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Abstract. This paper shows new card-based cryptographic protocols
to compute Boolean functions using a standard deck of cards when the
players are malicious. Card-based cryptographic protocols use physical
cards instead of computers. They can be used when the software on com-
puters is not reliable. We discuss protocols that use a standard deck of
cards because it is easy to prepare. Though protocols that use private
operations tend to be efficient in the number of cards used in the proto-
cols, malicious actions are possible during private operations. This paper
shows three-player protocols to prevent malicious actions by watching
another player’s actions. We show logical AND, XOR, and copy proto-
cols since any Boolean functions can be realized by a combination of the
protocols. The numbers of cards used by the protocols are the minimum.

Keywords: card-based cryptographic protocols · Boolean functions ·
malicious players · standard deck of cards · multi-party secure
computation

1 Introduction

Card-based cryptographic protocols [8,22] were proposed in which physical cards
are used instead of computers to securely compute values. They can be used when
computers cannot be used or users cannot trust the software on the computer.
Also, the protocols are easy to understand, thus the protocols can be used to
teach the basics of cryptography [4,17] to accelerate the social implementation
of advanced cryptography [5]. den Boer [2] first showed a five-card protocol to
securely compute the logical AND of two inputs. Since then, many protocols have
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been proposed to realize primitives to compute any Boolean functions [13,23,33]
and specific computations such as millionaires’ problem [16,24,28], voting [19,
25,27,37], grouping [6], ranking [35], lottery [34], proof of knowledge of a puzzle
solution [3,31], and so on. This paper considers computations of logical AND
and logical XOR functions and copy operations since any Boolean function can
be realized with a combination of these computations.

Most of the above works are based on a two-color card model. In the two-color
card model, there are two kinds of cards, ♣ and ♥ . Cards of the same marks
cannot be distinguished. In addition, the back of both types of cards is ? . It
is impossible to determine the mark in the back of a given card of ? . Though
the model is simple, such special cards might not be available. Playing cards
are easy to prepare, thus protocols using a standard deck of playing cards and
their formal security proofs were shown [7,9,11,12,18,26,32]. Recently, protocols
that use private operations were shown [14]. Private operations are executed
where the other players cannot see, for example, under the table or in the back.
The protocols in [14] achieve the minimum number of cards. Though private
operations are effective in card-based protocols, there is a problem with private
operations. Since the private operations are executed where the other players
cannot see, a player might execute malicious actions during private operations.
For example, a malicious player might see the marks of face-down cards. Another
malicious player might swap the cards to change the values. We need to prevent
or detect such malicious actions.

A countermeasure to the problems is watching private actions and detect
malicious actions. When the protocols are executed by two players, Alice and
Bob, Alice must not see Bob’s private actions. If Alice sees Bob’s private oper-
ations, Alice can see all operations, thus Alice sees the relationship between the
private inputs and the output. If the output cards are opened to see the final
result, Alice can know the private input data from the relationship. Thus, another
player other than the two players is necessary to watch the private operations.
If the watcher sees both Alice and Bob’s private operations, the watching player
can know all operations and the relationship between the input data and the out-
put data. Thus the watching player knows the private data. This paper shows
that three players are sufficient to detect malicious actions and keep the protocol
secure, just as in the case of the two-color model [29]. In the three-player proto-
cols shown in this paper, Bob watches Alice’s private operations, Carol watches
Bob’s private operations, and Alice watches Carol’s private operations.

Few works are done for the case when some players are malicious or make mis-
takes [1,10,15,20,21,36]. [20] discusses information leakage at operation errors.
The other works are categorized into two groups. The first one is to use addi-
tional cards or special items such as envelopes [10,15,21,36]. The second type
introduces the watching player. The watching player for the protocol with a two-
color card model is shown [15]. Abe et al. showed a three-player majority voting
protocol with a malicious player [1]. Note that the above works are done for the
two-color card model. There is no work for a standard deck of cards. As long
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as the author knows, this is the first work that discusses malicious activities in
protocols that use a standard deck of cards and private operations.

In Sect. 2, basic notations and the private operations introduced in [29] are
shown. Section 3 shows logical AND, copy, and logical XOR protocols.

2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named 1 to 52. The number of each card (for example,
1 is the ace of the spade, and 52 is the king of the club) is common knowledge
among the players. The back of all cards is the same ? . It is impossible to
determine the mark in the back of a given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

The base of a commitment is the pair of cards used for the commitment. If
card i and j (i < j) are used to set commit(x), the commitment is written as
commit(x){i,j} and written as ? ?

︸ ︷︷ ︸

x{i,j}

. When the base information is obvious or

unnecessary, it is not written.
Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.

Thus, logical negation can be computed without private operations.
A set of cards placed in a row is called a sequence of cards. A sequence of

cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . , ?
︸︷︷︸

sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by three players, Alice, Bob, and Carol. The play-

ers are malicious, that is, they might not obey the rule of the protocols and
execute any operation. This paper assumes that even malicious players correctly
execute misbehavior detection. In the protocols in this paper, a player watches
the private operations executed by another player. If a player misbehaves, the
watching player detects the malicious action and says that the player misbe-
haved. The misbehaved player has a punishment for the misbehavior. The detail
of the punishment mechanism is out of the scope of this paper. To avoid punish-
ment, malicious players obey the rule of the protocols. Note that the watching
player does not output a false misbehavior detection. For the two-color card
model, a three-player misbehavior detection protocol without false alarm detec-
tion and a four-player misbehavior detection protocol with the ability of false
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alarm detection was shown [29]. In order to detect false alarms in a standard
deck of cards, four players seem to be necessary. False alarm detection is a further
study.

There is no collusion among players, otherwise, private input data can be
easily revealed.

The inputs of the protocols are given in a committed format, that is, the
players do not know the input values. The output of the protocol must be given
in a committed format so that the result can be used as input for further com-
putation.

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
players can know that (x, y) = (1, 1). If the output value is 0, the players must
not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

2.2 Private Operations

We show three private operations introduced in [29]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =
{

S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

In [29], the operation is executed in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x){i,j}, given S0 = ? ?

︸ ︷︷ ︸

x{i,j}

, The player’s output S1 = ? ?
︸ ︷︷ ︸

x⊕b{i,j}

, which is

? ?
︸ ︷︷ ︸

x{i,j}

or ? ?
︸ ︷︷ ︸

x{i,j}

.

Note that a private random bisection cut is the same as the random bisection
cut [23], but the operation is not executed in public.

Primitive 2 (Private reverse cut)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1
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In [29], the operation is executed in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

If a player executes a private random bisection cut to S when the random
bit is b and then executes a private reverse cut using b, the result is S.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal). A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque Commitment Pair

An opaque commitment pair is defined as a useful situation for to design a secure
protocol using a standard deck of cards [18]. It is a pair of commitments whose
bases are unknown to all players. Let us consider the following two commitments
using cards i, j, i′, and j′. The left (right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using
i′ and j′ (i and j), respectively. Such a pair of commitments is called an opaque
commitment pair and written as commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′}.

The protocols in this paper use a little different kind of pair, called semi-
opaque commitment pair. A player thinks a pair is an opaque commitment pair
but another player knows the bases of the commitments. Let us consider the case
when a protocol is executed by Alice and Bob. Bob privately makes the pair of
commitments with the knowledge of x and y. For example, Bob randomly selects
a bit b ∈ {0, 1} and

S =
{

commit(x){i,j}||commit(y){i′,j′} if b = 0
commit(x){i′,j′}||commit(y){i,j} if b = 1
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then S = commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′} for Alice. Such a pair is
called semi-opaque commitment pair and written as commit(x){i,j},{i′,j′}|Alice||
commit(y){i,j},{i′,j′}|Alice, where the name(s) of the players who think the pair
as a opaque commitment pair is written. Note that a name is not written does
not mean the player knows the bases of the commitments. For example, the
above example says nothing about whether Bob knows the bases or not. Note
that the name of the player is written with the initial when it is not ambiguous.

2.4 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [30]. The first round
begins from the initial state. In most protocols, a player initially has all cards,
but the definition assumes general cases when each player initially has some
number of cards. The first round is (possibly parallel) local executions by each
player using the cards initially given to each player. It ends at the instant when
no further local execution is possible without receiving cards from another player.
The local executions in each round include sending cards to some other players
but do not include receiving cards.

The i(> 1)-th round begins with receiving all the cards sent during the (i−1)-
th round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. We can define the number of rounds and average
rounds. The number of rounds of a protocol is the maximum number of rounds
necessary to output the result among all possible inputs and random values. For
randomized (Las Vegas) protocols, the average round is the average number of
rounds necessary to output the result. Since each operation is relatively simple,
the dominating time to execute protocols with private operations is the time to
send cards between players and set up so that the cards are not seen by the
other players. Thus the number of rounds is the criterion to evaluate the time
complexity of card-based protocols with private operations. If the local execution
needs many operations, for example, O(n) operations where n is the size of the
problem, we might need another criterion to consider the cost of local executions.

Let us show an example of a protocol execution, its space complexity, and
time complexity with the conventional two-color card model. In the two-color
card model, there are two kinds of marks, ♣ and ♥ . One-bit data is represented
by two cards as follows: ♣ ♥ = 0 and ♥ ♣ = 1.

Protocol 1 (AND protocol in [29])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice sends commit(x′) and commit(y) to Bob.
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2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =
{

commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in

the private random bisection cut. Let the obtained sequence be S3. Alice out-
puts S3.

The AND protocol realizes the following equation.

x ∧ y =
{

y if x = 1
0 if x = 0

Our new AND protocol is also based on this equation. The correctness of the pro-
tocol is shown in [29]. The number of cards is four since the cards of commit(x′)
are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends at
the instant when Alice sends commit(x′) and commit(y) to Bob. The second
round begins with receiving the cards by Bob. The second round ends at the
instant when Bob sends S2 to Alice. The third round begins with receiving the
cards by Alice. The number of rounds of this protocol is three.

3 AND, XOR, and Copy with Three Malicious Players

This section shows our new protocols for AND, XOR, and copy executed by three
malicious players. Any malicious action during private operations is detected by a
watching player, thus the malicious actions are prohibited if there is no collusion
between players.

Bob watches Alice’s operations, Carol watches Bob’s operations, and Alice
watches Carol’s operations. All operations are executed in the following manner.
Initially, all players are in the same room. If the next operation is executed by
Alice, first, Carol exits the room. Then, Alice executes the private operations in
front of Bob. Thus, Bob knows all private values. For example, if Alice executes
a private random bisection cut, Bob knows the random bit Alice selected. If
Alice executes a private reveal, Bob knows the value of the cards Alice opened.
If Alice misbehaves, Bob detects the fact and terminates the protocol execution.
If there is no misbehavior, Alice’s private operations are correctly finished. Then
Carol comes back to the room and they execute the next step of the protocol. If
the next private operation is executed by Bob(Carol), Alice(Bob) exits from the
room, Bob(Carol) executes the private operation in front of Carol(Alice), and
Alice(Bob) comes back to the room, respectively.

In the following protocol descriptions, we just write “Alice executes a private
operation” to mean “Carol exits the room, Alice executes a private operation in
front of Bob, and Carol comes back to the room” for simplicity.

Before we show the protocols, we show a subroutine to fix the base of a given
commitment.
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3.1 Base-Fixed Protocol with Three Players

We show a base-fixed protocol with two inputs commit(x) and commit(y). The
base of commit(x) is fixed to {1, 2}. In the following protocol, the second input
value y is not used as the output, but the value must be kept secret.

The protocol needs private reveals and the values of cards are seen. Before a
player sees a value of commit(x) and sets cards according to the value, the value
must be randomized to hide the value. In the protocol below, Alice sees the value,
thus the value must be randomized by the other players. One-player randomiza-
tion is not enough to hide the private value. Suppose that a player executes a
randomization in advance. They obtain commit(x ⊕ r) and then Alice executes
a private reveal. Since Bob watches Alice’s execution, Bob knows x ⊕ r. If the
randomization r is executed by Bob, Bob knows r and x ⊕ r and Bob knows
secret value x. Then consider the case when the randomization is executed by
Carol. Alice watches Carol’s private operation and knows r. Since Alice knows
x ⊕ r and r, Alice knows the secret value x. Therefore, one-player randomiza-
tion is not enough to hide the private value, and two-player randomizations are
necessary. The value must be randomized by Bob and Carol in advance.

Note that the bases of the input commitments are leaked to Alice and Bob
during the execution. The protocol can be used only if the information leakage
does not cause a security problem, for example, the bases are randomly set by
some other player.

Protocol 2 (Three player base-fixed protocol)
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on each pair using two random
bits br1 and br2, respectively. The result S1 = commit(x ⊕ br1){1,2},{3,4}|A||
commit(y ⊕ br2){1,2},{3,4}|A.

2. Carol executes a private random bisection cut on each pair using two ran-
dom bits cr1 and cr2, respectively. The result S2 = commit(x ⊕ br1 ⊕
cr1){1,2},{3,4}|A|| commit(y ⊕ br2 ⊕ cr2){1,2},{3,4}|A.

3. Alice executes a private reveal on both pairs of S2. Alice makes S3 =
commit(x ⊕ br1 ⊕ cr1){1,2}.

4. Bob executes a private reverse cut using br1 on S3. The result S4 =
commit(x ⊕ cr1){1,2}.

5. Carol executes a private reverse cut using cr1 on S4. The result is
commit(x){1,2}.

Theorem 1. The input values are private in the base-fixed protocol.

Proof. Alice sees x ⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Since Alice watches
Carol’s private operations, Alice sees cr1 and cr2 in Step 2. Alice obtains no
information about x and y since br1 and br2 are unknown to Alice.

Bob knows br1 and br2 in Step 1. Since Bob watches Alice’s private oper-
ations, Bob sees x ⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Bob obtains no
information about x and y since cr1 and cr2 are unknown to Bob.
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Carol knows cr1 and cr2 in Step 2. Since Carol watches Bob’s private oper-
ations, Carol sees br1 and br2 in Step 1. Carol obtains no information about x
and y. ��

3.2 AND Protocol

In the following AND, copy, and XOR protocols, the bases of the output com-
mitments are fixed to avoid information leakage from the bases when the outputs
are opened.

The outline to execute by three players is as follows. The protocol in [14] has
two randomizations. The first is the randomization of the bases of the two input
values. The second is the randomization of the input values.

Carol executes private reveals in the following protocol. By the same argu-
ment written in the description of the base-fixed protocol, the value must be
randomized by the other players in advance. Suppose that Alice and Bob use
random bits a and b to randomize x, respectively. After Carol’s private opera-
tion using x ⊕ a ⊕ b, Alice and Bob execute a private reverse cut using a and
b, respectively to undo the randomizations. Such randomizations are executed
before every private reveals in the protocol.

Next, we need to randomize the bases of the two pairs to hide the relation
between the output and inputs. Initially, commit(0) is made from the cards
of commit(x) using {1, 2} and commit(y) is made using {3, 4}. Suppose that
the output of AND is commit(0). It means that x = 0. If no base change is
executed, the base {1, 2} of the output reveal x = 0. Thus the randomization
of bases is necessary. If the base randomization is executed by one player, the
private information is known to one player just like the case of randomization
of values. Thus the base randomization must be executed by two players.

The detailed protocol is shown below. Note that for the simplicity of descrip-
tion, we write S⊕b to mean the pair that the left and the right card are swapped
if b = 1. If S = commit(x), S ⊕ b means commit(x ⊕ b).

Protocol 3 (Three player AND protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. The result is S1 = commit(x ⊕ a1){1,2}.

2. Bob executes a private random bisection cut on S1 using random bit b1. The
result is S2 = commit(x ⊕ a1 ⊕ b1){1,2}.

3. Carol executes a private reveal on S2. Carol sees x ⊕ a1 ⊕ b1. According to
the value, Carol sets S3||S4 as

S3||S4 =
{

commit(0){1,2}||commit(y){3,4} if x ⊕ a1 ⊕ b1 = 0
commit(y){3,4}||commit(0){1,2} if x ⊕ a1 ⊕ b1 = 1

The cards of S2 are reused to set commit(0).



Card-Based Cryptographic Protocols 341

4. Alice executes a private random bisection cut on S3 and S4 using random
bit a2 and a3, respectively. The result is S3 ⊕ a2||S4 ⊕ a3.

5. Bob executes a private random bisection cut on S3 ⊕ a2 and S4 ⊕ a3 using
random bit b2 and b3, respectively. The result is S3 ⊕ a2 ⊕ b2||S4 ⊕ a3 ⊕ b3.

6. Carol randomly selects bit c1 ∈ {0, 1}. Carol executes private reveals on
the two pairs and exchanges the bases of two pairs if c1 = 1. Then, Carol
executes private random bisection cuts on the two pairs using random bits
c2, c3 ∈ {0, 1}. Let the result be S5||S6 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

commit(0 ⊕ a2 ⊕ b2 ⊕ c2){1,2}||commit(y ⊕ a3 ⊕ b3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 0 and c1 = 0
commit(0 ⊕ a2 ⊕ b2 ⊕ c2){3,4}||commit(y ⊕ a3 ⊕ b3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 0 and c1 = 1
commit(y ⊕ a2 ⊕ b2 ⊕ c2){3,4}||commit(0 ⊕ a3 ⊕ b3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 1 and c1 = 0
commit(y ⊕ a2 ⊕ b2 ⊕ c2){1,2}||commit(0 ⊕ a3 ⊕ b3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 1 and c1 = 1

7. Bob executes private reveals on S5||S6. Bob randomly selects bit b4 ∈ {0, 1}.
Bob exchanges the bases of the two commitments if b4 = 1. Then Bob exe-
cutes private reverse cuts on the pairs using b2 and b3, respectively. The
result is

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

commit(0 ⊕ a2 ⊕ c2){1,2}||commit(y ⊕ a3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0 ⊕ a2 ⊕ c2){3,4}||commit(y ⊕ a3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2){1,2}||commit(0 ⊕ a3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2){3,4}||commit(0 ⊕ a3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

8. Carol executes private reverse cuts on the pairs using c2 and c3, respectively.
9. Alice executes a private reverse cut on each of the pairs using a2 and a3,

respectively.
Let S7||S8 be the result after the two private reverse cuts. S7||S8 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2}||commit(y){3,4} if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

Alice then executes a private reverse cut using a1. The result is
⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2}||commit(y){3,4} if x ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x ⊕ b1 = 1 and c1 ⊕ b4 = 0
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10. Bob executes a private reverse selection using b1. Let T0 be the result and T1

be the pair that is not selected.

T0 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2} if x = 0 and c1 ⊕ b4 = 0
commit(0){3,4} if x = 0 and c1 ⊕ b4 = 1
commit(y){1,2} if x = 1 and c1 ⊕ b4 = 1
commit(y){3,4} if x = 1 and c1 ⊕ b4 = 0

The value of T0 is commit(x ∧ y) and its base is randomly set by c1 ⊕ b4.
Since Alice does not know b4, T0 = commit(x ∧ y){1,2},{3,4}|A.
Similarly,

T1 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(y){3,4} if x = 0 and c1 ⊕ b4 = 0
commit(y){1,2} if x = 0 and c1 ⊕ b4 = 1
commit(0){3,4} if x = 1 and c1 ⊕ b4 = 1
commit(0){1,2} if x = 1 and c1 ⊕ b4 = 0

The value of T1 is commit(x̄ ∧ y) and its base is randomly set by c1 ⊕ b4.
T1 = commit(x̄ ∧ y){1,2},{3,4}|A.
Next, execute the base-fixed protocol on these pairs. Then the players obtain
commit(x ∧ y){1,2}.

The protocol is 14 rounds since the first step of the base-fixed protocol is
executed by Bob. The semi-honest two-player AND protocol [14] is 8 rounds.
The number of cards is four. Since four cards are necessary to input x and y, the
number of cards is the minimum. The correctness of the output value is shown
in the protocol, thus we show the security.

Theorem 2. The AND protocol is secure.

Proof. First, we show the security for Bob. Since Bob watches Alice, Bob knows
the values in Steps 1, 2, 4, 5, 7, 9, 10 and Steps 1, 3, and 4 of the base-fixed
protocol. Bob thus sees ai, bi, bri, x ∧ y ⊕ br1 ⊕ cr1, x̄ ∧ y ⊕ br2 ⊕ cr2, and
((0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 1)). Bob can obtain no information about
the secret input and output values since the values of cards are randomized by
c2, c3, cr1, or cr2 that are unknown to Bob.

From the bases of the cards, Bob obtains no information since the bases of
two randomized values, 0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 (or y ⊕ a2 ⊕ b2 ⊕ c2
and 0 ⊕ a3 ⊕ b3 ⊕ c3) are randomized by unknown value c1. The bases of two
randomized values, x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 are randomized by
c1 ⊕ b4 but c1 is unknown to Bob.

Next, we show the security for Carol. Since Carol watches Bob, Carol knows
the values in Steps 2, 3, 5, 6, 7, 8, 10 and Steps 1, 2, 4, and 5 of the base-fixed
protocol. Carol thus sees bi, ci, bri, cri, x ⊕ a1 ⊕ b1, 0 ⊕ a2 ⊕ b2, y ⊕ a3 ⊕ b3, and
(( 0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 1)). From the cards, Carol obtains no
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information about the secret input values since the values are randomized by
unknown values a1, a2, or a3.

About the bases of the cards, Carol knows whether she set commit(0){1,2}||
commit(y){3,4} or commit(0){3,4}||commit(y){1,2} in Step 3 and both two base
randomizations by Carol and Bob, thus she knows whether S7||S8 is commit(0)||
commit(y) or commit(y)||commit(0) and each commitment is made by {1, 2}
or {3, 4}. However, Carol cannot see the private reverse cut by Alice in Step 9,
Carol cannot know which pair is selected as the final result thus no informa-
tion is known to Carol. Since Alice sets the base to {1, 2}, Carol cannot know
information about the secret input values from the base of the final result.

Last, we show the security for Alice. Alice knows the values in Steps 1, 3, 4,
6, 8, 9, and Steps 2, 3, and 5 of the base-fixed protocol. Alice thus sees ai, ci,
cri, x⊕ a1 ⊕ b1, x ∧ y ⊕ br1 ⊕ cr1, and x̄ ∧ y ⊕ br2 ⊕ cr2, and (( 0 ⊕ a2 ⊕ b2 ⊕ c2
and y⊕ a3 ⊕ b3 ⊕ c3 if x⊕ a1 ⊕ b1 = 0) or (y⊕ a2 ⊕ b2 ⊕ c2 and y⊕ a3 ⊕ b3 ⊕ c3 if
x ⊕ a1 ⊕ b1 = 1)). From the revealed cards, Alice obtains no information about
the secret input and output values since each value is randomized by unknown
value b1, b2, b3, br1, or br2.

Alice knows whether S3||S4 is commit(0){1,2}||commit(y){3,4}

or commit(y){3,4}||commit(0){1,2}. Alice also knows the bases of each pair of
S5||S6. Though Alice knows the bases of S5||S6, Bob’s base change using b4 is
unknown to Alice. Thus, the bases of T0 and T1 are random for Alice because
of b4. When Alice sees x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 in Step 3 of the
base-fixed protocol, the bases are randomized by c1 ⊕ b4. Thus, Alice obtains no
information from the bases of the commitments. ��

3.3 Copy Protocol

Next, we show a new copy protocol by three players.

Protocol 4 (Three player copy protocol)
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2} using random
bit a. The result is commit(x ⊕ a){1,2}.

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} using
random bit b. The result is commit(x ⊕ a ⊕ b){1,2}.

3. Carol executes a private reveal on commit(x⊕ a⊕ b){1,2} and sees x⊕ a⊕ b.
Carol privately makes commit(x ⊕ a ⊕ b){3,4}.

4. Alice executes a private reverse cut on each of the pairs using a. The result
is commit(x ⊕ b){1,2} and commit(x ⊕ b){3,4}.

5. Bob executes a private reverse cut on each of the pairs using b. The result is
commit(x){1,2} and commit(x){3,4}.

The number of cards is the minimum. The protocol is five rounds. The semi-
honest two-player copy protocol [14] is three rounds.
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Theorem 3. The copy protocol is secure.

Proof. Alice sees a and x ⊕ a ⊕ b. Bob sees a and b. Carol sees b and x ⊕ a ⊕ b.
Thus no player knows the secret value x. ��

3.4 XOR Protocol

Since AND and copy protocols are shown and NOT is obvious, any Boolean
function can be realized by the combination of these protocols. XOR protocol is
shown because the realization of XOR is simple.

Protocol 5 (Three player XOR protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using the same random bit a ∈ {0, 1}. The result is
commit(x ⊕ a){1,2} and commit(y ⊕ a){3,4}.

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} and
commit(y ⊕ a){3,4} using the same random bit b ∈ {0, 1}. The result is
commit(x ⊕ a ⊕ b){1,2} and commit(y ⊕ a ⊕ b){3,4}.

3. Carol executes a private reveal on commit(y⊕ a⊕ b){3,4}. Carol sees y⊕ a⊕ b.
Carol executes a private reverse cut on commit(x⊕ a⊕ b){1,2} using y ⊕ a⊕ b.
The result is commit((x ⊕ a ⊕ b)⊕ (y ⊕ a ⊕ b)){1,2} = commit(x ⊕ y){1,2}.

The protocol is three rounds. The semi-honest two-player XOR protocol [14] is
two rounds. The protocol uses four cards. Since any protocol needs four cards
to input x and y, the number of cards is the minimum.

Theorem 4. The XOR protocol is secure.

Proof. Alice sees a and y ⊕ a ⊕ b. Bob sees a and b. Carol sees b and y ⊕ a ⊕ b.
Thus no player knows the secret value y. ��

References

1. Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based
majority voting protocol with three inputs. In: 2020 International Symposium on
Information Theory and Its Applications (ISITA), pp. 377–381. IEEE (2020)

2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Cheung, E., Hawthorne, C., Lee, P.: CS 758 project: secure computation with
playing cards (2013). http://cdchawthorne.com/writings/secure playing cards.pdf

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8
http://cdchawthorne.com/writings/secure_playing_cards.pdf


Card-Based Cryptographic Protocols 345

5. Hanaoka, G., et al.: Physical and visual cryptography to accelerate social imple-
mentation of advanced cryptographic technologies. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. (2023). (In Japanese)

6. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 101(9), 1512–1524 (2018)

7. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology, Germany (2019)

8. Koch, A.: The landscape of optimal card-based protocols. Math. Cryptol. 1(2),
115–131 (2021)

9. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. N. Gener. Comput. 39(1), 115–158 (2021)

10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Proceedings of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

11. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol
with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) CSR
2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-79416-3 14

12. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-
Key Cryptography Workshop, APKC 2021, pp. 13–22. Association for Computing
Machinery, New York (2021)

13. Manabe, Y.: Survey: card-based cryptographic protocols to calculate primitives of
Boolean functions. Int. J. Comput. Softw. Eng. 27(1), 178 (2022)

14. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021.
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