
Quantum Key Distribution as a Service
and Its Injection into TLS
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Abstract. Quantum key distribution (QKD) is a key agreement method
that relies on the laws of physics and ensures that the keys have not
been eavesdropped on or modified by a third party. While commercial
QKD devices are available, they are expensive, require specific infras-
tructure, and have high operational expenses. In this paper, we pro-
pose an architecture and a set of protocols that allow us to implement
QKD as a service (QaaS). End users communicate with QaaS via classi-
cal TLS channels secured with post-quantum cryptography (PQC). We
show how to further strengthen the security of these classical links to
make them sustainable to active attacks (classical and quantum) on any
single segment of QaaS. We also show how to integrate QaaS into the
state-of-the-art TLS 1.3 protocol. As a result, QKD becomes available
for a larger community of end-users. Furthermore, we show how QaaS
can reduce the number of digital signatures within a TLS 1.3 handshake,
which is essential since post-quantum signatures are much longer than
the conventional RSA/ECC-based ones.
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1 Introduction

Quantum key distribution (QKD) is the first step on our way to a universal
Quantum Internet. QKD is a state-of-the-art technology that allows two distant
parties to agree on encryption keys. The key distribution process involves a
quantum channel (usually implemented via optical fiber transmitting photons),
but the agreed keys are intended to be used in classical internet communication.

The properties of quantum mechanics (in particular, the no-cloning theorem)
along with quantum key distribution protocols such as BB84 (and its successors
B92, SARG04, Lo05) and COW1 ensure that if some key has been eavesdropped
on or altered, the parties can notice that and discard the key [2,6].

Since it is difficult to emit single photons and to deal with attenuation over
long distances, certain attacks (such as photon number splitting, PNS, and other
1 Coherent One-Way protocol, patented by IDQ.
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side-channel attacks against physical QKD implementations) are theoretically
possible [17]. However, these attacks are either hard to exploit on short dis-
tances or can be impeded by modified versions of algorithms such as BB84 Decoy
State [16]. Thus, for practical purposes, we can assume a short- to midterm
security of modern QKD technology with the hope for near-to-perfect security
of future QKD devices.

Sadly, the state-of-the-art commercial QKD devices are expensive, require
specific infrastructure (high-quality optical fiber links), and have high opera-
tional expenses (such as energy costs for cooling down the devices) [13]. In order
to make QKD available to a wider community of users, we deliver QKD as a
service (QaaS). With QaaS, end users are able to securely obtain a shared secret
from two remote key distribution centers (KDCs), where each KDC is directly
connected to the corresponding endpoint of the QKD link. KDCs may be located
in two cities with an established quantum channel between them. With QaaS,
the inhabitants of both cities have the ability to obtain quantumly distributed
keys without the need for a direct connection to QKD equipment. QaaS is a
technology for connecting end users to existing QKD networks that are now
being deployed all over the world [19,22].

The end users connect to KDCs via classical TLS channels, which, from the
QKD point of view, are the weakest links in the key distribution process. In order
to strengthen the security of classical links used in QaaS, we use post-quantum
cryptography (PQC). However, PQC algorithms still have to withstand the test
of time,—new attacks are constantly emerging, and the NIST standardization
process is not yet finished [1,3,5,7,8]. Thus, we strengthen the security even
further by proposing the architecture and a set of protocols that make QaaS
sustainable to active attacks (classical and quantum) on any single communi-
cation segment. In particular, the full key is not sent via any single classical
channel. Thus, a successful man-in-the middle attack would require compromis-
ing two independent TLS communication links.

The QaaS architecture and a set of underlying protocols are described in
Sects. 2 and 3. In Sect. 4, we offer QaaS-specific authentication options for all
involved parties. This is a noticeable contribution, since pure QKD does not offer
any authentication mechanism. In Sect. 5, we give insight into some implementa-
tion detail and show how to integrate the proposed QaaS into the state-of-the-art
TLS 1.3 protocol. We also show how QaaS can be used to reduce the number
of digital signatures within a TLS 1.3 handshake, which is essential since post-
quantum signatures are much longer than the conventional RSA/ECC-based
ones. We conclude by discussing the related work and further research direc-
tions (Sects. 6 and 7).

2 The Overall QaaS Architecture

Figure 1 depicts the overall architecture of the proposed QaaS.
At the bottom of Fig. 1, two QKD devices (called Alice and Bob) are con-

nected by multiple links implementing the quantum channel and the service
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Fig. 1. The architecture of the proposed QaaS.

channel (both channels are needed in most QKD protocols). Depending on the
protocol and hardware choice, there can be 2–3 optical links or a mix of a direct
optical link and a classical (routed) internet connection [11].

There are multiple QKD devices available in the market.2 While we conduct
our experiments with IDQ Clavis3 devices, our architecture can be applied to
other devices as soon as they meet the following assumptions:

– Alice and Bob are pre-paired at the factory (e.g., with several one-time sym-
metric keys) and are able to establish a secure service channel as well as the
quantum channel (the process of synchronizing the quantum channel usually
takes several minutes).

– Once the secure channels are established, both Alice and Bob are able to
generate two potentially infinite3 identical streams of symmetric keys. Some
of the shared keys can be used by Alice and Bob for technical purposes, e.g.,
to replace the pre-paired factory keys for subsequent re-initializations.

– Each key is of the same bit length (256 bit for IDQ Clavis3) and has an
associated unique truly random key ID, which is near to impossible to guess
(IDQ Clavis (See footnote 3) uses 128-bit key IDs; keys and IDs are generated
using the built-in QRNG4 chip).

2 e.g., Toshiba Multiplexed and Long Distance, IDQ Clavis and Cerberis series, QTI
Quell-X, LuxQuanta NOVA LQ, KEEQUANT Andariel, SeQre Aurora and Eclipse.

3 unless the link is physically broken, a hardware failure occurs, or there is constant
eavesdropping or intrusion.

4 quantum random number generator.
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From the architectural point of view, Alice and Bob are black boxes that
simultaneously produce synchronized key-identifier pairs (Kid, id) that are secure
against man-in-the-middle attacks.

We place Alice and Bob at two physically distant key distribution centers
(KDCs). Each KDC also has a physical server that is directly attached (e.g.,
by a short crossover cable) to the corresponding QKD device. We call these
servers Aija and Brencis (in order to distinguish them from the QKD devices,
Alice and Bob); we also call them KDC endpoints. Both Aija and Brencis run
QaaS server software that takes the stream of quantumly exchanged keys from
Alice and Bob, respectively, and implements the QaaS protocols (discussed in
Sect. 3), which securely forward the keys to end users, User 1 and User 2. In
order to simplify the QaaS server software and strengthen the security of Aija
and Brencis, we introduce two reverse proxies, RevProxy1 and RevProxy2. The
reverse proxies authenticate end users and ensure encrypted TLS connections
with them via the public internet. For such TLS connections, we utilize quantum-
safe key exchange methods and signature algorithms.

All backend connections within the boundaries of a KDC (e.g., RevProxy1 ↔
Aija ↔ Alice) are not encrypted; however, we assume that the corresponding
physical links are isolated from the external world, and no wiretapping is possible
within a KDC.

For technical reasons, we need also a controlling server (called Centis in
Fig. 1) that synchronizes key reservations at Aija and Brencis. Centis can be
an internal server (located at the premises of one of the KDCs) or an external
(cloud) server. Centis needs specific user credentials to pass through RevProxy1
and RevProxy2.

3 QaaS Protocols

The purpose of QaaS is to ensure that end users (User 1 and User 2 in Fig. 1)
obtain a shared key that has been quantumly exchanged between Alice and
Bob. The main issue is that, in QaaS, we are able to use only classical (i.e.,
non-quantum) channels between end users and KDCs.

In this section, we introduce two protocols: the Butterfly Protocol and the
Control Protocol. The former allows QaaS to tolerate active attacks on any single
classical link (even if TLS is decrypted). The latter is used by the controlling
server Centis in order to manage key reservations at Aija and Brencis.

3.1 The Butterfly Protocol

Figure 2 depicts message flows between the users and KDCs used in the Butterfly
Protocol (hence, the name).

The protocol allows User 1 and User 2 to agree on a shared key and ensures
that the full key is not transmitted via any of the classical links. During the
protocol, one KDC endpoint (Aija) sends only the first half of the key, and the
other (Brencis) sends the second half.
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Fig. 2. Message flows in the Butterfly protocol.

There are two types of connections: the butterfly connections (straight
lines in Fig. 2) and the user connection (dashed lines between User 1 and User
2).

All butterfly connections are implemented as bidirectional TLS sockets
secured with PQC key exchange mechanisms (KEMs) and digital signature algo-
rithms (for authentication). The butterfly connections require both server and
client authentication (see Sect. 4).

The user connection is also implemented as a bidirectional socket. However,
instead of a PQC KEM, we use the message flow of the Butterfly Protocol.
Since no key material but hashes are sent via the user connection, KEM-like
(Diffie-Hellman-like) encryption is unnecessary (although possible). Like in the
traditional client-server architecture, client authentication is optional for the user
connection. Server authentication can be performed either by a PQC signature
algorithm or our novel approach described in Sect. 4.2.

The protocol starts when User 1 wants to communicate with User 2 via a
TLS socket.

1→ Before initiating a TLS handshake with User 2, User 1 chooses one of the
two KDCs (say, Aija) and sends the reserveKeyAndGetKeyHalf message to
it. An alternative (symmetric) scenario, when User 1 chooses Brencis, is also
possible. Thus, Aija and Brencis can participate equally in key reservations.
We call it the equivalence property of KDCs.5

1← Aija chooses one of the quantumly shared keys key and replies with keyID,
the first (left) half of the key key[L], and the hash of the second (right) half
of the key hash(key[R]).

2→ User 1 asks Brencis for the second half of the key by sending the getKey-
Half(keyID) message.

5 One of the benefits of the equivalence property is that there is no advantage in
attacking either of KDCs. Another benefit is the ability to design algorithms and
protocols that can purposely choose the first receiver of the reserveKeyAndGetKey-
Half message.
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2← Brencis replies with hash(key[L]) and the second half of the key key[R].
User 1 validates key[L] (received from Aija) against hash(key[L]) received
from Brencis. User 1 also validates key[R] (received from Brencis) against
hash(key[R]) received from Aija.

3→ User 1 initializes the TLS handshake of the user connection by sending
the Client Hello message to User 2. In the handshake, User 1 sends keyID,
hash(key[L]), and hash(key[R]) to User 2. (User 2 will use these hashes as
proof that User 1 has been authenticated within KDC1).

4→ User 2 asks Aija for the first half of the key by sending the getKeyHalf(keyID)
message.

5→ User 2 asks Brencis for the second half of the key by sending the getKey-
Half(keyID) message.

4← Aija replies with key[L] and hash(key[R]).
5← Brencis replies with hash(key[L]) and key[R]. User 2 validates key[L] against

the two copies of hash(key[L]) (received from User 1 and from Brencis) and
key[R] against the two copies of hash(key[R]) (received from User 1 and from
Brencis).

3← User 2 computes hash(full key) and sends it in the Server Hello message to
User 1. User 1 validates its full key against this hash. Since hash(full key)
cannot be efficiently computed by User 2 without communicating to Aija and
Brencis, it serves as proof for User 1 that User 2 has been authenticated
within both KDC1 and KDC2.

Step 3 can be launched in parallel with step 2; steps 4 and 5 can be launched in
parallel as well.

The strength of the protocol relies on the underlying hash function (e.g.,
SHA-256 or SHAKE-128, used in our experiments) and PQC algorithms used
for the butterfly connections. Besides, the protocol is able to sustain an active
attack on any single link. By an active attack we mean the ability to decrypt or
wiretap the TLS session key.

– The quantum link is assumed to be secure against wiretapping by the law of
Physics.

– If Eve can decrypt one of the butterfly links (say User 1 to Aija), she can get
the key ID and the first half of the key. However, Eve would be unable to
connect also to Brencis (without breaking another butterfly link) since a new
connection to Brencis needs client authentication, and Eve lacks the private
keys owed by Users 1 and 2.

– If Eve attacks the user link (between User 1 and 2), she cannot wiretap the
session key since only key ID and hashes are transmitted there. If Eve alters
the key ID that is being sent to User 2, Aija and Brencis won’t reply to User
2 for a non-reserved key ID. In an unlikely case when the modified key ID
has also been reserved (e.g., by other QaaS users), the hashes won’t match.
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3.2 User Connection Management

The user connection is a TLS 1.3 connection with the distinction that we inject
the Butterfly Protocol as a new key share “group”6 in the TLS Key Share exten-
sion (see more detail on page 14 in Sect. 5). If all butterfly connections finish suc-
cessfully, and all Butterfly Protocol checks (e.g., hash validations) are passed,
both User 1 and 2 get the keys. On any failure (TCP, TLS, or Butterfly Pro-
tocol error) within any of the butterfly connections between User1/User2 and
Aija/Brencis, the TLS between User 1 and User 2 closes with an exception.
That may happen due to security checks (e.g., Aija or Brencis could not authen-
ticate the user, TLS error) or when Aija or Brencis is temporarily down (TCP
error). Besides, Aija or Brencis can reply with an error when they have been
(re-)launched but are not serving the keys yet (more on that in Sect. 3.4).

3.3 Key Reservation in the Butterfly Protocol

Since both Aija and Brencis can be used for key reservation (Step 1), they need
some distributed algorithm that resolves conflicts between them. Besides, if some
key has been reserved at one KDC, both KDCs must be ready to send their key
halves to Users 1 and 2 and to delete the used key afterward (even if the protocol
has started but not finished, e.g., due to a network interruption).

Our idea is to divide the keys into two classes depending on their parity
(keyID bit sum). Aija is allowed to reserve those keys for which parity is even,
and Brencis—those with odd parity; thus, no collision is possible. However, in
order to ensure the eventual consistency of key sets between Aija and Brencis,
we also need the following time constants:

– ε is a small time interval (ε < 1 second) that must pass before a newly
quantumly exchanged key can be reserved by end users. The need for ε arises
from the fact that new keys do not appear in the QaaS software of Aija
and Brencis simultaneously. Waiting for the time ε ensures that both KDC
endpoints receive the key (thus, ε can be compared to the cycle time in CPUs);

– the key reservation timeout T (T ≈ 90 seconds)7. If a key has been reserved
for User 1, but no getKeyHalf message has been received from User 2 during
the time T , the key is deleted. At the other KDC endpoint, T is the maximal
waiting time between the two getKeyHalf messages expected from Users 1
and 2;

– TTL (time-to-live ≈ 1 day) is the maximal time the key is available for
reservation. TTL limits the size of the key buffer and ensures that “zombie”
keys are eventually deleted.8

6 TLS 1.3 terminology; actually, it is a key exchange method.
7 We choose T such that each of the three connections at the longest path (Aija ↔

User 1 ↔ User 2 ↔ Brencis) can survive the maximal TCP back-off; T ≈ 3 × 30 s
≈ 3× TCP re-transmission timeout for five tries.

8 A key is called a “zombie” if it is being stored at one KDC endpoint but is not
present at the other, i.e., it has been reserved and deleted or hasn’t been received
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Each KDC endpoint has three disjoint dictionaries that map keyID-s to keys:
PreMy, My, and NotMy. New keys with the corresponding parity p are placed
temporarily to PreMy (for time ε) before they are moved to My. All the keys
with parity p− 1 are moved to NotMy without any delay. Therefore, when Aija
reserves a key, the time ε has already passed, and Brencis should contain the
same key in its NotMy dictionary (even if the key appeared at Brencis later
than at Aija but within the allowed ε time slot).

Keys in the My dictionary are stored for the TTL − ε time. Keys in the
NotMy dictionary are stored for the TTL+T time. Thus, if a key is reserved at
one KDC endpoint, it will still be available at the other endpoint while the But-
terfly Protocol is running. On the other hand, the reserved keys are eventually
deleted even if the protocol is aborted.

3.4 The Control Protocol

After the QKD initialization, Aija and Brencis start to receive identical streams
of keys from their corresponding QKD devices (Alice and Bob). However, due
to system reboots, hardware failure, or network interruptions, one or both KDC
endpoints can stop receiving keys from Alice and/or Bob. While it is possible to
re-initialize the QKD channels, the process takes a long time (e.g., up to 30 min
in IDQ Clavis3), and QKD devices consume more power than during normal
operation. The purpose of the Control Protocol (executed by the controlling
server Centis in Fig. 1) is to ensure that Aija and Brencis have the same streams
of QKD keys after they re-connect to Alice and Bob.

For Aija and Brencis, we define the following three states:

EMPTY—when there are no keys received from the QKD device yet;
RECEIVING—when at least one key has been received and put into the My

map;
RUNNING—when keys can be reserved by the users. If at some point in time

My∪PreMy becomes empty9, the state is automatically changed to EMPTY.

When launched, both KDC endpoints are in the EMPTY state. They can
change their state to RECEIVING or EMPTY, depending on the keystream
from the QKD device. The RUNNING state can be set only by Centis, when
both KDC endpoints are in the RECEIVING state.

Centis can send two types of messages to Aija and Brencis:

– getState is a no-argument message that asks for the current state; if the
state is RECEIVING or RUNNING, the KDC endpoint also sends two key
IDs in the reply: keyID0 and keyID1 corresponding to the first key IDs (the
oldest) of each parity;

at all (due to server restart or network interruption). “Zombie” keys can also be
deleted before TTL expires, e.g., by the Control Protocol.

9 e.g., due to too many key reservation requests or due to some technical failure, when
new keys stop appearing from the QKD device.
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– setState(state, keyID0, keyID1) instructs the KDC endpoint to change its
state and remove the unnecessary keys depending on keyID0 and keyID1.

On a regular basis, Centis sends the getState message to both KDC endpoints.
If one of them is in the EMPTY state or is not reachable, Centis sends the set-
State(EMPTY) to the other endpoint (thus, clearing the keys, if any). However,
if both Aija and Brencis are in the RECEIVING state, Centis gets four key
IDs (two from each endpoint): keyID0,Aija, keyID1,Aija, keyID0,Brencis, and
keyID1,Brencis. Then Centis sends

– setState(RUNNING, keyID0,Aija, keyID1,Aija) to Brencis and
– setState(RUNNING, keyID0,Brencis, keyID1,Brencis) to Aija.

When receiving keyIDparity,opponent, the endpoint looks up for this key ID
in the corresponding dictionary. We distinguish three cases:

– The key is not found. In this case, no keys are deleted because our endpoint
has fewer keys than the opponent. Keys will be deleted at the opponent’s
side, where our first key will be found.

– The key is found, and the parity is ours (corresponding to the keys we can
reserve). In this case, keys with the IDs received prior to the found one can
be deleted. The opponent does not have them and will not be able to reply
to getKeyHalf messages for those key IDs.

– The key is found, and the parity is the opponent’s parity. In this case, keys
received prior to currentT ime − T can be deleted. We keep a few older keys
(within the time frame T ) since they could have been reserved and deleted at
our opponent while the Butterfly protocol is still running (thus, Users 1 and
2 can send us getKeyHalf requests for those keys).

In any case, the endpoint changes its state to RUNNING, meaning that it
can start serving Butterfly protocol requests from users 1 and 2.

While communicating with Aija and Brencis, Centis uses TLS with PQC.
Centis certificate is signed by CACentis, which differs from the CA that signs
certificates for Users 1 and 2; thus, reverse proxies can authorize Centis to execute
the Control Protocol if Centis possesses the corresponding private key. Since only
four key IDs are sent in the Control Protocol, no single bit of the keys themselves
is compromised. Though, an active attacker can use these key IDs to impede the
Butterfly Protocol. In order to mitigate such attacks, the keys corresponding to
the four key IDs are deleted and not distributed to end users.

4 Authentication

In the Butterfly and Control Protocols, User 1, User 2, and Centis act as clients,
which initiate the corresponding connections. Obviously, the clients need to val-
idate the authenticity of both KDC endpoints, which have control over all quan-
tumly shared keys. Since the speed of generating new shared keys is limited,
KDC endpoints (the servers) have to identify their clients in order to distribute
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the keys between them. Client authentication is a must if QaaS is offered as a
paid service, where different clients may have different payments (e.g., depending
on a subscription plan or the number of keys shared).

In addition, depending on the application, User 1 and User 2 (acting as the
client and the server in the user connection) may need to validate each other.

First, we show how both client and server authentication can be established
by means of PQC signatures. Since PQC signatures are much longer than tra-
ditional RSA/ECC-based ones, we also show how to minimize the number of
signatures used in the Butterfly and Control Protocols.

4.1 Authentication via PQC Signatures

At one extreme, there could be a single certification authority (CA) that signs the
public keys of all involved parties. At another extreme, there could be a separate
CA for each node from Fig. 1 with potential intermediate CA-s. A more realistic
model, though, is having two trusted root certification authorities (CA-s), CA1

and CA2, which are parts of KDC1 and KDC2, respectively. In this model (which
we stick to), KDC1 and KDC2 are located in different places (e.g., cities) and
managed by different organizations (e.g., city authorities).

Each QaaS client (User 1 and User 2 in Fig. 1) applies for a client certificate
either at CA1 or at CA2 (e.g., depending on the client’s city of residence).10.
The chosen CA verifies the client payment and issues a client certificate valid for
the time period paid up. Each of RevProxy1 and RevProxy2 from Fig. 1 accepts
client certificates signed by both CA1 and CA2. Besides, the reverse proxies
identify themselves with server certificates signed by CA1 and CA2, respectively.

The client key pair (generated), the client certificate (signed after receiving
payment), and both server certificates (public) are delivered to the client. We
call these data client bundle.

Authentication of the controlling server (Centis) is performed similarly. How-
ever, its certificate is signed by a specific CA (CACentis), which is trusted by both
RevProxy1 and RevProxy2. CACentis is used to sign public keys of controlling
servers only.

The servers (the reverse proxies) need only CA1, CA2, and CACentis to be
configured as trusted root CA-s. Since client authentication is performed by val-
idating digital signatures, no client database is required. However, in a rare case
when QaaS access has to be revoked from some client, the corresponding client
is added to the server-side certificate revocation list (CLR), which is delivered
to both RevProxy1 and RevProxy2.

Client and server authentication is performed via the normal TLS v1.3 flow,
following the traditional signed key exchange approach. However, in our case,
both the client and the server negotiate a post-quantum KEM and send cer-
tificates signed with a PQC algorithm (see Sect. 5). After the handshake, TLS
continues as usual using a symmetric cipher suite (e.g., AES in GCM mode).

10 A client can generate a key pair by himself and send a certificate signing request
(CSR) to the CA, or the whole process can be performed by the CA.
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While the user connection (between Users 1 and 2 in Fig. 2) can also use
PQC certificates to authenticate the client and the server, the following section
proposes a more elegant approach.

4.2 Reducing the Number of Post-Quantum Signatures

Eliminating Signatures in Client Certificates. Client certificates used in
butterfly connections can be replaced by arbitrary tokens. In this case, TLS starts
with server-only authentication, and the client sends its token in the encrypted
application data. Sending the token after the TLS handshake prevents its eaves-
dropping.

In the näıve approach, the issued tokens are stored in a database, shared
or replicated between both KDCs. In order to ensure database consistency, a
classical connection is needed between KDCs (a pre-shared symmetric key can
be used for it; KDCs may also update this key with quantumly exchanged keys
on a regular basis).

A more advanced approach is to rely on tokens with hash-based signatures
such as HMAC-SHA256-based JSON web tokens, JWTs11. Each KDC has a
secret key used to sign the header and payload (e.g., the client name + expiration
date + salt) of JWT tokens. Signed tokens are distributed to QaaS clients. Both
KDCs must have secret keys of each other in order to verify tokens signed by
either KDC. While not requiring a database, JWTs need a CRL alternative in
order to revoke previously issued tokens.

Since JWT tokens support only non-PQC RSA and ECDA asymmetric sig-
nature schemes, we suggest using the symmetric HMAC algorithm (considered
quantum-safe), where both KDC endpoints know the symmetric keys of each
other.

Reducing the Number of Server Signatures to Be Transmitted. Public
keys of both KDCs can be added to the client bundle (from Sect. 4.1). Thus, the
server can send only its public key instead of the full certificate chain. However,
albeit rarely, the client still has to download and verify the full chain after the
server key is renewed.

Eliminating Server Signatures in the User Connection. As we explained
in Sect. 3.1, the hash values for the full quantumly exchanged key and its halves
can be used by User 1 and User 2 as proofs that the counterparty has been
authenticated within one or both KDCs. We use this property to extend the
Butterfly Protocol with the support for server authentication. We consider the
idea of domain-based authentication, traditionally used in TLS certificates.12

When requesting a client certificate (or a JWT token), a QaaS client can
specify its domain name. This scenario is useful for QaaS clients that will play
11 https://jwt.io.
12 Technically, any string, e.g., a URI, can be used to identify the communicating

parties. In this paper, we use the term “domain name” to represent such strings.

https://jwt.io
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the server role in the user connection (i.e., User 2 in Fig. 2). The signing KDC
associates the issued certificate (or a token) with the client domain name (it has
to be done only at one KDC, which we call a “domain registrar” for the given
QaaS client).

For domain name validation, we introduce the following modifications to the
Butterfly Protocol (called the Butterfly Protocol with Domain Validation):

– User 1 (from Fig. 2) appends the domain name of User 2 (application server)
to each reserveKeyAndGetKeyHalf and getKeyHalf request.

– User 1 sends the reserveKeyAndGetKeyHalf and getKeyHalf messages to Aija
and Brencis before the handshake with User 2.

– After receiving the domain name in a request sent by User 1, the domain
registrar for User 2 associates the reserved key with the domain name and
waits for a getKeyHalf request from User 2. The other KDC endpoint (which
is not the registrar for User 2) just replies as usual and appends the domain
check result value of false.

– User 2 sends the getKeyHalf requests to Aija and Brencis. Each endpoint
checks whether the key has been associated with a domain name. If no, the
reply to User 2 is sent as usual. If yes, the registrar checks that the domain
name is indeed associated with User 2 and sends the requested half of the
key to User 2 only if the check returned true.13. In any case, the result of this
domain check is sent back to User 2. Thus, if the check fails, User 2 doesn’t
receive one half of the key and is not able to compute hash(full key).
After finishing processing the getKeyHalf request, the registrar (which was
waiting for it) can now reply to User 1 with the check result.

– After receiving both key halves from Aija and Brencis, User 2 validates both
hashes received from User 1 and computes hash(full key) to be sent to User 1.

– (Check 1) User 1 computes the OR function on both domain check results
received from Aija and Brencis. The value of true corresponds to the case
when the domain name of User 2 has been recognized by one of the KDC
endpoints.

– (Check 2) User 1 also validates hash(full key) received from User 2 (see Fig. 2).
The correct hash value means that User 2 received key halves from both
KDCs; thus, User 1 (application client) can now trust that it is talking to
User 2 (application server), having the corresponding domain name.

Notice that two checks associate the butterfly connections with the user con-
nection: Check 1 validates that fact of domain registration, while Check 2 val-
idates that User 2 possesses the full key (i.e., the two butterfly links between
User 2 and KDCs have been executed).

13 In the case of client certificates, the traditional certificate-based domain name vali-
dation is performed. In the case of JWT tokens, the check is performed by a database
lookup or by verifying the hash-based JWT signature.
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5 Implementation and Integration into TLS 1.3

The QaaS service software that runs on Aija and Brenics has been developed
using the Go programming language, which has built-in concurrency support.
The QaaS software implements the server-side part of both the Butterfly Pro-
tocol and the Control Protocol. In order to support QKD devices from different
vendors, we created a Go interface named KeyGatherer that is used to obtain
streams of indexed keys, i.e., tuples (keyID, key, timestamp). Currently, we have
three KeyGatherer implementations: one for the IDQ Clavis3 device (used in our
real testbed), another for fetching keys from the file system (e.g., when keys from
the QKD device are stored as files; a shared folder can also be used to simulate
a QKD device), and the third one for generating random keys on-the-fly inside
a single process used to simulate both Aija and Brencis.

The Go code implements the Butterfly Protocol and the Control Protocol
via non-TLS web sockets. Post-quantum key and certificate management and
TLS implementation on the server side are provided by reverse proxies. We have
implemented our own reverse proxy in Java by relying on the TLS implemen-
tation provided by the BouncyCastle library14. Alternatively, HAProxy based
on OpenSSL 1.1.1 with embedded PQC algorithms from the OpenQuantumSafe
project can be used [23].15

The QaaS client library (used by User 1, User 2, and Centis) has been imple-
mented in Java using the BouncyCastle library. A pure-Java client implementa-
tion allows us to deploy the QaaS client library for Linux, macOS, and Windows
by compiling it with GraalVM Native Image [25].16 For the PQC butterfly con-
nections, our Java implementation is interoperable with LibOQS (written in C);
thus, we can use any LibOQS-based reverse proxy to provide PQC to backend
endpoints.

Sadly, BouncyCastle, out of the box, does not support PQC algorithms in
TLS. Thus, we implemented a set of additional classes that allow us to inject
PQC KEMs and signature schemes into TLS 1.3 flow in the BouncyCastle code.17

We call it TLS Injection Mechanism. In particular, we extend the Bouncy-
Castle PQC JCA/JCE provider and add the ability to inject and invoke new
algorithms. These can be PQC algorithms from the BouncyCastle distribution,
PQC algorithms implemented in LibOQS (accessible via the liboqs-java Java

14 BouncyCastle provides pure Java implementations of cryptographic primitives,
including the majority of PQC algorithms from NIST Rounds 3 and 4 in the lat-
est releases. BouncyCastle can be downloaded from https://www.bouncycastle.org/
java.html.

15 Our scripts for building such HAProxy are available at https://github.com/LUMII-
Syslab/oqs-haproxy.

16 We used the same approach in our quantum random number generator service
https://qrng.lumii.lv [15].

17 We use TLS v1.3 since it supports KEMs and reduces the number of round-trips in
a TLS handshake. KEMs are promoted by NIST, while TLS is an IETF standard
supported by all browsers and networking libraries.

https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://github.com/LUMII-Syslab/oqs-haproxy
https://github.com/LUMII-Syslab/oqs-haproxy
https://qrng.lumii.lv
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wrapper18), or other algorithms (such as our “virtual” KEM below). We are
working hard on merging our code into the main BouncyCastle distribution.
Implementation of the TLS Injection Mechanism is not straightforward and has
several non-trivial pitfalls, such as:

– modifying the lists of default KEMs and signature schemes (these lists are
sent in the TLS Client Hello message);

– aligning BouncyCastle KEM and signature scheme code points with those
used by the OpenQuantumSafe project. Since code points for PQC algorithms
are not standardized yet, we stick to the reserved-for-private-use ranges, i.e.,
0xFE00..0xFEFF for KEMs and 0xFE00..0xFFFF for signature schemes;

– aligning BouncyCastle and OpenQuantumSafe X.509/X.660 object identifiers
(OIDs) for PQC algorithms. These OIDs are used in binary representations
of keys and certificates in the ASN.1 notation;

– creating converters between the ASN.1 notation and the internal BouncyCas-
tle representation of keys;

– adding support for PQC keys and certificates (in the ASN.1 DER notation)
retrieved from Java key stores, where client private keys and certificates, and
CA certificates, are located.

For the butterfly connections, currently, we use the SPHINCS+19 algorithm
for signatures and FrodoKEM20 as KEM in TLS 1.3. We use AES256-GCM-
SHA384 as a cipher suite. For application data, instead of using pure TCP+TLS
sockets, we use web sockets since 1) they can be used from client-side code run-
ning in web browsers and 2) they are compatible with HTTP(s) traffic (important
when configuring firewalls and proxies). All messages in the Butterfly Protocol
and Control Protocol are encoded in the ASN.1 binary notation21, with tradi-
tional object identifiers (OIDs) for denoting hash functions.22

For the user connection (between User 1 and User 2), we introduce a “virtual”
KEM called QKD KEM (we reserve the 0xFEFF code point for it). Unlike
in traditional KEMs, no key material is sent via the user connection (hence,
KEM is “virtual”); the Butterfly Protocol is executed instead. However, from
the BouncyCastle point of view, QKD KEM is treated like any other KEM. We
use our TLS Injection Mechanism to add QKD KEM support to BouncyCastle.

In order to implement a KEM, three KEM primitives (KeyGen,
Encapsulate, Decapsulate) have to be provided. For some KEMs, each of these
primitives is called twice (all six calls are intertwined between the client and
the server). In QKD KEM, each of the three KEM primitives is needed once:
KeyGen and Decapsulate on the client side and Encapsulate on the server side.
The primitives are implemented as follows:

18 https://github.com/open-quantum-safe/liboqs-java.
19 NIST PQC Round 3 winner, to be standardized.
20 NIST PQC Round 3 candidate, not participating in Round 4 but invented by

renowned scientists.
21 since it is a standard, which is already being used for keys and certificates.
22 thus, hash functions can be upgraded in the future.

https://github.com/open-quantum-safe/liboqs-java
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– KeyGen() at User 1: sends reserveKeyAndGetKeyHalf to Aija and getKey-
Half to Brencis (see Fig. 2).
Returns pk1 = (keyID, hash(key[L)), hash(key[R])) as a public key and
sk1 = full key (a concatenation of the key halves) as a secret key. The public
key is sent to User 2 in a TLS Client Hello message.

– Encapsulate(pk1) at User 2: sends getKeyHalf to Aija and Brencis.
Returns sk2 = full key (a concatenation of the key halves) as a shared
session key for User 2 and ct2 = hash(full key) as a (virtual) ciphertext to
be sent back to User 1 in the reply (=TLS Server Hello message).

– Decapsulate(sk1, ct2) at User 1: validates the hash ct2 (and performs other
checks if domain validation is used).
Returns the first argument sk1 = full key as is (sk1 has already been
obtained during KeyGen). It will serve as a shared session key for User 1.
Notice that in the true KEM, sk1 would be used to decrypt the shared key
from the server cipher text (ct2). In our “virtual” KEM, however, we do not
need to perform any actions with sk1 since the shared key has already been
exchanged quantumly and ct2 contains only the hash.

Our QaaS implementation is available at https://qkd.lumii.lv23. So far, we
have implemented all required modules and protocols described in this paper
except the extra features mentioned in Sect. 4.2.

With our current implementation, we could obtain some preliminary perfor-
mance test results. Notice that our current implementation has not been opti-
mized and contains some debug code. In our setup, we used BouncyCastle TLS
implementation with injected PQC algorithms from LibOQS (via the Java wrap-
per) and our own pure-Java implementation of the QaaS protocols. We also used
our reverse proxies written in Java.

Establishing one PQC TLS link, serializing and sending a short message (a
few bytes long), and receiving the result from the server takes 1.57 s on average
(on the i7-2600 CPU). TLS-related computations take 96% of that time. Estab-
lishing one TLS link with QaaS (by executing the whole Butterfly Protocol)
and sending/receiving a message takes 3.75 s on average. Thus, the whole QaaS
introduces the 2.38 slowdown factor compared to a single PQC TLS link. With
optimizations, we plan to achieve the performance of running the whole QaaS
cycle in less than a second on modern CPUs. Thus, using QaaS in the real-world
setup seems realistic.

6 Related Work

Multiple attempts to apply the QKD technology in practice have been made.
Most software-based solutions are based on re-keying, when the initial symmet-
ric AES keys are replaced by or combined with the QKD keys [18,20]. Both
proprietary protocols (such as IDQ Dual-Key agreement) and open modifica-
tions to TLS and IPSec have been proposed [4,10]. Such approaches introduce

23 See also: https://github.com/LUMII-Syslab/qkd-as-a-service.

https://qkd.lumii.lv
https://github.com/LUMII-Syslab/qkd-as-a-service
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significant modifications to existing protocols or require the ability to replace
AES keys at runtime. In contrast, our QaaS architecture keeps the TLS protocol
almost intact (with the exception of reserving the 0xFEFF code point for QKD
KEM). However, we factor out the key exchange flow (with the two proposed
protocols) as a pluggable KEM.

Several attempts have been made to strengthen TLS security with hardware
security modules (HSMs) such as IDQ HSMs and SafeNet Ethernet Encryptors
[9]. Currently, HSMs can be integrated into QaaS by developing the correspond-
ing drivers manually. While we anticipate more QKD-certified HSMs, the need
for common APIs that ensure HSM interoperability becomes more apparent.

Since QKD devices are expensive, the idea of QKD simulation naturally
appeared with QKDNetSim as a representative implementation [18].24 It corre-
lates with our idea of defining a common Go interface for different QKD imple-
mentations, where some implementations act as drivers for real QKD devices
while others are used as simulated test environments. Technically, QKDNetSim-
like simulators can be plugged into our QaaS software, though our Go interface is
very simple and cannot be used to tune simulation parameters—a preconfigured
simulator is expected.

KEMTLS is probably the most prominent attempt to eliminate the need
for long PQC signatures from the TLS handshake [21]. In KEMTLS, additional
KEM invocations are used to authenticate the client and the server implicitly at
the cost of non-standard TLS flow. While pursuing the same goal, our Butterfly
Protocol differs from KEMTLS in two points:

– We do not modify TLS but introduce a new KEM (QKD KEM).
– We use hash functions, not KEMs, for implicit authentication.

Another goal of KEMTLS is to reduce the number of round-trips used in a
TLS handshake. In contrast, our goal was to implement an architecture that is
sustainable for active attacks on any single segment. That has been achieved at
the cost of a larger number of round-trips in the Butterfly protocol. Still, if we
consider the user connection only, the number of round trips remains the same
as in TLS 1.3 (i.e., 3 for server-only authentication).

Our idea of domain name verification (in the Butterfly Protocol with Domain
Validation) involves checks performed by Aija and Brencis. That resembles the
Online Certificate Status Protocol (OCSP), which eliminates the need for cer-
tificates and certificates revocation lists (CLRs) on the client side but requires
an internet connection to the trusted server [12].

Currently, the QKD technology lacks its own authentication mechanism. In
2021, Wang et al. proposed a PQC-based mutual authentication of multiple
QKD network users that trust the same CA [24]. The authentication mechanism
is based on PQC signatures that are exchanged via a shared classical link. The
process is basically the same as TLS with PQC KEMs and signatures. In our
QaaS mechanism, we assume that QKD devices (Alice and Bob) authenticate
each other via factory pre-shared keys that can be extended/replaced by new

24 See also: https://www.qkdnetsim.info and http://open-qkd.eu.

https://www.qkdnetsim.info
http://open-qkd.eu
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quantumly exchanged keys. Otherwise, if Alice and Bob were relying on PQC,
we would get a chicken and egg situation with the User 1↔User 2 connection
that relies on the security of the Alice↔Bob link.

7 Conclusion

In this paper, we proposed the “QKD as a service” (QaaS) architecture, two
protocols (and the Domain Validation extension to the Butterfly Protocol), the
distributed key reservation algorithm, and several authentication mechanisms for
QaaS, including some ideas for reducing the number of (very long) post-quantum
signatures.

We hope our work will make QKD available for a larger community of end-
users. Still, a lot of work is yet to be done, including the development of formal
proofs of the proposed protocols, analysis of potential threats and attacks to
QaaS, standardization, supporting and extending our reference implementation
by reacting to new developments and standards in the PQC field, and developing
multi-hop (multi-node) QKD and QaaS (a very large field of research). Besides,
we think that PQC algorithms should find their way to Java chip cards, which
can be used for more secure user authentication.

We also look forward to integrating the proposed QaaS into our web appli-
cation infrastructure webAppOS [14].
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