by introducing gaps in the alignment for that gene. Finally, we concatenate
the alignment for each blocks of homologous sequences to obtain an overall global
alignment for the gene sequences of that gene family.

ProDA also has an input parameter which controls for the minimum size of a homol-
ogous sequence block. In our evaluation of ProDA, we used two settings for this param-
eter; one in which the minimum block size is set to 50 amino acids (aa), and another
in which the parameter value is set to the length of the shortest Pfam domain sequence
found in that gene family. We refer to these two executions as ProDA 50 and ProDA,
respectively.

3 Dataset Description and Experimental Setup

3.1 Simulated Dataset

We first used simulated gene family sequences, with known ground truth, to assess
the impact of domain rearrangements on gene tree reconstruction and demonstrate the
impact of Door-S and Door-A. To enhance the biological realism of this simulated
dataset, we selected key parameter values, such as for gene length, average number
of domain families per gene famiy, average domain length, and average number of
domain rearrangements, based on a real datset from 12 fly species (described later
in this section). Specifically, starting with a biological dataset of 2307 multi-domain



Reducing the Impact of Domain Rearrangement 343

gene families from 12 fly species (see Sect. 3.2), we first identified 198 gene families
with plausible out-of-order domains using the simple procedure described in Sect. 3.2.
Essentially, this procedure identifies those gene families which contain at least one pair
of genes whose domain orderings are incompatible with each other. For these 198 gene
families, we find a median genic (not counting domain sequences) length of 452 aa,
median domain sequence length of 78 aa, median of 3.6 unique domain families per
gene family, and median of 1 for the number of unique out-of-order domain-family
pairs present. We also estimated the probability of any given gene sequence having out-
of-order domains. This probability depended on gene family size y, and was estimated
to be 0.45, 0.27, 0.24, 0.15, 0.34, and 0.22 for y ≤ 10, 10 < y ≤ 25, 25 < y ≤ 50,
50 < y ≤ 75, 75 < y ≤ 100, and y > 100, respectively.

Simulating Gene Trees and Domain Trees. Based on these parameter estimates, we
used the phylogenetic simulation framework SaGePhy [14] to generate 100 gene fami-
lies and their corresponding domain families. First, we simulated 100 species trees with
SaGePhy using a birth-death model with birth and death rate of 5 and 2, respectively,
and height 1. A gene tree was then evolved inside each species tree under a duplication-
loss model with gene duplication and gene loss rates of 0.3 each. Finally, we evolved 3
domain trees inside each gene tree with domain duplication and domain loss rates of 0.3
each. This yielded gene families with similar domain characteristics as the biological
dataset.

Simulating Sequence Data. We then used SaGePhy to simulate protein sequences
along both the gene and the three domain trees under the LG amino acid substitution
model [15] and appended together (in a predetermined order) the genic and domain
sequences belonging to the same gene. Hence, each gene consists of a genic (non-
domain) sequence and a variable number of domain sequences from one or more
domain families. Each genic sequence is 450 aa long and each domain sequence is
100 aa long, so that each full gene sequence has length 450 aa or more depending on
the number of domain sequences present in it.

Introducing Rearrangements. After creating these baseline sequences for each gene
in the gene family, we introduce domain rearrangement in a randomly chosen subset
of the gene sequences based on the probabilities previously estimated from the biologi-
cal dataset. We follow a conservative procedure for introducing domain rearrangements
where we only make one rearrangement (exchange the positions of a single pair of
domains) in each selected gene sequence. In most cases, we only exchange two neigh-
boring domains. For example, if the simulated gene sequence shows the domain order-
ing ([A1, A2, A3], [B1, B2], [C1]), whereA,B, and C represent the three domain fam-
ilies, then, in most cases, we only exchange either A3 with B1 or B2 with C1, thereby
creating exactly one pair of out-of-order domain sequences in that gene sequence. Based
on observations in the biological dataset, we also sometimes perform rearrangements so
as not to disrupt the tandem ordering of domain copies. For example, if the simulated
gene sequence shows domain ordering ([A1, A2], [B1], [C1]), then we rearrange the
sequence to ([B1], [A1, A2], [C1]) with a small probability based on biological data.
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3.2 Biological Dataset

As our real biological dataset, we used the 12-flies dataset assembled by Li et al. [16] in
their study of protein domain evolution. This dataset consists of 7165 gene families in
which at least one gene has at least one Pfam A domain. Of these 7165 gene families,
2307 gene families contain domains from at least two domain families. Among these
2307 gene families, we identified 198 as having plausible out-of-order domains and our
experimental results are based on these 198 gene families.

The 198 gene families with plausible out-of-order domains were identified as fol-
lows: We first represent each gene sequence by its ordering of domains. For exam-
ple, a gene sequence consisting of 8 distinct domains from 4 different domain families
A,B,C andD would be represented as follows, based on the specific ordering of the 8
domain sequences: [(A),(A),(B),(B),(C),(D),(C),(B)]. For simplicity and to avoid pos-
sible overcounting of out-of-order domains, we then condense the above representation
by merging together contiguous domains from the same domain family. Thus, the rep-
resentation for the above gene would be condensed to [(A),(B),(C),(D),(C),(B)]. We
then consider the condensed representations of each pair of gene sequences from the
gene family and check if that pair of genes has incompatible domain orders. More pre-
cisely, we check if there exists a domain family pair {X,Y} such that this pair occurs
only in the order 〈X,Y 〉 in one of the gene sequences and only in the order 〈Y,X〉 in
the other gene sequence. If we find any pair of gene sequences to have incompatible
domain orders then we flag that gene family as plausibly having out of order domains.

3.3 Evaluation of Results

The most commonly used accuracy metric for multiple sequence alignments is the sum-
of-pairs (SP) score. SP scores are computed by comparing every pair of amino acids
in an aligned column to assign an alignment quality score to that column, and then
summing up these scores across all columns in the alignment. The higher the total
score, the better the quality of the alignment. However, this scoring scheme is only
appropriate when the sequences being aligned are actually alignable. For sequences
with out-of-order domains, the SP score can yield misleading results and need not be
correlated with gene tree reconstruction accuracy. We will see a clear example of this
in the next section. Consequently, we assess the impact of out-of-order domains and of
the different correction methods based on reconstructed gene tree accuracy. We measure
gene tree accuracy by comparing each reconstructed gene tree against the corresponding
ground truth gene tree using the standard Robinson-Fould’s metric [24]. Specifically,
we count the number of splits present in only one of the two trees being compared (the
reconstructed vs the true gene tree). We refer to the resulting number as the RF-score,
with a lower RF-score implying greater gene tree reconstruction accuracy. Note that the
reported RF-scores count unique splits of both trees (i.e., we do not divide the computed
score by 2).

Since ground truth gene trees are only available for the simulated dataset, gene tree
accuracy cannot be directly measured for the biological dataset. To overcome this chal-
lenge, we use the reconciliation cost (specifically the duplication-loss reconciliation
cost) of each reconstructed gene tree against the known 12-flies species tree as a proxy
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for gene tree accuracy. We compute this reconciliation cost under a parsimony frame-
work [3] using a loss cost of 1 and a duplication cost of 2. We refer to the resulting cost
as the DL-score. In Sect. 4.1, using the simulated datasets, we show that the DL-score
generally increases or decreases in line with the RF-score (i.e., greater gene tree error
results in a higher DL-score), thereby justifying its use as a proxy for the RF-score.

3.4 Gene Tree Reconstruction

For each simulated gene family, we reconstruct four gene trees based on the following
four gene family alignments: (i) an alignment (using MUSCLE [9]) of the simulated
baseline sequences with no domain rearrangement, (ii) an alignment (using MUSCLE)
of the rearranged gene sequences, (iii) the alignment produced by applying Door-S to
the rearranged sequences, (iv) and the alignment produced by applying Door-A to the
rearranged sequences. Thus, the first tree represents the baseline scenario when there is
no domain rearrangement in the gene sequences and captures baseline alignment and
gene tree reconstruction error. The second tree represents the scenario when domain
rearrangement is present but is not accounted for in the gene family alignment. The third
and fourth trees represent the scenarios when domain rearrangement is present and has
been corrected for using Door-S and Door-A, respectively. All simulated dataset gene
trees were reconstructed using RAxML v8.2.11 [27] with thorough search settings (-f a
-N 100) and under the same model (PROTGAMMAILG) used for the simulation.

For the biological dataset, we reconstruct six gene trees for each of the 198 gene
families. These six gene trees correspond to the original (uncorrected) MUSCLE align-
ment and the corrected alignments obtained by applying Door-S, Door-A, MDAT,
ProDA, and ProDA 50. All biological dataset gene trees were reconstructed using
RAxML v8.2.11 [27] with thorough search settings under the PROTGAMMAAUTO
model.

4 Results

4.1 Simulated Dataset Results

Table 1 summarises our results for the simulated dataset. As the table shows, introduc-
ing domain rearrangements in the gene sequences leads to a dramatic worsening of
gene tree reconstruction accuracy, with the average RF-score increasing from 9 for the
baseline sequences without rearrangement to 43 for the aligned rearranged sequences.
The table also shows the drastic improvement in gene tree accuracy obtained after cor-
recting the rearranged sequences using Door-S and Door-A. Specifically, the RF-score
decreases from 43 to only 14 and 13, respectively, after Door-S and Door-A are applied.
Overall, among the 100 simulated gene families in this dataset, Door-S resulted in
an improved RF-score for 95 gene families and Door-A for 97 gene families. These
results show that both Door-S and Door-A are highly effective at correcting MSAs for
improved gene tree reconstruction, with Door-A slightly outperforming Door-S.

Relationship between RF-Score and DL-Score. Table 1 also shows average DL-scores
for the gene trees reconstructed using the four alignment types. As the table shows,
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Table 1.Gene tree reconstruction accuracy using different alignment types for the simulated gene
families. Accuracy is shown in terms of RF-scores, averaged across the 100 gene families in the
simulated dataset. Corresponding average DL-scores and SP-scores are also shown. Lower values
are better for RF-score and DL-score, while higher values are better for SP-score. Observe that
DL-scores are well-aligned with RF-scores, but that SP-scores are not, with the Door-A corrected
alignment showing the worst (lowest) SP-score among all four alignment types.

Alignment type RF-score DL-score SP-score

Baseline sequences alignment (no rearrangement) 9 40 626

Rearranged sequences alignment 43 117 576

Door-S corrected alignment 14 51.25 635

Door-A corrected alignment 13 48 550

these DL-scores are highly correlated with corresponding RF-scores, increasing and
decreasing by similar degrees as the RF-scores. Overall, we observed that application
of Door-S and Door-A resulted in improved (decreased) DL-score in 95 of the 100
gene families. These observations justify the use of DL-score as a proxy for gene tree
reconstruction error for the biological dataset where true gene trees are unknown.

Inapplicability of SP-Score. We also computed SP-scores for the Door-S and Door-A
alignments and compared them to SP-scores for the rearranged sequence alignments
(Table 1). Based on the drastic improvement in gene tree accuracy enabled by Door-S
and Door-A, one would expect the Door-S and Door-A alignments to show much better
(higher) SP-scores. While all Door-S alignments do show an improvement, we found
that only 11 of the 100 Door-A alignments had an improved SP-score compared to rear-
ranged sequence alignments. In other words, 89% of the Door-A alignments actually
had worse SP-scores than the rearranged sequence alignments. The finding that Door-
A alignments have worse SP-scores than Door-S alignments is not is not surprising;
specifically, Door-A alignments are composed of concatenated alignments of smaller
sequence blocks and are therefore more “restricted” compared to theDoor-S alignments
where the aligner has greater opportunity to improve the SP-score by aligning match-
ing nucleotides (or amino acids) across domain boundaries. These results demonstrate
how SP-scores need not be correlated with alignment quality or gene tree reconstruction
accuracy in the presence of domain rearrangement.

Note that we did not apply MDAT and ProDA to the simulated dataset. ProDA (or
ProDA 50) could not offer any improvement over Door-A since exact domain families
and domain sequence boundaries are already known for the simulated dataset. MDAT
could not be applied since it requires specifically formatted PFam annotations which
are unavailable for the simulated data.

4.2 Biological Dataset Results

We applied all five methods, Door-S, Door-A, MDAT, ProDA, and ProDA 50 to the
198 biological gene families and compared the accuracies of the resulting gene trees
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against the gene trees constructed using the original (uncorrected) gene sequence align-
ments.1 Since true gene trees are unavailable for the biological dataset, relative gene
tree accuracies were estimated based on DL-scores, as described previously. Table 2
shows the results of this analysis. In contrast with the results on simulated datasets, we
observed that none of the methods could consistently improve all gene families and that
the majority of gene families showed worse accuracy after the methods were applied.
The best performing methods on this dataset were MDAT and Door-A, which both
improved approximately 25% of the gene families and worsened 57.6% of the gene
families.

Table 2. Number of gene families improving or worsening, per the DL-score, when applying
MDAT, ProDA, ProDA 50, Door-S, and Door-A to the 198 biological gene families.

Method No. of Families Improved Avg. Percent Improvement No. of Families Worsened Avg. Percent Worsening

MDAT 50 16.4 114 37.4

ProDA 39 19.1 120 26.3

ProDA 50 45 17 119 31.6

Door-S 42 15.4 125 36

Door-A 49 16 114 34.6

We also observed that the different methods tended to improve different subsets of
gene families; see Fig. 3. As expected, the greatest overlap in improved gene families
occurs for Door-S and Door-A and for ProDA and ProDA 50. When considering only
the best performing method of each type, MDAT, ProDA 50, and Door-A, we find that
they all show an improvement for 15 shared gene families (Fig. 3(a)). This level of
overlap is highly unlikely to occur by chance (p value < 0.0001). In fact, based on
10,000 randomization experiments, we observed an average overlap of only 2.8 gene
families for the three methods. This suggests that it may be possible to predict which
gene families would benefit from the application of such methods.

These results also highlight the difficulty of dealing with domain rearrangement in
real biological gene families. In particular, error-prone identification of domains and
domain boundaries, and inability to identify all homologous regions affected by rear-
rangement can all greatly impact Door-S and Door-A, as well as the other methods. The
competitive performance of MDAT on these gene families also suggests that, for sev-
eral of the gene families, the gene sequences may actually be linearly alignable. E.g., the
seemingly incompatible domain orders 〈A,B〉 and 〈B,A〉 become linearly alignable in
the presence of a third sequence with domain order 〈A,B,A〉.

5 Discussion and Conclusion

In this work, we considered the problem of out-of-order domains within gene families.
We used carefully simulated gene families to demonstrate the impact of protein domain

1 ProDA and ProDA 50 could only be run successfully on 183 and 191 gene families, resp.
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Fig. 3. Venn diagrams for gene families improved by different methods. (a): Venn dia-
gram showing intersections of improving gene families for the three primary methods, MDAT,
ProDA 50, and Door-A. (b) and (c): Venn diagrams showing intersections of improving gene
families for similar methods ProDA & ProDA 50 (b) and Door-S & Door-A (c).

shuffling and rearrangement on multiple sequence alignment and gene tree reconstruc-
tion accuracy, proposed two new computational methods, Door-S and Door-A, for cor-
recting gene sequences and alignments for improved gene tree reconstruction accuracy,
demonstrated their drastic impact on gene tree reconstruction accuracy on the simulated
dataset, and assessed the potential real-world impact of the new methods and MDAT
and ProDA by applying them to biological gene families. Our findings demonstrate the
significant impact that proper handling of domain rearrangements can have on gene
tree reconstruction accuracy, and identify the substantial challenges that such methods
must overcome to become widely applicable in practice. Notably, none of the evaluated
methods could consistently improve the accuracy of reconstructed gene trees for the
biological gene families.

Between Door-S and Door-A, our experimental results on both simulated and bio-
logical gene families indicate that the concatenated alignment approach implemented
in Door-A may be slightly superior, overall, to the simpler approach implemented in
Door-S. However, we found that there were several biological gene families that were
improved by Door-S but not by Door-A (Fig. 3), and further work is needed to better
understand the scenarios in which one or the other method works better. Our results on
the biological dataset suggest that both Door-S and Door-A could be further improved
by combining protein domain annotations with the local alignment approach of ProDA
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to better identify out-of-order domains and other homologous regions and their bound-
aries. Our results also suggest that first constructing an order-preserving alignment, as
done byMDAT, may help to better identify gene families with true out-of-order domains
which could benefit from the reordering-based approach ofDoor-S andDoor-A. Finally,
our results are based on using MUSCLE as the underlying sequence aligner and it could
be instructive to assess the impact of using other sequence aligners to compute baseline
alignments and Door-S and Door-A corrected alignments.

Funding. This work was supported in part by NSF award IIS 1553421 to MSB.
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Abstract. Neuroblastoma is a prevalent solid tumor affecting children,
with a low 5-year survival rate in high-risk patients. Previous studies
have shed light on the involvement of specific circRNAs in neuroblas-
toma development. However, there is still a pressing need to identify
novel therapeutic targets associated with circRNAs. In this study, we
performed an integrated analysis of two circRNA sequencing datasets,
the results revealed dysregulation of 36 circRNAs in neuroblastoma tis-
sues, with their parental genes likely implicated in tumor development. In
addition, we identified three specific circRNAs, namely hsa circ 0001079,
hsa circ 0099504, and hsa circ 0003171, that exhibit interaction with
miRNAs, modulating the expression of genes associated with neurob-
lastoma. Additionally, by analyzing the translational potential of dif-
ferentially expressed circRNAs, we uncovered seven circRNAs with the
potential capacity for polypeptide translation. Notably, structural pre-
dictions suggest that the protein product derived from hsa circ 0001073
belongs to the TGF-beta receptor protein family, indicating its potential
involvement in promoting neuroblastoma occurrence.

Keywords: circular RNA · neuroblastoma · miRNA · RBP ·
translation

1 Introduction

Neuroblastoma (NB) is the most prevalent extracranial solid tumor among
children, originating from primitive neural crest cells during embryonic devel-
opment [1]. NB accounts for about 7% of malignant tumors in children and
about 15% of cancer-related deaths [2]. Metastases are present at diagnosis in
around 50% of patients, with bone marrow, bone, and lymph nodes being the
major sites of involvement4. Currently, the overall survival rate for low-risk and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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intermediate-risk neuroblastoma patients exceeds 90% [3]. However, the long-
term survival rate for high-risk neuroblastoma patients remains below 50% [4].
Thus, there is an urgent need to identify novel biomarkers and treatment targets
for high-risk neuroblastoma, intending to improve the cure rate and long-term
survival of these patients.

Circular RNA (circRNA) is an emerging class of RNA molecules that pos-
sess a unique circular structure formed through reverse splicing [5]. Research
has found that circRNAs play critical roles in regulating fundamental biological
processes such as cell proliferation, differentiation, and apoptosis, essential for
maintaining normal cellular function and tissue homeostasis. Notably, dysregula-
tion of circRNA expression has been associated with the onset and progression of
various diseases, including cancer [6], cardiovascular disorders [7], and neurologi-
cal conditions [8]. Consequently, circRNAs have emerged as potential biomarkers
or therapeutic targets for disease diagnosis and treatment [9].

In the quest for more convenient and effective biomarkers and therapeutic
targets for the diagnosis and treatment of NB, researchers have investigated the
role of circRNA in this disease [10]. Zhang et al. conducted a study in which they
observed the upregulation of seven circRNAs within the MYCN amplification
region in cell lines exhibiting high MYC signaling activity and MYCN ampli-
fication [11]. Another study by Lin et al. identified the relevance of circRNA-
TBC1D4, circRNA-NAALAD2, and circRNA-TGFBR3 to the clinical manifes-
tations of NB [12]. Previous investigations have also suggested that circRNA
expression levels can serve as diagnostic biomarkers for NB. However, the pre-
cise mechanisms underlying the specific regulation of NB by circRNAs remain
unclear, and there are numerous circRNAs whose functions in NB are yet to be
explored.

In this study, we conducted a comprehensive analysis of two NB circRNA
sequencing datasets, PRJNA721263 and PRJNA554935, obtained from the SRA
database. By comparing the expression levels of circRNAs between normal tis-
sues and NB tissues, we identified differentially expressed circRNAs (DECs) and
performed functional annotation and pathway analysis of their parent genes.
To gain insight into the underlying mechanisms of circRNA action, we con-
structed a circRNA-miRNA-mRNA regulatory network by integrating differen-
tially expressed genes (DEGs) and miRNAs (DEMs) related to NB from Chen’s
research findings. Furthermore, we investigated the relationship between cir-
cRNAs and RBPs and examined the translation potential of the differentially
expressed circRNAs. Notably, the translation product of hsa circ 0001073 has
potential relevance to the occurrence and development of NB.

2 Methodology

2.1 Datasets Collection

The circRNA sequencing datasets of NB and normal tissue were downloaded
from SRA (https://www.ncbi.nlm.nih.gov/sra/), the PRJNA721263 dataset is
composed of 5 NB and 5 control tissues and the PRJNA554935 dataset includes

https://www.ncbi.nlm.nih.gov/sra/
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3 NB and 3 control tissues. In addition, based on the research results of
Chen [13,14] and Shao [15], differentially expressed miRNAs and differentially
expressed genes related to NB were collected. The reference genome of human
(GRCh38/hg38) was downloaded from UCSC.

2.2 Identification of CircRNAs and Differentially Expressed
CircRNAs

Previous studies have shown that the combination of multiple circRNA predic-
tion methods yields more reliable results [16]. Here, we combined three circRNA
prediction methods, including CIRI combined with BWA [17], CIRCexplorer
combined with BWA [18], and DCC combined with STAR [19], and circRNAs
detected by three methods at the same time are used further analysis. Next,
we used R package DEseq to analyze the differential expression of circRNAs
in two datasets, and the circRNAs detected in less than half of the samples
were considered as lowly expressed and were filtered. CircRNAs with p<0.05
and |log2FC|>1 were considered significantly different and were used for further
analysis.

2.3 GO and KEGG Enrichment Analysis

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analyses were carried out with clusterProfiler
R package to predict the function of parental genes that DECs.

2.4 Construction of a CircRNA-miRNA-mRNA Regulatory
Network

The potential target miRNAs of the circRNAs were predicted using the cir-
cbank [20]. At the same time, we selected the DEMs through the research results
of Chen. Next, we conducted a Venn diagram analysis; overlapping miRNAs
were chosen for further investigation and research. Furthermore, we used miR-
TarBase [21] to predicate target mRNAs of these selected miRNAs. The DEGs
were gained from the research results of Chen and Shao. Similarly, overlap-
ping mRNAs were selected for the following bioinformatics analysis. Cytoscape
(3.10.0) was used to create a circRNA-miRNA-mRNA network [22].

2.5 RNA Binding Protein (RBP) Prediction of CircRNAs

As a protein sponge, circRNAs can bind to RNA-associated proteins to form
RNA-protein complexes that regulate gene transcription. The RBPs that bind
the differential circRNAs were predicted by the CircInteractome web tool [23],
which were visualized by Cytoscape.
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2.6 Computational Tools Used for Prediction of Protein Structures,
and Domain Analysis

The list of human circRNAs potentially translating into proteins was down-
loaded from the riboCIRC database [24]. The structure of predicted polypep-
tides encoded by circRNA splice variants was determined using Alpha Fold 2
with default parameters [25]. InterProScan was used to identify functional pro-
tein domains reported by various prediction tools such as Pfam, Phobius, and
PANTHER in the circRNA-derived polypeptides [26].

3 Results

3.1 Identification of DECs in Neuroblastoma

In this study, we employed three distinct identification methods to identify
circRNAs in two datasets. CircRNAs that were consistently identified by all
three methods were considered highly reliable. The results demonstrated that
dataset PRJNA721263 detected a total of 38,438 unique circRNAs, and dataset
PRJNA554935 revealed 11,368 unique circRNAs. And, there were 10,060 circR-
NAs shared between the two datasets.

Subsequently, using a statistical threshold of p<0.05 and |log2FC|>1, we
identified 2,234 DECs between normal tissue and NB tissue from two datasets.
In the PRJNA721263 dataset, we detected 2,221 DECs, with 846 circRNAs
upregulated and 1,375 circRNAs downregulated (Fig. 1A). The PRJNA554935
dataset exhibited 50 DECs, consisting of 36 upregulated and 14 downregulated
circRNAs (Fig. 1B). Additionally, through Venn diagram analysis, we identi-
fied 36 DECs that overlapped between the two circRNA sequencing datasets
and displayed the same regulation trend (Fig. 1C). Among these, 12 circRNAs
upregulated, while 24 circRNAs downregulated.

3.2 Reconstruction of DECs Full-Length Sequences

The functionality of circRNAs, including their interactions with miRNA or RNA-
binding proteins (RBPs) and their potential for translation, is primarily deter-
mined by their unique sequences. To gain deeper insights into the functions of the
identified DECs, we employed CIRI-full with default parameters to assemble the
full-length sequences of the 36 DECs. This assembly process successfully gener-
ated 82 distinct sequences, among which 21 circRNAs exhibited variable splicing
isoforms. Upon analyzing the full-length circRNA sequences, we observed that
60 out of the 82 sequences originated exclusively from the exon regions of the
genome. Then, we compared assembled sequences with sequences available in the
circbank, CircInteractome, and riboCIRC databases to establish a robust foun-
dation for conducting functional analyses of circRNAs using these databases. At
least one full-length sequence of each differentially expressed circRNA has been
confirmed across three databases and will be used for further analysis.
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Fig. 1. Volcano plot of (A) PRJNA721263 and (B) PRJNA554935. The blue points
indicate the screened down-regulated DECs, the red dots indicate the screened up-
regulated DECs, and the gray dots indicate genes with no significant differences.
(C) Venn diagram of 36 overlapped dysregulated DECs between PRJNA721263 and
PRJNA554935. (Color figure online)

3.3 Function Enrichment Analysis of CircRNA Parental Genes

To gain further insights into the potential biological functions of the dysregulated
circRNAs in NB, we conducted GO and KEGG pathway enrichment analyses
using the parental genes associated with the 36 DECs.

The GO analysis revealed that a majority of the genes were significantly
enriched in various biological processes (Fig. 2A). These processes encompassed
cognition, substrate adhesion-dependent cell spreading, cellular response to
epinephrine stimulus, negative regulation of neuroinflammatory response, main-
tenance of synapse structure, and macrophage proliferation, among others. These
enrichment results indicate that the parental genes of the DECs likely play piv-
otal roles in neural cell differentiation and inflammatory responses.

In the KEGG pathway enrichment analysis (Fig. 2B), we observed prominent
involvement of the parental genes in neuroblastoma-related signaling pathways.
The enriched pathways included the Neurotrophin signaling pathway, Pathways
of neurodegeneration - multiple diseases, Transcriptional misregulation in cancer,
Hedgehog signaling pathway, TNF signaling pathway, Spinocerebellar ataxia,
Rap1 signaling pathway, ErbB signaling pathway, and others. These enriched
pathways further suggest that these DECs may contribute to the processes
underlying neuroblastoma occurrence and development.

3.4 CircRNA-miRNA-mRNA Network

To explore the regulatory relationships among circRNAs, miRNAs, and mRNAs,
we constructed a circRNA-miRNA-mRNA network using 36 candidate DECs
(12 upregulated and 24 downregulated), 481 candidate DEGs (177 upregulated
and 304 downregulated genes), and 81 candidate DEMs (30 upregulated and
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Fig. 2. Functional enrichment analysis of parental gene of 36 overlapped DECs. (A)
The top ten GO items of parental genes of overlapped DECs. (B) KEGG enrichment
analysis of parental genes of overlapped DECs.

Fig. 3. circRNA-miRNA-mRNA regulatory Network. The red dot represents circRNA,
the green dot represents mRNA, the yellow dot represents miRNA. (Color figure online)

51 downregulated DEMs). After filtering, the resulting network, visualized in
Cytoscape, consisted of 30 nodes and 31 regulatory axes (Fig. 3). Notably, 4
DECs (hsa circ 0127664, hsa circ 0001079, hsa circ 0099504, hsa circ 0003171)
were identified within the network, connecting with 21 DEGs through 5 DEMs.



Identification and Functional Annotation of circRNAs in Neuroblastoma 357

Fig. 4. (A) GO enrichment analysis of DEGs in the regulatory network. (B). KEGG
enrichment analysis of DEGs in the regulatory network.

To gain insights into the functions of these DEGs, we conducted a comprehen-
sive functional enrichment analysis. GO-based BP analysis showed that DEGs
were significantly enriched in protein processing, import into the cell, and protein
maturation (Fig. 4A). Additionally, the CC of GO analysis demonstrated signif-
icant enrichment in secretory granule organization, cytoplasmic vesicle lumen,
vesicle lumen, specific granule, and tertiary granule. Regarding MF, three DEGs
were enriched in metal ion transmembrane transporter activity.

Furthermore, the KEGG pathway analysis identified significant enrichment
of DEGs in several pathways (Fig. 4B), such as the NOD-like receptor signaling
pathway, NF-κB signaling pathway, natural killer cell-mediated cytotoxicity, and
PI3K-Akt signaling pathway.

3.5 Construction of a CircRNA-RBP Network in NB

Apart from their role as miRNA sponges, circRNAs can also serve as protein
sponges. To investigate potential interactions between DECs and RBPs, we
employed the CircInteractome database to construct a circRNA-RBP network.
This network consists of 32 DECs and 22 RBPs. By calculating the Degree value
of each node, we identified the top three hub RBPs, namely EIF4A3, AGO2,
and HuR (Fig. 5A). EIF4A3 plays a pivotal role in various aspects of RNA
metabolism and translation initiation. AGO2 is centrally involved in the RNA
interference (RNAi) pathway and post-transcriptional gene silencing. HuR has
been implicated in cancer development and progression. Previous studies have
reported the relevance of these three RBPs to the occurrence and development
of NB.

Furthermore, KEGG enrichment analysis of all RBPs in the network sug-
gests their potential involvement in essential metabolic pathways, including tran-
scriptional regulation in cancer, pathways of neurogenesis with multiple releases,
mRNA surveillance pathways, and others(Fig. 5B).
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Fig. 5. (A) Construction of the RBP-circRNA regulatory network in NB. (B) KEGG
enrichment analysis of RBPs in the regulatory network.

3.6 Analysis of CircRNA Translation Potential

To identify potentially translatable DECs, we utilized the riboCIRC database,
which employs multiple lines of evidence to predict the translation potential of
circRNAs. From this database, we extracted a set of human circRNAs predicted
to have translation ability. Some circRNA sequences show the potential to gen-
erate multiple peptide chain subtypes, while others are short peptides with a
length of less than 50 amino acids (aa). Domain prediction using InterProScan
was performed to identify functionally relevant sites within these circ-proteins.
The analysis results indicated that peptide chains with fewer than 50aa do not
possess specific functions, whereas longer peptide chains contain distinct func-
tional domains. Finally, we retained 7 long circRNA peptide chains, which are
summarized in Table 1, and we employed AlphaFold2 analysis to predict their
three-dimensional structures, as illustrated in Fig. 6.

Table 1. DECs with translation potential in riboCIRC database

circRNA ID location length evidences riboCIRI ID

hsa circ 0001073 chr2:147896300-147899898|+ 570nt RPF, cORF hsa circACVR2A 001

hsa circ 0001238 chr22:41808874-41810291|+ 326nt RPF, cORF, MS, m6A hsa circCCDC134 001

hsa circ 0005087 chr1:26942659-26943065|+ 406nt RPF, cORF hsa circNUDC 001

hsa circ 0006988 chr11:36227084-36227430|+ 346nt RPF, cORF hsa circLDLRAD3 001

hsa circ 0007444 chr5:95755395-95763620|+ 479nt RPF, cORF, m6A hsa circRHOBTB3 001

hsa circ 0051680 chr19:47362475-47362693|+ 218nt RPF, cORF, m6A hsa circDHX34 002

hsa circ 0073517 chr5:108186116-108348530|- 371nt RPF, cORF, MS hsa circFBXL17 001
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Fig. 6. AlphaFold2 generated potential longest circRNA peptide structure coming from
7 DECs.

After conducting the comparison, we did not find any effective structural
domains in hsa circLDLRAD3 001. However, we have performed a functional
analysis of the other six circRNA translation proteins:

hsa circACVR2A 001: This protein is likely a member of the SerThr protein
kinase, TGFβ receptor protein family, with a TMhelix formed at 58-80aa. Gene
Ontology (GO) analysis suggests its involvement in the transmembrane receptor
protein serinethreonine kinase signaling pathway (GO:0007178).

hsa circCCDC134 001: This protein is likely a member of the Coiled-coil
domain-containing protein 134 (CCDC134) protein family, with a TMhelix
formed at 6-28aa. CCDC134 is a secretory protein that regulates the mitogen-
activated protein kinase (MAPK) pathway [27].

hsa circNUDC 001: This protein is likely a member of the NudC family, with
a CS domain formed at 1-88aa. Previous studies have shown that the CacyBPSIP
protein, which contains a CS p23-like domain, is redundant in neurons and neu-
roblastoma NB2a cells.

hsa circRHOBTB3 001: This protein sequence, 26-137aa forms a BTBPOZ
domain. Many BTB proteins are transcriptional regulators that control chro-
matin structure.

hsa circDHX34 002: This protein contains the P-loop NTPase (P-loop con-
taining nucleoside triphosphate hydrolase) domain superfamily, which is the
most prevalent domain among several distinct nucleotide-binding protein folds.
It exhibits a significant substrate preference for either ATP or GTP [28].

hsa circFBXL17 001: The peptide chain contains the LRR dom sf (Leucine-
rich repeat domain superfamily). LRRs are present in proteins ranging from
viruses to eukaryotes and are involved in various biological processes, including
signal transduction, cell adhesion, DNA repair, recombination, transcription,
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RNA processing, disease resistance, apoptosis, and the immune response. Pro-
teins containing LRRs include tyrosine kinase receptors, cell adhesion molecules,
viral factors, and extracellular matrix-binding glycoproteins [29].

4 Discussion

Neuroblastoma is the most prevalent extracranial malignant solid tumor in chil-
dren, with a long-term survival rate of less than 50% for high-risk patients.
Previous studies have primarily focused on investigating the role of epigenetic
factors, genes, and ncRNA molecules in the development and progression of NB.
Recently, the involvement of circRNAs in NB has gained attention, as they have
been found to contribute to tumor cell proliferation, invasion, and migration. A
comprehensive study of circRNAs can significantly enhance our understanding
of their functions in NB and pave the way for novel approaches in NB diagnosis
and treatment.

In this study, we conducted an integrated analysis of circRNA sequencing
data obtained from NB tissues and normal tissues. Our main objective was to
identify differentially expressed genes (DEGs) between NB and normal tissues,
predict their targeted miRNAs, RNA-binding proteins (RBPs), and translated
proteins using bioinformatics methods, and gain further insights into the under-
lying mechanisms of NB pathogenesis.

In dataset PRJNA721263, we identified a total of 38,438 unique circRNAs.
This dataset comprises 10 samples, each with a data size of approximately 10
GB. However, in dataset PRJNA554935, we detected 11,368 unique circRNAs,
consisting of 6 samples, each with a data size of roughly 5 GB. The signifi-
cant difference in the number of detected circRNAs in the two datasets may
be attributed to two primary reasons. Firstly, the variance can be attributed
to differences in sequencing depth. Larger data sizes are more likely to cap-
ture low-expression circRNAs. Secondly, circRNAs are known to exhibit tissue-
specific and development stage-specific expression patterns. The dissimilarity in
the samples collected between the two datasets could also have a significant
impact on the number of detected circRNAs.

The circRNA-RBP regulatory network consisted of 32 DECs and 22 RBPs,
Based on their Degree values (Fig. 5A), EIF4A3, AGO2, and HuR emerged as the
top hub RBPs in the network. Previous studies have implicated these RBPs in
tumor development and progression. In addition to hub RBPs, previous studies
have highlighted the involvement of IGF2BP family members in NB develop-
ment [30], all family members are reported to be expressed in up to 100% of
neuroblastoma tumors, with high expression of IGF2BP1 associated with poor
prognosis and MYCN amplification in neuroblastoma tumors [31].

Many solid tumors, including neuroblastoma (NB), evade immune control
by generating a suppressive tumor microenvironment, dominated largely by the
cytokine transforming growth factor beta [32]. Through Sequence alignment, it is
found that hsa circ ACVR2A 001 is likely a member of the SerThr protein kinase,
TGFβ receptor protein family, with a TMhelix formed at 58-80aa. Therefore, we
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speculate that circRNA hsa circ 0001073 (hsa circACVR2A 001) is upregulated
in NB tissues, and its protein product may promote the development of NB.

Through our comprehensive analysis of DECs associated with NB, including
their interactions with miRNAs, RBPs, and translation into proteins, we identi-
fied potential biomarkers for NB diagnosis and treatment. hsa circ 0001079 may
influence the expression of NB-related genes through its interaction with hsa-
miR-661, while hsa circ 0099504 and hsa circ 0003171 may affect the expres-
sion of the SGK3 gene through their interaction with hsa-miR-515-5p. Addi-
tionally, hsa circ 0001073 (hsa circACVR2A 001) may contribute to NB devel-
opment through protein translation. However, the specific pathways involving
these DECs in NB and their potential as new therapeutic targets require further
validation through biological experiments.

In summary, our study provides a more comprehensive investigation of cir-
cRNAs would enhance our understanding of their function in NB, and provide
broader research avenues for NB diagnosis and treatment.
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Abstract. Biomarkers extracted from brain functional connectivity
(FC) can assist in diagnosing various psychiatric disorders. Recently,
several deep learning-based methods are proposed to facilitate the devel-
opment of biomarkers for auxiliary diagnosis of depression and promote
automated depression identification. Although they achieved promising
results, there are still existing deficiencies. Current methods overlook
the subgraph of braingraph and have a rudimentary network framework,
resulting in poor accuracy. Conducting FC analysis with poor accuracy
model can render the results unreliable. In light of the current deficien-
cies, this paper designed a subgraph neural network-based model named
SGMDD for analyzing FC signatures of depression and depression identi-
fication. Our model surpassed many state-of-the-art depression diagnosis
methods with an accuracy of 73.95%. To the best of our knowledge, this
study is the first attempt to apply subgraph neural network to the field
of FC analysis in depression and depression identification, we visualize
and analyze the FC networks of depression on the node, edge, motif, and
functional brain region levels and discovered several novel FC feature
on multi-level. The most prominent one shows that the hyperconnectiv-
ity of postcentral gyrus and thalamus could be the most crucial neuro-
physiological feature associated with depression, which may guide the
development of biomarkers used for the clinical diagnosis of depression.

Keywords: Major depressive disorder · Subgraph neural network ·
Analysis of brain functional connectivity · resting-state fMRI

1 Introduction

Major depressive disorder (MDD) is a severe mental disorder that leads to a sub-
stantial economic burden on public systems [1]. Thus, it is essential to develop
precise and reliable biomarkers for clinical diagnosis. Although there exist sev-
eral hypotheses that explain the pathogenesis of depression [2], there is still no
biomarker that is widely accepted and employed for the clinical diagnosis of
MDD, leading to overdiagnosis or misdiagnosis [3].
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The analysis of functional connectivity (FC) networks in the brain derived
from fMRI data has emerged as an effective way to develop highly accurate
biomarkers for neurological or psychiatric disorders [4]. Recently, several deep
learning-based methods have been proposed to extract universal features from
depression FC network and automatically identify depression. In 2022, Noman
et al. [5] utilize a GCN-based graph autoencoder to diagnose depression and
analyze the FC network of depression with an accuracy of 72.5%, although the
accuracy is relatively high, the dataset they used only contains a few dozen MDD
patients, resulting in the analysis of FC unreliable. In 2023, Gallo et al. [4] and
Yuqi Fang et al. [6] utilized the rest-metamdd dataset for model training and
brain FC analysis. The size of dataset is improved, but their deep learning models
encode the entire braingraph directly, have overlooked the subgraph structure
of braingraph. Additionally, the network framework they used is rudimentary,
resulting in insufficient feature extraction capabilities. The accuracy of their
models for depression detection is only 61.47% and 59.73%, resulting in a lack
of precision when analyzing brain FC.

Although there has been significant progress in deep learning-based analysis
of FC signatures on depression and depression identification over the past few
years, there are three remaining issues that need to be addressed:

1) Existing deep learning-based research has disregarded many functionally and
structurally oriented FC features. The brain regions can be classified accord-
ing to their anatomical location and function. Each of these sub-structures is
responsible for distinct functions. Current research [4,5,7] encoding the entire
braingraph directly, has overlooked the subgraph structure of braingraph.

2) Existing deep learning-based research lacks precision when analyzing FC. The
deep learning models they used have poor accuracy due to the rudimentary
network framework [3–5,7].

3) Existing deep learning-based research [4–6] related to analyzing the functional
connectivity of depression is mainly focusing on the edge level, which means
they all focus on finding the most discriminative edge, the analysis on the
motif, node, and functional brain region levels is insufficient.

In light of the three deficiencies mentioned above, this paper proposes a
subgraph neural network-based framework for analyzing FC of depression and
automated depression identification. The primary contributions of our research
are briefly outlined as follows:

1) Our network framework preserves more functionally and structurally oriented
FC features by using S-BFS to generate sub-braingraphs in nine different
functional brain regions and applying subgraph neural network to extract FC
features from discriminative sub-braingraphs.

2) Our network framework extracts FC features more precisely. The accuracy of
our model surpasses many state-of-the-art depression diagnosis models with
an accuracy of 73.95%, which offers the potential for automated diagnosis of
depression in clinical settings.
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3) We visualize and analyze the FC network on the motif, edge, node, and func-
tional brain region levels. Our findings have discovered the hyperconnectivity
of postcentral gyrus and thalamus could be the most crucial neurophysio-
logical feature associated with MDD, which may guide the development of
biomarkers used for the clinical diagnosis of MDD. Also, we have discov-
ered some new FC signatures on multi-level, such as the hyperconnectivity
of sensorimotor network (SMN) and default mode network (DMN) and the
hyperconnectivity between SMN and DMN, which can promote the analysis
of fMRI for MDD patients in the clinical scenario.

2 Related Work

2.1 Construction of Braingraph

The process of constructing a braingraph is illustrated in Fig. 1. In our study, the
Ledoit-Wolf estimator is used to evaluate the functional connectivities between
ROIs. The connectivity pattern of braingraph is derived through proportional
thresholding. The Automated Anatomical Labeling (AAL) atlas with N = 116
regions-of-interest (ROIs) is used in our method. The partition method of func-
tional brain region is based on standard (7+1) system template defined in lit-
erature [3]. In addition, Cerebellum and Vermis were categorized as the ninth
functional brain regions named the CV, these 116 ROIs are divided into nine
functional brain regions as shown in Fig. 1 (Visualization of braingraph); the
nodes with different colors correspond to nine different functional brain regions.

Fig. 1. An illustration of constructing a braingraph.

3 Method

As shown in Fig. 2. The overall framework of SGMDD involves three funda-
mental steps: (1) Sub-braingraph Sampling And Encoding; (2) Sub-braingraph
Selection And Sub-braingraph’s Node Selection; (3) Sub-braingraph Sketching
And Classification. In Sects. 3.1, 3.2, and 3.3, we provide a detailed introduction
to each of these three steps.

The braingraph in our study for every subject is denoted as G = (V,X,A).
V = {v1, v2, · · · , vN} represents a set of N nodes (ROIs), The adjacency matrix
is denoted as A = [aij ] ∈ {0, 1}N×N , the node feature for G is denoted as
X = [x1, . . . ,xN ]T ∈ R

N×d.
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Fig. 2. An illustration of the SGMDD architecture.

3.1 Sub-braingraph Sampling and Encoding

The process of subbraingraph sampling and encoding can be divided into three
steps as shown in Fig. 2 (1.1, 1.2, 1.3):

First (1.1), nodes in nine functional brain regions are sorted in descending
order based on their degree. The top N nodes are selected in nine functional
brain regions to serve as centers of each sub-braingraph.

Second (1.2), a sub-braingraph is generated for each central node using the
Selective-Breadth First Search (S-BFS) algorithm. The S-BFS algorithm pri-
oritizes the expansion of central node in the same functional region defined in
Fig. 1, and each subgraph is limited to a maximum of s nodes. Ultimately, the
set of sub-braingraphs is obtained as {g1, g2, · · · , gn}.

Third (1.3), a GNN-based encoder, denoted by ε : Rs×d × R
s×s → R

s×d1 , is
learned to get node representation of sub-braingraphs, where d1 represents the
dimension of node representation. The generalized equation for obtaining the
node representations H (gi) ∈ R

s×d1 for nodes within sub-braingraph gi is:

H (gi) = E (gi) = {hj | vj ∈ V (gi)} (1)

By incorporating E into a message-passing framework, the unified formulation
is defined as follows:

h(l+1)
i = U(l+1)

(
h(l)
i ,AGG

(
M(l+1)

(
h(l)
i ,h(l)

j

)
| vj ∈ N (vi)

))
(2)
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where U(·) denotes the state updating function, AGG(·) denotes the aggregation
function and M(·) denotes the message generation function. An intra-subgraph
attention mechanism is utilized for encoding node representations, this is given
by the following equation:

c
(i)
j = σ

(
aTintraWintrah

(i)
j

)
(3)

where Wintra ∈ R
d1×d1 and aintra ∈ R

d1 represent weight matrix and weight
vector. the representations zi of gi is given by:

zi =
∑

vj∈V(gi)

c
(i)
j h(i)

j . (4)

3.2 Sub-braingraph Selection and Sub-braingraph’s Node Selection

SGMDD utilizes a Local braingraph Feature Extraction (LFE) module to select
important Sub-braingraphs and Sub-braingraph’ Nodes. The LFE module can
be divided into two sections (2.1, 2.2) as shown in Fig. 2.

Sub-BrainGraph Selection (SGS) section (2.1): In order to select significant
sub-braingraphs, we utilize the technique of top-k sampling involves adjusting
the adaptive pooling ratio k; we employ a trainable vector p to project all sub-
braingraphs features to 1D footprints {vali | gi ∈ G}, we select the top n′ =
�k ·n� sub-braingraphs, vali of sub-braingraph gi with respect to p is determined
as follows:

vali =
Zip
‖p‖ , idx = rank ({vali} , n′) (5)

The function rank ({vali} , n′) is applied to rank the importance of subgraphs
and returns the indices of the n′-largest values in {vali}. In order to identify
the most significant sub-braingraphs, a reinforcement learning (RL) algorithm is
used to dynamically update the pooling ratio k ∈ (0, 1]. We model updating k as
a finite horizon Markov decision process, the specific details of the RL algorithm
can refer to the literature [8].

Once the significant sub-braingraphs are determined, we use self-attention
pooling [9] to perform Sub-braingraph’s Node Selection section (SNS) (2.2): SNS
uses GNN layer to obtain self-attention scores. Specifically, the self-attention
score Z ∈ R

N×1 is computed according to the following equation:

Z = σ
(
D̀− 1

2 ÀD̀− 1
2 XΘatt

)
(6)

In our model, σ denotes the activation function. The adjacency matrix with
self-connections is denoted by À. Furthermore, we use D̀ ∈ R

N×N as the degree
matrix of À. Input features are denoted by X ∈ R

N×F , where N represent the
number of nodes and F represents the dimensional of feature.

To retain a proportion of nodes from the input graph, we use Gao et al. [10]’s
node selection method. The top �kN� nodes are chosen based on the correspond-
ing value of Z.

idx = top − rank(Z, �kN�), Zmask = Zidx (7)
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The function top-rank yields the indices of the top �kN� values. Zmask indicates
the feature attention mask, and idx denotes an indexing operation. In Fig. 2
(Sub-BrainGraph’s Node Selection part), the ’masking’ operation is employed
to process the input sub-braingraph.

X ′ = Xidx,;,Xout = X ′ � Zmask, Aout = Aidx,idx (8)

where Xidx,; represents the feature matrix with row-wise indexing (i.e., node-
wise), � is the elementwise product that has been broadcasted, and Aidx,idx is
the adjacency matrix with both row-wise and column-wise indexing. Xout and
Aout correspond to the resulting feature matrix and adjacency matrix.

3.3 Sub-braingraph Sketching and Classification

The sub-braingraph sketching and classification can be divided into three steps:
First (3.1), as shown in Fig. 2 (3.1), our method considers selected sub-

braingraphs as super nodes, by doing so, the original braingraph is reduced
to a sketched graph. Edge (gi, gj) donates the number of edges between different
sub-braingraphs. The sketched graph is donated as Gsk =

(
V sk, Esk

)
. We set a

predefined threshold of bth. If the number of edges between subgraphs gi and gj
surpasses this threshold, an edge e(i, j) will be added to the sketched graph

V sk = {gi} ,∀i ∈ idx;

Esk = {ei,j} ,∀Edgee (gi, gj) > bth
(9)

We adopt an inter-subgraph attention mechanism defined in [11] to model the
mutual influence among sub-braingraphs. With these attention coefficients, we
obtain the subgraph embeddings as follows:

z′
i =

1
M

M∑
m=1

∑
eij∈Eske

αm
ijW

m
interzi (10)

where M is the number of independent attention. αij is the attention coefficient,
and Winter ∈ R

d2×d1 is weight matrix.
Second (3.2), we improve the quality of subgraph embeddings by maximizing

mutual information (MI) between local and global braingraph representation. A
READOUT function summarizes the obtained global graph representation r:

r = READOUT
(
{z′

i}n
′

i=1

)
(11)

In this case, we utilize averaging strategy as the READOUT function. To max-
imize the estimated MI, we use the Jensen-Shannon (JS) MI estimator [12] on
the local/global pairs. A discriminator function D : Rd2 ×R

d2 → R is introduced,
as WMI is a scoring matrix and σ(·) donates the sigmoid function. A bilinear
score function is applied as the discriminator:

D (z′
i, r) = σ

(
z′T
i WMIr

)
(12)
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Our self-supervised mutual information (MI) approach is based on contrastive
learning, we use the same way in literature [8] to generate negative samples. To
optimize the self-supervised MI objective and maximize the mutual information
between z′

i and r, we use a standard binary cross-entropy (BCE) loss LG
MI , where

nneg denotes the number of negative samples.

LG
MI =

1
n′ + nneg

⎛
⎝

n′∑
gi∈G

Epos [log (D (z′
i, r))] +

nneg∑

gj∈Ĝ

Eneg

[
log

(
1 − D (

z̀′
j , r

))]
⎞
⎠

(13)
Third (3.3), to predict the labels of the sub-braingraphs, we apply a softmax
function to the sub-braingraph embeddings. The graph classification results are
determined by voting among the sub-braingraphs. We merge the supervised clas-
sification loss LClassify and the self-supervised MI loss LG

MI in Eq. 13 to serve as
a form of regularization. The graph classification loss function LClassify is estab-
lished on cross-entropy. The loss L for SGMDD is defined as:

L = LClassify + β
∑
G∈G

LG
MI + λ‖Θ‖2 (14)

SGMDD preserves more functionally and structurally oriented FC features by
using S-BFS to generate sub-braingraphs in nine different functional brain
regions. While LFE module and GFE module is used to improve the feature
extraction capabilities in both local and global levels. By combining S-BFS,
LFE module, and GFE module, the SGMDD can extracts FC features more
precisely.

4 Experiments

4.1 Data Acquisition and Parameter Settings

The rest-metamdd dataset is the most comprehensive resting-state fMRI
database of individuals with depression available at present [13]. It was utilized to
verify the efficacy of our proposed SGMDD and analyze FC. The detail of fMRI
data preprocessing can refer to literature [5]. 5-fold cross-validation was used to
evaluate these competing models and the proposed SGMDD. Common parame-
ters for SGMDD training were set as follows: Momentum = 0.8, Dropout = 0.4,
and L2 Norm Regularization weight decay = 0.01. The parameter settings of
competing models can find in literature [3,5,6,14].

4.2 Overall Evaluation

As shown in Table 1, the performance of the SGMDD is evaluated by bench-
marking them against BrainNetCNN [15], Wck-CNN [16], XGBoost [17] and
five GCN-based methods [5], which are cutting-edge connectome-based models.
The proposed SGMDD surpasses many state of art methods by a large margin



SGMDD for Analyzing FC of Depression and Depression Identification 371

show that our model can extract the features from FC network more precisely
and offer the potential for automated diagnosis of depression in clinical settings.

In 2023, Gallo et al. [4] and Fang et al. [6] used the same rest-metamdd
dataset for model training and brain FC analysis, achieving an accuracy of
61.47% and 59.73%. This result indicates that our analysis of FC features for
depression in Sects. 4.3, and 4.4 is more accurate than the latest research.

Table 1. Comparing performance (average accuracy±standard deviation) with other
state-of-the-art methods.

Feature Extraction Model Acc Sen Spe Pre F1

BrainNetCNN (NeuroImage, 2017) 56.47± 6.01 51.43± 2.31 49.24± 1.56 53.24± 6.13 55.28± 7.24

Wck-CNN (Medical image analysis, 2020) 58.27± 5.24 51.43± 4.37 48.65± 4.46 47.08± 6.38 52.46± 1.37

XGBoost (ACM SIGKDD, 2016) 60.13± 5.27 57.26± 6.43 60.74± 8.15 48.36± 5.43 54.23± 3.18

Hi-GCN (CIBM, 2020) 55.16± 4.17 52.15± 4.15 47.21± 2.18 44.24± 2.39 48.43± 3.37

E-Hi-GCN (Neuroinformatics, 2021) 58.45± 1.89 59.37± 5.37 57.37± 5.46 55.25± 4.39 57.43± 5.16

Population-based GCN (BSPC, 2023) 61.46± 4.76 58.37± 4.76 57.38± 5.46 60.46± 5.27 61.37± 2.27

GAE-FCNN (ArXiv:2107.12838, 2022) 59.55± 7.45 55.86± 4.37 56.47± 8.65 57.17± 5.95 54.16± 4.23

GroupINN (ACM SIGKDD, 2019) 58.17± 4.27 53.46± 2.24 57.15± 5.34 56.27± 5.39 56.43± 4.79

SGMDD 73.95± 4.63 75.37± 3.59 72.38± 5.56 69.58± 7.42 71.27± 3.21

Fig. 3. Top-10 most discriminative nodes and edges.

4.3 Discriminative Nodes, Edges, and Motifs Analysis

Discriminative Nodes: In order to determine which nodes (ROIs) have higher
discriminative ability in diagnosing depression, we conducted ablation experi-
ments on different nodes (ROIs) in Fig. 3 (a, left) and visualize it in Fig. 3 (a,
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right): We found that the postcentral gyrus and thalamus had the most signifi-
cant impact on accuracy compared to other nodes, indicating that the postcen-
tral gyrus and thalamus are the most discriminative nodes (ROIs).

Discriminative Edges: We used the same method defined in literature [4,6]
to determine which edge has higher discriminative ability. We summarize the
top 10 discriminative edges in Fig. 3 (b, left) and visualize it in Fig. 3 (b, right):
we find that there are many top 10 discriminative edges are connected to the
postcentral gyrus and thalamus.

In 2023, Gallo et al. [4] and Fang et al. [6] find that a lot of discriminative
edges are symmetric between left hemisphere and right hemisphere. However,
this conclusion is not reflected in our study; this could be due to the differences
in the deep learning frameworks, their framework encode the entire braingraphs
directly, while the human brain is not entirely symmetrical both in structure
and function; by selecting asymmetric discriminative sub-braingraphs from nine
different functional brain regions, the Sub-GNN network framework provides a
unique perspective when analyzing the FC of depression. In the meantime, the
high accuracy of our model may be attributed to the asymmetric discriminative
sub-braingraphs selected by the Sub-GNN component.

Discriminative Motif: In order to identify motifs with higher discrimina-
tion ability in the FC network of depression, we sorted the accuracy of sub-

Table 2. Top-10 most discriminative FC motifs in MDD patient.

Top-10 most discriminative motifs

IFGoperc.L-IFGtriang.R-SFGdor.L-CUN.L-ANG.R-THA.R-CRBL9.L-ROL.R

SFGdor.L-SMA.L-REC.L-ORBsupmed.L-PCUN.L-PCG.L-CRBL6.L-CRBL7b.L-R-ORBsupmed

MTG.L-ITG.L-ROL.R-THA.R-ORBinf.L-CUN.L-PCG.R-CAU.L

SFGdor.R-ORBmid.L-CUN.R-PCG.L-PCG.R-CAU.R-ANG.R-PCG.R-CUN.L

ORBinf.R-REC.L-ACG.R-CRBL3.L-MTG.L-MTG.R-CRBL3.R-REC.R

IPL.L-FFG.R-SFGdor.R-ORBinf.R-ITG.L-CRBL7b.L-CRBL45.L

PUT.L-ORBinf.R-SPG.L-CUN.R-ORBsupmed.R-PCG.R-THA.L-CRBL9.R

ORBinf.R-MFG.L-ACG.L-CUN.L-PCUN.R-MTG.R-SFGmed.L-CAU.L-ROL.R

ORBinf.R-FFG.R-ROL.R-PreCG.L-SFGdor.L-MFG.L-ORBinf.L-ANG.L

PCG.R-THA.R-ROL.R-CUN.R-REC.R-CUN.R-HIP.L

Fig. 4. Visualization of top-10 most discriminative FC motifs in different planes.
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braingraphs to filter out motifs with high repetition rates from sub-braingraphs
with high accuracy. The result and topological representations of it are shown
in Table 2 and Fig. 4. By analyzing these motifs, we found that discriminative
motifs are mainly located between the DMN and frontoparietal network (FPN).
To the best of our knowledge, this is a newly discovered FC feature.

Fig. 5. Visualization of top-200 discriminative FCs.

4.4 Overall Functional Connectivity Network Analysis

We visualize the top-200 discriminative edges in Fig. 5 (a). The visualization of
the discriminative edges between nine functional brain regions is shown in Fig. 5
(b), the size of node is related to how many discriminative edges connect to it.

Edge level analysis: we find many discriminative FCs located between the
thalamus and several ROIs associated with emotional processing and regulation,
such as temporal regions and cerebellum. Previous research [4], has indicated
the hyperactivity of thalamus both during rest and cognitive and emotional
processing in patients with depression. The connectivity profile observed in the
previous study is consistent with the connectivity pattern found in our study.

Node (ROIs) level analysis: We analyze the discriminative FCs at the
node level, as shown in Fig. 5 (a). We find that the number of discriminative
FCs connected to the postcentral gyrus and thalamus is higher compared to
other ROIs, indicating the significant importance of the postcentral gyrus and
thalamus in diagnosing depression.

Functional brain region level analysis: We analyze the overall discrim-
inative FCs between nine functional brain regions. As shown in Fig. 5 (b). The
width of line is related to how many discriminative FCs exist between two func-
tional brain regions. We find that the number of discriminative FCs between the
SMN and DMN is significantly higher than other functional brain regions. Also,
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we found that there are more discriminative FCs connected to SMN and DMN
compared to other functional brain regions, which indicate the hyperconnectivity
of SMN and DMN as well as hyperconnectivity between SMN and DMN could
be crucial neurophysiological features associated with MDD.

5 Conclusion

This paper design a subgraph neural network-based model named SGMDD for
analyzing FC signatures in depression and depression identification. The perfor-
mance of SGMDD is superior than many latest depression diagnostic models,
which offers potential for automated diagnosis of depression in clinical settings.

Compared to other studies [4–6] related to analyzing the FC of depression,
this study has advantages mainly in the following three aspects:

1) our network framework preserves more functionally and structurally oriented
FC features by using S-BFS to generate sub-braingraphs in nine different
functional brain region and applying subgraph neural network to extract FC
features from discriminative sub-braingraphs;

2) Our network framework extracts FC features more precisely, the accuracy of
our model surpasses many state-of-the-art depression diagnosis models by a
large margin.

3) We visualize and analyze the FC on the motif, edge, node, and functional
brain region levels and discovered several new FC features on mutil-level.
Additionally, the asymmetric discriminative sub-braingraphs selected by the
Sub-GNN component offer a unique perspective for analyzing the FC of
depression.

Multi-angle analysis of FC network has revealed the importance of post-
central gyrus and thalamus in the diagnosis of depression, it suggests that the
hyperconnectivity of postcentral gyrus and thalamus could be the most crucial
neurophysiological feature associated with MDD, which may guide the develop-
ment of biomarkers used for the clinical diagnosis of MDD. Also, our findings
have discovered some new brain FC signatures related to depression on multi-
level, such as the hyperconnectivity of SMN and DMN and the hyperconnectiv-
ity between SMN and DMN, which can promote the analysis of fMRI for MDD
patients in the clinical scenario.
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Abstract. In recent years, machine learning methods have shown
remarkable results in various protein analysis tasks, including protein
classification, folding prediction, and protein-to-protein interaction pre-
diction. However, most studies focus only on the 3D structures or
sequences for the downstream classification task. Hence analyzing the
combination of both 3D structures and sequences remains comparatively
unexplored. This study investigates how incorporating protein sequence
and 3D structure information influences protein classification perfor-
mance. We use two well-known datasets, STCRDAB and PDB Bind,
for classification tasks to accomplish this. To this end, we propose an
embedding method called PDB2Vec to encode both the 3D structure and
protein sequence data to improve the predictive performance of the down-
stream classification task. We performed protein classification using three
different experimental settings: only 3D structural embedding (called
PDB2Vec), sequence embeddings using alignment-free methods from the
biology domain including on k-mers, position weight matrix, minimiz-
ers and spaced k-mers, and the combination of both structural and
sequence-based embeddings. Our experiments demonstrate the impor-
tance of incorporating both three-dimensional structural information
and amino acid sequence information for improving the performance of
protein classification and show that the combination of structural and
sequence information leads to the best performance. We show that both
types of information are complementary and essential for classification
tasks.

Keywords: Protein structures · Sequences · Structural Information ·
Embeddings · PDB2Vec · Classification · Representation Learning

1 Introduction

Proteins are crucial in various biological processes such as metabolic reactions,
cell signaling, and structural support [8,9,18]. Their three-dimensional (3D)
structures are essential in understanding their functions and interactions with
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other proteins or small molecules [20,22,30]. The availability of structural data
for proteins through the Protein Data Bank (PDB) has opened up new avenues
for researchers to delve deeper into the analysis of proteins. By analyzing the
structural information of proteins, researchers can develop new approaches for
drug discovery [6], design new enzymes [26], and understand protein-protein
interactions better [32]. Therefore, investigating the relationship between protein
sequence and structure can significantly improve our understanding and their
roles in biological processes. One result of the ongoing coronavirus pandemic is
the creation of an abundance of protein data, thanks to the rapid testing process
facilitated the availability of the data through popular databases like GISAID1.
This has, in turn, resulted in the recent appearance of many methods for protein
sequence classification, both alignment-based [27] and alignment-free [5,38].

In this study, we aim to perform sequence-based classification by investi-
gating the use of the protein 3D structure information for classifying proteins.
To this end, we use the PDB structure of proteins and extract their sequences,
which we then use to generate numerical embeddings through different methods.
In addition, we also generate embeddings directly from the 3D coordinates of
the proteins using an autoencoder. Finally, we combine the embeddings from
both the sequence and 3D structural representations to perform protein classifi-
cation. We evaluate the performance of our methods on two benchmark datasets:
STCRDAB and PDB bind. Our results show that the classification performance
is the lowest when only 3D structural information is used. However, the per-
formance improves significantly when only the protein sequences are used. We
then observe that combining the embeddings from both the 3D structures and
sequences leads to further improvement in the classification performance. These
findings highlight the importance of incorporating 3D structural information and
sequences in protein classification.

Our contributions to this paper are the following:

– We investigate the performance of protein classification using three differ-
ent settings: (i) directly from 3D structural coordinates, (ii) from protein
sequences, and (iii) from a combination of the two.

– We evaluate the results on two benchmark datasets: STCRDAB and PDB
bind, and show that our proposed PDB2Vec outperforms the recently proposed
sequence-only-based baselines in terms of predictive performance.

– We demonstrate that combining structural and sequence information can
improve performance compared to using only one source of information.

– We provide insight into the value of incorporating structural and sequence
information for protein classification tasks.

The rest of the paper is organized as follows. In Sect. 2, we provide related
work. Section 3 describes the proposed methodology used in this study. Section 4
describes the datasets used and classification models. In Sect. 5, we present and
discuss the results of our experiments. In Sect. 6, we summarize our findings and
discuss future directions for research in this area.

1 https://gisaid.org/.

https://gisaid.org/
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2 Literature Review

In the field of computational biology, much research has been done in the areas
of protein structure prediction [1], function prediction [31], and protein-protein
interaction prediction [32]. One of the most commonly used methods for protein
structure prediction is the homology-based method [17,40]. Another commonly
used method is the ab initio method [23,36], in which the protein structure
is predicted without prior knowledge of similar proteins. In recent years, there
has been growing interest in using deep learning methods for protein analy-
sis [13,19,39]. Deep learning has been used in various applications such as protein
folding prediction [42], protein-protein interaction prediction [43], and protein
classification [37]. One of the key challenges in using deep learning methods for
protein analysis is the representation of protein information [25,34,39]. For the
analysis of protein sequences, different domains offer a range of methods for the
classification task. A set of pre-trained models to perform protein classification
like Protein Bert [10], Seqvec [24], and UDSMProt [37] are proposed in the litera-
ture. Another domain for sequence analysis involves using kernel function [4,16].
Another domain of research for protein classification/clustering involves design-
ing low dimensional embeddings directly from the sequences using the ideas of
k-mers [3,5,38], minimizers [11,12,33], position weight matrix [2] and gapped k-
mers [35]. Although these methods showed higher predictive performance, they
do not incorporate structural information into the embeddings.

3 Methodology

This section describes the approach we used to design the numerical representa-
tion from 3D coordinates of protein sequences. Along with the process of extract-
ing amino acids to generate the protein sequences. Finally, we describe how we
combined the 3D coordinates-based representation with sequence-based repre-
sentation to get the embedding.

3.1 PDB2Vec

Given a PDB file as input containing 3D (x, y, and z-axis) coordinates for
amino acids within a protein sequence, our first goal is to design a fixed-length
numerical representation in the output. For this purpose, we use an autoencoder-
based architecture. For reference, we call this method as PDB2Vec. The process
involves the following steps:

Flatten the 3D Coordinates. In the first step, we concatenate all the 3D
coordinates within a single PDB file of a protein into a vector since the autoen-
coder takes a vector-based representation as input. This process is repeated for
all PDB files to generate a set of vectors containing all 3D coordinates. We use
data padding to get fixed-length vectors for all PDB files. The resultant set of
vectors is represented by X.
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Autoencoder Architecture. Autoencoder is designed to learn a compressed
input data representation while preserving the most critical information. In
the context of protein structure analysis, the main goal is to extract a low-
dimensional representation of the 3D coordinates, which can capture the essen-
tial structural features of the protein. Autoencoder can be a good fit for this
task because it can learn non-linear mapping from the high-dimensional input
space to the low-dimensional feature space. Our autoencoder architecture takes
X as input and gives a low dimensional representation X ′ as output. It is com-
posed of an encoder, a bottleneck, and a decoder. The encoder consists of 4 fully
connected dense layers with increasing units, followed by Batch Normalization
and Leaky ReLU activation functions. The bottleneck layer is a fully connected
dense layer with ReLU activation. The decoder consists of 4 fully connected
dense layers with decreasing units, each followed by Batch Normalization and
Leaky ReLU activation functions. The output layer is a fully connected dense
layer with linear activation. We use the Adam optimizer and Mean Squared
Error (MSE) loss function for optimization. The number of epochs is set to 100.

Remark 1. As a result of applying autoencoder to get low dimensional represen-
tation, we get X ′, which we call as PDB2Vec.

Sequence Extraction from PDB Files. Protein Data Bank (PDB) files
contain detailed information about the structure of proteins, including the coor-
dinates of individual atoms. To extract the amino acid sequence of a protein
from a PDB file, we follow the following steps:

1. Parse the PDB file using a PDB parser.
2. Use the coordinates of the alpha-carbon atom in each amino acid residue to

define the protein backbone. The alpha-carbon atom represents each amino
acid residue in a protein structure, commonly used to define the protein back-
bone.

3. Map the amino acid residues to their corresponding one-letter codes using a
dictionary that associates each residue name with its corresponding code.

The amino acid residues and their mapped corresponding one-letter code is a
single letter that represents the amino acid. For example, the code for alanine
is “A”, and the code for tryptophan is “W”. The one-letter code is usually used
in molecular biology to represent a sequence of amino acids. The code is more
convenient to use than the full name of the amino acid, which can be pretty
long. Using the one-letter code, a sequence s of amino acids is represented in a
compact and readable format. We repeat this sequence extraction process for all
PDB files to get a set S of all sequences.

Sequence Embeddings. After extracting the set of sequences S from PDB
files, the next step is to generate fixed-length numerical embeddings from the
sequences to use these embeddings as input for supervised analysis. For this
purpose, we use different alignment-free embedding methods such as a k-mers
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based embedding (called Spike2Vec [3]), a position weight matrix based embed-
ding (called PWM2Vec [2]), a minimizer based embedding, and a spaced k-mers
based embedding.

Remark 2. Sequence alignment is computationally costly. It also requires a ref-
erence genome [14,15]. Moreover, it could introduce bias into the result [21].

Spike2Vec: It is a k-mers-based representation learning approach [3], which
utilizes fixed-length substrings, called mers or n-grams, to create embeddings
while maintaining the order of characters in protein sequences. The frequency
vector’s length is |Σ|k, where Σ is the set of unique amino acid characters and
k is a user-defined parameter.

PWM2Vec: This method is designed to produce fixed-length numerical embed-
dings using the concept of the position-weight matrix (PWM) [2]. Given a protein
sequence, it first generates a |Σ| × k dimensional PWM matrix, which contains
the count of each amino acid within k-mers of the sequence. Based on the counts,
each k-mer is assigned a numerical weight. In the end, all weights are concate-
nated to get the final representation.

Minimizer: The approach is based on the concept of minimizers [33], which
provides a compact representation of a biological sequence. The minimizer is a
substring of consecutive amino acids with a fixed length m, obtained from a
k-mer (m < k) by selecting the lexicographically smallest substring in forward
and backward order.

Spaced k-mers: A method to generate spaced g-mers [35] from the k-mers,
where g < k, to decrease sparsity and size. We generate our fixed-length numer-
ical embeddings using the idea of spaced k-mers from [35]. We set k = 4 and
g = 9 using the validation set approach in our experiments.

Combining Sequences and Structures. We are also interested in combining
the structure-based embedding (i.e., PDB2Vec) and the sequence-based embed-
dings (i.e., Spike2Vec, PWM2Vec, Minimizer, and Spaced k-mers) to improve the
predictive performance further. For this purpose, we concat the PDB2Vec-based
embedding with those sequence-based embeddings to generate new embeddings
containing richer structural and sequence-based information. Therefore, given
a PDB file, we generate PDB2Vec-SP (PDB2Vec + Spike2Vec), PDB2Vec-P
(PDB2Vec + PWM2Vec), PDB2Vec-M (PDB2Vec + Minimizer), and PDB2Vec-
Sk (PDB2Vec + Spaced k-mers), which basically contains the concatenated infor-
mation from both PDB2Vec and sequence-based embeddings.

4 Experimental Setup

This section describes the datasets and machine learning (ML) classifiers and
evaluation metrics. The experiments were conducted on an Intel(R) Xeon(R)
CPU E7-4850 v4 at 2.10GHz processor with a 3023 GB of memory, using the
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Ubuntu 64-bit OS (16.04.7 LTS Xenial Xerus). To ensure that the models are
highly accurate, we used a train-test split of 70–30%, with a 10% validation set
from the training data used to fine-tune the hyperparameters for all the methods.
To guarantee reliable and consistent results, we repeated the experiments five
times and reported average results.

4.1 Baseline Model

biLSTM [7]. Authors in [7] proposed a representation learning method for pro-
tein sequences that uses a bidirectional long short-term memory (LSTM) model
with a two-part feedback mechanism. It incorporates global structural similarity
information between proteins and pairwise residue contact maps information for
individual proteins. In this paper, we use this method to design the embeddings
and use those as input for supervised analysis.

Unsupervised Protein Embeddings (UPE) [41]. Authors in [41] proposed
a deep learning-based unsupervised solution to generate embeddings for protein
sequences that considers sequences and structural information while designing
the feature vector representation. Authors used a method proposed in [24] to
generate the initial embeddings from sequences. The structural features are based
on the one-hot encoding of the secondary structure angles computed from the 3D
structure of proteins. In the end, sequence and structural features are combined
to get the final representation of the proteins.

Dataset Statistics: In this paper, we use the following two datasets.

STCRDAB. A dataset called Structural T-Cell Receptor (STCRDab) [28],
which is an automated, curated set of T-Cell Receptor structural data from
the Protein Data Bank (PDB), comprised of 512 protein structures in total,
which were downloaded on 5/27/21. The class/target labels for this dataset
contain two species, namely “Humans” and “Mouse” (hence the binary class
classification problem). After preprocessing, we selected 480 PDB files for our
experimentation, which contain 325 Human and 155 Mouse species.

PDB Bind. The PDB bind dataset with version 2020 [29]. We use the total core
set comprised of 14127 protein structures for this dataset. After preprocessing, we
selected 3792 PDB files for experimentation. Protein names are the class/target
labels, and their counts are as follows: Serine/threonine-protein: 404, Tyrosine-
protein: 381, Mitogen-activated: 325, Beta-secretase: 299, Beta-lactamase: 220,
Bromodomain-containing: 174, HIV-1: 164, Carbonic: 159, Cell: 157, Glycogen:
144, Protein: 138, E3: 138, Cyclin-dependent: 128, Glutamate: 112, Dual: 111,
Heat: 110, Proteasome: 110, Tankyrase-2: 108, Lysine-specific: 105, DNA: 104,
Coagulation: 101, Phosphatidylinositol-45-bisphosphate: 100.

The Minimum, Maximum, and Average sequence lengths extracted from the
PDB files for the STCRDAB database are 109, 5415, and 1074.38, respectively.
Whereas for PDB Bind database is 33, 3292, and 403.60. We can observe that the
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protein structures are comparatively bigger in the STCRDAB dataset compared
to the PDB Bind dataset.

Classifiers and Evaluation Metrics: To classify the protein structures,
we employed several ML models, including Support Vector Machine (SVM),
Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN),
Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT). We
evaluated classification performance using average accuracy, precision, recall, F1
(weighted), F1 (macro), Receiver Operator Characteristic Curve (ROC), Area
Under the Curve (AUC), and training runtime.

5 Results and Discussion

The classification results are reported in Table 1. For the Structure Only cat-
egory, we can observe that the random forest classifier outperforms all other
classifiers for the STCRDAB dataset. In general, it is well known that the PDB-
bind dataset is a challenging benchmark for structure-based prediction methods.
Therefore, we observed a low predictive performance for this data while using
structure-based embedding.

For sequence-only embedding methods, we can observe > 90% predictive
performance in most cases for both datasets compared to the structure-only
results. This is because the functional regions of a protein sequence are often
more conserved across different proteins than the 3D structure, making them
easier to identify and predict. This means that sequence-based models can be
more effective at predicting protein function or classifying proteins based on
their function. Moreover, the sequence-based models are more straightforward
than the 3D structure-based autoencoder model, as they do not need to consider
the complexities of protein folding and interactions. This makes them easier to
train and interpret, leading to better results. Overall, we can observe that spaced
k-mers with Naive Bayes classifier in the case of the STCRDAB dataset showed
the highest performance among sequence-only embedding methods, hence beat-
ing the baselines Spike2Vec and PWM2Vec. Spike2Vec with Logistic Regression
shows the highest performance for the PDB Bind dataset.

When we combine sequences and structure-based embeddings (i.e.,
PDB2Vec-SP, PDB2Vec-P, PDB2Vec-M, and PDB2Vec-Sk), we can observe that
spaced k-mers with Naive Bayes shows almost a perfect performance. This is
because when combining structure and sequence-based embeddings, we are incor-
porating more information about the protein and its environment, which can help
improve the accuracy of the classification task. The sequence-based embeddings
capture the amino acid composition and ordering in the protein sequence. In con-
trast, the structure-based embeddings capture the 3D spatial arrangement of the
atoms in the protein structure. By combining these two sources of information,
we can leverage the strengths of both methods and obtain a more comprehen-
sive representation of the protein. Moreover, the proposed sequence + structural
PDB2Vec outperforms the baselines UPE [41] and biLSTM [7] for all evaluation
metrics and both datasets.
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Table 1. Average Classification results (of 5 runs) for different methods and datasets
using different evaluation metrics. The best values are shown in bold.

STCRDAB PDB Bind

Category Embedding Algo Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC-AUC ↑ Train Time (Sec.) ↓ Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC-AUC ↑ Train Time (Sec.) ↓
Structure Only biLSTM [7] SVM 0.838 0.860 0.838 0.822 0.785 0.758 0.017 0.808 0.874 0.808 0.815 0.830 0.888 4.765

NB 0.654 0.693 0.654 0.664 0.634 0.655 0.003 0.475 0.630 0.475 0.487 0.495 0.737 0.170

MLP 0.774 0.774 0.774 0.773 0.740 0.741 1.068 0.705 0.729 0.705 0.705 0.697 0.845 12.493

KNN 0.840 0.839 0.840 0.836 0.807 0.796 0.016 0.854 0.876 0.854 0.853 0.845 0.920 0.216

RF 0.829 0.866 0.829 0.808 0.768 0.742 0.369 0.886 0.892 0.886 0.886 0.887 0.935 5.497

LR 0.885 0.899 0.885 0.887 0.874 0.895 0.023 0.853 0.930 0.853 0.877 0.871 0.926 128.075

DT 0.831 0.830 0.831 0.829 0.802 0.799 0.103 0.832 0.835 0.832 0.832 0.830 0.911 3.265

Sequence + Structure UPE [41] SVM 0.916 0.989 0.916 0.988 0.909 0.907 0.961 0.891 0.912 0.891 0.942 0.929 0.899 6.581

NB 0.897 0.908 0.897 0.895 0.896 0.911 0.975 0.922 0.941 0.922 0.918 0.919 0.896 1.675

MLP 0.915 0.929 0.915 0.928 0.983 0.971 1.097 0.963 0.922 0.963 0.921 0.905 0.896 4.254

KNN 0.921 0.928 0.921 0.929 0.981 0.979 0.452 0.959 0.923 0.959 0.949 0.938 0.893 0.234

RF 0.894 0.885 0.894 0.892 0.881 0.893 0.813 0.921 0.944 0.921 0.932 0.928 0.948 4.563

LR 0.957 0.942 0.957 0.954 0.975 0.963 0.128 0.954 0.925 0.954 0.930 0.929 0.965 9.753

DT 0.901 0.899 0.901 0.900 0.921 0.943 0.042 0.939 0.928 0.939 0.935 0.912 0.945 0.973

Structure Only PDB2Vec SVM 0.710 0.693 0.710 0.688 0.613 0.609 0.321 0.100 0.067 0.100 0.054 0.031 0.502 4.166

NB 0.504 0.657 0.504 0.507 0.501 0.577 0.001 0.036 0.047 0.036 0.020 0.021 0.500 0.053

MLP 0.728 0.735 0.728 0.730 0.686 0.689 1.130 0.094 0.053 0.094 0.053 0.027 0.500 3.624

KNN 0.742 0.737 0.742 0.738 0.689 0.686 0.014 0.064 0.059 0.064 0.054 0.041 0.502 0.055

RF 0.803 0.800 0.803 0.790 0.742 0.722 0.267 0.059 0.053 0.059 0.054 0.039 0.497 3.420

LR 0.688 0.668 0.688 0.671 0.597 0.595 0.008 0.066 0.056 0.066 0.057 0.040 0.499 10.847

DT 0.717 0.724 0.717 0.719 0.673 0.676 0.007 0.056 0.056 0.056 0.056 0.043 0.499 0.597

Sequence Only Spike2Vec [3] SVM 0.976 0.977 0.976 0.976 0.972 0.967 1.824 0.960 0.965 0.960 0.961 0.954 0.975 263.112

NB 0.978 0.978 0.978 0.978 0.974 0.967 0.189 0.943 0.956 0.943 0.944 0.931 0.964 8.230

MLP 0.983 0.984 0.983 0.983 0.981 0.982 5.145 0.934 0.939 0.934 0.934 0.919 0.958 85.427

KNN 0.963 0.963 0.963 0.962 0.956 0.948 0.087 0.896 0.954 0.896 0.910 0.897 0.941 1.961

RF 0.975 0.975 0.975 0.975 0.971 0.967 0.462 0.960 0.966 0.960 0.961 0.954 0.975 6.888

LR 0.988 0.988 0.988 0.987 0.985 0.986 0.119 0.966 0.967 0.966 0.966 0.959 0.978 8.471

DT 0.957 0.957 0.957 0.957 0.950 0.948 0.204 0.939 0.942 0.939 0.939 0.929 0.962 4.682

PWM2Vec [2] SVM 0.983 0.984 0.983 0.983 0.980 0.976 0.387 0.953 0.955 0.953 0.954 0.942 0.953 0.969

NB 0.986 0.987 0.986 0.986 0.984 0.979 0.112 0.942 0.954 0.942 0.943 0.925 0.942 0.962

MLP 0.976 0.977 0.976 0.976 0.973 0.977 2.265 0.922 0.926 0.922 0.923 0.909 0.922 0.951

KNN 0.947 0.948 0.947 0.947 0.938 0.928 0.063 0.904 0.931 0.904 0.906 0.895 0.904 0.940

RF 0.968 0.969 0.968 0.968 0.963 0.958 0.529 0.957 0.962 0.957 0.958 0.949 0.957 0.971

LR 0.986 0.986 0.986 0.986 0.984 0.982 0.081 0.956 0.958 0.956 0.956 0.946 0.956 0.971

DT 0.960 0.960 0.960 0.960 0.954 0.953 0.221 0.924 0.928 0.924 0.924 0.909 0.924 0.951

Minimizer SVM 0.979 0.980 0.979 0.979 0.976 0.975 1.687 0.947 0.949 0.947 0.947 0.938 0.967 232.581

NB 0.986 0.986 0.986 0.986 0.984 0.980 0.178 0.933 0.946 0.933 0.935 0.925 0.960 7.663

MLP 0.974 0.975 0.974 0.974 0.970 0.975 5.018 0.929 0.932 0.929 0.929 0.917 0.957 107.245

KNN 0.964 0.965 0.964 0.964 0.959 0.962 0.088 0.898 0.940 0.898 0.907 0.894 0.943 1.531

RF 0.974 0.974 0.974 0.974 0.970 0.973 0.449 0.950 0.955 0.950 0.951 0.943 0.968 6.508

LR 0.986 0.987 0.986 0.986 0.984 0.984 0.084 0.951 0.953 0.951 0.951 0.943 0.969 3.185

DT 0.953 0.955 0.953 0.953 0.946 0.948 0.105 0.933 0.934 0.933 0.932 0.924 0.960 1.861

Spaced k-mers SVM 0.978 0.979 0.978 0.978 0.974 0.974 6.828 0.942 0.955 0.942 0.944 0.936 0.964 890.622

NB 0.994 0.995 0.994 0.994 0.993 0.994 2.757 0.955 0.961 0.955 0.955 0.946 0.973 93.051

MLP 0.983 0.984 0.983 0.983 0.980 0.985 76.321 0.898 0.919 0.898 0.902 0.888 0.940 1098.180

KNN 0.960 0.960 0.960 0.959 0.949 0.942 0.993 0.885 0.957 0.885 0.905 0.892 0.937 23.986

RF 0.971 0.972 0.971 0.971 0.965 0.962 2.279 0.951 0.966 0.951 0.955 0.947 0.971 77.044

LR 0.983 0.984 0.983 0.983 0.980 0.981 1.117 0.961 0.965 0.961 0.962 0.955 0.977 21.214

DT 0.965 0.967 0.965 0.965 0.958 0.955 2.475 0.943 0.950 0.943 0.944 0.935 0.966 89.690

Sequence + Structure (ours) PDB2Vec-SP SVM 0.981 0.981 0.981 0.980 0.978 0.976 1.735 0.944 0.948 0.944 0.945 0.937 0.966 294.827

NB 0.988 0.988 0.988 0.987 0.986 0.982 0.202 0.942 0.958 0.942 0.945 0.931 0.964 6.449

MLP 0.985 0.986 0.985 0.985 0.983 0.987 4.255 0.927 0.934 0.927 0.926 0.912 0.954 89.376

KNN 0.924 0.924 0.924 0.923 0.912 0.909 0.083 0.083 0.088 0.083 0.070 0.052 0.508 1.263

RF 0.974 0.974 0.974 0.974 0.970 0.968 0.551 0.947 0.953 0.947 0.948 0.937 0.966 5.546

LR 0.982 0.982 0.982 0.982 0.979 0.975 0.131 0.927 0.930 0.927 0.928 0.912 0.953 45.593

DT 0.949 0.949 0.949 0.948 0.940 0.934 0.214 0.928 0.930 0.928 0.927 0.911 0.954 4.275

PDB2Vec-P SVM 0.971 0.972 0.971 0.971 0.967 0.960 0.414 0.943 0.946 0.943 0.942 0.939 0.964 31.976

NB 0.983 0.984 0.983 0.983 0.981 0.977 0.113 0.939 0.952 0.939 0.941 0.928 0.963 3.471

MLP 0.975 0.975 0.975 0.975 0.973 0.975 2.607 0.921 0.926 0.921 0.919 0.904 0.950 34.941

KNN 0.892 0.892 0.892 0.890 0.876 0.865 0.057 0.084 0.088 0.084 0.072 0.055 0.509 0.605

RF 0.964 0.964 0.964 0.964 0.960 0.959 0.516 0.953 0.958 0.953 0.954 0.948 0.972 5.991

LR 0.979 0.979 0.979 0.979 0.977 0.973 0.095 0.921 0.924 0.921 0.921 0.912 0.952 34.746

DT 0.947 0.948 0.947 0.947 0.942 0.941 0.213 0.918 0.921 0.918 0.918 0.905 0.950 5.692

PDB2Vec-M SVM 0.981 0.981 0.981 0.980 0.977 0.971 2.118 0.941 0.942 0.941 0.940 0.931 0.963 255.117

NB 0.983 0.984 0.983 0.983 0.981 0.979 0.219 0.936 0.948 0.936 0.938 0.926 0.961 5.839

MLP 0.990 0.990 0.990 0.990 0.989 0.992 5.812 0.923 0.926 0.923 0.923 0.908 0.952 113.741

KNN 0.942 0.942 0.942 0.941 0.932 0.931 0.074 0.113 0.141 0.113 0.100 0.081 0.521 1.041

RF 0.974 0.974 0.974 0.974 0.969 0.967 0.515 0.941 0.944 0.941 0.940 0.929 0.961 5.481

LR 0.988 0.988 0.988 0.987 0.985 0.981 0.067 0.929 0.932 0.929 0.929 0.915 0.954 12.721

DT 0.950 0.952 0.950 0.950 0.944 0.951 0.121 0.920 0.920 0.920 0.918 0.907 0.951 2.303

PDB2Vec-Sk SVM 0.974 0.974 0.974 0.973 0.970 0.966 6.955 0.940 0.951 0.940 0.941 0.934 0.962 874.034

NB 0.999 0.999 0.999 0.999 0.998 0.999 2.970 0.967 0.968 0.967 0.967 0.960 0.979 93.332

MLP 0.989 0.989 0.989 0.989 0.988 0.991 48.372 0.909 0.920 0.909 0.911 0.892 0.945 925.896

KNN 0.910 0.910 0.910 0.909 0.894 0.887 0.820 0.076 0.085 0.076 0.066 0.050 0.506 17.994

RF 0.974 0.974 0.974 0.974 0.970 0.969 2.394 0.940 0.959 0.940 0.944 0.930 0.963 54.800

LR 0.986 0.987 0.986 0.986 0.984 0.983 0.767 0.928 0.936 0.928 0.930 0.917 0.956 94.031

DT 0.967 0.967 0.967 0.966 0.961 0.953 2.845 0.935 0.945 0.935 0.937 0.924 0.961 76.458

Discussion: Overall, we can observe that if we only use structure infor-
mation, the proposed PDB2Vec can achieve reasonable predictive performance
using STCRDAB dataset while showing poor performance for a more challenging
PDB Bind dataset. Using the sequence information only shows higher predictive
performance. Similarly, combining structure and sequence information shows
almost a perfect predictive performance. The structure-based embeddings can
help account for the effect of structural features, such as solvent accessibility,
hydrogen bonding, and electrostatic interactions, which can influence the pro-
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tein function or interactions. The sequence-based embeddings can help account
for the effect of sequence variations, such as point mutations or indels, which can
also affect protein function or interactions. Overall, the combination of structure
and sequence-based embeddings provides a more comprehensive representation
of the protein, which can lead to improved performance in classification tasks.

6 Conclusion

In this study, we have investigated the effect of incorporating both protein
sequence and 3D structure information on protein classification performance.
Our experiments show that the combination of structural and sequence infor-
mation leads to the best performance, indicating that both types of information
are complementary and essential for protein classification tasks. We have demon-
strated this by performing protein classification using three different experimen-
tal settings: only 3D structural embeddings, sequence embeddings, and com-
bining both embeddings. Our results show that the classification performance
is the lowest when only 3D structural information is used, but the performance
improves significantly when only the protein sequences are used. Finally, we have
evaluated our methods on two benchmark datasets: STCRDAB and PDB bind.
Overall, our findings suggest that it is important to consider both structural
and sequence information in protein analysis tasks and that combining these
sources of information can lead to improved performance. In the future, we will
develop a deep learning-based model to combine sequences and structural infor-
mation more effectively. We will also explore graph-based models for efficiently
embedding 3D structural information. Using more datasets to test the proposed
model’s scalability, robustness, and interpretability is also exciting future work.
Author contributions. Sarwan Ali and Prakash Chourasia–Equal Contribution
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Abstract. Biological sequence classification is vital in various fields,
such as genomics and bioinformatics. The advancement and reduced
cost of genomic sequencing have brought the attention of researchers for
protein and nucleotide sequence classification. Traditional approaches
face limitations in capturing the intricate relationships and hierarchi-
cal structures inherent in genomic sequences, while numerous machine-
learning models have been proposed to tackle this challenge. In this work,
we propose Hist2Vec, a novel kernel-based embedding generation app-
roach for capturing sequence similarities. Hist2Vec combines the con-
cept of histogram-based kernel matrices and Gaussian kernel functions.
It constructs histogram-based representations using the unique k-mers
present in the sequences. By leveraging the power of Gaussian kernels,
Hist2Vec transforms these representations into high-dimensional feature
spaces, preserving important sequence information. Hist2Vec aims to
address the limitations of existing methods by capturing sequence sim-
ilarities in a high-dimensional feature space while providing a robust
and efficient framework for classification. We employ kernel Principal
Component Analysis (PCA) using standard machine-learning algorithms
to generate embedding for efficient classification. Experimental evalu-
ations on protein and nucleotide datasets demonstrate the efficacy of
Hist2Vec in achieving high classification accuracy compared to state-of-
the-art methods. It outperforms state-of-the-art methods by achieving
> 76% and > 83% accuracies for DNA and Protein datasets, respectively.
Hist2Vec provides a robust framework for biological sequence classifi-
cation, enabling better classification and promising avenues for further
analysis of biological data.
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1 Introduction

The rapid advancement of sequencing technology has led to an increase in the
quantity of sequence data [16], presenting new opportunities and difficulties for
biological sequence analysis. Biological sequence classification, particularly in
the domains of protein and nucleotide sequences, is of significant importance in
genomics, drug discovery [41], bioinformatics [10,15], and various other research
areas [8,26]. Classification of these sequences is crucial in understanding their
functions, identifying potential disease-causing variants, and predicting protein
structures [5,11,38,40,42]. Traditional classification approaches often rely on
feature engineering [1,3,13,23] or sequence alignment methods, having limita-
tions in capturing complex sequence similarities and high-dimensional represen-
tations [17,23]. In recent years, kernel methods emerged as powerful techniques
for extracting meaningful features and facilitating classification tasks [3]. Moti-
vated by the need for improved biological sequence classification [27,32], this
work proposes Hist2Vec, which combines the concept of histogram-based kernel
matrices with the effectiveness of Gaussian kernel functions.

Hist2Vec aims to address the limitations of existing methods by captur-
ing sequence similarities in a high-dimensional feature space while providing a
robust and efficient framework for classification. By utilizing the unique k-mers
present in sequences and leveraging the power of kernel methods, Hist2Vec offers
a promising avenue for enhancing sequence classification accuracy and enabling
further analysis of biological data. We introduce Hist2Vec as a novel kernel-based
approach for biological sequence classification. We demonstrate the theoretical
properties and advantages of Hist2Vec, including its ability to satisfy Mercer’s
condition, ensure continuity, and exhibit the universal approximation property.
Additionally, we investigate the practical aspects of Hist2Vec, such as generat-
ing kernel matrices, converting these matrices into low-dimensional embeddings
using kernel PCA, and applying ML algorithms for sequence classification.

In summary, this paper introduces Hist2Vec as a powerful and effective app-
roach for biological sequence classification. Improved classification accuracy and
practical implementation guidelines collectively advance sequence analysis and
facilitate a deeper understanding of biological data. Our contributions to this
paper are listed below:

1. Introducing Hist2Vec: We propose Hist2Vec, a novel kernel-based approach
that combines histogram-based kernel matrices with Gaussian kernels for effi-
cient and accurate biological sequence classification.

2. High-dimensional Feature Representation: Hist2Vec captures sequence sim-
ilarities by constructing histogram-based representations using the unique
k-mers present in the sequences. By leveraging the power of Gaussian ker-
nels, Hist2Vec transforms these representations into high-dimensional feature
spaces, preserving important sequence information.

3. Improved Classification Accuracy: Through extensive evaluations of protein
and nucleotide datasets, we demonstrate that Hist2Vec outperforms state-of-
the-art methods in terms of classification accuracy.
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4. Advancing Sequence Analysis: Hist2Vec contributes to the advancement of
sequence analysis by providing a robust framework for capturing and exploit-
ing sequence similarities. The method offers new insights, fostering further
research in genomics, bioinformatics, and related fields.

The remainder of this paper is organized as follows. Section 2 provides a
detailed overview of the related work. Section 3 presents the methodology of
Hist2Vec, including the computation of histogram-based kernel matrices and
the application of Gaussian kernels. Section 4 describes the experimental setup
and dataset. Section 5 presents the results of extensively evaluating protein and
nucleotide datasets. Finally, Sect. 6 concludes the paper, summarizes the contri-
butions of Hist2Vec, and discusses future research directions.

2 Related Work

Several methods have been proposed for biological sequence classification to
capture sequence similarities and facilitate classification [12]. These methods
can be broadly categorized into alignment-based methods, feature engineering
approaches, and kernel-based methods.

Alignment-based methods, such as BLAST (Basic Local Alignment Search
Tool [6]) and Smith-Waterman algorithm [21], rely on sequence alignment tech-
niques to identify similarities between sequences. While these methods effectively
detect homologous sequences, they may struggle to capture more complex rela-
tionships and handle large-scale datasets efficiently.

Feature engineering approaches involve extracting informative features from
sequences and using them for classification [2,22,37]. These features include
amino acid composition, dipeptide composition, and physicochemical proper-
ties. While these methods are computationally efficient, they often rely on hand-
crafted features that may not capture all relevant sequence characteristics.

Kernel-based methods [4,29] can capture complex relationships between
sequences. Methods such as the spectrum kernel and string kernel [24] have
been proposed for sequence classification, leveraging the concept of k-mer fre-
quencies to construct similarity measures. However, these methods may suffer
from high computational complexity and memory requirements, limiting their
scalability [34]. Kernel methods have been successfully applied to various bioin-
formatics tasks, including protein fold recognition [31], protein-protein interac-
tion prediction [39], and protein function prediction [7]. These methods leverage
the power of kernel functions to map sequences into high-dimensional feature
spaces, where the relationships between sequences can be effectively captured.

Mercer’s Condition is a fundamental property of kernel methods, ensuring
the kernel matrix is positive semidefinite [28,33]. Many kernel functions, such
as the Gaussian kernel, satisfy Mercer’s Condition [35] and have been widely
used in bioinformatics applications [19,25]. Hist2Vec addresses the computa-
tional complexity and memory requirements by utilizing histogram-based repre-
sentations of sequences. By counting the frequencies of k-mers and constructing
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histograms, Hist2Vec reduces the dimensionality of the kernel matrix, making it
more tractable for large-scale datasets. Furthermore, using the Gaussian kernel
in Hist2Vec allows for preserving important sequence information in a high-
dimensional feature space.

3 Proposed Approach

In this section, we present the proposed approach Hist2Vec. It consists of two
main steps: computing histogram-based representations and generating embed-
dings using kernel PCA.

3.1 Histogram-Based Representations

A histogram serves as an approximate visual depiction of the distribution pat-
tern of numerical data. Histogram creation involves partitioning the range of
values into discrete intervals, commonly called bins, and subsequently tallying
the frequency of data points falling within each interval. These bins are defined
as consecutive intervals that do not overlap, typically possessing uniform size.
By ensuring that adjacent bins are contiguous, histograms effectively eliminate
gaps between the rectangular bars, resulting in mutual contact.

Histograms provide an approximate indication of the concentration or density
of the underlying data distribution, thereby facilitating the estimation of the
probability density function associated with the respective variable. Visually
representing the data distribution, histograms depict the frequency or count of
observations falling within individual bins. This analytical tool proves valuable
in discerning patterns and trends within the data and facilitating comparisons
between disparate datasets.

Suppose a dataset D = {x1, x2, ..., xn} ∈ R
d. The first step of Hist2Vec

involves computing histogram-based representations of the input sequences. This
process captures the frequencies of specific k-mers within the sequences, provid-
ing a compact representation that preserves important sequence characteristics.

Given a protein or nucleotide sequence, we compute the k-mer spectrum by
extracting all possible substrings of length k. Each unique k-mer represents a
distinct feature. We then construct a histogram, where each bin corresponds to
a specific k-mer and captures its frequency within the sequence. The histogram-
based representation provides a compact and informative sequence summary,
facilitating efficient computations and capturing sequence similarities.

The data used to construct a histogram are generated via a function mi that
counts the number of observations that fall into each disjoint category (bins).
Thus, if we let z be the total number of observations and k be the total number
of bins, the histogram data mi meet the following conditions:

z =
k∑

i=1

mi (1)

where z is the total number of k−mers in a sequence, and mi represents the
number of k−mers belonging to the ith bin.
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3.2 Gaussian Kernel Transformation

Once the histogram-based representations are obtained, Hist2Vec applies the
Gaussian kernel transformation to map the histogram values into a high-
dimensional feature space. The Gaussian kernel is a popular choice for captur-
ing complex relationships between data points and is well-suited for capturing
sequence similarities. The Gaussian kernel function is defined as:

k(x′
i, x

′
j) = exp(−||x′

i − x′
j||2

2σ2
) (2)

where x′
i and x′

j represent the histogram-based representations of sequence xi

and xj respectively, and σ controls the width of the kernel. The kernel function
measures the similarity between sequences in the high-dimensional feature space,
with higher values indicating greater similarity.

Hist2Vec converts the histogram-based representations into a feature space
where sequence similarities are kept by performing the Gaussian kernel trans-
formation. This further helps apply standard machine learning (ML) algorithms
to the modified feature space, leading to better classification results.

Fig. 1: Workflow of Hist2Vec. The input represents a sequence vector computed
using k-mers spectrum (a). The sequence is converted into the histogram (b) and
kernel (c) matrix using His2Vec-Gaussian kernel, and then the kernel matrix is
processed through Kernel-PCA (d) and used in the classification algorithms (e).

3.3 Kernel PCA for Embeddings

To further reduce the dimensionality and extract essential features, Hist2Vec
employs kernel Principal Component Analysis (KPCA) to generate low-
dimensional embeddings from the kernel matrix. Kernel PCA is a nonlinear
extension of traditional PCA that operates in the feature space defined by the
kernel function. The kernel matrix, denoted as K, is computed by applying the
Gaussian kernel function to all pairs of histogram-based representations. Ker-
nel PCA then performs eigendecomposition on the kernel matrix to extract the
principal components, which capture the most crucial information. By select-
ing a subset of the principal components, Hist2Vec generates low-dimensional
embeddings, which capture the similarities and variations between sequences in
a compact representation, enabling efficient classification.
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The algorithmic pseudocode for Hist2Vec is presented in Algorithm 1 and
2, while Fig. 1 provides flowchart. The Algorithm 1 takes biological sequences
and the total bins as input and calculates histogram embeddings based on the
k-mers spectrum. First, the sequence is converted into K-mers (lines 2–5), then
K-mers is converted into histogram embedding according to the number of bins
(lines 6-9). While Algorithm 2 applies the Gaussian kernel to obtain the final
kernel value (line 6). The kernel matrix is further processed for kernel-PCA and
subsequently utilized in classification algorithms.

Algorithm 1. Histogram computation based on k-mers
1: function ComputeKmerHistogram(sequence, k, totBins)
2: kmers{} � Initialize an empty dictionary
3: for i = 0 to n - k + 1 do
4: kmer = sequence[i:i+k] � Extract k-mer from sequence starting at index i
5: kmers[kmer] += 1 � Increment count of kmer in kmers

6: histogram = np.zeros(totBins) � Initialize an array histogram of size totBins
with all elements as 0

7: for kmer, count in kmers.items() do
8: bin index = hash(kmer) � Compute bin index by hashing kmer and taking

the modulus of totBins
9: histogram[bin index] + = count � Increment histogram

10: return histogram

Algorithm 2. Hist2Vec-based kernel matrix generation
1: function ComputeKernelValue(sequence1, sequence2, k, totBins)
2: Hist1 ← ComputeKmerHistogram(sequence1)
3: Hist2 ← ComputeKmerHistogram(sequence2)
4: Hist1 ← Normalize(Hist1)
5: Hist2 ← Normalize(Hist2)
6: K ← GaussianKernel(Hist1,Hist2)
7: return K

4 Experimental Setup

In this section, we detail the spike sequence dataset used for experimentation.
We also discuss the baselines used for classification. In the end, we talk about
the evaluation metrics used to test the performance of the models.

All experiments use an Intel(R) Core i5 system @ 2.10 GHz having Win-
dows 10 64 bit OS with 32 GB memory. For the classification algorithms, we
use 70% of the data for training and 30% for testing. The 10% data from the
training set is used as a validation set for hyperparameter tuning. We use two
datasets to evaluate the performance of the proposed embedding method, which
are explained below.
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Human DNA Dataset: This dataset uses the unaligned human DNA
nucleotide sequences from [20]. It includes sequences and details on the relevant
gene family for each sequence. It encodes data for seven distinct gene families
(class labels). The count of sequences for each class label are G Protein Coupled
(531), Tyrosine Kinase (534), Tyrosine Phosphatase (349), Synthetase (672),
Synthase (711), Ion Channel (240), and Transcription Factor (1343) with the
total count of 4380 sequences. The classification task classifies the gene family
using the DNA sequence as input. Due to the variable length of sequences, since
they are unaligned sequences, we have the maximum, minimum, and average
lengths of 18921, 5, and 1263.59, respectively in our dataset.

Coronavirus Host Dataset: The spike sequences of the clades of the Coron-
aviridae family are extracted from ViPR [1,30] and GISAID1, along with their
metadata (genus/ subgenus, infected host, etc.), and the spike sequence and its
corresponding host information are used to create our Coronavirus Host dataset.
The number of hosts in our dataset is as follows: Bats (153), Bovines (88), Cats
(123), Cattle (1), Equine (5), Fish (2), Humans (1813), Pangolins (21), Rats
(26), Turtle (1), Weasel (994), Birds (374), Camels (297), Canis (40), Dolphins
(7), Environment (1034), Hedgehog (15), Monkey (2), Python (2), Swines (558),
and Unknown (2). We used 5558 spike sequences, which contain 21 unique hosts.
Our classification jobs for this dataset use the hostname as the class label and
sequences as input.

Baseline Methods: To establish baselines, we choose newly suggested meth-
ods from several embedding generation categories, including feature engineering,
conventional kernel matrix creation (including kernel PCA), neural networks,
pretrained language models, and pre-trained transformers for protein sequences.

PWM2Vec: Feature Engineering method takes a biological sequence as input
and designs fixed-length numerical embeddings [1].

String Kernel: Kernel Matrix-based method designs n × n kernel matrix that
can be used with kernel classifiers or kernel PCA to get feature vector based on
principal components [4,14].

WDGRL: A neural network (NN) based method takes the one-hot representation
of biological sequence as input and designs an NN-based embedding method by
minimizing loss [36].

AutoEncoder: This method uses a neural network (NN) to teach itself how to
encode data as features. To iteratively optimize the objective, it applies the
non-linear mapping approach. We used a 2 multilayer network with an ADAM
optimizer and MSE loss function for our experiments [43].

SeqVec: It is a pre-trained Language Model which takes biological sequences
as input and fine-tunes the weights based on a pre-trained model to get final
embedding [18].
1 https://www.gisaid.org/.

https://www.gisaid.org/
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ProteinBert: It is a pre-trained Transformer, a protein sequence model to classify
the given biological sequence using Transformer/Bert [9].

4.1 Evaluation Metrics and Classification Algorithms

We use average accuracy, precision, recall, F1 (weighted), F1 (macro), Receiver
Operator Characteristic Curve (ROC), Area Under the Curve (AUC), and train-
ing runtime to compare the performance of various models. When using metrics
created for the binary classification problem, we employ the one-vs-rest method
for multi-class classification. Support Vector Machine (SVM), Naive Bayes (NB),
Multi-Layer Perceptron (MLP), K-Nearest Neighbours (KNN), Random Forest
(RF), Logistic Regression (LR), and Decision Tree (DT) are just a few of the
linear and non-linear classifiers used in supervised analysis.

5 Results and Discussion

In Table 1, we present the classification results for the suggested and baseline
methods for the Human DNA dataset. In terms of average accuracy, preci-
sion, recall, and F1 (weighted) and F1 (macro) scores, the Random Forest with
Hist2Vec feature vectors outperformed all other baseline embedding approaches,
while KNN using Hist2Vec-based embedding has the highest ROC-AUC score
when compared to other embedding techniques. This suggests that the Hist2Vec
embedding method is the method that performs the best for classifying sequences
using ML models. Despite minimal train time, WDGRL’s classification perfor-
mance is quite subpar. Compared to other embedding techniques, the WDGRL
fails to preserve the overall data structure in its embeddings, which is one reason
for this behavior. We can see that, except for one assessment criterion (training
duration), Hist2Vec outperforms all baselines.

The results are presented in Table 2 for the Coronavirus Host dataset. Here
also observe the performance of Hist2Vec on the host data sequences as com-
pared to other baseline approaches. Because PWM2Vec is used to classify hosts
(see [1]), we can compare Hist2Vec to PWM2Vec and other baselines to bet-
ter understand its effectiveness. According to the results from the experiments,
the RF classifier with Hist2Vec embedding works better than even PWM2Vec
and different baselines in terms of accuracy, precision, recall, F1 weighted score,
and AUC ROC score. Similarly, WDGRL has a low train time with the NB
classifier in this instance, but the classifier performance is not even comparable.
These findings suggest that the Hist2Vec method outperforms all other baseline
techniques, including PWM2Vec.
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Table 1: Classification results (aver-
aged over 5 runs) on Human
DNA dataset. The best classifier
for respective embeddings is shown
with the underline. Overall best val-
ues are shown in bold.
Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time (sec.) ↓
PWM2Vec SVM 0.302 0.241 0.302 0.165 0.091 0.505 10011.3

NB 0.084 0.442 0.084 0.063 0.066 0.511 4.565

MLP 0.310 0.350 0.310 0.175 0.107 0.510 320.555

KNN 0.121 0.337 0.121 0.093 0.077 0.509 2.193

RF 0.309 0.332 0.309 0.181 0.110 0.510 65.250

LR 0.304 0.257 0.304 0.167 0.094 0.506 23.651

DT 0.306 0.284 0.306 0.181 0.111 0.509 1.861

String Kernel SVM 0.618 0.617 0.618 0.613 0.588 0.753 39.791

NB 0.338 0.452 0.338 0.347 0.333 0.617 0.276

MLP 0.597 0.595 0.597 0.593 0.549 0.737 331.068

KNN 0.645 0.657 0.645 0.646 0.612 0.774 1.274

RF 0.731 0.776 0.731 0.729 0.723 0.808 12.673

LR 0.571 0.570 0.571 0.558 0.532 0.716 2.995

DT 0.630 0.631 0.630 0.630 0.598 0.767 2.682

WDGRL SVM 0.318 0.101 0.318 0.154 0.069 0.500 0.751

NB 0.232 0.214 0.232 0.196 0.138 0.517 0.004

MLP 0.326 0.286 0.326 0.263 0.186 0.535 8.613

KNN 0.317 0.317 0.317 0.315 0.266 0.574 0.092

RF 0.453 0.501 0.453 0.430 0.389 0.625 1.124

LR 0.323 0.279 0.323 0.177 0.095 0.507 0.041

DT 0.368 0.372 0.368 0.369 0.328 0.610 0.047

Auto-Encoder SVM 0.621 0.638 0.621 0.624 0.593 0.769 22.230

NB 0.260 0.426 0.260 0.247 0.268 0.583 0.287

MLP 0.621 0.624 0.621 0.620 0.578 0.756 111.809

KNN 0.565 0.577 0.565 0.568 0.547 0.732 1.208

RF 0.689 0.738 0.689 0.683 0.668 0.774 20.131

LR 0.692 0.700 0.692 0.693 0.672 0.799 58.369

DT 0.543 0.546 0.543 0.543 0.515 0.718 10.616

SeqVec SVM 0.656 0.661 0.656 0.652 0.611 0.791 0.891

NB 0.324 0.445 0.312 0.295 0.282 0.624 0.036

MLP 0.657 0.633 0.653 0.646 0.616 0.783 12.432

KNN 0.592 0.606 0.592 0.591 0.552 0.717 0.571

RF 0.713 0.724 0.701 0.702 0.693 0.752 2.164

LR 0.725 0.715 0.726 0.725 0.685 0.784 1.209

DT 0.586 0.553 0.585 0.577 0.557 0.736 0.24

Protein Bert 0.542 0.580 0.542 0.514 0.447 0.675 58681.57

Hist2Vec (ours) SVM 0.306 0.094 0.306 0.143 0.067 0.500 2.294

NB 0.240 0.403 0.240 0.238 0.219 0.554 0.031

MLP 0.707 0.712 0.707 0.707 0.683 0.818 5.879

KNN 0.729 0.741 0.729 0.730 0.697 0.833 0.190

RF 0.760 0.804 0.760 0.760 0.759 0.828 3.174

LR 0.306 0.094 0.306 0.143 0.067 0.500 0.356

DT 0.609 0.613 0.609 0.610 0.577 0.756 1.070

Table 2: Classification results (aver-
aged over 5 runs) on Coron-
avirus dataset. The best classifier
for respective embeddings is shown
with the underline. Overall best val-
ues are shown in bold.
Embeddings Algo. Acc. ↑ Prec. ↑ Recall ↑ F1 (Weig.) ↑ F1 (Macro) ↑ ROC AUC ↑ Train Time (sec.) ↓
PWM2Vec SVM 0.799 0.806 0.799 0.801 0.648 0.859 44.793

NB 0.381 0.584 0.381 0.358 0.400 0.683 2.494

MLP 0.782 0.792 0.782 0.778 0.693 0.848 21.191

KNN 0.786 0.782 0.786 0.779 0.679 0.838 12.933

RF 0.836 0.839 0.836 0.828 0.739 0.862 7.690

LR 0.809 0.815 0.809 0.800 0.728 0.852 274.91

DT 0.801 0.802 0.801 0.797 0.633 0.829 4.537

String Kernel SVM 0.601 0.673 0.601 0.602 0.325 0.624 5.198

NB 0.230 0.665 0.230 0.295 0.162 0.625 0.131

MLP 0.647 0.696 0.647 0.641 0.302 0.628 42.322

KNN 0.613 0.623 0.613 0.612 0.310 0.629 0.434

RF 0.668 0.692 0.668 0.663 0.360 0.658 4.541

LR 0.554 0.724 0.554 0.505 0.193 0.568 5.096

DT 0.646 0.674 0.646 0.643 0.345 0.653 1.561

WDGRL SVM 0.329 0.108 0.329 0.163 0.029 0.500 2.859

NB 0.004 0.095 0.004 0.007 0.002 0.496 0.008

MLP 0.328 0.136 0.328 0.170 0.032 0.499 5.905

KNN 0.235 0.198 0.235 0.211 0.058 0.499 0.081

RF 0.261 0.196 0.261 0.216 0.051 0.499 1.288

LR 0.332 0.149 0.332 0.177 0.034 0.500 0.365

DT 0.237 0.202 0.237 0.211 0.054 0.498 0.026

Auto-Encoder SVM 0.602 0.588 0.602 0.590 0.519 0.759 2575.9

NB 0.261 0.520 0.261 0.303 0.294 0.673 21.74

MLP 0.486 0.459 0.486 0.458 0.216 0.594 29.93

KNN 0.763 0.764 0.763 0.755 0.547 0.784 18.51

RF 0.800 0.796 0.800 0.791 0.648 0.815 57.90

LR 0.717 0.750 0.717 0.702 0.564 0.812 11072.6

DT 0.772 0.767 0.772 0.765 0.571 0.808 121.36

SeqVec SVM 0.711 0.745 0.711 0.698 0.497 0.747 0.751

NB 0.503 0.636 0.503 0.554 0.413 0.648 0.012

MLP 0.718 0.748 0.718 0.708 0.407 0.706 10.191

KNN 0.815 0.806 0.815 0.809 0.588 0.800 0.418

RF 0.833 0.824 0.833 0.828 0.678 0.839 1.753

LR 0.673 0.683 0.673 0.654 0.332 0.660 1.177

DT 0.778 0.786 0.778 0.781 0.618 0.825 0.160

Protein Bert 0.799 0.806 0.799 0.789 0.715 0.841 15742.9

Hist2Vec (ours) SVM 0.320 0.102 0.320 0.155 0.027 0.500 5.189

NB 0.543 0.627 0.543 0.537 0.425 0.722 0.108

MLP 0.741 0.747 0.741 0.737 0.470 0.730 5.548

KNN 0.802 0.793 0.802 0.796 0.612 0.805 0.237

RF 0.837 0.847 0.837 0.830 0.740 0.863 3.964

LR 0.320 0.102 0.320 0.155 0.027 0.500 2.504

DT 0.786 0.791 0.786 0.784 0.545 0.788 1.216

6 Conclusion

We propose the Hist2Vec approach, an effective and alignment-free embedding
method that outperforms state-of-the-art methods. Combining histogram-based
embedding with a Gaussian kernel provides an efficient and effective framework
for capturing sequence similarities and generating high-quality feature represen-
tations. Hist2Vec achieves the greatest accuracy of 76% and ROC AUC score
of 83.3% for the classification of human DNA data and the highest accuracy of
83.7% and ROC AUC score of 86.3% for the classification of coronavirus hosts.
Future studies involve assessing the Hist2Vec on other viruses, such as Zika.
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Abstract. The electrocardiogram (ECG) plays an important role in
assisting clinical diagnosis such as arrhythmia detection. However, tra-
ditional techniques for ECG analysis are time-consuming and labori-
ous. Recently, deep neural networks have become a popular technique
for automatically tracking ECG signals, which has demonstrated that
they are more competitive than human experts. However, the minority
class of life-threatening arrhythmias causes the model training to skew
towards the majority class. To address the problem, we propose a dual-
level collaborative neural network (DCNN), which includes data-level
and cost-sensitive level modules. In the Data Level module, we utilize the
generative adversarial network with Unet as the generator to synthesize
ECG signals. Next, the Cost-sensitive Level module employs focal loss to
increase the cost of incorrect prediction of the minority class. Empirical
results show that the Data Level module generates highly accurate ECG
signals with fewer parameters. Furthermore, DCNN has been shown to
significantly improve the classification of the ECG.

Keywords: ECG · Arrhythmia classification · Generative adversarial
networks · Data imbalance

1 Introduction

Cardiovascular diseases (CVDs) kill nearly one million people per year in the US
under a report by the American Heart Association [1]. In the therapy of CVDs
and detection of arrhythmias, ECG is commonly used for auxiliary diagnosis. It
is a non-invasive, inexpensive tool to obtain a patient’s ECG signals during a
period. The cardiologist can observe the amplitude of the signal as well as the
cardiac cycle to identify whether the patient’s heart electrical activity is normal.

However, the manual diagnosis of ECG is time-consuming and laborious.
Thus, some artificial intelligence technologies have been applied to ECG classifi-
cation and recognition [2]. For ECG classification, convolutional neural networks
(CNN) and recurrent neural networks (RNN) focus on capturing the spatial and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 398–408, 2023.
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temporal features of ECG, respectively [3,4]. For the detection of atrial fibril-
lation, Unet has the characteristic of compensation for feature information [5].
Although there are many methods for ECG classification and recognition, they
mainly focus on the feature learning and classifier of ECG signals, lacking the
consideration of data imbalance and feature extraction for rare heartbeats [6].

For data imbalance issue, the minority class has difficulty learning valuable
features, and the majority class will be overtrained. They are extremely adverse
for the identification of arrhythmias [7]. Methods to address the ECG data imbal-
ance have three classes: algorithm level, cost-sensitive level, and data level. For
the algorithm level, the SMOTE algorithm cluster is taken to generate fake sam-
ples or to dynamically move the boundaries of the classification while training [8].
For the cost-sensitive level, a loss function was designed to increase the weight
of the minority class samples to alleviate the imbalance of ECG data [9]. For
ECG data augmentation, the dominant method utilized is Generative Adversar-
ial Networks (GANs). In summary, the SMOTE algorithm is not available for
multi-classification, and a large number of studies reveal that the data augmen-
tation by synthesis of heartbeats is most effective to alleviate data imbalance of
ECG in the three levels of methods [10].

In this paper, we propose an Unet-based Generative Adversarial Network to
synthesize ECG signals for balancing the number of different heartbeats. The
architecture of the Data Level module consists of two components, a discrimi-
nator based on a convolutional neural network and a generator constructed by
Unet. We further incorporate focal loss in downstream tasks to mitigate the side
effects of data imbalance on a model as much as possible [11]. The empirical
results on the gold-standard dataset show that DCNN can significantly alleviate
the training effects of data imbalance for improving classification accuracy. Our
contributions are summarized as follows:

1. To the best of our knowledge, we are the first to propose a Dual-Level Col-
laborative Neural Network (DCNN) to alleviate ECG data imbalance at both
data and cost-sensitive levels. The results verified that the data-level module
has fewer model parameters and generates high-quality ECG signals.

2. Experimental results on different datasets verified that identification of the
minority class of heartbeat samples, which DCNN is effective. F1 scores for
the minority class improved by an average of 4.9% and 19.3% on the MIT-BIH
and INCART datasets, respectively.

2 Related Work

The imbalance for medical signals.Most effective deep neural networks are
been employed in earlier stages of ECG signal data imbalance. Petmezas et al.
(2021) proposed a CNN-LSTM architecture to alleviate data imbalance for ECG
of atrial fibrillation (AF), where the features got by CNN are fed into LSTM for
the sake of capturing dynamic temporal features [12]. Pandey &Janghel (2019)
use a mixture of CNN and SMOTE techniques to first enlarge the sample size
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of the minority classes with SMOTE and then classify ECG using an end-to-
end structure [13]. Gao et al. (2019) and Romdhane &Pr (2020) select LSTM
and CNN respectively for feature extraction of ECG, except that the training
loss function is converted to focal loss (FL) to improve the precision of ECG
identification. The prevalence of GAN as a data augmentation technique has
inspired much effort to trial GAN in its varying manners for ECG data imbalance
[14,15]. Lima et al. (2019) proposed a combination of 2D CNN and InfoGAN
to synthesize a few abnormal heartbeats. InfoGAN involves an extra code being
added to the initial input vector for controlling synthetic fake signals. Xia, Xu
et al. (2023) treated the transformer as the generator of GAN to synthetic fake
signal, which is composed of the transformer, upscaling, and fully connected
layer. Classification accuracy of different classes of heartbeat will be elevated
after incorporating fake signals into the training process [16,17]. In contrast,
our work focuses on mitigating ECG data imbalances at both the data and loss
levels.
Generative Adversarial Networks.With the remarkable success of GAN in
such a wide range of fields, it recently has been implemented into the synthesis
of ECG signals. Golany et al. (2020a) exploited convolution and deconvolution
as components of GAN architecture to synthetic ECG signals with improvement
in ECG classification. Also in the same year, Golany et al. (2020b) explored
the optimization of the training process of synthesizing fake signals by modeling
the dynamic processes of ECG through ordinary differential equations. Apart
from traditional random noise vector inputs, other forms of inputs are present
in GAN [18,19]. For example, Sarkar &Etemad (2021) take PPG as input of
GAN to synthetic fake signals, moreover, the dual discriminator preserves the
salient features in time and frequency domains to generate an ECG signal of
integrity [20]. Besides, patients could detect multi-lead (e.g., 6, 8, 12-lead) ECG
signals, that is, ECG signals of different views. Chen et al. (2022) proposed ME-
GAN, which the idea is using angular information of leads to obtain the features
of multi-view ECG signals, which these features are subsequently leveraged to
synthetic multi-view ECG signals. However, in terms of specific cardiac abnormal
signals, generation using GAN is still rather scarce [21]. Li et al. (2022) thereby
attempted SLC-GAN to synthetic myocardial infarction (MI) ECG signals for
better detection accuracy of single-lead MI. In contrast, we employed the Unet-
generator to synthesize ECG signals, which not only ensures stable training but
also results in the synthesis of high-quality signals. [22].

3 Methods

In this section, we will introduce the proposed DCNN (Dual-Level Collaborative
neural network). The architecture consists of a Data Level module for data
augmentation, a Cost-sensitive Level module for increasing the weight of the
minority class samples, and a residual module for feature extraction. The overall
architecture of the model is shown in Fig. 1. Next, we will elaborate on the details
of the proposed model.
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Fig. 1. The proposed Dual-Level Collaborative neural network for alleviating ECG
data imbalance. the raw ECG signal as input first enters the Data Level module,
followed by the residual module, and finally the Cost-sensitive module.

Data Level Module
Unet-based Generator: Inspired by Unet, we propose an Unet generator

to synthesize fake signals. As shown in Fig. 2, the generator consists of a con-
tracting path(downsampling) and an expensive path(upsampling). To capture
the global feature information, the contracting path is based on convolutional
network architecture. It consists of two 1D convolutions layers, each followed
by a rectified linear unit (ReLU) and a max pooling operation with stride 2 for
downsampling. At each step of downsampling, we double the number of feature
channels. Repeated contraction occurs a total of three times during the pro-
cess of heartbeat synthesis using the Unet generator. In order to facilitate the
subsequent feature upsampling, feature maps by the contracting path are addi-
tionally followed by convolution and ReLU. Every step in the expensive path
includes upsampling followed by convolution, concatenation of feature map with
feature map in the contracting path, and multiple convolutions of concatenated
features. The referred feature incorporation is to trade off feature information
loss in downsampling.

Discriminator: The discriminator takes the real and generated signals as
input and eventually outputs a binary decision score. It judges whether the
signal is from the training set or synthesized by the generator. The objective
of the discriminator is that the score of the real sample is close to 1, while
the score of the fake sample is close to 0. The discriminator was built with six
convolutional layers, each of them followed by batch normalization together with
a LeakyReLU activation function that ended with a sigmoid activation function.

More formally, we denote the generator network as G(x; θG) : X → Xfake, and
the discriminator network as D(x; θD) : X → [0, 1], where X denotes raw signal
while Xfake is generated fake signal. Both θG and θD represent the parameters
of the generator and discriminator networks, respectively.

Using the above notation, the following specific objective:

V (θG, θD) = Ex∼pdata [logD(x; θD)] + Ez∼pfake [1 − logD(G(z; θG); θD)] (1)
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Fig. 2. Data Level module includes a generator and discriminator. Real signal (black
solid line) as input and fake signal (red dashed line) as output. The generator contains
the contracting path and the expansive path, and the discriminator scoring signals to
identify their source. (Color figure online)

Where pdata denotes the distribution of training data, pfake denotes the distri-
bution of false signals.E[·] denotes expected value. The objective of the discrimi-
nator is to maximize this expression with respect to parameter θD. The objective
of the generator is to minimize this objective with respect to parameter θG.

Residual Module
As for the classifier layout, we introduced a residual network as an architec-

tural framework to construct the ECG classification model, as shown in Fig. 1.
Signals first go through a convolution layer with a normalization layer, followed
by a residual module, which ultimately makes use of a fully connected layer in
combination with the ReLU activation function to output a multi-classification
score for signals. The number of modules employed in residual modules is varying
to fit signals in different datasets. For example, the number of residual modules
used for signal feature extraction in the MIT-BIH dataset is 5, while the cor-
responding number of residual modules in the INCART dataset is 6. Moreover,
in contrast to the primitive Resnet, the batch normalization layer is attached
behind convolution to enhance the robustness of data for more stable training.

Cost-Sensitive Level Module
For addressing data imbalance at different levels, we further relieve imbalance

issues at the loss level in multi-classification leveraging focal loss. Focal loss
takes two key factors to alleviate the training skewness of data imbalance in
binary classification for Object Detection. Under this premise, Focal loss can be
extended to multi-classification as well. The formulas are following:

Ff = −αt(1 − pt)γ · log(pt + b) (2)

Ff represents the objective function of focal loss, the key to loss is two factors
αt and γ.pt is the predicted value of signals via softmax, in which training raises
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the penalty for incorrect prediction of the minority class if the pt is smaller the
bigger the previous term in the equation.αt is class weight, inversely related to
the number of classes. The b in the latter term is acted as a bias to prevent
overflow.

4 Experiments

Compared Methods
LSTM + Attention: The characteristics of LSTM for capturing temporal

features and Attention for calculating feature weights have been verified in a
variety of fields, thus we use a combination of LSTM and Attention to extract
feature information from ECG as a basic comparison.

AlexNet: The typical pattern in the domain of convolutional neural net-
works uses a composition of five convolutional layers with fully connected layers
to learn feature information [23].

VGG: VGG is designed to explore the effect of deep neural network depth on
feature extraction. Extensive practice can conclude that the increase in network
depth could enhance the capability of feature learning within a certain number
of layers [24].

CBM20: We treat this methodology as a beginner competitor in handling
ECG data imbalance. To improve the recognition of abnormal heartbeats, Romd-
hane &Pr (2020) focus on the loss level to tackle the issue and employ DNN to
work together with the focal loss [15].

We carried out the consistency data augmentation using the Data Level mod-
ule for different datasets (different types of samples were synthesized into the
same number of ECG signals and then put into the training set). Sufficient sam-
ples existed of the N class in both datasets to meet the expected recognition
outcome, thus based on the original MIT-BIH, we enlarged the samples of the
S, V, and F classes to 5000, 10000, and 2000, whereas in the data augmentation
of INCART dataset, we increased S, V, and F to 30,000, 3800, and 400.

Implementation
Our model and other experiments were implemented with PyTorch 1.4 and

Python 3.6 on an RTX2080Ti GPU.
We evaluate the model on the MIT-BIH [25] and INCART datasets [26].

Firstly, the datasets are divided into training and testing sets, where the training
set is 80% and the testing set is 20%. Besides, the batch size in the model training
is 128, and the epoch is set to 2000 and 100 for DCNN training, respectively.
Further, we picked the Adam optimizer to update the network parameters, where
the learning rate for training the MIT-BIH and INCART datasets was fixed at
0.08 and 0.0005. It is worth noting that in case of data imbalance, Accuracy
always shows a high score under the impact of the majority class when evaluating
the model. Hence, we use precision, recall, and F1 as the evaluation metrics for
the model.
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5 Results

Quantitative Results
Results from experiments of different methods on two datasets are reported

in Table 3. It can be seen that our proposed DCNN outperforms the existing
abnormal heartbeat identification methods in the recognition of the minority
classes from the experimental results.

The results of the experiments performed on the MIT-BIH dataset from
Table 1, reveal that the recognition of the minority class samples (S, F) of ECG
signals gets improvement in different metrics with the utilization of the DCNN.
Compared with the method of CBM20, the S class samples gained 13.09%,
15.46%, and 14.51% on Precision, Recall, and F1, respectively, and the F class
samples gained 5.79%, 0.62%, and 2.42%. The volume of N and V class ECG
signals supports the models to learn the majority class features easily and the
different models all have high identification rates, therefore the improvement on
the majority class samples is not noticeable.

Meanwhile, DCNN has distinguished performance over other methods on the
INCART dataset as well. The bottom part of Table 3, indicates that the metrics
of the minority classes show obvious enhancement. The Precision, Recall, and
F1 of the F class signals have an average improvement of 21.6%, 26.13%, and
28.18% compared with the other methods. The Precision of the S class signals
is approximately equal to the results of the other models, while the Recall and
F1 have an elevation of 16.24%, and 10.51%, respectively.

Table 1. Comparison of DCNN with other methods on the MIT-BIH dataset and the
INCART dataset. Pre, Re, and F1 denote Precision, Recall, and F1. The best results
are shown in bold.

Models MIT-BIH
N S V F
Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%)

LSTM + Attention 98.94 99.65 99.29 92.77 78.42 84.99 95.89 96.43 96.16 95.37 64.38 76.87
AlexNet 99.08 99.49 98.99 72.14 80.58 76.13 96.71 96.36 96.53 92.79 64.38 76.01
VGG 99.03 99.49 99.26 92.44 79.14 85.27 94.11 96.79 95.43 90.52 65.62 76.09
CBM20 98.57 99.26 98.91 80.08 67.99 73.54 95.30 95.44 95.37 89.66 65.00 75.36
DCNN 99.15 99.72 99.43 93.17 83.45 88.05 96.94 97.29 97.12 95.45 65.62 77.78

Models INCART
N S V F
Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%)

LSTM + Attention 98.83 98.90 98.87 82.16 71.68 76.57 92.54 93.85 93.19 20.00 6.82 10.17
AlexNet 98.51 99.49 98.99 85.90 68.47 76.14 96.32 91.65 93.93 50 13.64 21.43
VGG 98.69 99.19 98.94 87.31 71.94 78.88 93.94 92.58 93.25 28.57 9.09 13.79
CBM20 96.61 98.95 97.77 76.16 54.59 63.60 91.64 77.79 84.15 35.71 11.36 17.24
DCNN 99.05 99.37 99.21 85.75 82.91 84.31 96.21 94.48 95.34 55.17 36.36 43.84
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Qualitative Results
We performed a visual qualitative analysis of the S, V, and F class signals

synthesized by different models. As shown in Fig. 3, the gap between the signal
synthesized by the Data Level module (UnetGAN) and the original signal is
rather small, on the contrary, the gap between the signal synthesized by DCGAN
and the original signal is greater. Among them, it is observed from the upper
and lower half figures that the signal synthesized using MIT-BIH as the source
data is closer to the original signal than the signal synthesized using INCART as
the source data. The cause is that the data of MIT-BIH is neater than the data
of INCART, and the inconsistent signal length in INCART leads to the poor
training effect of DCGAN. Besides, the signals synthesized by DCGAN contain
more noise than those synthesized by the Data Level module. In other words,
data augmentation using UnetGAN will enhance the detector training and then
improve the recognition of ECG.

Fig. 3. Comparison of the morphology of heartbeats synthesized using UnetGAN,
DCGAN, and the raw heartbeats. There are six subplots, where subplots I, II, and
III are S, V, and F heartbeats synthesized from MIT-BIH, and subplots IV, V, and VI
are S, V, and F heartbeats synthesized from INCART.

In terms of the complexity of the model parameters, as shown in Table 2,
UnetGAN is more lightweight than DCGAN. The parameter size of the model
is 139.15 MB when UnetGAN synthesizes the ECG signal on MIT-BIH, while
DCGAN is 165.25 MB. And DCGAN synthesizes the heartbeat on INCART, not
only is the parameter size higher than UnetGAN 19.94 MB, as well as DCGAN
is prone to mode collapse during training.

Ablation Study
We perform an ablation study on both datasets. Numerous experiments have
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Table 2. Comparison of different model parameter complexities in the MIT-BIH and
INCART.

Method Parm(MITBIH) Parm(INCART)

DCGAN 165.25 185.04
UnetGAN 139.15 165.10

demonstrated high accuracy for the majority class (N, V), and we are therefore
concerned about the performance of the minority class (S, F). DCNN w/o FL is
a variant of DCNN without taking Focal loss into account, while DCNN w/o FS
is a variant of Unet not utilizing the fake signal synthesized by the generator for
data augmentation. we can see in Table 3 that the experimental results of the
proposed DCNN are superior to the different variants.

Table 3. Ablation study using the MIT-BIH and INCART datasets.

Models MIT-BIH INCART
S F S F
Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%) Pre(%) Re(%) F1(%)

DCNN w/o FS 78.65 60.97 68.69 91.51 60.62 72.93 84.73 75.00 79.57 26.32 11.36 15.87
DCNN w/o FL 67.17 71.76 69.39 93.14 59.38 72.52 85.39 76.02 80.43 35.00 31.82 33.33
DCNN 93.17 83.45 88.05 95.45 65.62 77.78 85.75 82.91 84.31 55.17 36.36 43.84

6 Conclusions

In this work, we try to solve the issue of data imbalance of ECG signals at differ-
ent levels to boost the identification of abnormal heartbeats. At the data level,
we propose a Data Level Module to synthesize the high-quality heartbeats, which
are then fed into the training set to enhance the model training and ultimately
improve the model representation learning capability. At the Cost-sensitive level,
the focal loss is applied to further upgrade the recognition of anomalous heart-
beats. Experimental results on the MIT-BIH and INCART datasets demonstrate
the effectiveness of our approach. In particular, DCNN also has prominent per-
formance in the case where ECG signals in the dataset are not aligned. Abnormal
heartbeats due to rare diseases are potential for information extraction. In the
future, we will investigate how to synthesize the minority class of heartbeats with
insufficient volume of samples to better identify the rare heartbeats further.
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Abstract. The exploration of pathways and alternative pathways that
have a specific function is of interest in numerous chemical contexts. A
framework for specifying and searching for pathways has previously been
developed, but a focus on which of the many pathway solutions are real-
isable, or can be made realisable, is missing. Realisable here means that
there actually exists some sequencing of the reactions of the pathway
that will execute the pathway. We present a method for analysing the
realisability of pathways based on the reachability question in Petri nets.
For realisable pathways, our method also provides a certificate encoding
an order of the reactions which realises the pathway. We present two
extended notions of realisability of pathways, one of which is related
to the concept of network catalysts. We exemplify our findings on the
pentose phosphate pathway. Lastly, we discuss the relevance of our con-
cepts for elucidating the choices often implicitly made when depicting
pathways.

1 Introduction

Large Chemical Reaction Networks (CRN) lie at the heart of many questions and
challenges in research, industry, and society. Examples include understanding
metabolic networks and their regulation in health and biotechnology; planning
and optimising chemical synthesis in industry and research labs; modelling the
fragmentation of molecular ions inside mass spectrometers; probing hypotheses
on the origins of life; and monitoring environmental pollution in air, water and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 409–419, 2023.
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soil. Subnetworks with desirable properties, often called pathways, such as a
synthesis plan for a given target molecule, or a metabolic subsystem, are of
particular interest. The ability to specify and search for pathways in a given
CRN thus is a core objective in chemical modelling, exploration, and design.

CRNs can be modelled as directed hypergraphs [3,4,19,25], where each
molecule is represented by a vertex and each reaction is modelled by a directed
hyperedge. Viewing pathways in CRNs as sets of reactions with integer multi-
plicities, [3] formally defined pathways as integer hyperflows in hypergraphs. In
contrast to real-valued hyperflows, integer hyperflows account for molecules as
indivisible entities and allows a more direct mechanistic interpretation. In [3],
also the concept of a chemical transformation motif in a CRN was introduced,
providing a versatile framework for querying reaction networks for pathways. A
chemical transformation motif is the specification of a pathway by prescribing the
input and output compounds (intermediate products may appear but must be
used up again). Finding and enumerating pathways fulfilling a chemical transfor-
mation motif can be treated computationally via Integer Linear Programming
(ILP) [3]. ILP is NP-hard, both in the general case and in the restricted set-
ting of finding integer hyperflows in CRNs [1]. However, for many networks and
pathways of practical interest, current ILP solvers perform well [3].

The starting point of this paper is the following observation: While integer
hyperflows specify reactions and their multiplicities, they do not determine in
which order the individual reactions take place to perform the specified overall
chemical transformation. In fact, there may be no sequencing possible. Figure 4
gives an example of this. Specifically, no sequencing of the reactions e1 and e2
in the hyperflow of Fig. 4 will make it executable—in essence, C or D must be
present before they can be produced. We introduce the term realisable for hyper-
flows where the corresponding chemical transformation is executable by some
sequence of the constituent reactions of the hyperflows. We develop a framework
that converts integer hyperflows into corresponding Petri nets, which then allow
us to use Petri net methodology to express and decide whether integer hyperflows
are realisable. Petri nets have already been used extensively to model metabolic
networks [5].

For realisable flows we introduce the concept of a realisability certificate that
specifies an order in which the reactions can occur along the pathway. Finding
an explicit order both facilitates a mechanistic understanding of pathways and is
a necessity for investigations where the identity of individual atoms matter, such
as computing atom traces [2]. We also study ways in which non-realisable integer
hyperflows can be extended to realisable ones. One option is a scaling of the flow
itself, another is borrowing additional molecules which are then returned. The
latter construction is closely related to the concept of a “network catalyst” (see
e.g. [8,18]). An algorithmic approach to deciding realisability by borrowing thus
forms an important basis for a future formal computational treatment of higher-
level chemical motifs such as autocatalysis and even hypercycles [10,11,23,24].
Finally, we utilise the non-oxidative phase of the pentose phosphate pathway
(PPP) to demonstrate our approach and explore how to find potential catalysts
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within the network. PPP is a well-known example which highlights the impor-
tance of simplicity in finding solutions [17,20].

The main thrust of our paper lies in formally defining and exploring the
concept of realisability of pathways. However, we would like to point out that
commonly used representations of pathways in the life science literature often fall
in between the two extremes of integer hyperflows and realisability certificates.
We believe that our formalisation of these concepts may help raise awareness
of the choices one often subconsciously makes when creating illustrations of
pathways. We elaborate on this viewpoint in Sect. 5.

2 Preliminaries

2.1 Chemical Reaction Networks and Pathways

A CRN can be modelled by a directed hypergraph H = (V,E), where V is the
set of vertices representing the molecules. Reactions are represented as directed
hyperedges E, where each edge e = (e+, e−) is an ordered pair of multisets of
vertices, i.e., e+, e− ⊆ V .1 We call e+ the tail of the edge e, and e− the head.
In the interest of conciseness we will refer to directed hypergraphs simply as
hypergraphs, directed hyperedges simply as edges, and CRNs as networks. For
a multiset Q and an element q we use mq(Q) to denote its multiplicity, i.e., the
number of occurrences of q in Q. When denoting multisets we use the notation
{{. . . }}, e.g., Q = {{a, a, b}} is a multiset with ma(Q) = 2 and mb(Q) = 1. For a
vertex v ∈ V and a set of edges A we use δ+A(v) and δ−

A(v) to denote respectively
the set of out-edges and in-edges of v contained in A, i.e., the edges in A that
have v in their tail and v in their head, respectively.

In order to later define pathways we first introduce an extension of the
network for representing input and output of compounds. Given a hypergraph
H = (V,E) we define the extended hypergraph H = (V,E) with E = E∪E−∪E+,
where

E− = {e−
v = (∅, {{v}}) | v ∈ V } E+ = {e+v = ({{v}} , ∅) | v ∈ V } (1)

The hypergraph H has additional “half-edges” e−
v and e+v , for each v ∈ V . These

explicitly represent potential input and output channels to and from H, i.e., what
is called exchange reactions in metabolic networks. An example of an extended
hypergraph is shown in Fig. 1.

In [3] it was proposed to model a pathway in a network H = (V,E) as an
integer hyperflow. This is an integer-valued function f on the extended network,
f : E → N0, which satisfies the following flow conservation constraint on each
vertex v ∈ V :

∑

e∈δ+
E
(v)

mv(e+)f(e) −
∑

e∈δ−
E
(v)

mv(e−)f(e) = 0 (2)

1 When comparing a multiset M and a set S, we view M as a set. I.e., M ⊆ S holds
if every element in M is an element of S.
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Fig. 1. Example of an extended hypergraph. It has vertices {A,B,C,D}, edges
{e1, e2, e3, e4}, and a half-edge to and from each vertex. An edge e is represented by a
box with arrows to (from) each element in e− (e+).

Note in particular that f(e−
v ) is the input flow for vertex v and f(e+v ) is its

output flow. An example of an integer hyperflow is shown in Fig. 2.

Fig. 2. Example integer hyperflow f on the extended hypergraph from Fig. 1. Vertex
D has been omitted as it has no in- or out-flow. Edges leaving or entering D have also
been omitted as they have no flow. The flow on an edge is represented by an integer.
For example, the half edge into B has flow f(e−B) = 2, the half edge leaving B has flow
f(e+B) = 1, and edge e1 has flow f(e1) = 2.

2.2 Petri Nets

Petri nets are an alternative method to analyse CRNs. Each molecule in the
network forms a place in the Petri net and each reaction corresponds to a tran-
sition [16,21,22]. The stoichiometric matrix commonly used in chemistry has an
equivalent in Petri net terminology, called the incidence matrix [16]. In Sect. 3
we will describe a transformation of a hyperflow to a Petri net. The following
notation for Petri nets (with the exception of arc weights) follows [12].

A net is a triple (P, T,W ) with a set of places P , a set of transitions T ,
and an arc weight function W : (P × T ) ∪ (T × P ) → N0. A marking on a net
is a function M : P → N0 assigning a number of tokens to each place. With
M∅ we denote the empty marking, i.e., M∅(p) = 0, ∀p ∈ P . A Petri net is a
pair (N,M0) of a net N and an initial marking M0. For all x ∈ P ∪ T , we
define the pre-set as •x = {y ∈ P ∪ T | W (y, x) > 0} and the post-set as
x• = {y ∈ P ∪ T | W (x, y) > 0}. We say that a transition t is enabled by the
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marking M if W (p, t) ≤ M(p),∀p ∈ P . When a transition t is enabled it can fire,
resulting in a marking M ′ where M ′(p) = M(p) − W (p, t) + W (t, p), ∀p ∈ P .
Such a firing is denoted by M

t−→ M ′. A firing sequence σ is a sequence of firing
transitions σ = t1t2 . . . tn. Such a firing sequence gives rise to a sequence of
markings M0

t1−→ M1
t2−→ M2

t3−→ . . .
tn−→ Mn which is denoted by M0

σ−→ Mn.

3 Realisability of Integer Hyperflows

The paper [3] gave a method (summarized in Sect. 2.1) for specifying pathways in
CRNs and then proceeded to use ILP to enumerate pathway solutions fulfilling
the specification.

In this paper, we focus on assessing the realisability of such a pathway solu-
tion and on determining a specific order of reactions that proves its realisability.
To this end, we map integer hyperflows into Petri nets and rephrase the question
of realisability as a particular reachability question in the resulting Petri net.

3.1 Flows as Petri Nets

We convert a hypergraph H = (V,E) to a net N = (P, T,W ) by using the
vertices V as the places P and the edges E as the transitions T , and by defin-
ing the weight function from the incidence information as follows: for each ver-
tex/place v ∈ V and edge/transition e = (e+, e−) ∈ E let W (v, e) = mv(e+) and
W (e, v) = mv(e−). This conversion also works for extended hypergraphs, where
the half-edges result in transitions with either an empty pre-set or post-set. The
transitions corresponding to input reactions are thus always enabled. Denote by
M∅ the empty marking on N . Every firing sequence σ starting and ending in
M∅, i.e., M∅

σ−→ M∅, therefore implies a flow f : E → N0 simply by setting f(e)
to be the number of occurrences of the transition e in the sequence σ. The flow
conservation constraint at v ∈ V is satisfied as a consequence of the execution
semantics of Petri nets.

Given a flow, we would like to constrain the Petri net to only yield firing
sequences for that particular flow. We therefore further convert the extended
hypergraph H into an extended net (V ∪ VE , E,W ∪ WE) by adding for each
edge e ∈ E an “external place” ve ∈ VE with connectivity W (ve, e) = 1. In the
following, we will denote the extended Petri net again by N . We then proceed
by translating the given flow f of H into an initial marking M0 on the extended
net. To this end, we set M0(v) = 0 for v ∈ V and M0(ve) = f(e) for places
ve ∈ VE . Transitions in (N,M0) therefore can fire at most the number of times
specified by the flow. Furthermore, any firing sequence M0

σ−→ M∅ ending in the
empty marking must use each transition exactly the number of times specified
by the flow. As an example, the hyperflow in Fig. 2 is converted to the Petri net
in Fig. 3.
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Fig. 3. The integer hyperflow from Fig. 2 converted to a Petri net. Places are circles,
transitions are squares, and tokens are black dots. Arrows indicate pairs of places and
transitions for which the weight function W is non-zero (in this example, all non-zero
weights are equal to one). We have omitted the part of the net that corresponds to the
omitted part of Fig. 2.

3.2 Realisability of Integer Hyperflows

We are interested in whether a given pathway, represented by a flow f on an
extended hypergraph H = (V,E), is realisable in the following sense: Given the
input molecules specified by the input flow, is there a sequence of reactions that
respects the flow, which in the end produces the specified output flow? In the
light of the construction of (N,M0) from (H, f), this question translates into a
reachability problem on a Petri net.

Definition 1. A flow f on H is realisable if there is a firing sequence M0
∗−→ M∅

on the Petri net (N,M0) constructed from (H, f).

Figure 4 shows that not all flows f on H are realisable. In this example it
is impossible to realise the flow as long as there is no flow entering either C or
D. For the flow in Fig. 2, on the other hand, such a firing sequence exists. The
firing sequences corresponding to a realisable flow are not unique in general. For
instance, the Petri net constructed from the integer hyperflow presented in Fig. 3
can reach the empty marking M∅, in essentially two different manners. Modulo
the firing of input/output transitions, those two firing subsequences are e1e1e2
and e1e2e1.

Showing the existence of a firing sequence as specified in Definition 1 is one
way of proving the realisability of an integer hyperflow. Making use of occurrence
nets [6,13,15] and processes [15], a realisability certificate can be defined which
constitute an ordered sequence of reactions together with an individual token
interpretation [14]. Thus it contains the exact dependencies between reactions in
the realisation of the integer hyperflow and explicitly expresses which individual
molecule is used when and for which reaction. Due to space constraints, we defer
a formal description of realisability certificates to the forthcoming full version
of this paper. However, we do note here that a realisability certificate uniquely
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Fig. 4. Example of a flow which is not realisable. Observe that the flow is indeed viable
as it fulfils the flow conservation constraint. Furthermore, notice that there is no input
flow to neither C nor D, and therefore in the corresponding Petri net it will not be
possible to fire either of e1 or e2 which is necessary for it to be realised. However, if C
or D was borrowed the related flow with this borrowing would be realisable.

determines a corresponding integer hyperflow while integer hyperflows, on the
other hand, do not specify the order of the reactions or which one of multiple
copies of a molecules is used in which reaction. An integer hyperflow therefore
may correspond to multiple different realisability certificates, each representing
a different mechanism. For an example of a realisability certificate see Fig. 6.

4 Extended Realisability

Although we have seen above that some integer hyperflows are not realisable,
they can be turned into realisable hyperflows by means of certain modifications.

Definition 2 (Scaled-Realisable). An integer hyperflow f on an extended
hypergraph H = (V,E) is scaled-realisable, if there exists an integer k ≥ 1 such
that the resulting integer hyperflow k · f is realisable.

Asking if an integer hyperflow f is scaled-realisable corresponds to asking if k
copies of f can be realised concurrently. This is of interest as in the real world, a
pathway is often not just happening once, but multiple times. Therefore, even if
the integer hyperflow is not realisable, it still has value to consider if the scaled
integer hyperflow is. However, not all integer hyperflows are scaled-realisable.
An example is the integer hyperflow presented in Fig. 4: no integer scaling can
alleviate the fact that firing requires that C and D is present at the outset.

Definition 3 (Borrow-Realisable). Let f be a flow on an extended hyper-
graph, H = (V,E) and b : V → N. Set f ′(e−

v ) = b(v) + f(e−
v ) and f ′(e+v ) =

b(v) + f(e+v ) for all v ∈ V , and f ′(e) = f(e) for all e ∈ E. Then f is borrow-
realisable if there exists a borrowing function b such that f ′ is realisable.

We say that f ′ is the flow f where v ∈ V has been borrowed b(v) times. This
allows intermediary molecules required for reactions in the pathway to be avail-
able in the environment. Formally, this is modelled by having an additional input
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Fig. 5. Example of a hyperflow for the pentose phosphate pathway that is not scaled-
realisable. The hyperflow is borrow-realisable. The input compound is marked with
green and the output compound is marked with blue. The edges without flow have
been omitted. (Color figure online)

and output flow b(v) for species v. Furthermore, for a borrowing function b we
define |b| = ∑

v∈V b(v), i.e., the total count of molecules borrowed. The idea of
borrowing tokens in the corresponding Petri net setting has been proposed in
[9, Proposition 10] together with a proof that f ′ is realisable for some b with
sufficiently large |b|. That is, every integer hyperflow is borrow-realisable.

Fig. 6. A realisability certificate for the hyperflow in Fig. 5 where the molecule Glyald
is borrowed in order to make it borrow-realisable. The input compounds are marked
with green, the output compounds are marked with blue and the borrowed compound
is marked with purple.

The combinatorics underlying the non-oxidative phase of the PPP has been
analysed less formally in a series of studies focusing, e.g., on simplifying principles
that explain the structure of metabolic networks, see e.g. [17,20]. An example of
a simple integer hyperflow that is not scaled-realisable is shown in Fig. 5. Here,
the production of glyceraldehyde (Glyald) is dependent of the presence of Hex-
2-ulose (2Hex), which depends on fructose-1-phosphate (F1P), which in turn
depends on Glyald. This cycle of dependencies implies that firing is impossible
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unless one of the molecules in this cycle is present at the outset, which cannot
be achieved by scaling. As illustrated in Fig. 6 and proven by the existence of
the realisability certificate, the flow is borrow-realisable with just one borrowing,
namely of the compound Glyald. Thus Glyald can be seen as a network catalyst
for this pathway.

Fig. 7. Example of a pathway drawing for the cyclic non-oxidative glycolysis (NOG)
pathway. Recreated from [7, Fig. 2a].

5 Representations of Pathways

We have described two ways of modelling pathways: integer hyperflows and
realisability certificates. Here we want to point out that commonly used rep-
resentations of pathways in the life science literature fall in between these two
extremes, see Fig. 7 for an example. In this example, the order of reactions is
not fully resolved—for instance, is F6P produced before E4P or after? Indeed,
some unspecified choice of borrowing is needed to set the pathway in motion.
Additionally, the semantics of a molecule identifier appearing in several places
is unclear—for instance, are the three appearances of G3P interchangeable in
the associated reactions or do they signify different individual instances of the
same type of molecule? In the former case, the figure corresponds to a much
larger number of different realisability certificates than in the latter case. The
answers to these questions have important consequences for investigations where
the identity of individual atoms matter, such as atom tracing.

Furthermore, when there is a choice between different pathway suggestions,
avoiding borrow-realisable pathways often gives simpler depictions. However,
this introduces a bias among the possible pathways, which may be unwanted, as
borrow-realisable solutions are usually equally simple in chemical terms. We note
that the need for borrowing in pathways is usually not discussed in the literature.
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Additionally, there has been a lack of computational methods to systematically
look for borrow-realisable pathways, even if they could equally likely form part
of what happens in nature.

We believe that our focus on the realisability of pathways may help raise
awareness of the choices one often subconsciously makes when creating pathway
illustrations.
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Abstract. The thresholding problem is considered in the context of
high-throughput biological data. Several approaches are reviewed, imple-
mented, and tested over an assortment of transcriptomic data.

Keywords: biological network analysis · thresholding methodology

1 Introduction

Graphs are frequently employed in the analysis of high throughput biological
data, with thresholding used to eliminate weak or irrelevant edges. Numerous
methods to determine a most appropriate threshold have been proposed, but
no consensus has been reached [9]. The main goals of this brief study are to
review, implement, and compare these methods systematically over a testbed of
representative data.

In the next section, we briefly review and classify several state-of-the-art
thresholding algorithms. In Sect. 3, we describe a modification to an existing
technique. In Sect. 4, we present the data, procedures, implementations, and
methodology we employed for testing. In Sect. 5, we discuss our results. And in
a final section, we draw a few conclusions from this work.

2 Popular Thresholding Approaches

Let G denote a finite, simple, undirected graph, each of whose edges is weighted
by a measure of similarity between its endpoints. Correlation provides a standard
measure of this similarity, with Pearson’s r the metric most frequently employed.
Thresholding algorithms retain an edge only if its weight is at least some pre-
computed value. Relevant techniques can generally be divided into those based
on graph structure versus those that perform statistical modeling on underlying
data distributions. As a general rule, too low a threshold runs the risk of false
positives, while too high a threshold may produce false negatives.
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2.1 Thresholding Based on Graph Structure

Knowledge or assumptions about graph structure can herald contextual meaning,
in which case thresholding can be viewed as an attempt to make use of that
structure. Most thresholding methods can be interpreted in this context.

Scale Free Models. In what’s termed a “scale free” graph, vertex degrees follow
a power law distribution, p(k) ≈ k−γ , which simply means that the number of
vertices with degree k is approximately k−γ . It turns out that γ usually lies
in the interval [2, 3], and thus only a few vertices will have high degree, while
the degree of most vertices is very small. It is sometimes argued that biological
networks generally follow an empirical scale free topology, and that therefore
a biologically relevant threshold can be found by fitting a scale free model to
the graph [35]. To accomplish this, the linear model log p(k) ∼ log k may be
fitted to the graph for each threshold under consideration, and the R2 value of
the model then used to measure goodness of fit. In [35], for example, a plateau
is sought in the relationship between the threshold and R2. An R package is
available that can assist in threshold selection using this approach [21]. More
recently, however, chi-squared goodness of fit [20] and likelihood ratio tests [6]
have found that biological networks are not overwhelmingly scale free, or are only
weakly scale free. Therefore, any such assumption should probably be called into
question, and adopted only once a scale free model has truly been shown to fit
the data under analysis.

Spectral Graph Theory. Spectral graph theory studies the eigenvalues of adja-
cency or Laplacian matrices of graphs [7], and makes it possible to discover
information about graph connectivity. For example, the number of zero-valued
eigenvalues of a graph’s Laplacian corresponds to the number of its connected
components. Moreover, if the first non-zero eigenvalue is small enough, order-
ing its corresponding eigenvector results in a step-like function, with each step
corresponding to a transition between nearly-disconnected-components (dense
subgraphs that are cross-connected by only a few bridge edges) [13]. Moti-
vated in part by the well-known “guilt-by-association” principle [34], the work
described in [29] argues for the threshold that maximizes the number of nearly-
disconnected-components, equivalently minimizing the number of bridges (edges
connecting dissimilar parts).

Random Matrix Theory (RMT). RMT was developed to analyze nuclear spectra,
but has also been applied to biological networks [16,24,25]. RMT thresholding
is based on the correlation of the eigenvalues of the graph, measured by their
Nearest Neighbor Spacing Distribution (NNSD). NNSD is defined as the dis-
tribution of the differences between subsequent (ordered) values. A Gaussian
orthogonal ensemble (GOE) is a random, symmetric matrix with independent,
normally distributed entries. According to RMT for real, symmetric matrices,
the eigenvalue NNSD of a GOE matrix has a Wigner-Dyson distribution, while
the eigenvalue NNSD of a non-random matrix follows a Poisson distribution
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[25]. This approach thus presupposes that an initial correlation matrix is GOE
distributed, and that the deletion of low-weighted edges will result in a non-
random matrix with biological signal. To find an appropriate threshold, such
edges are iteratively removed until the NNSD converts from GOE to Poisson,
with Chi-square tests performed at each iteration [24].

Maximal Clique. A subgraph is a clique if it contains all possible edges. A clique
is maximal if it cannot be enlarged by the addition of more vertices (and remain
a clique). Thresholding may be performed by incrementally lowering the thresh-
old, and searching for inflection points at which the number of maximal cliques
increases dramatically. In [5], both clique doubling and tripling were considered
in a top-down fashion, with doubling especially shown to perform well in the
analysis of mRNA microarray co-expression data. A superficially similar idea
can be seen in work on k-clique communities [28], now renamed clique perco-
lation [12]. Unfortunately, this method requires pre-selecting the clique size (k)
and requiring it to be unrealistically small (usually between 3 and 6). More-
over, as an exhaustive bottom-up approach, it has been found to be relatively
inefficient by design [19].

Graph Density. A thresholding objective common to a variety of application
domains seeks to maximize the number of edges within each cluster, while at the
same time minimizing the number of edges between disjoint clusters. This simple
goal is generally ill suited to problems in network biology, however, because
it overlooks important principles such as gene pleiotropy and cluster overlap.
Nevertheless, attempts have been made to pursue it [2,26]. Oddly enough, they
proceed not by finding a threshold that largely maximizes component density (as
most other methods described here actually do), but instead they focus solely
on inter-component edges and operate by iteratively lowering the threshold and
ignoring isolated vertices until the overall graph density is minimized.

Edge Weight Distribution. A somewhat similar approach to graph density is
described in [3]. There an algorithm is proposed that sets the threshold to the
smallest value that produces a non-negative derivative when the number of edges
is divided by the number of non-isolated vertices. It is argued that this method-
ology is appropriate for protein sequence similarity graphs, because it tends to
preserve edges within protein families while eliminating edges between differ-
ent families as well as those to outliers. For this technique to work, however,
the edge weight distribution must be left skewed, so that the number of edges
rapidly decreases as the threshold is increased. While this condition held for the
specific protein similarity graphs studied, the extent to which it holds across a
wider spectrum of biological network graphs is unclear.

Global-Local Measures. A method that combines both local and global mea-
sures was introduced in [18], where it was applied to semantic similarity graphs.
Pendant vertices are first removed, and the local threshold assigned to each
remaining vertex is a function of its incident edge weights and a global threshold
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parameter. Only if an edge’s weight exceeds the threshold of either of its end-
points is it is included in the graph. If the graph contains nearly-disconnected-
components (as defined by spectral methods), the process stops, otherwise the
global parameter is adjusted, and the process is repeated.

Clustering Coefficient. A clustering coefficient can be viewed as a local measure
of graph density, and is generally assigned separately to each vertex. One defi-
nition is the number of edges within the vertex’s open neighborhood divided by
the maximum number possible. The clustering coefficient of the graph, C, is the
average across the graph [33]. For a complete graph C = 1. A method to employ
this measure is proposed in [17]. Initially, as the threshold is increased, edges and
isolated vertices are discarded, and thus C decreases. It is argued that at higher
thresholds, signal in the network manifests in highly connected sub-networks,
which results in C increasing. A threshold is chosen that best corresponds to an
inflection upwards of C. When compared to predefined thresholds, and thresh-
olds based on significance on a number of micro-array datasets, the work pre-
sented in [15] found that this method resulted in graphs with better ontological
enrichment. Following on the work of [17], the discussion of [15] introduces Cr,
calculated from a random counterpart to the original graph which preserves the
original degree distribution. It is proposed that, as the threshold is increased,
edges eliminated are due to noise as long as the difference between C and Cr

is monotonically increasing, and so the smallest threshold is selected such that
the difference between C and Cr is larger than the same difference at the next
threshold. In contrast to the method of [17], this can be calculated analytically.

3 Algorithmic Advances

We implemented several of these thresholding techniques and found utility
in a handful of algorithmic enhancements. In the process, we also devised a
previously-unreported thresholding method suitable for comparison.

Scale Free Models. To implement a scale free model, we applied maximum like-
lihood to estimate γ and a Kolmogorov-Smirnov test to compare the fitted dis-
tribution to the input degree distribution [10]. This is in contrast to the ad-hoc
linear model method used in [35], which has a number of issues that can lead to
unreliability in identifying scale free graphs [8,20].

Maximal Clique. We implemented what we term “maximal clique ratio” as a
generalization of maximal clique doubling and tripling. To accomplish this, we
simply stepped through threshold increments and divided the number of maxi-
mal cliques at the current value by that at the previous value, setting the thresh-
old where this ratio was maximized. We retained a step size of 0.01 as in [5],
although other increments can of course be used. Note that the increment should
be kept constant, so that the ratios are comparable.
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Global-Local Measures. We generalized the global-local thresholding method of
[18] so that it would handle edge-weighted graphs. This required that we increase
the default limits of the global threshold parameter, employ absolute correlation
values, and refrain from removing pendant vertices.

4 Implementation and Testing

4.1 Computational Milieu

Each of the thresholding techniques we have discussed is reasonably fast, and
thus we were not preoccupied with relative speed or competitive timings. Accord-
ingly, we employed a variety of hardware architectures and operating systems
based largely on availability. These include a SUSE Linux Enterprise Server 15
operating system running on a Cray XC40 with two 2.3 GHz 16-core Haswell
processors and 128 GB DDR4 2133 MHz memory per node, a CentOS Linux
release 7.6.1810 operating system running on a multi-platform cluster with
Intel R© Xeon R© CPUs and 4682MB memory per core, and a Ubuntu 18.0.10 LTS
operating system running on a Dell Precision 5510 laptop with eight 2.70GHz
Intel R© CoreTM i7-6820HQ processors and 15.5 GB of memory. For software sup-
port, we employed the igraph C library [10] for graph theoretical analysis and
the ALGLIB library [4] for statistical distributions.

4.2 Methods Studied

We chose eight of the aforementioned thresholding algorithms for testing. Selec-
tions for testing were based on the following exclusionary criteria: (1) methods
must be entirely data dependent, which eliminated relevance networks, and (2)
they must be scalable, which eliminated the local-global method (we found iter-
ative eigenvalue calculations of very large matrices unfeasible during parameter-
ization). One of these techniques we newly devised (seen as shaded rows), and
seven we implemented as described and/or enhanced in the preceding discussion.
See Table 1.

4.3 Benchmarking

We created a testbed of 39 finite, simple, undirected graphs from a variety of
real-world data repositories. Using Pearson correlation coefficients to weight their
edges, these graphs were produced from the following sources:

– EntropyExplorer [32], which contains transcriptomic disease case/control
microarray data (19 graphs)

– ManyMicroarray [22,23], which contains pre-normalized human microarray
data (20 graphs)
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Table 1. Thresholding algorithms studied.

Algorithmic Approach Name Description

Clustering Coefficient Coefficient-Random Chooses the smallest threshold at
which the difference between the
clustering coefficient and that of a
random counterpart graph is larger
than at the next threshold [15].

Edge Weight Distribution Cluster-Separation Employs the heuristic of [3] to esti-
mate a threshold separating inter-
cluster from intracluster edges.

Maximal Clique MCR-2 Determines a threshold at which
the change in the ratio in the num-
ber of maximal cliques doubles [5].

MCR-Max Generalizes MCR-2 by choosing
the threshold at which the ratio
of change in maximal clique size is
maximized.

Random Matrix Theory RMT Chooses a threshold based on
eigenvalue changes as in [16,24,
25].

Scale Free Models Scale-Free Uses maximum likelihood and a
Kolmogorov-Smirnov test to deter-
mine goodness-of-fit of the degree
distribution to a power law.

Significance and Power Power (β) Selects the minimum threshold
that limits the Type II error rate
to 1 − β. (Pearson only)

Spectral Graph Theory Spectral-Methods Exploits the second-smallest eigen-
vector as described in [29].

A preliminary threshold of 0.10 was used for each graph. To meet memory and
file transfer limitations, graphs were downsized if necessary by starting at this
preliminary threshold and increasing it in increments of 0.10 until the resultant
file size was no larger than 3GB. The eight aforementioned thresholding methods
were then applied to this testbed. In some cases, methods did not converge or
computational limits were exceeded. This resulted in the identification of 303
thresholds. Of these, 170 were at least 0.60 and considered for further study.
The bound of 0.60 was based on multiple criteria. Not only are clustering times
prohibitive at lower values, but it has been shown that transcriptomic data can
require a threshold as high as 0.84 to achieve even a 50% true positive rate of
associations [1]. Moreover, we found that the median consensus threshold across
all methods tested was 0.81, while the methods purportedly developed with
transcriptomic data in mind all produced thresholds in the range [0.80,0.96].
Clustering was next performed on these 170 thresholded graphs. For this we
used paraclique [14,30], a state-of-the-art algorithm known to produce clusters of
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superior quality [19]. Paraclique calls were limited to no more than 300 clusters,
with 4 calls that terminated after 60 h, resulting a total of 211 clustered graphs.
In total, we examined 8,392 clusters distributed over these 211 graphs. Vertices
within a cluster were annotated with gene symbols so that enrichment via the
Gene Ontology project [31] could be employed to gauge biological fidelity. For
this we used the Panther web API [27] and a custom Python script. A cluster
was deemed significant if it contained at least one significantly over-represented
GO term.

5 Empirical Results and Discussion

Threshold ranges computed by each technique are displayed in Fig. 1. A few
may be noteworthy. The Cluster-Separation algorithm found no thresholds at
all for most of the EntropyExplorer graphs, and only extremely high thresholds
otherwise. Presumably it was hobbled by its reliance on skewed edge weight
distributions. The MCR and Scale-Free techniques too returned only excessively
high thresholds, perhaps due to MCR’s inherent dependence on changes in graph
density and Scale-Free’s assumptions about graph structure. At the other end of
the spectrum, the Power approach computed thresholds so low that they were

Fig. 1. Threshold ranges across data sources. (A) EntropyExplorer and (B) ManyMi-
croarray.
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almost always below our 0.60 cut-off. This may be due to their reliance on a
large number of samples. And finally, MCR-2 seems to have struggled to find
suitable thresholds, perhaps because of their stringent doubling requirements.

Results of GO cluster annotation are shown in Table 2. Four values are
reported for each method: the number of graphs on which a threshold of 0.60 or
greater was found, the number of gene clusters produced, the number of signif-
icant gene clusters produced, and most importantly a metric we call the Total
Significant Clusters Ratio (TSCR). We calculated the TSCR by summing indi-
vidual significance ratios over all clusters isolated within each graph. Its intent
is to prevent any one graph from overwhelming the metric and to provide a
measure of cluster quality independent of the number of clusters found. The
Cluster-Separation method, for example, produced clusters from five graphs. In
one graph, only a single cluster was found, and it was enriched. In a second graph,
two clusters were found of which only one was enriched. In a third, seven out of
ten clusters were enriched, and so on. The Cluster-Separation TSCR calculation
was therefore: 1

1 + 1
2 + 7

10 + 1
1 + 4

5 = 4.

Table 2. Enrichment analysis. Thresholding algorithms ranked by Total Significant
Clusters Ratio (TSCR).

Thresholds Found Gene Clusters Significant Clusters TSCR

MCR-Max 28 488 94 12.38

Scale-Free 29 206 91 11.84

Spectral-Methods 35 3, 098 809 10.89

MCR-2 26 438 76 10.28

Coefficient-Random 18 1, 221 348 8.84

RMT 12 34 25 7.73

Cluster-Separation 10 19 14 4.00

Power (0.80) 12 2, 907 509 2.04

Unsurprisingly, methods designed with transcriptomic data in mind per-
formed quite well. Moreover, three of the four highest-scoring algorithms (the
two MCR-based techniques plus Spectral-Methods) are all focused in one way or
another on the largest change in graph density. In contrast, Scale-Free seems to
rely on graph sparsity [11], which allowed it to perform well at higher thresholds.

6 Concluding Remarks

Thresholding is a foundational technique for creating unweighted graphs from
correlational data. This makes it a crucial first step in many analytical toolchains,
with numerous algorithms proposed for this purpose. In this paper, we described,
implemented, and systematically tested an assortment of these methods in the
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context of gene co-expression. We also devised a new technique, built a test-bed
of relevant data, and created a simple metric to evaluate algorithmic perfor-
mance.
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Abstract. This study aims to understand human embryonic develop-
ment and cell fate determination, specifically in relation to trophec-
toderm (TE) maturation. We utilize single-cell transcriptomics (scR-
NAseq) data to develop a framework for inferring computational mod-
els that distinguish between two developmental stages. Our method
selects pseudo-perturbations from scRNAseq data since actual perturba-
tions are impractical due to ethical and legal constraints. These pseudo-
perturbations consist of input-output discretized expressions, for a lim-
ited set of genes and cells. By combining these pseudo-perturbations with
prior-regulatory networks, we can infer Boolean networks that accurately
align with scRNAseq data for each developmental stage. Our publicly
available method was tested with several benchmarks, proving the fea-
sibility of our approach. Applied to the real dataset, we infer Boolean
network families, corresponding to the medium and late TE develop-
mental stages. Their structures reveal contrasting regulatory pathways,
offering valuable biological insights and hypotheses within this domain.

Keywords: Boolean networks · Answer Set Programming · Human
preimplantation development · scRNAseq modeling

1 Introduction

One of the outstanding questions of the field of in vitro fertilization is to under-
stand the chain of events regulating human preimplantation development lead-
ing to an implantation-competent embryo. To address this question, in [9],
we analyzed single-cell transcriptomic data (scRNAseq) from preimplantation
human embryos. Our analysis proposed some hierarchy of transcription factors
in epiblast, trophectoderm and primitive endoderm lineages. Individual cell fate
within heterogeneous samples, such as human embryos, can be followed from
scRNAseq data but presents multiple computational challenges with normaliza-
tion and “zero-inflation”, complicating network models [7]. The state-of-the-art
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tools used to propose a temporal distribution of such data are based on sta-
tistical approaches, such as manifolds (UMAP [8]) or graphs theory (pseudo-
time [11]). In [3], the authors used such pseudo-time distributions along with
scRNAseq expression data to infer Boolean networks for modeling gene regula-
tion in cancer progression. They focus, however, on the hypothesis of an averaged
cell expression at each stage defined by pseudo-time analysis, allowing to model
the dynamics of the cell fate decision. In the context of embryo development,
Dunn et al. [4] proposed computational models on transcriptional networks from
knockout data on mouse stem cells. This data type is ideal since the proposed
perturbations add crucial information to the inferring process.

In this work, we propose a framework to discover a family of Boolean networks
(BNs) of human preimplantation development that capture the progression from
one developmental stage to the next. This framework uses prior-knowledge net-
works (PKN) as a base on which the scRNAseq data is mapped. Then, it iden-
tifies pseudo-perturbations specific for two developmental stages. These pseudo-
perturbations are used in the last step to infer stage-specific BNs models. Since
perturbation data is rarely available due to practical and legal concerns, our
main contribution was to extract pseudo-perturbation data from scRNAseq data,
considering its high redundancy and sparsity. We used the Pathway Commons
database [12] to build a PKN and discovered 20 pseudo-perturbations (across
10 genes) characterizing medium and late stages of trophectoderm (TE) mat-
uration. They correspond to the gene expression of 20 cells in each stage; rep-
resentative on average of 82% of the total cells. Pseudo-perturbations referring
to 10 (entry) genes expression were connected (PKN information) to 14 genes
(output) expression. The 20 entry-output gene expression configurations allowed
us to infer 2 families of BNs (composed of 8 and 15 logical gates) characterizing
medium and late TE developmental stages.

2 Method

2.1 Pipeline Overview

Our pipeline is based on background notions stated in Appendix and its main
steps, illustrated in supplementary material1, are: (i) PKN reconstruction, (ii)
experimental design construction, and (iii) BNs inference.

PKN Reconstruction is achieved by querying the Pathway Commons
database, using pyBRAvo [6], with an initial gene list. Briefly, given a list of genes
relevant to the case study, pyBRAvo explores recursively predecessors genes and
outputs a signed-directed graph. The reconstructed PKN is then reduced to only
include genes and their interactions measured in the scRNAseq data, as well as
protein complexes associated with the genes to maintain their connectivity. The
resulting PKN comprises nodes selected as input, intermediate, and readout.

1 https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA 2023 Supp.

https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA_2023_Supp
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Experimental Design Construction. This step constructs an experimental
design from the reduced PKN and the scRNAseq data of the two studied cell
classes (see an example in supplementary material). The experimental design is
composed of: (i) pseudo-perturbations, which are binarized expression values for
input and intermediate genes in chosen cells whose value is identical in both cell
classes, and (ii) readout observations, which are normalized expression values for
readout genes in the chosen cells of both cell classes. To capture the diversity of
genes expression in scRNAseq data for each class, we implement a logic program
to maximize the number of different pseudo-perturbations for k genes, given a
set of input and intermediate genes (see Sect. 2.3). The resulting experimental
design is based on the inputs, intermediates, and readouts of the PKN obtained
in the previous step.

BN Inference. We infer BNs for each class using Caspo [13]. Given a PKN
and an experimental design, Caspo learns a family of BNs compatible with the
network’s topology and the experimental design data. Caspo learns minimal
(in size) BNs which minimize the error between their readouts predictions and
experimental measures. In our framework, Caspo proposes specific BNs for each
class. This is obtained thanks to the experimental design identified in the previ-
ous step, where a maximal number of entry-output associations is proposed with
common entry gene values in both classes (pseudo-perturbations), and (maxi-
mally) different output gene values.

2.2 Experimental Data Preprocessing

We used single-cell data from [10], which measures the expression of ∼ 20, 000
genes across 1529 cells. Since we focused on genes in the PKN, our dataset com-
prised 125 genes (111 input and intermediates, and 14 readouts). We considered
only cells at medium and late TE stage; therefore we had a total of 680 cells.

First, we discretize raw gene expression data of input and intermediate PKN
nodes (see Sect. 2.1, PKN Reconstruction) by considering a gene expressed if at
least 2 reads are identified in the raw data. Here, we denote by eij (resp. rij) is
the binarized (resp. raw) expression of the gene j for the cell i. We have eij = 0
if rij < 2, and eij = 1 otherwise.

Second, we normalize the raw expression of genes related to PKN readouts
(see Sect. 2.1). We denote by nij the normalized expression of the gene i for the
cell j. We have nij = (rij − min)/(max − min) where min (resp. max) is the
minimum (resp. maximum) expression value of all readout genes across all cells.

2.3 Experimental Design Construction - Algorithm

This algorithm receives an integer k, as a parameter, limiting the number of
genes to be selected. Its input data is the preprocessed scRNAseq matrix for
input, intermediate, and readout PKN genes. The algorithm retrieves (i) a max-
imal number of pseudo-perturbations, which identify cells associations between
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two classes holding identical expression values for a set of k genes, and (ii)
cell associations which maximize the readout difference across (redundant) cells
associations. The details of this algorithm are presented below.

Maximizing the Number of Pseudo-perturbations. The input of this
method is a binary matrix, E, where eij represents the presence (or activity
level) of gene j for cell i (see Sect. 2.2). The output is a subset of genes and
cells that adhere to various constraints, ensuring their pseudo-perturbations are
balanced between the different classes (see supplementary material, experimental
design example). Let us denote by C, the complete set of cells; and by G, the
complete set of genes in our experimental data. Each cell is uniquely associated
with one class (either A or B); C = A � B. We use the binary matrix, E, to
define the relation IG, IG(ci) = {gj ∈ G|eij = 1}. IG(ci) thus represents the
active genes, belonging to G, for cell ci. If G′ ⊂ G, then the restriction of IG to
G′ is defined by IG

′
(ci) = IG(ci) ∩ G′.

Problem Formulation. Given an association matrix E, associating a set G of
genes to a set C of cells, where C is composed of cells belonging to 2 disjoint
sets (classes) A and B; and given a parameter k limiting the number of selected
genes, find a subset G′ of genes and the largest subset C ′ (C ′ = A′ � B′ ⊂ C,
where A′ ⊂ A and B′ ⊂ B) satisfying the three following constraints:

1. The size of G′ is fixed to k (parameter). For large instances k << |G|.
2. ∀c1, c2 ∈ A′ (resp. B′), c1 �= c2, we verify that IG

′
(c1) �= IG

′
(c2).

3. ∀c1 ∈ A′ (resp. B′), ∃c2 ∈ B′ (resp. A′), such that we verify IG
′
(c1) = IG

′
(c2).

From this result, for each ci ∈ C ′ we define a binary vector bi, such that
for j ∈ {1, · · · , k}, bij = 1 (resp. bij = 0) if gene gj ∈ IG

′
(ci) (resp. �∈ IG

′
(ci)).

bi is called a pseudo-perturbation. Notice that since the sets G′ and C ′ are not
unique, there may exist several pseudo-perturbations vectors.

Constraints Justification. The imposed constraints are crucial in light of the
entire framework, which handles Boolean network inference and single-cell data.
Constraint 1 reduces the search space, improves computational efficiency, and
simplifies the subsequent step of learning Boolean networks. Constraint 2 pre-
vents redundancy in gene selection from different cells within the same class. This
is essential due to the abundance of zero values and redundancy in single-cell
data. Constraint 3 promotes similarity in gene expression values between the
two distinct classes. This alignment enables meaningful comparative analysis
during the subsequent step of Boolean network inference. Despite the inherent
evolutionary differences between cells belonging to different classes, selecting
genes with similar expression values allows us to impose comparable entry con-
ditions on the system, facilitating accurate modeling of the distinct regulatory
mechanisms at play. Finally, selecting a larger number of pseudo-perturbations
provides more information, enriching the Boolean network inference step and
allowing for exploring various regulatory mechanisms.
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Maximizing Readout Difference. Pseudo-perturbations identified by the
previous algorithm relate cells in A′ to those in B′. However, different cell rela-
tions may exist for the same pseudo-perturbation vector.

Problem Formulation. Given a set of pseudo-perturbation binary vectors, O, and
given the matrix of preprocessed scRNAseq data of normalized readout values,
find the sets of cells A′∗ and B′∗, associated by all pseudo-perturbation vectors
in O, that maximize the difference of readout vectors, rA

′∗ (for readouts of cells
in A′∗) and rB

′∗ (for readouts of cells in B′∗).

Algorithm. For each vector b in the set of optimal pseudo-perturbations, relating
cells c1 (in A′) and c2 (in B′):

1. Compute a set of redundant cells for each class. This involves identifying cells
in class A with an identical binarized vector b, denoted as set RA

b , and likewise
for class B denoted as RB

b . Both sets, RA
b and RB

b , include cells c1 and c2
respectively.

2. Iterate across all pairs of cells in RA
b × RB

b , and calculate the difference of
readout genes values while keeping the maximal difference.

We retrieve an association of each optimal pseudo-perturbation to a vector
of normalized readouts expression that maximizes the difference between the
two classes. Additionally, we calculate the representativity score for the optimal
pseudo-perturbations by considering the number of redundant cells. Let nA be
the number of cells in class A, and let O be the set of Boolean vectors in all
optimal pseudo-perturbations for class A. The representativity score SA for class
A is defined as follows:

SA =
∑

b∈O |RA
b |

nA
× 100. (1)

2.4 Implementation and Software Availability

The complete framework was implemented in an open-source system scRNA2BoNI
available at: https://github.com/mathieubolteau/scRNA2BoNI. scRNA2BoNI
uses Answer Set Programming (ASP) [1] as logical modeling and constraint
solving paradigm to identify the maximal number of pseudo-perturbations and
Python for the maximization of readout difference. ASP is used to model prob-
lems from NP and provides state-of-the-art solvers that propose exact solutions
for optimization problems and allow enumeration of all optimal or pseudo-
optimal solutions. For our study, we used clasp [5]. On a computer cluster
comprising 160 CPUs and 1.5 To of RAM, given an association matrix com-
prising expression of 111 genes for 680 cells, our pipeline allows us to generate
20 pseudo-perturbations in 65 h. This corresponds to a pseudo-optimal solution
for this problem that is not unique. The ASP program of this algorithm is pro-
vided in the supplementary material. The complexity of our program can be
analyzed considering two factors that create the search space: (i) the selection
of k genes from a total set of G genes, and (ii) the choice of pairs of cells. That

https://github.com/mathieubolteau/scRNA2BoNI
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is, for each possible selection of k genes, an amount of c associations between
cells in classes A and B (where the values of the k genes coincide) has to be
tested to discard redundancies within the same class. The maximum value for
c is |A| × |B|; which represents associating all cells in both classes. clasp per-
forms backjump and conflict-driven learning, optimizing the search space; thus,
our estimate measures a worse case. The estimated complexity for the worst-case
(see Eq. 2) implies that our algorithm is exponential on the number of considered
genes and cells from our scRNAseq dataset.

O(
(|G|

k

)

× 2|A|×|B|) (2)

3 Results

Our data and results are available as supplementary material at: https://github.
com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA 2023 Supp.

3.1 Pseudo-perturbations Identification - Different Size Benchmarks

We tested our algorithm on 4 toy datasets (see specifications in Table 1, datasets
A − D). We also applied our program on 2 entire datasets: phosphoproteomics
data, measuring averaged cell population protein expression (dataset P ) from [2]
and scRNAseq data (dataset SC) from [9]. Our results are shown in Table 1. We
can see that using dataset B we identified 5 optimal pseudo-perturbations with
identical input and intermediate genes expression for both classes. These 5 differ-
ent Boolean vectors of pseudo-perturbations represent the expression behavior of
83% (resp. 100%) of the cells in class early TE (resp. medium TE ) for the k = 5
selected genes (see Eq. 1). On datasets A − B, we found an optimal solution,
whereas on datasets C − SC, suboptimal ones. Our results enable us to advise
potential users on expected computation times based on their dataset sizes. For
datasets P and SC, we found up to 23 and 20 pseudo-perturbations, respectively.
The representativity of selected patients in the phosphoproteomics data (21%
and 45%) is vastly lower than the representativity of selected cells in the scR-
NAseq case study (75% and 89%), suggesting more redundancies in scRNAseq
data. Our method is thus applicable for selecting optimal pseudo-perturbations
from scRNAseq data.

3.2 Discrimination of the Medium and Late Trophectoderm Stages

PKN Reconstruction. We used 438 transcription factor (TF) genes involved
in human embryonic development as input for pyBRAvo to build the PKN (see
supplementary data for further details). The PKN is composed of 327 nodes and
475 edges, with only 28 of the 438 initial TFs found in Pathway Commons [12].
We then reduced the network to 191 nodes (84 input, 27 intermediate, 14 readout
genes, and 66 complexes) and 285 edges, limited to genes measured in scRNAseq
data and complexes linked to these genes (see supplementary material).

https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA_2023_Supp
https://github.com/mathieubolteau/scRNA2BoNI/tree/master/ISBRA_2023_Supp
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Table 1. Maximizing number of pseudo-perturbations applied to 6 case studies.

Dataset Source Classes
(C1;C2)

m Cells or
patients
(C1;C2)

k Execution
time1

Different
Boolean
vectors

Representative
score S2

(C1;C2)

A artificial C1 ; C2 10 10 (5;5) 3 0.105 s 3 50;60

B subset of
single-cell data

early TE ;
medium
TE

30 24
(12;12)

5 11.379 s 5 83;100

C subset of
single-cell data

early TE ;
medium
TE

100 50
(25;25)

10 5h* 11 76;80

D subset of
single-cell data

early TE ;
medium
TE

120 200
(100;100)

15 5h* 18 40;37

P phosphoproteomics
data from [2]

CR ; PR 79 191
(136;55)

10 96h* 23 21;45

SC single-cell data medium
TE ;
late TE

111 680
(348;332)

10 65h* 20 75;89

m refers to the number of input and intermediate genes or proteins. CR = Complete Remission ;

PR = Primary Resistant (cf. to [2]). 1 Tests were performed on a computer cluster comprising 160

CPUs and 1.5 To of RAM. 2 see Eq. 1. * Execution time corresponds to the fixed timeout.

Experimental Design Construction. We generated pseudo-perturbations for
the experimental design using the method described in Sect. 2.3, which employed
the set of input and intermediate genes from the reduced PKN, comprising 111
genes. Our analysis focused on the expression of these genes across 680 cells,
which were identified to be in medium and late TE developmental stages (see
Table 1, dataset SC).

We tested different values of k, the number of selected genes, similar to those
used in [13]. We observed the number of pseudo-perturbations generated after 30
h of calculation on a computer cluster and computed the representativity score
for each k value. Based on our results, k = 10 was the best compromise between
a high number of pseudo-perturbations and a high representativity score (see
Fig. 1A). This value was also used in [2], supporting our decision.

Our method produced 20 pseudo-perturbation Boolean vectors, which paired
medium and late TE cells to maximize the expression value difference of 14 read-
out genes. In Fig. 1C, we present the experimental design composed of 24 genes:
7 inputs genes (in green), 3 intermediate genes (in red), and 14 readouts (in
blue). Each row represents a pseudo-perturbation (on the left, ordered from
most to least representative) and its readout observations. Note that each vec-
tor is unique. We observe some readout genes with minimal variations (mean of
expression difference between both stages less than 0.06), e.g. DEC1 or SOD1,
and some readout genes where a significant variation (mean of expression differ-
ence between both stages greater than 0.30) is observed, e.g. CEBPB, CEBPD
or GSR. These last also appear in the learned BNs (see Fig. 1B).
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Fig. 1. Medium and late TE discrimination findings. A. Impact of k on the number
of different pseudo-perturbations and their representativity in the dataset. B. Inferred
BNs. C. Visualization of the experimental design. (Color figure online)

BN Inference. We used the generated experimental design combined with the
reduced PKN to infer BNs specific to medium and late TE using the Caspo soft-
ware. Caspo proposes BNs that match the PKN topology and have an optimal
(minimal) mean square error (MSE) between the Boolean prediction of readout
nodes (given the Boolean input states) and their experimental measurement.
The Caspo used parameters are presented in the supplementary material.

Figure 1B illustrates the union of learned BNs for the medium and late TE
developmental stages, respectively, which are compatible with the fixed fitness
value. The size of the learned BNs is equal to 8 for medium TE and 15 for late TE.
The optimal MSE for the learned BNs equals 0.1421 and 0.1924, respectively. The
medium TE family has 2 BNs, while the late TE one has 4. The execution time for
both classes is comparable. These two families of BNs exhibit distinct differences
in their gene behaviors within cell types. Interestingly, the late TE BNs connect
more input and readout genes than the medium TE BNs. Both classes of BNs
share two input genes, SMAD3 and E2F1, as well as one intermediate gene,
EGR1, while only one common readout, PSAT1, is present. Notably, most of the
interactions (without considering their sign) of the medium TE BNs are included
in the late TE BNs. While both medium and late TE BNs propose different
regulatory mechanisms for PSAT1, the medium TE BNs suggest an activation
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path from SMAD3. In contrast, the late TE BNs propose two inhibition paths
from the same input. Likewise, an inhibition path from E2F1 to PSAT1 is
proposed in medium TE BNs, while an activation path between these genes is
proposed for late TE BNs. This path is, however, subject to the presence or
absence of SMAD3. Seemingly the PSAT1 readout was measured differently in
the same pseudo-perturbation configuration involving genes E2F1 and PSAT1.
Late TE BNs exhibit supplementary readout genes, namely GSR, CEBPB, and
CEBPD, indicating that the readout measurements matched the late TE BNs
prediction, given the selected pseudo-perturbation Boolean vectors. However,
medium TE BNs could not predict the observed measurements with minimal
error on these three genes. Consequently, late TE regulatory mechanisms appear
more complex than medium TE ones.

4 Discussion and Conclusion

In this paper, we propose an original framework to compute families of Boolean
networks compatible with scRNAseq data and prior regulatory knowledge. Our
method generates Boolean networks comparing two different conditions. We
applied the implemented framework to human embryo development to study
the difference between cell behavior at a medium and late TE developmental
stage. Despite the lack of in vitro perturbation data and the sparsity of single-
cell datasets, our method yields meaningful results.

As significant results, we developed an algorithm to obtain pseudo-
perturbations from scRNAseq data demonstrating scalability and efficiency
through benchmarking with datasets of varying sizes. The worst-case search
complexity for the real case study was of

(
111
10

) × 2348×332 = 3.26 × 1034793, and
our partial results were generated in 65h. We prove that our algorithm allows for
more diverse pseudo-perturbation sets than the state-of-the-art method [2] (see
supplementary material), which studied cell population-averaged measurements.
We can simulate real perturbations by identifying pseudo-perturbations and
proposing more precise (such as Boolean) computational models. Our method
identified 20 pairs of cells with Boolean expressions coinciding with selected
genes, representing of 75% and 89% of the complete set of cells in medium and
late TE developmental stages, respectively.

Using diverse pseudo-perturbations sets, we generate families of Boolean net-
works to distinguish medium and late TE developmental stages in human embry-
onic development. The BNs propose Boolean functions derived from the Pathway
Commons database to model gene regulation mechanisms. Late TE cells exhibit
a more complex BN structure (size 15 vs. 8) than medium TE cells. These find-
ings are consistent with the fact that late TE requires a gain of biological function
to help the embryo implant in the endometrium. Differently, from methods that
propose a single computational model of averaged cells, our method includes a
subset of 20 cells for each stage and learns optimal families of BNs representing
the diversity of expression mechanisms within this cell subset for each stage.
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Appendix

Boolean Network (BN). A Boolean network B, of dimension n is defined as
B = (N,F ) where: N = {v1, . . . , vn} is a finite set of nodes (variables or genes)
and F = {f1, . . . , fn} is a set of Boolean functions fi : Bn → B, with B = {0, 1},
describing the evolution of variable vi.

Influence Graph (IG). An IG is denoted by G = (V,E, σ) with V = {v1, . . . , vn}
the set of nodes, E ⊆ V × V the set of directed edges, and σ ⊆ E × {+1,−1}
the signs of the edges.

In the context of gene regulation, j → i means that the change of j in time
influences the level of i. Edges j → i are labeled with a sign, where +1 (resp.
−1) indicates that j tends to increase (decrease) the level of i. The IG derived
from regulatory knowledge bases, is called a Prior-Knowledge Network (PKN).
The PKN serves as the initial base for generating multiple BNs that adhere to
its topology. So that each node in the PKN corresponds to a gene and has an
on/off state determined by the Boolean function defined by the BN. Different
BNs can have the same IG, while a BN can only be assimilated to a single IG.

Within the PKN, we identify three types of genes. An input gene, which is
a gene without any predecessor; an intermediate gene, with predecessor(s) and
successor(s); and a readout gene, without any successor. Input and intermediate
genes refer to the part of the PKN that can be stimulated (externally or inter-
nally), they can also be referred to as system entries. While readouts are the
part of the system that can be observed, they can be referred to as the system
output.

Pseudo-perturbations. Usually perturbation data is required to discover Boolean
mechanisms within a system. This data comes in the form of on/off values of
entries associated with output values. However, in the human embryonic devel-
opment context, perturbing the system is not feasible for obvious reasons. There-
fore, we introduce the notion of pseudo-perturbations, which refers to artificial
perturbations derived from the (unperturbed) gene expression observations.
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Abstract. The genetic code for many different proteins can be found
in biological sequencing data, which offers vital insight into the genetic
evolution of viruses. While machine learning approaches are becoming
increasingly popular for many “Big Data” situations, they have made
little progress in comprehending the nature of such data. One such
area is the t-distributed Stochastic Neighbour Embedding (t-SNE), a
general-purpose approach used to represent high dimensional data in
low dimensional (LD) space while preserving similarity between data
points. Traditionally, the Gaussian kernel is used with t-SNE. However,
since the Gaussian kernel is not data-dependent, it only determines each
local bandwidth based on one local point. This makes it computation-
ally expensive, hence limited in scalability. Moreover, it can misrepresent
some structures in the data. An alternative is to use the isolation kernel,
which is a data-dependent method. However, it has a single parameter
to tune in computing the kernel. Although the isolation kernel yields
better performance in terms of scalability and preserving the similarity
in LD space, it may still not perform optimally in some cases. This paper
presents a perspective on improving the performance of t-SNE and argues
that kernel selection could impact this performance. We use 9 different
kernels to evaluate their impact on the performance of t-SNE, using
SARS-CoV-2 “spike” protein sequences. With three different embedding
methods, we show that the cosine similarity kernel gives the best results
and enhances the performance of t-SNE.

Keywords: t-SNE · Dimensionality Reduction · Kernel Methods ·
Visualization · Embedding · SARS-CoV-2 · Spike Sequence Analyses

1 Introduction

In Machine Learning (ML), kernels are frequently used to solve challenges involv-
ing calculating object similarity between pairs of objects. The t-distributed
Stochastic Neighbour Embedding (t-SNE) [15] is a popular solution researchers
use to reduce this dimensionality. Its goal is to project high-dimensional datasets
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into lower-dimensional spaces while maintaining data point similarities, as indi-
cated by the Kullback-Liebler (KL) divergence. This paper reviews the use of
different kernels and their impact on t-SNE for SARS-Cov-21 sequence data
and its visualization in low dimension. We also assess these kernels in terms of
classification and clustering. The vast global spread of COVID-19 spurred this,
pushing viral sequence research into the “Big Data” sphere. This presents chal-
lenges since highly dimensional data cannot be used directly for ML solutions.

Since spike protein sequences cannot be used directly as input to machine
learning (ML) models, we must first convert the sequences into a fixed-length
numerical representation. For this purpose, using feature engineering-based
methods is a popular choice, as proposed in many studies recently [1,2,10,12].
It has been shown that different embeddings can yield different results in terms
of classification [3] and clustering [4–6,16] of SARS-CoV-2 spike sequences.

The t-SNE is a method to visualize high-dimensional data by mapping each
point to a low-dimensional space (2 or 3 dimensions). In the literature, the Gaus-
sian kernel is used by default for t-SNE-based visualization [25]. However, recent
studies [8,25] show that the Gaussian kernel may not always be the best choice
for t-SNE-based visualization, as it is computationally expensive and could per-
form worse than the isolation kernel (a data-dependent kernel). We argue in this
paper that even using the isolation kernel [25] may not be the better option
when dealing with biological sequences. When evaluating the t-SNE method
both subjectively and objectively, we demonstrate that numerous kernels out-
perform the Gaussian and isolation kernel using embedding techniques(three
feature engineering-based embeddings). In this paper, following are our contri-
butions:

1. We show that the cosine similarity-based kernel is a better choice for t-SNE
as compared to 8 other kernel methods, including Gaussian and isolation
kernels, in the case of SARS-CoV-2 spike sequences.

2. We evaluate the performance of the t-SNE model on both objective and sub-
jective criteria and report results for several kernel computation approaches.

3. We show that the cosine similarity kernel is better in terms of computational
runtime and pairwise distance preservation in low dimensions as compared
to the Gaussian and isolation kernel on SARS-CoV-2 sequences. Therefore,
it could be a potential candidate for efficient t-SNE computation for the
eventually larger sets of biological sequences [19].

The rest of the paper is organized as follows: Sect. 2 discusses the related
work. Section 3 and Sect. 4 discuss the methods used to compute the kernel
matrix and detail for computing the t-SNE using the kernel matrix. Section 5
contains details of the different embeddings we use. Section 6 contains exper-
imentation and data statistics. In Sect. 7, we evaluate the impact of different
kernels on t-SNE. Finally, we conclude the paper in Sect. 8.

1 The SARS-CoV-2 virus is the cause of the global COVID-19 pandemic.



444 P. Chourasia et al.

2 Related Work

Data visualization is an important task. Using t-SNE, originally introduced
in [15], has made this task easy. Authors in [3,8] use t-SNE to visualize dif-
ferent variants in the coronavirus protein sequence data. It has also been found
that clustering the COVID-19 protein sequences using k-means is also related to
the patterns shown in the t-SNE plots [4,6,7,20].

Authors in [9] proposed Symmetric stochastic neighbor embedding (SNE) to
get the 2D representation of the high dimensional data. An extension of t-SNE,
called Heavy-tailed SNE, is proposed in [24], which considers different embed-
ding similarity functions. Authors in [22] propose a method called t-Distributed
Stochastic Triplet Embedding, based on similarity triplets to consider similar
points and discard dissimilar points in the embeddings. Some efforts have been
made previously to speed up the computation of t-SNE [21] using tree-based
algorithms. Authors in [25] show that using the isolated kernel within the t-SNE
could improve the visualization in 2D and its runtime compared to the Gaussian.
A decentralized data stochastic neighbor embedding (dSNE) is proposed in [17],
visualizing the decentralized data. The differentially private dSNE (DP-dSNE)
version is proposed in [18]. Although contemporary t-SNE methods are effective
on well-known datasets like MNIST, it is unclear if those methods will be just
as effective when applied to biological protein sequences.

3 Kernel Matrix Computation

Table 1 describes different methods we use to compute the kernel matrix.

Table 1. Methods used to compute Kernel Matrix

Kernel Formula

Cosine similarity k(x, y) = ‖x‖‖y‖×cos(θ)
‖x‖‖y‖ = x.y

‖x‖‖y‖ (1)

Linear k(x, y) = xT y + c (2)

Polynomial k(x, y) =
(
xT y + r

)d
(3)

Gaussian K (x, y) = exp
(

−‖x−y‖2

2σ2

)
(4)

Isolation [25] Kψ(x, y | D) = EHψ(D)[�(x, y ∈ θ[z] | θ[z] ∈ H)] (5)

Laplacian k(x, y) = exp
(− 1

2σ2 ‖x − y‖1

)
(6)

Sigmoid k(x, y) = tanh
(
γx�y + c0

)
(7)

Chi-squared k(x, y) = exp
(
−γ

∑
i
(xi−yi)

2

xi+yi

)
(8)

Additive-chi-squared k(x, y) =
∑

i
2xiyi
xi+yi

(9)
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4 Using Kernel Matrix for t-SNE

The t-SNE method takes an n × n kernel matrix as input, where n is the total
number of sequences (embedding vectors), and produces a low dimensional rep-
resentation d, where d = {1, 2, · · · , n− 1}. More formally, given the high dimen-
sional (HD) data, the idea of t-SNE is to represent the data in low dimensions
(LD) while preserving the pairwise distance between the embedding vectors i.e.
to keep the distances between points in LD Y as close as to in HD X. The t-SNE
approach works as follows:

Compute Conditional Probability or Pairwise Affinities. The first step
in t-SNE is to calculate the Euclidean distances of each point from all other
points in high dimensions. This can be done using different kernel functions.
Later this distance between data points is converted into conditional probabili-
ties, also known as pairwise affinities or similarity matrices.

High Dimensional Probability Computation. The conditional probability
can be gathered to give joint distribution on pairs of points. This is gathered
into a symmetric matrix, and returned joint probability can be written as given
in Eq. 10 (as also given in [23]):

pj|i =
exp

(
− ‖xi − xj‖2 /2σ2

i

)

∑
k �=i exp

(
− ‖xi − xk‖2 /2σ2

i

) (10)

Initial Solution Sampling. Initial solution Y is sampled with random initial
values. These values are optimized to give the best lower dimensional represen-
tation of data points.

Compute Low Dimensional Joint Probability. Similar to conditional prob-
ability in the HD, we compute it in the LD. Finally, gather these to get the low
dimensional joint probability, which can be written as follows (also mentioned
in [18]):

Qij =

⎧
⎨
⎩

0 j = i

(1+‖yi−yj‖2)−1

∑
k �=l(1+‖yk−yl||2)−1 j �= i

(11)
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Compute KL Divergence and Gradient. For these two distributions P in
an HD and Q in an LD, to measure the distance between them, we use KL
divergence. It is used to find the variation or distribution among the distances
in the data points. KL divergence is computed as:

J = min KL(P‖Q) =
∑

i

∑
j

pij log
pij

qij
(12)

where J is the cost function, P and Q represents two different dimensions,
and yi, yj are points in Q. Take the derivative and calculate gradient descent
Eq. 13 (as mentioned in [23]) to get the minimum from J

∇ =
δJ

δyi
= 4

∑
j

(pij − qij) (yi − yj)
(
1 + ‖yi − yi‖2

)−1

(13)

and keep updating Y for minimum J Eq. 14. We apply t-distribution in this
Stochastic Neighborhood Embedding (SNE). Applying t-distribution on Q low
dimension gives us a longer tail to give better visualization.

y(t) = y(t−1) + η∇ + α(t)
(
y(t−1) − y(t−2)

)
(14)

where t ∈ T represents t-time iterations.
In summary, the kernel function plays an important role here to give distances

between the points in the original data. The workflow of t-SNE computation
using the kernel matrix as input is illustrated in Algorithm 1.

Algorithm 1. t-SNE Computation.
1: Input: (KM, dim)

KM = x[i][j], xij ∈ Rn � KM => Kernel Matrix
dim: number of dimension � output dimension

2: Output: Y = [y1, y2, y3, . . . , yN ], yi ∈ Rdim

3: Function: tSNE(KM , dim)
4: Y = matrix(n, dim) � randomly initialize output matrix
5: //Now initialize optimization parameters
6: I = 1000 � Iterations
7: η = 500 � Learning rate
8: α = 0.5 � momentum
9: P = matrix(n × n) � probability matrix in HD
10: for i ← 1 to n do
11: for j ← 1 to n do
12: Pij = computeProbability(KMi,j) � from Eq 10

13: Q = matrix(n × 2) � probability matrix in LD
14: for k ← 1 to I do � Iteration loop
15: for i ← 1 to n do
16: for j ← 1 to n do
17: Qij = computeProbability(Yi,j) � Eq. 11

18: J = computeKLDivergence(P, Q) � Compute KL Divergence from Eq 12
19: ∇ = computeGradient(J) � using Eq 13
20: Y = updateOutput(Y, α, η, ∇) � using Eq 14
21: if (k == 250) then α = 0.8 � momentum changed at iteration

22: return Y
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5 Feature Embeddings Generation

This section describes the three embedding methods we use to convert the bio-
logical sequences into a fixed-length numerical representation.

1. One Hot Encoding (OHE) - To convert the amino acids into numerical rep-
resentation, we use OHE [3,12].

2. Spike2Vec [2] - It generates a fixed-length numerical representations using the
concept of k-mers (also called n-gram). It uses the sliding window concept to
generate substrings (called mers) of length k (size of the window).

3. Minimizers - Using the kmer, the minimizer is computed as a substring (mer)
of length m (where m < k) within that kmer. It is a lexicographical minimum
in the forward and reverse order of the k-mer.

6 Experimental Setup

In this section, we discuss the dataset statistics followed by the goodness metrics
used to evaluate the performance of t-SNE. All experiments are performed on
Intel (R) Core i5 system with a 2.40 GHz processor and 32 GB memory.

6.1 Data Statistics

The dataset we use, we call the Spike7k dataset, consists of sequences of the
SARS-CoV-2 virus and is taken from the well-known database GISAID [11].
It has 22 unique lineages as the label with the following distribution: B.1.1.7
(3369), B.1.617.2 (875), AY.4 (593), B.1.2 (333), B.1 (292), B.1.177 (243), P.1
(194), B.1.1 (163), B.1.429 (107), B.1.526 (104), AY.12 (101), B.1.160 (92),
B.1.351 (81), B.1.427 (65), B.1.1.214 (64), B.1.1.519 (56), D.2 (55), B.1.221 (52),
B.1.177.21 (47), B.1.258 (46), B.1.243 (36), R.1 (32).

6.2 Evaluating t-SNE

For objective evaluation of the t-SNE model, we use a method called k-ary neigh-
borhood agreement (k-ANA) method [25]. The k-ANA method (for different k
nearest neighbors) checks the neighborhood agreement (Q) between HD and LD
and takes the intersection on the numbers of neighbors. More formally:

Q(k) =
n∑

i=1

1
nk

|kNN (xi) ∩ kNN (x′
i)| (15)

where kNN(x) is set of k nearest neighbours of x in high-dimensional and
kNN(x′) is set of k nearest neighbours of x in corresponding low-dimensional.

We use a quality assessment tool that quantifies the neighborhood preser-
vation and is denoted by R(k), which uses Eq. 15 to evaluate on scalar metric
whether neighbors are preserved [13] in low dimensions. More formally:
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R(k) =
(n − 1)Q(k) − k

n − 1 − k
(16)

R(k) represents the measurement for k-ary neighborhood agreement. Its value
lies between 0 and 1, the higher score represents better preservation of the neigh-
borhood in LD space. In our experiment, we computed R(k) for k ∈ 1, 2, 3, ..., 99
then considered the area under the curve (AUC) formed by k and R(k). Finally,
to aggregate the performance for different k-ANN, we calculate the area under
the R(k) curve in the log plot (AUCRNX) [14]. More formally:

AUCRNX =
Σk

R(k)
k

Σk
1
k

(17)

where AUCRNX denotes the average quality weight for k nearest neighbors.

7 Subjective and Objective Evaluation of t-SNE

This section discusses the performance of t-SNE in subjective (using 2D scatter
plots) and objective (using AUCRNX) ways for different embeddings and kernels.

7.1 Subjective Evaluation

To visually evaluate the performance of t-SNE, we use different embedding meth-
ods and plot the 2D visual representation to analyze the overall structure of the
data. Figure 1 shows the top 2 performing kernels in terms of AUCRNX score
for respective embedding. Similarly, Fig. 2 shows the worse 2 performing kernels.

OHE [12]. We analyzed the t-SNE plots for one-hot embedding for different
kernel methods. For the Alpha variant (B.1.1.7), we can see that Gaussian,
Isolation, Linear, and Cosine kernel can generate a clear grouping. However,
for the other variants with a small representation in the dataset (e.g. B.1.617.2
and AY.4), we can see that the Cosine and linear kernels are better than the
Gaussian and Isolation. This could mean that the Gaussian and Isolation tend
to be biased toward the more representative class (alpha variant).

Spike2Vec [2]. The t-SNE plots for Spike2vec-based embeddings using different
kernel methods are evaluated. It is similar to OHE, where the Gaussian and
isolation kernels almost perfectly group the alpha (B.1.1.7) variant. However, all
other variants are scattered around in the plot.

Minimizer. Similarly, in the t-SNE plots for minimizer embedding for different
kernel methods for the Gaussian and isolation kernel, we can observe similar
behavior for the alpha (B.1.1.7) variant.

We also show the 3D plots for t-SNE using the Cosine similarity kernel in
Fig. 3 for Spike2Vec and Minimizers-based embedding. We can see for Spike2Vec,
the Alpha variant shows clear grouping. Similarly, the delta and epsilon variant
also contains a few small groups.
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Fig. 1. t-SNE plots for top-performing kernel methods for different embedding. This
figure is best seen in color. (a), (b) is from OHE. (c), (d) are from Spike2Vec. and (e),
(f) are from Minimizer encoding.

Fig. 2. t-SNE plots for worst-performing kernel methods for different embedding. This
figure is best seen in color. (a), (b) is from OHE. (c), (d) are from Spike2Vec. and (e),
(f) are from Minimizer encoding.

Fig. 3. t-SNE 3d plots using Cosine similarity kernel.

7.2 Objective Evaluation of t-SNE

The objective evaluation of tSNE is done using Eq. 17. The goodness of t-
SNE using kernel computation runtime and AUCRNX for different embedding
approaches are reported in Table 2. An interesting insight, which we can observe,
is that the Cosine similarity-based kernel outperforms all other kernel methods
in terms of kernel computational runtime and AUCRNX value for all embedding
methods. This means that the Cosine similarity-based kernel could be scaled
easily on a bigger dataset and its neighborhood agreement in high dimensional
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data vs. low dimensional data is highest. Therefore, we can conclude that for
the biological protein sequences, using the cosine similarity kernel is better than
the Gaussian or isolation kernel (authors in [25] argue that using the isolation
kernel with t-SNE is better).

Table 2. AUCRNX values for t-SNE using different kernel and encoding methods on
Spike7k datasets. The kernel is sorted in descending order with the best at the top
and the best values are shown in underlined and bold.

OHE Spike2Vec Minimizer

Kernel Kernel
comp. time

AUCRNX Kernel Kernel
comp. time

AUCRNX Kernel Kernel
comp. time

AUCRNX

Cosine similarity 37.351 0.262 Cosine similarity 15.865 0.331 Cosine similarity 17.912 0.278

Linear 51.827 0.260 Laplacian 721.834 0.260 Laplacian 983.26 0.242

Gaussian 94.784 0.199 Gaussian 54.192 0.235 Sigmoid 27.813 0.229

Sigmoid 57.298 0.190 Linear 30.978 0.197 Gaussian 65.096 0.206

Laplacian 2250.30 0.184 Isolation 24.162 0.189 Isolation 27.266 0.172

Polynomial 57.526 0.177 Sigmoid 30.037 0.168 Polynomial 28.666 0.166

Isolation 39.329 0.161 Additive-chi2 495.221 0.121 Linear 27.503 0.165

Chi-squared 1644.86 0.131 Chi-squared 495.264 0.104 Additive-chi2 576.92 0.125

Additive-chi2 1882.45 0.110 Polynomial 28.427 0.059 Chi-squared 921.63 0.095

7.3 Runtime Analysis

The runtime for computing different kernel matrices with increasing sequences
is shown in Fig. 4a and its zoomed version in Fig. 4b. We can see the Cosine sim-
ilarity outperforms all other kernel methods. The Gaussian takes the longest.
Moreover, we can observe linear overall runtime increasing trend for most ker-
nels. We report the t-SNE computation runtime for the Cosine similarity with
increasing sequences in Fig. 4c. We can see a linear increase in the runtime as
we increase the sequences.

Fig. 4. (a) and (b) shows the kernel computation Runtime for an increasing number
of sequences (using Spike2Vec-based embedding). (c) shows the t-SNE computation
runtime with increasing sequences (using Spike2Vec-based embedding). This figure is
best seen in color.
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8 Conclusion

In this paper, we modify the original tSNE algorithm and show its performance
using different kernel methods. We demonstrate that the cosine similarity-based
kernel performs best among 9 kernels for t-SNE-based visualization. We show
that, rather than using Gaussian or isolation kernel (as argued in previous
works), the cosine similarity kernel yields better computational runtimes (hence
better scalability) and improves the performance of t-SNE. In the future, we will
explore other biological data to evaluate the performance of the reported ker-
nels. We also plan to use different embedding and kernel methods to explore the
impact on the classification and clustering results for the biological sequences.
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Abstract. It has recently been noticed that dense subgraphs of SARS-
CoV-2 epistatic networks correspond to future unobserved variants of
concern. This phenomenon can be interpreted as multiple correlated
mutations occurring in a rapid succession, resulting in a new variant
relatively distant from the current population. We refer to this phe-
nomenon as an evolutionary jump and propose to use it for enhancing
genetic algorithm. Evolutionary jumps were implemented using C-SNV
algorithm which find cliques in the epistatic network. We have applied
the genetic algorithm enhanced with evolutionary jumps (GA+EJ) to
the 0–1 Knapsack Problem, and found that evolutionary jumps allow
the genetic algorithm to escape local minima and find solutions closer to
the optimum.

Keywords: Evolution · Knapsack Problem · Genetic Algorithm ·
Epistatic network

1 Introduction

The unprecedented density of SARS-CoV-2 sequencing data allows to follow the
viral evolution much closer than in pre-pandemic time [4,8]. Epistatic networks
of SARS-CoV-2 constructed on GISAID data, contain densely linked subgraphs
of mutations which correspond to known variants of concern, and also allow us to
predict and early detection of future variants [7]. The network has non-additive
phenotypic effects and their vertices are single nucleotide polymorphism(SNPs)
and its edges are correlated pair of mutations, where dense subgraphs have high
density of connectivity among their vertices. It is remarkable that altered phe-
notype of variants of concern (VOC) do not appear gradually since one cannot
observe intermediate variants containing substantial subsets of mutations defin-
ing the VOC. Such phenomenon was previously observed in Paleontology and
referred as punctuated equilibrium. This phenomenon can be interpreted as if
multiple correlated mutations occur in a rapid succession, resulting in appear-
ing of a novel variant which is relatively distant from the closest representative
of the current population. In this paper, we propose to apply this evolutionary
mechanism (referred as evolutionary jumps) to enhance genetic algorithm (GA).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Genetic algorithm mimics the natural evolution and select the fittest individ-
uals which further reproduce using genetic operators. The drawback of genetic
algorithm as well as other local optimization methods that they can stuck in
local minima. We propose to rectify this drawback by applying evolutionary
jumps when no significant improvement is achieved for several generations by
GA. Instead of dense subgraphs in the epistatic network, our approach is to find
cliques that’s why we use C-SNV algorithm (C-SNV) [5]. It identifies cliques
(maximal complete subgraphs) and use them to assemble viral variants present
in the sequencing data. When GA stuck for a number of generations, we run
C-SNV on all individual solutions constructed so far to identify new individuals
with all mutations corresponding to identified cliques.

In order to evaluate the quality of the GA and compare with the proposed
enhancements, we applied it to hard instances of 0–1 Knapsack Problem recently
proposed in [3]. Since the simple GA solutions can be infeasible or extended, we
first enhance GA with repairing and packing (GA-RP) and then further intro-
duce evolutionary jumps (GA-EJ). Our experiments show that GA-RP signifi-
cantly outperform the simple GA on all instances while GA-EJ further improves
GA-RP for harder instances, i.e., for cases where finding optimal solution requires
large runtime and GA-RP stuck significantly far away from the optimum.

Section 2 describes a genetic algorithm and proposed enhancements using
evolutionary jumps. Section 3 applies GA to the 0–1 Knapsack Problem and
gives details of enhancing GA with repairing and packing as well as evolutionary
jumps. Section 4 describes hard problem instances and compares results achieved
by GA, GA with repairing and packing (GA-RP), and GA with repairing and
packing & evolutionary jumps (GA-EJ).

2 Genetic Algorithm with Evolutionary Jumps

2.1 Simple Genetic Algorithm

Genetic algorithm is a metaheuristic inspired by the process of natural evolu-
tion relying on biologically inspired operators such as mutation, crossover and
selection [6]. GA is a heuristic search-based evolutionary algorithm developed
by John Holland in 70’s. Holland developed an electronic organism named chro-
mosomes consisting of binary encoded strings [2] or unit entity known as gene.
Those randomly generated binary encoded strings based chromosomes are also
called individual solutions, and these potential solutions altogether are the initial
population.

After the creation of initial population, evolution begins. The fitness function
evaluation is performed for each individual of the population. The fitness score
represents the ability of the individual to compete for mating and its quality in
the solution. The individuals with higher fitness values are chosen for mating
pool, called parents. After selecting the best fitted individuals from the popula-
tion, selected individuals perform reproduction.

Crossover is a process of combining genetic material of parents by inheriting
their traits in offspring. Crossover randomly chooses a point or locus in the
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individuals and exchange before and after sub-strings of individuals to create
offspring. For example for single point crossover, consider the two individuals
and crossover point at the 5th position of the individual, shown in Fig. 1(a).

Fig. 1. a) Two individuals are performing crossover. Red line represents the point of
crossover. b) Mutation is performed on 2nd, 5th, 8th and 9th gene of the individual.
(Color figure online)

The offspring 1 has first five genes from individual 1 and next five genes from
individual 2. Similarly, offspring 2 has left side of genes from individual 2 and
right side of genes from individual 1.

After crossover, individuals undergo mutation. The mutation operator
changes one or more genes randomly. It changes the gene value from 1 to 0 or
vice versa, shown in Fig. 1(b). The type of crossover, mutation and its probabil-
ity can be defined and depends on the problem under experimentation. Both the
parents and the offspring now comprise the next generation of the genetic algo-
rithm, where the process repeats. GA terminates after the fitness is not improved
for predefined number of generations or number of generations exceeds a given
number.

2.2 Punctuated Equilibrium and Epistatic Network of SARS-CoV-2

The genomic evolution of SARS-CoV-2 shows that the rate of mutations is not
constant – the gradual relatively slow evolution is replaced with brief and fast
bursts resulting in emerging of new viral variants with altered phenotypes includ-
ing increased transmissibility. Such new variants (e.g., Alpha- and Omicron-
variants) are referred as Variants of Concern (VOCs) or Variants of Interest
(VOIs)). This phenomenon has been labeled as punctuated equilibrium. It has
been shown recently that punctuated equilibrium events for SARS-CoV-2 which
we refer to as evolutionary jumps can be predicted from its epistatic network [7].
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Following [7], we define an epistatic network as a graph with vertices cor-
responding to mutated positions, e.g. single nucleotide polymorphisms (SNPs)
or single amino-acid variations (SAVs). Two vertices are connected if the muta-
tions in the the corresponding positions i and j are significantly more frequently
observed in the same haplotype than they are expected if the mutations would
be independent.

Formally, let 0 and 1 denote the reference and mutated alleles in positions i
and j, respectively. Assuming that positions are biallelic, each possible haplotype
h in positions i and j belong to the set {00, 0110, 11}. Let Oh (resp. E(h)) be
the observed (resp. expected) number of haplotypes h in the sequencing data.
It has been proved in [7] that if haplotype 11 is not viable (does not produce
descendants), then

E00 ∗ E11 ≤ E01 ∗ E10 (1)

In the epistatic network we connect to vertices if the corresponding haplotype
11 is viable, i.e., when the O00 ∗ O11 is significantly larger than O01 ∗ O10.

Recently, it has been shown that evolutionary jumps in SARS-CoV-2 evolu-
tion correspond to dense subgraphs of the epistatic network [7]. Formally, the
densest subgraph, i.e. the one with the maximum ratio of edges over vertices,
frequently consists of mutations that differentiate an emerging viral variant from
the reference. Therefore, rather than performing a random combination of muta-
tions, evolutionary jumps include multiple mutually linked mutations.

2.3 Enhancement of GA with Evolutionary Jumps

The genetic algorithm uses selection pressure to push future generations closer
to the optimum, with limited differences between consecutive generations. It can
be observed that standard genetic algorithm is prone to getting stuck in local
minima, because crossovers and mutations alone are not enough to escape them.
Therefore, we propose to enhance the genetic algorithm with evolutionary jumps.
Evolutionary jumps involve the appearance of new individual solutions in the
population, which include genes or mutations that are observed to be correlated
in previous generations.

Our procedure decides when to perform evolutionary jumps by monitoring
the fitness of the best solution across generations. If the number of generations
without fitness improvement exceeds a predefined threshold, then the result of an
evolutionary jumps are added to the next generation. Instead of dense subgraphs
in the epistatic network, our approach is to find cliques that’s why we use C-SNV
[5]. It identifies cliques (maximal complete subgraphs) and use them to assemble
viral variants present in the sequencing data.
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3 Application of Genetic Algorithm with Evolutionary
Jumps to the 0–1 Knapsack Problem

3.1 The 0–1 Knapsack Problem

Given a set of items with weights and profits and a maximum capacity for the
knapsack, the 0–1 Knapsack Problem asks for a subset of items that maximizes
total profit without exceeding the knapsack capacity. A solution to the 0–1 Knap-
sack Problem is a vector with binary coordinates corresponding to items. The
coordinate equals 1 when the corresponding item is selected, and 0 otherwise.
We use the 0–1 Knapsack Problem as a benchmark to evaluate the performance
of our proposed improvement to the genetic algorithm.

3.2 Implementation of Genetic Algorithm

As a base implementation of the genetic algorithm, we employ the PyGAD
genetic algorithm Python library. [1] An initial population is created by randomly
generating solutions that fill the knapsack up to capacity. For a fitness function,
we use the sum of profits of the items included in the knapsack, unless the sum of
their weights exceeds the knapsack capacity, in which case the solution receives
the minimum fitness of −1.

In each generation, a tournament selection procedure identifies high-fitting
solutions to be parents for the next generation. The chosen parents are grouped
into pairs, and each pair is crossed-over and randomly mutated to produce a pair
of offspring for the next generation, as shown in Fig. 1. This procedure repeats
for the given number of generations.

3.3 Repairing and Packing

Throughout the execution of the standard genetic algorithm on the 0–1 Knap-
sack Problem, solutions frequently either exceed the knapsack capacity or are
under-filled, meaning there are still items remaining which can fit in the solu-
tion without bringing it over capacity. Rather than discarding these solutions,
we propose a procedure for repairing solutions that are over-filled, and for filling
solutions that are under-filled. We call this procedure repairing and packing,
illustrated in Fig. 2.

To repair and pack a given solution, the procedure begins by sorting the
items of the problem instance such that all items which are included in the
solution (1s) come first, and all non-included items (0s) come afterwards. Then,
it randomly shuffles the included items and the non-included items separately.
Ordering the array in this manner allows us to consider the items in a random
order subject to constraint that all items included in the solution preceed those
that are not included.

Our procedure repairs and packs solutions in a single pass through this sorted
array of items. The procedure starts a new, empty solution, and begins iterating
the sorted items array. While iterating through the included items region, it tries
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to add each item to the solution, and does so as long as the solution remains under
capacity. If the item cannot fit (i.e., after its addition the total capacity exceeds
the upper limit), we change it to 0, removing it from the knapsack. This ensures
over-filled solutions will be brought back down to capacity. When we reach the
non-included items region of the sorted array, we try to add those items to the
solution as well, and do so as long as they fit. By applying the repairing and
packing procedure, we can guarantee that solutions are not over-capacity, and
that there are no items remaining which could still fit in the knapsack.

We apply this procedure to each solution throughout the execution of the
genetic algorithm. The initial population, next generation offsprings, and evolu-
tionary jumps solutions are all repaired-and-packed according to this procedure,
ensuring each solution is both feasible and maximally filled.

1   0   1   0   1   0   0   1   1   0
 1        2        3        4        5        6        7        8         9       10

1   1   1   1   1   0   0   0   0   0

1   1   1   1   1   0   0   0   0   0

Input solution

Items sorted by 
inclusion

Items shuffled 
by inclusion

1   1   1   0   0 1   0   1   1   0Output solution

1   1   1   0   1   0   1   0   0   1Repairing and 
Packing

 1        3        5        8        9        2        4        6         7       10

 9        3        8        5        1        4        2       10       7       6

 1        2        3        4        5        6        7        8         9       10

 9        3        8        5        1        4        2       10       7       6

Fig. 2. Repairing and packing procedure on an example instance of 10 items

3.4 Evolutionary Jumps Implementation

Evolutionary Jumps involve the introduction of new individuals to the genetic
algorithm population. These new solutions include items that are observed to
be correlated in the past evolutionary history. Our procedure decides when to
perform evolutionary jumps by monitoring the fitness of the best solution across
generations. Each time we observe 10 consecutive generations without improve-
ment to the best fitting solution, the evolutionary jump procedure is triggered.

To facilitate the evolutionary jumps, C-SNV is employed to find correlated
pairs of mutations. C-SNV is a tool which finds characteristic haplotypes to
describe a set of input sequences. Internally, the tool implements a procedure
for identifying pairs of mutations which are correlated by high co-occurence in
the input data.

Treating each solution vector as a sequence, we pass the entire evolutionary
history, i.e., all solutions from all generations so far, as an input to C-SNV,
encoding 0 as A and 1 as C, using a Fasta file format.
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After finding correlated pairs of positions, C-SNV constructs an epistatic
network over sequence sites with edges given by correlations, and finds cliques in
this graph to reconstruct characteristic haplotypes for the evolutionary history.
Each clique relates a set of items which have frequent pairwise co-occurrence.
A haplotype is created from each clique, containing mutations for the sites that
appeared in the clique. C-SNV typically returns 2 − 10 haplotypes. For each
haplotype, we create a new knapsack solution to add to the population.

The procedure for creating knapsack solutions from C-SNV haplotypes begins
with a solution vector containing 1 s where the haplotype had a 1. We observe 10
consecutive generations without improvement towards the best fitting solution,
then evolutionary jump procedure triggers. Then, to each solution, we add the
items included in the current best solution. In the result, the newly created
solutions are guaranteed to take the items where the C-SNV haplotype contained
a 1 for that position, and then additionally, they take the items included in the
best solution observed so far, so long as those don’t bring it over capacity. The
newly created solutions each represent an evolutionary jump, and these solutions
are added back to the genetic algorithm population, prior to starting the next
generation. The new solutions are added by replacing the currently worst-fitting
solutions with the new ones created by the jump procedure.

4 Results

4.1 Instances of the 0-1 Knapsack Problem

For validation of genetic algorithms on the 0–1 Knapsack Problem, we chose
instances recently generated in [3]. It was proposed a new class of hard prob-
lem and shown that they are hard to solve to optimality. Many hard problem
instances were not even possible to solve on a supercomputer using hundreds of
CPU-hours. Out of 3240 instances we have selected the first ten instances which
were solved to optimality.

The selected problem instances are listed in the Table 1 together with the
nomenclature from [3]. Different letters in the names of the instances represents;

– n: Number of items of a problem instance
– c: Capacity of the knapsack
– g: Number of groups of items of a problem instance
– f : Approximate fraction of items in the last group
– ε: Noise parameter
– s: Upper bound for profits and weights of items in the last group

The runtime for a solver to reach an optimal solution is given in the column Run-
time. Note that problem instances 1–5 are harder since they require significantly
more runtime to reach optimality then problem instances 6–10.



460 H. Farooq et al.

Table 1. 0–1 Knapsack Problem Instances [3]

ID Problem Instance Optimal Fitness Runtime(sec)

1 n 1000 c 10000000000 g 10 f 0.1 eps 0.0001 s 100 9999946233 2943

2 n 1000 c 10000000000 g 10 f 0.1 eps 0.0001 s 300 9999964987 6474

3 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 100 9999229281 555

4 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 200 9999239905 742

5 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 300 9999251796 896

6 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 100 9996100344 17

7 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 200 9996105266 18

8 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 300 9996111502 26

9 n 1000 c 10000000000 g 10 f 0.1 eps 0 s 100 9980488131 74

10 n 1000 c 10000000000 g 10 f 0.1 eps 0 s 200 9980507700 96

4.2 Parameter Tuning

We tuned the parameters of the genetic algorithm and the evolutionary jump
procedure to optimize the output profit. In genetic algorithm, these parameters
include the size of the population, number of generations, mutation probability,
and so on. For evolutionary jumps, the parameters include the number of non-
improving generations to wait before jumping, how sensitive C-SNV should be
to determine links, and more. To find the optimal parameters for our problem
instances, we applied multiple parameter configurations to each problem instance
10 times, observing the average performance under each configuration.

The finalized values of parameters are shown in the Table 2. Some parameters
have several values, e.g., we report GA for 500, 1000, and 1500 generations.

Table 2. Parameters Table

GA Parameter Value C-SNV Parameter Value

Population Size 1000 Jump Threshold 10

Num of Gen 500, 1000, 1500 Min.Gen.Wait 20

Num of Parents 500 Jump Type Global Best

Crossover type Single Point C-SNV Timeout 120sec

Parent Type Tournament Threshold.Freq 0.01

K-Tournament 3(default),25 Threshold.Freq+ 0.01

Mutation Type Inversion Memory 20 GB

Mutation Pr 0.02 Edge Limit 1000
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4.3 Performance Comparison of GA, GA+RP, and GA+EJ

The results of our experiments are shown in Tables 3–5. “Min.Error” is the
minimum difference between optimal fitness and the best fitness over 10 runs.
“Avg.Error” is the average difference between optimal fitness and the best fitness
over 10 runs. “Runtime” is shown in the minutes and its the average runtime
over 10 runs.

We ran the GA and GA+RP on instances for K = 3, K = 25 and number of
generations G = 500, 1000,1500 (see Tables 3–4 ) and GA+EJ just for K = 25
and number of generations G = 500 (see Table 5).

It is easy to see that GA+RP significantly outperform simple GA on all
instances and all configurations. Also GA+RP with K = 25 outperforms GA+RP
with K = 3 for all instances. Therefore we decided to run GA+EJ just for K
= 25. For the harder instances 1,3,4,5 GA+EJ significantly outperform GA-RP
even for G=1500 the novel eutionary enhancement of GA.

Table 3. Simple Genetic Algorithm Results

Results 1 2 3 4 5 6 7 8 9 10

GA Min.Error 4.7e5 1.4e6 9695 1.9e4 3.0e4 5914 9908 1.5e4 1.7e4 3.5e4

K = 3 Avg.Error 1.5e6 2.1e6 9798 1.9e4 3.0e4 4.3e6 4.6e6 4.3e6 1.8e4 3.6e4

G = 500 Runtime 28 29 39 37 33 58 62 63 28 27

GA Min.Error 4.7e5 4.9e5 9620 1.9e4 2.9e4 5433 1.0e4 1.5e4 1.8e4 3.5e4

K = 3 Avg.Error 1.6e6 1.8e6 9721 1.9e4 3.0e4 2.7e6 5.4e6 4.3e6 1.8e4 3.6e4

G = 1K Runtime 43 43 56 60 60 94 109 93 43 43

GA Min.Error 4.7e5 4.9e5 9599 1.9e4 3.0e4 5953 1.0e4 1.4e4 1.7e4 3.5e4

K = 3 Avg.Error 1.1e6 6.9e5 9726 1.9e4 3.0e4 4.3e6 4.3e6 4.3e6 1.8e4 36174

G = 1.5K Runtime 78 80 122 106 108 186 167 175 80 79

GA Min.Error 4.7e5 4.8e5 9285 1.8e4 2.9e4 5498 3.9e6 1.3e4 1.7e4 3.4e4

K = 25 Avg.Error 4.7e5 4.9e5 9472 1.9e4 2.9e4 3.5e6 5.8e6 3.1e6 1.7e4 3.5e4

G = 500 Runtime 80 59 74 74 75 105 106 101 57 54

GA Min.Error 4.7e5 4.8e5 9254 1.8e4 2.9e4 5286 9362 1.4e4 1.7e4 3.3e4

K = 25 Avg.Error 4.7e5 4.8e5 9414 1.9e4 2.9e4 3.1e6 3.5e6 1.9e6 1.7e4 3.5e4

G = 1K Runtime 81 80 122 129 133 181 177 167 68 91

GA Min.Error 4.7e5 4.8e5 9283 1.8e4 2.8e4 5396 9655 1.3e4 1.7e4 3.4e4

K = 25 Avg.Error 4.7e5 4.8e5 9428 1.8e4 2.9e4 3.9e6 3.1e6 3.1e6 1.7e4 35017

G = 1.5K Runtime 159 159 194 200 214 286 263 275 133 126
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Table 4. Results for Genetic Algorithm with Repairing and Packing

Results 1 2 3 4 5 6 7 8 9 10

GA-RP Min.Error 1102 3298 2662 4242 7433 71 167 235 4406 1.1e4

K = 3 Avg.Error 1157 3481 3170 5958 8577 120 275 400 6090 1.2e4

G = 500 Runtime 98 98 102 99 99 136 149 141 118 106

GA-RP Min.Error 917 3181 2314 4063 6990 87 174 195 4556 8891

K = 3 Avg.Error 1084 3422 3026 5289 8531 115 255 371 5324 1.1e4

G = 1K Runtime 203 197 189 188 201 244 241 243 217 218

GA-RP Min.Error 915 3166 2353 4569 6777 67 163 184 3502 6445

K = 3 Avg.Error 1067 3395 2763 5294 8166 95 226 297 4778 9392

G = 1.5K Runtime 281 282 294 292 291 397 390 400 307 334

GA-RP Min.Error 874 2540 2742 4827 8388 14 36 48 306 573

K = 25 Avg.Error 1046 2901 3343 6160 9528 34 93 105 450 903

G = 500 Runtime 99 98 109 123 104 164 171 158 139 143

GA-RP Min.Error 959 2335 2566 4586 5406 14 31 39 214 525

K = 25 Avg.Error 1037 2897 3120 5830 8867 26 55 75 361 956

G = 1K Runtime 188 184 198 203 207 278 275 274 261 255

GA-RP Min.Error 780 1451 2365 5010 7646 17 40 39 265 644

K = 25 Avg.Error 955 2642 3197 5670 9181 22 78 61 469 849

G = 1.5K Runtime 283 299 316 318 341 472 473 462 408 407

Table 5. Results for Genetic Algorithm Evolutionary Jumps (GA+EJ)

Results 1 2 3 4 5 6 7 8 9 10

GA-EJ Min.Error 541 1950 1557 3972 6000 27 50 113 350 595

K = 25 Avg.Error 751 2425 2761 5329 8596 47 83 178 686 951

G = 500 Runtime 2234 1949 2081 1883 2171 3056 2829 3153 2441 2603

5 Conclusion

In this paper, we enhanced genetic algorithm with evolutionary jumps which sim-
ulated punctuated equilibrium phenomenon observed in SARS-CoV-2 sequenc-
ing data. We validated the enhanced genetic algorithm on hard instances of the
0–1 Knapsack Problem. Genetic algorithm for the Knapsack Problem was first
improved by using repairing and packing method. We further enhance GA with
evolutionary jumps that were implemented using CliqueSNV. Our experiments
showed that evolutionary jumps significantly improve GA on very hard instance
of the 0–1 Knapsack Problem.
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Abstract. Synergistic drug combination is a promising solution to can-
cer treatment. Since the combinatorial space of drug combinations is too
vast to be traversed through experiments, computational methods based
on deep learning have shown huge potential in identifying novel syner-
gistic drug combinations. Meanwhile, the feature construction of drugs
has been viewed as a crucial task within drug synergy prediction. Recent
studies shed light on the use of heterogeneous data, while most studies
make independent use of relational data of drug-related biomedical inter-
actions and structural data of drug molecule, thus ignoring the intrinsi-
cal association between the two perspectives. In this study, we propose
a novel deep learning method termed HetBiSyn for drug combination
synergy prediction. HetBiSyn innovatively models the drug-related inter-
actions between biomedical entities and the structure of drug molecules
into different heterogeneous graphs, and designs a self-supervised learn-
ing framework to obtain a unified drug embedding that simultaneously
contains information from both perspectives. In details, two separate
heterogeneous graph attention networks are adopted for the two types
of graph, whose outputs are utilized to form a contrastive learning task
for drug embedding that is enhanced by hard negative mining. We also
obtain cell line features by exploiting gene expression profiles. Finally
HetBiSyn uses a DNN with batch normalization to predict the synergy
score of a combination of two drugs on a specific cell line. The experiment
results show that our model outperforms other state-of-art DL and ML
methods on the same synergy prediction task. The ablation study also
demonstrates that our drug embeddings with bi-perspective information
learned through the end-to-end process is significantly informative, which
is eventually helpful to predict the synergy scores of drug combinations.
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1 Introduction

In the field of cancer treatment, drug combination therapy [1] holds significant
importance. The interactions of pairwise combinations of drugs can be divided
into synergistic, additive, and antagonistic by comparing the effect of the drug
combination with the sum of effects of drugs applied separately [2]. Synergistic
drug combinations can often reduce the development of drug resistance [3] and
minimize the occurrence of drug-related side effects [4] during the treatment pro-
cess. However, distinguishing synergistic drug combinations from non-synergistic
ones is challenging as the combination space expands rapidly with the discovery
of new drugs.

Early studies on synergistic drug combinations are mostly based on clini-
cal experience, which is time-consuming and labor-intensive, and may lead to
unnecessary or even harmful treatments on patients [5]. Even applying high-
throughput screening technology (HTS) [6] that enables efficient testing of cell
lines in vitro is impossible to screen through the complete combination space, let
alone that the technology is expensive to build [7]. Researchers have therefore
turned to computational methods to predict synergistic drug combinations.

Except for computational models that are only available on specific drugs
or cell lines [5], recent studies have shed light on methods based on machine
learning (ML) and deep learning (DL). The most common workflow consists of
obtaining the features for cell lines and drugs and predicting the synergy score
with a ML or DL model. Previous studies employed various ML models [8–12]
to predict the synergy of anticancer drug combinations. In recent years, the
availability of large-scale synergy datasets [13] has provided a valuable resource
for employing DL methods in drug combination prediction. Commonly adopted
DL models include Deep Neural Network (DNN) [2,5], Residual Neural Network
[14], and other interpretable DL models. Additionally, special techniques such
as Ensemble Learning [15,16], Transfer Learning [17], and Tensor factorization
[18] have been adopted to predicting drug combination synergy.

On the other hand, drug features play an essential role in the synergy predic-
tion task. A classical and universal method for drug representation is to directly
use molecular fingerprints [19] or molecular descriptors [5], which refers to a
predefined feature vector containing substructural and physicochemical proper-
ties. Some researchers [2,5,11,12] collected the interactions between drugs and
other biomedical entities (e.g. drug target, pathway etc.), and simply obtained
the feature vector by sampling a binary digit for each interaction. Those feature-
engineering-based methods offer easy access to fairly informative representations,
whereas they might be greatly affected by prior assumptions of biochemical
domain knowledge. Methods based on representation learning are proposed to
alleviate this problem [17,20–23].

When it comes to how data is utilized in constructing drug features, it should
be emphasized that the chemical structure of a drug determines how it func-
tions, while the interactions between drugs and other biomedical entities rep-
resent known patterns of drug action. Both aspects should be considered for
comprehensive drug features. Concerning the way that molecular-level data and
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drug-related interaction are used in drug feature constructing, previous studies
on synergy prediction either use only one type of data or simply perform con-
catenation after representations from both aspects are extracted respectively. As
the two aspects are intrinsically associated but differs a lot in terms of data, such
methods might not be able to fully exploit the latent information when the fea-
tures are directly used for subsequent synergy prediction. There is still potential
for improvement by devising a drug representation learning model to simulta-
neously obtain information from both structural and relational heterogeneous
data.

To improve the synergy prediction of anti-cancer drug combination from
the perspective of constructing compact drug representations that are more
expressive and informative, we hereby propose a deep learning model Het-
BiSyn (Drug Synergy Prediction featuring Bi-perspective Drug Embedding
with Heterogeneous Data). In this paper, drug embeddings that integrate infor-
mation from both aspects are learned within a self-supervised training process.
Specifically, HetBiSyn constructs a graph for interactions between drug-related
biomedical entities and multiple molecular-level graphs for drugs. Both types
of graphs are heterogeneous, and separate Heterogeneous Graph Attention Net-
works (HGAT) are applied to each type of graph to embed information from
different perspective. A contrastive learning module is designed to learn a uni-
fied embedding based on the output of the two HGATs, and the hard sample
mining strategy is adopted to enhance the model. Besides, HetBiSyn utilizes gene
expression profiles to construct the cell line features. Lastly, a DNN with Batch
Normalization mechanism is designed to predict the synergy score of drug com-
binations on cell lines. We compared HetBiSyn with other popular ML and DL
methods on the synergy dataset contributed by O’Neil, and the result demon-
strates that HetBiSyn can achieve more accurate drug synergy prediction.

2 Materials and Methods

2.1 Synergy Dataset

A high-throughput drug combination screening dataset was obtained from
O’Neil’s research. The dataset encompass 583 pairwise drug combinations involv-
ing 38 distinct drugs tested against 39 human cancer cell lines. Preuer et al. [5]
computed a synergy score for each sample using Loewe Additivity values, and
divided all samples into 5 disjoint folds with an equal count of drug combinations.

2.2 Cell Line Features

The cell line features are extracted mainly based on the gene expression data. The
gene expression files are fetched from the ArrayExpress database [24] (accession
number: E-MTAB-3610). We adopted the Factor Analysis for Robust Microarray
Summarization method [25] to implement quantile normalization and summa-
rization on the gene expression data. The method also provides calls on whether a



HetBiSyn: A Novel Method of Predicting Synergistic Drug Combinations 467

gene is informative, by which effective genes are selected for the feature construc-
tion of cell lines. In all, 3739 genes are screened out and z-score normalization is
performed to produce the feature vector.

2.3 Construction of Drug-Related Graphs

To directly exploit information from different perspectives, we design two types of
drug-related graphs from which the embeddings of drugs are learned jointly. The
bioinformatic graph provides identified patterns of drug action by integrating the
interactions between drugs and other biomedical entities, while molecular-level
graphs reveal the structural and chemical particulars inside a drug molecule.

Drug-Related Heterogeneous Bioinformatic Graph. Bioinformatic
graphs, also called bioinformatic networks, are widely used in various drug-
related problems, especially in extracting complex hidden features that impli-
cate proven patterns of drug actions. Here we construct a heterogeneous graph
GBio = (V,E), in which each node v in the node set V belongs to a biomed-
ical entity type tv in a type set T , and each edge e in the edge set E belongs
to a relation type te ∈ St × St. As defined, there is at most 1 edge between 2
nodes, and all edges are set bidirectional in practice. Only the largest connected
component of Gbio is retained so that information can be propagated through
every single node. Also, we collect the biomedical entities and their relationships
from Luo et al.’s work [26] and DrugBank (Version 3.0), and supplement the
drug-target-interaction data with UniProtKB so that all 38 drugs in the synergy
dataset are involved in Gbio.

Heterogeneous Molecular-Level Graph. To exploit drug properties from
a microscopic perspective, we construct a graph Gmol for each drug in Gbio

at molecular level. First, a molecular graph Gmg is generated for each drug by
treating the atoms as nodes and the bonds between them as edges. All atom
nodes are considered to be of the same type though they are initialized with
different atomic features (e.g. chirality, formal charge, partial charge, etc.) [27],
while edges vary in types according to the original bond types (e.g. single, dou-
ble, aromatic, etc.). The edges in Gmg are bidirectional since chemical bonds
are unbiased. We use the RDKit tool to convert the SMILES string of a drug
into a molecule object for subsequent operations, and drugs that do not have
a SMILES or cannot be converted are abandoned from Gbio. Inspired by Fang
[28], we augment Gmg to leverage the associations between atoms that are not
directly connected with bonds but share fundamental chemical attributes. By
histogramizing the continuous attributes of atoms and converting them into dis-
crete labels, totally 107 attributes of atoms and 17 relation types are devised.
These attributes are then added to Gmol as another type of nodes, while their
relations with the atoms in Gmg are modeled as different types of directed edges
pointing to atoms.
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2.4 HetBiSyn

In this paper, a novel deep learning method named HetBiSyn is proposed to
predict synergy scores of drug combinations on cell lines. The overview of our
method is shown in Fig. 1.

Heterogeneous Graph Attention Networks for Drugs. As shown in
figure(B), the essential step for drug representation learning is to extract an
intermediate embedding from both Gbio and Gmol for a drug, which would
be continuously updated throughout the subsequent self-supervised learning
process. Heterogeneous graph attention network (HGAT) [29] is a node rep-
resentation learning model that can generate dense embedding while retaining
information about network topology and meta-path importance with insights
into heterogeneity. HetBiSyn set up two separate HGATs for Gbio and Gmol to
exploit inter-entity and intra-molecular information, namely HGATmacro and
HGATmicro. The detailed derivation about how HGAT works within our study
can be found in supplementary file (Sect. 1).

It is worth noting is that only the embedding for each atom or property node
is obtained through training HGATmicro, which cannot be directly referred to
individual drugs. In order to present the drug embedding by micro-view, average
pooling is conducted on the atom node vectors for each drug as whole-graph
embedding.

Drug Representation Learning Based on Contrastive Learning. The
subsequent step of drug embedding learning is to leverage the output of the
two networks to train a unified embedding balancing both perspective. The key
idea comes that the representations of the same drug generated from the two
networks shall be as similar as possible, while drugs showing great distinction
shall have differentiated embeddings. Under this assumption, we form a binary
contrastive learning task aiming at estimating the performance of the outputs
and optimizing the recurrent training process.

Let Z(G, di) denote the output embedding of drug di from either HGAT.
For each drug di in Gbio, S(di, di) = [Z(HGATmacro, di)||Z(HGATmicro, di)] is
defined as a positive sample that is labeled 1, while S(di, dj) given i �= j is defined
as a negative sample that is labeled 0. The concatenated vector S is sampled
twice in reverse order with respect to the two networks to generate both positive
and negative samples. A simple deep neural network, denoted as DNNclf , is
set up for binary classification. We use binary cross-entropy loss with sum as
reduction for the loss function. The loss function can be described as:

loss =
n∑

i=1

[yi · log(pi) + (1 − yi) · log(1 − pi)]; pi =
1

1 + e−xi
(1)

where xi and yi respectively represents the predicted label value and the true
label value of a sample. It is worth noting that the drug embedding learning

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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Fig. 1. Overview of HetBiSyn. (A) Two HGATs as shown integrate information
from the drug-related heterogeneous biomedical graph Gbio and the heterogeneous
molecular-level graphs Gmol respectively, yielding drug embedding at different per-
spectives. (B) Embedding of drugs from different perspectives are paired to form a
contrastive learning task, where DNNclf is set up for binary classification. (C) Het-
BiSyn predicts the synergy score of a drug combination on a specific cell line using the
DNN with the batch normalization mechanism.
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module is an end-to-end process, as the loss computed here is used to update
DNNclf as well as the two HGATs through back propagation. After multiple
rounds of training, the representation of a drug can be inferred by averaging the
output of its embedding from both HGATs.

Furthermore, the sampling strategy is also improved by hard negative min-
ing. In other words, we try to find drugs that are alike and challenge the classifier
to label their combination correctly. We collected a 167-dimension MACCS fin-
gerprint, which is often used to assess the similarity between molecules, for all
the drugs in Gbio, and calculated the Tanimoto similarity for each pair of drugs.
A drug dj having the most similarity with another drug di indicates this duo
may compose a hard negative sample, while other randomly taken samples are
viewed as common negative samples. We take positive samples, hard negative
samples and common negative samples at a certain ratio for training DNNclf .

Synergy Score Prediction. After the cell line features and drug embeddings
are obtained, a regression model is designed for predicting cell-line-specific syn-
ergy scores of drug combinations. The input vector is constructed by sequentially
concatenating the feature or embedding vectors of the two drugs and the cell
line in a data point from the synergy dataset, and the synergy score of this trio
serves as the output. Each trio is sampled twice in terms of the input vector by
exchanging the order of drug vectors, since the network should not differenti-
ate between permutations of two drugs. The prediction model is implemented
by a feed forward DNN composed of three fully connected (FC) layers and two
batch normalization layers in between, denoting as DNNpred. The number of
neurons in each FC layer is funnel-shaped as we have the most neurons in the
first FC layer and one neuron representing the predicted synergy score in the
last FC layer. ReLU is used as the activation function for the first two FC layers.
DNNpred takes mean square error loss as its loss function.

3 Result

3.1 Experiment Setup

We resort to the mean square error (MSE) and the root mean square
error (RMSE) for the main evaluation metric. The Pearson correlation coef-
ficient (PCC) between the predictions and the ground truth is also adopted.
As the experiments are conducted under a 5-fold cross-validation approach,
we present the mean and the standard deviation of each evaluation metric
across the 5-fold dataset. Hyper-parameter settings are documented in the
supplementary file (Sect. 2).

3.2 Performance Comparison with Other Models

To objectively appraise the performance of HetBiSyn, we compare HetBiSyn
with some representative models on the same synergy dataset with a 5-fold cross

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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validation. Four ML methods including Elastic Net [30], Support Vector Regres-
sion (SVR) [31], Random Forest [32] and XGBoost [33] are adopted by using the
same drug and cell line features for input. We implemented these methods with
sklearn and retained the default hyper-parameters. We also selected 4 DL meth-
ods for comparison, including DeepSynergy [5], MatchMaker [34], AuDNNSyn-
ergy [2] and DFFNDDS [35]. We adopted their feature generating process and
validate them upon our dataset, as described in the supplementary file (Sect. 3).

Results of the experiment of the comparison among the methods above are
shown in Table 1. The best and second best performance are shown in bold
and italic respectively. HetBiSyn achieves the lowest MSE of 225.90 among all
compared methods, which is 11.58% less than DeepSynergy, 6.31% less than the
AuDnnSynergy which achieves the second lowest and 20.90% less than XGBoost.
The PCC of HetBiSyn, which is the second best across all methods compared,
also shows a strong correlation between the model’s prediction and the ground
truth. The result demonstrates the advantage of HetBiSyn on the synergy pre-
diction task, and the possible reasons are: 1)Drug feature is more informative
under the end-to-end self-supervised learning framework of HetBiSyn that inte-
grates data from multiple aspects. 2) The DNN for final prediction may identify
the nonlinear patterns in the synergy dataset better in comparison with other
DL methods.

Table 1. Results of method comparison on the synergy score prediction task

Type Method MSE RMSE PCC

DL HetBiSyn 225.90±31.90 15.00±1.02 0.74±0.03
DeepSynergy 255.49 15.91±1.56 0.73±0.04
MatchMaker 254.37±37.70 15.93±1.17 0.68±0.03
AuDNNSynergy 241.12±43.52 15.46±1.44 0.74±0.04
DFFNDDS 242.37±34.21 15.53±1.07 0.76±0.02

ML Elastic Net 407.06±48.23 20.18±1.33 0.47±0.03
SVR 338.57±53.39 18.40±1.48 0.58±0.03
Random Forest 312.75±44.01 17.68±1.13 0.61±0.02
XGBoost 285.60±44.40 17.16±1.31 0.68±0.02

3.3 Ablation Study

To further inspect how the use of heterogeneous data from different perspective
contributes to the prediction result in our model, a series of variants of HetBiSyn
are designed for comparison mainly by altering the drug feature construction
process as:

https://github.com/herobrine1010/HetBiSyn/blob/main/supplementary_files.pdf
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• HetBiSyn-Bio. Only the data of drug-related biomedical interactions are
utilized. Metapath2vec [36] is applied on the Gbio we constructed to extract
drug features. We use the implementation provided by DGL [37].

• HetBiSyn-MolHGT. Only the data of molecular structure of drugs are
utilized. We adopt a molecular representation learning framework MolHGT
[38] to obtain features from heterogeneous graphic data, which treat atoms
and bonds as different types of nodes and edges to extract representations.

• HetBiSyn-MG. Similar to the original HetBiSyn but the molecular graph
Gmg mentioned in 2.3 is used instead. Atom properties are not considered so
that the structural information completely emerges from the molecular graph.

• HetBiSyn-Concat. Drug features are constructed by concatenating the rep-
resentation from HetBiSyn-Bio and HetBiSyn-MG.

All the variants are set to generate a drug feature of 128 dimensions except
for HetBiSyn-Concat which is doubled by concatenating. The DNN for synergy
prediction is same for each variant. The results are displayed in Table 2 .

Table 2. Results of the ablation study

Method MSE RMSE PCC

HetBiSyn 225.90±31.90 15.00±1.02 0.74±0.03
HetBiSyn-Bio 246.75±48.02 15.71±1.52 0.68±0.02
HetBiSyn-MolHGT 248.24±41.91 15.76±1.42 0.67±0.02
HetBiSyn-MG 229.98±35.22 15.17±1.08 0.73±0.03
HetBiSyn-Concat 236.93±40.05 15.39±1.35 0.70±0.02

HetBiSyn-MG is designed to be a fair comparison to HetBiSyn-MolHGT,
as they both depend on heterogeneous molecular graphs in terms of obtaining
structural information. HetBiSyn-MG performs better because information from
the macro-view perspective is also considered. It can be inferred that using data
from either single perspective would not make better performance than integrat-
ing them even using simple concatenation. Furthermore, methods of fusing data
from the micro-view and macro-view also affect the result of prediction. Though
HetBiSyn-Concat outperforms other variants based on single perspective data,
the original HetBiSyn shows an advantage to it even having less feature dimen-
sions, which proves that the end-to-end self-supervised learning process of drug
feature may better integrate the hidden information from both perspective.

4 Conclusion

In this paper, we propose a new DL based method for predicting anti-cancer syn-
ergistic drug combinations named HetBiSyn. HetBiSyn models the drug-related
interactions between biomedical entities and the structure of drug molecules into
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different heterogeneous graphs, and designs a self-supervised learning framework
to obtain a unified drug embedding that simultaneously contains information
from both perspective. In details, two separate heterogeneous graph attention
networks are adopted for the two types of graph, whose outputs are utilized to
form a contrastive learning task for drug embedding that is enhanced by hard
negative mining. We also obtain cell line features by exploiting gene expression
profiles. Finally HetBiSyn uses a DNN with batch normalization to predict the
synergy score of a combination of two drugs on a specific cell line. The experiment
results show that our model outperforms other state-of-art DL and ML methods
on the same synergy prediction task. Besides, the ablation study demonstrates
that our drug embeddings with bi-perspective information learned through the
end-to-end process is significantly informative and expressive, which is helpful
to predict the synergy scores of drug combinations.
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Abstract. Chromatin conformation capture technologies are a vital
source of information about the spatial organization of chromatin in
eukaryotic cells. Of these technologies, Hi-C and related methods have
been widely used to obtain reasonably complete contact maps in many
cell lines and tissues under a wide variety of conditions. This data allows
for the creation of chromatin interaction graphs from which topological
generalizations about the structure of chromatin may be drawn. Here
we outline and utilize a clique-based approach to analyzing chromatin
interaction graphs which allows for both detailed analysis of strongly
interconnected regions of chromatin and the unraveling of complex rela-
tionships between genomic loci in these regions. We find that clique-rich
regions are significantly enriched in distinct gene ontologies as well as
regions of transcriptional activity compared to the entire set of links in
the respective datasets, and that these cliques are also not entirely pre-
served in randomized Hi-C data. We conclude that cliques and the denser
regions of connectivity in which they are common appear to indicate a
consistent pattern of chromatin spatial organization that resembles tran-
scription factories, and that cliques can be used to identify functional
modules in Hi-C data.

Keywords: chromatin interaction graphs · network biology · ensemble
Hi-C data · chromatin hubs · transcription factory

1 Introduction

The spatial organization of chromatin in the eukaryotic genome is an increas-
ingly relevant topic of study in molecular biology. While seldom covered in clas-
sic models of gene regulation, the spatial proximity of cis-regulatory elements,
the formation of heterochromatin and euchromatin as well as a vast number
of other phenomena have profound influence on gene expression, which has led
to the adoption of the term “nucleome” to cover the totality of the molecules
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and interactions involved [19]. These processes are mediated by biochemical,
genetic and epigenetic factors that combine to create a dynamic regulatory land-
scape with several distinct layers of regulation such as chromatin compartments,
topologically associating domains (TADs) and chromatin loops [6,8,23]. While
research has illuminated some of the basic mechanisms behind these processes,
a great deal of data having been gathered via methods such as Hi-C [13], a sys-
tematic understanding of the overall regulatory landscape remains challenging
to establish.

A key approach in the analysis of spatiotemporal dynamics of chromatin is
network analysis. Hi-C data lends itself to network analysis because contact maps
from Hi-C experiments can be readily converted into adjacency matrices that are
suitable as the basis of a network that can be further studied. Network analysis
has produced several insights into chromatin organization, including the very
concept of topologically associating domains [19]. TADs are one of many features
that fall under the broad umbrella of a “chromatin hub”, a nexus of interactions
between different regions of chromatin (as seen in TADs) or between chromatin
and other molecules (as seen in transcription factories and similar formations)
[18]. An extensive array of methods currently exists for the purpose of network-
based inference of various features in Hi-C data as well as for the prediction
of interactions within a given dataset [19,24], and the extensive array of data
available has even led to the development of meta-networks of Hi-C interactions
meant to be used for the inference of nucleome-genome interactions (such as
mapping eQTLs to chromatin interactions) [16]).

In recent years there has been interest in the concept of highly interconnected
areas of chromatin as determinants of genomic function. There has been work
centering on concepts such as cliques of topologically associating and lamina-
associated domains [4,15] which are thought to coordinate genomic function at
long ranges, as well as dense chromatin hubs as key determinants of cancer devel-
opment [20], to name some examples. Here we utilize cliques to study chromatin
hubs within healthy human tissues and cells in order to obtain a concrete idea
of what, if any, biological features can be confidently mapped to their specific
topologies.

2 Methods

2.1 Source Data

The datasets used to construct our chromatin interaction graphs include a pro-
moter capture Hi-C dataset of 17 human blood cell types [7], a promoter capture
Hi-C dataset of 27 human tissue types [9], additional Hi-C data for 20 tissues
matching the human tissue type pcHi-C data from the 3DIV database [10]. All
of the datasets were used in their processed contact list form, filtering for con-
tacts of suitably high significance: a CHiCAGO score (a specific measure for
assessing capture Hi-C, see [3]) greater than 5 for blood cell pcHi-C, an adjusted
p-value greater than 0.7 for tissue pcHi-C, a -log p-value greater than 10 for
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tissue Hi-C. Where possible, these thresholds were selected according to guide-
lines provided by the authors and supplementary data. Where these were not
available, a threshold providing suitable graph density for topological study was
chosen instead. In the data sets used for our study, interchromosomal interac-
tions had been pre-filtered out of the source data, and therefore our framework
does not currently account for these.

2.2 Graph Generation and Analysis

We utilize filtered contact lists for distinct tissues (or cell types) to generate
undirected graphs where genomic loci are rendered as nodes and the contacts
between them are rendered as links. Each graph Gt(Vt, Et) is constructed for
every chromosome and every tissue type t ∈ T . For each chromosome, graphs
from different tissues are merged to form a comprehensive graph G(V,E). Each
link within E has a property – a list of tissue types for which the same chromatin
interaction is present in their respective graphs Gt.

In other words, a link e ∈ E is present if it is a part of at least one tissue-
specific graph: ∃t ∈ T (e ∈ Et). Furthermore, every link from any tissue-specific
graph is included in E, i.e., ∀t∀e (e ∈ Et) → e ∈ E. A link e in the graph G is
said to have tissue type t if it is present in the graph for tissue type t (e ∈ Et).

We define the ’length’ of a link as the distance (in base pairs) between the
midpoints of the interacting chromosome segments, and the ’length distribution’
as a function that maps a given length to the number of links of that length in
the graph.

We also utilize the concept of a 3-vertex clique, or ’C3’, which is a clique
comprising three links that all share at least one common tissue. More formally,
a triplet of nodes (A,B,D) forms a C3 if these nodes share a common tissue
across their interactions (A,B) ∈ Et, (B,D) ∈ Et, and (A,D) ∈ Et. We say that
a C3 (A,B,D) includes a link e if e is one of its three links. Because every other
n-vertex clique in the graph is encompassed by the full set of 3-vertex cliques,
our work in this paper focuses on C3, detecting larger cliques indirectly as dense,
countable aggregations of C3.

The ’tissue degree’ of a C3, denoted as DegC3(A,B,D), is defined as the
number of tissues that share the same interactions that form the C3. If the
tissue degree of a triplet of nodes is greater than 0 (DegC3(A,B,D) > 0), these
nodes form a C3.

2.3 Randomization

To our knowledge, no method currently exists for randomizing Hi-C graphs that
preserves both node degrees and link length distributions, which are key consid-
erations in testing our clique distribution. Therefore, we develop our own method
here to affirm the validity of our findings. Starting with a graph G(V,E), where
nodes represent chromosome segments and links correspond to chromatin inter-
actions, we generate a randomized graph G′(V,E′). This graph maintains the
following properties: the difference of E and E′ is greater than or equal to a
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parameter q, the number of edges in E and E′ are equal, the nodes V and
their degrees remain unchanged, and the distribution of link lengths (chromatin
interaction lengths) in both graphs remains as similar as feasible.

All links within the graph G are categorized into link length groups, each
containing links of similar lengths (lengths correspond to distances of interactions
on a chromosome). To keep the number of groups and number of links in each
group balanced, we empirically chose the initial number of links within each link
length group to be approximately log2(|V |) · log2(|E|) · p. Here, we chose a p of
0.25, having found that this produced link length groups of manageable size.

Our method for creating the randomized graph G′ involves iteratively swap-
ping link ends of the initial graph G (Fig. 1). For instance, given links (A,B) and
(C,D) in G, we produce links (A,D) and (B,C), or (A,C) and (B,D), in G′.
This guarantees the preservation of the original edge count and node degrees,
while the selection of links for each swap is done in a manner that strives to
maintain a comparable distribution of link lengths across groups as in the initial
graph.

Fig. 1. Essential principle of the randomization algorithm outlined. The endpoints of
links A-B and C-D are swapped to create new links A-C and B-D, preserving the node
degrees.

For a prospective swap of two links, we compute a score indicating the
improvement in the link length distribution in the randomized graph G′ if the
swap is performed. The swap is valid only if both new, randomized links are not
in E and are not in E’, and their lengths are not longer that the longest link in E.
If D(G) : (link length group l) → (number of links in group l in graph G) is the
link length distribution function in graph G, and if graph G′′ would be obtained
after the prospective swap of two links, then the score for the prospective swap
is calculated score =

∑
l∈link length groups |D(G′′)(l) − D(G)(l)|. A lower score

implies a closer resemblance of G′′ to the original link length distribution of G.
Before each swap we stochastically select links either (a) to increase the

difference |E \ E′| or (b) to improve the link length distribution in link length
groups, using varying probabilities that depend on the state of G′. In case of
(a), we randomly choose one link e: e ∈ E ∧ e ∈ E′. In case of (b), we randomly
choose one link e: e ∈ E′ ∧e ∈ l∧ (D(G′)(l)−D(G)(l) > 0), where l is the length
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group of link e. After that we randomly pool numerous other links from E′, then
calculate score as described above for swapping e with each of the pooled links.
Finally, the chosen link e is swapped with a pooled link with one of the best
scores.

The process is finished when either enough links are swapped (|E \ E′| ≥ q)
or no valid swap can be performed for a number of attempts that is comparable
to |E|. Here we attempted to randomize all links in the data, but in practice
this was not possible, as short links tend to be saturated - every possible link
in close proximity already exists, and therefore no swap can be made within the
link length group.

2.4 Supplementary Data and Validation

After obtaining a full set of cliques within our chosen datasets we then drew
upon additional sources to analyze the topological features we had obtained.

Firstly, we performed Gene Ontology Enrichment Analysis (GOEA) using the
GOATools library [11] and, in line with its specifications, analyzing our dataset
using the basic acyclic version of the Gene Ontology database [2]. In this case,
we searched for Gene Ontology terms that were overrepresented in a study gene
list compared to a population gene list.

We utilized Ensembl gene lists [5] to assign genes to nodes in the graph G.
Nodes located in chromosomal regions that contain particular genes are assigned
that gene. Subsequently, we cliques C3, identified a subset of nodes that form
these topological elements, and collated a set of genes present in at least one
node of these cliques, then conducted the GOEA. For instance, we collected all
C3 elements with a tissue degree of 2 or more, and took the genes present in
at least one such C3 to form the study gene list (the input). This list was then
compared to the population gene list (the background), which consisted of all
genes found in at least one link in the graph.

Afterward, we also tested our cliques for enrichment in certain chromatin
annotations. For this purpose we employed epigenomic data published by the
BLUEPRINT consortium [1] (packaged with the original data) for our blood cell
pcHi-C data and the ChromHMM core 15-state model from Roadmap Epige-
nomics [12]. For the ChromHMM annotations, we consolidated the different
categories, which is to say variants of particular annotations as well as weak
and strong varieties of annotations, into a final list of 9 annotations: transcrip-
tion start sites (TSS), transcription (TX), enhancers (ENH), zinc finger sites
(ZNF), heterochromatin (HET), bivalent transcription start sites (TSS BIV),
bivalent enhancers (ENH BIV), Polycomb-mediated repression (REP) and qui-
escent chromatin (QUI). Much like with our GO analysis, we tested the preva-
lence of these annotations (whether the annotation is present in the chromatin
regions covered) within links and cliques in the dataset, and compared these
with the 10 tissues in our data (in both Hi-C and pcHi-C) that overlapped with
epigenomic coverage: lung (LG), aorta (AO), spleen (SX), adrenal gland (AD),
pancreas (PA), bladder (BL), ovary (OV), small intestine (SB), liver (LI), psoas
muscle (PO). For the BLUEPRINT annotations, we did not consolidate any
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annotations and employed the full set for CTCF sites (CTCF), distal enhancers
(Distal), DNase sites (DNase), proximal enhancers (Proximal), transcription fac-
tor binding sites (TFBS) and transcription start sites (TSS).

In all cases we obtained the normalized counts of each individual feature
for the covered subset of our data for the total number of links and the links
that are part of cliques, and then compared these via paired Wilcoxon test for
each annotation. We then calculated ratios that showed the relative enrichment
for each particular annotation in our cliques versus the links in each individual
dataset overall.

3 Results and Discussion

3.1 Topological Properties of Hi-C Interaction Graphs

While the datasets used showed considerable variability in link count, topology
and prevalence of cliques, there was some striking overlap observable in three of
our datasets, primarily around chromosome 6 (Fig. 2). Here, the vast majority of
cliques occurred in one particular region of the chromosome, matching up to the
location of HLA and histone gene clusters. Similar overabundance of cliques in
one location in the chromosome was observed on chromosome 19. These features
matched up well in our data, especially in the case of the chromosome 6 peak.

Fig. 2. Distributions of link and C3 cycle/clique endpoints across chromosome 6 for
our blood pcHi-C, tissue pcHi-C and tissue Hi-C datasets, showing considerable overlap
in clique-rich areas. Endpoints are nodes in the graph that are part of the feature in
question, i.e. each clique has 3 endpoints while each link has 2.

The most obvious property of these cliques is that they occur chiefly in partic-
ularly dense areas of chromatin contacts, as can be seen in chromosome 6 where
such contacts in one single connected component comprise the vast majority of
interactions found throughout the entirety of the chromosome. The existence of
a large region of interconnected chromatin specifically at chromosome 6 does not
appear to be a technical artifact, as the presence of a transcriptionally coordi-
nated and correspondingly spatially organized HLA genomic cluster is attested
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in both Hi-C [14] and older in-situ fluorescent hybridization [25] studies. This
matches up with its appearance in several unrelated Hi-C datasets in our study,
albeit with a minor offset.

3.2 Preservation of Topological Features in Randomized Graphs

Our randomization approach proved effective in preserving the overall structure
of our primary datasets of interest, showing a nearly identical distribution of link
lengths as well as link endpoints across the breadth of the chromosome regardless
of the original distribution of link lengths in the dataset. At the same time, the
randomization also produced a significant decrease in clique prevalence across
the board, showing decreases of 50% or more (Fig. 3).

The decrease in cliques was much more pronounced in the tissue Hi-C dataset
compared to the sparser pcHi-C datasets, though in all cases the vast majority
of the clique depletion appeared to come from short-range interactions rather
than long-range ones. This difference in performance makes sense given that the
randomization algorithm does not generate new nodes, and so sparser and more
discrete matrices generated by pcHi-C would preserve more of their original
structure given the lower variety of nodes and links available for swapping.

Fig. 3. Distributions of overall link lengths (left) and link lengths in C3 cliques found
in 2 or more tissues (right) for blood cell pcHi-C (top) and tissue Hi-C (bottom). All
data shown is for chromosome 6.
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However, even in our maximally similarly distributed model it is clear that
the clique structures observed, while partially explicable through a much larger
abundance of links and high node degrees, are nevertheless overabundant in chro-
mosomal hotspots. Moreover, the same principle also appears to hold outside of
chromosomal hotspots, as clique abundance noticeably decreases across our three
datasets (tissue Hi-C, tissue pcHi-C and blood cell pcHi-C) after randomization.
As such, cliques could potentially serve as a method for identifying significantly
dense parts of the graph that are less obvious than the HLA chromatin loop in
chromosome 6, though the functional implications of this density still need to
be established.

Fig. 4. Ratios of normalized counts of chromatin annotations within links/cliques
across the three main datasets.

3.3 Cliques as Indicators of Functional Modules in Graphs

Our GO enrichment analysis revealed significant enrichment of certain ontolo-
gies in cliques compared to links, though not in even numbers across all three
datasets. Of these, the chromosome 6 peak was by far the most consistent across
datasets, and not all chromosomes appeared to have significant enrichment of any
ontologies, especially in our tissue Hi-C data where enriched ontologies were par-
ticularly sparse. Of the enriched ontologies found, most were in large categories
such as DNA binding, the RNA metabolic process, nucleosome components and
cell adhesion. Notably, GOEA located enriched annotations for olfactory recep-
tor activity in chromosome 14, another chromosomal hotspot identified by Liu
et al. [14].
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Our study of enrichment in annotations showed striking results (as seen in
Fig. 4). While almost all annotations showed statistically significant deviation
from the original datasets’ prevalences in our cliques (generally with p-values
lower than 0.001 per paired Wilcoxon test), examining the ratios clearly showed
that cliques appeared to be consistently enriched for transcription start sites,
with a median 1.5...3x enrichment. Heterochromatin and quiescent annotations
were found to be rarer inside of cliques in general. Enhancers and active tran-
scription, by comparison, were generally either modestly enriched (1...1.5x) or
statistically indistinguishable from their prevalence in the dataset as a whole.

Judging from these results, the chromatin hubs our approach has identi-
fied most seem to resemble transcription factories, which are large aggrega-
tions of cooperatively transcribed genes characterized by aggregation of RNA
polymerases [18,22] and, in more recent models, liquid-liquid phase separation
[17,18]. They also bear a significant resemblance to “rich club” loci originally
identified by Sandhu et al. [19,21], being both highly connected and, as our
GOEA analysis showed, notably connected to core cellular processes. This is an
encouraging result, as our cliques appear to consistently identify these features
across datasets with no functional information, but further work is necessary to
refine the approach for closer analysis.

4 Conclusions

In this study we utilized cliques in order to study various Hi-C datasets. We
found that cliques are useful in identifying clusters of genes that match the
general characteristics of transcription factories, both in obvious “chromosomal
hotspots” and around the genome overall. These features can be identified with
some consistency across several datasets, and occasionally show overlap in the
case of particularly dense groupings, such as around the HLA cluster on chro-
mosome 6. We foresee making use of cliques in future work to further elaborate
on the structure and function of chromatin hubs, most likely through integrat-
ing our observations with other data such as ChIA-PET using RNA polymerase
II to test the transcription factory hypothesis more directly, but also through
adapting our methods to new Hi-C data.

5 Additional Resources

The resources used to generate the findings of this paper can be found at https://
github.com/IMCS-Bioinformatics/HiCCliqueGraphs, including scripts for gen-
erating our processed data from our sources and the full results of our GOEA
and annotation studies.

https://github.com/IMCS-Bioinformatics/HiCCliqueGraphs,
https://github.com/IMCS-Bioinformatics/HiCCliqueGraphs,
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Abstract. Triple-negative breast cancer (TNBC) is a challenging sub-
type with pronounced racial disparities, more prevalent in African
American (AA) women. We employed diverse feature selection algo-
rithms, including filters, wrappers, and embedded methods, to iden-
tify significant genes contributing to these disparities. Notably, genes
such as LOC90784, LOC101060339, XRCC6P5, and TREML4 consis-
tently emerged using correlation and information gain-based filter meth-
ods. Our two-stage embedded-based approach consistently highlighted
LOC90784, STON1-GTF2A1L, and TREML4 as crucial genes across
high-performing machine learning algorithms. The unanimous selection
of LOC90784 by all three filter methods underscores its significance.
These findings offer valuable insights into TNBC’s racial disparities, aid-
ing future research and treatments.

Keywords: Feature Selection · Triple-Negative Breast Cancer · Racial
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1 Introduction

Triple-negative breast cancer (TNBC) is an aggressive subtype, notably devoid
of estrogen and progesterone receptors and HER2 amplification. It constitutes
15–20% of U.S. breast cancer diagnoses, marked by the poorest survival rates
among subtypes [4,17]. Disconcertingly, TNBC exhibits pronounced racial dis-
parities, with African American women facing bleaker outcomes than their Euro-
pean American counterparts. These disparities arise from a complex interplay of
biological and socioeconomic factors [12,14,20]. At the molecular level, TNBC is
exceptionally heterogeneous, categorized into subtypes like Basal-like 1, Basal-
like 2, immunomodulatory, mesenchymal, mesenchymal stem-like, and luminal
androgen receptor. Recently, M and MSL subtypes were excluded from this clas-
sification [19]. This inherent diversity challenges comprehension of the heightened
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mortality in African American women compared to European Americans. Two
hypotheses emerge: distinct molecular characteristics in TNBC among racial
groups or contributions from environmental and socioeconomic factors. Genomic
investigations uncover molecular distinctions, illuminating this multifaceted issue
[15,19].

Current research in TNBC identified a few genes signatures, mutations, and
deregulated genes in tumor micro-environment (TME) to understand the racial
disparity in AA and EA [1,14,18]. However, the identification of key biomarker
for AA that is significantly deregulated compared to EA women in TNBC is
still needed the current change to tackle this racial disparity. To address this
issue, computational biologists can take advantage of numerous open-source
RNA-seq gene expression data from sources like GEO [5], TCGA [6] by using
robust machine learning (ML), and deep learning (DL) supervised classifica-
tion algorithms [9,11,13]. Because recently computational biologist shifted their
approaches to identify differential gene expression using traditional paramet-
ric and non-parametric statistical method based on logarithmic values of fold
change (logFC) between different groups For instance, DESeq [3], DESeq2 [10],
edgeR [16], and voom [8] because of high false positive and fasle negative rates
in prediction of DEGs. ML methods classify genes based on expression. SVM
and LR distinguish colon cancer and other cancers. Random Forest classifies
genes in microarray data. An empirical study evaluated DTC, LR, NB, RFC,
and SVC for gene expression classification. DL with transfer learning can clas-
sify novel data by learning complex relationships among training data features in
one end-to-end system. CNNs, a type of DL, utilize convolutional approaches in
internal layers, enabling computation, learning of non-linear relations, and fea-
ture extraction in both image and non-image data. CNNs, like DeepInsight, are
powerful tools for classification, leveraging hierarchical filtering, weight sharing,
and neighborhood information. They excel in tasks such as gene expression and
text data feature extraction [7,21].

The aim of the current study is to employ a comprehensive methodology
for feature selection to identify crucial genes. Initially, we established a baseline
model to assess the data’s predictive capabilities. Subsequently, we applied three
feature selection algorithms: filters, wrappers, and embedded methods. Filter-
based selection methods focus on features or genes chosen through correlation
and information gain-based techniques. Wrapper-based selection differs, as it
detects feature dependencies. Wrappers can be categorized into Recursive Fea-
ture Elimination (RFE) and Forward Selection. Due to computational costs, for-
ward selection wasn’t pursued here. Embedded methods combine RFE and For-
ward Selection, addressing high-dimensional data challenges. Unlike traditional
methods, embedded selection doesn’t require a predetermined feature count; it
determines the optimal number during evaluation. By analyzing results from
these methodologies, our study seeks to identify significant features, enhancing
selection accuracy and robustness. This is crucial in addressing racial disparities
in triple-negative breast cancer among African American (AA) and European
American (EA) women.
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2 Data

In this study, we analyzed gene expression data from breast cancer patients
using publicly available RNA sequencing data. We processed the RNA-seq data,
focusing on triple-negative breast cancer (TNBC) by selecting samples negative
for ER, PR, and HER2 receptors. This filtering yielded 145 TNBC samples, and
our analysis specifically examined racial disparities between European American
(EA) and African American (AA) women. We reduced our sample size to 128
TNBC samples, comprising 87 EA and 41 AA women, for the final analysis.
Data sources included [5,6].

3 Methods

3.1 Baseline Model Generation and Data Pre-processing

3.1.1 BaselineModel Generation: The baseline models were generated using
the LazyClassifier module from the Lazy Predict library [2]. This module inte-
grates a range of methods including Ensemble, Gradient Boosting, Graph-based,
Instance-based, Linear, Naive Bayes, Neural Network, Non-linear, Prototype-
based, Support Vector Machine, and Tree-based models. The objective is to evalu-
ate the performance of these algorithms by computing Accuracy, Balanced Accu-
racy, ROC AUC, and F1 Score using 5-fold cross-validation, as seen in Table 1.

3.1.2 Data Pre-processing

3.1.2.1 Dropping of Highly Correlated Columns: To enhance machine
learning model performance by mitigating the impact of repetitive columns in
the dataset, a combination of Pairwise column correlation and variance inflation
factor techniques was applied, leading to the identification and removal of 912
highly repetitive columns, causing only a marginal 2% variance reduction in the
baseline model.

3.1.2.2 Data Normalization: Crucial data normalization techniques, includ-
ing Min-Max and standard scaling, were employed for numeric variable trans-
formation, resulting in comparable performance improvements with a minor 2%
variance from the baseline model; this, combined with non-repetitive columns,
establishes a novel accuracy benchmark for future analyses.

3.2 Feature Selection

3.2.1 Filter. Filters, used in machine learning for feature selection, assess fea-
ture relevance via statistical metrics, eliminating features with low scores; they
are efficient but reliant on specific metrics. In this study, we explored correlation-
based and information gain-based filters.
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3.2.1.1 Correlation - Based. We utilized the Pearson correlation coefficient
(ρ) to identify the top genes, specifically limiting our selection to the top 10 genes
(Xi), that demonstrate a significant correlation with the target variable (Y ). In
this study, the target variable represents the race of women with Triple-Negative
Breast Cancer (TNBC) and is categorized as either African American or European
American. The Pearson correlation coefficient (ρ) measures the linear relationship
between two variables and is calculated using the following formula:

ρ =
∑

(Xi − μX)(Y − μY )
√∑

(Xi − μX)2
√∑

(Y − μY )2
(1)

where Xi and Y are variables, and μX and μY are the mean values of Xi

and Y , respectively. The coefficient ρ ranges from -1 to 1, with a value of 1
indicating a perfect positive linear correlation, -1 indicating a perfect negative
linear correlation, and 0 indicating no linear correlation. By exclusively selecting
features (Xi) with strong positive (ρ > 0) or negative (ρ < 0) correlations, we
effectively reduced the dimensionality of the data to 10 genes. This reduction
in dimensionality helps eliminate less relevant variables and focuses on those
strongly associated with the target variable (Y ), which, in this case, is the race
of TNBC women. By retaining only the most correlated features, we aim to
capture the most important information for cancer diagnosis.

3.2.1.2 Information Gain - Based. Information gain-based feature selection
is a widely used filter-based technique in machine learning that relies on infor-
mation theory to evaluate the relevance of each gene (Xi) in relation to the race
of the TNBC women (Y ). The information gain (IG) quantifies the reduction
in entropy or uncertainty of the target variable resulting from the inclusion of
a specific feature. Mathematically, entropy is a measure of the average amount
of information or uncertainty in a random variable. The entropy of the target
variable (Y ), denoted as H(Y ), is calculated using the formula:

H(Y ) = −
∑

P (Y = y) log P (Y = y) (2)

where P (Y = y) represents the probability of the target variable taking
the value y. The conditional entropy of the target variable given a feature Xi,
denoted as H(Y |Xi), measures the remaining uncertainty in the target variable
after considering the feature Xi. It is computed as:

H(Y |Xi) = −
∑

P (Xi = xi)
∑

P (Y = y|Xi = xi) log P (Y = y|Xi = xi) (3)

where P (Xi = xi) represents the probability of feature Xi taking the value xi,
and P (Y = y|Xi = xi) represents the conditional probability of the target vari-
able Y taking the value y given that feature Xi has the value xi. In this study, we
employed information gain-based feature selection to identify the top-10 features
(Xi) that exhibit the highest information gain. By calculating the information
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gain for each feature using the formula IG(Xi) = H(Y )−H(Y |Xi), we quantified
their individual contributions in reducing the uncertainty or entropy associated
with the target variable.

3.2.2 Wrappers. Wrappers, while superior in feature selection due to their
model-based approach and ability to detect feature dependencies, can become
computationally intensive, as seen in Recursive Feature Elimination and Forward
Selection; we excluded the latter due to computational constraints.

3.2.2.1 Recursive Feature Elimination. In Recursive Feature Elimination
(RFE), the optimal number of features is determined through an iterative elim-
ination process. The goal of RFE is to select the most informative subset of
features or genes by iteratively removing the feature with the lowest weight or
rank, as determined by a machine learning algorithm. We iteratively eliminated
the feature with the lowest weight or rank until we obtained a subset of 10
features or genes.

Mathematically, let X = [X1,X2, ...,Xn] represent the set of input features
or genes used to study the racial disparity in TNBC, and let Y denote the tar-
get variable, which in this case is the race of the TNBC women, either African
American (AA) or European American. At each iteration, the machine learn-
ing algorithm assigns a weight or rank to each feature or gene, indicating its
importance in the model. Let w = [w1, w2, ..., wn] represent the weights/ranks
assigned to the features. In each iteration, the feature with the lowest weight or
rank, min(w), is eliminated from the feature set. The model’s performance is
then assessed using a performance metric, such as accuracy, error rate, or any
other appropriate evaluation measure.

Iteratively eliminating features until reaching the set number, k (10 in this
study), the Recursive Feature Elimination (RFE) algorithm concludes. The cho-
sen subset of k features becomes the optimal set for analysis or model building.
RFE enhances model performance, diminishes input dimensionality, and aug-
ments generalization. It aids in understanding racial disparities in TNBC.

3.2.2 Embedded. In this section, we present a novel approach that combines
Recursive Feature Elimination (RFE) and Forward Selection to address the com-
putational challenges arising from high-dimensional gene expression data. Unlike
traditional filter and wrapper methods, our approach does not require a predeter-
mined number of features or genes for the final model. This flexibility allows us to
determine the optimal number of features during the evaluation process, enabling
a deeper understanding of the racial disparity in TNBC (Triple-Negative Breast
Cancer).
Our approach can be summarized in the following two steps:

Step 1 - Recursive Feature Elimination (RFE)
We employ a customized version of RFE to reduce the dimensionality of the

data. This can be represented as:
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X(1) = Original dataset

X(k) = Reduced dataset at iteration k, [k = 1, 2,. . . , K]
K = Total number of iterations

where each iteration involves fitting the dataset X(k) to a machine learning
model, evaluating the model performance, extracting feature importance, and
eliminating features with importance below the median.
Step 2 - Forward Selection

After dimensionality reduction, we apply Forward Selection on the reduced
dataset X(K) to identify the most predictive features. This can be represented
as:

X(K) = Reduced dataset after RFE
Selected Features = Features selected through Forward Selection

The overall methodology employed in this study encompasses a systematic
exploration of all conceivable feature combinations, accompanied by a compre-
hensive evaluation of their performance using cross-validation. This evaluation
process incorporates a diverse range of machine learning algorithms, includ-
ing Linear Models, Ensemble models, and other models. Logistic Regression is
specifically utilized for Linear Models, while the results for Ensemble Models
are directly presented, featuring Extra Trees, Random Forest Classifier, LGBM
Classifier, and AdaBoost to eliminate redundancy. Furthermore, the analysis
incorporates the SVM model as an additional component.

4 Results

4.1 Exploring Filter Methods for Identifying Crucial Genes

We employed the filter method to pinpoint genes distinguishing African Amer-
ican and European American TNBC women. This method evaluates feature
relevance using statistical metrics and removes those with low scores. Two filter
types, correlation-based and information gain-based, were considered. Combin-
ing both methods yielded a set of 10 genes and features. Notably, using this
reduced set, machine learning algorithms demonstrated improved classification
accuracy. For instance, the XGBClassifier achieved a 94% Balanced Accuracy,
while the LGBMClassifier maintained a Balanced Accuracy of 90%, as seen
in Fig. 1. Likewise, with the information gain-based filter, the top 10 features,
including LOC90784, LOC101060339, XRCC6P5, EIF4G2, LOC51240, FBXL5,
SURF6, FDX1L, TREML4, and TMEM102, led to a 96% Balanced Accu-
racy for both RandomForestClassifier and SGDClassifier. Notably, LOC90784,
LOC101060339, XRCC6P5, and TREML4 were common among the top 10 fea-
tures in both filter methods.
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Table 1. The classification results for African American (AA) and European American
(EA) women with triple-negative breast cancer, considering all the features/genes, were
obtained through various machine learning algorithms. The metric values are presented
below, with the optimal values highlighted in bold for ease of interpretation.

Category Algorithm Accuracy Balanced Accuracy ROC AUC F1 Score Time Taken

Ensemble AdaBoostClassifier 0.92 0.88 0.88 0.92 15.28

ExtraTreesClassifier 0.85 0.80 0.80 0.84 1.68

BaggingClassifier 0.87 0.88 0.88 0.88 5.07

CalibratedClassifierCV 0.74 0.58 0.58 0.67 2.44

RandomForestClassifier 0.79 0.71 0.71 0.78 1.83

Gradient Boosting LGBMClassifier 0.92 0.90 0.90 0.92 13.83

XGBClassifier 0.87 0.81 0.81 0.87 8.77

Graph-based LabelSpreading 0.31 0.50 0.50 0.14 1.28

LabelPropagation 0.31 0.50 0.50 0.14 1.30

Instance-based KNeighborsClassifier 0.79 0.69 0.69 0.77 1.30

Linear LinearSVC 0.69 0.69 0.69 0.70 1.55

LinearDiscriminantAnalysis 0.79 0.74 0.74 0.79 2.46

LogisticRegression 0.85 0.80 0.80 0.84 1.89

RidgeClassifier 0.85 0.80 0.80 0.84 1.24

RidgeClassifierCV 0.85 0.80 0.80 0.84 1.33

PassiveAggressiveClassifier 0.67 0.67 0.67 0.68 1.47

SGDClassifier 0.64 0.65 0.65 0.65 1.35

Naive Bayes GaussianNB 0.62 0.49 0.49 0.58 1.43

BernoulliNB 0.77 0.72 0.72 0.77 1.34

Neural Network Perceptron 0.64 0.65 0.65 0.65 1.29

Non-linear QuadraticDiscriminantAnalysis 0.44 0.45 0.45 0.45 1.62

Prototype-based NearestCentroid 0.74 0.70 0.70 0.74 1.21

Support Vector Machine NuSVC 0.69 0.52 0.52 0.61 1.81

SVC 0.67 0.48 0.48 0.55 1.95

Tree-based ExtraTreeClassifier 0.72 0.70 0.70 0.73 1.26

DecisionTreeClassifier 0.79 0.78 0.78 0.80 1.78

4.2 Exploring Wrapper Method for Identifying Crucial Genes

We utilized the Recursive Feature Elimination (RFE) wrapper method
for iterative feature selection. It identified an optimal set of 10 genes,
including BCL6, LOC101060339, DDX51, FOXD4L6, LOC101060247, KRT7,
LOC90784, RNF35, LOC155153, and DKFZp434E1822, critical for distinguish-
ing African American and European American TNBC patients. Notably, Lin-
earSVC Classifier achieved the highest balanced accuracy at 96%, as seen in
Fig. 1. These 10 genes exhibited minimal overlap with filter and embedded meth-
ods, though LOC101060339, DDX51, LOC90784, and LOC155153 were com-
mon selections.
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Fig. 1. The figure shows balanced accuracy in classifying African American (AA) and
European American (EA) TNBC women using full gene set baseline and top 10 genes
via correlation-based, Information Gain-based filters, and Recursive Feature Elimina-
tion.

4.3 Exploring Embedded Method for Identifying Crucial Genes

Incorporating Recursive Feature Elimination (RFE) in Stage 1 and Forward
Selection in Stage 2, this approach effectively tackles high-dimensional data com-
plexities.

Our findings reveal that Logistic Regression and SVC achieved the highest
Balanced Accuracy at 99% each during Stage 2, employing embedded feature
selection. Compared to the baseline model (Fig. 2), Logistic Regression selected
nine features, including CENPU, KBF2, LOC155153, LOC649506, LOC90784,
STON1-GTF2A1L, TREML4, TUBB8, and ZNF702P. Similarly, SVC, with
the embedded approach, identified nine features: DDX51, FDH, HEXIM1,
LOC101060247, LOC90784, PKDREJ, STON1-GTF2A1L, TREML4, and
ZFP64. Notably, three features, LOC90784, STON1-GTF2A1L, and TREML4,
were common to both algorithms and significantly contributed to African Amer-
ican and European American TNBC classification.
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Fig. 2. The figure depicts balanced accuracy in classifying African American (AA)
and European American (EA) TNBC women, achieved by various machine learning
algorithms. Results stem from the full gene set baseline and top genes selected through
an embedded method.

5 Conclusion

In this study, we meticulously analyzed RNAseq data from African Ameri-
can (AA) and European American (EA) women diagnosed with triple-negative
breast cancer (TNBC). Our approach hinged on deploying cutting-edge machine
learning techniques and feature selection methods, all with the goal of pinpoint-
ing the pivotal genes that differentiate these demographic groups. Employing
both Filter and Wrapper methods, we extracted a succinct set of 10 vital features,
consistently highlighting genes such as LOC90784, LOC101060339, XRCC6P5,
and TREML4. While no singular algorithm consistently dominated, Random-
ForestClassifier, SGDClassifier, and LinearSVC notably achieved a commendable
96% balanced accuracy. Further exploration with Recursive Feature Elimination
unveiled minimal gene overlap compared to filter-based selection. A two-stage
embedded selection approach illuminated Logistic Regression and SVC as top
performers with 99% balanced accuracy, sharing LOC90784 and TREML4 as
key contributors. These insights provide a crucial foundation for future investi-
gations into the complex landscape of racial disparities in TNBC.
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Abstract. Triple-negative breast cancer (TNBC) lacks crucial recep-
tors. More aggressive is quadruple-negative (QNBC), which lacks andro-
gen receptors. Racial disparities emerge, with African Americans fac-
ing worse QNBC outcomes. Our study deploys deep neural networks to
identify QNBC ancestral biomarkers. Achieving 0.85 accuracy and 0.928
AUC, the model displays robust learning, optimized through hyperpa-
rameter tuning. Top genes are chosen via ANOVA rankings and hypoth-
esis testing, highlighting ABCD1 as significant post-correction. Effect
sizes suggest important shifts in other genes. This approach enhances
QNBC understanding, particularly racial aspects, potentially guiding
targeted treatments.
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1 Introduction

Breast cancer’s intricacies challenge oncology, notably triple-negative breast can-
cer (TNBC), lacking ER, PR receptors and HER2 amplification. TNBC consti-
tutes 15–20% of US cases, with the lowest survival rates [3,21,22]. Quadruple-
negative breast cancer (QNBC), an even tougher subtype, lacks TNBC’s recep-
tors and androgen receptor (AR). QNBC’s aggressiveness garners research atten-
tion [7,8,19]. Studies reveal AR expression disparities in TNBC across ances-
tral backgrounds, favoring AR-positive TNBC in European Americans, while
African Americans tend towards AR-negative expression [5,11]. Aggressive AR-
negative TNBC (QNBC) is prominent in African American women, manifesting
distinct molecular subtypes like BL1, BL2, and IM. These findings drive inves-
tigation into AR expression, QNBC’s aggression, and racial ancestry, exploring
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QNBC’s clinical characteristics in African American and European American
women [2,4,10].

Contemporary investigations into quadruple-negative breast cancer (QNBC)
have unveiled certain biomarkers with the aim of comprehending the racial dis-
parities existing within African American (AA) and European American (EA)
populations [4,5,18]. Nevertheless, the quest for a pivotal biomarker within AA
women, showing pronounced deregulation compared to their EA counterparts in
the context of QNBC, remains a pressing need to address this racial imbalance.
To confront this challenge, computational biologists can harness the wealth of
open-source RNA-seq gene expression data, available from repositories like the
Gene Expression Omnibus (GEO) [6] and The Cancer Genome Atlas (TCGA)
[9]. This can be achieved by leveraging robust machine learning (ML) and deep
learning (DL) supervised classification algorithms [14,16,17], which are increas-
ingly replacing traditional parametric and non-parametric statistical methods
based on logarithmic values of fold change (logFC) for differential gene expres-
sion analysis due to their high rates of false positive and false negative predictions
[1,13,15,20]. ML approaches enable gene classification based on their expression
patterns, while support vector machines (SVM) and logistic regression (LR)
discern between colon cancer and other cancer types. In addition, random for-
est (RF) algorithms effectively classify genes in microarray data. Notably, deep
learning (DL) with transfer learning has emerged as a potent tool for classifying
novel data by learning intricate relationships within training data features in
an integrated system. Convolutional neural networks (CNNs), a subtype of DL,
capitalize on convolutional techniques within internal layers, enabling efficient
computation, nonlinear relationship learning, and feature extraction across both
image and non-image data. CNNs, exemplified by tools like DeepInsight, are
adept at classification tasks, utilizing hierarchical filtering, weight sharing, and
neighborhood information to excel in feature extraction from gene expression
and text data [12,23].

This study aims to identify pivotal biomarkers for unraveling racial dispari-
ties between European American (EA) and African American (AA) women with
QNBC, employing advanced deep neural network technology. Curating RNA-seq
data involves strategies like oversampling to tackle class imbalance. Meticulous
hyperparameter tuning optimizes the neural network, while Lasso regulariza-
tion enhances predictive power by highlighting essential features. ANOVA rank-
ings guide the selection of top features, validated through statistical tests. Met-
rics systematically evaluate model performance, addressing imbalanced data and
refining configurations. Statistical tests ascertain feature significance in distin-
guishing EA and AA classes. This methodology targets data imbalance, model
refinement, and performance evaluation, with potential to address racial dispar-
ities in quadruple-negative breast cancer among AA and EA women.
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2 Data

We analyzed gene expression data from breast cancer patients, utilizing open-
source RNA sequencing with log2 median-centering. Processed RNA-seq data
was sourced from [6,9]. Breast cancer subtypes are distinguished by hormone-
receptor status, assessed via immunohistochemistry. Our focus was on a subtype,
quadruple-negative breast cancer (QNBC), a subset of triple-negative breast
cancer (TNBC). We filtered TNBC samples, selecting those negative for ER, PR,
HER2 receptors, or HER2 equivocal by FISH. We also identified AR-negative
samples using median AR gene expression. This yielded 64 samples (39 EA, 25
AA) from 128 TNBC samples, revealing differences between European American
(EA) and African American (AA) women. The dataset comprises 20,531 genes
or features.

3 Methods

3.1 Data Preprocessing

The raw dataset contains features in string format and target labels encoded as
‘EA’ and ‘AA’. In the data preprocessing stage, the string features are converted
to numeric float values using a feature conversion function, denoted as Fconv.
The function Fconv maps each unique string value to a unique numeric float
value, thus ensuring compatibility with machine learning algorithms that require
numerical inputs.

To encode the target labels as integers, the LabelEncoder class is utilized.
This class assigns the label ‘EA’ to the integer 0 and the label ‘AA’ to the integer
1. Mathematically, the encoding process can be represented as follows:

Encoded Target Label =

{
0 if target label is ‘EA’
1 if target label is ‘AA’

(1)

After preprocessing the raw data, stratification is employed to split the
dataset into training and testing sets. Stratification ensures that the class dis-
tribution in both sets is representative of the original dataset. Specifically, the
data is split into 80% training and 20% testing sets while preserving the relative
proportion of ‘EA’ and ‘AA’ labels. This is expressed mathematically as:

Training Set,

Dtrain = {(xi, yi) | xi is a feature vector and yi is the encoded target label}
(2)

where i = 1, 2, ..., �0.8 × N�
Testing Set,

Dtest = {(xj , yj) | xj is a feature vector and yj is the encoded target label},
(3)
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where j = �0.8×N�+1, �0.8×N�+2, ..., N (N is the total number of samples
in the dataset.)

To address the imbalanced distribution of the two classes, the ADASYN
(Adaptive Synthetic) oversampling technique is applied to the training set.
ADASYN generates synthetic examples for the minority class (label ‘AA’) by
interpolating between existing samples. The synthetic examples are added to
the training set, effectively increasing the number of ‘AA’ samples. This helps
prevent the model from biasing towards the majority class, enabling it to learn
robust patterns from both classes. Mathematically, the ADASYN oversampling
process can be expressed as:

Dtrain oversampled = ADASYN(Dtrain) (4)

where Dtrain oversampled is the training set after applying ADASYN.
Overall, the encoding, stratification, and ADASYN oversampling steps facil-

itate effective preprocessing of the raw data into formats suitable for modeling
and evaluation in an imbalanced binary classification problem. The validation
split, separating the data into training and testing sets, protects against infor-
mation leakage and enables a rigorous assessment of the model’s generalization
performance on unseen data.

3.2 Model Architecture and Training

A deep neural network classifier is built using the Keras API with Tensorflow
as the backend. The model architecture consists of densely-connected or fully-
connected layers, mathematically represented as:

Layeri = ReLU(Wi · Layeri−1 + bi) (5)

where Layeri is the output of layer i, Wi is the weight matrix for layer i, bi

is the bias vector for layer i, and ReLU(·) is the Rectified Linear Unit activation
function, defined as ReLU(x) = max(0, x).

To prevent overfitting, dropout regularization is applied after each hidden
layer. Dropout randomly sets a fraction of the activations to zero during training.
Mathematically, dropout can be expressed as:

Layer
′
i = Dropout(Layeri,dropout rate) (6)

where Layer
′
i is the output of layer i after dropout, and dropout rate is the

fraction of activations to drop, typically in the range of 0.2 to 0.7.
The output layer contains a single node with a sigmoid activation function to

generate probabilities for the binary classification task. The sigmoid activation
maps the output to the range [0, 1], representing the probability that the input
belongs to class 1 (positive class).

To train the neural network, the ADAM optimization algorithm is employed
with binary cross-entropy loss. ADAM is an adaptive learning rate optimization
algorithm that efficiently updates the model weights during training. Binary
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cross-entropy loss measures the dissimilarity between predicted probabilities and
true labels for binary classification tasks.

Optimal model architecture and hyperparameters are determined through
grid search k-fold stratified cross-validation. Hidden layers, dropout rate, and
learning rate are tuned for the highest area under the ROC curve (AUC) on
validation data. AUC reflects model’s discrimination ability between classes.
Dropout and AUC-based selection curb overfitting, enabling effective pattern
learning with a smaller dataset. The approach aims for robust binary classifica-
tion and strong predictive performance.

3.3 Feature Selection and Analysis

To identify the most predictive features from the high-dimensional dataset, a
combination of filtering and statistical testing methods are employed. First,
highly correlated features are removed by analyzing the correlation matrix and
dropping variables with correlations exceeding 0.9. Mathematically, the correla-
tion coefficient between two features Xi and Xj is given by:

Corr(Xi,Xj) =
Cov(Xi,Xj)
σ(Xi)σ(Xj)

(7)

where Cov(Xi,Xj) is the covariance between Xi and Xj , and σ(Xi) and
σ(Xj) are the standard deviations of Xi and Xj respectively.

This process eliminates redundant features, as highly correlated features
often convey similar information.

Next, the training data is oversampled with SMOTEENN (SMOTE + Edited
Nearest Neighbors) to balance classes for the next stage. SMOTE generates syn-
thetic examples for the minority class by interpolating between existing samples,
while Edited Nearest Neighbors removes noisy samples from the dataset. The
combination of SMOTE and Edited Nearest Neighbors effectively increases the
number of minority class instances, enhancing the model’s ability to learn from
both classes.

Lasso regularization provides an initial filtering of features by removing those
with zero coefficients, identifying a subset of important variables. Mathemati-
cally, the Lasso regularization term is defined as:

Lassoλ(β) =
N∑

i=1

(yi − Xi · β)2 + λ

p∑
j=1

|βj | (8)

where N is the number of samples, p is the number of features, yi is the
target variable, Xi is the feature vector for sample i, β is the vector of regression
coefficients, and λ is the regularization parameter. By setting some coefficients
to zero, Lasso performs feature selection.

ANOVA F-values from SelectKBest are then used to rank features and select
the top 50. ANOVA assesses the variance between class means and within class
variances, providing a measure of feature significance. SelectKBest selects the
top k features based on the highest F-values.
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The predictive value of the selected features is statistically evaluated using
several tests. Cohen’s d effect size quantifies the degree of difference between the
class means for each feature. Mathematically, Cohen’s d is defined as:

Cohen’s d =
Mean1 − Mean2

Pooled Standard Deviation
(9)

where Mean1 and Mean2 are the means of the feature values for the positive
and negative classes, and the pooled standard deviation accounts for variability
within both classes.

Mann-Whitney U test gauges significant feature distribution differences in
binary classes. Non-normally distributed data suits this rank-sum test. False
discovery rate correction prevents inflated significance due to multiple testing.
The approach yields informative feature ranking and quantifies their discrimi-
native power.

3.4 Model Evaluation

The performance of the final model is comprehensively evaluated on the held-
out test set to assess its real-world generalization ability. Classification metrics,
including accuracy, precision, recall, F1 score, and AUC, are reported to provide
a multi-faceted view of model performance across different thresholds.

The accuracy of the model is defined as the ratio of correctly classified sam-
ples to the total number of samples in the test set:

Accuracy =
Number of Correctly Classified Samples

Total Number of Samples
(10)

Precision represents the ability of the model to correctly identify positive
class samples among all samples predicted as positive:

Precision =
True Positives

True Positives + False Positives
(11)

Recall, also known as sensitivity or true positive rate, quantifies the model’s
ability to identify positive class samples among all actual positive samples:

Recall =
True Positives

True Positives + False Negatives
(12)

The F1 score is the harmonic mean of precision and recall, providing a bal-
anced assessment of the model’s performance on the positive class:

F1 Score = 2 × Precision × Recall
Precision + Recall

(13)

AUC (Area Under the ROC Curve) quantifies class discrimination across
thresholds, computed by plotting True Positive Rate (Recall) against False Pos-
itive Rate (1 - Specificity). AUC ranges from 0 to 1, with higher values indi-
cating better classification. Model architecture and optimal hyperparameters,
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including hidden layers, dropout rate, and learning rate, are revealed through
cross-validation. Rigorous evaluation on untouched test data confirms reported
performance’s validity for new data. This practice adheres to industry bench-
marks, ensuring robust model evaluation and informed data-driven decisions.

4 Results

4.1 Performance Evaluation of the Deep Learning Model

The optimal architecture of the deep learning model demonstrates remark-
able performance in classifying quadruple-negative breast cancer (QNBC) cases
among European American (EA) and African American (AA) populations. High
consistency in precision, recall, and F1-scores is observed, with EA achieving 0.83
and AA achieving 0.86 (Table 1). These results yield an impressive overall accu-
racy of 0.85. The model’s balanced classification ability is supported by macro
and weighted F1-scores of 0.85. Furthermore, with an AUC of 0.928 on the test
set, the model effectively distinguishes between the two classes. Characterized
by two dense layers and a dropout layer, the architecture captures intricate data
patterns, showcasing potential for accurate prediction. This well-designed model
holds promise for advancing quadruple-negative breast cancer classification.

Table 1. Performance Metrics for Class Labels EA and AA

Class Label Precision Recall F1-score

EA 0.83 0.83 0.83

AA 0.86 0.86 0.86

4.2 Identification of Key Molecular Features (Genes)

Using the SelectKBest feature selection technique, a subset of the top 50 genes is
unveiled (Fig. 1), derived from ANOVA F-values. F-scores gauge gene expression
mean differences, higher scores indicating better classification discrimination.
Notably, ACADL scores 22, and the 50th gene LOC100130426 scores 1.6. F-
scores over 2–3 signify informative genes. This gene list, with scores, highlights
key molecular attributes influencing classification. Exploring biological functions
and pathways of top genes could reveal insights into differentiating European
American (EA) and African American (AA) QNBC women. Scores quantify
gene predictive power, assessing significance within the analytical framework.

4.3 Statistical Validation of Selected Features (Genes)

The top 50 genes were subjected to statistical scrutiny to assess their dis-
criminatory capacity between European American (EA) and African Ameri-
can (AA) QNBC women. Employing the non-parametric Mann-Whitney U test,
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Fig. 1. Top 50 selected features with their corresponding F-scores, determined through
a feature selection process for European American (EA) and African American (AA)
QNBC women. Higher F-scores indicate greater influence on the predictive model.

Fig. 2. This figure displays U-test p-values for top features selected via deep learning-
based choice, comparing EA and AA QNBC women. It plots genomic attributes (x-axis)
against p-values (y-axis) with a log scale for enhanced visualization.

we examined gene expression distribution disparities between groups. With an
alpha of 0.05, solely the ABCD1 gene exhibited significant class differentia-
tion post-FDR correction (FDR-adjusted p = 0.03), shown in Fig. 2. Cohen’s d
effect size analysis unveiled predominantly small to medium effects (|d| < 0.5),
while LOC654057, UBE2Q2P3, LOC645851, and ABCD1 displayed larger mag-
nitudes (> 0.7) in Fig. 3. Notably, while ABCD1 surpassed the significance
threshold after multiple comparisons, effect sizes suggest biologically significant
changes in select genes, warranting further exploration of their functional roles.
Statistical testing objectively evaluates predictive genes arising from machine
learning analyses.
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Fig. 3. This figure displays Cohen’s d effect sizes, indicating feature importance for
EA and AA differentiation. Gene symbols (y-axis) denote attributes by descending
values (x-axis). Clear y-labels, gridlines, and compact design enhance insights into
class distinction.

5 Conclusion

This study showcases the synergy of integrated machine learning and statisti-
cal testing, revealing molecular factors behind racial disparities in quadruple-
negative breast cancer. The deep neural network achieves impressive accuracy,
balancing precision, recall, and AUC exceeding 0.9. This signifies robust learn-
ing in distinguishing African American and European American QNBC tumors.
Hyperparameter optimization yields a concise yet potent model architecture.
Rigorous statistical analyses validate top genes from ANOVA selection. While
ABCD1 alone survives multiple hypothesis correction, other genes show mean-
ingful shifts. The study exemplifies combining deep learning’s predictive strength
with hypothesis testing’s objectivity, deriving insightful knowledge from complex
biomedical data.

Reliable biomarkers result from rigorous evaluation, class imbalance han-
dling, and standard feature engineering. Expanding datasets, time points, and
network analyses could enhance insights. Integrating advanced analytics, sta-
tistical rigor, and clinical relevance advances QNBC understanding, potentially
aiding prognosis, diagnostics, and treatments considering European American
and African American QNBC differences.
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Abstract. In the realm of Bioinformatics, the comparison of DNA
sequences is essential for tasks such as phylogenetic identification, com-
parative genomics, and genome reconstruction. Methods for estimat-
ing sequence similarity have been successfully applied in this field. The
application of these methods to circular genomic structures, common in
nature, poses additional computational hurdles. In the advancing field of
metagenomics, innovative circular DNA alignment algorithms are vital
for accurately understanding circular genome complexities. Aligning cir-
cular DNA, more intricate than linear sequences, demands heightened
algorithms due to circularity, escalating computation requirements and
runtime. This paper proposes CSA-MEM, an efficient text indexing algo-
rithm to identify the most informative region to rotate and cut circular
genomes, thus improving alignment accuracy. The algorithm uses a cir-
cular variation of the FM-Index and identifies the longest chain of non-
repeated maximal subsequences common to a set of circular genomes,
enabling the most adequate rotation and linearisation for multiple align-
ment. The effectiveness of the approach was validated in five sets of mito-
chondrial, viral and bacterial DNA. The results show that CSA-MEM
significantly improves the efficiency of multiple sequence alignment, con-
sistently achieving top scores compared to other state-of-the-art meth-
ods. This tool enables more realistic phylogenetic comparisons between
species, facilitates large metagenomic data processing, and opens up new
possibilities in comparative genomics.

Keywords: Circular DNA · Multiple Alignment · Text Indexing

1 Introduction

Recent advances in metagenomics have propelled the field to new frontiers, allow-
ing researchers to explore microbial communities with unprecedented depth and
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breadth [13]. However, as datasets become larger and more intricate, the challenge
of addressing circular DNA alignment, efficient data processing, accurate taxo-
nomic classification, and integration of multiomics data is of paramount impor-
tance [11]. Overcoming these challenges will not only enhance our understanding
of microbial ecosystems, but also pave the way for innovative applications in fields
such as biotechnology, environmental science, and personalised medicine [6].

With the expansion in scope and scale of the metagenomics field comes the
urgent need to tackle the challenges posed by the analysis of large metagenomic
datasets. One of the main challenges is the efficient alignment of circular DNA
within these complex datasets. Circular genomes are common in many microor-
ganisms, and accurately aligning them is crucial for understanding their structure
and function. Circular DNA molecules, known as plasmids, play an important role
in conferring adaptive advantages, such as antibiotic resistance and virulence, to
bacteria [5]. Circular mitochondrial DNA plays an essential role in the survival
and energy production of eukaryotic cells [18] and has long been used for phyloge-
netic analyses [17]. Smaller structures known as extrachromosomal circular DNA
are considered a hallmark of genomic flexibility in eukaryotes [21]. Furthermore,
the circular nature of DNA in some viruses has a major impact on their replication
and infection strategies [20]. Understanding these complex mechanisms is crucial
for the development of antiviral therapies and vaccines [23].

Existing DNA alignment algorithms, often designed for linear genomes, such
as ClustalW [19], may struggle to handle the unique characteristics of circular
DNA, leading to misinterpretations and inaccuracies in the analysis [22]. Further-
more, as metagenomic datasets increase in size and complexity, issues related to
data management and analysis, processing speed, and computational resources
become increasingly pressing. Efficient algorithms are needed to address chal-
lenges related to assembly quality, binning, and functional annotation, which
are vital for extracting meaningful biological information from the sheer volume
of metagenomic data [16].

The special importance of circular DNA presents a unique challenge in com-
paring its sequences. Because circular sequences can start from any point, it adds
complexity. This distinctiveness feature makes traditional linear-centric multiple
alignment algorithms inadequate because they lack the adaptability to effectively
cope with the inherent circular structure. The outcome is a potential loss of crit-
ical genetic information during the alignment process [9].

Beyond identifying the optimal rotation for each sequence in a multiple cir-
cular DNA alignment, it is also necessary to address the challenge of handling
large volumes of data. In this context, it is necessary to develop new algorithms
that provide better solutions in terms of space and time efficiency.

Efforts to reconcile the circular-to-linear disparity have given rise to remark-
able methods. Cyclope [15] is a software designed to enhance the alignment of
multiple circular sequences. However, the cubic runtime of the pairwise align-
ment step becomes a limiting factor in practical scenarios. CSA [9] is an algo-
rithm based on a circular version of a generalised suffix tree. The algorithm
identifies the largest chain of non-repeated longest subsequences common to a
set of circular DNA sequences to determine their optimal rotations. Although
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very efficient, it is limited to 32 input sequences and relies on an outdated suffix
tree data structure.

Other types of methods include BEAR [2], which extends existing algorithms
for circular and fixed-length approximate string matching [3]. It calculates edit
distances and rotations between all pairs of sequences and then uses agglomer-
ative hierarchical clustering to determine the most suitable rotations. A similar
and more recent approach, MARS [1], is an heuristic method that computes all
pairwise cyclic edit distances using a distance measurement algorithm based on q-
grams [11]. It then performs classic progressive alignment of sequence profile pairs
using a guide tree to refine the rotations. However, this progressive nature and the
dependency on dynamic programming algorithms may render these last methods
slower and less efficient when dealing with longer sequences or larger datasets.

1.1 Contribution

To effectively tackle the challenges associated with circular multiple sequence
alignment on large datasets, we introduce CSA-MEM, in which we propose: (1)
the adaptation of advanced data structures such as the FM-Index [10], namely a
circular modification based on the implementation used in slaMEM [8] to achieve a
computationally efficient exact solution for circular sequence matching, and (2) an
effective identification of the longest chain of non-repeated maximal exact matches
(MEMs) common to a set of circular DNA sequences, in an approach similar to the
CSA tool [9]. This way, the CSA-MEM algorithm allows for a seamless rotation
and linearisation process for multiple circular alignment purposes.

2 Methods

2.1 Basic Notions

We generally consider that a text is appended with a terminator sentinel symbol
‘$’ which is lexicographically smaller than all other characters in its alphabet
Σ. For a string T of length n, the Suffix Array (SA) [14] of T is an array of
integers SA[1, n] where each element SA[i] corresponds to the starting position
in T of the i-th lexicographically smallest suffix of the string. SA[i] points to the
position in string T where the suffix with lexicographic rank i begins.

The Longest Common Prefix array LCP is an integer array of length n which
stores information about the length of the longest common prefixes (lcp) between
consecutive suffix pairs in SA [12]. It is defined as LCP [i] = lcp(T [SA[i −
1], n], T [SA[i], n]) for i �= 1 and 0 otherwise.

The Burrows-Wheeler Transform (BWT) [4] is a data structure that consists
of a reversible transformation that rearranges the original characters of T into a
new string more suitable to text processing and data compression methods. In
the conceptual matrix of all the lexicographically sorted rotations of a string, the
BWT matches its last column L. This corresponds to the character immediately
preceding each suffix starting at position SA[i] in the string T and is formally
defined as L[i] = T [SA[i] − 1] when SA[i] �= 1 and L[i] = $ otherwise.
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The FM-Index [10] is an indexing data structure built on top of the BWT
which can be used to search and process large volumes of text efficiently. In
addition to the BWT and SA arrays, the FM-index also uses a summation array
which stores the rank of each character in the alphabet, meaning the number of
occurrences of character c in the BWT up to position i, and represented by the
function rankc(L, i). The inverse operation, selectc(L, j), returns the position i
in the BWT corresponding to the j-th occurrence of character c. To locate and
count the occurrences of a specific pattern P , the FM-index employs a backward
search strategy and maintains two pointers, identifying the start and end index
positions of runs of consecutive suffixes starting with the current matched string,
which are updated by iteratively applying the LF-mapping procedure [10].

Maximal Exact Matches (MEMs) are substrings which simultaneously belong
to both a reference text T and a query text R, and that cannot be extended
in either direction without producing a mismatch, i.e. R[i, j] = Q[i′, j′] and
R[i− 1] �= Q[i′ − 1] ∧R[j + 1] �= Q[j′ + 1]. This type of subtrings is often used in
genomic comparison as they provide common blocks between the sequences that
can be used as anchors to detect similar regions in the alignments. Such MEMs
can be retrieved by matching query Q over the FM-Index of text R using an
efficient algorithm, such as slaMEM [8].

2.2 Circular FM-Index

In the pursuit of identifying the optimal rotation for the circular DNA sequence
alignment, CSA-MEM strategically leverages MEMs across multiple sequences,
akin to the procedural essence of the slaMEM algorithm [8]. To seamlessly
accommodate circularity, substantial changes were made to the underlying data
structures within the algorithmic framework. Both SA and BWT were subject
to meticulous modifications, enabling the uninterrupted searching of sequences
even upon encountering the predefined terminal points of the reference sequence.
This pivotal enhancement empowers the method to sustain its search for sub-
strings beyond sequence boundaries, deeply enriching its circular DNA analysis
capabilities.

The circular nature of the DNA sequence was considered by ignoring the ter-
minator character present in standard SA. The modified SA retains the original
order of all non-rotated substrings, thus enabling the construction of a circular
BWT, an essential step for the efficient MEM detection.

The circular BWT also omits the terminator character from the transform,
avoiding complications arising from circularity, but maintaining unaffected the
FM-Index algorithm retaining its efficiency.

An example is shown in Fig. 1 displaying the regular linear BWT for the text
TGCCTTTG$ and its circular version without the terminator symbol. In this
example, the BWT is GGCTTT$TC and the circular BWT is GCTTGTTC.
An illustrative example of sequence matching can also be found in the project’s
repository.
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Fig. 1. Linear and circular versions of rotations, SA, LCP and BWT for the example
string ‘TGCCTTTG$’.

2.3 Most Significant Common Subsequence Chain of MEMs

As explained in the CSA paper [9], the key method to determine optimal rota-
tions for aligning a set of sequences involves identifying the longest chain of
shared subsequences present in all the data. This is crucial, as it marks the most
informative region universally present across all sequences.

Since MEMs are common subsequences of different sequences, to unearth the
most significant chain for circular alignment within these sequences, a pivotal
strategy lies in extracting the longest contiguous chain of MEMs that is shared
across all of them. Initiating this process involves iterative removal of the smallest
coincident MEMs from each sequence individually, since a subset of the sequence
characters can be present in any number of parts of another sequence. This
strategic pruning serves to eliminate less impactful substring matches, thereby
directing focus towards more substantial segments that substantially contribute
to a more adequate rotation. It should be noted that the resultant MEMs do
not exhibit any overlapping characteristics. This inherent attribute simplifies
the subsequent analysis stage, which ensures a distinct demarcation between the
common MEMs within the sequences. For a more comprehensive understanding,
the pseudo-code is available in the project’s repository at GitHub.

3 Results and Discussion

In order to evaluate our approach, we conducted tests on five distinct datasets.
The first three sets contained mitochondrial DNA (mtDNA) for 16 primates, 12
mammals, and a more diverse set of 19 sequences. This third set is composed of
a mixture between the 16 primates and the addition of 3 more distant evolution-
ary species (Drosophila melanogaster, Gallus gallus, and Crocodylus niloticus).
The fourth set contains viral DNA in the form of circular genomes of 9 viruses
recently discovered in a small metagenomics study [7]. The fifth set was used
to evaluate the tool’s efficiency on extensive datasets, in this case consisting on
35 sequences of Escherichia coli (E. coli). The first two datasets were previously
used to benchmark CSA, BEAR and MARS in their respective works. The third
dataset was also used in both CSA and BEAR. Some statistics of each of these
datasets are available in Table 1.
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Table 1. General properties of each one of the datasets used in the benchmarks.

Dataset Number of Average Total
sequences size (bp) size (KB)

Mammals 12 16,777 204
Primates 16 16,581 269
Diverse 19 16,759 323
Viruses 9 3,130 29
E. coli 35 5,703,382 190,370

The quality of the rotations was assessed using linear multiple sequence align-
ment, by feeding the rotated sequences into ClustalW to obtain the alignment
score. An example of the multiple sequence alignment produced by ClustalW on
one of the datasets, before and after rotation with CSA-MEM is presented in
Fig. 2. The gaps are represented in blue, and alignment conservation increases
from green to red. The sequence start and end positions meet at the top centre
of their circular representations. The gaps and unmatched portions at both loose
ends of the unrotated sequences are clearly visible in the first image, after which
they fade away and fit together to produce a much more meaningful alignment
after the sequences are rotated, in the second image.

Fig. 2. Circular representation of the multiple sequence alignment output of one of the
datasets before (left) and after rotating (right) the sequences with CSA-MEM.

The size of the consensus alignment profile was captured, since a more com-
pact consensus usually corresponds to fewer gaps and a better alignment. Time
and memory requirements were also measured by capturing the wall-clock run-
ning time and the peak resident-set memory size, using Linux shell scripts. All
benchmark tests were conducted on a dedicated server system equipped with
an Intel (R) Xeon(R) Silver 4214R CPU @ 2.40GHz with 256GB of RAM run-
ning the Linux Ubuntu 20.04.4 LTS x86_64 distribution, ensuring a stable and
consistent platform for all experiments.
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3.1 Benchmarks

CSA-MEM was evaluated against CSA, Cyclope, and MARS on the five men-
tioned datasets using the described metrics to assess their respective perfor-
mance. Table 2 presents the results for the first four datasets. It was not possible
to test BEAR algorithm due to compilation errors.

Table 2. Comparative benchmarks between the four analysed circular sequence align-
ment software tools on four distinct datasets considering different metrics.

Alignment Consensus Running Memory
score length (bp) time (s) used (MB)

Primates CSA-MEM 10474101 17446 1 30
CSA 10471600 17444 1 91
Cyclope 10472551 17447 2820 4670
MARS 10468302 17458 215 1183

Mammals CSA-MEM 5067971 18608 <1 30
CSA 5049488 18202 <1 75
Cyclope 5020605 18268 1620 4797
MARS 5033469 18460 168 1340

Diverse CSA-MEM 13002485 19784 7 30
CSA 12942609 19751 <1 103
Cyclope 13132115 19889 4260 5419
MARS 13031632 20172 342 1562

Viruses CSA-MEM 259034 4005 10 30
CSA 248401 3980 <0.5 33
Cyclope 276949 3963 34 340
MARS 257741 4051 6 96

On the smaller datasets, CSA-MEM achieves the highest alignment scoring
results in the first and second datasets, while being the second best in the remain-
ing ones. Although Cyclope shows good scoring results, the computational costs
are prohibitive for it to be used with current large data volumes. For instance,
in the Diverse dataset the requirements of Cyclope in terms of both time and
space are more than 1000x those of CSA-MEM. In terms of alignment consensus
size, CSA consistently produces the most compact alignments in most tests. This
means that the chaining algorithm used in CSA preserves more common blocks
than the one used in CSA-MEM and the other tools.

CSA and CSA-MEM are the fastest algorithms due to their reliance on text
indexing data structures and their strategy based on common substrings. In some
cases, CSA achieves better running times than CSA-MEM, possibly due to the
more elaborate and time-consuming construction step of the FM-Index in CSA-
MEM compared to the construction of the suffix tree variation in CSA. Both
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MARS and Cyclope are less efficient due to the use of time-consuming dynamic
programming and progressive pairwise alignment algorithms. CSA-MEM mem-
ory consumption is always around 30MB, indicating that this should be the
overhead for maintaining its data structures for the relatively small datasets
considered.

In the context of larger datasets, such as the E. coli dataset, CSA-MEM
demonstrates a great advantage in terms of both processing time and memory
usage. CSA-MEM was capable of generating the optimal rotation in under 2 min-
utes, consuming less than 70 MB of memory. In sharp contrast, the alternative
methods did not produce any results even after extended hours of processing.
As a consequence of these outcomes, we have omitted their presentation in the
table.

4 Conclusion

Understanding the genetic relationships and evolutionary history encoded in
circular DNA molecules has a profound impact on human health, environmental
studies, and understanding the complexity and diversity of life. The CSA-MEM
tool demonstrates that the use of efficient indexing data structures and string
matching algorithms for circular sequences yields superior benchmark scores
with minimal computational demands. This novel approach not only enhances
rotation strategies, but also optimises space and time complexities, enabling a
more thorough analysis of circular DNA sequences. The future work will include
building a database with various datasets for circular genomes that can be used
to characterise the boundaries of the algorithms tested in comparative genomics
studies. The software source code, scripts and datasets used in this work are
available for download at: https://github.com/andre99salgado/CSA-MEM.

Acknowledgement. The authors acknowledge the support of Fundação para a
Ciência e a Tecnologia, projects PRELUNA (Grant PTDC/CCIINF/4703/2021) and
UIDB/50021/2020.

References

1. Ayad, L.A., Pissis, S.P.: MARS: improving multiple circular sequence alignment
using refined sequences. BMC Genomics 18(1), 1–10 (2017)

2. Barton, C., Iliopoulos, C.S., Kundu, R., Pissis, S.P., Retha, A., Vayani, F.: Accurate
and efficient methods to improve multiple circular sequence alignment. In: Bampis,
E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 247–258. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20086-6_19

3. Barton, C., Iliopoulos, C.S., Pissis, S.P.: Fast algorithms for approximate circular
string matching. Algorithms Mol. Biol. 9, 1–10 (2014)

4. Burrows, M.: A block-sorting lossless data compression algorithm. SRS Res. Rep.
124 (1994)

5. Carattoli, A.: Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303(6),
298–304 (2013)

https://github.com/andre99salgado/CSA-MEM
https://doi.org/10.1007/978-3-319-20086-6_19
https://doi.org/10.1007/978-3-319-20086-6_19


CSA-MEM 517

6. Dulanto, C.A., Dekker, J.P.: From the pipeline to the bedside: advances and chal-
lenges in clinical metagenomics. J. Infect. Dis. 221(Supplement 3), S331–S340
(2019)

7. Fehér, E., Mihalov-Kovács, E., Kaszab, E., Malik, Y.S., Marton, S., Bányai, K.:
Genomic diversity of CRESS DNA viruses in the eukaryotic Virome of swine feces.
Microorganisms 9(7), 1426 (2021)

8. Fernandes, F., Freitas, A.T.: slaMEM: efficient retrieval of maximal exact matches
using a sampled LCP array. Bioinformatics 30(4), 464–471 (2014)

9. Fernandes, F., Pereira, L., Freitas, A.T.: CSA: an efficient algorithm to improve
circular DNA multiple alignment. BMC Bioinformatics 10(1), 1–13 (2009)

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
390–398. IEEE (2000)

11. Grossi, R., Iliopoulos, C.S., Mercas, R., et al.: Circular sequence comparison: algo-
rithms and applications. Algorithms Mol. Biol. 11(12) (2016)

12. Gusfield, D.: An “increment-by-one” approach to suffix arrays and trees. Report.
CSE-90-39, Computer Science Division, University of California, Davis (1990)

13. Laudadio, I., Fulc, V., Stronati, L., Carissimi, C.: Next-generation metagenomics:
methodological challenges and opportunities. OMICS 23(7), 327–333 (2019)

14. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

15. Mosig, A., Hofacker, I.L., Stadler, P.F.: Comparative analysis of cyclic sequences:
viroids and other small circular RNAs. In: Lecture Notes in Informatics. Proceed-
ings German Conference on Bioinformatics (2006)

16. Pan, S., Zhao, X.M., Coelho, L.P.: SemiBin2: self-supervised contrastive learn-
ing leads to better MAGs for short- and long-read sequencing. Bioinformatics
39(Supplement 1), i21–i29 (2023)

17. Pereira, L., et al.: The diversity present in 5140 human mitochondrial genomes.
Am. J. Hum. Genetics 84(5), 628–640 (2009)

18. Pohjoismäki, J.L.O., Goffart, S.: Of circles, forks and humanity: topological organ-
isation and replication of mammalian mitochondrial DNA. BioEssays 33(4), 290–
299 (2011)

19. Thompson, J.D., Gibson, T.J., Higgins, D.G.: Multiple sequence alignment using
ClustalW and ClustalX. Curr. Protoc. Bioinformatics 1, 2–3 (2003)

20. Tisza, M.J., et al.: Discovery of several thousand highly diverse circular DNA
viruses. Elife 9 (2020)

21. Yang, L., et al.: Extrachromosomal circular DNA: biogenesis, structure, functions
and diseases. Signal Transduct. Target. Ther. 7(1), 342 (2022)

22. Zhang, Y., Zhang, Q., Zhou, J., Zou, Q.: A survey on the algorithm and develop-
ment of multiple sequence alignment. Briefings Bioinformatics 23(3) (2022)

23. Zhao, L., Rosario, K., Breitbart, M., Duffy, S.: Chapter three - eukaryotic circular
rep-encoding single-stranded DNA (cress DNA) viruses: ubiquitous viruses with
small genomes and a diverse host range. In: Advances in Virus Research, vol. 103,
pp. 71–133 (2019)



A Convolutional Denoising Autoencoder
for Protein Scaffold Filling

Jordan Sturtz1, Richard Annan1, Binhai Zhu2 , Xiaowen Liu3 ,
and Letu Qingge1(B)

1 Department of Computer Science, North Carolina A&T State University,
Greensboro, NC, USA

{jasturtz,rkannan}@aggies.ncat.edu, lqingge@ncat.edu
2 Gianforte School of Computing, Montana State University,

Bozeman, MT, USA
bhz@montana.edu

3 John W. Deming Department of Medicine, Tulane University,
New Orleans, LA, USA

xwliu@tulane.edu

Abstract. De novo protein sequencing is a valuable task in proteomics,
yet it is not a fully solved problem. Many state-of-the-art approaches
use top-down and bottom-up tandem mass spectrometry (MS/MS) to
sequence proteins. However, these approaches often produce protein scaf-
folds, which are incomplete protein sequences with gaps to fill between
contiguous regions. In this paper, we propose a novel convolutional
denoising autoencoder (CDA) model to perform the task of filling gaps
in protein scaffolds to complete the final step of protein sequencing. We
demonstrate our results both on a real dataset and eleven randomly gen-
erated datasets based on the MabCampath antibody. Our results show
that the proposed CDA outperforms recently published hybrid convolu-
tional neural network and long short-term memory (CNN-LSTM) based
sequence model. We achieve 100% gap filling accuracy and 95.32% full
sequence accuracy on the MabCampth protein scaffold.

Keywords: De Novo Protein Sequencing · Convolutional Layer ·
Denoising Autoencoder · Protein Scaffold Filling

1 Introduction

Protein sequencing plays an important role in many aspects of proteomics,
including identification of structure and functions of proteins, new protein
biomarkers, construction of phylogenetic tree to find evolutionary relationship
and new drug design. De novo protein sequencing refers to the process of deter-
mining the primary structure of proteins directly without inferring the full
sequence by merely matching against an existing protein database. Complete
de novo protein sequencing remains a challenging problem in bioinformatics.
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Every protein can be defined by its unique sequence of amino acids, which is
called its primary structure. Proteins are comprised of 20 different amino acids.
We use the term “peptide” to refer to small multi-amino acid sub-units of pro-
teins. The goal of peptide or protein sequencing is to determine the complete
unique sequence of amino acids in a peptide or protein. In general, peptide or pro-
tein sequencing from mass spectrometry can refer to either de novo sequencing
or database searching. With database searching, once a mass spectrum is gener-
ated, it is compared to databases of known peptides or proteins to retrieve the
sequence with the closest matching mass spectrum. Often, these databases will
include only proteins or peptides generated from genomic data [10]. Many pro-
teins of interest are not included in such databases, especially those that are not
directly inscribed in genomes such as monoclonal antibodies. Even if a protein
sequence is known, it is often still desirable to perform de novo sequencing to dis-
cover novel proteoforms [11]. For instance, proteoforms may be created by post-
translational modifications, which occur when amino acids of proteins undergo
a process of proteolytic cleavage which alters the amino acid in the primary
structure by adding a modifying group [8,9]. De novo protein sequencing has
been used for many purposes, including full sequencing of proteins, to sequence
endogenous peptides [12,13], to characterize mutations in antibodies [14], and to
perform proteomic analysis of novel organisms not found in protein databases.

We organize our paper as follows. In Sect. 2, we discuss the problem statement
and gap challenges that motivate our research, deficiencies in existing approaches.
In Sect. 3, we introduce the methodology that we will use to develop a new convo-
lutional denoising autoencoder (CDA) model as a solution. In Sect. 4, we discuss in
detail our proposed CDA model, including data preprocessing, model architecture
and hyperparameters tuning steps. In Sect. 5, we show our experimental predic-
tion results both on the original real MabCampth scaffold data and simulation
data. Finally, we conclude our paper and discuss the future directions.

2 Preliminaries

The Protein Scaffold Filling (PSF) Problem: Given a complete target
protein sequence S and the scaffold T , fill the missing amino acids in the scaffold
T such that Score(S, T ) is maximized, where function Score is the total number
of one-to-one matches of amino acids between S and T .

The protein scaffold filling problem has been shown to be polynomial solvable
in O(n26) time [4]. In [4], the authors proposed several practical algorithms based
on greedy algorithm, dynamic programming and local search. These algorithms
rely on high quality homologous reference proteins. As reported in [4], these
algorithms run in a reasonable amount of time when gaps are small. Thus, our
goal is to investigate deep learning approaches to the same problem to improve
our accuracy, especially when gaps are large or the homologous reference proteins
are dissimilar to proteins scaffolds produced in a lab.

Most recently in 2022, the authors [7] developed several deep learning mod-
els based on CNN and LSTM models for the PSF problem and achieved high
accuracy when filling the gaps in the MabCampath scaffold dataset. The basic
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idea behind this approach is to iteratively predict each amino acid in sequence
by deploying a model that can predict the next amino acid given the preced-
ing K amino acids. From left to right, when a gap is encountered in the pro-
tein scaffold, the model predicts the next amino acid as a replacement for that
gap. This process is repeated until all gaps are filled. The authors trained a
forward model and reverse model so they can predict gaps at the end of any
protein scaffold. For training data, the authors query for homologous sequences
to their scaffold protein, then generate all kmers of each training instance. Each
kmer represents a single training instance input, and the amino acid after the
kmer in the sequence is the training output. So, for example, from the sequence
DIQMSPIL..., the following input-output pairs would be generated: (DIQMS, P),
(IQMSP, I), (QMSPI, L). The authors trained various CNN-LSTM hybrid mod-
els to compare their accuracy.

Though their reported accuracy is higher than that reported in [4], this app-
roach suffers from a few flaws. First, since the model is a kmer sequence-based
approach, any errors in inference are likely to propagate, leading to subsequent
incorrect inferences. See Fig. 1 for an illustration. If this issue is indeed a signifi-
cant problem for the sequence-based approach, it suggests that such approaches
will tend to do worse when the gaps to fill between contigs of a protein scaffold
are particularly large.

Fig. 1. CNN-LSTM model illustration [7]. Since during inference the model predicts
only the next amino acid, if it makes a poor prediction, it will feed that poor prediction
into the next inference step, causing future inferences to be unreliable

In this paper, our goal is to develop a deep learning model that can accurately
predict the missing amino acids in gaps of the scaffold while improving on the
approach described in [7] by also correcting incorrect amino acids in the existing
scaffold.

3 Methodology

The approach we use is a convolutional denoising autoencoder (CDA) trained on
homologous sequences of our given scaffold. The motivation behind an autoen-
coder in general is that it imputes all the missing amino acids at once, which is
different from the iterative sequence-based approach described in [7]. Not only
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can the CDA predict gaps in the scaffold but it can also correct any incorrect
amino acids in the scaffold. In contrast, the LSTM models designed in [7] can
only predict the missing amino acids in the gaps of the scaffold.

Autoencoders. Autoencoders are neural networks that learn how to reconstruct
its input through the composition of an encoder and a decoder [1]. Typically,
the idea is to encode the original input into a lower dimensional space and then
decode the compressed representation into the original input.

Denoising Autoencoders. Simple autoencoders suffer from the problem that
the autoencoder may simply learn an identity function, which produces trivially
useless results [2]. A common solution to this problem is to intentionally corrupt
the original input in some way by adding some kind of “noise” to the data. The
goal of the autoencoder, then, is to learn how to denoise the corrupted input,
which produces a more robust representation that avoids trivial solutions [3]. A
model trained on corrupted inputs can learn an internal representation that can
correct those defects.

Convolutional Layers. Convolutional layers in a neural network are useful
whenever the input contains hidden features created by the relationships among
neighboring components of the input. In this way, convolutional layers can be
viewed as automatic feature extractors. Since the dataset consists of sequences
of amino acids, it is a reasonable hypothesis that there are meaningful features
to extract among neighboring values of each sequence.

Pooling and Upsampling. Pooling is in general a useful technique to reduce
model complexity to speed up training. In our case, pooling is how the model
achieves the compression characteristic of autoencoders. The model convolves the
original input to extract features, then compresses those feature maps with pool-
ing into a reduced dimensional space. The decoder portion of the autoencoder
performs inverse convolutions and upsampling to produce the final sequence
length of the training data.

4 The Proposed Convolutional Denoising Autoencoder
Model

4.1 Data Collection

The protein scaffold we use to evaluate our proposed model is the light chain of
alemtuzumab (MabCampath). In [5], the authors generated the MabCampath
scaffold data by combining top-down and bottom-up tandem mass spectrometry.
This scaffold includes five contigs and six contiguous gaps of missing amino acids.
The main steps of generating the MabCampth scaffold consists of converting raw
spectra to a prefix residue mass (PRM) spectra, spectral selection and merging,
improving the top-down spectrum using bottom-up spectra, spectra mapping,
gap filling by extension and gap filling by mass matching. More technical details
about generating the MabCampath protein scaffold can be found in [5]. The
scaffold information can be seen in Fig. 2, in which the red colored dash line
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represents gaps in the scaffold and the other red characters are non-gap errors in
the scaffold. We feed the scaffold into NCBI’s Protein Blast Server [6] to retrieve
1000 homologous sequences as our training data.

Fig. 2. Dashes are missing amino acids, i.e., gap errors. The other red-colored char-
acters are non-gap errors in the given Protein Scaffold. Target Sequence is a ground
truth sequence that we will predict. (Color figure online)

As our model depends on padding shorter protein sequences with empty
amino acids, we also prune the collected training data by limiting the lengths of
acceptable training sequences to those where the length is between 95% to 105%
of the length of the target. In this way, we reduce the required amount of padding
in our training data to allow for varied sequence lengths while also minimizing
biases that may occur due to the model learning the noise of the extra padding.
To get a sense for the quality of training data for each test scaffold, we choose the
homologous sequences with the range of 205–224 lengths, the range of 98%-100%
query coverage, and the range of 44%-89% percent identical similarity among
sequences in each training dataset. The query coverage refers to the percentage
of the queried sequence that is covered by the returned sequence, whereas the
percent similarity refers to the percent of one-to-one matches in the sequence
alignments.

4.2 Data Preprocessing

One-Hot Encoding. In general, there are two ways to represent categorical
data. The first method is label-encoding, in which each category is assigned a
numerical value. The second method is one-hot encoding, in which each category
is represented by a binary vector where the position of the 1 in the binary vector
represents the category of the datum.

One-hot encoding is often a preferred method for categorical data and it is the
type of encoding we choose here. Thus, our network must learn a representation
where the full input dataset is a tensor of shape (samples, sequence length,
classes).

Noisification. To add noise to our input data, we add a new class label to
represent emptiness. Thus, in data preprocessing, a percent P of the amino
acids are replaced by the empty class represented by blank.

Padding. Not all sequences in the training data will have the same lengths. To
feed these sequences into a neural network, it is therefore necessary to employ a
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strategy to either pad or truncate training sequences to get a fixed length. We opt
to pad each training sequence with empty amino acids until the lengths reach the
maximum length sequence in the training data. Let S be the maximum length
of the sequence in the training data. It is important that pooling layers in our
model cause a reduction in the size of the feature maps such that upsampling in
the decoding phase produces the same shape as our target inputs. For instance,
suppose S is 211 and the neural network has two pooling layers. In this case, the
encoder will produce a length of 52: ��211/2� /2� = 52. But if a shape of 52 is then
upsampled in the decoder, it produces an output length of 208: 52∗2∗2 = 208. We
want the output of the neural network to have a length of 211 to match the length
of the input. To solve this technical problem, we increment S until S mod L = 0,
where L is the product of the shapes of the pooling layers.

The Model Architecture. The final model architecture is illustrated in Fig. 3.
There are two convolutional layers in the encoder, each followed by max pooling
and dropout layers. Likewise, there are two inverse convolutional layers in the
decoder followed by upsampling and dropout layers. We split our dataset into
training and validation of 85% and 15% respectively. The more details about
the model architecture can be found in Fig. 3. Noise and padding are added to
the model input, then it is one-hot encoded before running through the encoder,
which ultimately compresses the input into a reduced dimensional space. The
decoder portion of the neural network reconstructs the input using upsampling.
Dropout is added to reduce overfitting. The model hyperparameters are listed in
Table 2. Our developed code can be found from https://github.com/astonish24/
QinggeLab ISBRA23 paper.

Fig. 3. The proposed convolutional denoising autoencoder (CDA) model architecture.

4.3 Simulation Data

A protein scaffold produced using MS/MS will contain errors both in its contigs
(what we will call non-gap errors) as well as gaps that need to be filled between
contigs to complete the entire protein (what we will call gap errors). The number

https://github.com/astonish24/QinggeLab_ISBRA23_paper
https://github.com/astonish24/QinggeLab_ISBRA23_paper
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of amino acids to fill between contigs as well as the number of total errors will
vary from protein scaffold to protein scaffold. For this reason, and because we are
interested in comparing our results to the up-to-date sequence-based approach
described in [7], we generate random protein scaffolds from our target protein
sequence. Note that, for validation purpose, we know our target sequence that
we are constructing.

We generate eleven new protein scaffolds using combinations of three values
for errors percentage (20%, 30%, and 40%) and four values (4, 6, 8, 10) for the
number of contiguous gaps size in each scaffold. To maintain realistic artificially
generated protein scaffolds, we split the percent error into a ratio of 60/40 for gap
and non-gap errors respectively, which roughly corresponds to the ratio present
in the protein scaffold produced by [5].

Once the eleven protein scaffolds are generated, we collect training data by
querying the National Center for Biotechnology Information (NCBI) Protein
BLAST server to retrieve the top 1000 most similar reference proteins [6]. Table 1
shows each training dataset and the range of percent identical similarity in the
returned reference proteins. The protein scaffolds with smaller values for refer-
ence similarity are likely to have worse results, since the training data will be
based on less similar reference proteins.

Table 1. Generated Protein Scaffolds and Training Similarity

ID # Contiguous Gaps % Incorrect Reference Similarity

1 6 20% 80.4% - 68.2%

2 8 20% 87.8% - 70.9%

3 10 20% 92.5% - 73.9%

4 4 30% 75.7% - 64.0%

5 6 30% 71.4% - 61.2%

6 8 30% 80.2% - 62.3%

7 10 30% 71.2% - 57.7%

8 4 40% 88.1% - 65.1%

9 6 40% 68.2% - 60.1%

10 8 40% 68.2% - 60.6%

11 10 40% 67.4% - 53.5%

5 Results and Comparison

We compare the performance of our proposed model with the recently developed
hybrid CNN-LSTM [7] in terms of gap filling accuracy and full sequence accu-
racy. The gap filling accuracy is computed by dividing the number of correct
predictions on missing gaps by the number of missing gaps in the scaffold, where
we use the target sequence as a ground truth sequence. The full sequence accu-
racy is the percentage of one-to-one matches between the full prediction and the
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target protein. Note that the CNN-LSTM model only predict the missing amino
acids in the gaps. While our proposed denoinsing autoencoder model not only
predict the missing amino acids in the gaps but also it has an ability to correct
the amino acids in the scaffolds which is obtained from bottom-up and top-down
methods. Also, in the bottom-up and top-down methods, it cannot distinguish
the same weight amino acids I and L. However, our proposed model is able to
correctly identify both I and L in the predicted sequence.

Table 2. The CDA Hyperparameters

learning rate 3.061E-4

dropout percent 0.50

bridge filters 160

conv filters1 46

conv filters2 90

conv filter size1 5

conv filter size2 9

bridge filter size 5

final filter size 7

kmer size 15

noise percent 40%

5.1 Results on the MabCampath Scaffold

We run both our proposed CDA and the CNN-LSTM based model [7] discussed
in Sect. 2 on the original MabCampath scaffold. Both models did not appear to
display any overfitting. Figure 5 shows training and validation accuracy for both
models, and Fig. 6 shows training and validation losses for both models.

We also display the predictions for both the CDA and the CNN-LSTM models
on the original scaffold protein in Fig. 4. In this figure, the green colored amino
acids are correctly predicted amino acids and the red colored amino acids are
incorrectly predicted amino acids from both CDA and CNN-LSTM models. From
our proposed model, we also achieve 100% gap filling accuracy as the CNN-
LSTM model produced in [7]. While for the full sequence accuracy, our model
obtain 95.32% accuracy compared with the target sequence which outperforms
the CNN-LSTM model’s 89.7% accuracy [7].

The non-gap accuracy, which is the percentage of correct predictions on
non-gap region in the protein scaffold with respect to the target sequence. The
non-gap accuracy will always be 0% for the sequence-based approach, since the
sequence-based approach cannot in principle attempt to correct non-gap errors.
On the other hand, since the CDA imputes the full protein sequence, which is
taken as the prediction for all amino acids, the autoencoder may at times incor-
rectly change amino acids that should not have been altered. It is for this reason
that we display the full sequence accuracy.
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Fig. 4. MabCampath Protein Scaffold Predictions from CDA and CNN-LSTM Models

Fig. 5. CDA and CNN-LSTM Training and Validation Accuracies

5.2 Results on Simulation Datasets

To further demonstrate the performance of our proposed CDA and CNN-LSTM
[7] model, we test both models on the generated scaffolds as described in Sect. 4.3.
The CDA outperforms the sequence-based CNN-LSTM approach on 10 out of
the 11 datasets in terms of full sequence accuracy. The chart in Fig. 7 compares
the full-sequence accuracies. Our proposed CDA model has a better prediction
accuracy for full sequence comparison with the target sequence. The main reason
is that CDA is able to predict the missing amino acids in the gaps, also it can fix
the errors in the non-gaps regions of the constructed scaffold. While CNN-LSTM
model does not have such capability. It only focus on predicting the missing
amino acids in the gaps of the scaffold. The CNN-LSTM model approach cannot
in principle correct non-gap errors, so the non-gap accuracy is always 0%. The
CDA model, on the other hand, suffers from the deficiency that since it outputs
a full sequence to be used for its full prediction, it may inadvertently change
amino acids that should not be changed. In fact, on the one generated scaffolds
(scaffold #9), the CNN-LSTM model achieves higher full sequence accuracy. The
reason the lower full sequence accuracy of CDA is merely that the CDA changes
too many amino acids that should have remained the same.
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Fig. 6. CDA and CNN-LSTM Training and Validation Loss

Fig. 7. A Comparison Result Between CDA and CNN-LSTM on Simulation Datasets

6 Conclusion

De novo protein sequencing from mass spectrometry data is still a hard problem
in proteomics. Current state-of-the-art approaches are still unable to completely
sequence proteins accurately. In this paper, we show that we can apply deep
learning methods to aid in a final step in de novo protein sequencing, namely fill-
ing gaps in the protein scaffold. Moreover, we have shown that our CDA model is
able to perform this task more accurately than the sequence-based approach [7],
which also outperforms the existing combinatorial algorithms based on dynamic
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programming, local search and greedy methods described in [4]. The advantage
of this approach is that it is far simpler once the model is built to perform the
inference needed to fill the gaps. This simplicity avoids the potential deficiency
we identified with the sequence-based approach that predicts one amino acid
after another. We conclude that if the constructed scaffold with higher accuracy
and smaller gaps, the deep learning based approaches can produce more higher
accuracy on protein sequencing predictions. For the future work, we will test
our model on the more real protein scaffold dataset and explore other machine
learning models for the protein sequencing problem.
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Abstract. Ever since single-cell sequencing (scDNA-seq) was coined
‘method of the year’ in 2013, it has provided many insights into the
evolution of tumors, viewed as a branching process of accumulating can-
cerous mutations that initiated with a single driver mutation — a model
of clonal evolution which has been theorized almost half a century ago
(Nowell, 1976). With this, is seen an explosion of methods for inferring
the histories of such evolution, often in the form of a phylogenetic tree,
from single-cell sequencing data. While the first methods modeled such
evolution as an accumulation of point mutations (SNVs), copy num-
ber aberrations (CNAs, i.e., duplications or deletions of large genomic
regions) are an important factor to consider. As a result, later methods
began to bolster cancer phylogeny inference with bulk sequencing data,
to account for CNAs. Despite the dozens of such inference methods avail-
able, there still does not exist much in the form of a unified benchmark
for all such methods.

This paper moves to initiate such a benchmark, which can be built
upon, by proposing a simulator which models both SNVs and CNAs
jointly in generating an evolutionary scenario which can be interpreted
as a scDNA-seq/matched bulk sample pair. The simulator models the
accumulations of SNVs, and the duplication or deletion of chromosomal
segments. We test this simulation on three methods: (a) a method which
accounts for SNVs only, and under the infinite sites assumption (ISA),
(b) a second more general method which models only SNVs, but allows
for relaxations to the ISA, and (c) a third most general method which
accounts for both SNVs and CNAs (and violations to the ISA). Results
are consistent with the generality of these methods. This work is a step
in the direction of developing a de-facto benchmark for cancer phylogeny
inference methods.

Keywords: single-cell sequencing · tumor phylogeny ·
single-nucleotide variants (SNVs) · copy number aberrations (CNAs) ·
benchmarking

1 Introduction

Cancer is a complex disease driven by genomic alterations that result in
uncontrolled cell growth and spread [27,34]. These alterations accumulate
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 530–540, 2023.
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non-randomly, leading to diverse cancer cell populations evolving over time
[2,29], see Fig. 1. Understanding cancer’s evolutionary dynamics is vital for
effective therapies targeting specific genomic changes [13,26]. Genomic alter-
ations, including copy number aberrations (CNAs) and single nucleotide varia-
tions (SNVs), play critical roles in cancer progression [1,3,20,22]. CNAs involve
changes in chromosome copy numbers, causing imbalances that disrupt genes
and promote cancer [35]. SNVs, altering individual DNA sequence nucleotides,
impact gene function and cellular pathways [5,15].

Fig. 1. The evolution of cancer progression

Cancer progression follows distinct patterns in CNAs and SNVs accumu-
lation [18,36]. Genomic changes occur stepwise, building on each other, lead-
ing to diverse cancer cell populations [36]. This diversity enables cancer cells
to adapt, survive, and resist therapies [30]. Researchers employ computational
algorithms and statistical models to reconstruct cancer’s phylogenetic tree and
analyze CNAs and SNVs from biopsy-derived tumor samples [11,19]. The goal is
to comprehend tumor evolution, relationships among cell populations, and drug
resistance emergence [4]. The cancer phylogenetic tree construction considers
CNAs and SNVs from parent to child nodes, modeling dynamic genome changes
during cancer evolution [33,38]. Understanding CNAs and SNVs interplay is
crucial for targeted therapies [31]. Identifying key genetic changes driving tumor
growth and metastasis enables precise, effective treatments [14].

Despite various methods [6,8,16,24,33,38] to reconstruct tumor phylogenies
from single-cell and bulk sequencing, a unified benchmark is lacking. This bench-
mark is crucial for tool comparison and assessment. To address this gap, a sim-
ulator incorporating CNAs and SNVs was developed. Well-known phylogenetic
tree reconstruction methods were evaluated using simulated data. Results indi-
cate the simulator captures realistic cancer progression dynamics involving CNAs
and SNVs. The contributions include introducing a phylogenetic tree benchmark
through simulation, evaluating established tools on this benchmark, and showing
consistent results aligning with expectations.

This paper is structured as follows: Sect. 2 outlines related work, Sect. 3
presents the proposed approach, Sect. 4 describes the experimental setup, Sect. 5
presents and discusses results, and Sect. 6 concludes and suggests future work.
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2 Related Work

Research studies have focused on understanding the complex interplay between
copy number aberrations (CNAs), single nucleotide variations (SNVs), and can-
cer progression [3,9,23]. The aim is to unravel the mechanisms driving cancer
development and evolution. To explore cancer dynamics, computational algo-
rithms and statistical models have been developed for reconstructing cancer phy-
logenetic trees [19,24,32], considering CNAs and SNVs’ roles in shaping tumor
genomes [33,38]. Evaluating these methods often necessitates known ground
truth. Synthetic data with known ground truth has emerged as a popular app-
roach for assessing method performance, providing an effective alternative for
accuracy evaluation. SCSsim, based on MALBAC, simulates single cells intro-
ducing SNVs, indels, and CNAs [37]. However, it lacks phylogenetic tree simula-
tion, limiting its use for studying cancer evolution. SCSIM simulates both single
cells and bulk data, yet lacks phylogenetic tree representation [12], hindering
the portrayal of cell relationships during cancer progression. SimSCSnTree gen-
erates synthetic single-cell DNA sequencing data, incorporating CNVs and SNVs
in cancer cells [25]. However, the tool’s models lack detailed explanations and
its adoption seems limited.

3 Proposed Approach

Generating a cancer progression tree of Copy Number Aberrations (CNAs) and
Single Nucleotide Variations (SNVs) is a computational model used to represent
the evolutionary history of a tumor. It models how cancer cells acquire genomic
alterations over time, leading to disease progression and heterogeneity. Here, we
design a simulator which generates such trees, which can be used to benchmark
tumor phylogeny reconstruction methods.

The simulator utilizes a random process to generate a random tree that
represents the evolutionary history of a tumor, considering the Copy Number
Alterations (CNAs) and Single Nucleotide Variations (SNVs). To begin, we ini-
tialize a list of Copy Number Profiles (CNPs), which consists of two sublists (for
each allele of the human diploid chromosome), see Fig. 2 (a). These sublists are
populated with randomly chosen elements representing SNVs on the particular
alleles. This initialization process is performed in a separate function.

Next, we employ Algorithm 1 to generate a random tree, Fig. 2 (b). This
algorithm takes a parameter n, indicating the desired number of nodes in the
tree. It starts by creating a root node and then iteratively adds new nodes with
random parent nodes until the specified number of nodes is reached. The algo-
rithm extracts the edges from the resulting tree structure and returns them as a
list of tuples, where each tuple represents an edge between a parent and its child
node. Then, we initialized a dictionary that represents the cancer progression
tree with information about the parent-child relationships and the CNPs (each
containing some SNVs) associated with each node, see Algorithm 2.

Algorithm 2 lines 10 and after outline the subsequent steps, which involve
iterating through the children of nodes(parent) specified by the node(key) in
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the info dictionary. For each child node, an empty list φ is initialized. Iterations
through the list values of the parent node’s lists are made. A random operation
(addition, deletion, or no-change) is then applied, these operations introduce
variations in the copy number. Depending on the option, a corresponding func-
tion (addition, deletion, or nochange) is called to modify the copy number, which
is then appended to the modified φ and in turn updated to the child node’s lists
using the values from the updated φ. This operation is done recursively on each
child node to perform the same process down the hierarchy. After the process
is completed the info dict is updated with the generated copy numbers for each
node.

For example, in Fig. 2 (c), the first bin b1 undergoes the deletion option,
resulting in the removal of one list and its corresponding mutations. On the
other hand, the second and third bins, b2 and b3, experience the addition option,
where new point mutations are introduced, and a new list is appended to model
a CNA.

Figure 3 provides an example of a final tree that reflects the updated CNPs
resulting from the process of CNAs and the accumulation of SNVs.

Algorithm 1. RandomTreeGenerator
Input: number of nodes n
Output: tree, edges

1: tree ← Node(0) � creating the root node of the tree with a value of 0
2: nodes ← [tree] � initializing the nodes list with the root node
3: for i ← 0 to n do
4: parent ← random.choice(nodes) � parent randomly selected from list
5: node ← Node(i, parent=parent) � node created and attached to parent
6: nodes.append(node) � newly created node added to list
7: end for
8: edges ← tree.edges � extracting the edges from the given tree
9: return tree, edges

4 Experimental Setup

The experimental pipeline was built using Snakemake [28]. The tool and the
pipeline are available online for reproducibility.1

4.1 Simulating SCS Data

With our tool, we simulated a total of 50 trees, each with n = 20 nodes, where
each tree was generated considering m = 2 bins. At the initial stage, the number
of copies was set to two, while the number of SNVs in each new step was set to
one. This results in an average number of total mutations of 80 (20 nodes × 2

1 https://github.com/murraypatterson/scDNA-seq-sim.

https://github.com/murraypatterson/scDNA-seq-sim
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Algorithm 2. TreeInfoGenerator
Input: edges
Output: info � the information dictionary of tree

1: info ← {}
2: for i in len(edges) do
3: info[i] ← {‘parent’:‘’,‘children’:[],‘lists’:[]} � updating dictionary by keys
4: end for
5: for e in edges do
6: info[e[0]][‘children’].append(e[1]) � assigning second item of edge list as child
7: info[e[1]][‘parent’]=e[0] � assigning first item of edge list as parent
8: end for
9: function EvaluateCNPs(node = 0)

10: if length of info[node][”children”] > 0 then
11: for childNode in info[‘node‘][‘children’] do
12: φ ← [] � Initialize CNPs lists
13: for list in info[childNode][‘lists’] do
14: option ← random.choice � randomly choosing an option
15: if option is addition then
16: New lists ← addition(list)
17: else if option is deletion then
18: New lists ← deletion(list)
19: else if option is no change then
20: New lists ← nochange(list)
21: end if
22: φ.append(New lists) � appending the updated CNPs list
23: end for
24: info[childNode][”lists”]= φ
25: EvaluateCNPs(node = childNode)
26: end for
27: end if
28: end function
29: return info � returning info dictionary of the tree with updated CNPs

bins × 2 alleles with one SNV added for each allele, and given that an addition
is as likely as a deletion), which was the maximum number we could consider
for each phylogeny inference tool to complete in a reasonable amount of time (of
24 h on a single input).

We then attached 100 cells randomly to the 20 copy number profiles (CNPs)
of each tree, each cell being “sampled” from the clone represented by the CNP
— similarly, 100 was the maximum number of cells we could consider to ensure
timely phylogeny inference. To simulate a real-case scenario, we then added
noise to these 100 cells according to typical false negative (α = 0.1), false posi-
tive (β = 10−4) and dropout (μ = 0.2) rates [6,16,24]. Note that a false negative
constitutes flipping a non-zero entry to zero, a false positive (which is rare) flip-
ping a zero entry to one (the most common multiplicity), and a dropout setting
the entry to unknown (?). The process resulted in essentially a mutational (SNV)
profile — a matrix of 100 cells by 80 mutations (on average) with multiplicities.
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Fig. 2. The generation of CNAs and SNVs from a parent node to a child node. (a)
each chromosomal “bin” bi has two alleles, each with a point mutation. (b) a random
tree topology is generated. (c) with respect to its parent 0, in this child 2, the bin b1
undergoes a deletion of the second copy [2] (and accumulation of SNV 1 in copy [6]),
bin b2 undergoes an addition: duplication of copy [8] (and accumulations of SNVs 7, 10
and 11 in all existing and newly created copies), and bin bm undergoes a duplication
of copy [9] along with added SNVs in each copy).

Fig. 3. Cancer progression tree visualization with CNAs and SNVs

Since the tree represents the underlying ground truth process which generated
this observed mutational profile, the goal is then to see how well different cancer
phylogeny inference methods infer such a tree.

4.2 Cancer Phylogeny Inference Methods

To evaluate our proposed system, we employed three methods that utilize some
combination of CNAs and SNVs for phylogeny tree reconstruction. These meth-
ods were chosen, because they follow a trajectory of increasing generality in
terms of the data considered and/or models used. The details of each method
are as follows:

SCITE. [17] is a computational algorithm that deduces a tumor’s evolutionary
history from single-cell mutation profiles using a flexible Markov chain Monte
Carlo (MCMC) approach. It considers the noise and incompleteness of these
profiles due to experimental factors and sequencing errors. Although SCITE
constructs a phylogeny based solely on mutational profiles, without multiplicity
information, it addresses noise-related issues, partially accounting for the effects
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of copy number aberrations (CNAs). It’s particularly valuable for studying tumor
heterogeneity due to its noise-handling capabilities and accurate reconstructions.

SASC. [7] (Simulated Annealing Single-Cell inference) is a computational
method designed to infer cancer progression from Single-Cell Sequencing (SCS)
data while considering mutation losses using the Dollo-k model. The goal of
SASC is to reconstruct the evolutionary trajectory of cancer cells and identify
the sequence of mutational events that occur during tumor development. SASC
makes use of only the mutational profiles (without multiplicities), however it
attempts to build a Dollo-k phylogeny [10] (and also allowing for some noise).
Since a Dollo-k phylogeny allows for some backmutations (k backmutations per
site, to be precises), this more explicitly accounts for the artifacts [21] of CNAs.

PhISCS. [24] (Phylogeny Inference using Subclonal Copy number and Single-
cell sequencing data) is a computational method that reconstructs tumor phylo-
genies by integrating single-cell and bulk sequencing data. It combines single-cell
data for SNVs and bulk data for CNAs to capture tumor heterogeneity and sub-
clonality. PhISCS is the most comprehensive among methods like SCITE and
SASC, utilizing mutational profiles (without multiplicities) along with CNAs
information from matched bulk sequencing. Its model accommodates mutational
loss in the phylogenetic tree if supported by CNAs in the bulk sample.

4.3 Running the Experiments

Since the simulation process resulted essentially in mutational (SNV) profiles
with multiplicities, we needed to transform this into the appropriate input for
each tool. To produce the mutational profile (without multiplicities) which is
taken as input by all methods, we simply cast all multiplicities to 1 in our
simulated mutational profiles (with multiplicities), i.e., by setting all entries > 1
to 1, retaining absence (0) and dropout (?) entries. To produce the matched
bulk sample for PhISCS, following the format in the example on its GitHub
webpage2, we set column MutantCount to the multiplicity of the mutation in
the simulated profile, and ReferenceCount to 5 times the maximum multiplicity
of any mutation, to ensure a large enough reference readcount (see Snakemake
pipeline for details).

Then, for SCITE, we ran it with parameters α = 0.1, β = 10−4 with a
MCMC chain length -l <INT> of 900000 following its GitHub webpage3. For
SASC, we ran it with parameters α = 0.1, β = 10−4, k = 1 (allowing for a
Dollo-1 phylogeny), and d = 5, the expected number of total mutational losses
in the tree, according to [6].

2 https://github.com/sfu-compbio/PhISCS.
3 https://github.com/cbg-ethz/SCITE.

https://github.com/sfu-compbio/PhISCS
https://github.com/cbg-ethz/SCITE
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4.4 Evaluating the Tree Inference

Another reason for choosing these methods is that they are easy to use, and
output directly a tree in Graphviz format4. This allowed comparison to the
simulated ground truth tree from whence the input data were generated. To
assess the accuracy, (TP +TN)/(TP +TN +FP +FN), we used the Ancestor-
descendant accuracy and the different lineages accuracies, which compute the
four rates as follows:

Ancestor-descendant accuracy. For each pair of mutations in an ancestor-
descendant relationship in the ground truth tree, it is a true positive (TP ) if
it is also conserved in the interred tree, and a false negative (FN) otherwise.
Conversely, if a pair of mutations are not in an ancestor-descendant relationship
in the ground truth tree, but are in such a relationship in the inferred tree, it is
a false positive (FP ), otherwise it is a true negative (TN).

Different lineages accuracy. This measure is analogous to the ancestor-
descendant accuracy, except for that it concerns pairs of mutations which are
in different lineages. Note that a pair of mutations is either in an ancestor-
descendant relationship or a different lineages relationship.

5 Results and Discussion

In this section, we first report some statistical properties of the data simulated
by our tool, and then the results of evaluating SCITE, SACS and PhISCS on
this simulation.

Properties of the Simulated Data. We first mention a few statistical prop-
erties of the data that were generated with our simulator. A mutational profile
with multiplicities had 100 cells (by design) and an average (± std.dev.) of 79.74
(±23.91) mutations, and had mutational multiplicities ranging between 2 and 5.
The average number of mutational losses (mutations which are present in some
copy number profile in the parent, but absent in the child) was 21.60 (±5.90)
on average (± std.dev.), which is rather high. Finally, k (in the Dollo-k model,
that is, the maximum number of losses of a particular mutation on indepen-
dent branches of the tree) was 3 on average, which is also rather high. Note
that this can be tuned by adjusting the probability that a deletion operation
occurs (Sec. 3). Finally, while the simulator models losses, it does not model
recurrences (the apparition of the same mutation on independent branches of
the tree), however, this could be easily added as well.

Phylogeny Inference Methods. Of the 50 inputs, 5 of them could not com-
plete with PhISCS in the 24-hour time limit imposed, none of which had outly-
ing statistical properties, of those reported above. We report all results on the
remaining 45 inputs. Figure 4 depicts the distribution of the ancestor-descendant
and different lineage accuracies, respectively, of the methods on the 45 trees in

4 https://graphviz.org/.

https://graphviz.org/
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the form of box plots. Not surprisingly, the most general method, PhISCS, which
uses information from both SNVs and CNVs is able to perform as well as, or
better than, the other two methods. It should be noted, however, that PhISCS
incurred much higher runtimes than the other two methods as well. Finally, while
it is not surprising that SASC performed among the best on the different lineages
accuracy, it is surprising that it performed less well on the ancestor-descendant
accuracy measure. This could be due to the elevated number of losses (and a k of
3 on average). Because of this, we also ran SASC with parameter d unset (which
is unbounded by default), and the trees it inferred had an average number (±
std.dev.) of 22.18 (±7.82) losses, which is quite close to the true number of losses
in ground truth. The ancestor-descendant and different lineages accuracies did
not change much in this case, however.

(a) (b)

Fig. 4. The distribution of Ancestor-Descendant (resp. Different lineages) accuracy of
each tree inference method on the datasets in the form of a box plot.

6 Conclusion

In this study, we present a novel simulator for cancer phylogenetic trees. Our
approach aims to accurately simulate the progression of cancer by incorporat-
ing patterns of CNAs and SNVs. We evaluate the effectiveness of our proposed
method by utilizing the simulated trees as input for three well-known phyloge-
netic tree reconstruction methods. This allows us to assess the performance and
reliability of our simulator in capturing the complex dynamics of cancer progres-
sion. Future work can focus on the integration of other genomic alterations such
as structural variants, epigenetic changes, and gene fusions which play signifi-
cant roles in cancer progression. A more extensive experimental study will also
be carried out. We believe this is a start in the right direction of benchmarking
cancer phylogeny inference from scDNA-seq/bulk sequencing data.
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28. Mölder, F., et al.: Sustainable data analysis with snakemake. F1000 Res. 10 (2021).
pMCID: PMC8114187

29. Nowell, P.C.: The clonal evolution of tumor cell populations: acquired genetic labil-
ity permits stepwise selection of variant sublines and underlies tumor progression.
Science 194(4260), 23–28 (1976)

30. Proietto, M., et al.: Tumor heterogeneity: preclinical models, emerging technolo-
gies, and future applications. Front. Oncol. 13, 1164535 (2023)

31. Ren, X., Kang, B., Zhang, Z.: Understanding tumor ecosystems by single-cell
sequencing: promises and limitations. Genome Biol. 19(1), 1–14 (2018)

32. Sashittal, P., Zhang, H., Iacobuzio-Donahue, C.A., Raphael, B.: ConDoR: tumor
phylogeny inference with a copy-number constrained mutation loss model. bioRxiv,
version 1 (2023)

33. Satas, G., et al.: Scarlet: single-cell tumor phylogeny inference with copy-number
constrained mutation losses. Cell Syst. 10(4), 323–332 (2020)

34. Sperelakis, N.: Cell physiology sourcebook: a molecular approach. Elsevier (2001)
35. Tan, E.S., et al.: Copy number alterations as novel biomarkers and therapeutic

targets in colorectal cancer. Cancers 14(9), 2223 (2022)
36. Vergara, I.A., et al.: Evolution of late-stage metastatic melanoma is dominated by

aneuploidy and whole genome doubling. Nat. Commun. 12(1), 1434 (2021)
37. Yu, Z., Du, F., Sun, X., Li, A.: SCSsim: an integrated tool for simulating single-cell

genome sequencing data. Bioinformatics 36(4), 1281–1282 (2020)
38. Zaccaria, S., Raphael, B.J.: Characterizing allele-and haplotype-specific copy num-

bers in single cells with chisel. Nat. Biotechnol. 39(2), 207–214 (2021)

https://doi.org/10.1101/gr.234435.118
http://genome.cshlp.org/content/29/11/1860.abstract


CHLPCA: Correntropy-Based Hypergraph
Regularized Sparse PCA for Single-Cell Type

Identification

Tai-Ge Wang, Xiang-Zhen Kong, Sheng-Jun Li, and Juan Wang(B)

School of Computer Science, Qufu Normal University, Rizhao 276826, China
wangjuansdu@163.com

Abstract. Over the past decade, high-throughput sequencing technologies have
driven a dramatic increase in single-cell RNA sequencing (scRNA-seq) data. The
study of scRNA-seq data has widened the scope and depth of researchers’ under-
standing of cellular heterogeneity. A prerequisite for studying heterogeneous cell
populations is accurate cell type identification. However, the highly noisy and
high-dimensional nature of scRNA-seq data poses a challenge to existing methods
to further improve the success rate of cell type identification. Principal compo-
nent analysis (PCA) is an important data analysis technique that is widely used to
identify cell subpopulations. On the basis of PCA, we propose correntropy-based
hypergraph regularized sparse PCA (CHLPCA) for accurate cell type identifi-
cation. In addition to using correntropy to reduce the effect of noise, CHLPCA
also considers higher-order relationships between samples by constructing the
hypergraph, which compensates for the lack of local structure capture ability of
PCA. Furthermore, we introduce the L2,1/5-norm into the model to enhance the
interpretability of principal components (PCs), which further improves the model
performance. CHLPCA has superior clustering accuracy and outperforms the best
comparative method by 5.13% and 8.00% for ACC andNMImetrics, respectively.
The results of clustering visualization experiments also confirm that CHLPCA can
better perform the cell type recognition task.

Keywords: Cell Type Identification · Correntropy · Principal Component
Analysis · Hypergraph Regularization · Sparsity Constraint

1 Introduction

In recent years, single-cell RNA sequencing (scRNA-seq) technology has provided a
new perspective for studying biological questions at the single-cell level, substantially
advancing our understanding of biological systems. The primary utility of scRNA-seq
technology is to detect cell heterogeneity. The prior requirement for studying heteroge-
neous cell populations is accurately identifying the cell type [1]. Cell type identification
is an unsupervised clustering problem, and numerous clustering methods have been pro-
posed for analyzing scRNA-seq data [2–4]. However, existing clustering methods lack
the means to cope with the high-dimensional and noisy nature of scRNA-seq data, so
developing new algorithms is necessary and challenging.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Principal component analysis (PCA) [5] is a commonly used technique for dimen-
sionality reduction; it maps high-dimensional data into a low-dimensional subspace
while preserving the most important information from the original data. PCA has a
wide range of applications in various fields. In bioinformatics, to discover as many new
cell types as possible, Lall et al. proposed location-sensitive PCA (LSPCA) [6]. Pier-
son et al. presented ZIFA based on probabilistic PCA (PPCA) for analyzing the impact
of dropout events in scRNA-seq data [7]. However, these PCA-based methods cannot
further explore the local information hidden in nonlinear manifolds, which limits the
model performance. Furthermore, PCA-based methods use the Frobenius norm as the
default error function. The sensitivity of the Frobenius norm to noise and outliers in the
data limits the performance of the model. In contrast, correntropy [8] considers the joint
distribution of the data, which allows correntropy-based PCA methods to capture the
underlying structure even in the case of noise and outliers [9].

The sparsity of the model is also a vital factor to be considered. The principal com-
ponents (PCs) of PCA contain considerable redundant information, which makes PCs
difficult to interpret. The sample features in sparse PCs are more distinct and are more
likely to be clustered together, which provides a potential performance enhancement to
the model. Therefore, obtaining sparse PCs is also crucial for PCA-based methods.

In this paper, we consider integrating correntropy, hypergraph regularization, and
the L2,1/5-norm into PCA and propose CHLPCA. Correntropy makes our model more
robust and more effective in dealing with noise and outliers in the data. Hypergraph
regularization enables our model to consider higher-order geometric information of the
data and avoid the loss of valuable information when mining the local information of the
data, thus producing a more accurate sample matrix and achieving accurate clustering.
By imposing the sparsity constraint on the sample matrix of the model, we remove a
large amount of redundant information from the PCs and improve the interpretability
of the PCs. The sparse PCs provide potential performance improvements to our model.
The experimental results show that the overall performance of CHLPCA has significant
advantages over other PCA-based methods and various advanced single-cell clustering
methods.

2 Related work

2.1 Principal Component Analysis

PCA is a matrix decomposition technique, and it expects to maximize the data variance
during the mapping process to make the distribution of data points in the projection
dimension as spread out as possible, thus retaining the most important information of
the original data. Consider a data matrix X = (x1, . . . , xn) ∈ Rm×n, where m denotes
the number of features and n represents the number of samples. The Frobenius norm of
the matrix X is denoted as ‖X‖F . The objective of PCA is to determine the product of
matricesQT = (q1, . . . , qk) ∈ Rk×n andU = (u1, . . . , uk) ∈ Rm×k to makeX ≈ UQT .
The optimization problem that denotes the conventional PCA can be stated as follows:

argminU,Q

{∥∥∥X − UQT
∥∥∥2
F

}
s.t.QTQ = I. (1)
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2.2 Hypergraph Regularization

As an improvement to the graph, the hypergraph is more flexible. Hypergraph allows
its edges to connect multiple vertices, which makes it possible to represent higher-order
data relationships. Moreover, the hypergraph can capture more information about node
relationships and preserves complex data structures and relationships.

The data matrix X can be described as a hypergraphG = (V,E,W), where V is the
set of vertices in the hypergraph, and E is the set of hyperedges. W is the weight set of
the hyperedge, and the weight of each hyperedge Wi can be stated as follows:

Wi =
∑
vj∈ei

exp
(
−ς−2

∥∥vi − vj
∥∥2
2

)
, (2)

where ς represents the average distance among all vertices. Next, the correlation matrix
H of the hypergraph G can be defined as

H(v, e) =
{
1, if v ∈ e,

0, otherwise.
(3)

Then, we can define the degree of a vertex d(v) as follows:

d(v) =
∑
e∈E

w(e)H(v, e), (4)

where w(e) is the corresponding weight of hyperedge e.
Moreover, δ(e) = ∑

v
H(v, e), δ(e)e denotes the degree of one hyperedge e, which

is determined by the quantity of vertices contained in e. Dv is the vertex degree matrix
of which values are related to d(v). De is the diagonal matrix of which values are
related to δ(e). Ultimately, we obtain the hypergraphLaplacianmatrix containing higher-
order relationships between the samples in the data matrix, which can be constructed as
LH = Dv − HW(De)

−1HT . The hypergraph regularization is written as tr(QTLHQ),
and tr(•) is the trace function of the data matrix. This form of regularization allows
learned PCs by the model to more realistically reflect the intrinsic structure of the data,
thus allowing the model to identify cell types more accurately.

2.3 Correntropy

Correntropy is ametric for assessing the nonlinearity and local similarity of random vari-
ables. Correntropy was initially applied to information theoretic learning (ITL) analysis
and was gradually widely used in bioinformatics [10] due to its excellent noise reduc-
tion capability. The correntropy of x and y can be described by C(x, y) = E

[
k(x, y)

]
,

where k(·, ·) is the kernel function satisfyingMercer theory andE[·] is the mathematical
expectation. In this paper, we employ the Gaussian kernel as the kernel function of the
correntropy, which is formulated as

kσ (x, y) = g(x − y) = exp

(
− (x − y)2

2σ 2

)
, (5)
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where σ is the parameter of kernel bandwidth, and σ > 0. In practical applications, it is
generally difficult to know the joint distribution function of the random variables x and
y. Therefore, we calculate the correntropy of the sample in the following way:

Cσ (x, y) = 1

n

n∑
i=1

g(xi − yi). (6)

In this way, the maximum correntropy criterion (MCC) can be obtained by maxi-
mizing the correntropy in (6). Different from the global measure—Frobenius norm, the
correntropy is local and more robust while coping with data including outliers and noise.
Thus, PCA methods incorporating MCC typically have better performance.

2.4 L2,1/5-norm Constraint

Given a data matrix X = (x1, . . . , xn) ∈ Rm×n, the Lr,p-norm of X can be defined as

‖X‖r,p = (∑m
s ‖xl‖pr

) 1
p , where xl represents the l-th row vector of X. The Lr-norm of

vector x is denoted as ‖X‖r . When r = 2 and p = 1, ‖·‖r,p is converted to theL2,1-norm.
In our previous work [11], we used the L2,p-norm to obtain sparse PCs and fixed the
value of p to 1/5 by experiments. Compared to the L2,1-norm, the L2,1/5-norm promotes
model sparsity more aggressively due to its smaller p-value.

3 Methods

3.1 The Objective Function of CHLPCA

To overcome the noisy and high-dimensional nature of scRNA-seq data, we propose
a novel approach, CHLPCA, to identify cell types from scRNA-seq data accurately
and efficiently. We replace the Frobenius norm with correntropy in the error function
of CHLPCA to enhance the robustness of the model. To enable the proposed method
is able to explore higher-order geometric relationships within the data, we introduce
hypergraph regularization in the model. Moreover, we apply the L2,1/5-norm constraint
to the sample matrix Q to alleviate the problem of dense PCs in PCA, thus reducing
the negative impact of redundant information on PCs and making it easier for cells with
similar characteristics to cluster together.

Figure 1 illustrates the research framework of CHLPCA. The objective function of
CHLPCA is as follows:

argminU,Q

m∑
i=1

g

⎛
⎝

√√√√ n∑
j=1

(
xij −

(
uqT

)
ij

)2⎞⎠ + αTr
(
QTLHQ

)
+ β‖Q‖1/52 . (7)

As shown in (7), α and β are utilized to balance the weights of the hypergraph regu-
larization and the L2,1/5-norm constraint, respectively. LH is the hypergraph Laplacian

matrix. ‖Q‖1/52 is the sparsity constraint imposed on the sample matrix Q.
The equation in (7) is not only nonquadratic, but also nonconvex. Therefore, it is

quite challenging to optimize the solution directly. We apply the half-quadratic (HQ)
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Fig. 1. The research framework of CHLPCA.

technique to solve the optimization problem [12]. By using the properties of convex
conjugate functions, the convex conjugate function φ(·) of g(x) is denoted as

g(x) = max
e

( e

σ 2
‖x‖2 − φ(e)

)
, (8)

for a given x, the maximum value can be obtained when e = −g(x).
Then, we incorporate the concept presented in (8) into the objective function of

CHLPCA (7), and we can obtain the following equation:

argmin
U,Q

m∑
i=1

g

⎛
⎝− ei

σ 2

⎛
⎝

√√√√ n∑
j=1

(
xij − (

uqT
)
ij

)2⎞⎠ − φ(ei)

⎞
⎠ + αTr

(
QTLHQ

)
+ β‖Q‖1/52 , (9)

where e = [e1, . . . , en]T stands for the auxiliary vectors of the HQ technique.
Then, by fixingU andQ, wemaximize the augmented objective functionwith respect

to e and obtain

ei = −g

⎛
⎝

√√√√ n∑
j=1

(
xij −

(
uqT

)
ij

)2⎞⎠ = − exp

⎛
⎝− 1

2σ 2

⎛
⎝ n∑

j=1

(
xij −

(
uqT

)
ij

)2
⎞
⎠

⎞
⎠,

(10)

where σ is the parameter of kernel bandwidth, commonly determined by experience.
Then, we refer to the literature [10] and gain

σ =
√√√√ 1

m

m∑
i=1

n∑
j=1

(
xij −

(
uqT

)
ij

)2
. (11)

For the fixed σ , we reformulate the augmented objective function in (10) as

argmin
U,Q

m∑
i=1

⎛
⎝− ei

σ 2

⎛
⎝ n∑

j=1

(
xij −

(
uqT

)
ij

)2
⎞
⎠

⎞
⎠ + αTr

(
QTLHQ

)
+ β‖Q‖1/52 . (12)
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3.2 Optimization of CHLPCA

By transforming the optimization problem presented in (13) into a weighted PCA prob-
lem using the HQ technique, we provide a closed-form solution for the problem that
ensures the stability of the iterations. The alternating directionmultiplier (ADM)method
[13] is used to update thematricesU andQ. Only one variable is updated at each iteration
in solving the objective function, while the other variables are fixed.

The optimization model (13) can be converted as follows:

argminU,V Tr
(
X − UQT

)
D

(
X − UQT

)T + αTr
(
QTLHQ

)
+ βTr

(
QTSQ

)
, (13)

where S = diag
{
1/10‖Q1·‖2−1/5

1/5 , . . . , 1/10‖Qn·‖2−1/5
1/5

}
, S represents the matrix of the

L2,1/5-norm. D is a diagonal matrix and its entries are

dii = − ei
σ 2 = σ−2 exp

⎛
⎝− 1

2σ 2

⎛
⎝ n∑

j=1

(
xij −

(
uqT

)
ij

)2
⎞
⎠

⎞
⎠. (14)

We summarize the process of optimization iterations in Algorithm 1.

4 Results and Discussion

To verify the effectiveness of CHLPCA, we compare CHLPCA with six popular clus-
tering algorithms on seven scRNA-seq datasets. We choose accuracy (ACC) [14] and
normalized mutual information (NMI) [15] as metrics to evaluate the performance of
these methods. Higher ACC and NMI scores indicate that the method performs better
and identifies different cell types more accurately.
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Table 1. Details of the seven scRNA-seq datasets.

Datasets Species Genes Cells Cell Types

Zheng Homo sapiens 4776 500 3

Pollen Homo sapiens 14805 249 11

Grover Mus musculus 14739 135 2

MECS Mus musculus 8989 182 3

Engel Homo sapiens 23337 203 4

Buettner Mus musculus 8989 182 3

Deng Mus musculus 12548 135 7

4.1 Datasets

We conduct experiments on seven scRNA-seq datasets [16–21]. These scRNA-seq
datasets are made up of cells with known labels, and their details are shown in Table 1.

4.2 Parameter Setting

The parameters α and β are responsible for balancing the contribution of hypergraph
regularization and the L2,1/5-norm constraint. We apply the grid search approach to
find the optimal combination of α and β on all datasets. We vary α and β in the range
of 10–5 to 105 to ensure a full search of the parameter space. Moreover, for PCA, the
determination of the optimal dimension k is crucial for cluster analysis. k represents the
number of PCs that can capture the highest amount of variance in the data. This paper
uses the gap statistic method [22] to select k. The combination of parameters is displayed
in Table 2.

Table 2. Optimal parameter setting.

Datasets α β k

Zheng 102.14 103.48 3

Pollen 101.00 103.77 11

Grover 103.00 103.00 2

MECS 101.62 101.30 3

Engel 101.95 100.00 4

Buettner 100.00 100.00 3

Deng 102.90 104.56 7
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4.3 Clustering Results

To fully demonstrate the effectiveness of our method, we compare our method to gLPCA
[23],MPSSC [2], NMFLRR [24], PgLPCA [25], SinNLRR [3], and SIMLR [4] on seven
scRNA-seq datasets. Moreover, we include the proposed model without hypergraph
regularization (CHLPCA[1]) in our experiments to study the effect of the hypergraph
structure on the performance of the model. The results are shown in Fig. 2.

Fig. 2. Heatmap of (A) ACC and (B) NMI values for all methods.

Compared with other methods, CHLPCA achieves the most satisfactory clustering
performance onmost datasets and has the highest average clustering accuracy. SinNLRR
performs best in the comparison methods. Compared with SinNLRR, the average ACC
andNMI of CHLPCA are 5.13% and 8.00% higher than those of SinNLRR, respectively.
The possible reason for this is that CHLPCA has greater noise immunity and can mine
the high-order geometric manifolds of the data. Furthermore, the overall performance of
CHLPCA is superior to that of CHLPCA[1] due to the incorporation of hypergraph reg-
ularization. This observation suggests that the introduction of hypergraph regularization
enables the model to mine complex higher-order data relationships more efficiently, thus
significantly enhancing the model’s performance. In conclusion, compared with other
clustering methods, the performance advantages of our method are obvious, and it can
better accomplish the cell type recognition task.

4.4 Clustering Visualization

The clustering visualization can reflect the information-mining ability of the model.
We apply T-distribution stochastic neighborhood embedding (t-SNE) [26] to the sample
matrix to observe the clustering performance of themodelmore visually. To fully display
the clustering effects of methods built on different techniques, we compare CHLPCA
with SinNLRR, MPSSC, gLPCA, and the original data. The visualization results are
shown in Fig. 3. “Perplexity” is a critical parameter of t-SNE to control the weight
distribution of neighboring points. We set it to the default value of 30 [27].

As shown in Fig. 3, CHLPCAeffectively clusters the three types of cells in theMECS
dataset into nonoverlapping cell clusters, and only a few data points are incorrectly
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clustered. In contrast, the results of the other methods are unsatisfactory. SinNLRR only
successfully separates two types of cells, and the third is covered. On the Engel dataset,
CHLPCA has much less overlap than the other methods. Notably, SinNLRR achieves
a slightly higher ACC value than CHLPCA on the Engel dataset. Nevertheless, in the
clustering visualization results, SinNLRR shows only two types of cells, and the other
two are covered. Overall, CHLPCA is able to classify cell types more correctly and can
better perform the task of cell type identification.

Fig. 3. Clustering visualization results.

5 Conclusion

Wepresent a novel PCAapproach in this paper, calledCHLPCA.The presented approach
reduces the negative impact of noise and outliers on the model performance by incor-
porating the correntropy. Moreover, CHLPCA uses hypergraph regularization and the
L2,1/5-norm to consider the higher-order geometric information of the data and obtain
sparse PCs, which effectively enhances the clustering performance of the algorithm.
Experimental results based on scRNA-seq data indicate that CHLPCA performs better
than existing cell type identification methods.

However, our method still has room for improvement. In future studies, we will
continue to apply various techniques to improve the performance of the method.
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(Grant Nos. 62172253).

References

1. Raman, P., et al.: A comparison of survival analysis methods for cancer gene expression
RNA-sequencing data. Cancer Genet. 235, 1–12 (2019)

2. Park, S., Zhao, H.: Spectral clustering based on learning similarity matrix. Bioinformatics 34,
2069–2076 (2018)



550 T.-G. Wang et al.

3. Zheng, R., Li, M., Liang, Z., Wu, F.-X., Pan, Y., Wang, J.: SinNLRR: a robust subspace
clustering method for cell type detection by non-negative and low-rank representation.
Bioinformatics 35, 3642–3650 (2019)

4. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis
of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416
(2017)

5. Abdi, H.,Williams, L.J.: Principal component analysis.Wiley Interdiscip. Rev.: Comput. Stat.
2, 433–459 (2010)

6. Lall, S., Sinha, D., Bandyopadhyay, S., Sengupta, D.: Structure-aware principal component
analysis for single-cell RNA-seq data. J. Comput. Biol. 25, 1365–1373 (2018)

7. Pierson, E., Yau, C.: ZIFA: dimensionality reduction for zero-inflated single-cell gene
expression analysis. Genome Biol. 16, 1–10 (2015)

8. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-
Gaussian signal processing. IEEE Trans. Sig. Process. 55, 5286–5298 (2007)

9. He, R., Hu, B.-G., Zheng, W.-S., Kong, X.-W.: Robust principal component analysis based
on maximum correntropy criterion. IEEE Trans. Image Process. 20, 1485–1494 (2011)

10. Yu,N.,Wu,M.-J., Liu, J.-X., Zheng, C.-H., Xu,Y.: Correntropy-based hypergraph regularized
NMF for clustering and feature selection onmulti-cancer integrated data. IEEETrans. Cybern.
51, 3952–3963 (2020)

11. Wang, T.-G., Shang, J.-L., Liu, J.-X., Li, F., Yuan, S., Wang, J.: Joint L2,p-norm and ran-
dom walk graph constrained PCA for single-cell RNA-seq data. Comput. Methods Biomech.
Biomed. Eng. 1–14 (2023)

12. Nikolova, M., Chan, R.H.: The equivalence of half-quadratic minimization and the gradient
linearization iteration. IEEE Trans. Image Process. 16, 1623–1627 (2007)

13. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3,
1–122 (2011)

14. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans.
Knowl. Data Eng. 17, 1624–1637 (2005)

15. McDaid,A.F., Greene,D.,Hurley,N.:Normalizedmutual information to evaluate overlapping
community finding algorithms. arXiv preprint arXiv:1110.2515 (2011)

16. Zheng, G.X., et al.: Massively parallel digital transcriptional profiling of single cells. Nat.
Commun. 8, 14049 (2017)

17. Pollen, A.A., et al.: Low-coverage single-cell mRNA sequencing reveals cellular hetero-
geneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32,
1053–1058 (2014)

18. Grover, A., et al.: Single-cell RNA sequencing reveals molecular and functional platelet bias
of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016)

19. Buettner, F., et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015)

20. Engel, I., et al.: Innate-like functions of natural killer T cell subsets result fromhighly divergent
gene programs. Nat. Immunol. 17, 728–739 (2016)

21. Deng, Q., Ramsköld, D., Reinius, B., Sandberg, R.: Single-cell RNA-seq reveals dynamic,
random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014)

22. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the
gap statistic. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 63, 411–423 (2001)

23. Jiang, B., Ding, C., Luo, B., Tang, J.: Graph-Laplacian PCA: closed-form solution and robust-
ness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3492–3498. (2011)

http://arxiv.org/abs/1110.2515


CHLPCA: Correntropy-Based Hypergraph Regularized Sparse PCA 551

24. Zhang, W., Xue, X., Zheng, X., Fan, Z.: NMFLRR: clustering scRNA-seq data by integrat-
ing nonnegative matrix factorization with low rank representation. IEEE J. Biomed. Health
Inform. 26, 1394–1405 (2021)

25. Feng, C.-M., Gao, Y.-L., Liu, J.-X., Zheng, C.-H., Yu, J.: PCA based on graph Laplacian
regularization and P-norm for gene selection and clustering. IEEE Trans. Nanobiosci. 16,
257–265 (2017)

26. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (2008)
27. Van Der Maaten, L.: Fast optimization for t-SNE. In: Neural Information Processing Systems

(NIPS) 2010 Workshop on Challenges in Data Visualization. Citeseer (2010)



Author Index

A
Abbasi, Ahtisham Fazeel 72
Adeyeha, Temitope 487
Ahmed, Sheraz 72
Ali, Sarwan 1, 16, 227, 376, 387, 442
An, Ying 85, 398
Andersen, Jakob Lykke 58, 409
Annan, Richard 518
Asim, Muhammad Nabeel 72
Ayub, Muhammad Sohaib 227

B
Banke, Sissel 409
Bansal, Mukul S. 337
Basak, Joyanta 31
Bashir, Khurram 227
Bi, Xingyu 312
Bi, Xuehua 45
Bleker, Carissa 420
Bolteau, Mathieu 431
Bourdon, Jérémie 431

C
Celms, Edgars 476
Chen, Danyang 165
Chen, Fan 150
Chen, Pin-Yu 1
Chourasia, Prakash 376, 387, 442
Comin, Matteo 202
Cui, Guosheng 136

D
Dai, Ling-Yun 178
David, Laurent 431
Dengel, Andreas 72
Deo, Nachiket 31
Dias, Zanoni 241
Duan, Xiaohong 150

E
Eriksen, Casper Asbjørn 58

F
Fagerberg, Rolf 58, 409
Farooq, Hafsa 453
Feng, Shengzhong 97
Fernandes, Francisco 509
Fertin, Guillaume 241
Flamm, Christoph 409
Freitas, Ana Teresa 509

G
Gao, Yajun 150
Grady, Stephen K. 420
Guan, Yuxia 85
Guo, Fengyi 85
Guo, Lin 398
Guziolowski, Carito 431

H
Haase, Kenneth 31
Han, Renmin 325
He, Jiayin 150
Hofacker, Ivo 267
Hossain, Md. Tofazzal 97, 351
Hou, Xiaodi 107
Hu, Jifang 150
Hu, Taiyuan 150
Huang, Huazhen 136

I
Ionov, Yurij 214

J
Jean, Géraldine 241
Ji, Detao 150
Jiang, Chunyang 45
Jiang, Haitao 292

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
X. Guo et al. (Eds.): ISBRA 2023, LNBI 14248, pp. 553–555, 2023.
https://doi.org/10.1007/978-981-99-7074-2

https://doi.org/10.1007/978-981-99-7074-2


554 Author Index

Ju, Zhen 351
Juyal, Akshay 453, 530

K
Kang, Liping 312
Katriel, Guy 120
Khan, Imdad Ullah 16, 227
Kong, Xiang-Zhen 541
Koutschan, Christoph 120

L
Lace, Lelde 476
Langston, Michael A. 420
Lavor, Carlile 255
Lei, Hongyang 136
Li, Feng 178, 190
Li, Hongjia 325
Li, Ruilin 150
Li, Sheng-Jun 541
Li, Xiaobo 107
Li, Xuelei 97
Li, Yahan 190
Li, Ye 136
Li, Yulong 464
Lin, Haixiang 165
Liu, Jin-Xing 190
Liu, Qin 464
Liu, Xiaowen 518
Liu, Xin 364
Liu, Zhi 107
Lorenz, Ronny 267
Luan, Haijing 150

M
Ma, Bin 280
Ma, Huidong 165
Mahanaymi, Udi 120
Maia, Nilton 255
Mansoor, Haris 387
Mathur, Anup 31
Melkus, Gatis 476
Merkle, Daniel 58, 409
Murad, Taslim 442

N
Niu, Beifang 150
Novikov, Daniel 453

O
Oliveira Alexandrino, Alexsandro 241

P
Park, Krista 31
Patterson, Murray 1, 16, 227, 376, 387, 442,

530
Peng, Yin 97
Pinnix, Zandra 487, 498

Q
Qiao, Tian-Jing 178
Qingge, Letu 518

R
Rajasekaran, Sanguthevar 31
Ren, Qianqian 190
Reza, Md. Selim 97
Rodrigues Oliveira, Andre 241
Rossignolo, Enrico 202
Rucevskis, Peteris 476

S
Saghaian, Hossein 214
Sahni, Sartaj 31
Sahoo, Bikram 487, 498
Salgado, André 509
Sang, Guoming 107
Sardar, Usama 16, 227
Shang, Junliang 190
Shoaib, Muhammad 227
Silina, Sandra 476
Siqueira, Gabriel 241
Sizovs, Andrejs 476
Skums, Pavel 214
Snir, Sagi 120
Soliman, Ahmed 31
Souza, Michael 255
Spicher, Thomas 267
Stadler, Peter F. 267, 409
Steel, Mike 120
Steorts, Rebecca 31
Sturtz, Jordan 518
Sun, Hui 165

T
Tang, Panrui 364
Tayebi, Zahra 530



Author Index 555

Tong, Xin 292
Trygg, Johan 72

V
Varenyk, Yuliia 267
Viksna, Juris 476
von Löhneysen, Sarah 267

W
Wang, Jianxin 45, 85
Wang, Juan 178, 541
Wang, Lusheng 292
Wang, Ruxin 136
Wang, Shaokai 280
Wang, Tai-Ge 541
Wang, Xiaowen 464
Wei, Yanjie 97, 351
Weinberg, Daniel 31
Wu, Dan 136
Wu, Xiaohui 312

X
Xi, Wenhui 351
Xiong, Anxuan 398
Xu, Huixiu 292
Xu, Shuo 312

Y
Yan, Cheng 45
Yang, Bokai 136
Yang, Chunyan 150
Yang, Zhidong 325
Yao, Hua-Ting 267
Yuan, Shasha 178

Z
Zaman, Sumaira 337
Zang, Dawei 325
Zeilberger, Doron 120
Zelikovsky, Alex 214, 487, 498
Zelikovsky, Alexander 453, 530
Zhang, Fa 325
Zhang, Jingjing 351
Zhang, Linlin 45
Zhang, Yan 364
Zhang, Yijia 107
Zhang, Zuping 364
Zhao, Kai 45
Zhong, Cheng 165
Zhu, Binhai 292, 518
Zhu, Daming 292
Zhu, Hongming 464
Zhu, Ming 280


	 Preface
	 Organization
	 Contents
	Unveiling the Robustness of Machine Learning Models in Classifying COVID-19 Spike Sequences
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 One-Hot Encoding (OHE) Based Embedding
	3.2 k-mers Based Representation
	3.3 Keras Classifier
	3.4 Adversarial Examples Creation

	4 Experimental Setup
	4.1 Dataset Statistics

	5 Results and Discussion
	5.1 Effectiveness of Deep Learning

	6 Conclusion
	References

	Efficient Sequence Embedding for SARS-CoV-2 Variants Classification
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Evaluation
	5 Results and Discussion
	6 Conclusion
	References

	On Computing the Jaro Similarity Between Two Strings
	1 Introduction
	2 Preliminaries
	3 A Linear Time Algorithm
	4 Experimental Results
	4.1 Record Linkage
	4.2 Gene Sequence Similarity
	4.3 Effects of Alphabet Size

	5 Conclusions
	References

	Identifying miRNA-Disease Associations Based on Simple Graph Convolution with DropMessage and Jumping Knowledge
	1 Introduction
	2 Materials and Methods
	2.1 Datasets
	2.2 The Overall Flow of the Model
	2.3 Problem Formulation
	2.4 Disease Semantic Similarity
	2.5 Gaussian Interaction Profile Kernel (GIP) Similarity
	2.6 MiRNA Sequence Similarity
	2.7 MiRNA Functional Similarity
	2.8 MiRNA Family Similarity
	2.9 Integrated Similarity
	2.10 Constructing Bipartite Attributed Graph
	2.11 Feature Propagation
	2.12 Feature Aggregation
	2.13 Feature Crossing and Association Prediction

	3 Experiments and Results
	3.1 Experiment Settings
	3.2 Comparison with Baseline Methods
	3.3 Performance Comparison of Different Components
	3.4 Case Study

	4 Conclusion and Future Work
	References

	Reconciling Inconsistent Molecular Structures from Biochemical Databases
	1 Introduction
	2 Multi-level Modelling of Chemical Structures
	3 Algorithms and Implementation
	4 Results
	5 Conclusion
	References

	Deep Learning Architectures for the Prediction of YY1-Mediated Chromatin Loops
	1 Introduction
	2 Material and Methods
	2.1 CNN and LSTM Based YY1-Mediated Chromatin Loop Predictor
	2.2 Densely Connected Neural Network Based YY1-Mediated Chromatin Loop Predictor
	2.3 Experimental Setup
	2.4 Dataset

	3 Evaluation
	4 Results
	4.1 Proposed DCNN Predictor Performance
	4.2 Predictive Performance Analyses over K562 and HCT116
	4.3 Performance Analyses over Cross Cell Data

	5 Conclusion
	References

	MPFNet: ECG Arrhythmias Classification Based on Multi-perspective Feature Fusion
	1 Introduction
	2 Method
	2.1 One-Dimensional Perspective Feature Extraction Module
	2.2 Two-Dimensional Perspective Feature Extraction Module
	2.3 Interactive Feature Extraction Module
	2.4 Arrhythmia Classification Module

	3 Experiments and Results
	3.1 Data Description
	3.2 Experimental Setting
	3.3 Baseline Method
	3.4 Performance Comparison with Baselines
	3.5 Ablation Experiments

	4 Discussion
	4.1 Comparative Analysis of Imbalance Processing Methods
	4.2 Visualization Analysis

	5 Conclusion
	References

	PCPI: Prediction of circRNA and Protein Interaction Using Machine Learning Method
	1 Introduction
	2 Methodology
	2.1 Data Description
	2.2 Feature Generation
	2.3 Machine Learning Models
	2.4 Evaluation Metrics

	3 Results
	3.1 Prediction of Interaction Using Different Models
	3.2 Comparison of Different Models’ Performance

	4 Discussion
	5 Conclusion
	References

	Radiology Report Generation via Visual Recalibration and Context Gating-Aware
	1 Introduction
	2 Method
	2.1 Visual Features Extractor
	2.2 Report Generator

	3 Experiment Settings
	3.1 Datasets
	3.2 Evaluation Metrics
	3.3 Implementation Details

	4 Results and Analysis
	4.1 Performance Comparison with Other Models
	4.2 Ablation Experiments

	5 Case Study and Visualization
	6 Future Work
	7 Conclusion
	References

	Using Generating Functions to Prove Additivity of Gene-Neighborhood Based Phylogenetics - Extended Abstract
	1 Introduction
	2 Preliminaries
	2.1 Genome Permutations as a State Space

	3 Asymptotic Estimation of the Model Parameters
	3.1 Finding the Model Transition Probabilities
	3.2 Expectation and Variance of Xt
	3.3 Explicit Expression for qk(t)

	4 Additivity of the SI Measure
	4.1 Computer Proof of a Double-Sum Identity

	5 Conclusions
	References

	TCSA: A Text-Guided Cross-View Medical Semantic Alignment Framework for Adaptive Multi-view Visual Representation Learning
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Medical Imaging Encoding
	2.3 Medical Report Encoding
	2.4 Cross-Modal Attention Alignment
	2.5 Loss

	3 Experiments and Results
	3.1 Datasets
	3.2 Baseline
	3.3 Image-Text Retrieval Result
	3.4 Zero-Shot Classification Result
	3.5 Supervised Classification Result
	3.6 Analysis of Our Framework

	4 Conclusion
	References

	Multi-class Cancer Classification of Whole Slide Images Through Transformer and Multiple Instance Learning
	1 Introduction
	2 Methods
	2.1 Transformer Network-Based Multiple Instance Learning
	2.2 Global Average Pooling

	3 Results
	3.1 Details of Implementation
	3.2 Performance Evaluation
	3.3 Ablation Study
	3.4 Model Convergence
	3.5 t-SNE Visualization

	4 Discussion and Conclusion
	References

	ricME: Long-Read Based Mobile Element Variant Detection Using Sequence Realignment and Identity Calculation
	1 Introduction
	2 Method
	2.1 Initial Variant Position Detection
	2.2 Variant Sequence Extraction
	2.3 Sequence Realignment and Identity Calculation
	2.4 Mobile Element Variant Determination

	3 Experiment
	3.1 Experimental Environment and Data
	3.2 Detecting Performance Evaluation Metrics
	3.3 Experimental Results

	4 Conclusion
	References

	scGASI: A Graph Autoencoder-Based Single-Cell Integration Clustering Method
	1 Introduction
	2 Related Work
	2.1 Kernel Self-Expression Model

	3 Method
	3.1 The Framework of scGASI
	3.2 Graph Autoencoder
	3.3 Multi-Layer Kernel Self-Expression Integration Mechanism

	4 Results and Discussion
	4.1 Parameter Analysis
	4.2 Comparative Analysis of Clustering Results
	4.3 Visualization
	4.4 Gene Markers

	5 Conclusion
	References

	ABCAE: Artificial Bee Colony Algorithm with Adaptive Exploitation for Epistatic Interaction Detection
	1 Introduction
	2 Materials
	2.1 Artificial Bee Colony Algorithm
	2.2 Fitness Function

	3 Method
	3.1 Overview Framework
	3.2 Adaptive Exploitation Mechanism

	4 Experiments
	4.1 Dataset
	4.2 Parameter Setting and Evaluation Metric
	4.3 Detection Power Comparison
	4.4 Parameter Analysis
	4.5 Age‐Related Macular Degeneration Studies

	5 Conclusion
	References

	USTAR: Improved Compression of k-mer Sets with Counters Using de Bruijn Graphs
	1 Introduction
	1.1 Related Works

	2 USTAR: Unitig STitch Advanced ConstRuction
	2.1 Definitions
	2.2 Vertex-Disjoint Path Cover Problem

	3 Results
	4 Conclusions
	References

	Graph-Based Motif Discovery in Mimotope Profiles of Serum Antibody Repertoire
	1 Introduction
	2 Method
	2.1 Motif Validation

	3 Results and Discussion
	3.1 Data Set
	3.2 Results
	3.3 Discussion

	References

	Sequence-Based Nanobody-Antigen Binding Prediction
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Data Collection
	3.2 Features Extracted from Sequences
	3.3 Obtaining Non-Binding Nb-Ag Pairs

	4 Representation Learning for Nb-Ag Binding Prediction
	5 Experimental Setup
	6 Results and Discussion
	7 Conclusion
	References

	Approximating Rearrangement Distances with Replicas and Flexible Intergenic Regions
	1 Introduction
	2 Definitions
	3 Approximating the Distance Problems
	4 Conclusion
	References

	The Ordered Covering Problem in Distance Geometry
	1 Introduction
	2 Preliminary Definitions
	3 The Ordered Covering Problem (OCP)
	4 A Greedy Heuristic for the OCP
	5 Analyzing Results and Discussion
	6 Conclusion
	References

	Phylogenetic Information as Soft Constraints in RNA Secondary Structure Prediction
	1 Introduction
	2 Theory
	3 Implementation and Evaluation
	4 Discussion
	References

	NeoMS: Identification of Novel MHC-I Peptides with Tandem Mass Spectrometry
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Overall Workflow
	2.3 Generation of Expanded Database
	2.4 Database Search in the Expanded Database
	2.5 Rescoring
	2.6 FDR Control
	2.7 Training of the Scoring Function

	3 Results
	3.1 NeoMS Identified More Regular Peptides Than Other Methods
	3.2 NeoMS Identified Mutated MHC I Peptides
	3.3 The Mutation Increases Binding Affinity

	4 Discussion
	References

	On Sorting by Flanked Transpositions
	1 Introduction
	2 Preliminaries
	3 An O(n) Expected Time Decision Algorithm for the Simple Case
	3.1 The 2-Color and 3-Color Cycle Graphs
	3.2 Splitting Long (Red and Blue) Cycles
	3.3 Removing (Red and Blue) 2-Cycles
	3.4 Handling (Red and Blue) 3-Cycles

	4 Extension to the General Case
	5 Hardness Result for the Optimization Version
	6 Discussion and Conclusion
	References

	Integrative Analysis of Gene Expression and Alternative Polyadenylation from Single-Cell RNA-seq Data
	1 Introduction
	2 Materials and Methods
	2.1 Data Preprocessing
	2.2 Joint Dimensionality Reduction Based on Partial Least Squares
	2.3 Identification of Anchor Correspondences Between GE-Matrix and PA-Matrix
	2.4 Data Integration
	2.5 Single-Cell Clustering

	3 Results
	3.1 Overview of the Integrative Framework Pipeline
	3.2 Single-Cell APA Profile Distinguishes Cells
	3.3 scAPAfuse Identifies Subtypes in PBMC
	3.4 scAPAfuse Identifies Subtypes in Arabidopsis Root Cells
	3.5 scAPAfuse Identifies Rare QC Cells in Arabidopsis Root Cells

	4 Conclusion
	References

	SaID: Simulation-Aware Image Denoising Pre-trained Model for Cryo-EM Micrographs
	1 Introduction
	2 Method
	2.1 Process Overview
	2.2 Simulation of cryo-EM Micrographs
	2.3 Calibration of the Parameters for Simulation
	2.4 Detailed Architecture of the Denoising Network
	2.5 Loss Function

	3 Experimental Results
	3.1 Implementation Details
	3.2 Dataset
	3.3 Results

	4 Discussion and Conclusion
	References

	Reducing the Impact of Domain Rearrangement on Sequence Alignment and Phylogeny Reconstruction
	1 Introduction
	2 Description of Methods
	2.1 Proposed Methods: Door-S and Door-A
	2.2 Existing Methods: MDAT and ProDA

	3 Dataset Description and Experimental Setup
	3.1 Simulated Dataset
	3.2 Biological Dataset
	3.3 Evaluation of Results
	3.4 Gene Tree Reconstruction

	4 Results
	4.1 Simulated Dataset Results
	4.2 Biological Dataset Results

	5 Discussion and Conclusion
	References

	Identification and Functional Annotation of circRNAs in Neuroblastoma Based on Bioinformatics
	1 Introduction
	2 Methodology
	2.1 Datasets Collection
	2.2 Identification of CircRNAs and Differentially Expressed CircRNAs
	2.3 GO and KEGG Enrichment Analysis
	2.4 Construction of a CircRNA-miRNA-mRNA Regulatory Network
	2.5 RNA Binding Protein (RBP) Prediction of CircRNAs
	2.6 Computational Tools Used for Prediction of Protein Structures, and Domain Analysis

	3 Results
	3.1 Identification of DECs in Neuroblastoma
	3.2 Reconstruction of DECs Full-Length Sequences
	3.3 Function Enrichment Analysis of CircRNA Parental Genes
	3.4 CircRNA-miRNA-mRNA Network
	3.5 Construction of a CircRNA-RBP Network in NB
	3.6 Analysis of CircRNA Translation Potential

	4 Discussion
	References

	SGMDD: Subgraph Neural Network-Based Model for Analyzing Functional Connectivity Signatures of Major Depressive Disorder
	1 Introduction
	2 Related Work
	2.1 Construction of Braingraph

	3 Method
	3.1 Sub-braingraph Sampling and Encoding
	3.2 Sub-braingraph Selection and Sub-braingraph's Node Selection
	3.3 Sub-braingraph Sketching and Classification

	4 Experiments
	4.1 Data Acquisition and Parameter Settings
	4.2 Overall Evaluation
	4.3 Discriminative Nodes, Edges, and Motifs Analysis
	4.4 Overall Functional Connectivity Network Analysis

	5 Conclusion
	References

	PDB2Vec: Using 3D Structural Information for Improved Protein Analysis
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 PDB2Vec

	4 Experimental Setup
	4.1 Baseline Model

	5 Results and Discussion
	6 Conclusion
	References

	Hist2Vec: Kernel-Based Embeddings for Biological Sequence Classification
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Histogram-Based Representations
	3.2 Gaussian Kernel Transformation
	3.3 Kernel PCA for Embeddings

	4 Experimental Setup
	4.1 Evaluation Metrics and Classification Algorithms

	5 Results and Discussion
	6 Conclusion
	References

	DCNN: Dual-Level Collaborative Neural Network for Imbalanced Heart Anomaly Detection
	1 Introduction
	2 Related Work
	3 Methods
	4 Experiments
	5 Results
	6 Conclusions
	References

	On the Realisability of Chemical Pathways
	1 Introduction
	2 Preliminaries
	2.1 Chemical Reaction Networks and Pathways
	2.2 Petri Nets

	3 Realisability of Integer Hyperflows
	3.1 Flows as Petri Nets
	3.2 Realisability of Integer Hyperflows

	4 Extended Realisability
	5 Representations of Pathways
	References

	A Brief Study of Gene Co-expression Thresholding Algorithms
	1 Introduction
	2 Popular Thresholding Approaches
	2.1 Thresholding Based on Graph Structure

	3 Algorithmic Advances
	4 Implementation and Testing
	4.1 Computational Milieu
	4.2 Methods Studied
	4.3 Benchmarking

	5 Empirical Results and Discussion
	6 Concluding Remarks
	References

	Inferring Boolean Networks from Single-Cell Human Embryo Datasets
	1 Introduction
	2 Method
	2.1 Pipeline Overview
	2.2 Experimental Data Preprocessing
	2.3 Experimental Design Construction - Algorithm
	2.4 Implementation and Software Availability

	3 Results
	3.1 Pseudo-perturbations Identification - Different Size Benchmarks
	3.2 Discrimination of the Medium and Late Trophectoderm Stages

	4 Discussion and Conclusion
	References

	Enhancing t-SNE Performance for Biological Sequencing Data Through Kernel Selection
	1 Introduction
	2 Related Work
	3 Kernel Matrix Computation
	4 Using Kernel Matrix for t-SNE
	5 Feature Embeddings Generation
	6 Experimental Setup
	6.1 Data Statistics
	6.2 Evaluating t-SNE

	7 Subjective and Objective Evaluation of t-SNE
	7.1 Subjective Evaluation
	7.2 Objective Evaluation of t-SNE
	7.3 Runtime Analysis

	8 Conclusion
	References

	Genetic Algorithm with Evolutionary Jumps
	1 Introduction
	2 Genetic Algorithm with Evolutionary Jumps
	2.1 Simple Genetic Algorithm
	2.2 Punctuated Equilibrium and Epistatic Network of SARS-CoV-2
	2.3 Enhancement of GA with Evolutionary Jumps

	3 Application of Genetic Algorithm with Evolutionary Jumps to the 0–1 Knapsack Problem
	3.1 The 0–1 Knapsack Problem
	3.2 Implementation of Genetic Algorithm
	3.3 Repairing and Packing
	3.4 Evolutionary Jumps Implementation

	4 Results
	4.1 Instances of the 0-1 Knapsack Problem
	4.2 Parameter Tuning
	4.3 Performance Comparison of GA, GA+RP, and GA+EJ

	5 Conclusion
	References

	HetBiSyn: Predicting Anticancer Synergistic Drug Combinations Featuring Bi-perspective Drug Embedding with Heterogeneous Data
	1 Introduction
	2 Materials and Methods
	2.1 Synergy Dataset
	2.2 Cell Line Features
	2.3 Construction of Drug-Related Graphs
	2.4 HetBiSyn

	3 Result
	3.1 Experiment Setup
	3.2 Performance Comparison with Other Models
	3.3 Ablation Study

	4 Conclusion
	References

	Clique-Based Topological Characterization of Chromatin Interaction Hubs
	1 Introduction
	2 Methods
	2.1 Source Data
	2.2 Graph Generation and Analysis
	2.3 Randomization
	2.4 Supplementary Data and Validation

	3 Results and Discussion
	3.1 Topological Properties of Hi-C Interaction Graphs
	3.2 Preservation of Topological Features in Randomized Graphs
	3.3 Cliques as Indicators of Functional Modules in Graphs

	4 Conclusions
	5 Additional Resources
	References

	Exploring Racial Disparities in Triple-Negative Breast Cancer: Insights from Feature Selection Algorithms
	1 Introduction
	2 Data
	3 Methods
	3.1 Baseline Model Generation and Data Pre-processing
	3.2 Feature Selection

	4 Results
	4.1 Exploring Filter Methods for Identifying Crucial Genes
	4.2 Exploring Wrapper Method for Identifying Crucial Genes
	4.3 Exploring Embedded Method for Identifying Crucial Genes

	5 Conclusion
	References

	Deep Learning Reveals Biological Basis of Racial Disparities in Quadruple-Negative Breast Cancer
	1 Introduction
	2 Data
	3 Methods
	3.1 Data Preprocessing
	3.2 Model Architecture and Training
	3.3 Feature Selection and Analysis
	3.4 Model Evaluation

	4 Results
	4.1 Performance Evaluation of the Deep Learning Model
	4.2 Identification of Key Molecular Features (Genes)
	4.3 Statistical Validation of Selected Features (Genes)

	5 Conclusion
	References

	CSA-MEM: Enhancing Circular DNA Multiple Alignment Through Text Indexing Algorithms
	1 Introduction
	1.1 Contribution

	2 Methods
	2.1 Basic Notions
	2.2 Circular FM-Index
	2.3 Most Significant Common Subsequence Chain of MEMs

	3 Results and Discussion
	3.1 Benchmarks

	4 Conclusion
	References

	A Convolutional Denoising Autoencoder for Protein Scaffold Filling
	1 Introduction
	2 Preliminaries
	3 Methodology
	4 The Proposed Convolutional Denoising Autoencoder Model
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Simulation Data

	5 Results and Comparison
	5.1 Results on the MabCampath Scaffold
	5.2 Results on Simulation Datasets

	6 Conclusion
	References

	Simulating Tumor Evolution from scDNA-Seq as an Accumulation of both SNVs and CNAs
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Setup
	4.1 Simulating SCS Data
	4.2 Cancer Phylogeny Inference Methods
	4.3 Running the Experiments
	4.4 Evaluating the Tree Inference

	5 Results and Discussion
	6 Conclusion
	References

	CHLPCA: Correntropy-Based Hypergraph Regularized Sparse PCA for Single-Cell Type Identification
	1 Introduction
	2 Related work
	2.1 Principal Component Analysis
	2.2 Hypergraph Regularization
	2.3 Correntropy
	2.4 L2,1/5-norm Constraint

	3 Methods
	3.1 The Objective Function of CHLPCA
	3.2 Optimization of CHLPCA

	4 Results and Discussion
	4.1 Datasets
	4.2 Parameter Setting
	4.3 Clustering Results
	4.4 Clustering Visualization

	5 Conclusion
	References

	Author Index

