
Weizhi Meng
Zheng Yan
Vincenzo Piuri (Eds.)

LN
CS

 1
43

41

Information Security
Practice and Experience
18th International Conference, ISPEC 2023
Copenhagen, Denmark, August 24–25, 2023
Proceedings

Lecture Notes in Computer Science 14341
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Weizhi Meng · Zheng Yan · Vincenzo Piuri
Editors

Information Security
Practice and Experience
18th International Conference, ISPEC 2023
Copenhagen, Denmark, August 24–25, 2023
Proceedings

Editors
Weizhi Meng
Technical University of Denmark
Kongens Lyngby, Denmark

Vincenzo Piuri
University of Milan
Milan, Italy

Zheng Yan
Xidian University
Xi’an, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-7031-5 ISBN 978-981-99-7032-2 (eBook)
https://doi.org/10.1007/978-981-99-7032-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0003-3178-8198
https://orcid.org/0000-0002-9697-2108
https://doi.org/10.1007/978-981-99-7032-2

Preface

This volume contains the papers that were selected for presentation and publication at the
18th International Conference on Information Security Practice and Experience (ISPEC
2023), which was organized by SPTAGE Lab, DTU Compute, Technical University
of Denmark on 24–25 August 2023. It is worth noting that ISPEC embraced a new
conference logo from this year.

The main goal of the ISPEC 2023 conference was to promote research on new infor-
mation security technologies, including their applications and their integration with
IT systems in various vertical sectors. Previous ISPEC conferences have taken place
in Singapore (2005), Hangzhou, China (2006), Hong Kong, China (2007), Sydney,
Australia (2008), Xi’an, China (2009), Seoul, South Korea (2010), Guangzhou, China
(2011), Hangzhou, China (2012), Lanzhou, China (2013), Fuzhou, China (2014),
Beijing, China (2015), Zhangjiajie, China (2016), Melbourne, Australia (2017), Tokyo,
Japan (2018), Kuala Lumpur, Malaysia (2019), Nanjing, China (2021), and Taipei,
Taiwan (2022). For all editions, the conference proceedings were published by Springer
in the Lecture Notes in Computer Science series. Note that ISPEC 2020 was postponed
to 2021 due to the COVID-19 pandemic.

This year, we received 80 submissions in total. Each submission was carefully
reviewed (double-blinded) by an average of 3.2 Program Committee members in terms
of novelty, practical application, and technical quality to reach a common conclusion.
Eventually, the Program Committee decided to accept 27 full papers with an acceptance
rate of 33.8%. In addition, 8 short papers were accepted based on the quality and received
reviews. The accepted papers cover multiple topics of cyber security and applied cryp-
tography. In addition to the paper presentations, the program also featured two invited
keynote: 1) titled “Enhancing Security in Software andAI” fromYangXiang (Swinburne
University of Technology, Australia), and 2) titled “Strengthening Machine Learning-
based Intrusion Detection Systems in Adversarial Environments” from Wenjing Lou
(Virginia Tech, USA).

For the success of ISPEC 2023, we would like to first thank the authors of all
submissions and all the PC members for their great efforts in selecting the papers. We
also thank all the organizing committee members and local chairs. Finally, we thank
everyone else, student helpers and session chairs, for their contribution to the program.

August 2023 Weizhi Meng
Zheng Yan

Vincenzo Piuri

Organization

General Chairs

Robert H. Deng Singapore Management University, Singapore
Steven Furnell University of Nottingham, UK
Allen Man Ho Au Hong Kong Polytechnic University, China

Program Chairs

Weizhi Meng Technical University of Denmark, Denmark
Zheng Yan Xidian University, China
Vincenzo Piuri University of Milan, Italy

Publicity Chairs

Kuo-Hui Yeh National Donghwa University, Taiwan RoC
Chunhua Su University of Aizu, Japan
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg

Publication Chairs

Wenxiu Ding Xidian University, China
Wenjuan Li Hong Kong Polytechnic University, China

Web Chairs

Wei-Yang Chiu Technical University of Denmark, Denmark
Brooke Lampe Technical University of Denmark, Denmark

viii Organization

Local Chair

Wei-Yang Chiu Technical University of Denmark, Denmark

Program Committee

Xin Jin Ohio State University, USA
Mingjun Wang Xidian University, China
Lukasz Krzywiecki Wroclaw University of Technology, Poland
Zheng Yan Xidian University, China
Xinyi Huang Fujian Normal University, China
Jun Shao Zhejiang Gongshang University, China
Willy Susilo University of Wollongong, Australia
Weizhi Meng Technical University of Denmark, Denmark
Xingye Lu Hong Kong Polytechnic University, China
Emmanouil Vasilomanolakis Technical University of Denmark, Denmark
Rongxing Lu University of New Brunswick, Canada
Edgar Weippl University of Vienna, Austria
Aniello Castiglione University of Salerno, Italy
Panayiotis Kotzanikolaou University of Piraeus, Greece
Masoud Kaveh Aalto University, Finland
Haiyang Xue University of Hong Kong, China
Yaxing Chen Northwestern Polytechnical University, China
Ioannis Mavridis University of Macedonia, Greece
Dong-Seong Kim National Institute of Technology, South Korea
Nikolaos Pitropakis Edinburgh Napier University, UK
Nathan Clarke University of Plymouth, UK
Francesco Flammini Linnaeus University, Sweden
Steven Furnell University of Nottingham, UK
Pierangela Samarati Università degli Studi di Milano, Italy
Chunhua Su University of Aizu, Japan
Wenjuan Li Hong Kong Polytechnic University, China
Javier Lopez University of Malaga, Spain
Dieter Gollmann Hamburg University of Technology, Germany
Qianhong Wu Beihang University, China
Noboru Kunihiro University of Tsukuba, Japan
Xixun Yu Hainan University, China
Yun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Bela Genge University of Medicine, Pharmacy, Sciences and

Technology of Targu Mures, Romania
Shujun Li University of Kent, UK

Organization ix

Joonsang Baek University of Wollongong, Australia
Shouhuai Xu University of Colorado, Colorado Springs, USA
Toshihiro Yamauchi Okayama University, Japan
Stefanos Gritzalis University of Piraeus, Greece
Xun Yi RMIT University, Australia
Maria Papadaki University of Derby, UK
Zuoxia Yu University of Wollongong, Australia
Rodrigo Roman University of Malaga, Spain
Shushu Liu Nokia Bell Labs, USA
Costas Lambrinoudakis University of Piraeus, Greece
Kuo-Hui Yeh National Donghwa University, Taiwan
Giovanni Livraga University of Milan, Italy
Albert Levi Sabanci University, Turkey
Wei-Yang Chiu Technical University of Denmark, Denmark

Contents

Secure and Efficient Federated Learning by Combining Homomorphic
Encryption and Gradient Pruning in Speech Emotion Recognition 1

Samaneh Mohammadi, Sima Sinaei, Ali Balador,
and Francesco Flammini

FedLS: An Anti-poisoning Attack Mechanism for Federated Network
Intrusion Detection Systems Using Autoencoder-Based Latent Space
Representations . 17

Tran Duc Luong, Vuong Minh Tien, Phan The Duy, and Van-Hau Pham

Mitigating Sybil Attacks in Federated Learning . 36
Ahmed E. Samy and Šarūnas Girdzijauskas

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid
with Soft Biometrics . 52

Jiahui Wang, Yulong Fu, Mengru Liu, Jin Cao, Hui Li, and Zheng Yan

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy
for Privacy . 74

Sebastian Simon, Cezara Petrui, Carlos Pinzón, and Catuscia Palamidessi

Cross-Border Data Security from the Perspective of Risk Assessment 91
Na Wang, Gaofei Wu, Jingfeng Rong, Zheng Yan, Qiuling Yue,
Jinglu Hu, and Yuqing Zhang

IoT-REX: A Secure Remote-Control System for IoT Devices
from Centralized Multi-designated Verifier Signatures . 105

Yohei Watanabe, Naoto Yanai, and Junji Shikata

CVAR-FL IoV Intrusion Detection Framework . 123
Jia Zhao, Xinyu Rao, JiQiang Liu, Yue Guo, and BoKai Yang

Transparent Security Method for Automating IoT Security Assessments 138
Rauli Kaksonen, Kimmo Halunen, Marko Laakso, and Juha Röning

DIDO: Data Provenance from Restricted TLS 1.3 Websites 154
Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen

xii Contents

QR-SACP: Quantitative Risk-Based Situational Awareness Calculation
and Projection Through Threat Information Sharing . 170

Mahdieh Safarzadehvahed, Farzaneh Abazari, and Fateme Shabani

Dynamic Trust Boundary Identification for the Secure Communications
of the Entities via 6G . 194

Rabeya Basri, Gour Karmakar, Joarder Kamruzzaman,
S. H. Shah Newaz, Linh Nguyen, and Muhammad Usman

RTR-Shield: Early Detection of Ransomware Using Registry and Trap Files . . . 209
P. Mohan Anand, P. V. Sai Charan, Hrushikesh Chunduri,
and Sandeep K Shukla

MalXCap: A Method for Malware Capability Extraction . 230
Bikash Saha, Nanda Rani, and Sandeep Kumar Shukla

Multimodal Software Defect Severity Prediction Based on Sentiment
Probability . 250

Ying Li, Yuhao Lin, Yongchao Zhong, Qiuling Yue, Jinglu Hu,
Wenjie Wang, Huiyang Shi, and Yuqing Zhang

Recovering Multi-prime RSA Keys with Erasures and Errors 266
Guanghui Liu, Yuejun Liu, Yongbin Zhou, and Yiwen Gao

Performance Impact Analysis of Homomorphic Encryption: A Case Study
Using Linear Regression as an Example . 284

Thomas Prantl, Simon Engel, Lukas Horn, Dennis Kaiser,
Lukas Iffländer, André Bauer, Christian Krupitzer, and Samuel Kounev

Chosen Ciphertext Security for Blind Identity-Based Encryption
with Certified Identities . 299

Sohto Chiku, Keisuke Hara, and Junji Shikata

A New Gadget Decomposition Algorithm with Less Noise Growth in HE
Schemes . 315

Chao Liu and Bozhong Liu

Malicious Player Card-Based Cryptographic Protocols with a Standard
Deck of Cards Using Private Operations . 332

Tomoya Morooka, Yoshifumi Manabe, and Kazumasa Shinagawa

Cryptanalysis of Human Identification Protocol with Human-Computable
Passwords . 347

Maciej Grześkowiak, Łukasz Krzywiecki, and Karol Niczyj

Contents xiii

A Source Hiding Protocol for Cooperative Intelligent Transportation
Systems (C-ITS) . 365

Hannes Salin and Łukasz Krzywiecki

A Revocable Outsourced Data Accessing Control Scheme with Black-Box
Traceability . 380

Yuchen Yin, Qingqing Gan, Cong Zuo, Ning Liu, Changji Wang,
and Yuning Jiang

LocKey: Location-Based Key Extraction from the WiFi Environment
in the User’s Vicinity . 399

Philipp Jakubeit, Andreas Peter, and Maarten van Steen

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 419
Yalan Wang, Liqun Chen, Long Meng, and Yangguang Tian

Lever: Making Intensive Validation Practical on Blockchain 440
Mingming Wang and Qianhong Wu

Tikuna: An Ethereum Blockchain Network Security Monitoring System 462
Andres Gomez Ramirez, Loui Al Sardy, and Francis Gomez Ramirez

Isogeny-Based Multi-signature Scheme . 477
Mathieu de Goyon and Atsuko Miyaji

Security Analysis of WAGE Against Division Property Based Cube Attack 492
Bijoy Das, Abhijit Das, and Dipanwita Roy Chowdhury

When MPC in the Head Meets VC . 507
Li Liu and Puwen Wei

Quantum Key Distribution as a Service and Its Injection into TLS 527
Sergejs Kozlovičs, Krišjānis Petručeņa, Dāvis Lāriņš, and Juris Vı̄ksna

XFedGraph-Hunter: An Interpretable Federated Learning Framework
for Hunting Advanced Persistent Threat in Provenance Graph 546

Ngo Duc Hoang Son, Huynh Thai Thi, Phan The Duy, and Van-Hau Pham

XSS Attack Detection by Attention Mechanism Based on Script Tags
in URLs . 562

Yuki Nakagawa and Mamoru Mimura

xiv Contents

Mining for Better: An Energy-Recycling Consensus Algorithm to Enhance
Stability with Deep Learning . 579

Zhen Xia, Zhenfu Cao, Jiachen Shen, Xiaolei Dong, Jun Zhou,
Liming Fang, Zhe Liu, Chunpeng Ge, and Chunhua Su

SIOCEN: Secure Integrity Verification of Outsourced Data in Cloud
Storage using Blockchain . 595

Ajay Chandra Korlapati, Sanjeet Kumar Nayak,
Partha Sarathi Chakraborty, and Somanath Tripathy

Author Index . 615

Secure and Efficient Federated Learning
by Combining Homomorphic Encryption
and Gradient Pruning in Speech Emotion

Recognition

Samaneh Mohammadi1,2(B), Sima Sinaei1, Ali Balador2,
and Francesco Flammini2

1 RISE Research Institutes of Sweden, Västerås, Sweden
{samaneh.mohammadi,sima.sinaei}@ri.se
2 Mälardalen University, Västerås, Sweden

{ali.balador,francesco.flammini}@mdu.se

Abstract. Speech Emotion Recognition (SER) detects human emotions
expressed in spoken language. SER is highly valuable in diverse fields;
however, privacy concerns arise when analyzing speech data, as it reveals
sensitive information like biometric identity. To address this, Federated
Learning (FL) has been developed, allowing models to be trained locally
and just sharing model parameters with servers. However, FL intro-
duces new privacy concerns when transmitting local model parameters
between clients and servers, as third parties could exploit these param-
eters and disclose sensitive information. In this paper, we introduce a
novel approach called Secure and Efficient Federated Learning (SEFL)
for SER applications. Our proposed method combines Paillier homomor-
phic encryption (PHE) with a novel gradient pruning technique. This
approach enhances privacy and maintains confidentiality in FL setups
for SER applications while minimizing communication and computation
overhead and ensuring model accuracy. As far as we know, this is the first
paper that implements PHE in FL setup for SER applications. Using a
public SER dataset, we evaluated the SEFL method. Results show sub-
stantial efficiency gains with a key size of 1024, reducing computation
time by up to 25% and communication traffic by up to 70%. Impor-
tantly, these improvements have minimal impact on accuracy, effectively
meeting the requirements of SER applications.

Keywords: Federated Learning · Privacy-preservation · Homomorphic
Encryption · Speech Emotion Recognition

1 Introduction

Speech Emotion Recognition (SER) detects and classifies human emotions
expressed in spoken language. SER benefits diverse domains like mental health
diagnosis, education, and entertainment [9]. While analyzing speech data can
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 1–16, 2023.
https://doi.org/10.1007/978-981-99-7032-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_1&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_1

2 S. Mohammadi et al.

unveil sensitive information, including biometric identity, personality traits, geo-
graphic origin, emotional state, age, gender, and health condition [10]. Ethical
and privacy concerns arise when using such data. Regulations such as GDPR
[18] have been introduced to protect personal data. Thus, privacy must be a
priority in developing and implementing SER applications across domains.

Federated Learning (FL) offers a promising solution to maintain data privacy
while enabling machine learning (ML) models to be trained on decentralized
devices [14]. FL trains ML models on local client devices without transferring
raw data to a central server, which preserves data privacy and ensures compliance
with regulations such as GDPR. For SER, the initial processing of speech data
and training perform on clients’ devices, and only local model parameters are
sent to the central server for model aggregation [11]. FL reduce the risk of privacy
breaches while still achieving accurate outcomes for SER applications.

However, FL introduces new privacy concerns regarding the transmission of
local model parameters between clients and servers, as this data could potentially
be exploited by third parties to reconstruct speech data and disclose sensitive
information [6]. Differential Privacy (DP) is a promising mechanism used in FL to
protect individual data points. Applying DP to SER applications can introduce
accuracy challenges due to the distortion of voice data caused by the addition
of noise. It adversely affects the utility and output accuracy of the SER model
by more than 10% reduction (depends on privacy budget and noise scale) [4].
Thus, SER applications face difficulties achieving desired accuracy levels [17].

An alternative approach to preserving privacy without compromising SER
accuracy is using diverse homomorphic encryption methods, such as Paillier
homomorphic encryption (PHE) [3]. PHE ensures privacy by encrypting local
model parameters during communication and computation. However, using PHE
in the FL setup may introduce challenges, including increased communication
traffic and computation time [19], particularly in resource-constrained settings
like edge devices. Therefore, carefully considering these challenges is crucial when
implementing PHE in FL systems for SER applications.

In this paper, we propose a novel method for SER called Secure and Efficient
Federated Learning (SEFL), which combines Paillier homomorphic encryption
with a novel gradient pruning technique. This approach enhances privacy in FL
setups for SER applications while reducing communication traffic and computa-
tion time with almost maintaining acceptable model accuracy. Gradient pruning
is performed on the gradients of each client during every training round. This
technique removes or prunes gradients with low magnitudes, as they contribute
minimally to weight updates and have a limited impact on overall performance.

The SEFL method effectively reduces the size of encrypted local model
parameters transmitted between the client and server, leading to decreased
communication traffic. Additionally, gradient pruning reduces the number of
parameters and floating point operations (FLOPs), shortening the encryption
and decryption time and thus addressing the computation time associated with
encryption methods.

Secure and Efficient Federated Learning 3

The novel contributions of this paper can be summarized as follows:

– Develop a novel SEFL algorithm for SER applications that ensures privacy
while enhancing efficiency in terms of reduced communication and computa-
tion overhead, as well as maintaining acceptable accuracy.

– Conduct a proof of concept implementation of Paillier homomorphic encryp-
tion in FL for SER applications to ensure the confidentiality of the client.

– Evaluate SEFL on a public SER dataset to demonstrate its considerable gains
in efficiency, such as a reduction of computation time by 10–25% and commu-
nication traffic by 50–70%, depending on pruning percentage, while having a
very limited impact on accuracy, in order to meet the requirements of SER
applications.

The paper is structured as follows. Section 2 provides an overview of the back-
ground and related works on SER using FL, privacy-preserving techniques, and
communication and computation-efficient FL. Section 3 describes the applica-
tion of SEFL method for SER, including non-functional requirements, threat
model, and the proposed SEFL algorithm. Section 4 presents experimental
results obtained using SEFL in the SER reference application. Finally, Sect. 5
concludes the paper and provides insights for future developments.

2 Background and Related Works

This section reviews related work in SER using FL, explores homomorphic
encryption techniques for privacy preservation in FL, and reviews work on effi-
cient communication and computation in FL.

2.1 Speech Emotion Recognition Using Federated Learning

Speech emotion recognition (SER) uses ML algorithms to understand human
emotions from audio signals. It requires large amounts of sensitive data, rais-
ing privacy concerns. FL offers a promising solution by collaborating on decen-
tralized devices without sharing raw data [11]. Some studies propose FL-based
approaches for building private decentralized SER models using federated self-
training [16]. However, existing method rely on the FL framework for privacy
preservation and do not apply additional privacy-preserving techniques in FL or
consider various threat models.

2.2 Privacy-Preserving Federated Learning

Homomorphic encryption (HE) is used in FL to protect user privacy and enable
secure aggregation [3]. With HE, data is encrypted before being sent to the cen-
tral server for training, ensuring privacy. The server performs computations on
the encrypted data without decrypting it, using homomorphic operations like
addition and multiplication. The encrypted results are then returned to devices

4 S. Mohammadi et al.

for decryption and aggregation [12]. Most prevalent among HE variants are Pail-
lier, FV, and CKKS [1]. Paillier allows additions to encrypted data, whereas FV
and CKKS allow additions and multiplications. It is possible to encrypt integers
using the Paillier and FV schemes, but only approximate results can be obtained
with the CKKS scheme. However, most HE variants add additional computa-
tional and communication overhead, making it more challenging to scale FL to
large numbers of devices.

2.3 Communication and Computation-Efficient Federated Learning

During FL training, transmitting model parameters like DNN models between
devices and a central server can cause high communication overhead and slow
learning [3]. Compression techniques like gradient pruning help reduce model
size [7]. However, weight pruning methods in FL may lead to accuracy loss [13].
Implementing privacy-preserving mechanisms like HE on edge devices with lim-
ited computational capabilities and communication bandwidth in FL systems
introduces significant overhead and impractically long training times [8]. Exist-
ing solutions include batching multiple plaintexts into a single one to reduce
computation overhead [19], but this approach still results in high communica-
tion overhead. Achieving a balance between communication, computation, and
privacy remains an ongoing challenge in FL with HE.

3 Application of Secure and Efficient Federated Learning
for Speech Emotion Recognition

In this section, we will provide an overview of the non-functional requirements
for SER applications, describe the threat model for our system, and provide
a detailed explanation of the proposed SEFL (Secure and Efficient Federated
Learning) method for SER applications.

3.1 Non-functional Requirements of Speech Emotion Recognition
Application

Non-functional requirements for SER applications encompass performance-
related aspects rather than specific functionalities. Key requirements include
privacy, efficiency and accuracy. Meeting these requirements is essential to ful-
filling user needs, expectations, and legal obligations. A detailed explanation
of non-functional requirements is presented in this section, with corresponding
evaluations demonstrating compliance.

1. Privacy:
(a) Personal speech data must be kept on local devices only [18].
(b) The central server must not be able to access local model parameters to

infer sensitive information.

Secure and Efficient Federated Learning 5

(c) Communication between clients and servers should be protected from
unauthorized access in order to keep SER parameters confidential.

2. Efficiency:
(a) In order to reduce hardware costs and consider the typically resource-

constrained edge devices, SER computation overhead must be minimized.
(b) Communication overhead between SER clients and servers must be min-

imized in order to optimize network resource consumption when using
limited bandwidth connections.

3. Accuracy:
(a) The level of accuracy of SER applications must be kept high enough

to reliably identify the correct emotions from speech samples. We can
consider a baseline accuracy of a minimum 70% in detecting the four
basic emotions - neutral, sad, happy, and angry [17].

It is essential to note that these requirements are often interdependent. For
example, privacy-preserving methods can impact efficiency in terms of commu-
nication and computation overhead. Additionally, implemented SER in the FL
setup show a slight drop in accuracy (up to 0–5%) [16]. Communication traffic is
defined as the number of bits exchanged between clients and servers. In central-
ized SER training, the amount of speech data sent to the central server depends
on factors like audio clip length, sampling rate, and pre-processing steps. For
instance, CREMA-D dataset [2] used 7,442 audio clips, with each client sending
around 8–10 MB to server in each training round.

3.2 Threat Model

In this paper, we consider the honest-but-curious (HBC) paradigm for the server,
which implies that the server is not malicious but still retains curiosity about the
clients’ data or models. However, this assumption introduces certain potential
threats. Specifically, the HBC server has the ability to infer sensitive informa-
tion, such as the speaker’s identity, by reconstructing speech data from the model
parameters. By analyzing distinctive characteristics of the speaker’s voice, such
as pitch, tone, and accent, the server may potentially identify individuals. More-
over, HBC servers can analyze the reconstructed speech data to gather sensi-
tive information about the speaker’s emotional state. Indicators of emotions can
reveal the speaker’s emotional state or personality.

3.3 Proposed Method: SEFL

To address the privacy threat posed by an HBC server, as well as to meet the
non-functional requirements of the SER application, we propose a new approach
called Secure and Efficient Federated Learning (SEFL). SEFL combines Pail-
lier homomorphic encryption with a novel gradient pruning method. The SEFL
method ensures that the speech data remains on the end devices during training
(Req. 1.a). Using Paillier homomorphic encryption, the HBC server can only
access ciphertext data and cannot infer sensitive information from the model

6 S. Mohammadi et al.

parameters (Req. 1.b). Additionally, the encrypted model parameters shared
by clients ensure unauthorized parties cannot access the SER model without
compromising the cryptosystem (Req. 1.c). Furthermore, SEFL incorporates
gradient pruning based on the magnitude on the client side, aiming to prune
gradients with low magnitudes, as they contribute less to weight updates and
have a limited effect on overall performance. This approach reduces encryption
computation and communication overhead, improving efficiency (Req. 2) while
maintaining comparable accuracy to the initial model (Req. 3).

Fig. 1. An overview of secure and efficient federated learning for speech emotion recog-
nition.

Figure 1 presents the overview of SEFL for SER application. In Step 1, the
initial model is configured, the key generation center collects client requests,
generates public-private key pairs, and returns them to the clients. Moving to
Step 2, clients extract relevant features and train their SER models using a
multilayer perceptron network locally on their devices. Gradients are calculated
using backpropagation, which propagates them from the loss function backwards
to help adjust the network parameters based on the gradient, reducing the error
between the output value and the desired one. Each client then applies gradient
pruning techniques which are based on magnitude aim to remove gradients with
low magnitudes. Additionally, in this step, the PHE scheme is applied to encrypt
the newly pruned gradients of each client.

Advancing to Step 3, each client transmits its encrypted gradient to the
server. In Step 4, the server leverages homomorphic operations to aggregate
all encrypted client gradients and generate a new encrypted gradient, which it
distributes to all clients. Step 5 involves clients decrypting the received new
encrypted gradient from the server and updating their local model. These steps

Secure and Efficient Federated Learning 7

continue to iterate until the desired model is achieved or the termination con-
dition is met. For a more comprehensive understanding of the SEFL method,
please refer to Algorithm 1, which outlines the steps and rules involved.

The parameters in the SEFL Algorithm 1 for SER and their descriptions are
as follows: x: extracted speech features of clients dataset, w: parameters of the
model, fp: feedforward process, Label: output label of SER in each iteration, f∗:
activation function, loss: loss function, c: loss calculated by the loss function, e:
minimum error, bp: backpropagation process, grad: gradient calculated by the
backpropagation process, η: learning rate, T : total iterations, K: selected clients,
B: local minibatch size and pp: pruning percentage.

Algorithm 1: SEFL for SER
Input: T , x, K, B, pp, η

1 Server broadcasts wg
0

2 for t ≤ T do
3 Key generation center:
4 while listening request from clients do

5 if receive requests from clients then
6 Generate key pairs: Public key (pk), Private key (sk)
7 Return key pairs {(pk),(sk)}

8 Clients-side:
9 Request key pairs from key generation center

10 Initialize the model parameters wt
i

11 for i ∈ 1,2, ..., K do
12 Forward propagation: labeli = fp(xi, w

t
i)

13 Compute loss: c = loss(f∗(xi), labeli)
14 if c < e then
15 Break

16 else
17 Back propagation: gradi = bp(xi, w

t
i , c)

18 Gradient pruning: ˜gradi = (gradi, pp)

19 Encryption: Ei = Enc(˜gradi, pk)
20 Send Ei to the server
21 Receive new aggregated encrypted model from server Et

g

22 Decryption: gradt+1
i = Dec(Et

g, sk)

23 Update: wt
i+1 = wt

i − η · gradt+1
i

24 Server-side:
25 Aggregation: Et

g = (Et
i

⊕
Et

i+1

⊕
...

⊕
Et

K)
26 Broadcast updated model parameters Et

g

Paillier Homomorphic Encryption (PHE). Within SEFL, the PHE scheme
developed as a promising solution to ensure the confidentiality and privacy of

8 S. Mohammadi et al.

participants’ speech data in the context of FL for the SER application. The Pail-
lier cryptosystem, a partially homomorphic encryption scheme, allows the server
to process and aggregate model parameters with the homomorphic property on
the server without requiring decryption. One key advantage of the Paillier homo-
morphic cryptosystem is its resistance against attacks from the HBC server. It
has been designed to protect against possible privacy breaches by ensuring that
ciphertexts do not reveal any information about the plaintexts. This is proven
through its resilience against the chosen plaintext attack (CPA) based on the
decisional composite residue problem. Consequently, PHE emerges as the most
efficient partially homomorphic encryption scheme available for FL settings [20].

Basically, Paillier encryption consists of three parts: key generation center,
encryption, and decryption. Following is a more detailed discussion.

Key Generation Centre: Here we explain how to generate keys in more detail
by referring to lines [3–7] of Algorithm 1. Select two primes p and q that are
sufficiently large and equal in length and satisfy gcd(p× q, (p− 1)× (q − 1)) = 1.
Then, calculate n, λ and lcm represents the least common multiple as:

n = p · q (1)

λ = lcm(p − 1, q − 1) (2)

An integer g is a generator and satisfies g ∈ Z∗
n2 so that n can divide the order

of g. Then, define L(x) to calculate μ as:

L(x) =
(x − 1)

n
(3)

μ = (L(gλ mod n2))−1) mod n (4)

Thus, the public and private key pair can be shown as (pk, sk) = {(n, g), (λ, μ)}.

Encryption: The encryption process (line 19 of Algorithm 1) with the public
key (pk) can be described as follows, assuming the plaintext is a gradient of
the client in each iteration grad, the ciphertext is E, and for some random
r ∈ {0, . . . , n − 1}:

E = ggrad · rn mod n2 (5)

Decryption: Using a private key (sk), the ciphertext E and plaintext grad can
be decrypted as follows (line 22 of Algorithm 1):

grad = L(Eλ mod n2) · μ mod n (6)

Gradient Pruning. To enhance the efficiency of the SEFL method for SER
on edge devices with limited resources, we propose a novel approach combin-
ing Paillier homomorphic encryption with gradient pruning. Gradient pruning
removes or prunes gradients with low magnitudes, as they contribute less to
weight updates. By selectively pruning these gradients, the computational and
memory requirements are reduced. This reduces the size of encrypted local model

Secure and Efficient Federated Learning 9

Algorithm 2: Gradient pruning
Input: gradi, Pruning threshold: pi, pp
Output: ˜gradi

1 for l ∈ gi do
2 Nl = Number of parameters in each layer
3 Pruning index = Nl * pp/100
4 pi = Find pruning index-th value in lgi
5 if Each amount in l <= pi then
6 Remove gradients below threshold in this layer and update lgi

7 Update gradient based on pruning in each layer: ˜gradi

8 Return pruned gradient ˜gradi

parameters, minimizing communication traffic. Additionally, gradient pruning
reduces parameters and floating-point operations (FLOPs), resulting in faster
encryption and decryption times and mitigating computation time.

The Algorithm 2 shows the gradient pruning techniques, which aim to remove
or prune gradients with low magnitudes. The algorithm incorporates a flexible
pruning threshold for each layer of the neural network, allowing it to adapt to the
specific requirements of each client during every training round. This adaptive
approach enhances the effectiveness of the pruning process. By customizing the
pruning threshold to match the unique characteristics of each layer, we ensure
that only weights with minimal influence on the continuity of the loss function
are pruned. This selective pruning strategy preserves the accuracy of the model
while effectively reducing computational and memory overhead.

To determine the pruning threshold for each layer, we consider the number of
parameters and the desired pruning percentage specific to that layer, as shown
in 2–4 lines of Algorithm 2. By analyzing the gradients of each weight, we assess
the rate of change in their magnitudes and make decisions regarding whether to
prune or not based on this information. To seamlessly integrate this algorithm,
we incorporate it into line 18 of our overall SEFL Algorithm 1, ensuring that
the pruning process is smoothly integrated into the larger training process.

4 Experimental Results

This section presents the industrial use case and simulation settings for eval-
uating the SEFL method. It covers the public dataset used, speech processing
and feature extraction techniques, SER model architecture, and FL framework.
We conduct a comprehensive evaluation of SEFL, assessing its privacy impli-
cations, effectiveness in reducing communication traffic and computation time,
and comparing its accuracy with the original model.

10 S. Mohammadi et al.

4.1 Use-Case Description and Simulation Setting

DAIS1 (Distributed Artificial Intelligent Systems) project aims to create a dis-
tributed edge intelligence system by combining IoT and AI, ensuring trustworthy
connectivity and interoperability. Within this project, various industry-driven
use cases are explored, including domains like digital life, smart manufacturing,
and mobility. One important use-case in DAIS is SER in home entertainment
recommendation systems. This use-case involves recommending digital content,
such as movies, based on users’ emotions. This requires a distributed, efficient,
and privacy-preserving SER system: that was one essential motivation for explor-
ing SEFL for SER.

We evaluated SEFL using the widely used CREMA-D dataset [2], which
consists of 7,442 original clips from 91 actors. The dataset includes 48 male and
43 female actors of various ages, representing diverse races and ethnicities. The
actors expressed 12 sentences, corresponding to six emotions: anger, disgust,
fear, happy, neutral, and sad. For training the SER model, we focused on the
four most frequent emotion labels: neutral, sad, happy, and angry.

For speech processing, we employed the OpenSMILE toolkit to generate the
Emo-Base feature set. These features are designed to be highly discriminative
and have achieved state-of-the-art performance in SER tasks. We utilized a mul-
tilayer perceptron (MLP) architecture for the SER model, comprising two dense
layers with sizes [256, 128] and ReLU activation. To enhance convergence in the
FedSGD algorithm, we set a local training batch size of 20 and a learning rate
of 0.1. Additionally, we incorporated a 0.2 dropout rate to mitigate overfitting.

In FL training, each of the 91 distinct speakers in the dataset serves as a
unique client. We used 80% of the data for local training at each client, reserv-
ing the remaining 20% for validation. We tested our approach on a laptop using
a customized FL framework. To ensure robustness, we conducted five experi-
ments with different test folds and reported the average results. The experiments
were performed on a Windows 10 Pro environment with an Intel Core i7 CPU
@1.80GHz processor and 16.0 GB RAM.

4.2 Privacy Considerations

The SEFL method ensures privacy in the SER application by preventing infor-
mation leakage through the HBC server. It satisfies requirement 1.a by keeping
speech data on end devices throughout the training process. To enhance client
confidentiality and protect against breaches, the method incorporates PHE. This
encryption technique ensures that the HBC server only accesses ciphertexts,
maintaining the confidentiality of plaintexts. Thus, requirement 1.b is fulfilled,
significantly reducing the risk posed by the threat model.

The SEFL method ensures that the private key remains accessible to autho-
rized clients, preventing unauthorized access to the SER model without com-
promising the cryptosystem. This design feature fulfills requirement 1.c. Addi-

1 DAIS Project Website: https://dais-project.eu/.

https://dais-project.eu/

Secure and Efficient Federated Learning 11

tionally, by altering the key pair during each iteration, even if an attacker man-
ages to break a few training rounds, they would not be able to obtain the final
result. It is important to note that breaking a cryptosystem is challenging but
not impossible. Due to space limitations, we refer to the related work [15] for
security analysis. Increasing the size of cryptographic keys improves privacy and
security. However, larger key sizes generally result in longer execution times, as
shown in Fig. 2. Thus, finding the right balance between privacy requirements
and execution time is crucial for optimizing the SEFL method.

4.3 Efficiency in Terms of Communication Traffic

In centralized SER applications with the CREMA-D dataset, a single client typ-
ically transmits around 8–10 MB of speech data to the central server. However,
the SEFL method in FL training for SER applications significantly reduces the
data size transmitted. Instead of sending raw speech data, only the local model
update is transmitted, resulting in a substantial reduction of approximately 70%
in data size, as shown in Table 1. The SEFL method achieves this reduction by
employing PHE and gradient pruning on the client side. The choice of key sizes
and pruning percentages can influence the communication traffic between the
client and the server.

Fig. 2. Impact of key length and number of clients on total execution time.

In our experiments, we tested different key sizes (KS) of 128, 256, 512, and
1024 bits, combined with gradient pruning percentages (PP) of 20%, 40%, 60%,
and 80%, to determine the optimal configuration. Table 1 provides an overview of
the communication traffic for FL of SER messages in three modes: 1) plaintext,
2) ciphertext for PHE, and 3) ciphertext for SEFL. Based on our findings, setting
the gradient pruning percentage to 80% allows for the use of a larger key size of
1024 bits, resulting in communication traffic of 11.3 MB, which is comparable
to that of a centralized SER model. This configuration achieves an accuracy of

12 S. Mohammadi et al.

Table 1. Communication traffic of SER in FL using PHE, and SEFL based on different
key sizes

Method Type of Data PP Communication Traffic (MB)
KS = 128 KS = 256 KS = 512 KS = 1024

FL for SER Plaintext – 2.18 2.18 2.18 2.18
PHE Ciphertext – 7.96 14.4 27.3 53.8
SEFL Ciphertext 20% 6.55 11.7 22.2 43.4
SEFL Ciphertext 40% 5.05 8.99 17.0 32.7
SEFL Ciphertext 60% 3.55 6.20 11.4 22.2
SEFL Ciphertext 80% 2.20 3.37 6.01 11.3

69.89% (as shown in Table 3), close to the acceptable levels observed in SER
application baselines. Using a key size of 512 bits and a pruning percentage of
60%, the communication traffic was 11.4 MB, comparable to that of a centralized
SER model, while achieving an accuracy of 70.32%. Furthermore, with a key
size of 128 bits and a pruning percentage of 80%, the communication traffic was
reduced to approximately 3 MB, similar to FL training for SER applications. The
corresponding accuracy achieved was 69.89%, which is close to the acceptable
levels observed in SER application baselines. Figure 3-left side demonstrates that
doubling the key size in both PHE and SEFL results in a linear increase in
communication traffic. Notably, SEFL outperforms PHE by reducing clients’
ciphertext message size by up to 80% when increasing the pruning percentage
from 20% to 80%. This highlights the effectiveness of our proposed SEFL method
in reducing communication traffic within FL systems.

Fig. 3. Left: Communication traffic for PHE and SEFL with different key sizes. Right:
Encryption times for PHE and SEFL with different key sizes.

Secure and Efficient Federated Learning 13

4.4 Efficiency in Terms of Computation Time

The SEFL method reduces computation time for encryption and decryption,
improving efficiency. Table 2 and Fig. 3-right side demonstrates the measured
encryption and decryption times in PHE, comparing the SEFL approaches for
SER applications. Our findings confirm a substantial increase in encryption and
decryption time as the key size exponentially grows. Our findings, presented in
Fig. 3-right side and Table 2, confirm that increasing the pruning percentage from
20% to 80% leads to a reduction of approximately 10% to 25% in encryption
and decryption times for SEFL. This reduction becomes more significant when
using a larger key size. Therefore, SEFL successfully decreases computation times
while preserving user privacy in SER within FL systems.

Table 2. Encryption/decryption times of PHE and SEFL based on key sizes

Method PP Type of Computation Computation Time (s)
KS = 128 KS = 256 KS = 512 KS = 1024

PHE – Encryption 12.9087 15.4075 38.3163 187.3240
Decryption 3.6393 4.1267 10.9752 55.1653

SEFL 20% Encryption 12.2097 13.9581 28.2548 170.359
Decryption 3.5393 4.1433 10.1937 51.0521

SEFL 40% Encryption 10.8051 13.2047 26.7844 162.3815
Decryption 3.16783 4.0514 8.1276 48.44876

SEFL 60% Encryption 9.3748 12.7632 25.3584 151.6185
Decryption 2.6446 4.0597 7.70719 48.9399

SEFL 80% Encryption 8.2718 11.4931 25.0631 140.4393
Decryption 2.2468 3.9250 7.7071 47.2599

4.5 Performance Metrics: Accuracy, F1-Score, Precision, and Loss

The requirements section mentioned that centralized SER systems typically
achieve a minimum baseline accuracy of 70%. Additionally, it has been observed
that there may be a possibility of a 0–5% drop in accuracy when implementing
SER in the FL setup [16]. Our initial SER model in the FL setup achieved an
accuracy of 72.90%, which meets the requirements. To evaluate the performance
of SER in the FL setup using PHE and SEFL, we measured accuracy, F1-score,
precision, and loss function. Our analysis indicates that using PHE maintains
accuracy and other metrics at the same level as SER performance in FL.

As shown in Fig. 4 and Table 3, SEFL has a limited impact on accuracy and
other metrics due to using gradient pruning techniques. Despite this limitation,
even with the highest pruning percentage, the accuracy remains close to 70%,
still satisfying the SER application’s requirements. Our experiments utilized a

14 S. Mohammadi et al.

Table 3. Performance comparison of SER in FL using PHE, and SEFL method.

Method PP Accuracy F1-score Precision Loss

Initial SER model in FL – 72.90% 64.84% 67.49% 0.675
PHE – 72.87% 64.81% 67.26% 0.678
SEFL 20% 71.82% 63.52% 65.99% 0.686
SEFL 40% 71.55% 62.54% 65.17% 0.689
SEFL 60% 70.32% 61.46% 65.04% 0.706
SEFL 80% 69.89% 58.39% 60.49% 0.740

key size of 128, with 20 clients per training round and 200 total epochs. Prun-
ing percentage was applied at levels of 20%, 40%, 60%, and 80%. The results
indicate that even with 80% gradient pruning, SEFL’s impact on accuracy and
performance parameters is minimal. The achieved accuracy is still very close to
the acceptable baseline for the SER application.

Fig. 4. Accuracy comparison of SER in FL and SEFL.

5 Conclusions and Future Work

This paper presents SEFL, a novel approach tailored for SER applications, com-
bining Paillier homomorphic encryption and gradient pruning within FL. SEFL
effectively addresses privacy concerns while reducing computation time and com-
munication traffic while maintaining acceptable model accuracy. Experimental
evaluations demonstrate that SEFL, with a key size of 1024, achieves a significant
25% reduction in computation time and an impressive 70% reduction in com-
munication traffic compared to PHE without gradient pruning. The proposed

Secure and Efficient Federated Learning 15

method achieves a satisfactory model accuracy of approximately 69.89%, meet-
ing the requirements of SER applications on resource-constrained edge devices.
SEFL strikes a balance between privacy and performance, making it an effective
solution for SER. With the increasing importance of trustworthy AI in support-
ing higher levels of autonomy [5], we believe that the proposed method can be
extended to other domains with similar requirements. Future research aims to
explore the potential of multi-key HE in FL for SER, preventing privacy leakage
and collusion between devices and the server.

Acknowledgement and Disclaimer. This work was partially supported by EU
ECSEL project DAIS which has received funding from the ECSEL JU under grant
agreement No.101007273. The work reflects only the authors’ views; the European
Commission is not responsible for any use that may be made of the information it
contains.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35
(2018)

2. Cao, H., Cooper, D.G., Keutmann, M.K., Gur, R.C., Nenkova, A., Verma, R.:
CREMA-D: crowd-sourced emotional multimodal actors dataset. IEEE Trans.
Affect. Comput. (CSUR) 5(4), 377–390 (2014)

3. Fang, C., Guo, Y., Hu, Y., Ma, B., Feng, L., Yin, A.: Privacy-preserving and
communication-efficient federated learning in internet of things. Comput. Secur.
103, 102199 (2021)

4. Feng, T., Peri, R., Narayanan, S.: User-level differential privacy against attribute
inference attack of speech emotion recognition in federated learning. arXiv preprint
arXiv:2204.02500 (2022)

5. Flammini, F., Alcaraz, C., Bellini, E., Marrone, S., Lopez, J., Bondavalli, A.:
Towards trustworthy autonomous systems: taxonomies and future perspectives.
IEEE Trans. Emerg. Top. Comput. 1–13 (2022). https://doi.org/10.1109/TETC.
2022.3227113

6. Jere, M.S., Farnan, T., Koushanfar, F.: A taxonomy of attacks on federated learn-
ing. IEEE Secur. Priv. 19(2), 20–28 (2020)

7. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices.
IEEE Trans. Neural Netw. Learn. Syst. (2022)

8. Jiang, Z., Wang, W., Liu, Y.: FLASHE: additively symmetric homomorphic
encryption for cross-silo federated learning. arXiv preprint arXiv:2109.00675 (2021)

9. Khalil, R.A., Jones, E., Babar, M.I., Jan, T., Zafar, M.H., Alhussain, T.: Speech
emotion recognition using deep learning techniques: a review. IEEE Access 7,
117327–117345 (2019)

10. Kröger, J.L., Lutz, O.H.-M., Raschke, P.: Privacy implications of voice and speech
analysis – information disclosure by inference. In: Friedewald, M., Önen, M.,
Lievens, E., Krenn, S., Fricker, S. (eds.) Privacy and Identity 2019. IAICT, vol. 576,
pp. 242–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42504-
3_16

http://arxiv.org/abs/2204.02500
https://doi.org/10.1109/TETC.2022.3227113
https://doi.org/10.1109/TETC.2022.3227113
http://arxiv.org/abs/2109.00675
https://doi.org/10.1007/978-3-030-42504-3_16
https://doi.org/10.1007/978-3-030-42504-3_16

16 S. Mohammadi et al.

11. Latif, S., Khalifa, S., Rana, R., Jurdak, R.: Federated learning for speech emotion
recognition applications. In: 2020 19th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), pp. 341–342. IEEE (2020)

12. Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., Lu, R.: Privacy-enhanced federated
learning against poisoning adversaries. IEEE Trans. Inf. Forensics Secur. 16, 4574–
4588 (2021)

13. Ma, X., Lin, S., Ye, S., He, Z., Zhang, L., Yuan, G., Tan, S.H., Li, Z., Fan, D., Qian,
X., et al.: Non-structured DNN weight pruning-is it beneficial in any platform?
IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4930–4944 (2021)

14. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

15. Park, J., Lim, H.: Privacy-preserving federated learning using homomorphic
encryption. Appl. Sci. 12(2), 734 (2022)

16. Tsouvalas, V., Ozcelebi, T., Meratnia, N.: Privacy-preserving speech emotion recog-
nition through semi-supervised federated learning. In: 2022 IEEE International
Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops), pp. 359–364. IEEE (2022)

17. Tuncer, T., Dogan, S., Acharya, U.R.: Automated accurate speech emotion recog-
nition system using twine shuffle pattern and iterative neighborhood component
analysis techniques. Knowl.-Based Syst. 211, 106547 (2021)

18. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR). A Practical Guide, 1st edn., vol. 10, no. 3152676, p. 10–5555. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

19. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: {BatchCrypt}: efficient
homomorphic encryption for {Cross-Silo} federated learning. In: 2020 USENIX
Annual Technical Conference (USENIX ATC 2020), pp. 493–506 (2020)

20. Zhang, J., Chen, B., Yu, S., Deng, H.: PEFL: a privacy-enhanced federated learning
scheme for big data analytics. In: 2019 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6. IEEE (2019)

https://doi.org/10.1007/978-3-319-57959-7

FedLS: An Anti-poisoning Attack
Mechanism for Federated Network
Intrusion Detection Systems Using
Autoencoder-Based Latent Space

Representations

Tran Duc Luong1,2 , Vuong Minh Tien1,2 , Phan The Duy1,2 ,
and Van-Hau Pham1,2(B)

1 Information Security Laboratory, University of Information Technology, Ho Chi
Minh city, Vietnam

{19521815,19522346}@gm.uit.edu.vn
2 Vietnam National University, Ho Chi Minh city, Vietnam

{haupv,duypt}@uit.edu.vn

Abstract. The recent explosion in the number and advancement of
cyberattacks induces the deployment of machine learning (ML)-based
network intrusion detection systems (NIDS) in the network infrastruc-
ture of each corporation. However, there are plenty of difficulties for
enterprise organization in training a conventional ML-based IDS, such
as the data shortage, the privacy concerns about sensitive information,
etc. Fortunately, federated learning (FL) has emerged as a decentral-
ized training scheme that facilitates the collaboration of different parties
in building a robust ML-based NIDS. As a result, this IDS model can
learn new signatures of cyber threats from various data sources with-
out the privacy breaches. Nonetheless, because of the server’s blindness
to the local training, the FL framework has to face the risks of poison-
ing attacks where the compromised clients intentionally inject adver-
sarial data into their local dataset or directly manipulate the model
weights before updating to the server for aggregation. Several anti-
poisoning techniques have been proposed to mitigate the impact of poi-
soning attacks in FL, but these approaches regularly require some prior
knowledge and do not work well in the case of non-Independently and
Identically Distributed (non-IID) data environments. This paper intro-
duces a new defensive mechanism for FL-based NIDS, named FedLS,
by adopting penultimate layer representations (PLR) and Autoencoder
(AE)-based latent space to filter malicious updates from the aggregation
phase. The experimental results on CIC-ToN-IoT and N-BaIoT datasets
have demonstrated the effectiveness of our FedLS in detecting advanced
poisoning methods in both IID and non-IID cases. More specifically, the
Accuracy and F1-Score metrics of FL-based NIDS witness a surge to
over 99% after integrating our proposed defense in the best case.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 17–35, 2023.
https://doi.org/10.1007/978-981-99-7032-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_2&domain=pdf
http://orcid.org/0000-0002-1416-903X
http://orcid.org/0009-0001-7240-7104
http://orcid.org/0000-0002-5945-3712
http://orcid.org/0000-0003-3147-3356
https://doi.org/10.1007/978-981-99-7032-2_2

18 T. D. Luong et al.

Keywords: Federated learning (FL) · network intrusion detection
system (NIDS) · Penultimate Layer Representation (PLR) · Latent
Space Representation (LSR) · Autoencoder (AE) · cyberattack

1 Introduction

In recent years, the growth of network traffic and connected devices has resulted
in an exponential increase in the complexity of cyberattacks [6,12]. Network
Intrusion Detection Systems (NIDS) are used to detect and alert on potential
attacks and have become an essential component of network security. Traditional
rule-based IDS solutions have limitations in detecting modern and sophisticated
attacks due to the static nature of the rules. Whereas, machine learning (ML)-
based IDS has emerged as a promising solution to overcome these drawbacks by
learning and adapting to new threats without manual rule updates [25]. With the
advancements in ML techniques and the increasing availability of large datasets,
ML-based IDS has become an active area of research and development [19].

A traditional method to train ML-based models is centralized learning that
involves collecting a vast amount of training data from different sources and
centralizing it on a single server. This central server accounts for all the train-
ing processes, including model training and data preprocessing, based on the
collected data. However, the centralized approach seems to be prone to privacy
breaches and security concerns when sensitive information of raw data could be
exposed during the data transmission and utilization. Also, the enormous volume
of data makes a heavy burden of computational costs on the central server [2].
In contrast, Federated Learning (FL) is a novel approach to collaborative ML,
enabling distributed training of ML models while keeping the data decentral-
ized [18,24]. In other words, FL allows multiple parties to perform local training
on their dataset and send only the model updates instead of raw data to the
global server for aggregation, which preserves the data privacy and confiden-
tiality. Besides, the resulting global model can take advantages of various data
sources without the privacy leakage. Hence, FL can be considered as a promis-
ing training framework for building advanced ML-based NIDS in the context of
cyberattacks [1,4,9,15].

However, FL is still vulnerable to poisoning attacks [17,20,30] originating
from internal parties that can significantly degrade the performance of the learn-
ing algorithm. To be more specific, these attacks can be performed through
different techniques, such as data poisoning and model poisoning. The former
occurs at the data level, where malicious clients have their local models trained
on intentionally manipulated data and then send them to the aggregation server.
In the latter, adversaries manage to craft malicious updates based on the model
parameter space before uploading them to the server. Compared to data poi-
soning, this model poisoning technique is easier to conduct and also often more
detectable. The severity of poisoning attacks depends on the attacker’s level of
knowledge and the attack’s sophistication.

As a result, various defense mechanisms and techniques, such as data sani-
tization, outlier detection, robust model aggregation, and so on, have recently

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 19

been proposed in order to maintain the robustness of the FL-based model in the
presence of poisoning attacks. Whereas the poisoning detection through data
quality inspection [11,29] might violate the privacy-preserving goal of FL, the
approaches using outlier detection algorithm [3,22] seem to be inefficient in non-
IID setttings. Also, almost all previous defenses are conducted on the model
parameters space, which increases an enormous computational cost on the FL
training process.

In recent times, the definition of latent space representation (LSR) has
received considerable critical attention from researchers in manufacturing new
anti-poisoning mechanisms. To be more specific, the papers [10,23] adopted the
Penultimate Layer Representation (PLR) to reveal the important pattern in
updated models, where benign weights follow a similar direction in contrast
with those of anomalous models. Nonetheless, [23] needs an auxiliary server-side
dataset to retrieve PLR vectors, which is hard to collect because it must adhere
to the same distribution as local training datasets. Besides, the approach in [10]
directly extracts PLR of each local updates without a common dataset, leading
to the sense of uncertainty in PLR vectors when it comes to non-IID settings.
In addition, both of the above works only focus on model poisoning techniques.

To overcome the aforementioned issues, in this work, we propose a latent
space-based defensive framework against both data poisoning and model poi-
soning attacks, named FedLS, in the context of federated NIDS. Frankly speak-
ing, FedLS makes use of Autoencoder (AE) to learn latent space representation
(LSR) of each PLR’s model, which reduces the instability of PLR as metioned
in [10]. After that, the similarity level of each local LSR and the global one
is computed via Center Kernel Alignment (CKA) algorithm before clustering
them (CKA scores) as benign/attack groups. The benign cluster would then be
transferred to the central server for the FedAvg aggregation.

Our main contributions are listed as follows:

– This work leverages the penultimate layer and Autoencoder-based latent
space to design a new defensive mechanism, called FedLS, against poisoning
attacks in federated learning. Our method does not require any knowledge or
auxiliary datasets in advance as the previous schemes [23,29].

– We provide an in-depth understanding of two types of poisoning attacks,
including label flipping and untargeted-Med, via different experimental sce-
narios. The results on two ML-based NIDS datasets have proved that FedLS
can work well when the number of adversaries accounts for 20% and 40%
respectively.

– Our proposed method outperforms the FedCC [10] in differentiating benign
non-IID models from malicious ones.

The structure of the study takes the form of five chapters, including this
introduction. In Sect. 2, we outline related works about poisoning attacks as well
as previous defense methods accordingly. The methodology chapter in Section
3 describes the threat model and a detailed design of our FedLS. Then, the
experimental results and explanation are illustrated in Section 4. Finally, we
conclude and propose some future works in Sect. 5.

20 T. D. Luong et al.

Table 1. Defensive mechanisms proposed by the previous works

Work Year Method Poisoning Attacks Dataset Data-level Model-level

CONTRA [5] 2021 Cosine similarity,
Clustering

Label Flipping,
Backdoor

MNIST,
CIFAR-10,
Loan

– x

LoMar [16] 2023 Outlier Detection Label Flipping Amazon,
MNIST,
KDDCup99,
VGGFace2

– x

FLDetector [28] 2022 Predict Model Untargeted Attack,
Scaling Attack,
Distributed Backdoor
Attack,
A Little is Enough
Attack

MNIST,
CIFAR10,
FEMNIST

– x

Fed-IDS [22] 2021 Predict Model,
Outlier Detection

Label Flipping
Generative Adversarial
Networks
(GAN)-based Synthetic
Data.

Kitsune – x

SecFedNIDS [29] 2022 Outlier Detection,
Class Path Similarity

Label Flipping,
Clean Label Attack

UNSW-NB15
CICIDS2018

x x

Fltrust [7] 2020 Cosine similarity,
Clustering

Label Flipping,
Krum attack,
Trim attack,
Scaling attack,
Adaptive attack

MNIST,
Fashion-MNIST,
CIFAR-10,
Human activity recogni-
tion (HAR),
CH-MNIST

– x

DPA-FL [14] 2023 Outlier Detection Label Flipping,
Backdoor

CICIDS2017 – x

FLARE [23] 2022 Latent Space
Representations

+ Untargeted - Backdoor:
Attack-Krum-
Untargeted,
Attack-TM-Untargeted
+ Targeted - Backdoor:
Attack-Krum-Backdoor,
Attack-Coomed-
Backdoor

CIFAR-10,
fMNIST,
Kather

– x

FedCC [10] 2022 Latent Space
Representations

+ Untargeted:
Attack-Krum,
Attack-Med
+ Targeted - Backdoor

fMNIST,
CIFAR-10,
CIFAR-100

– x

MCDFL [11] 2023 Latent Feature Space Label Flipping CIFAR-10,
Fashion-MNIST

x –

Fed-LSAE (Ours) 2023 Autoencoder-based
Latent Space
Representations

Label Flipping,
GAN,
Weight-scaling Model
Poisoning,
Untargeted-Med

CIC-ToN-IoT
N-BaIoT

– x

2 Related Work

Despite the privacy-enhancing benefits, FL remains susceptible to poisoning
attacks which could undermine the integrity of FL training, thus devastating the
accuracy of the learned model. Many recent studies [22,26,27] have demonstrated
the effectiveness of poisoning attacks in significantly impacting the performance
of FL. Specifically, Vy et al. [22] presented two types of poisoning techniques
in the context of FL-based IDS, including label flipping and GAN-based attack.
The experimental results on the Kitsune dataset witnessed a significant decrease
from 99% to approximately 40% in Accuracy and F1-Score metrics of the global
IDS performance when suffering from both aforementioned attack methods. The
likewise results were demonstrated in the paper [26] in terms of label flipping
and backdoor attacks.

As a consequence, a great deal of defense mechanisms [3,22,29] have been
published in an effort to mitigate the risk of poisoning attacks against the FL
framework. We summarize all of them in Table 1.

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 21

On the one hand, many previous studies focused on outlier detection to
recognize poisonous updates from compromised agents. For instance, Zhao Zhang
et al. [29] proposed a two-level method, namely SecFedNIDS, to defeat poisoning
attacks in FL-based NIDS. Thereby, SecFedNIDS manages to sanitize local data
through class path similarity extracted by the Layer-wise Relevance Propagation
(LRP) algorithm and also detects malicious model updates as outliers by the
Stochastic Outlier Selection (SOS) algorithm at the server-side. This approach,
however, requires knowing the number of attackers in advance, which seems
infeasible in real-world cases. In addition, other proposed methods [3,22] using
the Local Outlier Factor (LOF) would encounter many obstacles in a non-IID
environment.

On the other hand, plenty of defensive mechanisms based on latent space
representation (LSR) have been released recently. Thereby, the FLARE frame-
work [23] proposed by Ning Wang et al., is one of the very first works to adopt
penultimate layer representation (PLR) to reveal malicious updates. More specif-
ically, the Maximum Mean Discrepancy (MMD) is used to estimate the distance
between pairwise PLR sequences, and then a trust score is defined for each local
model via the softmax function. The following aggregation phase considers a
trust score value as another scale factor for each local model in the FedAvg
algorithm. Consequently, it can reduce the impact of poisoned models with low
trust scores. However, FLARE requires a subset of raw data on the server-side
to extract PLR from each updated model weight, which is tricky to collect and
can disturb the data privacy standard of FL. In addition, Hyejun Jeong et al.
[10] designed a latent space-based defensive scheme, namely FedCC, to maintain
the robustness of FL-based image classifiers against model poisoning attacks. By
comparing the similarity level of each local PLR vector and the global PLR via
CKA scores, FedCC can cluster updated local models into two groups, where the
smaller would be anomalous members because the number of adversaries does
not exceed half of the total collaborative clients. Nevertheless, FedCC still has
limitations in retrieving PLR without the same dataset, leading to the instabil-
ity of PLR sequences. To resolve this issue, our FedLS implements Autoencoder
(AE) as a component to acquire the most important features of PLR vectors.

3 Methodology

This section gives the overview of the threat model, which describes the knowl-
edge as well as abilities of adversaries. A detailed design of our defensive approach
is also illustrated, with the aim of building a robust federated NIDS.

3.1 Threat Model

To ensure the objectivity, we make the assumption that the quantity of adversar-
ial parties m in the FL system is consistently less than half of the total number
of clients, to be precise m = 20% and m = 40% respectively. The rest of the
participating agents, including the server, are considered trustworthy parties

22 T. D. Luong et al.

throughout the global model training process. Meanwhile, the nodes controlled
by attackers continuously execute poisoning attacks on the FL system by updat-
ing their malicious local models at all time.

Attacker’s Knowledge and Goals. As a collaborative agent, the adversary
has a thorough understanding of the global architecture which consists of the
learning algorithm, training data, model hyperparameters such as batch size,
learning rate, optimizer, etc. Therefore, attackers would conduct their poisoning
techniques in a white-box manner. Their main goal is to severely damage the
accuracy and performance of the federated NIDS by sending malicious model
weights to the global aggregator. In other words, only untargeted poisoning
techniques are focused on this work.

Attacker’s Capabilities

– Allowed. The adversaries have full control over the local training procedure
with their own dataset. Also, they can manipulate some of the hyperparam-
eters of the model obtained from the global server to achieve the highest
effectiveness of poisoning attacks.

– Not allowed. In the training setting, it is essential for each participant to
follow the agreed-upon algorithms and does not interfere with other partic-
ipants’ training data or learning process. Moreover, the attackers could not
compromise the aggregation phase of the central server.

Attacker’s Strategies

– Label Flipping (LF). This is a type of data poisoning attack in which an
attacker intentionally changes the true labels of a portion of the training data
to mislead the ML model during the training process. As a result, the learned
model classifies the testing samples into incorrect categories. Since our work
relies on the binary classification tasks where considering label 0 as benign
and 1 as attack, adversaries would flip all the benign samples into attack ones
and vice versa.

– Untargeted-Med. This model poisoning attack is proposed in the paper
[10] with the aim of breaking the Coordinate-wise Median [8] aggregation
mechanism. Thereby, adversaries adjust the model parameters by using its
maximum and minimum values to guide the coordinate-wise median values
towards an opposite direction.

3.2 Robust Federated Learning for NIDS

In this paper, FL-based NIDS undergoes the training process as shown in Fig. 1.
To be more precise, the following are the general steps to train a robust federated
NIDS model:

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 23

– Initialization: A global NIDS model w is initialized at the central server, along
with a total of n participating agents.

– Model distribution: In each round t, the server selects k out of n clients to
join in the training step. A duplicate version of the current global model wt

is then sent to each participating client.
– Local training : The i-th client trains the model on their local dataset Di for

a fixed number of iterations. After the round t, the resulting model weights
wi,t and the size of Di are submitted to the central server for aggregation.

– Model aggregation: In this step, our FedLS module would be integrated to
verify local models so that it can remove any anomalous updates from FL
aggregation. The detailed mechanism of FedLS is described in Sect. 3.4. Based
on the resulting list B of benign clients from FedLS, the central server then
aggregates them into a new global NIDS model for round t + 1 by FedAvg
algorithm as Eq. (1).

wt+1 ←
|B|∑

i=1

|Di|
|D| wi,t (1)

Fig. 1. The federated learning training mechanism for NIDS model.

24 T. D. Luong et al.

where |Di| refers to the size of the dataset in the i-th benign client, and D is
the total number of data samples from all benign agents in the list B, whose
size is defined as |B|.

The aggregated version of the global model is then distributed to newly
k clients in the next communication round. This training process is iterated
until the NIDS model reaches the convergence point or peaks at a high level of
detection rate as expected.

3.3 Autoencoder Pretraining Process

Before distributing a replicated copy of the global model to participating agents,
the global model undergoes an internal collaborative training within a limited
number of server-side organizations, utilizing their respective datasets over a
single round. It is assumed that all such organizations are honest and harmless,
which are under the control of the global server. Therefore, this is conducive for
AE to learn the main characteristics of benign PLR vectors over E epochs, as
described in Algorithm 1.

In Algorithm 1, θe and θd denote the parameters of the encoder and decoder
networks, respectively. The function fθe

represents the encoder network, which
maps the input PLR vector x to a latent space representation (LSR) h. The
function gθd

represents the decoder network, which maps the hidden representa-
tion h back to the reconstructed PLR vector x̂. The Mean Squared Error (MSE)
loss function L(x, x̂) measures the difference across P parameters between the
input PLR vector x and its reconstruction x̂. The algorithm updates the param-

Algorithm 1. The Autoencoder training process for learning important features
of benign PLRs.
Input: N PLR vectors X = {x1, x2, ..., xN}, learning rate α, number of epochs E.
Output: Encoder and decoder parameters θe, θd.
1: procedure AE(X)
2: Initialize θe and θd;
3: for e = 1 to E do
4: for i = 1 to N do
5: Sample a PLR vector: xi;
6: Compute encoder output as LSR: hi = fθe(xi);
7: Compute decoder output from LSR: x̂i = gθd(hi);

8: Compute MSE loss: L(xi, x̂i) ← 1
P

P∑

p=1

(xi,p − x̂i,p)2;

9: Compute gradients ∇θeL and ∇θdL;
10: Update encoder parameters: θe ← θe − α∇θeL;
11: Update decoder parameters: θd ← θd − α∇θdL;
12: end for
13: end for
14: end procedure

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 25

eters of the encoder and decoder networks using stochastic gradient descent with
learning rate α for a specified number of epochs E.

We choose AE because it is an unsupervised algorithm that works well even
if there is a limited volume of training data. Also in this work, AE can learn the
most important patterns of PLR vectors, especially when the internal server-
side organizations suffer from the data heterogeneity. As a result, it is conducive
to the exactness of the following RBF-CKA computation that minimizes the
likelihood of misclassifying benign non-IID weight as abnormal ones.

3.4 Workflow of FedLS

The following Fig. 2 and Algorithm 2 describe the detailed design of our pro-
posed method, FedLS, in excluding malicious updates from the FL system. The

Algorithm 2. The mechanism of FedLS for thwarting poisoning attacks.
Input: The global model weights W , a set of k local weights L = {w1, w2, ..., wk}, a

pretrained AE model.
Output: A list of benign models B
1: procedure FEDLS(W , L)
2: � PLR Extractor for W and L
3: for i < k do
4: L plr[i] ← L[i][penultimate layer];
5: end for
6: W plr ← W [penultimate layer];
7: � Retrieve AE-based LSR of each PLR vector
8: for i < k do
9: L lsr[i] ← AE.encoder(L plr[i]);

10: end for
11: W lsr ← AE.encoder(W plr)
12: � Compute CKA score between global LSR and each local LSR
13: for i < k do
14: CKA scores[i] ← CKA(W lsr, L lsr[i]);
15: end for
16: � Cluster CKA scores into 2 groups by KMeans algorithm
17: kmeans = KMeans(n clusters = 2).fit(CKA scores)
18: labels = kmeans.labels
19: � Select larger cluster as benign vectors B
20: for i < 2 do
21: cnt[i] ← sum(labels == i);
22: end for
23: if cnt[0] < cnt[1] then
24: B ← list(labels == 1);
25: else
26: B ← list(labels == 0);
27: end if
28: return B;
29: end procedure

26 T. D. Luong et al.

Fig. 2. FedLS module using Penultimate Layer Representation (PLR) and
Autoencoder-based Latent Space Representation (LSR) in thwarting poisoning attacks.

desired output of FedLS is a list of benign weight vectors B, which gives feedback
to the server for robust aggregation. Firstly, a total of k updated local model
parameters from selected agents, along with the global weight, are directly fed
into a PLR extractor (lines 3–6) to retrieve a set of k PLR vectors and a global
PLR accordingly. In the next step (lines 8–11), the latent space representation
(LSR) of each PLR is extracted from the bottleneck layer of the pretrained AE.
As we said before, this helps to reduce the instability of PLR vectors resulting
from local agents training their models on different data distributions. It can
also minimize the computational costs, considering that the dimension of the
PLR is still relatively large. Moreover, LSR vectors can reveal the most impor-
tant features of the models, as well as the training data representation. As a
consequence, poisoning attacks at both data and model level are likely to be
detected. Later, we adopt the Radial Basis Function (RBF) CKA algorithm to
compute the similarity level between the resulting global LSR and each local
LSR (lines 13–15). In a normalized version, the CKA score is computed based
on the Hilbert-Schmidt Independence Criterion (HSIC) as in Eq. (2).

CKA(X,Y) =
HSIC(X,Y)√

HSIC(X,X)HSIC(Y, Y)
(2)

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 27

where X and Y are kernel matrices corresponding to the global LSR and each
local LSR. Thereby, CKA values are in range of [0, 1] where 0 means not similar
at all and vice versa. The previous papers [13,21] indicated that the CKA metric
shows a high degree of consistency when it comes to evaluating the similarity
between the representations of neural networks. Furthermore, the RBF-CKA
algorithm can show that the similarity rate among benign models having both
IID and non-IID data is higher than those of abnormal models and benign ones.
Finally, the CKA values will be clustered into two groups by a clustering algo-
rithm (lines 17–18). In this work, we choose K-means because CKA values are
only one-dimensional data points. Based on two generated clusters, we consider
the larger as a group of benign updates B while the other is malicious ones M
(lines 20–27) since the ratio of attackers does not exceed 50%. The resulting list
B is then sent to the global server for the FedAvg aggregation, as illustrated in
Sect. 3.2.

4 Experiments

In this section, we describe experimental settings such as dataset, hardware
configuration, training parameters, etc. which are used in our evaluation. Then,
we give an overview of defensive FedLS against untargeted poisoning attacks via
different experimental scenarios.

4.1 Dataset and Data Preprocessing

To build robust federated NIDS, we utilize two recent ML-based NIDS datasets
in the context of Internet of Things (IoT), namely CIC-ToN-IoT and N-BaIoT.
Both are network traffic collections containing cyberattacks against real-world
IoT networks. The CIC-ToN-IoT dataset has over 5.3 milion records with 47%
benign samples and 53% malicious ones relating to different categories such as
Backdoor, DoS, DDoS, XSS, Ransomware, etc. Whereas, N-BaIoT focuses on
several types of attacks on IoT devices, including Mirai, Gafgyt, and Bashlite
botnet attacks. The proportion of normal traffic and attack traffic in N-BaIoT
is 1:10. In this work, we only take a subset of both datasets to conduct our
experiments, in which there are approximately 1.07 milion CIC-ToN-IoT samples
and 800,000 network records in the N-BaIoT dataset.

Both datasets undergo the same preprocessing stage. To be more specific, we
exclude non-functional features with unique values from the training dataset.
Any samples with non-numeric (NaN) values or infinity (Inf) values are also
removed. The resulting CIC-ToN-IoT samples then have 70 main features, while
N-BaIoT consists of 115 features. Additionally, the Label column is used as the
training target in both datasets, where label 0 is considered as normal traffic and
label 1 as attack ones. Finally, the feature values on two datasets are normalized

28 T. D. Luong et al.

to the interval of [0,1] via a linear transformation called Min-Max normalization
as in Eq. (3).

x′ =
x − min(x)

max(x) − min(x)
(3)

where x′ is the normalized version of feature value x. Besides, max(x) and
min(x) are the maximum and the minimum values of this feature in the dataset,
respectively.

In the FL training procedure, 75% of each dataset will be used as the training
data, divided for local agents. The remaining data is separated into 2 parts,
including 20% for the server-side testing data and 5% for the AE pretraining
process.

4.2 Experimental Settings

Environmental Setup. In this work, we utilize Pytorch framework and scikit-
learn library to build our FedLS on the hardware configuration of Intel R© Xeon R©
E5-2660 v4 CPU (16 cores - 1.0 GHz), 100 GB RAM and the operating system
of Ubuntu 16.04.

Performance Metrics. Since our work is based on binary classification tasks,
we decided to assess our proposed method by the following four basic metrics:

– Accuracy : the proportion of correct predictions out of the total number of
samples.

– Precision: the proportion of true positive predictions out of all positive pre-
dictions.

– Recall : the proportion of true positive predictions out of all actual positive
samples.

– F1-score: the harmonic mean of Precision and Recall, which gives an over-
all measure of a model’s accuracy in terms of both false positives and false
negatives.

In this work, if there exists a dramatic increase in the above-mentioned met-
rics, we could confirm the high efficiency of our FedLS approach in detecting
and removing poisoned models from the FL system.

Training Specification. The training process of FL involves 10 communication
rounds (R = 10), with a total of n = 10 clients participating in the learning
phase. In each round, solely k agents are selected based on a fraction factor C.
In this study, C is set to 1.0, resulting in k = C ∗ n = 10 agents in each round.
During the training phase, all participants train their local models for 3 epochs
using a batch size of 2048. The loss function used is the cross-entropy, and the
stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 and
momentum of 0.9 is also employed.

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 29

Additionally, the ML-based NIDS is built based on a lightweight convolu-
tional neural network structure named LeNet, whose architecture is depicted in
Table 2. To construct the encoder and decoder for the AE, linear layers with bias
are employed, as shown in Table 3. For each benign model’s PLR, it is inputted
into the AE model and trained for E = 20 epochs using the Adam optimizer
with a learning rate of 0.001. The input and output dimensions of the AE are
equivalent and represent the number of dimensions for each PLR vector, which
is 128 in the below experiments.

Table 2. LeNet Architecture

Layer In Out Kernel/Stride/Padding Activation

conv2d 1 1 64 2 × 2 / 1 / 1 ReLU

batchnorm2d 64 – –

maxpool2d 2 × 2 / 1 / 0 –

conv2d 2 64 128 2 × 2 / 1 / 0 ReLU

batchnorm2d 128 – –

maxpool2d 2 × 2 / 1 / 0 –

flatten – – – –

fc 1 – 128 – ReLU

fc 2 128 64 – ReLU

fc 3 64 2 – –

4.3 Evaluation Result

Baseline Performance of FL-Based NIDS. In this scenario, we aim to
evaluate the benchmark performance of LeNet-based NIDS in the context of FL.
Each local agent has the same data distribution as others, or IID data in other
words. As depicted in Fig. 3, the detection rate of NIDS against cyberattacks
on both datasets has achieved approximately 99% across four metrics after 4
communication rounds. The results have indicated the baseline effectiveness of
federated NIDS in revealing the attack traffic in a network infrastructure.

Defensive Performance of Our FedLS Against Poisoning Attacks. The
following experiments will focus on the robustness of FL-based NIDS in an IID
environment with the support of our FedLS module when dealing with two
aforementioned poisoning techniques. We assess our proposed FedLS in both
m = 20% and m = 40%, which means there are respectively 2 and 4 adversaries
out of 10 local agents in this scenario. Additionally, A and dashed lines refer
to metrics in case of poisoning attacks without FedLS, while D and solid lines
describe the federated NIDS performance under attacks with our defense FedLS.

30 T. D. Luong et al.

Table 3. Structure of Encoder and Decoder in AE architecture

Layer Input Output Activation

Encoder

Linear 128 512 ReLU

Linear 512 128 ReLU

Linear 128 64 ReLU

Linear 64 16 –

Decoder

Linear 16 64 ReLU

Linear 64 128 ReLU

Linear 128 512 ReLU

Linear 512 128 Tanh

Fig. 3. The baseline performance of federated NIDS on (a) CIC-ToN-IoT and (b) N-
BaIoT datasets.

Fig. 4. The FedLS performance in thwarting Label Flipping attacks in case of m = 20%
and m = 40% on (a, c) CIC-ToN-IoT and (b, d) N-BaIoT datasets respectively.

In terms of Label Flipping (LF) attacks, Fig. 4 has illustrated an upward
trend in FL-based NIDS performance after integrating with our FedLS. More
specifically, LF causes considerable fluctuations in the global detection rate

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 31

around the level of 50% across all metrics. Some communication rounds even
witness a value of 0% in Precision, Recall and F1-Score, for example round 8 in
case of m = 40% on the CIC-ToN-IoT dataset. However, the presence of FedLS
module has prompted the detection performance of federated NIDS to increase
to approximately 99% and 98% in both cases of m = 20% and m = 40%,
respectively. The results imply the great capability of FedLS in learning data
representation through LSR so that almost all flipped samples are detected and
filtered out.

Fig. 5. The FedLS performance in thwarting untargeted-Med attacks in case of m =
20% and m = 40% on (a, c) CIC-ToN-IoT and (b, d) N-BaIoT datasets respectively.

A likewise trend is shown in Fig. 5 when it comes to untargted-Med attacks.
Frankly speaking, the global NIDS model has been completely damaged by
untargeted-Med techniques when 3 out of 4 metrics achieve 0% only after 4 train-
ing rounds in all cases. We can see that this kind of untargeted model poisoning
attacks is not only easier to conduct but also more effective than data poison-
ing techniques because it directly manipulates each parameter in the updated
model. In addition, the global NIDS reaches a peak of roughly 99% across all
metrics after being defensed by FedLS. Thanks to AE-based LSR, our proposed
defense mechanism has shown its perfect performance against untargeted model
poisoning techniques.

Defensive Performance of Our FedLS Compared to other Methods
in Non-IID Settings. This section aims to show the superior performance
of our FedLS compared to a previous defensive mechanism, FedCC [10] in a
heterogeneous data environment when it comes to the untargeted-Med poisoning
technique. We select LeNet model and the untargeted-Med attack as in FedCC to
maintain the objectivity of comparison. Additionally, the CIC-ToN-IoT dataset
is used for this evaluation instead of N-BaIoT, since the ratio of normal and
attack samples in the former is more balanced than in the latter. The data
distribution among collaborative agents is illustrated in Fig. 6, where clients 2
and 3 refer to the adversaries in m = 20% case while clients 2–5 are considered
as compromised agents given that m = 40%. The reason we choose this data
distribution is to clarify the ability of FedLS to differentiate clearly between
benign clients having non-IID and the real attackers. All the following metrics

32 T. D. Luong et al.

are averaged over the federated training process to show the stability of the
global model in both poisoning attacks and non-IID settings.

Table 4. Performance comparison between FedLS and FedCC when integrating into
FL-based NIDS in a non-IID environment.

Scheme m=20% m=40%

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

FedCC 0,6949 0,6803 0,8205 0,7138 0,5937 0,5704 0,8550 0,6591

FedLS 0,7032 0,7689 0,8705 0,7748 0,7148 0,7173 0,9933 0,8123

Fig. 6. The data distribution among clients on CIC-ToN-IoT datasets in case of non-
IID.

Fig. 7. Comparison of similarity level between the global LSR and each local LSR via
CKA scores between FedLS and FedCC.

The statistics from Table 4 has indicated that our FedLS achieves a bet-
ter performance than FedCC in exactly removing anomalous agents, instead of
benign non-IID clients, from the FL training process. The federated NIDS model
with FedLS witnesses a stable trend in its intrusion detection performance, with
over 70% in Accuracy and 77% in F1-Score in both cases. In contrast, the NIDS

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 33

model defensed by FedCC still comes across obstacles when only obtaining a
level of 59.3% in Accuracy and 57% in Precision. To explain those results, we
can look at the differences in the CKA scores between the two schemes in Fig. 7.
As we can see, the CKA scores of malicious updates seem to be distinct from
others in FedLS while those of FedCC are still obscure. For example, in the case
of FedLS with m = 40%, local models from adversaries (Clients 2–5) achieves
0.6 CKA scores, which means they are only 60% similar to the global one. As
a result, FedLS easily recognizes them as malicious entities and discarded them
from the aggregation phase. Also, non-IID clients are considered as benign ones
since they follow the same pattern and retain a high similarity level of over 90%
compared to the global LSR. In contrast, there is only a slight difference by
roughly 0.05 among CKA scores of clients in FedCC scheme throughout the FL
process, leading to the misclassification of benign non-IID clients as attackers.
Consequently, in some communication rounds, the aggregated model guarded by
FedCC might suffer from the presence of some poisoned updates. The likewise
result is presented in the event of m = 20%.

5 Conclusion

This study proposes a robust aggregation mechanism for detecting and prevent-
ing poisoning attacks against a federated network intrusion detection system.
More specifics, we leverage a combination of Autoencoder and latent space
inspection to reveal malicious updates from local agents. The experimental
results on CIC-ToN-IoT and N-BaIoT datasets have demonstrated the high-
quality effectiveness of FedLS in defeating untargeted poisoning attacks such as
Label Flipping and untargeted-Med. Also, our FedLS presents a better perfor-
mance than FedCC [10] in non-IID case. We desire that our research provides
a new aspect of developing robust FL-based systems in the real world. In the
future, FedLS will be examined in the context of advanced poisoning strategies
(such as backdoor, adversarial attacks, etc.) and homomorphic encryption-based
models. Another anti-poisoning approach using knowledge distillation should
also be considered.

Acknowledgement. This research is funded by the University of Information Tech-
nology - Vietnam National University Ho Chi Minh City under grant number D1-2023-
16.

References

1. Agrawal, S., et al.: Federated learning for intrusion detection system: concepts,
challenges and future directions. Comput. Commun. 195 (2022)

2. Aleesa, A., Zaidan, B., Zaidan, A., Sahar, N.M.: Review of intrusion detection
systems based on deep learning techniques: coherent taxonomy, challenges, moti-
vations, recommendations, substantial analysis and future directions. Neural Com-
put. Appl. 32, 9827–9858 (2020)

34 T. D. Luong et al.

3. Andreina, S., Marson, G.A., Möllering, H., Karame, G.: Baffle: backdoor detection
via feedback-based federated learning. In: 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS), pp. 852–863 (2021)

4. Arisdakessian, S., Wahab, O.A., Mourad, A., Otrok, H., Guizani, M.: A survey
on IoT intrusion detection: federated learning, game theory, social psychology and
explainable AI as future directions. IEEE Internet Things J. 10, 4059–4092 (2022)

5. Awan, S., Luo, B., Li, F.: CONTRA: defending against poisoning attacks in fed-
erated learning. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021.
LNCS, vol. 12972, pp. 455–475. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88418-5 22

6. Bout, E., Loscri, V., Gallais, A.: How machine learning changes the nature of
cyberattacks on IoT networks: a survey. IEEE Commun. Surv. Tutor. 24(1), 248–
279 (2022)

7. Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: byzantine-robust federated learning
via trust bootstrapping. arXiv preprint arXiv:2012.13995 (2020)

8. Fang, M., Cao, X., Jia, J., Gong, N.Z.: Local model poisoning attacks to byzantine-
robust federated learning (2021)

9. Ghimire, B., Rawat, D.B.: Recent advances on federated learning for cybersecu-
rity and cybersecurity for federated learning for internet of things. IEEE Internet
Things J. 9(11), 8229–8249 (2022)

10. Jeong, H., Son, H., Lee, S., Hyun, J., Chung, T.M.: FedCC: robust federated learn-
ing against model poisoning attacks (2022)

11. Jiang, Y., Zhang, W., Chen, Y.: Data quality detection mechanism against label
flipping attacks in federated learning. IEEE Trans. Inf. Forensics Secur. 18, 1625–
1637 (2023)

12. Kaloudi, N., Li, J.: The AI-based cyber threat landscape: a survey. ACM Comput.
Surv. (CSUR) 53(1), 1–34 (2020)

13. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network rep-
resentations revisited (2019)

14. Lai, Y.C., et al.: Two-phase defense against poisoning attacks on federated
learning-based intrusion detection. Comput. Secur. 129, 103205 (2023)

15. Lavaur, L., Pahl, M.O., Busnel, Y., Autrel, F.: The evolution of federated learning-
based intrusion detection and mitigation: a survey. IEEE Trans. Netw. Serv.
Manag. 19(3), 2309–2332 (2022)

16. Li, X., Qu, Z., Zhao, S., Tang, B., Lu, Z., Liu, Y.: Lomar: a local defense against
poisoning attack on federated learning. IEEE Trans. Dependable Secure Comput.
20, 1 (2021)

17. Liu, P., Xu, X., Wang, W.: Threats, attacks and defenses to federated learning:
issues, taxonomy and perspectives. Cybersecurity 5, 1–19 (2022)

18. Lo, S.K., Lu, Q., Wang, C., Paik, H.Y., Zhu, L.: A systematic literature review on
federated machine learning: from a software engineering perspective. ACM Com-
put. Surv. (CSUR) 54(5), 1–39 (2021)

19. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation
and analysis of using machine learning techniques for intrusion detection. IEEE
Commun. Surv. Tutor. 21(1), 686–728 (2019)

20. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y., Dehghantanha, A., Srivas-
tava, G.: A survey on security and privacy of federated learning. Futur. Gener.
Comput. Syst. 115, 619–640 (2021)

21. Son, H.M., Kim, M.H., Chung, T.M.: Compare where it matters: using layer-wise
regularization to improve federated learning on heterogeneous data (2021)

https://doi.org/10.1007/978-3-030-88418-5_22
https://doi.org/10.1007/978-3-030-88418-5_22
http://arxiv.org/abs/2012.13995

An Latent Space-Based Anti-poisoning Framework for Federated NIDS 35

22. Vy, N.C., Quyen, N.H., Duy, P.T., Pham, V.-H.: Federated learning-based intrusion
detection in the context of IIoT networks: poisoning attack and defense. In: Yang,
M., Chen, C., Liu, Y. (eds.) NSS 2021. LNCS, vol. 13041, pp. 131–147. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92708-0 8

23. Wang, N., Xiao, Y., Chen, Y., Hu, Y., Lou, W., Hou, Y.T.: Flare: defending fed-
erated learning against model poisoning attacks via latent space representations.
In: ACM ASIACCS 2022, pp. 946–958 (2022)

24. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning.
Knowl.-Based Syst. 216, 106775 (2021)

25. Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., Yang, A.: Comparative research on
network intrusion detection methods based on machine learning. Comput. Secur.
121, 102861 (2022)

26. Zhang, J., Chen, B., Cheng, X., Binh, H.T.T., Yu, S.: PoisonGAN: generative
poisoning attacks against federated learning in edge computing systems. IEEE
Internet Things J. 8(5), 3310–3322 (2021)

27. Zhang, J., Chen, J., Wu, D., Chen, B., Yu, S.: Poisoning attack in federated learn-
ing using generative adversarial nets. In: 2019 18th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pp. 374–380 (2019)

28. Zhang, Z., Cao, X., Jia, J., Gong, N.Z.: Fldetector: defending federated learning
against model poisoning attacks via detecting malicious clients. Assoc. Comput.
Mach. 2545–2555 (2022)

29. Zhang, Z., Zhang, Y., Guo, D., Yao, L., Li, Z.: Secfednids: robust defense for poi-
soning attack against federated learning-based network intrusion detection system.
Futur. Gener. Comput. Syst. 134, 154–169 (2022)

30. Zhou, X., Xu, M., Wu, Y., Zheng, N.: Deep model poisoning attack on federated
learning. Futur. Internet 13(3), 73 (2021)

https://doi.org/10.1007/978-3-030-92708-0_8

Mitigating Sybil Attacks in Federated Learning

Ahmed E. Samy(B) and Šarūnas Girdzijauskas

Software and Computer Systems, KTH, Royal Institute of Technology, Kistagången 16, 16440
Stockholm, Sweden

{aesy,sarunasg}@kth.se

Abstract. Federated learning (FL) is a distributed learning paradigm that facili-
ties a basic data-privacy level, as the clients do not have to share their raw data.
Since the clients send local model updates, it increases the attack surface of FL—
with possible attackers sharing poisoning updates with the aggregation server. In
this work, we focus on the Sybil attacks, a type of poisoning attack where attack-
ers can have multiple identities to overpower the honest clients in the system. In
particular, we define a cosine-similarity-based measurement to track the clients’
behavior. To mitigate the Sybil attacks, we propose FedSybil, a behavior-based
defense with a reputation mechanism for FL under independent and identically
distributed (IID) and non-IID data settings. In extensive experiments, we demon-
strate the effectiveness of our approach with an improved model accuracy over
the state-of-the-art approaches reaching over 50% improvement under attacks.

Keywords: Federated learning · neural networks · poisoning attacks · security

1 Introduction

Large amounts of training data are often required and shared with a central server to
train powerful machine learning (ML) models, particularly deep learning models. In
doing so, the training process at the server can be computationally expensive, compro-
mising the user’s data privacy. Modern distributed learning paradigms, i.e., Federated
Learning (FL) [1–3], promise essential solutions to the latter, especially over resource-
constrained settings such as learning over Internet-of-Things (IoT) [4]: data is held with
the clients, and only the local model updates are shared with the server during training.
The server in FL aggregates the uploaded model updates into a single global update in
an iterative training process.

Despite providing basic privacy over the user data, from a security perspective, the
local clients have more control over the learning process; they may contribute mali-
ciously by sharing poisoning model updates. Thus, federated learning suffers from an
increased attack surface. One popular attack, i.e., Sybil attack [5], has been studied
recently in FL [6,7]. In Sybil attacks, the malicious client aims to subvert the distributed
system by creating multiple aliases with similar intent to outweigh the honest clients. In
the SoTA for defending against Sybil attacks [8,9], the authors have proved that Sybil
poisoning attacks may cause a drastic reduction in model accuracy in FL.

Furthermore, the local data of the clients are likely to exhibit skewed distributions
over the clients in real-life applications [10,11]. Nevertheless, most existing defenses
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 36–51, 2023.
https://doi.org/10.1007/978-981-99-7032-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_3&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_3

Mitigating Sybil Attacks in Federated Learning 37

Fig. 1. An overview of FL and FedSybil located at the aggregation server. FedSybil consists of
three components: accumulating updates, computing cosine similarities over updates, and getting
the least similar (honest) clients. Through FedSybil, the malicious (red) clients are detected, and
their updates are discarded. (Color figure online)

against poisoning attacks, such as Krum [12], are ineffective under non-independent
and identically distributed (non-IID) data scenarios. During experiments, we observed
that for the clients with the same targeted malicious objective, their model updates are
the most similar in IID and non-IID settings [8]. Subsequently, [8,9] have proposed a
similarity-based weighted aggregation. The weights are defined based on the overall
similarity of each client with the others. Our study on these methods shows that these
approaches may penalize honest clients, reducing their learning rates by mistake. With
many clients regarded as malicious, model learning gets hindered, causing a drastic
reduction in the model accuracy, as shown in our experiments.

Motivated by those mentioned above, we first define a cosine-similarity-based mea-
surement to track the client’s behavior in the system. Our core insight is that clients with
the same adversarial objective will likely exhibit similar model updates. Concretely, a
shared adversarial objective is to classify the same feature-space pattern into the same
targeted class, e.g., misclassifying malicious software, not to detect it as malware. Thus,
the server tracks the clients’ behaviors by computing how similar the accumulated
model updates of the clients in the system are.

Second, to mitigate Sybil attacks, we propose FedSybil, a federated learning mech-
anism resilient against poisoning attacks under both IID and non-IID settings. FedSybil
is a behavior-based defense where the proposed cosine-similarity-based measurement
defines behavior. Furthermore, we introduce a reputation mechanism and a clustering-
based detection based on the defined behaviors. At every iteration, the reputation mech-
anism helps in probabilistically selecting potentially trusted clients, while the clustering

38 A. E. Samy and Š. Girdzijauskas

ensures that only honest clients out of those candidates are considered for aggregation.
An overview of FedSybil and FL is illustrated in Fig. 1

Third, we conduct extensive experiments on three datasets under targeted label-
flipping, backdoor poisoning attacks, and Sybil untargeted attacks. Our experiments
show that the SOTA methods can be ineffective under more realistic settings, with a
drastic model accuracy reduction. Moreover, we prove the effectiveness of FedSybil
with an improved model accuracy and minimum Attack Success Rate (ASR), reaching
over 50% improvement in model accuracy.

2 Federated Learning: Defending Against Sybil Poisoning Attacks

Federated Learning (FL) is a standard paradigm for machine learning on distributed
datasets [1–3]. It is a client-server architecture where the server creates the model and
shares the weights with the clients. The clients train the model on their local data and
share the weights with the server. This collaborative process continues till the model
training reaches a (sub)optimal convergence state. In doing so, federated learning pro-
vides the collaborators a basic level of privacy as the data never leaves the clients’ side.

Concretely, in each round t ∈ [1, T], a fraction C of the clients are chosen to update
the weights of the global model wt locally as wk

t+1 = wt − μΔk
t+1 where μ is a fixed

learning rate, Δk
t+1 and wk

t+1 are the model update and weights produced by client k
at round t + 1. Consequently, the aggregation server averages the weights into a new
global model wt+1 at iteration t + 1 as follows:

wt+1 = wt +
K∑

k=1

nk

n
Δk

t+1, (1)

Δk
t+1 = wt − wk

t+1 (2)

where K is the number of selected clients, n is the total number of data points, nk is
the number of data points of the kth client. Δk

t+1 and wk
t+1 are the model update and

weights produced by client k at round t + 1. The latter method is called FedAVG.
There are two main settings of federated learning: FedSGD and FedAVG [1]. In

FedSGD, clients share each local update with the server that should do the aggregation.
For FedAVG, clients may do many local updates first before sharing the updates with
the server. FedAVG, by design, is more communication-efficient.

Mitigating Sybil Attacks in Federated Learning 39

Algorithm 1. The FedSybil algorithm
Input: Initial model w0; H are the historical updates, with starting values as the initial random
weights (of the clients’ local models); β is mini-batch size; E is the number of local epochs; Spop

is the client population; C is the fraction of the clients for local training; initial reputation scores
r are set to 1.

1: procedure SERVER(w0, β, E, C)
2: for each round t = 1, 2, . . . do
3: St ← select top �C|Spop|� clients for local training with probability pi ∝ ri.
4: for each client i ∈ St in parallel do
5: δi

t+1 ← CLIENTUPDATE(j, wt)

6: Hi ← 2Hi+δit+1,output
2

� Aggregated (historical) updates of the output layer
7: end for
8: for each client i ∈ St do
9: for each client j ∈ St do
10: if i �= j then
11: csij ← COSINESIMILARITY(Hi, Hj)
12: end if
13: end for
14: ιi ← maxj(csi) � Compute the alignment score
15: if ιi > t then
16: ri ← ri − Δ � Δ is set to 0.1
17: else
18: ri ← ri + Δ
19: end if
20: end for
21: Shonest, Smalicious ← CLUSTER(ι, Spop, n cluster = 2) � Cluster clients based

on the alignment score ι
22: Ŝt ← select K clients from St ∩ Shonest.
23: wt+1 ← AGGREGATE(wt, δ

i
t+1), ∀i ∈ Ŝt

24: end for
25: end procedure

Algorithm 2. CosineSimilarity(Hi,Hj)
Input: Historical update vectors Hi and Hj for the clients i and j, respectively.

1: procedure COSINESIMILARITY(Hi, Hj)
2: for each label l = 0, 1, . . . , L do

3: csl
ij ← Hl

i·Hl
j

‖Hl
i‖‖Hl

j‖
4: end for

5: Ltop ← select � labels with top cosine similarities.
6: csij ← ∑

l∈Ltop
csl

ij

7: end procedure

40 A. E. Samy and Š. Girdzijauskas

2.1 FedSybil Design

Our central insight is that in Sybil-based attacks, the malicious clients exhibit more
similar learning behaviors than the honest clients. These similarities result from the fact
that the malicious clients in these attacks tend to drive model updates towards one or
similar (Sybil) malicious objectives that are typically different from the objective of
the honest client. In doing so, the similarities between a pair of two malicious Sybil
attackers are often observed in our experiments to be higher than with a pair of honest
clients or between an honest and malicious client. The variance between two honest
clients is due to the stochastic nature of the gradient-based learning method, namely
SGD, that the clients rely on for optimization. This phenomenon can be observed in
both IID and non-IID settings. Based on these findings, we next present FedSybil.

In Algorithm 1, we illustrate FedSybil where the training between the clients and
the server unfolds synchronously. The learning process leverages the following main
components:

Similarity Scores. In line 9, Algorithm 1, The angles between every two clients have
been defined as the cosine similarity csij between their updates δoutput. As the cosine
similarity ranges from -1 to 1, it defines how much close the client pairs are. We com-
pute the cosine similarity based on the gradients of the output layer, as they are crit-
ical to any targeted attacks. In detail, as shown in Algorithm 2, the cosine similarity
between two clients is computed as the sum of the top cosine similarities over the labels
(between the gradient vectors of the corresponding labels in the output layer). Intu-
itively, the labels with the maximum cosine similarities are the labels that are impacted
by the attack. For scalability, we calculate the cosine similarities for a fraction C of the
clients at each iteration (Algorithm 1, line 3).

For deeper neural networks, we do not consider the weights of the non-output lay-
ers when computing the cosine similarities, as they do not map directly to the output
probabilities. However, more work on feature importance in neural networks may be
necessary to capture Sybil attacks based on these weights [13,14]; we consider this as
part of our future work.

Alignment Score is the overall similarity score per client ιi calculated as the maximum
of his similarity scores with the other clients. An alignment score defines the overall
behavior of each client in the system. A high alignment score (approaching a value of
1) means that the client is very similar to others, hence bad behavior. Based on our
experiments, we recommend two aggregation methods: max, or the average over top
similarity scores per client to avoid missing a malicious client only because they happen
to have low similarity scores with honest clients.

Historical Model Updates. Model updates may diverge at a given iteration due to the
variance of the Stochastic Gradient Decent (SGD) - even for clients with the same mali-
cious objective. To have a more accurate estimate of the client’s intent, we normalize the
divergence (line 6, Algorithm 1) by calculating the similarity scores over the updates
produced by the client in the past iterations. Precisely, we choose the mean operation
over the past updates to ensure that the aggregated updates follow the same distribution
regardless of how often the clients are selected.

Mitigating Sybil Attacks in Federated Learning 41

Reputation and Detection Mechanism. In Algorithm 1, Lines 11–14, we introduce a
reputation mechanism where the trust scores of the clients are maintained and initial-
ized to 1’s. The trust score is updated accordingly by comparing the client’s alignment
score with a given threshold at each iteration. Thus, based on the clients’ behaviors,
reputations are maintained during training and used to select potential candidates for
local training.

Upon aggregation, to differentiate between the honest and malicious clients from the
candidate clients in an unsupervised manner, we employ Kmeans [15]. Specifically, we
divide all clients based on their alignment scores into honest and malicious groups. The
clustering is not applied directly to the model updates, so it is effective under non-IID
data distribution. We choose the cluster with the smaller center to identify the honest
clients. As in Lines 22 and 21 in Algorithm 1, we choose K clients from the honest
clients at each round for aggregation. Therefore, K will always have the total number
of honest clients in the system as an upper bound.

Aggregation Rule. The aggregation rule can be any of the federated learning aggre-
gation methods such as FedAVG, FedSGD, FedProx [16]. In this work, we use the
FedAVG aggregation rule in Eq. 1. As FedSybil is agnostic to the aggregation rule.
Secure aggregations such as multi-Krum [12] can be also used. We demonstrate that
multi-Krum and FedSybil can be combined with no conflict. More details are later dis-
cussed in the evaluation section.

3 Security Analysis

3.1 Threat Model

Attacker Capability. Data are assumed to be private for each client. The malicious
clients cannot access the local data of the other clients. We also assume that the server
and the honest clients cannot be compromised, similar to [8]. On the other hand, mali-
cious clients can observe the global model. They can affect the state of other models
by sharing malicious model updates. The attackers also may access the system with
multiple aliases to organize Sybil attacks. Finally, the privacy of the model updates is
not accounted for in this work.

Attacker Objective.Attackers aim to reduce the quality of the models being learned by
sharing poisoning model updates. To do so, they organize untargeted or targeting poi-
soning attacks. A targeted attack can be label-flipping [17] where the attackers change
the label of a given class. Alternatively, they can inject a specific pattern in the data
(backdoor attacks [18]). In the evaluation, we demonstrate how federated learning can
be particularly vulnerable in the case of Sybil attacks.

Data Distribution. The data can be independent and identically distributed (IID) or
non-IID. To imitate the real-world scenarios, we choose the Dirichlet distribution [18]
to control how the class labels are distributed over the clients. We include the data
distribution in the threat model, as most of the existing defenses in the literature, such
as multi-Krum [12], do not perform well under non-IID settings [9].

42 A. E. Samy and Š. Girdzijauskas

Table 1. Evaluation datasets.

Dataset Classes Training samples Test samples Features Model Learning rate Reporting fraction Clients

MNIST 10 6 · 104 104 784 Softmax 0.01 20% 100

Fashion-MNIST 10 6 · 104 104 120 CNN 0.0001 20% 100

Cifar 10 5 · 104 104 512 CNN 0.01 30% 100

3.2 Attacks and Mitigations

Label Flipping. It is a type of Sybil based targeted poisoning attack where attack-
ers cooperate to encourage a specific source label to be classified as a target label of
their choice. As our proposed methods run on the assumption that clients are dissim-
ilar enough, having similar objectives among this type of Sybil attackers lead to high
similarity scores, thereby being distinguishable by our algorithms. The same assump-
tion holds regardless of IID or non-IID data. If the attackers try to produce dissimilar
updates to avoid being detected, their attacks lose effectiveness. We demonstrate the
effectiveness of our algorithms in keeping high accuracy and reducing the attack rates
in the evaluation.

Backdoor Attacks. It is another type of targeted poisoning attack. In this attack, the
attackers encourage the training examples with a specific embedded pattern to be clas-
sified into a target label of their choice. Similarly, Sybil clients must work together to
over-weigh the honest clients in the system. In doing so, they essentially exhibit similar
behaviors. Compared to honest clients’ alignment scores, these attackers’ high align-
ment scores capture such similarities. Accordingly, the server does not consider these
updates in the aggregation. We prove these findings in our experiments.

Untargeted Attacks. attackers in this attack do not target a particular class. They aim
to push the model into high-class error rates on all labels. Attackers can submit random
weights or flip the actual class labels to execute this attack. This attack type can be coor-
dinated (Sybils) or individual attacks. In the case of the Sybil attack, attackers instead
work together to send arbitrary model updates. Because the attackers coordinate similar
Sybil attacks in this scenario, they are distinguishable by our defenses. On the other
hand, for individual attacks, FedSybil becomes less effective, as it relies on the simi-
larity among the attackers. To mitigate a such attack, FedSybil can be augmented with
secure aggregation methods such as multi-Krum [12]. In the next section, we address
the possibility of combining FedSybil with multi-Krum.

4 Evaluation and Discussion

4.1 Experiment Setup

Datasets. We evaluate FedSybil on three real-life classification datasets: MNIST [19],
Fashion-MNIST, [20] and Cifar [21]. Every dataset has been chosen in our experiments
for specific reasons. First, we choose MNIST as a standard digit classification task

Mitigating Sybil Attacks in Federated Learning 43

widely used for evaluation in federated learning [1]. Cifar is chosen as a color image
classification. Cifar and Fashion-MNIST are chosen for more complex deep learning
models and difficult datasets. We believe the choice of datasets reflects different learn-
ing experiences for testing our methods and baselines. The details of the datasets are
listed in Table 1. The distribution of the class labels over clients is decided by a Dirich-
let distribution. The Dirichlet hyperparameter varies between 0.05 and 100, where 0.05
and 100 represent non-IID and IID settings, respectively.

Training Details. For all datasets, we train for 100 rounds and five local epochs with
a local batch size of 50, except for Cifar, where it is 32. The SGD is the default opti-
mizer with a momentum of 0.9 on MNIST. At each round, 20–30% of the clients are
chosen for aggregation. To calculate the cosine similarities, we consider all clients and
set the hyperparameter � to 30% of the labels for MNIST and Cifar, while all labels are
considered for Fashion-MNIST.

Baselines and Metrics. We choose FedAVG(FL), FoolsGold (FG) [8], and Contra [9]
as baselines for FedSybil. We compare the four algorithms with different adversary
rates in {33%, 50%, 90%} at different data distributions φ in {0.05, 100} on label
flipping and backdoor pattern attacks, as well as Sybil untargeted attacks. We use the
model accuracy and Attack Success Rate (ASR) for metrics. Attack success rates are
calculated as the ratio between the number of (correct) source labels classified into
(adversary) target labels and the total number of testing examples. An attacker succeeds
when he/she manages to flip a right label to a target wrong label correctly.

4.2 FedSybil Evaluation

Tables 2 to 5 show the results of the proposed FedSybil with comparison to Contra,
FoolsGold and the vanilla FedAVG as baselines under Backdoor (Table 2), Sybil untar-
geted (Table 3) and label flipping attacks (Table 4). To simulate the backdoor attack, we
inject a white pixel in the bottom right part of the images, then assign them labels of 1.
For the untargeted attack, all labels are flipped to 0. We flip labels 1 to 7 on all datasets
for label-flipping attacks.

Viewing the results, we observe that FedSybil outperforms on all attacks under
mostly all the different settings. Contrarily, FoolsGold performs less, sometimes even
less than federated learning, with no defense. Despite being state-of-the-art, FoolsGold
was evaluated in unrealistic settings: with only ten clients and unrealistic synthesized
data distribution of “sort-and-partition” [1] with an extreme case of non-identicalness.
Under our settings, FoolsGold shows a high false positive rate, penalizing honest clients
and decreasing their learning rates. In doing so, the aggregated global model does not
get enough contributions from the clients, thereby the lower model accuracy. We guess
that the reduced learning rates slow down the training process. As a result, FoolsGold
may need a higher number of iterations to reach the convergence (as reported by the
authors); For Contra, having a reputation mechanism increases the chances of choosing
trusted clients with higher learning rates; therefore, the better results. However, Contra
is essentially similar to FoolsGold; both have adaptive learning rates when aggregat-
ing. Viewing Table 4, we see lower model accuracy due to falsely penalizing honest

44 A. E. Samy and Š. Girdzijauskas

clients. Based on these findings, we conclude that the cosine similarities may not pro-
vide enough guarantee, so the learning rates can be manipulated accordingly.

On the other hand, FedSybil defense relies on reputation-based selection and cluster-
based detection mechanisms. Clustering the clients is primary in filtering out the mali-
cious clients from the selected candidates upon aggregation. In contrast, high repu-
tations ensure that the selected clients are potentially honest. Without the reputation
mechanism, a random pool with many malicious clients may be initially selected.
Accordingly, a few honest clients can only pass through the detection, slowing down the
training process. At the same time, relying on reputations alone does not provide enough
guarantees against malicious clients. Furthermore, as shown in the results tables, FedSy-
bil consistently performs better regardless of the data distribution and attack percentage.
As our defense becomes more confident about the Sybil clients with higher attack per-
centages, the performance of the FedSybil becomes better.

Finally, the results highlight the differences between the attack types. From Tables 2
and 3, the targeted backdoor and untargeted attacks have the most impact on FedAVG
and FoolsGold. That is because all classes are targeted and flipped in both attacks.
However, being such impactful, they are more distinguishable by FedSybil.

On the other hand, viewing Table 4, the label flipping attack has the most negligible
impact having one specific label flipped to a target adversarial label. As it is a more sub-

Table 2. Backdoor attacks - Accuracy results.

% Attack Non-IID MNIST Fashion-MNIST Cifar

FL FG Contra FedSybil FL FG Contra FedSybil FL FG Contra FedSybil

50% 0.05 69.0 70.6 59.8 84.1 70.7 62.1 73.4 75.6 10.0 16.0 36.8 31.2

100 85.4 89.3 89.6 90.4 78.6 80.3 80.3 83.0 13.2 35.6 33.7 39.0

70% 0.05 34.7 52.9 57.1 81.0 61.2 40.0 73.9 77.3 10.0 19.8 36.0 36.4

100 74.1 88.2 88.9 90.3 76.1 77.7 72.0 82.8 10.0 16.6 36.7 37.4

Table 3. Sybil Untargeted attacks - Accuracy results on Fashion-MNIST.

% Attack Non/IID FL % FG % Contra % FedSybil

50% 0.05 23.0 32.4 70.4 74.3

100 56.8 66.7 79.6 83.0

70% 0.05 10.1 30.6 58.7 76.9

100 10.0 62.0 76.7 82.8

Table 4. Label-flipping attacks - Accuracy results%.

% Attack Non-IID MNIST Fashion-MNIST Cifar

FL FG Contra FedSybil FL FG Contra FedSybil FL FG Contra FedSybil

50% 0.05 83.1 56.6 80.5 84.5 58.2 31.5 34.3 63.2 28.4 20.3 32.4 32.1

100 81.1 84.1 79.5 90.3 67.9 72.3 64.0 74.1 33.6 10.2 34.1 37.0

70% 0.05 76.9 67.0 83.0 87.4 58.2 31.7 34.4 63.2 28.4 20.3 31.8 31.6

100 79.0 78.2 78.1 90.3 65.0 63.4 60.4 74.3 32.4 10.2 34.0 36.5

Mitigating Sybil Attacks in Federated Learning 45

Table 5. Label-flipping attacks - comparison with the reported accuracy results from [9] on
MNIST

% Attack Non/IID FG % Contra % FedSybil

33% 0.05 69.3 72.8 87.0

100 78.3 83.9 91.0

50% 0.05 66.6 70.4 84.9

100 76.1 81.6 91.1

tle attack, it is more challenging for our defenses to detect them compared to the other
attacks. For more insights, Table 5 reports the results of FedSybil on MNIST compared
to Contra under the same original settings provided by [9] with label-flipping attacks.

4.3 FedSybil Under Non-IID Settings

The core assumption of the FedSybil is that the clients’ local models are sufficiently dis-
similar. This dissimilarity is due to the stochastic gradient descent’s stochastic nature
and the local data’s dissimilarity. Thus, the attackers participating in the same Sybil
attacks should exhibit more similarity than the honest clients as they learn the same
adversarial objective. This insight has been observed under both non-IID and IID set-
tings.

To verify our insight, Fig. 2 shows the normalized pairwise cosine similarities for ten
clients with IID (on the left) and non-IID (on the right) settings. The cosine similarity
matrix has been calculated on MNIST data under a backdoor poisoning attack. The first
four clients are Sybil clients, while the bottom six are chosen to be honest.

For the training data, we vary the distribution using the Dirichlet distribution [18].
Particularly, for N classes, we draw the training examples for each client independently
with class distribution parameterized by theN th vector q, drawn as q ∼ Dir(φp)where
p is the class prior distribution and φ is a concentration parameter. When φ → 0, each
client has data with only one class, while the data is fully IID as φ → ∞.

46 A. E. Samy and Š. Girdzijauskas

Fig. 2. Heatmap charts of the normalized cosine similarities between the clients. The top 4 clients
are malicious clients and the bottom 6 are honest clients. The malicious clients with the same
objective are the most similar to each other compared to the honest clients. (Color figure online)

Mitigating Sybil Attacks in Federated Learning 47

In Fig. 2(a), the data is IID with φ = 100, and non-IID in Fig. 2(b), with φ = 0.05.
Viewing the figures, in the case of IID, all clients show high similarity (small angle)
due to similar distributions. The Sybil clients have exact similarities and highly similar
updates. We can also observe that the angle between one honest client and another
malicious client is maximum.

On the other hand, in the case of non-IID, the angle between two honest clients in
the system is the maximum. In both cases, the Sybil clients are distinguishable by their
highest similarity, demonstrating our earlier insight about the Sybil attackers. Be noted
that two honest clients may still have high similarity such as clients 7 and 8. However,
they have smaller overall alignment scores compared to the malicious ones.

Finally, if the attackers know about FedSybil, they may change the data distribution
or craft other updates to achieve more dissimilarity. However, for their Sybil attacks
to remain effective, they must approach the same adversarial objective, keeping their
updates similar.

4.4 Single Client Attacks

There are attacks such as the single-shot replacement attack [18] where attackers do not
have to do Sybils. As these attacks are conducted only by a single attacker, similarity-
based defenses (e.g., FedSybil) are not enough to subvert them. To simulate this attack,
we implement a 70% label flipping attack with another single untargeted attack that
flips all labels to 0 on Fashion-MNIST. Viewing Table 6, we can see that each defense
independently is not effective (in terms of ASR) to mitigate both attacks happening con-
currently; Multi-Krum fails to mitigate the label-flipping attack, while FedSybil fails to
mitigate the single attack. Although FedSybil can mitigate the 70% label-flipping attack,
having the single untargeted attack causes the clustering-based detection in FedSybil to
assign the single attacker to a separate cluster while keeping all other honest and mali-
cious clients in the other group, thus subverting our defense. Be noted that FedSybil here
was used without the reputation mechanism. To mitigate both attacks, we unit FedSybil
with multi-Krum with f = 1; together, both can defend against the 70% attack, proving
that both defenses can augment each other to provide a better defense.

Table 6. Single untargeted attack that flips all labels to zero with 70% 1 to 7 label-flipping Attack
on Fashion-MNIST

Multi-Krum FedSybil FedSybil+Multi-Krum

Accuracy % 65.0 10.0 74.2

ASR % 11.5 90.0 2.57

4.5 Coordinated Attacks

The attackers may collude to introduce intelligent perturbations where noises are added
intentionally to similar updates to create dissimilarity. For example, two malicious
clients can submit two update vectors such that v1 = x1 + α and v2 = x2 − α, where

48 A. E. Samy and Š. Girdzijauskas

x1, x2 are malicious updates, and α is a shared perturbation vector. When these two
vectors are aggregated together, the result is the sum x1 + x2. Adding perturbation to
the poisoning updates, they become dissimilar and may go undetected. For this attack to
be successful, the same perturbations must be added by the colluding clients to features
relevant to the model’s correctness. However, the perturbations must also be orthogonal
to the non-relevant features to increase the dissimilarity. To mitigate this, the similarity
can be computed on only the relevant features whose importance is estimated, similar
to [1]. That last trick we have not mentioned in the paper.

Another synchronized attack is a poisoning attack with adaptive updates proposed
by [8]. In this attack, the Sybil clients send poisoning updates when their similarity
scores are low. However, this attack takes much work to achieve. First, it requires the
Sybil clients to work together to calculate their cosine similarities. Second, to avoid
being detected, the updates must be sent in a frequency below a certain threshold but
still sent often enough so the attacks remain effective. Defining the threshold requires
knowledge about how many honest clients are in the system, the distribution of the
client’s training data, and the defense of FedSybil.

4.6 Scalability

Our system currently computes the cosine similarity between all clients over all the
labels. The time complexity of calculating the cosine similarity at every iteration is
O(|Spop|2ld) where |Spop| is the number of clients, l is the number of labels, and d is the
number of features in the output layer. The cosine similarity can be, however, computed
on a random subset St of clients, with time complexity O(|St|2ld). Empirically, We
did not observe a noticeable drop in the performance compared with the baselines.
The reason is likely that training requires many iterations; therefore, sampling different
clients at each iteration for similarity calculations seems sufficient to cover enough
clients eventually.

5 Related Work

In poisoning attacks, the clients aim to reduce the global model accuracy by submitting
adversarial updates to the aggregation server. Subsequently, they can change the future
states of the global and local honest models. As in FL, there is no access to the data
or the training process, the defenses are done in the aggregation process at the server.
Next, we provide an overview of the current defenses.

Defences Against Untargeted Attacks. For byzantine attackers in FL, instead of rely-
ing on averaging the weights, some approaches have proposed more robust estimates of
the mean for robust aggregations [12,22]. [22], have introduced the multi-Krum secure
aggregation. At each iteration, the smallest n − f − 2 distances are calculated for each
client with the other clients. Upon aggregation, the f clients with the highest distances
are disregarded. Also, trimmed mean and median aggregations have been proposed in
[12]. With the median aggregation, the global model update is the median of the clients’
model updates. In trimmed mean, the highest and lowest β values for each feature

Mitigating Sybil Attacks in Federated Learning 49

are trimmed before averaging. Despite effectively mitigating the untargeted poison-
ing attacks, the latter aggregation rules work only in IID settings. Furthermore, they
assume a known and bound maximum number of malicious clients that they fail with
many Sybil attacks [8].

Defences Against Targeted Attacks. To address targeted attacks, behavior-based
approaches [23,24] have been proposed. The idea is to measure the similarities between
the clients’ past local updates to detect malicious clients who systematically share
adversarial updates with the aggregation server. In [23], the authors calculate the cosine
similarities between each local and aggregated model update. Based on the mean, the
median, and the standard deviation of the similarities (guaranteed by the honest major-
ity), the bad updates are determined prior to the aggregation. While in [24], as the global
model is trained on a small root dataset, it is used as a reference to compute the local
models’ cosine similarities (and trust scores). Accordingly, a trust-based weighted aver-
age of the local updates is computed to update the global model. Similar to the previous
approaches, behavior-based approaches are effective under IID settings. With different
distributions between clients and the server, honest clients are expected to be penalized
by mistake for being dissimilar.

Defences Against Sybil Attacks. In Sybil attacks, malicious clients exhibit more
behavioral similarities than honest clients. Thus, the defenses compute pairwise sim-
ilarities. More relevant to our approach, In [8], based on the cosine similarities, the
learning rate of the similar clients are reduced; therefore, their contribution to the global
model. [9] extended the latter approach by computing trust scores to choose the trusted
clients for aggregation probabilistically. However, both approaches may penalize honest
clients, reducing their learning rates by mistake. With many clients regarded as mali-
cious, model learning gets hindered, causing a drastic reduction in the model accuracy,
as shown in our experiments. On the other hand, a recent approach has been proposed
in [25], where the author employs a maximum spanning tree to differentiate between
honest and malicious clients. However, in contrast to our approach, they assume that
the number of malicious clients can not be more than that of honest clients.

More recent attacks have been introduced in [26] such as LIE, MIN-MAX, MIN-
SUM, and AGR-Tailored. However, these attacks assume either IID settings to work or
require that malicious clients know other clients’ updates which are out of the scope of
our defined threat model in this work.

6 Conclusion

Federated Learning is a distributed multi-party machine learning system where the
clients keep their raw data private and only share the local model updates with an
aggregation server. However, that opens the door to different poisoning attacks where
the attackers send poisoning updates to the server. In this work, we have focused on
Sybil attacks, where an adversary can create multiple identities or control multiple
devices to overpower the honest clients in the system. In particular, We defined a cosine-
similarity-based measurement to track the historical behavior of the clients. To defend
against the Sybil attacks, we introduced FedSybil, a behavior-based approach with a

50 A. E. Samy and Š. Girdzijauskas

reputation mechanism for robust federated learning. Furthermore, we demonstrated the
effectiveness of FedSybil against the Sybil attacks in terms of better model accuracy
and lower attack success rates than the state-of-the-art defenses. Finally, we presented
some research challenges, emphasizing coordinated attacks as potential future research
directions.

References

1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient
learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics,
pp. 1273–1282 (2017)

2. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn.
Syst. 1, 374–388 (2019)

3. GoogleAI, F.: Collaborative machine learning without centralized training data (2017)
4. Silvano, W.F., Marcelino, R.: Iota tangle: a cryptocurrency to communicate Internet-of-

Things data. Future Gener. Comput. Syst. 112, 307–319 (2020). https://doi.org/10.1016/j.
future.2020.05.047

5. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45748-8 24

6. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an
adversarial lens. In: International Conference on Machine Learning, pp. 634–643 (2019)

7. Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poisoning.
arXiv preprint arXiv:1808.04866 (2018)

8. Fung, C., Yoon, C.J., Beschastnikh, I.: The limitations of federated learning in sybil settings.
In: 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020), pp. 301–316 (2020)

9. Awan, S., Luo, B., Li, F.: Contra: defending against poisoning attacks in federated learning.
In: European Symposium on Research in Computer Security, pp. 455–475 (2021)

10. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582 (2018)

11. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-iid data quagmire of decentral-
ized machine learning. In: International Conference on Machine Learning, pp. 4387–4398
(2020)

12. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adver-
saries: byzantine tolerant gradient descent. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

13. Leino, K., Sen, S., Datta, A., Fredrikson, M., Li, L.: Influence-directed explanations for deep
convolutional networks. In: 2018 IEEE International Test Conference (ITC), pp. 1–8 (2018)

14. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: Theory
and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 598–617 (2016)

15. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means
clustering. Int. J. 1(6), 90–95 (2013)

16. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization
in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

17. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learning. Mach.
Learn. 81(2), 121–148 (2010)

https://doi.org/10.1016/j.future.2020.05.047
https://doi.org/10.1016/j.future.2020.05.047
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
http://arxiv.org/abs/1808.04866
http://arxiv.org/abs/1806.00582

Mitigating Sybil Attacks in Federated Learning 51

18. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated
learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948
(2020)

19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

20. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. CoRR abs/1708.07747 (2017)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images
(2009)

22. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning: towards
optimal statistical rates. In: International Conference on Machine Learning, pp. 5650–5659
(2018)

23. Muñoz-González, L. Co, K.T., Lupu, E.C.: Byzantine-robust federated machine learning
through adaptive model averaging. arXiv preprint arXiv:1909.05125 (2019)

24. Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: byzantine-robust federated learning via trust
bootstrapping. arXiv preprint arXiv:2012.13995 (2020)

25. Ranjan, P., Corò, F., Gupta, A., Das, S.K.: Leveraging spanning tree to detect colluding
attackers in federated learning. In: IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 1–2 (2022)

26. Shejwalkar, V., Houmansadr, A.: Manipulating the byzantine: optimizing model poisoning
attacks and defenses for federated learning. In: NDSS (2021)

http://arxiv.org/abs/1909.05125
http://arxiv.org/abs/2012.13995

Privacy-Preserving Authentication
Scheme for 5G Cloud-Fog Hybrid

with Soft Biometrics

Jiahui Wang1, Yulong Fu1,2(B), Mengru Liu1, Jin Cao1,2, Hui Li1,2,
and Zheng Yan1,3

1 School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China
ylfu@xidian.edu.cn

2 State Key Laboratory of Integrated Services Networks, Xi’an, Shaanxi, China
3 Aalto University, Espoo, Finland

Abstract. The feature of Enhanced Mobile Broadband (eMBB) and
Cloud-Fog hybrid architecture in 5G significantly enhance the commu-
nication and computation capabilities of 5G devices, and make the bio-
metric traits collection, recognition and authentication become possible.
However, since biometrics such as face ID, fingerprint, etc. are belonging
to user’s privacy, by considering the curiosity of cloud server and the law
of General Data Protection Regulation (GDPR), we can’t use biometrics
directly in 5G cloud-fog hybrid scenarios. To solve this problem, in this
paper, we propose a privacy-preserving authentication scheme based on
soft biometric traits (PPA-SBT). In our scheme, soft biometrics without
privacy attributes are designed to protect the biometrics with privacy
attributes through encryption, and improve the recognition speed and
accuracy rate. We conducted the theoretical security analysis of the pro-
posed scheme with formal method and also conducted experiments with
real dataset and public datasets respectively, the experimental results
demonstrate the feasibility and convenience of PPA-SBT.

Keywords: 5G Security · Soft Biometric Traits · Biometric
Recognition · Cloud-Fog Hybrid Architecture · Formal Verification

1 Introduction

The advent of 5G has ushered in a new era of mobile networks, offering higher
speeds, increased capacity, and lower latency compared to 4G. This has enabled
the Internet of Everything (IoT) [13] expanding the possibilities of the mobile
Internet. However, many IoT devices such as sensors, camera, etc., are less of
the ability of computation. To address those limitations, the 5G cloud-fog hybrid

This work was supported by National Key R&D Program of China
No.2022YFB2902205 and the Key Research and Development Program of Shaanxi
(No.2020ZDLGY08-08).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 52–73, 2023.
https://doi.org/10.1007/978-981-99-7032-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_4&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_4

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 53

architecture has been proposed and widely adopted. This architecture combines
the computing power and storage capacity of the cloud with the capabilities of
fog nodes, which are connected to IoT and terminal devices, aiming to overcome
challenges such as high latency and bandwidth waste (see Fig. 1).

User authentication plays a crucial role in ensuring security in 5G network
applications, particularly in scenarios involving massive Machine Type Commu-
nications (mMTC), where a large number of smart terminal devices are con-
nected. Biometric recognition is widely recognized for its convenience and relia-
bility, with applications in domains such as medical [6] and payment [24] sectors.
In the 5G cloud-fog hybrid environment, where terminals and IoT devices con-
nect directly to fog nodes, leveraging fog computing services and accessing cloud
services through fog, biometric recognition becomes increasingly advantageous,
improving the overall user experience.

However, using single biometrics presents certain challenges, including issues
related to data quality that can affect system accuracy [30]. Moreover, trans-
mitting highly sensitive biometric data between cloud and fog raises concerns
about privacy breaches, potentially leading to identity theft and security risks. It
should be noted that we consider the scenario based on 5G network and following
the centralized settings in the 3GPP standards. This paper mainly focuses on
centralized authentication mechanisms, and does not discuss distributed authen-
tication and privacy protection methods such as blockchain.

To address these challenges, we propose a privacy-preserving authentication
scheme based on soft biometric traits. Soft biometric traits, such as height,
weight, gender, and hair color, are non-identifying and readily collectible fea-
tures. They can be used to generate encryption keys for protecting biometric
data while improving the efficiency and accuracy of biometric recognition as
auxiliary information.

With regard to the issue of privacy protection, several privacy protection
schemes have been proposed for biometric recognition. Zhu et al. [37] introduced
an online fingerprint authentication scheme based on outsourced data, utilizing
an improved homomorphic encryption technique for matching encrypted finger-
print data in outsourcing scenarios. Zhang et al. [36] designed a data encryption
and secure outsourcing matching algorithm that employs random matrices and
vectors for data encryption and matching, while introducing perturbations to
protect privacy before encryption. Although these schemes protect biometric
characteristics as privacy assets, the accuracy of matching encrypted biometrics
may be reduced compared to traditional methods due to increased error rates.

Compared with above schemes for privacy protection of biometric recogni-
tion, the biggest difference of our scheme is that we make use of soft biometric
traits, which are easy to collect, as the key to protect users’ privacy. There are
low-cost devices everywhere in our lives such as smart bracelets, mobile phones,
computers, surveillance cameras, weighing scale and so on, soft biometric traits
can be collected and extracted from these devices. Therefore, the authentication
is more natural and convenient without complex operations in our scheme.

54 J. Wang et al.

Contribution. We proposed a privacy-preserving authentication scheme based
on soft biometric traits (PPA-SBT). User biometric and soft biometric data are
collected by IoT and terminal devices and transmitted to nearby fog computing
centers. Fog computing center generates the secret key using the extracted soft
biometrics traits, encrypt the collected biometric data, and send it to a trusted
authentication center for decryption and biometric recognition. By separating
the cloud server from biometric functions and only using it for soft biometric
data filtering, the privacy of users’ data is safeguarded. Our scheme leverages the
advantages of soft biometric traits to ensure accurate and efficient authentication
while preserving privacy during transmission. The key contributions of our paper
include:

– We proposed a privacy-preserving authentication scheme based on soft bio-
metric traits.

– We used Tamarin to formalize our scheme and prove the security of the solu-
tion.

– We established the real dataset and did experiments to analyze the exper-
imental results under the real scenario. We also established the 552 users’
artificial dataset using public datasets to analyze the experimental perfor-
mance better.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the background and related works relevant to our research. Section 3
presents our proposed scheme in detail. Section 4 analyzes the performance of the
scheme, briefly describes the formal tool used, and verifies the proposed scheme.
Section 5 introduces the experiments conducted and presents the experimental
results. Finally, Sect. 6 concludes the paper.

2 Background and Related Works

2.1 Background

Cloud-Fog Hybrid Architecture. The evolution of mobile communication
technology and IoT applications have led to increased demands for data stor-
age and processing. In 2006, Google CEO Eric Schmidt introduced the concept
of “cloud computing” [27]. Cloud computing is a two-tier network architecture,
consisting of a front tier (mobile network) and a back tier (cloud devices and
servers), connected via the Internet [28]. Cloud computing offers reliable and
cost-effective support to various entities. However, challenges arise due to con-
stant Internet connection requirements and the increased demand for wireless
data transmission. These challenges include high bandwidth pressure, latency,
and compromised data transmission.

To overcome these challenges, fog computing has emerged as a complemen-
tary paradigm to cloud computing. Fog nodes serve as facilities or infrastruc-
tures that provide resources for widely distributed services at the edge of the
network [35]. By leveraging resources from nearby fog nodes, fog computing

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 55

Fig. 1. Cloud-Fog Hybrid Architecture.

enables substantial storage and computation with reduced communication costs.
Cloud and fog computing each offer their own advantages. While the cloud
has ample resources to host various applications, it can introduce latency and
waste bandwidth. On the other hand, fog computing can provide faster response
times but lacks sufficient computing power for complex tasks [34]. The cloud-
fog hybrid architecture is applied in various fields, including 5G network user
identity authentication.

Biometric Authentication. Authentication plays a crucial role in ensuring
system and data security, especially in the context of cloud-fog hybrid architec-
tures. Biometric recognition utilizes human body characteristics, offers distinct
advantages over traditional authentication methods like passwords and tokens.
These characteristics, including physical and behavioral traits, are unique,
secure, and difficult to lose or forget. Consequently, biometric recognition pro-
vides higher convenience, reliability, and security. With the increasing use of
sensors and mobile devices, biometric recognition technology is emerging as a
mainstream trend in future 5G cloud-fog hybrid architectures. The biometric
recognition system encompasses two phases: enrollment/registration, involving
the extraction and storage of users’ biometric features in a database, and recog-
nition, where biometric recognition is performed.

Specifically, Biometric recognition can be divided into two categories: verifi-
cation and identification. Verification matches an individual’s biometrics against

56 J. Wang et al.

a specific index, such as a user identify ID, in a 1:1 matching system to validate
their claimed identity. Identification uses biometric comparison to determine the
identity of an unknown individual among registered users in a database, employ-
ing a 1:N matching system. This paper focuses on biometric identification.

Next, we provide a brief overview of mainstream biometric technolo-
gies, namely face recognition, fingerprint recognition, and voiceprint recogni-
tion/speaker recognition.

Face Recognition. This is a popular biometric technology that uses human facial
features for identification. Generally, the face recognition system consists of four
modules: face acquisition and detection, face pre-processing, feature extraction
and face recognition [26]. Pre-processing involves tasks like grayscale correction,
noise filtering, light compensation, and geometric correction. Feature extraction
extracts a feature vector from the face, and face recognition performs verification
or identification. There are several basic methods in face recognition. Feature-
based method utilizes local features of the face such as eyes, lips, etc., for face
segmentation and uses them as input data for face detection. Holistic method
considers the entire face as a single unit for detection and recognition. Hybrid
method combines feature-based method with holistic method. Another popular
method is the Template-based method, recognizes and detects human faces
by computing the correlation of the input image to the standard face pattern
using whole facial features.

Fingerprint Recognition. Fingerprints are identifiable, immovable, stable and
unique for everyone, their basic properties will never change over time, so it
can be as a reliable means of recognition. Fingerprint matching techniques are
classified into three categories [26].

– Pattern based/image based matching: It compares the basic fingerprint pat-
terns between the user to be identified and the stored fingerprint templates.

– Minutiae-based method: It identifies minutiae points and their relative posi-
tions on finger. First, the minutiae features of fingerprints are extracted from
the images, and then the minutiae features of the two fingerprint images are
matched for verification or identification.

– Correlation-based methods: It is based on rich gray scale information. It can
handle poor quality data.

Generally, the fingerprint recognition system consists of four modules: finger-
print acquisition, fingerprint pre-processing, feature extraction and fingerprint
matching [2]. In the acquisition module, the fingerprint image is captured using a
sensor. The pre-processing module then eliminates unwanted data, such as noise
and reflection, through segmentation, binarization, noise removal, smoothing,
and thinning. Next, the feature extraction module extracts fingerprint features.
Finally, these acquired features are compared with templates in the database for
verification or identification.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 57

Voiceprint Recognition/Speaker Recognition. Voiceprint recognition, also known
as speaker recognition, identifies individuals based on unique voice characteris-
tics. It takes advantage of physiological differences in vocal tract shapes, larynx
sizes, and other voice production organs [29]. Speaker recognition offers the fol-
lowing advantages [17]:

– It overcomes the “perceived intrusion” barrier in other biometric systems by
not requiring direct physical contact.

– It utilizes the ubiquity of microphones found in portable devices like mobile
phones and laptops, eliminating the need for additional hardware.

Speaker recognition systems (SRS) can be categorized as text-dependent or
text-independent. Text-dependent SRS requires speakers to utter specific known
phrases, while text-independent SRS allows flexibility in spoken phrases [12].

The speaker recognition system comprises two key modules: feature extrac-
tion and pattern recognition. The feature extraction module transforms the high-
dimensional speech signal into a lower-dimensional feature subspace, retaining
the speaker’s discriminative information. Common methods for pattern recog-
nition include template matching, nearest neighbor, neural networks, hidden
Markov models and so on [29].

Soft Biometrics. Soft biometrics encompass various physical, behavioral, and
adhered human characteristics that provide partial information about an individ-
ual but lack distinctiveness and permanence to differentiate any two individuals
[11,15]. Examples of soft biometric traits include anthropometric measurements,
eye and hair color, notable marks (scars, tattoos, birthmarks), and characteris-
tics like gender and age [7,32].

While lacking distinctiveness and permanence, soft biometrics offer advan-
tages such as minimal computational requirements, convenient collection, and
privacy preservation. They can be employed to filter large biometric databases
[23] or enhance the performance of traditional biometrics [22]. Tome et al. [31]
described people as soft biometrics in terms of global traits and head features.
They found that soft biometrics can maintain the robustness of face recognition
and improve the performance in scenarios at a distance. Lyle et al. [19] proposed
to use gender and ethnicity features extracted from the periocular region images
using the SVM classifier to improve the accuracy and performance of periocu-
lar recognition. Yang et al. [33] verified the combination of width measurement
and finger vein recognition improves recognition accuracy and speed. Ailisto et
al. [1] used weight and fat percentage as soft biometrics. Niinuma et al. [21]
demonstrated the effectiveness of continuous user authentication by combining
soft biometrics with traditional authentication schemes.

2.2 Related Works

User authentication in the cloud environment is crucial to ensure access to ser-
vices, resources, and sensitive data is limited to legitimate users who have under-
gone authentication [25]. Biometric recognition, as a proof of characteristics,

58 J. Wang et al.

offers advantages including non-lost, non-intrusive, and difficult-to-forge char-
acteristics, making it a suitable replacement for traditional authentication [4].
However, protecting biometric data during communication and transmission is
essential due to privacy risks and potential hacking.

To protect biometric images, two main methods are commonly employed:
information hiding and encryption [9]. Existing techniques encrypt biometric
images using various domains such as chaotic, fractional, and combined domains
to enhance transmission security. Khan et al. [16] utilized the fractional Fourier
transform (FRT) for secure transmission of biometric images by employing FRT
scaling factors and random phase masks as encryption keys. Bhatnagar et al.
[8] proposed a chaotic encryption framework based on fractional wavelet packet
transform (FrWPT) to safeguard palmprint data. Mehta et al. [20] introduced
an encryption-based solution for iris biometric template security, employing mul-
tiple 1-D chaos and 2-D Arnold chaotic maps. Chen et al. [10] utilized a chaotic
cryptosystem based on electrocardiogram (ECG) signals to generate encryption
keys for securing text or images. Ali et al. [3] proposed an edge-centric multi-
modal authentication system that encrypts face images and speech signals using
chaotic sequences generated by a chaotic system, ensuring confidentiality and
security during transmission. However, the data processed by these methods are
often large, and the encryption process is complex and time-consuming.

In addition, to the best of our knowledge, there is no existing work that
specifically considers the privacy protection of identity authentication in the
cloud-fog hybrid architecture of 5G network.

3 Proposed Scheme

We propose a privacy-preserving authentication scheme based on soft biometric
traits (PPA-SBT) to protect privacy and ensure authentication accuracy. PPA-
SBT consists of two phases: Registration and Authentication.

In the Registration phase, users collect their biological characteristics and soft
biometric traits using sensors and submit them along with their identification
Nickname to the Trusted authentication center (AUC) for storage.

In the Authentication phase, users send authentication requests to AUC
through the fog computing center (FCC) and the cloud server (Cloud). AUC
selects the required features and sends them to Cloud for storage while instruct-
ing the user to collect additional data. This process ensures privacy and security
even if Cloud is honest but curious. After that, Users collect the required features
and send them to FCC. The fusion calculation of the user’s soft biometric traits
is outsourced to FCC. After normalization, the soft biometric traits of differ-
ent dimensions are fused and transformed to generate the secret key KSBC ’ by
FCC, and KSBC/KSBC+1/KSBC−1 by AUC respectively. AUC can attempt to
decrypt the user’s biological characteristics using these keys, as the real-time col-
lected soft biometric data in the Authentication phase may deviate slightly from
the data stored in AUC during the Registration phase. A successful decryption
confirms the user’s identity.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 59

Table 1. Notations and definition

Notation Definition

FCC Fog computing center

Cloud The cloud server

AUC Trusted authentication center which has the database

storing all users’

registration data

SBC List Total soft biometric traits(the total capacities of all

sensors)

BC List Total biological characteristics

Fid/Sid/uid Identity identifier of FCC/session/user

SBC Q Soft biometric traits to be transmitted used for filtering

in Cloud

BC Q Biological characteristics to be transmitted which is used

to identity authentication

V SBC AUC-generated vectors from SBC Q content of eligible

UEs sent to

Cloud for filtering storage

V Nicknamei Hash of the user’s Nickname

V SBC’ Soft biometric traits collected by UE corresponding to

SBC Q contained in SBC List

K SBC’ Soft biometric traits collected by UE corresponding to

content other

than SBC Q in SBC List used to generate encryption key

K SBC Soft biometric traits corresponding to K SBC’storaged in

AUC to generate

decryption keys

V BC’ Biological feature collected by UE

KSBC ’ The key used to encrypt V BC’ based on soft biometric

traits generated by FCC

KSBC/SBC+1/SBC−1 The key used to decrypt biometric ciphertext using soft

biometric traits generated

by AUC

K The pre-shared key used to encrypt the key information

between Cloud and FCC

S Vnickname’ The set of V Nickname of matching users

The notations and definition of PPA-SBT are listed in Table 1. Then we give
a detailed introduction to PPA-SBT.

3.1 Registration Phase

In the scheme, the specific process of the registration phase is shown in Fig. 2.
Before performing the biometric recognition, the users must register, so that
both the biological characteristics and the soft biometric traits of the users are
stored in AUC. The specific steps are as follows:

– UE sends its unique identity Nickname to AUC, while Nickname is named by
UE and confirmed by AUC.

60 J. Wang et al.

– AUC sends SBC List and BC List to UE in order to prompt UE to submit
the corresponding data.

– UE collects the corresponding data in real time and sends them together with
Nickname to AUC.

– AUC adds the characteristic data, Nickname and automatically generated
index collected by UE to its local database (or disk) after receiveing the data.
Then AUC sends the successful registration message to UE.

– After UE receives the successful registration message sent by AUC, it can
initiate the authentication phase process.

Fig. 2. Registration Phase Process.

3.2 Authentication Phase

In the scheme, the specific process of the authentication phase is shown in Fig. 3.
The authentication process can be carried out between UE and AUC after the
registration is performed, the specific steps are as follows:

– First, UE sends the authentication request to FCC, which includes SBC List
and BC List. Then FCC forwards the authentication request and its own
identifier Fid to Cloud.

– After receiving the message from FCC, Cloud randomly selects SBC Q and
BC Q to be transmitted from SBC List and BC List, and determines the ses-
sion identifier S id of this time, and then sends them to AUC together. Please
note that soft biometric data corresponding to SBC Q are used to filter the
database, and other soft biometric data are used to generate the encryption
key. And biometric data corresponding to BC Q is used to recognition.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 61

– AUC generates a set of vector V SBCi from the content corresponding to
SBC Q of all UEs in the database, and performs a hash operation on the iden-
tity Nicknamei of UEs to generate V Nicknamei. After that, all the V SBCi,
V Nicknamei and session identifier Sid of UEs are sent to Cloud together.

– Cloud saves the V SBCi and V Nicknamei, and then sends SBC Q, BC Q,
Sid, and Fid to the FCC according to the previously received Fid. Then FCC
sends SBC Q, BC Q and Sid to UE.

– UE collects the characteristics corresponding to SBC List and BC Q, and
records the soft biometric characteristics corresponding to SBC Q contained
in the SBC List as V SBC’, the remaining soft biometric characteristics as
K SBC’ which is used to encrypt, and the biological characteristics as V BC’.
And then V SBC’, K SBC’ and V BC’ are sent to FCC.

– FCC uses K SBC’ to generate the soft biometric key KSBC ’, and uses the
key to encrypt the biometric information V BC’ to generate the biometric
ciphertext c. Then FCC uses the key K pre-shared with Cloud to encrypt the
biometric ciphertext c, V SBC’, Sid and Fid and then sends the ciphertext
to Cloud.

– Upon receiving the message, Cloud decrypts it using the pre-shared key K
with FCC. It compares V SBC’ with the vector group V SBCi to obtain the
vector group V SBCj containing potential soft biological characteristics of the
same person. Cloud extracts the V Nickname of users in V SBCj to generate
the user identity set S Vnickname’. Cloud sends S Vnickname’, the cipher-
text c, and Sid to AUC. AUC generates the soft biometric key KSBC using
the remaining soft biometric characteristics K SBC. It attempts to decrypt
the ciphertext using KSBC , KSBC+1, and KSBC−1. If the decryption fails, it
indicates that the submitted identity by the user equipment (UE) does not
belong to the same person. Otherwise, they may belong to the same per-
son. AUC obtains the decrypted biometrics V BC’ and the set S Nickname
containing potential identities of the same person. AUC compares V BC’
with the user templates in V BCj using specified thresholds for similarity.
If the similarity exceeds the threshold, the authentication is successful, and
Auth success is returned by AUC. Otherwise, the authentication fails, and
Auth fail is returned.

3.3 Key Agreement

During the authentication phase, FCC and AUC generate the same key to
encrypt and decrypt the biological characteristics data. Considering the slight
variations between the submitted traits during registration and authentication,
we set a reasonable error range for each trait. If the difference exceeds this range,
the traits are likely from different users. We also assign weights to each trait for
fusion using weighted summation to generate the key. To ensure security and
privacy, FCC and AUC operate in a non-interactive manner to prevent key leak-
age during transmission. The key generation process is carried out separately in
FCC and AUC.

62 J. Wang et al.

Fig. 3. Authentication Phase Process.

– For FCC, it uses the soft biometric traits K SBC’ collected by UE during the
authentication phase to fuse and generate the soft biometric key KSBC ’, the
specific formulas are as follows:

SBC
′
=

n∑

i=1

wi × K SBC
′
i (1)

where SBC
′
represents the value after weighted fusion, K SBC

′
i is the value

of the i-th soft biometric trait during authentication, wi is the corresponding
weight, and n represents the total number of soft biometric traits.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 63

Δ =
n∑

i=1

wi × Δi (2)

where Δ represents the total soft biometric error range, and Δi represents
the i-th soft biometric trait’s error range.

K
′
SBC = Hash(

⌊
SBC

′

Δ

⌋
) (3)

where �x� represents the result of x rounding down. And K
′
SBC is the final

result of key after fusion. Then FCC uses K
′
SBC to encrypt the private data

such as the face and fingerprint of UE and generate the ciphertext.
– For each user in S Vnickname’, AUC fuses the soft biometric traits from the

registration phase to generate the soft biometric keys KSBC , KSBC+1, and
KSBC−1. These keys are used for attempting to decrypt the ciphertext. If
decryption is successful, the user is added to the set S Nickname, indicating
a potential match with the user being authenticated. The fusion formula is:

SBC =
n∑

i=1

wi × K SBCi (4)

where SBC represent the value after weighted fusion, K SBCi represent
the i-th soft biometric trait’s value submitted in registration phase, and the
meanings and values of wi and n are the same as in equal (1).

KSBC = Hash(
⌊

SBC

Δ

⌋
) (5)

KSBC+1 = Hash(
⌊

SBC

Δ

⌋
+ 1) (6)

KSBC−1 = Hash(
⌊

SBC

Δ

⌋
− 1) (7)

– For AUC, there is:

SBC

Δ
=

SBC
′
+ x

Δ
=

SBC
′

Δ
+

x

Δ
(8)

where x is the deviation of SBC and SBC
′
. We assume that for the same

user, the absolute value of x will not exceed the total error range Δ. So

there is
∣∣∣
x

Δ

∣∣∣ ≤ 1. When
SBC

Δ
and

SBC
′

Δ
are rounded down, the difference

between the rounded results is at most 1, so the value of K
′
SBC is equal to

the value of one of KSBC , KSBC+1 and KSBC−1 if the two soft biometric
traits used by FCC and AUC may belong to the same person, that is, the
absolute value of x does not exceed Δ. This decryption process is also the
process of further filtering and reducing the space of verified users which can
significantly improve the overall efficiency by shortening the execution time
of the authentication phase process.

64 J. Wang et al.

4 Analysis of Our Scheme

4.1 Performance Analysis

Our scheme leverages low-cost sensors to provide convenient and natural authen-
tication. Soft biometric traits are used not only for privacy protection but also
to narrow down the search space for biometric matching, resulting in faster user
identification. The computational complexity is kept low due to the small amount
of computation required for soft biometric traits. This ensures that fog comput-
ing, with its limited compute capacity, can handle the authentication process
efficiently. Additionally, the combination of biological characteristics and soft
biometric traits prevents impersonation by non-living entities, adding an extra
layer of security.

4.2 Security Analysis

Analysis Tool. The Tamarin prover is a powerful automated tool for formal
verification [14]. The input of tamarin includes the actions that the protocol
initiators, responders, and trusted servers may take, the specification of the
adversary and the desired security properties of the protocol. It uses parallel
interleaving of multiple instances in the protocol to prove whether the protocol
can achieve specified properties [5]. The multiset rewriting used to describe the
action of protocol and adversary consists of three sequences of facts that define
the transition of the system. A single fact represents the state of protocol and
adversary. The Tamarin prover can use an efficient and fully automated mode
to construct proofs.

Attacker Model. In the security analysis, we consider the attacker model used
in formal analysis. The Dolve-Yao model assumes that the attacker cannot break
the cryptographic algorithm and needs the correct key to decrypt encrypted data.
The attacker’s abilities include eavesdropping on network messages, intercept-
ing and storing messages, forging and sending messages, and participating in
protocol operations as a legitimate participant.

For a stronger security analysis, we adopt the eCK model [18]. This model
assumes that the attacker can obtain the long-term private key, temporary pri-
vate key, and session key of a participant. The attacker can expose the private
keys and secrets of individual participants but not the entire secret of a party.
The model also considers the impact of compromised keys on subsequent ses-
sions.

In our scheme, the privacy protection focuses on the users’ biometric char-
acteristics. Since the distance between sensors and FCC is very close, it is
assumed that they trust each other and the message transmission between them
is secure. The secure communication between Cloud and AUC relies on processed
user identities via hashing. And, the ciphertext of private data is transmitted
from FCC to AUC, ensuring decryption capability only by AUC. The encrypted
users’ biometrics are transmitted to Cloud by FCC, requiring verification against
potential biometric interception.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 65

Proof Process. We assume secure communication between the user and the
fog computing center, as well as between the Cloud and AUC. We analyze the
communication security between these entities by considering them as a whole,
denoted as U and S respectively. The proof process involves the following steps:

1. Modeling the authentication scheme using the Tamarin language, including
functions and rules of the protocol and its environment. The formal model is
depicted in Fig. 5.

2. Adding the necessary security goals to the model, as shown in Fig. 4. These
goals ensure that the attacker cannot obtain the biological characteristics at
any point, and that S believes the authentication message was sent by U only
when it was indeed sent by U.

3. Performing the analysis of the model using the command line and obtaining
the result, as depicted in Fig. 6.

Fig. 4. Security Goals.

Result of Analysis. In the formal analysis, the main security goals we choose
are that the attacker cannot get the user’s biometrics, and the user can realize
the authentication between it and AUC by its biometrics. The premise is that
FCC and Cloud pre-share the key K to encrypt and decrypt the transmitted data
including soft biometrics, and FCC and AUC encrypt and decrypt the private
data based on K

′
SBC and one of KSBC , KSBC+1 and KSBC−1. The result of

the analysis shows that PPA-SBT can meet these security goals. Because the
intruder can not get the key generated by the soft biometric traits, the biological
characteristic encrypted by the key will not be leaked. Besides, soft biometric
traits do not reveal privacy. Therefore, the privacy data of the user will be
protected. Our scheme is security and feasible.

5 Experiments and Results

Table 2 describes the soft biometrics considered along with their corresponding
instances(different values that a soft biometric may have) used in our expri-
ments, and the quantified value of binary and discrete instances is included in

66 J. Wang et al.

Fig. 5. Formal Model.

Fig. 6. Results Summarized by Tamarin.

parentheses. We collected information regarding weight, height, facial golden
triangle number, gender, mole, skin spots, acne, dark circle, eye pouch, glasses,
eyebrow shape, eyes shape, nose shape and lip shape. In terms of the type of
value, weight, height and golden triangle number are continuous, gender, mole,
skin spot, acne, dark circle and eye pouch are binary, and the rest of them are
discrete. In terms of the category, height, weight, gender belong to body traits,
and the rest of them belong to face traits. The reason we do not choose clothing
traits is that they often change, and key generation requires a certain degree of
stability and durability. The biometric characteristics we chose were face and fin-
gerprint because of their widely acceptance and use. We conducted experiments
on our real dataset and public datasets respectively.

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 67

Table 2. Soft biometrics extracted from expriments

Soft biometrics Value

Weight Continuous value

Height Continuous value

Golden triangle number Continuous value

Gender Female(0) Male(1)

Mole No(0) Yes(1)

Skin spot No(0) Yes(1)

Acne No(0) Yes(1)

Dark circle No(0) Yes(1)

Eye pouch No(0) Yes(1)

Glasses No glasses(0) Dark glasses(0.5) Ordinary glasses(1)

Eyebrow shape Bushy eyebrows(0) Eight eyebrows(1) Raise eyebrows(2) Straight

eyebrows(3)

Round eyebrows(4) Arch eyebrows(5) Thin eyebrows(6) Else(7)

Eyes shape Round eyes(0) Thin eyes(1) Big eyes(2) Small eyes(3)

Normal eyes(4) Else(5)

Nose shape Normal nose(0) Thick nose(1) Thin nose(2) Else(3)

Lip shape Thin lip(0) Thick lip(1) Smile lip(2) Upset lip(3)

Normal lip(4) Else(5)

5.1 Experiments and Results Based on Real Dataset

In our schema, soft biometric traits are used to generate the encryption key for
privacy protection, and the error range between soft biometric traits obtained
from UE in registration phase and in authentication phase will affect the cor-
rectness and consistency of key generation, encryption and decryption for the
same user. So we need to set the reasonable error range for each soft biometric
trait based on collected data.

Dataset. We collected biometric and soft biometric data from 20 individuals
on two occasions with a one-week interval. The data included high-definition
face images, fingerprint images, height, weight, and other soft biometric traits
extracted from face images using the face++ API. Observing the data fluctua-
tions, we found that weight deviated by less than 3 kg, height deviated by less
than 3 cm, and the golden triangle number deviated by less than 10 for the same
person under normal circumstances. Based on these findings, we set reasonable
parameters for generating consistent keys in our experiments.

Recognition Methods. For face recognition, we use the dlib-based deep learn-
ing face recognition library: face recognition For fingerprint recognition, we use
Professor Raffaele’s OpenCV-based Python fingerprinting program.

Experiment Environment. Our experimental environment are Windows10,
VMware Workstation15.5, Ubuntu18.04. The programming language is
Python3.7. The experimental topology is shown in Fig. 7.

68 J. Wang et al.

Fig. 7. Experimental Topology.

Experimental Results. We tested each user in our real dataset multiple times
with and without soft biometric encryption&decryption for face and fingerprint
authentication. The results shown in Table 3 indicate that using soft biometric
encryption&decryption for face authentication introduces a small time cost in
exchange for higher security during transmission. Similarly, using soft biometric
encryption&decryption for fingerprint authentication reduces the total authen-
tication time. This is due to the varying efficiencies of the face recognition and
fingerprint recognition algorithms employed in our experiments.

Table 3. Comparison results using real dataset

Comparison term Average authentication time

without soft

biometric encryption &

decryption(s)

Average authentication time

with

soft biometric encryption&

decryption(s)

Face authentication 2.833 3.7

Fingerprint authentication 3.4 1.65

5.2 Experiments and Results Based on Public Datasets

Due to the small size of our real dataset, our results were limited. Therefore, we
also conducted experiments on larger public datasets. Besides, the recognition
methods and experiment environment were are same as above.

Experiment Datasets. For facial images, we used a subset of the Color
FERET Database. It contains over 10,000 photos of more than 1,000 individ-
uals, capturing variations in expressions, lighting, posture, and age. For finger-
prints, we used NIST Supplemental Fingerprint Card Data (SFCD) published

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 69

by National Institute of Standards and Technology (NIST). It contains 5520
fingerprint images of 552 individuals. Then we artificially generated height and
weight data for 552 individuals to match the SFCD fingerprint dataset and the
Color FERET face dataset, and we got other soft biometric traits data from
face images through open source API interface such as Face++. In this way, we
established an artificial dataset of 552 individuals containing one-on-one face,
fingerprint and all soft biometric data.

Table 4. Comparison results of authentication time using public datasets

Methods Biometric authentication
without soft
biometric encryption &
decryption

Biometric authentication
with soft
biometric encryption &
decryption

The time AUC attempts to decrypt 0 x·Tsinger decryption

(x≤552)

The time AUC performs biometric recognition 552· Tsinger recognition y·Tsinger recognition

(y≤x≤552)

The total authentication time 552· Tsinger recognition x·Tsinger decryption +
y·Tsinger recognition

Table 5. Comparison results of face recognition using public datasets

Comparison term The minimum value The maximum value The average value

x 10 552 124

y 2 354 70

The total authentication time 0.5·Tface 11·Tface 2.5·Tface

Table 6. Comparison results of fingerprint recognition using public datasets

Comparison term The minimum value The maximum value The average value

x 10 552 116

y 2 353 65

The total authentication time 0.007·Tfingerprint 0.86·Tfingerprint 0.5·Tfingerprint

Experimental Results.

Comparison of Authentication Time Using and Not Using Soft Biometric
Encryption&Decryption When Using All 552 Public Dataset Users as the Exper-
imental Database. We conducted 2000 experiments separately for face recogni-
tion and fingerprint recognition in order to obtain reliable results. We mainly
analyzed the soft biometric encryption&decryption results and the total authen-
tication time.

70 J. Wang et al.

Fig. 8. Trend of Face Authentication
Time.

Fig. 9. Trend of Fingerprint Authentica-
tion Time.

– For the soft biometric encryption&decryption results, in all experiments, the
user set decrypted by Cloud contain the authenticated user, that is, the user
set recognized by AUC contains the authenticated user. Therefore, soft bio-
metric encryption&decryption will not affect the final biometric recognition
results.

– For the total authentication time, we compared the authentication time using
and not using soft biometric encryption&decryption. The time can be divided
into AUC’s decryption attempts and biometric recognition. By analyzing the
experimental data, we found that the decryption time and the biometric
recognition time differed between the two cases. The results are shown in
Table 4. The number of decryption attempts, represented by x, depends on
Cloud’s database filtering. The number of biometric recognitions, represented
by y. Tsinger recognition represents the single biometric comparison time of
AUC, and Tsinger decryption represents the single decryption time of AUC.
Since the number of times AUC attempts to decrypt depends on the result
of Cloud filtering database by using of a part of soft biometric at firsts, x
is less than or equal to the total number of database users 552. Since the
process of AUC’s attempt to decrypt is equivalent to secondary filtering, and
the subset of database users that have been successfully decrypted by AUC
is used for biometric recognition, the number of times that AUC performs
biometric recognition which is y is less than or equal to the number of times
that AUC attempts to decrypt which is x.
However, since FCC generates soft biometric keys using soft biometric traits,
Cloud randomly selects traits to instruct fog to generate keys and encrypt the
data. And then Cloud uses soft biometric traits to filter, generate soft bio-
metric keys. This randomness leads to variations in the number of decryption
attempts and biometric recognitions, resulting in varying total authentica-
tion times. So we analyzed the results obtained from multiple experiments
and got the shortest time, the longest time and the average time for compar-
ison. The results for face and fingerprint recognition are shown in Tables 5

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 71

and 6 respectively, where Tface and Tfingerprint respectively represents the
total time of face and fingerprint authentication not using soft biometric
encryption&decryption. Therefore, Using soft biometric filtering, encryption,
and decryption greatly reduces the total authentication time for fingerprint
authentication. However, for face authentication, it may slightly increase the
authentication time due to differing efficiencies of the recognition algorithms
used.

Comparison of Authentication Time Using and Not Using Soft Biometric
Encryption&Decryption When Using Part of the 552 Public Dataset Users as the
Experimental Database. The trend graphs obtained from multiple experiments
show that as the size of the database increases exponentially, the authentication
time for face authentication without soft biometric encryption&decryption does
not increase significantly, while the increase in authentication time using soft
biometric encryption&decryption gradually becomes slower. The trend graph of
face authentication obtained is shown in Fig. 8, and the trend graph of finger-
print authentication obtained is shown in Fig. 9. For fingerprint authentication,
using soft biometric encryption&decryption significantly reduces the authenti-
cation time compared to not using it. However, it is important to note that the
results may vary when using public datasets compared to real datasets, as the
quality of face and fingerprint images can affect the authentication time.

6 Conclusion

In this paper, the security requirements of user authentication were considered
with the development of the 5G network and the increase of access equipments.
We focused on the privacy protection in the biometric authentication and pro-
pose an authentication scheme based on soft biometric traits in the 5G cloud-fog
hybrid environment. When the biometric authentication was performed, we used
the key generated by the soft biometric traits to protect the user’s biological
characteristics. Because the soft biometric traits do not expose human’s privacy
information, this scheme can play a role in protecting the privacy of the users
during transmission. We also formalized the proposed scheme by using Tamarin.
The results show that our scheme is secure and can protect the biological char-
acteristics of the users successfully during transmission in the authentication
process. In the future, we will further consider how to ensure the efficiency and
security of authentication in the scenario of group authentication, and consider
using more soft biometrics in pratical application.

References

1. Ailisto, H., Vildjiounaite, E., Lindholm, M., Mäkelä, S.M., Peltola, J.: Soft
biometrics-combining body weight and fat measurements with fingerprint biomet-
rics. Pattern Recognit. Lett. 27(5), 325–334 (2006)

2. Ali, M.M., Mahale, V.H., Yannawar, P., Gaikwad, A.: Overview of fingerprint
recognition system. In: 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), pp. 1334–1338. IEEE (2016)

72 J. Wang et al.

3. Ali, Z., Hossain, M.S., Muhammad, G., Ullah, I., Abachi, H., Alamri, A.: Edge-
centric multimodal authentication system using encrypted biometric templates.
Futur. Gener. Comput. Syst. 85, 76–87 (2018)

4. Babaeizadeh, M., Bakhtiari, M., Mohammed, A.M.: Authentication methods in
cloud computing: a survey. Res. J. Appl. Sci. Eng. Technol. 9(8), 655–664 (2015)

5. Basin, D., Cremers, C., Dreier, J., Sasse, R.: Symbolically analyzing security pro-
tocols using tamarin. ACM SIGLOG News 4(4), 19–30 (2017). https://doi.org/10.
1145/3157831.3157835

6. Belkhouja, T., Du, X., Mohamed, A., Al-Ali, A.K., Guizani, M.: Biometric-
based authentication scheme for implantable medical devices during emer-
gency situations. Futur. Gener. Comput. Syst. 98, 109–119 (2019). https://doi.
org/10.1016/j.future.2019.02.002, http://www.sciencedirect.com/science/article/
pii/S0167739X18325792

7. Bertillon, A., McClaughry, R.W.: Signaletic Instructions Including the Theory and
Practice of Anthropometrical Identification. Werner Company, Greenville (1896)

8. Bhatnagar, G., JonathanWu, Q.: Anovel chaotic encryption framework for securing
palmprint data. Procedia Comput. Sci. 10, 442–449 (2012)

9. Bhatnagar, G., Wu, Q.: Enhancing the transmission security of biometric images
using chaotic encryption. Multimed. Syst. 20(2), 203–214 (2014)

10. Chen, C.K., Lin, C.L., Chiang, C.T., Lin, S.L.: Personalized information encryption
using ECG signals with chaotic functions. Inf. Sci. 193, 125–140 (2012)

11. Dantcheva, A., Velardo, C., D’angelo, A., Dugelay, J.L.: Bag of soft biometrics for
person identification. Multimed. Tools Appl. 51(2), 739–777 (2011)

12. Feng, L.: Speaker Recognition. Ph.D. thesis, September 2004
13. Fu, Y., Yan, Z., Li, H., Xin, X.L., Cao, J.: A secure SDN based multi-rans archi-

tecture for future 5G networks. Comput. Secur. 70, 648–662 (2017)
14. Fu, Y., Yuan, X., Wang, K., Yan, Z., Li, H.: A security formal model for multi-

ple channels communication. In: Proceedings of the Proceedings of Smart World
Congress 2019 (2019)

15. Jain, A.K., Dass, S.C., Nandakumar, K.: Soft biometric traits for personal recog-
nition systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp.
731–738. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-
0 99

16. Khan, M.K., Zhang, J., Alghathbar, K.: Challenge-response-based biometric image
scrambling for secure personal identification. Futur. Gener. Comput. Syst. 27(4),
411–418 (2011)

17. Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: from
features to supervectors. Speech Commun. 52(1), 12–40 (2010)

18. Lamacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. IACR Cryptology ePrint Archive 2006, p. 73, January 2006

19. Lyle, J.R., Miller, P.E., Pundlik, S.J., Woodard, D.L.: Soft biometric classification
using periocular region features. In: 2010 Fourth IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7, September 2010.
https://doi.org/10.1109/BTAS.2010.5634537

20. Mehta, G., Dutta, M.K., Kim, P.S.: A secure encryption method for biometric
templates based on chaotic theory. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Trans-
actions on Computational Science XXVII. LNCS, vol. 9570, pp. 120–140. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-50412-3 8

21. Niinuma, K., Park, U., Jain, A.K.: Soft biometric traits for continuous user authen-
tication. IEEE Trans. Inf. Forensics Secur. 5(4), 771–780 (2010)

https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1145/3157831.3157835
https://doi.org/10.1016/j.future.2019.02.002
https://doi.org/10.1016/j.future.2019.02.002
http://www.sciencedirect.com/science/article/pii/S0167739X18325792
http://www.sciencedirect.com/science/article/pii/S0167739X18325792
https://doi.org/10.1007/978-3-540-25948-0_99
https://doi.org/10.1007/978-3-540-25948-0_99
https://doi.org/10.1109/BTAS.2010.5634537
https://doi.org/10.1007/978-3-662-50412-3_8

Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid 73

22. Nixon, M.S.: A step beyond: advances in gait and ‘soft’ biometrics. Biom. Tech-
nol. Today 2016(10), 9–11 (2016). https://doi.org/10.1016/S0969-4765(16)30158-
8, http://www.sciencedirect.com/science/article/pii/S0969476516301588

23. Nixon, M.S., Correia, P.L., Nasrollahi, K., Moeslund, T.B., Hadid, A., Tistarelli,
M.: On soft biometrics. Pattern Recognit. Lett. 68, 218–230 (2015). https://doi.
org/10.1016/j.patrec.2015.08.006, http://www.sciencedirect.com/science/article/
pii/S0167865515002615, special Issue on Soft Biometrics

24. Ogbanufe, O., Kim, D.J.: Comparing fingerprint-based biometrics authentication
versus traditional authentication methods for e-payment. Decis. Support Syst. 106,
1–14 (2018). https://doi.org/10.1016/j.dss.2017.11.003, http://www.sciencedirect.
com/science/article/pii/S0167923617302154

25. Padma, P., Srinivasan, S.: A survey on biometric based authentication in cloud
computing. In: 2016 International Conference on Inventive Computation Technolo-
gies (ICICT), vol. 1, pp. 1–5 (2016). https://doi.org/10.1109/INVENTIVE.2016.
7823273

26. Sabhanayagam, T., Venkatesan, V.P., Senthamaraikannan, K.: A comprehensive
survey on various biometric systems. Int. J. Appl. Eng. Res. 13(5), 2276–2297
(2018)

27. Schmidt, E.: Conversation with eric schmidt hosted by danny sullivan. In: Search
Engine Strategies Conference (2006)

28. Shahzadi, R., et al.: Three tier fog networks: enabling IoT/5G for latency sensitive
applications. China Commun. 16(3), 1–11 (2019)

29. Sharma, V., Bansal, P.: A review on speaker recognition approaches and challenges.
Int. J. Eng. Res. Technol. (IJERT) 2(5), 1581–1588 (2013)

30. Singh, M., Singh, R., Ross, A.: A comprehensive overview of biometric fusion. Inf.
Fusion 52, 187–205 (2019). https://doi.org/10.1016/j.inffus.2018.12.003, http://
www.sciencedirect.com/science/article/pii/S156625351830839X

31. Tome, P., Fierrez, J., Vera-Rodriguez, R., Nixon, M.S.: Soft biometrics and their
application in person recognition at a distance. IEEE Trans. Inf. Forensics Secur.
9(3), 464–475 (2014). https://doi.org/10.1109/TIFS.2014.2299975

32. Wayman, J.: Large-scale civilian biometric systems-issues and feasibility. In: Pro-
ceedings of Card Tech/Secur Tech ID, vol. 732 (1997)

33. Yang, L., Yang, G., Yin, Y., Xi, X.: Exploring soft biometric trait with fin-
ger vein recognition. Neurocomputing 135, 218–228 (2014). https://doi.org/
10.1016/j.neucom.2013.12.029, http://www.sciencedirect.com/science/article/pii/
S0925231214000460

34. Yang, P., Zhang, N., Bi, Y., Yu, L., Shen, X.S.: Catalyzing cloud-fog interoperation
in 5G wireless networks: an SDN approach. IEEE Network 31(5), 14–20 (2017).
https://doi.org/10.1109/MNET.2017.1600078

35. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42 (2015)

36. Zhang, C., Zhu, L., Xu, C.: PTBI: an efficient privacy-preserving biometric iden-
tification based on perturbed term in the cloud. Inf. Sci. 409–410, 56–67 (2017).
https://doi.org/10.1016/j.ins.2017.05.006, http://www.sciencedirect.com/science/
article/pii/S0020025516313639

37. Zhu, H., Wei, Q., Yang, X., Lu, R., Li, H.: Efficient and privacy-preserving online
fingerprint authentication scheme over outsourced data. IEEE Trans. Cloud Com-
put. 1 (2018). https://doi.org/10.1109/TCC.2018.2866405

https://doi.org/10.1016/S0969-4765(16)30158-8
https://doi.org/10.1016/S0969-4765(16)30158-8
http://www.sciencedirect.com/science/article/pii/S0969476516301588
https://doi.org/10.1016/j.patrec.2015.08.006
https://doi.org/10.1016/j.patrec.2015.08.006
http://www.sciencedirect.com/science/article/pii/S0167865515002615
http://www.sciencedirect.com/science/article/pii/S0167865515002615
https://doi.org/10.1016/j.dss.2017.11.003
http://www.sciencedirect.com/science/article/pii/S0167923617302154
http://www.sciencedirect.com/science/article/pii/S0167923617302154
https://doi.org/10.1109/INVENTIVE.2016.7823273
https://doi.org/10.1109/INVENTIVE.2016.7823273
https://doi.org/10.1016/j.inffus.2018.12.003
http://www.sciencedirect.com/science/article/pii/S156625351830839X
http://www.sciencedirect.com/science/article/pii/S156625351830839X
https://doi.org/10.1109/TIFS.2014.2299975
https://doi.org/10.1016/j.neucom.2013.12.029
https://doi.org/10.1016/j.neucom.2013.12.029
http://www.sciencedirect.com/science/article/pii/S0925231214000460
http://www.sciencedirect.com/science/article/pii/S0925231214000460
https://doi.org/10.1109/MNET.2017.1600078
https://doi.org/10.1016/j.ins.2017.05.006
http://www.sciencedirect.com/science/article/pii/S0020025516313639
http://www.sciencedirect.com/science/article/pii/S0020025516313639
https://doi.org/10.1109/TCC.2018.2866405

Obfuscation Padding Schemes
that Minimize Rényi Min-Entropy

for Privacy

Sebastian Simon, Cezara Petrui, Carlos Pinzón(B), and Catuscia Palamidessi

Inria Saclay, France, Laboratoire d’Informatique de l’École Polytechnique (LIX),
Palaiseau, France

carlos.pinzon@lix.polytechnique.fr

Abstract. Consider a set of users, each of which is choosing and down-
loading one file out of a central pool of public files, and an attacker that
observes the download size for each user to identify the choice of each
user. This paper studies the problem of padding the files to obfuscate
the exact file sizes and minimize the expected accuracy of the attacker,
without exceeding some given padding constraints. We derive the algo-
rithm that finds the optimal padding scheme, prove its correctness, and
compare it with an existing solution that uses a similar but different
attack model. We also discuss how the two solutions are related in terms
of private information leakage.

Keywords: obfuscation · privacy · padding · Rényi min-entropy

1 Introduction

Consider a set of users, each of which is choosing and downloading one file out of
a central pool of public files, and an attacker that observes the download size for
each user and is willing to identify the choice of each user. The files are public,
but the choices are private. The objective is to pad the files with some small
overhead to obfuscate the information gained by the attacker and reduce his
chances of discovering the choices of the users. This paper studies the problem
of minimizing the expected accuracy of the attacker by padding the files without
exceeding some given padding constraints.

On one extreme, if the files are not padded at all, the attacker might easily
map the observed download sizes with the original files; e.g., if there is just one
file of size 10.32Mb and the attacker observes that the network traffic of some
user corresponds to a file of size 10.32Mb, he will immediately know what file
was chosen. This can be prevented by padding several files to common sizes to
obfuscate the information gained by the attacker. On the other extreme, if all
files are padded to a common size, this common size should be large enough to

S. Simon and C. Petrui—Authors contributed equally.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 74–90, 2023.
https://doi.org/10.1007/978-981-99-7032-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_5&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_5

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 75

cover the largest file in the set, and, as a consequence, many small files will be
padded excessively, increasing the bandwidth use. The ideal solution lies between
these two extreme cases. For this reason, this paper considers the problem of
maximizing privacy while respecting some flexible padding constraints, like, for
example, that no file can increase its size more than 10%.

The attacker we consider makes just one attempt to re-identify the file, and
to maximize his chances, he will of course guess a file that has the maximum
posterior probability given the observed (obfuscated) size. This model of attack
is known in literature as one-try attack [14], and it has been characterized in
information-theoretic terms using Rényi min-entropy. More specifically, entropy
in general represents the (lack of) information content of a discrete probabil-
ity distribution, and Rényi min-entropy is a form of entropy that emphasizes
the highest probability value. The prior and posterior entropies represent the
probabilistic knowledge of the attacker before and after he observes the obfus-
cated size, respectively. In particular, Rényi posterior min-entropy is related to
hypothesis testing and, as a measure, it closely corresponds to the Bayes error.
The difference between the prior and posterior entropies represents how much the
knowledge of the attacker (and hence his probability of success) increases thanks
to the observation, and it is, therefore, a measure of the efficiency of the padding
scheme. In literature this difference is known as Rényi min-entropy leakage.

The padding problem considered in this paper might also apply to equiva-
lent scenarios in which an attacker exploits time side-channel information. For
illustration, consider an intelligence service that is surveiling people entering
and exiting a building. They can use the time each user took inside to infer the
type of service he received, e.g., whether he was at the bank, shopping, or at
the cinema in the mall. In this case, the users can waste some time inside the
building on purpose to confuse the observer. Equivalently, a server can delay its
responses in a planned manner to prevent an attacker from inferring the chosen
type of request. More generally, an algorithm can sleep on purpose to prevent
leaking information about the input, as exploited by timing attacks [13,15].

1.1 Contributions

– We propose two algorithms that derive the optimal padding schemes, one
for the deterministic case, and one for the randomized case (PRP and POP,
defined in Sect. 2).

– We prove the correctness of the algorithms and test the implementations
against brute-force solutions using small synthetic datasets.

– Likewise, we compare our algorithms with an existing solution [11] that
uses an attack model based on Shannon entropy, and discuss how the two
approaches are related in terms of the type of private information leakage
that each attacker represents.

– The code is publicly available at [10]. It includes not only the algorithms we
propose, but also the reimplementation of the algorithms of [11] to support
flexible padding constraints, multiple files having the same size, and sparse
matrix representations.

76 S. Simon et al.

1.2 Related Work

The model of attacker we use has been well investigated in the field of Quanti-
tative Information Flow (QIF), which is a branch of security aimed at studying
inference attacks, namely attackers that try to infer the value of the secret from
related observations. The QIF theory actually formalizes a variety of models,
each of them characterized by parameters that represent the capabilities and
the goal of the attacker. For a detailed coverage of the topic we refer to [1].

This paper is strongly related with the work of Reed and Reiter [11], in
which the authors consider the same problem with a different attack model,
based on Shannon entropy, and more specifically, on measuring the leakage in
terms of Shannon mutual information. Shannon mutual information is a well
known notion that has been shown to be very useful in the several scientific
fields. In security and privacy, however, it does not seem the right notion for
modeling the attacker. Indeed, its operational interpretation corresponds to an
attacker that can try to guess the exact secret by making an unbound number
of attempts, and his objective is to minimize the expected number of attempts
before he identifies it correctly. This seems a less natural model of attacker than
those of QIF (and hence than the one we use, based on Rényi min-entropy), and
it also sometimes leads to conclusions that are contrary to common sense. For a
detailed discussion about this issue, refer to [14].

Reed and Reiter [11] propose three padding algorithms, called PrpSh, PopSh
and PwoD (padding without a distribution), for finding padding schemes that
minimize Shannon leakage under different bandwidth constraints. These algo-
rithms do not support, however, multiple files having the same size nor flexible
padding constraints as defined in this paper. We re-implemented their algorithms
with these additional details before comparing them with our proposed solutions,
and we explained in terms of attack models and information leakage the core
difference between them.

In [4] they consider the BREACH/CRIME [7] security attack in which the
attacker observes sizes and can also control a malicious script that runs in the
browser of the victim. By exploiting the greedy mechanism of the Huffman
encoder in the compression stage of the cookies, the attacker is able to use
repeatedly the size information to discover the cookie secret and impersonate
the victim. As they show, random gaussian padding can be used and is better
than uniform padding to reduce the attacker’s probability of success from 1.0 to
0.0026. Although this paper is more related with security than privacy, it shows
how important padding can be to obfuscate information.

Lastly, one of the main conclusions in [16] is that the optimal way to reduce
information obtained by an attacker that monitors traffic is to modify the traf-
fic patterns so that they are confused with other patterns. We draw a similar
conclusion formally in our problem (Proposition 1), proving that it is optimal
to pad messages to reach the sizes other existing files.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 77

2 Problem Formalization

The collection of public files is denoted as E = {e1, e2, . . . , en}, where E is
sorted non-decreasingly by the sizes |ei| ∈ N. For the sake of generality, we allow
different files to have the same size, hence the set of file sizes S

def
:= {|e| |e ∈ E}

has m ≤ n unique elements, which we enumerate in increasing order as S =
{s1, s2, . . . , sm}.

A padding function or padding scheme is a function f : E → N respecting
f(ei) ≥ |ei| that tells to what size each file should be padded. The padding
constraints are expressed with the proposition ∀i, f(ei) ∈ [|ei|, bi], where each
[|ei|, bi] = {|ei|, |ei| + 1, ..., bi} is an integer interval.

The sequence of users with their respective choices is modelled as a sequence
of i.i.d. samples coming from the marginal distribution of the files. File ei is
chosen with frequency pi ∈ [0, 1], where

∑n
i=1 pi = 1. We let X be a random

variable satisfying P(X=ei)
def
:= pi, thus, a sequence of users with choices can be

represented as a sequence of i.i.d. choices following the distribution of X.
The attacker will predict, upon seeing a download of size z ∈ Im(f) (where

the image Im(f)
def
:= {z ∈ N | P(f(X)=z) > 0} denotes the set of possible outputs

of f), that the secret value of X is the file ei that maximizes P(f(ei)=z). To do
this, he uses the public information he has access to and the information he can
infer. The files and their sizes before padding are public, and he can determine
the padding scheme by requesting each of the files himself, possibly multiple
times in case of a randomized padding scheme. In addition, considering the
worst-case scenario, we assume that he knows or has estimated the frequencies
pi with which files are chosen on average. With this information, the attacker
can always find a file ei that maximizes P(f(ei)=z) for the observed z, and his
expected probability of success is therefore

∑

z∈Im(f)

max
i∈[1..n]

P(X = ei ∧ f(X)=z) =
∑

z∈Im(f)

max
i∈[1..n]

pi · P(f(ei) = z). (2.1)

The objective is to find a padding function f : E → N that minimizes
the accuracy of the attacker while respecting the given padding constraints.
In addition, two scenarios are considered separately: per-object-padding (POP)
refers to the case when f is deterministic, hence the files are padded once and
forever; per-request-padding (PRP) refers to the case when the padding is done
on demand and f is probabilistic.

2.1 Presentation in Terms of Privacy Leakage

The objective of minimizing the attacker accuracy can equivalently be presented
in terms of minimizing privacy leakage. There are several definitions for leakage
I(|X|, f(X)) of a padding function f : E → N. Particularly, Rényi min-entropy
leakage [14], which we call Rényi leakage in this paper, is defined using Rényi
min-entropy H∞ as follows:

I∞(f)
def
:= I∞(|X|, f(X)) = H∞(|X|) − H∞(|X| | f(X)), (2.2)

78 S. Simon et al.

H∞(|X|) = − log2 max
z∈Im(f)

P(|X|= z), (2.3)

H∞(|X| | f(X)) = − log2
∑

z∈Im(f)

max
i∈[1..n]

(pi · P(f(ei) = z)). (2.4)

The importance of Rényi leakage in more general contexts can be found in [9]
and [14]. Basically, Rényi leakage is a special case (α = ∞) of a family of leakages
Iα based on α-Rényi entropy Hα. Since Rényi-min entropy H∞(|X|) is constant
in regard to the padding-scheme, minimizing Eq. (2.2) is equivalent to maximiz-
ing Eq. (2.4), which is in turn equivalent to minimizing Eq. (2.1). Therefore,
Rényi leakage is in direct one-to-one correspondence with the probability of suc-
cess of the attacker.

Another important case (α = 1) is Shannon leakage, which is given by:
I(|X|, f(X)) =

∑
i,z pi P(f(ei)=z) log2

P(f(ei)=z)
P(f(X)=z) . With some effort, this leakage

can also be interpreted in terms of an attacker that we call Shannon attacker. The
Shannon attacker is assumed to have access to an oracle that answers queries of
the type “is the file in this set of files?” for each user, and his objective is to find
the right files using the minimal number of queries, as in a 20Q game. Although
the oracle assumption makes the Shannon attacker unrealistic, defenses against
him are useful against the Rényi attacker of this paper because, intuitively, the
more queries the Shannon attacker needs, the harder it is to guess the correct
file in a single try.

For this particular application, the direct pragmatic connection between
Rényi leakage and a simple adversary success makes it more appealing than
the Shannon attacker. The same argument is used in [3], whose privacy measure
is closely related with ours. More generally in the privacy community, leakage
functions are better described in terms of their associated attacker rather than
their information theoretic properties [2,12].

2.2 Why Not Differential Privacy?

Differential privacy [5], is one of the most prevalent formalizations of privacy.
For this particular problem, a padding scheme f satisfies ε-differential privacy if
and only if for all input files ei, ej ∈ E and all output sizes z ∈ Im(f), we have
P(f(e1) = z) ≤ exp(ε)P(f(e2) = z).

This notion of privacy represents an attacker whose success function is given
by how much more likely one input file is with respect to another one for a given
observation. However, this is excessively strong for the problem under consider-
ation. Indeed, as Theorem 1 shows, differential privacy can only be achieved at
the total detriment of bandwidth use.

Theorem 1. For any ε > 0, the padding scheme that satisfies ε-differential
privacy and minimizes bandwidth is the one that pads all input files to the size
of the largest one.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 79

Proof. Fix ε > 0 and let ej
def
:= arg maxei∈E |ei| be the largest file in E. For all

sizes z < |ej |, we have P(f(ej) = z) = 0 because ej can not be padded to smaller
sizes than |ej |. Moreover, the differential privacy constraint forces every other
file ei 	= ej to satisfy P(f(ei) = z) ≤ exp(ε)P(f(ej) = z) = 0 whenever z < |ej |.
In other words, all files must be padded to sizes at least as large as |ej |, i.e.
P(f(X) ≥ |ej |) = 1. Among all the mappings f that have this property, the one
that minimizes bandwidth is the one that pads all files exactly to the largest file
size |ej |, and it satisfies ε differential privacy trivially because it is a constant
function.

Theorem 1 is the reason why we exclude differential privacy from the analysis
and focus on the privacy notions discussed in the previous section. This theorem
is a direct consequence of the inevitable fact that padding can only enlarge files
and not reduce their sizes. Apart from putting in evidence the abusive overhead
required by differential privacy, this theorem also shows that its parameter ε is
irrelevant as a measure of privacy for the problem under consideration, making
it inappropriate.

2.3 Simplification of the Output Set

We conclude this section by proving that optimal padding functions always map
to sizes in S. This is a key-fact for the derivation of the algorithms and their
proofs. Intuitively, if a set of files can be padded to a common certain size z, but
can also be padded to z − 1, we can pad them to z − 1 and win some bandwidth
without leaking any additional information. This forces the optimal padding
functions to always pad to the sizes z for which it is not possible to pad to z − 1
without sacrificing privacy, which are precisely the sizes in S. The same holds
true for padding schemes that minimize Shannon leakage, as shown in [11].

Proposition 1. For any padding-scheme f : E → N, there exists a padding-
scheme f∗ : E → S such that I(f∗) ≤ I(f). Moreover, P(f∗(X) ≤ f(X)) = 1,
hence f∗ uses less padding (bandwidth) than f .

Proof. Define f∗ as the composition f∗ def
:= g ◦ f , where g(z) = max{s ∈ S :

s ≤ z}, that is, f∗(X) = g(f(X)). The function g is defined only for z ≥ min S
and f∗ is well-defined because the padding constraints force P(f(X) ≥ min S) ≤
P(f(X) ≥ |X|) = 1. By definition, g(z) ≤ z, thus P(f∗(X) ≤ f(X)) = 1.
Let us now show, regarding privacy leakage, that I(f∗) ≤ I(f). Let I∗

xs denote
P(X=x ∧ f∗(X)=s) and Ixz denote P(X=x ∧ f(X)=z). We will show that the
accuracy of the attacker (Eq. 2.1) is smaller or equal for f∗ than for f . This can be
expressed as

∑
s maxx I∗

xs ≤ ∑
s

∑
z:g(z)=s maxx Ixz. On the left and right-hand

sides, we have summations on s ∈ S, so it suffices to prove that this inequality
holds for each fixed s. At each s ∈ S, since I∗

xs =
∑

z:g(z)=s Ixz, the inequal-
ity becomes maxx

∑
z:g(z)=s Ixz ≤ ∑

z:g(z)=s maxx Ixz, which is necessarily true.

Indeed, letting x(s) def
:= arg maxx

∑
z:g(z)=s Ixz for the left-hand side, we have for

each z with g(z) = s that Ix(s)z ≤ maxx Ixz. �

80 S. Simon et al.

Proposition 1 can be seen as an instance of the Data Processing Inequality,
which can be found as Theorem 8 of [6], or more generally for privacy contexts
in [8].

Corollary 1. A padding function that has minimal leakage must pad each file
to the size of another file in the initial set.

Having Corollary 1 in mind, the padding scheme f can be represented as
an obfuscation channel matrix P where pij = P(f(ei)=sj), in which case, the
problem can be specified as shown below, and the attacker accuracy becomes

∑

j

max
i∈[1..n]

pi · pij . (2.5)

Problem input: (1) A set E of n files {ei |i ∈ [1..n]} with frequencies pi,
sorted sizes |ei| and set of unique sizes S = {s1, ..., sm}. (2) Padding con-
straints of the form ∀i, sli ≤ f(ei) ≤ sri

, parametrized with pairs of indices
li, ri ∈ [1..m].

Desired output: A padding function f : E → S in the form of a channel
matrix pij = P(f(ei)=sj) that minimizes Rényi leakage I∞(f) or equivalently
Eq. (2.5). Depending on the problem variant, f must be deterministic (POP)
or randomized (PRP).

3 Algorithms

In this section, we derive the algorithms PopRe and PrpRe that minimize the
Rényi leakage (2.2) for the POP and PRP cases respectively. They contrast those
for Shannon mutual information minimization found in the paper [11], denoted
here as PopSh and PrpSh. The complexities of these algorithms are summarized
in Table 1.

Table 1. Complexities, where b̄
def
:= (1/n)

∑n
i=1 ri − li + 1 is the matrix average band

size. For practical reference, with reasonable padding constraints, if the files are diverse
with a large and spread spectrum of sizes, one expects b̄ � m ≈ n.

Algorithm Minimizes WC Runtime complexity Memory

PopRe Rényi leakage O(n2 b̄) n b̄

PrpRe, PrpReBa Rényi leakage O(n b̄) n b̄

PopSh Shannon leakage O(n b̄) n b̄

PrpSh Shannon leakage O(iters · n m) n m

Algorithm PrpSh is an approximation algorithm and has a runtime com-
plexity that depends on the degree of accuracy imposed by the user and the
limit number of iterations iters allowed. Also, the complexities of the dynamic

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 81

programming algorithms correspond to the theoretical worst-case and might
overestimate the actual implementations. For instance, although PopRe has two
parameters varying in [1..n], not all combinations need to be calculated in a
top-down implementation.

3.1 Per-Object-Padding Scenario, PopRe

In this section we develop the algorithm that minimizes Rényi leakage in the
POP variation, in which the matrix P is constrained to pij ∈ {0, 1}. Before
describing the algorithm, we will prove Remark 1, which will be used as the
main update of the entries of the channel-matrix.

Remark 1. Let f be a Rényi
optimal padding-scheme and ei

be the file with the highest asso-
ciated frequency pi, and assume
that pij = 1 for some j ∈ [1..m].
Then there exists a padding-
scheme f∗ with the same Rényi
leakage such that pkj = 1 for all
k ∈ [1..n] such that j ∈ [lk..rk].

Fig. 1. Remark 1: if the file with maximal fre-
quency is e11 and the left matrix (f) is optimal,
the right one (f∗) must be as well.

Proof. We consider the padding-scheme f to be represented as the channel-
matrix between the secrets and the observables. When we want to minimize
(2.5) we sum over each column of the matrix P . In particular, on the column j
we have maxa∈[1..n](pa · paj) = pi since pi is the highest frequency among the
frequencies of the files and pij = 1. Now, let us consider the padding-scheme f∗

whose matrix P ∗, consists on moving every 1 that we can to column j:

p∗
ab =

⎧
⎪⎨

⎪⎩

pab if b 	= j and a ∈ [1..n] such that j 	∈ [la..ra]
1 if b = j and a ∈ [1..n] such that j ∈ [la..ra]
0 otherwise

On the column j of the matrix P ∗ we will still have maxa∈[1..n](pa · p∗
aj) = pi

because the padding-scheme f∗ preserves the maximum on column j. Moreover,
on the rest of the columns, the maximum either decreases or stays the same since
we created more entries p∗

ab = 0, which means that the product pa · p∗
ab = 0.

However, we chose f to be the Rényi optimal padding-scheme and with the
remarks above, f and f∗ give the same leakage. �

Figure 1 depicts an example of a sub-matrix of P as described in Remark 1. In
the figure, we have exactly one entry equal to 1 in each line because the channel-
matrix is stochastic, and we are in the POP case. Additionally, the quantity in
(2.5) represents the sum of the maximum over columns where each 1 counts for
the frequency of the file. Then, the update does not increase the (2.5) because
the 1 with maximal frequency dominates its column, and moving all possible 1’s
above or below it does not increase Rényi leakage.

82 S. Simon et al.

Algorithm 1. Per-object-padding pseudocode. This implementation uses recur-
sion both for computation and reconstruction.

procedure Renyi POP � Main function
memo ← {} � Empty map
pij ← 0 � A matrix p full of zeros
renyi ← Reconstruct(0, n)
return (p, renyi) � Output matrix p and its renyi leakage

end procedure
procedure Reconstruct(a, b)

(renyi, k, a�, b�) ← f(a, b)
for j = a�..b� do pjk ← 1 end for
if a < a� then Reconstruct(a, a�) end if
if b� < b then Reconstruct(b�, b) end if
return renyi

end procedure
procedure f(a, b)

if (a, b) ∈ memo then return memo[(a, b)] end if
if a = b then return (0, ∞, a, b) end if
best ← (∞, ∞, ∞, ∞)
imax ← arg maxi=a..b pi

for k = limax ..rimax do
jmin, jmax ← range of files ejmin ..ejmax that can be padded to size sk

a� ← max(a, jmin)
b� ← min(b, jmax)
renyi ← f(a, a�)[0] + pimax + f(b�, b)[0] � Index [0] is the renyi component
this ← (renyi, k, a�, b�)
best ← min(best, this) � Lexicographic (compares first by renyi)

end for
(renyi, k, a�, b�) ← best � Unpack tuple
memo[(a, b)] ← (renyi, k, a�, b�)
return (renyi, k, a�, b�)

end procedure

Using Remark 1 we can divide the padding problem into sub-problems that
minimize (2.5) and leverage dynamic programming: ∀a ≤ b ∈ [1..n], we define

D[a][b] = min
P channel matrix

∑

j∈[1..m]

max
i∈[a+1..b]

(pi · pij),

i.e. D[a][b] gives the minimal leakage for the sub-problem that pads files from
ea+1 to eb, under the general constraints.

By convention, we consider D[i][i] = 0, which will be the base case. To write
the recurrence formula, we need to take the file eimax with maximum frequency
pimax , imax ∈ [a+1, b]. We go through every size index k ∈ [1..m] such that eimax

can be padded to the size of sk, and we update the channel-matrix according
to Remark 1, i.e. add 1’s on k-th column if we can (taking into consideration
the padding constraints) and complete the lines that have a fixed 1 with 0’s on

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 83

the remaining entries. Then, we apply the recurrence on the rows which are not
updated, i.e. from a to a∗ def

:= max(a,maxi∈[1..n]{i|ri < k}), and, respectively,

from b∗ def
:= min(k, b) to b. Hence,

D[a][b] = pimax + min
k∈[limax ..rimax]

(D[a][a∗] + D[b∗][b])

After applying the dynamic algorithm program with the aforementioned recur-
rence, we get the minimization of (2.5) in D[0][n], from which we can compute
the minimal Rényi leakage. If we want to recover the channel-matrix itself, in
D[a][b] we pass on the index k for which the maximum happens, as an argu-
ment. In case of a tie, we choose the smallest index k ∈ {1, . . . , n} in order
to reduce average padding. Hence, we know in each sub-interval [a, b] what we
pad everything to, so the information is enough to recover the channel matrix.
A pseudocode summarizing all the logic is shown in Algorithm 1. A concrete
optimized implementation can be found in [10].

Fig. 2. PopRe on a dataset of 6 files.

In Fig. 2 we depict the
channel-matrix of the files with
sizes S = {1000, 1050, 1100,
1110, 1120, 1140} and associ-
ated frequencies {22%, 5%, 23%,
12%, 18%, 20%}. As shown in
the visual representation of the
padding-scheme in the right, we
observe that, for both of the
existing padded sizes, there are
multiple files that are padded to the same element, making them indistinguish-
able for an attacker. Moreover, the blue bars on the graph indicate the frequencies
of the files, and the red bars, the maximum frequency among the frequencies of
the files padded to each specific size. The red bars are effectively highlighting
the terms of the sum (2.5).

3.2 Per-Request-Padding Scenario, PrpRe

In this section, we treat the case of Per-Request-Padding and provide an
algorithm for finding the probabilistic channel-matrix P which minimizes the
Rényi leakage. We will look at the joint distribution matrix I with entries
Iij = pi · pij ,∀i ≤ n, j ≤ m, for which

∑m
j=1 Iij = p1 for each i ∈ [1..n].

We proceed by finding iteratively, for each of the m columns, starting from the
last one, the Rényi optimal manner of setting the entries of I given the padding
constraints. Furthermore, we define the optimal distribution of pi across the i-th
row, 1 ≤ i ≤ n to be the way we fill in the entries pi1, . . . , pim such as to obtain
the minimum sum of the type (2.5) and preserve the relation pi1 + ...+pim = pi.

The proof of our algorithm requires us to consider sub-problems in which the
sequence (pi)1≤i≤n is updated at each step of the algorithm, thus being different
from the initial set of frequencies associated to each file. Hence, we rewrite the

84 S. Simon et al.

problem as a more general one in terms of a budget sequence (bi)1≤i≤n of length
n (initialized as (pi)1≤i≤n), which dictates the remaining value to be distributed
across each row i, for i ∈ [1..n]. The general problem is “Given a non-negative
budget sequence (bi)k

i=1 of length k ∈ [1..n], find a solution matrix Ik×m that
minimizes Eq. (2.5), under the padding constraints for rows i ∈ [1..k], namely
the set {[l1, r1], . . . , [lk, rk]} and

∑m
j=1 Iij = bi”.

We will design the algorithm to solve the general problem recursively by
returning the matrix I for the budget sequence {p1, . . . , pn} with n terms. The
recurrence relationship can be described using the following observation that is
used when creating the probabilistic channel-matrix for the padding-scheme f :

Remark 2. The solution Ik×m for a given (bi)k
i=1 that minimizes Rényi leakage

satisfies the recurrence relationship

Iij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bi if j = m and i ∈ [1..k], |ei| = sm

bi − b
′
i if j = m and i ∈ [1..k − 1], |ei| 	= sm,

m ∈ [li..ri]
I

′
ij otherwise

where I
′
(k−t)×(m−1) is the solution to the same minimization problem for the

sequence (b
′
i)

k−t
i=1 of length k− t, t = number of files from E which can be padded

to sm, such that for any i ∈ [1..k − t], it is defined as:

b
′
i =

⎧
⎪⎨

⎪⎩

max(bi − btmax , 0) if m ∈ [li..ri] and
btmax = max{bi| |ei| = sm}

bi otherwise

Proof. If there are no files among {e1, . . . , ek} which can be padded to sm, we
set t = 0 and solve the minimization problem for the same budget sequence and
for the set of m − 1 sizes {s1, . . . , sm−1}.

If there are files that can be padded to sm, then due to the padding con-
straints, the element ei can only be padded to sm, so the entry Iim must
necessarily be equal to bi, for all i such that |ei| = sm. Let us denote by
T = {k − t + 1, . . . , k} the set of indices satisfying |ei| = sm,∀i ∈ T and
btmax = max{bi|i ∈ T}. Clearly, for every i ∈ T , Iij = 0,∀j ∈ {1, . . . , k − 1}.
On the m-th column of the matrix I, we have maxi∈[1..k] Iim ≥ btmax .

In order to minimize the sum (2.5) and taking into consideration that the
maximum entry on column m is at least btmax , we aim to distribute for every i
such that ei can be padded to sm and |ei| 	= sm, a quantity equal to btmax (or, if
bi < btmax , then we distribute the whole bi) on the entry Iim, so that we preserve
the maximum on this last column to be btmax . This way, we can assure that,
among the other columns, we’ll have to distribute a smaller fraction of bi, which
means that the maximum on each column between 1 and m − 1 will decrease,
and so will (2.5).

The problem reduces to find the optimal sub-matrix I
′
(k−t)×(m−1) to complete

the first k − t rows of I, and with the aforementioned remark, we can actually

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 85

consider I
′

to be the solution given the updated sequence (b
′
i)1≤i≤k−t which

is defined, for every i such that file ei that can be padded to sm, as either
0, if bi ≤ btmax , or as bi − btmax , if bi ≥ btmax . When we reconstruct the matrix
I, on the m-th column we will have the value I

′
im + btmax or I

′
im + bi (depending

on whether bi is smaller, respectively larger, than btmax).
Now, let us show that, for the sub-matrix I

′
, we have 0’s on every entry

of the m-th column. By definition, I
′

must be a Rényi optimal solution for
the updated sequence of b

′
i’s. Using Proposition 1, there exists a Rényi optimal

padding-scheme f
′

which maps ei, i ∈ [1..k − t] → {s1, . . . , sk−t}, for any set of
files {e1, . . . , ek−t} with the associated frequencies {b

′
1, . . . , b

′
k−t}. Consequently,

for every i ∈ [1..k − t],P(f
′
(ei) = sm) = 0 ⇒ I

′
im = 0. �

Algorithm 2. Per-request-padding pseudocode.
procedure Renyi PRP

∀i, bi ← pi � budget array
I ← Joint prob. matrix of zeros
for j=m, m-1, ..., 1 do

tmax = arg max{i ||ei|=sj} bi

if btmax > 0 then
jmin, jmax ← range of files ejmin ..ejmax that can be padded to size sj

for i = jmax, jmax − 1, ..., jmin do
I[i, j] ← min(btmax , bi)
bi = bi − I[i, j]

end for
end if

end for
P ← channel matrix after dividing each row i of I by pi

return P
end procedure

Therefore, we have proved that the matrix I can be recursively expressed
using the sub-matrices obtained when we update the budget sequence accord-
ingly, at each step decreasing by 1 the number of columns and by at least 1
the number of rows of the matrix returned from the algorithm, until we reduce
a problem to finding the Rényi optimal scheme for a budget sequence with a
single element. Since we want to minimize (2.5) in the case of n files with fre-
quencies {p1, . . . , pn} and the associated set of sizes {s1, . . . , sm}, we proceed
the induction on the number of rows and columns as described in Remark 2 and
eventually fill in all the entries of the solution In×m. The channel-matrix P is
then computed as pij = Iij/pi, and this is the output of PrpRe.

This algorithm is presented in Algorithm 2 in the form of pseudocode, and
it is implemented in [10] with some optimizations.

86 S. Simon et al.

Bandwidth Minimization. Once PrpRe has found a channel matrix that min-
imizes Rényi leakage, it is still possible to use heuristics to search for other chan-
nel matrices with the same (minimal) leakage but with less bandwidth use. We
call PrpReBa to be the algorithm that runs PrpRe and the bandwidth reduction
heuristics afterwards.

Let the list C of maximums on each column after running PrpRe, i.e.
C =

{
maxi∈[1..n] Iij |j ∈ [1..m]

}
, where Cj = maxi∈[1..n] Iij for every j ∈ [1..m].

Define a move to be a change in the matrix I performed on two of the entries of
the matrix at line i, for some i ∈ [1..n] such that (Iia, Iib) becomes (Iia−α, Iib+α)
while keeping the entries of I positive, i.e. α ≤ Iia.

Now, we will describe an update on the line i, which will consist of a series
of moves and will return a new matrix I∗. We start with I∗ to be the matrix
I, but with 0’s on the i-th line. Since the sum on row i is equal to pi, we start
with this quantity and go through the columns in order from j = 1 to j = m.
For each column, we set:

Iij =

{
Cj if Cj +

∑j−1
k=1 Iik ≤ pi

pi − ∑j−1
k=1 Iik otherwise

4 Experiments and Comparison

Several experiments were carried out for three distinct purposes, namely, (1) to
test the correctness of the implementations against brute-force algorithms for
small sized problems, (2) to corroborate the direct link between Rényi leakage
and the success rate of an attacker and (3) to compare the runtime, bandwidth
and leakages of all the algorithms on a public dataset. The code of all the exper-
iments is available in [10].

4.1 Brute-Force Tests for Correctness

To complement and corroborate the theory developed in this paper, all the algo-
rithms were tested against brute-force implementations for small datasets (with
at most 10 elements). More precisely, for each randomly generated test case of file
sizes and frequencies, we explored (exhaustively) all the POP padding schemes
satisfying the constraints, and chose among them, the ones that minimized Rényi
leakage, Shannon leakage or bandwidth, with the purpose of comparing them
with the solutions returned by our algorithms.

We ran ten thousand experiments (code available in [10]), all corroborating
that: among all POP schemes, PopRe achieves minimal Rényi leakage, PopSh
achieves minimal Shannon leakage, and PrpRe leaks at most the Rényi leakage
of PopRe.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 87

4.2 Attacker Test for Illustration

Fig. 3. Attacker’s success convergence.

We simulated the attacker described
in this paper by Eq. (2.1), who
always guesses the original file
with maximum probability given
the priors and the padding scheme.
Figure 3 shows that as the number
of user increases, the success rate
of the attacker against the padding
proposed by PrpRe approaches the
expected theoretical minimal pos-
sible success rate. This is a direct
consequence of the law of large
numbers as well as the equivalence

between minimizing the expected success of the attacker (2.1) and the Rényi
leakage, via Eq. (2.5).

4.3 Dataset Tests for Comparison

We used the dataset of NodeJS, proposed originally in [11]. This dataset consists
of a list of 423,450 javascript packages provided by NPM for browser and nodeJS
applications, each with its associated file size and access frequency, as of August
2021. Taking into account the large number of files and the availability of the
access frequencies, we used the NodeJS dataset to benchmark the algorithms.

We used two versions of the NodeJS dataset: the large NodeJS dataset is the
original dataset with 423,450 files, and the small consists of only the 1000 most
frequently accessed files. The small NodeJS dataset allowed us to benchmark
and compare the algorithms with large complexity, which timed-out on the large
dataset. In all experiments, we parametrize the padding constraints with a single
constant c > 0 that represents the constraint |X| ≤ f(X) ≤ (1 + c) · |X|.

Fig. 4. Rényi and Shannon leakage on the small dataset.

Figure 4 depicts the variation of privacy leakage as a function of c on the small
dataset. The trend is approximately equal in the large dataset, except that PopRe

88 S. Simon et al.

times out. The Rényi plot does not include PrpReBa to reduce redundancy, as
it coincides with PrpRe. In the figure, we can appreciate the expected trend
that larger c allows for more padding and less leakage of privacy, both in Rényi
and Shannon definitions. It can also be verified that the algorithms tuned to
minimize Rényi leakage, have a very small (but not minimal) Shannon leakage,
and vice-versa. For instance, the differences between PopRe and PopSh in both
leakages are inferior to 2%. This is a consequence of the information theoretical
connection between the two types of leakage.

Fig. 5. Bandwidth increase on the small (left) and large (right) datasets.

The bandwidth increase generated by the padding of the files can be ana-
lyzed in Fig. 5. For reference, the average file size in the dataset, weighted by
frequency is 52.5 kb, so 1% increase, means around 5.3 additional kilobytes.
Several observations can be made out of Fig. 5. First, as anticipated, the larger
the c, the larger the paddings on average. Second, the algorithms do not pad as
much as they are allowed. Instead, when 10% is allowed, the optimal paddings
lie at around 2% for the small dataset and 4% for the large dataset. For this par-
ticular example, the algorithms used more of the available padding on the large
than in the small dataset, but we did not explore in depth in our experiments
whether this pattern holds in general. Third, the improvements of PrpReBa over
PrpRe can be corroborated, and estimated to approximately 20% less bandwidth
use with the same Rényi leakage. Lastly, it appears empirically that the solu-
tions that minimize Rényi leakage use less padding on average than those that
minimize Shannon leakage.

Figure 6 depicts the runtime of the algorithms under analysis. We refer the
reader to Table 1 for a richer analysis of the plots. The left plot does not have a
clear tendency of longer executions for more relaxed padding constraints (higher
c, thus also higher b̄), meaning that for small datasets, all algorithms are suit-
able. In this regime, the runtime is not yet affected significantly by the growth
of b̄, possibly due to large constants that are masked by the complexity class
and implementation details, especially for PrpReBa. Nevertheless, the difference
between PopRe versus PrpRe and PopSh is already visible, and indeed, PopRe
times out (several hours) for the large dataset. The right plot highlights the
scalability of the algorithms. For all values of c plotted in this graph, the run-
time for PrpRe is under 7 seconds, which makes it the fastest algorithm. PrpReBa

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 89

Fig. 6. Runtime plots on small (left) and large (right) datasets. The plots ignore the
7 additional seconds needed for JIT compilation.

peaks at c = 10% with around 3 minutes while PopSh needed 15 minutes. In this
regime, the effect of increasing b̄ via c on the runtime is clear.

5 Conclusion

We designed and proved the optimality of several algorithms (PopRe, PrpRe,
PrpReBa) that minimize the expected success rate of an attacker. The algorithms
were compared with existing solutions (PopSh, PrpSh) that consider a different
attack model. The comparison was done both numerically via experiments and
theoretically via privacy leakage.

Prioritizing scalability, we recommend using either PrpRe or PrpReBa for the
PRP problem, as they are much faster and provide protection against a more
reasonable attacker than the existing solutions (PopSh, PrpSh). Nevertheless, for
the POP problem, we recommend any of either the existing solution PopSh or
our algorithm PopRe that minimizes Rényi leakage, because even though our
attack model is more realistic, the complexity of PopSh makes it more practical.

In general terms, the two attack models are correlated in the sense that
the optimizing against one of them results in a strong, though not optimal,
protection against the other one (with empirical differences of less than 2%).
In more detail, however, the Rényi attacker is more realistic than the Shannon
attacker, and the padding schemes that minimize Rényi leakage seem to use less
bandwidth in practice, making our proposed algorithms even more appealing.

Acknowledgements. This work was supported by the European Research Council
(ERC) project HYPATIA under the European Union’s Horizon 2020 research and
innovation programme. Grant agreement n. 835294.

90 S. Simon et al.

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: The Science of Quantitative Information Flow. Information Security and Cryp-
tography. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-319-96131-6

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring infor-
mation leakage using generalized gain functions. In: Proceedings of the 25th
IEEE Computer Security Foundations Symposium (CSF), pp. 265–279 (2012).
http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26, http://hal.inria.fr/hal-
00734044/en

3. Cherubin, G.: Bayes, not näıve: security bounds on website fingerprinting defenses.
Proc. Priv. Enhanc. Technol. 2017(4), 215–231 (2017). https://doi.org/10.1515/
popets-2017-0046

4. Degabriele, J.P.: Hiding the lengths of encrypted messages via gaussian padding.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1549–1565 (2021)

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

6. Espinoza, B., Smith, G.: Min-entropy leakage of channels in cascade. In: Barthe,
G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 70–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29420-4 5

7. Gluck, Y., Harris, N., Prado, A.: Breach: reviving the crime attack (2013). Dos-
tupné také z http://css.csail.mit.edu/6 858 (2015)

8. M’rio, S.A., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: 2012 IEEE 25th Computer Secu-
rity Foundations Symposium, pp. 265–279. IEEE (2012)

9. Palamidessi, C., Romanelli, M.: Feature selection with Rényi min-entropy. In: Pan-
cioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol.
11081, pp. 226–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99978-4 18

10. Pinzón, C., Petrui, C., Simon, S.: Min-leakage-padding (2022). https://github.
com/caph1993/min-leakage-padding. Accessed August 2022

11. Reed, A.C., Reiter, M.K.: Optimally hiding object sizes with constrained padding
(2021). https://doi.org/10.48550/ARXIV.2108.01753, https://arxiv.org/abs/2108.
01753

12. Romanelli, M.: Machine learning methods for privacy protection: leakage mea-
surement and mechanisms design. Ph.D. thesis, Institut Polytechnique de Paris;
Università degli studi (Sienne, Italie) (2020)

13. Schindler, W.: A timing attack against RSA with the Chinese remainder theorem.
In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 8

14. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

15. Song, D.: Timing analysis of keystrokes and SSH timing attacks. In: Proceedings
of 10th USENIX Security Symposium (2001)

16. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: an efficient defense
against statistical traffic analysis. In: NDSS, vol. 9. Citeseer (2009)

https://doi.org/10.1007/978-3-319-96131-6
http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26
http://hal.inria.fr/hal-00734044/en
http://hal.inria.fr/hal-00734044/en
https://doi.org/10.1515/popets-2017-0046
https://doi.org/10.1515/popets-2017-0046
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-642-29420-4_5
http://css.csail.mit.edu/6
https://doi.org/10.1007/978-3-319-99978-4_18
https://doi.org/10.1007/978-3-319-99978-4_18
https://github.com/caph1993/min-leakage-padding
https://github.com/caph1993/min-leakage-padding
https://doi.org/10.48550/ARXIV.2108.01753
https://arxiv.org/abs/2108.01753
https://arxiv.org/abs/2108.01753
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1007/978-3-642-00596-1_21

Cross-Border Data Security
from the Perspective of Risk Assessment

Na Wang1,2, Gaofei Wu2,3, Jingfeng Rong2,5, Zheng Yan3, Qiuling Yue5, Jinglu Hu6,
and Yuqing Zhang1,2,3,4,5(B)

1 Guangzhou Research Institute, Xidian University, Guangzhou 510555, China
zhangyq@nipc.org.cn

2 National Computer Network Intrusion Protection Center, University of Academy of Sciences,
Beijing 101408, China

3 School of Cyber Engineering, Xidian University, Xi’an 710126, China
4 School of Computer Science and Technology, University of Chinese Academy of Sciences,

Beijing 101408, China
5 School of Cyberspace Security (School of Cryptography), Hainan University, Haikou 570100,

China
6 Graduate School of Information, Production and Systems, Waseda University,

Shinjuku-ku 169-8050, Japan

Abstract. In the cross-border process of data, major issues such as national secu-
rity and personal information security caused by complex processes and variable
risk factors are gradually exposed. Based on the development status, this paper
proposes a framework of cross-border data risk assessmentmodel. The assessment
framework not only considers the data protection capabilities of data controllers
and data receivers, but also considers the impact of informed consent of data
subjects on risk assessment results. The framework includes multiple evaluation
modules such as data collection, data storage, etc., so that the framework can be
updated and maintained at the module level in the future. This paper analyzes and
extracts 18 important risk indicators in the six modules, as well as six potential
risk events under cross-border data activities, to fully consider the possibility of
potential risk accidents under each risk indicator. Finally, this paper analyzes the
development needs of data cross-border risk assessment.

Keywords: Cross-border Data · Risk Assessment · Data Security · Data
Classification and Grading

1 Introduction

The transformation of the traditional economy to digital economy has led to an exponen-
tial increase in the amount of data. The rapid development of cross-border e-commerce
means the increasing demand of external communication. The speedy growth of high

Thisworkwas supportedby theNationalKeyResearch andDevelopmentProgram (2023QY1202),
the National Natural Science Foundation of China (U1836210), the Key Research and Develop-
ment Science and Technology of Hainan Province (GHYF2022010), and the Research Startup
Foundation of Hainan University (RZ2100003335).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 91–104, 2023.
https://doi.org/10.1007/978-981-99-7032-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_6&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_6

92 N. Wang et al.

technology not only makes cross-border data flow possible, but also makes it the new
normalcy in the process of international communication nowadays. Therefore, the cross-
border flow of data become a problem that more and more participating companies and
countries must face gradually. In 2022, Didi was fined 8 billion yuan for illegally pro-
viding hundreds of millions of pieces of Chinese personal information to the United
States, which seriously affected China’s national security and users’ privacy security.
Cross-border data will inevitably involve the issue of data sovereignty with the increase
of data security risk [1]. Therefore, the key problem of how to maximize the potential
value of data in important areas while ensuring cross-border data security needs to be
solved as soon as possible.

Contribution:

1) This article further improves the cross-border data security assessment framework.
2) Incorporate the influence and role of data subjects in cross-border data instances into

the risk assessment framework model, fully guaranteeing the principle of informed
consent of subjects.

3) Divide multiple risk factors to be evaluated within the data lifecycle into different
evaluationmodules, reducing the difficulty ofmaintaining andupdating the evaluation
framework.

4) This article analyzes and proposes several risk indicators and typical risk events that
need to be considered in data cross-border risk assessment.

2 Cross-Border Data Status

Cross border data has not been clearly defined internationally. The Organization for
Economic Co-operation and Development (OECD) defines cross-border data as the
transmission of personal data of users in multiple countries or regions. The Convention
of the European Parliament regards cross-border data flow as the cross-border flow of
commercial or personal data through mobile networks after computer processing. On
the opinion of the transnational corporations of the United Nations, cross-border data
flow mainly refers to the operation of reading, accessing, processing, and using large
amounts of data and other relevant information mainly stored in traditional media such
as the Internet outside the country. Based on existing scientific research, China defines
cross-border data as follows: network operators in China provide overseas institutions,
organizations or individuals with personal data and important information collected
during the operation process of companies or enterprises. There are two main types of
understandings of cross-border data flow in academia and society:

• Data across physical borders.
• Overseas subjects remotely access and use native data through networks or other

means [2].

Figure 1 shows the principle of cross-border data flow including two countries.

2.1 International Status

In terms of the principle of cross-border data, the EU mainly adopts a “whitelist” and
“sufficient guarantee mechanism” to ensure the legal and safe cross-border transmission

Cross-Border Data Security from the Perspective of Risk Assessment 93

of data. Now the strictest data protection law in the world is the General Data Protection
Regulation - GDPR passed by the EU in April 2016, which aims to protect personal
identifiable information of data subjects resident in the EU [3]. In 2022, the EU issued
“Data Act”, which Supplements the regulation of cross-border flow of non-personal data
based on GDPR, and further improves the cross-border data legal framework of EU.

EuropeanUnion is deploying and improving the rule system for the cross-border flow
of personal data, which has gradually drawn attention of other countries and international
organizations as well [4]. In 2004, APEC established the APEC Cross-border Privacy
Rules (hereinafter referred to as “CBPR system”). Members of the CBPR system can
independently formulate rules for cross-border flow of personal data when the level of
privacy protection meets the minimum requirements of APEC. The establishment of
CBPR system not only guarantees the privacy of personal data, but also realizes the free
flow of data across the Asia-Pacific region under certain conditions.

The United States in principle encourages the commercial use of personal data [5].
The United States pays more attention to the free flow of data and its economic benefits
Compared with the EU’s strict protection of personal data [6].

Fig. 1. Data cross-border flow process between two countries

2.2 Domestic Status

Personal information protection system of China is being perfected gradually. The “Cy-
ber Security Law”, “Data Security Law” and “Personal Information Protection Law” that
have been promulgated all mention the principles and regulations of cross-border data. In
addition, “Measures for the Security Evaluation of Personal Information and Important
Data Outbound Security” (draft for comments) proposes to establish a two-level eval-
uation system which includes competent department assessment and network operator
assessment, to expand the scope of data export and strengthen the risk management of
cross-border data security.

94 N. Wang et al.

Both domestic and foreign entities involved in the cross-bordermovement of personal
data are required to conduct data security assessments besides the principle of consent.
The “Cyber Security Law”, “Measures forChinaData ExitAssessment” and “Guidelines
for Data Exit Security Assessment Application” and other related supporting regulations
have initially established a basic framework for data outbound security assessment that
combines self-assessment and regulatory agency assessments. Besides, the quantity and
scope of personal data, the political and legal environment of the country, etc. are all
important factors in the process of evaluating whether the risks arising from cross-border
flows are controllable.

There is relatively little research on cross-border data security risks internationally.
After the introduction of various data privacy protection frameworks and policies, foreign
scholars in the field of internet technology mainly use machine learning, NLP, flow
analysis and other technologies to develop automated compliance detection tools. Most
of the research focuses on compliance analysis of privacy policies based on the GDPR
standard [7–15]. Similarly, domestic research mainly focuses on content analysis and
machine learning to achieve compliance analysis of privacy policies for applications and
websites such as government affairs, healthcare, and e-commerce [16–24].

It is obvious that most domestic and abroad studies have not taken the potential cross-
border risk of data as the research object. Li Jin et al. used the dichotomous network
model of cross-border flow of important data to build a quantitative algorithm for the risk
of data flow paths, used AUC indicators and K-kernel analysis to verify its robustness
and effectiveness, and used K-means clustering analysis to classify the cross-border
outgoing institutions of important data. However, the method of quantifying risk in this
study is more suitable for large-scale cross-border data networks with multiple nodes,
making it difficult to quantify and analyze the cross-border behavioral risks between
few nodes systematically and comprehensively [25]. Moreover, this study only achieved
classification and grading of data outgoing institutions, ignoring the important role of
the data receiver in data cross-border activities. Therefore, this article will attempt to
refine the risk assessment framework for cross-border data flow behavior based on the
relevant indicators of data entry and exit institutions and explore suitable solutions for
ensuring the security of cross-border data in subsequent international cooperation.

3 Data Cross-Border Risk Assessment

3.1 Introduction of Risk Assessment

Risk management is an essential measure in the process of maintaining information
security. As one of the key procedures, security risk assessment has contracted the work
of prediction, analysis, evaluation, and management of risk control. It has now become
an important reference standard to measure whether data can leave the country. The
European Data Protection Board (EDPB) has released the “Guidelines 07/2022 on Cer-
tification as a tool for transfers” [26], which elaborates on the roles of all parties involved
in the certification process and specific certification standards used to demonstrate the
existence of appropriate cross-border transmission safeguards. Due to the strictness of
GDPR regulations in data protection principles, the certification process is also relatively

Cross-Border Data Security from the Perspective of Risk Assessment 95

complex. Therefore, we should set up the scope and procedure of security assessment
according to the specific situation of China, to balance fairness and efficiency [27].

The taking of relevant measures such as information security risk management is
necessary to ensure the integrity and security of data. Information security risk manage-
ment includes a series of scientific means to identify the vulnerabilities of information
system. The reasonable measures will be adopted to predict and manage the risk after
analyzing the seriousness of risks, which can be beneficial to reduce the risk of undertak-
ing the damage caused by the vulnerabilities for enterprises. Therefore, riskmanagement
can be generalized as a systematic process from risk discovery to risk control [28].

Figure 2 shows the information security risk management principles, frameworks,
and processes under the ISO31000 standards [29, 30]. The principal part refers to the
principles that enterprises or institutions need to follow in risk management. It also helps
to provide guiding opinions at the framework level. In addition, the risk management
framework needs to be adapted to the situation of organization and the needs of relevant
stakeholders. After rigorous planning and design, the framework, policies, and decisions
would be continuously improved based on the actual results of framework management
and examination. The riskmanagement process includes communication and negotiation
with internal and external stakeholders, which takes place at all stages of risk manage-
ment. During this process, it is necessary to clarify the internal and external situations
as well as the relevant information of the risk management process. Secondly, the risk
evaluation process should be carried out, which includes three operations: risk identi-
fication, risk analysis, and risk assessment. Finally, the risk treatment process should
be followed. In addition, all aspects of the risk management process need to be tested
and reviewed, and the results will also guide the improvement of the risk management
process in the opposite direction.

Risk assessment plays a critical role in the process of information security man-
agement. Different from the ordinary business involving data collection and use by
enterprises, cross-border data flow involves multiple parties including data subject (the
owner of the data), cross-border initiator, and receiver [31]. Moreover, if the data is
transferred across multiple countries, different policies and control measures will make
the situation even worse and the risks associated with it will also increase significantly.

Therefore, cross-border risk assessment of data should be considered from two
dimensions, before and after cross-border. The main scope of risk assessment before
cross-border is the process of the initiator’s collection and storage of massive data,
which are like traditional data usage scenarios. Consequently, existing methods can also
be used for assessments at this stage [32–37].

However, compared to the first stage of data being only used and stored locally,
cross-border data will face relatively uncontrollable environmental, managerial, and
technological risk factors in the new operational stage. Therefore, in the future, the risk
assessment of cross-border data should be based on the comprehensive consideration
of risk factors. It is necessary to formulate evaluation scheme, determine the evaluation
index and select the appropriatemethodafter considering the characteristics of the current
cross-border data. What’s more, the evaluation ought to be carried out from two stages
of the initiator’s local storage and the receiver’s cross-border use.

96 N. Wang et al.

3.2 Data Cross-Border Risk Assessment Framework

Wang Na et al. proposed to divide the data cross-border risk assessment into two stages
[38]: domestic risk assessment and foreign cross-border process assessment with dual
processes and multi cycles. The scheme provides continuous monitoring and manage-
ment of cross-border data from the perspective of data controller and data receiver. How-
ever, the data subject is the largest privacy security stakeholder in the data cross-border
process, whose attitude and right of absolute control over the data cannot be ignored.
That’s why we believe that the data subject should be included in the risk assessment.
The following Fig. 3 is an overview of the risk assessment model.

Fig. 2. Information security risk management factors

As shown in the Fig. 3, the top level is the national policies and regulations, which
is the primary premise and principle to guide data operations, and each link of data
cross-border behavior is constrained and controlled by it. Due to the different measures
and attitudes adopted by the world’s major economies, there are varying degrees of
restrictions and requirements ondata cross-border. For instance, TheUnitedStates allows
cross-border data to obtain more commercial benefits, the European Union allows the
free flow of data within the EU, while Russia takes data localization measures to strictly
restrict the outbound behavior of data [39]. Therefore, it is necessary to assess whether
multiple countries meet the corresponding policy and legal requirements before data
cross-border. Secondly, we divide the evaluation object into three parts: data subject, data
controller and data receiver, to evaluate the cross-border data activities from different
perspectives.

Nowadays, many countries or organizations in the world have reached the consensus
of giving priority to the principle of informed consent of data subject, and they have the
right to stop cross-border data and other operational processes at any time. That is, at
any stage of cross-border data flow, when the data subject no longer agrees to use their

Cross-Border Data Security from the Perspective of Risk Assessment 97

Fig. 3. Cross-border data risk assessment framework

personal data for cross-border purposes, the initiating party should immediately stop
the cross-border behavior of the corresponding data. If the receiving party has already
stored and used the data, the corresponding data should be immediately deleted from
the storage medium, and the traces and impacts of such data usage should be minimized
and eliminated as much as possible. Therefore, the main factor for the evaluation of
data subject is their subjective will after measuring the advantages and disadvantages of
cross-border behavior independently themselves. After collecting data, data processors
need to provide avenues for data subject to detect or monitor personal data processing
behavior. Whenever the subject’s personal data needs to be processed, the data subject
shall be notified by instant messaging such as pop-up windows, e-mail or SMS when
providing business services for the data subject to seek its consent for data processing. In
addition, when data subjects who do not agree to engage in cross-border data activities
account for a certain percentage of the total data volume, all cross-border data activities
should be forcibly stopped.

3.3 Modular Risk Assessment

The evaluation objects of cross-border data operators are divided into data controllers
and data receivers. Based on the evaluation model in reference [38], this study will add
modular evaluations to these two objects from both domestic and foreign scenarios.

98 N. Wang et al.

Due to the variety of cross-border operations and complex processes, the potential risks
are diversified compared with traditional risk assessment. Therefore, it is not enough
to take existing factors into consideration. With the development of technology and the
times, more new problems may be found in the field of cross-border data in the future.
Therefore, we adopt a modular evaluation rather than an overall evaluation to reduce the
impact of this situation on the upgrading and improvement of the evaluation framework
and model. We divide the evaluation process into smaller modules, considering the risk
factors of smaller granularity for eachmodule [40]. It can reduce the correlation between
eachmodule as much as possible andmake it easier to improve andmodify themwithout
major changes to the evaluation framework in the future.

The risk factors that can be considered for each module include:

• Collection: Rationality of collection purpose, necessity of collection scope, and
legality of collection methods.

• Storage: storage duration, storagemedium stability, integrity of storage access control
mechanism.

• Processing: data availability, data authenticity, data confidentiality.
• Transmission: security of transmission path, reliability of encryption method, and

data integrity.
• Exchange: ability to resist network attacks, maturity of data security technology, and

completeness of relevant institutional processes.
• Destruction: applicability of destruction methods, compliance with destruction

processes, and potential for malicious data recovery.

In addition, the risk modules need to be considered for cross-border data include the
initial data collection, to the data storage and use before and after cross-border, as well
as the transmission problems in the cross-border process, the selection and risk control
of sharing media, the subsequent punishment, security issues, etc.

3.4 Cross-Border Data Risk Analysis

In the process of cross-border data transfer, various types of risk events may be
encountered, which will have significant implications for the stakeholders involved in
cross-border transactions.

• Data breach In the process of cross-border data transmission or storage, unauthorized
access, hacker attacks, technical failures or human errors may lead to data breach.
The expose of personal information, trade secrets or other sensitive data will cause
significant damage to individuals and organizations.

• Privacy violation Cross-border data transfer may violate the privacy regulations of
the target country or region, resulting in violation of personal privacy. This may
involve unauthorized collection, use or disclosure of data that is detrimental to
individual rights and privacy rights.

• Legal violation Cross-border data transfer may violate the data protection laws and
privacy regulations of the target country or region, resulting in legal violation. This
could trigger legal litigation, fines, or other legal consequences, causing legal risk
and financial loss to the organization.

Cross-Border Data Security from the Perspective of Risk Assessment 99

• Partner and supply chain risk There may be security breaches, compliance issues,
or reputational risks in partners and supply chains involved in cross-border data
transfers. This could lead to data access or misuse by third parties, which brings risks
to data security and compliance.

• Cultural and social risks Differences in culture, values, and perceptions of data
privacy and protection in different countries can lead to social and cultural risks. This
may involve controversy, litigation, political pressure, or public opposition, adversely
affecting the organization’s reputation and business operations.

• Brand and reputation damage Data breaches, privacy breaches, or other security
incidents can negatively impact an organization’s or brand’s reputation.With growing
public concern over data protection and privacy, brand and reputation damage can
lead to loss of customers, trust, and market share.

Determine the impact of the risk indicators to be investigated in each module on
the potential risk events in the cross-border data above, then integrate the probability of
each risk event, and summarize the cross-border data risk from multiple dimensions to
obtain the overall cross-border data security assessment results. Based on the results, data
controller and data receiver decide whether to optimize the risk management strategy.
If the risk exceeds the expectation, they should carry out the risk assessment after the
strategy optimization operation until all risk factors meet the cross-border requirements.

3.5 Summary

Even though the evaluation framework and model are similar, the evaluation objects
of data controller and data receiver may be different because of the differences in data
operations, needs and authorities of these two parties caused by the distinction of their
roles in the processes. Therefore, it is necessary to comprehensively analyze the results
of risk assessment after the investigation of both parties to determine whether they meet
the security standards required for cross-border data, and then decide whether to conduct
cross-border operations.

In addition, as time goes by, factors such as the policy considered in the assessment,
or the way of processing data may change. Therefore, besides the initial risk assessment,
it is necessary to continue tracking and monitoring after cross-border implementation
and take corresponding measures at any time according to the risk status of both parties
to better ensure data security.

4 Remaining Problems

Although China has tried to formulate and improve relevant systems and frameworks,
there are still some problems to be solved.

4.1 Data Classification and Grading

China is trying to establish classification and grading systems for data in different fields
[40], which can assist in building and perfecting the model of cross-border data risk

100 N. Wang et al.

assessment. Firstly, the data classification and grading results can be used as one of
risk indicators for more granular evaluation; Secondly, on the premise of meeting the
national policies, enterprises and organizations can flexibly adjust cross-border business
needs and data cross-border security measures according to the evaluation results of the
data classification and grading system and the corresponding cross-border restrictions,
so as to ensure data security or maximize data value.

4.2 Risk Assessment Methods

The existing information security risk assessment methods can be roughly divided into
three types: qualitative methods, and quantitative methods, and the other one is the
combination of qualitative and quantitative methods.

Qualitative methods mainly rely on the experience and knowledge accumulation
of evaluators to judge risks. The evaluation is more comprehensive, and the process
is relatively simple. Different levels of evaluators may have different ways and angles
to treat problems, which will greatly affect the evaluation result. Quantitative methods
rely more on objective quantities and indicators to evaluate the impact and risk of infor-
mation security. It also relies on professional mathematical algorithms to calculate and
analyze in the evaluation process, to draw quantitative conclusion data. The advantage
of quantitative methods is that they are more scientific and intuitive, but risk factors of
complex things are difficult to accurately describe with simple modeling since errors
and inaccurate probability will inevitably occur in the evaluation process [32, 41].

For risk assessment, there are three problems to be solved in future research: How to
select appropriate methods to achieve an accurate and objective description of the facts?
How to make it more consistent with the characteristics of the modular assessment
model? How to formulate the potential risk criteria for each module and depict them
with clear numerical values, to comprehensively analyze the results of risk assessment?

5 Suggestions on Cross-Border Data

5.1 Promote Data Classification and Grading

Establish a data classification management system as soon as possible after consult-
ing with enterprises, society, experts, and other personnel, to take a more scientific and
orderly management method for sensitive data related to national security. Additionally,
speed up the construction of the systematic system of cross-border data flow through the
establishment of special data supervision institutions, which is responsible for supervis-
ing andmanaging organizations involved in data collection and storage, and establishing
specific audit mechanisms for enterprises performing cross-border data operations.

5.2 Improve Relevant Standards

At present, China has issued special laws on data security and personal information
protection to regulate relevant data operations. These laws also clarify and explain the
regulation of cross-border data flow. However, the specific methods and guidelines for

Cross-Border Data Security from the Perspective of Risk Assessment 101

risk assessment are still under negotiation. The improvement of these important stan-
dards can effectively help promote cross-border data activities. Enterprises can better
evaluate and supervise the implementation of cross-border business according to rel-
evant standards, to better manage and use data and ensure the stable development of
cross-border data in the future.

5.3 Research and Develop Technology or Method

In recent years, with the continuous innovation of network architecture, it is necessary to
explore new technologies to solve security problems. For data security, the new security
technologies from the perspectives of secure storage, encrypted network, traffic mon-
itoring, and authority control ought to be developed and improved. Furthermore, new
Internet technologies such asBlockchain, artificial intelligence, and cloud computing can
also be applied to cross-border data to continuously seek more reliable and convenient
solutions for data security [42–47].

5.4 Actively Participate in Global Governance Framework

Cross-border data flow is the basis for supporting the development of global digital trade
in the future, which has far-reaching influence in the whole field of trade. However, dif-
ferent international standards and management models hinder data cross-border to some
extent. As a result, it is still necessary for countries to adopt interoperabilitymechanisms,
actively participate in the exploration and establishment of international law enforce-
ment cooperation mechanisms and accelerate the construction of future global digital
trade rules and digital governance frameworks while improving their own legal systems
[48–51].

6 Summary and Outlook

Data cross-border is an important area related to the future global economic and trade
strategic layout. The national management system is still in its infancy. The rapid updat-
ing of science and technology requires more convenient cross-border exchanges. Under
the framework of national strength, political and economic strategies and international
diplomatic concepts and policies, our key research directions in the future will focus on
the problem of how to protect cross-border data through technologies or management
tools such as risk assessment, taking into account the development of national enterprises
and data security to balance the contradiction between the free flow of cross-border data
and the legitimate cross-border policy objectives. We believe that we will eventually
find the most suitable solution to promote the sustainable development of cross-border
data and provide a better platform for cross-border exchanges in various fields through
continuous research and exploration.

References

1. Ran, C., He, M., Liu, X.: Research on governance and countermeasures of cross border data
flow in china from the perspective of data sovereignty. Libr. Intell. (4), 1–14 (2021)

102 N. Wang et al.

2. Lun, Y.: Practice and enlightenment of cross-border data flow in Australia. Inf. Secur.
Commun. Confidentiality (05), 25–32 (2017)

3. Mazetova, E.: Data protection regulation and international arbitration: can there be harmo-
nious coexistence (with theGDPR requirements concerning cross-border data transfer)? Legal
Issues Digit. Age 2(2), 21–48 (2021)

4. Zhao, W.: Regulation of cross-border flow of personal data. Master’s degree thesis. Dalian
Maritime University, Liaoning (2019)

5. Fan, S.: Personal data protection in cross-border data flow. Electron. Intellect. Prop. Rights
(6), 85–97 (2020)

6. Jimenez-Gomez, B.S.: Cross-border data transfers between the EU and the US: a transatlantic
dispute. Santa Clara J. Int. L. 19, 1 (2021)

7. Rahat, T.A., Long, M., Tian, Y.: Is your policy compliant? A deep learning-based empirical
study of privacy policies’ compliance with GDPR. In: Proceedings of the 21st Workshop
on Privacy in the Electronic Society (WPES 2022), pp. 89–102. Association for Computing
Machinery, New York (2022). https://doi.org/10.1145/3559613.3563195

8. Story, P., Zimmeck, S., Ravichander,A., et al.: Natural language processing formobile app pri-
vacy compliance. In: AAAI Spring Symposium on Privacy-Enhancing Artificial Intelligence
and Language Technologies, p. 10 (2019)

9. Asif, M., Javed, Y., Hussain, M.: Automated analysis of Pakistani websites’ compliance with
GDPR and Pakistan data protection act. In: 2021 International Conference on Frontiers of
Information Technology (FIT), pp. 234–239 (2021). https://doi.org/10.1109/FIT53504.2021.
00051

10. Liu, S., Zhao, B., Guo, R., Meng, G., Zhang, F., Zhang, M.: Have you been properly notified?
Automatic compliance analysis of privacy policy text with GDPR Article 13. In Proceedings
of the Web Conference 2021 (WWW 2021), pp. 2154–2164. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3442381.3450022

11. Libal, T.: Towards automated GDPR compliance checking. In: Heintz, F., Milano, M.,
O’Sullivan, B. (eds.) TAILOR 2020. LNCS, vol. 12641, pp. 3–19. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-73959-1_1

12. Zimmeck, S., Story, P., Smullen, D., et al.: MAPS: scaling privacy compliance analysis to a
million apps. Proc. Priv. Enhanc. Technol. 2019(3), 66–86 (2019)

13. Andow, B., Mahmud, S.Y., Whitaker, J., et al.: Actions speak louder than words: {entity-
sensitive} privacy policy and data flow analysis with {PoliCheck}. In: 29th USENIX Security
Symposium (USENIX Security 2020), pp. 985–1002 (2020)

14. Guamán, D.S., Del Alamo, J.M., Caiza, J.C.: GDPR compliance assessment for cross-border
personal data transfers in android apps. IEEE Access 9, 15961–15982 (2021). https://doi.org/
10.1109/ACCESS.2021.3053130

15. Guamán, D.S., Ferrer, X., del Alamo, J.M., et al.: Automating the GDPR compliance assess-
ment for cross-border personal data transfers in android applications. arXiv preprint arXiv:
2103.07297 (2021)

16. Yuan, H., Zhang, S.: Content analysis of privacy policy of government APP under the envi-
ronment of “internet plus+government services.” Mod. Intell. 42(3), 121–132 (2022). https://
doi.org/10.3969/j.issn.1008-0821.2022.03.014

17. Ma, C., Liu, Q.: Comparative study on the protection of personal health information between
China and the United States: analysis of privacy policy based on 60 mainstream mobile
medical APPs. Electron. Intellect. Prop. 1, 27–36 (2021). https://doi.org/10.3969/j.issn.1004-
9517.2021.01.004

18. Zhao, J., Yuan, Q., Chen, J.: Research on B2C network merchant privacy policy based on con-
tent analysis. Mod. Intell. 40(4), 101–110 (2020). https://doi.org/10.3969/j.issn.1008-0821.
2020.04.012

https://doi.org/10.1145/3559613.3563195
https://doi.org/10.1109/FIT53504.2021.00051
https://doi.org/10.1145/3442381.3450022
https://doi.org/10.1007/978-3-030-73959-1_1
https://doi.org/10.1109/ACCESS.2021.3053130
http://arxiv.org/abs/2103.07297
https://doi.org/10.3969/j.issn.1008-0821.2022.03.014
https://doi.org/10.3969/j.issn.1004-9517.2021.01.004
https://doi.org/10.3969/j.issn.1008-0821.2020.04.012

Cross-Border Data Security from the Perspective of Risk Assessment 103

19. Zhang, Y., Qiu, Y.: Research on the compliance of privacy policy of mobile reading APP in
China under hard rules. Mod. Intell. 42(1), 167–176 (2022). https://doi.org/10.3969/j.issn.
1008-0821.2022.01.016

20. Zhao, Y., Yan, Z., Shen, Q., et al.: Research on the compliance of privacy policy of medical
health APP based on machine learning. Data Anal. Knowl. Discov. 6(5), 112–126 (2022).
https://doi.org/10.11925/infotech.2096-3467.2021.0897

21. Liang, D.: The normative path for the protection of personal information of E-commerce
consumers: an empirical study based on the privacy policy of 6 categories and 12 home
appliance business platforms. J. DalianUniv. Technol. (Soc. Sci. Edn.) 43(3), 102–112 (2022).
https://doi.org/10.19525/j.issn1008-407x.2022.03.011

22. Wang, X.: Research on compliance of privacy policy in mobile social APP - content analysis
based on 20 privacy policy texts. Netw. Secur. Technol. Appl. (1), 143–146 (2022). https://
doi.org/10.3969/j.issn.1009-6833.2022.01.090

23. Zhu, Z., Lu, Y., Tang, Z., et al.: Application classification based on privacy policy terms and
machine learning. Commun. Technol. 53(11), 2749–2757 (2020). https://doi.org/10.3969/j.
issn.1002-0802.2020.11.022

24. Xu, Q.: Research on compliance with privacy policy of mobile internet APP based on the
personal information protection law. Wuhan University, Hubei (2022)

25. Li, J., Zhang, L., Li, J., Xing, X.: Classified control and influencing factors for risks man-
agement in institutions with cross-border data flow. J. Syst. Sci. Math. Sci. 42(9), 2347–2366
(2022)

26. Kuner, C.: Protecting EU data outside EU borders under the GDPR. Common Mark. Law
Rev. 60(1), 77–106 (2023)

27. Du, S.: The enlightenment of EU legislation on cross-border flow of personal data to China.
Master’s degree thesis. Shandong University, Shandong (2018)

28. Li, S.: Research on information security risk assessment method based on improved neural
network. China University of Mining and Technology (2018)

29. Iso, A.N.: AS_NZS ISO 31000:2009 risk management - principles and guidelines (2009)
30. Purdy, G.: ISO 31000:2009—setting a new standard for risk management. Risk Anal. 30(6),

881–886 (2010)
31. Becker, R., Thorogood, A., Bovenberg, J., et al.: Applying GDPR roles and responsibilities

to scientific data sharing. Int. Data Priv. Law 12(3), 207–219 (2022)
32. Dang, D., Meng, Z.: Information security risk assessment based on support vector machine.

J. Huazhong Univ. Sci. Technol. (Nat. Sci. Edn.) 38(03), 46–49 (2010)
33. Tao, Z., Mu, D., Ren, S., Yao, L.: An information security risk assessment model based on

risk matrix method. Comput. Eng. Appl. 46(05), 93–95 (2010)
34. Xiao, L., Qi, Y., Li, Q.: Information security risk assessment based on AHP and fuzzy

comprehensive evaluation. Comput. Eng. Appl. 45(22), 82–85 + 89 (2009)
35. Zhao, D., Liu, H., Liu, C.: Information security risk assessment based on BP neural network.

Comput. Eng. Appl. (01), 139–141 (2007)
36. Fu, Y., Wu, X., Yan, C.: Information security risk assessment method based on Bayesian

network. J. Wuhan Univ. (Sci. Edn.) (05), 631–634 (2006)
37. Banton, M., Bowles, J., Silvina, A., et al.: On the benefits and security risks of a user-centric

data sharing platform for healthcare provision. In: Adjunct Proceedings of the 29th ACM
Conference on User Modeling, Adaptation and Personalization, pp. 351–356 (2021)

38. Na,W.,Gaofei,W.,Qiuling,Y., Jinglu,H., Zhang,Y.: Research on security assessment of cross
border data flow. In: Cao, C., Zhang, Y., Hong, Y., Wang, D. (eds.) FCS 2021. CCIS, vol.
1558, pp. 327–341. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0523-
0_21

39. Na, W., Gu, M., Wu, G., et al.: The current situation, analysis, and prospects of cross border
data flow. Inf. Secur. Res. 7(6), 488–495 (2021)

https://doi.org/10.3969/j.issn.1008-0821.2022.01.016
https://doi.org/10.11925/infotech.2096-3467.2021.0897
https://doi.org/10.19525/j.issn1008-407x.2022.03.011
https://doi.org/10.3969/j.issn.1009-6833.2022.01.090
https://doi.org/10.3969/j.issn.1002-0802.2020.11.022
https://doi.org/10.1007/978-981-19-0523-0_21

104 N. Wang et al.

40. Parretti, C., Pourabbas, E., Rolli, F., et al.: Robust privacy assessment in transnational health-
care systems. In: IOP Conference Series: Materials Science and Engineering, vol. 1174, no.
1, p. 012015. IOP Publishing (2021)

41. Tan, C., Chen, H.: Research on information security risk assessment methods. Confidential
Sci. Technol. (10), 40–43 (2017)

42. Singh, P.,Masud,M.,Hossain,M.S., et al.: Cross-domain secure data sharing using blockchain
for industrial IoT. J. Parallel Distrib. Comput. 156, 176–184 (2021)

43. Rahman, M.S., Al Omar, A., Bhuiyan, M.Z.A., et al.: Accountable cross-border data sharing
using blockchain under relaxed trust assumption. IEEE Trans. Eng. Manage. 67(4), 1476–
1486 (2020)

44. Heider-Aviet, A., Ollik, D.R., Berlato, S., et al.: Blockchain based ran data sharing. In: 2021
IEEE International Conference on Smart Data Services (SMDS), pp. 152–161. IEEE (2021)

45. Spanakis, E.G., Sfakianakis, S., Bonomi, S., et al.: Emerging and established trends to support
secure health information exchange. Front. Digit. Health 3, 636082 (2021)

46. Guo, T.: Reflections on the regulation of cross border data flow in the digital economy era.
World Sci. Technol. Res. Dev. 1 (2022)

47. Syroid, T.L., Kaganovska, T.Y., Shamraieva, V.M., et al.: The personal data protection
mechanism in the European union. Int. J. Comput. Sci. Netw. Secur. 21(5), 113–120 (2021)

48. Yang, X.: Regulatory approaches of cross-border data flow in the big data era: china’s choice.
J. Phys.: Conf. Ser. 1848(1), 012026 (2021)

49. Zheng, G.: Trilemma and tripartition: the regulatory paradigms of cross-border personal data
transfer in the EU, the US and China. Comput. Law Secur. Rev. 43, 105610 (2021)

50. Casalini, F., González, J.L., Nemoto, T.: Mapping commonalities in regulatory approaches to
cross-border data transfers (2021)

51. Ziyi, X.: International law protection of cross-border transmission of personal information
based on cloud computing and big data. Mob. Inf. Sys. 2022 (2022)

IoT-REX: A Secure Remote-Control
System for IoT Devices from Centralized

Multi-designated Verifier Signatures

Yohei Watanabe1,2(B), Naoto Yanai2,3, and Junji Shikata4

1 The University of Electro-Communications, Tokyo, Japan
watanabe@uec.ac.jp

2 Japan Datacom Co., Ltd., Tokyo, Japan
yanai@ist.osaka-u.ac.jp

3 Osaka University, Osaka, Japan
4 Yokohama National University, Yokohama, Kanagawa, Japan

shikata-junji-rb@ynu.ac.jp

Abstract. IoT technology has been developing rapidly, while at the
same time, notorious IoT malware such as Mirai is a severe and inherent
threat. We believe it is essential to consider systems that enable us to
remotely control infected devices in order to prevent or limit malicious
behaviors of infected devices. In this paper, we design a promising candi-
date for such remote-control systems, called IoT-REX (REmote-Control
System for IoT devices). IoT-REX allows a systems manager to designate
an arbitrary subset of all IoT devices in the system and every device can
confirm whether or not the device itself was designated; if so, the device
executes a command given from the systems manager. Towards realizing
IoT-REX, we introduce a novel cryptographic primitive called central-
ized multi-designated verifier signatures (CMDVS). Although CMDVS
works under a restricted condition compared to conventional MDVS, it
is sufficient for realizing IoT-REX. We provide an efficient CMDVS con-
struction from any approximate membership query structures and digi-
tal signatures, yielding compact communication sizes and efficient veri-
fication procedures for IoT-REX. We then discuss the feasibility of IoT-
REX through cryptographic implementation of the CMDVS construction
on a Raspberry Pi. Our promising results demonstrate that the CMDVS
construction can compress communication size to about 30% compared
to a trivial construction, and thus its resulting IoT-REX becomes three
times faster than a trivial construction over typical low-power wide area
networks with an IoT device.

Keywords: Broadcast authentication · Remote-control system ·
Multi-designated verifier signatures

1 Introduction

Internet-of-Things technologies have been spreading rapidly and enriching our
lives. According to a Cisco report [1], tens of billions of IoT devices are expected
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 105–122, 2023.
https://doi.org/10.1007/978-981-99-7032-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_7&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_7

106 Y. Watanabe et al.

to be deployed over the next few years. On the other hand, along with the rapid
development of IoT technologies, we have to focus our efforts on cybersecurity,
though there are several constraints on that in the context of IoT devices. For
example, most IoT devices, unfortunately, do little to protect the data stored
inside, most likely due to the development cost and restricted resources. This has
a profound effect on the real world; for instance, a notorious IoT malware ‘Mirai’
infected many IoT devices, turning them into botnets. The botnets infected
nearly 65,000 IoT devices in its first 20 h [3]. The widespread outbreak of Mirai
had a considerable impact on the world. As described above, most IoT devices do
not have sufficient resources to implement and deploy security functions for each
specific security threat [6]. Hence, there seem to be no versatile solutions [5].

One possible approach is to design cryptographic schemes that can be used
in cooperation with existing methods such as controlling [35,37,39] or surveil-
lance [20,24,29] of individual devices. Cryptographic schemes can provide prov-
able security that theoretically guarantees the security of a cryptographic pro-
tocol through mathematical proofs.

In this paper, we present a novel system based on cryptography, IoT-REX
(REmote-Control System for IoT devices), which has an arbitrary subset of all
IoT devices and executes any commands remotely and securely. The most likely
scenario is to disable compromised IoT devices, e.g., those infected with malware.
IoT-REX allows such devices to be brought to a halt as soon as possible. It is
expected to, for example, stop and reboot malware-infected devices all at once,
whereby a sender can communicate with many devices simultaneously with a
single piece of data.

We note that the efficient design of IoT-REX is non-trivial. One might think
IoT-REX can be realized with a standard digital signature; regarding an arbitrary
subset of devices’ identifiers as a single message and signing it. However, it is
insufficient because the communication size is linear in the size of the subset.
Since IoT devices are resource-constrained [15], their battery life is also limited.
Even if the latency on a CPU is small enough, the communication should be
used sparingly to avoid consuming energy too quickly as well [18]. Namely, we
need to achieve the small communication size as well as the functionality to
choose an arbitrary subset of receivers. As an advanced cryptographic approach,
broadcast authentication [27] might be employed; it can broadcast a single piece
of data to many receivers, i.e., IoT devices, with data authenticity for controlling
them. However, existing broadcast authentication schemes [8,26,27,30,32,34]
except for a recent work [37] cannot support the functionality that a sender
chooses an arbitrary subset of receivers. Though the only exception [17], i.e.,
the broadcast authentication scheme that supports such functionality, may be
applied to IoT-REX, it still has the major drawback of communication sizes since
it just combines individual authenticators for all designated devices.

To this end, we propose a novel cryptographic scheme, centralized multi-
designated verifier signatures (CMDVS), as a core primitive for IoT-REX. We
define the security of CMDVS formally and then propose an efficient CMDVS
construction from any approximate membership query (AMQ) structure and dig-

IoT-REX: A Secure Remote-Control System for IoT Devices 107

ital signatures, which yields an efficient design for IoT-REX. The proposed con-
struction is provably secure. Note that we show CMDVS provides more efficient
communication sizes than the two trivial approaches described in the previous
paragraph.

We also discuss the feasibility of IoT-REX for IoT devices through the imple-
mentation of the proposed CMDVS construction with EdDSA [4] and vacuum
filters [36], which is one of the efficient AMQ structures. We then demonstrate
that the proposed CMDVS construction can compress communication size to
about 30% compared to the trivial approach with standard digital signatures.
(Hereafter, we call this approach trivial construction.) We also show that our
scheme can also compress communication size to about 4% compared to the
broadcast-authentication-based approach [37], which is simply called broadcast
authentication hereafter. Our promising results also show that, by virtue of the
compression of the communication size, IoT-REX is three times faster than the
trivial construction and 25 times faster than the broadcast authentication over
typical low-power wide area networks with a Raspberry Pi3 as an IoT device.
We also evaluate the communication overheads. We have released our source
code for reproducibility and subsequent work (https://github.com/naotoyanai/
fiilter-signature ABA).

To sum up, our primary goal is to design IoT-REX, and we make the following
technical contributions:

– We propose CMDVS as a novel cryptographic primitive to instantiate IoT-
REX. We formally define and prove the security of the proposed construction
from digital signatures and AMQ structures.

– Through an implementation, we experimentally demonstrate that the pro-
posed CMDVS construction can compress communication size to about 30%
compared to the trivial construction and 4% compared to the broadcast
authentication. We have released our code via GitHub.

2 IoT-REX: REmote-Control System for IoT Devices

2.1 System Setting

Suppose a large, simple system called IoT-REX (REmote-Control System for IoT
devices) among a systems manager and many IoT devices such as sensors and
surveillance cameras below.

IoT-REX: An Overview. There are a systems manager and a number of IoT
devices. For some reason (e.g., based on data from outside sources such as device
owner’s request and information on vulnerable devices), the systems manager
generates and broadcasts authenticated information in order to make only des-
ignated IoT devices execute a command cmd remotely and securely, while the
devices themselves can detect a forgery of the authenticated information that
aims to change the designated-device set and/or the command.

Expected Applications. We believe there are various applications of IoT-REX.
For example, it enables one to put only designated devices to sleep, e.g., in order

https://github.com/naotoyanai/fiilter-signature_ABA
https://github.com/naotoyanai/fiilter-signature_ABA

108 Y. Watanabe et al.

to extend their operational lives. At the same time, it prevents an adversary
from forging the authenticated information on the ‘sleep’ command and which
devices are designated. Besides, let us explain another important application:
the IoT devices usually communicate with each other via the Internet, and could
be infected with malware. As explained in the introduction, it seems difficult to
completely eliminate the chance of devices being infected with malware, and IoT
malware spreads rapidly between IoT devices once the initial infection occurs.
Therefore, IoT-REX can bring infected devices to a halt as soon as possible in
order to prevent or limit malicious behavior by said devices (e.g., DDoS attacks),
rather than preventing the initial infection.

2.2 System Model

Based on the above discussion, we formally define IoT-REX as a protocol among
the following entities: a device owner O, a systems manager SM, and IoT devices
D. Let I be a set of possible identifiers in the system, and IAct be an identifier
set of activated devices, i.e., IoT devices taking part in the system. We denote
an identifier set of devices designated by SM so that they execute a command
cmd by IDsg. We have IDsg ⊂ IAct ⊂ I.

System Overview. Suppose that the device owner O manages many IoT
devices {Did}id∈IAct

. Note that O can dynamically add and remove IoT devices.
Let us explain the protocol overview as follows.
1© O sends SM a request to have an arbitrary subset (i.e., IDsg) of all devices

execute a command cmd.
2© SM generates an authenticated command ̂cmd, which is an authenticated

version of cmd and contains the information on the designated devices IDsg, and
broadcasts it to all devices.
3© All IoT devices {Did}id∈IAct

(including non-designated ones) receive ̂cmd and
check its validity. If ̂cmd is not valid, the devices reject it and terminate the
process.

4© If an IoT device Did confirms that the authenticated command ̂cmd is valid
and directed at the device, Did executes cmd. Otherwise, i.e., if ̂cmd is valid but
does not designate Did, the device does nothing and terminates the process.

2.3 Assumptions and Requirements

Adversarial Model and Assumptions. Suppose that the systems manager
SM broadcasts an authenticated command ̂cmd to all devices {Did}id∈IAct

. We
assume an adversary A can eavesdrop, insert, delay, and modify all the trans-
mitted information. We also assume that A’s main purpose is to maliciously
modify authenticated commands so that some designated devices do not exe-
cute cmd and/or some non-designated devices execute cmd. More formally, we
assume that A mainly aims to modify ̂cmd in order to change a pair of (cmd, IDsg)
to a different pair (cmd′, I ′

Dsg) in order to accomplish any of the goals below:

IoT-REX: A Secure Remote-Control System for IoT Devices 109

(a) At least one designated device Did for id ∈ IDsg does not execute cmd as a
regular process.

(b) At least one designated device Did for id ∈ IDsg executes cmd′ (�= cmd) as a
regular process.

(c) At least one non-designated device Did for id ∈ I ′
Dsg \ IDsg executes cmd′,

which might be the same as cmd, as a regular process.

Note that the above goals include that A tries to impersonate the systems man-
ager SM and create new (forged) authenticated commands. However, we assume
A is not capable of forging any CMDVS signature, which is a core element of
authenticated commands ̂cmd, according to Definition 1, which will be defined
later.

For simplicity, we assume that all devices receive the same information; if
authenticated commands are modified, all devices receive the modified ones.
We also note that preventing attacks in the physical layer is out of the scope,
i.e., jamming. It can be prevented by existing techniques such as the spread
spectrum [22].

Requirements. Following the discussion in the introduction and our system
goal, the secure system for remotely controlling IoT devices, IoT-REX, should
possess the following four properties.

– Completeness: Only designated devices {Did}id∈IDsg
execute a command cmd

unless the corresponding authenticated command ̂cmd is externally modified.
In other words, any non-designated device Did, where id ∈ IAct \ IDsg, never
executes cmd as long as it receives ̂cmd as it is. The system might have allow-
able errors; a very small percentage of devices might not work as expected.
This error seems likely in most large-scale applications.

– Integrity : If an authenticated command ̂cmd is externally modified, any device
can detect it and reject ̂cmd.

– Scalablity : The system allows a large number of IoT devices, e.g., up to a
million. In particular, the size of authenticated commands should be small,
i.e., it does not depend on the number of designated devices linearly. Ideally,
it should be independent of the number of designated devices in the system.

– Light weight : The devices’ resources might be poor. Thus, the verification
process executed by the devices should be efficient enough that, ideally, even
microcomputers such as an ARM Cortex-M3 can run the process.

The first two requirements—completeness and integrity—are the fundamen-
tal properties to have IoT-REX work well in practice. The last two requirements—
scalability and light weight—are also important properties for IoT-REX since we
focus on various IoT devices. including microcomputers. Indeed, a trivial system
can be constructed by an arbitrary digital signature or MAC: SM just sends
each designated IoT device a command cmd with its signature/MAC. This triv-
ial construction requires the O(d ·κ) communication size, where d is the number
of designated devices and κ is a security parameter, whereas its verification pro-
cess is lightweight since it requires only a single signature/MAC verification.

110 Y. Watanabe et al.

Hence, achieving both scalability and lightweight is another important goal for
IoT-REX.

3 Centralized Multi-designated Verifier Signatures

We introduce centralized MDVS (CMDVS), which is a core cryptographic prim-
itive for IoT-REX. Unlike existing MDVS schemes [10,19], in CMDVS we con-
sider a situation where there are only one signer and multiple verifiers. Note
that CMDVS is not a special case of MDVS; there are multiple users, who are
potential signers and/or verifiers, in MDVS.

Notations. For any natural numbers a, b ∈ N s.t. a ≤ b, {a, . . . , b} is denoted
by [a, b]. In particular, if a = 1, we denote [b] := {1, . . . , b}. For any real num-
bers a, b ∈ R s.t. a ≤ b, let (a, b] be a half-open interval. Concatenation is
denoted by ‖. For a finite set X , we denote by |X | the cardinality of X . For
any algorithm A, out ← A(in) means that A takes in as input and outputs
out. Throughout the paper, we denote by κ a security parameter and consider
probabilistic polynomial-time algorithms (PPTAs). We say a function negl(·) is
negligible if for any polynomial poly(·), there exists some constant κ0 ∈ N such
that negl(κ) < 1/poly(κ) for all κ ≥ κ0. In security games, a flag flag, which
indicates an adversary’s winning condition, is initialized as zero.

3.1 Syntax

First of all, a signer runs Setup to get a public parameter pp and a signing
key sk. The signer can run KeyGen with (pp, sk) to generate a verification key
vkid for any id ∈ I. Let V be a verifier set, i.e., a set of identities whose key-
pairs have been generated by KeyGen. To create a signature σ so that only a
designated-verifier set Dv ⊂ V accepts it, the signer executes Sign with sk, Dv,
and a message m. Each verifier can check the validity of (m, σ) by Vrfy with pp
and vkid if the verifier was designated by the signer, i.e., id ∈ Dv. In other words,
for any non-designated verifier id /∈ Dv, Vrfy with (pp, vkid) outputs ⊥ even if
the pair (m, σ) is a valid one.

CMDVS Π = (Setup,KeyGen,Sign,Vrfy) for an identity set I is defined as
follows.

– Setup(1κ) → (pp, sk): a probabilistic algorithm for setup. It takes a security
parameter 1κ as input, and outputs a public parameter pp and a signing key
sk. It initializes a verifier set V.

– KeyGen(pp, sk, id) → vkid: an algorithm for verification-key generation. It
takes pp, sk, an identity id ∈ I as input, and outputs a verification key
vkid for id. It also updates V := V ∪ {id}.

– Sign(sk,Dv,m, len) → σ / ⊥: a signing algorithm. It takes sk, a designated-
verifier set Dv ⊂ V, a message m ∈ M, and the maximum length of a signature
len as input, and outputs the signature σ for Dv or ⊥, which indicates “failure
of signature generation”.

IoT-REX: A Secure Remote-Control System for IoT Devices 111

– Vrfy(pp, vkid,m, σ) → / ⊥: a deterministic algorithm for verification. It
takes pp, vkid, m and σ as input, and outputs indicating “accept” or ⊥
indicating “reject”.

Fig. 1. The unforgeability game for
CMDVS.

Fig. 2. The consistency game for
CMDVS.

Remark 1 (On the Maximum Length len of Signatures). CMDVS allows
a signer to specify the maximum length len when generating the corresponding
signature, since we aim to design IoT-REX so that it is compatible with vari-
ous environments, including wireless ones, which often restricts bandwidth. The
length specification feature enables us to generate signatures so that they fit in
the channel’s bandwidth. Indeed, a trivial construction using digital signatures
produces signatures whose length depends on the number of designated verifiers,
whereas the proposed generic construction in Sect. 4 allows flexible parameter
settings, i.e., a signer first fixes len and then chooses other parameters.

3.2 Correctness and Security

We introduce the correctness property and security notions for CMDVS.

Oracles. We consider the following oracles. Let Listvk and Q be an array and
a set, respectively, and they are initialized as empty ones. For any id ∈ I, a
key-generation oracle Okg(pp, sk, ·) runs KeyGen(pp, sk, id) to get vkid. It adds
id and vkid to V and Listvk[id], respectively, and returns vkid. For any (Dv,m,
len) ∈ 2V × M ×N, a signing oracle Os(sk, ·) returns Sign(sk,Dv,m, len). It adds
(Dv,m) to Q if Sign(sk,Dv,m, len) �= ⊥.

Correctness. The correctness property guarantees that each verifier correctly
obtains the output of Vrfy algorithm unless signatures are maliciously modified.
We give the formal definition in the full version [38].

Unforgeability. We define unforgeability as a standard security notion for
CMDVS. Intuitively, unforgeability guarantees that no adversary can (mali-
ciously) modify a signature for D�

v ⊂ V so that at least one non-designated

112 Y. Watanabe et al.

verifier id ∈ V \ D�
v accepts it. Specifically, we consider a security game, given in

Fig. 1, against an adversary A, and let AdvUFΠ,A(κ) := Pr[ExpUFΠ,A(κ) = 1] be A’s
advantage in the game.

Definition 1 (Unforgeability). Let Π be a CMDVS scheme. Π is said to
meet unforgeability if for any sufficiently large κ ∈ N and any PPTA A, it holds
AdvUFΠ,A(κ) < negl(κ).

Consistency. We consider consistency, which was originally introduced by
Damg̊ard et al. [10] as a security notion for ordinary MDVS. Roughly speaking,
consistency guarantees that if at least one designated verifier accepts a signature,
then all others also do so. This notion is important in our setting, i.e., remote-
control systems for IoT devices, for several possible reasons: for example, it seems
difficult to collect the acknowledgment messages from all IoT devices; or, there
might be only downstream communication from the systems manager to IoT
devices. Therefore, it seems hard to check which designated verifiers accepted a
signature (without being maliciously modified). Consistency allows the signer to
just check a verification result of a specific designated verifier in order to confirm
all verifiers accept the signature.1

Specifically, we consider a security game, given in Fig. 2, against an adversary
A, and let AdvConsΠ,A (κ) := Pr[ExpConsΠ,A (κ) = 1] be A’s advantage in the game.

Definition 2 (Consistency). Let Π be a CMDVS scheme. Π is said to
meet consistency if for any sufficiently large κ ∈ N and any PPTA A, it holds
AdvConsΠ,A (κ) < negl(κ).

4 CMDVS Constructions

We can easily construct a CMDVS scheme Π = (Setup,KeyGen,Sign,Vrfy)
from any digital signature scheme Πds = (SigGen,SigSign,SigVer) by computing
σds ← SigSign(sigk,Dv‖m) and setting σ := (Dv, σds), where sigk is a sign-
ing key. Although this construction is quite simple, the signature size |σ| is
|Dv| · log2 |I| + |σds|. Namely, the maximum signature length len must always
satisfy len ≥ |Dv| · log2 |I| + |σds|.

We show a CMDVS scheme from an AMQ structure and DS scheme. Com-
pared to the trivial construction, we can succeed in drastically reducing the
signature size by allowing a small false-positive probability, which can be made
negligible with appropriate parameter settings. In particular, it can flexibly spec-
ify len s.t. len = o(|Dv|) with adjustment for other parameters.

Approximate Membership Query (AMQ) Structures. For an arbitrary
set U ⊂ {0, 1}∗, an AMQ data structure Πamq = (Gen, Insert, Lookup) over U is
defined as follows.2

1 We assume all verifiers (including non-designated ones) receive the same data regard-
less of whether it is modified.

2 Although there are various AMQ structures supporting deletion operations, we do
not consider them since we do not require deletion operations for our schemes.

IoT-REX: A Secure Remote-Control System for IoT Devices 113

– Gen(U , par) → (T, aux): it takes U and a parameter par as input, and outputs
an initial structure T and auxiliary information aux. The parameter par varies
depending on concrete AMQ structure constructions.

– Insert(T, x, aux) → T′: it takes a data structure T, an element x ∈ U , auxiliary
information aux as input, and outputs an updated structure T′.

– Lookup(T, x, aux) → true/false: it takes a data structure T, an element
x ∈ U , auxiliary information aux as input, and outputs true or false.

An AMQ structure meets the following completeness, while it allows false
positives to make the structure size smaller and its probability can be bounded.
Note that false negatives never occur.

Definition 3 (Completeness). For any par, any (T0, aux) ← Gen(U , par),
any S = {x1, . . . , x|S|} ⊂ U , we define ̂T := T|S| as Ti ← Insert(Ti−1, xi, aux)
for i ∈ [|S|]. Then, for all x ∈ S, it holds Pr[Lookup(̂T, x, aux) = true] = 1.

Definition 4 (Bounded False-Positive Probability). Let Πamq be an
AMQ structure over U , and suppose that ̂T is generated as in Def. 3 and
n := |S|. Then, there exists μn ∈ (0, 1] such that it holds Pr[Lookup(̂T, x,
aux) = true] ≤ μn for any x ∈ U \ S, where the probability is over Gen and
Insert.

AMQ structures mainly aim to compress the description length of S by allow-
ing false positive errors. Therefore, the size of the structure ̂T should be smaller
than the following trivial solutions: (1) encode each element of S and list them,
i.e., |S| · log2 |U| bits; and (2) prepare an |U|-bit string and set every i-th bit to
one if and only if xi ∈ S. Namely, it should hold |̂T| ≤ min{|S| · log2 |U|, |U|}.

There are many instantiations of AMQ structures: the Bloom filter [7] and its
variants [16,25], cuckoo filter [12], vacuum filter [36], etc. Although the Bloom
filter has been theoretically well-analyzed due to its simple structure, recent con-
structions (e.g., [12,36]) are (experimentally) more efficient in terms of structure
sizes.

Our Generic Construction. In the following, we suppose a function Assign :
N×I → 2U over U . Roughly speaking, Assign is a function that uniquely assigns
multiple elements in U to an arbitrary identity, and we assume that for any fixed
� ∈ N and for any id, id′ ∈ I, it holds Assign(�, id) ∩ Assign(�, id′) = ∅. Note that
such a function can be realized in the following way: suppose I := {0, 1}γ ,U :=
{0, 1}γ+�log2 ��+1, and for any � and any id ∈ I, we define Assign(�, id) := {β1‖id,
β2‖id, . . . , β�‖id}, where βi is binary representation of i ∈ [�]. Our CMDVS
scheme from an AMQ structure Πamq = (Gen, Insert, Lookup) over U ⊂ {0, 1}∗

and a DS scheme Πds = (SigGen,SigSign,SigVer) as follows.

– Setup(1κ): It arbitrarily chooses � ∈ N, and it returns (pp, sk), where pp :=
(verk, �) and sk := (sigk, �).

– KeyGen(pp, sk, id): It returns vkid := Assign(�, id).

114 Y. Watanabe et al.

– Sign(sk,Dv,m, len): It derives an appropriate parameter par from Dv, m, and
len. If par cannot be derived, it returns ⊥. For every idi ∈ Dv, let Xi =
{x(i−1)�+1, . . . , xi�} := Assign(�, idi).3 It runs (T0, aux) ← Gen(U , par) and for
every i ∈ [�|Dv|], it computes Ti ← Insert(Ti−1, xi, aux). It sets σ := (̂T, aux,

σds), where ̂T := T�|Dv| and σds ← SigSign(sigk,m‖̂T‖aux). If |σ| > len, it
returns ⊥; otherwise, it returns σ.

– Vrfy(pp, vkid,m, σ): It runs SigVer(verk, (m‖̂T‖aux, σds)). If the output is ⊥,
it returns ⊥ and terminates. For every x ∈ Xid, it returns ⊥ and terminates
if Lookup(̂T, x, aux) outputs false. It returns (if all Lookup outputs are
true).

The above construction meets the desirable properties below. Due to the
page limitation, we give the proof in the full version [38].

Theorem 1. If a DS scheme Πds meets UF-CMA security and an AMQ struc-
ture Πamq meets completeness and bounded false-positive probability such that
it holds μ�|Dv| = 2−O(κ) for all possible � ∈ N and Dv ⊂ V in the above con-
struction, the above CMDVS scheme Π meets correctness, unforgeability, and
consistency.

Instantiations. The above construction can be instantiated with any AMQ
structures and digital signatures. After the seminal work of AMQ structures,
i.e., the Bloom filter [7], there are various (heuristically) efficient AMQ struc-
ture constructions such as the cuckoo filter [12] and the vacuum filter [36]. In
this paper, we will employ the vacuum filter as the underlying AMQ structure
for implementations in Sect. 5. We also give the theoretical performance of the
construction instantiated by the Bloom filter in the full version [38].

System Description. Due to space limitation, we give a concrete description
of IoT-REX with the above CMDVS construction in the full version [38].

5 Experiments

In this section, we describe experimental evaluations of IoT-REX. Our primary
motivation for the evaluations is to confirm how communication sizes can be
reduced by virtue of an AMQ structure compared with the trivial construction
and broadcast authentication [37], which supports the functionality that a sender
chooses an arbitrary subset of receivers.4 We implemented the proposed CMDVS
constructions in the C++ language with EdDSA [4] and vacuum filters [36].
EdDSA is implemented in the libsodium5 library version 1.0.18-stable and the
vacuum filter is implemented in the Vacuum-Filter library.6

3 Namely,
⋃|Dv|

i=1 Xi = {x1, x2, . . . , x�|Dv|}.
4 Although the broadcast authentication in [37] is based on message authentication

codes (MAC), we simply say signatures as MAC for the sake of convenience.
5 https://libsodium.gitbook.io/doc/.
6 https://github.com/wuwuz/Vacuum-Filter.

https://libsodium.gitbook.io/doc/
https://github.com/wuwuz/Vacuum-Filter

IoT-REX: A Secure Remote-Control System for IoT Devices 115

We first measure the communication size when the proposed CMDVS con-
structions are implemented on a laptop PC. Our code returns a bit length per
designated device via the vacuum filter library and then we count up the total
size for communication with the bit length. We also implemented the broadcast
authentication [37] with the OpenSSL library version 1.1.1. The environment of
the laptop PC is Ubuntu 18.04.5 LTS on the Windows Subsystem for Linux over
Windows 11 and is with Intel Core i7-8565U and 16 GB memory. We assume
that a device identifier is 64 bits and the bit length of commands for designated
devices is 256 bits.

We then discuss the feasibility of IoT-REX by estimating the entire process
on a Raspberry Pi over LoRa with its maximum transmission speed of 250 kilo-
bits per second as a typical wireless network setting. On the system model of
IoT-REX described in Sect. 2, the laptop PC corresponds to a systems manager
SM, and the Raspberry Pi corresponds to an IoT device among the designated
devices IDsg. Since a Raspberry Pi has become popular, we believe that the
estimation gives us insight into IoT-REX in the real world.

Fig. 3. Communication size versus size
of designated-verifier set: The red line,
denoted by Generic Construction, rep-
resents the proposed generic construc-
tion while the blue line, denoted by Triv-
ial Construction, represents the trivial
construction, respectively. (Color figure
online)

Fig. 4. Computation time versus size
of designated-verifier set for Sign: This
figure is a box-and-whisker plot. Other
setting is common with Fig. 3. The yel-
low line, denoted by Broadcast Authen-
tication, represents the scheme in [37].

5.1 Results

Communication Size. The results of the communication size are shown in
Fig. 3. According to the figure, the communication size for the generic con-
struction becomes four times smaller than the trivial construction and 25 times
smaller than the broadcast authentication, respectively. Such advantage of the

116 Y. Watanabe et al.

communication size is obtained by an AMQ structure, i.e., the vacuum filter.
The false-positive probability of the vacuum filter is about 0.01% in this mea-
surement.

The bit length per designated device for the generic construction is about
20 bits and is almost stable for any number of the designated devices. It means
that the communication size could be compressed by about 30% because the bit
length per designated device for the trivial construction is 64 bits. Notably, the
communication size could be compressed by about 4% compared to the broadcast
authentication.

Computation Time. We also measure the computation time for the Sign and
Vrfy algorithms. For the Sign algorithm, the generic construction and the trivial
construction are two orders of magnitude faster than the broadcast authentica-
tion (see in Fig. 4). Indeed, the generic construction and the trivial construction
generate only a single signature while the broadcast authentication needs to gen-
erate individual signatures in proportion to the number of devices. Consequently,
the computation time could be drastically improved compared to the broadcast
authentication.

We also compare the generic construction with the trivial construction in
detail, and their results are shown in Fig. 5 and Fig. 6, respectively. According
to the figures, the computation times for the Sign and Vrfy algorithms of the
generic construction are almost identical to those for the trivial construction
until 200,000 devices. Meanwhile, the computation time for both Sign and Vrfy
algorithms of the generic construction is greater than the trivial construction.

The reason is that the Insert and Lookup process of the AMQ structure takes
a long time in proportion to the size of a designated-verifier set Dv. In con-
trast, the trivial construction needs only string operations for each algorithm,
i.e., concatenation of Dv for Sign and search of id in Dv for Vrfy. We note that
the computation time for the generic construction should be longer than that for
the trivial construction, because the generic construction executes the Insert and
Lookup processes as well as the generation of the EdDSA signatures, whereas
the trivial construction generates only the EdDSA signatures. The above phe-
nomenon is common with the broadcast authentication since it compute a single
verification computation in the Vrfy algorithm.

It also indicates that the overheads caused by the AMQ structure can be
represented in the differences between the generic construction and the trivial
construction in Fig. 5 and Fig. 6. Specifically, the computation time for the Sign
algorithm of the generic construction becomes about five times longer by using
the AMQ structure than that of the trivial construction after 500,000 devices.
We also note that the computation time for the Vrfy algorithm of the generic
construction becomes a hundred times longer due to the use of the AMQ struc-
ture.

Entire Performance. Based on the results in the previous subsections, we
discuss the feasibility of IoT-REX. The entire performance of IoT-REX over the
LoRa network with the Raspberry Pi is estimated as shown in Fig. 7. This figure
shows the entire performance of IoT-REX over the LoRa network, including the

IoT-REX: A Secure Remote-Control System for IoT Devices 117

Fig. 5. Computation time versus size
of designated-verifier set for Sign: This
figure is a box-and-whisker plot. Other
setting is common with Fig. 3.

Fig. 6. Computation time versus size of
designated-verifier set for Vrfy: The set-
ting is common with Fig. 5.

computation for the Sign and Vrfy algorithms, wherein a systems manager SM

generates an authenticated command ̂cmd and each device id receives ̂cmd. Here,
the entire performance is then estimated over LoRa with its maximum trans-
mission speed of 250 kilo-bits per second as described above.

According to the figure, the performance of IoT-REX based on the generic
construction is three times faster than that based on the trivial construction.
Compared to the broadcast authentication, it is 25 times faster than the broad-
cast authentication, and therefore two orders of magnitude faster. In particular,
the elapsed time per device is about 0.08 milliseconds for the generic construc-
tion, about 0.26 milliseconds for the trivial construction, and about 2 millisec-
onds for the broadcast authentication, respectively. The performance improve-
ment is obtained by virtue of compressing the communication size via the AMQ
structures.

Since the performance improvement by the proposed construction is stable
for any number of devices in Dv, we can also estimate the number of IoT devices
which can be controlled within a second. Notably, devices of more than 12,000
can be controlled by IoT-REX based on the proposed construction over LoRa,
which is greater than 4,000 devices by the trivial construction and 400 devices
by the broadcast authentication.

Communication Overheads on Low-Power Wide Area Networks. We
discuss IoT-REX over low-power wide area networks other than LoRa as further
applications. We know eMTC7 with its maximum transmission speed of 1 mega-
bits per second and SIGFOX8 with its maximum transmission speed of 600 bits
per second as specifications for low-power wide area networks.

7 https://halberdbastion.com/technology/iot/iot-protocols/emtc-lte-cat-m1#:
∼:text=An%20eMTC%20Cat%2DM1%20network,any%20existing%20LTE
%20channel%20width..

8 https://www.sigfox.com/en/what-sigfox/technology.

https://halberdbastion.com/technology/iot/iot-protocols/emtc-lte-cat-m1#:~:text=An%20eMTC%20Cat%2DM1%20network,any%20existing%20LTE%20channel%20width.
https://halberdbastion.com/technology/iot/iot-protocols/emtc-lte-cat-m1#:~:text=An%20eMTC%20Cat%2DM1%20network,any%20existing%20LTE%20channel%20width.
https://halberdbastion.com/technology/iot/iot-protocols/emtc-lte-cat-m1#:~:text=An%20eMTC%20Cat%2DM1%20network,any%20existing%20LTE%20channel%20width.
https://www.sigfox.com/en/what-sigfox/technology

118 Y. Watanabe et al.

Fig. 7. Entire performance versus the size of the designated-verifier set. The setting
is common with Fig. 3. This figure includes both the communication time and the
computation time.

IoT-REX based on the generic construction is stably three times faster than
the trivial construction and 25 times faster than the broadcast authentica-
tion over these networks by virtue of compressing the communication cost. For
instance, in the case of SIGFOX, 12,000 devices are controlled within about 308 s
by the generic construction, within about 1200 s by the trivial construction, and
within 10240 s by the broadcast authentication. In the case of eMTC, 12,000
devices can be controlled within about 0.24 s by the generic construction, 0.64 s
by the trivial construction, and 6.59 s by the broadcast authentication.

Overall, for a communication protocol with its maximum transmission speed
of 50 mega-bits per second, IoT-REX based on the generic construction is faster
than the trivial construction. For a communication protocol whose maximum
transmission speed is 100 greater than mega-bits per second, IoT-REX based on
the generic construction is still faster than the trivial construction as long as the
number of IoT devices is fewer than 700,000. Moreover, it is also faster than the
broadcast authentication over 5G with its maximum transmission speed of 10
gigabits per second by virtue of the use of a single signature.

6 Related Work

Cryptographic Protocols Based on AMQ Structures. Most of the cryp-
tographic research related to AMQ structures (e.g., [11,23]) focus on the Bloom
filter [7] since unlike recent experimentally-efficient AMQ structures, it has been
well analyzed in a theoretical sense. However, the previous works have completely
different goals from ours. To the best of our knowledge, there is no research on
cryptographic protocols based on AMQ structures in the context of secure remote
control.

IoT-REX: A Secure Remote-Control System for IoT Devices 119

Message Authentication Protocols for Many Users. MDVS [19] is digital
signatures in the multi-user setting. Each user has signing and verification keys,
and any user can designate an arbitrary subset of other users and generate a
signature so that only the designated users can check the validity of the sig-
nature. On the other hand, CMDVS is a restricted version of MDVS, and our
CMDVS construction only requires AMQ structures and standard digital sig-
natures, which are lightweight enough for IoT environments. For the efficiency
reason, we only employed our CMDVS scheme for the experimental evaluations.

Broadcast authentication [8,26,27,30,32,34] aims to broadcast a single piece
of data to many receivers with data authenticity. However, except for Watanabe
et al.’s work [37], the existing works do not support the functionality that a
sender chooses an arbitrary subset of receivers; data is always broadcast to all
receivers. Watanabe et al. [37] introduced anonymous broadcast authentication
(ABA), which supports such functionality and provable anonymity. Although
ABA and CMDVS have similar functionality, they have a clear difference between
them: due to the provable anonymity, the lower bound on the authenticator sizes
of ABA is Ω(d · κ), where d is the number of designated receivers and κ is the
security parameter. Our CMDVS construction overcame the lower bound.

IoT Security. IoT security can be realized from the firmware level [9] to the
application [31]. Although the conventional approach focuses on controlling the
data flow [13,14], the cryptographic approach is discussed in recent years [2,18,
28]. To the best of our knowledge, the IoT security in recent years is based on two
ways [33], machine learning [21,24] or trusted execution environments [35,39].
These approaches often utilize a central server to control resource-constrained
IoT devices outside of them. In contrast, our approach is built-in for IoT devices
because the Vrfy algorithm is embedded in them.

7 Concluding Remarks

In this paper, we proposed IoT-REX, a secure system aiming to control IoT
devices remotely. IoT-REX enables us to not only bring infected IoT devices to
a halt but also have any subset of all IoT devices execute arbitrary commands.
To this end, we introduced a novel cryptographic primitive for IoT-REX, called
centralized multi-designated verifier signatures (CMDVS). We also provided an
efficient CMDVS construction, which yields compact communication sizes and
fast verification procedures for IoT-REX. We further discussed the feasibility of
IoT-REX by implementing the CMDVS construction with vacuum filters and its
experimental evaluation with a Raspberry Pi. We have released our source to
provide reproducibility and expect further subsequent work. According to the
evaluation results, the CMDVS construction can compress communication size
to about 30% for the trivial construction and 4% for the broadcast authentica-
tion; hence, it is expected to IoT-REX based on the CMDVS construction is three
times faster than the trivial construction and 25 times faster than the broad-
cast authentication over typical low-power wide area networks even with an IoT
device. Furthermore, we discussed that IoT-REX is feasible with respect to the

120 Y. Watanabe et al.

communication overheads on low-power wide area networks. We thus conclude
that IoT-REX based on the CMDVS construction is practical. We plan to con-
duct experiments of IoT-REX in the real world for further evaluation, including
physics features.

Acknowledgment. This research was conducted under a contract of “Research and
development on IoT malware removal/make it non-functional technologies for effective
use of the radio spectrum” among “Research and Development for Expansion of Radio
Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs
and Communications, Japan.

Code Availability. Our source code is publicly available via GitHub (https://github.

com/naotoyanai/fiilter-signature ABA).

References

1. The internet of things reference model. Technical report, Cisco (2014)
2. Andersen, M.P., et al.: WAVE: a decentralized authorization framework with tran-

sitive delegation. In: USENIX Security 2019, pp. 1375–1392. USENIX Association
(2019)

3. Antonakakis, M., et al.: Understanding the Mirai botnet. In: USENIX Security
2017, pp. 1093–1110. USENIX Association (2017)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

5. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 50(2),
76–79 (2017)

6. binti Mohamad Noor, M., Hassan, W.H.: Current research on internet of things
(IoT) security: a survey. Comput. Netw. 148, 283–294 (2019)

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

8. Chan, H., Perrig, A.: Round-efficient broadcast authentication protocols for fixed
topology classes. In: IEEE S&P 2010, pp. 257–272 (2010)

9. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: USENIX Security 2019, pp. 95–110. USENIX
Association (2014)

10. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 229–260. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64378-2 9

11. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

12. Fan, B. Andersen, ,D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than Bloom. In: CoNEXT 2014, pp. 75–88. ACM (2014)

13. Fan, J., He, Y., Tang, B., Li, Q., Sandhu, R.: Ruledger: ensuring execution integrity
in trigger-action IoT platforms. In: IEEE INFOCOM 2021, pp. 1–10. IEEE (2021)

https://github.com/naotoyanai/fiilter-signature_ABA
https://github.com/naotoyanai/fiilter-signature_ABA
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/978-3-319-78372-7_14

IoT-REX: A Secure Remote-Control System for IoT Devices 121

14. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX Security 2016, pp. 531–548. USENIX Association (2016)

15. Iftikhar, Z., et al.: Privacy preservation in resource-constrained IoT devices using
blockchain-a survey. Electronics 10(14), 1–26 (2021)

16. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
bloom filter. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
456–467. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036 42

17. Kobayashi, H., Watanabe, Y., Shikata, J.: Asymptotically tight lower bounds
in anonymous broadcast encryption and authentication. In: Paterson, M.B. (ed.)
IMACC 2021. LNCS, vol. 13129, pp. 105–128. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-92641-0 6

18. Kumar, S., Hu, Y., Andersen, M.P., Popa, R.A., Culler, D.E.: JEDI: many-to-many
end-to-end encryption and key delegation for IoT. In: USENIX Security 2019, pp.
1519–1536. USENIX Association (2019)

19. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: Lopez, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2 38

20. Lei, X., Tu, G.-H. , Li, C.-Y., Xie, T., Zhang,M.: SecWIR: securing smart home
IoT communications via Wi-Fi routers with embedded intelligence. In: MobiSys
2020, pp. 260–272. ACM (2020)

21. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivas-
tava, G.: Federated-learning-based anomaly detection for IoT security attacks.
IEEE Internet Things J. 9(4), 2545–2554 (2022)

22. Mpitziopoulos, A., Gavalas, D., Pantziou, G., Konstantopoulos, C.: Defending wire-
less sensor networks from jamming attacks. In: 2007 IEEE 18th International Sym-
posium on Personal, Indoor and Mobile Radio Communications, pp. 1–5. IEEE
(2007)

23. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 565–584. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48000-7 28

24. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi,
A.-R.: DIoT: a federated self-learning anomaly detection system for IoT. In: IEEE
ICDCS, pp. 756–767. IEEE (2019)

25. Pagh, A., Pagh, R., Rao, S.S.: An optimal Bloom filter replacement. In: ACM-
SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 823–829. SIAM (2005)

26. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: ACM CCS 2001, pp. 28–37. ACM (2001)

27. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. In: IEEE S&P 2000, pp. 56–73 (2000)

28. Rana, M., Mamun, Q., Islam, R.: Lightweight cryptography in IoT networks: a
survey. Futur. Gener. Comput. Syst. 129, 77–89 (2022)

29. Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the
internet of things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

30. Rezazadeh Baee, M.A., Simpson, L., Boyen, X., Foo, E., Pieprzyk, J.: ALI: anony-
mous lightweight inter-vehicle broadcast authentication with encryption. IEEE
Trans. Dependable Secure Comput. 1 (2022). (Early Access)

31. Ronen, E., Shamir, A., Weingarten, A.-O., O’Flynn, C.: IoT goes nuclear: creating
a ZigBee chain reaction. In: IEEE S&P, pp. 195–212. IEEE (2017)

32. Safavi-Naini, R., Wang, H.: Broadcast authentication for group communication.
Theoret. Comput. Sci. 269(1), 1–21 (2001)

https://doi.org/10.1007/11841036_42
https://doi.org/10.1007/978-3-030-92641-0_6
https://doi.org/10.1007/978-3-030-92641-0_6
https://doi.org/10.1007/978-3-540-30191-2_38
https://doi.org/10.1007/978-3-662-48000-7_28

122 Y. Watanabe et al.

33. Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M., Stiller, B.: Landscape of
IoT security. Comput. Sci. Rev. 44(100467), 1–18 (2022)

34. Shim, K.: BASIS: a practical multi-user broadcast authentication scheme in wire-
less sensor networks. IEEE Trans. Inf. Forensics Secur. 12(7), 1545–1554 (2017)

35. Suzaki, K., Tsukamoto, A., Green, A., Mannan,M.: Reboot-oriented IoT: life cycle
management in trusted execution environment for disposable IoT devices. In:
ACSAC 2020, pp. 428–441. ACM (2020)

36. Wang, M., Zhou, M., Shi, S., Qian, C.: Vacuum filters: more space-efficient and
faster replacement for Bloom and cuckoo filters. VLDB 13(2), 197–210 (2019)

37. Watanabe, Y., Yanai, N., Shikata, J.: Anonymous broadcast authentication for
securely remote-controlling IoT devices. In: Barolli, L., Woungang, I., Enokido, T.
(eds.) AINA 2021. LNNS, vol. 226, pp. 679–690. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75075-6 56

38. Watanabe, Y., Yanai, N., Shikata, J.: IoT-REX: a secure remote-control system
for IoT devices from centralized multi-designated verifier signatures (2022)

39. Xu, M., et al.: Dominance as a new trusted computing primitive for the internet
of things. In: IEEE S&P, pp. 1415–1430. IEEE (2019)

https://doi.org/10.1007/978-3-030-75075-6_56
https://doi.org/10.1007/978-3-030-75075-6_56

CVAR-FL IoV Intrusion Detection
Framework

Jia Zhao1,2, Xinyu Rao1,2(B), JiQiang Liu1,2, Yue Guo1,2, and BoKai Yang1,2

1 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, Beijing 100044, China

{zhaojia,22125303,jqliu,22125178,19281025}@bjtu.edu.cn
2 School of Computer and Information Technology, Beijing Jiaotong University,

Beijing 100044, China

Abstract. With the popularization of internet of vehicles (IoV) applica-
tions, security issues are becoming increasingly prominent. IoV is vulner-
able to various attacks, which may endanger users’ privacy, functionality,
property and even life. The security problems in IoV have the characteris-
tics of dynamism, complexity and concealment. Therefore, IoV intrusion
detection is a key technology to ensure network security. In this paper,
we first analyze the existing intrusion detection schemes, and propose an
IoV intrusion detection system based on CVAR-FL, which distributes the
functions of intrusion detection system (IDS) to roadside units (RSU),
and adopts the idea of ensemble learning, combining four deep learn-
ing (DL) models: cnn, vgg16, alexnet, resnet18, with federated learning
(FL) algorithm, to provide more diversified detection model choices. In
addition, we also propose to use an encryption strategy based on elliptic
curve cryptography (ECC) based ciphertext-policy ABE (CP-ABE) to
protect the data exchange between RSU and vehicles, thus improving
the efficiency and confidentiality of network communication. Finally, we
verify the effectiveness of the proposed scheme through experiments and
conduct relevant analysis.

Keywords: IoV · Security issues · IDS · CP-ABE · Federated learning

1 Introduction

With the progress of smart networking and digitization, the architecture of smart
connected vehicles will become more complex [18,22]. The internet of vehicles
(IoV) uses IEEE 802.11p to form a network of vehicles and infrastructure that
can handle vehicle data for various services [5,9]. Since the vehicle consists of
multiple components, such as vehicle machines, internal gateways and controllers
with different compilation environments, operating systems and transport pro-
tocols, existing network intrusion detection systems (IDSs) cannot fully prevent

Supported by organization the National Key R&D Program of China
(2020YFB2103800).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 123–137, 2023.
https://doi.org/10.1007/978-981-99-7032-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_8&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_8

124 J. Zhao et al.

and isolate threats against vehicles [10], such as the FusionRipper attacks that
compromise multi-sensor fusion (MSF) algorithms mentioned in paper [19]. In-
vehicle networks are also vulnerable and hackers can control the vehicle’s main
controller by attacking the controller area network (CAN) bus, leading to acci-
dents, for example in paper [3,4,14] and other attacks against the CAN bus
mentioned therein. Therefore, it is crucial to prevent cyber attacks on the IoV.

Intrusion detection systems (IDSs) can be used as a second line of defense
after preventive protection mechanisms such as software integrity verification
[13], enabling continuous event monitoring [15]. Machine learning techniques
are playing an increasingly important role in reducing the problems associated
with smart vehicles [23], thus driving changes in the development of intrusion
detection for the connected vehicle. The controller area network (CAN) bus is
a low fault-tolerant protocol used mainly for real-time communication between
ECUs and in-vehicle networks [12], which is widely used in in-vehicle networks
for its low cost, noise immunity, and fault tolerance, but sending highly real-time
messages causes significant delays and is therefore not suitable for introducing
heavy security mechanisms.

Limited Computational Resources. Nodes in the vehicular network may
have limited computation and memory capacities. However, the training process
of deep learning models, both in terms of data sampling and analysis, will con-
sume a large number of node resources. Therefore, the performance overhead
that the model imposes on the smart car needs to be considered.

Dynamicity. One of the major differences between the internet of things (IoT)
and the IoV is the dynamic nature of vehicles, which means that the topology of
the entire IoV is frequently changing and vehicle nodes have random access to
the network [18], which will lead to objective conditions such as network quality
and the amount of data received between RSUs in different regions having large
variations. However, the detection performance of deep learning models is highly
dependent on these values.

Privacy Data Leakage. Privacy data leakage can occur due to a large number
of devices and communication protocols involved in the IoV system.

Our contributions are as follows:

– We propose the CVAR-FL IoV intrusion detection framework. Federated
learning for model training only requires the transmission of local model gra-
dients instead of the raw data, which can reduce the transmission bandwidth
consumption in the IoV. We also integrate four deep learning (DL) models
such as convolutional neural network (CNN), vgg16, alexnet, and resnet18
into the proposed FL intrusion detection framework as a way to provide more
diverse choices to users.

– As mentioned in [11], data leakage is inevitable in the IoV, but the availabil-
ity, mobility, computing power and real-time performance of the IoV system
require a faster and lighter encryption protocol. Therefore, we propose to
apply the CP-ABE algorithm for confidentiality protection in data transmis-
sion.

CVAR-FL IoV Intrusion Detection Framework 125

– Experiments are designed to investigate the feasibility of the proposed model.
Simulation results show that the designed framework has significant potential
in securing the IoV.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 describes the FL based IDS. Numerical results are provided to evaluate
the proposed intrusion detection method in Sect. 4. Section 5 summarises our
work and provides an outlook of future work on data-driven intrusion detection
in intelligent connected vehicles.

2 Related Work

[2] presents an AI-based intrusion detection architecture that is deployed on
a MEC server in an IoV network. It proposes two classification techniques:
direct time-series-based classification and sequence image-based classification,
and shows that CNNs achieve the best performance through experiments. [1]
extends the model from [2] by comparing three classes of deep learning models
for fine-grained vehicle classification. [25] proposes a ConvLSTM-based intrusion
detection method for IVNs that leverages the periodicity of network message
IDs. None of the above papers consider the privacy issues of data transmission
in Telematics and the computational resource issues faced when the models are
deployed. [26] presents an intelligent IDS using tree models, which is applicable
not only to the CAN bus of self-driving cars, but also to the general vehicle
network. [27] applies CNN with hyperparameter optimization, transfer learning,
and ensemble learning for IoV. [24] presents a robust transformer-based intru-
sion detection system (RTIDS). Although all these schemes take into account
the computational resource consumption of the model runtime to some extent,
they still focus on the detection of malicious samples and do not discuss much
about the risk of leakage in data transmission. [8] proposes a FL based IDS to
provide a security solution for the IoV under a SDN architecture. The proposed
IDS integrates trust indicators to help secure the IoV. [28] uses Federated LSTM
to detect network intrusions in smart connected cars, and introduces the Telem-
atics system model and CAN data framework. However, some scholars [7] point
out that federal learning does not fully guarantee the security of private data.

3 CVAR-FL Framework

This paper presents a system architecture that is illustrated in Fig. 1. The sys-
tem consists of vehicles, RSUs, and MEC (Multi-access Edge Computing) to
form a three-tier architecture. The MEC provides computational support and is
responsible for aggregating federated model updates and storing data. The RSU,
as the core of the whole system, performs local model training, data collection
and processing, and intrusion detection. When a vehicle enters the RSU’s service
area, it can request a detection service, and the RSU will collect the CAN data
transmitted by the vehicle and use it to clean and train the model.

126 J. Zhao et al.

Fig. 1. Schematic diagram of CVAR-FL framework

3.1 Data Transfer Between Vehicle and RSU

The first thing to consider when bringing FL into the IoV domain is the dynamic
nature of vehicles. The movement of vehicles can cause the data quality collected
by RSU to decline (transmission delay, message collision or interruption). The
benefit of intrusion detection is for the detected vehicles rather than RSU, so we
assume that the vehicles in the system are active participating members, and
they will transmit vehicle identification number (VIN) and location information
to RSU when their own conditions are ready. As shown in Fig. 1(a), RSU classifies
the vehicles within the range according to VIN code by K-means clustering,
assuming that they can be divided into N categories. RSU will select kN vehicles
from these N categories as local data sources according to the Euclidean formula
(each category selects k ≥ 1 vehicles).

We want the data transmitted from the vehicle to the RSU to not be leaked
to an attacker outside the system. Moreover, the vehicle itself is a constantly
changing process, and too frequent encryption and decryption will increase sys-
tem latency and decrease resource utilization. [6,17,21] and others have pro-
posed the application of elliptic curve elliptic curve cryptography (ECC) to
ciphertext-policy ABE (CP-ABE), where ECC can guarantee fine-grained access
control to data or resources in less computation time and is suitable for resource-
constrained IoT frameworks. The EPSAR-CP-ABE scheme proposed by [17]
allows the user’s access rights to be modified without changing their original

CVAR-FL IoV Intrusion Detection Framework 127

key, making it ideal for vehicles in dynamic scenarios. Since it is an improve-
ment on CP-ABE-CSSK, its encryption and decryption times are less than those
of other CP-ABE schemes. For this reason, we will use the EPSAR-CP-ABE
scheme for data encryption and decryption. The following is a brief description
of the application process for the EPSAR-CP-ABE scheme:

Initialization. The vehicle will perform the key initialization phase, using a
large prime number p to define an elliptic curve group G = {p,Ep (a, b) , P},
where P is the base point of the elliptic curve, Ep is an encryption-friendly
elliptic curve, 4a3 + 27b �= 0, and a, b ∈ P . Choose three random numbers α, k1
and k2 from the range of p to generate the global key GSK = {α, k1, k2}. Define
the number of attributes n in the system. Calculate Pi = αiP ,Ui = k1Pi,Vi =
k2Pi,∀i ∈ 1 . . . n. Define 4 hash functions as shown in Eq. 1, where σ is some
large random number, M is the message to be encrypted, and |x| denotes the
length of the string x.

H1,H4 : {0, 1}∗ → Z∗
p

H2 : {0, 1}∗ → {0, 1}σ

H3 : {0, 1}∗ → {0, 1}|M |
(1)

This generates the global public key GPK = {G, Pi, Vi, Ui,H1,H2,H3,H4}.
Next, generate a private key for the RSU with ID number r. The RSU
attribute set A = {a1, a2, . . . , an} specifies the brand, model, hardware infor-
mation, software equipment, etc. of the RSU. The vehicle can change the
access policy according to A and provide fine-grained access permission for
each RSU to prevent malicious RSU problems. Define the function λi =

(α + H4(i))
(1−ai), z(α,A) =

n∏

i=1

λi. Generate two non-zero random numbers k4

and k5 for r, and use them in Eq. 2 to obtain u1, u2 and u3. Then save λi for
each vehicle.

u1 = k4 + k1 · z(α,A)(modp)
u2 = k5 − k2 · z(α,A)(modp)
u3 = k4k2 + k5k1(modp)

(2)

Store {r,Xi = u3 · z(α,A),A} on the vehicle. The RSUr key is kr = {u1, u2}.

Encryption. Before transmitting the data, the vehicle encrypts the plaintext
M with the access policy P = {b1, b2 . . . bn}. Choose a random number σm.
The key derivation function KDF () to calculate rm = H1 (P,M, σm) and km =
KDF (rmP). The encryption formula is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(α,P) =
n∏

i=1

(α + H4(i))
(1−bi)

Pm,i = rmPi, i ∈ {1, · · · , n − |P|}
K1,m = rmk1z(α,P)P
K2,m = rmk2z(α,P)P
Cσm

= H2 (km) ⊕ σm

Cm = H3 (σm) ⊕ M

(3)

128 J. Zhao et al.

Output cipher C = {P, Pm,i,K1,m,K2,m, Cσm
, Cm} to RSU.

Decryption. The RSU receives the ciphertext and calculates U = u2K1,m and
V = u1K2,m. Return {U, V, r′} to the vehicle that sent the ciphertext C. The
vehicle uses Eq. 4 and the received U, V, r′ to compute T , and sends T back to
the RSU r′. Here, Zi is the coefficient of xi in Z(x).

Z(α,A,P) =
n−|P|∑

i=1

(α + H4(i))
(ai−bi)

Q =
U + V

Xi
=

rmu3Z(α)P
Xi

W = rmZ(α)P − rmZ0P

T =
1
F0

(Q − W)

(4)

The Eq. 6 is used to decrypt the RSU based on the received T . The RSU that
satisfies the Eq. 5 matches the policy P for the property A.

Q = rmZ(α)P
T = rmP

(5)

The original message M is the same as message M ′ if r′
mP = T , otherwise, the

process fails.
σ′

m = H2(KDF (T)) ⊕ Cσm

M ′ = Cm ⊕ H3 (σ′
m)

r′
m = H1 (P,M ′, σ′

m)
(6)

3.2 DL Model Selection for RSU

As IoT devices, RSUs have various types, and RSUs produced by different man-
ufacturers have different software and hardware resources. Moreover, in the same
period, the CAN data received by RSUs on the main roads of the city will be
much more than those on the branches of towns and villages. Therefore, we need
to provide more personalized models for RSUs in different places. As shown in
Fig. 1(b), we adopt the idea of ensemble learning and integrate four pre-trained
DL models (CNN, vgg16, resnet18, alexnet) in MEC. At the beginning of sys-
tem startup, MEC will distribute these four models to selected α RSUs. Let the
i-th RSU be Ri, then Ri will use four models to train on the local dataset, and
return the updated gradient gk, k ∈ [1, 4] and F1 score fk, k ∈ [1, 4] to MEC
after the model converges, where gk and fk correspond one by one, indicating
the values obtained by training the k-th model. The formula for calculating F1
score is shown in Eq. 11. F ′

i represents the temporary result matrix of Ri, then
F ′

i is shown in Eq. 7.

CVAR-FL IoV Intrusion Detection Framework 129

F ′
i =

⎡

⎢
⎢
⎣

f1 g1
f2 g2
f3 g3
f4 g4

⎤

⎥
⎥
⎦ (7)

The specific four types of models will be selected according to resource depen-
dency. We define a coefficient matrix θ, and set four resource-related parameters:
maximum training time t, minimum loss value l, model size u, and CPU per-
formance required for training c. For the four types of models CNN, vgg16,
resnet18, and alexnet, the maximum training time t, model size u, and CPU
performance required for training c are all different, while the minimum loss
value l is the same. At the same time, define a scaling function F , such that
F(t),F(l),F(u),F(c) ∈ (0, 1], since we hope that these four values are as small
as possible, we can get Eq. 8:

θ =

⎡

⎢
⎢
⎣

F(t1)F(l)F(u1)F(c1)
F(t2)F(l)F(u2)F(c2)
F(t3)F(l)F(u3)F(c3)
F(t4)F(l)F(u4)F(c4)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

θ1
θ2
θ3
θ4

⎤

⎥
⎥
⎦ (8)

Thus the final result matrix Fi is shown in Eq. 9.

Fi =

⎡

⎢
⎢
⎣

f1/θ1 g1
f2/θ2 g2
f3/θ3 g3
f4/θ4 g4

⎤

⎥
⎥
⎦ (9)

3.3 MEC Federal Learning

After MEC receives the result matrices from all RSUs, it will get the set F =
{F1, F2, . . . , Fn}. Next, MEC performs a matrix addition operation to obtain the
cumulative score matrix Fsum of the F1 values of the four types of models and
its corresponding gradient matrix Gsum, as shown in Eq. 10:

Fsum = [
∑n

i=1
(Fi

[
1
0

]

)]� =
[
Fs1 Fs2 Fs3 Fs4

]
(i ∈ n)

Gsum =
[
Gs1 Gs2 Gs3 Gs4

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

F111 F112 F113 F114

F211 F212 F213 F214
...

...
...

...
Fn−111 Fn−112 Fn−113 Fn−114

Fn11 Fn12 Fn13 Fn14

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10)

Take the maximum value Fsk
= MAX(Fsum) in Fsum as the final model

Mselect in the FL system, and get the corresponding gradient gselect = Gsk
. As

shown in Fig. 1(c), suppose in the t-th round, the global model on MEC is Mit ,

130 J. Zhao et al.

the set of RSUs participating in the update is R = {R1, R2, . . . , Rn}, Rk ∈ R,
the size of the corresponding data index set is mk, and the total number of
samples in the data sets of all participants is m =

∑n
k=1 mk. On MEC, there is

a proportion α ∈ (0, 1] of RSUs participating in FL, then the number of RSUs
participating in the t-th round of iteration is max(αn, 1) → m. β is the learning
rate, the loss function is Hk = 1

B

∑
i∈b hi(w), where B is the training batch

size, b is a data index in a batch in Rk, then the total loss function of FL is
H(w) =

∑m
k=1

mk

m Hk(w, b). Rk uses the model gradient gt issued by MEC to
initialize the model on Mselect as gt → gk

t+1, then divides its own data set into
several batches of size B, updates the local model parameters in each iteration
as gk

t+1 − βHk → gk
t+1, and then transmits the updated local model parameters

gk
t+1 ∈ Gsk

to MEC. MEC aggregates all the parameters as gt+1 =
∑n

k=1
mk

m gk
t+1,

and then sends the result back to all RSUs participating in training. The whole
system will repeat this process until gt+1 converges.

As shown Fig. 1(d), RSU will use the converged global model to perform
intrusion detection on the vehicles within its service range. MEC will continu-
ously monitor the global model that reaches the convergence state. Once it finds
that the model detection performance is degraded due to reasons such as the
change of CAN data collected by RSU due to vehicle movement, special RSU
offline, etc., it will restart the entire FL process again.

4 Experimental Setup

4.1 Evaluation Index

Accuracy. We use the F1 score as a measure of accuracy for our classification
model, as it combines both precision and recall in a single metric. The F1 score is
defined by Eq. 11, where TP, FP, and FN are the abbreviations of true positives,
false positives, and false negatives, respectively. The F1 score ranges from 0 to
1, with higher values indicating better performance.

F1 = (
2 + FP/TP + FN/TP

2
)−1 (11)

System Time Consumed. The RSU performs the intrusion detection, while
the vehicles within the RSU’s coverage area are the targets of intrusion detection.
Both the RSU and the MEC are static physical models, so the communication
between them can support long and continuous transmission. As a dynamic
model, the vehicle has to consider the time limit for data transmission with the
RSU. Therefore, we assume that the vehicle being detected initiates the intrusion
detection request to the RSU. The RSU will only run the model when it receives
a request from a vehicle that meets the detection criteria. The delay T as Eq. 12
can be optimized in the system mainly consists of the data pre-processing time
tp and the model training time tt.

T = tp + tt (12)

CVAR-FL IoV Intrusion Detection Framework 131

Resource Consumption. We will evaluate the storage space and the memory
required for model training to filter out the models that can fit the RSU.

4.2 Dataset Introduction

We use the Car-Hacking dataset for the experiments. This dataset contains DoS
attacks, fuzzing attacks, and two spoofing attacks (driver spoofing and RPM
instrumentation spoofing). It is based on real CAN intrusion traffic through the
OBD-II port. It is a widely used dataset for detecting various types of vehicle
internal attacks [16,20]. We simulated RSU’s preprocessing of the local dataset
on a window 11 machine, with an Intel Core i5-8300H CPU @ 2.30 GHz proces-
sor, 24.0 GB of memory, and operating system version 22000.2057. Due to the
large size of the Car hacking dataset (902.01 MB), we only selected 5% of the
data as the CAN data collected by two RSUs (818,440 data points). We ana-
lyzed this dataset, as shown in Fig. 2, and found that normal traffic accounted for
85.5% of the dataset, indicating a moderate degree of class imbalance. Figure 3
shows the distribution of the raw data for the nine features. The horizontal axis
represents the feature values and the vertical axis represents the frequency. It
can be seen that the feature “car id” has a significantly different value range
from the other features. So we will do the operations described in the Sect. 4.3.

Fig. 2. Data type distribution

4.3 Data Preprocessing

Step 1, Data Under Sampling. We compare Random UnderSampler (RUS),
Tomek Links (TL), One-Sided Selection (OSS), Condensed Nearest Neighbour
(CNN), Edited Nearest Neighbours (ENN), All-KNN and other undersampling
schemes with Near Miss (NM). The results are shown in Table 1, where we record
the time and the number of samples for each scheme after the undersampling
operation. We find that the condensed nearest neighbor and its variant (CNN
and OSS) perform poorly on the car hacking dataset, while the nearest neighbor
algorithms (ENN and All-KNN) and Tomek Links perform moderately on the
car hacking dataset and do not solve the sample imbalance problem completely.

132 J. Zhao et al.

Fig. 3. Histogram of raw data distribution

Random Under Sampler (RUS) is a fast but simple method that randomly sam-
ples the majority class samples to reduce their proportion in the original data
set. It is not suitable for hacking data sets that have a large imbalance between
positive and negative samples. Therefore, we chose Near Miss as the optimal
solution.

Table 1. Sampling scheme and its running result

Original RUS NM TL OSS CNN ENN Allknn

tp(s) 5.2877 120.5872 729.3354 714.1104 3526.6085 802.8669 2211.7898

R 701832 24624 24624 701831 682795 60 701824 701824

DOS 29501 24624 24624 29501 1 1 29501 29501

RPM 32539 24624 24624 32539 0 1 32539 32539

Gear 29944 24624 24624 29944 1 1 29944 29944

Fuzzy 24624 24624 24624 24624 24624 24624 24624 24624

Step 2, Data Non-linear Transformation. Figure 4 shows the histograms of
the data after Near Miss downsampling, two power transformations, and min-
max normalization. It can be seen that the quantile transformer transforms
the data into a strict Gaussian distribution, whereas the yeo-Johnson power
transformation does not produce such a clear histogram.

Step 3, Generate Image. Since we use a CNN-based model, we need to convert
the original text-like data into images. We follow the processing scheme from [27].

4.4 Model Evaluation

The FL model training was conducted on an Ubuntu 16.04.6 LTS with a disk
size of 123G. The CPU device we used was Intel Xeon Processor E52609 v4
@1.70 GHz, with a cache size of 20,480 KB and 8 cpu cores. Considering that
we simulated resource-constrained IoT devices, we did not use GPU. We imple-
mented the model of the whole system using Pysyft, which is a Python library

CVAR-FL IoV Intrusion Detection Framework 133

for secure and private deep learning. The pre-trained DL, except for CNN, were
from the official pytorch website.

Fig. 4. Two kinds of histograms after power transformation

We split the generated images into a training set and a test set with an
8:2 ratio. We define two participants and propose a CNN architecture as the
baseline which consists of two convolutional layers, each followed by a pooling
layer. The first convolutional layer uses average pooling, while the second one
uses max pooling. This design aims to capture both local and global features
of the input images. Figure 5 compares the training results of the yeo-Johnson
power transformation and quantile transformer power transformation on the
CNN baseline. The results show that the loss decreases faster and the optimal
accuracy is reached sooner after the yeo-Johnson transformation than after the
quantile transformer transformation. To evaluate the quality of the classifica-
tion task, we drew confusion matrices for each classification. Its columns are the
predicted categories and its rows are the actual categories. The diagonal values
are the number/proportion of correct predictions and the off-diagonal elements
are the fraction of incorrect predictions. We want to obtain a confusion matrix
with high diagonal values, which would indicate that many classes were correctly
predicted. Figure 6 shows the confusion matrix of the 4 FL models after classi-
fication. We can see that all the DL models except ResNet18 correctly classify
most classes, and only some of the normal data are misclassified as attack types.

134 J. Zhao et al.

ResNet18 can correctly classify all normal classes, so we kept it in the hope that
it would perform better in special scenarios. Figure 7 shows the ROC curves of
the four types of FL models. We can see that the macro AUC values of CNN,
vgg16, and alexnet models are all 1, and ResNet18 can reach 0.94. This indicates
that the four types of FL models we have chosen are suitable for performing the
daily intrusion detection work. We compared the model performance of CNN
based on FL (FL-CNN, vgg16 based on FL (FL-VGG16), resnet18 based on
FL (FL-ResNet18), and alexnet based on FL (FL-AlexNet). Table 2 shows that
FL-AlexNet has the lowest epoch for the best model state, but FL-CNN has the
shortest average training time. Even the longest training time, FL-VGG16, only
takes 712.26 s, which is an acceptable time consumption.

Fig. 5. The accuracy of the data processed by yeo-Johnson vs quantile transformer on
CNN baseline

Fig. 6. Confusion matrix of 4 types of models

CVAR-FL IoV Intrusion Detection Framework 135

Fig. 7. ROC curve and AUC area of five types of models

Table 2. Four FL models

FL-CNN FL-VGG16 FL-ResNet18 FL-AlexNet

tt(s) 82.242301 713.2586751 244.2694107 146.4923077

Best Epoch 9 3 34 5

Size(KB) 222 524,541 43,725 222,754

Accuracy 0.932878271 0.924914676 0.671217292 0.928327645

Accuracy P 0.949137931 0.939104478 0.568126491 0.946107841

Recall 0.932571429 0.924571429 0.663583815 0.928

F1 Score 0.930314369 0.920275282 0.604710494 0.925649556

Roc auc R 0.991347403 1 0.864147727 1

Roc auc RPM 1 1 1 1

Roc auc Gear 1 1 1 1

Roc auc Dos 1 1 1 1

Roc auc Fuzzy 0.996782328 1 0.806792317 0.999885376

5 Conclusion

Smart vehicles are becoming more functional, but also more vulnerable to
attacks. These attacks can cause privacy leakage, functional failure, property
loss, and even life threat to users and enterprises. We have found that the secu-
rity issues in the IoV are dynamic, complex, and covert. To address the dynamic
nature, we propose to assign the IDS role to the static RSU, while the moving
vehicles are the detected ones. We propose to apply the CP-ABE encryption
strategy based on ECC to the data exchange between RSU and vehicles, which
can ensure the efficiency and security of network communication. To address the
complexity and stealthiness of IoV attacks, we propose integrated learning com-
bined with FL techniques for intrusion detection. Next, we consider backdoor
attacks, poisoning attacks, and negative participants in federation learning to
improve the robustness of our proposed model.

136 J. Zhao et al.

References

1. Alladi, T., Kohli, V., Chamola, V., Yu, F.R.: A deep learning based misbehavior
classification scheme for intrusion detection in cooperative intelligent transporta-
tion systems. Digit. Commun. Netw. (2022). https://doi.org/10.1016/j.dcan.2022.
06.018, https://www.sciencedirect.com/science/article/pii/S2352864822001407

2. Alladi, T., Kohli, V., Chamola, V., Yu, F.R., Guizani, M.: Artificial intelligence
(AI)-empowered intrusion detection architecture for the internet of vehicles. IEEE
Wirel. Commun. 28(3), 144–149 (2021)

3. Asmae, Z., Nabih, E.O.: Implementation of a bluetooth attack on controller area
network (can). Indon. J. Electr. Eng. Comput. Sci. 21, 321–327 (2021)

4. Buscemi, A., Turcanu, I., Castignani, G., Panchenko, A., Engel, T., Shin, K.G.:
A survey on controller area network reverse engineering. IEEE Commun. Surv.
Tutor. 1 (2023). https://doi.org/10.1109/COMST.2023.3264928

5. Cunha, F., et al.: Data communication in VANETs: protocols, applica-
tions and challenges. Ad Hoc Netw. 44, 90–103 (2016). https://doi.org/
10.1016/j.adhoc.2016.02.017, https://www.sciencedirect.com/science/article/pii/
S1570870516300580

6. Das, S., Namasudra, S.: Multiauthority CP-ABE-based access control model for
IoT-enabled healthcare infrastructure. IEEE Trans. Industr. Inf. 19(1), 821–829
(2023). https://doi.org/10.1109/TII.2022.3167842

7. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients - how
easy is it to break privacy in federated learning? In: Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems, NIPS 2020. Curran
Associates Inc., Red Hook (2020)

8. Hbaieb, A., Ayed, S., Chaari, L.: Federated learning based ids approach for the IoV.
In: Proceedings of the 17th International Conference on Availability, Reliability and
Security, ARES 2022. Association for Computing Machinery, New York (2022).
https://doi.org/10.1145/3538969.3544422

9. Javaid, U., Aman, M.N., Sikdar, B.: A scalable protocol for driving trust man-
agement in internet of vehicles with blockchain. IEEE Internet Things J. 7(12),
11815–11829 (2020)

10. Javed, A.R., Rehman, S.U., Khan, M.U., Alazab, M., Reddy, T.: CANintelliIDS:
detecting in-vehicle intrusion attacks on a controller area network using CNN
and attention-based GRU. IEEE Trans. Netw. Sci. Eng. 8(2), 1456–1466 (2021).
https://doi.org/10.1109/TNSE.2021.3059881

11. Karim, S.M., Habbal, A., Chaudhry, S.A., Irshad, A.: Architecture, protocols, and
security in IoV: taxonomy, analysis, challenges, and solutions. Secur. Commun.
Netw. (2022)

12. Khan, J., Lim, D.W., Kim, Y.S.: Intrusion detection system can-bus in-
vehicle networks based on the statistical characteristics of attacks. Sensors
23(7) (2023). https://doi.org/10.3390/s23073554, https://www.mdpi.com/1424-
8220/23/7/3554

13. Oguma, H., Yoshioka, A., Nishikawa, M., Shigetomi, R., Otsuka, A., Imai, H.:
New attestation based security architecture for in-vehicle communication. In: IEEE
GLOBECOM 2008–2008 IEEE Global Telecommunications Conference, pp. 1–6.
IEEE (2008)

14. Sagong, S.U., Ying, X., Clark, A., Bushnell, L., Poovendran, R.: Cloaking the
clock: emulating clock skew in controller area networks. In: 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), pp. 32–42 (2018).
https://doi.org/10.1109/ICCPS.2018.00012

https://doi.org/10.1016/j.dcan.2022.06.018
https://doi.org/10.1016/j.dcan.2022.06.018
https://www.sciencedirect.com/science/article/pii/S2352864822001407
https://doi.org/10.1109/COMST.2023.3264928
https://doi.org/10.1016/j.adhoc.2016.02.017
https://doi.org/10.1016/j.adhoc.2016.02.017
https://www.sciencedirect.com/science/article/pii/S1570870516300580
https://www.sciencedirect.com/science/article/pii/S1570870516300580
https://doi.org/10.1109/TII.2022.3167842
https://doi.org/10.1145/3538969.3544422
https://doi.org/10.1109/TNSE.2021.3059881
https://doi.org/10.3390/s23073554
https://www.mdpi.com/1424-8220/23/7/3554
https://www.mdpi.com/1424-8220/23/7/3554
https://doi.org/10.1109/ICCPS.2018.00012

CVAR-FL IoV Intrusion Detection Framework 137

15. Scarfone, K., Mell, P., et al.: Guide to intrusion detection and prevention systems
(IDPS). NIST Spec. Publ. 800(2007), 94 (2007)

16. Seo, E., Song, H.M., Kim, H.K.: GIDS: GAN based intrusion detection system
for in-vehicle network. In: 2018 16th Annual Conference on Privacy, Security and
Trust (PST), pp. 1–6 (2018). https://doi.org/10.1109/PST.2018.8514157

17. Sethia, D., Sahu, R., Yadav, S., Kumar, R.: Attribute revocation in ECC-based CP-
ABE scheme for lightweight resource-constrained devices. In: 2021 International
Conference on Communication, Control and Information Sciences (ICCISc), vol.
1, pp. 1–6 (2021). https://doi.org/10.1109/ICCISc52257.2021.9485016

18. Sharma, N., Chauhan, N., Chand, N.: Security challenges in internet of vehicles
(IoV) environment. In: 2018 First International Conference on Secure Cyber Com-
puting and Communication (ICSCCC), pp. 203-chel (2018). Title = Architecture,
protocols, and security in IoV: taxonomy, analysis, challenges, and solutions, author
= Sulaiman M. Karim and Adib Habbal and Shehzad Ashraf Chaudhry and Azeem
Irshad, journal = Security and Communication Networks, year = 2022

19. Shen, J., Won, J.Y., Chen, Z., Chen, Q.A.: Drift with devil: security of multi-sensor
fusion based localization in high-level autonomous driving under GPS spoofing. In:
Proceedings of the 29th USENIX Security Symposium (USENIX Security 2020).
Boston, MA (2020)

20. Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep
convolutional neural network. Veh. Commun. 21, 100198 (2020)

21. Sowjanya, K., Dasgupta, M., Ray, S.: A lightweight key management scheme for
key-escrow-free ECC-based CP-ABE for IoT healthcare systems. J. Syst. Archit.
117, 102108 (2021). https://doi.org/10.1016/j.sysarc.2021.102108, https://www.
sciencedirect.com/science/article/pii/S1383762121000849

22. Sun, Y., et al.: Attacks and countermeasures in the internet of vehicles. Ann.
Telecommun. 72, 283–295 (2016). https://doi.org/10.1007/s12243-016-0551-6

23. Ullah, S., et al.: HDL-IDS: a hybrid deep learning architecture for intrusion detec-
tion in the internet of vehicles. Sensors 22(4), 1340 (2022)

24. Wu, Z., Zhang, H., Wang, P., Sun, Z.: RTIDS: a robust transformer-based approach
for intrusion detection system. IEEE Access 10, 64375–64387 (2022). https://doi.
org/10.1109/ACCESS.2022.3182333

25. Yang, J., Hu, J., Yu, T.: Federated AI-enabled in-vehicle network intrusion detec-
tion for internet of vehicles. Electronics 11(22) (2022). https://doi.org/10.3390/
electronics11223658, https://www.mdpi.com/2079-9292/11/22/3658

26. Yang, L., Moubayed, A., Hamieh, I., Shami, A.: Tree-based intelligent intrusion
detection system in internet of vehicles. In: 2019 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6. IEEE (2019)

27. Yang, L., Shami, A.: A transfer learning and optimized CNN based intrusion detec-
tion system for internet of vehicles. arXiv preprint arXiv:2201.11812 (2022)

28. Yu, T., Hua, G., Wang, H., Yang, J., Hu, J.: Federated-LSTM based network
intrusion detection method for intelligent connected vehicles. In: ICC 2022 - IEEE
International Conference on Communications, pp. 4324–4329 (2022). https://doi.
org/10.1109/ICC45855.2022.9838655

https://doi.org/10.1109/PST.2018.8514157
https://doi.org/10.1109/ICCISc52257.2021.9485016
https://doi.org/10.1016/j.sysarc.2021.102108
https://www.sciencedirect.com/science/article/pii/S1383762121000849
https://www.sciencedirect.com/science/article/pii/S1383762121000849
https://doi.org/10.1007/s12243-016-0551-6
https://doi.org/10.1109/ACCESS.2022.3182333
https://doi.org/10.1109/ACCESS.2022.3182333
https://doi.org/10.3390/electronics11223658
https://doi.org/10.3390/electronics11223658
https://www.mdpi.com/2079-9292/11/22/3658
http://arxiv.org/abs/2201.11812
https://doi.org/10.1109/ICC45855.2022.9838655
https://doi.org/10.1109/ICC45855.2022.9838655

Transparent Security Method
for Automating IoT Security Assessments

Rauli Kaksonen1(B) , Kimmo Halunen1,2 , Marko Laakso1,
and Juha Röning1

1 University of Oulu, Oulu, Finland
{rauli.kaksonen,kimmo.halunen,marko.laakso,juha.roning}@oulu.fi

2 Department of Military Technology, National Defence University of Finland,
Helsinki, Finland

https://www.oulu.fi, https://www.mpkk.fi

Abstract. People and businesses are dependent on the security of the
Internet of Things (IoT). Vendor-independent security assessment and
certification intends to provide an objective view of the security of an
IoT product. Unfortunately, the assessment is often done for a single ver-
sion and configuration of the product and usually does not yield data to
reproduce the assessment. We present the Transparent Security Method,
in which product security is described by a machine-readable security
statement. A security statement can be verified using tools for auto-
mated assessment, which can be repeated for different product versions
and configurations to cover the product life-cycle. As a case study, we
create an entry-level security statement for a real IoT product and do
the verification using common security tools. In the study, 12 out of 15
security claims are verified fully or partially by automation. A security
statement can be used in certification or labeling to speed up security
assessment, especially in re-certification. Tool-based verification discour-
ages inflated security claims, as they can be scrutinized. Eventually, this
should drive product security improvements, as products without secu-
rity statements are less attractive.

Keywords: IoT · security · cybersecurity · certification · security tools

1 Introduction

For a long time, there has been a need for cybersecurity in Information Tech-
nology (IT) systems. The Internet of Things (IoT) increased the stakes as our
society became dependent on widely deployed and heterogeneous systems with
unknown security properties [27]. The need to improve the cybersecurity of IoT
devices has been widely recognized [23,29]. Users need to know that the systems
are secure to trust them. The lack of security in IoT will undermine the users’
trust and hamper the adoption of new products.

This work is supported by the Finnish Scientific Advisory Board for Defence
(MATINE/2500M-0152).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 138–153, 2023.
https://doi.org/10.1007/978-981-99-7032-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_9&domain=pdf
http://orcid.org/0000-0001-8692-763X
http://orcid.org/0000-0003-1169-5920
http://orcid.org/0000-0001-9993-8602
https://doi.org/10.1007/978-981-99-7032-2_9

Transparent Security Method 139

Security assessment techniques tend to be complex and must be performed by
cybersecurity experts [23]. If the product meets the requirements, a certificate,
label, or other indication of conformance is given. Major challenges with this
approach are the high cost, delays to product launch, re-certification as products
have to be updated, and overall scalability to cover the huge number of products
in the market [23].

1.1 Security Certification

There are many IoT security certification and labeling schemes [9,19,22,23].
They are divided into self-certifications and third-party certifications. In self-
certification the product vendor itself asserts conformance to the security require-
ments. Third-party certification is more expensive and adds delay, but provides
an independent expert opinion about the security posture. Third-party approach
is common in higher security assurance levels [14]. The assessment techniques
and tools are usually not disclosed, it is only possible to check that the certificate
or label is granted. There are no good means for a vendor to highlight that it
has taken security mechanisms beyond the minimum requirements.

The updates required to maintain product security are problematic for secu-
rity certification [14]. The product must be either re-certified or the certification
must allow updates without being invalidated. The cryptographic key lengths
and other parameters must be upgraded from time to time [9]. The continuous
emergence of new attacks and vulnerabilities calls for automated monitoring,
testing, and mitigation tools [9]. Indeed, various IoT testing frameworks have
been proposed for automating security testing [5,6]. However, as Waraga et al.
acknowledge “Assessing the security of IoT devices is difficult due to the wide
variety and functionality of IoT devices”. The same issue is raised by Matheu et
al. [23]. The use of proprietary functionality, even for common tasks like authen-
tication, makes it difficult to assess IoT security with automation. Still, there is
a large body of tools which could be used in security certification for verification
and validation of implementation [21,26].

The Common Criteria for Information Technology Security Evaluation (CC)
is a third-party certification scheme standardized as ISO/IEC 15408 [2]. Certifi-
cation requires the definition of Security Problem, Security Objectives and selec-
tion of certified Security Requirements. A Protection Profile defines the security
problem, objectives, and requirements by target types, such as firewalls. There
are seven evaluation assurance levels (EAL) which determine the rigour of the
evaluation. The evaluation in the lowest layer EAL 1 can be performed with-
out vendor cooperation [2]. EAL 2 requires some vendor involvement but within
normal “good commercial practice”. The higher assurance levels require heavier
vendor involvement. Common criteria is a well-recognized security certification
approach, but its cost and complexity seriously hinder its adoption for IoT [23].

Finland, Germany, and Singapore have national cybersecurity labels for con-
sumer products with limited cross-certification [7,11,29]. An external evaluation
is required to get the label in Finland and for higher levels in Singapore. The
German label is based on a vendor self-certification. These labeling schemes are

140 R. Kaksonen et al.

based on ETSI EN 303 645 set of baseline security requirements for consumer
IoT devices [1]. An example of an industry-driven security label is the ioXt
security certification scheme by the ioXt Alliance [17], which has its own set of
requirements. It supports both self-certification and third-party certification.

The list of certified products is public in all aforementioned schemes, thus
anyone can check if a product has been approved. Websites of Common Criteria,
ioXt, and Finnish label contain per requirement verdict for the approved prod-
ucts. Singapore and Germany labels contain just the name and identification
information for the products.

The requirements covered by most IoT security standards are for security
design, interface security, authentication, data protection, and system updates
[19]. The most common process requirements are vulnerability management,
security requirements, and the use of security standards. The ioXt scheme has
a security pledge with eight principles: no universal passwords, secured inter-
faces, proven cryptography, security by default, verified software, automated
security updates, a vulnerability reporting program, and a security expiration
date [17]. Vulnerabilities are frequently discovered in all parts of IoT systems:
devices, backends, web front-ends, mobile applications, and operating systems
[20]. Many of the vulnerabilities are quite mundane. For example, in 16 IoT
device security studies, four discovered insecure communication protocols, three
transfers of confidential data in plaintext, four unprotected firmware updates,
and two vulnerabilities in respective mobile applications [5].

1.2 Manufacturer Usage Description

The security requirements for an IoT product could be used for operational
security enhancement. Manufacturer Usage Description (MUD) is defined for
devices to signal what kind of network access they require to function properly.
[25]. Deviation from this could indicate a security compromise. The description
is intended to be created by the vendor and stored on a file server for public
access. So far, MUD has not been adopted widely in the industry.

Originally MUD was meant for network access control, but it has been pro-
posed for various other purposes [16]. Gangurde proposed the use of information
in MUD to perform pre-certification security tests for devices [15].

1.3 Research Contribution

The objective of this research is to develop an IoT security assessment which is
lightweight, can be repeated without the involvement of security experts, and
applies to the whole product life-cycle. The method uses an approach somewhat
similar to MUD, but we implement a Domain Specific Language (DSL) for a
more general description of system security-related properties. The method takes
advantage of the existing security tools.

In Sect. 2 we introduce the Transparent Security Method and present a real-
world case study in Sect. 3. In Sect. 4 we extend the method for better coverage.
Finally, we discuss and present conclusions.

Transparent Security Method 141

2 Transparent Security Method

A strategy to solve difficult problems is to divide them into sub-problems and
solve those. The transparent security method divides security assessment into
three parts: 1) the creation of a security statement, 2) verification of the state-
ment, and 3) evaluation against security criteria. The familiar certification pro-
cess can be applied: the product vendor creates the security statement, an inde-
pendent reviewer verifies the statement, and the customer then uses the infor-
mation in the security statement. However, also the customer can perform the
verification, as it is tool-based and does not require deep cybersecurity exper-
tise. The security statement may also be created by an independent security
researcher. This may not be far-fetched as independent research is already pub-
lished in various blogs, articles, etc. using ad-hoc formats.

2.1 Security Statement and Claims

A security statement is made up of security claims which describe the attack
surface, security controls, and other security-relevant properties of the product.
For the statement to be valid in different environments, the claims are about
the product and exclude the environment. The claims are machine-readable and
tool verifiable, as far as possible. The statement can be visualized or presented
in a table for human understanding. Verification tools are selected and pre-
configured as part of the security statement. The verification usually requires a
running instance of the product. The verification supports the whole life-cycle
of the product, as it can be repeated for different environments, configurations,
and versions.

The security statement must be evaluated against customer security policies
or standards like ETSI EN 303 645 [1]. Later we briefly discuss how to use the
transparent security method in security certification. Statements can be viewed
side-by-side to compare different products. Tenders could contain a requirement
to provide a security statement, which is then used as a ranking criterion.

2.2 Entry-Level Security Claims

For entry-level security statement claims, we use the requirement categories com-
monly seen in IoT security standards: Security design, Interface security, Authen-
tication, Data protection, Updates and Vulnerability process [19]. Web security
is its own important category, as web interfaces are a hotspot of vulnerabilities
[20]. Mobile applications are part of many IoT products. They are installed into
user’s mobile devices and bring their own security and privacy risks [8]. Table 1
shows the entry-level security statement claims and the type of tools applicable
for their verification.

For a security assessment, we must know the system architecture. The first
claims expect the network nodes, applications, services, and connections of the
system to be defined. Best practices must be used to secure interfaces, including
the web interfaces. The users and components using critical services must be

142 R. Kaksonen et al.

Table 1. Entry-level security claims, derived from established security requirements
and common vulnerabilities, and the types of tools to automate the claim verification.

Category Claim N
e
tw

o
rk

sc
a
n

T
ra

ffi
c

c
a
p
tu

re

H
A

R
a
n
a
ly

si
s

P
ro

to
c
o
l-
sp

e
c
ifi

c

In
te

rn
e
t

se
a
rc

h
e
s

In
te

rn
e
t

sc
ra

p
in

g

S
C

A

V
u
ln

e
ra

b
il
it
y

d
a
ta

A
p
p

a
n
a
ly

si
s

Security design Network nodes are defined x x - - - - - - -

Network services are defined x x x - x - - - -

Network connections are defined - x x - - - - - -

Interface security Protocol best practices are used - - - x - - - - -

Web security Web best practices are used - - x x x - - - -

Authentication Services are authenticated x x x x x - - - -

Data protection Connections are encrypted x x x x x - - - -

Private data is defined - - x x - - - - x

Privacy policy is defined - - - - - x - - -

Updates Updates are secure and automatic - x - - - - - - -

SBOM is defined - - - - - - x - -

No vulnerabilities are known - - - - - - x x -

Vulnerability process Security policy is defined - - - - - x - - -

Release history is available - - - - - x - - -

Mobile applications Permissions are appropriate - - - - - - - - x

properly authenticated. Data protection in transit requires strong encryption of
connections, usually by standard protocols. European General Data Protection
Requirements (GDPR) require disclosure of the collected private data, the pur-
pose of the collection, where the data is stored, and how long the data is held
[13]. Verification of private data claims is challenging, as private data should be
encrypted. All software components should be automatically updated to miti-
gate exposed vulnerabilities. This requires an up-to-date Software bill of mate-
rials (SBOM) to know which vulnerabilities are relevant. Vendors must follow
information about the vulnerabilities and provide mitigation. Product version
release history provides information about actual update intervals if it is avail-
able. Mobile application permissions are often excessive, but they can be checked
from the application meta-data [8].

2.3 Verification Tools

Automated claim verification should produce either pass or fail verdict or incon-
clusive if a verdict cannot be determined. Used tools should be well-known,
high-quality, relevant, and freely available. A well-known tool is more likely to
be effective and maintained. Many people can scrutinize the use of such a tool in
a security statement. For automation, a claim should include the configuration

Transparent Security Method 143

for the tool and the code to check that the tool output matches the claim. Pop-
ular open-source security tools exist for traffic analysis, network scanning, web
security, file analysis, host verification, binary analysis, and for other tasks [21].

Network hosts and services can be verified by using network scanning and
traffic capture tools. Scanning is an active way to collect information, while cap-
ture requires the product to be exercised for it to use its network resources.
Internet search engines provide information about remote services. Different
protocol-specific tools can be used to check protocol versions and parameters,
including tools to probe the security of web services. Verifying authentication
functionality can be tricky, as only non-proprietary protocols can be checked
by common tools. The use of encryption prevents checking which data is col-
lected and transmitted. HTTP archive (HAR) is a format supported by many
browsers to capture web session traffic for analysis despite the use of encrypted
sessions [18]. Moreover, man-in-the-middle (MITM) tools could check whether
the transport encryption is implemented properly.

Verifying an SBOM can be done using Software Composition Analysis (SCA)
tools. Once components are known, they could be compared against vulnerabil-
ity databases, such as National Vulnerability Database (NVD) [24]. A vendor
which provides a readab́le version history would allow claims about the update
frequency. Component vulnerability information and release history could be
combined to calculate vendor response times for vulnerabilities.

While some tools can be run against mere powered-up devices, or even with-
out them, complete verification requires the use of the product while the network
traffic is captured. The verification time and complexity depend on the product,
which may require environment setup or special instrumentation. It is possible
to verify only a subset of the claims and run only some of the tools, if time is
critical or not all features of the product are interesting.

3 Case Study

As a case study, we created a proof-of-concept security statement for Ruuvi
Gateway and Tags IoT product [4]. The system is made up of Ruuvi Bluetooth
Low-Energy (BLE) tags, which broadcast environmental data such as tempera-
ture and humidity. An optional Ruuvi Gateway collects the data and uploads it
to a cloud service. The system can be controlled by a mobile phone application
and web interface in the gateway and cloud.

144 R. Kaksonen et al.

Fig. 1. Ruuvi Gateway and Tags partial security statement DSL.

Fig. 2. Ruuvi security architecture rendered from the DSL description.

Transparent Security Method 145

Figure 1 shows the partial system security statement in Python-based domain
specific language (DSL) designed by us. The DSL starts with the definition
of system. Next, local network nodes are defined as gateway, tags, user,
and mobile for the Ruuvi Gateway, Ruuvi tags, User browser, and Mobile
application, respectively. BLE advertisements, event type 0x03, are modelled
by conceptual node ble_ad. Relevant websites are web_1 to web_3 for Ruuvi
home and Webshop, Data user interface, and Analytics pages, respectively.
Remote backend servers are backend_1 and backend_2 for Data backend and
Code repository hosted in the Github service1. Automated updates for Gate-
way are fetched from the Code repository. Ruuvi tag and application are
updated outside of the security statement. Local nodes are identified by their
hardware or IP addresses, configured separately for each environment. Remote
servers are identified by DNS names. Infrastructure services DHCP, DNS, and
NTP are captured into the conceptual any_host service. Services HTTP, TLS,
SSH, and NTP are added to nodes. The special object HTTP_rd represents an
HTTP service which only redirects plain HTTP requests into the corresponding
HTTPS (TLS) service. The connections from nodes into services are added, e.g.
gateway >> backend_1 / TLS stands for connection from Gateway to the Data
backend TLS service.

Services ICMP, EAPOL, ARP, DHCP, DNS, and NTP are considered admin-
istrative. They are usually implemented by standard components. The remain-
ing connections are application specific and likely more interesting for security
assessment. Encrypted connections use TLS and SSH, but a few application
plaintext connections are using plain HTTP or BLE. Figure 2 shows the security
architecture diagram rendered from the DSL description. The diagram shows the
network nodes and the connections between the services in the nodes. The lock
icon marks the encrypted connections. Administrative connections are omitted
for clarity.

Security claims were the ones shown in Table 1. We chose the used tools and
implemented the verification automation. Then, we set up the product, ran the
tools, and used the product while capturing network traffic. The output from
the tools was automatically compared with the model created by DSL to verify
the claims. Results are shown in Table 2, which gives the automation status and
the used tools and methods for each claim. The table indicates how many of the
possible automated checks were performed (“Yes”) and how many were not done
(“No”). From the 15 security claims, six could be fully and six partially verified
by automation. Two claims could only be verified manually and no evidence was
observed for one claim. Short descriptions and home pages for the tools are listed
in Table 3.

1 https://www.github.com.

https://www.github.com

146 R. Kaksonen et al.

Table 2. Ruuvi security statement claims, verification automation status, and used
tools and methods.

Claim Automatic verification?

Yes No Tools and methods

Network nodes are defined 10 0 Nmap, Censys, Tcpdump

Network services are defined 12 0 Nmap, Censys, Tcpdump

Network connections are defined 8 1 Tcpdump, HAR analysis, HCIdump

Protocol best practices are used 5 0 Testssl.sh for TLS

2 0 Ssh-audit for SSH

Web best practices are used 5 1 Censys, ZED proxy, HAR analysis

Services are authenticated 0 4 Only manual review

Connections are encrypted 6 1 Tcpdump

Private data is defined 0 3 Only manual review

Privacy policy is defined 1 0 Web page scraping

Updates are secure and automatic 0 1 Tcpdump

SBOM is defined 1 2 Black Duck

No vulnerabilities are known 1 2 Black Duck

Security policy is defined 1 0 Web page scraping

Release history is available 3 0 Gitlab API request

Permissions are appropriate 1 1 APKPure, Apktool

Table 3. Tools used for Ruuvi security analysis

Name Description Home page

APKPure APK repository https://apkpure.com/

Apktool APK analysis tool https://ibotpeaches.github.io/Apktool/

Black Duck SCA service (commercial) https://protecode-sc.com/

Censys Internet search service https://search.censys.io

Github Repository hosting service https://github.com

HCIdump Bluetooth Low Energy recorder https://www.bluez.org

Nmap Network scanner https://nmap.org

Ssh-audit SSH test tool https://github.com/jtesta/ssh-audit

Testssl.sh TLS test tool https://testssl.sh

Tcpdump Traffic recorder https://www.tcpdump.org

ZED Web security scanner https://www.zaproxy.org/

Security design claims were verified by network scanning and capture by tools
Nmap, Tcpdump and HCIdump. The Censys service provided information about
remote hosts and services. HAR analysis provided information about browser
sessions. In the end, the verification confirmed all network nodes and services,
but one connection was not observed. No unexpected network nodes, services, or
connections were encountered. Two out of nine connections, BLE advertisements
and setup connection between browser and Gateway, are plaintext and the rest
are encrypted by TLS. TLS and SSH best practices were checked using Testssl.sh
and ssh-audit tools, respectively. Web services were checked by the ZED attack
proxy. We did not implement verification of the authentication functionality.

We checked the availability of privacy and security policies by scraping the
pages from the Internet. We did not analyze the page content, only that it
remains available. This approach could be improved by checking that the content

https://apkpure.com/
https://ibotpeaches.github.io/Apktool/
https://protecode-sc.com/
https://search.censys.io
https://github.com
https://www.bluez.org
https://nmap.org
https://github.com/jtesta/ssh-audit
https://testssl.sh
https://www.tcpdump.org
https://www.zaproxy.org/

Transparent Security Method 147

remains unmodified after a manual review. We could not automatically verify
the collected private data, which probably cannot be done in most cases.

The remote and local nodes are all running software, but only Gateway soft-
ware automatic updates are part of the described system. The update mechanism
was not verified, as we did not observe the update connection during the cap-
ture. We had SBOM only for the Mobile app. For SCA we used the commercial
Black Duck Binary Analyzer, as there are no obvious free tools available. Soft-
ware releases are done through GitHub cloud service and the release histories are
accessible. The Ruuvi Android application is available online through APKPure
service and we analyzed it using Apktool.

4 Extending the Transparent Security Method

Earlier sections presented the entry-level set of claims and tools, but more should
be added to improve coverage of the system security posture.

4.1 More Claims and Tools

The systems could be designed for more efficient security claim verification. The
security community should innovate new tools for checking new types of claims.
One gap is user and node authentication. Verifiable claims would require use of
common protocols or components to implement the authentication, e.g. ACE-
OAuth [28]. Vendors should use established technologies and common compo-
nents. There seems to be little value in creating proprietary security functionality
and vendors may lack the required expertise to make them robust. The adoption
of standards, like Matter, is likely to help in this respect [10].

As web interfaces are hotspots of vulnerabilities in IoT, more security claims
should be for web security [20]. A vendor could describe their web service, e.g.
the using OpenAPI specification format, which would allow additional security
checks [3]. The cookies used by the web service should be described and checked
e.g. from HAR captures. This provides a check for one aspect of privacy, an area
which is hard to probe. The entry-level claims only included the permissions
of the mobile application, but the application packages contain a lot of other
information, which can be used for security analysis [8].

IoT systems often take advantage of cloud services and IoT frameworks for
functionality like authentication, data collection, and storage. The frameworks
could allow security claims for the internals of the IoT system. These claims
could be for the software components, configuration of services, encryption of
sensitive files, permissions of critical processes, etc. [21].

The introduction of new claims and tools is encouraged in the transparent
security method for openness, to keep up with the latest development, and allow
demonstration of novel security features. Unfortunately, this may bring 1) claims
which are not effectively checked by tools, 2) claims with little or no real value
describing the security of the product, or 3) tools or tool configurations which
do not assign proper verdicts. These can be exploited by vendors to look better

148 R. Kaksonen et al.

without improving security. For example, there could be claims about supported
IP-options without any clear impact on security. To avoid these problems, an
evaluator can only take into account the claims she is familiar with. In the end,
there likely is a need to come up with a recommended or official list of claims
and their verification tool configurations.

Transparent security framework is a system which reads the security state-
ment, fetches and runs the tools, and verifies the tool output. Security claims
which are not validated, e.g. because of how the product is exercised or config-
ured, are marked inconclusive. The framework does not need to be an actual
security scanner. Its role is to take the security statement and verify that it is
correct. When something unexpected is encountered, like an extra service port,
the verification fails but there is no need to determine if this is a security vul-
nerability or not. The author of the security statement is expected to add the
port to the model with appropriate claims or close the port if it is not required.
This greatly simplifies the design of the framework and avoids subjective deci-
sions about what constitutes a vulnerability or weakness and which is a secure
feature.

Some security tools may give security warnings which contain false positives
that clutter the verification output. In such a case, the vendor must have a chance
to explain why a particular finding is not an issue. Again, it would be prefer-
able that the tool is well known so that the explanations can be appropriately
reviewed.

4.2 Security Certification

According to Cirne et al., an IoT security certification scheme should include a
security assessment, privacy impact assessment, and product update policy [9].
A good scheme would reuse other relevant security standards and provide fast
certification and compliance with regulations.

The transparent security method would contribute to the security assessment
or even perform it completely if the used tools and techniques provide sufficient
coverage. Re-certification is supported by automated verification. Transparent
security method should speed up the initial certification when the security state-
ment already exists. A security statement is a machine-readable way to convey
information from the vendor to the certification lab effectively. As tool-based
verification is fully traceable, it would support cases where regulation demands
proof of compliance.

In the transparent security method, the vendor providing the security state-
ment performs security self-certification. Independent verification of the security
statement is a kind of third-party certification.

4.3 Other Uses

The verification tests could be used in the continuous integration/continuous
delivery (CI/CD) of the software development process. The verification would be
performed during product integration and system tests, and any violation would

Transparent Security Method 149

lead to build failure. This would make sure that all versions of the product meet
the statement. A test driven development process could use a security statement
to maximize the testability of the product security.

The information in the statements could be used operationally. An intrusion
detection system (IDS) could observe the behaviour during operations and report
if a device or service no longer follows its security statement. This might indicate
a compromise of the system. A product could also be sandboxed so that only
the specified connections, requests, etc. are allowed.

5 Discussion

We introduced the Transparent Security Method for lightweight security verifi-
cation IoT products. In the method, a machine-readable security statement of
a product is created to describe its security-related characteristics. The security
statement is verified by tools. Manual work is replaced with measurements which
are automated, repeatable, and traceable. New versions and different configura-
tions can be verified by the vendor, customer, or third-party. The transparent
security method could be used in security certification and labeling schemes.
Transparency helps with the problem described by Emami-Naeini et al. “Com-
panies may be able to game the ratings to get all of the stars and, eventually, all
products will have all stars, whether they deserve them or not” [12]. When claims
are based on verifiable data, and the process can be reproduced, the claims can
be challenged and verification can be scrutinized. With a traditional security
certificate, a vendor may have no motivation to improve security once confor-
mance is achieved. Additional security claims allow them to demonstrate new
security features.

Verification failures or excessive inconclusive verdicts may be difficult to inter-
pret for non-experts performing verification. They may indicate a problem in the
tools, changes in products, or a real security vulnerability. Most likely, a security
expert is required to resolve such cases.

In the transparent security method, the vendors need to disclose details that
they have not published before. Public security descriptions could be an incen-
tive for vendors to improve security, e.g. have only a few exposed services in the
products [12]. To gain traction, openness needs to give a competitive advantage
or be required in tenders or by the regulator. An alternative would be indepen-
dently created security statements created by reverse engineering. This could
be community work similar to Wikipedia or open-source software. This would
greatly enhance the usability of the results from independent research, as they
would be available in a verifiable and machine-processable format. Of course,
potential attackers can use security statements to understand the weak points
of the systems. This seems to favor keeping the information secret. However,
security by obscurity has been dismissed in the cybersecurity domain, as most
actors cannot reliably design secure algorithms or protocols, thus it is better to
use the publicly scrutinized ones.

150 R. Kaksonen et al.

If products are compared by their security claims, it creates a situation where
the ones with more claims get a competitive advantage. Vendors would be pres-
sured to add more claims, which ideally leads to security improvements. However,
vendors could also come up with irrelevant or unverifiable claims or select tools
and configurations which add no value. In the end, a recommended set of secu-
rity claims and tools would be required. As verification depends on the quality
of the tools, they must also be monitored and their development supported.

A verified security statement can be compared against used security policies
or standards. A policy could state that all connections must be encrypted and
services authenticated. Unfortunately, the comparison may not be so straight-
forward. The experience of the authors is that security requirements tend to
defy automated verification. A verifiable claim can demonstrate conformity to
a security requirement, but often it is impossible to show that the requirement
is met in all circumstances. For example, an encrypted connection demonstrates
secure handling of data, but not that data is stored and processed securely.
A vendor has many ways to implement functionality and it is hard to write
testable requirements which cover all possibilities. Going forward, new technolo-
gies and tools can make the transparent security method more comprehensive.
Vendors need to shift away from proprietary functionality and use standard solu-
tions which allow automated analysis of correctness and security. Cloud services
direct IoT developers to use common backend services and frameworks, which
could promote additional security claims and verification tools.

Cirne et al. list open research topics for IoT security certification [9]. The
topics include the focus to the dynamic nature of IoT systems and not just the
devices, schemes to better address the vulnerabilities unknown at the certifica-
tion time, and customer-initiated certification. As transparent security method
verification is lightweight, it can be repeated for different environments and cus-
tomers. Periodic verification of the product with updated reference information,
such as new vulnerabilities and key-length requirements, keeps security informa-
tion fresh. Using the latest versions of used tools also gives new information.

Matheu et al. provide recommendations and potential ways forward for IoT
certification [23]. They call for an efficient re-evaluation to cover the entire life-
cycle. They suggest the use of machine-readable information in a secure and
automated deployment of devices. As we described, such information can be also
exploited on verifying product security requirements. Matheu et al. emphasize
the role of the testing procedures in the efficiency of the certification - a problem
the transparent security method aims to improve. They also call for cooperation
between stakeholders, such as end users, manufacturers, and institutions [23].
We feel that a security statement is an efficient way to convey information and
generate different illustrations of the security posture for different consumers.

A system cannot be assumed to be secure, just because it cannot be proven
vulnerable. Claims of security which cannot be checked do not provide the basis
for solid security certification. Finding all vulnerabilities in a complex product
with many details unavailable is not feasible. As an attacker only needs to find
a single vulnerability, the situation is dire. We should focus on asserting that a

Transparent Security Method 151

product is using strong and testable technologies and components. The vendors
should support security assessment by providing the required information. With
the transparent security method, we can scale up the analysis to match the
volume of IoT products and take the initiative away from the attackers, who
must still find vulnerabilities to be successful.

6 Conclusions

In this work, we introduced the Transparent Security Method, in which the secu-
rity statement describes the security of a product in a tool-verifiable way. We
derived entry-level security claims from security standards and common vulner-
abilities, implemented a domain specific language to describe these claims, and
successfully used common tools to automatically verify security claims in a case
study of a real IoT product. The key advantages of the transparent security
method compared to the mainstream assessment methods are the following.

– Codification of security-relevant information into security statement
– Coverage of all product versions, configurations and environments
– Independent tool-based verification of security statements
– Possibility to demonstrate new product security features
– Comparison of product security between different products

The key disadvantages are the following.

– Creation of security statements is additional work and requires information
currently held back or not even collected

– Coverage is limited by the available tools and technologies
– Security is not represented by an easily digestible stamp or rating

Transparent security statements, whether made by vendors or security
researchers, could be a boost for product security. Products could be scruti-
nized, compared and ranked by their security characteristics. Security labels
and certifications could be based on verified security statements. Vendors would
need to improve their security to keep up with the market.

References

1. Cyber Security for Consumer Internet of Things: Baseline Requirements v2.1.1.
ETSI EN 303 645, ETSI (2020)

2. Common Criteria for Information Technology Security Evaluation, Parts 1–5. Stan-
dard (2022). https://www.commoncriteriaportal.org/

3. OpenAPI Specification (2023). https://swagger.io/resources/open-api/
4. Ruuvi home page (2023). https://ruuvi.com
5. Abu Waraga, O., Bettayeb, M., Nasir, Q., Abu Talib, M.: Design and implemen-

tation of automated IoT security testbed. Comput. Secur. 88, 101648 (2020)
6. Akhilesh, R., Bills, O., Chilamkurti, N., Mohammad Jabed, M.C.: Automated

penetration testing framework for smart-home-based IoT devices. Future Internet
14(10), 276 (2022)

https://www.commoncriteriaportal.org/
https://swagger.io/resources/open-api/
https://ruuvi.com

152 R. Kaksonen et al.

7. BSI, Germany: Baseline Requirements for consumer IoT devices (2023). https://
www.bsi.bund.de/dok/ciot-standard

8. Chatzoglou, E., Kambourakis, G., Smiliotopoulos, C.: Let the cat out of the bag:
popular android IoT apps under security scrutiny. Sensors 22, 513 (2022)

9. Cirne, A., Sousa, P.R., Resende, J.S., Antunes, L.: IoT security certifications: chal-
lenges and potential approaches. Comput. Secur. 116, 102669 (2022)

10. Connectivity Standards Alliance Inc: Matter Specification, Version 1.0. Standard
(2022)

11. Cyber Security Agency of Singapore: Cybersecurity Labelling Scheme (2023).
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/
cybersecurity-labelling-scheme

12. Emami-Naeini, P., Dheenadhayalan, J., Agarwal, Y., Cranor, L.F.: An informative
security and privacy “nutrition” label for internet of things devices. IEEE Secur.
Priv. 20(2), 31–39 (2022)

13. European Commission: Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation) (2016)

14. European Cyber Security Organisation (ECSO): European Cyber Security Cer-
tification, A Meta-Scheme Approach v1.0. WG1 - Standardisation, certification,
labelling and supply chain management, ESCO (2017)

15. Gangurde, C.: Automation of IoT pre-certification security testing environment
based on the manufacturing usage description. Master thesis, Eindhoven University
of Technology (2019)

16. Hernández-Ramos, J.L., et al.: Defining the behavior of IoT devices through
the MUD standard: review, challenges, and research directions. IEEE Access 9,
126265–126285 (2021)

17. ioXt Alliance: ioXT Internet of secure things (2023). https://www.ioxtalliance.org/
18. Jan Odvarko: HTTP Archive 1.2 Specification (2007). http://www.softwareishard.

com/blog/har-12-spec/
19. Kaksonen, R., Halunen, K., Röning, J.: Common cybersecurity requirements in IoT

standards, best practices, and guidelines. In: Proceedings of the 7th International
Conference on Internet of Things, Big Data and Security - vol. 1: IoTBDS, pp.
149–156. INSTICC, SciTePress (2022)

20. Kaksonen, R., Halunen, K., Röning, J.: Vulnerabilities in IoT devices, backends,
applications, and components. In: ICISSP - 9th International Conference on Infor-
mation Systems Security and Privacy. INSTICC, SciTePress (2023)

21. Kaksonen, R., Järvenpää, T., Pajukangas, J., Mahalean, M., Röning, J.: 100 pop-
ular open-source Infosec tools. In: Jøsang, A., Futcher, L., Hagen, J. (eds.) SEC
2021. IAICT, vol. 625, pp. 181–195. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-78120-0 12

22. Khurshid, A., Alsaaidi, R., Aslam, M., Raza, S.: EU cybersecurity act and IoT
certification: landscape, perspective and a proposed template scheme. IEEE Access
10, 129932–129948 (2022)

23. Matheu, S.N., Hernández-Ramos, J.L., Skarmeta, A.F., Baldini, G.: A survey of
cybersecurity certification for the internet of things. ACM Comput. Surv. 53(6),
1–36 (2020)

24. National Institute of Standards and Technology (NIST): National Vulnerability
Database (2023). https://nvd.nist.gov/

25. Rekhter, Y., Li, T.: Manufacturer Usage Description Specification. RFC - Proposed
Standard, RFC Editor (2019)

https://www.bsi.bund.de/dok/ciot-standard
https://www.bsi.bund.de/dok/ciot-standard
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme
https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme
https://www.ioxtalliance.org/
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/
https://doi.org/10.1007/978-3-030-78120-0_12
https://doi.org/10.1007/978-3-030-78120-0_12
https://nvd.nist.gov/

Transparent Security Method 153

26. Rollo, J.: D1.2 List of tools and techniques applicable for high and medium assur-
ance for efficient assurance. Report DS-01-731456 / D1.2 / V1.0, Project: Compo-
sitional security certification for medium to high-assurance COTS-based systems
in environments with emerging threats (2017)

27. Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M., Stiller, B.: Landscape of
IoT security. Comput. Sci. Rev. 44, 100467 (2022)

28. Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., Tschofenig, H.: Authen-
tication and Authorization for Constrained Environments Using the OAuth 2.0
Framework (ACE-OAuth). RFC - Proposed Standard, RFC Editor (2022)

29. Traficom, Finland: The Cybersecurity Label, National Cyber Security Center,
Finnish Transport and Communications Agency (2023). https://tietoturvamerkki.
fi/en/

https://tietoturvamerkki.fi/en/
https://tietoturvamerkki.fi/en/

DIDO: Data Provenance from Restricted
TLS 1.3 Websites

Kwan Yin Chan(B), Handong Cui, and Tsz Hon Yuen

The University of Hong Kong, Pok Fu Lam, Hong Kong
{kychan,hdcui,thyuen}@cs.hku.hk

Abstract. Public data can be authenticated by obtaining from a trust-
worthy website with TLS. Private data, such as user profile, are usually
restricted from public access. If a user wants to authenticate his private
data (e.g., address) provided by a restricted website (e.g., user profile
page of a utility company website) to a verifier, he cannot simply give
his username and password to the verifier. DECO (CCS 2020) provides a
solution for liberating these data without introducing undesirable trust
assumption, nor requiring server-side modification for TLS 1.2.

In this paper, we propose an optimized solution for TLS 1.3 web-
sites. We tackle a number of open problems, including the support of
X25519 key exchange in TLS 1.3, the design of round-optimal three-
party key exchange, the architecture of two-party computation of TLS
1.3 key scheduling, and circuit design optimized for two-party computa-
tion. We test our implementation with real world website and show that
our optimization is necessary to avoid timeout in TLS handshake.

Keywords: TLS 1.3 · two-party computation · decentralized oracle

1 Introduction

Fact-checking over public information can be done by verifying the data from a
trustworthy website. By retrieving a news article from a trusted news website
with TLS, one can ensure that the information comes from a legitimate source
and it is not altered. However, it is hard to obtain the same security guarantee for
data with restricted access. Suppose Alice wants to apply for a deposit account
in an online bank (which does not have any physical branch) and she needs to
provide an address proof. The picture or PDF of her utility bill may be digitally
edited. It is not feasible to ask Alice to provide her username and password of
her online utility account for validating her address. If Alice logins to her online
utility account and then forwards the encrypted HTML page returned by the
server to the bank, the bank will not accept this proof since TLS only provides
authenticity and data integrity to the client only, but not towards any third
party. The session key (derived from TLS handshake) used to authenticate the
HTML page is known to Alice and hence she is able to modify the page.

In general, user’s private data is often locked up by data owner. There is a
strict demand for providing data provenance over such restricted information.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 154–169, 2023.
https://doi.org/10.1007/978-981-99-7032-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_10&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_10

DIDO: Data Provenance from Restricted TLS 1.3 Websites 155

A number of existing solutions have different limitations. Some rely on trusted
hardware [14], but various attacks on hardware exist [11]. Some require changing
the server setup, like installing TLS extension for server [12], or changing the
application-layer logic [5,13] which are incompatible with existing TLS websites.
To achieve a generic solution with backward compatibility, it is ideal to not
modify anything from the server side nor any hardware requirement.

1.1 Decentralized Oracles for TLS

TLSNotary [1] proposed an architecture allowing prover to provide irrefutable
evidence to a third party (the verifier) that certain web traffic occurred between
himself and a server. It is designed for the depreciated TLS 1.0 and 1.1, by using
two-party computation (2PC) with RSA key exchange.

Zhang et al. [15] formalized the notion of decentralized oracle, which provide
authenticity and privacy assurances to Internet data from any website running
standard TLS. They proposed a decentralized oracle protocol DECO, which
used TLSNotary’s high-level architecture with the adoption of TLS 1.2 for data
authenticity, and also provided privacy protection for the decrypted traffic with
the use of zero-knowledge proof. Firstly, DECO used a three-party handshake for
Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE) using the curve secp256r1.
The prover and the verifier compute additive shares of the ECDHE session key k
(by a protocol called ECtF). Then, they derive secret-shared session keys (master
secret, encryption keys, mac keys) by securely evaluating the HMAC-SHA256
function by using 2PC. The prover prepares an encrypted request to the server.
Finally, the prover receives an encrypted response from the server and commits
it to the verifier. The verifier returns his share of the server mac key. The prover
decrypts to obtain the response R and a tag τ ′. The tag τ ′ is verified with the
reconstructed server mac key. Finally, the prover uses a zero-knowledge proof
SNARK [2] to show that the response R is correctly decrypted and verified by
τ ′, and it satisfies some relation. The prover can reveal partial information of R.

1.2 Motivation: Compatibility with TLS 1.3

TLS 1.2 was standardized in 2008. Many of the major vulnerabilities in TLS 1.2
is caused by the use of older cryptographic algorithms that were still supported.
TLS 1.3 was published in 2018. It drops support for these vulnerable crypto-
graphic algorithms, simplifies the selection of cipher suites, and is faster than
TLS 1.2. According to a recent survey1, TLS 1.3 becomes the preferred TLS
protocol for 63% of the top one million web servers on the Internet in 2021.

During the TLS handshake stage, the hello messages and the key shares are
sent in plaintext, while the finish messages (including the HMAC value) are
encrypted by the derived keys (as shown in Fig. 1). Most servers have a specific
timeout value on the TLS handshake timeout. The default value is usually around

1 www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report.

www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report

156 K. Y. Chan et al.

Fig. 1. Modified system architecture for TLS 1.3. The symbol {m}k stands for the
symmetric key authenticated encryption of m using the key k.

10–15 s2 It is challenging to finish the 2PC within the time limit, due to the
complexity of the key derivation.

There are some changes in TLS 1.3 that makes it difficult to build a decen-
tralized oracle for TLS 1.3, namely the changes in TLS 1.3 key scheduling and
the X25519 key exchange protocols.

TLS 1.3 Key Scheduling. In TLS 1.2, the DHE key is taken as the input key
of the HMAC-SHA256 function to derive a master secret. The master secret is
then used to compute HMAC and to derive all other keys. Hence, a total of four
2PC-HMAC is needed. In DECO, a 2PC-HMAC is computed by one invocation
of 2PC-SHA256 and it takes around 2.5 s for the WAN setting [15]. Hence, the
2PC-HMAC part already uses 10 s in the TLS 1.2 handshake.

In TLS 1.3, the key scheduling is much more complicated (as shown in Fig.
3) than the TLS 1.2 version. Starting from the DHE key, it requires five HMAC-
SHA256 (used in HKDF.Extract and HKDF.Expand) to generate the handshake
keys tkchs and tkshs, and an extra six HMAC-SHA256 to generate the application
encryption keys tkcapp and tksapp. Hence, the 2PC of the TLS 1.3 key scheduling
is much more complicated and time consuming.

X25519 Key Exchange. TLS 1.2 supports a number of elliptic curves for
ECDHE. TLS 1.3 simplified that to five curves, in which X25519 and X448
(ECDHE over Curve25519 and Curve448) are newly added to the standard. It is

2 E.g., https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-handshake-ti
mer.

https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-handshake-timer
https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-handshake-timer

DIDO: Data Provenance from Restricted TLS 1.3 Websites 157

not easy to integrate DECO with these new curves for two reasons: the difference
in the elliptic curve equation, the API defined in the RFC 7748 standard.

1.3 Our Contributions

In this work, we construct a practical decentralized oracle for TLS 1.3. In par-
ticular, we work on improving the three-party handshake protocol, and design
our own 2PC key scheduling for TLS 1.3.

For three-party handshake using ECDHE, we first modify the ECtF protocol
to support the Curve25519 and Curve448. The original ECtF protocol in DECO
has 8 rounds of communication between the prover and the verifier. The total
round-trip time of ECtF (4 × 67 ms = 268 ms in [15]) already contributes to
9.4% of the online running time of the handshake in DECO. We propose a
round-optimal ECtF protocol to reduce the total round complexity from 8 to
3. We achieve this by designing our dedicated multiplicative-to-additive (MtA)
protocol3, instead of using the existing MtA protocol as in DECO [15], as shown
in Sect. 3.1.

During our implementation, we solved the API problem for running the ECtF
protocol with X25519. In particular, we make use of the API for EdDSA in TLS
1.3. We observe that the twisted Edward curve for Ed25519 is equivalent to
the Curve25519. Hence, we need to do a coordinate conversion and use the
elliptic curve arithmetic API provided in the Ed25519 library. Some other API
techniques can be found in Sect. 3.2.

In TLS 1.3, the two-party computation on key scheduling becomes the bot-
tleneck of the entire protocol. In [15], it is estimated that the 2PC circuit involves
roughly 30 invocations of SHA256 (around 75.6 s using the running time over
WAN in [15]). In this paper, we investigate how to efficiently design two different
types of 2PC-HMAC: shared message and shared key ([15] only works on 2PC-
HMAC with shared message for TLS 1.2). We also design our own optimized
2PC for modular addition over the finite field of Curve25519. We saved around
50% of AND gates as compared to the traditional method. Details can be found
in Sect. 4.

We relax the privacy requirement from DECO, so that we only consider the
privacy of the prover’s input only. As a result, a number of invocations to 2PC-
HMAC and 2PC-AES are saved.

Finally, we apply our techniques and build our solution for decentralized ora-
cles over TLS 1.3 as Decentralized IDentification Oracles (DIDO). We demon-
strate that DIDO can access restricted information from some utility webpages
within 10 s.

2 Data Provenance with TLS 1.3

DECO [15] allows users to prove that a piece of data accessed via TLS came
from a particular TLS 1.2 website. However, a straightforward implementation
3 Alice (holding a secret α) and Bob (holding a secret β) can obtain shares x and y

respectively such that αβ = x + y.

158 K. Y. Chan et al.

Fig. 2. The functionality F of decentralized oracles.

of [15] in TLS 1.3 cannot access a real-world TLS 1.3 website before time-out.
In this paper, we propose optimization for supporting the real-world TLS 1.3
website with the base of DECO framework.

DECO [15] also supports (optionally) proving statements about the TLS-
encrypted data in zero-knowledge. The similar technique can also be applied to
our scheme. We will not further discuss the selective opening since it is out of the
scope of the paper. We consider the simple case that the verifier obtains the entire
message sent from the server. As a result, we modify the system requirements
and security definitions of decentralized oracles in [15] for this relaxed definition.

2.1 Notations and Definitions

We denote by P the prover, V the verifier and S the TLS server. We use the ideal
protocol execution [3] and model the essential properties (with relaxed privacy)
using a functionality F . Messages are tagged with a unique session identifier sid
to separate parallel execution of F .

F takes θs for P as private input, and take a query template Query for
V as input. For example, θs = (username, password) is the private input of
P, and Q = Query(θs) is the HTTPS request sent to the gas company user
account webpage using the username and password in θs. Denote the honest
response from the server by S(Q). We also define the decentralizaed oracles as
the protocol that does not require any server-side collaboration.

Definition 1. A decentralized oracle protocol for TLS is a three party protocol
P = (PS ,PP ,PV) such that P realizes F and PS is the standard TLS with an
application-layer protocol.

Adversarial Model. We consider a static network adversary A. There are two
possible models for corrupting P or V. (i) Semi-honest: P or V may reveal
their states to A, but it still follows the protocol. and (ii) Malicious: P or V
may deviate arbitrarily from the protocol and reveal their states to A.

DIDO: Data Provenance from Restricted TLS 1.3 Websites 159

Security Properties. The security holds when either P or V is corrupted.
Similar to DECO, there are three security guarantees for the functionality F for
malicious adversary: prover-integrity, verifier-integrity and privacy.

Due to the performance issue (to be discussed in the next section), we can
only use building blocks secure against semi-honest adversary in our implemen-
tation. The final implementation is secure against semi-honest adversary. In this
setting, prover-integrity and verifier-integrity are guaranteed by the semi-honest
adversary. Hence we only need privacy: an adversarial V only learns public
information (Query,S) and obtains R.

2.2 Estimating the Performance of DECO with TLS 1.3

DECO [15] mainly implemented building blocks for TLS 1.2 and obtained some
online and offline running time in the WAN setting. The source code of DECO is
not publicly available. We perform a rough estimation on implementing DECO
with TLS 1.3 and see if it will trigger a timeout.

Running Time of ECtF. [15] only provided the running time of 2.85 s (online)
and 10.29 s (offline) for running the three-party handshake, which mainly consists
of an iteration of ECtF and also a 2PC-SHA256 for deriving the master secret.
The running time of the 2PC-SHA256 is similar to the running time of 2PC-
HMAC in [15], which is about 2.52 s (online) and 3.19 s (offline). It implies that
the running time of ECtF is about 0.33 s (online) and 7.1 s (offline).

Running Time of TLS 1.3 Key Scheduling. As estimated in [15], the 2PC
circuit for TLS 1.3 key scheduling roughly takes 30 invocations of 2PC-SHA256.
It takes 75.6 s (online) and 95.7 s (offline).

Running Time of Query Execution. As shown in [15], the running time of
2PC-AES-GCM for 256 bytes data is 1.21 s (online) and 12.01 s (offline).

We can see the estimated running time in the WAN setting is 77.14 s (online)
and 114.81 s (offline), even without doing any selective opening in [15]. It is very
likely that it will trigger a timeout and hence it is not practical.

2.3 Overview of Our Design

There is a huge gap between the estimated running time of 77.14 s and our
target running time of 10 s before TLS timeout. The most significant part (98%)
of the running time comes from the large number of 2PC-SHA256 in TLS 1.3
key-scheduling.

TLS 1.3 key scheduling is illustrated in Fig. 2 of [7]. In our Fig. 3, we extend
it by including the final session keys used for encrypting the application traffic
(tkcapp for client’s key and tksapp for server’s key), which are derived from CATS
and SATS. Assume that we do not have pre-shared key (PSK) for the initial
connection. We can treat the keys derived only from PSK as constant. Hence we
can simplify the key scheduling by considering the key dES as a constant num-
ber. The other input DHE is the output of the ECtF protocol, which is shared

160 K. Y. Chan et al.

Fig. 3. Design for 2PC key scheduling for TLS 1.3 (without selective opening).

by the prover and the verifier. As estimated in DECO [15], each 2PC compu-
tation of HKDF.Extract and HKDF.Expand requires two or three invocations of
2PC-SHA256 (depending on which input is shared, refer to Sect. 4.1 and 4.2 for
details). Since there are 15 invocations of HKDF.Extract and HKDF.Expand, it
sums up to at least 44 invocations of 2PC-SHA256.

Design Without Selective Opening. Assume that selective opening is not
needed in the application. Recall that the server’s application key tksapp is used
to decrypt and to authenticate the data sent from the server. Hence, it should
not be fully revealed to the prover during key scheduling. In order to reduce the
number of 2PC computation, we set tksapp and SATS to be completely revealed
to the verifier.

Since the client’s application key tkcapp is used to encrypt some secret infor-
mation of the prover (e.g., password or cookie file), tkcapp and CATS should not
be known to the verifier. It implies that the key MS should be shared between the
prover and the verifier. The overall design for the 2PC key scheduling is shown
in Fig. 3. This design has three improvements in terms of running time when
selective opening is not needed: (1) Reduce the invocations of 2PC-SHA256 in
key scheduling; (2) Remove the 2PC-AES-GCM for query execution. The ver-
ifier can decrypt the HTML page completely by himself; (3) Save the running
time for selective opening. Based on our key scheduling design and the TLS 1.3
protocol, our overall system architecture is modified, as shown in Fig. 1.

3 Three-Party ECDHE Handshake

In DECO [15], the prover and the verifier jointly act as the client and inter-
act with the server. Their three-party handshake (3P-HS) involves a ECDHE

DIDO: Data Provenance from Restricted TLS 1.3 Websites 161

key exchange, the ClientHello and ServerHello messages in TLS 1.2, and the
key derivation function. In this paper, we will separate them and analyse each
protocol individually. The three-party ECDHE (3P-DH) runs as follows.

(1) The verifier picks a random xv and sends xvG to the prover. The verifier
computes a zero-knowledge proof πv of xv with respect to xvG.

(2) If πv is valid, the prover picks a random xp, sends xpG + xvG = (xp + xv)G
to the server as the client key share following the TLS 1.3 ECDHE protocol.

(3) The server replies with the server key share yG. The prover forwards it to
the verifier. The prover also sends to the verifier xpG and a zero-knowledge
proof πp of xp with respect to xpG. The prover computes xpyG and the
verifier computes xvyG if πp passes the verification.

(4) The prover and the verifier have to perform a two-party computation for
the generated session key, i.e., sharing the x-coordinate of (xp + xv)yG =
xpyG + xvyG. It is called ECtF: converting shares in EC(Fp) to shares in
Fp.

DECO [15] used the secret-sharing-based Multiplicative-to-Additive (MtA)
protocols in [8] to construct ECtF. There are two main issues. Firstly, ECtF is
expensive in terms of round complexity. It has 8 rounds of communication, which
includes 6 rounds for using the 3 MtA protocols in ECtF. The online running time
of DECO’s handshake protocol in the LAN and WAN is 368.5ms and 2850ms
respectively [15]. There is a round-trip time of 67ms between two nodes in their
WAN setting. In other words, the 8 rounds of communication in ECtF already
used 9.4% (268ms) of the running time. The second issue is that DECO only
considers ECDHE on the elliptic curve of the form Y 2 = X3 + a1X + a0 mod
p (e.g., secp256r1, secp384r1 and secp521r1 in TLS 1.3). Their ECtF does not
support the Montgomery curve of the form Y 2 = X3 +a2X

2 +a1X mod p (e.g.,
Curve25519 and Curve448 in TLS 1.3), which is also widely used in practice.

3.1 Round-Optimal ECtF+ Protocol for All TLS 1.3 Curves

In this paper, we propose an improved version of the ECtF protocol. Instead
of using the MtA protocols in [8] in a black-box manner, we design our two-
party computation protocol from scratch and construct a round-optimal ECtF+
protocol. It only has 3 rounds of communication. In addition, it supports all
elliptic curves in the TLS 1.3 standard.

Point Addition on Elliptic Curve. Consider an elliptic curve of the general
form: v2 = u3 + a2 · u2 + a1 · u + a0 mod p. Consider that the prover P and the
verifier V have ECC points P1 = (u1, v1) and P2 = (u2, v2) respectively. They
want to jointly compute K = P1+P2 and they get k1 and k2 such that k1+k2 =
uk mod p and K = (uk, vk). Recall that by the elliptic curve computation, we
have uk = λ2 − a2 − u1 − u2, where λ = (v2 − v1)/(u2 − u1).

Our Scheme. The intuition of our ECtF+ protocol is to run two specially
designed MtA protocols in parallel. Suppose the prover P chooses random r1 and
the verifier V chooses random r2. P and V run the MtA for δ = (r1+r2)(u1−u2)

162 K. Y. Chan et al.

Fig. 4. The protocol ECtF+.

and ω = (r1 + r2)(v1 − v2) in parallel. Hence they obtain λ = ω/δ and calculate
uk = λ2 − a2 −u1 −u2 accordingly. Fig 4 gives the ECtF+ protocol. It is easy to
check that s1, s2 are additive shares of uk, namely, s1 +s2 = uk. We will present
the security of ECtF+ in our full version [6].

ECtF+ Implementation. We implement DECO’s ECtF and our ECtF+ in both
the LAN and the WAN settings. We test the schemes by using both the Paillier
encryption and the CL encryption [4] under the curve secp256r1 and Curve25519.
The round-trip time in the WAN setting is 58 ms. Since the Paillier version is 10
times faster than the CL version in LAN, we only proceed to the Paillier version
in WAN and show the results in Table 1. For the experimental details, please
refer to the full version of this paper [6].

Our ECtF+ outperforms DECO’s ECtF in three ways. Firstly, our ECtF+ is
around 7.9% faster than DECO’s ECtF in the LAN setting, as shown in Table 1.
Secondly, our scheme has only 3 rounds of communication while [15] has 8 rounds.
Our ECtF+ is around 13.1% faster than DECO’s ECtF in the WAN setting.
Thirdly, our ECtF+ supports the efficient operation over Curve25519. We will
use X25519 for the TLS handshake protocol for the rest of the paper.

3.2 Three-Party Handshake with X25519

In TLS 1.3 ECDHE, the elliptic curve points are sent differently for different
curves. For the curves secp256r1, secp384r1, and secp521r1, the binary repre-

DIDO: Data Provenance from Restricted TLS 1.3 Websites 163

Table 1. Online running time of ECtF(+) on different elliptic curves in Paillier and
CL encryption with the LAN, and Paillier encryption with the WAN.

Paillier (LAN) CL [4] (LAN) Paillier (WAN)

Curves ECtF [15] Our ECtF+ ECtF [15] Our ECtF+ ECtF [15] Our ECtF+

secp256r1 0.350 s 0.308 s 3.012 s 2.544 s 0.423 s 0.386 s

Curve25519 × (0.363 s) 0.317 s × (2.971 s) 2.660 s × (0.428 s) 0.386 s

sentation of the entire (x, y)-coordinate is sent. However, only the u-coordinate
on the Montgomery curve is sent for X25519 and X448 as shown in RFC 7748.
In TLS libraries that support X25519 and X448, the API usually outputs the
u-coordinate for ECDHE computation only. It is not compatible with the ECtF
protocol, since we need the (u, v)-coordinates of xpyG and xvyG for the prover
and the verifier respectively as the input to ECtF.

In the X25519 standard in RFC 7748, a function X25519(k, u) is defined,
where k is a 32 bytes string and u is a u-coordinate. The function first decodes
k as an integer scalar, sets the three least significant bits of the first byte and
the most significant bit of the last to zero, sets the second most significant bit of
the last byte to 1 and, finally, decodes as little-endian. The scalar multiplication
can be computed by the decoded number and u, using the Montgomery formula
(a pseudocode is given in RFC 7748). If Alice and Bob choose random strings
ka and kb respectively, and u∗ is the base point of Curve25519, their session key
is X25519(ka, X25519(kb, u∗)) = X25519(kb, X25519(ka, u∗)). The case of X448
is almost the same and we omit it for simplicity.

The integration of the three-party handshake (3P-HS) protocol in [15] with
X25519 is not straightforward since: (1) The function X25519(·, ·) only returns
the u-coordinate. With only the u-coordinate, the prover cannot calculate point
addition in Step 2 of 3P-HS, and also cannot run the ECtF protocol in Step
4. The (u, v)-coordinate is needed. (2) There is a lack of Curve25519 point
addition API for Step 2 of 3P-HS. The only compulsory API is X25519(·, ·)
as defined in RFC 7748. Many TLS libraries do not provide Curve25519 point
addition API. (3) The scalar k is masked before use. In order to support X25519
and X448, one needs to find a TLS library without the above obstacles, or
develop his own library (which is time consuming and error-prone). Instead, we
propose alternative approaches to address the above three problems: The first
problem can be solved by using Tonelli-Shanks algorithm. The second problem
can be solved by using APIs of EdDSA signatures (Ed25519 and Ed448) and
equation conversions between Montgomery and twisted Edwards curves. For the
third problem, ECtF protocol could output the shares of the u-coordinate of
(xp + xv)yG or (xp − xv)yG. It is the same as the session key computed by
the server with 50% probability. To avoid this ambivalence, we use a special
technique which is discussed in details in our full version [6].

164 K. Y. Chan et al.

4 Design for 2PC Key Scheduling

In this section, we discuss how to implement the 2PC key scheduling in Fig. 1.

2PC Key Scheduling for TLS 1.3. Recall that after running ECtF+, the
prover and the verifier have the additive shares of the ECDHE session key DHE.
The goal of our key scheduling is to ensure that the prover cannot obtain the
server application traffic secret SATS, which is used to authenticate the informa-
tion returned by the server. On the other hand, we also do not want the verifier
to obtain the client application traffic secret CATS, since it is used to encrypt the
information sent from the prover. As a result, we need to set MS as the shared
secret between the prover and the verifier according to Fig. 1. It further implies
that dHS and HS are both shared secrets. For the generated session keys, it is
safe to give the client handshake key tkchs and the server handshake key tkshs to
the prover. Hence, 2PC computation is required for the purple box in Fig. 1.

In order to complete the 2PC key scheduling with shared ECDHE ses-
sion key DHE as input, we need to implement 2PC for the functions
HKDF.Extract and HKDF.Expand. In TLS 1.3, we have: HKDF.Extract(salt, k) =
HMAC(salt, k),HKDF.Expand(k, Labelj ||Hi) = HMAC(k, Labelj ||Hi).

The definition of the constant Labelj and Hi can be found in [7]. Recall the
definition of HMAC function for a key K and a message M (when |K| matches
the key length of the hash function H): HMAC(K,M) = H((K⊕opad)||H((K⊕
ipad)||M)), where opad is 512 bits of repeated bytes 0x5c, ipad is 512 bits of
repeated bytes 0x36. From Fig. 1, we need to use both 2PC-HMAC for shared
message M and 2PC-HMAC for shared key K.

4.1 2PC-HMAC for Shared Message

We only need to use 2PC-HMAC for shared message once, where the message
M = DHE is shared by the prover and the verifier and the key K = dES is a
constant. We use SHA-256 as the hash function H in our implementation, which
is supported by TLS 1.3. If we break down HMAC by the SHA-256 compression
function SHA256(·, ·), the computation of HMAC(dES,DHE) is as follows.

(1) Compute the chaining state cs1 = SHA256(IV , dES ⊕ ipad), where IV is
the initialization vector for SHA-256.

(2) Compute the chaining state cs2 = SHA256(IV , dES ⊕ opad).
(3) Compute the 256 bit padding pad4. Compute h1 = SHA256(cs1,DHE||pad).
(4) Output HS = SHA256(cs2, h1||pad).

Since dES is a constant (when there is no pre-shared key), we can precompute
cs1 and cs2. Recall that the prover has a share up and the verifier has a share uv

such that up + uv = DHE mod p. To compute 2PC-HMAC(dES,DHE), we need
to run as follows.

(1) The prover and the verifier run a 2PC-Modular-Addition with private input
up and uv respectively. They will obtain a XOR share of DHE.

4 In HMAC’s padding rules, it follows 1|| < 191 bits of 0 > || < 64-bit 7682 >.

DIDO: Data Provenance from Restricted TLS 1.3 Websites 165

Fig. 5. Our circuit design.

(2) The prover and the verifier run a 2PC-SHA256(cs1,DHE||pad) with the XOR
shares of DHE as input. They will obtain a XOR share of h1.

(3) The prover and the verifier run a 2PC-SHA256(cs2, h1||pad) with the XOR
shares of h1 as input. They will obtain a XOR share of HS.

We use the efficient implementation of 2PC-SHA256 in the emp-sh2pc
library5, which uses garbled circuits and oblivious transfer. Hence, we only need
to design an efficient 2PC-Modular-Addition protocol.

2PC-Modular-Addition. There are a number of circuits designed for 2PC
addition of 64 bits. To the best of the authors’ knowledge, there are no modular
addition circuits available for the 2PC library emp we used. Hence we design our
own modular addition circuit for 2PC.

Adder. Our 2PC-Modular-Addition circuit design for Curve25519: (1) We first
build a 255 bits ripple adder circuit with 254 Goldfeder’s full adder [9] and 1 half
adder in the least significant bit; (2) If the final carry bit c255 is 1, add 19 to the
255-bit output, since X = X − (2255 − 19) mod 2255 − 19. Else, simply output
X. To implement the second step, we need a circuit to generate the constant
term 19 and the logic gates for “if-else”. We observe that b XOR b = 0 for any
b = 0/1. Hence constant 0 can be generated by one XOR gate. The constant 1
can be obtained by applying an INV gate to 0. Finally we obtain 192 (Fig. 5).

Logic control. The “if-else” logic can be implemented as follows. Assume that
si is the i-th bit of a 255 bit number S, and s∗

i is the i-th bit of a 255 bit
number S + 19. The traditional “if-else” logic can be implemented by: ŝi =
(c255 AND s∗

i) XOR ((INV c255) AND si). This circuit runs for 255 times and the
final output is (ŝ255, . . . , ŝ1). However, this “if-else” logic circuit is not optimized
for 2PC with the use of two AND gates. We give a new design by using one AND
gate, one INV gate and two XOR gates, as shown in Fig. 5.

Result. As compared with the traditional approach (simple full adder, half adder
and logic control) in Table 3, our current approach saves about half of the AND
gates. As a result, the efficiency of our 2PC-Modular-Addition can be improved
by about 50%, by using the free XOR technique in 2PC [10].

Remark that our circuit determines the modulus 2255−19 with only the carry
c255. With this operation, it leaves 2255 − 18 to 2255 − 1 which we treat them as
the case no need to take mod. This leads to a negligible probability of error.
5 https://github.com/emp-toolkit/emp-sh2pc.

https://github.com/emp-toolkit/emp-sh2pc

166 K. Y. Chan et al.

4.2 2PC-HMAC for Shared Key

To compute MS = HMAC(dHS, 0), and all HKDF.Expand(·, ·) functions with
shared keys HS or MS, we need to use 2PC-HMAC. The computation of the
2PC-HMAC(K,M) function is as follows. Note that for TLS 1.3, message M is
less than 64 bytes.

(1) Compute the shared chaining state cs1 = 2PC–SHA256(IV,K ⊕ ipad).
(2) Compute the shared chaining state cs2 = 2PC–SHA256(IV,K ⊕ opad).
(3) Compute the padding pad1 and h1 = 2PC–SHA256(cs1,M ||pad1).
(4) Compute the padding pad2. Output HS = 2PC–SHA256(cs2, h1||pad2).

Alternatively, one can output the entire cs1 to the prover and he computes
h1 on his own in step 3. The value h1 is treated as a public input in step 4. This
modification reduces the number of 2PC–SHA256 from four to three. However, it
requires the library to provide an interface to modify the internal chaining state
of SHA-256 to cs1. We do not use this method in our implementation due to the
complexity in engineering work.

5 Decentralized Identification Oracles (DIDO)

In this section, we integrate our techniques above and construct a decentralized
oracle for TLS 1.3. We call our scheme as Decentralized IDentification Oracles

Fig. 6. The protocol PDIDO.

DIDO: Data Provenance from Restricted TLS 1.3 Websites 167

Table 2. Running time of our DIDO
implementation on different websites.

P and V
in LAN

P and V
in WAN

www.google.com 4.266 s 7.848 s

www.youtube.com 6.384 s 27.233 s

github.com 4.717 s 12.594 s

www.microsoft.com 4.984 s 6.275 s

yahoo.com 4.468 s 6.650 s

wikipedia.org 4.338 s 6.447 s

easychair.org 5.665 s 6.928 s

Table 3. Number of gates for a modular
addition circuit for Curve25519.

AND # XOR # INV

Traditional 1528 1783 2

This paper 765 2546 2

Table 4. Running time of DIDO on differ-
ent utility companies.

P and V
in LAN

P and V
in WAN

Gas company 4.003 s 6.770 s

Electricity company 6.303 s 8.456 s

(DIDO), as our application is mainly for identification purpose. We define the
DIDO protocol in Fig. 6. For security claim, it follows a modification of Theorem
4.1 in DECO [15] that PDIDO UC-securely realizes F in the F2PC world, against
a static semi-honest adversary, assuming the discrete logarithm problem is hard
in the ECDHE group used, the zero-knowledge proof used is secure and the
compression function f of SHA-256 is a random oracle.

In [15], the authors give a real example of using stock price API with DECO.
By assessing the stock price API, a JSON output for a stock will be returned. In
this paper, we consider a normal HTML webpage which provides some authen-
ticated user information (the information is usually validated offline by a trust-
worthy webpage owner). In [15], it is mentioned that a university has the name
and the date of birth for a student, but the university does not provides an open
API for accessing this information. However, such an open API may not be
always available. In this paper, we consider using the login account information
of an utility company (e.g., electricity or gas) as the address proof, for applying
some online financial services (e.g., virtual bank account, credit card or loans).
As an example, we first demonstrate that our DIDO implementation can open
a popular TLS 1.3 website, then can serve as the address proof for user in some
utility websites.

Some Popular TLS 1.3 Websites. We test DIDO on some popular websites
supporting TLS 1.3. DIDO can successfully access them and the verifier is able
to decrypt the payloads accordingly. We show the results in Table 2. It can be
seen that there are some web pages with longer running time, and may have a
big difference between LAN and WAN. The running time discrepancy is affected
by the length of the content of the web page, and the response time of the server.

Address Proof. In a webpage of a utility company (e.g., electricity or gas),
a user can login his account by using username and password and acquire his
current address. It is common for a web server to send a cookie file after entering
the username and password. By using cookie file, the client browser can open
the webpage with personal information. We present the details of the test of

www.google.com
www.youtube.com
www.microsoft.com

168 K. Y. Chan et al.

DIDO using a real gas and electricity company’s webpage in our full version [6].
We use the same setting in Sect. 3.1 for testing the performance of our DIDO
implementation in both the LAN and the WAN settings. The running time is
shown in Table 4. We can see that the verifier V can receive the HTML page
from the server within 10 s.

6 Conclusion

So far, we proposed DIDO for a decentralized oracle with TLS 1.3. We provided
support to X25519, proposed a 2PC key scheduling, and optimized its circuits.

References

1. Tlsnotary - a mechanism for independently audited https sessions. White paper
(2014). https://tlsnotary.org/TLSNotary.pdf

2. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX
2014, pp. 781–796. USENIX Association (2014)

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society (2001)

4. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

5. Cavage, M., Sporny, M.: Signing http messages (2019). https://tools.ietf.org/id/
draft-cavage-http-signatures-12.html

6. Chan, K.Y., Cui, H., Yuen, T.H.: DIDO: data provenance from restricted TLS 1.3
websites. Cryptology ePrint Archive, Paper 2023/1056 (2023). https://eprint.iacr.
org/2023/1056

7. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. J. Cryptol. 34(4), 37 (2021)

8. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018, pp. 1179–
1194. ACM (2018)

9. Goldfeder, S.: A Boolean circuit for SHA-256. http://stevengoldfeder.com/
projects/circuits/sha2circuit.html

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

11. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on intel SGX.
CoRR abs/2006.13598 (2020). https://arxiv.org/abs/2006.13598

12. Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., Capkun, S.: TLS-N: non-repudiation
over TLS enablign ubiquitous content signing. In: NDSS 2018. The Internet Society
(2018)

13. Yasskin, J.: Signed http exchanges. Internet-Draft: draft-Yasskin-http-origin-
signed-responses-latest (2022)

https://tlsnotary.org/TLSNotary.pdf
https://doi.org/10.1007/978-3-319-16715-2_26
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html
https://tools.ietf.org/id/draft-cavage-http-signatures-12.html
https://eprint.iacr.org/2023/1056
https://eprint.iacr.org/2023/1056
http://stevengoldfeder.com/projects/circuits/sha2circuit.html
http://stevengoldfeder.com/projects/circuits/sha2circuit.html
https://doi.org/10.1007/978-3-540-70583-3_40
https://arxiv.org/abs/2006.13598

DIDO: Data Provenance from Restricted TLS 1.3 Websites 169

14. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) CCS 2016, pp. 270–282. ACM (2016)

15. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: liberating web
data using decentralized oracles for TLS. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) CCS 2020, pp. 1919–1938. ACM (2020)

QR-SACP: Quantitative Risk-Based
Situational Awareness Calculation
and Projection Through Threat

Information Sharing

Mahdieh Safarzadehvahed1(B), Farzaneh Abazari2, and Fateme Shabani3

1 Queen’s University, Kingston, Canada
22ms70@queensu.ca

2 Former postdoctoral fellow at University of Saskatchewan, Saskatoon, SK, Canada
faa851@usask.ca

3 Tarbiat Modares University, Tehran, Iran

fateme.shabani@modares.ac.ir

Abstract. When a threat is observed, one of the most important chal-
lenges is to choose the most appropriate and adequate timely decisions
in response to the current and near future situation in order to have the
least consequences and costs. Making the appropriate and sufficient deci-
sions requires knowing what situations the threat has engendered or may
engender. In this paper, we propose a quantitative risk-based method
called QR-SACP to calculate and project situational awareness in a net-
work based on threat information sharing. In this method, we inves-
tigate a threat from different aspects and evaluate the threat’s effects
through dependency weight among the network’s services. We calculate
the definite effect of a threat on a service and the cascading propagation
of the threat’s definite effect on other dependent services to that ser-
vice. In addition, we project the probability of a threat propagation or
recurrence of the threat in other network services in three ways: procedu-
rally, through network connections and similar infrastructure or services.
Experimental results demonstrate that the QR-SACP method can cal-
culate and project definite and probable threats’ effects across the entire
network and reveal more details about the threat’s current and near
future situations.

Keywords: Situational Awareness · SA Quantitative Calculation ·
Risk-based SA · Security Situation Assessment

1 Introduction

When a threat is observed, one of the most important challenges is to choose
the most appropriate and adequate timely decisions, so-called decision-making
in response to the situation that the threat has caused or may cause in the
future. Decision-making in response to the threat has different consequences
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 170–193, 2023.
https://doi.org/10.1007/978-981-99-7032-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_11&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_11

QR-SACP 171

and costs. What decision to make and when to deal with it in the threat cycle
directly impacts the cost and the damage it may cause. Making the appropri-
ate and adequate decision requires knowing what the threat is, what impacts it
has, and what situation the threat has engendered or may engender. One of the
concepts that can help is situational awareness (SA). In the field of SA, vari-
ous studies [2,3,11,14,20,22,24,26–28] have been done on different parts of SA,
including definition, architecture, modeling, uncertainty and risk management,
projection and calculation. Despite having the current and the future situations
that a threat has posed or may pose, there is still no proper answer about which
threat should be investigated first, how SA should be quantified and how proba-
ble near future threats’ effects should be considered in calculating and projecting
the SA.

In this paper, we present a novel algorithm for calculating and projecting SA
that by knowing the past and receiving a threat, calculates the SA to depict the
present and projects the consequences of the threat to predict the future through
a risk-based approach. The obtained quantitative SA values can be used to select
a high-priority threat to investigate.

One of the most important factors for decision-making is to get an accurate
and comprehensive view of the current situation of the entire network due to a
threat. We present an algorithm that perceives and calculates the impacts of a
threat across the entire network using threat information sharing, organizational
historical information about threats and international threats databases. It is
also necessary to achieve a comprehensive and integrated view of the network
under attack and its connected networks to make a comprehensive decision. This
requires understanding what has happened or will happen due to the threat.
To achieve this goal, we investigate the threat from different dimensions and
calculate and project its impacts. Making inappropriate and insufficient decisions
can lead to the continuation of the threat and its impacts. For this reason, it
is necessary to project the near future situation in addition to understanding
the current situation that arises when the threat occurs. In contrast to earlier
algorithms and methods, we project a risk-based near future situation with more
details in the proposed algorithm.

The number of threats in a network is very high [4]. Hence, we need a way
to select a threat with more priority. Most studies display SA qualitatively cold-
coded. In this case, a large number of threats will be categorized into one color
group. Therefore, we cannot choose a threat with a higher priority among them
to investigate. In addition, two threats may have the same color but possess
different properties. As a result, providing a color is not enough to select high-
priority threats. Hence, we calculate and display the SA quantitatively by con-
sidering more details. Our main contributions are as follows. (1) We propose an
algorithm that investigates each threat from different dimensions and uses ser-
vice dependency among network’s services to calculate the definite effect of the
threat on the service and the cascading propagation of the threat’s definite effect
to other dependent services with more details. (2) We propose an algorithm for
projecting the probable impacts of the threat on the network and predicting a

172 M. Safarzadehvahed et al.

risk-based near future network situation. The algorithm projects the probability
of propagation or recurrence of the threat in other dependant network services.
(3) We propose a method to map a network’s situational awareness to a four
elements vector. Each part of it reveals different, various, definite and probable
effects of a threat on the network. These four parts provide a comprehensive
view of the network’s situational awareness.

The remainder of the paper is as follows. In Sect. 2, we review some related
works and discuss their limitations in calculating and projecting SA. In Sect. 3,
we present assumptions and concepts to calculate SA and model a network
and a threat. In Sect. 4, we propose QR-SACP, a novel technique that uses
service dependencies and probability of propagation or recurrence of the threat
to calculate and project SA, and then we evaluate the effectiveness of QR-SACP
by using various threats in Sect. 5. Finally, we draw conclusions in Sect. 6.

2 Related Work

Some studies [1,2,11,14] have done a comprehensive literature review that pro-
vide information about different aspects of situational awareness, including SA
models, frameworks, architecture and uncertainty management and attack pre-
diction. Since this paper presents a method to calculate and project SA quan-
titatively, related works have been selected in such a way that they have been
done in the field of SA calculation and projection.

Zhang et al. [28] present a network SA model based on threat intelligence to
conduct situational perception and discover internal threats. They collect situ-
ation elements of network asset status, risk status, and log warnings. However,
they do not specify what details and parameters these inputs contain. They fil-
ter and clean collected data and correlate them with external threat intelligence
to find internal threats. They use game theory to quantify the current net-
work security situation of the system and evaluate the network security status.
They also use Nash equilibrium to predict attacks behavior. One of the most
important parts of this model is to calculate the situational awareness based
on attacker and defender strategies, but they do not introduce these strategies.
In this study, situational awareness is equivalent to the difference between an
attacker and defender utility. However, this approach does not provide how the
attacker and defender utility is calculated, and they discard dependency among
systems in a network.

Alavizadeh et al. [3] introduce a framework to select a response strategy in
order to defend against possible attacks. They consider two defense strategies:
Virtual Machine Live Migration (VM-LM) and Patching. To choose a defense
strategy, they calculate risk values. For this purpose, they propose three security
metrics: 1) risk of exploiting a VM, 2) security Return on the Attack (RoA) and
3) Mean of Attack Path Length (MAPL). They select the defense strategy based
on the risk of exploiting a VM security metric. They suppose SA calculation is
equivalent to risk calculation by considering vulnerabilities. They ignore attacks’
and incidents’ effects on VMs to select the defense strategy. The risk of spreading

QR-SACP 173

a threat is not only due to a vulnerability on the victim system or network, but
it can also be due to obtained privileges that an attacker gains. After gaining
privilege, an attacker no longer needs to exploit a vulnerability to access another
system because he can continue his objectives by performing authorized actions
with the obtained privileges. Moreover, the value of assets is not considered in
the calculation of situational awareness.

Rongrong et al. [23] propose a framework to evaluate a network security situa-
tion through three dimensions: threat, vulnerability and stability. They calculate
the average value for each dimension and merge these three dimensions’ results
to measure the overall network security situation. They consider the successful
probability of attacks and their severity to assess threats. To evaluate network
vulnerability situation, they consider vulnerability vendor name, product name,
type, severity and the duration between the data a vulnerability is disclosed and
a patch is released for it. They consider TCP, UDP and ICMP input and output
traffic to assess stability. They do not consider dependencies among systems or
services in threat assessment. Therefore, they cannot calculate an attack propa-
gation impact. Furthermore, the average of items is calculated instead of adding
the calculated value for each item in each dimension with the other items in that
dimension.

Kou et al. [16] present a method to evaluate a network security situation
based on attack intention. The method recognizes the attack intention and attack
stages, calculates the network SA and predicts the next attack stage based on
achieved attack stages. This method determines attack paths, then calculates
the SA for each path by multiplying the probability of the attack stage with
the destructiveness of the attack and the weight of the node in which the attack
occurred. Finally, it sums the SA of each attack path together to obtain the SA
of the whole network. The research method of this paper depends on the known
attack patterns. Therefore, it cannot calculate the network SA for unknown
attacks. They do not consider systems’ defense measures in the network to cal-
culate SA. In addition, they have considered the existence of a vulnerability as
the only reason for spreading the threat while the procedural relationship and
the existence of similar assets can cause threat recurrence.

Zhang et al. [27] present a framework for assessing network security situa-
tional awareness in cloud computing through stochastic games. They predict the
attack behavior using a fuzzy optimization method and Nash equilibrium [18].
This method has been provided for use in the cloud computing environment. In
addition, to determine situational awareness, this method considers threatening
failure on a host and does not consider its propagation in the network due to
the dependency among hosts and services they provide. It also does not consider
the possibility of spreading threats in the network.

Xiao-Lu et al. [12] propose a model and methodology to assess big data secu-
rity situation. This model includes an index system and a fuzzy comprehensive
evaluation algorithm to assess big data security situations. They consider two
index levels. The first index level reflects the big data security situation from
four dimensions, including the damage degree of harmful procedures, the dam-

174 M. Safarzadehvahed et al.

age degree of information destruction, the degree of menace and the damage
degree of attacks. The second index level is designed according to the first level
but with finer granularity. They use the fuzzy comprehensive evaluation algo-
rithm to assess big data security situations. First, they identify big data security
important features. Then they establish measurable index factor sets. In the
third step, they establish a measurement level. After that, they establish a fuzzy
relation matrix. In the fifth step, they determine the weight vector of the index.
Next, they calculate big data security situations comprehensive evaluation. In
this article, a general calculation method is presented and no parameters are
mentioned.

Marcus et al. [21] propose measuring system-level security through a security
metrics framework based on metrics of system vulnerabilities, defense mecha-
nisms, threat severity and situations. To investigate the relationships among
these four sub-metrics, they propose a hierarchical ontology with four sub-
ontologies corresponding to the four sub-metrics. They calculate a network SA at
time t as a function of V (t), D(t) and A(t) which are a function of vulnerabilities,
defenses and attacks at time t, respectively.

3 Assumptions and Modeling

The proposed situational awareness computational model has been presented
to use in a threat information network like IT-ISAC [13], the largest available
network in each country. There may be restrictions on information sharing, in
which case this model cannot be used in these networks. Due to the inclusion
of all the components utilized in our proposed model, such as services and their
interdependencies within various networks, this model is applicable to any net-
work as well. In the following, wherever we mention the network, we mean the
IT-ISAC network. Since in such a network, each service may be provided by more
than one organization, such as the Internet service that is provided by several
ISPs, for better understanding and readability, here we display each service as a
service-organization.

In this paper, we want to calculate SA quantitatively. Endsley [10] defined
SA as “the perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning and the projection of their
status in the near future.” Hence, to calculate SA, we should understand the
impacts of a threat on a network and the projection of risks that the threat
may pose in the near future on the network taking into account the historical
information of the monitoring network, international threats databases include
NVD [19], CVE [6] and CAPEC [17] and monitoring devices.

To calculate SA, data must be collected from a set of monitoring devices and
analyzes must be performed. In this paper, we focus on how SA is calculated.
Our purpose is to monitor the situation of critical services although all services
can be monitored, and we suppose the network’s assets are critical services that
from now on, we call them services.

QR-SACP 175

3.1 Modeling Network

Let N be a network of different organizations that provides services to users as
shown in Fig. 1. We represent each provided service Si by organization Oj by Si−
Oj and call it service-organization Si −Oj . Each organization can provide more
than one service, and some organizations may rely on services provided by other
organizations to offer some of their services. For example, the organization that
provides the SIM card sales service is dependent on the person profile inquiry
service from the Civil Registration Organization. We model network N by a
weighted directed graph whose nodes represent the service-organizations in the
network, whose directed edges represent the dependency relationships between
them and the weight of each directed edge represents the value of the dependency
relationship. Formally, a service dependency graph is a pair G = (S,D), where
S ⊆ S is a finite set of nodes or service-organizations and D ⊆ S × S is a finite
set of directed edges between the nodes of the graph. In this study, we repre-
sent each service by a 9-tuple (Sid,Oid, Crit, Pe, {Destsrv,W}, Confdemand,
Integdemand, Avldemand) in which Sid and Oid are the identifiers of the ser-
vice and the organization which provides the service, respectively. Also, Crit
is the criticality of the service in the network, Destsrv is the service which
depends on the service Sid, Pe reflects the service’s security controls to pro-
tect it against the threats, W is the weight of dependency between Sid and
Destsrv, Confdemand, Integdemand and Avldemand are the required value
for Confidentiality, Integrity and Availability of service Sid that the service
should have to be secure, respectively. More formally, for any given service s,
we write Sid(s), Oid(s), Crit(s), Destsrv(s), Pe(s), W (s), Confdemand(s),
Integdemand(s), Avldemand(s) to denote its associated id, organization, des-
tination service, defensive probability, dependency weight and demanded Confi-
dentiality, Integrity and Availability, respectively. We also represent each orga-
nization by a 6-tuple (Oid,Crit, Pe, Confdemand, Integdemand,Avldemand)
in which Oid is the identifier of the organization, Crit is the criticality of the
organization, Pe reflects the organization’s security controls to protect it against
the threats, Confdemand, Integdemand, Avldemand are the required value
for Confidentiality, Integrity and Availability of organization that the organiza-
tion should have to be secure, respectively. More formally, for any given orga-
nization o, we write Oid(o), Crit(o), Pe(o), Confdemand(o), Integdemand(o),

S4-O4
S1-O2

S1-O1
S2-O3

S2-O1

S3-O2
0.4

0.6

0.3

0.7

1

1

0.7

0.3

0.5

S5-O5

S6-O7

S4-O2

S6-O6

S7-O8

0.5

Fig. 1. A Typical Network includes
some service-organizations

S4-O4
S1-O2

S1-O1
S2-O3

S2-O1

S3-O2
0.4
0.6

0.3

0.7

1

1

0.7

0.3

0.5

S5-O5

S6-O7

S4-O2

S6-O6

S7-O8

0.5

Fig. 2. A threat effects on services
using the cascade propagation

176 M. Safarzadehvahed et al.

Avldemand(o) to denote its associated identifier, criticality, defensive probability
and demanded Confidentiality, Integrity and Availability, respectively. Regard-
ing determining the criticality of the service, the organization and the weight of
dependency relationship between the services, the opinions of the organization
and the legislator were collected. The final values was calculated using Crown
Jewels Analysis (CJA) [15]. It is a technique to assess asset values based on their
dependencies and importance. According to this model, each organization uses
a set of assets to provide critical services. Each critical service belongs to an
organization or organizations, and critical services may be interdependent.

Example 1. In Fig. 1, when the weight of dependency relationship between S6 −
O6 and S7 −O8 is 0.5 means service S7 of organization O8 to provide its service
is fifty percent dependent on service S6 of organization O6.

3.2 Modeling Threat

Various threats target networks [7]. This diversity can be examined in terms of a
threat’s type, severity, complexity and effects that the threat has on a network.
NIST defines a threat as follows [8]:“A cyber threat is any circumstance or event
with the potential to adversely impact organizational operations (including mis-
sion, functions, image, or reputation), organizational assets, individuals, other
organizations, or the Nation through an information system via unauthorized
access, destruction, disclosure, modification of information, and/or denial of ser-
vice.” We divide each threat into the following three categories based on the
above definition and the effects that threat has and the probable consequences
that come with it:

– A vulnerability is a threat that does not currently affect the network, but if
it exists in an asset, it may have consequences in the future

– An attack is a threat that may have impacts on the network and may have
consequences in the future

– An incident is a threat that has definite effects and may have consequences
in the future.

Let’s consider a scenario where there is a Windows 7 operating system installed
on a host, which possesses Eternal Blue (MS17-010) vulnerability. At this point,
the system is considered vulnerable. If an attacker takes advantage of the vulner-
ability by utilizing an exploit code, the system becomes the target of an attack.
The success of this attack may vary, granting the attacker access to the system
or not. In the event of a successful attack, the attacker gains the ability to delete
sensitive data from the system, resulting in the incident of loss of sensitive data.

We can investigate each threat from four dimensions, each threat 1) has some
properties, 2) has some impacts, 3) occurs in an infrastructure and configuration
and 4) can propagate through the network and infect other connected systems
and networks. Hence, we should consider the mentioned dimensions to calculate
and project SA. We introduced threat types earlier, and now we define four
dimensions of a threat in the following.

QR-SACP 177

Threat Properties. Each threat has some properties which is defined by
them. In this study, we represent each threat by a 10-tuple (Tid, Type, V ulid,
Atkid, PA, AConfimp, AIntgimp,AAvlimp, Sid, CPEid) in which Tid, V ulid,
Atkid, Sid and CPEid are the identifiers of the reported threat, vulnerabil-
ity in CVE [6], attack in CAPEC [17], service and asset on which threat is
observed, respectively. Also, Type is the type of the threat which can be vulner-
ability, attack or incident, PA is the probability of successful occurrence of the
threat, AConfimp, AIntgimp and AAvlimp are the announced impacts by the
organization which threat has had on the service certainly, respectively. More
formally, for any given threat t, we write Tid(t),Type(t), V ulid(t), Atkid(t),
PA(t), AConfimp(t), AIntgimp(t), AAvlimp(t), Sid(t), CPEid(t) to denote
its associated Identifier, Type, Vulnerability, Attack, successful occurrence prob-
ability, definite Confidentiality, Integrity and Availability impact, service and
asset, respectively. We extract these properties from CVE [6], NVD [19] and
CAPEC [17].

Threat Occurrence Infrastructure and Configuration. Each threat can
occur in a service in an organization, but services can be equipped with secu-
rity controls, for example, preventive security tools, secure configurations, best
practices and the like. Hence, the threat may not occur successfully because
of security controls. As a result, security controls should be considered besides
threat properties to calculate SA. For instance, when a threat targets port 80,
but it is reported closed in security controls, the threat is unsuccessful. There-
fore, we should take threat occurrence infrastructure into account in the SA
calculation. As mentioned in Sect. 3.1 we use Pe parameter to show each ser-
vice or organization defensive probability against threats that reflects security
controls that there are on them to protect them.

Threat Impacts. Although each threat has its own effects, it may have different
effects in practice. For each threat, we can have two types of impacts:

– The potential impact, once a threat is observed in a service, it may have
some impacts on the service’s Confidentiality, Integrity and Availability. The
impacts that each threat has on a service potentially in case of the successful
vulnerability exploitation is called the “Adjusted Impact” that we represent
it by CIAI. We calculate Adjusted Impact by using Eq. 1 from the paper [9],
but we did not consider the criticality. We obtain Confimp(t), Intgimp(t),
Avlimp(t) values from V ulid(t) specifications using CVE [6], NVD [19].

– The affected impact, each threat may not have all of its impacts on a
service because of applying security controls. We name impacts that each
threat certainly has on a service the “Affected Impact” and represent it by
CIAAI for threat t. We represent these impacts for threat t by AConfimp(t),
AIntgimp(t) and AAvlimp(t) which are announced by the victim organiza-
tion as mentioned earlier. We calculate the Affected Impact through Eq. 1
by replacing Confimp(t), Intgimp(t), Avlimp(t) values by AConfimp(t),
AIntgimp(t) and AAvlimp(t).

178 M. Safarzadehvahed et al.

CIAI(t) = min(10, 10.41×(1−(1−Confimp(t))×(1−Intgimp(t))×(1−Avlimp(t))))
(1)

Threat Propagation. When a threat occurs in an isolated service-organization,
it has a different SA than in a service-organization that has connections to other
service-organizations. Service-organizations may have similarities in infrastruc-
ture or have communications together which may lead to the propagation and
repetition of a threat from one service-organization to other service-organizations
associated with it. Therefore, the threat can also propagate to other service-
organizations and affect them. Each threat may propagate in a network through
three following methods:

Threat Propagation Procedurally. Organizations in a network may exchange
information together procedurally. This means they send data and information
to each other via email, automation systems, sending USB flash drives and so on.
If a threat occurs in an organization, the organization may transfer the threat
to other organizations with which it communicates.

Threat Propagation Through Network Connections An organization in a net-
work may connect to other organizations through network connections and pro-
vide services to them or benefit from their services. When a threat occurs in
an organization, the threat may be transmitted from that organization to orga-
nizations connected with it through the network. In addition, an attacker may
infiltrate an organization then infiltrate other organizations by exploiting the
first organization’s connections with them.

Recurrence of a Threat in Other Organizations Due to Similar Infrastructure
or Services. Each organization has a specific infrastructure, including hardware
and software, or provides some services. If a threat occurs on hardware, software
or a service in an organization, this threat may occur in other organizations with
similar infrastructure or services.

4 Quantitative Risk-Based Situational Awareness
Calculation and Projection

We define two types of SA for a network:

– Network’s SA for a threat as SA(ti)
– Network’s SA for all threats as SA(Network)

We explain how to calculate SA(ti),the network’s SA for a threat, in the fol-
lowing and how to calculate the network’s SA for all threats in Sect. 4.2. When
a threat occurs, it may cause definite effects at present or probable effects in
the near future. Hence, SA(ti) consists of the definite effects of the threat ti

QR-SACP 179

and projection of its probable effects in the near future on the network. The
definite effect is divided into two parts: Instant definite effect which refers to the
effect that a threat has definitely on a service, and gradual definite effect which
is the propagation of the threat’s definite effect on the service-organizations
depending on that service. As mentioned earlier in Sect. 3.2 threats can prop-
agate on other service-organizations because of similarities in infrastructure or
the existence of procedural communications or network connections among the
service-organizations. We call risks that may occur as a result of propagation a
threat through these three categories the probable effects. Therefore, we divide
the probable effects into the following three categories:

– Risks of threat propagation procedurally
– Risks of threat propagation through network connections
– Risks of recurrence of a threat in other organizations due to similar infras-

tructure or services

Hence, we calculate and project the threat’s SA according to the Fig. 3.

4.1 Definite Effect Calculation

When a threat of type of attack or incident occurs on a service-organization,
the threat may have some definite effects on it. Suppose the other service-
organizations in the network depend on and receive a service from that service-
organization. In that case, if the threat is an incident, these service-organizations
are definitely affected by the threat. Other service-organizations that depend on
the second service-organizations and the like are definitely affected by the threat,
too. In this way, this definite effect can be disseminated as a cascade in the net-
work which we call it cascade propagation.

Probable Effects

Definite Effects

Situational Awareness

Instant Effects

Gradual Effects

Procedural - Risks of threat propagation
procedurally

Network- Risks of threat propagation
through network connections

Similarity- Risks of recurrence of threat in
other organizations due to the existence of

similar infrastructure or service

Fig. 3. Situational Awareness’s detailed components

Definition 1 (Cascade Propagation). Propagation of threat’s definite effect
on other service-organizations because of dependencies among them is cascade
propagation.

180 M. Safarzadehvahed et al.

Example 2. If in Fig. 1 threat ti occurs on the service-organization S4 − O4,
the service S4 will be affected in proportion to the threat effects which we
name it instant definite effect. But due to the cascade propagation, the service-
organizations S5 − O5 may also be affected, and again the service-organization
S6 − O6, which depends on the service S5 − O5 may also be affected which we
call it gradual definite effect.

As a result of Example 2, the definite effect of a threat affects the service-
organization in which the threat occurs and the network to which the service-
organization belongs as shown by red color in Fig. 2. The basic formula is used
to calculate the definite effect of a threat on a service is Eq. 2:

Threat Effects = Service value×Definitive consequences of the threat (2)

We present Eqs. 3, 4 to calculate the instant and gradual definite effect of a
threat from the Eq. 2.

Definite Effect(ti) = W(Sj−Ou)(Sj−Ou)∗Crit(Sj−Ou)∗CIAAIj+Imp(Sj−Ou) (3)

Imp(Sf − Oh) =
∑

k∈K
AW(Sf−Oh)(Sk−Ol) ∗ Crit(Sk − Ol) ∗ CIADk + Imp(Sk − Ol)

(4)
Suppose the threat ti occurs on the service-organization Sj − Ou. K is a set
which contains the dependent services to Sj − Ou. In Eq. 3, for attacks we use
CIAIj , the “Adjusted Impact” instead of CIAAIj . In Eq. 4, as we do not have
the CIAAIk value, we use CIADk which is CIA demand.

– W(Sj−Ou)(Sj−Ou) is the dependency weight of an service-organization with
itself and is always equal to one.

– Imp(Sj − Ou) is the amount of damage caused by cascading propagation
and equal to the gradual definite effect of the threat on dependent service-
organizations which is calculated recursively.

– AW(Sf−Oh)(Sk−Ol) is the affected dependency weight between (Sf − Oh)
and other (Sk − Ol) dependent services. If the threat occurs on (Sf − Oh),
AW(Sf−Oh)(Sk−Ol) is equal to W(Sf−Oh)(Sk−Ol) otherwise it is calculated
through using Eq. 5.

AW(Sf−Oh)(Sk−Ol) = [W(Sf−Oh)(Sk−Ol) × ∑
b∈B

∏
a∈A W(Sy−Oi)(Sf−Oh)]

until W(Sy−Oi) = W(Sj−Ou)
(5)

B is a set which contains the number of paths between (Sf −Oh) and (Sj −Ou),
the first service-organization that the threat has been occurred on it. A is a set
of edges that are in the path between (Sf − Oh) and (Sj − Ou). To calculate
definite effects, we propose an algorithm which Algorithm 1 shows the pseudo-
code in detail. We calculate gradual definite effects after creating the definite
effect graph DE = (V,A). By starting from a threatened service, our goal is to
find all affected services and calculate instant and gradual definite effects using
the Eqs. 3, 4 and 5.

QR-SACP 181

Algorithm 1. Definite Effect Calculation and Graph Construction
Input:

A service-organization dependency graph G = (S, D)
Type(t), Confimp(t), Intgimp(t), Avlimp(t)
Sid(s), Oid(o)

Output:
Definite Effect Graph DE = (V, A)
Definite Effect

1: Mark all edges in D(G) as unvisited
2: Set V (DE) and A(DE) to the empty
3: if threat type is equal to Incident or Attack then
4: Calculate definite effect for the first service Sid(s)
5: end if
6: if threat type is equal to Incident then
7: Set visited edges to the empty list and call it V E
8: Add sid(s) to an empty queue Q
9: while Q is not empty do

10: Remove the first element of Q and call it r
11: Add r to V (DE)
12: Let Γ (r) be the neighbor set of r in D
13: for each node z ∈ Γ (r) do
14: Let e be the edge (r, z) ∈ D(G)
15: for each entry in V E do
16: if e is unvisited then
17: Add z to the end of Q
18: Add e to V E
19: Draw an edge from r to z in DE
20: end if
21: end for
22: end for
23: end while
24: Calculate definite effect using Equations 3, 4, 5 and add it to the first service’s

definite effect
25: return definite effect
26: end if
27: return first service’s definite effect

4.2 Probable Effect

As shown in Fig. 3, the probable effect is divided into three categories. We defined
these three categories in Sect. 3.2. In the following, these three categories and
how we calculate them are presented. we use Eq. 6 from [5] to calculate these
probable effects as the base equation and generate Eqs. 7,8 and 9.

Probable Effect of a Threat = Impact×Possibility of Propagation×Service V alue
(6)

182 M. Safarzadehvahed et al.

Risks of Threat Propagation Procedurally. This category measures the
risks that may be posed by the spread of a threat by an organization to other
procedurally connected organizations in the network by observing a threat of
type of attack or incident. We call this part of SA, Procedural Effect and calculate
it through using Eq. 7.

Procedural Effect(ti) = PA

∑n

k=1
((1−PEk

)×Pproc×Crit(Ok)∗CIAIk) (7)

Pproc is the procedural probability propagation between organizations. To cal-
culate procedural effects, we propose an algorithm which Algorithm 2 shows the
pseudo-code in detail. By starting from a service on which a threat has occurred,
our goal is to find all affected organizations and calculate procedural effects using
the Eq. 7.

Algorithm 2. Procedural Effect Calculation and Graph Construction
Input:

Type(t), Confimp(t), Intgimp(t), Avlimp(t)
PA(t), Sid(s), Oid(o)

Output:
Procedural Effect Graph PE = (V, A)
Procedural Effect

1: Set V (PE) and A(PE) to the empty
2: if threat type is equal to Incident or Attack then
3: Add o to V (PE)
4: Add organizations that has procedural relationship to the Oid(o) to a list and

call it PRL
5: for each node y ∈ PRL do
6: Draw an edge from o to y in PE
7: Calculate the procedural effect (o, y) using Equation 7 and add it to procedural

effect
8: end for
9: return procedural effect

10: end if

Risks of Threat Propagation Through Network Connections. This cat-
egory projects the risks of spreading the threat through network connections
with other organizations by observing a threat of type of attack or incident. We
name this part of SA Network Effect and calculate it through Eq. 8.

Network Effect(ti) = PA

∑r

k=1
((1 − PEk

) × Pnetjk × Crit(Ok) ∗ CIAIk)

(8)

Pnetjk is the probability of spreading the threat through the network connection
between two organizations Oj and Ok. To calculate this probability, we con-
sider the privileges that an attacker obtains through the threat because she/he

QR-SACP 183

can extend her/his threat to other connected organizations through the net-
work based on the obtained privileges. To determine these probabilities, we use
Snort’s [25] attack classifications as shown in Table 3.

Risks of Recurrence of a Threat in Other Organizations Due to Simi-
lar Infrastructure or Service. In this category, risks of recurrence of a threat
in other organizations due to similar infrastructure or services are projected by
observing all kinds of threats. For example, when a threat occurs on Windows
7 in an organization, this category examines what organizations have Windows
7, how likely they are threatened, how malicious the threat may be, if it occurs,
and calculates the extent of its future damage. We name this part of SA Infras-
tructural Effect and calculate it through using Eq. 9.

Infrastructural Effect(ti) = PA

∑q

k=1
((1 − PEy

) × Crit(Oy) × CIAIy)
(9)

Since algorithms of risks of threat propagation through network connections
and similar infrastructure or service are similar to Algorithm 2, we do not men-
tion them. Since these four amounts represent SA(ti) from different dimensions,
Network’s SA for a threat SA(ti) is represented as the following four elements
vector:

SA(ti) = [Definite Effect, Procedural Effect,Network Effect, Infrastructural Effect]

(10)
We obtain diverse information from each part of this vector.

Network’s SA. We presented the method of calculating and projecting the
network’s SA for a threat SA(ti) in the form of a four elements vector so far. To
obtain the network’s SA for all threats, we add each part of the four elements
vector for each reported threat together. The final vector is also a four elements
vector. Equation 11, shows how to calculate a network’s SA.

SA(Network) = SA(Network) + SA(ti) (11)

SA Reduction. Over time the observed threats’ effects should be reduced
by doing and making the necessary actions and decisions. For this purpose, by
receiving feedback from the organization that has reported the threat ti, the
amount of SA(ti) is reduced from the SA(Network) through Eq. 12.

SA(Network) = SA(Network) − SA(ti) (12)

5 Evaluation

In this section, we evaluate the effectiveness of QR-SACP for calculating and
projecting situational awareness.

184 M. Safarzadehvahed et al.

5.1 Evaluation Lab

Threats data that have been used during the evaluation are real. We used
Information and Communication Technologies-Information Sharing and Analysis
Center (ICT-ISAC) threat data to evaluate QR-SACP. ICT-ISAC is a network
similar to IT-ISAC. ICT-ISAC receives threat data from ICT member organi-
zations and shares them with other ICT member organizations to increase the
security of ICT sector. Among the services that send threat information to ICT-
ISAC are Internet Service providers, VoIP service providers, telecommunications
infrastructure and hosting service providers. Since the values used for service,
organization, and threat specifications and how to extract them are essential
in our evaluation, and whether the service name is ISP or S11 does not make
a difference in evaluating the effectiveness of the proposed algorithms, we used
aliases to anonymize services, organizations, and threats name to preserve their
privacy.

The evaluation network and dependencies among services of organizations
has been shown in Fig. 4. In this evaluation, threat data belong to 30 critical
services from 12 ICT-ISAC member organizations. Tables 2, 3, 4, 5 and 6 shows
organization information, service information, probability of threat propagation
procedurally, probability of threat propagation through network and summary
of threats and the obtained results, respectively. The tables are presented in
Appendix A.

Questionnaires were presented to the organizations to receive their assets
CPEid and the values of service and organization CIA Demand, Pe, Pproc and
Pnet. The legislator finalized the received values based on the importance of
the services and organizations in the ICT sector. The criticality of service and
organization in this model should be determined. There are different methods
to define it that we left the initial determination of this value to the legislator.
The composition of the legislator, which falls outside the scope of this article, is
contingent upon the laws specific to each country. CIA demand for each service
or organization is a combination of (Confdemand, Integdemand,Avldemand).
Threat CIA has been collected from [19].

0.2
S19-O3

S1-O12

S22-O8`

S21-O1
S2-O10

S3-O6
S25-O9

S24-O8
S23-O2

S5-O3

S6-O7

S8-O1

S4-O2
S15-O5

S10-O4

S7-O1

S9-O8

S26-O10

S27-O11

S28-O2
S30-O9S11-O10

S16-O6

S12-O2

S20-O8

S14-O10

S13-O9

S17-O3

S18-O7

S29-O11

1

1
1

1
1

1
1

1
1

1

1

1

0.3

0.7

1

0.7

0.6

0.4

0.30.4
1

1
1 1

1
1

1

0.4

1

1

1

1 1 1

1

1

1

1

Fig. 4. The Evaluation Network

QR-SACP 185

5.2 Evaluation Results

We received 25 threats during the 30-day evaluation period through threat infor-
mation sharing shown in Table 6. Ten of these threats are vulnerabilities, nine are
attacks and six are incidents. We calculated and projected the network SA for
the mentioned threats using the presented algorithms which have been shown
in Figs. 5, 6, 7, 8 and 9. The four elements vector of SA was calculated and
projected for each threat and all threats in the network. In columns 9 to 12 of
Table 6, the first value shows network’s SA for each threat, and the second value
is the sum of the values for all threats up to that threat and shows network’s
SA for all threats. Figures 5, 6 show SA(ti), the four values of the network’s SA
for each threat. By looking at them, we understand the definite effect that each
threat has left on the network, the probability that the threat may propagate in
other organizations procedurally, the probability that the threat may propagate
in other organizations through network connections and the probability that the
threat occurs again in other organizations because of the similarity of infrastruc-
ture or services. In this way, we can understand how each threat can spread in
the network and exert its destructive effects. It is also possible to compare the
intensity of threats in each category. For example, t21 cannot spread through the
network, but t7 can. The definite effect of t2 is greater than other threats, t23
has the highest probability of spreading procedurally and t11, t21 and t23 have
the highest probability of spreading due to similar infrastructure or service. t7
has the highest probability of spreading through the network. In addition, to
deal with the t2 we know we should pay attention to its dependent services in
comparison to t11 that we should pay attention to its dependent organizations
which have procedural relationship with it. Figures 7 and 8 show the four val-
ues of network’s SA for all threats in the network. Due to the large difference
between the value definite effect and three other values, we presented their values
separately in two graphs for a better display.

Fig. 5. Definite effect for each threat in the evaluation network

186 M. Safarzadehvahed et al.

Fig. 6. Network, procedural and infrastructural effects for each threat in the evaluation
network

Fig. 7. Definite effects for all threats in the evaluation network

Fig. 8. Network, procedural and infrastructural effects for all threats in the evaluation
network

QR-SACP 187

5.3 Discussion

The Advantage of Quantifying SA Compared to Representing it in
Colors. In the case of qualitative demonstration of SA using colors, threats t7,
t12, and t18 are displayed in yellow and are seen as equally important. However,
in the case where we have quantified the SA, just by looking at the Figs. 5 and 6
we can easily understand that the threat t18 can cause the most damage and
needs to be investigated more quickly.

Demonstration of a Threat’s Effects by Four Elements. By separating
the effects of each threat based on its destruction and expansion in the network
into four elements, it is possible to make decisions and provide more effective
action for each threat. For example, regarding t5 and t7, we can see from the
Fig. 6 that they can have the highest amount of threats through the network. In
the case of t11, it can cause the greatest amount of destruction through similar
infrastructure. t23 can leave the greatest amount of destruction procedurally. In
this way, we can take more effective measures to deal with them.

Calculation of Instant and Gradual Definite Effects. Figure 9 displays
the definite effect for each threat in the network in the form of three plots,
including instant, gradual and the sum of two previous values so called the
aggregate value. Dividing the results into two categories, instant and gradual, is
very effective in carrying out actions and prioritizing them. The aggregate value
helps to choose the threat with high priority. High instant value tells us that
more attention should be paid to the service of the organization in which the
threat occurred and high gradual value says that many services are dependent
on this source service and they should be considered. Accordingly, if we want to

Fig. 9. Instant, gradual and aggregated definite effects in the evaluation network

188 M. Safarzadehvahed et al.

Table 1. Comparison between input data and results of QR-SACP and other related
work

Method QR-SACP Alavizadeh
et al. [3]

Marcus
et al. [21]

Kou
et al. [16]

Rongrong
et al. [23]

Zhang
et al. [28]

Input Data

Asset Criticality ✓ ✗ ✗ ✓ ✗ ✗

Security
Controls

✓ ✓ ✓ ✗ ✗ ✗

Pnet ✓ ✗ ✗ ✗ ✗ ✗

Pproc ✓ ✗ ✗ ✗ ✗ ✗

Infrastructure
Similarity

✓ ✗ ✗ ✗ ✗ ✗

PA ✓ ✓ ✓ ✓ ✓ ✓

Threat
Properties

✓ ✓ ✓ ✓ ✓ ✓

Threat Type V,A,I V V V V,A V,A

Service
Dependency

✓ ✗ ✗ ✗ ✗ ✗

Results

Instant Effect ✓ ✓ ✓ ✗ ✗ ✗

Gradual Effect ✓ ✗ ✗ ✗ ✗ ✗

Definite Effect ✓ ✗ ✗ ✓ ✓ ✓

Prop using
Network

✓ ✓ ✗ ✓ ✓ ✗

Prop
Procedurally

✓ ✗ ✗ ✗ ✗ ✗

Similar
Infrastructure

✓ ✗ ✗ ✗ ✗ ✗

decide based on the instant effect of a threat, threats t2 and t12 have the same
level of importance, but according to the gradual effect calculated for them, we
realize that t2 has a greater degree of destruction compared to t12.

Display the General Status of the Network. Figures 7 and 8 show the
overall state of the network after receiving 25 threats. Upon receiving the report
of neutralizing a threat in the network, the value of that threat is subtracted
from the total value.

5.4 Comparison

In this paper, we presented a method for calculating and projecting SA. There-
fore, for comparison, we selected related works that have also provided methods
for quantifying SA. We compared QR-SACP with related works based on the
input data and the generated result. The results have been shown in Table 1.

QR-SACP 189

Considering assets value and the dependency between assets are very impor-
tant factors in calculating SA but as it has been shown in Table 1, most of the
methods have not considered it. Spreading the threat in the network through
different methods, including network, procedurally and similar infrastructure is
very important, but most methods have focused on the instant impacts of the
threat. The calculation method in [3] considers SA calculation equal to risk cal-
culation by considering just vulnerabilities. Therefore, it cannot calculate and
project attacks’ and incidents’ effects. In addition, [3] does not consider depen-
dencies among services in the network. Therefore, it cannot pay attention to
cascade propagation in decision-making. For example, [3] selects threat number
t1 to investigate first and ignores threats number t2 and t12 that we should give
them more priority. Also, [21,23,28] and [16] do not consider the possibility of
spreading threats in the network procedurally, through a network connection
and the similarity among services and infrastructures to project threats effect.
In addition, they do not consider dependency among systems in a network.
They can calculate values like the values green diagram in Fig. 9 for incidents
or attacks, but it cannot predict that threats t2, t18, and t12 will have further
destructive effects in the network in the near future. Furthermore, [23] calculates
the average of SAs as the network’s SA and does not consider the summation of
SAs. Hence, we cannot have an integrated perspective from the network situation
in this method like what we have in Fig. 8. What [16] calculates is equal to the
summation values definite effects and network effects of QR-SACP. Therefore,
it cannot calculate threats’ procedural and infrastructural effects. In addition,
because [16] sums the two values definite effects and network effects together, it
cannot determine whether the threat has been happened or may happen in the
future.

6 Conclusion and Future Works

In this paper, we proposed QR-SACP, a novel technique that investigates a threat
from different aspects through using diverse resources to calculate and project
a network’s SA for each and all threats. In this technique, a SA’s four elements
vector is calculated and projected by receiving a threat through threat informa-
tion sharing, in proportion to the type of threat. We investigate the threat from
different dimensions and extract information, including the threat’s properties,
infrastructure and configuration on which the threat occurs, impacts that the
threat has and ways the threat can propagate across the network and contami-
nate other services and organizations. If the threat is an incident or attack, all
parts of the SA’s vector are calculated otherwise in case the threat is a vulnerabil-
ity only the fourth part of the SA’s vector is calculated. We calculate the instant
definite effect of the threat on a service. If the threat is an incident, it may have
definite effects on the service, such as service interruptions and breakdowns, loss

190 M. Safarzadehvahed et al.

Table 2. Service Information

Service Oid Criticality CIA Demand Pe

S1 O12 0.8 (0.6, 0.2, 0.9) 0.8

S2 O10 0.9 (0.1, 0.2, 0.9) 0.1

S3 O6 0.7 (0.9, 0.6, 0.8) 0.4

S4 O2 0.6 (0.4, 0.1, 0.7) 0.3

S5 O3 0.3 (0.2, 0.1, 0.7) 0.3

S6 O7 0.6 (0.5, 0.5, 0.7) 0.7

S7 O1 0.5 (0.4, 0.3, 0.7) 0.4

S8 O1 0.6 (0.9, 0.2, 0.7) 0.4

S9 O8 0.3 (0.3, 0.6, 0.8) 0.2

S10 O4 0.5 (0.4, 0.5, 0.7) 0.3

S11 O10 0.8 (0.2, 0.1, 1) 0.9

S12 O2 0.5 (0.2, 0.3, 0.6) 0.5

S13 O9 0.4 (0.2, 0.3, 0.7) 0.4

S14 O10 0.8 (0.2, 0.3, 1) 0.6

S15 O5 0.7 (0.2, 0.6, 0.8) 0.5

S16 O6 0.1 (0.6, 0.4, 0.7) 0.3

S17 O3 0.3 (0.3, 0.1, 0.7) 0.2

S18 O7 0.1 (0.5, 0.2, 0.6) 0.3

S19 O3 0.5 (0.2, 0.2, 0.6) 0.6

S20 O8 0.6 (0.8, 0.6, 0.2) 0.5

S21 O1 0.2 (0.3, 0.5, 0.8) 0.3

S22 O8 0.4 (0.4, 0.8, 0.3) 0.3

S23 O2 0.1 (0.2, 0.1, 0.3) 0.2

S24 O8 0.3 (0.2, 0.4, 0.5) 0.1

S25 O9 0.3 (0.3, 0.6, 0.3) 0.4

S26 O4 0.1 (0.2, 0.3, 0.6) 0.1

S27 O11 0.2 (0.3, 0.5, 0.2) 0.3

S28 O2 0.4 (0.3, 0.6, 0.2) 0.2

S29 O11 0.2 (0.1, 0.1, 0.1) 0.3

S30 O9 0.2 (0.4, 0.2, 0.1) 0.5

Table 3. Network Probability Propagation

Classification Prob.

Successful-admin 1

Trojan-activity 1

Shellcode-detect 1

Web-application-attack 0.9

Unauthorized access to data 0.9

Successful-user 0.85

Successful-recon-largescale 0.7

Denial-of-service 0.5

Attempted-admin 0.4

Attempted-user 0.3

Default-login-attempt 0.3

Suspicious-filename-detect 0.3

Suspicious-login 0.3

Scan 0.2

Other 0.1

of data confidentiality, and so on. Since other services in the network may depend
on the threatened service, the threat may affect these dependent services, too.
Therefore, we calculate the propagation of the threat’s definite effects across the
network and name it gradual definite effect. To calculate gradual definite effect,
we consider service dependencies in the network and model them by a weighted
directed graph called a service dependency graph. Furthermore, by calculating

QR-SACP 191

procedural effects, network effects and infrastructural effects, we project proba-
bility of propagation or recurrence of the threat in other network’s services and
organizations through three categories, namely threat propagation procedurally,
threat propagation through network connections, recurrence of a threat in other
organizations due to similar infrastructure or services. The experimental results
demonstrate QR-SACP method can calculate and project definite and proba-
ble threat’s effects across the entire network effectively and reveals more details
from the threat’s current and near future situation to make timely decisions and
reduce threat’s costs and consequences.

A Appendix A

The following tables show services, organizations properties, network and pro-
cedural probabilities and summary of threats that have been used in evaluation.
In Sect. 3, the terms used in the tables have been introduced in detail.

Table 4. Organization Information

Oid Criticality CIA Demand Pe

O1 0.5 (0.5, 0.5, 0.8) 0.4

O2 0.4 (0.2, 0.2, 0.7) 0.2

O3 0.6 (0.4, 0.1, 0.9) 0.5

O4 0.7 (0.8, 0.3, 0.7) 0.5

O5 0.5 (0.5, 0.9, 0.8) 0.3

O6 0.6 (0.7, 0.5, 0.7) 0.6

O7 0.5 (0.7, 0.4, 0.7) 0.6

O8 0.3 (0.6, 0.8, 0.6) 0.4

O9 0.2 (0.2, 0.2, 0.7) 0.2

O10 0.9 (0.4, 0.4, 0.9) 0.8

O11 0.3 (0.2, 0.5, 0.8) 0.3

O12 0.8 (0.4, 0.3, 0.9) 0.9

Table 5. Procedural Probability Propagation

Oid Oid, Probability

O1 {O2,0.2}, {O6,0.3}, {O10,0.5}
O2 {O1,0.1}, {O5,0.4}, {O11,0.3}
O3 {O7,0.3}
O4 -

O5 {O2,0.4}
O6 {O1,0.4}
O7 {O3,0.6}
O8 -

O9 -

O10 {O1,0.4}
O11 {O2,0.4}
O12 {O8,0.5}

192 M. Safarzadehvahed et al.

Table 6. Summary of Threats and Results

Threat
Type

Service Oid Threat CIA Pe Pnet CPEid Def. Eff. Proc. Eff. Net. Eff. Infra. Eff.

t1 Atk S11 O10 (C, C, C) 1 – 748 6.03,6.03 0.98,0.98 0,0 0.11,0.11

t2 Inc S11 O10 (C, C, C) 1 – 602 75.63,81.66 0.98,1.96 0,0 0.47,0.58

t3 Inc S21 O1 (C, N, P) 0.95 0.3 70 0.77,82.42 0.98,2.94 0.26,0.26 0.42,1.0

t4 Vul S11 O10 (P, P, C) 0.85 – 104 0,82.42 0,2.94 0,0.26 0.25,1.25

t5 Atk S5 O3 (P, C, N) 1 0.3,0.4 56 0.36,82.78 0.25,3.19 0.83,1.08 0.55,1.8

t6 Atk S7 O1 (P, P, P) 0.9 0.3 15 1.77,84.55 0.8,3.99 0.23,1.31 0.53,2.33

t7 Inc S17 O3 (P, C, C) 0.9 0.3,0.4 135 25.47,110.02 0.38,4.37 1.15,2.46 0.73, 3.06

t8 Vul S3 O6 (C, C, C) 0.85 – 729 0,110.02 0,4.37 0,2.46 0.4,3.46

t9 Vul S17 O3 (N, N, N) 1 – 523 0,110.02 0,4.37 0,2.46 0,3.46

t10 Atk S2 O10 (N, N, N) 0.95 – 916 0,110.02 0,4.37 0,2.46 0,3.46

t11 Atk S23 O2 (C, C, P) 0.85 – 351 0.26,110.28 1.45,5.82 0,2.46 0.89,4.35

t12 Inc S3 O6 (C, C, C) 0.85 – 126 25.72,136.01 0.83,6.65 0,2.46 0.67,5.02

t13 Vul S9 O8 (P, P, P) 0.9 – 281 0,136.01 0,6.65 0,2.46 0.65,5.67

t14 Vul S23 O2 (P, C, N) 0.9 – 104 0,136.01 0,6.65 0,2.46 0.35,6.02

t15 Atk S1 O12 (P, P, N) 0.9 0.5 248 1.75,137.76 0.29,6.94 0.18,2.65 0.79,6.81

t16 Atk S20 O8 (P, P, C) 1 0.2 34 2.71,140.47 0,6.94 0.4,3.05 0.15,6.96

t17 Atk S6 O7 (N, N, C) 1 – 166 2.88,143.35 1.11,8.05 0,3.05 0.25,7.21

t18 Inc S4 O2 (P, P, P) 1 – 439 30.16,173.51 1.08,9.13 0,3.05 0.11,7.32

t19 Vul S29 O11 (N, N, N) 1 – 135 0,173.51 0,9.13 0,3.05 0,7.32

t20 Vul S24 O8 (P, P, P) 0.95 – 869 0,173.51 0,9.13 0,3.05 0.81,8.13

t21 Inc S18 O7 (P, P, N) 0.85 – 6 4.46,177.97 0.21,9.34 0,3.05 0.89,9.02

t22 Atk S12 O2 (N, N, P) 1 – 446 0.85,178.82 0.53,9.87 0,3.05 0.54,9.56

t23 Atk S8 O1 (C, C, C) 0.9 0.3 281 5.06,183.88 1.55,11.42 0.41,3.46 0.88,10.44

t24 Vul S7 O1 (C, C, P) 0.95 – 149 0,183.88 0,11.42 0,3.46 0.38,10.82

t25 Vul S10 O4 (C, C, C) 0.95 – 255 0,183.88 0,11.42 0,3.46 0.11,10.93

References

1. Ahmad, A., Maynard, S.B., Desouza, K.C., Kotsias, J., Whitty, M.T., Baskerville,
R.L.: How can organizations develop situation awareness for incident response: a
case study of management practice. Comput. Secur. 101, 102122 (2021)

2. Alavizadeh, H., et al.: A survey on threat situation awareness systems: framework,
techniques, and insights. arXiv preprint arXiv:2110.15747 (2021)

3. Alavizadeh, H., Alavizadeh, H., Jang-Jaccard, J.: Cyber situation awareness mon-
itoring and proactive response for enterprises on the cloud. In: 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 1276–1284. IEEE (2020)

4. blackbery: Global threat intelligence report (2023). https://www.blackberry.com/
us/en/pdfviewer?file=/content/dam/bbcomv4/blackberry-com/en/solutions/
threat-intelligence/2023/threat-intelligence-report-april/blackberry-global-
threat-intelligence-report-apr23.pdf

5. Boehm, B.: Software risk management. In: Ghezzi, C., McDermid, J.A. (eds.)
ESEC 1989. LNCS, vol. 387, pp. 1–19. Springer, Heidelberg (1989). https://doi.
org/10.1007/3-540-51635-2 29

6. ccvedetails: (2023). https://www.cvedetails.com/

http://arxiv.org/abs/2110.15747
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/bbcomv4/blackberry-com/en/solutions/threat-intelligence/2023/threat-intelligence-report-april/blackberry-global-threat-intelligence-report-apr23.pdf
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/bbcomv4/blackberry-com/en/solutions/threat-intelligence/2023/threat-intelligence-report-april/blackberry-global-threat-intelligence-report-apr23.pdf
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/bbcomv4/blackberry-com/en/solutions/threat-intelligence/2023/threat-intelligence-report-april/blackberry-global-threat-intelligence-report-apr23.pdf
https://www.blackberry.com/us/en/pdfviewer?file=/content/dam/bbcomv4/blackberry-com/en/solutions/threat-intelligence/2023/threat-intelligence-report-april/blackberry-global-threat-intelligence-report-apr23.pdf
https://doi.org/10.1007/3-540-51635-2_29
https://doi.org/10.1007/3-540-51635-2_29
https://www.cvedetails.com/

QR-SACP 193

7. deepwatch: 2023 annual threat intelligence report (2023). https://www.deepwatch.
com/2023-deepwatch-ati-threat-report/?utm campaign=Threat%20Intel

8. computer security division, N.: Guide for conducting risk assessments (2012).
https://doi.org/10.6028/NIST.SP.800-30r1

9. Doynikova, E., Kotenko, I.: CVSS-based probabilistic risk assessment for cyber sit-
uational awareness and countermeasure selection. In: 2017 25th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 346–353. IEEE (2017)

10. Endsley, M.R.: Design and evaluation for situation awareness enhancement. In:
Proceedings of the Human Factors Society Annual Meeting, vol. 32, pp. 97–101.
Sage Publications Sage CA: Los Angeles, CA (1988)

11. Franke, U., Brynielsson, J.: Cyber situational awareness-a systematic review of the
literature. Comput. Secur. 46, 18–31 (2014)

12. Han, X.L., Liu, Y., Zhang, Z.J., Lü, X., Li, Y.: Research on model and methodology
of big data security situation assessment based on fuzzy set. J. Comput. 29(3),
156–164 (2018)

13. IT-ISAC: www.it-isac.org (2023). https://www.it-isac.org
14. Jajodia, S., Liu, P., Swarup, V., Wang, C.: Cyber Situational Awareness. Springer,

Cham (2009)
15. Jim, W., Morrissey, S., Bodeau, D., Powers, S. C.: The risk-to-mission assessment

process (RiskMAP): a sensitivity analysis and an extension to treat confidentiality
issues (2009). https://www.mitre.org/sites/default/files/pdf/09 2994.pdf

16. Kou, G., Wang, S., Tang, G.: Research on key technologies of network security
situational awareness for attack tracking prediction. Chin. J. Electron. 28(1), 162–
171 (2019)

17. mitre.org: capec.mitre.org (2023). https://capec.mitre.org
18. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
19. NVD: nvd.nist.gov (2023). https://nvd.nist.gov
20. Pahi, T., Leitner, M., Skopik, F.: Analysis and assessment of situational awareness

models for national cyber security centers. In: International Conference on Infor-
mation Systems Security and Privacy, vol. 2, pp. 334–345. SCITEPRESS (2017)

21. Pendleton, M., Garcia-Lebron, R., Cho, J.H., Xu, S.: A survey on systems security
metrics. ACM Comput. Surv. (CSUR) 49(4), 1–35 (2016)

22. Pöyhönen, J., Rajamäki, J., Ruoslahti, H., Lehto, M.: Cyber situational awareness
in critical infrastructure protection. Ann. Disaster Risk Sci. ADRS 3(1) (2020)

23. Rongrong, X., Xiaochun, Y., Zhiyu, H.: Framework for risk assessment in cyber
situational awareness. IET Inf. Secur. 13(2), 149–156 (2019)

24. Skopik, F., Ma, Z., Smith, P., Bleier, T.: Designing a cyber attack information
system for national situational awareness. In: Aschenbruck, N., Martini, P., Meier,
M., Tölle, J. (eds.) Future Security 2012. CCIS, vol. 318, pp. 277–288. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33161-9 42

25. Snort: manual-snort-org.s3-website-us-east-1 (2023). http://manual-snort-org.s3-
website-us-east-1.amazonaws.com/node31.html

26. Solutions, M.C.: An overview of MITRE cyber situational awareness solutions
27. Zhang, H., Yi, Y., Wang, J., Cao, N., Duan, Q., et al.: Network security situation

awareness framework based on threat intelligence. CMC: Comput. Mater. Continua
56(3), 381–399 (2018)

28. Zhang, H., Yin, Y., Zhao, D., Liu, B., Gao, H.: Network security situational aware-
ness model based on threat intelligence. In: Xiong, J., Wu, S., Peng, C., Tian, Y.
(eds.) Mobile Multimedia Communications. LNICST, pp. 526–536. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-89814-4 38

https://www.deepwatch.com/2023-deepwatch-ati-threat-report/?utm_campaign=Threat%20Intel
https://www.deepwatch.com/2023-deepwatch-ati-threat-report/?utm_campaign=Threat%20Intel
https://doi.org/10.6028/NIST.SP.800-30r1
https://www.it-isac.org
https://www.mitre.org/sites/default/files/pdf/09_2994.pdf
https://capec.mitre.org
https://nvd.nist.gov
https://doi.org/10.1007/978-3-642-33161-9_42
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node31.html
https://doi.org/10.1007/978-3-030-89814-4_38

Dynamic Trust Boundary Identification
for the Secure Communications

of the Entities via 6G

Rabeya Basri1(B) , Gour Karmakar1(B) , Joarder Kamruzzaman1 ,
S. H. Shah Newaz2 , Linh Nguyen1 , and Muhammad Usman1

1 Institute of Innovation, Science and Sustainability, Federation University Australia,
Ballarat, Australia

rbasri@students.federation.edu.au,

{gour.karmakar,joarder.kamruzzaman,l.nguyen,m.usman}@federation.edu.au
2 School of Computing and Informatics, Universiti Teknologi Brunei,

Bandar Seri Begawan, Brunei
shah.newaz@utb.edu.bn

Abstract. 6G is more likely prone to a range of known and unknown
cyber-attacks because of its highly distributive nature. Current literature
and research prove that a trust boundary can be used as a security door
(e.g., gateway/firewall) to validate entities and applications attempting
to access 6G networks. Trust boundaries allow these entities to connect or
work with entities of other trust boundaries via 6G by dynamically mon-
itoring their interactions, behaviors, and data transmissions. The impor-
tance of trust boundaries in security protection mechanisms demands
a dynamic multi-trust boundary identification. There exists an auto-
matic trust boundary identification for IoT data. However, it is a binary
trust boundary classification and the dataset used in the approach is not
suitable for dynamic trust boundary identification. Motivated by these
facts, to provide automatic security protection for entities in 6G, in this
paper, we propose a mechanism to identify dynamic and multiple trust
boundaries based on trust values and geographical location coordinates
of 6G communication entities. Our proposed mechanism uses unsuper-
vised clustering and splitting and merging techniques. The experimental
results show that entities can dynamically change their boundary loca-
tion if their trust values and locations change over time. We also analyze
the trust boundary identification accuracy in terms of our defined two
performance metrics, i.e., trust consistency and the degree of gateway
coverage. The proposed scheme allows us to distinguish between entities
and control their access to the 6G network based on their trust levels to
ensure secure and resilient communication.

Keywords: 6G · Security · Trust boundary · Unsupervised
clustering · Splitting and Merging

1 Introduction

6G is expected to provide a high-speed data rate of up to 1 Tbps and low
latency (10–100 µs) in wireless communication [8]. This enables 6G to support
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 194–208, 2023.
https://doi.org/10.1007/978-981-99-7032-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_12&domain=pdf
http://orcid.org/0000-0003-0445-0917
http://orcid.org/0000-0002-1308-7315
http://orcid.org/0000-0002-0018-2575
http://orcid.org/0000-0001-7453-5268
http://orcid.org/0000-0001-5360-886X
http://orcid.org/0000-0003-2165-4575
https://doi.org/10.1007/978-981-99-7032-2_12

Dynamic Trust Boundary Identification 195

many smart applications, technologies, and services, such as extended reality,
autonomous vehicles, THz communication, VLC (Visible Light Communication),
and quantum communication which cannot be provided by 5G. The architecture
and design of 6G is still under study. Most of the information is still around use
cases. Therefore, we have considered a potential 6G infrastructure [11] that will
provide ubiquitous connectivity in space, air, ground, and ocean by utilizing the
Internet, satellites, and underground cables, presented in Fig. 1.

Fig. 1. A potential 6G infrastructure with massive communication coverage in space,
air, ground, and sea networks.

6G will connect customer networks (LAN, WAN, and IoT networks) and
entities to ensure complete distributed communications with cloud core net-
works and edge servers. In this paper, entities specifically refer to any object,
device, application, or network. Hence, the number of IoT devices in 6G will be
ten times greater than IoT devices in 5G which will pose remarkable security
risks and potential threats [17]. It is expected that known and unknown entities
will communicate via 6G. Moreover, in 6G, entities will share a large amount
of data during communication which might open doors for many known and
unknown attacks, e.g., Distributed Denial of Service (DDoS) and Man-in-the-
Middle (MITM) attacks [12]. Besides, network softwarization vulnerabilities dis-
rupt the dynamicity and automation of 6G, as certain security measures that rely
on encryption technology are not ideal for quantum computing in 6G. Because
of the requirement of key distribution, encryption cannot be applied to unknown
entities. Therefore, ensuring protection against cyber attacks in 6G to overcome
potential security challenges to maintain accountability, integrity, confidential-
ity, and authenticity of data clearly indicates the demand for dynamic security
protection using multiple trust boundaries identification.

196 R. Basri et al.

While perceiving the importance of security for national critical communi-
cation infrastructures (smart grid, healthcare, etc.), roaming attacks, and cyber
resiliency, trust boundary appears to be an essential vehicle for providing secu-
rity protection in communication networks. For the security aspect, the trust
boundary can be defined as a security safeguard that controls the access of all
types of entities that are trying to enter a network based on their current trust
levels. Inside a trust boundary, all entities of a network occupy almost similar
trust levels. On the contrary, entities having different trust levels are categorized
under different boundaries. This boundary isolation ensures dynamic security
protection in distributed networks like 6G, where security is the utmost concern
to handle a large number of entities during communication and data exchange.

Currently, researchers are focusing to exploit trust boundaries for managing
security levels while providing services to different networks, entities, and sys-
tems. Current literature shows an automatic binary trust boundary identification
for IoT networks [6] that fails to identify multiple dynamic trust boundaries that
are required for better security protection in 6G. To address this research gap, in
this paper, we propose a method to identify dynamic and multiple trust bound-
aries using unsupervised clustering techniques based on the trust values and
geographical locations of different entities in the 6G network. Our proposed app-
roach creates a pathway to enhance the security of 6G communication through
trust boundaries by dynamically monitoring the interactions and behaviors of all
heterogeneous entities and controlling their access to the network using security
protection gateways. Our main contributions to this work are as follows:

– A mechanism to dynamically identify trust boundaries for 6G communica-
tion using unsupervised clustering and splitting and merging approaches is
introduced.

– The experimental results generated using a sample 6G network show that
the proposed mechanism enables entities to change their boundary location
automatically if their trust values and locations are changed over time.

– The trust boundary identification accuracy is analyzed using our defined two
performance metrics, i.e., trust Consistency and the degree of gateway cov-
erage.

– The dynamic trust boundary identification provides insights on how to auto-
mate security services to protect systems, entities, and networks used in wire-
less communication networks.

2 Related Works

Trust boundaries are essential for providing segmented protection by isolating
hardware and software components of a network and ensuring secure zone-to-
zone communication. Providing security levels by utilizing trust differs from
system to system, which may lead to different possible trust boundary identifi-
cation mechanisms for different networks. Current literature shows that trust
boundaries in IoT, IIoT, and beyond 5G or 6G can be identified based on

Dynamic Trust Boundary Identification 197

three approaches, i.e., an intuitive process where trust boundaries are set intu-
itively [2,5,7,14], a learning-based process that uses machine learning algorithms
with clustering techniques [6,9], and threat modeling related to various secu-
rity threats, such as IoT botnets, DNS threats, ransomware, and unauthorized
access to physical properties. Threat analysis tools, such as Microsoft’s STRIDE,
DREAD [3,4] and PASTA [15,16], are used for secure application design, secu-
rity risk rating, and determining the impact of security risks on both IoT and
IIoT applications.

A static security protection theory using intuitive trust boundaries in 6G for
the customer networks is presented in [7]. Here, edge nodes are used as corporate
firewalls. The serving edge node communicates with the destination edge node
via the federated public service domain using trust boundaries. Utilizing the
chain of trust boundaries, destination edge nodes either allow (e.g., limit flow
rate) or reject end-to-end communication initiated by the serving node. Thus,
it protects the entire communication against cyber-attacks by ensuring an equal
trust level for each entity within the customer network. However, the study needs
to be tested against other applications and entities in 6G.

In addition, [6] classified 76 IoT nodes as trustworthy and untrustworthy
using the K-means clustering algorithm considering five features of trusts. They
used the support vector machine classifier to identify the threshold level for
each feature to separate trustworthy and untrustworthy interactions through
a decision boundary. This method simply considers an automatic binary trust
boundary identification based on static trust values that are not dynamically
updated. To detect changes in the node behavior over time to ensure better
security for practical implementation, continuous trust values of each entity need
to be considered that are updated from time to time.

Motivation for Dynamic Trust Boundary Identification. Dynamic trust
boundaries allow 6G networks to better isolate sensitive data, making it more
difficult for malicious actors to access and exploit. Besides, a dynamic trust
boundary ensures secure data exchange between different entities in the commu-
nication network, such as nodes, mobile devices, and base stations by controlling
their access to sensitive data and restricting their interactions based on their
trust levels. This prevents malicious actors from intercepting or altering data
in transit through continuous monitoring and thus protects the network from
various known and unknown attacks, such as MITM and DDoS attacks.

An automatic binary trust boundary identification model is presented in [6].
The main loopholes of this model are: (a) nodes are classified as trusted or
untrusted (binary trust classification) and (b) data used in this model is not
suitable for dynamic trust boundary identification. Other existing approaches
identifying trust boundaries using intuitive process [14] or threat analysis [16]
are static. But, security threats can emerge at any time and bypass existing
protections. As a result, the identification of trust boundaries is required in
an ad-hoc and automatic manner. Entities involved in 6G communication need
to be dynamically re-categorized into different trust levels for identifying trust
boundaries at a particular time instant.

198 R. Basri et al.

3 Proposed Dynamic Trust Boundary Identification
Mechanism

Dynamic trust boundary identification plays a pivotal role in the realm of 6G
networks, entailing the constant monitoring and delineation of boundaries amidst
varying levels of trust. This critical process is indispensable for safeguarding sen-
sitive data and regulating access to entities, shielding them from potential cyber
threats, while simultaneously identifying and mitigating any security risks that
may arise. Given the nascent stage of 6G networks, a concrete methodology for
dynamic trust boundary identification is yet to be established. Furthermore, it is
imperative to configure Security Protection Gateways (SPGs) with indispensable
security policies to shield entities within trust boundaries against cyber threats.
These gateways assume control over incoming traffic, exercising discretion to
permit or deny access based on the trustworthiness of the requesting entity and
the corresponding trust boundary. Consequently, this meticulous filtering guar-
antees that exclusively trusted entities can interact with entities residing within
another trust boundary, effectively fortifying the networks against an array of
cyber-attacks.

Our proposed method for dynamic trust boundary identification revolves
around the concept that entities within a trust boundary exhibit a similar range
of trust values and are located in close proximity to each other within the com-
munication range offered by the 6G four-tier (ground-air-space-sea) architecture.
The spatial proximity of these entities heightens the likelihood of successful com-
munication with their respective gateways. To achieve this, continuous monitor-
ing of entity behavior and their interactions become imperative. Any alterations
in trust levels or entity locations over time prompt a dynamic adjustment of their
corresponding boundary locations, ensuring entities are appropriately allocated
to distinct boundaries. Otherwise, they will reside in the same boundary. Con-
sequently, alongside trust values, the geo-location of entities can be taken into
account as a determining factor for categorizing them into discrete boundaries.

3.1 Features for Dynamic Trust Boundary Calculation

To identify trust boundaries in an ad-hoc manner, we can use trust values, geo-
locations, the communication range of entities, and 6G communication chan-
nel characteristics. However, in this paper, we specifically choose trust values,
geo-locations, and the communication range of the entities for dynamic trust
boundary identification. Including trust values, as alluded to before, the reason
for choosing the geo-location is that it would be more likely that entities in close
proximity will be able to communicate with their relevant security gateways.
If there are any changes in the trust and location values over time, entities will
change their boundary locations accordingly. This dynamic re-categorization into
trust boundaries enables security segmentation between low and high-trusted
entities.

Dynamic Trust Boundary Identification 199

3.2 Dynamic Trust Boundary Identification Techniques

Since the number of trust boundaries is not known in advance, one of the possi-
ble solutions for dynamic trust boundary identification is to use an unsupervised
clustering technique to classify entities in different clusters, so that clusters can
be organized by exploiting aspects of trust boundary attributes only. Unsu-
pervised clustering is useful for network traffic analysis because of providing
enhanced algorithms for grouping data and investigating frequent changes in
data as well as reducing the dimensions of data for optimum results. Therefore,
in this work, we use two unsupervised clustering algorithms, i.e., k-means with
Elbow method [10] and self-organizing map (SOM) [13], to prove our concept
by generating multiple clusters of entities. Both clustering techniques can effi-
ciently allocate entities into the same clusters that have similar trust values and
are closely located to each other within the 3-dimensional space with each cluster
representing a trust boundary.

Our proposed method for identifying dynamic and multiple trust boundaries
using the k-means clustering technique comprises two steps, i.e., clustering data
intuitively into ‘k’ number of clusters and finding the optimum number of clusters
using the Elbow method and re-clustering. However, unlike k-means, the SOM
automatically selects the optimum number of clusters. The SOM automatically
creates a map for clustering the data points using a set of neurons, where each
neuron represents a cluster of similar data points. The SOM updates neuron
weights iteratively until convergence and thus reduces the number of clusters
[13].

3.3 Splitting and Merging Trust Boundary Considering
Communication Coverage

SPGs associated with trust boundaries (refer to Fig. 2) typically use a variety of
communication interfaces to cover different entities nationally or globally. The
national communication range refers to the extent to which communication can
occur anywhere in a particular country. On the other hand, the global com-
munication range refers to the ability to communicate across the entire world,
regardless of geographical boundaries. The specific interfaces used vary depend-
ing on the configuration of gateways and the types of entities communicating
with them. Common communication interfaces along with their possible com-
munication ranges and relevant devices that can be used to connect with SPGs
are as follows:

– WiFi (100 m): Sensors, smartphones, and other smart devices
– Cellular networks (national with LTE’s maximum coverage 40 km) (4G

LTE/5G/6G): Base stations, drones, UAVs, ships, and smartphones
– Bluetooth (10 m): Short-range communication between devices like smart-

phones and sensors
– Satellite (global 36,000 km): Remote devices (where traditional communica-

tion infrastructure is not available) like ships in the sea and base stations

200 R. Basri et al.

– Internet (global): TCP/IP networking enabled devices

Dynamic trust boundary identification using the clustering approaches that
consider trust values and geo-locations of entities cannot ensure that the entities
of a particular trust boundary are within the coverage range of its SPGs and the
consistency of its entities’ trust values is fully optimized. To ensure SPGs com-
munication covers and optimizes the intra-boundary trust consistency, splitting
and merging of the initial trust boundaries produced by clustering approaches
is required. The algorithm of the splitting and merging technique is presented
below (refer to Algorithm 1).

Algorithm 1 . Splitting and merging algorithm for dynamic trust boundary
identification
1: Input:
2: Eij = jth entity belongs to ith trust boundary
3: Bi = ith trust boundary
4: SPGi = security protection gateways for ith trust boundary
5: N = Number of trust boundary
6: ηi = Number of entities in ith trust boundary
7: Output:
8: Refined trust boundaries B
9: for i = 1 N do
10: for j = 1 ηi do
11: if Eij is an outlier of Bi’s entities’ trust values or not under SPGi’s coverage

then
12: Remove Eij from Bi

13: Set k = 0
14: Find a trust boundary Bk in such a way that ensures
15: Eij can communicate with SPGi and optimize trust consistency
16: end if
17: if k > 0 then
18: Merge Eij with Bk

19: else
20: Create a new trust boundary that comprises Eij

21: end if
22: end for
23: end for

By continuously monitoring and adjusting trust boundaries in real-time, the
splitting and merging algorithm ensures that the 6G network remains secure
and private as it is expected to be much larger than the previous generations
of wireless communication. Regarding this, the algorithm needs to consider the
communication range of the gateway with entities in the network to ensure
seamless communication flow between different entities allocated in different
trust boundaries. If the algorithm merges or splits entities without considering
their communication range with the gateway, it could lead to communication
failures, dropped connections, and thus reducing the network performance.

Dynamic Trust Boundary Identification 201

4 Experimental Simulation and Results

Based on the infrastructure shown in Fig. 1, our proposed mechanism for
dynamic trust boundary identification is evaluated using a simplified 6G archi-
tecture. For simulations, a conceptual infrastructure of trust boundary protection
mechanism for the 6G network is shown in Fig. 2. Trust boundaries comprising
seven entities (i.e., drone, airplane, satellite, mobile base station, smartphone,
ship, and static sensor) are presented using red dotted rectangles. Trust bound-
aries are used to protect 6G networks using SPGs by acting as a barrier between
two different networks or entities of the same or different networks. Based on
the security protection context, SPGs are allocated a particular zone of a trust
boundary to control incoming traffic and the access of entities of a trust boundary
to a network or an entity of another trust boundary. Along with access control
managed by SPGs, all data have to pass through the SPGs prior to being routed
for communication.

Fig. 2.A conceptual 6G infrastructure comprising trust boundaries used for simulation.

Trust boundary provides dynamic security protection for untrusted entities in
6G by following the Continuous Adaptive Risk and Trust Assessment (CARTA)
principle [1]. Trust boundaries use policies to control incoming data, access con-
trol, and multi-factor authentication (MFA) through continuous risk monitoring
and trust assessment to dynamically allocate entities into different trust bound-
aries depending on the observed risk and trust levels. The SPGs can detect any
malicious activities or attacks by monitoring the behavior of nodes, data reli-
ability, and traffic patterns. For example, if there is a sudden surge of traffic
from a particular source (that is known to be associated with DDoS attacks),
the SPGs could detect this and block the source. Additionally, the SPGs can

202 R. Basri et al.

use strong encryption and MFA-based authentication to identify and prevent
MITM attacks. By monitoring the source and destination IP addresses, ports,
data reliability, and other characteristics of incoming traffic, the SPGs can also
detect and block other attacks.

4.1 Data Preparation

For dynamic trust boundary identification, as per our feature selection discussed
in Sect. 3.1, we have considered the coordinates of seven entities (see Fig. 2) in
a 3-dimensional space (X, Y, and Z) and their trust values (T) at different
times as shown in Table 1. Trust values are intuitively assigned to each entity
based on its behavior and data reliability. Therefore, the trust value of an entity
will decrease significantly if it is compromised by an attack. Examples of such
attacks include but are not limited to, packet drop, DDoS and MITM attacks
launched by misbehaving nodes, and data poisoning and false data injection
attacks. Besides, the geo-location data is used in dynamic trust boundaries to
ensure entities having similar trust values are in close proximity increasing the
likelihood of being in their security-specific gateway coverage.

Table 1. Intuitional trust boundary allocation to each entity using simulated location
and trust data at morning 8.00 am.

Entity Location of Entity Trust
Value

Trust Boundary
Allocation

X Y Z T TB

Base Station 1 0.97 0 2.95 TB 1

Satellite 1 1 0.98 2.89 TB 2

Static Sensor 0.47 0.56 0 2.5 TB 3

Drone 0.75 0.79 0.7 2.25 TB 4

Airplane 0.89 0.95 0.99 2.22 TB 5

Smartphone 0.5 0.7 0.82 2 TB 6

Ship 0.53 0.6 0.58 1.75 TB 7

For experiments, we have simulated 343 data samples that are estimated to
be recorded within a 24-h time window starting at 8.00 am with 30-min time
intervals. Initially, we have allocated each entity to 7 different trust boundaries
intuitively to observe the changes in the boundary location after clustering. Each
trust boundary has a distinct range of trust values. Entities having the highest
trust values are allocated to Trust Boundary 1 (TB1) and the entities with the
lowest trust values are allocated to TB7 accordingly (refer to Table 1). The first
7 data samples are not used for clustering. The remaining 336 data samples
are divided into 3 equal sections, where each section contains 112 data samples.
These 112 data samples are estimated to be collected over the course of 8 h, i.e.,
from 8.30 am to 4.00 pm, after 4:00 pm to 12:00 pm, and after 12:00 pm to 8:00
am to track changes in trust values and locations over time.

Dynamic Trust Boundary Identification 203

4.2 Metrics for Assessing the Accuracy of Trust Boundary
Identification

For performance evaluation of the trust boundary identification, we define two
metrics, i.e., trust consistency and the degree of gateway coverage.

i Trust Consistency: It indicates the consistency of entities’ trust values
within the trust boundary. It is chosen as a metric to represent the trust
boundary identification accuracy because the higher the trust consistency is,
the higher the trust values similarity will be, thus better the conformance will
be with the trust boundary definition. The higher the trust values similarity
is, the better chance of equipping fine grain security protection level will be.
We can evaluate the trust consistency through the Standard Deviation (SD)
of entities’ trust values of a particular trust boundary. The lower the SD is,
the higher the trust consistency is.

ii Degree of Gateway’s Coverage: This metric represents the percentage of
a trust boundary’s entities that are within the communication range of their
relevant SPG(s). The higher the coverage is, the higher the trust boundary
identification accuracy will be.

4.3 Simulation Results and Discussions

We performed the clustering separately 3 times for 3 sets of data for both k-
Means and SOM clustering. In the K-Means clustering, we initially set the cluster
number equal to 7 intuitively. After that, we used the Elbow method to identify
the optimum number of clusters automatically. With the Elbow method, we
obtained 5 optimum clusters for the first set of data and 3 optimum clusters for
the second and third sets of data. Figure 3 displays the Elbow graph indicating
the optimal number of clusters. The differences between cluster formation before
and after using the Elbow method are illustrated in Fig. 4. Similarly, we applied
SOM clustering to verify the performance of our proposed mechanism for trust
boundary identification. Unlike the K-means, the SOM provided three clusters
for each data set.

After clustering, we monitored the changes in the entity’s trust boundary
location every 8 h. We plotted the results using the last data values of each
entity taken at 4.00 pm, 12.00 am, and 8.00 am, respectively, for both k-means
and SOM clustering, as illustrated in Fig. 5, 6, 7, where each cluster represents
trust boundaries and trust values, represented by ‘T’. We can see that there is
a slight difference in trust boundary identification for the first data set, where
the k-means identified four trust boundaries (trust boundaries 1, 2, 4, and 5)
and the SOM identified three trust boundaries (trust boundaries 1, 2, and 3) for
the first data set (refer to Fig. 5). The reason for this is, the SOM organized the
data points into a total of three trust boundaries for all data sets by assigning
them to the same trust boundary having the closest trust values and the nearest
locations at 4.00 pm, 12.00 am, and 8.00 am, respectively. However, both k-means
and SOM identified two trust boundaries (trust boundaries 1 and 2) having the

204 R. Basri et al.

Fig. 3. Elbow Method Graph for Finding Optimum Number of Clusters: (a) 5 Clusters
for data captured from 8.30 am to 4.00 pm (1st data set), (b) 3 Clusters for data
captured from after 4:00 pm to 12:00 pm (2nd data set), and (c) 3 Clusters for data
captured from after 12:00 pm to 8:00 am (3rd data set).

Fig. 4. Distribution of data points taken from 8:30 am to 4:00 pm, including locations
and trust values of all entities, was organized into (a) 7 clusters without the elbow
method and (b) 5 clusters with the elbow method.

same entities for the second data set (refer to Fig. 6), where trust boundary 1
contains the base station and satellite, while trust boundary 2 comprises drone,
airplane, ship, smartphone, and static sensor. Similarly, for the third data set,
Fig. 7 shows both k-means and SOM produced three trust boundaries having
the same entities.

For the second set of data, no entities are allocated to trust boundary 3 in
the SOM, particularly at 12.00 am. On the contrary, in k-means, no entities are
allocated in trust boundary 3 for the first and second sets of data particularly
at 4.00 pm and 12.00 am. However, within the time frame from 8.30 am to
12.00 am, entities can be allocated to trust boundary 3 depending on their trust
and location values. For three different data sets generated in the three time
windows, the different number of trust boundaries identified by k-means and
SOM is because the trust values and locations have been changed over time.

Dynamic Trust Boundary Identification 205

Fig. 5. Trust boundary location of entities at 4.00 pm after k-means and SOM clus-
tering.

Fig. 6. Trust boundary location of entities at 12.00 am after k-means and SOM clus-
tering.

This phenomenon indicates that our proposed mechanism is able to identify the
trust boundaries dynamically.

From Fig. 5, 6, 7, it can be seen that the base station has a consistent range of
highest trust values, thus it always belongs to trust boundary 1 for both k-means
and SOM. However, the static IoT sensor has different trust values, thus it is
allocated to different trust boundaries over time when these values are changed.
Though the static sensors are usually fixed in locations to capture data, their
trust values can be altered (refer to Fig. 7).

206 R. Basri et al.

Fig. 7. Trust boundary location of entities at 8.00 am after k-means and SOM cluster-
ing.

Table 2. Overall results by proposed dynamic trust boundary (TB) identification.

Clustering Algorithm
4.00 pm 12.00 am 8.00 am

Entity TB Trust Range of TB SD Entity TB Trust Range of TB SD Entity TB Trust Range of TB SD

K-means Clustering

Base Station TB 1 2.9-3.0 N/A Base Station

Satellite
TB 1 2.0-3.0 0

Base Station

Satellite

Smartphone

TB 1 2.0-3.0 0.13Satellite

Static Sensor
TB 2 2.55-2.89 0.23

Static Sensor

Ship

Airplane

Drone

Smartphone

TB 2 0.7-1.99 0.37

TB 3 2.4-2.54 N/A

Airplane

Drone

Ship

TB 2 0.7-1.99 0.07
Airplane

Drone

Ship

TB 4 1.75-2.39 0.27

Smartphone TB 5 1.0-1.74 N/A TB 3 0.0-0.69 N/A Static Sensor TB 3 0.0-0.69 N/A

SOM Clustering

Base Station TB 1 2.9-3.0 N/A
Base Station

Satellite
TB 1 2.0-3.0 0

Base Station

Satellite

Smartphone

TB 1 2.0-3.0 0.13

Drone

Airplane

Static Sensor

Satellite

TB 2 2.0-2.89 0.33

Smartphone

Drone

Airplane

Ship

Static Sensor

TB 2 0.7-1.99 0.37

Airplane

Drone

Ship

TB 2 0.7-1.99 0.07

Smartphone

Ship
TB 3 1.0-1.99 0.12 TB 3 0.0-0.69 N/A Static Sensor TB 3 0.0-0.69 N/A

Table 2 shows the entity’s boundary location after every 8 h, such as at 4.00
pm, 12.00 am, and 8.00 am including the trust range and corresponding SD
values reflecting the trust consistency of each trust boundary (TB). As we can
see for the first and second sets of data, SD values are either very high (0.37
for TB2 in the second data set) or very low (0 for TB1 in the second data set)
produced by k-means and SOM. On the contrary, for the third data set, we got
consistently low SD values of 0.07 and 0.13 for TB2 and TB1 respectively for
both k-means and SOM. Note that the SD value for TB3 is represented as N/A,
as only one entity (static sensor) belongs to it. However, for the first data set, we
got low SD values of 0.23 for TB2 in k-means compared to SOM which is 0.33.
This is because, k-means allocated satellite and static sensor in TB2 and drone,

Dynamic Trust Boundary Identification 207

airplane, and ship in TB4, whereas the SOM allocated all these five entities into
TB2.

As defined in Sect. 3.3, we know that satellite and static sensor can com-
municate with their corresponding SPGs through satellite and WiFi transport
connections, respectively. On the other hand, drone, airplane, and ship can use
cellular transport connections to communicate with SPGs. However, the SOM
allocated all of them into TB2, where the trust values of entities inside TB2 are
0.87 (smartphone), 1.38 (drone), 1.67 (Airplane), 1.70 (ship), and 1.75 (static
sensor). Here, the splitting and merging algorithm detected the trust value of
smartphone as an outlier. Therefore, this algorithm found a suitable trust bound-
ary TB3, in which the smartphone can reside for optimizing trust consistency.
After splitting, the SD value of TB2 and TB3 are 0.17 (less than 0.37 indicating
optimized trust consistency) and N/A respectively. This is an example of how
the splitting and merging algorithm split TB2 into TB2 and TB3.

5 Conclusion

As mentioned before, 6G is vulnerable to diverse security attacks, so security is
the utmost concern in 6G. For this, a dynamic trust boundary can be used as a
safeguard to protect network entities or devices from being hacked or compro-
mised. Security protection gateways can be placed at each entry point between
the entities inside a trust boundary and the 6G core network for access control
and protecting sensitive data. In this work, multiple trust boundaries are iden-
tified dynamically using unsupervised clustering techniques and splitting and
merging trust boundaries. Our results show that entities having similar trust
values and the same transport connections with gateways are placed in the same
trust boundary. This demonstrates that trust boundaries control the access of
the entities communicating in a 6G network by automatically updating their
boundary locations if their trust values and locations are changed over time.
Dynamic trust boundaries appear to be a potential vehicle to protect national
critical infrastructures (e.g., smart grid, smart health, and smart vehicle) from
random cyber attacks and provide automatic security protection for entities
communicating via 6G. Further, we will evaluate our proposed dynamic trust
boundary identification considering more and different entities communicating
through 6G.

References

1. Continuous adaptive risk and trust assessment (carta). https://www.ssh.com/
academy/iam/carta. Accessed 22 Mar 2023

2. Barbosa, M., et al.: SAFETHINGS: data security by design in the IoT. In: 2017
13th European Dependable Computing Conference (EDCC), pp. 117–120. IEEE
(2017)

3. Borgaonkar, R., Anne Tøndel, I., Zenebe Degefa, M., Gilje Jaatun, M.: Improving
smart grid security through 5G enabled IoT and edge computing. Concurrency
Comput. Pract. Experience 33(18), e6466 (2021)

https://www.ssh.com/academy/iam/carta
https://www.ssh.com/academy/iam/carta

208 R. Basri et al.

4. Fernandes, A.M., Pai, A., Colaco, L.M.M.: Secure SDLC for IoT based health
monitor. In: 2018 Second International Conference on Electronics, Communication
and Aerospace Technology (ICECA), pp. 1236–1241. IEEE (2018)

5. Hassan, M.M., Huda, S., Sharmeen, S., Abawajy, J., Fortino, G.: An adaptive trust
boundary protection for IIoT networks using deep-learning feature-extraction-
based semisupervised model. IEEE Trans. Industr. Inf. 17(4), 2860–2870 (2020)

6. Jayasinghe, U., Lee, G.M., Um, T.W., Shi, Q.: Machine learning based trust compu-
tational model for IoT services. IEEE Trans. Sustain. Comput. 4(1), 39–52 (2018)

7. Kantola, R.: 6G network needs to support embedded trust. In: Proceedings of the
14th International Conference on Availability, Reliability and Security, pp. 1–5
(2019)

8. Khan, L.U., Yaqoob, I., Imran, M., Han, Z., Hong, C.S.: 6G wireless systems:
a vision, architectural elements, and future directions. IEEE Access 8, 147029–
147044 (2020)

9. Khan, M.A., Alghamdi, N.S.: A neutrosophic WPM-based machine learning model
for device trust in industrial internet of things. J. Ambient Intell. Humanized
Comput. 14, 1–15 (2021)

10. Marutho, D., Handaka, S.H., Wijaya, E., et al.: The determination of cluster num-
ber at k-mean using elbow method and purity evaluation on headline news. In: 2018
International Seminar on Application for Technology of Information and Commu-
nication, pp. 533–538. IEEE (2018)

11. Nguyen, D.C., et al.: 6G internet of things: a comprehensive survey. IEEE Internet
Things J. 9(1), 359–383 (2021)

12. Nguyen, V.L., Lin, P.C., Cheng, B.C., Hwang, R.H., Lin, Y.D.: Security and privacy
for 6G: a survey on prospective technologies and challenges. IEEE Commun. Surv.
Tutorials 23(4), 2384–2428 (2021)

13. Qu, X., et al.: A survey on the development of self-organizing maps for unsupervised
intrusion detection. Mob. Netw. Appl. 26, 808–829 (2021)

14. Riel, A., Kreiner, C., Macher, G., Messnarz, R.: Integrated design for tackling
safety and security challenges of smart products and digital manufacturing. CIRP
Ann. 66(1), 177–180 (2017)

15. Tedeschi, S., Emmanouilidis, C., Mehnen, J., Roy, R.: A design approach to
IoT endpoint security for production machinery monitoring. Sensors 19(10), 2355
(2019)

16. Wolf, A., Simopoulos, D., D’Avino, L., Schwaiger, P.: The pasta threat model
implementation in the IoT development life cycle. INFORMATIK 2020 (2021)

17. Ylianttila, M., et al.: 6G white paper: research challenges for trust, security and
privacy. arXiv preprint arXiv:2004.11665 (2020)

http://arxiv.org/abs/2004.11665

RTR-Shield: Early Detection
of Ransomware Using Registry and Trap

Files

P. Mohan Anand(B), P. V. Sai Charan, Hrushikesh Chunduri,
and Sandeep K Shukla

Department of Computer Science and Engineering, Indian Institute of Technology,
Kanpur, Kanpur, India

{pmohan,pvcharan,hrushicnv,sandeeps}@cse.iitk.ac.in

Abstract. The pre-encryption behaviour of ransomware refers to the
period before the ransomware begins to encrypt the files, where it per-
forms activities to conceal its presence or gather sensitive information
of the victim system. For any detection model, it is crucial to restrain
ransomware activity before it causes significant damage or spreads fur-
ther throughout the system. In this regard, we propose RTR-Shield a
novel rule based tool to detect and block crypto ransomware activity in
its early stage of execution. The tool primarily relies on two monitor-
ing blocks: Registry Activity Monitoring Block (RAMB) and File Trap
Monitoring Block (FTMB). RAMB is derived based on forensic analy-
sis of registry modifications performed by 27 recent ransomware families
within the first 10 s of payload execution. We also reveal the common
keys and values that a ransomware modifies in its pre-encryption phase.
FTMB is constructed based on the study of different directories that the
ransomware initially access and deploy trap files at strategic locations.
In our evaluation, RTR-Shield demonstrates its efficacy in detecting and
blocking ransomware activity during the initial stages of encryption, even
for previously unseen ransomware variants.

Keywords: Windows Registry · Crypto-Ransomware ·
Pre-encryption · Early detection · Trap Files

1 Introduction

Crypto ransomware, a form of malware, encrypts files on a victim’s system or
network, rendering them inaccessible until a ransom is paid to the attackers.
Over the past few years, the prevalence and sophistication of crypto ransomware
attacks have significantly increased, with attackers employing various strategies
to infiltrate systems while evading detection. In most cases, ransomware does not
immediately encrypt the files in the victims system, rather it typically engages
in pre-encryption activities, such as establishing persistence and gathering sen-
sitive information from the victim. These activities are essential for the efficient
execution of the encryption process. The pre-encryption behavior of crypto ran-
somware include:
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 209–229, 2023.
https://doi.org/10.1007/978-981-99-7032-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_13&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_13

210 P. M. Anand et al.

– Information gathering: Ransomware collects the victim’s system informa-
tion to determine the best way to carry out the attack, such as operating
system version, file system structure, installed software and network configu-
ration, etc.

– Persistence: Ransomware create registry keys or scheduled tasks to ensure
it continues running even after a system reboot.

– Disabling security measures: Ransomware attempt to disable antivirus or
other security software to avoid detection.

– Obfuscating its activity: Ransomware use various techniques to hide its
presence, such as renaming its files, using encryption to hide its communica-
tion, or masquerading as legitimate software.

Ransomware carries out encryption when some or all of the activities men-
tioned above are performed on the targeted system and demands payment from
the victim in exchange for the decryption key. During the pre-encryption phase,
ransomware adds, updates, or deletes various keys and values to achieve per-
sistence, gather information, or hide its presence. In this regard, the Windows
registry can be an important source for investigation as it contains information
about recently used programs or files, user account names and passwords, and
network share connections, etc. [13]. The registry information can also be used
to piece together a user activity timeline or identify potential sources of data
theft, malware activity. The granular information obtained by conducting reg-
istry analysis aids in developing robust rules for detecting ransomware activity
in real-time.

However, detecting ransomware solely based on registry-level modifications
poses a challenge, as ransomware often scans for files to encrypt while simul-
taneously engaging in activities like shadow copy deletion or employing other
persistence-maintaining techniques. To overcome this limitation, we also consid-
ered trap files alongside registry modifications. Trap files are special files placed
on a system with the intention of detecting or preventing unauthorized access or
activity. These files are meticulously crafted to resemble and behave like legiti-
mate files that ransomware typically targets.

Therefore, it is essential to simultaneously monitor registry activity and trap
files for effective detection of crypto ransomware in its early stages. The major
contributions of this work include:

1. We propose RTR-Shield, a tool designed to detect crypto ransomware activity
and prevent its execution in real-time by continuously monitoring registry
modifications and trap files.

2. We highlight common patterns observed in the registry modifications by
analysing 27 ransomware families in their pre-encryption stage.

3. We underline our strategic approach to deploy trap files that are commonly
targeted by multiple ransomware families.

The remainder of the paper is organized as follows: Section-2 describes the
proposed tool architecture, detailing multiple functional blocks and their impor-
tance in the early detection of ransomware. Section-3 covers the topic of registry

RTR-Shield 211

analysis and pattern identification for multiple ransomware families. Section-
4 describes the evaluation of RTR-Shield. Section-5 discusses related work on
various methods of ransomware detection. Finally, in Sect.6, we summarize our
findings and provide an overview of future research directions.

2 RTR-Shield - Design Overview

Fig. 1. RTR-Shield - Design Overview

We introduce RTR-Shield as a robust tool specifically developed to detect ran-
somware during its initial stages of attack. The core functionality of RTR-Shield
relies on two essential components depicted in Fig. 1: the Registry Activity Mon-
itoring Block (RAMB) and the File Trap Monitoring Block (FTMB). These
blocks play a crucial role in monitoring and analyzing registry activities as well
as file access behavior, enabling the early detection of ransomware incidents. The
functionalities of these blocks are explained below:

1) Registry Activity Monitoring Block (RAMB): This block is respon-
sible for monitoring unusual registry modification patterns. This is achieved by
monitoring key additions, value additions, and value updates of various registry
hives. Key addition involves the creation of new registry keys to effectively orga-
nize data, while value addition associates specific data with corresponding keys,
enabling the precise storage of pertinent information. Additionally, value update
operations allow for the modification of existing values, facilitating crucial con-
figuration changes or timely updates. It is worth noting that these operations

212 P. M. Anand et al.

are commonly performed during software installation, system configuration, or
when ransomware aims to manipulate the registry to achieve its goals.

Fig. 2. Registry data extraction process

Registry Data Extraction Process:
Table 1. List of registry hive cat-
egories commonly targeted by ran-
somware
S.No Registry Category

1 Volume Shadow Copy Service (VSS)
2 Run Key
3 AppCompatFlags
4 Windows Script Host (WSH)
5 Restart Manager
6 RecentDocs
7 Class & Icon
8 Boot Configuration Data (BCD)
9 Background Activity Moderator (BAM)
10 Shell Bags
11 GlobalAssocChangedCounter
12 InstalledWin32AppsRevision

In our work, we analyze ransomware samples
from 27 prevalent families, including Revil,
LockBit, Mangniber, Babuk, and Conti,
among others. We perform dynamic analy-
sis of ransomware samples in a sandbox envi-
ronment using a Microsoft Windows 10 oper-
ating system with 8 GB of RAM and 256
GB disk space. We configured the network
of the sandbox machine to host-only mode
to restrict the ransomware’s activity to the
sandbox environment. Once the sandbox is
set up, we installed “RegShot” tool on the
Windows 10 sandbox machine. RegShot is
a free and open-source registry comparison
utility designed for the Windows operating
system, which captures a snapshot of the Windows registry containing infor-
mation about installed programs, system settings, and user profiles. Also, it
compares two registry snapshots taken at different times to detect any changes
made to the registry during that period. This functionality of the tool is useful for
analyzing changes made by ransomware, troubleshooting or monitoring system
changes made by software installations, updates, or configuration changes [10].

Before executing each ransomware executable, we took a snapshot of the reg-
istry to store the state before the ransomware exhibits its behavior. Following
the execution of the ransomware sample, we introduced a 10-second delay before
capturing a second snapshot to observe its pre-encryption activities. Typically,
most ransomware takes 8 to 10 s to start file encryption [17], so we choose a delay
time of 10 s to capture the pre-encryption behavior of the ransomware effectively.
Using RegShot, we obtained the list of changes made in the registry, including

RTR-Shield 213

added keys, values, and modified values, for each ransomware executable as
shown in Fig. 2. The changes made to the registry provides valuable insight into
ransomware behavior and helps us build rules to stop ransomware activity at
the earliest. Based on our comprehensive analysis, we discovered specific reg-
istry hives that are frequently targeted by multiple variants of ransomware for
registry modifications as shown in Table 1. In Sect. 3, we present detailed reg-
istry modifications, including key additions, value additions, and value updates,
for each registry hive category shown in Table 1, along with their correlation to
ransomware activity.

Subcomponents of RAMB: RAMB utilize individual monitoring blocks ded-
icated to continuously monitor the registry for any abnormal modifications at
intervals of 500ms.

– Key Addition Monitor : This monitoring block constantly checks for the addi-
tion of new keys under various hive categories (refer Table 1), such as VSS,
WSH, Restart Manager, Class & Icon, and BCD.

– Value Addition Monitor : This monitoring block continuously checks for the
inclusion of new values under different hive categories, including Run, App-
CompatFlags, WSH, Restart Manager, Class & Icon, BCD, and BAM.

– Value Update Monitor : This monitoring block continuously checks for value
updates in keys belonging to categories such as RecentDocs, BAM, Shell Bags,
and InstalledWin32AppRevision.

Each of these registry monitoring blocks constantly checks the registry for modi-
fications, and once a change is made, the monitor will return “TRUE” as output.
For example, if a new VSS key, such as “ASR Writer”, is added to the reg-
istry path of “HKLM\SYSTEM\ControlSet001\Services\VSS\Diag”, then the
Key Addition Monitor will return TRUE. Similarly, when a new value is added
or a value is updated, the Value Addition Monitor or the Value Update Monitor
will return TRUE, respectively.

Operation of RAMB: After all three registry monitors return TRUE, an alert
is raised for the unusual registry modifications. Following the alert, we identify
all the running processes by their PID (Process IDs) and filter them by their
creation time. We only consider processes that were created within the last
10 s, as this time frame corresponds to the average pre-encryption duration of
ransomware, which typically ranges from 8 to 10 s. Subsequently, the respective
processes obtained through the PID filter are transitioned into a suspended state,
indicating a potential ransomware incident. Based on our analysis, the RAMB
module takes an average of 5.83 s to raise the alert based on the ransomware
samples considered in the experiment.

It is noteworthy that there is no registry category (refer Table 1), such as
VSS or BCD, that is common to all three registry monitors. This configuration
ensures that no benign application is falsely identified as an abnormal registry
modification. For instance, when an application is installed, it may add a class to
the registry to store its specific configurations and preferences. This installation

214 P. M. Anand et al.

may also involve adding new keys, new values, and value updates. However, our
tool is specifically designed not to flag such updates as malicious.

2) File Trap Monitoring Block (FTMB):
While the registry access pattern may indicate a potential ransomware attack,

we need to confirm it before issuing an alert. Moreover, some ransomware vari-
ants, such as Magniber, BlackMatter, and others, simultaneously scan for files to
encrypt while deleting shadow copies or performing other techniques to maintain
persistence. In such cases, waiting for registry-level changes to be detected may
impede the early detection of ransomware. Therefore, we explore the use of trap
files to identify any suspicious attempts to read or write access our files. The
inclusion of trap files in ransomware detection serves the purpose of identifying
unusual processes that attempt to read or write files that are not commonly
accessed by legitimate programs. When ransomware attempts to encrypt a trap
file, it triggers an alert or alarm, allowing security teams to take immediate
action to prevent further damage. The use of trap files can be an effective way
to detect and respond to ransomware attacks in real time.

Strategy for Positioning Trap Files: To achieve early detection of ran-
somware activity, trap files are placed in strategic locations on system. However,
it is crucial to identify the file access pattern used by multiple ransomware fam-
ilies for encryption. To better understand this pattern, we analyzed the same 27
families of ransomware. Our objective is to identify files and directories that are
initially targeted during the encryption process. The insights obtained from the
analysis are mentioned below:

– The majority of ransomware families, such as REvil, Cerber, and Babuk,
employ Depth-First Traversal in alphabetical order for encrypting files. How-
ever, only a few families, like Jigsaw and AvosLocker, utilize the Wide-Search
Traversal, also known as Breadth-First Traversal, for file encryption.

– Families such as AvosLocker and GlobeImposter target “C:/Users/Public/*”
first, before moving on to other directories.

– Sample belong to Cerber family start with the Desktop files and folders before
traversing other parts of the disk.

– Few ransomware families also consider filenames or folder names containing
numerics as an order of preference for performing encryption.

– Certain ransomware families, such as BlackMatter and Magniber, refrain from
encrypting PowerShell script files as part of their encryption process. How-
ever, contrasting this behavior, families like LockBit deliberately focus on
encrypting PowerShell script files in addition to other file types.

Based on the identified behavior of ransomware, we have strategically placed
multiple trap files at various locations in the file system and ensured that each
file is assigned an appropriate name. In the rare case of ransomware employing
reverse alphabetical order of encryption, i.e., encrypting file names starting with
‘Z’ before those starting with ‘A’, we also placed multiple trap files accordingly.
To ensure sufficient variability, we selected files ranging in size from very small
(in KB) to very large (in GB) as traps to entice the ransomware. We illustrate

RTR-Shield 215

Fig. 3. Systematic trap file placement scenario

the order of encryption employed by various ransomware strains using both
depth-first traversal and breadth-first traversal algorithms, as shown in Fig. 3. In
Fig. 3a and 3b, we strategically position trap files in a manner that incorporates
file size, alphabetic ordering, numeric naming convention, and reverse alphabetic
ordering.

Operation of FTMB: This module generates a TRUE output if at least two
trap files are accessed or modified within a time frame of less than one second.
This constraint is implemented to minimize false positives, which encompass
scenarios where a trap file is inadvertently accessed by a user. In such instances,
no alert should be triggered to avoid unnecessary suspicion regarding the normal
file access activity.

After FTMB returns TRUE, an alert is raised to indicate suspicious file access
activity. Based on our analysis, the FTMB module takes an average of 7.74 s to
raise the alert based on the ransomware samples considered in the experiment.
Subsequently, we identify all running processes using their respective process IDs
(PIDs) and filter them based on their creation time. We only consider processes
that were created within the past 3 s, as this time frame aligns with the onset
of file encryption activity. Finally, we move corresponding processes, which are

216 P. M. Anand et al.

obtained from the PID filter, to suspended state. This state serves as an indication
of a potential ransomware incident.

3)Early detection of Ransomware:
While the RAMB and FTMB blocks may individually raise suspicions of

potential ransomware incidents, it is crucial to validate the detection before
issuing an alert. For instance, certain ransomware families like Magniber, Black-
Matter, and others engage in simultaneous activities such as scanning for files to
encrypt and deleting shadow copies or employing other persistence techniques.
In such scenarios, the FTMB block may return a TRUE result first. Similarly,
for different ransomware families, the RAMB block may return a TRUE result
prior to the FTMB block. In our approach, we confirm a ransomware incident
only when both the RAMB and FTMB blocks return TRUE within a 5-second
timeframe. Once the ransomware activity is detected, we retrieve the suspended
process IDs from both blocks (RAMB & FTMB) and kill the corresponding pro-
cess IDs to halt the ransomware activity on the victim’s machine. The algorithm
for RTR-Shield tool is presented in Appendix-A

3 Correlation Between Ransomware Activity
and Registry Modifications

As discussed in Sect. 2, the following sub-sections explains the list of identified
registry hive categories and their significance in relation to ransomware execu-
tion.

3.1 Volume Shadow Copy Service (VSS)

Keys Added:

– HKLM\SYSTEM\ControlSet001\Services\VSS\Diag\ASR Writer

– HKLM\SYSTEM\ControlSet001\Services\VSS\Diag\COM+ REGDB Writer

– HKLM\SYSTEM\ControlSet001\Services\VSS\Diag\Registry Writer

– HKLM\SYSTEM\ControlSet001\Services\VSS\Diag\Shadow Copy Optimization Writer

– HKLM\SYSTEM\ControlSet001\Services\VSS\Diag\SwProvider_{new service provider ID}

Usage:
The registry keys shown above belong to the Volume Shadow Copy Service (VSS)
diagnostics component of windows, which is used to diagnose and troubleshoot
issues related to the VSS service. The VSS service is an important component
of Windows that allows for backup and restore operations.

Assertion:
Ransomware modifies these registry keys to disrupt VSS functionality and pre-
vent the recovery of encrypted files. For example, ransomware delete or disable
the VSS service, delete VSS shadow copies, or modify VSS settings to prevent
backups from being created.

RTR-Shield 217

3.2 Run Key

Values Added:

– HKCU\Software\Microsoft\Windows\CurrentVersion\Run\new value: "path of the executable" [OR]

– HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\new value: "path of the executable"

Usage:
The “Run” key is used to configure programs to run automatically when the
system starts up. There are two “Run” keys in the registry: one is located under
the HKCU (HKEY_CURRENT_USER) hive, which represents the currently
logged-on user, and the other is located under the HKLM (HKEY_LOCAL_
MACHINE) hive, which represents the local machine. When a program is added
to one of the “Run” keys, the full path to the executable file is stored as a value
under the key. When Windows starts up, it reads these values and launches the
corresponding programs. This feature can be useful for configuring programs
that need to run continuously in the background, such as antivirus software or
system utilities.

Assertion:
Ransomware achieves persistence using the “Run” key to ensure that it remains
active even after a system reboot. Ransomware can add a new entry to this key,
ensuring it runs automatically when the computer is restarted.

3.3 AppCompatFlags

Values Added:

– HKCU\Software\Microsoft\Windows NT\CurrentVersion \AppCompatFlags\Compatibility Assistant

\Store\path of a new executable: Hex Value

Usage:
The key “AppCompatFlags\Compatibility Assistant\Store” contains registry
entries of type REG_BINARY that store binary data. The values for this key
are created during the initial execution of a program and are updated with
subsequent executions [18]. The value name corresponds to the full path of the
executed program, providing valuable information for incident responders.

Assertion:
The “AppCompatFlags\Compatibility” registry key can be leveraged by mal-
ware to execute in compatibility mode, bypassing certain security features and
restrictions on newer versions of Windows. Malware can modify this registry key
to ensure that it runs in a certain compatibility mode and avoid detection by
security software.

218 P. M. Anand et al.

3.4 Windows Script Host (WSH)

Keys Added:

– HKCU\Software\Microsoft\Windows Script

– HKCU\Software\Microsoft\Windows Script\Settings

– HKCU\Software\Microsoft\Windows Script\Settings\Telemetry

– HKCU\Software\Microsoft\Windows Script\Settings\Telemetry\regsvr32.exe

Values Added:

– HKCU\Software\Microsoft\Windows Script\Settings\Telemetry\regsvr32.exe\JScriptSetScript

StateStarted: Hex Value

Usage:
The registry key “HKCU\Software\Microsoft\Windows Script\Settings” con-
tains settings related to Windows Script Host (WSH), a scripting
engine that allows users to automate tasks, run scripts, and perform
other system management tasks using scripts written in languages such
as VBScript and JScript. The key “HKCU\Software\Microsoft\Windows
Script\Settings\Telemetry\regsvr32.exe” specifically tracks the usage of the
regsvr32.exe - a Windows command-line utility used to register and unregister
Dynamic Link Libraries (DLLs) and ActiveX Controls in the Windows Registry.
It is commonly used by developers and system administrators to install and
register DLLs and ActiveX Controls on a Windows system.

Assertion:
However, regsvr32.exe can also be used by attackers to execute malicious code on
a victim’s system. Attackers can use this utility to register a malicious DLL file on
a victim’s system, which can then be used to perform various malicious activities
such as stealing sensitive information or downloading additional malware. As
regsvr32.exe is a legitimate system utility, it can be difficult for security tools to
detect when it is being used maliciously.

3.5 RestartManager

Keys Added:

– HKCU\Software\Microsoft\RestartManager

– HKCU\Software\Microsoft\RestartManager\Session0000

Values Added:

– HKCU\Software\Microsoft\RestartManager\Session0000\Owner: Hexadecimal Value

– HKCU\Software\Microsoft\RestartManager\Session0000\SessionHash: Hexadecimal Value

– HKCU\Software\Microsoft\RestartManager\Session0000\Sequence: Hexadecimal Value

RTR-Shield 219

Usage:
One way to stop ransomware from encrypting your files is to prevent it from
accessing them while they are in use by other programs. Windows has a built-in
feature called the Restart Manager that can help with this. For example, if you
have a Word document open in Microsoft Word and you try to run ransomware
that targets that document, the Windows operating system will block the ran-
somware from accessing it since it is currently in use by another program. This
is because the operating system sees that the file is already open and assumes
that the user is still working on it.

Assertion:
The Restart Manager can be utilized to terminate the program that holds an
open file, enabling ransomware to access and encrypt the file. This behavior is
observed in the REvil ransomware, where files are encrypted without shared
access (dwShareMode set to 0) [11]. By leveraging the Restart Manager, the
ransomware activates the closure of the program holding the file, facilitating
uninterrupted progress of the encryption process.

3.6 RecentDocs

Values Updated:

– HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs\MRUListEx

Usage:
The list of files that have recently been accessed directly from Windows Explorer
is saved in the RecentDocs registry. This entry corresponds to %USERPRO-
FILE%Recent (My Recent Documents) and stores just the filename in binary
form from recently opened local or network files.

Assertion:
The “MRUListEx” subkey is used to keep track of the files that the user has
recently opened in Windows Explorer. When a file is run using the Run com-
mand, it leaves a trail in the RecentDocs registry. Ransomware frequently mod-
ifies this key in order to conceal evidence of its operations on the system.

3.7 Adding a New Class Key and Icon

Keys Added:

– HKLM\SOFTWARE\Classes.lockbit

– HKLM\SOFTWARE\Classes.lockbit\DefaultIcon

Values Added:

– HKLM\SOFTWARE\Classes.lockbit\DefaultIcon:43 3A 5C 77 69 6E 64 6F 77 73 5C 53 79 73 57 6F 77

36 34 5C 44 32 32 30 45 34 2E 69 63 6F

220 P. M. Anand et al.

Usage:
The “SOFTWARE” subkey is one of the five main root keys in the windows reg-
istry. It contains information about software and application settings installed
on the system. The “Classes” subkey within “SOFTWARE” contains information
about file type associations and related information for different applications
installed on the system. The presence of the ‘.lockbit’ extension in the “Classes”
subkey indicate that the LockBit ransomware has modified the registry to asso-
ciate the ‘.lockbit’ extension with its encryption routine.

Assertion:
“HKLM\SOFTWARE\Classes.lockbit\DefaultIcon” and the associated value is
a hexadecimal string that represents the path to the default icon for files with the
‘.lockbit’ extension. In this case, the hexadecimal string decodes to the following
file path: “C:\windows\SysWow64\D220E4.ico” The value specifies the icon that
will be displayed for files encrypted by LockBit ransomware with the ‘.lockbit’
extension.

3.8 Boot Configuration Data (BCD)

Keys Added:

– HKLM\BCD00000000\Objects41216029-4a7f-11e9-9f82-d8ba40b6d8da\Elements\250000e0

Values Added:

– HKLM\BCD00000000\Objects41216029-4a7f-11e9-9f82-d8ba40b6d8da\Elements\250000e0\Element: 01

Usage:
The registry key shown here is associated with the Boot Configuration Data
(BCD) in the Windows registry. It plays a crucial role in storing configuration
settings for the operating system’s boot process. Specifically, the key contains
information about the elements required for booting the system, such as device
drivers and system components.

Assertion:
Based on the registry updates shown above, the possible assertions that we can
make to this subkey include:

– Adding, modifying, or deleting entries within the BCD store that are essential
for booting the system, such as the boot manager or boot loader etc.

– Creating additional subkeys or values within “HKLM\BCD00000000” that
perform malicious actions, such as launching the ransomware on boot [22].

RTR-Shield 221

3.9 Background Activity Moderator (BAM)

Values Added:

– HKLM\SYSTEM\ControlSet001\Services\bam\State\UserSettings\UserID\Device\HarddiskVolume1\

Windows\System32\msiexec.exe: Hex Value

–
HKLM\SYSTEM\ControlSet001\Services\bam\State\UserSettings\UserID\\Device\HarddiskVolume1\

Windows\System32\vssadmin.exe: Hex Value

Values Updated:

– HKLM\SYSTEM\ControlSet001\Services\bam\State\UserSettings\UserID\SequenceNumber: New

Value

Usage:
BAM (Background Activity Moderator) is a Windows service that mon-
itors and regulates background apps that are running on a system.
This service is exclusive to Windows 10 operating system. It keeps
track of background program activity by logging in the registry key:
“HKLM\SYSTEM\ControlSet001\Services\bam\State”. The value for this key
contains the complete path of the executable file that was executed on the system
and the date & time of its last execution.

Assertion:
Ransomware try to avoid detection by executing their software in the back-
ground. This enables the ransomware to run without the user’s awareness and
to avoid being detected by antivirus or other protection tools. By changing
the BAM registry, attackers can conceal their malicious activities and so avoid
detection.

3.10 Shell Bags

Values Updated:

– HKCU\Software\Microsoft\Windows\Shell\Bags\1\Desktop\IconLayouts: New Value

Usage:
Shellbags are a set of registry keys that store pertinent information about a
user’s presently viewed folder, encompassing details such as size, position, and
icon. Essentially, the registry keeps a record of all directory traversal data. These
shellbags offer valuable timestamps, contextual information, and evidence of
directory access and resource interaction, potentially shedding light on the exis-
tence of past evidence.

222 P. M. Anand et al.

Assertion:
Shell bags can prove useful in detecting ransomware activity as they monitor the
folder views and settings within a user’s file system, which are often manipulated
by ransomware to locate and encrypt critical files. By scrutinizing the shell
bags, one can identify alterations to folder views, settings, file locations, and
timestamps, providing potential indicators of ransomware presence and activity
on the system.

Other Important Keys. Apart from the registry keys mentioned above, there
are few more places where ransomware traces may be found. It contains the
registry keys:

– “HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32
\OpenSaveMRU”- Here most-recently-used is abbreviated as MRU. This key
keeps a list of files that have recently been opened or saved using Windows
Explorer-style dialog boxes (Open/Save dialog box) [12].

– Similarly,
the registry key “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Explorer\GlobalAssocChangedCounter” is used by Windows to keep track of
changes made to file associations. Whenever a change is made to a file type
association, such as changing which program is used to open a particular file
type, the value of this key is incremented.

– Furthermore, ransomware modifies the value of the registry key “HKCU\
Software\Microsoft\Windows\CurrentVersion\Search\InstalledWin32Apps-
Revision”, which the Windows operating system uses to keep track of the
revision number of installed Win32 apps. Win32 apps are traditional Win-
dows desktop applications that are installed on the system. Some ransomware
families modify the revision number to make the executable appear as if it
is a legitimate Win32 app, or to prevent the Windows Search service from
indexing its files and detecting its malicious activity.

Overall, the updates to the registry made by various ransomware families are
shown in Appendix-B.

4 Evaluation of RTR-Shield

We conducted an evaluation of our tool based on four different criteria:

– Ability to detect newer variants of Ransomware: Although our tool success-
fully detected samples from the 27 analyzed ransomware families, we aimed
to evaluate its efficacy on newer, unanalyzed ransomware families. To achieve
this, we tested the tool using four samples from ransomware families, namely
Phobos, GrandCrab, PlutoCrypt, and Dharma. During the evaluation on a
sandbox machine, our tool effectively detected and halted the ransomware
activity in all instances.

RTR-Shield 223

– Benign application scenario: We also tested our tool on various benign appli-
cations such as Antivirus (Avast), File encryption (VeraCrypt), File Archiver
(WinRar), and other generic applications such as browsers and media players.
In all scenarios, our tool did not produce false flags indicating a ransomware
incident.

– Dependency on 3rd party tools or libraries: Our tool is built on PowerShell
scripting and does not require any 3rd party tools or libraries, making it safe
from malfunctions.

– Load on the system: Our tool consumed an average of 70 to 80 MB of mem-
ory and 6.5% of CPU resources for continuously monitoring the system for
ransomware activity. We achieved this by constantly observing changes to
the registry every 500ms. Although higher sleep interval can reduce resource
usage, it may affect early detection of ransomware.

The Comparison of Related Works, along with the key takeaways, is presented
in Table 2.

Table 2. Comparison of Related Works

Method Name File Traps Registry Activity Takeaways

R-Locker [19] ✓ ✗ Certain ransomware families, like Cerber, bypass this method by considering the size of trap files.
R-Sentry [20] ✓ ✗ The random encryption order poses a challenge for R-Sentry in the early detection of ransomware.
R-Trap [21] ✓ ✗ No emphasis is given to the pre-encryption behavior of ransomware.
EldeRan [5] ✗ ✓ Not suitable for the early detection of ransomware.
RTR-Shield ✓ ✓ Early detection of ransomware activity is achieved by emphasizing pre-encryption behavior

5 Related Works

The existing body of research on ransomware is largely focused on detecting
ransomware executables by monitoring API calls and network features [5–9].
In these works, authors perform dynamic analysis of ransomware samples and
extract API calls and network-based features to develop classifiers for detect-
ing the ransomware. However, many modern ransomware strains are designed
to avoid making suspicious API calls that could trigger detection by security
software. Instead, they may use low-level system functions to bypass security
measures and encrypt files without being detected.

Hardware Performance Counter (HPC) based analysis is another method
that has recently gained popularity for detecting ransomware activity. HPCs
are a collection of special-purpose registers that are incorporated into mod-
ern microprocessors to monitor system performance under various conditions.
In this approach, the load imposed by ransomware processes on the system is
analyzed using HPC registers to build machine learning models for detecting
ransomware activity. However, most HPC-based methods place little emphasis
on ransomware’s pre-encryption behavior in their proposed approaches [14–16].

224 P. M. Anand et al.

In registry based analysis, Asghar et al. proposed RAMD [1], a unique tech-
nique that employs an ensemble classifier consisting of several one-class classifiers
to identify known and unknown malware that exploits registry keys and values
for malicious purposes. RAMD creates a model of benign application registry
behavior and then use this model to identify malware by looking for unusual
registry modifications.

In another work, Frank et al. [2] proposed a host-based intrusion detection
system (IDS) for the windows operating system. This IDS is built on an algorithm
that identifies malicious activities on a host machine by checking for unusual
modifications to the windows registry. The key objective this research is to first
build a model of regular registry activity on a windows host and then use this
model to identify abnormal registry modifications during runtime. Here, authors
verified that the proposed IDS detects virus programs, data-stealing malware,
and password cracking tools based on registry activity.

Monika et al. [3] highlighted the changes made by the ransomware on the
registry, including creating new keys and modifying existing key values to carry
out its activity. Similarly, in another work [4], the authors highlighted the inclu-
sion of Run and RunOnce keys by the ransomware during its execution. The
inclusion of Run and RunOnce registry keys serves as a means to establish per-
sistence and enable the automatic execution of a program upon user login. Also,
Daniele Sgandurra et al. emphasized the significance of registry key operations in
ransomware detection [5]. According to this research, registry keys and API stats
are the two most important sets of information for building an effective classifier
for identifying ransomware activity. However, this work did not mention the sig-
nificant registry key modifications made during ransomware execution. Majority
of registry-based approaches do not emphasize the pre-encryption behavior of
ransomware [1–5].

Jose et al. proposed R-Locker, a file-based detection approach utilizing a
honey file technique that employs multiple symbolic links on a single trap file to
thwart ransomware activity [19]. However, certain ransomware families, such as
Cerber, bypass this method by considering the size of trap files, leading to the
exclusion of honeyfiles (symbolic links) deployed by R-Locker from the encryp-
tion process. In another work, Shina et al. implemented a method to place numer-
ous traps throughout the system spanning various directories [20]. However, their
proposed method is ineffective in early detection of ransomware if the encryp-
tion process follows a random order. Similarly, Gaddisa et al. introduced RTrap,
a solution that dynamically selects trap files from legitimate user files using a
data-driven machine learning approach [21]. This adaptive selection process con-
siders directory file attributes and leverages existing user files to create new trap
files for ceasing ransomware attacks.

RTR-Shield 225

Although adaptive methods for placing trap files aid in the early detection
of ransomware, it is crucial to comprehend the pre-encryption behavior of ran-
somware in order to minimize file loss. The registry serves as a valuable source
of information concerning pre-encryption activities, and integrating this infor-
mation with trap files contributes to the development of robust ransomware
detection engines.

6 Conclusion and Future Work

Our research focuses on investigating the pre-encryption activity of ransomware,
which involves using the Windows Registry to identify the persistence, informa-
tion gathering, and antivirus evasion strategies employed by ransomware during
its operations. Our work reveals that the pre-encryption phase of ransomware
typically involves several common traits, such as deleting shadow copies, modi-
fying Boot Configuration Data (BCD), and Run key operations etc. In addition,
we have identified a list of directories or paths that multiple ransomware fam-
ilies target in order to carry out file encryption activity. We use the trap files
method to confirm the ransomware incident at the earliest, alongside the reg-
istry updates. Multiple older and recent ransomware variants have been observed
performing similar actions to achieve persistence, file discovery, or privilege esca-
lation. These actions are inherently reflected in the registry and are commonly
associated with file access patterns. The persistence of these traces presents a
challenge for attackers, as evading detection becomes difficult unless new meth-
ods of persistence or file discovery are employed. Based on our findings, we
propose RTR-Shield - a rule based tool that is capable of detecting crypto ran-
somware in real-time. As part of future work, we plan to further enhance our
tool by conducting tests on newer versions of the Windows operating system,
specifically Windows 11, to identify the specific registry modifications required
for effective detection and prevention of ransomware. Additionally, we aim to
enhance the tool’s capabilities by considering emerging ransomware variants
that demonstrate high encryption rates and employ techniques like intermittent
encryption.

226 P. M. Anand et al.

A Algorithm for RTR-Shield

Algorithm 1. RTR-Shield Algorithm
1: function RAMB

2: key_addition_monitor ← create_monitor(“key_addition”)
3: value_addition_monitor ← create_monitor(“value_addition”)
4: value_update_monitor ← create_monitor(“value_update”)
5: while true do
6: if (key_addition_monitor.detect() ∧ value_addition_monitor.detect() ∧

value_update_monitor.detect()) then
7: process_list ← get_running_processes

8: filtered_list ← filter_processes(process_list)
9: suspend_processes(filtered_list)

10: raise_alert(“Suspicious registry activity detected”)
11: RAMB_time ← current_time

12: end if
13: end while
14: end function
15: function FTMB

16: trap_monitor ← create_monitor(“trap_files”)
17: while true do
18: if trap_monitor.detect() then
19: process_list ← get_running_processes

20: filtered_list ← filter_processes(process_list)
21: suspend_processes(filtered_list)
22: raise_alert(“Suspicious file access activity detected”)
23: FTMB_time ← current_time

24: end if
25: end while
26: end function
27: function detect_ransomware

28: while true do
29: if RAMB and FTMB then
30: if (Time_Difference(RAMB_time, FTMB_time) ≤ 5s) then
31: process_list ← get_suspended_processes

32: kill_processes(process_list)
33: raise_alert(“Ransomware detected and stopped”)
34: end if
35: end if
36: end while
37: end function
38: RAMB()

39: FTMB()

40: detect_ransomware()

RTR-Shield 227

B Summary of Modifications Made to the Registry
by Various Ransomware Families

Ransomware Family VSS RunKey AppCompatFlags Windows Script Host RestartManager RecentDocs
AtomSilo ✓ ✗ ✓ ✗ ✗ ✓

AvosLocker ✓ ✗ ✓ ✗ ✓ ✓

BlackMatter ✓ ✗ ✓ ✗ ✗ ✓

Blackout ✓ ✓ ✓ ✗ ✗ ✓

Bubuk ✓ ✗ ✓ ✗ ✗ ✓

CBAP ✓ ✗ ✓ ✗ ✗ ✓

Cerber ✓ ✗ ✓ ✗ ✗ ✓

Conti ✓ ✗ ✓ ✗ ✗ ✓

Cuba ✓ ✗ ✓ ✗ ✗ ✓

Demonware ✓ ✗ ✓ ✗ ✗ ✓

GlobeImposter ✓ ✓ ✓ ✗ ✗ ✓

HelloXD ✓ ✗ ✓ ✗ ✗ ✓

Hive ✓ ✗ ✓ ✗ ✗ ✓

Intercobros ✓ ✗ ✓ ✗ ✗ ✓

Jigsaw ✓ ✗ ✓ ✗ ✗ ✓

Karma ✓ ✗ ✓ ✗ ✗ ✓

Lockbit ✓ ✓ ✓ ✗ ✗ ✓

Lorenz ✓ ✗ ✓ ✓ ✗ ✓

Magniber ✓ ✗ ✗ ✓ ✓ ✓

Makop ✓ ✓ ✓ ✗ ✗ ✓

Mespinoza ✓ ✗ ✓ ✗ ✗ ✓

MountLocker ✓ ✗ ✓ ✗ ✗ ✓

Revil ✓ ✓ ✓ ✗ ✓ ✓

Surtr ✓ ✓ ✓ ✗ ✗ ✓

Vovabol ✓ ✓ ✓ ✗ ✗ ✓

Zeppelin ✓ ✓ ✓ ✗ ✗ ✓

Zeznzo ✓ ✗ ✓ ✗ ✗ ✓

Ransomware Family Class and Icon BCD BAM ShellBags GlobalAssocChangedCounter InstalledWin32AppsRevision
AtomSilo ✗ ✗ ✓ ✓ ✗ ✗

AvosLocker ✗ ✗ ✓ ✓ ✗ ✓

BlackMatter ✗ ✗ ✓ ✓ ✗ ✓

Blackout ✗ ✗ ✓ ✓ ✗ ✗

Bubuk ✗ ✗ ✓ ✓ ✗ ✓

CBAP ✗ ✗ ✓ ✓ ✗ ✓

Cerber ✗ ✗ ✓ ✓ ✗ ✓

Conti ✗ ✗ ✓ ✓ ✗ ✓

Cuba ✗ ✗ ✓ ✓ ✗ ✗

Demonware ✗ ✗ ✓ ✓ ✗ ✓

GlobeImposter ✗ ✗ ✓ ✓ ✗ ✓

HelloXD ✗ ✗ ✓ ✓ ✗ ✗

Hive ✗ ✗ ✓ ✓ ✗ ✗

Intercobros ✗ ✗ ✓ ✓ ✗ ✓

Jigsaw ✗ ✗ ✓ ✓ ✗ ✓

Karma ✗ ✗ ✓ ✓ ✗ ✓

Lockbit ✓ ✓ ✓ ✓ ✓ ✓

Lorenz ✗ ✗ ✓ ✓ ✗ ✓

Magniber ✗ ✗ ✓ ✓ ✗ ✓

Makop ✗ ✗ ✓ ✓ ✗ ✗

Mespinoza ✗ ✗ ✓ ✓ ✗ ✓

MountLocker ✓ ✗ ✓ ✓ ✗ ✓

Revil ✗ ✗ ✓ ✓ ✗ ✓

Surtr ✗ ✓ ✓ ✓ ✗ ✗

Vovabol ✗ ✗ ✓ ✓ ✗ ✗

Zeppelin ✗ ✗ ✓ ✓ ✗ ✗

Zeznzo ✗ ✗ ✓ ✓ ✗ ✗

228 P. M. Anand et al.

References

1. Tajoddin, A., Abadi, M.: RAMD: registry-based anomaly malware detection using
one-class ensemble classifiers. Appl. Intell. 15(49), 2641–58 (2019)

2. Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.: Detecting malicious soft-
ware by monitoring anomalous windows registry accesses. In: Wespi, A., Vigna,
G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 36–53. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36084-0_3

3. Zavarsky, P., Lindskog, D.: Experimental analysis of ransomware on windows and
android platforms: evolution and characterization. Procedia Comput. Sci. 1(94),
465–72 (2016)

4. Chayal, N.M., Saxena, A., Khan, R.: A review on spreading and forensics analysis
of windows-based ransomware. Ann. Data Sci. 8, 1–22 (2022)

5. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.: Automated dynamic
analysis of ransomware: Benefits, limitations and use for detection. arXiv preprint
arXiv:1609.03020 (2016)

6. Chen, Z.G., Kang, H.S., Yin, S.N., Kim, S.R.: Automatic ransomware detection
and analysis based on dynamic API calls flow graph. In: Proceedings of the Interna-
tional Conference on Research in Adaptive and Convergent Systems, pp. 196–201
(2017)

7. Vinayakumar, R., Soman, K.P., Velan, K.S., Ganorkar, S.: Evaluating shallow
and deep networks for ransomware detection and classification. In: 2017 Inter-
national Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 259–265 (2017)

8. Kok, S.H., Abdullah, A., Jhanjhi, N.Z., Supramaniam, M.: Prevention of crypto-
ransomware using a pre-encryption detection algorithm. Computers. 8(4), 79
(2019)

9. Anand, P.M., Charan, P.S., Shukla, S.K.: A comprehensive API call analysis for
detecting Windows-based ransomware. In: 2022 IEEE International Conference on
Cyber Security and Resilience (CSR), pp. 337–344 (2022)

10. RegShot Tool [online] https://github.com/Seabreg/Regshot
11. Intel blog on Revil Ransomware [online] https://intel471.com/blog/changes-in-

revil-ransomware-version-2-2
12. Windows Registry Forensic Analysis - by AndreaFortuna [online] https://

andreafortuna.org/2017/10/18/windows-registry-in-forensic-analysis/
13. Carvey, H.: Windows registry forensics: advanced digital forensic analysis of the

windows registry. Elsevier (2011)
14. Ganfure, G.O., et al.: Deepware: imaging performance counters with deep learning

to detect ransomware. IEEE Trans. Comput. 72(3), 600–613 (2022)
15. Pundir, N., Tehranipoor, M., Rahman, F.: RanStop: a hardware-assisted runtime

crypto-ransomware detection technique. arXiv preprint arXiv:2011.12248 (2020)
16. Manaar, A., et al.: Rapper: Ransomware prevention via performance counters.

arXiv preprint arXiv:2004.01712 (2020)
17. Putrevu, M.A., Putrevu, V.S.C., Shukla, S.K.: early detection of ransomware activ-

ity based on hardware performance counters. In: Proceedings of the 2023 Aus-
tralasian Computer Science Week, pp. 10–17 (2023)

18. Eşref, A.: Incident response-detection and analysis on recent versions of microsoft
Windows. MS thesis. Fen Bilimleri Enstitüsü

19. Gómez-Hernández, J.A., Sánchez-Fernández, R., García-Teodoro, P.: Inhibiting
crypto-ransomware on windows platforms through a honeyfile-based approach with
R-Locker. IET Inf. Secur. 16(1), 64–74 (2022)

https://doi.org/10.1007/3-540-36084-0_3
http://arxiv.org/abs/1609.03020
https://github.com/Seabreg/Regshot
https://intel471.com/blog/changes-in-revil-ransomware-version-2-2
https://intel471.com/blog/changes-in-revil-ransomware-version-2-2
https://andreafortuna.org/2017/10/18/windows-registry-in-forensic-analysis/
https://andreafortuna.org/2017/10/18/windows-registry-in-forensic-analysis/
http://arxiv.org/abs/2011.12248
http://arxiv.org/abs/2004.01712

RTR-Shield 229

20. Sheen, S., Asmitha, K.A., Venkatesan, S.: R-sentry: deception based ransomware
detection using file access patterns. Comput. Electr. Eng. 103, 108346 (2022)

21. Ganfure, G.O., et al.: RTrap: trapping and containing ransomware with machine
learning. IEEE Trans. Inf. Forensics Secur. 18, 1433–1448 (2023)

22. Charan, P.S., et al.: DOTMUG: a threat model for target specific APT attacks-
misusing google teachable machine. In: 2022 10th International Symposium on
Digital Forensics and Security (ISDFS). IEEE (2022)

MalXCap: A Method for Malware
Capability Extraction

Bikash Saha(B) , Nanda Rani , and Sandeep Kumar Shukla

Indian Institute of Technology Kanpur, Kanpur, India
bikashs@iitk.ac.in, {nandarani,sandeeps}@cse.iitk.ac.in

Abstract. In the present cyber landscape, the sophistication level of
malware attacks is rising steadily. Advanced Persistent Threats (APT)
and other sophisticated attacks employ complex and intelligent malware.
Such malware integrates numerous malignant capabilities into a single
complex form of malware, known as multipurpose malware. As attacks
get more complicated, it is increasingly important to be aware of what
the detected malware can do and comprehend the complete range of
functionalities. Traditional malware analysis focuses on malware detec-
tion and family classification. The family classification provides insights
about the dominant capability rather than the full range of capabil-
ities present in the malware, which is insufficient. Hence, we propose
MalXCap to extract multiple functionalities (named malware capabili-
ties) hidden within a single malware sample. MalXCap employs dynamic
analysis and captures malware capabilities by identifying patterns of API
call sequences to achieve the goal. In the current workflow, there is no
publicly available malware capability dataset. Therefore, we analyze 8k
malware samples collected from the public domain, identify 12 differ-
ent capabilities, and prepare a dataset. We use this dataset to train
MalXCap and learn the patterns of API sequences to detect different
malignant capabilities. MalXCap demonstrates its efficiency by achieving
97.02% accuracy score and 0.0025 hamming loss. Analyzing the capabili-
ties of malware enables security professionals to understand the advanced
techniques used in malware, summarize the attack, and develop better
countermeasures.

Keywords: Malware Analysis · Malware Capability Extraction ·
Multi-label Classification

1 Introduction

Malware’s complexity and sophistication level are a growing threat to any orga-
nization. Cybercriminals with advanced technical skills and in-depth knowledge
of computer systems typically develop advanced malware. Such malwares are
highly sophisticated, sneaky, and capable of performing multiple functions [7,16].
One of the key characteristics of sophisticated malware is its ability to perform
various tasks within the same executable, often called “multipurpose malware”
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 230–249, 2023.
https://doi.org/10.1007/978-981-99-7032-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_14&domain=pdf
http://orcid.org/0000-0002-6316-4665
http://orcid.org/0000-0003-1255-5284
http://orcid.org/0000-0001-5525-7426
https://doi.org/10.1007/978-981-99-7032-2_14

MalXCap: A Method for Malware Capability Extraction 231

[7,10,21]. These malwares are dangerous because they give attackers great flex-
ibility to carry out a range of malicious activities and increase their chance
of achieving their objectives. Piccussecurity1 released the Red Report 2023 [9]
early this year, which is an extensive study and in-depth examination of over
550,000 real-world malware samples. The firm warns of the emergence of mul-
tipurpose malware, also named it as “Swiss Army knife malware”, capable of
performing hazardous actions across the cyber-kill chain and eluding security
measures. APT groups usually deploy sophisticated malware attacks [6]. These
groups typically have highly skilled malware developer teams to develop new
strains of sophisticated multipurpose malware for their attack campaign.

Multipurpose malware comes with multiple code and functionalities layers,
making it harder to uncover its motivation and identify complete behaviour
[7,31]. For example, complex malware from advanced ransomware may contain
data exfiltration and encryption functionalities. At the same time, it can have
key-logging ability to capture user’s credentials and send them to the attacker for
persistence [16,19]. We use malware functionalities and capabilities interchange-
ably in this paper because the functionalities represent what a malware can do
if executed in the environment. Performing family classification uncover limited
malignant capabilities and doesn’t give insights into other hidden malignant
capabilities. The present approach for identifying malware’s complete behaviour
requires multiple iterations of manual analysis and domain expertise. Therefore,
we need an automatic mechanism to identify multiple malignant functionali-
ties hidden in one complex piece of malware. To address this issue, we present
MalXCap.

MalXCap is a novel proof of concept multi-label classification model that can
uncover many capabilities planted within a single piece of malware. Inspired by
various state-of-the-art malware analysis methodologies that show the impor-
tance of API sequences in identifying malware behaviour, MalXCap uses API
sequence as input feature [12,13,23,27,29,30,34,37]. To identify multiple malig-
nant capabilities present in single malware, MalXCap uses multi-label classifi-
cation method on API call sequences called by malware during their execution.
We evaluate MalXCap by performing various experiments to benchmark its per-
formance. We employ two types of feature engineering methods: TF-IDF (Term
Frequency and Inverse Document Frequency) and N-gram to convert API call
sequences into vector form to feed it to the classification model and five differ-
ent multi-label classification methods to identify malignant capabilities. In total
we perform 15 in-depth experiments (each possible set of chosen feature and
classification model) to identify the best combination for MalXCap. We obtain
the best-performing set as tri-gram based input features with a neural network-
based classification model and achieve the best performance as 97.02% accuracy
along with 0.0025 hamming loss. The key contributions of proposed work are as
following:

1 A pioneer security firm. https://www.picussecurity.com.

https://www.picussecurity.com

232 B. Saha et al.

– We identify a novel problem, i.e., extraction of malignant capabilities from
malwares, which requires significant attention in the security community for
better defense and prevention measures.

– We build a dataset consisting of 12 unique malignant capabilities over 8k
malware samples for malware capability detection. Our security expert team
manually prepares ground truth by labeling samples after performing exten-
sive malware behaviour analysis.

– We present a tool named MalXCap to automatically identify the malignant
capabilities of malware by identifying patterns in API sequences.

– We perform 15 extensive experiments with MalXCap on several feature and
model set combinations to perform multi-label classification and compare the
results of each feature-model combination set to obtain the best combination.

– We evaluate performance of MalXCap on real-world malware samples to
demonstrate it’s efficiency by comparing result with security firm’s analysis.

1.1 Potential Application

MalXCap is capable to aid incident response teams in analyzing complex mal-
ware to identify its full capabilities. It is useful in many potential cybersecurity
applications, which we discuss below:

– Developing Effective Countermeasures: Understanding malware capa-
bilities can help to develop effective countermeasures to prevent and mitigate
the effect of malware infections. For example, if malware is capable to exploit
a specific vulnerability, analysts can prioritize such vulnerability and take
countermeasures by developing the patches.

– Enhancing Incident Response: Understanding malware’s capabilities can
improve incident response. Security teams can prioritize and invest their
efforts in mitigating the most severe threats first. In addition, knowing the
capabilities of malware aids security teams in attack summarization by iden-
tifying the attacker’s intent, the type of malware used, and its impact, which
helps in understanding the scope and severity of the attack.

– Improving Threat Intelligence: Malware capability analysis can con-
tribute to threat intelligence by revealing the tactics, techniques, and proce-
dures (TTPs) used by attackers. Threat intelligence sharing can help identify
and prevent upcoming threats.

– Strengthening Cybersecurity Posture: Organizations strengthen their
cybersecurity posture by upgrading security controls, such as firewalls, intru-
sion detection and prevention systems, and endpoint protection solutions,
based on malware capability analysis.

– Attack Trend Analysis: Security teams spot trends in malware develop-
ment by looking at the malware’s capabilities discovered over time. This
knowledge enables analysts to predict future attacks and develop proactive
security measures to prevent them.

The overall structure of this paper is as follows. Section 2 presents related work on
extracting malware capabilities. Section 3 explains MalXCap methodology, fea-
ture engineering methods, and model implementation. Section 4 describes exper-
imental setup, evaluation matrix, and dataset preparation. Section 5 explains

MalXCap: A Method for Malware Capability Extraction 233

experiment details, results, and observations. Section 6 presents experiment anal-
ysis performed on real-world malware samples to demonstrate the efficiency of
MalXCap. Section 7 concludes this research and discusses possible future work.

2 Related Work

Traditional malware family classification methods assign malware family based
on only dominating functionality and don’t consider other associated malware
functionalities [2,14,24,36]. The detection of multiple capabilities associated
with a single malware receives limited attention. Qui et al. [3] propose A3CM
to automatically annotate the capabilities of Android malware for the very first
time. Further, in another paper [1], they extend their discussion on malware capa-
bility annotation with multi-view feature intelligence to learn the representation
of malware samples and identify target capabilities. However, their methods are
only related to security-privacy-related malware capabilities and are limited to
Android malware. Further, Alrawi et al. [4] propose Forecast, which predicts
malware capabilities using memory images. This work requires complex memory
image analysis and is limited to only seven types of capabilities. Recently, Mandi-
ant2 announced the CAPA tool [8], which can detect malware capabilities based
on signature matching of different capabilities identified statically. This tool lim-
its its detection capability with the scope of defined rules and generalizability is
limited. Also, this tool does not work on packed/encrypted malware.

The current literature lacks automated malware capability extraction meth-
ods that can extract multiple capabilities from malware. In addition, current
literature tools are limited to Android malware, require extensive manual anal-
ysis, are based on rules, and cannot analyse packed malware. Therefore, we
propose MalXCap, an automated tool that does not deal with complex analysis
and generalize by adopting advanced machine learning to identify patterns of
API sequence execution and spot several malignant capabilities present in the
malware samples. As MalXCap is based on dynamic analysis features, it works
well even for packed malware.

3 Proposed Methodology

In this research work we propose MalXCap, a proof of concept to identify malig-
nant capabilities hidden in malware samples. We discuss development process of
MalXCap in this sections.

3.1 MalXCap

The MalXcap development process consists of three phases: Malware execution,
Feature transformation, and Training the model. The steps used to perform each
stage are shown in Fig. 1. In the malware execution phase, we set up a sandbox
2 A pioneer security firm. https://www.mandiant.com.

https://www.mandiant.com

234 B. Saha et al.

environment for running the malware sample. We create a virtual network and
employ Cuckoo to set up the sandbox environment. Next, we execute collected
malware samples in the sandbox environment and gather the cuckoo analysis
reports. In the feature transformation phase, we extract API sequences called
during malware execution from the sandbox analysis report and transform the
API sequence into an input feature vector using TF-IDF and n-gram methods.
For the model training phase, we divide the dataset into the 70:30 ratio as
training and testing samples, respectively. MalXCap feeds the feature vector
to the machine learning model for training in the next step. MalXCap applies
multi-label classification on the feature vector to identify multiple labels for each
sample. The reason for using multi-label is that complex malware may have more
than one capability. Therefore, the expectation from the model is to extract
multiple labels i.e., capabilities for each malware sample. Once MalXCap trains
the model, we use test set samples to evaluate the model’s performance. Based
on the API sequence present in the test sample, the trained model provides a
list of malignant capabilities for each test sample shown in Fig. 1.

Fig. 1. MalXCap Architecture

Let’s say, mi denotes ith malware sample and L ∈ {l1, l2, ..., ln} denotes a
set of target labels for n number of capabilities. Then, for multi-label capability
extraction problem is represented as,

mi → {c : c ⊆ L} (1)

For any given data sample mi, MalXCap predicts the set of capabilities (target
labels) c as output of the model. This target output label set c ranges over 2L

(power set of L).

3.2 Feature Engineering

Once we extract the API sequence of malware samples (shown in Fig. 1), we
transform API call sequences into vector form and feed them to the model for

MalXCap: A Method for Malware Capability Extraction 235

training. We use two different feature transformation methods: TF-IDF (Term
Frequency and Inverse Document Frequency) [11] and N-gram [15] method, to
perform feature engineering.

TF-IDF: TF-IDF combines Term Frequency (TF) and Inverse Document Fre-
quency (IDF). It provides a score representing each term’s importance within
the given document. For the MalXCap case, a document implies a sequence of
API calls of the malware, and the term implies an individual API call. Term
Frequency refers to the number of times a specific API call appeared in an API
call sequence. This parameter gives a high value to predominant API calls in the
sequence. Inverse Document Frequency (IDF) calculates the rarity or unique-
ness of a term throughout a set of documents. The main objective of applying
TF-IDF on the API sequence is to feed the information related to the key API
calls to the model which support the model to identify malignant capabilities.
We calculate TF and IDF using below formula:

tfi,j =
Number of occurence of API call i in sequence j
Total number of API calls present in sequence j

(2)

idfi = log(
n

dfi
) (3)

Here dfi is the number of API sequences containing ith API call, and n is the
total number of API sequences present. Finally, the term TF-IDF is calculated
by multiplying both TF and IDF. The formula for TF-IDF is given below:

wi,j = TFi,j ∗ IDFi (4)

Here wi,j is the TF-IDF score for ith API call in jth API sequence. This TF-IDF
score reflects the importance of the ith term (API call) within the jth document
(API sequence) relative to its importance in the entire collection of documents.
We compute the score resulting in TF-IDF vectors comprising scores for each
API call for each API sequence.

N-Gram: We employ bi-gram and tri-gram feature engineering techniques.
We create all possible bi-gram and tri-gram API sequence sets and prepare
two different datasets for both n-gram methods. Let M ∈ {m1,m2,,mk}
where M is set of k number of malware samples. Then mi ∈ {a1, a2,, aj}
denotes the API sequence executed by ith malware. We break this sequence
and prepare mini-sequence of length 2 for bi-gram and length 3 for tri-
gram. For any given malware API sequence, mi, input feature for bi-
gram and tri-gram gets transform into {a1a2, a2a3, a3a4,, aj−1aj} and
{a1a2a3, a2a3a4, a3a4a5......, aj−2aj−1aj} respectively. Following this approach
we transform whole input API sequence into bi-gram and tri-gram sequence. We
obtain 804 unique bi-gram sequences and 3057 unique tri-gram sequences for our
dataset. We utilize one hot encoding for input features and prepare the dataset.
Similarly we prepare the tri-gram dataset as well.

236 B. Saha et al.

Finally, we prepare three datasets based on input feature: TF-IDF, bi-gram,
and tri-gram. We assess the efficacy of classification models based on the con-
tribution of each feature set categories. Implementing three distinct feature sets
aim to compare and determine which type of feature set is likely to achieve the
best result and perform reasoning behind the better performance.

3.3 Model Implementation

Complex malware contains multiple capabilities, so the MalXCap prefers multi-
label classification over multi-class classification [32]. Two broad categories of
multi-label classification methods are available: a) Problem Transformation
Method and b) Algorithm Adaptation Method [5,17]. The problem transfor-
mation methods perform single-label classification on multi-label classification
problems by transforming the multi-label dataset into a single-label dataset. In
the algorithm adaptation method, we utilize existing single-label classification
algorithms to adapt and handle the multi-label classification problem. We usu-
ally change the cost function or apply different decision functions to achieve this.
We consider both types of algorithms to identify the best model for MalXCap.

We employ the Binary Relevance (BR), Classifier Chain (CC), and Label
Powerset (LP) model for problem transformation. In binary relevance approach,
each class in the multi-label problem is treated as an independent binary classi-
fication problem. In this approach, each classifier makes an independent predic-
tion, and the final multi-label output is obtained by combining the predictions
of all classifiers. The classifier chain approach considers the interdependency
between labels. In this approach, the binary classifiers are ordered in a chain,
and each classifier’s output is considered to perform prediction for all preceding
classifiers in the chain. The label powerset method converts multi-label prob-
lems into multi-class problems. It creates a unique combination of labels for
each data instance and considers this as a single class. Then, a single-label clas-
sifier is trained to classify within newly created label combinations. The trained

Fig. 2. Multi-Label classification based on Neural Network

MalXCap: A Method for Malware Capability Extraction 237

classifier predicts the most probable label combination and maps it to the origi-
nal multi-label problem. A detailed explanation of these models is present in the
Appendix.

For the adaption algorithms method, we use ML-kNN (Multi-Label K-
Nearest Neighbor) [20] and neural network model. The ML-kNN algorithm iden-
tifies k-nearest neighbors for each new instance based on a distance metric in
the feature space. It calculates the probabilities for each label by considering the
label sets of the k nearest neighbors. The probabilities are weighted based on the
similarity of the neighbors to the new instance. The algorithm assigns the labels
with the highest probabilities as the predicted labels for the new instance. In
the case of multi-label, the number of labels is determined based on a threshold
value. The detailed working of ML-kNN is present in the Appendix. For neural
network model, we employ a deep neural network consisting of a 2-hidden layer
as shown in Fig. 2. The hidden layer consists of 64 neurons and uses ReLU as
an activation function. We compile the model using adam optimizer and binary
cross-entropy loss function. We set 12 neurons at the output layer (each neu-
ron for each capability label), and the binary decision (0 or 1) of each output
layer decides whether corresponding capability (label) is present in the sample
or not. The choice of binary cross-entropy loss function is particularly suitable
as it aligns with the multi-label classification task, where each output neuron
makes a binary decision for each label [38].

We implement total five different multi-label classification models. The key
idea of using several different models, ranging from Machine Learning (ML)
to Deep Learning (DL), is to evaluate the performance of models on various
performance metrics such as accuracy, precision, recall, f1-score, and hamming
loss.

4 Experimental Setup

4.1 Dataset

We collect 8k Windows malware samples from two research papers [26,34]. Each
malware contains multiple labels, Fig. 3 shows the distribution of the number
of malware containing capability labels. Scanning capability seems to be most
common in the majority of the malware. We execute all malware samples on
a Windows machine in a cuckoo sandbox environment and generate analysis
reports. We extract the API sequence of each sample from the sandbox report
based on the timestamp of API calls.

Our security expert team manually prepare ground truth for the dataset sam-
ples and assign 12 labels: Process Injection (PI), Anti-Debugging (AD), Scan-
ning (Sc), Discover Running Processes (DRP), Crypto Ransomware (CR), Eva-
sion (Ev), Capturing Input (CI), Alter Configuration (AC), Installed Software
Exploration (ISE), Registry Modification (RM), Service Impairment (SI), and
Spying (Sp). Each capability labels are self-explanatory, and also we explain each
capability in Table 1.

238 B. Saha et al.

Fig. 3. Label statistics in Dataset

Our dataset contains 154 unique capability set combinations from all 12
capability labels. Because of space constraints, we present a glimpse of data
distribution over capability set combinations in Fig. 4. The overlapped regions
in the venn diagram represent the combination of malware capabilities labels,
and the number within overlapped regions represents the number of malware
samples belonging to combinations of malware capabilities.

Our team use a mixture of automated and manual procedures to label the
ground truth of the dataset. In the first method, we automatically label samples
based on their family behaviour. For example, a sample belonging to the ran-
somware family must have at least scanning and encryption capabilities. Again,
if a sample belongs to a trojan, it must have at least evasion capability. Simi-
larly, a keylogger should have at least input capture and exfiltration capabilities.
Further, to find uncommon capabilities for the complex malwares, we manually
investigate and synchronize network communications, system calls, and file sys-
tem operations to identify the sequence of actions performed by the executable
and pin down hidden capabilities for all samples.

4.2 System Setup

We perform experiments on an Inter(R) Core(TM) i7-9700 CPU @ 3.00GHz × 8
with 64-bit Ubuntu 18.04.6LTS operating system(OS) having 32 GB of RAM and
2TB of disk space. We use Ubuntu as the host OS and install VirtualBox 5.2.42
on the host machine. We configured three Windows 7 as a virtual machines,
where each machine has 2 GB of RAM and 40 GB of disk space. We install the
latest version of Cuckoo on the host and Cuckoo agent on the virtual machines.
We use Windows virtual machine to run the malware samples and ship malware
activity report on the host Ubuntu OS using Cuckoo agent installed on the
system.

MalXCap: A Method for Malware Capability Extraction 239

Table 1. Capability Description

Capability
Name

Description

Process Injection
(PI)

Malware try to inject their own code into a legitimate process
running on a system and execute the injected code with the same
privilege that the legitimate process is running

Anti-Debugging
(AD)

The ability to detect and prevent malware execution in a debugging
environment. In this technique, the attacker looks for the presence of
a debugger and interrupts its activity

Scanning (Sc) The ability to scan a system, services, software applications, or
network to look for vulnerabilities present in the system to gain
unauthorized access or perform malicious activities

Discover Running
Process (DRP)

The ability to identify running processes on a compromised system.
This step is useful to determine the potential target process to
manipulate or terminate the process

Crypto
Ransomware (CR)

The ability to encrypt files and folders to demand a huge ransom in
exchange for a decryption key or password

Evasion (Ev) Attackers use various mechanisms like polymorphism or encryption in
their code while developing the malware to avoid detection by
security software and other detection mechanisms

Capturing Input
(CI)

The ability to capture user inputs such as keystrokes, mouse clicks,
etc. Using such capability, malware can capture the victim’s
username, password, credit card number, and other sensitive
information

Alter
Configuration
(AC)

The ability to modify system settings, configurations, or other critical
settings within an operating system or software

Installed Software
Exploration (ISE)

The ability to identify and gather information about installed
software and the hardware and network settings present in the
infected system

Registry
Modification (RM)

The ability to add, delete, and modify settings in the Windows
registry. Using this capability, attackers can increase their control
over the infected system, making it more difficult for security analysts
to detect and remove the malware

Service
Impairment (SI)

The ability of malware to impair or disable essential services on an
infected system. By doing this, the attacker can decrease system
stability, security and impeding remediation

Spying (Sp) The ability of malware to monitor and collect information about the
activities of the user or infected system, without consent of the user

240 B. Saha et al.

Fig. 4. Capability Label Overlapping in the Dataset

4.3 Evaluation Metrices

We follow the methods described in Sect. 3.2, and prepare all three categories
of input feature vectors to develop five classification models for training and
testing, as described in Sect. 3.3. We conduct 15 experiments for each possible
combination of all five models and three feature sets. We aim to identify the
best-performing input feature vector and model set. To choose best model, We
evaluate model’s performance based on the following evaluation metrics:

– Accuracy: Accuracy metric measures the degree of correctness in the test
sample. For multi-label case, we consider a test sample as correctly predicted
if all predicted labels match all true labels. For example, if true labels of a
sample contain {a,b,c} and the predicted label for the same sample contains
{a,c}, then we consider it as a wrong prediction, or if the predicted label for
the same sample contains {a,b,c} then we considerate as a correct prediction.
We use the below formula to calculate accuracy:

Accuracy =
Number of correct predictions

Total number of predictions
× 100% (5)

– Hamming Loss: In the above accuracy example, we can see that even
though, in the first case, the classifier correctly predicts labels a and c, that
was still not considered accurate because the classifier incorrectly classified
the entire label set. In such cases, accuracy may not be the only parameter

MalXCap: A Method for Malware Capability Extraction 241

determining the model’s performance [5,17]. Therefore, we consider ham-
ming loss along with accuracy to evaluate the best performance of the model.
Hamming loss is a measure of the error rate in multi-label classification. It
determines the ratio of incorrectly classified labels to all labels. We calculate
hamming loss using the below formula:

Hamming Loss =
∑i=n

i=1 [y(i) ⊕ ŷ(i)]
n

(6)

Where n is the total number of instances, y(i) is the true label vector for ith
instance, represented as a binary vector, ŷ(i) is the predicted label vector for
ith instance, represented as a binary vector and ⊕ represents the element-wise
exclusive OR (XOR) operator.

– Precision: It measures the accuracy of the positive predictions made by the
model for each label individually. For multi-label classification and to deal
with the problem mentioned in the accuracy formula, we calculate micro
precision as follows [39]:

Pmicro =
∑

L TPL∑
L TPL +

∑
L FPL

(7)

Here, L represents the classification label, TPL is true positive of label L, and
FPL is false positive of label L.

– Recall: It measures the model’s ability to identify all positive instances for
each label correctly. Similar to precision, we calculate micro recall as [39]:

Rmicro =
∑

L TPL∑
L TPL +

∑
L FNL

(8)

Here, FNL is false negative of label L.
– F1-score: It provides a single metric to assess the model’s performance in

terms of both precision and recall for each label. We calculate micro F1 score
as [39]:

F1micro = 2 × Pmicro × Rmicro

Pmicro +Rmicro
(9)

The metrics mentioned above provide insights into the performance of the
multi-label classification model, accounting for the complexities of handling mul-
tiple labels per instance.

5 Experiment and Observation

We collect 8k malware samples and execute them into an isolated cuckoo sandbox
environment. We analyze the sandbox reports and manually prepare the dataset
consisting of 12 capabilities. We utilize three feature selection methods (TF-
IDF, Bi-gram, and Tri-gram) and prepare our dataset to train on five models.
We utilize the Gaussian naive Bayes for BR, CC, and LP classifier. The ML-kNN

242 B. Saha et al.

model combines the concept of kNN with k = 20 and Bayesian probability. After
that, we implement a neural network-based multi-label classifier (architecture
shown in Fig. 2).

In total, we conduct 15 experiments on prepared dataset. We divide 70:30
as train and test samples and calculate model performance on test set in terms
of all discussed performance metrics. Table 2 presents the performance of each
of the five models based on the TF-IDF feature vector. We aim to find a model
that achieves high accuracy, f1-score, and low hamming loss. As we can see,
the neural network outperforms all four models in terms of high accuracy with
95.64% and low hamming loss with 0.0054 for the TF-IDF feature set.

Table 2. Model performance on TF-IDF input Feature vector

Model Accuracy (%) Pmicro Rmicro F1micro Hamming Loss

Binary Relevance 46.91 0.49 0.96 0.57 0.1070
Classifier Chains 91.67 0.91 0.75 0.80 0.0100
Label Powerset 89.81 0.90 0.73 0.79 0.0147
Adapted Algorithm 90.15 0.96 0.82 0.86 0.0130
Neural Network 95.64 0.99 0.96 0.97 0.0054

Table 3 lists the model’s performance for the bi-gram feature set. We observe
that the neural network achieves the highest accuracy, best recall and low ham-
ming loss whereas classifier chain and label powerset achieves best precision. We
compare the efficacy of bi-gram-based models with TF-IDF-based models. We
observe that the bi-gram-based model performs better than the TF-IDF-based
model. The reason is that TF-IDF prepares feature vectors based on the impor-
tance of key APIs and ignores API patterns and context. But, The bi-gram
feature engineering method adds patterns and contextual information as an API
sequence.

Table 3. Model performance on Bi-gram input Feature vector

Model Accuracy(%) Pmicro Rmicro F1micro Hamming Loss

Binary Relevance 38.71 0.46 0.94 0.53 0.1526
Classifier Chains 94.43 0.99 0.90 0.94 0.0068
Label Powerset 92.70 0.99 0.88 0.93 0.0094
Adapted Algorithm 90.77 0.89 0.85 0.87 0.0120
Neural Network 95.91 0.98 0.96 0.97 0.0055

Table 4 presents the performance of models based on the tri-gram feature
set. Like previous results, the neural network outperforms the other four models

MalXCap: A Method for Malware Capability Extraction 243

in terms of highest accuracy, best precision as well as low hamming loss and
Binary relevence has the best recall score. We observe that the deep learning-
based model, i.e., the neural network achieves the best performance in terms
of accuracy, F1-score and hamming loss for all three input feature sets, demon-
strating the supremacy of deep learning over machine learning for this case.
Comparing results of tri-gram and bi-gram, we observe the better performance
in tri-gram than bi-gram, indicating that tri-gram features capture more con-
textual information than bi-gram API sequences. The better performance of the
tri-gram also demonstrates that the classifier can identify malware’s capabilities
based on the API sequence that malware executes.

Table 4. Model performance on Tri-gram input Feature vector

Model Accuracy(%) Pmicro Rmicro F1micro Hamming Loss

Binary Relevance 50.63 0.51 0.99 0.58 0.1097
Classifier Chains 95.78 0.99 0.92 0.94 0.0054
Label Powerset 96.63 1.00 0.95 0.97 0.0049
Adapted Algorithm 92.10 0.98 0.94 0.93 0.0112
Neural Network 97.02 1.0 0.98 0.99 0.0025

In addition, our experiment also demonstrate that how correlations between
target labels helps to enhance the model efficacy. As we can see for all result
Table 2, 3, 4, the performance of the classifier chain (CC) model enhance the per-
formance over binary relevance. These results indicate that correlations between
target labels exist, such as scanning and crypto-ransomware capabilities are cor-
related in ransomware, scanning and process discovery capabilities are correlated
in trojans, and altering the configuration and registry modifications are corre-
lated in backdoors. Even though there are some online sandbox environment
that return a mapping of MITRE ATT&CK results [40], we can not find any
standard document that explains how mapping is being done. Also, we consider
capability such as Spying(Sp), which is not present in MITRE ATT&CK matrix.
After comparing the outcomes of all 15 experiments, we conclude that the tri-
gram dataset-trained on neural network outperforms the other 14 experiments.
Therefore, we deploy MalXCap using a tri-gram feature vector and neural net-
work model. We also evaluate the time taken by MalXCap to identify capabilities
in malware samples. We observed that it takes 0.147 seconds to transform fea-
tures from the API sequence and make predictions for a single sample. It demon-
strates that MalXCap can speed up the analysis and minimize the manual effort
of incident response team.

6 Real World Examples

In the real world, security firms publish malware analysis reports for the benefit
of the security community, which describe malware’s activity and functional-

244 B. Saha et al.

ity. We leverage such analysis reports to compare MalXCap results with real-
world samples. This real-world experiment aims to verify MalXCap extraction
capability by comparing results with the security community’s analysis. Find-
ing malware samples and their corresponding analysis reports in the public
domain is challenging. We obtain recent advanced ransomware sample from
MalwareBazaar3 belongs to 4 different strains: H0lyGh0st4, MedusaLocker5,
GpCode6, and LockBit7 and their analysis report published in security com-
munity [18,22,25,28,33,35]. We extract capabilities from these samples using
the best performing combination of MalXCap, i.e., tri-gram feature transfor-
mation method (present in Sect. 3.2) and deep neural network model (present
in Sect. 3.3). We prepare a list of capabilities (explained in natural language)
for collected ransomware samples from their corresponding analysis reports as
a ground truth. The extraction result is present in Table 5. MalXCap is able to
identify 15 out of 17 ground truth labels correctly and misses only two capabili-
ties (scanning for GpCode and registry modification for MedusaLocker). MalX-
Cap extracts most of the ground truth capability present in the samples and
demonstrates its ability to identify multiple malignant capabilities present within
a single malware sample.

Table 5. Result of real-world ransomware samples. The � represents predicted capa-
bility by MalxCap and represent ground truth collected from security firm’s analysis
reports.

Name
Capability

PI AD Sc AC ISE RM SI DRP CR Ev CI Sp

H0lyGh0st � � �
LockBit � � � � � �
GpCode � �

MedusaLocker � � � �

7 Conclusion

In this paper, we investigate the feasibility of identifying malicious capabilities in
malware using API call sequences. We present malware capability dataset con-
sisting of 8k samples. We conduct 15 in-depth experiments using three feature
engineering techniques and five multi-label classification models. The tri-gram
feature engineering method with a neural network classification model gives the
best results. MalXCap presents a proof of concept to develop a malware capabil-
ity detection model using API call sequences. Our experiment demonstrates how

3 MalwareBazaarhttps://bazaar.abuse.ch.
4 H0lyGh0st: f8fc2445a9814ca8cf48a979bff7f182d6538f4d1ff438cf259268e8b4b76f86.
5 Medusa: 26af2222204fca27c0fdabf9eefbfdb638a8a9322b297119f85cce3c708090f0.
6 GpCode: e9ffda70e3ab71ee9d165abec8f2c7c52a139b71666f209d2eaf0c704569d3b1.
7 LockBit: 2ecf1fe02d8fb099b68e4d9bceeeadbe5fc8347f5a76d52f35ed48b516963735.

https://bazaar.abuse.ch

MalXCap: A Method for Malware Capability Extraction 245

introducing contextual information in feature vector helps to enhance the model
performance. This experiment also shows the supremacy of the deep learning
model over the machine learning model in terms of performance. In addition, our
experiment illustrates how we can utilize the correlations between target labels
to improve model efficacy. Further, we demonstrate the effectiveness of MalXCap
on real-world advanced malware samples. In the real-world experiment, MalX-
Cap shows that complex ransomware consists of multiple functionalities along
with scanning and crypto capabilities. We develop MalXCap for 12 capabilities
as an initial proof of concept, but given more diverse malignant functionality
samples and huge manual analysis, it can increase to more number of capabil-
ities. In the future, we expect to extend the capability list with more diverse
malignant functionality and develop a model to identify the same. Our research
investigates the necessity of detecting malware’s capabilities and illustrates the
potential application and use cases of the malware capability detection model
in the cyberspace. In a nutshell, this research work has the potential to provide
a new research dimension in the field of malware analysis and has the strength
to serve as a foundation for several future studies on the malignant capability
detection from malwares.

Acknowledgement. We thank to the C3i (Cyber Security and Cyber Security for
Cyber-Physical Systems) Innovation Hub at IIT Kanpur for partially funding this
research project. A special thanks to Mr. Vikas Maurya for his insightful feedback.

Appendix

Binary Relevance (BR). Binary Relevance is a popular and straightforward
problem transformation method. In this method we chose 12 different gaussian
naive bayes based single-label binary classifiers to predict 12 capabilities.

Fig. 5. Multi-Label classification based on Binary-Relevance

As illustrated in Fig. 5, each classifier produce output as 0/1 for each mal-
ware capability. We take the union of all outputs predicted by every classifier
and consider them multi-label outputs for the given sample. This model’s effec-
tiveness suffers if the dataset’s target labels are dependent or correlated with
each other.

246 B. Saha et al.

Classifier Chain (CC). This method solves the limitation of Binary Relevance
by addressing the label correlation problem by using a chain of binary classifiers
with same length as the number of target labels. As shown in Fig. 6, mi represents
a data sample which C1 uses as input (step 1) and predicts output as l1 (step
2), where l1 ∈ {0, 1}. Further, C2 uses mi and l1 combined as input (step 3) and
produces output as l2 (step 4), where l2 ∈ {0, 1}. Similarly, this chain goes on
till Cn, and we compute the union of each Cx, where 1 ≤ x ≤ n, and produce a
multi-label output of 1×n dimensions. Following this approach, the CC method
solves the label correlation problem present in the binary Relevance method.

Fig. 6. Multi-Label classification based on Classifier-Chain

Label Powerset (LP). This method addresses the issue of simultaneously
assigning multiple labels to an instance. This method considers all possible label
combinations for every instance in the dataset. As shown in the Table 6, If a
data sample associates with two target labels, L1 and L3, it obtains a new target
label as L1,3 in the dataset and repeat this for all data samples to transformed
the dataset into single-label dataset. In the worst-case scenario, the LP method
generates 2|L| number of new single-label target classes for L multi-label target
classes. Thus, this method’s computational complexity poses a problem and it
grows exponentially with the number of target classes.

Table 6. Label Powerset Transformation

Features
Labels
l1 l2 l3

m1 1 0 1

m2 0 0 1

m3 1 1 0

23possible
=======⇒
labet sets

l1 l2 l3 Labels
0 0 0 -

0 0 1 l3

0 1 0 l2

0 1 1 l2,3

1 0 0 l1

1 0 1 l1,3

1 1 0 l1,2

1 1 1 l1,2,3

Transformed
==========⇒

Labels

Features Labels
m1 l1,3

m2 l3

m3 l1,2

MalXCap: A Method for Malware Capability Extraction 247

Multi-label k Nearest Neighbors (ML-KNN). ML-kNN is a lazy learning
approach and combines the concepts of KNN and Bayesian probability to make
predictions for multi-label classification. It consists of two phases: training phase
and prediction phase. In the training phase, the first step is to preprocess the
data. Let N denote training instances and L denote total target labels. Each
training instance i is denoted by a feature vector Xi of dimension D (where D
depends on the type of feature transformation method), and its label vector Yi is
a binary vector of length L, indicating the presence or absence of each label. After
that, For each class j, we estimate the prior probability P (Yj) and the conditional
probabilities P (X|Yj) for each feature given the class using maximum likelihood
estimation. We follow formula as given below:

P (Yj) =
Number of instances with label Yj

N
(10)

P (Xk|Yj) =
Number of samples with label Yj and feature value Xk

Number of samples with label Yj
(11)

where P (Yj) represent prior probability and P (Xk|Yj) represent conditional
probabilities. After that, we store the transformed training instances and their
corresponding label vectors. In next prediction phase, we convert the test
instance into the same format as the training instances. Let Xtest denote the
feature vector of test instance. We use euclidean distance as distance metric
to find K training instances that are most similar to Xtest test instance based
on the feature values. Let Nk denote the indices of nearest neighbors. Now, for
each label j, we calculate the conditional probabilities P (Yj |Xtest) using Bayes’
theorem:

P (Yj |Xtest) =
P (Yj) ∗ ∏

k P (Xk|Yj)
Z

(12)

where Xk represents the feature values of kth nearest neighbor, and Z represent
a normalization constant. The product

∏
is taken over all K nearest neighbors.

Further, we select the top labels with the highest probabilities P (Yj |Xtest)
as the predicted labels for the given test instance. By considering the label
probabilities and feature similarities, ML-kNN finds the K nearest neighbors
and assigns labels based on their votes.

References

1. Qiu, J., et al.: Cyber code intelligence for Android malware detection. IEEE Trans.
Cybern. 53(1), 617–627 (2022)

2. Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G.: Novel fea-
ture extraction, selection and fusion for effective malware family classification. In:
Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, pp. 183–194 (2016)

3. Qiu, J., et al.: A3CM: automatic capability annotation for Android malware. IEEE
Access 7, 147156–147168 (2019). https://doi.org/10.1109/ACCESS.2019.2946392

4. Alrawi, O., et al.: Forecasting malware capabilities from cyber attack memory
images. In: USENIX Security Symposium, pp. 3523–3540 (2021)

https://doi.org/10.1109/ACCESS.2019.2946392

248 B. Saha et al.

5. de Carvalho, A.C.P.L.F., Freitas, A.A.: A tutorial on multi-label classification tech-
niques. In: Abraham, A., Hassanien, A.E., Snáašel, V. (eds.) Foundations of Com-
putational Intelligence Volume 5. SCI, vol. 205, pp. 177–195. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01536-6_8

6. Han, W., Xue, J., Wang, Y., Zhang, F., Gao, X.: APTMalInsight: identify and
cognize APT malware based on system call information and ontology knowledge
framework. Inf. Sci. 546, 633–664 (2021)

7. von der Assen, J., et al.: A lightweight moving target defense framework for multi-
purpose malware affecting IoT devices. arXiv preprint arXiv:2210.07719 (2022)

8. CAPA, Mandiant. https://github.com/mandiant/capa. Accessed 29 Apr 2023
9. New Picus Red Report warns of “Swiss Army knife” malware. https://www.

picussecurity.com/press-release/red-report-2023-warns-of-swiss-army-knife-
malware

10. Multipurpose malware: Sometimes Trojans come in threes. https://www.kaspersky.
co.in/blog/multipurpose-malware-sometimes-trojans-come-in-threes/6059/

11. Joachims, T.: A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for
Text Categorization. Carnegie-Mellon University Pittsburgh PA, Department of
Computer Science (1996)

12. Kumar, N., Mukhopadhyay, S., Gupta, M., Handa, A., Shukla, S.K.: Malware clas-
sification using early stage behavioural analysis. In: 2019 14th Asia Joint Confer-
ence on Information Security (AsiaJCIS), Kobe, Japan, pp. 16–23 (2019). https://
doi.org/10.1109/AsiaJCIS.2019.00-10

13. Han, W., Xue, J., Wang, Y., Liu, Z., Kong, Z.: MalInsight: a systematic profiling
based malware detection framework. J. Netw. Comput. Appl. 125, 236–250 (2019)

14. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and
classification of malware: research developments, trends and challenges. J. Netw.
Comput. Appl. 153, 102526 (2020)

15. Kondrak, G.: N -gram similarity and distance. In: Consens, M., Navarro, G. (eds.)
SPIRE 2005. LNCS, vol. 3772, pp. 115–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11575832_13

16. Multi-Purpose Ransomware Fuels DDoS Attacks. https://www.securityweek.com/
multi-purpose-ransomware-fuels-ddos-attacks/

17. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. IEEE
Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014). https://doi.org/10.1109/
TKDE.2013.39

18. CISA Alert AA23-040A: Maui and HolyGhost Ransomware Target Criti-
cal Infrastructure. https://www.picussecurity.com/resource/blog/cisa-alert-aa23-
040a-maui-and-holyghost-ransomware-target-critical-infrastructure

19. TrickBot: Not Your Average Hat Trick - A Malware with Multiple Hats. https://
www.cisecurity.org/insights/blog/trickbot-not-your-average-hat-trick-a-malware-
with-multiple-hats. Accessed 02 May 2023

20. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learn-
ing. Pattern Recogn. 40(7), 2038–2048 (2007)

21. Drew, J., Moore, T., Hahsler, M.: Polymorphic malware detection using sequence
classification methods. In: 2016 IEEE Security and Privacy Workshops (SPW), pp.
81–87. IEEE (2016)

22. GlobeImposter Ransomware Being Distributed with MedusaLocker via RDP.
https://asec.ahnlab.com/en/48940/

23. Li, C., Lv, Q., Li, N., Wang, Y., Sun, D., Qiao, Y.: A novel deep framework for
dynamic malware detection based on API sequence intrinsic features. Comput.
Secur. 116, 102686 (2022)

https://doi.org/10.1007/978-3-642-01536-6_8
http://arxiv.org/abs/2210.07719
https://github.com/mandiant/capa
https://www.picussecurity.com/press-release/red-report-2023-warns-of-swiss-army-knife-malware
https://www.picussecurity.com/press-release/red-report-2023-warns-of-swiss-army-knife-malware
https://www.picussecurity.com/press-release/red-report-2023-warns-of-swiss-army-knife-malware
https://www.kaspersky.co.in/blog/multipurpose-malware-sometimes-trojans-come-in-threes/6059/
https://www.kaspersky.co.in/blog/multipurpose-malware-sometimes-trojans-come-in-threes/6059/
https://doi.org/10.1109/AsiaJCIS.2019.00-10
https://doi.org/10.1109/AsiaJCIS.2019.00-10
https://doi.org/10.1007/11575832_13
https://doi.org/10.1007/11575832_13
https://www.securityweek.com/multi-purpose-ransomware-fuels-ddos-attacks/
https://www.securityweek.com/multi-purpose-ransomware-fuels-ddos-attacks/
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/TKDE.2013.39
https://www.picussecurity.com/resource/blog/cisa-alert-aa23-040a-maui-and-holyghost-ransomware-target-critical-infrastructure
https://www.picussecurity.com/resource/blog/cisa-alert-aa23-040a-maui-and-holyghost-ransomware-target-critical-infrastructure
https://www.cisecurity.org/insights/blog/trickbot-not-your-average-hat-trick-a-malware-with-multiple-hats
https://www.cisecurity.org/insights/blog/trickbot-not-your-average-hat-trick-a-malware-with-multiple-hats
https://www.cisecurity.org/insights/blog/trickbot-not-your-average-hat-trick-a-malware-with-multiple-hats
https://asec.ahnlab.com/en/48940/

MalXCap: A Method for Malware Capability Extraction 249

24. Agarkar, S., Ghosh, S.: Malware detection & classification using machine learning.
In: 2020 IEEE International Symposium on Sustainable Energy, Signal Processing
and Cyber Security (iSSSC), pp. 1–6. IEEE (2020)

25. North Korean threat actor targets small and midsize businesses with H0lyGh0st
ransomware. https://www.microsoft.com/en-us/security/blog/2022/07/14/
north-korean-threat-actor-targets-small-and-midsize-businesses-with-h0lygh0st-
ransomware/

26. Rani, N., Mishra, A., Kumar, R., Ghosh, S., Shukla, S.K., Bagade, P.: A general-
ized unknown malware classification. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K.
(eds.) SecureComm 2022. LNICST, vol. 462, pp. 793–806. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-25538-0_41

27. Rani, N., Dhavale, S.V.: Leveraging machine learning for ransomware detection.
arXiv preprint arXiv:2206.01919 (2022)

28. Malware Analysis - ransomware - b14c45c1792038fd69b5c75e604242a3.
https://www.redpacketsecurity.com/malware-analysis-ransomware-
b14c45c1792038fd69b5c75e604242a3/

29. Xu, Z., Fang, X., Yang, G.: MalBERT: a novel pre-training method for malware
detection. Comput. Secur. 111, 102458 (2021)

30. Rani, N., Dhavale, S.V., Singh, A., Mehra, A.: A survey on machine learning-based
ransomware detection. In: Giri, D., Raymond Choo, K.K., Ponnusamy, S., Meng,
W., Akleylek, S., Prasad Maity, S. (eds.) ICMC 2021. AISC, vol. 1412, pp. 171–186.
Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6890-6_13

31. Deng, X., Mirkovic, J.: Malware behavior through network trace analysis. In: Ghita,
B., Shiaeles, S. (eds.) INC 2020. LNNS, vol. 180, pp. 3–18. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-64758-2_1

32. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceed-
ings of the 14th ACM International Conference on Information and Knowledge
Management, pp. 195–200 (2005)

33. Rewterz Threat Alert - Lockbit Ransomware - Active IOCs. https://www.rewterz.
com/rewterz-news/rewterz-threat-alert-lockbit-ransomware-active-iocs-13/

34. Singh, A., Handa, A., Kumar, N., Shukla, S.K.: Malware classification using image
representation. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML 2019.
LNCS, vol. 11527, pp. 75–92. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-20951-3_6

35. North Korean H0lyGh0st Ransomware Has Ties to Global Geopolitics. https://
blogs.blackberry.com/en/2022/08/h0lygh0st-ransomware

36. Abusnaina, A., et al.: DL-FHMC: deep learning-based fine-grained hierarchical
learning approach for robust malware classification. IEEE Trans. Dependable
Secure Comput. 19(5), 3432–3447 (2021)

37. Amer, E., Zelinka, I.: A dynamic Windows malware detection and prediction
method based on contextual understanding of API call sequence. Comput. Secur.
92, 101760 (2020)

38. Ahmed, I., Xu, W., Annavajjala, R., Yoo, W.-S.: Joint demodulation and decoding
with multi-label classification using deep neural networks (2021)

39. Opitz, J., Burst, S.: Macro F1 and Macro F1. arXiv preprint arXiv:1911.03347
(2019)

40. Fujii, S., Yamagishi, R., Yamauchi, T.: Survey and analysis on ATT&CK mapping
function of online sandbox for understanding and efficient using. J. Inf. Process. 30,
807–821 (2022). Released on J-STAGE 15 December 2022, Online ISSN 1882-6652.
https://doi.org/10.2197/ipsjjip.30.807

https://www.microsoft.com/en-us/security/blog/2022/07/14/north-korean-threat-actor-targets-small-and-midsize-businesses-with-h0lygh0st-ransomware/
https://www.microsoft.com/en-us/security/blog/2022/07/14/north-korean-threat-actor-targets-small-and-midsize-businesses-with-h0lygh0st-ransomware/
https://www.microsoft.com/en-us/security/blog/2022/07/14/north-korean-threat-actor-targets-small-and-midsize-businesses-with-h0lygh0st-ransomware/
https://doi.org/10.1007/978-3-031-25538-0_41
http://arxiv.org/abs/2206.01919
https://www.redpacketsecurity.com/malware-analysis-ransomware-b14c45c1792038fd69b5c75e604242a3/
https://www.redpacketsecurity.com/malware-analysis-ransomware-b14c45c1792038fd69b5c75e604242a3/
https://doi.org/10.1007/978-981-16-6890-6_13
https://doi.org/10.1007/978-3-030-64758-2_1
https://www.rewterz.com/rewterz-news/rewterz-threat-alert-lockbit-ransomware-active-iocs-13/
https://www.rewterz.com/rewterz-news/rewterz-threat-alert-lockbit-ransomware-active-iocs-13/
https://doi.org/10.1007/978-3-030-20951-3_6
https://doi.org/10.1007/978-3-030-20951-3_6
https://blogs.blackberry.com/en/2022/08/h0lygh0st-ransomware
https://blogs.blackberry.com/en/2022/08/h0lygh0st-ransomware
http://arxiv.org/abs/1911.03347
https://doi.org/10.2197/ipsjjip.30.807

Multimodal Software Defect Severity
Prediction Based on Sentiment

Probability

Ying Li1,2, Yuhao Lin1,3, Yongchao Zhong1,3, Qiuling Yue3, Jinglu Hu4,
Wenjie Wang1, Huiyang Shi1, and Yuqing Zhang1,2,3,5(B)

1 National Computer Network Intrusion Protection Center
(University of Academy of Sciences), Beijing 101408, China

zhangyq@nipc.org.cn
2 Zhongguancun Laboratory, Beijing 100194, China

3 School of Cyberspace Security (School of cryptography), Hainan University,
Haikou 570100, China

4 Graduate School of Information, Production and Systems, Waseda University,
Shinjuku-ku 169-8050, Japan

5 School of Cyber Engineering, Xidian University, Xi’an 710126, China

Abstract. Software systems generate a large number of software bugs
during their life cycle, and timely detection and repair of these bugs
is a key issue in improving software quality and maintaining software
security. Therefore, this paper proposes a severity prediction on affective
probabilistic multimodel software bugs. First, this paper uses RoBERTa
as a sentiment analysis model and proposes a model training method
for defective knowledge enhancement. We use Stack Overflow to con-
struct a manually annotated sentiment probability dataset. Evaluating
consistency between sentiment annotators by calculating Fleiss’ kappa
values. Next, the difference in the impact of defects of different severity
on users is reflected by the probability of sentiment. Using sentiment
traits for the next stage of prediction. Finally, these include robust data
processing of heterogeneous bug data, a complementary integrated learn-
ing framework that incorporates large linguistic and traditional tabular
models, and a powerful model integration strategy based on a novel com-
bination of multi-layer stacking and cyclic k-fold integrated bagging. Our
comprehensive empirical assessment shows that SPM is more accurate
and reliable than the popular defect severity prediction methods.

Keywords: software security · bug severity prediction · sentiment
annotation · multimodality · integrated learning

This work was supported by the National Key Research and Development Pro-
gram (2023QY1202), the National Natural Science Foundation of China (U1836210),
the Key Research and Development Science and Technology of Hainan Province
(GHYF2022010), and the Research Startup Foundation of Hainan University
(RZ2100003335).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 250–265, 2023.
https://doi.org/10.1007/978-981-99-7032-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_15&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_15

Multimodal Software Defect Severity Prediction 251

1 Introduction

Software bugs are an essential indicator for evaluating software quality. It is
mainly used to reflect the level of software quality. This also determines to some
extent the difficulty of maintaining the software. Specifically, most research focus
on improving the quality of bug reports for reporters. Most research focus on
automating the classification and repair of bug reports for developers. There-
fore, this paper examines the automation of bug reports from the developer’s
perspective.

In recent years, many efforts made by domestic and international researchers
to develop automated techniques for software defect severity prediction. Sharmin
et al. [1] use a combination of correlation coefficients, Pareto optimality theory
and independence chi-square tests to refine descriptive information in defect
reports. They use support vector machines and decision trees for defect severity
prediction. Yang et al. [2] then capture the correlation between the emotional
expressions of user-reported bugs and severity based on a sentiment dictionary.
They use a support vector machine classifier for severity prediction, illustrating
that bugs of different severity levels have different emotional impacts on software
users. To reduce the dimensionality of defective text features Liu et al. [3] intro-
duce a ranking-based strategy to improve existing feature selection algorithms
and proposed an integrated feature selection algorithm combined with existing
feature selection algorithms.

Although these studies contribute accordingly to some extent, they still have
certain limitations. For example, they only address a single defect tracking sys-
tem and are not universally applicable. We improve on the limitations of existing
bug severity prediction studies. In summary, the contributions of this paper are
as follows.

• A large-scale linguistic pre-training model is introduced to replace the pre-
viously studied text feature extraction and generic sentiment dictionary
approaches. Use bug knowledge expansion methods to enhance the model’s
ability to characterise defective text. Add defective sentiment datasets for
sentiment training and testing to complete reliable automated defective text
sentiment annotation tasks.

• A comprehensive learning framework can learn different representations of
different types of defective features for training models. This means that
integrated learning frameworks containing large language models can train
the fusion of multi-modal data.

• The performance of the proposed SPM method is systematically compared
with the current defect severity prediction baseline. The F-measure, Precision
and Recall assessment indicators yield the final assessment results. The results
show that SPM is more accurate and reliable.

The remainder of this paper is structured as follows. In Sect. 2, presents
some related works on Software bugs and natural language processing. In Sect. 3,
describes our approach in detail. In Sect. 4, presents our results and the findings

252 Y. Li et al.

for the research question. In Sect. 5, discusses potential avenues for future works.
In Sect. 6, summarizes and prospects the above works.

2 Related Work

2.1 Software Bugs

In software engineering, a software bug is any flaw or error in a software system
that causes its behaviour to deviate from the expected or specified behaviour [4].
Software Bug Tracking System (BTS) can help the team effectively record and
track these bugs, timely identify and fix problems, and improve the quality and
stability of the software. A software bug tracking system, also known as a bug
management database, is a tool used to record, manage, and track the entire life
cycle of software defects [5].

Standard bug tracking systems include JIRA, Bugzilla, Mantis, etc. [6] These
systems are usually web-based and can run on different platforms, providing
a series of API interfaces to facilitate integration with other systems. [7] The
definitions of defect severity for three popular BTS are described below and
compared in Table 1.

Bugzilla. Bug severity indicates the severity of issues in Bugzilla ranging from
blocking (“application unavailable”) to trivial (“minor cosmetic issues”) [8].
In addition, this field can be used to indicate whether the error is a feature
enhancement request. Priority, however, defines how urgent a bug needs to fix.
In Bugzilla, the combination of priority and severity defines the importance of
the bug.

Jira. In Jira, bug severity is called priority and indicates the importance of a
bug compared to other bugs from blocking (“highest priority”) to minor (“low
priority”). [9]

Issue Tracker. In Google Issue Tracker, Bug Severity, also known as Prior-
ity [10], indicates the priority of a bug compared to other bugs from P0 (“Needs
immediate fix”) to P4 (“Eventually needs immediate fix”).

As can be seen, despite the importance of the severity of bug reports, different
BTSs have their own set of severity evaluation systems, and there are even
significant differences between different items within the same BTS. This makes
the study of automated bug severity assessment very difficult, as no scheme can
universally and objectively evaluate bug severity.

2.2 Natural Language Processing

The primary technique involved in the severity analysis of defects is natural
language processing, and text pre-processing is the first key step in natural lan-
guage processing. Effective text pre-processing is therefore crucial to the success
of defect severity prediction. Text representation methods have broadly evolved
through the following stages. The Bag-of-Words (BoW) model is to convert

Multimodal Software Defect Severity Prediction 253

Table 1. A Comparison of the Mozilla and RedHat Projects’ Bug Severity Assessment
Guidelines.

database Severity Description

Bugzilla Blocker A serious bug that caused the software to crash and
not run

Critical seriously affects the functionality of the software
the program has not yet completely crashed

Major a significant impact on the usability or
performance of the software

Normal Bugs that have a moderate impact on the usability or
performance of the software

Minor Errors that have a minor impact on the
usability or performance of the software

Jira Blocker Software does not work

Critical Interference with software functionality and no solution

Major Errors that have a significant impact on availability
or performance

Minor Non-critical functional issues and solutions exist

Trivial Secondary issues, such as cosmetic issues
have little or no impact on the user

Issue Tracker P0 Critical errors that require immediate attention and res-
olution.
These errors can render the software completely unusable,
or lead to serious data loss or corruption

P1 High priority errors that have a significant
impact on the functionality or performance of the
software

P2 Medium priority errors that have some impact
on the functionality or performance of the software

P3 Low priority errors that have a minor impact on the
functionality or performance of the software

words into a unique thermal encoding vector, regardless of grammar and word
order, and the vector size is the corpus lexicon size [11] The TF-IDF model
measures the importance of a word to a collection of documents [12]. Its core
idea is that if a word occurs more frequently in one document and less frequently
in other documents, then the more significant the discriminatory power of the
word for that document, the higher its importance. Basic word embedding
represents words as high-dimensional vectors in a continuous space. The most
popular current approach is the Word2vec algorithm, which assumes that the
meaning of a word can be inferred from the context in which it occurs [13]. The
text embedding uses words or phrases of different granularity as model inputs,
and the N-Gram vectors of the sentences are transformed into Hidden vectors by

254 Y. Li et al.

a pre-training and overlay averaging method of word embedding to send them to
the downstream task network layer [14]. Ambiguous embedding bases on a
word embedding model with different contexts. This model can embed the same
word into different spatial representations according to different contexts [15],
thus better solving the problem of multiple semantics of words. Large-scale
pre-trained text representation methods base on pre-trained models of
large-scale corpora [16]. The language models learnt on these corpora enable
word vector representations with rich semantic information to be obtained and
can share the learned knowledge between different tasks.

3 Emotion Annotation Model Based on Knowledge
Enhancement

3.1 Domain Enhancement

Most large-scale general-purpose corpus-based training relies on natural lan-
guage processing pre-training models. The sentiment analysis model used in this
paper is RoBERTa, which is an improved and optimised version of the BERT
model that improves its performance by pre-training on a larger corpus. Also,
this paper proposes a model training method for defective knowledge enhance-
ment. Specifically, we collected 50,000 defective text data from BTS and Stack
Overflow to build a label-free corpus of defects and continuously pre-trained
RoBERTa. In addition, we collected a biotechnology corpus and a news cor-
pus for experimental comparison, and Table 2 shows the details of the corpus
structure in different knowledge contexts.

Also, to demonstrate the method’s feasibility, we conducted a similarity anal-
ysis between the pre-trained corpus of RoBERTa and the software defect corpus,
the news corpus and the biotechnology corpus. We counted the top 2000 high-
frequency words from the different corpora, and Fig. 1 quantifies the analysis
results. The figure shows that RoBERTa has a high overlap with the pre-trained
corpus and the news corpus, but a low overlap with the software-defective corpus.
The analysis shows the degree of gain expected from the adapting RoBERTa to
different domains: the more significant the variability of the domains, the greater
the potential for knowledge enhancement.

Table 2. Corpus Structure for Different Knowledge Domains.

Type of
knowledge

Pre-training dataset Token Size

Biotechnology Full-text papers from S2ORC 6.17B 20 GB

News Articles from realnews 2.99B 15 GB

Software bugs Bug description from BTS and
Stack Overflow

3.63B 19 GB

Multimodal Software Defect Severity Prediction 255

Fig. 1. Similarity Analysis of Different Corpuses.

3.2 Emotional Probability Labeling

The ultimate goal of conventional sentiment analysis is to assign a sentiment
polarity label to text to achieve a text classification effect. However, sentiment
in bug reports tends to be on the negative side. Differentiating the severity of
different bugs in the form of sentiment polarity labels may instead lead to noise
problems and affect the accuracy of the model.

Therefore, this paper after knowledge enhancement the high-quality senti-
ment dataset allows the model to further improve its sentiment analysis capabil-
ities. In contrast to the lexicon-based approach, we consider using the confidence
level of the RoBERTa model output to quantify the depth of each type of senti-
ment in the text to achieve fine-grained sentiment analysis. Specifically, we take
the model output and run it through a Softmax layer to calculate the confidence
level, or sentiment probability, of the output belonging to the corresponding sen-
timent. The newly generated augmented defect dataset will be used as a training
set test set for the next stage of bug severity prediction.

4 Multimodel Defect Severity Prediction Based
on Integrated Learning

The main content of a bug report is usually contained in the subject matter of
the bug and in the descriptive text. This paper transforms the text classifica-
tion task of bugs into a multimodal table classification task. Figure 2 illustrates
some bug multimodal tabular data. Also, this paper proposes a complementary
model fusion method. The method is able to integrate various models into the
same dimension (from traditional machine learning to specified neural network
models) and train them in a hierarchical manner to ensure that the bug data
can be successfully transformed into high quality prediction results. Throughout
the process, we mitigate the problem of model over-fitting by partitioning the
dataset in various ways and carefully tracking Out-Of-Fold (OOF) predictions.
We then describe each component of the method in detail and discuss how they
are implemented.

256 Y. Li et al.

Fig. 2. Example of Multimodal Tabular Data for Software Defects.

4.1 Model Selection Phase

At this stage we follow the principle that models with reliable performance (e.g.
random forests) are trained before more expensive or less reliable models (e.g.
k-neighbourhoods). This is essential to improve the training and prediction effi-
ciency of the model. In this study, we consider the RoBERTa language model as
well as the classical tabular model.

Data Pre-processing Stage. This stage is divided into two aspects: model-
independent pre-processing and model-specified pre-processing. We identify the
type features listed in Table 3 and process them individually to convert them
into a format that can be read by the machine learning model. In particular, the
category column is mapped to monotonically increasing discrete values in the
regular pre-processing. The numeric columns, on the other hand, are not altered
in any way, but are simply identified as floating-point or integer types. The
resulting text, numbers and categorical features are then passed to the specific
model for further model-specified embedding operations.

Table 3. Type of Data Pre-processing.

bug database Example

Number 1.0, -1, 333

Text Cleans up shell checking after do QueryReferent(weakShell) calls

Category High, Low, Urgent

Fig. 3. Example of Multimodal Tabular Data for Software Defects.

Multimodal Software Defect Severity Prediction 257

Data Embedding. Although the language model of the Transformer archi-
tecture has strong textual representation capabilities, it has limited ability to
handle tabular data [17]. We have adopted a tabular data embedding approach
as shown in Fig. 3, with separate neural operations for each data type and aggre-
gation only near the output layer. This design extracts higher-level numerical
representations from each modality.

Language Model Integration. Because the decision boundaries learned by
the neural network differ in geometry from the axis alignment of the tree-based
tabular model, they provide valuable diversity in combination with the tree.
To ensure prediction accuracy, various strategies were used to integrate the
RoBERTa model to fuse learning on multimodel inputs simultaneously.

This study uses stacking to combine the models, rather than simply aggre-
gating the model outputs linearly. This trains an additional machine learning
model or models to learn the best model aggregation strategy, which we call a
metamodel. The input to the metamodel is a stitching together of the prediction
vectors from the outputs of all the basic models (including the language model).
We use multiple types of tabular models as stacking models. Figure 4 illustrates
the integration architecture of the stacking approach.

Integration Optimization. In this paper, we introduce an improved approach
to stacking integration, namely multi-layer stacking. specifically, we aggregate
the predictions output from multiple base models into new feature values that
are used as input to the next layer of models. The next layer consists of multiple
metamodels. These metamodels then continue to feed into another layer as the
output of the base model, as shown in Fig. 5. In addition, we also borrow the
idea of skip connection from deep learning: the metamodel takes as input not
only the predictive features of the previous layer’s model, but also the original
data features themselves.

Fig. 4. Ensemble Learning Architecture of Stacking.

258 Y. Li et al.

Fig. 5. Multi-layer Stacking Architecture.

Figure 6 illustrates the principle of cyclic k-fold integrated bagging. Specif-
ically, we split the original dataset into k subsets, where k-1 subsets are used
to train a model, which is then evaluated using the validation set. This process
is repeated r times, each time using a different random split, resulting in k*r
models.

Fig. 6. Repeated k-fold Ensemble Bagging.

Ultimately, the predictions from these models are averaged and output as
predictions for the whole model to the higher-level model. In this process, each
model is required to produce OOF predictions on the blocks it is not trained
on, so that each training sample gets OOF predictions from all models, and
the output of the model is an average of all OOF predictions.The problem of
OOF overfitting of the low-level model being amplified layer by layer was effec-
tively addressed after circular bagging.In summary, with the addition of multi-
layer stacking and cyclic K-fold bagging, the integrated learning model is further
enhanced regarding defect severity prediction.

Multimodal Software Defect Severity Prediction 259

Table 4. RoBERTa Pre-training Hyperparameters Setting.

Hyperparameters Value

Epochs 10

Patience 4

Batch size 64

Learning rate 2e-1

Dropout 0.2

Feedforward layer 1

Feedforward nonlinearity Tanh

Classification layer 1

5 Evaluation

5.1 Experimental Assessment of Knowledge Enhancement

As a baseline for this study, we utilized the pre-trained RoBERTa base model
and fine-tuned its parameters for sentiment classification on defective text. Addi-
tionally, we conducted comparative experiments on news corpora, biotechnology
corpora, and defect corpora. Each corpus consisted of 50,000 randomly selected
unlabeled data samples, and we trained the RoBERTa model on each corpus for
10,000 iterations. This training process was equivalent to training each knowl-
edge background dataset once on a Tesla V100. The retraining resulted in three
distinct knowledge-enhanced language models with different knowledge back-
grounds. The detailed hyperparameter settings are provided in Table 4.

To visually illustrate the changes in masked language model (MLM) loss for
the different knowledge background models before and after knowledge enhance-
ment, we applied smoothing to the loss variation. We observed that all models
experienced a reduction in MLM loss after retraining. Moreover, compared to
the pre-enhancement models, the loss values of the pre-trained models in the
biotechnology and software defect domains were significantly lower, as depicted
in Figs. 7 and 9. However, as shown in Fig. 8, the pre-trained model in the news
domain did not exhibit a widened gap but instead remained close to its state

Fig. 7. Loss of BIOTech
Corpus Re-pretraining.

Fig. 8. Loss of News Cor-
pus Re-pretraining.

Fig. 9. Loss of Burgrepo
Corpus Re-pretraining.

260 Y. Li et al.

before knowledge enhancement. This finding indicates that the magnitude of
knowledge domain differences influences the representation learning capability
of the language model for specific knowledge background texts.

In each knowledge background, we performed fine-tuning training on the
model for different types of text classification tasks and evaluated the final model’s
classification performance. As shown in Table 5, we randomly selected annotated
texts from the news corpus, biotechnology corpus, and defect corpus based on the
hierarchical classification labels for training, validation, and testing sets.

The test results, as shown in the “Knowledge Enhancement” column of
Table 6, indicate that knowledge enhancement significantly improved the perfor-
mance of RoBERTa across all knowledge backgrounds. While knowledge enhance-
ment did not improve the performance of news text classification, we observed con-
sistent improvements in RoBERTa’s performance for the biotechnology and defect
domains. This suggests that the effect of knowledge enhancement becomes more
pronounced when the target domain is farther from RoBERTa’s source domain.

Table 5. Structure of Datasets for Different Classification Tasks.

Type Mission Label Categories
Number

Training
set

Validation
set

Test
set

BIOTech ChemProt Relationship 13 5169 517 776

BugRepo Mozilla Severity 4 6709 875 801

News AGNEWS Topic 4 5978 810 693

Furthermore, we conducted cross-comparative experiments on the knowledge-
enhanced models with different knowledge backgrounds by transferring the lan-
guage models to tasks unrelated to their pre-training knowledge. This aligns with
our hypothesis that the performance improvement over the original RoBERTa
model could be attributed solely to exposure to more data, irrespective of the
knowledge background. In this setup, we used the biotechnology language model
for the news task, the news language model for the defect task, and the defect
language model for the biotechnology task. We guided these choices based on the
vocabulary overlap statistics shown in Fig. 5.

Table 6. Comparing the Adaptation of RoBERTa to Relevant and Irrelevant Knowl-
edge.

Type Mission RoBERTa Related
enhancements

No
enhancement

BIOTech ChemProt 0.819 0.847 0.794

BugRepo Mozilla 0.603 0.755 0.589

News AGNEWS 0.936 0.928 0.926

Multimodal Software Defect Severity Prediction 261

The results of these experiments are presented in the last column of Table 6.
Therefore, the knowledge-enhanced pre-training specifically tailored to defect
knowledge indeed contributes to the model’s understanding of defect severity
prediction tasks.

5.2 Emotional Analysis Assessment

To capture the deep-level user sentiment in defect severity prediction, this study
quantified the sentiment polarity of bug text. Therefore, we utilized three dif-
ferent types of sentiment features: general sentiment lexicon, sentiment polarity,
and sentiment probabilities to evaluate the impact of sentiment probabilities on
bug severity prediction.

We employed the classic word embedding model Word2Vec and the pre-
trained model RoBERTa to represent defect text. The bug dataset is prepro-
cessed to remove file paths, URLs, email addresses, and code snippets, resulting
in over 612,201,78 tokens. Subsequently, we split the defect dataset into a train-
ing set (70%) and a test set (30%) and performed stratified sampling to find the
optimal vector representation for each word in our models. The vector represen-
tation of each text was calculated by taking the weighted average of all word
vectors in the text.

For bug severity prediction, we uniformly used Support Vector Machine
(SVM) to calculate the defect text vectors output result, i.e., severity level.
This avoids interference from the native classifier of RoBERTa. For sentiment
annotation based on the general lexicon, we directly annotated the defect dataset
using the widely used SentiStrength sentiment analysis tool in current research.
It employs a set of rules and a general lexicon to analyze sentiment polarity in
the text and provide corresponding sentiment scores. We followed the automated
annotation method used in this study.

From the experimental results, we observe that the method based on senti-
ment probabilities indeed improves the performance of defect severity prediction
to some extent compared to the baseline method that uses sentiment lexicons
(average precision improved by 1.68%, average recall improved by 3.27%, and
average F-measure improved by 2.47%). This aligns with our expectations and
demonstrates that the sentiment probability feature of defect text helps to differ-
entiate subtle emotional differences in defects of different severity, thus improving
the model’s predictive performance for defect severity.

5.3 Bug Severity Prediction Models: Comparison with State-of-the-
art Baseline Methods

The proposed method, SPM, will be compared with the baselines used in previ-
ous defect report severity prediction studies. Based on the survey of the research
landscape conducted in this study, it is found that 90% of the studies only con-
sider the description and summary information of defects. Therefore, we compare
the latest research proposals on defect severity prediction from the past three

262 Y. Li et al.

years. In addition to traditional machine learning algorithms, deep neural net-
works such as LSTM, CNN, and Transformer is used in recent research. Hence,
we include LSTM, CNN, and Transformer as additional experimental baselines.
Lastly, to validate whether the integration of language models can improve pre-
diction performance, we also considered an ensemble learning framework without
the language model RoBERTa. Previous research has demonstrated that ensem-
ble learning can enhance defect severity prediction performance.

For some machine learning algorithms and general ensemble learning mod-
els, we use the RoBERTa model to represent text embeddings to ensure a fair
comparison with our proposed method, SPM. However, we use their default
embeddings for LSTM, CNN, and Transformer to represent the texts.

We considered two factors for the multimodal defect table dataset: the time
order of defect submissions and the category proportion of severity labels. We
used 70% of the table data as the training set, 20% as the test set, and 10%
as the validation set. This dataset-splitting method allows us to predict the
severity of new defect reports using historical defect reports, reflecting real-
world application scenarios and avoiding data imbalance issues. To evaluate the
performance of these algorithms at the system level, 10-fold cross-validation was
applied, and the average values of F-measure, precision, and recall were used as
evaluation metrics.

The comparison results of our proposed method and the baselines on the
training set are shown in Table 7. From this table, we can observe that the SPM
method achieves better performance than all the baselines, with F-measure, pre-
cision, and recall reaching 92.78%, 93.95%, and 91.64% respectively. Compared
to the baselines, the proposed SPM method improves the F-measure, precision,
and recall on average by 14.86%, 15.73%, and 13.48% respectively. Furthermore,
compared to the SPM method without the language model RoBERTa, there are
improvements of 5.26%, 4.21%, and 6.23% in F-measure, precision, and recall
respectively, demonstrating that the language model contributes to the perfor-
mance enhancement of the ensemble framework for severity prediction.

6 Discussion

In order to further improve the performance of the bug severity prediction model
and make it more relevant to practical application scenarios, the research in this
paper will continue. Although the SPM method proposed in this study achieve
better results, there may be room for improvement in different datasets and
application scenarios. Future attempts can be made to expand the size and diver-
sity of the dataset. This study used historical data from three bug-tracking repos-
itories, which only covered a portion of software development projects. Adding
more bug-tracking repositories and data from software development projects
could be considered in the future to understand better the bug characteristics
and severity distribution of different software projects. In addition, this study
proposes an integrated learning approach that includes language models, but
does not consider the excessive consumption of computational resources and

Multimodal Software Defect Severity Prediction 263

Table 7. Performance of SPM Methods versus Advanced Methods for Severity Pre-
diction.

Type Mission RoBERTa Related
enhancements

No
enhancement

Methods Literature F-measure(%) Precision(%) Recall(%)

SPM - 92.78 93.95 91.64

SPM(without
RoBERTa)

- 87.52 89.74 85.41

CNN/LSTM Kim,2022 87.62 90.31

85.08

LightGBM Dao,2022 81.39 80.84 83.25

Word2vec/GPT2 Kamal,2022 89.77 90.43 89.12

Bert/SVM Kumar,2021 87.09 88.16 86.05

Bert/AdaBoost Kumar,2021 90.03 89.74 90.32

Sentiment
Score/MLP

Baarah,2021 81.92 77.73 86.59

BoW/CNN Rathnayake,2021 80.43 78.92 79.67

TextRank/FastText Jia,2021 73.18 75.87 70.67

Entropy/KNN Kumari,2020 56.53 60.23 58.55

Word2vec/LR Tan,2020 66.22 69.73 63.05

TF-IDF/KNN Sabor,2020 73.97 72.13 75.91

XGBoost/SVM Mondreti,2020 75.66 70.50 81.63

Doc2Vec/MLP Arokiam,2020 69.14 72.30 66.24

inefficiency of large language models. The architecture of integrated learning
can be explored in the future to optimise it, for example, by using model distil-
lation techniques to reduce the hyperparameter size of learning and by reducing
the number of reuses of language models during model stacking to improve the
prediction efficiency of the models and reduce resource consumption. We will
also investigate the availability of defective code, consider graph neural network-
based models to extract code features of defects and explore their intrinsic rela-
tionship with severity for future diversified severity assessment efforts.

7 Conclusion

Software defect severity prediction is a hot area for solving the problems of
timeliness and maintenance costs of fixing software defects. As defect severity
assessment performe in an automated manner, limited maintenance resources
can be rationally allocated. This paper focuses on two factors that affect the
performance of defect severity prediction models: sentiment analysis and mul-
timodal training, using complete defect reports as the database for prediction.

264 Y. Li et al.

These two aspects analyse in detail and new algorithms propose based on exist-
ing research. The main contributions of this paper are as follows.

The concept of defect knowledge enhancement is first proposed to improve the
language model’s ability to characterise defective texts. The sentiment informa-
tion in the defect description text is further quantified based on the enhanced
language model. The differences in the impact of defects of different severity
on users are reflected through sentiment probabilities and ultimately used as
enhanced features in the defect dataset to assist in the next stage of defect
severity prediction. Design choices are then presented for supervised learning
using multimodal defect datasets containing textual, numerical and category
features. The structure of the multimodal dataset is optimised based on empiri-
cal analysis of the impact of defect report attributes on severity, enabling efficient
use of defect reports. Finally, this paper proposes an SPM approach for defect
severity prediction, whose key aspects include robust data processing of het-
erogeneous defect data, a complementary integrated learning framework fusing
large linguistic and traditional tabular models, and a powerful model integration
strategy based on a novel combination of multilayer stacking and cyclic k-fold
integrated bagging. Our comprehensive empirical evaluation shows that SPM is
more accurate and reliable than popular defect severity prediction methods.

References

1. Sharmin, S., Aktar, F., Ali, A.A., et al.: BFSP: a feature selection method for
bug severity classification. In: 2017 IEEE Region 10 Humanitarian Technology
Conference (R10-HTC). IEEE (2017)

2. Yang, G., Zhang, T., Lee, B.: An emotion similarity based severity prediction of
software bugs: a case study of open source projects. IEICE Trans. Inf. Syst. 101(8),
2015–2026 (2018)

3. Liu, W., Wang, S., Chen, X., et al.: Predicting the severity of bug reports based
on feature selection. Int. J. Softw. Eng. Knowl. Eng. 28(04), 537–558 (2018)

4. Li, D.: Research on the relationship between software defect severity and repair
complexity. Huazhong Normal University (2020)

5. Liu, W.J.: Research on software defect report severity prediction. Dalian University
of Technology (2020)

6. Jiang, H., Nazar, N., Zhang, J., et al.: PRST: a pagerank-based summarization
technique for summarizing bug report with duplicates. Int. J. Softw. Eng. Knowl.
Eng. 27(06), 869–896 (2017)

7. Bo, Z., Neamtiu, I., Gupta, R.: Experience report: how do bug characteristics differ
across severity classes: a multi-platform study. In: IEEE International Symposium
on Software Reliability Engineering. IEEE (2016)

8. Wu, X., Zheng, W., Chen, X., et al.: CVE-assisted large-scale security bug report
dataset construction method. J. Syst. Softw. 27(06), 869–896 (2019)

9. Gomes, L.A.F., da Silva, T.R., Côrtes, M.L.: Bug report severity level prediction
in open source software: a survey and research opportunities. Inf. Softw. Technol.
115, 58–78 (2019)

10. Kukka, A., Mohana, R., Kumar, Y.: Does bug report summarization help in
enhancing the accuracy of bug severity classification? Procedia Comput. Sci. 167,
1345–1353 (2020)

Multimodal Software Defect Severity Prediction 265

11. Juluru, K., Shih, H.H., Keshava Murthy, K.N., et al.: Bag-of-words technique in
natural language processing: a primer for radiologists. Radiographics 41(5), 1420–
1426 (2021)

12. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781 (2013)

13. Huang, X., Khetan, A., Cvitkovic, M., et al.: Tabtransformer: tabular data mod-
eling using contextual embeddings. arXiv preprint arXiv:2012.06678 (2020)

14. Joulin, A., Grave, E., Bojanowski, P., et al.: Bag of tricks for efficient text classi-
fication. arXiv preprint arXiv:1607.01759 (2016)

15. Peters, M.E., Neumann, M., Iyyer, M., et al.: Deep contextualized word represen-
tations. arXiv preprint arXiv:1802.05365 (2018)

16. Devlin, J., Chang, M.W., Lee, K., et al.: Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

17. Zhang, J., Wang, X., Zhang, H., et al.: A novel neural source code representa-
tion based on abstract syntax tree. In: 41st International Conference on Software
Engineering (2019)

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/2012.06678
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1810.04805

Recovering Multi-prime RSA Keys
with Erasures and Errors

Guanghui Liu1, Yuejun Liu1(B), Yongbin Zhou1,2,3, and Yiwen Gao1

1 School of Cyber Science and Engineering, Nanjing University of Science
and Technology, Nanjing, China

{ceaser,liuyuejun,zhouyongbin,gaoyiwen}@njust.edu.cn
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Science, Beijing, China

Abstract. Since Heninger and Shacham first proposed a key recovery
algorithm from random partial RSA private key bits obtained from cold
boot attacks, the algorithm has been further investigated in many stud-
ies. However, the noisy leakage models assumed in the existing work all
fall short of reality, and the studies are all based on CRT-RSA only. In
this study, we target Multi-Prime RSA, which is supported by PKCS#1
v2.1 and allows faster decryption than CRT-RSA, and give the theo-
retical bound of the key recovery algorithm under the Binary Erasure
Symmetric Error model. We also propose a more realistic Binary Era-
sure Asymmetric Error model, under which we give the theoretical bound
of the key recovery algorithm as well. Finally, the theoretical bounds of
the algorithm are explained in the context of information theory.

Keywords: Multi-Prime RSA · Cold Boot Attacks · Statistic Analysis

1 Introduction

RSA [13] is an asymmetric cryptosystem widely used in applications such as
digital signatures, secure communications, and key exchange protocols. CRT-
RSA is the most widely deployed variant of RSA that accelerates the decryp-
tion phase [12] via the Chinese Residue Theorem. In contrast, Multi-Prime
RSA [1] uses multiple prime factors in the common modulus to provide faster
decryption and signing, especially on multi-processor platforms. Under CRT,
Multi-Prime RSA can also achieve faster decryption and signing speed using
parallel modulo power operations. Its private key consists of decryption expo-
nent d, different prime factors {r1, r2, · · · , ru} of modulo N , and CRT factors
{d1, d2, r

−1
2 , < d3, t3 >, · · · , < du, tu >} for acceleration.

Cold boot attacks [3] is a threatening physical attack that allows an attacker
to obtain some of the random bits of an RSA private key and use them to obtain
the correct private key. Since the leaked data is not necessarily complete and
correct, there are cases such as bit erasure or error. In order to reconstruct the
complete and correct private key, many algorithms [4,5,7–9,11,17] have been
proposed to apply to different leakage scenarios. However, the main body of
research on these algorithms is CRT-RSA, and there is a lack of research on
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 266–283, 2023.
https://doi.org/10.1007/978-981-99-7032-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_16&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_16

Recovering Multi-prime RSA Keys with Erasures and Errors 267

Multi-Prime RSA, an encryption method that may be more widely used in the
future, in the context of corresponding leakage scenarios.

Related Work. Heninger and Shacham [5] first proposed an algorithm to
recover the complete private key using random partial bits of the private key
obtained from a cold boot attack in CRYPTO 2009. They reconstructed the
private key by expanding it from low to high bits and combining the leaked bits
for pruning. The conclusion shows that their attack algorithm requires at least
0.27 random bits of the private key to work properly. Henecka et al. [4] then
apply Heniger et al.’s algorithm to a new cold boot attacks leakage scenario,
where their work assumes that the adversary obtains the complete but partially
erroneous bits of the RSA private key, and after statistical analysis, the con-
clusion shows that this expansion-pruning approach can work provided that the
errored probability is less than 0.23. Paterson et al. [11] further considers the case
where the errored probability of bits 0 and 1 is asymmetric and considers the
extreme case of one-sided error (Z-channel). While Kunihiro et al. [9] combine
bit error and random bit erasure to give recoverable bounds on the expansion-
pruning algorithm for the new leakage scenario. On the other hand, Kunihiro
and Honda [8] optimised the algorithm in terms of data sources, arguing that
DRAM potential information (simulated data) after cold boot processing con-
tains more information that can be used to improve the recoverability bound
of the algorithm. The algorithm of Kunihiro and Takahashi [10] requires less
stringent information about the noise required in the leakage scenario [8], and
the private key recovery algorithm could work even when the variance of the
noise in the noisy private key is unknown.

Motivation. The fact that Multi-Prime RSA is faster to decrypt than CRT-
RSA, and is supported by the pkcs#1 standard, means that security analysis of
Multi-Prime RSA is necessary. Although there is some previous work analyzing
RSA variants [14,15], few studies have extended to cold boot attacks.

The only paper on security analysis for Multi-Prime RSA under cold boot
attacks was presented by Terada and Villena [16] at ISC 2013, and their work
applies to the key erasure-only model. Our study will extend the noisy leakage
model on which their research is based. The study by Halderman et al. [3] shows
that error bit situation exists in cold boot attacks. Moreover, the error bit is
asymmetric, due to the physical characteristics of DRAM that the probability of
a 0-bit in a low voltage state flipping to a 1-bit in a high voltage state (denoted
as α := Pr[0 → 1]) is much lower than the probability of a 1-bit in a high voltage
state flipping to a 0-bit in a low voltage state (denoted as β := Pr[1 → 0]). And
the work of [11] also indicates that introducing the consideration of asymmetric
error can make the key recovery algorithm better to handle the case of real cold
boot attacks.

Therefore, we study the key recovery algorithm for Multi-Prime RSA in the
noisy leakage model with erasures and errors.

268 G. Liu et al.

Contributions. Our study presents key recovery algorithms for Multi-Prime
RSA under two noisy leakage models and explains the algorithms’ theoretical
bounds from an information theoretical viewpoint. The first noisy leakage model
is the Binary Erasure Symmetric Error model which was considered the closest
to the actual cold boot attack in previous study [9], and the second is the Binary
Erasure Asymmetric Error model which considers the asymmetric error case.

The recovery algorithm in this paper does not need to use the full private
key parameters. In particular, for a Multi-Prime RSA with private key sk =
{d, r1, r2, d1, d2, r

−1
2 , < r3, d3, t3 >, . . . , < ru, du, tu >}, our algorithm only needs

to obtain the noisy sequence of all prime factors {r1, r2, · · · , ru} to complete
the decomposition of the modulus N , and hence d can be easily obtained, and
it will be our future work to optimize our algorithm using the CRT factors
{d1, d2, r

−1
2 , < d3, t3 >, · · · , < du, tu >} in the private key parameters.

We use δ to denote the erasure rate of the noisy leakage model and ε to
denote the error rate. Under the Binary Erasure Symmetric Error model, the
recovery algorithm can run in polynomial time as long as it satisfies:

(1 − δ)
(

1 − H

(
ε

(1 − δ)

))
≥ 1 − 1

u

where H(x) is the binary entropy defined by H(x) = −xlog2(x)−(1−x)log2(1−
x). And in the case of asymmetric error, the probability of flipping 0 bits to 1
bit is denoted by α, and the probability of flipping 1 bit to 0 bits is denoted by
β. Then the polynomial time theoretical bound of the algorithm is:

(1 − δ)

⎛
⎝H

(
1
2

+
β − α

2(1 − δ)

)
−

H
(

α
1−δ

)
2

−
H

(
β

1−δ

)
2

⎞
⎠ ≥ 1 − 1

u

The theoretical bound in this paper is given by Shannon’s Noisy-Channel
Coding Theorem, which means that we will use the channel capacity to explain
the above theoretical bounds of the key recovery algorithm.

Organizations. The rest of this study is organized as follows: In Sect. 2, we
introduce several noisy leakage models that appear in cold boot attacks. In
Sect. 3, we introduce our key recovery algorithm under a realistic leakage scenario
and provide providing theoretical bound. In Sect. 4, we discuss the implementa-
tion and performance of the attack algorithm. Finally, conclusions are given in
Sect. 5.

2 Preliminaries

In the description of the leakage model in this paper, δ denotes the erasure rate
of each bit in the RSA private key, and ε denotes the error rate of each bit.
To clarify the difference of error rate between 0-bit and 1-bit in the asymmetric

Recovering Multi-prime RSA Keys with Erasures and Errors 269

error leakage model, we use α to denote the probability of 0 bits being flipped
to 1 bits and β to denote the probability of 1 bits being flipped to 0 bits.

The next part of this section outlines the tree attack algorithm, a method for
recovering RSA private keys by constructing partial candidate solution trees. We
first present the recovery algorithm for CRT-RSA, then describe how Terada and
Villena apply this recovery algorithm to Multi-Prime RSA, and finally present
the limitations of Terada and Villena’s approach under a more realistic noisy
leakage model.

Before we get started, we would like to give a brief introduction to the two
research topics mentioned in this paper, CRT-RSA and Multi-Prime RSA. CRT-
RSA is a variation of the RSA algorithm whose core idea is to reduce computa-
tion by splitting the modulo power operation into several smaller modulo opera-
tions. Since each small modulo operation is independent, they can be computed
simultaneously, taking full advantage of multi-core processors and improving effi-
ciency. However, the CRT factors (dp and dq) added to the private key param-
eters to use CRT also increase the redundancy of the private key parameters,
which is an important reason why the recovery algorithm can work. Multi-Prime
RSA, on the other hand, reduces the number of modulo power operations by
increasing the number of prime factors of modulo N , and has better efficiency
than CRT-RSA with further acceleration of CRT, which is also the reason why
we take it as the main research object.

To better understand the content of the algorithm, we would like to introduce
the Multivariate Hensel’s Lemma, which will be used in the expansion phase of
the tree-based recovery algorithm.

Lemma 1 (Multivariate Hensel’s Lemma). A root r = (r1, r2, · · · , rn) of
the polynomial f(x1, x2, · · · , xn) mod πi can be lifted to a root r + b mod πi+1

if b = (b1πi, b2π
i, · · · , bnπi), 0 ≤ bj ≤ π − 1 is a solution to the equation

f(r + b) ≡ f(r) +
∑

j

bjπ
ifxj

(r) ≡ 0 (mod πi+1)

(Here, fxj
is the partial derivative of f with respect to xj).

2.1 Noisy Leakage Models

We formalize the noisy model discussed in this paper with ε and δ being real
numbers satisfying 0 ≤ ε < 1/2, 0 ≤ δ < 1 and 0 ≤ ε+δ < 1. The noisy sequence
of private keys obtained by cold boot attacks has the following property: each
bit in the sequence of private key bits is either erased with probability δ, errored
with probability ε or kept constant with probability 1 − δ − ε. We call this noisy
model the Binary Erasure Symmetric Error (BESE) model. When ε = 0 (but
δ > 0), this noisy model is called the Binary Erasure (BE) model. When δ = 0
(but ε > 0), this noisy model is called the Binary Symmetric Error (BSE) model.

Furthermore, we also consider the asymmetry error probabilities in our work,
which we call the Binary Erasure Asymmetric Error (BEAE) model. In this noisy

270 G. Liu et al.

leakage model, each 0-bit (1-bit) in the original key is erased with probability δ,
errored with probability α (β), or remains unchanged with probability 1 − δ −
α − β. With δ = 0 (α �= β), this model is called the Binary Asymmetric Error
(BAE) model. Although the error rate α or β is generally not zero, and more
often β � α > 0 [3], we consider the case α = 0 (but β �= 0) for the sake of
completeness, which is also referred to as the Z-channel model with erasure.

The work of [16] is based on the BE model. The existing literature on CRT-
RSA includes studies based on the BE model [5], the BSE model [4], the BAE
model [11,17], and the BESE model [7,9]. In all these studies, the researchers
used tree-based recovery algorithm to recover keys.

2.2 Recovering CRT-RSA Key Using Tree-Based Recovery
Algorithm

Here we review the tree-based recovery algorithm for CRT-RSA. First we
describe the key setting for CRT-RSA under the PKCS#1 standard. Under
this standard, the public key pk = {N, e}, where N is the modulus and e is the
encryption exponent. The private key sk = {p, q, d, dp, dq, q

−1 mod p}, where p
and q are two prime factors of modulus N , d is the private key exponent, and
dp is d reduced modulo p − 1, similar for dq, which we will refer to as the CRT
factors. In particular, q−1 mod p is the inverse of q modulo p.

The private key in CRT-RSA satisfies the following relationships and equa-
tions:

N = p · q

ed ≡ 1 mod (p − 1)(q − 1)
edp ≡ 1 mod (p − 1)
edq ≡ 1 mod (q − 1)

To simplify the analysis, we introduce three integer variables k, kp, kq and
express the above equation as:

N = p · q

ed = k · (p − 1) · (q − 1) + 1
edp = kp · (p − 1) + 1
edq = kq · (q − 1) + 1

(1)

In practice, e is often assumed to be 216 + 1, in which case the values of
k, kp, kq are assumed to be known.

In the previous work, sk is used to denote the correct private key for CRT-
RSA, sk denotes the private key observation under the noisy leakage model,
and m denotes the number of private key elements involved. For example, if
sk = (p, q, d, dp, dq), then m = 5 and if sk = (p, q), then m = 2.

Recovering Multi-prime RSA Keys with Erasures and Errors 271

The tree-based recovery algorithm is presented below as an example with
sk = (p, q, d, dp, dq). We denote by τ(X) the maximum exponent of an integer
X such that 2τ(X)|X. Denote by x[i] the i-th bit of an n-bit binary sequence
x ∈ {0, 1}n, with the lowest bit being the 0-th bit. We define slice(i) as follows:

slice(i) := (p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], dq[i + τ(kq)])

Suppose we have obtained the candidate partial solution sk′ = (p′, q′, d′, d′
p, d

′
q)

by computing from slice(0) to slice(i − 1). For CRT-RSA, we perform Hensel
lifting on Eq. (1) and propose the following identities:

p[i] + q[i] = (N − p′q′)[i] mod 2 (2)
d[i + τ(k)] + p[i] + q[i] = (k(N + 1) + 1 − k(p′ + q′) − ed′)[i + τ(k)] mod 2

(3)

dp[i + τ(kp)] + p[i] = (kp[p′ − 1] + 1 − ed′
p)[i + τ(kp)] mod 2 (4)

dq[i + τ(kq)] + q[i] = (kq[q′ − 1] + 1 − ed′
q)[i + τ(kq)] mod 2 (5)

We can easily see that p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], and dq[i + τ(kq)]
are not independent and the degree of freedom is 1 [6].

With the above background knowledge, we next introduce the four phases of
the tree-based recovery algorithm.

Initialization Phase. Initialize the value of slice(0). Since p, q are large prime
numbers, we can easily obtain slice(0) = (1, 1, d[τ(k)], dp[τ(kp)], dq[τ(kq)]).

Expansion Phase. Based on the information from slice(0) to slice(i − 1) that
has been reconstructed in the partial candidate solutions, obtain the possible
values of slice(i) by Lemma 1 (Multivariate Hensel’s Lemma) and combine them
with Eq. (2–5). Incorporate the newly generated partial candidate solution into
the candidate solution set.

Pruning Phase. Discard some of the candidate solutions that do not meet the
requirements according to the score criteria.

Final Phase. Verify the final retained candidate solution by the public key
(N, e), and the candidate solution satisfying N = p′q′ is the correct solution.

The work of [5] et al. has been done by designing scoring criteria and modify-
ing the expansion and pruning phases so that the running time of the tree-based
algorithm is polynomial in n when the correct solution is maximally preserved.

272 G. Liu et al.

2.3 Terada-Villena Method [16]

This subsection focuses on how Terada and Villena apply the tree-based recovery
algorithm to Multi-Prime RSA.

First, we briefly describe the public and private key structure of Multi-Prime
RSA under the PKCS#1 v2.1 standard, which does not differ much from CRT-
RSA in terms of key setting; their public keys are both composed of {N, e}.
However, in Multi-Prime RSA, the private key sk = {d, r1, r2, d1, d2, r

−1
2 , <

r3, d3, t3 >, . . . , < ru, du, tu >}, where {r1, r2, · · · , ru} is the u prime factor of
modulo N of close length, di is the decryption exponent d modulo ri, satisfying:

N =
u∏

i=1

ri, e · d ≡ 1 mod
u∏

i=1

(ri − 1)

and {d1, d2, r
−1
2 , < d3, t3 >, · · · , < du, tu >} are the CRT factors used to speed

up decryption, satisfying:

r2 · r−1
2 ≡ 1 mod r1

tj ·
j−1∏
i=1

ri ≡ 1 mod rj , 3 ≤ j ≤ u

e · di ≡ 1 mod (ri − 1), 1 ≤ i ≤ u.

Similarly, we introduce k, k1, k2, · · · , ku and obtain

N =
u∏

i=1

ri (6)

e · d = k ·
u∏

i=1

(ri − 1) + 1 (7)

e · di = ki · (ri − 1) + 1, 1 ≤ i ≤ u (8)

Performing Hensel lifting on Eq. (6)–(8) we obtain
(

N −
u∏

i=1

r′
i

)
[j] ≡

u∑
i=1

ri[j] mod 2 (9)

(
ed′ − 1 − k

u∏
i=1

(r′
i − 1)

)
[j + τ(k)] ≡ d[j + τ(k)] mod 2 (10)

(edi − 1 − ki(r′
i − 1))[j + τ(ki)] ≡ ri[j] + di[j + τ(ki)] mod 2, 1 ≤ i ≤ u (11)

Since Terada and Villena only use the prime factors in the private key, their
work is based on Eq. (10). According to Eq. (10), we get one constraint and u
unknowns with their degrees of freedom of u − 1 [6]. In the case where every bit
in slice(i) is unknown, each Hensel lift will produce 2u−1 candidate solutions.

Recovering Multi-prime RSA Keys with Erasures and Errors 273

In the complete key, the total number of candidate solutions is then given by
2(u−1)× n

u .
Terada and Villena’s work is based on the BE model, so their pruning condi-

tion is that any partial candidate solution containing bits inconsistent with the
corresponding bits in sk is discarded. By analyzing the relationship between the
erasure rate δ and the size of the candidate solution tree, Terada and Villena
derive the bound for the tree recovery algorithm under this model in polynomial
time with respect to n as

δ ≤ 2
1
u − 1.

2.4 Limitations and Solutions

The limitation of Terada and Villena’s work is mainly in the fact that the noisy
leakage model is too idealized. Their key recovery algorithm works well with
the BE model, but cannot handle the case with error bit because any candidate
solution that does not match a known bit in sk is discarded. How to keep the
running time of the entire recovery algorithm within an acceptable range while
retaining the correct solution is also a challenge we face.

To solve the above problem, we propose a pruning criterion and try to explain
the basis of pruning and the theoretical bounds of the algorithm in terms of cod-
ing theory. We consider the process by which an adversary acquires a corrupted
version of the RSA private key, sk, after a cold boot attack as the process of
converting the correct private key, sk, into sk after transmission over a noisy
channel, and denote by s the codeword of the correct private key, sk, and c the
codeword of the private key observation, sk, acquired over a noisy channel. In
coding theory, the conversion of s to c is determined by the type of noise in the
channel, in [5,16] by the erasure rate δ, and in our leakage model by the erasure
rate δ and the error rate (α, β). The model defines Pr(c|s) over all possible
pairs (s, c), the problem we face is how to decode c in and reproduce s with high
probability.

3 Recovering Key from Binary Erasure Error Model

In this section, we present the algorithm for recovering Multi-Prime RSA keys
from the Binary Erasure Error model. From Sect. 2.1, we know that the Binary
Erasure Error model is divided into symmetric (BESE model) and asymmetric
(BEAE model) cases. To simplify the analysis, we will first present the key
recovery algorithm under the BESE model, then extend the algorithm to the
BEAE model, and finally present the theoretical bounds of the two algorithms.

3.1 BESE Model

In our algorithm, we use the likelihood measure as a criterion for pruning. The
higher the probability that a candidate solution is the correct solution, the higher

274 G. Liu et al.

the corresponding likelihood measure. Since the erasure bit E is skipped during
the subsequence acquisition, the erasure rate is not reflected in the likelihood
measure.

The most primitive way is to perform Hensel lifting on all n/u slices of
the private key at once, and then take the candidate solution with the largest
likelihood measure as our correct solution. Recall from Sect. 2.3 that at full size,
the total number of candidate solutions obtained by Hensel lifting is given by
2(u−1)× n

u . So, our goal is to find the maximum value of :

arg max
0≤i<2(u−1)× n

u

Pr(si|c),

where si ∈ S, S represents the set of complete candidate solutions, and si is the
i-th candidate solution.

However, note that it is almost impossible to reconstruct at the scale of
2(u−1)× n

u , and indeed any cost over the power of n is unacceptable due to the
scale of RSA. Therefore, our goal is to constrain the cost within a polynomial
level of n.

Next, we will degrade the idea of finding the correct solution for the entire
private key to finding the correct solution for some bits of the private key by
slicing, so that the cost is bounded by a polynomial in the power of n. This
is because the noise in the channel causes random interference to the private
key, then the erroneous and erased bits will be uniformly distributed in the
noisy private key sequence. Thus, we can decompose the process of finding the
original (correct) value sk of a full-size private key noisy sequence sk into the
process of finding the original solution subsequence corresponding to a noisy
subsequence of length T . When we partition the subsequence, we will skip the
erasure bits E to simplify the impact analysis caused by the error rate. Recall
that in Sect. 2.2, the focus of our algorithm is on the expansion phase and the
pruning phase.

Expansion Phase. For the private key noisy sequence sk there are n
u slices

and the total number of bits is n
u × u = n. E represents erased bits in sk. Let us

take the example of u = 3 and T = 5 and assume the noisy sequence is:

{r1[0], r2[0], r3[0], r1[1], E, r3[1], r1[2], r2[2], E,E, r2[3], r3[3], r1[4], · · · , r3[
n

u
]}

So the subsequences are:

{r1[0], r2[0], r3[0], r1[1], E, r3[1]}
{r1[2], r2[2], E,E, r2[3], r3[3], r1[4]}

· · ·
To obtain the candidate solution subsequence corresponding to that in the

noisy subsequence of the private key, we need to perform several Hensel liftings
on the candidate solution c. We denote by ti the number of Hensel liftings to be

Recovering Multi-prime RSA Keys with Erasures and Errors 275

performed, and Δi the number of candidate solutions of uti bits generated after
ti Hensel liftings, corresponding to the erased bits E in the noisy subsequence.
We call the uti bits generated by candidate solution expansion nodes. Thus, we
have ti = 	(T + Δi)/u
 and this step will generate 2(u−1)×ti candidate solution
nodes. This implies that i in the original solution subsequence si is bounded by
0 ≤ i < 2(u−1)×ti .

Pruning Phase. We use the likelihood measure as a function of the score for
each candidate solution subsequence, keeping only the top L candidates with the
highest score and discarding the rest. Finding the correct solution subsequence
using the likelihood measure can be simply written as:

arg max
0≤i<2(u−1)×ti

Pr(si|c)

According to Bayes’ theorem, we can rewrite it as:

arg max
0≤i<2(u−1)×ti

Pr(si)Pr(c|si)
Pr(c)

For a given noisy private key subsequence c, Pr(c) is a constant. More gen-
erally, we assume that P(si) is also a constant independent of i [11]. Therefore,
we can express the likelihood measure as:

arg max
0≤i<2(u−1)×ti

Pr(c|si) = arg max
0≤i<2(u−1)×ti

εdi(1 − ε)1−di

Here, di denotes the Hamming distance of the noisy sequence of T -bit bits
from the corresponding position of the candidate solution, where the Hamming
distance is computed by skipping the erasure bits. We use G(si|c) to denote the
fraction of candidate solutions si when the noisy subsequence is known to be
c. Considering the simplicity of the calculation, we can express the fraction of
candidate solutions in its logarithmic form as follows:

G(si|c) := di log ε + (1 − di) log(1 − ε)

For a completed private key, the si with the largest log-likelihood measure is
the original solution s. Consider that the error probability is not 100% uniformly
distributed among the subsequence of T bits, and that too tight a constraint will
result in discarding the correct solution. Therefore, we keep the top L solutions
with the largest log-likelihood measure and discard the other candidates. L is
set to 1 for channels with only erasure noise [16].

Algorithm 1 is a formal representation of our algorithm.

276 G. Liu et al.

Algorithm 1. Recovering Multi-Prime RSA Key
Input: noisy key sequence sk, the number of prime factors u, parameters (T, L).
Output: A set of L most likely candidate sequences that represent the original private

key.
Initialization Phase: Divide the private key noisy sequence into subsequences
of length T , skipping the erasure bit E, and calculate ti, which means that the
number of slice need to be candidates for solution expansion for each subsequence,
and initialize slice(0) to {1, 1, · · · , 1}.
Expansion Phase: For each slice, perform Hensel lifts on candidate solutions to
generate a set of candidate nodes. The time of Hensel lifts is determined by ti =
�(T +Δi)/u�, where Δi represents the number of erased bits in the candidate solution
of size uti bits. This phase generates 2(u−1)ti candidate nodes for each slice.
Pruning Phase: Calculate the log-likelihood measure for each candidate sequence.
Retain the top L candidate solutions based on their log-likelihood measure.
We repeat the expansion and pruning stages until the candidate solutions are elevated
to slice(n/u).
Finalization Phase: output the L candidate solutions.

3.2 BEAE Model

In this section, we further consider the case of the BEAE model. We repeat
that no previous work on cold boot attacks has considered both erasure and
asymmetric errors, whether CRT-RSA or Multi-Prime RSA. Considering this
phenomenon not only allows our recovery algorithm to match the actual leakage
model but also improves the tolerance for higher error rate.

Our main work is to reflect the inhomogeneity of the error probability in
the likelihood measure by modifying the scoring function for the pruning phase.
Specifically, higher weights are assigned to directions with higher error probabil-
ities. The extension phase is consistent with that in the BESE model. Following
the work of [11], we modified the score function as follows:

G(si|c) = ni
00 log(1 − α) + ni

01 log α + ni
11 log(1 − β) + ni

10 log β

To recap, α := Pr(0 → 1) and β := Pr(1 → 0) are the error probabilities. ni
00

represents the number of 0-bits in the T -bit subsequence of candidate solution
si and the corresponding bit in the private key observation sequence c are both
0, for the i-th iteration. Similarly, ni

01 represents the number of 0-bits in si and
1-bits in c, and vice versa for ni

10.
When α (or β) is 0, we call this case a Z-channel model with erasure. In this

case, solutions containing ni
01 (or ni

10) candidate solutions can be discarded by
replacing ni

01 log α (or ni
10 log β) in the score function with a penalty function,

such as −1000ni
01 (or −1000ni

10).

3.3 Theoretical Bound

Before we begin, let us introduce a well-known fact about combinatorial numbers
and Binary Entropy [2].

Recovering Multi-prime RSA Keys with Erasures and Errors 277

Lemma 2. For any positive integer n and w(≤ n), it holds that:

1√
8w(1 − w/n)

≤ 2nH(w/n) ≤
w∑

i=0

(
n
i

) ≤ 2nH(w/n) (12)

For the simplicity of analysis, we first consider the case of symmetric error.

BESE Model. In the BESE model, the adversary observes a private key
sequence sk of length n(1− δ) bits. Since we retain L candidate solutions during
each iteration, if the correct solution exists, there are L − 1 incorrect solutions
within. We consider the impact on the operation of the algorithm caused by the
incorrect solutions retained in the previous iteration and the incorrect solution
expansion in the new iteration. We follow the assumptions made in the work
of [5].

Assumption 1. The bit slice corresponding to a wrong node consists of random
bits.

According to Assumption 1, if a candidate solution s satisfies the following
criterion, we consider it to be consistent with the observed private key value sk:

Criteria 1. The Hamming distance between s and sk is less than nε.

Therefore, the probability Pr that one candidate s is consistent with sk can be
represented as:

Pr =
∑nε

i=0

(
n(1−δ)

i

)
2n(1−δ)

(13)

From Lemma 2, we can obtain the upper bound of Eq. (12).

Pr ≤ 2−n(1−δ)(1−H(ε/(1−δ))) (14)

We define C(δ; ε) as C(δ; ε) := (1−δ)(1−H(ε/(1−δ))), where H(x) denotes the
binary entropy function. Therefore, the probability that a candidate solution is
consistent with the observed private key sk is at most 2−nC(δ;ε). As discussed in
Sect. 2.4, the total number of candidate solutions is given by 2(u−1)× n

u , so the
expected upper bound on the number of candidate solutions that are consistent
with sk is 2n(1−1/u−C(δ;ε)).

If C(δ; ε) < 1 − 1/u, the running time of the algorithm is exponential in
n, which is unacceptable as n → +∞. On the other hand, if C(δ; ε) ≥ 1 −
1/u, the algorithm can recover the key in polynomial time of n. Therefore, the
requirement for our algorithm to recover the key in polynomial time is:

(1 − δ)
(

1 − H

(
ε

(1 − δ)

))
≥ 1 − 1

u
(15)

This bound is represented by Fig. 1(a). We analyze the rationality of our bound-
aries from the perspective of information theory.

278 G. Liu et al.

Shannon’s Noisy-Channel Coding Theorem. Given a noisy channel with
channel capacity C and information transmitted at a rate R. If C > R there
exists codes that allow the probability of error at the receiver to be made arbi-
trarily small. If C < R, an arbitrarily small probability of error is not achievable.

Where the left-hand side of the inequality C(δ; ε) can be considered as the
channel capacity of the BESE channel, and the right-hand side is the commu-
nication rate of this channel. Recall from Sect. 2.2 that if we know the u − 1
Multi-Prime RSA bits in one slice, then we can determine the unique correct
solution for that slice. We can decode the noisy key with an arbitrarily small
error probability to recover its original value. When δ = 0, C(0; ε) = 1 − H(ε)
is the channel capacity of the BSE channel, which is also consistent with the
information we know.

BEAE Model. Combining the above explanations, we can conclude that the
condition for successfully decoding a noisy key is that the channel capacity of the
noisy channel is greater than the communication rate. In Multi-Prime RSA, we
define the communication rate R as 1 − 1

u . Therefore, to obtain the recoverable
upper bound of the tree-based recovery algorithm, we need to find the channel
capacity C that satisfies C > R.

However, there are no studies that illustrate the channel capacity of Binary
Erasure Asymmetric Error noisy channels. Therefore, combining with the chan-
nel capacity of the Binary Asymmetric Error noisy channel in [7]: C(α, β) =
H

(
1
2 + β−α

2

)
− H(α)

2 − H(β)
2 , we define the channel capacity of the Binary Era-

sure Asymmetric Error noisy channel as:

C(δ;α, β) := (1 − δ)

⎛
⎝H

(
1
2

+
β − α

2(1 − δ)

)
−

H
(

α
1−δ

)
2

−
H

(
β

1−δ

)
2

⎞
⎠

There will be a demonstration of the reasonableness of BEAE channel capacity
in terms of boundary checking.

When δ = 0, C(0;α, β) = H
(

1
2 + β−α

2

)
− H(α)

2 − H(β)
2 = C(α, β). When α =

β = ε, C(δ;α, β) = C(δ; ε, ε) = (1 − δ)
(
1 − H

(
ε

1−δ

))
= C(δ; ε). In particular,

although α is a small but non-zero value in our leakage model, we still give
the channel capacity when α = 0 (in [11], called the Z-channel) and δ > 0 by

C(δ; 0, β) = (1 − δ)
(

H
(

1
2 + β

2(1−δ)

)
− H(β

1−δ)
2

)
.

Therefore, the recoverable bound of the maximum likelihood function-based
algorithm is C(δ; ε) ≥ 1 − 1/u. That is:

(1 − δ)

⎛
⎝H

(
1
2

+
β − α

2(1 − δ)

)
−

H
(

α
1−δ

)
2

−
H

(
β

1−δ

)
2

⎞
⎠ ≥ 1 − 1

u
(16)

This bound is represented by Fig. 1(b).

Recovering Multi-prime RSA Keys with Erasures and Errors 279

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
error rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
er

as
e

ra
te

(a) When u = 3, the relationship between
erasure rate δ and error rate ε with polyno-
mial time theoretical bound.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
error rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

er
as

e
ra

te

(b) When u = 3, α = 0.001, the relation-
ship between erase rate δ and error rate β
with polynomial time theoretical bound.

Fig. 1. Theoretical bounds of Binary Erasing Symmetric (Asymmetric) Error model

Application to CRT-RSA. Based on the previous law, we infer the theoretical
recovery bound of the tree-based recovery algorithm for CRT-RSA under the
BEAE channel as C(δ;α, β) > 1/m. In fact, we have also demonstrated this
through experiments. By using a similar tree-based recovery algorithm as in this
study and the Hensel lifting method in [5], we have selected the parameters as
(T = 20, L = 28) to prove this.

For a CRT-RSA private key with m parameters, each slice in a Hensel lifting
needs only one known bit to recover the other bits. Thus, according to Shannon’s
Noisy-Channel Coding Theorem, correct decoding of noisy private keys can be
achieved as long as 1 bit is correctly transmitted for every m bits transmitted,
as shown in the work of [7] and [9].

4 Implementation and Performance

We implemented the algorithm in C++ using NTL version 11.5.1 and GMP
version 6.2.0 and accelerated it using the OpenMP multithreaded library. Our
tests were run in 64-bit mode on an Intel(R) Xeon(R) Gold 5220R processor
running at 2.20 GHz. Unless otherwise stated below, our experiments were run
100 times, each time using a randomly generated 1024-bit Multi-Prime RSA key.

In our experiments, we always test the parameters (T,L) first and then select
the best result for the experiment based on the test results.

Optimal Parameter Selection. Figure 2 represents the increase in runtime
(the right vertical coordinates) and success rate (the left vertical coordinates) as
the algorithm’s running parameter L is relaxed (the parameter T is also fixed
for control variables) with fixed noise, but they do not increase proportionally.
Our goal is to find a threshold for the parameter L such that the cost of the

280 G. Liu et al.

increase in runtime does not outweigh the benefit in terms of success rate yet
makes the success rate as high as possible.

From Fig. 2(a), we can see that for a fixed noisy (δ;α, β) and parameter T ,
increasing L from 28 to 29 increased the success rate by 15%, and the running
time doubled. However, increasing L from 29 to 210 also doubled the running
time, but the success rate only increased by 3%. Similarly, when L was increased
to 211, the increase in success rate was only 1%. Therefore, we selected the
optimal parameters (T = 12, L = 29) when δ = 0 and u = 3. Similarly, based
on Fig. 2(b), we selected the optimal parameters (T = 8, L = 28) when δ = 0.2
and u = 3. Due to space constraints and to avoid redundancy, we use the same
method for parameter selection in our subsequent experiments.

(a) u = 3, δ = 0, ε = 0.04, T = 12. (b) u = 3, δ = 0.2, ε = 0.01, T = 8.

Fig. 2. Success probability and running time for different parameters at fixed (δ; ε)

Experimental Results. In our experiments, the erasure rate δ and the exper-
imental parameters (T,L) are always fixed. In the symmetric error case, the
error rate ε is gradually increased and our bounds are verified by observing the
decreasing trend of the success rate. And in the asymmetric case, referring to [3]
and [11], we fix the error rate α to 0.001 and then gradually increase the error β.

For the BESE model, Table 1 shows that when the erasure rate δ is 0.1, the
success rate of the recovery algorithm is over 90% for ε < 0.15. However, the
success rate drops rapidly for ε > 0.02 and converges to 0 at ε of 0.039, which
corresponds to our theoretical bound.

Recovering Multi-prime RSA Keys with Erasures and Errors 281

Table 1. The trend of the success rate when u = 3, δ = 0.1, T = 12, L = 28.

ε 0.015 0.02 0.025 0.03 0.035 0.036 0.037 0.038 0.039

success rate 90% 74% 41% 25% 11% 7% 4% 3% 3%

average time (seconds) 263 270 266 262 241 254 271 234 249

For the BEAE model, with α fixed at 0.001 according to the settings of [3]
and [11], Table 2 reveals that for δ = 0, the success rate is over 90% with β < 0.1,
while for β > 0.1, success rate gradually decreases and converges to zero at
approximately 0.155. In the case of a Z-channel with erasure, with δ = 0.1 and
α = 0, Table 3 shows that the key recovery algorithm only allows for an error
probability β of up to 0.099.

Table 2. The trend of the success rate when u = 3, α = 0.001, δ = 0, T = 12, L = 28.

β 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.154

success rate 100% 99% 96% 93% 92% 67% 65% 35% 27% 13% 5%

average time (seconds) 213 212 211 213 212 213 213 212 213 213 212

Table 3. The trend of the success rate when u = 3, α = 0, δ = 0.1, T = 12, L = 29.

β 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.100

success rate 75% 72% 71% 66% 50% 41% 32% 15% 13% 2% 0%

average time (seconds) 220 218 240 220 216 221 227 233 224 235 *

In addition to the u = 3 case, we have also carried out experimental verifi-
cation for u = 2 and u = 4. For reasons of space, only the experimental results
for u = 4 are given here. Table 4 indicates that when δ = 0, the success rate
converges to 0 at approximately ε = 0.041. Likewise, Table 5 demonstrates that
for δ = 0 and α = 0.001, the success rate converges to 0 as β approaches 0.101.
These experimental data align with the theoretical results presented in Sect. 3.3.

The results show that for a given δ, the upper bound on the error rate of
the recovery algorithm decreases with increasing u. However, the value of u is
limited. When the modulus N is fixed length but u is large, the modulus N
can be decomposed without additional information by algorithms known as the
digital field sieve (NFS)1 or elliptic curve method (ECM)2.

1 It is an algorithm to factor an integer N with a very good performance.
2 It is an algorithm to compute a non-trivial factor of N .

282 G. Liu et al.

Table 4. The trend of the success rate when u = 4, δ = 0, T = 12, L = 28. The
theoretical bound for ε is 0.041

ε 0.005 0.01 0.015 0.017 0.02 0.025 0.03 0.035 0.04 0.041

success rate 100% 100% 96% 94% 80% 58% 31% 20% 6% 2%

average time (seconds) 274 272 272 274 275 275 274 271 267 275

Table 5. The trend of the success rate when u = 4, δ = 0, α = 0.001, T = 12, L = 28.
The theoretical bound for β is 0.101.

β 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.101

success rate 100% 100% 99% 97% 90% 80% 69% 43% 20% 17% 5%

average time (seconds) 273 273 273 273 272 269 269 262 259 258 257

5 Conclusion

This paper has examined the Multi-Prime RSA key recovery algorithm in the
noisy leakage model, specifically in the Binary Erasure Symmetric Error model,
and has extended this to the more realistic Binary Erasure Asymmetric Error
model. Experimental results demonstrate the feasibility of the algorithm and
establish theoretical bounds from an information theoretic perspective.

Our analysis reveals that the security of RSA under cold boot attacks
improves to some extent with an increase in the number of prime factors of
modulus N . The results of our experiments indicate that at δ = 0, α = 0.001,
the erasure rate β tolerated by the tree-based recovery algorithm decreases from
0.289 to 0.155 if we increase u from 2 to 3.

To summarize, our investigation has added to the comprehension of the secu-
rity of Multi-Prime RSA in a practical noisy leakage model when facing cold boot
attacks. Moreover, it supplies significant data that can benefit practitioners in
strengthening their encryption schemes. Further investigations could delve into
the security of different variants of RSA under the cold boot attacks leakage
model.

Acknowledgements. This work is supported in part by National Key R&D Program
of China (No. 2022YFB3103800), National Natural Science Foundation of China (No.
U1936209, No. 62002353, No. 62202231 and No. 62202230), China Postdoctoral Science
Foundation (No. 2021M701726), Jiangsu Funding Program for Excellent Postdoctoral
Talent (No. 2022ZB270) and Yunnan Provincial Major Science and Technology Special
Plan Projects (No. 202103AA080015).

References

1. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
2. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,

Hoboken (2006)

Recovering Multi-prime RSA Keys with Erasures and Errors 283

3. Halderman, J.A., Schoen, S.D., Heninger, N., et al.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

4. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 19

5. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 1

6. Kogure, J., Kunihiro, N., Yamamoto, H.: Generalized security analysis of the ran-
dom key bits leakage attack. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol.
7115, pp. 13–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27890-7 2

7. Kunihiro, N.: An improved attack for recovering noisy RSA secret keys and its
countermeasure. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451,
pp. 61–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 4

8. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
261–278. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 15

9. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 180–197. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36362-7 12

10. Kunihiro, N., Takahashi, Y.: Improved key recovery algorithms from noisy RSA
secret keys with analog noise. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 328–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 19

11. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 24

12. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 21(18), 905–907 (1982)

13. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

14. Shi, G., Wang, G., Gu, D.: Further cryptanalysis of a type of RSA variants. In:
Susilo, W., Chen, X., Guo, F., Zhang, Y., Intan, R. (eds.) ISC 2022. LNCS, vol.
13640, pp. 133–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22390-7 9

15. Takayasu, A., Kunihiro, N.: General bounds for small inverse problems and its
applications to multi-prime RSA. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS,
vol. 8949, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15943-0 1

16. Terada, R., Villena, R.C.: Factoring a multiprime modulus N with random bits.
In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 185–196. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27659-5 13

17. Wang, T., Cui, X., Ni, Y., et al.: A practical cold boot attack on RSA private
keys. In: AsianHOST 2017, pp. 55–60. IEEE (2017). https://doi.org/10.1109/
AsianHOST.2017.8353995

https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-642-27890-7_2
https://doi.org/10.1007/978-3-642-27890-7_2
https://doi.org/10.1007/978-3-319-26059-4_4
https://doi.org/10.1007/978-3-662-44709-3_15
https://doi.org/10.1007/978-3-662-44709-3_15
https://doi.org/10.1007/978-3-642-36362-7_12
https://doi.org/10.1007/978-3-642-36362-7_12
https://doi.org/10.1007/978-3-319-52153-4_19
https://doi.org/10.1007/978-3-319-52153-4_19
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-031-22390-7_9
https://doi.org/10.1007/978-3-031-22390-7_9
https://doi.org/10.1007/978-3-319-15943-0_1
https://doi.org/10.1007/978-3-319-15943-0_1
https://doi.org/10.1007/978-3-319-27659-5_13
https://doi.org/10.1109/AsianHOST.2017.8353995
https://doi.org/10.1109/AsianHOST.2017.8353995

Performance Impact Analysis
of Homomorphic Encryption: A Case

Study Using Linear Regression
as an Example

Thomas Prantl1(B), Simon Engel1, Lukas Horn1, Dennis Kaiser1,
Lukas Iffländer1, André Bauer1, Christian Krupitzer2, and Samuel Kounev1

1 University of Würzburg, Würzburg, Germany
{thomas.prantl,simon.engel,lukas.horn,dennis.kaiser,

lukas.ifflander,andre.bauer,samuel.kounev}@uni-wuerzburg.de
2 University of Hohenheim, Würzburg, Germany

christian.krupitzer@uni-hohenheim.de

Abstract. In recent years, the trend has increasingly been to store and
process data in the cloud. However, this is based on the premise that
cloud providers treat the data in a trustworthy manner. One way of using
the data in the cloud without the provider having access to it is homo-
morphic encryption. However, since this encryption has only recently
become practicable, analysis of its for practical applications is still in
its infancy. Therefore, we investigate the performance of homomorphic
encryption using a real-world application, namely linear regression. Our
main finding is that although the homomorphic computation of linear
regression is in the range of minutes and thus slower than in the non-
homomorphic case, linear regression can be computed homomorphic and
is therefore suitable for use cases where data security is the top priority.

Keywords: Homomorphic Encryption · Performance Analysis

1 Introduction

In our digital world, the collection and processing of data is of paramount impor-
tance to businesses. To provide a flexible and scalable infrastructure for the data,
the trend is to utilize cloud computing. In fact, Marc Hurd (former co-CEO of
Oracle Corporation) estimates that 80% of enterprise data centers will be mov-
ing to the cloud by 2025 [17]. However, to use the cloud and its benefits, the data
must be given to a third party that must be trusted. After all, there are many
fraud scenarios. For instance, the cloud provider could be active in the same
area as the user and use the uploaded data himself. To mitigate these risks, one
solution could be to use homomorphic encryption. This encryption allows data
to be stored and processed in a public cloud while the provider does not have
access to it. Technically, due to the homomorphic encryption, the user can then
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 284–298, 2023.
https://doi.org/10.1007/978-981-99-7032-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_17&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_17

Performance Impact Analysis of Homomorphic Encryption 285

run databases or microservices in the cloud as well as train machine learning
models and store the data in the cloud without any concerns. Although the idea
of homomorphic encryption was introduced in 1978 [16] and the first implemen-
tation of this method [4] was presented in 2009, homomorphic encryption has
only recently been made available to developers in the form of corresponding
libraries. As a result, the performance analysis of homomorphic encryption for
everyday uses cases is still in its infancy. Consequently, the goal of this paper is
to investigate the performance of this encryption in practice, using linear regres-
sion as an example. In summary, our evaluation shows that although the use
of homomorphic encryption slows down the computation of linear regression,
the computations are still possible in an acceptable time and that homomorphic
encryption is thus a way to realise data protection. The remainder of this paper
is organized as follows: In Sect. 2, we introduce the concept of homomorphic
encryption and linear regression. In Sect. 3, we explain the architectures uti-
lized to assess the performance. Next, we investigate the performance in Sect. 4.
Section 5 discusses related work. Finally, Sect. 6 concludes the paper.

2 Background

This section introduces the basic terms and concepts of homomorphic encryption,
linear regression, and gradient descent.

2.1 Homomorphic Encryption

For the definition of a homomorphic cryptosystem, we first define the term cryp-
tosystem. For this, however, we first need to define the terms plaintext and
ciphertext. We call all things that can be encrypted plaintext. The encryption
of a plaintext is called a ciphertext. Based on these terms we can define what a
cryptosystem is according to [11].

Definition 1. A cryptosystem is defined as a tuple (Σ,G, E ,D) with the follow-
ing properties:

– Σ is a finite, non-empty set. It is called the “alphabet“. The following three
sets are subsets of Σ: P is the “plaintext space“, K is the “key space“, C is
the “ciphertext space“

– G is a probabilistic algorithm that outputs a keypair (pk, sk) chosen according
to some distribution

– E takes as input a key k and a plaintext message m and encrypts it to a
ciphertext c

– D takes as input a key k and a ciphertext c and outputs the plaintext m

Additionally, a cryptosystem must satisfy the following condition, otherwise
it is not guaranteed that a ciphertext can be brought back to it’s original form,
which would make the cryptosystem quite useless:

∀m ∈ P : ∀(pk, sk) ∈ K : D(sk, E(pk,m)) = m

286 T. Prantl et al.

In the following, we denote the key as a pair (pk, sk) where pk is the key
for encryption and sk the one for decryption. Now that we have introduced the
notion of cryptosystem in general, we extend it with respect to homomorphism.
Homomorphic encryption aims to do operations like addition, multiplication,
exponentiation, etc. on encrypted data. Therefore, we extend the Definition 1 to
fulfill these requirements.

Definition 2. A homomorphic cryptosystem is defined as a tuple (Σ,G, E, D,
F , Evaluate) with the following properties [5]:

– (Σ,G, E ,D) is a cryptosystem
– F is a set of functions which can be calculated by the cryptosystem
– Evaluate is an algorithm that given a key k, a function f ∈ F and a ciphertext

c calculates a new ciphertext c′ of the same length

The last condition is necessary because otherwise it would be possible to just
write the desired calculation at the end of the ciphertext and execute it when it is
decrypted. We now extend this definition to a fully homomorphic cryptosystem.

Definition 3. Let H = (Σ,G, E ,D,F , Evaluate) be a homomorphic cryptosys-
tem. It is called “fully homomorphic“ if F contains all possible functions.

2.2 Linear Regression with Gradient Descent

We define the linear regression problem according to [13]. The linear regres-
sion problem can be simplified described as follows: Based on a set of variables
x1, . . . , xn we try to determine the target variable y. In doing so, we assume that
we can weight these variables differently and add them up. We also assume that
there is a linear relationship between the target and the influencing variables
and we also have a corresponding dataset, which depicts concrete influencing
variables on the target variable. The problem to be solved now is how to deter-
mine the different weights of the influencing variables so that the target variable
can be calculated as accurately as possible. More formally defined, we have an
influence vector X = {x1, . . . , xn}T , a weight vector Θ = {Θ1, . . . , Θn}T and a
target variable y and have to choose Θ in such a way that the scalar product of
Θ and X gives y, as shown in Eq. 1a.

y = f(X) =
n∑

i=0

θixi (1a) J(Θ) =
1
2

n∑

i=0

(θixi − yi)2 (1b)

One method to determine Θ is the gradient descent method [13], which
requires the existence of a derivable error function, also called cost function.
For this purpose, we use the function in Eq. 1b analogous to [13]. The procedure
of the gradient descent method can be summarized as follows: An initial random
assignment is chosen for Θ. Then, the target variable is predicted for each data
point of the dataset and Θ is updated based on the deviation. The update of a
concrete Θj ∈ Θ is thereby done by according to Eq. 2. Using our cost function

Performance Impact Analysis of Homomorphic Encryption 287

Eq. 2 can be simplified to Eq. 3. In practice, the dataset is not only iterated once
but several times to update Θ. In the following, we also refer to an iteration as
a learning epoch.

Θj := Θj − α
∂

∂Θj
J(Θ) (2)

∂

∂Θj
J(Θ) = Θj − (θj ∗ xj − yj) ∗ xj (3)

3 Evaluation Architectures for Homomorphic Linear
Regression

In this section we present our evaluation environment. In doing so, we consider
two different architectures. As a metric, we consider the time required for the
respective calculations. Since exactly the same result parameters were always cal-
culated for the linear regression in the non-homomorphic and the homomorphic
case, we do not go into more detail about the accuracy of both methods.

3.1 Offline Client Architecture

The functionality of the offline architecture is illustrated in Fig. 1a and shows
the two parties involved, the client and the server. The client wants the linear
regression to be calculated on its dataset, but does not want to perform these
calculations itself. Instead, the client wants the server to perform these calcula-
tions for it. However, the client wants the server to perform the calculations, but
not to see the dataset or know the results of the calculations. For this reason the
client encrypts its data homomorph and sends it to the server. The server can
perform the required calculations on the homomorphic encrypted data and send
the result back to the client. The client then only has to decrypt the result.

Fig. 1. Illustration of the (a) offline and (b) online architecture.

288 T. Prantl et al.

As metrics for the offline architecture, we use the time t̄prep it takes to encrypt
the dataset homomorphic, the time t̄ce it takes to calculate the linear regression,
and the time t̄d it takes to decrypt the results. We calculate t̄prep, t̄ce , and t̄d
respectively by encrypting the original dataset n times in a row, or performing
the homomorphic linear regression calculation n times in a row, or decrypting
the results n times in a row and averaging over the required times. As an example
of these calculations, Eq. 4 gives the calculation of t̄prep, where ti,1p represents
the time at which the initial dataset was encrypted for the ith time and ti,0p
represents the time at which the ith encryption process of the initial dataset
began. As a measure of accuracy, we use the standard deviation in each case,
which is given for t̄p in Eq. 5 as an example.

t̄prep =
1
n

n∑

i=0

ti,1p − ti,0p (4)

σprep =

√√√√ 1
n − 1

∗
n∑

i=0

(ti,1p − ti,0p − t̄prep)2 (5)

To evaluate the performance impact of homomorphic encryption we consider
(1) how do the client computation times behave in the homomorphic case rela-
tive to the non-homomorphic case, see Eq. 6a and (2) how does the sum of the
computation times of the server and client behave in aggregate in the homo-
morphic case relative to the non-homomorphic case, see Eq. 6b. The first case
indicates the factor by which the client must wait longer for the results of the lin-
ear regression if the client homomorphic outsources the calculations to the server
than if the client calculates the linear regression itself. The second case describes
the factor by which the total calculation times for the client and server increase
if the client homomorphic outsources the calculation of the linear regression to
the server instead of calculating it itself. In the Eqs. 6a and 6b t̄nh stands for
the average time the client would need to compute the linear regression on the
unencrypted dataset.

OClient =
t̄prep + t̄d

t̄nh
(6a) OTotal =

t̄prep + t̄d + t̄ce
t̄nh

(6b)

3.2 Online Client Architecture

The online architecture, shown in Fig. 1b, includes the actors client and server.
The online architecture is largely identical to the offline architecture, except for
one difference. The client assists the server in homomorphic computations. The
server can send the client encrypted parameters that the client should re-encrypt,
which resets the multiplicative depth of these parameters. The re-encryption of
parameters can take place as often as needed. As metrics for the online architec-
ture, we use t̄prep, t̄ce , and t̄d and augment them with the time t̄re required by

Performance Impact Analysis of Homomorphic Encryption 289

the client to re-encrypt homomorphic encrypted parameters. The computation
of t̄re and its accuracy measure is analogous to the Eqs. 4 and 5. We determine
the impact of applying Homomorphic encryption in the case of the online archi-
tecture in Eqs. 7a and 7b largely analogous to the corresponding Eqs. 6a and
6b of the offline architecture. The only difference is that t̄re is added to the
numerator in each case.

OClient =
t̄prep + t̄d + t̄re

t̄Client
(7a) OTotal =

t̄prep + t̄d + tce + t̄re
t̄Client

(7b)

4 Evaluation

In this section, we present our measurement set up and results.

4.1 Measurement Set up

For the sake of simplicity, we have realized the client and the server on the
same hardware. All the measurements for our two architectures were carried out
on our HPE ProLiant DL360 Gen9 server. This server has 8 CPU cores with
2.6 GHz each and 32 GB RAM. We used Ubuntu 20.04 LTS as the operating
system. For the implementation of the underlying homomorphic cryptosystem,
we used the open source library PALISADE [14]. Since PALISADE only pro-
vides the operations addition and multiplication, we had to implement the linear
regression ourselves using the gradient descent method. As a dataset on which
we want to calculate the linear regression we have used the dataset of the Kaggle
competition, in which the value of a house is to be learned [9].

4.2 Offline Architecture Evaluation

For the evaluation of our offline architecture, we first look at the times needed
to encrypt datasets of different sizes, followed by the time needed to decrypt
the results. Then we analyze the computation times of the server as well as the
overhead of the client and the total overhead.

Dataset Encryption. Figure 2a shows that the time needed to encrypt a
dataset increases with the size of the dataset, as expected, but also with the
number of the trained epochs, which is unexpected at first glance. The reason
for this is that we encrypt the data with the minimum level of multiplicative
depth required for the respective number of epochs. The multiplicative depth
indicates how many multiplications are allowed in each case. When allowing
more multiplications, more complex data must be encrypted, which leads to
longer encryption times. Additionally, it is noticeable in Fig. 2a that encryption

290 T. Prantl et al.

Fig. 2. Times required to (a) encrypt datasets and (b) decrypt results in case of the
offline architecture. We used the standard deviation as a measure of accuracy. We have
also only given the encryption times of the combinations of number of elements and
epochs for which we were able to encrypt the dataset and perform the homomorphic
calculations with the given RAM.

times are not given for every combination of dataset size and number of epochs.
This is because we have only given the times for the combinations for which we
were able to both encrypt the data and perform the subsequent homomorphic
calculation of the linear regression with the RAM available on the server. Thus,
with a dataset size of 100 elements we were still able to calculate all planned 13
epochs, for 200 elements only 6 epochs, for 300 elements only 4 epochs, for 700
elements only 3 epochs, for 900 elements only 2 epochs and for 1300 elements only
one epoch. In summary, we draw the following conclusions for the encryption of
the dataset: (1) the encryption times depend not only on the dataset size but also
on the complexity of the performed operations (here: the required multiplicative
depth), (2) homomorphic encryption has large demands for RAM, which is why
the linear regression could not be calculated homomorphic for many combina-
tions, and (3) for the feasible combinations, less than 4 min were required for
the encryption in each case. The 4 min alone for preparing the encrypted data
before the actual linear regression calculations can begin may seem like a lot at
first glance, however, it is important to remember that the encrypted data can
also be used for other evaluation and thus represent only a one-time cost.

Results Decryption. The times for decrypting the results also depend on the
multiplicative depth, but are independent of the dataset size, which can be seen
in Fig. 2b, in which we have again analogously only given the times for the feasible
combinations. The independence of the dataset size is due to the fact that the
number of result parameters for linear regression is constant. Analogously to the
times for encrypting the dataset in Fig. 2a, the times for decrypting the result
parameters increase with the number of learning epochs. This is again due to
the fact that more complex calculations are required for more learning epochs,
which is why the data must be encrypted in a more complex manner to allow

Performance Impact Analysis of Homomorphic Encryption 291

a greater multiplicative depth, resulting in longer decryption times. However,
since the required decryption times are always less than 200 ms, apart from two
outliers, the decryption times are negligible in our opinion.

Fig. 3. Calculation times of the server for linear regression in (a) case of the offline
architecture and (b) the non-homomorphic case. The standard deviation in the form
of error bars was given as a measure of accuracy

Homomorphic Calculations. The times required by the server in the case of
the offline architecture for calculating the linear regression homomorphic using
the gradient descent method can be seen for different dataset sizes in Fig. 3a. In
this figure, it is again noticeable that we could not execute the same number of
epochs for all dataset sizes with the given RAM of the server. In order to be able
to classify the required calculation times in the case of the online architecture,
the respective calculation times for the non-homomorphic case are illustrated in
Fig. 3b. What is immediately apparent from the Fig. 3a and 3b are the following
two observations: (1) in the non-homomorphic case, the server’s RAM was suffi-
cient to train 13 epochs each for all dataset sizes and (2) in the non-homomorphic
case, always less than 225 µs are required, while in the homomorphic case, the
smallest dataset for 13 epochs already requires over 1250 s. Thus, the homomor-
phic calculation of linear regression using the offline architecture are significantly
slower than the non-homomorphic calculation.

Time Overhead. In order to better quantify the overhead already observed,
which the homomorphic calculation of the linear regression entails, we addition-
ally consider OClient and OTotal in the Figs. 4a and 4b. To do this, we first
consider Fig. 4a, in which the overhead OClient of the client in the case of the
offline architecture is shown depending on the dataset size and performed learn-
ing epochs. To reiterate, the overhead OClient defined in Sect. 2 can be simplified
seen as the factor by which the client’s computational time is higher due to the
use of homomorphic encryption and the corresponding architecture than if the
client had computed the linear regression itself non-homomorphic. The time

292 T. Prantl et al.

overhead for the client is in all cases at least a factor of more than 4 million but
at most a factor of 14 million. The overhead of the client increases the larger the
dataset or the number of learning epochs.

The total overhead OTotal generated by the use of homomorphic encryption
for the client and server is illustrated in Fig. 4b. To recap, the overhead OTotal

defined in Sect. 2 can be simplified as the factor by which the computation time
of the client and the server is higher due to the use of homomorphic encryption
and the corresponding architecture than if the client had computed the linear
regression itself non-homomorphic. This graph shows that the total overhead in
terms of time for the cases considered amounts to a factor between 10 million
and 80 million. Similar to the overhead of the client alone, the total overhead
increases with increasing number of epochs or dataset size. In summary, it can
be said that the overhead in terms of time due to the use of homomorphic
encryption in the offline architecture is well over one million.

Fig. 4. The total time overhead of (a) the client and (b) the client and server in the case
of the offline architecture. Again we have also only given the overhead times for those
combinations of number of elements and epochs for which we were able to perform the
homomorphic calculations with the given RAM

4.3 Online Architecture Evaluation

For the evaluation of our online architecture, we proceed analogously to the
evaluation of our offline architecture and start again with the encryption and
decryption times. Afterwards, we compare the times for computation before
analyzing the introduced overhead.

Dataset Encryption and Results Decryption. Figure 5a and 5b show the
encryption and decryption times. Compared to the offline architecture, the
encryption times only depend on the size of the dataset and increase linearly
with the dataset size. This is because by re-encrypting the data we can reset
the multiplicative depth and thus only need the multiplicative depth required
for one epoch. This means that we never need more than 2 min to encrypt with

Performance Impact Analysis of Homomorphic Encryption 293

the online architecture, whereas we sometimes need almost twice that time with
the offline architecture. It is also noticeable that with the online architecture we
were able to execute the planned 13 epochs for each dataset size. With less than
2 min, the time required for encryption is also negligible in our opinion, since
the encrypted data can also be used for further evaluations. The time needed to
decrypt the results is illustrated in Fig. 5b. Analogous to the offline architecture,
the decoding times of the results are independent of the dataset size. However,
in the case of the online architecture, they are also independent of the number
of learning epochs. This is because the multiplicative depth is now independent
of the number of learning epochs and we can therefore use the same depth in
each case. Since the result decoding times, also within the scope of the error, are
below 40 ms in each case, these are again negligible in our opinion in contrast
to the required time for the encryption of the dataset.

Fig. 5. Times required to (a) encrypt datasets and (b) decrypt the result of the linear
regression in case of the online architecture. We used the standard deviation as a
measure of accuracy, but it is mostly too small to be visible.

Homomorphic Calculations. Analogous to the evaluation of the offline archi-
tecture, we next look at the required calculation times of the server in Fig. 6a.
What is striking in comparison to the calculation times of the server in the case
of the offline architecture in Fig. 3a is that we were able to train the 13 epochs for
all dataset sizes in the case of the online architecture. In addition, the calcula-
tion times in the case of the online architecture are significantly shorter than the
corresponding times in the offline architecture, but are still significantly greater
than the times required in the non-homomorphic case, see Fig. 3b. This means
that the online architecture already provides the server with a performance boost
in terms of time in contrast to the offline architecture. However, this boost is only
achieved because the client is now ready to re-encrypt intermediate results. This
results in additional computation time for the client compared to the offline
architecture. If we look at Fig. 6b, we can see that this additional effort also
increases with the size of the dataset and the number of learning epochs, but we
can also see, that this effort has always remained below 1.5 s in total. Thus, in

294 T. Prantl et al.

our opinion, this additional effort for the client is negligible, as the 1.5 s is only
the cumulative time required, and the client is significantly less burdened for a
single re-encryption and is thus still available for other tasks.

Fig. 6. Calculation times of (a) the server for the linear regression and (b) the client
for the re-encryption in the case of the online architecture. The standard deviation is
again mostly too small to be visible.

Time Overhead. Finally, we look at how the overhead of the client and the
total overhead behave in the case of the online architecture. To do this, we first
look at the overhead of the client in Fig. 7a. From this Figure it can be seen that
the relationship from the offline architecture, namely that the overhead increases
for the client with increasing learning epochs or elements in the data set, does not
apply to the online architecture. In the case of online architecture, the overhead
for the client decreases as the number of learning epochs increases. Compared
to the offline architecture the actual overhead for the client is also lower in each
case, even if it is still in the tens of millions. If we look at the total time overhead
for the server and client in Fig. 7b, we can draw the same conclusions for the
total overhead as for the client overhead. In summary, the online architecture
generates less overhead than the offline architecture in that the client not only
encrypts the initial dataset and decrypts the results, but also assists the server
with the calculations. However, even with the online architecture, the overhead in
terms of time is factors of over one million. The greatest advantage of the online
architecture is therefore that it allows up to 13 learning epochs to be calculated
for larger datasets. More than 13 epochs would have been theoretically possible,
but for time reasons we have limited ourselves to a maximum of 13 epochs.

Performance Impact Analysis of Homomorphic Encryption 295

Fig. 7. The time overhead of the (a) client and (b) the client and server in the case of
the online architecture for the homomorphic calculation of the linear regression.

4.4 Discussion

Our results show that the encryption is feasible in a reasonable amount of time.
However, the required time depends not only on the dataset size, but also the
operation type. The decryption process requires a negligible amount of time.
Furthermore, the computation of the linear regression is significantly slower than
the non-homomorphic calculation. In the following, we discuss these findings.

Homomorphic encryption, besides making linear regression slower, is a possi-
bility how to realize data protection. For example, it is extremely difficult to use
machine learning in the cloud for research with medical data, because one first
need an ethics council and have to comply with all the regulations due to the sen-
sitivity of the data. By means of homomorphic encryption one could share such
encrypted data and could also organize, e.g., AI competitions as it is often usual
in the AI world. Remarkably, the development of homomorphic libraries is at its
beginning. There are already first approaches to adapt homomorphic encryption
on GPUs, where already speed ups of the factor 1000 are possible [7]. Optimiz-
ing the libraries even further and run on GPU rather than CPU then there is
still room for improvements. One possible improvement could be bootstrapping,
i.e. that one resets the multiplicative depth of an encrypted vector directly and
does not have to decrypt and re-encrypt the vector for this. We have seen that
it does not matter how many elements a vector consists of. Thus homomorphic
encryption is well suited for applications with parallel computations. Therefore,
it would make sense to try homomorphic encryption on neural networks, e.g.,
by starting with feed forward networks, where one could represent the transition
from one layer to the next as a single vector multiplication.

4.5 Threats to Validity

Regarding possible threats to the validity of our statements, we encountered the
following points. First, the calculation of overhead depends on the hardware used.
For example, in our example, the total time overhead Ototal could be reduced

296 T. Prantl et al.

by using more powerful hardware for the server, which would allow the server to
compute the homomorphic linear regression calculations faster. Thus, the term
t̄ce in the Eqs. 6b or 7b would be smaller, making Ototal smaller overall. We
are aware of this fact, however, see this as common practice to report the times
and, for reproducibility reasons, we also report the used hardware infrastructure.
Further, as we rely an a hardware setup with seems to be realistic for practical
usage, We think that we limit this threat by that. The second possible danger for
the validity of our statements lies in the used library PALLISADE. During our
measurements, we noticed that the library contains minor memory leaks. These
memory leaks were not due to us, since they occur even in the PALISADE
standard examples. To make sure that these memory leaks do not have any
influence on the performance, we have carried out corresponding measurements
and could not detect any influence on the calculation times. In addition, to make
sure that the measurements are not falsified by the memory leaks, we controlled
the measurements via an external script, which manually releases the RAM and
resolves the memory leaks.

5 Related Work

In this section, we review related work and highlight the novelty of our con-
tribution. The authors of the papers [8] and [15] analyzed homomorphic linear
regression as well. However, they used the Paillier cryptosystem, which is not
fully homomorphic. The Paillier cryptosystem allows for the product of two
ciphertexts to be decrypted as the sum of the corresponding plaintexts and for
a ciphertext raised to the power of a plaintext to be decrypted as the product
of the two plaintexts. Thus, to compute the multiplication for linear regression,
the data must be in plaintext, which is not the case in our fully homomor-
phic approach. Using a fully homomorphic cryptosystem allows us to compute
the multiplications and additions needed for linear regression directly on the
encrypted data. By using a cryptosystem that is not fully homomorphic, the
authors also do not have the associated problem of increasing multiplicative
depth and the performance issues that come with it. We have analyzed these
performance problems using two different architectures. We also consider a dif-
ferent application case. We consider the case where the owner of the data can
store it homomorphic encrypted in a cloud and use the computational resources
there to perform arbitrary analysis, such as linear regression, on that data. In
contrast, the authors in [8] pursue the goal that if the dataset is distributed
across multiple parties, it is still possible for the individual parties to compute
the linear regression together without having to make their data available to any
of the other parties. The authors in [15] have a similar goal.

The authors of [12] have also dealt with homomorphic regression, but with
logistic regression. As a cryptosystem, they use the system of Cheon et al. [3],
which requires only homomorphic encoded data for the computation of multipli-
cation and addition. The authors circumvent the problem of multiplicative depth
on the one hand by rescaling the encrypted values and on the other hand that

Performance Impact Analysis of Homomorphic Encryption 297

certain hyperparameters have to be determined beforehand on the unencrypted
data. We differ from this approach in that we do not perform precomputations
on unencrypted data and analyze the impact of multiplicative depth on perfor-
mance. In terms of metrics, we additionally consider the overhead incurred by
the use of homomorphic encryption and, unlike [12], achieve the same accuracy
with our homomorphic encryptions as in the unencrypted case.

In [2], the authors also want to compute the linear regression homomorphic,
using Microsoft’s SEAL library, which allows multiplication and addition on
homomorphic encoded data. The linear regression was computed on different
datasets whose size is unknown. Therefore, the performance values given are dif-
ficult to classify with regard to the times required for encrypting and decrypting
or for calculating the linear regression. In addition, the calculation of the inverse
of a matrix, which is necessary for how they calculate the linear regression, is
not encrypted. We differ from this approach, among other things, in that all
calculations are done homomorphic, we specify the used dataset, and that we
analyze the overhead that arises from the use of homomorphic encryption.

The paper [1] is an extension of the work [6] Therefore we focus only on the
paper [1]. The authors of [1] make use of the two-server model from [10] and
assume that the data owner can outsource the computation of linear regression
to two non-colluding servers S1 and S2. In doing so, server S1 combines the
data homomorphic encrypted by the data owner and masked them. The data
thus encrypted and masked can be decrypted by server S2 to compute the linear
regression on the unencrypted but masked data. This approach poses the risk
that the servers could collaborate and thus gain access to the data. This is also
the main difference with our approach, which performs all computations only
on the homomorphic encrypted data. As a result, the data owner retains full
control over his data, no matter how many servers of the cloud cooperate.

6 Conclusion

One way of using the data in the cloud without the provider having access to
it is homomorphic encryption. However, since this encryption has only been
practicable recently, there is only little work that investigates its performance.
Therefore, we presented two approaches to realize homomorphic encryption. The
first approach is that the client sends its data homomorphic encrypted to the
cloud, which is to perform the corresponding calculations. The client does not
support the cloud in the calculations and only decrypts the result. The second
approach is largely the same as the first approach, except that the client now
supports the cloud in the calculations in such a way that it decrypts and re-
encrypts individual parameters in order to reset the multiplicative depth of these
parameters. We compared those approaches in an linear regression application
and analyzed the times required for encryption, decryption and computation
as well as the introduced overhead. The results show that the encryption times
depend not only on the dataset size, but also the operation type; however, in our
scenario, encryption is feasible in a reasonable amount of time. The decryption

298 T. Prantl et al.

process requires a negligible amount of time. Furthermore, the computation of
the linear regression is significantly slower than the non-homomorphic calculation
up to a factor of 80 million.

References

1. Akavia, A., et al.: Linear-regression on packed encrypted data in the two-server
model. In: Proceedings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography (2019)

2. Chen, B., et al.: Implementing linear regression with homomorphic encryption.
Procedia Comput. Sci. 202, 324–329 (2022). International Conference on Identifi-
cation, Information and Knowledge in the internet of Things, 2021

3. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing (2009)

5. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3) (2010). https://doi.org/10.1145/1666420.1666444

6. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving
ridge regression with only linearly-homomorphic encryption. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 243–261. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 13

7. Goey, J.Z., et al.: Accelerating number theoretic transform in GPU platform for
fully homomorphic encryption. J. Supercomput. 77(2), 1455–1474 (2021)

8. Hall, R., et al.: Secure multiple linear regression based on homomorphic encryption.
J. Off. Stat. 27(4), 669 (2011)

9. Kaggle: House Prices - Advanced Regression Techniques. https://www.kaggle.com/
competitions/house-prices-advanced-regression-techniques/data. Accessed 29 Oct
2022

10. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive (2011)

11. Katz, J., et al.: Introduction to Modern Cryptography, 2nd edn. Chapman Hall,
CRC Cryptography and Network Security, CRC Press, Boca Raton; London; New
York (2015)

12. Kim, M., et al.: Secure logistic regression based on homomorphic encryption:
Design and evaluation. JMIR Med. Inform. 6(2), e8805 (2018)

13. Ng, A.: CS229 lecture notes. CS229 Lect. Notes 1(1), 1–3 (2000). https://see.
stanford.edu/materials/aimlcs229/cs229-notes1.pdf. Accessed 25 Sept 2022

14. PALISADE Project: Palisade Homomorphic Encryption Software Library. https://
palisade-crypto.org/. Accessed 17 Jan 2023

15. Qiu, G., et al.: Privacy-preserving linear regression on distributed data by homo-
morphic encryption and data masking. IEEE Access 8, 107601–107613 (2020)

16. Rivest, R.L., et al.: On data banks and privacy homomorphisms. Found. Secure
Comput. 4(11), 169–180 (1978)

17. Steve, R., Angus, L.: Oracle ceo hurd says 80% of corporate data centers gone by
2025. https://www.wsj.com/articles/BL-CIOB-11316. Accessed 25 Sept 2022

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-319-93387-0_13
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
https://palisade-crypto.org/
https://palisade-crypto.org/
https://www.wsj.com/articles/BL-CIOB-11316

Chosen Ciphertext Security for Blind
Identity-Based Encryption with Certified

Identities

Sohto Chiku1(B) , Keisuke Hara1,2 , and Junji Shikata1

1 Yokohama National University, Yokohama, Japan
chiku-sohto-tw@ynu.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Identity-based encryption (IBE) is one of the important extension of
public-key encryption (PKE) which can use identities, such as email addresses
or phone numbers, as public keys. Due to this aspect, IBE can reduce the cost
of maintaining public key infrastructure. However, it has a special issue called
the “key escrow problem”, which means that the key generation center (KGC)
can decrypt all ciphertexts and get all messages in them since it inherently has
all user public/private key pairs. To tackle this problem, Emura, Katsumata, and
Watanabe recently proposed a variant of IBE called blind IBE with certified iden-
tities by introducing identity certifying authority (ICA). Their constructions are
based on pairing or lattice and secure against chosen plaintext attacks.

In this paper, we introduce security against chosen ciphertext attacks (CCA
security) for blind identity-based Encryption with certified identities. More pre-
cisely, we formalize definitions of 3-types security against chosen ciphertext
attacks (security against corrupted users, KGC, and ICA) for blind IBE with
certified identities. Then, we propose the first blind IBE with certified identities
schemes. Roughly, we provide a generic construction by applying the Fujisaki-
Okamoto transformation to previous CPA secure Blind IBE with certified iden-
tities schemes. Through our generic construction, we obtain two instantiations
based on pairing or lattice. Finally, we implement our pairing based scheme and
demonstrate that it is practically efficient compared with existing schemes.

Keywords: Identity-based Encryption · Chosen Ciphertext Security · Key
Escrow Problem · Pairing · Lattice

1 Introduction

Identity-based Encryption (IBE) is one of important notion in cryptography with
advanced functionalities proposed by Shamir [17]. IBE can use arbitrary strings, such
as e-mail addresses, as public keys. This reduces the cost of using public key infras-
tructures. In IBE, we have a special entity called the key-generation center (KGC) who
maintains a master public/secret key pair. Using this master key, the KGC issues private
keys for user IDs after confirming the validity of the IDs. That is, the KGC poten-
tially has the power to decrypt all users’ ciphertexts. This critical disadvantage of IBE
is called the key escrow problem, and this problem is a main barrier when considering
real-world use of IBE.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 299–314, 2023.
https://doi.org/10.1007/978-981-99-7032-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_18&domain=pdf
http://orcid.org/0009-0001-4802-8235
http://orcid.org/0000-0003-3598-0988
https://doi.org/10.1007/978-981-99-7032-2_18

300 S. Chiku et al.

To overcome this problem, several attempts to reduce the amount of trust on the
KGC in IBE have already been proposed. One of the solutions is to involve each user in
the user secret key generation process, such as certificate-less encryption (CE) [2] and
registration-based encryption (RBE) [11]. Another approach is to introduce an inde-
pendent notion of security against the KGC for (standard) IBE [5,14]. Inspired by the
Chow’s work [5], Emura, Katsumata, and Watanabe recently proposed a new variant
of IBE called blind IBE with certificated identities [7,8].1 The idea of their work is
to introduce a new entity called identity-certifying authority (ICA) to authenticate the
users in the system and realizing anonymous key-issuing protocol between users and
the KGC. More precisely, for blind IBE, they formalized three security properties for
(corrupted) users, KGC, and ICA, respectively. Then, they provided blind IBE schemes
satisfying these properties based on the standard assumptions over pairing or lattice in
the random oracle model (ROM).

While their blind IBE deals with the key escrow problem, it captures only security
against chosen plaintext attacks (CPA security). From the aspect of abilities for adver-
saries, we have two flavors of security for encryption schemes (e.g., PKE, IBE): CPA
security and chosen ciphertext attacks (CCA) security [3,6,10]. In general, since CCA
security captures active adversaries (and implies non-malleability), it is more desirable
than CPA security and has been recognized as de facto security requirement.

1.1 Our Contribution

Based on the above motivation, this paper gives the following three contributions.

CCA Security for Blind IBE with Certified Identities. Firstly, we provide new secu-
rity notions capturing CCA for blind IBE. Specifically, by extending the previous
CPA security for blind IBE, we give formal definitions of CCA security for (cor-
rupted) users (IND-ANON-CCA security), KGC (IND-ANON-KGCCCA security), and
ICA (IND-ANON-ICACCA security), respectively.

A Generic Construction of CCA Secure Blind IBE with Certified Identities. As our sec-
ond technical result, we show a generic construction of CCA secure blind IBE with cer-
tified identities from CPA secure blind IBE with certified identities [7,8]. Specifically,
we extend the classical Fujisaki-Okamoto (FO) conversion [9], which is a technique to
upgrade CPA secure PKE to CCA secure PKE in the ROM, to blind IBE setting, and
applies to a CPA secure blind IBE scheme. More precisely, in order to capture the lat-
tice instantiation in [7,8], we consider a variant of the FO conversion preserved even
under the presence of correctness errors [13] instead of the original FO conversion.
Then, we provide formal security proofs for the obtained blind IBE scheme, and give
two instantiations over pairing or lattice.

Implementation of Our Pairing-Based CCA Secure Blind IBE Scheme. Finally, in order
to show the practical efficiency of our pairing-based CCA secure blind IBE scheme, we

1 In this work, for the purpose of distinction, we refer to the above variant of IBE as “blind IBE”
and the original IBE as “(standard) IBE”.

CCA Security for Blind IBE with Certified Identities 301

implement and evaluate it in Python. From this experimentation result, even though our
scheme has stronger security, we can see that our scheme is as efficient as the previous
CPA secure blind IBE scheme [8] and the (most classical and efficient) Boneh-Franklin
IBE scheme [4].

1.2 Organization

The remaining part of this paper is organized as follows: In Sect. 2, we introduce prelim-
inaries that will be used later. Then, in Sect. 3, we give the relevant definitions including
syntax and security definitions. Next, the construction and proof of our IBE are given
in Sect. 4. In Sect. 5, we give two instantiations of our schemes and comparison space
cost. Finally, Sect. 6 presents the performance evaluation of pairing-based schemes.

2 Preliminaries

In what follows, we first introduce some notations used in this work. Then, we give a
few preliminaries related to bilinear groups and lattice. (Due to the space limitation, we
omit the definitions of digital signature and pseudorandom function.)

Notations. In this paper, we use the following notations. For n ∈ N, we denote
[n] = {1, .., n}. x ← X denotes the operation of sampling an element x from a
finite set X . y ← A(x; r) denotes that a probabilistic Turing machine A outputs y
for an input x using a randomness r, and we simply denote y ← A(x) when we need
not write an internal randomness explicitly. For interactive Turing machines A and B,
v ← 〈A(xa),B(xb)〉 denotes that A outputs v at the end of an execution of an inter-
active protocol between A and B, where A and B take xa and xb as input respectively.
PPT stands for probabilistic polynomial time. x := y denotes that x is defined by y. ê
denotes the base of the natural logarithm. We say a function ε(λ) is negligible in λ, if
ε(λ) = o(1/λc) for every c ∈ Z, and we write negl(λ) to denote a negligible function
in λ. ∅ denotes the empty set. If O is a function or an algorithm and A is an algorithm,
AO means A has oracle access to O.

Bilinear Groups. Here, we recall some notations for bilinear groups. Let p be a λ-
bit prime, G and GT groups of order p, e : G × G → GT a bilinear map (pair-
ing), and g a generator of G. We require that bilinearlity: for all g1, g2 ∈ G and
a, b ∈ Zp, e(ga

1 , gb
2) = e(g1, g2)ab, and non-degeneracy: e(g, g) �= 1 hold. We say

that (G,GT , g, p, e) is a bilinear group.

Lattice. Here, we recall some notations for lattice and the Learning with Error (LWE)
assumption. A (full-rank-integer) m-dimensional lattice Λ in Z

m is a set of the form
{Σi∈[m]xibi|xi ∈ Z}, where B = {b1, · · · ,bm} are m linearly independent vec-
tors in Z

m. We call B the basis of the lattice Λ. For any positive integers n, m and
q ≥ 2, a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q , we define the lattices Λ⊥(A)

= {z ∈ Z
m|Az = 0 mod q} and Λ⊥

u (A) = {z ∈ Z
m|Az = u mod q}. Further-

more, fix u ∈ Z
n
q . Then the conditional distribution of e ← DZm,σ given Ae = u

mod q for a uniformly random A in Z
n×m
q is statistically close to DΛ⊥

u (A),σ . The fol-
lowing lemma states useful algorithms for sampling short vectors from lattices.

302 S. Chiku et al.

Lemma 1 ([12,15]). Let n,m, q > 0 be integers with m ≤ 2n log q.

TrapGen(1n, 1m, q) → (A,TA): There exists a randomized algorithm that outputs a
matrix A ∈ Z

n×m
q and a full-rank matrix TA ∈ Z

m×m, where TA is a basis for
Λ⊥(A), A is statistically close to uniform and ||TA||GS = O(

√
n log q).

SamplePre(A,u,TA, σ) → e : There exists a randomized algorithm that, given a
matrix A ∈ Z

n×m
q , a vector u ∈ Z

n
q , a basis TA for Λ⊥(A), and a Gaussian

parameter σ > ||TA||GS · ω(
√
logm), outputs a vector e ∈ Z

m sampled from a
distribution which is negl(n)-close to DΛ⊥

u (A),σ .

3 CCA Security for Blind IBE with Certified Identities

In this section, we recall the syntax of blind IBE with certified identities, then introduce
CCA security for it.

3.1 Recap: The Syntax of Blind IBE with Certified Identities

In this section, we recall the definition of blind IBE with certified identities by Emura
et al. [7,8].

Definition 1 (Blind IBE with Certified Identities [7,8]). A Blind IBE scheme with
certified identities IBE consists of the following PPT algorithms:

Setup(1λ) → params: The setup algorithm takes as input a security parameter 1λ, and
outputs a public parameter params. We assume the identity space ID and the mes-
sage space M are defined by params. Moreover, we assume params are implicitly
provided as input to the following algorithms.

KGC.KeyGen(params) → (mpk,msk): The KGC key-generation algorithm takes as
input params, and outputs a master public key mpk and a master secret key msk.

ICA.KeyGen(params) → (vk, ik): The ICA key-generation algorithm takes as input
params, and outputs a certificate verification key vk and a certificate issuing key ik.

ICA.Cert(vk, ik, ID) → (cert, td): The certificate-issuing algorithm run by ICA takes
as inputs a certificate verification key vk, a certificate issuing key ik, and a identity
ID ∈ ID, and outputs a certificate cert and a trapdoor information td.

IBE.Enc(mpk, ID,M) → C: The encryption algorithm run by a sender takes as inputs
the master public key mpk, an identity ID ∈ ID, and a message M ∈ M, and
outputs a ciphertext C.

IBE.Dec(mpk, skID,C) → M or ⊥: The decryption algorithm run by receiver takes as
input the master public key mpk, a secret key skID, and a ciphertext C, and outputs
M.

〈ObtainKey(mpk, ID, cert, td), IssueKey(mpk,msk, vk)〉: The interactive secret key
issuing protocol between a user and the KGC involves two interactive algorithms
ObtainKey and IssueKey. The user and the KGC interactively run the ObtainKey
algorithm and the IssueKey algorithm, respectively as follows.
User: The user takes as input (mpk, ID, cert, td) as specified by the input of

ObtainKey, and sends a first-round message Muser to the KGC.

CCA Security for Blind IBE with Certified Identities 303

KGC: The KGC takes as input (mpk,msk, vk) as specified by the input of IssueKey
along with the message Muser sent by the receiver, and returns a second-round
message MKGC to the receiver.

User: On input the message MKGC from the KGC, the receiver (locally) outputs
either skID or ⊥.

As the correctness, we call a blind IBE scheme IBE is δ-correct if E[maxM∈M
Pr[IBE.Dec(mpk, skID,C) �= M|C ← IBE.Enc(mpk, ID,M)]] ≤ δ, where the expec-
tation is taken over params ← Setup(1λ), (mpk,msk) ← KGC.KeyGen(params),
(vk, ik) ← ICA.KeyGen(params), (cert, td) ← ICA.Cert(vk, ik, ID), skID ←
〈ObtainKey(mpk, ID, cert, td), IssueKey(mpk,msk, vk)〉, and C ← IBE.Enc(mpk,
ID,M).

Emura et al. [7,8] formalized three security notions for blind IBE with
certified identities against (corrupted) users (IND-ANON-CPA security), KGC
(IND-ANON-KGC security), and ICA (IND-ANON-ICA security), respectively.

3.2 Definition of CCA Security

In this section, we introduce CCA security for blind IBE with certified identities. Firstly,
we consider security against corrupted users who have chosen ciphertext attacks. We
call this IND-ANON-CCA security, to explicitly indicate that it implies anonymity.
This differs from IND-ANON-CPA security of blind IBE in that an adversary A can
access the decryption oracle, that will output any message from any identities and
ciphertexts. Note that we do not consider an adversary A that can obtain a certifi-
cate for ID∗, since this will allow A to trivially break security. This corresponds to the
assumption that, in practice, an adversary cannot obtain a certificate for the challenge
identity ID∗.

Definition 2 (IND-ANON-CCA).We define IND-ANON-CCA security by the following
game between a challenger and a PPT adversary A. Below, let CTSamp be a sampling
algorithm that takes a master public key as input and outputs an element in the cipher-
text space.

Setup: At the outset of the game, the challenger runs params ← Setup(1λ),
(mpk,msk) ← KGC.KeyGen(params), (vk, ik) ← ICA.KeyGen(params), and ini-
tializes an empty list IDList := ∅. The challenger further picks a random coin
coin ← {0, 1} and keeps it secret. The challenger gives (params,mpk, vk) to A.
After this, A can adaptively make the following four types of queries to the chal-
lenger in arbitrary order: certificate, secret key, decryption, and challenge queries.
A can query the first three arbitrary polynomials many times and the fourth only
once.
Certificate Query: If A submits ID ∈ ID (it must be ID �= ID∗ after the

challenge query) to the challenger, the challenger computes (cert, td) ←
ICA.Cert(vk, ik, ID) and returns (cert, td) to A. It then stores ID to IDList.

Secret Key Query: If A submits a first-round message Muser to the challenger,
the challenger runs the IssueKey algorithm taking as inputs (mpk,msk, vk) and
the message Muser, and obtains a second-round message MKGC. It then returns
MKGC to A.

304 S. Chiku et al.

Decryption Query: If A submits an identity ID and a ciphertext C (it must
be ID �= ID∗ ∨ C �= C∗ after the challenge query), the challenger runs
M ← IBE.Dec(mpk, skID,C) where skID ← 〈ObtainKey(mpk, ID, (cert, td) ←
ICA.Cert(vk, ik, ID)), IssueKey(mpk,msk, vk)〉. Then, the challenger returnsM
to A.

Challenge Query: If A submits (ID∗,M∗) to the challenger where ID∗ ∈ ID,
ID∗ /∈ IDList and M∗ ∈ M, the challenger proceeds as follows: If coin = 0,
the challenger returns C∗ ← IBE.Enc(mpk, ID∗,M∗). Otherwise, if coin = 1,
the challenger returns C∗ ← CTSamp(mpk).

Guess: A outputs a guess ̂coin ∈ {0, 1} for coin. We say that IBE is IND-ANON-CCA
secure if the advantageAdvIND-ANON-CCA

IBE,A (λ) = |Pr[coin = ̂coin]−1/2| is negligible
in λ for any PPT adversary A.

Then, we also define security against the honest-but-curious KGC (KGC follows
the protocol but attempts to obtain information about the underlying plaintexts from the
observed ciphertexts) who have CCA. We call this IND-ANON-KGCCCA security. As
for user, this differs from IND-ANON-KGC security of blind IBE in that an adversary
A can access the decryption oracle. Security against the KGC guarantees that, when the
KGC runs honestly (that is, generates secret keys honestly), it cannot get any informa-
tion about the corresponding identities or plaintexts from target ciphertexts, even if it
uses knowledge obtained via the key-issuing protocol.

Definition 3 (IND-ANON-KGCCCA). We define IND-ANON-KGCCCA security by the
following game between a challenger and a PPT adversary A. Below, let CTSamp be
a sampling algorithm that takes a master public key as input and outputs an element in
the ciphertext space.

Setup: At the outset of the game, the challenger runs params ← Setup(1λ),
(mpk,msk) ← KGC.KeyGen(params), (vk, ik) ← ICA.KeyGen(params), and ini-
tializes an empty list IDList := ∅. The challenger further picks a random coin
coin ← {0, 1} and keeps it secret. The challenger gives (params,mpk,msk, vk) to
A. After this, A can adaptively make the following four types of queries to the chal-
lenger in arbitrary order: certificate, secret key, decryption, and challenge queries.
A can query the first three arbitrary polynomials many times and the fourth only
once.
Encryption Query: If A submits an index i and a message m ∈ M to the

challenger, the challenger first checks if i ∈ [Qkey] where [0] is defined as

the empty set. If not, the challenger aborts and outputs ̂coin ← {0, 1}. Oth-
erwise, the challenger retrieves the i − th entry IDi ∈ IDList[i] and returns
C ← IBE.Enc(mpk, IDi,m).

Decryption Query: If A submits a index i and a ciphertext C to the chal-
lenger (it must be i �= i∗ ∨ C �= C∗ after the challenge query), the chal-
lenger first checks if i ∈ [Qkey] where [0] is defined as the empty set. If

not, the challenger aborts the game and outputs ̂coin ← {0, 1}. Otherwise,
the challenger retrieves the i − th entry IDi ∈ IDList[i] and returns M ←
IBE.Dec(mpk, skIDi ,C) to A, where skIDi ← 〈ObtainKey(mpk, IDi, (cert, td)
← ICA.Cert(vk, ik, IDi)), IssueKey(mpk,msk, vk)〉.

CCA Security for Blind IBE with Certified Identities 305

IssueKey Query: IfAmakes an IssueKey query, the challenger first randomly sam-
ples ID ← ID and computes (cert, td) ← ICA.Cert(vk, ik, ID). It then runs
ObtainKey on inputs (mpk, ID, cert, td) to generate the first-round message
Muser and returns Muser to A. Finally, the challenger stores ID to IDList[Qkey]
and updates Qkey ← Qkey + 1.

Challenge Query: If A submits (i∗,M∗) to the challenger where M∗ ∈ M, the
challenger first checks if i∗ ∈ [Qkey]. If not, the challenger proceeds as follows:
The challenger first retrieves the i∗ − th entry IDi∗ ∈ IDList[i∗]. Then, if coin =
0, the challenger returns C∗ ← IBE.Enc(mpk, IDi∗ ,M∗). Otherwise, if coin =
1, the challenger returns C∗ ← CTSamp(mpk).

Guess: A outputs a guess ̂coin ∈ {0, 1} for coin. We say that IBE is IND-ANON-
KGCCCA secure if the advantage AdvIND-ANON-KGCCCA

IBE,A (λ) = |Pr[coin = ̂coin]−1/2|
is negligible in λ for any PPT adversary A.

Finally, we consider security against the malicious ICAwho have CCA. Amalicious
ICA can generate certificates for any users, and thereby obtain the corresponding secret
keys by impersonating the user and interacting with the (honest) KGC. Therefore, in
principle, we do not allow the ICA to have the capability of generating a potentially
malicious key pair (vk, ik) in the experiment, while disallowing it to have access to
the decryption oracle. As for above two definition, this differs from IND-ANON-ICA
security of blind IBE in that an adversary A can access the decryption oracle.

Definition 4 (IND-ANON-ICACCA).We define IND-ANON-ICACCA security by the fol-
lowing game between a challenger and a PPT adversary A. Below, let CTSamp be a
sampling algorithm that takes a master public key as input and outputs an element in
the ciphertext space.

Setup: At the outset of the game, the challenger runs params ← Setup(1λ),
(mpk,msk) ← KGC.KeyGen(params). The challenger further picks a random coin
coin ← {0, 1} and keeps it secret. The challenger gives (params,mpk) to A. After
this, A can make the challenge query once.
Decryption Query: If A submits an identity ID, issuing key ik, verifying key

vk and a ciphertext C (it must be ID �= ID∗ ∨ C �= C∗ after the chal-
lenge query), the challenger runs M ← IBE.Dec(mpk, skID,C) where skID ←
〈ObtainKey(mpk, ID, (cert, td) ← ICA.Cert(vk, ik, ID)), IssueKey(mpk,msk,
vk)〉. Then, the challenger returns M to A.

Challenge Query: If A submits (ID∗,M∗) to the challenger where M∗ ∈ M.
Then the challenger proceeds as follows: If coin = 0, the challenger returns
C∗ ← IBE.Enc(mpk, ID∗,M∗). Otherwise, if coin = 1, the challenger returns
C∗ ← CTSamp(mpk).

Guess: A outputs a guess ̂coin ∈ {0, 1} for coin. We say that IBE is
IND-ANON-ICACCA secure if the advantage AdvIND-ANON-ICACCA

IBE,A (λ) = |Pr[coin =
̂coin] − 1/2| is negligible in λ for any PPT adversary A.

306 S. Chiku et al.

4 Our Construction of CCA Secure Blind IBE with Certified
Identities

In this section, we construct a CCA secure blind IBE scheme with certified identities
and give security proofs for it. Section 4.1 gives a generic construction toward CCA
security. Section 4.2 shows our construction satisfies security defined in Sect. 3.2.

4.1 Construction

This section gives a generic construction of CCA secure blind IBE with certified iden-
tities.

Construction. Let IBE = (Setup, KGC.KeyGen, ICA.KeyGen, ICA.Cert, IBE.Enc,
IBE.Dec, 〈ObtainKey, IssueKey〉) be a blind IBE scheme satisfying 3-type security
notions IND-ANON-CPA, IND-ANON-KGC, and IND-ANON-ICA. Then, we construct
another blind IBE scheme IBE′ = (Setup′,KGC.KeyGen′, ICA.KeyGen′, ICA.Cert′,
IBE.Enc′, IBE.Dec′, 〈ObtainKey′, IssueKey′〉) as follows: Let M be a message space
of IBE, R a randomness space of IBE.Enc, and M′ a message space of IBE′.

– Setup′: It works in the following steps:
1. Run params ← Setup(1λ).
2. Pick two hash functions H1 : M → R and H2 : M × C → M′.
3. Set params = (params,H1,H2).
4. Output public parameters params.

– KGC.KeyGen′: It works in the following steps:
1. Run (mpk,msk) ← KGC.KeyGen(params).
2. Output master public/secret key pair (mpk,msk).

– ICA.KeyGen′: It works in the following steps:
1. Run (ik, vk) ← ICA.KeyGen(params).
2. Output certificate issuing/verifying key pair (ik, vk).

– ICA.Cert′: It works in the following steps:
1. Run (cert, td) ← ICA.Cert(ik, vk, ID).
2. Output certificate information cert and trapdoor information td.

– IBE.Enc′: It works in the following steps:
1. Samples k ← M
2. Computes C0 ← IBE.Enc(params, ID, k;H1(k))
3. Computes C1 ← M ⊕ H2(k,C0)
4. Outputs C = (C0,C1)

– IBE.Dec′: Let C = C0||C1 be a ciphertext to decrypt. It works in the following steps:
1. Computes k := IBE.Dec(params, skID,C0).
2. Computes M := H2(k,C0) ⊕ C1.
3. Verifies that Enc(mpk, ID, k;H1(k)) = C1 holds. If not, outputs ⊥.
4. Outputs M as the decryption of C.

– 〈ObtainKey′, IssueKey′〉: It works between a user and the KGC as follows:
1. Run skID/⊥ ← 〈ObtainKey(mpk, ID, cert, td), IssueKey(mpk,msk, vk)〉.
2. Output skID or ⊥.

CCA Security for Blind IBE with Certified Identities 307

Correctness. From a similar argument to [13, Theorem 3.1], if IBE is δ-correct, IBE′ is
δ1-correct where δ1 = qH1 · δ, where qH1 is the number of H1 query.

4.2 Security Proofs

In this section, we provide the formal security proofs for our scheme in Sect. 4.1.

Theorem 1. Suppose that the hash function H1 and H2 are random oracles and IBE is
IND-ANON-CPA secure blind IBE scheme, then IBE′ is IND-ANON-CCA secure.

Proof. We show how to construct an adversary B that breaks IND-ANON-CPA secu-
rity of IBE by using an adversary A that breaks IND-ANON-CCA security of IBE′

with an advantage ε(λ). The challenger starts an IND-ANON-CPA security game by
running params ← Setup(1λ), (mpk,msk) ← KGC.KeyGen(params) and (vk, ik) ←
ICA.KeyGen(params). B works by interacting with A in the IND-ANON-CCA game as
follows:

Setup: B gives params,mpk, vk to A. When A makes oracle queries, B responds as
follows:

H1 Query: B maintains a list of tuples (xi, hi) to responds the queries. We refer to this
list as H1List. The list is initially empty. When A queries xi, B responds as follows:
1. If the query xi already appears on the H1List in a tuple (xi, hi) then B responds

with H1(xi) = hi.
2. Otherwise, B picks hi from R randomly.
3. B adds the tuple (xi, hi) to the H1List.

H2 Query: B maintains a list of tuples (yi,C
i
0, gi) as explained below. We refer to this

list as the H2List. The list is initially empty. When A queries (yi,C
i
0), B responds as

follows:
1. If the query yi and Ci

0 already appears on the H2List in a tuple (yi,C
i
0, gi) then

B responds with H2(yi,C
i
0) = gi.

2. Otherwise, B picks a random element gi from M′ of IBE.
3. B adds the tuple (yi,C

i
0, gi) to the H2List and returns gi.

Certificate Query: Let ID be an certificate query issued by A. B queries ID to its own
certificate oracle and gets the corresponding certification cert and trapdoor td. B
passes (cert, td) to A as answer of the query.

Secret Key Query: Let Muser be an secret key query issued by A. B inputs Muser to its
own secret key oracle and gets the corresponding second round message MKGC. B
passes MKGC to A as answer of the query.

Decryption Query: Let (ID,C = (C0,C1)) be a decryption query issued by A. B
responds as follows:
1. Find a pair of tuples (x, h) and (x,C0, g) from the H1List and H2List, respec-

tively, such that C0 = IBE.Enc(mpk, ID, x;h).
2. Outputs g ⊕ C1 if there exists such a pair of tuples, or outputs ⊥ otherwise.

Challenge Query:WhenA outputs an identity ID∗ and messageM∗ on which it wishes
to be challenged, B sends ID∗ to the challenger and receives a ciphertext C∗

0. Then,
B generates C∗

0||C∗
1 where C

∗
1 is random element in M′. B gives C∗

0||C∗
1 as the chal-

lenge to A.

308 S. Chiku et al.

Guess: Once A decides that Phase 2 is over it outputs a guess ̂coin.

After A outputs the guess ̂coin, B chooses a tuple (x, h) or (y,C0, g) from the H1List
or the H2List, respectively. Then, B outputs k in the tuple as the answer of the
IND-ANON-CPA game. Now, we define the following three events:

SuccA: The event that A wins the IND-ANON-CCA game.
AskA: The event that A asks a query for H1(IBE.Dec(mpk, skID,C0)) or

H2(, IBE.Dec(mpk, skID,C0)) at some point during the game, where skID :=
〈ObtainKey(mpk, ID, (cert, td) ← ICA.Cert(vk, ik, ID)), IssueKey(mpk,msk, vk)〉
and 	 denotes any elements in M.

Fail: The event that the simulation fails before A submits a query for
H1(IBE.Dec(mpk, skID,C0)) or H2(, IBE.Dec(mpk, skID,C0)).

Then, we have Pr[SuccA|¬Fail] · Pr[¬Fail] ≥ ε(k) + 1
2 − Pr[Fail]. Since

Pr[SuccA|¬Fail,AskA] = 1/2, we also have Pr[SuccA|¬Fail] = Pr[SuccA|¬Fail ∧
AskA] · Pr[AskA] + 1

2 (1 − Pr[AskA]) = 1
2 Pr[AskA] +

1
2 . Hence, we have that

(12 Pr[AskA] +
1
2) · Pr[¬Fail] ≥ ε(λ) + 1

2 − Pr[Fail], and therefore, Pr[AskA] ≥
2ε(λ) − Pr[Fail]. Next, we estimate Pr[Fail]. The event Fail occurs only when either

Case 1. A submits a decryption query ID,C0||H2(x,C0) ⊕ M such that C0 =
IBE.Enc(mpk, ID, x;H1(x)) without asking H1(x), where x ← M, or

Case 2. A submits a decryption query ID, IBE.Enc(mpk, ID, x;H1(x))||C1 such that
C1 = H2(x, IBE.Enc(mpk, ID, x;H1(x))) ⊕ M without asking
H2(x, IBE.Enc(mpk, ID, x;H1(x))), where x ← M.

Case 1 and Case 2 happen with probability at most
qH1
|M| and

qH2
|M| , respectively, and

therefore, we have that Pr[Fail] ≤ 1−(1− qH1−qH2
|M|)qD . Hence, we have that AdvB(λ) ≥

1
qH1+qH2

Pr[AskA] ≥ 1
qH1+qH2

(2ε(λ) − 1 − (1 − qH1−qH2
|M|)qD)) � 1

qH1+qH2
(2ε(λ) −

qD
qH1−qH2

|M|). ��
Theorem 2. Suppose that the hash function H1 and H2 are random oracles and IBE is
IND-ANON-KGC secure blind IBE scheme, then IBE′ is IND-ANON-KGCCCA secure.

Proof. We show how to construct adversary B that breaks IND-ANON-KGC secu-
rity of IBE by using adversary A that breaks IND-ANON-KGCCCA security of IBE′

with advantage ε(λ). The challenger starts an IND-ANON-KGC security game by run-
ning params ← Setup(1λ), (mpk,msk) ← KGC.KeyGen(params) and (vk, ik) ←
ICA.KeyGen(params). B works by interacting with A in the IND-ANON-KGCCCA

game as follows:

Setup: B gives params,mpk,msk, vk to A. When A makes oracle queries, B responds
as follows:

H1 query: B maintains a list of tuples (ki, hi) to responds the queries. We refer to
this list as H1List. The list is initially empty. When A queries xi, B responds as
following:
1. If the query xi already appears on the H1List in a tuple (xi, hi) then B responds

with H1(xi) = hi.

CCA Security for Blind IBE with Certified Identities 309

2. Otherwise, B picks hi from R randomly.
3. B adds the tuple (xi, hi) to the H1List.

H2 Query: B maintains a list of tuples (yi,C
i
0, gi) as explained below. We refer to this

list as the H2List. The list is initially empty. When A queries (yi,C
i
0), B responds as

follows:
1. If the query yi and Ci

0 already appears on the H2List in a tuple (yi,C
i
0, gi) then

B responds with H2(yi,C
i
0) = gi.

2. Otherwise, B picks a random element gi from M′ of IBE.
3. B adds the tuple (yi,C

i
0, gi) to the H2List and returns gi.

Issue Key Query: When A makes issue key query, B runs certificate query issued by
A. B passes Muser to A as answer of the query.

Decryption Query: Let (j,C = (C0,C1)) be the i − th decryption query issued by A.
B responds as follows:
1. Find a pair of tuples (x, h) and (x,C0, g) from the H1List and H2List, respec-

tively, such that C0 = IBE.Enc(mpk, ID, x;h).
2. Outputs g ⊕ C1 if there exists such a pair of tuples, or outputs ⊥ otherwise.

Challenge Query: Once A decides that Phase 1 is over it outputs a index i∗ and mes-
sage M∗ on which it wishes to be challenged. B sends i∗ to the challenger and
receives a ciphertext C∗

0. Then, B generates C∗
0||C∗

1 where C∗
1 is random element in

M′. B gives C∗
0||C∗

1 as the challenge to A.
Guess: When A outputs a guess ̂coin ∈ {0, 1}, B chooses a tuple σ,M, g or σ, h from

the H1List or the H2List, respectively. Then, B outputs σ in the tuple as the answer
of the IND-ANON-KGC game.

Similar to the proof of Theorem 1, we have AdvB(λ) ≥ 1
qH1+qH2

(2ε(λ) − qD
qH1−qH2

|M|).
��

The security against the ICA is a strictly weaker variant of the security against
corrupted users. Therefore, Theorem 1 also ensures IND-ANON-ICACCA security as
the following Corollary 1.

Corollary 1. Suppose that the hash function H1 and H2 are random oracles and IBE
is IND-ANON-ICA secure blind IBE scheme, then IBE′ is IND-ANON-ICACCA secure.

5 Instantiation

In this section, we provide two instantiations of our generic construction given in
Sect. 4. In Sect. 5.1 (resp., Sect. 5.2), we provide the formal description of pairing-based
construction (resp., the lattice-based construction). In Sect. 5.3, we compare the space
costs of each element about our schemes and the existing schemes.

5.1 Instantiation from Pairing

In this section, we show how to construct a CCA secure blind IBE scheme from the
CPA secure blind IBE scheme based on pairing [8].

310 S. Chiku et al.

Construction. Let G and GT be groups with prime order p, g ∈ G be a generator,
and e : G × G → GT be a pairing. Let the identity space ID of the IBE scheme
IBE be ID = Zp and the message space M of IBE be M = {0, 1}l. Finally, let
Sig := (Sig.KeyGen,Sig.Sign,Sig.Verify) be a digital signature scheme with message
space {0, 1}n for some n. We assume that Sig provides the standard security notion of
existential unforgeability under an adaptive chosen message attack (EUF-CMA).

Setup(1λ): : Choose (G,GT , g, p, e) where p be a λ-bit prime number. Output
params = (1λ, (G,GT , g, p, e),H0,H1,H2) where H0 : Zp → G,H1 : GT →
Zp,H2 : GT × GT → {0, 1}l are hash functions modeled as random oracle.

KGC.KeyGen(params): Choose x ← Zp and compute Y = gx. Then, output a master
public key mpk = Y and a master secret key msk = x.

ICA.KeyGen(params): Run (vkSig, skSig) ← Sig.KeyGen(1λ). Then, output a certifi-
cate verification key vk = vkSig and a certificate issuing key ik = skSig.

ICA.Cert(vk, ik, ID): Parse ik = skSig and compute uID = H0(ID). Then, choose
yID,1 ← Zp and compute uID,1 = gyID,1 . Furthermore, compute uID,2 = uIDuID,1 ∈
G and σSig ← Sig.Sign(skSig, uID,2). Finally, output a certificate cert = (uID,2, σSig)
and trapdoor information td = yID,1.

IBE.Enc(mpk, ID,M): Compute uID = H0(ID). To encrypt a message M ∈ {0, 1}l,
sample k ← GT , and computes r = H1(k). Next, compute (c0, c1, c2) = (gr, k ·
e(uID, Y)r,M ⊕ H2(k, c1)). Finally, output a ciphertext C = (c0, c1, c2).

IBE.Dec(mpk, skID,C): Parse C = (c0, c1, c2). Compute k = c1/e(skID, c0) and M =
c2 ⊕ H2(k, c1). If k · e(uID, Y)H1(k) = c1, then output M, otherwise output ⊥.

〈ObtainKey(mpk, ID, cert, td), IssueKey(mpk,msk, vk)〉: The user and the KGC inter-
actively runs ObtainKey and IssueKey, respectively.
User: On input (mpk, ID, cert, td), set the first-round message Muser = cert and

send Muser to the KGC. Here, cert = (uID,2, σSig).
KGC: On input (mpk,msk, vk) and the first-round message Muser, parse vk =

vkSig and Muser = (uID,2, σSig). If Sig.Verify(vkSig, uID,2, σSig) = ⊥, then set
MKGC = ⊥ and send MKGC to the user. Otherwise, parse mpk = Y and msk =
x. Then, compute yID,2 = ux

ID,2, setMKGC = yID,2, and send MKGC to the user.
User: IfMKGC = ⊥, then output⊥. Otherwise, parse td = yID,1 andMKGC = yID,2,

compute eID = yID,2 · Y −yID,1 and (locally) output the secret key skID = eID.

5.2 Instantiation from Lattice

In this section, we show how to construct a CCA secure blind IBE scheme from the
CPA secure blind IBE scheme based on lattice [7].

Construction. Let the identity space ID of the IBE scheme IBE be ID = {0, 1}∗.
In practice, by using collusion resistant hash functions, we can set ID = {0, 1}l for
l = O(λ). Here, we occasionally treat elements in Zn

q as binary strings over {0, 1}n log q

through some fixed canonical embedding. Let PRF : K × X = Y be any pseu-
dorandom function with appropriate domain X and range Y (i.e., let X include ID
and the set of all the first-round messages Muser, and let range Y include an appro-
priate length of randomness used by algorithms ICA.Cert and IssueKey). Finally, let

CCA Security for Blind IBE with Certified Identities 311

Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify) be a deterministic digital signature scheme
with message space {0, 1}n log q where the randomness used to sign a message is
derived deterministically from the signing key and the message. Using PRFs, any dig-
ital signature scheme can be derandomized. We assume that Sig provides the standard
security notion of existential unforgeability under an adaptive chosen message attack
(EUF-CMA).

Setup(1λ): Choose positive integers n, m and prime q, and output params =
(1λ, 1n, 1m, q, α′, σ,H0,H1,H2), where H0 : {0, 1}∗ → Z

n
q ,H1 : {0, 1}l →

Z
n
q ,H2 : {0, 1}l × {0, 1}l → {0, 1}l are hash functions modeled as random ora-

cles.
KGC.KeyGen(params): Run (A,TA) ← TrapGen(1n, 1m, q) and sample a PRF key

sKGC ← K. Then, output a master public keympk = A ∈ Z
n×m
q and a master secret

key msk = (TA, sKGC).
ICA.KeyGen(params): Run (vkSig, skSig) ← Sig.KeyGen(1λ) and sample a PRF key

sICA ← K. Then, output a certificate verification key vk = vkSig and a certificate
issuing key ik = (skSig, sICA).

ICA.Cert(vk, ik, ID): Parse ik = (skSig, sICA) and compute uID = H(ID). Then, sample
a short vector yID,1 ← {0, 1}m and compute uID,1 = AyID,1. Furthermore, compute
uID,2 = uID − uID,1 ∈ Z

n
q and σSig ← Sig.Sign(skSig, uID,2). Finally, outputs a cer-

tificate cert = (uID,2, σSig) and a trapdoor information td = yID,1. Here, we assume
all the randomness used in this algorithm is derived from rID ← PRF(sICA, ID).

IBE.Enc(mpk, ID,M): Compute uID = H0(ID). To encrypt a message M ∈ {0, 1}l,
sample k ← {0, 1}l, x ← DZm,α′,q, and x ← DZ,α′,q , and compute s = H1(k),
c0 = A�s+x, ci

1 = u�
IDs+x+ki�q/2� (i = 0, . . . , l−1), and c2 = M⊕H2(k, c1).

Finally, output C = (c0, c1, c2).
IBE.Dec(mpk, skID,C): Parse, C = (c0, c1, c2) and skID = eID. Compute ωi = c0 −

eIDci
1 (i = 0, . . . , l − 1) and if ωi is closer to 0 than �q/2� mod q, then k′

i = 0,
otherwise k′

i = 1. Next, compute M = c2 ⊕ H2(k′, c1). If ci
1 = u�

IDH1(k) + x +
ki�q/2� (i = 0, . . . , l − 1), then output M, otherwise output ⊥.

〈ObtainKey(mpk, ID, cert, td), IssueKey(mpk,msk, vk)〉: The user and the KGC inter-
actively runs ObtainKey and IssueKey, respectively.
User: On input (mpk, ID, cert, td), set the first-round message Muser = cert and

sendMuser to the KGC. Here, cert = (uID,2, σSig).
KGC: On input (mpk,msk, vk) and the first-round message Muser, parse vk =

vkSig and Muser = (uID,2, σSig). If Sig.Verify(vkSig, uID,2, σSig) = ⊥, then set
MKGC = ⊥ and send MKGC to the user. Otherwise, parse mpk = A and msk =
(TA, sKGC). Then, sample a short vector yID,2 ← SamplePre(A, uID,2,TA, σ),
set MKGC = yID,2, and send MKGC to the user. Here, we assume all the random-
ness used in this algorithm is derived from rMuser ← PRF(sKGC,Muser).

User: IfMKGC = ⊥, then output⊥. Otherwise, parse td = yID,1 andMKGC = yID,2,
set eID = yID,1 + yID,2 and (locally) output the secret key skID = eID.

5.3 Space Cost Comparison

In this section, we compare the space costs of our CCA secure blind IBE schemes with
CPA secure ones by [8]. Table 1 shows a summary of the space costs among them.

312 S. Chiku et al.

In Table 1, in the columns “CPA Lattice” and “CCA Lattice”, l denote the length of
plaintexts. As we can see in Table 1, compared between a CPA secure scheme and a
CCA secure scheme, the costs of a secret key are the exactly same, and the overheads
of a ciphertext are the almost same.

Table 1. Evaluation of Space Costs

Element CPA Pairing CCA Pairing CPA Lattice CCA Lattice

Secret key |G| |G| |Zn
q | |Zn

q |
Plaintext |GT | l l l

Ciphertext 2|GT | 2|GT |+ l |Zn
q |+ l|Zq| |Zn

q |+ l|Zq|+ l

6 Implementation of Our Pairing-Based Construction

In this section, we show that our proposed pairing -based scheme does not lose effi-
ciency compared to existing schemes. Specifically, the processing time and data size of
our scheme are the almost same as ones of BF-IBE [4] and EKW-Blind-IBE [8]. To this
end, we implement a proof of concept in Python 3.7.13 using Charm 0.50 [1], which
is a framework for prototyping pairing-based cryptosystems. Our IBE is constructed
using symmetric pairings, but for efficiency reasons, we instantiate it with an asymmet-
ric curve with 224-bit base field (curve MNT224 in Charm), which gives approximately
112 bits of security [16]. The experimental platform is performed on a personal com-
puter running 64-bit Ubuntu 22.04 LTS with AMD Ryzen 5-3600 CPU@3.50GH and
8GB of RAM. Table 2 presents a comparison result of the cost in milliseconds, associ-
ated to the main cryptographic operations among of BF-IBE, CCA version BF-IBE,
EKW-Blind-IBE, and CCA version of EKW-Blind-IBE (our scheme). We executed
these experiments in 50 different runs of 10 times each, and both the minimum and aver-
age timing was taken for each operation; we use the Python module timeit for these
measurements. It can be seen that the efficiency of BF-IBE, EKW-Blind-IBE, and our
scheme are comparable for the main high-level operations of IBE, namely Encryption
and Decryption. Furthermore, the total average processing time of other operations in
our scheme is about 37.187 ms, which is considered highly practical, while our scheme
has additional security compared to BF-IBE and EKW-Blind-IBE.

Table 2. Evaluation of Time Performance

BF-IBE-CPA BF-IBE-CCA EKW-Blind-IBE Ours

min. (ms) ave. (ms) min. (ms) ave. (ms) min. (ms) ave. (ms) min. (ms) ave. (ms)

KGC.KeyGen 4.512 4.911 4.990 5.150 4.485 4.887 4.534 5.091

ICA.KeyGen – – – – 4.011 4.374 3.982 4.456

ICA.Cert – – – – 1.143 1.251 1.216 1.291

SKGen (Extract) 0.565 0.627 0.553 0.622 7.424 8.075 8.036 8.261

Encryption 11.212 12.327 13.528 14.408 11.222 12.271 13.961 14.505

Decryption 3.176 3.513 3.333 3.609 3.430 3.512 3.498 3.583

CCA Security for Blind IBE with Certified Identities 313

Acknowledgement. This research was in part conducted under a contract of “Research and
development on new generation cryptography for secure wireless communication services”
among “Research and Development for Expansion of Radio Wave Resources (JPJ000254)”,
which was supported by the Ministry of Internal Affairs and Communications, Japan. This work
also was in part supported by JSPS KAKENHI Grant Numbers JP22H03590 and JP21H03395,
JST-CREST JPMJCR22M1, and JST-AIP JPMJCR22U5.

References

1. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Crypto-
graphic Eng. 3(2), 111–128 (2013)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-40061-5 29

3. Attrapadung, N., et al.: Relations among notions of security for identity based encryption
schemes. Cryptology ePrint Archive, Report 2005/258

4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8 13

5. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S., Tsudik, G.
(eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-00468-1 15

6. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd
ACM STOC, pp. 542–552

7. Emura, K., Katsumata, S., Watanabe, Y.: Identity-based encryption with security against the
KGC: a formal model and its instantiation from lattices. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 113–133. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29962-0 6

8. Emura, K., Katsumata, S., Watanabe, Y.: Identity-based encryption with security against the
KGC: a formal model and its instantiations. Theor. Comput. Sci. 900, 97–119 (2022)

9. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at mini-
mum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

10. Galindo, D., Hasuo, I.: Security notions for identity based encryption. Cryptology ePrint
Archive, Report 2005/253

11. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: remov-
ing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 25

12. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious trans-
fer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 16

13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto trans-
formation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 12

14. Izabachène, M., Pointcheval, D.: New anonymity notions for identity-based encryption. In:
Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 375–391.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 25

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-00468-1_15
https://doi.org/10.1007/978-3-642-00468-1_15
https://doi.org/10.1007/978-3-030-29962-0_6
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-540-76900-2_16
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-85855-3_25

314 S. Chiku et al.

15. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 41

16. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces
for FR-reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84, 1234–1243
(2001)

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://
doi.org/10.1007/3-540-39568-7 5

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5

A New Gadget Decomposition Algorithm
with Less Noise Growth in HE Schemes

Chao Liu1,2(B) and Bozhong Liu2

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

2 Sangfor Technologies Inc., Shenzhen, China

liuchao@sangfor.com.cn

Abstract. A gadget decomposition algorithm can invert a specific gad-
get matrix and produce an output with specific statistical properties.
Such algorithms are commonly used in GSW-type homomorphic encryp-
tion schemes, like TFHE, to enable homomorphic multiplication on
ciphertexts while controlling noise growth.

In this paper, we propose a new decomposition algorithm that has
lower noise growth compared to existing algorithms. Our work is inspired
by Genise et al.’s algorithm [EUROCRYPT 2018] and can be considered
an improved version of their algorithm. Our decomposition procedure is
designed using the idea of Babai’s nearest plane algorithm. Our experi-
mental result show that both the noise growth and efficiency are superior
to Genise et al.’s algorithm, and Zhang-Yu’s algorithm [PKC 2022].

Keywords: Gadget decomposition · Subgaussian distribution · Lattice
gadget · Implementation · Homomorphic encryption

1 Introduction

Homomorphic Encryption (HE) [5,7,8,11,14] is a crucial technique for protect-
ing sensitive data. In lattice-based homomorphic encryptions, the noise in the
ciphertexts grows after performing homomorphic operations. Let Enc(m; e) be
the HE encryption ciphertext of message m with noise e. The noise in two cipher-
texts sum to the sum of the noise in those two ciphertexts, i.e.

Enc(m1; e1) + Enc(m2; e2) = Enc(m1 + m2; e1 + e2).

When multiplying a ciphertext Enc(m; e) by a constant u, the result is
Enc(um;ue), and the noise can become large when u is large.

A solution to obtain a meaningful encryption (with small noise) of um is to
use binary digit decomposition of u. Given encryptions

{Enc(2im; ei)}i=0,··· ,k−1,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 315–331, 2023.
https://doi.org/10.1007/978-981-99-7032-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_19&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_19

316 C. Liu and B. Liu

one can compute Enc(um) by decomposing u =
∑

i 2iui where ui ∈ 0, 1, and
computing

∑

i

ui · Enc(2im; ei) = Enc(
∑

i

2iuim;
∑

i

uiei) = Enc(um;
∑

i

uiei).

In this way, the resulting noise scales linearly with k = log2 u but not u. This
method is widely used in the GSW-type homomorphic encryption schemes [15]
such as FHEW [10], TFHE [8], and the recently proposed NTRU-type scheme
[4,17].

In a paper by Alperin-Sheriff and Peikert [2], it was suggested that when
using Subgaussian Decomposition, the resulting noise can be reduced more than
the binary digit decomposition. The Pythagorean Additivity property of the sub-
gaussian distribution allows the noise to only increase as O(

√
k). Although Dis-

crete Gaussian Sampling can also result in the Pythagorean growth, its sampling
process is significantly more complex, making it unfeasible for use in decompos-
ing a factor in HE schemes. Thus, Subgaussian Decomposition is the preferred
option in HE schemes due to its Pythagorean Additivity and reduced noise over-
head.

The first practical Subgaussian Decomposition algorithm was proposed by
Genise et al. [13]. This algorithm allows for the decomposition of any value
u < q into a subgaussian vector, given a modulus q and base b. Testing by
Genise et al. [13] showed that using Subgaussian Decomposition improved the
implementation performance of the KP-ABE scheme [9] by a factor ranging from
18x to 289x.

The noise produced by the homomorphic multiplication computation
∑

i ui ·
Enc(2im; ei) is

∑
i uiei. Assuming ei is independently sampled from a Gaus-

sian distribution with parameter σ (which is typical in homomorphic encryption
schemes), then

∑
i uiei can be considered as an element from a Gaussian dis-

tribution with parameter ||u||2σ, where u = (u0, · · · , uk−1) is the vector of u’s
decomposition parameters. The magnitude of the noise growth

∑
i uiei largely

depends on the length (e.g., l2 norm) of u.
The algorithm proposed by Genise et al. is a randomized algorithm, meaning

that some outputs perform better than others. For example, if q = 23, b = 3,
and u = 16, then Table 1 shows all possible decomposition results. As shown,
the decomposition (−1, 1,−1) performs better than the others, as it has the
smallest ||u||2. If there were a method that could always produce the decompo-
sition (−1, 1,−1), it would result in smaller noise growth in the homomorphic
encryption ciphertexts multiplication. This motivates our work to find a better
way to generate smaller decompositions than those produced by Genise et al.’s
algorithm.

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 317

Table 1. For modulus q = 23 and base b = 3, the decomposition results (g−1(u) = u
in the table) for u = 16 using Genise et al.’s algorithm in [13], the Algorithm 2 in this
paper and the digit decomposition algorithm.

Algorithm g−1(u) = u Probability ||u||2
Genise et al.’s [13] (1, 2, 1) 4.5%

√
6

(−2, 3, 1) 2.2%
√

14

(1, −1, 2) 15.8%
√

6

(−2, 0, 2) 7.9%
√

8

(−1, 1, −1) 36.1%
√
3

(2, 0, −1) 18%
√

5

(−1, −2, 0) 10.3%
√

5

(2, −3, 0) 5.2%
√

13

Digit Decomposition (1, 2, 1) 100%
√

6

Ours (−1, 1, −1) 100%
√
3

1.1 Our Works

We give a new decomposition algorithm that generates smaller decompositions
than the algorithm proposed by Genise et al. [13]. Unlike Genise et al.’s algo-
rithm [13], our algorithm is deterministic to output those “shorter decomposition
vector”1, resulting in more efficient implementation and lower noise growth for
homomorphic encryption schemes.

Our method is to directly use the idea of Babai’s algorithm [3] for decompo-
sition, resulting in smaller outputs than Genise et al.’s algorithm. Specifically,
the subgaussian parameter of our algorithm’s outputs is half that of Genise et
al.’s algorithm, i.e., b+1

2

√
2π compared to (b + 1)

√
2π when q �= bk. This means

that in a GSW-type [15] homomorphic encryption scheme, the estimated noise
growth after ciphertext multiplication using our algorithm is much smaller than
using Genise et al.’s algorithm. Furthermore, as our algorithm does not require
any randomness generation, it is also more efficient.

We implement our algorithm in Sect. 4 using the PALISADE Library, and
compare its performance to Genise et al.’s algorithm and another similar decom-
position algorithm [22]. Our experiments show that our decomposition indeed
outperforms the other two algorithms in terms of noise growth and efficiency.

1.2 Related Works

Besides the subgaussian decomposition algorithm proposed by Genise et al. [13],
Jeon et al. [16] proposed an algorithm that outputs a bounded uniform distribu-
tion. Their algorithm consists of two sub-routines: Decomposition and Sampling.
1 While our algorithm may have lost the “randomness” present in Genise et al.’s algo-

rithm, it is worth noting that in homomorphic encryption algorithms, such as the
commonly used Digit Decomposition, “randomness” is not necessary for a decom-
position.

318 C. Liu and B. Liu

However, due to the fact that the noise growth of their algorithm is worse than
that of Genise et al.’s algorithm (from Fig. 2 in [16]), we did not implement it
for comparison.

Zhang and Yu [22] proposed another decomposition algorithm to address the
performance gap observed between Genise et al.’s algorithm for the cases when
q = bk and q < bk. They proposed to first sample the (k − 1) lower digits using
the subgaussian algorithm for modulus bk−1, and then compute the highest digit
independently when q < bk. Their algorithm performs better than Genise et al.’s
algorithm and we compare it with our proposed algorithm and Genise et al.’s
algorithm in Sect. 4.

1.3 Organization

In Sect. 2, we describe some preliminaries about notations and subgaussian ran-
dom variables and lattices. In Sect. 3, we present our decomposition algorithm.
In Sect. 4, we give the implementation result of our decomposition.

2 Preliminaries

In this paper, Zq = Z/qZ is denoted as the quotient ring of integers modulo q,
and (Zq,+) is presented as the additive group of Zq = Z/qZ. We usually indicate
numbers with lowercase letters, such that z ∈ Z, vectors are in bold lower-case
letters, z ∈ Z

n, matrices are in bold capital letters, M ∈ Z
n×n, and denote In

as the n×n identity matrix. We assume that the vector z = (z0, z1, . . . , zn−1) is
in column form, and denote its transpose as zT = [z0, z1, . . . , zn−1]. For vectors
z0, z1, . . . , zn−1, we denote the horizon concatenation of those vectors as M =
[z0, z1, . . . , zn−1], and the vertical concatenation as MT = (zT

0 , zT
1 , . . . , zT

n−1).
We denote the l2 norm of vector z by ||z||2, the l∞ by ||z||∞.

For an integer x ≥ 1 and an integer base b > 1 such that x < bk, where
k ≥ 1, then x’s b-ary decomposition is a vector x = [x]kb = (x0, · · · , xk−1) ∈
{0, · · · , b − 1}k such that

∑
i bixi = x.

We use the notation x
$←− χ to denote the sampling of a value x according

to the probability distribution χ, while x
$←− U(Zq) indicates that x is sampled

uniformly from Zq. We will make use of the Geršgorin Circle Theorem, which is
stated as follows.

Theorem 1 ([13], Theorem 2.1). Let T be an n × n matrix with complex
entries. For each row j let tj be the sum of its non-diagonal entries’ magnitudes:
tj =

∑
j �=i |T(j, i)|. Then, the eigenvalues of T are all in ∪j{z ∈ C : |z −

T(j, j)| ≤ tj}.

2.1 Subgaussian Random Variables

A real random variable X is subgaussian [19,21] with parameter s if for all x ∈ R,
if its (scaled) moment-generating function satisfies E[exp(2πxX)] ≤ exp(πs2x2).

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 319

Any B-bounded centered random variable X is subgaussian with parameter
B · √2π. Two useful properties for subgaussian random variables are as follows:

– Homogeneity: if X is subgaussian with parameter s, then t ·X is subgaussian
with parameter t · s.

– Pythagorean additivity: if X1 is subgaussian with parameter s1, X2 is sub-
gaussian with parameter s2, then, X1 + X2 is subgaussian with parameter√

s21 + s22.

For a real random vector z, if for all real unit vectors u, their marginal 〈z,v〉
is subgaussian with parameter s then we say z is subgaussian with parameter
s. If one vector is the concatenation of subgaussian variables or vectors, each
of which is subgaussian with parameter s and is independent of the prior one,
then it is also subgaussian with parameter s. Homogeneity and Pythagorean
additivity also hold from the linearity of vectors.

The following two lemmas will be used in our analysis.

Lemma 1 ([13], Lemma 2.2). Let v ∈ R
n be a discrete random vector

such that each coordinate vi is subgaussian with parameter βi given the previ-
ous coordinates take any values. Then v is a subgaussian vector with parameter
maxi {βi}.
Lemma 2 ([19],Corollary 2.3, [13], Lemma 2.2). Let v be a subgaussian
vector with parameter β and let T be a linear transformation. Then, Tv is a

subgaussian vector with parameter β
√

λmax(TTT) where λmax(·) is the largest
eigenvalue.

2.2 Lattices

We denote a lattice Λ with basis B = [b0, · · · , bk−1] ∈ Z
n×k as Λ = L(B) =

{∑k
i=0 zibi : zi ∈ Z}. In this paper, we consider only the case where k = n

(full-rank lattices). A permutation of the basis vectors is also a lattice basis. If
a lattice is a sublattice of Zn, it is called an integer lattice.

The Gram-Schmidt orthogonalization (GSO) of a lattice Λ’s basis B =
[b0, · · · , bn−1] is a set of vectors B̃ = [b̃0, · · · , b̃n−1], where b̃i is the compo-
nent of bi orthogonal to span(b0, · · · , bi−1). Note that the GSO is not the basis
of the lattice. However, for P1/2(B̃) := B̃ · (−1/2, 1/2]n, the GSO provides a
tiling of Rn such that R

n = ∪z∈Λ(z + P1/2(B̃)). In this paper, we will utilize
the nearest plane algorithm, also known as Babai’s greedy decoding algorithm
[3] (given in Appendix).

Theorem 2. Given B, B̃, t ∈ R
n, there is an algorithm which returns the unique

lattice point in t + P1/2(B̃) in time O(n2) and memory O(n3)2.

2 Assumes the GSO has entries each presented in O(n) bits.

320 C. Liu and B. Liu

q-ary Lattices. In this paper we mostly consider the q-ary lattices. Fix an
integer modulus q > 0 and let integer m > n. We say B is primitive if BZ

m
q = Z

n
q .

Given an matrix B ∈ Z
n×m
q , define lattices Λ⊥

q (B) = {z ∈ Z
m : Bz = 0

mod q}. When B is primitive, the cosets of Λ⊥
q (B), Λ⊥

u := {z ∈ Z
m : Bz = u

mod q}, are in bijection with Z
n
q .

Subgaussian Decomposition. For m > w > n, in many lattice crypto-
schemes, given a primitive G ∈ Z

n×w
q and an arbitrary u ∈ Z

n
q as input, there is

need to find a subgaussian vector x ∈ Z
w such that u = Gx mod q. This prob-

lem is called the subgaussian decomposition problem or subgaussian sampling. In
[2], Alperin-Sheriff and Peikert use a generic adaptation of Babai’s algorithm to
achieve subgaussian decomposition, which runs in O(k2) and uses space O(k3).
Then in [13], Genise et al. use a technique developed by Genise and Micciancio
[12] to achieve subgaussian decomposition in O(k) time and space. In this paper,
we optimize Genise et al.’s work [13].

A G commonly used is defined as G = In⊗gT (usually called gadget matrix)
with blocks gT := (1, b, · · · , bk−1), where integer b ∈ (1, q) is the base and
k = �logb q.

3 Gadget Decomposition Algorithms

In this section, we present our main decomposition algorithms for the gadget
matrix G = In ⊗ gT . We demonstrate how to efficiently compute the function
g−1 : Zq → Z

k and compute G−1(u) = (g−1(ui))n
i=1 component by component.

Let the gadget be gT := (1, b, · · · , bk−1), where k = �logb q. In this section,
we will present two different decomposition methods based on whether q is a
power of b (i.e., when q = bk) or when q < bk. The decomposition algorithms
for the case when q and u are given in CRT form are presented in the appendix
(Sect. B).

Our main result is presented in the following theorem.

Theorem 3. For an integer modulus q > 1, any integer base b > 1, k = �logb q,
gadget gT = [1, b, · · · , bk−1] and a randomly chosen u

$←− U(Zq)3, there exists a
decomposition algorithm g−1 that outputs a decomposition vector and satisfies
the following conditions:

– If q = bk, the algorithm runs in linear O(k) time and space, and the subgaus-
sian parameter of the output vector g−1(u) is at most b

2

√
2π.

– If q �= bk, the algorithm runs in linear O(k) time and space, and the subgaus-
sian parameter of the output vector g−1(u) is at most b+1

2

√
2π.

A proof of Theorem 3 is provided in the following subsections, Sect. 3.2 and
Sect. 3.3.
3 The reason for randomly selecting u from Zq is that, in the GSW-type homomor-

phic encryption scheme [15], the decomposition algorithm typically operates on an
element randomly chosen from Zq based on the LWE assumption.

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 321

3.1 Algorithm Rationale

We outline the construction of our algorithm as follows.
Given a primitive matrix G ∈ Z

n×w
q and an arbitrary input vector u, the

goal is to find a vector x ∈ Z
w with a small l2 norm such that Gx = u mod q.

We define lattices as:

Λ⊥
q (G) = {z ∈ Z

w : Gz = 0 mod q}.

Therefore, the problem is equivalent to finding a short vector in the cosets
of Λ⊥

q (G):

Λ⊥
u (G) = {z ∈ Z

w : Gz = u mod q}.

It is important to note that finding the shortest vector in Λ⊥
u (G), which is

known as the Shortest Vector Problem (SVP), is a difficult task. The shortest
vector is usually obtained by applying a lattice reduction algorithm, such as LLL
[18,20] or BKZ [6] on the lattice basis, and this is impractical for a decomposition
algorithm. Instead, our goal is to find a “short” vector, and a feasible way to
achieve this is through Babai’s algorithm.

Initially, Babai’s algorithm can be utilized to find a near vector z of −v
in the lattice Λ⊥

q (G), where v ∈ Λ⊥
u (G), and return v + z as the result. This

concept was first presented by Alperin-Sheriff and Peikert in [2]. They employed
a randomized version of Babai’s algorithm to sample a subgaussian vector from
Λ⊥
u (G). However, one limitation of this approach is that the basis of Λ⊥

q (G) is not
diagonal or sparse, which makes it challenging to implement Babai’s algorithm.
As a result, this decomposition method requires time complexity of O(k2) and
space complexity of O(k3), where k is the dimension of the lattice Λ⊥

q (G).
After that, Genise et al. proposed an efficient decomposition algorithm based

on the technique of Genise and Micciancio [12]. Genise and Micciancio showed
that the basis of Λ⊥

q (G) can be represented as SD, where S and D are sparse
and triangular. In Genise et al.’s algorithm, for a vector v ∈ Λ⊥

u (G), instead
of sampling a vector in Λ⊥

q (G), a randomized version of Babai’s algorithm is
applied in the lattice L(D) to find a vector z that is close to −S−1v, and the
result is obtained by applying the transform S on z, i.e. returning v + Sz. Due
to the special structure of the basis of L(D), the entire algorithm runs in O(k)
time and uses O(k) space.

In Genise et al.’s algorithm [13], a randomized version of Babai’s algorithm
was used to find vector z such that z + S−1v is a subgaussian vector. The
randomized version of Babai’s algorithm in Genise et al.’s algorithm rounds to
one of two adjacent planes that the target lies in, probabilistically. However,
we have discovered that this method can produce some poor results. There is a
probability that the returned z is far from the target vector −S−1v, and in this
case, the norm of the final decomposition will be large. Additionally, we have
found that when always choosing the nearest plane of the two adjacent planes,

322 C. Liu and B. Liu

the norm of the decomposition result is smaller. Therefore, in our algorithm,
we choose the nearest plane directly in the Babai’s algorithm instead of using a
randomized version.

3.2 Power-of-Base Case

As a warm up, we consider the case when q = bk in this section. The input is
a positive coset representative u ∈ {0, 1, · · · , q − 1}. The lattice Λ⊥

q (gT) has a
basis represented by:

S =

⎛

⎜
⎜
⎜
⎜
⎝

b

−1
. . .
. . . b

−1 b

⎞

⎟
⎟
⎟
⎟
⎠

,

and it has GSO S̃ = b · I.
Our goal is to find a short vector in Λ⊥

u (gT) = {z ∈ Z
k : gTz = u mod q}

as described in Sect. 3.1. This can be achieved by finding a 0’s nearby vector
v ∈ Λ⊥

u (gT) in Λ⊥
q (gT). Given the GSO of S̃ as b · I, the Babai’s nearest plane

algorithm can be easily implemented on it. The resulting algorithm is outlined
in Algorithm 1. The algorithm simplifies the above process for efficiency and its
correctness and efficiency are straightforward to verify.

Algorithm 1. g−1(u) for q = bk.
Input: u ∈ Zq

Output: Decomposition vector x ∈ Λ⊥
u (gT)

1: Let x ← 0
2: for j = n − 1 to 0 do
3: Let y ← u mod b ∈ {0, · · · , b − 1}.
4: xi ← y − � y

b
� · b

5: u ← (u − xi)/b
6: end for
7: return x

3.3 Arbitrary Modulus, Arbitrary Base

Next, we present our algorithm for the case when q is not a power of b. In this
scenario, the GSO of Sq in the lattice Λ⊥

q (gT) is not diagonal and not sparse,
making the Babai’s nearest plane algorithm difficult to implement on basis Sq.
To address this challenge, we employ Genise and Micciancio’s technique from
their work in [12]. They found the fact that Sq admits a sparse, triangular
factorization:

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 323

Sq =

⎛

⎜
⎜
⎜
⎜
⎝

b q0

−1
. . .

...
. . . b qk−1

−1 qk−1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b

−1
. . .
. . . b

−1 b

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1 d0
. . .

...
1 dk−2

dj−1

⎞

⎟
⎟
⎟
⎠

= SD,

where [q]kb = (q0, . . . , qk−1), and di = di−1+qi
b with initial condition d−1 = 0.

Thus, instead of directly sampling a short vector in Λ⊥
u (gT), we first use the

Babai’s nearest plane algorithm to find a vector x on the lattice L(D) that is
near the target vector t = −S−1v, where v is a vector on the lattice Λ⊥

u (gT).
Then, we map the vector x back to the original lattice by applying the linear
transformation S to it and adding v. It can be demonstrated that if x − t = e,
then Sx+v = Se, and thus, the norm of Se is equal to the norm of the output of
the decomposition algorithm. We will prove that Se has a subgaussian parameter
of b+1

2

√
2π by using following Lemma3, 4 (and then Theorem 3 is proven).

The input to our algorithm is u ∈ {0, 1, . . . , q − 1}, and the steps are as
follows:

1 Compute the element v ← [u]kb , which is in Λ⊥
u (gT).

2 Compute the preimage t = −S−1v.
3 Find the near vector x of t on lattice L(D) using Babai’s nearest plane algo-

rithm.
4 Compute Sx + v to obtain the result vector from Λ⊥

u (gT).

Since the basis D has a diagonal Gram-Schmidt orthogonalization (GSO) and
S is sparse and triangular, the nearest plane algorithm in step 3 has an efficient
specialization. Additionally, the transformations S−1 and S can be calculated in
linear time.

The proposed algorithm is outlined in Algorithm2. The algorithm is opti-
mized to avoid the explicit computation of S,D, and to avoid floating point
numbers.

Lemma 3. Step 2 ∼ 7 of Algorithm2 performs the Babai’s nearest plane algo-
rithm on lattice L(D) around target vector t := −S−1[u]kb .

Proof. The reader can look at Babai’s nearest plane Algorithm 3 in the
AppendixA first to make a better understanding of the following proofs. Note
that

D =

⎛

⎜
⎜
⎜
⎝

1 q0
b

. . .
...

1
∑k−2

i=0 qib
i

bk−1
q
bk

⎞

⎟
⎟
⎟
⎠

and t = −(u0
b , · · · ,

∑k−2
i=0 uib

i

bk−1 , u
bk

)T . Then let the i-th column of D is di−1, so we
set

xk−1 = �〈t, d̃k−1〉/||d̃k−1||22 = −�u/q
in step 2.

324 C. Liu and B. Liu

Algorithm 2. g−1(u)
Input: u ∈ Zq

Output: Decomposition vector x ∈ Λ⊥
u (gT)

1: Let u ← [u]kb , q ← [q]kb ,x,y ← 0, x−1 = 0
2: xk−1 ← −�u/q�
3: for j = k − 2 to 0 do
4: u ← u − uj+1b

j+1, q ← q − qj+1b
j+1.

5: Let c ← −(u + xk−1q).
6: Set xj ← �c/bj+1�
7: end for
8: for j = 0 to k − 2 do
9: yj ← b · xj − xj−1 + xk−1 · qj + uj .

10: end for
11: yk−1 ← −xk−2 + xk−1 · qk−1 + uk−1.
12: return y

Since the basis of L([d0, · · · ,dk−2]) is Ik−1, so for a given vector v ∈
L([d0, · · · , dk−2]), for the remainder of the loops, the center (cj in Algorithm
3 step 3) in the Babai’s algorithm is cj = �〈v, d̃j〉/||d̃j ||22 = �vj. Since every
two basis vector di,dj for i �= j, i, j ∈ {0, 1, · · · , k − 2} is orthogonal to each
other, step v ← v − cjdj in Babai’s algorithm (Algorithm 3 step 3) need not be
performed. Thus, there is only a need to perform t ← t−xk−1dk−1, which can be
implemented by the special property of t and d. Since tj = −(

∑j
i=0 ui · bi)/bj+1

and dj = (
∑j

i=0 qi · bi)/bj+1, so in our algorithm the center in every loop is

xj = �tj − xk−1dj = �−(
j∑

i=0

uib
i + xk−1

j∑

l=0

qlb
l)/bj+1,

which is exactly computed in step 4 ∼ 6 of Algorithm 2. The lemma follows. ��
To analysis the subgaussian parameter obtained by our algorithm we give

the following lemma.

Lemma 4. For the target vector t := −S−1[u]kb , and the vector x =
(x0, x1, · · · , xk−1)T after the nearest plane algorithm (i.e. after step 7) in Algo-
rithm 2, we have that e = Dx−t is a subgaussian vector with parameter

√
2π/2.

Proof. Let v = Dx, then

vj = xj + xk−1

∑j−1
i=0 qib

i

bj+1
.

Since

tj = −
∑j

i=0 uib
i

bj+1

and

xj = −
∑j

i=0 uib
i

bj+1
− xk−1

∑j
i=0 qib

i

bj+1
+ ε,

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 325

where |ε| < 1/2, so vj + tj = ε, and this means that ||e||∞ < 1/2. The lemma
follows. ��

Proof of Theorem 3. For the case q = bk, for randomly chosen u
$←− U(Zq),

Algorithm 1 returns subgaussian vector x ∈ Λ⊥
u (gT) with parameter b/2

√
2π in

time and space logb q by inspection and Lemma 1.
For the case q �= bk, by Lemma 3, after step 7 in Algorithm 2, x is so that

Dx is the output of nearest plane algorithm on D with target vector −S−1u.
By Lemma 4 and Lemma 1,

Sq + u = S(Dx − t + t) + u = S(Dx − t)

is a subgaussian vector with parameter
√

λmax(S · ST)
√

2π/2, where
√

λmax(S · ST) is the maximum eigenvalue of S · ST . By Theorem 1 and a routine

calculation for S · ST ’s entries, λmax(S · ST) ≤ (b + 1)2. The theorem follows.
��

4 Implementation Results

All experiments were performed on a computer with an Intel(R) Core(TM) i5-
8265U CPU @ 1.60 GHz and 4GB RAM, running Ubuntu 16.04.1 64-bit system.
The PALISADE Library [1] was used to compare the results of our algorithm
with those of the previous subgaussian decomposition algorithms, GMP19 [13]
and ZY21 [22]. We focus on the case when q < bk just like in [13,22], which is
the the typical scenario in cryptography.

4.1 Complexity and Performance

As reported in the paper by Zhang and Yang [22], the integer implementation of
the decomposition algorithm outperforms its floating-point counterpart. There-
fore, we implemented the integer version of Algorithm 2 to achieve optimal per-
formance. To ensure fairness, we also implemented integer versions of the GMP19
and ZY21 algorithms [13,22]. Additionally, we tested the original floating-point
GMP19 algorithm as described in [13]. Our implementation imposes the restric-
tion that the gadget base b must be a power of 2, as noted in [22].

The results of the four algorithms are displayed in Fig. 1, which shows the
relationship between gadget decomposition rate and the various algorithms. The
figure demonstrates that our algorithm is faster than both GMP19 and ZY21.
Specifically, when b = 2 and k = �60/ log b = 60, our algorithm is approx-
imately 4.5 (respectively, 2.7) times faster than the PALISADE (respectively,
integer) implementation of GMP19 and around 2 times faster than the integer
implementation of ZY21.

326 C. Liu and B. Liu

Fig. 1. Runtime of sampling rate for native uniformly random integers (w.r.t a 60-bit
modulus). Experimental values measure over 108 samplings. In the figure, “Ours” refers
to Algorithm 2, “ZY21” represents the integer implementation of algorithm 4 in [22],
and “GMP19” (respectively, “GMP19 Int”) denotes the floating-point (respectively,
integer) implementation of algorithm 2 in [13].

4.2 Quality

Figure 2 displays the differences in the noise growth of GSW-type products using
four algorithms: our Algorithm2, classical binary gadget decomposition (denoted
as Binary), algorithm 2 in [13] (denoted as “GMP19”), and algorithm 4 in [22]
(denoted as “ZY21”). The comparison method is the same as the one used in
[13] and [22], which involves first generating an error vector in Rm and then
iteratively multiplying it by G−1(Ui), where Ui is a vector of uniformly random
ring elements in ring Rm at level i. Similar to [13,22], a tree multiplication
approach is used instead of a sequential evaluation approach, and different Ui

are used at each level.
In Fig. 2, a steeper slope represents a more rapid increase in noise growth.

As shown in the figure, the Binary method has the fastest noise growth, while
ZY21 is better than GMP19. Our algorithm has the slowest noise growth among
the three algorithms. A more detailed comparison between our algorithm, ZY21,
and GMP19, when b = 22 and b = 23, is illustrated in Figs. 3 and 4, respectively.
In either case, the noise growth of our algorithm is the slowest.

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 327

Fig. 2. Noise growth for GSW-type multiplication for case when b = 2. The base in
the exponentiation is(mn)β , where m = k + 2 = 182, n = 1024 and β represents the
rate of noise growth. The slope of the linear interpolation is given by β log2(mn).

Fig. 3. Figure for the case when b = 22.

328 C. Liu and B. Liu

Fig. 4. Figure for the case when b = 23.

5 Conclusion and Discussion

In this paper, we present a new gadget decomposition algorithm for Homomor-
phic Encryption (HE) schemes with improved noise growth and performance
compared to previous methods. The key insight behind our algorithm is to always
choose the nearest plane of the two adjacent planes when using the Babai’s algo-
rithm during the decomposition process. Our implementation demonstrates that
our algorithm outperforms the algorithms proposed by Genise et al. in [13] and
Zhang and Yu in [22].

Acknowledgments. This paper is supported by the Cloud Security Key Technology
Research Key Laboratory of Shenzhen (No. ZDSY20200811143600002). Authors thank
the anonymous ISPEC’23 reviewers for helpful comments.

A Nearest Plane Algorithm

Babai’s Nearest Plane Algorithm [3] is given in Algorithm 3. The inputs for this
algorithm is a lattice basis B, its GSO B̃, and a target t ∈ R

n. It returns a
lattice point x such that x − t ∈ P1/2(B). The correctness can be checked by
represented x and t in the GSO basis B̃. One can verify that the coordinate
(coefficient of b̃i) of x − t is ci − �ci < 1/2.

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 329

Algorithm 3. The nearest plane algorithm.
Input: Basis B = [b0, · · · , bn−1] ∈ Z

n×n; GSO Basis B̃ = [b̃0, · · · , b̃n−1]; vector
t ∈ Z

n

Output: A vector x ∈ L(B) such that x − t ∈ P1/2(B̃)
1: b ← t
2: for j = n − 1 to 0 do
3: b ← b − cjbj where cj = �〈b, b̃j〉/〈b̃j , b̃j〉�
4: end for
5: return t − b

B Decomposition in CRT Form

For q = Πr
j=1qj , each coprime factor qj fix the base-bj gadget vector gT

j =

(1, bj , · · · , b
kj−1
j) with kj = �logbj (qj). An element u ∈ Zq can be repre-

sented as its Chinese Remainder Theorem form (CRT form) as (u mod q1, · · · , u
mod qr) = (u1, · · · , ur) ∈ Zq1 × · · · × Zqr . Then, for this CRT form, the decom-
position algorithm can be performed for every g−1

j . Samping in CRT form for
(u1, · · · , ur) is given in Algorithm 4. The result is given in the following theorem.

Theorem 4. Let q have factorization q = Πr
j=1qj into coprime factors {qj},

(bj)r
j=1 be an r-tuple of base such that bj < qj, and let k =

∑
kj with

kj = �logbjqj. Then, there exists subgaussian decomposition algorithm can be
performed in-parallel with r processors, each using time and space O(ki) and with
parameter at most maxj(bj)+1

2

√
2π.

Algorithm 4. Decomposition in CRT form.
Input: (u1, · · · , ur)
Output: g−1

CRT (u1, · · · , ur)
1: for i = 1 to r do
2: xi ← g−1

i (ui).
3: end for
4: return x = (x1, · · · ,xr).

Since except for the g−1
j component, the Algorithm 4 is same with the Algo-

rithm 4 in [13], for more details about the decomposition in CRT form, please
see [13].

References

1. PALISADE Lattice Cryptography Library (release 1.11.5) (2021). https://
palisade-crypto.org/

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

https://palisade-crypto.org/
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-662-44371-2_17

330 C. Liu and B. Liu

3. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. In:
Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg
(1985). https://doi.org/10.1007/BFb0023990

4. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster
FHE instantiated with NTRU and LWE. IACR Cryptology ePrint Archive, p. 74
(2022). https://eprint.iacr.org/2022/074

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in The-
oretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp.
309–325. ACM (2012)

6. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

9. Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2018)

10. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012). http://eprint.iacr.org/2012/144

12. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

13. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 23

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

15. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

16. Jeon, S., Lee, H., Park, J.: Efficient lattice gadget decomposition algorithm with
bounded uniform distribution. IEEE Access 9, 17429–17437 (2021)

17. Kluczniak, K.: NTRU-v-um: secure fully homomorphic encryption from NTRU
with small modulus. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, 7–11 November 2022, pp. 1783–1797.
ACM (2022)

https://doi.org/10.1007/BFb0023990
https://eprint.iacr.org/2022/074
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-642-40041-4_5

A New Gadget Decomposition Algorithm with Less Noise Growth in HE 331

18. Lenstra, A.K., Lenstra, H.W., Lov sz, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4) (1982)

19. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

20. Nguyen, P.Q.: The LLL Algorithm: Survey and Applications (2010)
21. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.

In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing, pp. 210–268. Cambridge
University Press (2012)

22. Zhang, S., Yu, Y.: Towards a simpler lattice gadget toolkit. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 498–520.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2 18

https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-030-97121-2_18

Malicious Player Card-Based
Cryptographic Protocols with a Standard
Deck of Cards Using Private Operations

Tomoya Morooka1, Yoshifumi Manabe1(B) , and Kazumasa Shinagawa2,3

1 School of Informatics, Kogakuin University, Tokyo, Japan
manabe@cc.kogakuin.ac.jp

2 Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
kazumasa.shinagawa.np92@vc.ibaraki.ac.jp

3 National Institute of Advanced Industrial Science and Technology (AIST),

2-3-26 Aomi, Koto, Tokyo 135-0064, Japan

Abstract. This paper shows new card-based cryptographic protocols
to compute Boolean functions using a standard deck of cards when the
players are malicious. Card-based cryptographic protocols use physical
cards instead of computers. They can be used when the software on com-
puters is not reliable. We discuss protocols that use a standard deck of
cards because it is easy to prepare. Though protocols that use private
operations tend to be efficient in the number of cards used in the proto-
cols, malicious actions are possible during private operations. This paper
shows three-player protocols to prevent malicious actions by watching
another player’s actions. We show logical AND, XOR, and copy proto-
cols since any Boolean functions can be realized by a combination of the
protocols. The numbers of cards used by the protocols are the minimum.

Keywords: card-based cryptographic protocols · Boolean functions ·
malicious players · standard deck of cards · multi-party secure
computation

1 Introduction

Card-based cryptographic protocols [8,22] were proposed in which physical cards
are used instead of computers to securely compute values. They can be used when
computers cannot be used or users cannot trust the software on the computer.
Also, the protocols are easy to understand, thus the protocols can be used to
teach the basics of cryptography [4,17] to accelerate the social implementation
of advanced cryptography [5]. den Boer [2] first showed a five-card protocol to
securely compute the logical AND of two inputs. Since then, many protocols have

The second author was supported by JSPS KAKENHI Grant Number JP23H00479.
The third author was supported during this work by JSPS KAKENHI Grant Numbers
JP21K17702 and JP23H00479, and JST CREST Grant Number JPMJCR22M1.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 332–346, 2023.
https://doi.org/10.1007/978-981-99-7032-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_20&domain=pdf
http://orcid.org/0000-0002-6312-257X
https://doi.org/10.1007/978-981-99-7032-2_20

Card-Based Cryptographic Protocols 333

been proposed to realize primitives to compute any Boolean functions [13,23,33]
and specific computations such as millionaires’ problem [16,24,28], voting [19,
25,27,37], grouping [6], ranking [35], lottery [34], proof of knowledge of a puzzle
solution [3,31], and so on. This paper considers computations of logical AND
and logical XOR functions and copy operations since any Boolean function can
be realized with a combination of these computations.

Most of the above works are based on a two-color card model. In the two-color
card model, there are two kinds of cards, ♣ and ♥ . Cards of the same marks
cannot be distinguished. In addition, the back of both types of cards is ? . It
is impossible to determine the mark in the back of a given card of ? . Though
the model is simple, such special cards might not be available. Playing cards
are easy to prepare, thus protocols using a standard deck of playing cards and
their formal security proofs were shown [7,9,11,12,18,26,32]. Recently, protocols
that use private operations were shown [14]. Private operations are executed
where the other players cannot see, for example, under the table or in the back.
The protocols in [14] achieve the minimum number of cards. Though private
operations are effective in card-based protocols, there is a problem with private
operations. Since the private operations are executed where the other players
cannot see, a player might execute malicious actions during private operations.
For example, a malicious player might see the marks of face-down cards. Another
malicious player might swap the cards to change the values. We need to prevent
or detect such malicious actions.

A countermeasure to the problems is watching private actions and detect
malicious actions. When the protocols are executed by two players, Alice and
Bob, Alice must not see Bob’s private actions. If Alice sees Bob’s private oper-
ations, Alice can see all operations, thus Alice sees the relationship between the
private inputs and the output. If the output cards are opened to see the final
result, Alice can know the private input data from the relationship. Thus, another
player other than the two players is necessary to watch the private operations.
If the watcher sees both Alice and Bob’s private operations, the watching player
can know all operations and the relationship between the input data and the out-
put data. Thus the watching player knows the private data. This paper shows
that three players are sufficient to detect malicious actions and keep the protocol
secure, just as in the case of the two-color model [29]. In the three-player proto-
cols shown in this paper, Bob watches Alice’s private operations, Carol watches
Bob’s private operations, and Alice watches Carol’s private operations.

Few works are done for the case when some players are malicious or make mis-
takes [1,10,15,20,21,36]. [20] discusses information leakage at operation errors.
The other works are categorized into two groups. The first one is to use addi-
tional cards or special items such as envelopes [10,15,21,36]. The second type
introduces the watching player. The watching player for the protocol with a two-
color card model is shown [15]. Abe et al. showed a three-player majority voting
protocol with a malicious player [1]. Note that the above works are done for the
two-color card model. There is no work for a standard deck of cards. As long

334 T. Morooka et al.

as the author knows, this is the first work that discusses malicious activities in
protocols that use a standard deck of cards and private operations.

In Sect. 2, basic notations and the private operations introduced in [29] are
shown. Section 3 shows logical AND, copy, and logical XOR protocols.

2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named 1 to 52. The number of each card (for example,
1 is the ace of the spade, and 52 is the king of the club) is common knowledge
among the players. The back of all cards is the same ? . It is impossible to
determine the mark in the back of a given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

The base of a commitment is the pair of cards used for the commitment. If
card i and j (i < j) are used to set commit(x), the commitment is written as
commit(x){i,j} and written as ? ?

︸ ︷︷ ︸

x{i,j}

. When the base information is obvious or

unnecessary, it is not written.
Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.

Thus, logical negation can be computed without private operations.
A set of cards placed in a row is called a sequence of cards. A sequence of

cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . , ?
︸︷︷︸

sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by three players, Alice, Bob, and Carol. The play-

ers are malicious, that is, they might not obey the rule of the protocols and
execute any operation. This paper assumes that even malicious players correctly
execute misbehavior detection. In the protocols in this paper, a player watches
the private operations executed by another player. If a player misbehaves, the
watching player detects the malicious action and says that the player misbe-
haved. The misbehaved player has a punishment for the misbehavior. The detail
of the punishment mechanism is out of the scope of this paper. To avoid punish-
ment, malicious players obey the rule of the protocols. Note that the watching
player does not output a false misbehavior detection. For the two-color card
model, a three-player misbehavior detection protocol without false alarm detec-
tion and a four-player misbehavior detection protocol with the ability of false

Card-Based Cryptographic Protocols 335

alarm detection was shown [29]. In order to detect false alarms in a standard
deck of cards, four players seem to be necessary. False alarm detection is a further
study.

There is no collusion among players, otherwise, private input data can be
easily revealed.

The inputs of the protocols are given in a committed format, that is, the
players do not know the input values. The output of the protocol must be given
in a committed format so that the result can be used as input for further com-
putation.

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
players can know that (x, y) = (1, 1). If the output value is 0, the players must
not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

2.2 Private Operations

We show three private operations introduced in [29]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =
{

S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

In [29], the operation is executed in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x){i,j}, given S0 = ? ?

︸ ︷︷ ︸

x{i,j}

, The player’s output S1 = ? ?
︸ ︷︷ ︸

x⊕b{i,j}

, which is

? ?
︸ ︷︷ ︸

x{i,j}

or ? ?
︸ ︷︷ ︸

x{i,j}

.

Note that a private random bisection cut is the same as the random bisection
cut [23], but the operation is not executed in public.

Primitive 2 (Private reverse cut)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

336 T. Morooka et al.

In [29], the operation is executed in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

If a player executes a private random bisection cut to S when the random
bit is b and then executes a private reverse cut using b, the result is S.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal). A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque Commitment Pair

An opaque commitment pair is defined as a useful situation for to design a secure
protocol using a standard deck of cards [18]. It is a pair of commitments whose
bases are unknown to all players. Let us consider the following two commitments
using cards i, j, i′, and j′. The left (right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using
i′ and j′ (i and j), respectively. Such a pair of commitments is called an opaque
commitment pair and written as commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′}.

The protocols in this paper use a little different kind of pair, called semi-
opaque commitment pair. A player thinks a pair is an opaque commitment pair
but another player knows the bases of the commitments. Let us consider the case
when a protocol is executed by Alice and Bob. Bob privately makes the pair of
commitments with the knowledge of x and y. For example, Bob randomly selects
a bit b ∈ {0, 1} and

S =
{

commit(x){i,j}||commit(y){i′,j′} if b = 0
commit(x){i′,j′}||commit(y){i,j} if b = 1

Card-Based Cryptographic Protocols 337

then S = commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′} for Alice. Such a pair is
called semi-opaque commitment pair and written as commit(x){i,j},{i′,j′}|Alice||
commit(y){i,j},{i′,j′}|Alice, where the name(s) of the players who think the pair
as a opaque commitment pair is written. Note that a name is not written does
not mean the player knows the bases of the commitments. For example, the
above example says nothing about whether Bob knows the bases or not. Note
that the name of the player is written with the initial when it is not ambiguous.

2.4 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [30]. The first round
begins from the initial state. In most protocols, a player initially has all cards,
but the definition assumes general cases when each player initially has some
number of cards. The first round is (possibly parallel) local executions by each
player using the cards initially given to each player. It ends at the instant when
no further local execution is possible without receiving cards from another player.
The local executions in each round include sending cards to some other players
but do not include receiving cards.

The i(> 1)-th round begins with receiving all the cards sent during the (i−1)-
th round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. We can define the number of rounds and average
rounds. The number of rounds of a protocol is the maximum number of rounds
necessary to output the result among all possible inputs and random values. For
randomized (Las Vegas) protocols, the average round is the average number of
rounds necessary to output the result. Since each operation is relatively simple,
the dominating time to execute protocols with private operations is the time to
send cards between players and set up so that the cards are not seen by the
other players. Thus the number of rounds is the criterion to evaluate the time
complexity of card-based protocols with private operations. If the local execution
needs many operations, for example, O(n) operations where n is the size of the
problem, we might need another criterion to consider the cost of local executions.

Let us show an example of a protocol execution, its space complexity, and
time complexity with the conventional two-color card model. In the two-color
card model, there are two kinds of marks, ♣ and ♥ . One-bit data is represented
by two cards as follows: ♣ ♥ = 0 and ♥ ♣ = 1.

Protocol 1 (AND protocol in [29])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice sends commit(x′) and commit(y) to Bob.

338 T. Morooka et al.

2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =
{

commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in

the private random bisection cut. Let the obtained sequence be S3. Alice out-
puts S3.

The AND protocol realizes the following equation.

x ∧ y =
{

y if x = 1
0 if x = 0

Our new AND protocol is also based on this equation. The correctness of the pro-
tocol is shown in [29]. The number of cards is four since the cards of commit(x′)
are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends at
the instant when Alice sends commit(x′) and commit(y) to Bob. The second
round begins with receiving the cards by Bob. The second round ends at the
instant when Bob sends S2 to Alice. The third round begins with receiving the
cards by Alice. The number of rounds of this protocol is three.

3 AND, XOR, and Copy with Three Malicious Players

This section shows our new protocols for AND, XOR, and copy executed by three
malicious players. Any malicious action during private operations is detected by a
watching player, thus the malicious actions are prohibited if there is no collusion
between players.

Bob watches Alice’s operations, Carol watches Bob’s operations, and Alice
watches Carol’s operations. All operations are executed in the following manner.
Initially, all players are in the same room. If the next operation is executed by
Alice, first, Carol exits the room. Then, Alice executes the private operations in
front of Bob. Thus, Bob knows all private values. For example, if Alice executes
a private random bisection cut, Bob knows the random bit Alice selected. If
Alice executes a private reveal, Bob knows the value of the cards Alice opened.
If Alice misbehaves, Bob detects the fact and terminates the protocol execution.
If there is no misbehavior, Alice’s private operations are correctly finished. Then
Carol comes back to the room and they execute the next step of the protocol. If
the next private operation is executed by Bob(Carol), Alice(Bob) exits from the
room, Bob(Carol) executes the private operation in front of Carol(Alice), and
Alice(Bob) comes back to the room, respectively.

In the following protocol descriptions, we just write “Alice executes a private
operation” to mean “Carol exits the room, Alice executes a private operation in
front of Bob, and Carol comes back to the room” for simplicity.

Before we show the protocols, we show a subroutine to fix the base of a given
commitment.

Card-Based Cryptographic Protocols 339

3.1 Base-Fixed Protocol with Three Players

We show a base-fixed protocol with two inputs commit(x) and commit(y). The
base of commit(x) is fixed to {1, 2}. In the following protocol, the second input
value y is not used as the output, but the value must be kept secret.

The protocol needs private reveals and the values of cards are seen. Before a
player sees a value of commit(x) and sets cards according to the value, the value
must be randomized to hide the value. In the protocol below, Alice sees the value,
thus the value must be randomized by the other players. One-player randomiza-
tion is not enough to hide the private value. Suppose that a player executes a
randomization in advance. They obtain commit(x ⊕ r) and then Alice executes
a private reveal. Since Bob watches Alice’s execution, Bob knows x ⊕ r. If the
randomization r is executed by Bob, Bob knows r and x ⊕ r and Bob knows
secret value x. Then consider the case when the randomization is executed by
Carol. Alice watches Carol’s private operation and knows r. Since Alice knows
x ⊕ r and r, Alice knows the secret value x. Therefore, one-player randomiza-
tion is not enough to hide the private value, and two-player randomizations are
necessary. The value must be randomized by Bob and Carol in advance.

Note that the bases of the input commitments are leaked to Alice and Bob
during the execution. The protocol can be used only if the information leakage
does not cause a security problem, for example, the bases are randomly set by
some other player.

Protocol 2 (Three player base-fixed protocol)
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on each pair using two random
bits br1 and br2, respectively. The result S1 = commit(x ⊕ br1){1,2},{3,4}|A||
commit(y ⊕ br2){1,2},{3,4}|A.

2. Carol executes a private random bisection cut on each pair using two ran-
dom bits cr1 and cr2, respectively. The result S2 = commit(x ⊕ br1 ⊕
cr1){1,2},{3,4}|A|| commit(y ⊕ br2 ⊕ cr2){1,2},{3,4}|A.

3. Alice executes a private reveal on both pairs of S2. Alice makes S3 =
commit(x ⊕ br1 ⊕ cr1){1,2}.

4. Bob executes a private reverse cut using br1 on S3. The result S4 =
commit(x ⊕ cr1){1,2}.

5. Carol executes a private reverse cut using cr1 on S4. The result is
commit(x){1,2}.

Theorem 1. The input values are private in the base-fixed protocol.

Proof. Alice sees x ⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Since Alice watches
Carol’s private operations, Alice sees cr1 and cr2 in Step 2. Alice obtains no
information about x and y since br1 and br2 are unknown to Alice.

Bob knows br1 and br2 in Step 1. Since Bob watches Alice’s private oper-
ations, Bob sees x ⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Bob obtains no
information about x and y since cr1 and cr2 are unknown to Bob.

340 T. Morooka et al.

Carol knows cr1 and cr2 in Step 2. Since Carol watches Bob’s private oper-
ations, Carol sees br1 and br2 in Step 1. Carol obtains no information about x
and y. ��

3.2 AND Protocol

In the following AND, copy, and XOR protocols, the bases of the output com-
mitments are fixed to avoid information leakage from the bases when the outputs
are opened.

The outline to execute by three players is as follows. The protocol in [14] has
two randomizations. The first is the randomization of the bases of the two input
values. The second is the randomization of the input values.

Carol executes private reveals in the following protocol. By the same argu-
ment written in the description of the base-fixed protocol, the value must be
randomized by the other players in advance. Suppose that Alice and Bob use
random bits a and b to randomize x, respectively. After Carol’s private opera-
tion using x ⊕ a ⊕ b, Alice and Bob execute a private reverse cut using a and
b, respectively to undo the randomizations. Such randomizations are executed
before every private reveals in the protocol.

Next, we need to randomize the bases of the two pairs to hide the relation
between the output and inputs. Initially, commit(0) is made from the cards
of commit(x) using {1, 2} and commit(y) is made using {3, 4}. Suppose that
the output of AND is commit(0). It means that x = 0. If no base change is
executed, the base {1, 2} of the output reveal x = 0. Thus the randomization
of bases is necessary. If the base randomization is executed by one player, the
private information is known to one player just like the case of randomization
of values. Thus the base randomization must be executed by two players.

The detailed protocol is shown below. Note that for the simplicity of descrip-
tion, we write S⊕b to mean the pair that the left and the right card are swapped
if b = 1. If S = commit(x), S ⊕ b means commit(x ⊕ b).

Protocol 3 (Three player AND protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. The result is S1 = commit(x ⊕ a1){1,2}.

2. Bob executes a private random bisection cut on S1 using random bit b1. The
result is S2 = commit(x ⊕ a1 ⊕ b1){1,2}.

3. Carol executes a private reveal on S2. Carol sees x ⊕ a1 ⊕ b1. According to
the value, Carol sets S3||S4 as

S3||S4 =
{

commit(0){1,2}||commit(y){3,4} if x ⊕ a1 ⊕ b1 = 0
commit(y){3,4}||commit(0){1,2} if x ⊕ a1 ⊕ b1 = 1

The cards of S2 are reused to set commit(0).

Card-Based Cryptographic Protocols 341

4. Alice executes a private random bisection cut on S3 and S4 using random
bit a2 and a3, respectively. The result is S3 ⊕ a2||S4 ⊕ a3.

5. Bob executes a private random bisection cut on S3 ⊕ a2 and S4 ⊕ a3 using
random bit b2 and b3, respectively. The result is S3 ⊕ a2 ⊕ b2||S4 ⊕ a3 ⊕ b3.

6. Carol randomly selects bit c1 ∈ {0, 1}. Carol executes private reveals on
the two pairs and exchanges the bases of two pairs if c1 = 1. Then, Carol
executes private random bisection cuts on the two pairs using random bits
c2, c3 ∈ {0, 1}. Let the result be S5||S6 =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

commit(0 ⊕ a2 ⊕ b2 ⊕ c2){1,2}||commit(y ⊕ a3 ⊕ b3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 0 and c1 = 0
commit(0 ⊕ a2 ⊕ b2 ⊕ c2){3,4}||commit(y ⊕ a3 ⊕ b3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 0 and c1 = 1
commit(y ⊕ a2 ⊕ b2 ⊕ c2){3,4}||commit(0 ⊕ a3 ⊕ b3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 1 and c1 = 0
commit(y ⊕ a2 ⊕ b2 ⊕ c2){1,2}||commit(0 ⊕ a3 ⊕ b3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 1 and c1 = 1

7. Bob executes private reveals on S5||S6. Bob randomly selects bit b4 ∈ {0, 1}.
Bob exchanges the bases of the two commitments if b4 = 1. Then Bob exe-
cutes private reverse cuts on the pairs using b2 and b3, respectively. The
result is

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

commit(0 ⊕ a2 ⊕ c2){1,2}||commit(y ⊕ a3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0 ⊕ a2 ⊕ c2){3,4}||commit(y ⊕ a3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2){1,2}||commit(0 ⊕ a3 ⊕ c3){3,4}

if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2){3,4}||commit(0 ⊕ a3 ⊕ c3){1,2}

if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

8. Carol executes private reverse cuts on the pairs using c2 and c3, respectively.
9. Alice executes a private reverse cut on each of the pairs using a2 and a3,

respectively.
Let S7||S8 be the result after the two private reverse cuts. S7||S8 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2}||commit(y){3,4} if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x ⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x ⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

Alice then executes a private reverse cut using a1. The result is
⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2}||commit(y){3,4} if x ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x ⊕ b1 = 1 and c1 ⊕ b4 = 0

342 T. Morooka et al.

10. Bob executes a private reverse selection using b1. Let T0 be the result and T1

be the pair that is not selected.

T0 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(0){1,2} if x = 0 and c1 ⊕ b4 = 0
commit(0){3,4} if x = 0 and c1 ⊕ b4 = 1
commit(y){1,2} if x = 1 and c1 ⊕ b4 = 1
commit(y){3,4} if x = 1 and c1 ⊕ b4 = 0

The value of T0 is commit(x ∧ y) and its base is randomly set by c1 ⊕ b4.
Since Alice does not know b4, T0 = commit(x ∧ y){1,2},{3,4}|A.
Similarly,

T1 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(y){3,4} if x = 0 and c1 ⊕ b4 = 0
commit(y){1,2} if x = 0 and c1 ⊕ b4 = 1
commit(0){3,4} if x = 1 and c1 ⊕ b4 = 1
commit(0){1,2} if x = 1 and c1 ⊕ b4 = 0

The value of T1 is commit(x̄ ∧ y) and its base is randomly set by c1 ⊕ b4.
T1 = commit(x̄ ∧ y){1,2},{3,4}|A.
Next, execute the base-fixed protocol on these pairs. Then the players obtain
commit(x ∧ y){1,2}.

The protocol is 14 rounds since the first step of the base-fixed protocol is
executed by Bob. The semi-honest two-player AND protocol [14] is 8 rounds.
The number of cards is four. Since four cards are necessary to input x and y, the
number of cards is the minimum. The correctness of the output value is shown
in the protocol, thus we show the security.

Theorem 2. The AND protocol is secure.

Proof. First, we show the security for Bob. Since Bob watches Alice, Bob knows
the values in Steps 1, 2, 4, 5, 7, 9, 10 and Steps 1, 3, and 4 of the base-fixed
protocol. Bob thus sees ai, bi, bri, x ∧ y ⊕ br1 ⊕ cr1, x̄ ∧ y ⊕ br2 ⊕ cr2, and
((0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 1)). Bob can obtain no information about
the secret input and output values since the values of cards are randomized by
c2, c3, cr1, or cr2 that are unknown to Bob.

From the bases of the cards, Bob obtains no information since the bases of
two randomized values, 0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 (or y ⊕ a2 ⊕ b2 ⊕ c2
and 0 ⊕ a3 ⊕ b3 ⊕ c3) are randomized by unknown value c1. The bases of two
randomized values, x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 are randomized by
c1 ⊕ b4 but c1 is unknown to Bob.

Next, we show the security for Carol. Since Carol watches Bob, Carol knows
the values in Steps 2, 3, 5, 6, 7, 8, 10 and Steps 1, 2, 4, and 5 of the base-fixed
protocol. Carol thus sees bi, ci, bri, cri, x ⊕ a1 ⊕ b1, 0 ⊕ a2 ⊕ b2, y ⊕ a3 ⊕ b3, and
((0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 1)). From the cards, Carol obtains no

Card-Based Cryptographic Protocols 343

information about the secret input values since the values are randomized by
unknown values a1, a2, or a3.

About the bases of the cards, Carol knows whether she set commit(0){1,2}||
commit(y){3,4} or commit(0){3,4}||commit(y){1,2} in Step 3 and both two base
randomizations by Carol and Bob, thus she knows whether S7||S8 is commit(0)||
commit(y) or commit(y)||commit(0) and each commitment is made by {1, 2}
or {3, 4}. However, Carol cannot see the private reverse cut by Alice in Step 9,
Carol cannot know which pair is selected as the final result thus no informa-
tion is known to Carol. Since Alice sets the base to {1, 2}, Carol cannot know
information about the secret input values from the base of the final result.

Last, we show the security for Alice. Alice knows the values in Steps 1, 3, 4,
6, 8, 9, and Steps 2, 3, and 5 of the base-fixed protocol. Alice thus sees ai, ci,
cri, x⊕ a1 ⊕ b1, x ∧ y ⊕ br1 ⊕ cr1, and x̄ ∧ y ⊕ br2 ⊕ cr2, and ((0 ⊕ a2 ⊕ b2 ⊕ c2
and y⊕ a3 ⊕ b3 ⊕ c3 if x⊕ a1 ⊕ b1 = 0) or (y⊕ a2 ⊕ b2 ⊕ c2 and y⊕ a3 ⊕ b3 ⊕ c3 if
x ⊕ a1 ⊕ b1 = 1)). From the revealed cards, Alice obtains no information about
the secret input and output values since each value is randomized by unknown
value b1, b2, b3, br1, or br2.

Alice knows whether S3||S4 is commit(0){1,2}||commit(y){3,4}

or commit(y){3,4}||commit(0){1,2}. Alice also knows the bases of each pair of
S5||S6. Though Alice knows the bases of S5||S6, Bob’s base change using b4 is
unknown to Alice. Thus, the bases of T0 and T1 are random for Alice because
of b4. When Alice sees x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 in Step 3 of the
base-fixed protocol, the bases are randomized by c1 ⊕ b4. Thus, Alice obtains no
information from the bases of the commitments. ��

3.3 Copy Protocol

Next, we show a new copy protocol by three players.

Protocol 4 (Three player copy protocol)
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2} using random
bit a. The result is commit(x ⊕ a){1,2}.

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} using
random bit b. The result is commit(x ⊕ a ⊕ b){1,2}.

3. Carol executes a private reveal on commit(x⊕ a⊕ b){1,2} and sees x⊕ a⊕ b.
Carol privately makes commit(x ⊕ a ⊕ b){3,4}.

4. Alice executes a private reverse cut on each of the pairs using a. The result
is commit(x ⊕ b){1,2} and commit(x ⊕ b){3,4}.

5. Bob executes a private reverse cut on each of the pairs using b. The result is
commit(x){1,2} and commit(x){3,4}.

The number of cards is the minimum. The protocol is five rounds. The semi-
honest two-player copy protocol [14] is three rounds.

344 T. Morooka et al.

Theorem 3. The copy protocol is secure.

Proof. Alice sees a and x ⊕ a ⊕ b. Bob sees a and b. Carol sees b and x ⊕ a ⊕ b.
Thus no player knows the secret value x. ��

3.4 XOR Protocol

Since AND and copy protocols are shown and NOT is obvious, any Boolean
function can be realized by the combination of these protocols. XOR protocol is
shown because the realization of XOR is simple.

Protocol 5 (Three player XOR protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using the same random bit a ∈ {0, 1}. The result is
commit(x ⊕ a){1,2} and commit(y ⊕ a){3,4}.

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} and
commit(y ⊕ a){3,4} using the same random bit b ∈ {0, 1}. The result is
commit(x ⊕ a ⊕ b){1,2} and commit(y ⊕ a ⊕ b){3,4}.

3. Carol executes a private reveal on commit(y⊕ a⊕ b){3,4}. Carol sees y⊕ a⊕ b.
Carol executes a private reverse cut on commit(x⊕ a⊕ b){1,2} using y ⊕ a⊕ b.
The result is commit((x ⊕ a ⊕ b)⊕ (y ⊕ a ⊕ b)){1,2} = commit(x ⊕ y){1,2}.

The protocol is three rounds. The semi-honest two-player XOR protocol [14] is
two rounds. The protocol uses four cards. Since any protocol needs four cards
to input x and y, the number of cards is the minimum.

Theorem 4. The XOR protocol is secure.

Proof. Alice sees a and y ⊕ a ⊕ b. Bob sees a and b. Carol sees b and y ⊕ a ⊕ b.
Thus no player knows the secret value y. ��

References

1. Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based
majority voting protocol with three inputs. In: 2020 International Symposium on
Information Theory and Its Applications (ISITA), pp. 377–381. IEEE (2020)

2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Cheung, E., Hawthorne, C., Lee, P.: CS 758 project: secure computation with
playing cards (2013). http://cdchawthorne.com/writings/secure playing cards.pdf

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8
http://cdchawthorne.com/writings/secure_playing_cards.pdf

Card-Based Cryptographic Protocols 345

5. Hanaoka, G., et al.: Physical and visual cryptography to accelerate social imple-
mentation of advanced cryptographic technologies. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. (2023). (In Japanese)

6. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 101(9), 1512–1524 (2018)

7. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology, Germany (2019)

8. Koch, A.: The landscape of optimal card-based protocols. Math. Cryptol. 1(2),
115–131 (2021)

9. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. N. Gener. Comput. 39(1), 115–158 (2021)

10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Proceedings of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

11. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol
with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) CSR
2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-79416-3 14

12. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-
Key Cryptography Workshop, APKC 2021, pp. 13–22. Association for Computing
Machinery, New York (2021)

13. Manabe, Y.: Survey: card-based cryptographic protocols to calculate primitives of
Boolean functions. Int. J. Comput. Softw. Eng. 27(1), 178 (2022)

14. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021.
LNCS, vol. 12819, pp. 256–274. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85315-0 15

15. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. N. Gener. Comput. 40(1), 67–93 (2022)

16. Miyahara, D., Hayashi, Y.I., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theoret. Comput. Sci. 803, 207–221 (2020)

17. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE
Techinical Report ISEC2016-53, pp. 13–17 (2016). (In Japanese)

18. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 29

19. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 16

20. Mizuki, T., Komano, Y.: Information leakage due to operative errors in card-based
protocols. Inf. Comput. 285, 104910 (2022)

21. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio,
F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07890-8 27

22. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
100(1), 3–11 (2017)

https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-319-07890-8_27

346 T. Morooka et al.

23. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

24. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve mil-
lionaires’ problem with two kinds of cards. N. Gener. Comput. 39(1), 73–96 (2021)

25. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-
based three-input voting protocol utilizing private permutations. In: Shikata, J.
(ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72089-0 9

26. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inform. 38(1, 2), 181–
188 (1999)

27. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

28. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the million-
aires’ problem using private input operations. In: Proceedings of 13th Asia Joint
Conference on Information Security (AsiaJCIS 2018), pp. 23–28 (2018)

29. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. N. Gener. Comput. 39(1), 19–40 (2021)

30. Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using
private operations. Cryptography 5(3), 17 (2021)

31. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for sudoku. Theoret. Comput. Sci. 839, 135–142 (2020)

32. Shinagawa, K., Mizuki, T.: Secure computation of any Boolean function based
on any deck of cards. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS,
vol. 11458, pp. 63–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18126-0 6

33. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any Boolean circuit. Discret. Appl. Math. 289, 248–261 (2021)

34. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS,
vol. 12596, pp. 257–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-69255-1 17

35. Takashima, K., et al.: Card-based protocols for secure ranking computations. The-
oret. Comput. Sci. 845, 122–135 (2020)

36. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Nat. Comput. 21(4), 615–628 (2022)

37. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proceed-
ings of 2018 International Symposium on Information Theory and Its Applications
(ISITA), pp. 218–222. IEEE (2018)

https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1007/978-3-030-69255-1_17

Cryptanalysis of Human Identification
Protocol with Human-Computable

Passwords

Maciej Grześkowiak1, �Lukasz Krzywiecki2(B), and Karol Niczyj3

1 Adam Mickiewicz University, Poznań, Poland
maciej.grzeskowiak@amu.edu.pl

2 Wroclaw University of Science and Technology, Wroc�law, Poland
lukasz.krzywiecki@pwr.edu.pl

3 Karol Niczyj Software House, Wroc�law, Poland
karol.niczyj@knsh.pl

Abstract. In this paper we demonstrate effective attacks on Human
Identification Protocol with Human-Computable Passwords (HIPHCP)
presented in ISPEC’22. The protocol, which was designed to allow fast
user identification, is vulnerable to both the active and the passive
attacks, where the significant amount of the secret key can be learned
by the adversary. This subsequently allow to compromise the full secret
key via brute-forcing the remaining secret bits.

Keywords: Cryptoanalysis · Human-Computable Passwords ·
Identification scheme · Short password · Shared secret

1 Introduction

In this paper we address security issue of the Human Identification Protocol
with Human-Computable Passwords (HIPHCP) [1] presented in ISPEC’22. In
general the protocol could be classified as an Identification Scheme (IS), where
a prover and a verifier parties pre-share the same secret. Specifically, the addi-
tional requirement is that the secret should be easy to memorize and human
computable, and as such, it should be easy to input in the prover’s device by the
end user. This makes it similar, from the ergonomic perspective, to Password
based Authenticated Key agreement Protocols (PAKE), where short passwords
input by the parties, are used to pair parties’ devices and to establish a strong
symmetric session key between them.

Identification Scheme. Identification schemes (IS) are used to prove one’s
identity to a verifier. Typically, IS are implemented using asymmetric cryptog-
raphy with keys managed via Public Key Infrastructure (PKI). In this scenario,
within an interactive zero-knowledge protocol, a prover convinces the knowledge
of a secret key to a Verifier holding the corresponding public key. The main secu-
rity requirements for IS is impersonation resistance - no attacker should be able
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 347–364, 2023.
https://doi.org/10.1007/978-981-99-7032-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_21&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_21

348 M. Grześkowiak et al.

to successfully complete the protocol, and be positively identified, without the
corresponding secret key. Typically, both a prover and a verifier exchanges mes-
sages over an open communication channel, but runs their computations locally.
The algorithm executed by the prover holding the secret key, and challenged
from the the verifier, should correspond with the result of the verifier’s algo-
rithm called with the public key and the response from the prover. This involves
complex computations over large numbers, and are run on the users’ electronic
devices, which store sensitive secret keys.

Shared Secret Identification. In some scenarios the prover and the verifier
share the same short secret, called password, which allows for its fast input into
the corresponding devices. This could be used to coin a session secret key, long
enough for subsequent secure encrypted communication between the devices
paired in this way. However, because short passwords have small entropy, the
main threat here is that messages exchanged between parties could be treated
as effective oracles for potential password guessing attacks. Therefore Password
Based Authenticated Key Exchange (PAKE) protocols (see e.g. [2–4]) utilize the
asymmetric cryptography, and Diffie-Hellman like key exchange techniques to
disperse the short passwords in the large groups of computations, in a way that,
it is impossible to brute-force the password from the resulting transcript of the
protocol execution.

Human Computable Secrets. In some scenarios it is required that a user
actively participate in the identification process. It means the user has to perform
a “small human action” which guaranties that the identification process is not
fully automated and machine operated. This usually protects against potential
brute-force attacks, or “unawareness” attacks, as those “small human actions”
should be difficult to software simulate. Usually this involves some specific
interface-level actions, like Completely Automated Public Turing test to tell Com-
puters and Humans Apart (CAPTCHA) proposed in [5]. In some cases human
operator additionally has to apply some basic computations itself, using small
numbers and basic mathematical operations. First Human-Generated Password
protocol (HGP) was proposed in [6]. The commercially implemented protocols
were [7,8], where [7] is slow, while [8] is weak.

Problem Statement. Providing the HGP construction, that is provably secure,
and yet which ergonomy and complexity are on acceptable level, is not an easy
task. The proposition from [1] was supposed to close the gap between the two
requirements (as of [7,8]), being both fast and secure. Here in this paper we
discuss some aspects of this scheme, pointing out its vulnerabilities.

1.1 Contribution of the Paper

The contribution of the paper is the following:

– We crypto-analyze the original Human Identification Protocol with Human-
Computable Passwords from [1]:

Cryptanalysis of Human Identification Protocol 349

• We demonstrate a very effective active attack, which allows to find out
positions in the matrix secret.

• We demonstrate a passive attack. This attack is only slightly slower then
the active attack.

Both attacks can be combined. The indexes in the secret matrix, obtained from
the active attack, can be used to speed-up the passive attack process.

1.2 Related Work

Identification schemes are typically based on public-key cryptography [9–13].
Several ISes constructions are design to withstand specific attacks [14,15], includ-
ing statistical attacks [16], reset attacks [17,18], and ephemeral key leakages in
three-round (commitment, challenge, response) schemes [19,20].

Password based schemes allow to authenticate low-entropy password holders,
to pair their devices and to establish a session encryption key. These schemes
are usually based on Diffie-Hellman key exchange, where the fresh generator is
created by a deterministic function over the password [2–4,21,22]. Some of the
password based constructions has been proposed for Machine Readable Travel
Documents (MRTD) [23–25].

In the context of human generated passwords, and human computable
secrets, apart from constructions [1,6–8] mentioned above, we refer to reviews
[26,27], and the scheme from [28].

1.3 Structure of the Paper

In Sect. 2 we define the system model and the security notion for identification
protocols with shared secrets. In Sect. 3 we recall the base construction from [1].
In Sect. 4 we demonstrate our attacks.

2 Preliminaries and Notation

2.1 System Model

We start from the formal definition of identification scheme, where a prover P,
traditionally called Alice, identifies in front of a verifier V, called Bob. Here both
parties hold the same pre-shared secret S. Thus, a positive verification in the
scheme means, that Bob concludes that on the other side of the communication
channel is a user that holds the same secret.

Definition 1 (Shared Secret Identification Scheme). A shared secret
identification scheme IS is a tuple of procedures (PG,KG,P,V, π):

par ← PG(1λ): takes the parameter λ, and outputs public parameters.
S ← KG(par): outputs a secret shared between the prover and the verifier.
P(S): denotes the Prover algorithm which interacts with the Verifier V.

350 M. Grześkowiak et al.

V(S): denotes the Verifier algorithm which interacts with the Prover P.
π(P,V): denotes the protocol of interactions between P and V.

IS has Initialization and Operation Stages. In Initialization Stage, parameters
and keys for users are generated. In the latter, a user proves interactively its
identity in front of the Verifier: π(P(S),V(S)). We write π(P,V) → 1 iff P and
V have mutually accepted each other in π. The scheme is correct iff

Pr[par ← PG(1λ), S ← KG(par), π(P(S),V(S)) → 1] = 1.

2.2 Impersonation Resilience

The fundamental security requirement for IS with parameters par ← PG(1λ)
is that no malicious algorithm A, without the secret key S, but observing �
executions of π(P(S)),V(S)) between a legitimate prover and verifier, should be
accepted in protocol π as the observed prover P(S). In other words, we require
that probability Pr[π(A(par),V(S)) → 1] ≤ ε(λ, �), where ε(λ, �) is a negligible
function. We formally define our security experiment in Sect. 2.4.

2.3 Adversary Model

The process in which an adversary gains knowledge about the attacked protocol
is modeled by a Query Stage of the security experiment. This means that the
adversary runs a polynomial number � of the protocol executions between the
prover and the verifier: π(P(S),V(S)). We consider the adversary which can
intercept messages from V(S), modify it according to its will, and forward it to
the prover P(S). The adversary itself can play the role of the verifier, but of
course without the access to the secret S.

2.4 Security Experiments

Let the view vi be the total knowledge A can gain after i runs of π. These
includes the set {T1, . . . , Ti}, where Ti is the transcript of the protocol messages
in the ith execution. The IS is secure if such a cumulated knowledge after �
executions does not help the Adversary to be accepted by the verifier except
with a negligible probability.

Definition 2 (Impersonation Security).
Let IS = (PG, KG, P, V, π). We define security experiment Expλ,�

IS :
Init Stage : par ← PG(1λ), S ← KG(par), A(par).
Query Stage : For i = 1 to � run: π(P(S),A(V(S), vi−1)) → Ti,

where A(V(S), vi−1) indicate the adversary that has access to challenges from
V(S), and can modify them using the knowledge vi−1 from previous executions.

Impersonation Stage : A executes the protocol π(A(par, v�),V(S)).
The advantage of A in the experiment Expλ,�

IS is the probability of acceptance in
the last stage:

Cryptanalysis of Human Identification Protocol 351

Adv(A, Expλ,�
IS) = Pr[π(A(par, v�),V(S)) → 1].

We say that the IS is (λ, �)–secure if Adv(A, Expλ,�
IS) ≤ ε(λ, �) and ε is negligible

function of parameters λ,�.

3 The Original Protocol

3.1 The Protocol Pattern

The original HIPHCP protocol from [1] has typical two-round pattern depicted
in Fig. 1. Both parties, Alice and Bob, share a predefined secret S, and locally
compute a function FS(C), where C denotes a challenge from the verifier. Note
that usually the choice of the function FS(C) is related to the requirements and
limitations of the parties and their devices. It is worth to mention, that if S is
sufficiently large, the function F could be realize via cryptographically secure
hash function H (or via efficient deterministic encryption scheme,). Then, both
parties could compute r = H(C||S). However, in the case of HIPHCP from
[1] the secret S is short. For short secrets one could apply or modify existing
PAKE protocols. Yet, in the construction from [1] the function FS(C) is assumed
to input not only short human-memorable secret S, but to be easily human-
computable as well. We abstract from assessing if these requirement are achieved,
but we note that the user computed operations, as defined originally in [1], and
recalled in subsequent subsections, are quite complex.

Fig. 1. The two-round pattern of the HIPHCP protocol from [1].

3.2 Function F

Here we formally define the function F . We only slightly adjust the notation
from [1] for legibility of attacks description. Fix n ∈ N, n ≥ 10 and let be the
index set In = {1, 2, . . . , n}. Let K be the power set of In × In,

K = P (In × In).

Fix q ∈ N. We denote by Mn(Zq) the set of n × n matrices over a ring Zq. For
fixed integer 0 < L ≤ 10 we define the keyed function

F : K × Mn(Zq) → Z
L
q .

352 M. Grześkowiak et al.

Consider a challenge-response protocol in which users Alice and Bob have a
shared secret S ∈ K that Alice can use to respond to Bob’s challenges in such
a way that an adversary cannot easily learn the secret. Suppose that the secret
shared between Alice and Bob is a family of sets of K drawn at random from K,

S = {BI , BO}, BI = {BI
1 , . . . BI

b−1} BO = {BO
0 , BO

1 . . . BO
b−1}.

The sets BO and BI determine the entries of matrices in Mn(Zq). Authen-
tication proceeds as follows: Bob generates a random matrix C ∈ Mn(Zq) and
send it to Alice, as a challenge. Alice responds with r = F (S,C) = FS(C). Bob
accepts if r from Alice equals to FS(C) computed locally by Bob.

3.3 Secret and Challenge

At the beginning of this paragraph we will describe the procedure for choosing
a secret S. Fix n, q ∈ N, n ≥ 10. For given positive integers 1 ≤ b, L ≤ 10 and
1 ≤ l1, . . . , lb−1 ≤ 10 we select randomly a secret S from K. The set S is a family
of sets

S = {BO
0 , . . . , BO

b−1, B
I
1 , . . . , BI

b−1}, Bz
i , Bw

j ∈ K,

where z, w ∈ {O, I},

BO
0 = {(i1, j1), . . . , (iL, jL)},

BO
t = {(it, jt)},

BI
t = {(i1, j1), . . . , (ilt , jlt)},

for t = 1, . . . , b− 1. For given matrix C = [ci,j] ∈ Mn(Zq), we determine the sets
consisting of the matrix elements

BO
0 (C) = {ci1,j1 , . . . , ciL,jL},

BO
t (C) = {cit,jt},

BI
t (C) = {ci1,j1 , . . . , cilt ,jlt

},

for t = 1, . . . , b − 1. For simplicity of notation, we take cw = ciw,jw and omit
the subscripts iw, jw of c’s. In this way, for given S and C, the elements of the
corresponding sets BO

r (C) and BI
t (C) can be written in a simplified form

BO
0 (C) = {c1, . . . , cL},

BO
t (C) = {ct},

BI
t (C) = {c1, . . . , clt},

for t = 1, . . . , b − 1. The element mw of Bz
i (C) corresponding to the position

w is denoted by Bz
i (C)[w], where i = 0, . . . , b − 1, z ∈ {O, I}. Note that, the

sets BO
t (C) have only one element, which we will denote by BO

t (C)[1] for t =
1, . . . , b − 1.

We illustrate the procedures for selecting the secret key with an example.

Cryptanalysis of Human Identification Protocol 353

Example 1. Suppose that Alice and Bob share a secret with parameters n = q =
10, b = 4 and L = 3, l1 = 2, l2 = 3, l3 = 4. So K = P (I10 × I10) is a set of sets of
ordered pairs (i, j) with i, j ∈ I10. Let Alice and Bob share a secret S consisting
of sets,

S = {BO
0 , . . . , BO

3 , BI
1 , . . . , BI

3},

where

BO
0 = {(1, 1), (2, 5), (4, 3)},

BI
1 = {(2, 9), (4, 8)},

BI
2 = {(5, 1), (5, 2), (5, 3)},

BI
3 = {(8, 3), (8, 4), (9, 1), (9, 6)},

BO
1 = {(7, 7)},

BO
2 = {(8, 8)},

BO
3 = {(4, 7)}.

Example 2. Let’s choose a challenge matrix C = [ci,j] ∈ M10(Z10),

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 0
2 7 9 3 5 6 1 1 1 4
3 3 5 3 4 5 6 4 8 9
4 5 2 6 4 4 0 1 8 6
5 4 2 0 3 2 3 7 3 5
6 9 2 5 4 6 6 1 6 3
7 8 3 6 9 5 9 7 8 4
8 6 2 1 4 2 6 8 4 8
9 1 6 6 5 5 3 0 5 1
0 3 2 3 4 6 6 5 8 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sets BO
t (C), BI

t (C) corresponding to the matrix C, where r = 0, 1, 2, 3,
t = 1, 2, 3, are of the form

BO
0 (C) = {c1,1, c2,5, c4,3} = {1, 5, 2},

BI
1(C) = {c2,9, c4,8} = {1, 1},

BI
2(C) = {c5,1, c5,2, c5,3} = {5, 4, 2},

BI
3(C) = {c8,3, c8,4, c9,1, c9,6} = {2, 1, 9, 5},

BO
1 (C) = {c7,7} = {9},

BO
2 (C) = {c8,8} = {8},

BO
3 (C) = {c4,7} = {0}.

354 M. Grześkowiak et al.

We are now in a position to describe how the function F works. Assume that
the secret S has been chosen. Then we are interested in of the algorithm for
computing the single-input function

FS : Mn(Zq) → Z
L
q .

In [1] the author uses the following notation, the value of function FS(C) is
denoted by OTP , where OTP is an array with L elements. That is FS(C) =
OTP [1..L].

Algorithm 1. An algorithm for computing FS

Require: S = {BO
0 , . . . , BO

b−1, B
I
1 , . . . , B

I
b−1}, C ∈ Mn(Zq), q, b, L ∈ N, 1 ≤ b, L ≤ 10

Ensure: OTP ∈ Z
L
q

1: block = 0
2: for i = 1, . . . , L do
3: vin = BO

0 (C)[i]
4: vout = vin
5: for u = 0, . . . , b − 2 do
6: j = u + block (mod b − 1) + 1
7: if vin ∈ BI

j (C) then
8: vout ← BO

j (C)[1]
9: block = j (mod b)

10: go to 13
11: end if
12: end for
13: OTP [i] = vin + vout (mod q)
14: end for

Important note. In the original paper [1], the author imprecisely defines the
steps of the algorithm for computing FS(C) regarding the order in which the
BI

j -blocks are searched. Therefore, we set this order as in steps 2–12. This does
not affect the presented attack’s effectiveness but only how it is written.

Example 3. Let us compute FS(C) = OTP , where S is the secret of Example 1
and C is the matrix of Example 2. It is an elementary check that OTP = 034.

4 Attacks

4.1 Active Attack Description

Suppose Alice and Bob share a secret S, where S is the set of a family of sets

S = {BO
0 , . . . , BO

b−1, B
I
1 , . . . , BI

b−1}, Bz
i , Bw

j ∈ K,

where z, w ∈ {O, I}. We present a probabilistic algorithm that finds BO
0 , part

of the secret S, with high probability. We assume that Alice and Bob choose

Cryptanalysis of Human Identification Protocol 355

S secretly and that integers n ≥ 10, q and L are known to the adversary, say
Celine. For convenience of exposition, we assume that n is an even number. Let
us fix a secret

BO
0 = {(i1, j1), . . . , (iL, jL)}.

It is clear that

(ik, jk) ∈ In × In, 1 ≤ k ≤ L.

Let us fix k. Given X ⊆ In × In such that (ik, jk) ∈ X, we describe an attack
scenario in which Celina locates a set Y ⊂ X of cardinality |X|

2 such that
(ik, jk) ∈ Y . We start by describing the auxiliary procedure. The procedure
takes an arbitrary set X ⊆ In × In, n, k ∈ N, and M = [mi,j] ∈ Mn(Z10). We
assume that M is with all entries zero. The procedure returns Y ⊂ X such that
(ik, jk) ∈ Y , |Y | = |X|

2 , and C = [ci,j] ∈ Mn(Z10).

Procedure DivSet(n, k,X,M)

1. Celine randomly divides X into two disjoint sets of the same cardinality.
Let Y and Z be such a partition of the set X, that is X = Y ∪ Z, and
|Y | = |Z| = |X|

2 .
2. Alice changes the values of the matrix M = [mi,j] according to the formula

mi,j = 3 if (i, j) ∈ Y,

mi,j = 1 if (i, j) ∈ Z.
(1)

and takes C = M .
3. Celine sends the challenge C to Alice. Alice respond with

OTP = FS(C).

4. If OTP [k] = 6, then Celine concludes that (ik, jk) ∈ Y and she returns (Y,C).
5. If OTP [k] = 2, then Celine learns that (ik, jk) ∈ Z and she returns (Z,C).
6. If OTP [k] = 4, then Celine randomly re-divides set X and start the procedure

from the beginning.

From Lemma 2, it follows that procedure DivSet will execute on average
twice before returning the result.

Example 4. Alice and Bob share the secret S,

S = {BO
0 , BO

1 BO
2 , BI

1 , BI
2},

where

BO
0 = {(4, 4), (7, 7)}, BO

1 = {(1, 8)}, BO
2 = {(1, 1)},

BI
1 = {(4, 1), (5, 1), (5, 2}, BI

2 = {(7, 2), (8, 1)}.

To learn in which part of the set X is (i1, j1) ∈ BO
0 , Celine executes procedure

DivSet(n, k,X,M) with k = 1, n = 8, X = I8 × I8. M = [mi,j] ∈ M8(Z10), and
M be with all entries zero.

356 M. Grześkowiak et al.

1. Celine randomly divides X into two disjoint sets, X = Y ∪ Z,

Y = {(i, j) : i ∈ [1, 4], j ∈ [1, 8]}, Z = X\Y,

2. Celina constructs matrix C,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

3. Celine sends the challenge C to Alice. Alice respond with

OTP = FS(C) = 64.

4. Since OTP [1] = 6, then Celine concludes that (i1, j1) ∈ Y and she returns
(Y,C).

Vulnerable Subspace. We are now in a position to present the main algorithm
that finds part of the secret S. We assume that n = 2u, u ∈ N. Given n, u, k ∈ N

and X = In × In the algorithm returns (ik, jk) ∈ BO
0 .

Algorithm FindSecret(n, k,X)

1. Take C0 = [ci,j] ∈ Mn(Z10) to be the matrix with all entries zero,
2. X0 = X
3. For i = 1, . . . 2u do

(a) (Xi, Ci) := Procedure DivSet(n, k,Xi−1, Ci−1),
4. Return X2u.

Lemma 2 shows that procedure DivSet will execute on average twice before
returning the result. It is intuitively clear that the algorithm FindSecret per-
forms an average of 4u steps, where each step is the running time of procedure
DivSet.

Example 5. In this example we show the execution of algorithm FindSecret for
the secret S from example 4. To learn the secret (i1, j1) ∈ BO

0 , Celine executes
algorithm FindSecret(1, 8,X) with k = 1, n = 8, X = I8 × I8.

The following parameters calculated by the algorithm are given in the table
below. The headings of the table mean respectively: i-iteration, ‘input’ - input to
procedure DivSet, ‘partition’-the partition into two disjoint sets performed in
procedure DivSet, ‘matrixa’ - challenge sent to Alice by Celine, OTP [1] - first
digit of the response sent by Alice, ‘output’-the values returned by the procedure
DivSet.

Cryptanalysis of Human Identification Protocol 357

i input partition matrix OTP [1] output

1 X0, C0 X0 = Y0 ∪ Z0 C1 6 X1 = Y0, C1

2 X1, C1 X1 = Y11 ∪ Z11 C21 4

2 X1, C1 X1 = Y12 ∪ Z12 C22 2 X2 = Z12, C2 = C22

3 X2, C2 X2 = Y2 ∪ Z2 C3 6 X3 = Y2, C3

4 X3, C3 X3 = Y3 ∪ Z3 C4 6 X4 = Y3, C4

5 X4, C4 X4 = Y4 ∪ Z4 C5 2 X5 = Z4, C5

Consecutive outputs Xi and Ci of algorithm FindSecret o for i =
1, 2, 3, 4, 5:

X1 = Y0 = {(i, j) : i ∈ [1, 4], j ∈ [1, 8]},

Y11 = {(i, j) : i ∈ [1, 4], j ∈ [1, 4]},

X2 = Z12 = {(i, j) : (i ∈ [1, 2], j ∈ [5, 8]) ∩ (i ∈ [3, 4], j ∈ [1, 4])},

X3 = Y2 = {(i, j) : (i ∈ [1, 2], j ∈ [7, 8]) ∩ (i ∈ [3, 4], j ∈ [3, 4])},

X4 = Y3 = {(i, j) : (i ∈ [1, 2], j ∈ [7, 8]) ∩ (i ∈ [3, 4], j ∈ [3, 4])},

X5 = Z4 = {(i, j) : (i ∈ [1, 2], j = 7) ∩ (i ∈ [3, 4], j = 3)},

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 1 1 1 1
3 3 3 3 1 1 1 1
1 1 1 1 3 3 3 3
1 1 1 1 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 1 1 3 3
3 3 3 3 1 1 3 3
1 1 3 3 3 3 3 3
1 1 3 3 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 1 1 3 1
3 3 3 3 1 1 3 1
1 1 3 1 3 3 3 3
1 1 3 1 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 1 1 3 1
3 3 3 3 1 1 3 3
1 1 3 1 3 3 3 3
1 1 3 3 3 3 3 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Algorithm Analysis. The computational complexity of algorithm FindSe-
cret depends on the running time of procedure DivSet. To analyze the pro-
cedure we assume that n = 2u, |X| = 22w, where 22w | 22u and w, u ∈ N. Then
X ⊆ In × In. Let us assume that Alice and Bob share the secret

S = {BO
0 , . . . , BO

b−1, B
I
1 , . . . , BI

b−1}.

358 M. Grześkowiak et al.

Fix k, 1 ≤ k ≤ L, and we denote by

(ik, jk) ∈ BO
0 (2)

the currently searched an element of set S. If BI
t ∩ Y �= ∅, then we denote by

BI
t1 be the first block found in step 7 of the Algorithm 1 such that BI

t1 ∩Y �= ∅.
If BI

t ∩ Z �= ∅, then we denote by BI
t2 be the first block found in step 7 of the

Algorithm 1 such that BI
t1 ∩ Z �= ∅. We take

t0 = min(t1, t2),

and we define

(iY , jY) = min
s

{(is, js) ∈ BI
t0 ∩ Y } if t0 = t1,

(iZ , jZ) = min
s

{(is, js) ∈ BI
t1 ∩ Z} if t0 = t2.

(3)

Then the element

(it0 , jt0) ∈ BO
t0 (4)

is uniquely determined. The analysis of the procedure depends on the placement
of elements (2), (3), and (4) in the sets Y and Z. With the notation above we
have the lemma.

Lemma 1. Fix n = 2u, u ∈ N. Let X ⊆ In × In, and let C be the challenge
sent to Alice in step 3 of Procedure DivSet. Alice’s response OTP [k] = 4 if
and only if (ik, jk), (iY , jY) ∈ Y and (it0 , jt0) ∈ Z or (ik, jk), (iZ , jZ) ∈ Z and
(it0 , jt0) ∈ Y .

Proof. Let (ik, jk), (iY , jY) ∈ Y and (it0 , jt0) ∈ Z. From (1) we obtain cik,jk =
ciY ,jZ = 3 and cit0 ,jt0

= 1. Thus vin = BO
0 (C)[k] = 3 in step 3 of Algorithm

1. Moreover, vin ∈ BI
t0(C) in step 7 of Algorithm 1, and the corresponding

vout = BO
t0(C)[1] = 1. Consequently, OTP [k] = vin + vout = 4 (mod 10). The

proof is identical for the second case. Let OTP [k] = 4. This occurs only when
(vin = 3 and vout = 1) or (vin = 1 and vout = 3). Suppose the first case
occurs. Then 3 = vin = BO

0 (C)[k] in step 3 of Algorithm 1, (ik, jk) ∈ Y . There
exist positive integers t, s such that vin ∈ BI

t (C) and BI
t (C)[s] = vin in step

7 of Algorithm 1. By (3) (is, js) = (iY , jY) ∈ Y and t = t0. Since 1 = vout =
BO

t (C)[1] = cit , cjt ∈ C in step 8 of Algorithm 1, so (it, jt) ∈ Z. The proof is
identical for the second case.

The analysis of the computational complexity of the procedure is more subtle
and requires estimating the probability that OTP [k] = 4.

Lemma 2. Fix n = 2u, u ∈ N. Let X ⊆ In × In, and let C be the challenge sent
to Alice in step 3 of Procedure DivSet. The probability that Alice’s response
with OTP [k] = 4 is at most equal to 1

2 − 1
2l+2 and the probability that she response

with OTP [k] �= 4 is at least equal to 1
2 + 1

2l+2 , where l =
∑b−1

t=1 |BI
t |.

Cryptanalysis of Human Identification Protocol 359

Proof. Let us assume that Alice and Bob share the secret

S = {BO
0 , . . . , BO

b−1, B
I
1 , . . . , BI

b−1}.

and let

BI =
b−1⋃
t=1

BI
t , |BI

t | = lt,
b−1∑
t=1

lt = l. (5)

Suppose X = In × In. The space of matrix indices

X = {(i, j) ∈ In × In}

is divided into two disjoint sets Y and Z such that |Y | = |Z|. The experiment
consists of a random choice of elements (i, j) ∈ X. The outcome of the experi-
ment consists of the determination whether (i, j) ∈ Y or (i, j) ∈ Z. We assume
that all such events are independent of each other. We compute the probability
that OTP [k] = 4. Lemma 1 shows that two possibilities should be considered.

(ik, jk), (iY , jY) ∈ Y, (it0 , jt0) ∈ Z

or
(ik, jk), (iZ , jZ) ∈ Z, (it0 , jt0) ∈ Y.

Note that, if (ik, jk) ∈ Y , then by (3) (iY , jY) ∈ Y if and only if t0 = t1. Thus
BI ∪ Y �= ∅. On the other hand, if (ik, jk) ∈ Z, then by (3) (iY , jY) ∈ Z if
and only if t0 = t2. Then BI ∪ Z �= ∅. Now, we compute the probability that
BI ∪ Y �= ∅ and BI ∪ Z �= ∅. Let EY be the event that BI ∩ Y = ∅, and EZ

be the event that BI ∩ Z = ∅. By (5) we have that the probability that

P (EY) = P (EZ) =
1

2l+1
.

Therefore, the probability that

P (EY ∪ EZ) =
1
2l

and consequently, the probability that

P (Ec
Y ∩ Ec

Z) = 1 − 1
2l

,

where Ec
Y , Ec

Z is the complement of EY , EZ respectively. Moreover, let Ek be
the event that the (ik, jk) ∈ Y , and let Et0 be the event that the (it0 , jt0) ∈ Y .
The probability that

P (Ek) = P (Et0) = P (Ec
k) = P (Ec

t0) =
1
2
,

360 M. Grześkowiak et al.

where Ec
k, Ec

t0 is the complement of Ek, Et0 respectively. By the above and
Lemma (1) we obtain that the probability

P (OTP [k] = 4) = P (EY)P (Ek)P (Ec
t0) + P (EZ)P (Ec

k)P (Et0)
+ P (Ec

Y ∩ Ec
Z) P (Ek)P (Ec

t0) + P (Ec
Y ∩ Ec

Z) P (Ec
k)P (Et0)

=
1
2

(
1 − 1

2l

)
+

1
2l+2

=
1
2

− 1
2l+2

,

and

P (OTP [k] �= 4) =
1
2

+
1

2l+2
.

It is important to notice, if X ⊆ In ×In then the number l can only decrease. So
the probability P (OTP [k] �= 4) increase and the probability of P (OTP [k] = 4)
decrease, which completes the proof.

Lemma 3. Let C be the challenge sent to Alice in step 3 of Procedure
DivSet. If OTP [k] = 6 then (ik, jk) ∈ Y .

Proof. It is clear that OTP [k] = 6 if and only if vin = 3 and Vout = 3 in step 13
of Algorithm 1. Moreover, it is easy to see that vin = BO

0 (C)[k], and it follows
that (ik, jk) ∈ Y .

Lemma 4. Let C be the challenge sent to Alice in step 3 of Procedure
DivSet. If OTP [k] = 2 then (ik, jk) ∈ Z.

Proof. The proof follows very closely the proof of Lemma 3.

4.2 Description of Passive Attack

According to authors of [1], the resistance of a system to frequency analysis is
attributed to the randomness of the challenge. However, it is important to note
that the output of the system is not randomly generated and can be used in
combination with the challenge for frequency analysis, which can compromise
the security of the system. Here we present a straightforward attack, called
NaivePassiveAttack, which can be mounted to discover G0 and BO, thereby
restricting the number of possible OTPs.

The procedure of NaivePassiveAttack is as follows: given a history of
challenge-output pairs Ci and OTPi, the algorithm performs the following steps:

1. For each k ∈ 1, . . . , L:
(a) For each pair of coordinates (x1, y1), (x2, y2) ∈ In×In, calculate the num-

ber of challenge-output pairs where cx1,y1 + cx2,y2 = OTPi[k] (mod q),
where cx1,y1 , cx2,y2 are elements of Ci.

(b) Select the pair (x1, y1), (x2, y2) with the highest count calculated in the
previous step and fix it as ak, bk.

Cryptanalysis of Human Identification Protocol 361

2. For a given challenge C, we can calculate a candidate for OTP [k] as follows:

OTP [k] = cak
+ cbk (mod q).

Here, the coordinates ak and bk correspond to the k-th element of BO
0 and

an element of one of Bj , j ∈ {0, 1, . . . , b}, respectively. Alternatively instead of
using values obtained from frequency analysis, the algorithm can use the values
obtained from an active attack.

Example 6. Let secret S consisting of sets,

S = {BO
0 , BO

1 , BI
1 , },

where

BO
0 = {(2, 3)},

BO
1 = {(3, 1)},

BI
1 = {(1, 1), (1, 3), (2, 1), (3, 2), (3, 3)}.

Table 1. Values calculated in step 1a

(x, y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 5 1 2 4 2 1 7 5 5

(1,2) 1 0 3 4 2 4 4 1 2

(1,3) 2 3 4 4 2 0 6 6 4

(2,1) 4 4 4 5 1 2 4 3 3

(2,2) 2 2 2 1 3 0 5 2 3

(2,3) 1 4 0 2 0 18 14 1 2

(3,1) 7 4 6 4 5 14 4 3 2

(3,2) 5 1 6 3 2 1 3 1 5

(3,3) 5 2 4 3 3 2 2 5 3

In Table 1 we present values we got in step 1a for 30 challenge-output pairs.
We can see that highest value we got for pair (2, 3), (2, 3), which corresponds
to B0

0 [1], B0
0 [1]. The second highest value is (2, 3), (3, 1) which corresponds to

B0
0 [1], B0

1 [1]. For

C =

⎡
⎣

5 1 8
9 5 7
4 1 3

⎤
⎦

OTP [1] candidate should be equal to c2,3 + c2,3 = 7 + 7 = 4 (mod 10). For this
small example OTP was guessed correctly 46,637 times for 100,000 randomly
generated challenges.

362 M. Grześkowiak et al.

By using this naive method with n = 16, m = 300 challenge-output pairs,
and a randomly selected secret with a number of input blocks b = 7, where
each input block length is equal to 8, we were able to successfully guess OTP
561 for 100,000 randomly generated challenges, which gives a 0.56% success
rate. This is significantly more than the expected success rate of 1 success per
10,000,000 tries (0.0001%). This result highlights the vulnerability of the system
to frequency analysis attacks.

5 Conclusion

In this paper we demonstrate two attack algorithms, active and passive, on the
base construction from [1]. The algorithms allow to find positions in the secret
matrix of the prover. This allow to facilitate the subsequent effective brute force
attack for the remaining bits of the secret.

Acknowledgment. The research was partially financed from the internal funds of
the Department of Fundamentals of Computer Science of the Wroc�law University of
Science and Technology for conducting research.

References

1. Matelski, S.: Secure human identification protocol with human-computable pass-
words. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022. LNCS, vol. 13620, pp.
452–467. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21280-2 25

2. Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: Proceedings, IEEE Computer Society 6th Workshop on Enabling Tech-
nologies (WET-ICE 1997), Infrastructure for Collaborative Enterprises, 18–20 June
1997, MIT, Cambridge, MA, USA, pp. 248–255(1997) . https://doi.org/10.1109/
ENABL.1997.630822

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. IACR Cryptol. ePrint Arch. 14 (2000). http://eprint.
iacr.org/2000/014

4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated
key exchange using diffie-hellman. IACR Cryptol. ePrint Arch. 44 (2000). http://
eprint.iacr.org/2000/044

5. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 18

6. Matsumoto, T., Imai, H.: Human identification through insecure channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409–421. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 35

7. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

https://doi.org/10.1007/978-3-031-21280-2_25
https://doi.org/10.1109/ENABL.1997.630822
https://doi.org/10.1109/ENABL.1997.630822
http://eprint.iacr.org/2000/014
http://eprint.iacr.org/2000/014
http://eprint.iacr.org/2000/044
http://eprint.iacr.org/2000/044
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-39200-9_18
https://doi.org/10.1007/3-540-46416-6_35
https://doi.org/10.1007/3-540-45682-1_4

Cryptanalysis of Human Identification Protocol 363

8. Brostoff, S., Inglesant, P., Sasse, M.A.: Evaluating the usability and security of a
graphical one-time PIN system. In: McEwan, T., McKinnon, L. (eds.) Proceedings
of the 2010 British Computer Society Conference on Human-Computer Interaction,
BCS-HCI 2010, Dundee, United Kingdom, 6–10 September 2010, pp. 88–97. ACM
(2010). http://dl.acm.org/citation.cfm?id=2146317

9. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988). https://doi.org/10.1007/BF02351717

12. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

13. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

14. Kim, H.-K., Yang, H.-S.: Security framework to verify the low level implementation
codes. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 52–61.
Springer, Heidelberg (2005). https://doi.org/10.1007/11424826 6

15. Kurosawa, K., Heng, S.-H.: The power of identification schemes. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–377.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 24

16. Asghar, H.J., Li, S., Steinfeld, R., Pieprzyk, J.: Does counting still count? revis-
iting the security of counting based user authentication protocols against statis-
tical attacks. In: 20th Annual Network and Distributed System Security Sympo-
sium, NDSS 2013, San Diego, California, USA, 24–27 February 2013, The Inter-
net Society (2013). https://www.ndss-symposium.org/ndss2013/does-counting-
still-count-revisiting-security-counting-based-user-authentication-protocols

17. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-second Annual ACM Sympo-
sium on Theory of Computing. STOC 2000, New York, NY, USA, pp. 235–244.
ACM (2000). http://doi.acm.org/10.1145/335305.335334

18. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-
6 30

19. Krzywiecki, �L: Schnorr-like identification scheme resistant to malicious subliminal
setting of ephemeral secret. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016.
LNCS, vol. 10006, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47238-6 10

20. Krzywiecki, L., Kutylowski, M.: Security of okamoto identification scheme: a
defense against ephemeral key leakage and setup. In: Wang, C., Kantarcioglu, M.,
(eds.) Proceedings of the Fifth ACM International Workshop on Security in Cloud
Computing, SCC@AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2 April 2017,
pp. 43–50. ACM (2017). https://doi.org/10.1145/3055259.3055267

21. MacKenzie, P.: On the security of the speke password-authenticated key exchange
protocol. Cryptology ePrint Archive, Paper 2001/057 (2001). https://eprint.iacr.
org/2001/057

http://dl.acm.org/citation.cfm?id=2146317
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BF02351717
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11424826_6
https://doi.org/10.1007/11745853_24
https://www.ndss-symposium.org/ndss2013/does-counting-still-count-revisiting-security-counting-based-user-authentication-protocols
https://www.ndss-symposium.org/ndss2013/does-counting-still-count-revisiting-security-counting-based-user-authentication-protocols
http://doi.acm.org/10.1145/335305.335334
https://doi.org/10.1007/3-540-44987-6_30
https://doi.org/10.1007/3-540-44987-6_30
https://doi.org/10.1007/978-3-319-47238-6_10
https://doi.org/10.1007/978-3-319-47238-6_10
https://doi.org/10.1145/3055259.3055267
https://eprint.iacr.org/2001/057
https://eprint.iacr.org/2001/057

364 M. Grześkowiak et al.

22. Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. IACR Cryptol. ePrint
Arch. 585 (2014). http://eprint.iacr.org/2014/585

23. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. IACR Cryptol. ePrint Arch. 624 (2009). http://eprint.iacr.org/2009/624

24. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE—AA protocol for
machine readable travel documents, and its security. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 25

25. Hanzlik, L., Krzywiecki, �L, Kuty�lowski, M.: Simplified PACE—AA protocol. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-4 16

26. Li, S., Shum, H.Y.: Secure human-computer identification (interface) systems
against peeping attacks: Sechci. Cryptology ePrint Archive, Paper 2005/268 (2005).
https://eprint.iacr.org/2005/268

27. Yan, Q., Han, J., Li, Y., Deng, R.H.: On limitations of designing leakage-resilient
password systems: attacks, principals and usability. In: 19th Annual Network and
Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
5–8 February 2012. The Internet Society (2012)

28. Blocki, J., Blum, M., Datta, A., Vempala, S.S.: Towards human computable pass-
words. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, 9–11 January 2017, Berkeley, CA, USA. Volume
67 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 10:1–10:47
(2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.10

http://eprint.iacr.org/2014/585
http://eprint.iacr.org/2009/624
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/978-3-642-38033-4_16
https://eprint.iacr.org/2005/268
https://doi.org/10.4230/LIPIcs.ITCS.2017.10

A Source Hiding Protocol for Cooperative
Intelligent Transportation Systems

(C-ITS)

Hannes Salin1(B) and Łukasz Krzywiecki2

1 Swedish Transport Administration, Borlänge, Sweden
hannes.salin@trafikverket.se

2 Department of Fundamentals of Computer Science, Wrocław University of Science
and Technology, Wrocław, Poland
lukasz.krzywiecki@pwr.edu.pl

Abstract. In multi-user scenarios where requirements of privacy are
high, we propose a modular, anonymous and source hiding protocol for
sending signed messages (SHP). By combining existing cryptographic
building blocks, encryption and ring signature schemes, we are able to
mitigate traceability and routing attacks on otherwise anonymous partic-
ipants. Moreover, our protocol is secure without any trusted third party.
Our construction is provably secure in our security model, where the
adversary controls the communication channels. We illustrate our con-
struction via a Vehicle Ad-Hoc Network (VANET) use-case, where the
SHP provide source anonymity to cluster of vehicles exchanging signed
safety and security messages to road-side units within Cooperative Intel-
ligent Transportation Systems (C-ITS).

Keywords: Source Hiding · Network Anonymity · Ring Signatures

1 Introduction

In this paper we address a scenario with an ad-hoc group of parties, which
exchange signed information that would be collected by a verifier, in a way that
provide full anonymity of the original signer-and-sender. A common solution for
such scenarios are ring signatures. These type of schemes provide functionality
that allows a holder of a secret key to generate an anonymously signed message
in relation to the group of public keys. A verifier can only conclude that the
signature was created by a secret key holder, corresponding to one of the public
keys out of the complete set of public keys within a group of potential signers.
Here, a typical example is a whistle blowing functionality for a group of exec-
utives. In a parliament or a committee, there might be a need of information
sharing which requires public attention. In many such cases the identity of the
whistle-blower should be protected. Although ring signatures provide anonymity
of the key holder, it cannot provide a network-layer anonymity if the information
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 365–379, 2023.
https://doi.org/10.1007/978-981-99-7032-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_22&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_22

366 H. Salin and Ł. Krzywiecki

sharing is digital, i.e. the network addresses of the anonymous key holders are
not protected by a ring signature scheme since it is used in the upper levels of
the technology stack, e.g. the application layer but not the network layer.

1.1 Challenges for Source Hiding

Path-Tracing Attacks: We consider the identity of each participant i in
a group {1, . . . , n} of users, both using a public/private signing key-pair
(sksi, pksi), and a logical location Li, i.e. the network address such as IP address.
Ring signatures, although anonymous, are encapsulated in network packets, and
thus can be identified with associated source addresses used. A powerful adver-
sary controlling the communication links can try to trace the signer, analyzing
e.g. IP source and destination addresses in the network layer, and routing paths
of messages. Therefore, even if the participant’s cryptographic anonymization via
a ring signature scheme (e.g. on the application layer), it is equally important
that the network source identity (e.g. on the network layer) is protected.

VANET Use-Case Without a Trusted-Third-Party (TTP): In the con-
nected vehicle and infrastructure context, both moving and stationary nodes can
send large volumes of protected and authenticated data, presenting a significant
challenge. However, we require that the source identity Li of a moving vehicle is
secured in such ad-hoc groups without the need of a TTP. To clarify, we should
not depend on a TTP to provide an anonymization scheme (confusion) for the
network layer source addresses where all data packets with ring signatures are
traversing. We contrast this to solutions such as ToR-routing [5] and mixnets
[2]. The reason is due to enhanced security for the VANET architecture, to not
rely on one or several TTP:s that have cryptographic dependent computations
in the protocol.

1.2 Network Layer Pseudonyms

Current ETSI standardization efforts [3] lean towards pseudonymizing vehicles
in C-ITS due to privacy concerns when sending safety and security messages.
Vehicles in a VANET should be able to send anonymous messages within the
group and nearby road-side units. Regardless of the scenario, in order to protect
each vehicle from traceability and de-anonymization attacks on the network layer
[4], the communication procedure must ensure full anonymity. Moreover, when
sending messages, the anonymity property must be intact when exposed to both
active and passive attacks. Most importantly, a ring signature scheme in itself
will only provide anonymity of the identity of the vehicle, but not the (IP)
source, hence path routing attacks are still a threat. In some cases, vehicles in
a VANET might need to send a security message to a third party, like police or
safety RSUs, via a proxy node if the party is remote. This scenario requires an
ad-hoc setup between the group and proxy. For untrusted environments, a secure
protocol ensuring group authenticity is needed. Given the continuous message
sharing in VANETs, a multi-round (interactive) ring signature protocol could
leverage the existing communication flow.

A Source Hiding Protocol for C-ITS 367

1.3 Problem Statement

To maintain privacy in collaborative scenarios like commission board voting, ring
signatures are useful. However, network structures like IP addresses can reveal
identities during network communication. Thus, a more robust protocol is needed
for complete identity privacy and source hiding. In the C-ITS domain, collabo-
ration is often ad-hoc, not allowing for trusted parties to ensure anonymization
or location privacy. A robust protocol is required to prevent anonymity and
traceability attacks at both the application layer, which transports signature
data packets, and the network layer, which uses IP-addresses for routing. From
the cryptographic point of view we formulate the following requirements for the
messages and signatures:

– A message from different sources (signers) send to a collector should be signed
anonymously within a group of potential signers. This can be facilitate by ring
signatures. A real signer is hidden in a well defined, however a finite group of
users. Later verification allows to conclude that fact.

– Ring signatures over the messages created at sources and routed over an
infrastructure network to the collector for verification, should be unlinkable
to signers by the adversary overhearing the underlying communication links
and nodes.

1.4 Related Work

The notion of ring signatures was introdced by Rivest et al. [11], and allows to
sign a message anonymously within a group of potential signers. Ring signatures
have also been investigated in the context of C-ITS and VANET, e.g. [1,8–10].
To ensure network communication anonymity and source hiding, the concept of
mixed networks, also called mixnets, can be used [2]. A mixnet is a system where
an input is cryptographically transformed and permuted, i.e. securely shuffled,
and then published in a random order, hence providing untraceability between
the input and output. Many different approaches for VANET location privacy
has been proposed, and Khan et al. [7] summarizes some of the current proposals.
However, to the best knowledge of the authors, no location privacy for source
hiding, without a TTP, but using ring signatures and onion-like encryption, has
been proposed so far.

1.5 Contribution

In this paper we propose a protocol for secure source-hiding delivery of ring
signatures from a group of users to a server. We consider the ring signatures that
are created by users in distinct locations. Such signatures need to be delivered
over the existing network infrastructure, where packets can be traced by the
adversary.

– We propose a source-hiding protocol immune to routing path tracing and ring
signature de-anonymization via source address attacks.

368 H. Salin and Ł. Krzywiecki

– Our SHP scheme has a modular construction and is based on a secure encryp-
tion scheme ES, and an unforgeable anonymous ring signature scheme RS.

– The proposed scheme does not require an additional trusted-third-party and is
entirely self-contained within the group of users registered to the RS system.

– We propose two versions of the SHP scheme: the basic scheme secure in the
honest-but-curious adversary model, and the extended version secure against
malicious users trying to substitute signed messages with a forged ones.

Our scheme can be used in any system that utilize ring signature for anonymity
purposes. We also argue it can be used in specific ad-hoc scenarios for VANET:s,
where messages from incoming vehicles should be anonymously delivered to
RSU:s or external verifiers.

1.6 Structure of Paper

In Sect. 2 we detail systems settings, threat model and necessary notations. In
Sect. 3 we describe the proposed schemes with formal security proofs, whereas
in Sect. 4 the results from a benchmark analysis is given. In Sect. 5 we conclude
our paper.

2 Preliminaries

2.1 System Settings

To illustrate our proposed source hiding protocol, we use a C-ITS scenario where
a cluster of vehicles connect and initially authenticate into a VANET. The cluster
also establish a pre-defined ordering of the public keys of all participants. We
assume n vehicles are connected and need to send a secure or critical message
to a verifier outside of the VANET, ensuring full source anonymity of all vi’s.
A server (e.g. a RSU) is used for running the interactive ring signature source
hiding protocol with the collaborative group of signing vehicles. Each vehicle vi

creates is own message mi, which needs to be verified at later stages or by remote
verifiers. Next, each vi computes a layered encryption of the message using the
pre-determined order of the other vehicles’ public keys. In this way each vi has
its own onion-like ciphertext with n layers. The receiving RSU server collects all
n onion ciphertexts, and sends iteratively in the reverse the whole collection to
all vi’s, that now decrypt their outer layers. This iterates through all n layers for
each vi. After decryption the collection of resulting the onions is re-shuffled. The
re-shuffled and down-layered ciphertexts are sent back to the server which now
can put forward the messages and ring signatures to a verifier without revealing
the origin of the signer. We note that the RSU itself does not need to be trusted
since it cannot extract any source data from the vehicles, despite having full
access to all messages, onion-ciphertexts and ring signatures. The protocol will
ensure that the verifying party, e.g. the police, will successfully verify the message
but cannot trace the location or source of the original signer.

A Source Hiding Protocol for C-ITS 369

2.2 Requirements and Threat Model

Anonymous Signature Verification Requirement: We consider n users
with signing public keys PKS = {pksi}n

1 at n different locations {Li}n
1 . Each user

produces a distinct message mi, and signs it with an anonymous ring signature
σi, s.t. from any verifier’s perspective, each user with a public key in PKS could
be a potential signer. Messages and signatures are send from users locations and
routed to a chosen collector location for later verification.

Threats: In the given system setting described in Sect. 2.1 we now consider a
curious adversary A that is able to intercept all network communication, e.g.
controls the underlying network infrastructure. Given any signature-message pair
(mi, σi) for verification, the adversary’s goal is to find out who is the original
signer i and its source address Li, hence mounting a tracebility attack. Another
attack would be for A to replace some pair (mi, σi) with a fresh one (m∗

i , σ
∗
i),

that does not originate from the user i at the location Li. This is feasible as σ∗
i

provides full anonymity within a group of potential signers, but is successfully
verifiable.

2.3 Cryptographic Building Blocks

Our scheme is build on top of existing secure cryptographic components: an
encryption scheme ES, and anonymous ring signature RS. Asymmetric-key algo-
rithm cryptosystems ES are used for securing the communication between the
users and the server. For the self-containment of the paper, we recall the Indistin-
guishability under Chosen Ciphertext Attack (IND-CCA2) model for asymmetric-
key algorithm cryptosystems from [6].

Definition 1. A tuple ES = (ParGenE,KeyGenE, E,D), is an asymmetric-key
encryption system where:

epar ← ParGenE(λ) takes the security parameter λ and outputs parameters
epar = (K,M, C), where K is a key-pair space, M is a message space, C
is a ciphertext space.

(sk, pk) ← KeyGen(par) is a key-pair generation algorithm, which inputs par and
outputs a key-pair (sk, pk) ∈ K: a secret key sk and its corresponding public
key pk .

c ← E(m, pk) is an encryption algorithm that inputs a message m ∈ M, a public
key pk, and outputs a ciphertext c ∈ C.

m ← D(c, sk) is a decryption algorithm that inputs a ciphertext c ∈ C, a secret
key sk, and outputs the corresponding plaintext m.

We require that the encryption scheme is correct, i.e. for any m ←$ M:

Pr

⎡
⎢⎢⎣
ParGenE(λ) → epar,
KeyGenE(epar) → (sk, pk)
E(m, pk) → c
D(c, sk) → m

⎤
⎥⎥⎦ = 1. (1)

The IND-CCA2 model is commonly defined by the following experiment:

370 H. Salin and Ł. Krzywiecki

Definition 2 (Indistingushability under CCA2). Given an asymmetric-
key cryptosystem (ParGenE,KeyGenE, E,D) we define the chosen ciphertext
indistinguishability experiment IND-CCA2:

Init : epar ← ParGenE(λ), (sk, pk) ← KeyGenE(par).
Adversary : Let the adversary A, be a malicious algorithm initialized with

parameters epar, and the public key pk.
Decryption Oracle : Let a decryption oracle OD, be an algorithm initialized

with parameters par, s.t. when queried with a ciphertext c ← E(m, pk), it out-
puts the corresponding plaintext m, i.e. OD(c, pk) → m. The second argument
pk is just an indicator, i.e. which public key the ciphertext was computed from.
Thus the oracle OD(c, pk) is an equivalent to the entity holding the appropri-
ate corresponding secret key OD(c, pk) = D(c, sk).

Guess Game : This game is the following protocol:
1. The adversary can encrypt a number qE of messages m ∈ M of its choice

via E(m, pk). The adversary can querry a number qD of ciphertext c ∈ C
of its choice via OD(c, pk).

2. The adversary generates two messages of its choice: (m0,m1) ← A(par)
and sends them to a challenger.

3. The challanger generates a random bit b ←$ {0, 1}, encrypts the message
mb to the ciphertext cb = E(mb, pk), and sends cb to A.

4. The adversary can encrypt a number �E of messages m ∈ M of its choice
via E(m, pk). The adversary can querry a number �D of ciphertext c ∈ C
of its choice via OD(c, pk), provided that c �= cb.

5. Let ME , CD denote the messages encrypted, and ciphertexts queried to
OD, in the steps 1 and 4 respectively. The adversary outputs its own bit
b̂ ← A(epar,m0,m1, pk,ME , CD).

We define the advantage of the adversary A in the experiment as the probability
that the A outputs the correct bit b̂ = b indicating the encrypted message mb,
i.e.:

Adv(A, IND−CCA2) = |Pr
[
b̂ = b

]
− 1/2|. (2)

Let � denotes the upper limit for the sum of all numbers of queries: qE + qD +
�E + �D in the Guess Game. We say that the encryption scheme is IND-CCA2
secure if the advantage of the adversary A is negligible in parameters λ, � i.e.:

Adv(A, IND−CCA2)) ≤ ε(λ, �). (3)

Definition 3. A 4-tuple RS = (ParGenS,KeyGenS,RingSign,RingVerify) is a
ring signature scheme defined as the following procedures:

spar ← ParGenS(λ) takes the security parameter λ and produces parameters of
the scheme spar = (K,M,S), where K is a key-pair space, M is a message
space, S is a signature space.

(sks, pks) ← KeyGenS(spar) is a key-pair generation algorithm, which inputs par
and outputs a key-pair (sks, pks) ∈ K: a secret key sks and its corresponding
public key pks.

A Source Hiding Protocol for C-ITS 371

σ ← RingSign(m, sksj ,PKS) – signing procedure that takes a message m, the
secret key sksj and the set of public keys PKS = {pks1, . . . , pksk}, pksj ∈ PKS.
It returns a ring signature σ.

1/0 ← RingVerify(σ,m,PKS) a signature verification algorithm takes a signature
σ, a message m, and the set of public keys PKS. It returns a bit (0 or 1)
indicating whether the signature σ is valid, i.e., whether someone having a
public key from the set PKS has signed m.

We require that the signature scheme is correct, i.e. a signature created by
signer j ∈ {1, . . . , n} from a set of n potential signers over any message m ∈ M,
is always positively verifiable:

Pr

⎡
⎢⎢⎢⎢⎣

ParGenS(λ) → spar,
KeyGenS(spar) → {(sksi, pksi)}n

1

∀(j,m) : j ∈ {1, . . . , n},m ∈ M[
RingSign(m, sksj , {pksi}n

1) → σ
RingVerify(σ,m, {pksi}n

1) → 1

]

⎤
⎥⎥⎥⎥⎦

= 1. (4)

Moreover, we assume that above schemes are unforgeable in the chosen-
message scenario: suppose a forger’s goal is to produce a verifiable signature
σ for a message m which was not previously signed in the query stage. We
then say that the forger succeeds, if it can forge σ for m with a non-negligible
probability.

Definition 4 (Ring Unforgeability)). Let RS = (ParGen, KeyGen,
RingSign, RingVerify) be a ring signature scheme. We define a security exper-
iment:
Init : spar ← ParGen(λ), {(sksi, pksi)}n

1 ← KeyGen(spar).
Ring Sign Oracle : ORingSign(m, j,PKS) → σ takes a message m, the signer indi-

cator j ∈ {1, . . . , n}, and the set of public keys PKS = {pksi}n
1 and outputs a

ring signature σ, as if generated with the secret key sksj, and the public keys
PKS, s.t. RingVerify(σ,m,PKS) = 1.

Hash Oracle : The hash oracle OH is modeled in ROM.
Adversary : Let the adversary FORingSign,OH(PKS), be a malicious algorithm ini-

tialized with the public parameters par and public keys PKS, having access to
the oracles ORingSign and OH. It issues � number of queries to the oracles.
Let M = {mi}�

1, and Ω = {σi}�
1 denote the set of the messages, and the

corresponding signatures the oracles process.
Forgery : The adversary generates a tuple:

(m∗, σ∗) ← FORingSign,OH(PKS) for a new m∗ /∈ M , which was not queried to
ORingSign oracle.

We say that the signature scheme is secure if for each forgery type, the probability
that the adversary produces a valid signature is negligible in parameters λ, �:

Pr

⎡
⎢⎢⎢⎢⎣

ParGenS(λ) → spar,
KeyGenS(spar) → {(sksi, pksi)}n

1

(m∗, σ∗) ← FORingSign,OH({pksi}n
1)

RingVerify(m∗, σ∗, {pksi}n
1) → 1

m∗ /∈ M

⎤
⎥⎥⎥⎥⎦

≤ ε(λ, �). (5)

372 H. Salin and Ł. Krzywiecki

Definition 5 (Ring Anonymity RS − A). Let D denote a distinguisher algo-
rithm given public parameters par and a set of all keys {(sksi, pksi)}n

1 . It chooses
a message m ∈ M. A challenger chooses an index j ←$ {1, . . . , n} uniformly at
random and creates the signature σ ← RingSign(m, sksj , {pksi}n

1). We say that
the scheme RING is anonymous if the chance of D for guessing j is negligible
different from 1/n. We define the RS − A experiment:

Init : spar ← ParGenS(λ), {(sksi, pksi)}n
1 ← KeyGenS(spar).

Adversary : Let the adversary D, be a malicious algorithm initialized with
parameters spar, and the keys {(sksi, pksi)}n

1 .
Anonymity Game : This game is the following protocol:

1. The distinguisher generates a message: m ← D(spar, {(sksi, pksi)}n
1) and

sends m to a challenger.
2. The challenger having access to {(sksi, pksi)}n

1 generates a random index
j ←$ {1, . . . , n}, and a signature σ ← RingSign(m, sksj , {pksi}n

1), and
sends σ to D.

3. The distingusher outputs its own index
ĵ ← D(σ,m, {(sksi, pksi)}n

1).

We define the advantage of the distinguisher D in the experiment as the proba-
bility that D outputs the correct index ĵ = j indicating the signer:

Adv(D,RS − A) = |Pr
[
ĵ = j

]
− 1/n|. (6)

We say that the RS − A scheme is anonymous if the advantage of the distin-
guisher D is negligible in the parameter λ i.e.:

Adv(D,RS − A)) ≤ ε(λ). (7)

3 Proposed Scheme

3.1 Notation

Assume we have a group of n users identified by indexes {1, . . . , n}. Let
(sksi, pksi) and (skei, pkei) denote the key pairs used by user i in ring signature
RS and encryption ES schemes respectively. Let PKS = {pksi}n

1 , PKE = {pkei}n
1

denote the sets of public keys for encryption and signing. Assume that each user
i is bounded to a unique location Li. This could be realized by Internet address
IPi of that user, or by any other well accepted unified locator for the network
infrastructure used by the users. We assume that any group of users can be effi-
ciently ordered by e.g. encryption public keys - thus forming a sequence of those
public keys 〈PKE〉. Each user within the sequence knows its own position in that
sequence, as well as positions of other users. W.l.o.g. assume that the indexes in
the sequence 〈PKE〉 are 〈1, . . . , n〉. Moreover we assume that each user uses his
own secret random permutation Pi. Let H denote a secure hash function used
for commitments.

A Source Hiding Protocol for C-ITS 373

Fig. 1. The proposed Source Hiding Protocol SHP with ring signatures.

3.2 Scheme Description

Here we describe a protocol between a set of users registered in ES,RS schemes
i.e. possessing the secret keys of those schemes, denoted by U({(sksi, skei)}n

1)
and a server having public keys S({(pksi, pkei)}n

1). Each user i wants to send
anonymously a message mi, signed with a chosen ring signature scheme RS in
a way that the route of messages from the user location Li would not allow
to identify that user. Assume that user i creates a message mi and signs it to
σi = RingSign(mi, sksi,PKS). If σi is send directly to the server via the commu-
nication infrastructure, the adversary controlling the communication links and
routers can identify the real signer by the location Li even though the ring sig-
nature used provides the anonymity property. Therefore, in Fig. 1, we propose
an onion like Source Hiding Protocol SHP using an encryption scheme ES to
obfuscate the route for mi, σi messages from Li to the server:

πSHP(U({(mi, sksi, skei)}n
1),S({(pksi, pkei)}n

1))

– In steps 1–2 the signer signs its own message mi anonymously with the ring
signature into σi using all public key from PKS, and sets c

(0)
i = (mi, σi).

– Then in steps 3–4 the signer creates an onion ciphertext c
(n)
i =

E(. . . (E(. . . (E(c(0)i , pke1), . . .), pkei) . . .), pken), with n layers, by first
encrypting the c

(0)
i = (mi, σi) with the first public key pke1 from 〈PKE〉,

and iteratively encrypting the results with the subsequent public keys from
〈PKE〉, including its own public key pkej in the correct iteration. The result
of each encryption iteration is the input for the next encryption iteration.

374 H. Salin and Ł. Krzywiecki

Thus, the only way to get back the content c
(0)
i = (mi, σi) from the onion

c
(n)
i is with the help of each user from the group, which has to decrypt its

layer with its own secret key. This process should start from the most outer
layer n of the user decrypting it with its secret key sken, and going down to
the most inner ciphertext decrypted by user holding ske1. The onion c

(n)
i is

send to the server.
– In step 5 the server awaits for all onion ciphertexts {c

(n)
1 , . . . , c

(n)
n }. Obviously

these are unreadable, hence they must be decrypted in the correct order by
appropriate holders of the secret keys. Thus in a loop 5, the server sends
iteratively {c

(n)
1 , . . . , c

(n)
n } to each user according to the reverse order of 〈PKE〉,

so from n down to 1.
– In the i-th iteration of the loop (step 6), the sequence of onion ciphertexts

{c
(i)
1 , . . . , c

(i)
n } are sent to user i, which decrypts with the secret key skei the

outer i-th layer from all onions c
(i)
i ∈ {c(i)1 , . . . , c

(i)
n } into {c

(i−1)
1 , . . . , c

(i−1)
n }

(step 6.2), shuffles that sequence randomly (in step 6.3) via a random per-
mutation Pi, and sends it back to the server (step 6.4). Note that each user i
has the chance of shuffling, as all onions are encrypted in i-th layer with the
public key pkei. So, in order to decrypt that layer, all onions must be sent
to the i-th user holding the corresponding secret key skei. Thus the i-th user
can execute shuffling in step 6.3.

Note: If we omit the Step 1 in the SHP protocol, and create ciphertexts ci

consisting only of messages, then later, for anyone accessing the server repository,
the messages could originate from any source. Ring signatures (used in Step 1)
limit the potential origin only to the users with keys in the set PKS.

3.3 Security Analysis

First we analyze our protocol in the honest-but-curious adversary model. In this
model we assume that the adversary follows the rules, but its goal is to deduce
which user produce message mi and signed it to σi. The situation is described
by the game in which the only uncorrupted user is the one with index i and
the adversary is given all signing keys, secret and public: {(sksi, pksi)}n

1 , and
all public encryption keys {pkei}n

1 . The adversary denotes here a curious server
that wants to find where the message and signature from a chosen j-th user
is located in the final list {(m1, σ1), . . . , (mn, σn)}, obtained in step 7 of the
proposed protocol.

Definition 6 (ASHP - Anonymity Model of SHP). Let ES,RS be set with
λES, λRS parameters. Assume that each user i holding sksi, skei is bounded to a
unique location Li and D knows all the routes for messages transported in the
underlying network infrastructure. Let D denote a distinguisher algorithm given
public parameters of the schemes: par = (spar, epar), all RS keys: {(sksi, pksi)}n

1 ,
and all encryption keys: {pkei}n

1 . It chooses n messages {mî}n
1 . A challenger

randomly assigns those messsages to users, i.e. each user i gets randomly one
message mî. Next, the challenger chooses one index ĵ indicating the original

A Source Hiding Protocol for C-ITS 375

message mĵ assign to user j and sends ĵ to the adversary. Then the protocol
SHP is executed. In the end the adversary outputs its index k. We say that the
protocol SHP is anonymous and source hiding if the chance of D for outputting
k equal to j that correctly indicates a user given mĵ, is negligible different from
1/n. We define the ASHP experiment:

Init : par ← ParGenS(λ), {(sksi, pksi)}n
1 ← KeyGenS(par).

Adversary : Let the adversary D, be a malicious algorithm initialized with the
parameters of ES, RS schemes, and the keys: {(sksi, pksi)}n

1 , {pkei}n
1 .

Source Hiding Game : It is the following protocol:
1. The distinguisher generates n messages of its choice:

{mî}n
1 ← D(par, {(sksi, pksi)}n

1 , {pkei}n
1) and sends {mî}n

1 to a chal-
lenger.

2. The challenger randomly permutes those messages {mi}n
1 = P ({mî}n

1)
and assigned them to users, i.e. each user i gets randomly one message î.
Next the challenger generates a random index ĵ ←$ {1, . . . , n} indicating
a message before permutation, and sends ĵ to D.

3. The protocol
πSHP(U({mi, sksi, skei}n

1 ,D({(sksi, pksi)}n
1 , {pkei}n

1))
4. The distingusher outputs its own index

k ← D(par, ĵ, {mî}n
1 , {(sksi, pksi)}n

1 , {pkei}n
1) indicating which user k was

given the message ĵ to sign and process in the protocol πSHP.

We define the advantage of the distinguisher D in the experiment as the proba-
bility that D outputs the correct index k equal to j indicating the user given mĵ

to process in πSHP.

Adv(D,SHP) = |Pr [j = k] − 1/n|. (8)

We say that the SHP scheme is anonymous and source hiding if the advantage
of the distinguisher D is negligible in the parameter λES, λRS i.e.:

Adv(D,SHP)) ≤ ε(λES, λRS). (9)

Theorem 1. The scheme πSHP given in Fig. 1 is secure in the ASHP model as
of Definition 6.

Proof. To prove the theorem it suffices to show that the answer of the distin-
guisher D does not depend on the initial assignment of messages to users, and
that its output k is equiprobable across all the initial setups. We use a sequence-
of-games methodology iterating from game G0 to G5. G0 starts with the user i
with message mî, and the user j with message mĵ . We modify the subsequent
games, to finalize with G5 with the user i with message mĵ , and the user j with
message mî. The adversary should not realize about the game changes.

Let G0 denote the initial security game, where a message of index ĵ was
assign to user j, and some message î was given to another user i. Let p0 denote
the probability that D outputs index k with that setup in that game.

376 H. Salin and Ł. Krzywiecki

Fig. 2. Modified version of SHP: πSHP2 immune against adversary Type 2.

Let G1 denote a modification of the previous game, where ring signatures
are created with switched keys: a message of index ĵ is signed with sksi, and
the message î is signed with sksj . Let p1 denote the probability that D outputs
index k with that setup.

Lemma 1. |p0 − p1| ≤ εRS−A, where εRS−A is the advantage of breaking the
anonymity of ring signature scheme RS.

Proof (Proof of Lemma 1). It is straightforward. Any efficient algorithm D which
outputs k with probability p1 in G1 non-negligibly different than probablity p0
for outputting k in the game G0, could be used as a sub-procedure to the attacker
algorithm against the anonymity of ring signature RS.

Let G2 denote a modification of the previous game, where the content of the
inner onions c

(n)
i , is switched to some random values and c

(0)
i = (mr̂, σ

′
r), but

in the final decrypted list the pair c
(0)
i = (mî, σ

′
i) appears. Let p2 denote the

probability that D outputs index k with that setup.

Lemma 2. |p1 − p2| ≤ εIND−CCA2, where εIND−CCA2 is the advantage of breaking
the security of encryption scheme ES.

Proof (Proof of Lemma 2). Any efficient algorithm D which outputs k with
probability p2 in G2 non-negligibly different than probablity p2 for outputting
k in the game G2, could be used as a sub-procedure to the attacker algorithm
A against the security of encryption scheme ES. Assume that A plays a security
experiment IND-CCA2 against the key pk. This pk wil be treated as a public key
of user 1 in G2. A prepares the messages m0 = c

(0)
i = (mî, σ

′
i), and m1 = c

(0)
i =

(mr̂, σ
′
r) for the experiment IND-CCA2, respectively. After getting a challenge

cb, it simulates the rest of secret keys and public keys for the run of protocol
πSHP specifically with the onions: c

(n)
j = E(. . . (E((mĵ , σ

′
j), pk), . . .), pken), c

(n)
i =

A Source Hiding Protocol for C-ITS 377

E(. . . (cb), pken). Now if D returns k with probability p1 it behaves like in game
G1 and mb encodes m0 = c

(0)
i = (mî, σ

′
i), otherwise it behaves like in G2 and

mb encodes m1 = c
(0)
i = (mr̂, σ

′
r)

Let G3 denote a modification of the previous game, where the content of the
inner onions c

(n)
j , is switched to some random values and c

(0)
j = (mr̂′ , σ′

r′), but
the final decrypted list includes the pair c

(0)
j = (mĵ , σ

′
j)). Let p3 denote the

probability that D outputs index k with that setup.

Lemma 3. |p2 − p3| ≤ εIND−CCA2, where εIND−CCA2 is the advantage of breaking
the security of encryption scheme ES.

Proof (Proof of Lemma 3). Essentially as the proof of Lemma 2.

Let G4 denote a modification of the previous game, where the content of the
inner onions c

(n)
i , is switched to: c

(0)
i = (mĵ , σ

′
j). Let p3 denote the probability

that D outputs index k with that setup.

Lemma 4. |p3 − p4| ≤ εIND−CCA2, where εIND−CCA2 is the advantage of breaking
the security of encryption scheme ES.

Proof (Proof of Lemma 4). Essentially as the proof of Lemma 2.

Let G5 denote a modification of the previous game, where the content of the
inner onions c

(n)
j , is switched to c

(0)
j = (mî, σ

′
i). Let p3 denote the probability

that D outputs index k with that setup.

Lemma 5. |p4 − p5| ≤ εIND−CCA2, where εIND−CCA2 is the advantage of breaking
the security of encryption scheme ES.

Proof (Proof of Lemma 5). Essentially as the proof of Lemma 2.

Now we have |p0 − p5| ≤ εRS−A +4εIND−CCA2, which is negligible. Note that p0 is
the probability of D outputting k in G0, where the user j was given and signed
mĵ with his secret key sksj , and the user i was given and signed mî with his
secret key sksi. However p5 is the probability of D outputting k in G5, where the
user j was given and signed mî with his secret key sksi, and the user i was given
and signed mĵ with his secret key sksi. Thus D cannot distinguish between two
setups G0 and G5 where the messages mĵ and mî were switched between users
j and i.

3.4 Enhanced Protocol

In this section we address a stronger adversary that is not only curious, but would
like to manipulate onion ciphertexts in a way that results with different final
messages and signatures at the server. Here we consider a malicious participant
of the signing group U({sksi, skei}n

1). Observe that in the πSHP protocol any

378 H. Salin and Ł. Krzywiecki

malicious user i, that decrypts (in step 6.2) its layers c
(i)
j ∈ {c(i)1 , . . . , c

(i)
n } via

D(c(i)j , skei) into c
(i−1)
j , can easily substitute any of the decrypted results with

a fresh ciphertext onion, e.g.: ĉ
(i−1)
j = E(. . . (E(ĉ(0)j , pke1), . . .), pke(i−1)). It just

signs its own fresh message m̂ anonymously with the ring signature into σ̂ using
public keys from {pke1, . . . , pke(i−1)}, and sets ĉ(0) = (m̂, σ̂). Such an onion will
be correctly processed by subsequent users, and finally will be received in the
decrypted form (m̂, σ̂) by the server.

To mitigate that we propose an enhanced version of our protocol πSHP2 pre-
sented in Fig. 2. The idea behind the modification is the following:

– The protocol is executed in two main rounds.
– In the first round (steps 1 and 2) each user i produces its message mi and

a commitment to that messsage hi = H(mi, ri) for some random value ri

of appropriate size, where H is a secure hash function. Subsequently, users
run the protocol πSHP(U({(hi, sksi, skei)}n

1 ,S({(pksi, pkei)}n
1). The server pub-

lishes the commitments (step 3), and each user checks if its commitment is
published. A user which commitment is not published breaks (step 4).

– The protocol πSHP(U({((mi, ri), sksi, skei)}n
1),S({(pksi, pkei)}n

1)) is run in the
second round (steps 5 to 7), where each user ring-signs its message consisting
from two parts (mi, ri). Subsequently (step 6) the server publishes the result-
ing messages and signatures: {((mi, ri), σi)}n

1 . In the end (step 7) everybody
can check if the messages complies with the commitments, i.e. if each com-
mitment from the set H = {hi}n

1 is opened with one published message mi

together with the corresponding randomness ri.

Corollary 1: Assuming none of the user breaks, all commitments were correctly
processed via πSHP and outputted in step 3 of πSHP2.

Corollary 2: Assuming accept in step 7 of πSHP2 none of the messages and
signatures were replaced in πSHP run in step 5 of πSHP2.

4 Benchmark

We provide a benchmark analysis of the proposed construction. The analysis
of operations is over one participant, together with the total run of the SHP
when run over n participants. We used standard RSA encryption, BLS ring
signatures and SHA256 hash computations, implemented and run with Python.
The benchmark was run on an Apple 2020 M1, 8 GB RAM. Encryption and
decryption ran in 0.3790 ms and 3.1679 ms respectively, and a BLS ring signature
in 1.6341 ms. A complete run of protocol πSHP with n = 20 participants was
75.5721 ms, and for πSHP2 it was 73.0341 ms.

5 Conclusion

We have proposed two type of SHP protocols that provides source hiding, hence
mitigates traceability attacks and de-anonymization of a single signer within a

A Source Hiding Protocol for C-ITS 379

group of potential signers. We have illustrated the applicability of our proto-
cols via VANET scenarios. We conclude that our protocols are implementable
from a performance perspective even in challenging (vehicle) environments which
require very fast (near instant) responses.

Acknowledgment. This work was supported by the internal funds of the Depart-
ment of Fundamentals of Computer Science of the Wrocław University of Science and
Technology for the conducted research.

References

1. Bouakkaz, S., Semchedine, F.: A certificateless ring signature scheme
with batch verification for applications in VANET. J. Inf. Secur. Appl.
55, 102669 (2020). https://doi.org/10.1016/j.jisa.2020.102669. https://www.
sciencedirect.com/science/article/pii/S2214212620308218

2. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981). https://doi.org/10.1145/
358549.358563

3. European Telecommunications Standards Institute: ETSI TR 103 415 V1.1.1: Intel-
ligent Transport Systems (ITS); Security; Pre-standardization study on pseudonym
change management (2018). https://www.etsi.org/standards. Accessed 12 May
2022

4. European Telecommunications Standards Institute: ETSI EN 302 636-6-1 V1.2.0:
Intelligent Transport Systems (ITS), Vehicular Communications; GeoNetwork-
ing; Part 6: Internet Integration, Sub-part 1: Transmission of IPv6 Packets over
GeoNetworking Protocol (2022)

5. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61996-8_37

6. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman
Hall/CRC, Boca Raton (2014)

7. Khan, S., Sharma, I., Aslam, M., Khan, M.Z., Khan, S.: Security challenges of
location privacy in VANETs and state-of-the-art solutions: a survey. Future Inter-
net 13(4), 96 (2021). https://doi.org/10.3390/fi13040096. https://www.mdpi.com/
1999-5903/13/4/96

8. Liu, F., Wang, Q.: IBRS: an efficient identity-based batch verification scheme for
VANETs based on ring signature. In: 2019 IEEE Vehicular Networking Conference
(VNC), pp. 1–8 (2019). https://doi.org/10.1109/VNC48660.2019.9062800

9. Liu, L., Wang, Y., Zhang, J., Yang, Q.: Efficient proxy ring signature for VANET.
J. Eng. 2019(9), 5449–5454 (2019)

10. Mundhe, P., Yadav, V.K., Singh, A., Verma, S., Venkatesan, S.: Ring signature-
based conditional privacy-preserving authentication in VANETs. Wireless Pers.
Commun. 114(1), 853–881 (2020). https://doi.org/10.1007/s11277-020-07396-x

11. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

https://doi.org/10.1016/j.jisa.2020.102669
https://www.sciencedirect.com/science/article/pii/S2214212620308218
https://www.sciencedirect.com/science/article/pii/S2214212620308218
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://www.etsi.org/standards
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.3390/fi13040096
https://www.mdpi.com/1999-5903/13/4/96
https://www.mdpi.com/1999-5903/13/4/96
https://doi.org/10.1109/VNC48660.2019.9062800
https://doi.org/10.1007/s11277-020-07396-x
https://doi.org/10.1007/3-540-45682-1_32

A Revocable Outsourced Data Accessing
Control Scheme with Black-Box

Traceability

Yuchen Yin1, Qingqing Gan1, Cong Zuo2, Ning Liu1, Changji Wang1(B),
and Yuning Jiang1

1 Department of Cyber Security, Guangdong University of Foreign Studies,
Guangzhou 510006, China

wchangji@126.com
2 School of Cyberspace Science and Technology, Beijing Institute of Technology,

Beijing 100081, China

Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) is
a promising solution to the fine-grained access control problem of
encrypted data. Several CP-ABE-based cryptographic cloud storage sys-
tems have been proposed in recent years. However, existing CP-ABE
schemes still have several limitations that make them not effective to
be used in a practical application. Firstly, decryption privileges may
be changed when the user revocation happens to prevent the leakage
of encrypted data. Secondly, malicious users may delegate decryption
keys to unauthorized users for profit. Thirdly, the complex operation of
encryption and decryption may bring a huge computational cost and is
usually considered to be a heavy burden for system users. Therefore,
this paper proposes a new CP-ABE scheme ROBBT-CPABE, which
can provide attribute revocation, black-box tracking, outsourcing encryp-
tion, and outsourcing decryption. By using the information distribution
algorithm and the secure modular exponentiation outsourcing algorithm,
the scheme can achieve attribute revocation and outsource some expen-
sive encryption and decryption operations to the cloud server. Based
on the construction of indistinguishable traceable ciphertext, the pro-
posed scheme can support black-box tracking. Then the ROBBT-CPABE
scheme is formally proved to be selective replay chosen ciphertext attack
(RCCA) secure and black-box traceable secure. Performance analysis
demonstrates the efficiency and practicality of ROBBT-CPABE.

Keywords: Ciphertext-policy attribute-based encryption · Cloud
storage · Revocation · Outsourcing Encryption/Decryption · Black-box
traceability

1 Introduction

With the emergence and rapid development of cloud computing, more and more
companies or individuals choose to upload their data to cloud servers for utiliz-
ing the cloud resources, such as “unlimited” storage space and computing costs.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 380–398, 2023.
https://doi.org/10.1007/978-981-99-7032-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_23&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_23

A Revocable Outsourced Data Accessing Control 381

However, when these data are outsourced to the cloud storage server, the data
owner will lose actual control of their data, especially for sensitive data. In order
to protect privacy, the data owner tries to encrypt data and then outsources the
ciphertexts onto the cloud server. Meanwhile, the data owner should be able to
control the access rights of the data for cloud data sharing. Therefore, encrypt-
ing data and designing flexible and fine-grained access control mechanisms are
crucial for data security protection in the cloud.

To solve the above problem, Sahai and Waters first proposed the concept of
At-tribute-based encryption (ABE) to provide flexible and fine-grained access
control for cloud data [1]. Generally speaking, ABE can be divided into key-
policy (KP-ABE) and ciphertext-policy (CP-ABE) according to the location of
the access policy. In CP-ABE, the access structure is embedded in the ciphertext,
and the attributes are embedded in the user’s private key. In KP-ABE, the
attribute is embedded in the ciphertext, and the access structure is embedded
in the user’s private key. In KP-ABE and CP-ABE systems, a user will be able
to decrypt the ciphertext if and only if the attributes set satisfies the access
structure. Due to data owners can formulate access policies in CP-ABE, it is
more suitable for access control applications in cloud.

Bethencourt et al. [2] proposed the first CP-ABE scheme with support for tree
access structure. Cheung and Newport [3] presented how to structure a CP-ABE
scheme using an AND-gate policy. Although many CP-ABE schemes have been
presented, there are still some limitations in previous CP-ABE constructions.
Firstly, the number of users and permissions in the CP-ABE system is constantly
changing, and ciphertext updates occur from time to time. This requires an
efficient and flexible algorithm to achieve revocation [4]. Secondly, since the
user’s private key is related to attributes, the user can use his private key to make
a decryption black-box device for profit [5–7]. Therefore, the CP-ABE scheme
should provide the function of tracking the malicious users who manufacture
the decryption device. Thirdly, with the continuous growth of the number of
attributes in the system, the overhead of encryption and decryption will increase
heavily. Therefore, an algorithm that can outsource encryption and decryption
is needed to reduce the computational overhead of users while protecting users’
privacy during the outsourcing process. Hence, how to construct an efficient
and secure CP-ABE scheme with the functions of revocability, outsourcing, and
traceability becomes an essential issue.

1.1 Our Contribution

In this article, we have proposed a novel Revocable, Outsourcing CP-ABE
scheme with Black-Box Traceability, named ROBBT-CPABE, for flexible access
control in cloud environment. The main innovations of this work are given as
follows.

1) Indirect revocation and black-box traceability: The Information Dispersal
Algorithm is used to cut the ciphertext into slices. Then using the new access
strategy to re-encrypt a random slice to achieve efficient revocation. Once

382 Y. Yin et al.

there is a decryption black-box device, the malicious user who made the
black-box can be traced by sending the tracking ciphertext that the black-
box cannot recognize.

2) Outsourced encryption, decryption and correctness verification: The divisions
of exponent and base with random pairs make the original data unavailable
to the cloud encryption server, and use two sets of random pairs to achieve
verification of outsourced encryption and decryption.

3) Security and performance: ROBBT-CPABE is proven secure against the selec-
tive replay chosen ciphertext attack (RCCA). The black-box traceable secure
is also proved in the generic bilinear group model. Performance comparisons
illustrate that ROBBT-CPABE is extensible, efficient, and utilizable.

1.2 Related Work

User attribute updates and ciphertext access policy updates occur from time
to time in ABE. Therefore, revocation is quite important in ABE to achieve
fine-grained access. According to the different executors of revocation, it can be
divided into indirect revocation and direct revocation. In indirect revocation,
the revocation information is dynamically issued by the authority, and keys are
updated for users who have not been revoked. While in the direct revocation,
the user needs to add the revocation information to a revocation list and sends
it together with the ciphertext when encrypting.

In 2021, Bouchaala et al. [8] presented an indirect revocation scheme using
Information Dispersal Algorithm (IDA), the ciphertext slice stored in the cloud
server is re-encrypted with the symmetric encryption key to a random data slice
of the ciphertext. Although the overhead of this scheme is relatively small, it
only supports white-box tracking, which is not applicable in reality. Guo et al.
[9] proposed a user attribute revocation scheme in 2023. When user attribute
revocation occurs, the attribute manager updates the user’s attribute group key.
The ciphertext is updated to ensure the forward and backward security of the
scheme. Sarma et al. [10] proposed a revocable CPABE scheme in fog computing,
and let the fog nodes undertake most of the encryption and decryption opera-
tions. Combining proxy re-encryption and version control technology, Zhao et al.
[11] proposed the CP-ABE-CPRE scheme where this scheme performs attribute
revocation through different version numbers.

In ABE schemes, traceability is an important feature that enables the track-
ing of vulnerabilities and the delegation of keys. According to the different
requirements of the algorithm, traceability research can be divided into white-
box and black-box [12]. The white-box traceability is based on a well-formed
decryption key as input. Unlike the white-box traceability, the black-box mecha-
nism provides the device with the ciphertext and obtains the decrypted plaintext
to ensure that at least one user can be tracked. In 2020, Zhao et al. [11] pro-
posed a publicly accountable black-box tracking CP-ABE scheme. In this paper,
all users can track malicious users who create and decrypt black-box devices
without the participation of other secret information. But there is still the prob-
lem of heavy tracking overhead. Qiao et al. [6] described a CP-ABE scheme

A Revocable Outsourced Data Accessing Control 383

based on access tree strategy, which has black-box user traceability. The tracker
designs a tracking ciphertext for the decryption device, then the analysis showed
the user identity. And the tracking process of [7] is similar with [6]. The author-
ity sends each user’s corresponding tuple to the tracer and the tracer analyzes
the decryption result of the device to identify the users hidden in the decryption
device.

In traditional attribute-based encryption, the computational cost increases
linearly with the number of attributes and complexity of the access policies,
which brings a huge computational burden to the device terminal, so the out-
sourcing function is also very important for the ABE scheme. In 2019, Li et
al. [13] applied the power exponential security outsourcing algorithm to CP-
ABE. However, because the results of multiple random slice calculations cannot
be effectively distinguished by the server, the probability of correct verifica-
tion during verification is only 1/2. Inspired by [13], Yu et al. [14] proposed a
new scheme that supports a verifiable exponentiation security outsourcing with
effective verification operation. The proposed scheme can protect data privacy
by splitting the data into two sets of different random pairs and sending them
to the cloud server for calculation. As a result, it increases the probability of
correct verification to “1”.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce
related preliminaries. Section 3 describes the model of syntax and security. Our
scheme is presented in Sect. 4. In Sect. 5, the security and performance analysis
are discussed. Section 6 presents the concluding remarks.

2 Preliminaries

2.1 Bilinear Pairing

Given a multiplicative cyclic group G of order p, and g is the generator of the
group G. e : G×G → GT is a bilinear map that satisfies the following properties:

1. Bilinear: For ∀a, b ∈ Zp, and ∀u, v ∈ G, e
(
ua, vb

)
= e(u, v)ab;

2. Non-degeneracy: ∀u, v ∈ G, e (u, v) �= 1;
3. Computability: For ∀u, v ∈ G, it exists a polynomial time algorithm to com-

pute e(u, v).

2.2 Linear Secret Sharing Scheme

A secret sharing scheme Π on a set of participants P is called a linear secret
sharing scheme (LSSS) on Zp if the following conditions are satisfied [15].

1. The secret share shared by each entity constitutes a vector on Zp.

384 Y. Yin et al.

2. For Π, there exists a matrix M of � × n, and the mapping function maps
each row of the matrix into a related party. For i = 1, . . . , �, ρ(i) is the party
associated with row i. We consider a column vector v = [s, y2, y3, ..., yn]T ,
and s ∈ Zp represents the shared secret and yi is randomly chosen where
i = 2, . . . , n. In order to conceal the secret s, calculated λi = Miv as a shared
of s, where λi matching the party ρ(i),Mi is the ith row vector of M .

LSSS has the property of linear reconstruction. If S ∈ A is an accessing
authorization set, then there exists a constant {ωi ∈ Zp}i∈I for

∑
i∈I ωiλi = s,

where λi denotes the efficient share of secret s and I = {i : ρ(i) ∈ S}.

2.3 Complexity Assumptions

The complexity assumption used in our scheme is the decisional q-parallel
BDHE.

Definition 1. Select a group G of prime order p under the security parameters,
and randomly choose a, s, b1, . . . , bq ∈ Zp. Given all of the following terms [16].

y ={g, gs, ga, ..., gaq

, gaq+2
, ..., ga2q

,

∀1≤j≤qg
sbj , ga/bj , ..., gaq/bj

, gaq+2/bj
, ..., g2q/bj ,

∀1≤j,k≤q,k �=jg
a·s·bk/bj , ..., gaq·s·bk/bj}

(1)

The algorithm B guesses by outputting z ∈ {0, 1}, if | Pr
[
B

(
y , ψ = e (g, g)a

q+1s
)

= 0
]
−

Pr [B (y , ψ = δ) = 0]| ≥ ε where e (g, g)aq+1s
, δ ∈ GT .

3 Syntax and Security Definitions for ROBBT-CPABE

As illustrated in Fig. 1, there are five participants in the system framework of
ROBBT-CPABE:

– Trusted Authority (TA): A trusted authority that sets the public parameters
and generates the master secret key of the system. it also produces pre-keys
for DUs. Furthermore, it could track malicious users when necessary.

– Data Owner (DO): The owner of the data. Before hosting the data to the
CAS, DO has to encrypt the data under a chosen access policy and interact
with CAS to generate outsourcing ciphertext.

– Cloud Encryption Server (CES): A cloud server that assists DO in encrypting
messages.

– Cloud Auxiliary Server (CAS): A cloud server that stores ciphertext, updates
ciphertext and assists DUs in decrypting messages.

– Data User (DU): A person who can recover the plaintext only if the attributes
of the user match the embedded access strategy.

A Revocable Outsourced Data Accessing Control 385

Fig. 1. System architecture of ROBBT-CPABE.

A ROBBT-CPABE scheme includes eight polynomial-time algorithms as fol-
lows.

– Setup (λ, {0, 1}∗) → (PK,MSK, Tid). The algorithm is executed by TA. It
takes in a security parameter λ and an attribute universe set {0, 1}∗. It returns
the system public parameter PK and the corresponding system master secret
key MSK. In addition, this algorithm initializes a table Tid = ∅ to track
identity.

– KeyGen (PK,MSK,S, id) → (TK,SK). The algorithm is executed by TA
and DU . It takes in PK, MSK, an attribute set S ⊆ {0, 1}∗ of a user with
id. The relevant transform key TK and private key SK are output. Then it
stores the id and a tracking parameter into Tid.

– Encrypt (PK,m,A = (A, ρ)) → (CT). The algorithm is executed by CES
and DO. It takes in PK, a plaintext message m, and an access structure A

over the attribute universe set. DO will hand over part of the encryption work
to CES to complete. After the interaction between DO and CES, it outputs
a ciphertext CT .

– Revoke (PK,CT,A∗) → (cj). The algorithm is executed by CES. It takes in
PK, a ciphertext CT , and a new access policy A

∗. It runs (n, n)-IDA to split
ciphertext into n, and chooses a random slice ctj for re-encryption. It outputs
the re-encrypted single random slice cj .

– Match (ctj) → 0 or 1. The algorithm is executed by CAS and DU. If revoca-
tion occurs in the system that the ciphertext access policy has been updated,
the user should succeed in the matching phase. This algorithm takes in the

386 Y. Yin et al.

ciphertext of random slice ctj . When the user successfully decrypts to ctj and
the matching process is passed, this algorithm output 1, else outputs 0.

– Transform (TK,CT) → (CT ′). The algorithm is executed by CAS. It takes
in transform key TK and a ciphertext CT . It outputs the corresponding part
of the ciphertext CT ′.

– Decrypt (SK,CT ′) → (m). The algorithm is executed by DU. It takes in the
user’s private key SK and part of the ciphertext CT ′. It outputs the plaintext
message m.

– Trace (PK,AT = (A′, ρ) ,mT , T id) → id. The algorithm is executed by TA.
It takes in PK and an access structure AT which matches with the attribute
set S of the user, a plaintext mT specified by tracer and the identity table
Tid. It outputs the identity id of the user.

3.1 Security Model

In ROBBT-CPABE, TA is defined as a fully trusted authority. Both the cloud
server CES and CAS are assumed to be semi-trusted and we assume that no
collusion occurs between servers. That is to say, CES and CAS will honestly
execute the predefined program, but they try to obtain the confidential infor-
mation of the original data as much as possible. DU is considered untruthful,
he/she perhaps makes their key into a decryption black-box device to profit. The
specific security requirements of ROBBT-CPABE are shown as follows.

Selective RCCA Secure. The selective replay chosen ciphertext attack
(RCCA) security model is defined as follows [17].

– Init. Adversary A chooses a challenge access strategy (A∗, ρ∗) and sends
(A∗, ρ∗) to the simulator B.

– Setup. B runs Setup algorithm and sends PK to A.
– Phase 1. B Initializes a blank table T ∗, an empty set D and an integer j = 0.

B responses to queries of adversary A by following steps.
– Create(S): B runs KeyGen algorithm to get (SK, TK), sets j = j + 1 and

stores tuple (j, S, SK, TK) in T ∗. Then B sends TK to A.
– Corrupt(i): If there is an entity i in T ∗, then B can obtain this entity

(j, S, SKid,S , TK) and sets D := D ∪ S. B returns SKid,S to A. Else,
output ⊥.

– Decrypt(i, CT): With the input (SK, CT), B returns the output of Decrypt
algorithm to A.

– Challenge. A submits two equal-length messages m0 and m1 to B, then B runs
Encrypt algorithm to get ciphertext CT ∗ of massage mβ where β ∈ {0, 1}
and returns CT ∗ to A.

– Phase 2. The same thing as Phase 1.
– Guess. If the guess of the output of adversary A is β′ and β′ = β, then

A wins this game. The probability of A winning the game is: AdvA =
|Pr [β′ = β] − 1/2|.

Definition 2. ROBBT-CPABE is selective RCCA secure if AdvA is negligible.

A Revocable Outsourced Data Accessing Control 387

Black-Box Traceable Secure. The traced ciphertext and the normal cipher-
text should be indistinguishable for black-box traceability. If the adversary can
distinguish the ciphertext, he/she can make the tracking algorithm fail by return-
ing an error message. A tracking algorithm is traceable secure only if it is ensured
that the decryption device cannot distinguish the tracking ciphertext from the
normal ciphertext. The black-box traceable security model is defined as the fol-
lowing attack game played between an adversary A and a challenger C.

– Setup. Challenger C runs Setup algorithm to generate system public param-
eter PK and system master secret key MSK then sends PK to A.

– Phase 1. A is allowed to make private key queries on adaptively chosen user
attribute set. C runs KeyGen algorithm to generate the corresponding key
SK for A.

– Challenge. A chooses an access structure A
∗
T and sends it to C. C chooses

a massage m and a random value β ∈ {0, 1}. When β = 0, C runs Encrypt
(PK,m′,A∗

T = (A∗, ρ)) → CT 1. When β = 1, C runs Encrypt (PK,m′,A∗
T =

(A∗, ρ)) → CT 2. Finally, C sends ciphertext CT β to A.
– Phase 2. The same thing as Phase 1.
– Guess. If the guess of the output of adversary A is β′ and β′ = β, then

A wins this game. The probability of A winning the game is: AdvA =
|Pr [β′ = β] − 1/2|

Definition 3. ROBBT-CPABE is black-box traceable secure if AdvA is
negligible.

4 Construction of ROBBT-CPABE

The goal of the ROBBT-CPABE scheme is to ensure fine-grained access con-
trol and enhanced security in cloud environment. It bridges the limitations
discussed earlier and provides a revocable, outsourced computing, black-box
tracking-enabled access control scheme for cloud storage. We plot the opera-
tions of authorities at various stages in Fig. 2.

4.1 System Initialization

Setup
(
λ, {0, 1}∗) → (PK,MSK, Tid). TA inputs a security parameter λ and a

system attribute universe set {0, 1}∗. It generates a group G of prime order p
and generator and makes a bilinear map e. It also randomly chooses α, a ∈ Zp.
Besides, it denotes hash functions H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → G and H3 :
{0, 1}∗ → {0, 1}λ. Finally, it sets Tid = ∅ for tracking. The public parameters
are published as PK = (g, e(g, g)α

, ga,H1,H2,H3). gα is retained as the master
secret key MSK.

388 Y. Yin et al.

Fig. 2. Sequence diagram of ROBBT-CPABE.

4.2 Key Generation

KeyGen (PK,MSK,S, id) → (TK,SK). This algorithm consists of two parts.
First, TA generates a pre-key for a user identified as id, and S is a set of
attributes owned by the user. TA selects a random number t′ ∈ Z∗

p , and computes
I = H1 (id) ,K ′ = gαIgat′

, L′ = gt′
,Ki

′ = H2(att(i))H1(att(i))t′
)i∈S , then sends

SK ′ to the user, where SK ′ = (PK, I,K ′, L′ = gt′
,Ki

′). At the same time, TA
stores the tuples (id, IDSK = e(g, g)t′/I) into Tid. After receiving SK ′, the user
selects a random number z ∈ Z∗

p , and generates a transform key TK = (PK, I,

K = (K ′)1/z = gαI/zgat, L = (L′)1/z = gt,Ki = H2(att (i))H1(att(i))t)i∈S where
t = t′/z. The user holds the private key SK = (z, TK).

4.3 Encryption

Encrypt (PK,m,A = (A, ρ)) → (CT). First, DO specifies an access policy A =
(A, ρ), and selects a random number r ∈ GT , computes s = H1 (r,m) , R =
H3 (r) , C = r · e(g, g)αs

, C ′ = gs, C ′′ = m ⊕ R. Let A be a matrix of l ×
n, and ρ is a single mapping function, mapping each row of matrix A to an

A Revocable Outsourced Data Accessing Control 389

attribute. DO selects a random vector v = (s, y2 . . . yn) ∈ Zn
p for sharing secret

number s and computes λi = v · Ai that Ai is the ith row of matrix A for i =
1, . . . , t. Furthermore, DO randomly selects r1, r2, . . . , rl ∈ Zp. Inspired by [14],
DO communicates with CES to compute intermediate ciphertext CTintermedia =
{Ci = gaλiH2(att (i))−riH1(att(i))

,Di = gri}i∈S . The specific process is consisting
of three parts.

1. DO generates three random blind pairs (γ1, g
γ1), (γ2, g

γ2), (β, gβ) by Random
algorithm [18], and computes ω1 = ga/gγ1 mod p, ω2 = H2(att (i))H1(att(i))

/
gγ2 mod p, ci1 = λi − di1x1 mod p, where di1 ∈ Z∗

p , x is a random value that
x ≥ 2λ, λ is a security parameter. The exponent and the base are divided
into random slices calculated by the cloud encryption sever (CES):

Ci = gaλiH2(att (i))−riH1(att(i))

= (ω1g
γ1)λi(ω2g

γ2)−riH1(att(i))

= gγ1λigγ2(−riH1(att(i)))ω1
λiω2

−riH1(att(i))

= gγ1λi−γ2riH1(att(i))ω1
ci1+di1x1ω2

ci2−di1x1

= gβgγ1λi−γ2riH1(att(i))−βω1
ci1ω2

ci2(ω1ω2
−1)di1x1 mod p

(2)

The generation process of another division is the same as above. DO generates
another three random blind pairs (α1, g

α1), (α2, g
α2), (η, gη) and the division

is shown as Ci = gηgα1λi−α2rihiH1(att(i))−ηω3
ci3ω4

ci4(ω3ω4
−1)di2x2modp.

2. DO sends data to CES and queries in random order as follows.

U (ω1, ci1) → ω1
ci1 ; U (ω2, ci2) → ω2

ci2 ;

U((ω1ω2
−1)

x1
, di1) → (ω1ω2

−1)di1x1 ;

U (γ1λi − γ2riH1 (att (i)) − β, g) → gγ1λi−γ2riH1(att(i))−β

(3)

3. DO verifies the returned calculation result, and the formula is as follows.

gβgγ1λi−γ2rihiH1(att(i))−βω1
ci1ω2

ci2(ω1ω2
−1)di1x1

= gηgα1λi−α2rihiH1(att(i))−ηω3
ci3ω4

ci4(ω3ω4
−1)di2x2

(4)

The calculation and verification process of Di is similar to that of Ci. Finally,
DO uploads the whole ciphertext CT = (C,C ′, C ′′, Ci,Di) to CAS for storage.

4.4 Revocation

Revoke (PK,CT,A∗ = (A∗, ρ)) → (cj). The revocation phase is based on re-
encrypting a random piece. If the data owner wants to update the access policy,
he/she sends the new access policy A

∗ to CAS. CAS runs (n, n)-IDA to divide
CT into n parts, CT = (ct1, ct2, . . . , ctn) where (n, n)-IDA is a fault-tolerant
algorithm for data fragmentation backup [19] and we use it to reduce the com-
putational burden of re-encryption. Then CAS randomly selects j ∈ {1, . . . , n}
and runs encryption(PK, ctj ,A

∗ = (A∗, ρ)) to re-encrypt the random piece ctj
with a new access structure A

∗ = (A∗, ρ) into cj .

390 Y. Yin et al.

4.5 Match and Transform

If a revocation has occurred in the system, users should successfully pass the
matching phase first.

Match (ctj) → 0 or 1. A legitimate user can successfully decrypt the updated
ciphertext CT only if the following possess. The user should successfully decrypt
the cj with privacy SK, and return ctj to CAS. Then CAS checks whether ctj
equals the stored ctj . If true, CAS will run Transform algorithm to decrypt the
transform ciphertext.

Transform (TK,CT) → (CT ′). If the user passes the match or there is no
revocation occurring in the system. DU sends the transform key TK to CAS, and
CAS uses TK to decrypt the transform ciphertext. Suppose the user’s attribute
set S satisfies the access policy (A, ρ), define x = {i : att(i) ∈ S}. There exists a
constant set {ωi ∈ Zp}i∈x. If λi is the effective share of secret s, then there exist∑

i∈x ωiλi = s. CT transform is calculated according to the following process.

CTtransform =e(C ′,K)/
∏

i∈x

(e (Ci, L) e (Di,Ki))
ωi)

=e(gs, gαI/zgat)/
∏

i∈x

(e(gaλiH2(att (i))−riH1(att(i))
, gt)

e(gri ,H2(att(i))H1(att(i)) t)i∈S))ωi

=e(g, g)αsI/z

(5)

4.6 Decryption

Decrypt (SK,CT ′) → (m). The user can calculate r = C/CT
z/I
transform with

the private key SK, then m = C ⊕ H3 (r). In addition, he/she can calculate
s = H1 (r,m). Then the user can verify the correctness of the results by checking
whether two equations C = r · e(g, g)αs and CTtransform = e(g, g)αsI/z are held.
If held, it means the CAS has executed the outsourced decryption correctly, and
the user will accept the plaintext m.

4.7 Trace

Trace (PK,AT = (A′, ρ) ,mT , Tid) → id. If a black box decryption device
appears and claims to be able to decrypt any ciphertext that can be accessed by
the attribute set ST , since the decryption key and algorithm are embedded in
the black box, the corresponding black box tracking algorithm needs to be used
to find the malicious user who made the black box.

TA traces malicious users as a tracer. It specifies an access policy AT = (A′, ρ)
matching ST , a plaintext m′ for tracking, a secret s′ and calculate Trap = s′ −s.
It runs Encrypt(PK,m′,AT = (A′, ρ)) → TCT where secrete sharing vector
v′ = (s′, y2 . . . yn) ∈ Zn

p , λ′
i = v′ ·Ai and randomly {r′

i}i∈x. Note that s′ is used
as the secret sharing number, and the exponent of C and C ′ is s.

A Revocable Outsourced Data Accessing Control 391

TCT =(C = r · e(g, g)αs
, C ′ = gs, C ′′ = m ⊕ R,

{C ′
i = gaλ′

iH2(att (i))−r′
iH1(att(i))

,D′
i = gr′

i}i∈I)
(6)

TA disguised as a user of a black box device and sent ciphertext TCT to
it. The black-box cannot distinguish TCT from CT , so it would try to decrypt
TCT . The decryption process is the same as above. If the black-box is a revoked
user, he/she should pass the match process. Else, CAS runs transform algorithm
and obtains a transform ciphertext TCT ′ = (C,C ′′, TCT transform).

TCTtransform = e(C ′,K)/
∏

i∈x

(e (C ′
i, L) e (D′

i,Ki))
ωi)

= e(g, g)αsI/z+(s−s′)at

(7)

Now, TCT ′ and CT ′ indistinguishable. The black-box runs decryption algo-
rithm and returns the plaintext m′ to the tracer. TA calculates as follows.

r′ = C/TCT
z/I
transform = r · e(g, g)(s−s′)atz/I

m′ = C ⊕ F (r′)
(8)

TA can verify the correctness of the results by checking whether the equa-
tions r′ · e(g, g)s′atz/I = r · e(g, g)satz/I .Then TA calculates (r′/r)1/(Trap·at) =
e(g, g)t′/I , and searches the tracking list Tid to reveal id corresponding to the
private key used by the black-box.

5 Security and Performance Analysis

5.1 Security Analysis

Theorem 1. ROBBT-CPABE is selective RCCA secure if the deterministic q-
BDHE assumption holds in the group G and GT .

Proof. We can construct a simulator B to solve the decision q-BDHE with a non-
negligible advantage if there is a polynomial time adversary A that can break
through the proposed ROBBT-CPABE scheme in the selective RCCA model
with a non-negligible advantage ε.

– Init. Simulator B inputs the q-BDHE tuple (y, ψ) , ψ = e(g, g)aq+1s ∈ GT to
challenge. Adversary A chooses a challenge access strategy (A∗, ρ∗) and sends
to the simulator B.

– Setup. B chooses a random α′εZp, and implicitly sets α = α′ +aq+1 by letting
e(g, g)α = e

(
ga, gaq)

e (g, g)α′
.

– Phase 1 B Initializes four blank tables T1, T2, T3, T4, an empty set D and an
integer j = 0. B responds to an attacker’s queries by following steps.
1. Random Oracle Hash H1 (r,m). If an entity (r,m, s) exists in the table

T1, return s. Otherwise, randomly select a value s, (r,m, s) is recorded in
table T1 and returns s.

392 Y. Yin et al.

2. Random Oracle Hash H2 (r). If an entity (r,R) exists in the table T2,
return R. Otherwise, randomly select a value R ∈ {0, 1}k, (r,R) is
recorded in table T2 and returns R.

3. Random Oracle Hash H2 (id). If an entity (id, I) exists in the table T3,
return I. Otherwise, randomly select a value I ∈ {0, 1}k, (id, I) is recorded
in table T3 and returns I.

– Create(S) Suppose S does not satisfy access policy (A∗, ρ∗) and set j = j +1.
Choose a random y ∈ Zp and find a column vector ω = [ω1, . . . , ωn∗]T ∈ Zn∗

p

where ω1 = −1 and M∗
i ω = 0. Indexes for all i values att∗ (i) ∈ S. Setting

L′ = gy
n∗∏

i=1

(gaq+1−i

)
ωi

= gt, t = y + ω1a
q + ω2a

q−1 + · · · + ωn∗aq+1−n∗
,K ′ =

gα′Igar
∏n∗

i=2 (gaq+2−i

)ωi . For Kx (∀x ∈ S), if there is no i satisfying the equa-
tion att∗ (i) = x, random oracle response K ′

x = H2(att (x))H1(att(x))t, else,

K′
x =

n∗∏

i=1

⎛

⎝H2(att (x))
(aj/bi)y

n∗∏

k=1,k �=j

(
H2(att (x))

aq+1−i/bi
)ωk

⎞

⎠
M∗

i,j

·

H2(att (x))
H1(att(x))t

=(H2(att(x))
H1(att(x))H2(att(x))

aM∗
i,1/bi · · ·H2(att(x))

an∗
M∗

i,n∗ /bi)t

(9)

B runs KeyGen to get SK ′ = (PK, I,K ′, L′, {Kx
′}x∈S). The algorithm

selects a random value z ∈ Zp, set TKid = (PK, I,K = (K ′)1/z
, L =

(L′)1/z
, {Kx}x∈S = {K ′

x}x∈S and SKid,S = (z, TKid). If S satisfies the
access policy, then select a ’false’ transformed key, and the process is sim-
ilar to the above. Select a random value d ∈ Zp, run KeyGen to get SK ′,
TK = SK ′, SKid,S = (d, TKid), where if z = α/d, regenerate TK. Finally,
store (j, S, SKid,S , TK, IDSK = e(g, g)t′/I) in T4 and return TK to A.

– Corrupt(i). A is restricted to query the key associated with access policy
(A∗, ρ∗). If there is an entity in T3 and T4, then B can obtain this entity
(j, S, SKid,S , TK, id, I, IDSK) and D = D ∪ S. B returns SKid,S to A.
Else, output ⊥.

– Decrypt(i, CT). Suppose the inputted ciphertext has been partially
decrypted. ciphertext CT = (C,C ′′, CT transform) is related to access strat-
egy, and A can query (j, S, SKid,S , TK, id, I, IDSK) in T3 and T4. If not
query or S /∈ (A∗, ρ∗), output ⊥ to A. If the key does not satisfy the challenge
access policy (A∗, ρ∗) in the i-th entity, form the following process:
1. Parse SKid,S = (z, TKid), compute r = C/CT

z/I
transform.

2. Get the record (r,mi, si) from T1. If it does not exist, return ⊥ to A.
3. If there is y �= x in a set and (r,my′ , sy′), (r,mx′ , sx′),my′ �=

mx′ , sy′ �=x′ in T1, B then outputs ⊥.
4. Otherwise, query (r,R) from table T2. If it does not exist, output ⊥.
5. For each element i, test whether the equation is satisfied: C = r ·

e (g, g)αs
, C ′′ = m ⊕ R,CT transform = e (g, g)αsI/z.

6. If there is i that passes the above steps, the message mi is output; other-
wise, output ⊥.

A Revocable Outsourced Data Accessing Control 393

If the key does not satisfy the challenge access policy (A∗, ρ∗) in the i-th
entity, form the following process:
1. Parse SKid,S = (d, TKid), compute r = CT transform.
2. Test whether record (r,mi, si) satisfies equation β = e(g, g)si .
3. B outputs ⊥, if no matching is found.
4. B aborts the simulation, if more than one matching is found.
5. Else let (r,mi, si) becoming the unique match, query (r, R) from T2, and

if it does not exist, B outputs ⊥.
6. Test whether the equation is satisfied: C = r · e (g, g)αs, C ′′ = m ⊕ R,

CT transform = e (g, g)αsI/z.
7. Output m, if all steps pass, else output ⊥.

– Challenge. A propose two equal-length plaintexts m0 and m1 to B, then B
chooses a massage mβ where β ∈ {0, 1} and gets the rβ associated with mβ .
Compute C = rβ · ψ · e(gs, gα′

), C ′ = gs and randomly choose y2, . . . , yn∗ .
Then share secret s by vector v = (s, sa + y2, . . . , sa

n+1 + yn∗) ∈ Zn∗
p and

randomly choose r1, . . . , rl. For i = 1, . . . , n∗, compute Di = g−r′
ig−sbi ,

Ci = H1
r′

i

att∗
(i)

(
∏

j=2,...,n∗
(H2(att (x))a)M∗

i,jy′
j)(H2(att (x))bi·s)−zatt∗

i (
∏

k∈1,··· ,n∗

∏

j=1,··· ,n∗
(H2(att (x))ajs(bi/bk))

M∗
k,j

. Finally, B choose C ′′ ∈ {0, 1}k and sends

CT ∗ = (C,C ′, C ′′, Ci,Di) to A.
– Phase 2. The same thing as Phase 1.
– Guess. The adversary A outputs a guess bit β′. If β′ = β and ψ =

e(g, g)aq+1s, the simulator B will give a valid simulation, we have Pr[B(y, ψ =
e(g, g)a

q + 1s) = 0] = 1/2 + AdvA . The message mβ is completely
hidden by the adversary when ψ is a random group element. We have
Pr [B(y, ψ = δ) = 0] = 1/2 where δ is randomly chosen from group GT . Thus,
|Pr[B(y, ψ = e(g, g)a

q + 1s) = 0] − Pr [B (y, ψ = δ) = 0] | = AdvA = ε.

Therefore, B can break the decisional q-BDHE problem with non-negligible
advantage.

Theorem 2. ROBBT-CPABE is black-box traceable secure in the generic bilin-
ear group model if the adversary A queries at most q times in following games
and wins the game with an advantage of ε = O(q2/p).

The detailed proof is given in the Appendix.

5.2 Performance Analysis and Implementation Evaluation

Functionality Comparisons. Table 1 shows that schemes [8,9] support
attribute revocation, but only achieve white-box traceability which is inapplica-
ble in the real world. Scheme [7] supports black box tracking, but this scheme
is a conventional CP-ABE scheme, which cannot afford complex functions like
revocation and outsourcing. Scheme [10] supports revocation and outsourcing,
but there is no design for tracking function in the scheme. To sum up, our
solution can support revocation, outsourcing and black-box tracking, which can
efficiently track malicious users and revoke them.

394 Y. Yin et al.

Table 1. Functionality Comparisons.

Schemes Security assumption Attribute revocation Traceability Outsourcing

[7] q-type × Black-box ×
[8] BDH � White-box ×
[9] CDH � White-box �
[10] DBDH � × �
ours decisional q-parallel BDHE � Black-box �

Efficiency Comparisons. Table 2 gives a comparison of the computational cost
of key generation, encryption, decryption and tracking. Let E be the exponent
operation in groups, P denotes one pairing operation. Let s be the number of
attributes that the user owns and l be the number of attributes. The number
of attributes satisfying the accessing strategy is represented by n. And user
number is represented by |U |. ‘–’ indicates that the scheme does not have the
corresponding function.

Table 2. Efficiency Comparisons.

Schemes Key generation Encryption Decryption Trace
DO CES DU CAS

[7] (5 + 3s)E (2 + 7l)E - (2 + n)E + (1 + 4n)P - (2 + 14l + |U |)E
[8] (6 + s)E (5 + 3l)E - (3 + n)E + (4 + n)P - 2P

[9] (4 + 3s)E (2 + 3l)E 2l (1 + n)E + (1 + n)P 2nE + (2 + n)P -
[10] (4 + 4s)E 4E (2 + 4l)E P (2 + 3n)P -
ours (6 + s)E + P 6E 8lE 2E nE + (2n+ 1)P 8E

Our scheme and [8] have fewer exponent computations during the key gen-
eration phase, but one more bilinear pairing operation is computed due to our
need for black-box tracking. Since [9,10] support outsourced computing in the
encryption and decryption stages, we compare ROBBT-CPABE with [9,10]. It
is clear that our scheme requires fewer exponential operations to be computed
by the user during the encryption phase. And the reason the server is more com-
putationally expensive than [9,10] is that we implement verification and [9,10]
does not. The same is true for a large amount of computation in the decryption
phase. In the tracking phase, we compare with [7]. Since we can outsource some
ciphertext calculations, the calculation amount of the tracer is relatively small.

Implementation Evaluation. In order to further evaluate the performance of
our scheme, we implement [8–10] and ROBBT-CPABE on Intel(R) Core(TM) i5-
7300HQ CPU at 2.50GHz and 4.00 GB RAM. We used the JPBC library of JAVA
to complete the simulation experiment. The Type A elliptic curve with a group
order bit length of 512 bits is selected, where y2 = x3+x. We do consider the com-
putation overhead of exponential operation and bilinear pairing in the systems.

A Revocable Outsourced Data Accessing Control 395

Fig. 3. Comparisons of Computation time. (a) KeyGen. (b) Encryption. (c) Decryp-
tion.

Figure 3 describes the execution results of the computation time experience
in key generation, encryption, and decryption. The number of attributes in the
access policy increases from 10 to 50, and the number of user attributes that
satisfy the access policy also increases from 10 to 50. And the results of the
conducted experiments are the average of 5 trials. Figure 3(a) shows the key
generation time of all schemes is linearly related to the number of attributes,
but the slope of our scheme is small and the performance is within a certain
range. Figure 3(b) shows the time required for users encryption in [8,9] is linear
with the number of attributes, but the encryption time of our scheme is sta-
ble between 0.024 s and 0.029 s, and the encryption efficiency has been greatly
improved, which effectively reduces the consumption of computing resources by
data owners. Figure 3(c) shows the decryption time of [8,9] is linear with the
number of attributes, while most of the decryption operations of [10] and our
scheme are outsourced to the cloud server. The decryption time of local data
users is constant. Although the decryption time of our scheme is slightly higher
than [10], our scheme has the function of verifying outsourcing decryption and
has better performance.

6 Conclusion

In this paper, we propose a novel CP-ABE scheme called ROBBT-CPABE, for
revocability, outsourced computation, and black-box traceability. It performs
revocation by re-encrypting the ciphertext slice and matching, makes the original
data unavailable to the encryption server and enables verification by splitting
the exponent and base with random pairs, and guarantees black-box traceability
by using tracking ciphertexts and tracking lists. And we prove that ROBBT-
CPABE is secure and show the practicality and efficiency of the scheme through
the comparative analysis.

Acknowledgements. This research is funded by Science and Technology Program
of Guangzhou (Grant No. 202201010067,2023A04J0330) and Guangdong Basic and
Applied Basic Research Foundation (Grant No. 2022A1515110980).

396 Y. Yin et al.

A Black-Box Security Proof for ROBBT-CPABE

Definition 4. The generic bilinear group model [2]: We consider two random
encodings ψ0, ψ1 of a group Z∗

p , that is injective maps ψ0, ψ1 : Z∗
p → {0, 1}m

where m > 3 log(p). Set G = ψ1 (x) , x ∈ Z∗
p , GT = ψ2 (x) , x ∈ Z∗

p and an oracle
to compute a non-degenerate bilinear map e : G × G → GT . We refer to GT as
a generic bilinear group.

Theorem 3. ROBBT-CPABE is black-box traceable secure in the generic bilin-
ear group model if the adversary A queries at most q times in following games
and wins the game with an advantage of ε = O(q2/p).

Proof. A can win the game with a negligible advantage when the order p of
group is large enough. When ψ0, ψ1, G,GT are generic bilinear groups, elements
in G, GT can be mapped to a random string by function ψ0, ψ1 where g =
ψ1(1), gx = ψ1(x), e(g, g)y = ψ2 (y) .

– Setup. Challenger C randomly chooses α, a ∈ Z∗
p . The public parameters are

published as PK = (g, e(g, g)α
, ga,H1,H2). gα is kept as the master secret

key MSK.
– Phase 1. Adversary A is allowed to make q′ private key queries

on adaptively chosen user attribute set S1, . . . , Sq′ .C runs KeyGen
algorithm to generate corresponding key SK for A. And SK =
(z,K = gαI/zgat, L = gt,Kx = H2(att (x))H1(att(x))t)x∈S).

– Challenge. A chooses a challenge access structure A
∗ and sends to C. C ran-

domly chooses a massage m ∈ GT , s ∈ Z∗
p and μ ∈ {0, 1}. When μ = 0,

s′ = s, else, random chooses s′ ∈ Z∗
p . C runs Encrypt algorithm, ran-

domly chooses vector v = (s′, y2, . . . , yn) ∈ Zn+1
p where s′ is the secret. Get

λ = (λ1, λ2, . . . , λl) ∈ Zl×1
p through λi = Aiv. C sends CT to A. And CT =

(C = r ·e(g, g)αs
, C ′ = gs, C ′′ = m⊕R,Ci = gaλiH2(att (i))−riH1(att(i))

,Di =
gri

i∈S)
– Phase 2. The same thing as Phase 1. A continues to access the key SK

corresponding to the attribute set S, where the attribute set S has at least
one query that satisfies the access strategy A

∗.
– Guess. Only if the adversary A can judge s′ = s, we assume he/she wins the

game. When the results of the two queries are consistent, the adversary can
distinguish whether s′ = s holds or not, else, we say it is no ’unexpected col-
lisions’. The probabilities of two types of unexpected collisions are discussed
below.

In the first case, variables such as α, sα, at are unknown parameters for A. A’s
query process can be abstracted into a rational function F(var) where var is the
known parameters of A. An unexpected collision would occur when two queries
correspond to two distinct formal rational functions. An unexpected collision
would be when two queries corresponding to two distinct formal rational func-
tions F1 = F2, but where due to the random choices of these variables’ values, we

A Revocable Outsourced Data Accessing Control 397

have that the values of F1|s′=s and F2|s′=s coincide. Since the unknown parame-
ters are all exponentials, the known parameters can only be linearly transformed
to construct a function of the form F = γs+θ, where θ, γ are constant and γ �= 0.
It follows that F1 −F2 means that A conducts a pair of γs = F1 −F2 + γs′ and
γs′ = F2 − F1 + γs query. The following will prove that it is impossible for A to
create such a pair of queries in the game.

– Let a non-empty set Γ = {x : Sx }, where Sx satisfies the access
structure A

∗. The adversary A decrypts ciphertext with [SKSx
=∏

i∈I,i �=j

(e(Ci, L)e(Di,Kρ(i)))ωi = e(g, g)s′at], where s′ = λxωx. So, if A want

to get γs = γs′, he/she needs to make index
∑

x∈Γ′ (ξxat)s = s′at, where
Γ′ ∈ Γ. Since it is impossible for A to eliminate index at, it is not possible to
create a collision for γs′ = γs.

In the second case, due to the nature of the system causing unexpected
collisions, the outputs of the two queries of challenger C are consistent. By the
Schwartz-Zippel lemma [20,21], the probability of this event is O(1/p). By a
union bound, the probability that any such collision happens is at most O(q2/p).
Therefore, we can assume that such a collision does not occur and maintain
1 − O(q2/p) of the probability mass. Thus, the probability of A winning this
game is negligible, when p is large enough.

References

1. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334
(2007). https://doi.org/10.1109/SP.2007.11

3. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
pp. 456–465. ACM, Alexandria Virginia USA (2007). https://doi.org/10.1145/
1315245.1315302

4. Li, Q., Xia, B., Huang, H., Zhang, Y., Zhang, T.: TRAC: traceable and revocable
access control scheme for mHealth in 5G-enabled IIoT. IEEE Trans. Industr. Inf.
18(5), 3437–3448 (2022). https://doi.org/10.1109/TII.2021.3109090

5. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on ebay. In: Proceedings of the
ACM Conference on Computer and Communications Security, pp. 475–486 (2013).
https://doi.org/10.1145/2508859.2516683

6. Qiao, H., Ren, J., Wang, Z., Ba, H., Zhou, H.: Compulsory traceable ciphertext-
policy attribute-based encryption against privilege abuse in fog computing. Futur.
Gener. Comput. Syst. 88, 107–116 (2018). https://doi.org/10.1016/j.future.2018.
05.032

7. Liu, Z., Ding, Y., Yuan, M., Wang, B.: Black-box accountable authority CP-ABE
scheme for cloud-assisted e-health system. IEEE Syst. J. 17(1), 756–767 (2023).
https://doi.org/10.1109/JSYST.2022.3175244

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/1315245.1315302
https://doi.org/10.1145/1315245.1315302
https://doi.org/10.1109/TII.2021.3109090
https://doi.org/10.1145/2508859.2516683
https://doi.org/10.1016/j.future.2018.05.032
https://doi.org/10.1016/j.future.2018.05.032
https://doi.org/10.1109/JSYST.2022.3175244

398 Y. Yin et al.

8. Bouchaala, M., Ghazel, C., Saidane, L.A.: Trak-CPABE: a novel traceable, revoca-
ble and accountable ciphertext-policy attribute-based encryption scheme in cloud
computing. J. Inf. Secur. Appl. 61, 102914 (2021). https://doi.org/10.1016/j.jisa.
2021.102914

9. Guo, L.F., Xing, X.M., Guo, H.: An efficient traceable and revocable attribute-
based encryption scheme in cloud storage. J. Cryptol. Res. 10(1), 131–145 (2023).
https://doi.org/10.13868/j.cnki.jcr.000584

10. Sarma, R., Kumar, C., Barbhuiya, F.A.: PAC-FIT: an efficient privacy preserving
access control scheme for fog-enabled IoT. Sustain. Comput. Inform. Syst. 30,
100527 (2021). https://doi.org/10.1016/j.suscom.2021.100527

11. Zhao, Q., Wu, G., Ma, H., Zhang, Y., Wang, H.: Black-box and public traceability
in multi-authority attribute based encryption. Chin. J. Electron. 29(1), 106–113
(2020). https://doi.org/10.1049/cje.2019.10.006

12. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics
Secur. 8(1), 76–88 (2013). https://doi.org/10.1109/TIFS.2012.2223683

13. Li, Z., Li, W., Jin, Z., Zhang, H., Wen, Q.: An efficient ABE scheme with verifi-
able outsourced encryption and decryption. IEEE Access 7, 29023–29037 (2019).
https://doi.org/10.1109/ACCESS.2018.2890565

14. Yu, J., He, G., Yan, X., Tang, Y., Qin, R.: Outsourced ciphertext-policy attribute-
based encryption with partial policy hidden. Int. J. Distrib. Sens. Netw. 16(5),
155014772092636 (2020). https://doi.org/10.1177/1550147720926368

15. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Technion - Israel Institute of Technology, Israel (1996)

16. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8_4

17. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. pp. 34–34 (2011)

18. Wang, Y., et al.: Securely outsourcing exponentiations with single untrusted pro-
gram for cloud storage. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 326–343. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9_19

19. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2), 335–348 (1989). https://doi.org/10.1145/62044.
62050

20. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980). https://doi.org/10.1145/322217.322225

21. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5_73

https://doi.org/10.1016/j.jisa.2021.102914
https://doi.org/10.1016/j.jisa.2021.102914
https://doi.org/10.13868/j.cnki.jcr.000584
https://doi.org/10.1016/j.suscom.2021.100527
https://doi.org/10.1049/cje.2019.10.006
https://doi.org/10.1109/TIFS.2012.2223683
https://doi.org/10.1109/ACCESS.2018.2890565
https://doi.org/10.1177/1550147720926368
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-319-11203-9_19
https://doi.org/10.1007/978-3-319-11203-9_19
https://doi.org/10.1145/62044.62050
https://doi.org/10.1145/62044.62050
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/3-540-09519-5_73

LocKey: Location-Based Key Extraction
from the WiFi Environment in the User’s

Vicinity

Philipp Jakubeit1(B) , Andreas Peter1,2 , and Maarten van Steen1

1 University of Twente, Drienerlolaan 5, 7522 Enschede, NB, The Netherlands
p.jakubeit@utwente.nl

2 University of Oldenburg, Ammerländer Heerstraße 114-118,

26129 Oldenburg, Germany

Abstract. We investigate extracting persistent information from semi-
volatile signals in the user’s vicinity to extend existing authentication
factors. We use WiFi as a representative of semi-volatile signals, as WiFi
signals and WiFi receiver hardware are ubiquitous. WiFi hardware is
mostly bound to a physical location and WiFi signals are semi-volatile
by nature. By comparing different locations, we confirm our expectation
that location-specific information is present in the received WiFi signals.
In this work, we study whether and how this information can be trans-
formed to satisfy the following properties of a cryptographic key so that
we can use it as an extension of an authentication factor: it must be
uniformly random, contain sufficient entropy, and the information must
be secret. We further discuss two primary use cases in the authentication
domain: using extracted low-entropy information (48 bits) for password
hardening and using extracted high-entropy information (128 bits and
256 bits) as a location-specific key. Using the WiFi-signal composition
as an authentication component increases the usability, introduces the
factor of ‘location’ to the authentication claims, and introduces another
layer of defense against key or password extraction attacks. Next to these
advantages, it has intrinsic limitations, such as the need for the receiver
to be in proximity to the signal and the reliance on WiFi signals, which
are outside the user’s control. Despite these challenges, using signals in
the proximity of a user works in situations with a fallback routine in place
while increasing usability and transparency. LocKey is capable to extract
low-entropy information at all locations measured, and high-entropy from
68% locations for 128-bit keys (48% of the locations respectively for 256-
bit keys). We further show that with an initial measurement time of at
most five minutes, we can reconstruct the key in at least 75% of the cases
in less than 15, 30, and 40 s depending on the desired key strength.

Keywords: Location-based Authentication · Fuzzy Key Extractions ·
WiFi Signals

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 399–418, 2023.
https://doi.org/10.1007/978-981-99-7032-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_24&domain=pdf
http://orcid.org/0000-0001-6216-6100
http://orcid.org/0000-0003-2929-5001
http://orcid.org/0000-0002-5113-2746
https://doi.org/10.1007/978-981-99-7032-2_24

400 P. Jakubeit et al.

1 Introduction

Authentication is a crucial component of ensuring the security of online trans-
actions and information. It describes the ‘provision of assurance that a claimed
characteristic of an entity is correct’ [16]. There are three main types of authen-
tication factors distinguished by the claim made: knowledge factors, possession
factors, and inherence factors. Knowledge factors involve something the user
knows (e.g., password, PIN, or an answer to a security question). These are most
prevalent in practice and are often used as the primary factor in multi-factor
authentication. Possession factors involve something the user has (e.g., a smart
card, a physical token, or a mobile phone). These factors are becoming more
common in modern authentication methods, as users are increasingly relying on
their mobile devices for authentication. Inherence factors involve something the
user is, represented by biometric data (e.g., fingerprints, facial recognition, or
iris scans). These factors are becoming more popular as a means to access a
physical token or a mobile phone. Multi-factor authentication combines two or
more of these factors to provide increased security. For example, a bank might
use a combination of a password (knowledge factor) and an SMS (possession
factor) to authenticate a user.

Location-based authentication is another type of claim that can be used
during the authentication process. It is different from the other authentication
factors as it is not about the user but the environment the user is in. Tradi-
tionally, a location-based authentication factor is used to localize a user (e.g.,
IP address ranges, GPS). However, we do not intend to localize a user but to
recognize the environment the user is in. For the purpose of authentication, to
validate a location claim, it is sufficient to validate that the claimed location is
indeed a location associated with the user. Where the location is located is no
required knowledge to validate the claim.

We propose the recognition of WiFi measurements of a location as an addi-
tional factor. In today’s traditional setup, a user accesses a device either by
knowledge or inherence claims to authenticate from the device towards a service
with a combination of knowledge and possession claims. The user provides their
password and a token or a challenge-response authentication based on a key the
user owns. Our goal is to extend these factors with a claim of location in terms
of WiFi measurements. Such a measurement must contain sufficient information
for the desired use case. As each location differs in the information available, we
choose the amount of information to extract on a per-location basis. With this,
we are capable of either extending the information present in a password/key-
based authentication claim or replacing an entire authentication factor. In the
banking example given above, it might suffice to know that a user logging in
with the correct credentials is at a typical location for this user. E.g., credit card
usage consistency checks rely largely on such behavioral consistencies.

Especially in urban environments, wireless protocols based on the IEEE
802.11 standard (WiFi) and hence WiFi signals, and WiFi hardware are ubiqui-
tous and ever-increasing. WiFi signals are known in the literature to be suited
for various use cases such as indoor positioning [26], area selection [8], distance

LocKey-Key Extraction from WiFi Signals 401

binding [10], behavioral profile construction [21], location fingerprinting [18], and
key extraction [7]. In this paper, we look at the latter: extracting information
from the WiFi signals surrounding us which share properties of a cryptographic
key. What distinguishes our work from previous work is that we only rely on
measurements without changing the existing infrastructure. By this, we intro-
duce an extension that can be applied seamlessly (see Sect. 8 for more details
on the differences with the related work). At first glance this might seem easy
to achieve, however, it turned out to be more intricate. First, as our work is
motivated by the quest for seamless authentication, we do not consider having
control over or changing the behavior of access points (APs). We only consider
the WiFi hardware of the user, the sensor. Second, as we observe electromag-
netic signals, there are fluctuations and disturbances, which result in signals
being inconsistently present. Third, as WiFi signals are emitted into the world
we are required to find a way to make the derived information secret.

Our assumed WiFi infrastructure builds on stationary access points (APs),
which constantly emit signals to indicate their presence, the so-called beacon
frame. We use the information in the periodically sent beacon frames to derive
location-specific information from the vicinity of a user. The setting is that we
only observe signals, we need to account for inconsistencies in the volatile signals,
and we need to make at least some information from the publicly available signals
secret. The approach we take is (as done in biometrics e.g., [17]) not to store the
information, but to generate and later reproduce it from a semi-persistent source.
This is appealing as it reduces the attack surface because an adversary cannot
extract this information from the hardware. Due to the potential volatility of the
signals we require a backup procedure or fallback routine to be in place. To make
the observed information secret, we require another source of randomness such
that a vicinity key derived from the environment becomes uniformly random,
and secret, and contains sufficient entropy in the information-theoretic sense.
With LocKey:

• We show how to use a vicinity key to strengthen existing secret information
(key or password).

• We increase the usability of multi-factor authentication.
• We get location as a claimed characteristic while preserving privacy.

To do so, we describe how to construct a WiFi measurement by observing
only available APs by processing the available beacon frame features as an envi-
ronmental entropy source and show how to precisely reconstruct such a WiFi
measurement from a sufficiently similar measurement. Next, we show how to
derive a vicinity key from such a WiFi measurement by introducing a device
component. While doing so, we identify entropy estimates and evaluate the per-
formance of our proposed method by using our real-world dataset and analyze
our method in terms of the system’s security. We observe that a low-entropy
vicinity key of 48-bit can be extracted at all considered locations, while we can
extract high-entropy vicinity keys of 128-bit at 68% of the locations, and 256-bit
vicinity keys at 48% of the locations considered. We further show that with ini-
tial WiFi measurements of up to five minutes, we can reconstruct a key in less

402 P. Jakubeit et al.

than 40 s for all vicinity key strengths. Further, LocKey adds an extra layer of
security on top of knowledge and possession factors. When a password or key gets
compromised in traditional schemes, the adversary broke the system, while with
LocKey in place, an adversary is required to derive a composition of WiFi APs
that is sufficiently similar to the AP composition at the user’s location.

2 Foundations

In this section, we describe the two underlying foundations of LocKey. First,
we focus on WiFi beacon frames, what they entail, and by which circumstances
they are impacted. Second, we focus on fuzzy extractors, what they are, and
why they are a perfect fit for the inconsistent AP compositions we observe.

2.1 WiFi Beacon Frames

The WiFi beacon frame is a management frame defined in the IEEE 802.11 stan-
dard [14]. A periodically sent beacon frame advertises the presence of the base
station. The WiFi beacon frame entails information about the network, like the
physical address and capabilities of the network. Which fields to use is limited
by two aspects; the presence in the beacon frame itself and the receiver’s oper-
ating system (OS). The presence of the information in the beacon frame itself is
not guaranteed, as a frame contains mandatory and optional fields. The OS of
the receiver matters, as different OSs provide different levels of access to beacon
frame fields in general and based on access rights within the system itself. In
the case of the Linux OS, the accessible fields are the network’s name called the
service set identifier (SSID), the media access control address (MAC address), a
general flag, the maximum bandwidth to use, the security and capability flags,
the frequency used, and the mode of the AP [12]. These fields combined have a
theoretical maximum of 63 bits; entropy analyses on real-world data suggest a
minimum of 9 bits [18]. Privileged access on Linux (root space) and Windows
allows access to more beacon-frame fields, while OSX and mobile operating sys-
tems are more restrictive in accessing beacon-frame fields.

2.2 Fuzzy Extractors

The authors of [9] coined the term fuzzy extractor. However, the idea of using
sets to lock a vault goes back to [20]. One way to look at fuzzy extractors is
as error-tolerant and nonuniformity-tolerant key-encapsulation mechanisms for
a secret key. They can generate a uniformly random string R from an input w.
This extraction process is error-tolerant, so a sufficiently similar input w′ ∼ w
reproduces the same uniformly random string R. The inputs’ similarity can be
expressed on the bit level by the inputs’ Hamming distance. Sufficiently similar
means that the Hamming distance is not greater than t, the number of errors
that can be corrected. The generate and reproduce functions are the two building
blocks of a fuzzy extractor and can be constructed from two components: a secure
sketch and a strong extractor, as shown in Fig. 1.

LocKey-Key Extraction from WiFi Signals 403

Secure Sketches. A secure sketch is a function that recreates an input w from
another input w′ with a small Hamming distance to w. A secure sketch consists
of two main components. The secure sketch and the reconstruct function. The
secure sketch receives an input w and produces a sketch s such that a similar
input w′ together with that sketch s can be used by the reconstruct function to
output the original input w.

Strong Extractor. The strong extractor function is not fuzzy in itself. It generates
a defined output based on its defined inputs. A family of hash functions is used
to extract a uniformly random string from an input and an entropy source.
The extraction process uses the input w and an additional entropy source r.
The authors of [9] show that a 2-wise independent hash function produces an
optimal result, as the length of the random input r is less critical in the scenario
of o fuzzy extractor. We will describe what family of hash functions we chose in
our instantiation section.

Building a Fuzzy Extractor from a Secure Sketch and a Strong Extractor. In
Fig. 1, we show a schematic of the components from a fuzzy extractor and how
to construct it from a secure sketch and a strong extractor. The input w is used
as input to the secure sketch to create a sketch s. This sketch, together with
internally generated randomness r, forms the output, helper data P = (s, r).
This randomness r is used together with the input w as input to the strong
extractor to create the uniformly distributed string R. To reproduce this R
created by the generator function, the reproduce function receives the helper

Ext

SS Rec

Ext

Gen Rep

w r

s

R

P w′

s

r

r

w

P

R

Fig. 1. Schematic of a fuzzy extractor constructed of a secure sketch (SS) and a strong
extractor (Ext). The generate function takes w as input. The secure sketch creates a
sketch, while the strong extractor uses the input and internally generated randomness
to generate a uniformly random string R. The generator function outputs the string
R and helper data P , which consists of the sketch s and internal randomness r. The
reproduce function takes an input w′ similar to w and the helper data P as input.
Internally, a reconstruct function takes the input w′ and the s element of the helper
data P and outputs the reconstructed w. The reconstructed w is used together with
the r part of the helper data P as input to the strong extractor, which outputs the
same uniform random string R as outputted by the generator function if the Hamming
distance of w and w′ is sufficiently small (≤ t).

404 P. Jakubeit et al.

data P and a similar input w′ as inputs. It inputs the sketch part s included
in P and the input w′ into the reconstruct function. The reconstruct function
reconstructs from both its inputs the original input w. The reconstructed w
is used with the random r component of the helper data P as input to the
strong extractor. This strong extractor performs exactly as its counterpart in
the generation construction and outputs R.

3 Overview on LocKey

In this work, we focus on the IEEE 802.11 standard [14], which we will refer
to as WiFi. However, we assume that the principle we describe will also hold
for other wireless standards and somewhat persistent electromagnetic signals
in general. We consider a sensor, a wireless receiver, capable of observing the
beacon frames sent by WiFi APs. We assume both, the sensor and the APs,
to be spatially static. We assume standard laptop hardware (e.g., [15]) as the
sensor. The sensor gathers measurements of APs over time. We describe each AP
by an AP representation (APR). We call a specific composition (set) of APRs
measured at one location a WiFi measurement.

We want to see how the composition of measured WiFi signals in the vicinity
of a user can be used to derive a vicinity key. The main challenge lies in the fact
that the WiFi composition is fluctuating. Already a small physical area is subject
to heavy fluctuations (an illustration of the fluctuation of WiFi signals in a right
square prism of dimensions 36 cm2 by 18 cm can be seen at [22]). To compensate
for the signal fluctuations, we choose to work with a fuzzy extractor. This works
by conducting initial measurements and deriving a vicinity key and helper data.
With this helper data, it is possible to derive the same vicinity key from suf-
ficiently similar measurements. Sufficiently similar refers to two measurements
differing in at most t elements. We derive t from the initial measurements as it
influences the entropy of our derived key and we need to know before how much
entropy is available at a location.

We focus especially on usability and transparency. An authentication system
using the WiFi environment of a user does not impose a serious burden on the
user. During the first generation of a vicinity key, the user is required to stay
in place for the time required to measure the environment. However, afterward,
the authentication can be conducted from the service and software on the user’s
device alone. This becomes even more prominent in the before-mentioned sce-
nario of a confirmation SMS. Instead of retyping a code, the user is not required
to engage at all. It suffices that the user resides at a known location. This leads
to further applications such as transparent authentication schemes in which the
service authenticates a user continuously.

We split a vicinity key into two components, the measurement component,
and the device component. The helper data P forms the device component
and the input set forms the measurement component. A fuzzy extractor is con-
structed such that P leaks only a predefined amount of information about the
input set. The input set leaks no information about the helper data. Only in

LocKey-Key Extraction from WiFi Signals 405

combination do they produce the desired, uniformly random string, the vicinity
key. Contrary to the default assumption of fuzzy extractors, we propose for our
application to treat both components as confidential.

To derive a key once and again, we distinguish the generation and reproduc-
tion phases. In Fig. 2, we give a visual overview of the extraction process of a
vicinity key in both phases.

User

AP1

AP3 AP4

AP2

Create fuzzy measurement
F from WiFi APs in the

user’s vicinity.

Generate the key K and
the helper data P from

the fuzzy measurement F.

Fuzzy Extractor

F

K P

User

AP1

AP4

AP2

Create fuzzy measurement
F’ from WiFi APs in the

user’s vicinity.

Reproduce the key K from
the helper data P and the
fuzzy measurement F’.

Fuzzy Extractor

F’ P

K

Generating the key K from WiFi measurements in
the user’s vicinity.

Reproducing the same key K from similar WiFi measurements
in the user’s vicinity and the helper data.

Fig. 2. A visualized overview of LocKey.

Generation Phase. During the generation phase, we scan the environment for
a fuzzy measurement F, which we input into the generate function of a fuzzy
extractor. Internally, this results in inputting F into a secure sketch and inputting
F together with freshly generated randomness r into a strong extractor. The
secure sketch produces the sketch s, which we combine with r to the helper data
P=(s,r). The strong extractor produces the vicinity key K. Due to being based
on the fuzzy measurement F, the vicinity key K is location specific. The fuzzy
measurement F forms the measurement component and r, internally created
randomness, forms the device component.

Reproduction Phase. During the reproduction phase, we scan the environment
for a fuzzy measurement F′. We input F′ and P = (s, r) into the reproduce
function of a fuzzy extractor. Internally, this results in inputting F′ and the
sketch part s of the helper data P into a reconstruction function which outputs
F. This F forms, together with the r part of the helper data, the input for
a strong extractor, which produces the vicinity key K. The vicinity key K is
identical to the vicinity key K produced in the generation phase if F and F′

differ in at most t APs.
The challenging aspect of deriving a key from WiFi measurements is the size

of the universe and the fact that we have an unstable amount of APs in each
WiFi measurement. Thus, we require for LocKey a solution that can deal with
varying input sizes and perform well even in large universes of potential input
sizes. However, before we find a fitting solution, we first discuss our goals for
LocKey and how it can be utilized.

406 P. Jakubeit et al.

3.1 Application and Integration Suggestions

We intend to use the vicinity key K derived from the WiFi environment of
the user as a claim in an authentication scheme. We discuss the use of LocKey
in password hardening and challenge-response-based authentication and present
further use cases in Sect. 7. In general a vicinity key can be seen as secure salt
with a location component.

Password Hardening. The user extends the entropy in a password by append-
ing the extracted bits from the derived vicinity key. For password hardening,
we require only a low amount of entropy; for example, 48 bits may suffice. This
application increases the entropy of a password almost for free. The only require-
ment we impose on a user is to reside in a specific location.

Challenge-Response. The party the user is authenticating towards presents a
question (challenge) and the user must provide a valid answer (response). For
a challenge-response scheme, we require a higher amount of entropy; 128-bit or
256-bit are standard key sizes. Which key size to choose depends on the context
of the authentication and the available entropy at a measured location. A vicinity
key K could be used to prove that the environment at a specific location was
measured. The two choices of challenge-response authentication are to either
use a message authentication code-based approach [23] or an approach that uses
asymmetric cryptography and requires the user to sign a message [11].

4 Instantiating LocKey

In this section, we elaborate on the information present in the data and our
choices for the fuzzy extractor and its components, the secure sketch, and the
strong extractor.

4.1 Data Representation

We build an access-point representation (APR) from the features provided by
the AP. To do so, we need to estimate the information conveyed in each feature.
The theoretical maximum amount of MAC address information is 48 bits [14],
constructed from a 24-bit organizationally unique identifier (OUI) and a 24-
bit network interface controller. As MAC addresses are assumed to be unique,
we can interpret them as an index of APs. Assuming at least 10-bit for the
OUI, the maximum of information has a cap of 234 considering the APs min-
entropy. The min-entropy is the negative logarithm of the probability of the
most likely outcome. We choose the min-entropy, as we need to consider the
most conservative entropy estimate for the strong extractor to guarantee the
chosen key strength. The definition of min-entropy is:

Hmin = − log(max
i

pi)

LocKey-Key Extraction from WiFi Signals 407

To represent the entropy of an APR in a real measurement, we considered
the data observed. We measured only a fraction of potential MAC addresses
with a min-entropy of 7.15 bits. We choose one byte as APR length, as we use
the extendable output function SHAKE (Secure Hash Algorithm with KEccak
[5]) to generate the APR by digesting the plain beacon frame features. We use
SHAKE-128 with a security strength of 128 bits when it is sufficient. Also, we
show the results for higher security, in which case we opt for SHAKE-256.

4.2 Fuzzy Extractor

We construct our fuzzy extractor as described in Sect. 2.2 by combining a secure
sketch with a strong extractor. For the secure sketch, we choose PinSketch [9],
and for the strong extractor, we choose the original universal hash function
proposed by Carter and Wegman [6].

Secure Sketch. We choose PinSketch as the secure sketch for our instantiation,
as it fits our requirements perfectly. PinSketch conducts error correction on a
set of elements. It can handle arbitrarily many errors, even though each error it
can correct reduces the entropy. Therefore, we choose t, the number of errors to
correct, tight on a per-location basis. However, PinSketch is optimal with a loss
of t log(n + 1). What distinguishes PinSketch from other set-based sketches is
that it can handle varying set sizes and can deal with large universes due to its
optimized nature.

Assuming a universe U , PinSketch creates a binary vector of n = |U| bits to
represent a set. From there, it becomes equivalent to the error correction of two
vectors in that space. The problematic part is the size of the universe U . If it
becomes too large, other secure sketches become infeasible. PinSketch uses two
tricks to change that. PinSketch stores only the support of a vector and builds
on BCH codes for error correction.

Support of a Vector. The support of a vector v, supp(v), lists only the positions
on which a vector is nonzero. Using only the support of a vector makes the
description of small words very efficient. In the case of fuzzy WiFi measurements,
each APR consists of 8 bits. Therefore, we can describe each APR by a vector of
size |APR| = 28. To list all possible APRs and set only the APRs present in a
specific WiFi measurement to 1 while all other values are 0 requires a vector of
size 2|APR|. Listing only the positions present is obviously much more efficient.

BCH Codes. BCH codes [13] are a class of cyclic error-correcting codes con-
structed using polynomials over a finite field. BCH codes can correct multiple-
bit errors and provide highly efficient decoding using syndrome decoding. To
describe syndrome decoding, we need to dive a bit deeper into the inner work-
ings of linear codes. We assume linear code C and a message x. The length of

408 P. Jakubeit et al.

each code word in C is n, and the dimension of C as a vector subspace is k.
To derive a code word c = Gx of the linear code C corresponding to message
x, we multiply x with a generator matrix G of size k × n whose rows form a
basis for a linear code. G can be written in the standard form with Ik being the
k × k identity matrix and P being a k × (n − k) matrix as G = [Ik|P]. From
G the parity-check matrix H can be constructed as H = [P�|In−k] such that
GH� = 0.

A syndrome s of any vector y of the ambient vector space is defined to be
s = Hy�. Due to the construction of H, the syndrome s is zero if and only if
the vector y is a code word.

Syndrome decoding makes use of the fact that Hz = He, the syndrome of an
error pattern e is equal to the syndrome of an observation z = c + e consisting
of the code word c observed with this error pattern e, as we know from the
definition of a syndrome that Hc = 0.

The equality implies that a table of error patterns can be pre-computed.
In the case of an observation of a value y, we know that y is no code word if
Hy� �= 0. Further, we can look up the error pattern in the generated table to
retrieve the bits to correct. Deducing and correcting an error can be implemented
in logarithmic time complexity.

Both choices make PinSketch quite efficient with time complexity of
poly(|w| log n) [9] and also provide an optimal storage complexity of t log(n+1).
In words, this means that in a setting capable of correcting up to t errors, for
a set w which consists of several l = log(n + 1) bit vectors, a sketch consists of
only t binary vectors of length l. t log(n+ 1) is also the amount of entropy loss,
which makes sense as the sketch makes t × l bits public. The authors of PinS-
ketch focused on the time complexity required. They reduced it to polynomial
time based on the set size of the input set |w| and being only logarithmically
in the size of the universe n. Most other secure sketch solutions working on sets
are time bound by the size of the universe, therefore, being dependent only on
the input-set size is an improvement. In the following, we list the workings of
PinSketch in the generation and reproduction phase.

Strong Extractor. As a strong extractor, we choose the 2-wise independent
family of universal hash function proposed by Carter and Wegman [6], which is
defined by:

ha,b(x) = ((ax + b) mod p) mod m

We construct x from hashing all elements, the APRs, of an observed set w, a
WiFi measurement F, with SHAKE-128 (respectively SHAKE-256) and create
an output of size |x| ∈ {128, 256}, based on approved key sizes by the NIST [4].
The output size determines the desired security level. However, the number of
APs available determines an upper bound for the security level per location.

LocKey-Key Extraction from WiFi Signals 409

PinSketch [9]
Generation phase:

Input: w, Output: s
Compute the syndrome syn(w) of w.
Output the syndrome as sketch s = syn(w).

Reproduction phase:
Input: w′,s, Output: w
Compute the syndrome syn(w′) of w′.
Compute σ = syn(w) − syn(w′), the difference between both syndromes.
Find a vector v such that syn(v) = σ for which holds that |supp(v)| ≤ t.
As the vector v is equal to the difference of the inputs v = w−w′, output v+w′ = w.

As we intend to extract sufficient entropy, we choose our universe for hashing
Uh depending on the security guarantees desired such that |Uh| = |x|.

It applies to the moduli that p must be a prime and p ≥ |Uh| and that m
specifies the output range of numbers of the strong extractor. As p needs to be
larger or equal to the size of the universe, we decide to go for a prime expressible
by 2z − k for tuples of (z, k) ∈ {(129, 25), (257, 93)} such that p is greater than
Uh, and we have a reasonably tight bound for the coefficients. We randomly
choose the coefficients a and b modulo p except for a �= 0. This choice implies
that we have two z bit numbers as part of the helper data and hence as the
device component of the key. We choose m = |Uh| as we use the strong extractor
to get only a uniformly distributed string based on the entropy we derived from
our input x.

5 Evaluation

Data sets available online provide MAC addresses and other information. How-
ever, they do not include the capability features of WiFi beacon frames, which
we need for measuring the environment. Therefore, we created our own, ethics-
committee approved, data set from 37 locations measured in offices and flats1.
We conducted the measurements with ordinary WiFi hardware from laptops
(e.g., [15]) in the Linux OS. In total, we measured 1167 different APs in these
locations, with the number of APs measured by the sensor varying from 1 to
100 APs in one measurement for the duration of one second. A beacon frame is
received every 5 ms to 1 s. This interval is configurable by the user and device-
specific. Therefore, not all available APs are present in each measurement.

The main questions are whether there is sufficient entropy at a location, and
for how long we need to measure to derive the desired amount of entropy. Both
questions must be asked during the generation phase and during the reproduction
phase. During the generation phase, we determine the locations suitable for a
specific key strength. With the measured duration, we set the stage for the
reproduction phase. We discuss the inherent tradeoff and parameter choices later
1 https://gitlab.com/lockey1/scandata.

https://gitlab.com/lockey1/scandata

410 P. Jakubeit et al.

in this section. During the reproduction phase, we determine the measurements
at a location suitable for reconstruction and the duration required to reconstruct
successfully.

Generation Phase – Location Suitability. First, we determined what sufficient
entropy entails. Recall that we have a set of measurements per location. Each
measurement is represented by a set of APs. We represent each AP by an 8-bit
APR and each AP contains at least 7.15 bits of entropy we can harvest. The
key size as well as the error correction require entropy. The key size determines
the entropy required to derive a key of the desired size. Hence, we require at
least �48/7.15� = 7 APs to derive the low-entropy key and 18 (respective 35)
APs to derive the high-entropy keys of 128 and 256 bits. The error correction
requires additional entropy. We described in Sect. 4.2 that PinSketch has the
optimal amount of entropy loss, t log(n+ 1) for n being the size of the universe
|U| = 2|APR|. As we determined the length of an APR to be 8 bits, the entropy
loss is t ∗ 8 bits. As each AP has a min-entropy of 7.15 bits we require 1.12
additional APs for each AP to correct.

We considered 37 locations with each a total length of one hour divided into
3600 one-second measurements. We chose the first measurement as starting point
for the generation phase. This represents the real-world scenario: a user enters
a location and checks whether it is suited for the use of LocKey by starting
to measure WiFi signals. With this procedure, we determined the number of
locations providing sufficient entropy per desired key strength (see Table 1).

Table 1. The number of locations from our test set of 37 locations from which we can
extract sufficient entropy to guarantee the desired key strength with at least one AP
to correct using the first measurement as starting point.

No. of suitable locations (out of 37) Key strength in bits

37 48

25 128

17 256

Generation Phase – Duration. We analyzed our dataset and chose generation-
phase measurement lengths of 3, 4, and 5 min for the 48, 128, and 256-bit
key extractions. We chose these measurement lengths as they provide sufficient
entropy for a maximum of locations with sufficient entropy for error correction.
However, at the end of this section, we discuss the implications and other choices.

Reproduction Phase. The helper data generated during the generation phase
entails the number of APs and the number of APs we can correct. Therefore,
we aggregated measurements until we have sufficient APs to attempt a recon-
struction of the generation-phase WiFi measurements. This condition is met
as soon as we observe at least the number of APs we are capable to correct

LocKey-Key Extraction from WiFi Signals 411

subtracted from the total number of APs used in the generation phase. Our
choices for measurement times during the generation phase imply that we have
3600 − 180 = 3420 s of measurements for the 48-bit scenario, 3360 s for the
128-bit scenario, and 3300 s for the 256-bit scenario remaining to analyze the
reconstruction capabilities. We chose every measurement of these remaining mea-
surements as starting point and aggregate measurements until the condition is
met to attempt a reconstruction.

Reproduction phase – measurement suitability. In Fig. 3 we show the success
rate of the attempted reconstructions. Note that missing bars indicate that the
specific location has not sufficient entropy for the desired key strengths. We
divided the bar plot into three focus areas. We reconstructed the vast majority
of locations in more than 99%. For the 48-bit scenario, only locations L11 and
L12 had a slightly lower performance than 99% but still more than 98%. For
the 128-bit scenario, less locations provide sufficient entropy at all, but only
locations L11 and L22 had fewer than 99% of starting points from which we can
reconstruct. In the 256-bit scenario, even fewer locations had sufficient entropy,
but also most locations had more than 99% of successful reconstructions. Only
location L30 had about 98% of correct reconstruction. Locations L11 and L32
are outliers and only allowed for about 75% and 85% of the starting points to
reconstruct successfully. These reconstruction performances show that LocKey
performs with more than 99% of successful reconstruction for the vast majority
of locations and starting measurements.

Fig. 3. These bar plots show the reconstruction performance per location for each pos-
sible starting measurement in the remaining set of valid measurements for the repro-
duction phase. Missing bars show that the specific location does not provide sufficient
entropy for the location in question. The broken axis allows us to focus on the relevant
performances.

Reproduction phase – Duration. The crucial follow-up question is how long it
takes to conduct these reconstructions. In Fig. 4, we show box plots to convey
the varying length of measurements required. For clarity, we omit the outliers in
our visualization. In the 48-bit scenario we observed between 0.7% and 7.1% of
outliers at all locations except L7 and L9 with the highest outlier requiring 262 s
at location L4. In the 128-bit scenario we observed between 0.02% and 9.3%
of outliers at all locations, with the highest outlier requiring 253 s at location

412 P. Jakubeit et al.

(a) 48-bit scenario.

(b) 128-bit scenario.

(c) 256-bit scenario.

Fig. 4. The three box plots show the required time for reconstructing the set of APs
in all scenario. We highlighted the average and maximum time required to reconstruct
75% of the measurements of all locations.

L35. In the 256-bit scenario we observed between 0.3% and 6.4% of outliers at
all locations except L27 with the highest outlier requiring 750 s at location L37.
Per figure, we show the largest average and maximum time required to restore
two-thirds of all measurements. We can reconstruct a set of APs on average for
75% of the measurements in less than 15, 30, and 40 s and require a maximum
of 65, 103, and 170 s for the respective key sizes of 48, 128, and 256 bits. We also
observed that we require less than three minutes in the 48 and 128 bits scenarios
and that for most of the locations five minutes are sufficient for the 256 bits
scenario, while two locations require up to 15 min to reconstruct. This is a direct
consequence of the 5 min we used in the generation phase. During these 5 min,
many APs can be aggregated, which we need to measure before attempting the
reconstruction.

LocKey-Key Extraction from WiFi Signals 413

Tradeoff. Having longer generation-phase measurements introduces a tradeoff for
the reproduction phase. More generation-phase measurements lead to a higher
percentage of successful reconstructions, however, require longer measurement
times during the reproduction phase for several locations. Less generation-phase
measurements imply a shorter measuring duration required during the repro-
duction phase. This reduced duration implies that the reconstruct is less often
successful. From our analysis, we observed that as a bare minimum, we required
only generation-phase measurement lengths of 40, 60, and 160 s (for 48, 128,
256-bit key strength scenarios). Choosing these shorter generation-phase mea-
surements, we required less time to gather enough APs during the reconstruction
(the outliers in the 256-bit scenario take at most 200 s), which makes sense as we
considered fewer measurements. Therefore, we are not required to measure for
that long when trying to reconstruct. The disadvantage is that fewer locations
provide sufficient entropy. Additionally, the performance drops significantly for
some locations as the APs not taken into consideration are still present and
could poison our reconstruction attempts.

We determined how long to measure during the generation phase. This
impacts the performance and measurement times of the reconstruction phase.
We suggest deciding on a per-location basis for an optimal strategy. Looking
at the four locations with a mean above 20 s for the 48-bit case in Figure 4a
we observed strong signal fluctuations at the location. Therefore, we must also
decide on a per-location basis how stable the signals are and whether the signal
stability is sufficient for the desired use case.

6 Security Model and Analysis

We consider a user and an adversary. The user conducts WiFi measurements
and executes either the generate or reproduce function to construct the vicinity
key K. We assume that the user is trusted, that the user’s hardware is not
compromised, and that the user does not deliberately provide any information
to the adversary.

We consider two different scenarios, the first in which the attacker is assumed
to have no knowledge of the device component, the helper data P and the second
in which the attacker has knowledge of P . We assume for both scenarios that
the adversary’s goal is to retrieve the vicinity key K.

No access to P Without access to the device component, the adversary is
required to guess the correct key K or the WiFi measurements F the user used
during the generation phase and the random coefficients of the strong extractor.
Due to our choice of key derivation, the key K is either of size 48-bit, 128-bit, or
256-bit and is uniformly distributed. This implies that an attacker has a chance
of 1

|K| for |K| ∈ {248, 2128, 2256} to guess a key correctly.
An adversary could compromise a WiFi capable device near the user, or be

on-site to conduct WiFi measurements. However, without knowing the infor-
mation in the helper data P the adversary has no means to know whether the

414 P. Jakubeit et al.

WiFi measurement conducted is the WiFi measurement used during the genera-
tion phase. Without knowing the random coefficients a and b from the universal
hash function, it is infeasible to extract the correct vicinity key K. Therefore,
we conclude that an adversary is required to brute force at least the number of
bits of the freshly generated vicinity key and that doing so is infeasible.

With access to P This entails that the adversary got access to the user’s
device and circumvented security mechanisms in place. Traditional standalone
solutions (e.g., password or key) would be broken at this point. Therefore, this is
a worst-case analysis, which focuses on the question: if the adversary has access
to the device component, the helper data P , how likely is it for an adversary
to also derive the measurement component? From P the adversary knows a, b,
t and |F|. As PinSketch is capable of correcting up to t APs the task at hand
for an adversary becomes to sample the correct set of APs such that together
with P the vicinity key K can be reconstructed. The minimum set size to have
for a correct reconstruction has size k = |F| − t. The chance for an adversary
to choose the correct k APRs is

(
n
k

)
. The question becomes what the knowledge

of the AP composition of the adversary is. We express the adversary’s domain
knowledge by n. If the adversary has no information, then n = 248, which is the
theoretical upper bound from the specification. An adversary with access to a
service like Wigle, which lists one billion APs, reduces this number already to
n = 230. However, if an adversary is capable of constructing a scan on-site the
size of n could be decreased significantly. If the adversary misses only one AP,
having observed only k − 1 correct APs, the missing AP can be from the whole
domain (at least 230). However, if the adversary happens to measure at least k
correct APs the chance becomes smaller. As soon as the adversary scans at least
one AP not in the measurement component of size k, the adversary has to try
at least k combinations. Therefore, this can be mitigated by asking the service
to allow only a strict number of authentication attempts. The only chance the
adversary has is to scan k correct APs as

(
n
k

)
= 1 for n = k. Considering the

fluctuation of APs, this is highly improbable and works only if the adversary has
access to P and the location’s WiFi composition.

7 Discussion

In this section, we discuss our results and its limitation as well as the privacy
considerations that come with it.

Results. We deliberately chose the bare minimum of information per APR and
showed that all locations provide sufficient entropy in the measurable beacon
frames for the scenario of password hardening and that between 46% and 68%
percent of the locations provide sufficient entropy to derive a high-entropy key.
Further, we showed that we are capable to determine whether LocKey can be
applied at a given location and which measurement times we require per specific
location.

LocKey-Key Extraction from WiFi Signals 415

Limitations. The limitations of our approach are twofold. On the one hand,
we observe outliers (Sect. 5), which require long (up to 15 min) reconstruction
times. These locations with specific key strengths might not yet be suited for
the application of LocKey. On the other hand, we consider WiFi measurements,
which are inherently mostly out of the control of the user. Therefore, changes
in the AP composition could deny key reconstruction. However, we observe two
general and one specific mitigation. First, being capable of correcting t errors
gives us some flexibility regarding a changing environment. Second, we assume
application only when a fallback mechanism is present. In the case of the pass-
word and the challenge-response mechanism, a second factor would enable an
alternative confirmation of identity and allow for a re-enrollment with the new
WiFi environment.

Local Attacks. Jamming, flooding or AP pool poisoning describes an adversary
who deliberately changes the AP environment of a user. This can happen during
the generation phase and during the reconstruction phase. Therefore, we assume
a trusted generation phase. The system checks anyways that sufficient APs are
present. During the reconstruction phase manipulating the WiFi environment
could result in a denial of service. As a countermeasure, we have the assumption
that LocKey should only be used in conjunction with a fall-back factor.

Privacy. The privacy considerations are relevant as personally identifiable infor-
mation (PII) is present in the beacon frame. For the features accessible on the
Linux OS, the SSID and the MAC address classify as PII. The EU classifies a
MAC address belonging to a user, even in its hashed form, as PII [24]. However,
it is impossible for an adversary to retrieve the PII because we process the PII
only locally and combine it with high entropy randomness. An adversary on-site
could conduct a WiFi measurement and obtain the PII, such as every entity
conducting WiFi measurements at a specific location. For an adversary, even
holding the correct vicinity key K, there is no stable ground truth to derive
relevant PII.

8 Related Work

In our work, we use WiFi beacon frame features measured for a certain period
to derive a vicinity key by fuzzy extraction. To our knowledge, we are the first to
promote the idea of using the semi-volatile signals of a user as key storage from
a read-only perspective. We do require that a backup mechanism is present, due
to the volatile nature of the signals.

The authors of [1] approach the problem from the perspective of spatial role-
based access control and the authors of [7] discuss position-based cryptography
also in terms of a user’s claimed characteristic. Both are examples of plenty solu-
tions which require control of the sensor and the APs. With these, the authors
prove that in the Bounded Retrieval Model position-based secret communication
and position-based authentication and signatures are possible. In contrast, we

416 P. Jakubeit et al.

offer the user an increase in security and the reduced burden of a second authen-
tication factor only by access to the sensor. However, we most likely require
occasional re-enrollments of the user.

The authors of [3] use error correction to create a shared key separately on two
WiFi nodes, focusing on reducing the computation and communication overhead.
They achieve this by elevating signal interference. Explicitly, the authors use deep
fades, a strong and destructive interference. They measure deep fades occurring
in the signal transmitted to the node for a particular duration and encode their
occurrence in a bit string. If two nodes are sufficiently close to one another,
the bit string is similar enough that both nodes can reconstruct the same key
by communicating verification information. The approach presented differs from
ours, as two nodes are required to compute the same key, and they create the
key from signal interference. Instead, we want to reproduce a key at the same
device and location later from information sent in a beacon frame. However, we
consider the work sufficiently relevant as might offer a path for future work to
look into the information transmitted by the WiFi standard and in interference
or error behavior.

The authors of [25] also use WiFi signals to create a shared key between two
devices. In their case, two devices are in a body area network. What makes their
publication interesting is that it focuses on the RSSI only. They create a fixed-
length binary vector between two WiFi devices based on the signal strength of
the communication between these two devices. The authors of [2] go one step
further and use next to the RSSI, the link quality indicator. Another metric
produced by the sensor not by the AP. They show that the method is suited to
‘verify the location of an IoT node within a small area with high probability of
success’. Using other sensor metrics might help to extend LocKey in the future
or use a similar concept on small IoT devices.

Unrelated to fuzzy extractors is the concept of [18] in which the authors
fingerprint a location only in terms of WiFi signals. They draw a line between
capability and PII aspects of a WiFi beacon frame and recognize a location in
terms of only the previously mentioned six capability features available in the
Linux OSs. Their work shows that the surrounding WiFi signals accurately define
a location. However, they focus on the average entropy by applying the Shannon
entropy as they are not required to harvest the entropy for key generation. Hence,
they could leave out the higher entropy sources of MAC address and SSID to
opt for more privacy, as they intend to share a template of the WiFi location
with a service to allow for authentication which requires a heightened focus on
PII.

9 Conclusion

The signals in a user’s environment provide sufficient reconstructable informa-
tion to derive a key even when having access only to the sensor and focusing only
on particular WiFi features. The density of the electromagnetic signals deter-
mines the amount of information that is extractable at a location. We showed

LocKey-Key Extraction from WiFi Signals 417

that it is possible to extract the information once and also to some certainty
reconstruct the extracted information. However, it is possible that the required
composition is not achievable. Therefore, we focused only on use cases with a
fallback mechanism in place. We further showed that combining the measured
component with the device component in a secure extraction step generates uni-
formly random key material. The extent to which we can successfully extract
a key is dependent on the location. We were able to extract a low-entropy key
of 48-bit for all locations we considered. Extracting a 128-bit key succeeded for
nearly 68% of the locations while extracting a 256-bit key succeeded for nearly
46% of the locations we considered.

Future work includes applying LocKey in practice, to increase the entropy
available and to decrease the measurement time. More WiFi data could be cap-
tured to increase the entropy available and decrease the measurement time. This
can either be achieved by including more features like the RSSI or by deriving dif-
ferent stable features from the beacon frame. Additionally, different data sources
can be used to extract the required entropy. Different aspects of WiFi could be
gathered, e.g., interference or error behavior as done by [3] or WiFi could be used
to read other signals in the user’s vicinity as done by [19]. Next to WiFi, different
wireless data sources like Bluetooth, Lora, or alike can be aggregated. Finally,
we expect a ‘natural’ increase in electromagnetic signals available over time due
to the adaptation of more wireless devices, which increases the applicability of
authentication-factor extensions like LocKey.

References

1. Agudo, I., Rios, R., Lopez, J.: A privacy-aware continuous authentication scheme
for proximity-based access control. Comput. Secur. 39, 117–126 (2013)

2. Aman, M.N., Basheer, M.H., Sikdar, B.: Two-factor authentication for IoT with
location information. IEEE Internet Things J. 6(2), 3335–3351 (2018)

3. Azimi-Sadjadi, B., Kiayias, A., Mercado, A., Yener, B.: Robust key generation from
signal envelopes in wireless networks. In: Proceedings of the 14th ACM Conference
on Computer and Communications Security, pp. 401–410 (2007)

4. Barker, E., Dang, Q.: Nist special publication 800–57 part 1, revision 5: Recommen-
dation for key management: Part 1-general, May 2020. Cited on, page 58 (2020)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak sponge
function family: Specifications summary (2011). http://keccak.noekeon.org/specs
summary.html

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112 (1977)

7. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 23

8. Cho, Y., Bao, L., Goodrich, M.T.: LAAC: a location-aware access control protocol.
In: 2006 3rd Annual International Conference on Mobile and Ubiquitous Systems-
Workshops, pp. 1–7 (2006)

9. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)

http://keccak.noekeon.org/specs_summary.html
http://keccak.noekeon.org/specs_summary.html
https://doi.org/10.1007/978-3-642-03356-8_23

418 P. Jakubeit et al.

EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

10. Fakhreddine, A., Tippenhauer, N.O., Giustiniano, D.: Design and large-scale eval-
uation of WiFi proximity metrics. In: European Wireless 2018; 24th European
Wireless Conference, pp. 1–6. VDE (2018)

11. Foti, J.: Entity authentication using public key cryptography (1997)
12. GNOME. org.freedesktop.networkmanager.accesspoint (2021). https://developer.

gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.
AccessPoint.html

13. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffers 2, 147–156 (1959)
14. IEEE Standard. Wireless lan medium access control (mac)and physical layer (phy)

specifications (2007). https://www.iith.ac.in/∼tbr/teaching/docs/802.11-2007.pdf
15. Intel. Dual band wireless-ac 8265 (2021). https://ark.intel.com/content/www/us/

en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
16. ISO 27000. Information technology, security techniques, information security man-

agement systems, overview andvocabulary (2018)
17. Jagadeesan, A., Thillaikkarasi, T., Duraiswamy, K.: Cryptographic key generation

from multiple biometric modalities: fusing minutiae with iris feature. Int. J. Com-
put. Appl. 2(6), 16–26 (2010)

18. Jakubeit, P., Peter, A., van Steen, M.: The measurable environment as nonintrusive
authentication factor on the example of WiFi beacon frames. In: Saracino, A.,
Mori, P. (eds.) ETAA 2022. LNCS, vol. 13782, pp. 48–69. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-25467-3 4

19. Jeong, W., et al.: SDR receiver using commodity wifi via physical-layer signal
reconstruction. In: Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking, pp. 1–14 (2020)

20. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

21. Li, G., Bours, P.: Studying WiFi and accelerometer data based authentication
method on mobile phones. In: Proceedings of the 2018 2nd international Conference
on Biometric Engineering and Applications, pp. 18–23 (2018)

22. Lohr, C.: A WebGL-based raytraced voxel engine with transparency of WiFi
signal over a 360mm x 360mm x 180mm area (2016). https://cnlohr.github.io/
voxeltastic/

23. Turner, J.M.: The keyed-hash message authentication code (HMAC). Federal Inf.
Process. Standards Publ. 198(1), 1–13 (2008)

24. WP29. Opinion 01/2017 on the proposed regulation for the eprivacy regu-
lation (2002/58/ec). (2017). http://ec.europa.eu/newsroom/document.cfm?doc
id=44103

25. Yang, W., Sun, Y., Zhan, L., Ji, Y.: Low mismatch key agreement based on wavelet-
transform trend and fuzzy vault in body area network. Int. J. Distrib. Sens. Netw.
9(6), 912873 (2013)

26. Yang, C., Shao, H.-R.: WiFi-based indoor positioning. IEEE Commun. Mag. 53(3),
150–157 (2015)

https://doi.org/10.1007/978-3-540-24676-3_31
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://www.iith.ac.in/~tbr/teaching/docs/802.11-2007.pdf
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://doi.org/10.1007/978-3-031-25467-3_4
https://cnlohr.github.io/voxeltastic/
https://cnlohr.github.io/voxeltastic/
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103

BAHS: A Blockchain-Aided Hash-Based
Signature Scheme

Yalan Wang , Liqun Chen(B) , Long Meng , and Yangguang Tian

University of Surrey, Guildford, UK
liqun.chen@surrey.ac.uk

Abstract. Hash-based one-time signatures are becoming increasingly
important as they are post-quantum safe and have been used in multi-
cast communication and other applications. However, managing the
state of such signatures can present a significant challenge, as signers
are typically responsible for ensuring that the state cannot be reused.
Recently, blockchain, as a public platform, is used to design revocation
management and status verification systems. While blockchain revoca-
tion is attractive, many well-known blockchains make use of ECDSA as
their underlying signature scheme, and this is not post-quantum safe.
Researchers have been working on replacing ECDSA with post-quantum
signature schemes but they are much more costly. In this paper, we intro-
duce a new one-time signature scheme, called Blockchain-Aided Hash-
based Signature (BAHS), in which a hash-based commitment scheme
acts as the building block, and signers’ commitments and opened com-
mitments are publicly accessible via a distributed blockchain. A signature
is formed from the commitment/opened commitment and blockchain.
Unlike existing blockchain systems, the commitment in BAHS is sim-
pler than that in most existing hash-based one-time signature schemes
or other post-quantum signature schemes. We provide a formal security
model for the BAHS scheme and give the security proof. Finally, we have
implemented our BAHS scheme and the result shows its practicality.

Keywords: Digital signature · Hash function · Blockchain ·
Cryptographic protocols

1 Introduction

Digital signatures are a cryptographic primitive for verifying the authenticity of
digital data. A one-time hash-based signature, as proposed by Lamport in [21],
is a special type of digital signature, in which each signing key can be used only
once and one-way functions without trapdoors are applied. One-time hash-based
signatures can be used in multi-cast communications, such as wireless sensor
networks [26] and smart grids [24]. In these applications, signatures are used to
achieve demand response, operation and control. The deployment of hash-based
one-time signature schemes faces a significant challenge, i.e., state management.
This refers to the process of ensuring that a signature cannot be reused.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 419–439, 2023.
https://doi.org/10.1007/978-981-99-7032-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_25&domain=pdf
http://orcid.org/0000-0002-6963-7582
http://orcid.org/0000-0003-2680-4907
http://orcid.org/0000-0002-5648-5049
http://orcid.org/0000-0002-6624-5380
https://doi.org/10.1007/978-981-99-7032-2_25

420 Y. Wang et al.

The problem of state management was discussed in [15]. A comprehensive
assessment of the security impact of reusing a one-time signature private key was
provided in [9]. Based on the research on this topic, ISO/IEC 14888-4 2nd Com-
mittee Draft [2] provides the following recommendations to implement robust
state management mechanisms:

– The state used in hash-based one-time signatures is a piece of information,
which should be stored, maintained, and updated for the whole lifespan of
the private key.

– One way to reduce the chances of state reuse is to prevent the copy or extrac-
tion of the private key from the signing module. Assuming this way can be
guaranteed, the issue of state management is simplified to a single signing
environment, rather than having to manage multiple signing environments.
Consequently, the problem of state management is replaced by a more intri-
cate issue: the state synchronization problem.

– During the signing, the signer will first update the state and then start the
signing procedure. If this process was done in a reverse order, there is a risk
that the signature is produced but the state remains in its previous value.

In accordance with these recommendations, a signer is responsible for ensuring
state management. Nevertheless, the signer may either lack the ability or may
not be trustworthy enough to assume full responsibility.

Recently, blockchain is used to design revocation management and status ver-
ification systems [3,13]. In these blockchain-based systems, the blockchain acts
as data storage. During signature verification, verifiers must examine the key sta-
tus to determine if the signer has been revoked or not. Obviously, a risk is that
a malicious signer will not revoke their key. As a result, these blockchain-based
schemes are still unable to effectively implement state management. Recently,
in [23], they took the public ledger to assist the threshold signature scheme and
the state management, but the underlying signature scheme is based on clas-
sical signature algorithms, which is complicated and not post-quantum secure.
Generally, most existing blockchains make use of a traditional signature scheme,
ECDSA, or its variants, e.g., [8,25], as an underlying signature scheme. This type
of signature scheme is not post-quantum secure. Recently, NIST has announced
to standardize three post-quantum signatures, Dilithium [20], Falcon [7] and
SPHINCS+ [11]. They are being considered to replace the traditional RSA- and
EC-based signatures. There has been some research on considering the use of
post-quantum secure signatures in blockchains (cryptocurrency) [7,11,12,14].
However, based on the result of Holmes’ work [17], all the well-known post-
quantum signatures are quite expensive to be implemented in blockchains.

Now, the question is whether we can use the state verification capability in
a blockchain to create a simpler one-time signature scheme. In this paper, by
leveraging the Merkle tree in the blockchain to generate commitments, we enable
state management through the public accessibility of keys, commitments/opened
commitments. Therefore, we develop a straightforward post-quantum one-time
signature scheme. We call this new scheme blockchain-aided hash-based signature
(BAHS). In the BAHS scheme, there are three types of entities, a set of signers,

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 421

a blockchain, and a set of verifiers. To sign a message m using the signing key
sk, the signer creates a commitment input cInput (cInput = H(m, sk)||H(sk))
and sends it to a blockchain. Before accepting this input, the blockchain checks
whether the signing key has been used before. If not, cInput will be appended
to the blockchain to be time-stamped and the commitment com is formed. At a
later time (block), the signer needs to open the commitment by sending the input
oInput, oInput = (m, sk, cInput) to the blockchain. And the opened commit-
ment on the blockchain is denoted by ˜com. Finally, com and ˜com form a signa-
ture. During verification, the verifier retrieves the signature from the blockchain
and checks whether the signature is valid or not. The aid of the blockchain
guarantees the key state management in the scheme.

Our contributions can be summarized as follows:

– We propose a BAHS scheme, which is the first hash-based one-time signature
scheme that achieves key state management without entirely relying on the
signer.

– Our BAHS scheme only makes use of hash functions and blockchain (Merkle
tree) to generate the commitment, which is post-quantum secure and more
efficient and simpler than traditional signatures and other post-quantum sig-
natures.

– We introduce a formal definition of the security model for our proposed BAHS
scheme and provide concrete security proof. This security analysis indicates
that the BAHS scheme holds the properties of correctness and unforgeability.

– We provide a proof of concept implementation of the BAHS scheme. The
implementation and evaluation confirm its practicality.

The rest of this paper is structured as follows. We introduce preliminaries in
Sect. 2. We present the syntax for a generic BAHS scheme in Sect. 3. Based on
the generic BAHS definition, we present our BAHS scheme in detail in Sect. 4. In
Sect. 5, we introduce the security model and provide the security proof. In Sect. 6,
implementation results are given. Finally, in Sect. 7, we present the conclusion.

2 Preliminaries

2.1 Hash Functions

Definition 1. A secure hash function maps a string of bits of variable length
(but usually upper bounded) to a fixed-length string of bits.

The properties of hash functions are one-wayness, second preimage-resistance
and collision-resistance [1], which are described as follows:

– One-wayness. Given a hash function H and a hash value H(m), it is com-
putationally infeasible to get the input message m.

– Second Preimage-resistance. Given a hash value H(m) of a message m,
it is computationally infeasible to find a second input m′ which maps to the
same output H(m).

– Collision-resistance. Given a Hash function H, it is computationally infea-
sible to find a pair of messages m and m′ to make H(m) = H(m′).

422 Y. Wang et al.

2.2 Commitment Scheme

In a commitment scheme [10,19], there are two phases, i.e., committing and
opening. Here we give a definition of these two phases as follows:

– Committing: To commit a data string b, the prover P chooses r randomly
r← {0, 1}l and computes the commitment com ← commit(r, b), where commit
is a function:{0, 1}l × {0, 1}l → {0, 1}l. Then the prover can send com to the
verifier V .

– Opening: The prover can reveal r, b to the verifier V . Then the verifier V
computes com′ = commit(r, b) and checks whether com′ = com or not.

Hash functions can be used to design commitment scheme [4,6]. In our scheme,
we follow the Merkle tree method to compute signers’ commitments.

2.3 Blockchains

A blockchain is a distributed digital blockchain of signed transactions that are
grouped into blocks. As shown in Fig. 1, a block header contains a block index
number bidi, a nonce noni, a hash value of the previous block header hbhi−1,
a time-stamp tsi, and a Merkle tree root ri of all block data. The block data
contains a list of transactions along with their corresponding digital signatures.
The generation of block bi and the process of connecting with the block bi+1 are
described as follows:

......

Block

Block data

......

Block header

Fig. 1. A general block structure for a blockchain

– Assume there are J transactions in block i, each transaction txij(j ∈ [1, J])
is signed using a signature scheme SIG, i.e., sigij ← SIG(txij). Then block
data bdi, i.e., bdi = ([txi1, sigi1], ..., [txiJ , sigiJ]).

– The consensus nodes aggregate bdi with a Merkle Tree (MT) by using a hash
function H. i.e., ri ← MT(H; bdi). Then consensus nodes calculate the hash
value hbhi−1 of the previous block header bhi−1, i.e., hbhi−1 = H(bhi−1).

– The block header bhi is formed, i.e., bhi = (hbhi−1, ri, bidi, noni, tsi). The
block bi is formed as bi = (bdi, bhi).

– The consensus nodes calculate the hash value of the block header of the block
bi, hbhi = H(bhi), which is recorded in the next block bi+1.

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 423

Then the process of calculating the hash value of the block header hbhi using
a blockchain algorithm Blc is defined as follows:

(ap, hbhi) ← Blc(..., [txip, sigip], ...)

where p ∈ [1, J] and ap is the authentication path from the transaction
[txip, sigip] to hbhi.

Blockchain Integrity. Let a blockchain be an entity that maintains an
auditable database L. We model the capability of an adversary against a
blockchain as corrupted users or power-limited consensus nodes (no more than
49% malicious nodes). A successful adversary could launch the following attacks
that bypass the blockchain auditing check:

– Tampering attack. The adversary changes, adds, or removes information
in the blockchain without being audited.

– Back-dating attack. The adversary claims any non-existed information on
the blockchain.

Then we define the data integrity property of L as follows:

Definition 2. A blockchain L holds data integrity, if for any Probabilistic Poly-
nomial Time (PPT) adversary A, the probability of making either a tampering
attack or a back-dating attack is negligible.

2.4 Quantum Random Oracle

In this scheme, we are concerned with its post-quantum security. On a classi-
cal computer, we can model a hash function as an random oracle F . Based on
Boneh’s work [5], hash functions used in this work meet the history free reduc-
tion. Therefore, we can model the hash function as a quantum random oracle.
Formally, for the case of an random oracle F , executions of the unitaries describ-
ing the adversary are interleaved with executions of an oracle unitary:

Of :
∑

x,y

αx,y |x〉 |y〉 →
∑

x,y

αx,y |x〉 |y ⊕ f(x)〉 . (1)

For q queries, the adversary is described by a sequence of unitaries U0,...,Uq and
executed as UqOfUq−1Of ...OfU0 |0〉.

3 Generic Definitions for a Blockchain-Aided Hash-Based
Signature Scheme (BAHS)

Let com = commit(sk,m) be a hash-based commitment scheme. The function of
commit can be realized by the Merkle tree in the blockchain. The main concept
behind our one-time signature scheme is for a signer to commit to both the
private signing key and the message and store the commitment on one block of a
blockchain. At a later time, the signer opens the commitment with the message

424 Y. Wang et al.

and private key and stores the opened commitment on another block of the
blockchain. Each signer’s commitment and opened commitment form a signature,
which can then be verified by anyone who can access the blockchain. In our
BAHS scheme, each block generation happens at a time epoch. Authentication
of signers is application-oriented, i.e., some applications only allow legitimate
users to submit their keys and signatures; some applications allow any users to
do so. The choice of user authentication is out the scope of this paper.

3.1 Notation

The notation is listed in Table 1.

Table 1. Notation used in the BAHS scheme

Notation Meaning

S signer space
i ∈ S signer identity
ski signer i’s signing key
pki signer i’s public key
mi message to be signed by i

cInputi signer i’s commitment input
oInputi signer i’s opened commitment input
comi signer i’s commitment
˜comi signer’s opened commitment

σi signer i’s signature
β epoch index associated with a block in the blockchain
Lβ blockchain database from the genesis block to β-th block

BAHS Players. A BAHS scheme consists of three types of players: a
blockchain, a set of signers, and a set of verifiers.

– By maintaining its database L, the blockchain aids signers by storing their
commitments, opened commitments and signatures. The blockchain also
maintains the status information of those commitments.

– Let S be the space of signers. Given a message mi, a signer i ∈ S generates
their one-time secret signing key ski, input cInputi to commitment comi

and oInputi input to the opened commitment ˜comi and submits cInputi
and oInputi to the blockchain in two different blocks. The outputs on the
blockchain can become comi and ˜comi, respectively. Finally, signature is σi =
(cInputi, comi, oInputi, ˜comi).

– A verifier retrieves a signature from the blockchain and verifies the signature.

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 425

BAHS Key Management. Let Sβ ⊂ S be the set of signers whose commit-
ments have appeared in the blockchain’s database up to the start of epoch β.
The blockchain maintains information about the status of cInputi (because it
is computed by signing key ski), i ∈ Sβ , for each epoch β, and this information
is denoted by infoi

β . We write infoβ for the set of all these infoi
β with different i

and infoi for the set of all these infoi
β with different β. We give the definition of

infoβ as follows:

Definition 3. The key status information infoβ can be retrieved from the
blockchain. It can be used to obtain the status, statusiβ, of any given cInputi.
This status will be as follows :

statusiβ ∈ {(cInputi, +), (cInputi, −), (cInputi, ⊥)},

where (cInputi, +) means that cInputi has been submitted to the blockchain
and the signer i is allowed to sign, (cInputi, −) means that cInputi has been
submitted to the blockchain but the signer i is not allowed to sign, (cInputi, ⊥)
means that cInputi has not yet been submitted to the blockchain.

3.2 Description of a Generic Construction of BAHS

A generic construction of BAHS is described in a timeline with multiple epochs
and it consists of the following algorithms/protocols. Note that during signing,
the signer will generate the signing key and message to be signed, in which both
sk and m are random numbers.

– Setup(1λ) → (pp, info0,L): In epoch 0, the blockchain nodes run the Setup
algorithm by taking as input a security parameter λ and outputting the sys-
tem parameters pp, the initial system information info0 and database L.

– Sign
{
β, infoβ , (ski,mi)i∈[Q],Lβ

} → (σi,Lβ+1, infoβ+1): In epoch β, a set of Q
users and the blockchain nodes run the Sign protocol as follows. We assume
Q = M + N , M is the number of users submitting the commitment onto
the blockchain, N is the number of users opening their commitment onto
the blockchain. The nodes take as inputs system information infoβ , and the
database Lβ . A user is in one of the two following stages:
1. Committing. For a user ib (ib ∈ [M]), who wants to commit, given a

private key skib
and a message mib

, he/she computes the input to the
commitment cInputib

and submits it to the blockchain. If cInputib
does

not exist on the blockchain database L, the blockchain nodes will record
it and the record of this transaction is called commitment comib

.
2. Opening. To make a signature publicly verifiable, user jd ∈ [N] releases

skjd
on the blockchain to open the commitment. Upon receiving skjd

,
the blockchain nodes check the status of cInputjd

. If skjd
has not been

used before, the blockchain nodes store oInputjd
= (cInputjd

,mjd
, skjd

)
to the blockchain datebase L, and the record of this transaction is called
opened commitment ˜comjd

.

426 Y. Wang et al.

After the signing protocol, the outputs include a signature σi =
(cInput, comi, oInput, ˜comi), the updated database Lβ+1, in which public
information for verification forms signer i’s public key pki, and system infor-
mation infoβ+1 for the next epoch. From a signer’s view, the Committing
and Opening stages are run in sequence in two different blocks. From the
blockchain’s view, these two stages are run simultaneously in every block for
different signers.

– Verify(σi, info
i) → 0/1: In any epoch after a signature σi is generated and

available on the blockchain database L, a verifier can retrieve σi together
with the system information infoi and verify it. The verifier outputs 0 for
rejecting the signature and 1 for accepting it.

3.3 Security Model for BAHS

We adopt a security model modified based on [18] for the BAHS scheme. The
capability of an adversary against the BAHS scheme can be modeled as corrupted
signers who can generate signing keys by themselves or outside attackers who
cannot obtain signing keys. A successful adversary can launch any one of the
following attacks:

– Tampering attack. The adversary changes, adds, or deletes existing records
on the blockchain.

– Forging attack. The adversary claims a valid signature that is generated or
released by an entity using a signing key more than once or is not generated
by an entity.

The security of a BAHS scheme can be captured through two properties: correct-
ness and unforgeability. The unforgeability is defined as an experiment, which is
performed between an adversary A and a challenger C. Several global variables
are used in experiments: h records the honest signer, M is the number of signers
who are invoked in the experiment, and K is the number of honest signers who
attempt to submit commitments onto the blockchain. βCurrent and βRevoke denote
the current epoch as well as the epoch in which the honest signer is revoked.
R is the set of signers to be revoked. The adversary can access the blockchain
database L and the system information infoβ for any epoch β.

Note that we need to model hash functions as oracles. It is common prac-
tice to model hash functions as random oracles [22], specifically, with a random
value space, and a table T to record values. Furthermore, Boneh et al. [5] for-
malized the notion of quantum-accessible random oracle model (QROM), where
the adversary can query the classical random oracle (RO) with quantum states.
They introduced a concept called history-free reduction, showing that certain
lattice-based schemes in the random oracle model (ROM) can be proven secure
in QROM, such as GPV’08 [16]. Specifically, if a simulator can decide the classi-
cal RO answers independently of the history of previous queries, then it implies
security in the QROM. Therefore, in our scheme, the hash function can be mod-
eled as a quantum random oracle because it meets the history-free reduction

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 427

requirements and the scheme can be proved post-quantum secure. A simple def-
inition of executions in quantum random oracle is given in Sect. 2.4.

Correctness. In general, correctness means a signature generated by an honest
signer should always be valid (if the signer has not been revoked). We give the
definition of correctness as follows:

Definition 4. A BAHS scheme is correct that we get the result 1 ←
Verify(σi, info

i), where λ is the security parameter, if (infoβ+1,Lβ+1, σi) ←
Sign

{
β, infoβ , (ski,mi)i∈[Q],Lβ

}
and (pp, info0,L) ← Setup(1λ).

Unforgeability. It means that the adversary can corrupt any number of signers
except for one honest signer h. The adversary can query signatures from h on any
messages at the adversary’s choice, but can not generate a new valid signature
of h. The adversary can generate a valid signature σi for a corrupted signer
i but this signature generation must be with the assistance of the blockchain.
Formally, unforgeability is defined as an experiment in Fig. 2.

Fig. 2. The unforgeability experiment for the BAHS scheme

The adversary can have access to the following oracles and the details of
oracles are shown in Fig. 6 in Appendix A. We present details of the random
oracle H and it can be modelled as the corresponding quantum random oracle
following the definition in Sect. 2.4.

– AddHU(): This oracle allows the adversary to add a single honest signer
in the experiment. In each call, this oracle executes the submission of the
commitment onto the blockchain by simulating the honest signer and the
blockchain. This oracle can be called at most k(λ) times where k(·) is any
polynomial. Once the commitment is submitted successfully, further calls will
be ignored. This oracle only returns the honest signer’s input to the commit-
ment cInputh.

428 Y. Wang et al.

– AddCU(i, cInputi): This oracle allows the adversary to add a corrupt signer
i to the system. The adversary can choose the corrupted signer’s signing key
ski and the corresponding input cInputi to the commitment.

– Revoke(R): This oracle allows the adversary to update the information list
from infoβCurrent

to infoβCurrent+1
, by revoking the set of signers R and keeping

the remaining. If h is revoked in this oracle query, set βRevoke to βCurrent.
– Update(): This oracle allows the adversary to query the signature associated

with a signer i which is recorded in the list cS. Note that the signer i can
be an honest signer h or a corrupted signer i 	= h, who was created by the
adversary via the AddCU(i, cInputi) oracle.

– H(): On input a string x, the oracle checks if x has been queried before. If
yes, it returns T [x]. If no, a random string h can be returned and be recorded
as T [x] = h.

Based on the above definitions, we define unforgeability as follows:

Definition 5. A BAHS scheme is unforgeable, if for any p.p.t. (quantum)
adversary A, the following condition holds:

Pr
[
ExpUnforge

BAHS,A(1λ) = 1
]

≤ negl(λ) (2)

4 The Blockchain-Aided Hash-Based Signature Scheme
(BAHS)

We now present a concrete BAHS scheme. In this scheme, we need the following
three extra hash functions: H1 : {0, 1}λ → {0, 1}l; H2 : {0, 1}∗ × {0, 1}λ →
{0, 1}l; H3 : {0, 1}l × {0, 1}l × {0, 1}λ × {0, 1}∗ → {0, 1}l, where λ is the system
security level and l is the length of hash outputs. It is required that H1, H2,
and H3 hold the properties of one-wayness and collision-resistance. Note that
in this scheme, the key status information can be instantiated by the status of
H1(sk), which is part of the input cInput. In the following proof, we will apply
this instantiation.

4.1 BAHS Algorithms/Protocols

Following the BAHS syntax in Sect. 3.2, the concrete BAHS algorithms/protocols
are instantiated in detail as follows:

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 429

protocol 1: Sign protocols for BAHS
Input: β, L, infoβ , cInput[M], oInput[N], /* (M, N) ∈ N × N, [M] = {i1, . . . , iM },

[N] = {j1, . . . , jN }, (ib, jd) ∈ S × S, [M] ∩ [N] = ∅. */
Output: L (updated), infoβ+1.

1 initiate infoβ+1 = ∅, z[M+N] = ∅; /* A set storing leaf values */
2 initiate a[M+N] = ∅; /* A set storing authentication path */
3 initiate rβ = ∅; /* This is used to store the root value. */, /*

statusk
β ∈ {(H1(skk), +), (H1(skk), −), (H1(skk, ⊥)}*/.

4 ∀k ∈ Sβ , set infok
β+1 = infok

β ;
5 for b = 1; b ≤ M; b + + do
6 initiate σib

= ∅;
7 obtain statusib

β from infoib
β ;/* A = H1(skib

) and B = H2(mib
, skib

). */
8 parse cInputib

= A||B;

9 if statusib
β = (A, ⊥) then

10 set statusib
β+1 = (A, +), σib

= σib
∪ cInputib

; compute zb = H2(cInputib
);

11 else
12 reject this entry;
13 end
14 end
15 for d = 1; d ≤ N; d + + do
16 initiate σjd

= ∅, num.H1(skjd
) = 0, /* num.H1(skjd

) is the number of H1(skjd
); */;

obtain statusjd
β from infojd

β ; /* C = H1(skjd
), D = H2(mjd

, skjd
), E = skjd

, and
F = mjd

; */
17 parse oInputjd

= C||D||E||F ;

18 if statusjd
β = (C, ⊥) ∨ (C, −) then

19 reject this entry;
20 else
21 if statusjd

β = (C, +) then
22 retrieve cInputjd

= C||D′ from L;
23 else
24 if D = D′ ∧ H1(E) = C ∧ H2(F, E) = D then
25 num.H1(skjd

) + +;
26 else
27 reject this entry;
28 end
29 end
30 if num.H1(skjd

) == 1 then
31 set statusjd

β+1 = (C, −);
32 set σjd

= σjd
∪ oInputjd

;
33 compute zd+M = H3(oInputjd

);
34 else
35 reject this entry;
36 end
37 end
38 end
39 compute a block β by using the Blc algorithm: (ai, hbhβ) ← Blc(z1, ..., zi, ..., zM+N);
40 for b = 1; b ≤ M; b + + do
41 set σib

= σib
∪ zb ∪ ab ∪ hbhβ ; L=L∪σib

;
42 end
43 for d = 1; d ≤ N; d + + do
44 set σjd

= σjd
∪ zd+M ∪ ad+M ∪ hbhβ ; L=L∪σjd

;
45 end

– Setup(1λ) → (pp, info0, L): The blockchain nodes run this algorithm Setup to
initiate the system. Given a security parameter λ, choose three hash functions
H1, H2 and H3, initiate the system public parameters pp, the beginning epoch
as epoch 0, the associated system information info0 and the database L to be
empty.

430 Y. Wang et al.

Fig. 3. The signature generation protocol from the signer’s view

– Sign(β, infoβ , (ski,mi)i∈[Q], Lβ) → (σi, Lβ+1, infoβ+1): From a signer’s
view, the process of this protocol can be seen in Fig. 3. From s ledger’s view,
the process of this protocol can be shown in Fig. 4. All steps are also arranged
in protocol 1.

• Committing: For user ib (ib ∈ [M]), the commitment input is computed
as cInputib

= A||B, A = H1(skib
) and B = H2(mib

, skib
). Then the user

sends the cInputib
to the blockchain nodes. The blockchain nodes need to

check the validity of A based on infoβ . If the check result is positive, the
blockchain nodes add cInputib

to the corresponding signer’s commitment
comib

recorded by the blockchain by time-stamping the input cInputib
.

Note that comib
= (cInputib

, zb, ab, hbhβ), where zb is a leaf value, ab

is the authentication path, hbhβ is the hash value of the block header.
Otherwise, reject it.

• Opening: To make a signature publicly verifiable, user jd (jd ∈ [N])
releases oInputjd

= (cInputjd
,mjd

, skjd
) = (H1(skjd

)||H2(mjd
, skjd

)||
skjd

||mjd
) = C||D||E||F on the blockchain. Upon receiving the oInputjd

,
the blockchain nodes use C to retrieve cInputjd

. Then the blockchain
nodes check the validity of oInputjd

. If the check is positive, the
blockchain nodes add oInputjd

to the corresponding signer’s opened
commitment ˜comjd

recorded by the blockchain by time-stamping the
oInputjd

. Note that ˜comjd
= (oInputjd

, z̃d, ãd, hbhβ), where z̃d is a leaf
value, ãd is the authentication path, hbhβ is the hash value of the block
header. Otherwise, reject it.

For a signer i, the signature σi = (cInputi, comi, oInputi, ˜comi) (β < β′).
The public key for the signer i is pki = (ab, hbhβ , ãb, hbhβ′). Finally, the
blockchain outputs the updated database Lβ+1 and information list infoβ+1.

– Verify(σi, infoi) → 0/1: A verifier runs the algorithm Verify to verify a sig-
nature. The verifier works as follows:

• Parses σi as (comi, ˜comi), where β′ < β.
• Computes z′

i = H2(cInputi) and checks whether z′
i equals zi or not.

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 431

• Use zi and ai to recompute the Merkle tree root in the block β′, and then
compute hbh′

β′ . Finally checks whether hbh′
β′ equals hbhβ′ or not.

• Computes z′
i = H3(oInputi) and checks whether z̃′

i equals z̃i or not.
• Use ãi, z̃i to recompute the Merkle tree root and hbh

′
β . Checks whether

hbh
′
β equals hbhβ or not.

• If all previous checks pass, outputs 1 for “accept”. Otherwise, outputs 0
for “reject”.

Fig. 4. The signature generation protocol from the blockchain’s view

5 Security Analysis

Following the security model defined in Sect. 3.3, we need to clarify three random
oracles H1, H2 and H3 for hash functions H1, H2 and H3, respectively. Details
of these oracles are similar to the definition in Sect. 3.3. Due to the page limit, we
omit details here. In the unforgeability experiment, these three oracles can not
only be accessed by the adversary but also internally be called by the simulation
of the AddHU and Update oracles. The oracle AddHU includes the process
of Committing while Update includes the process of Sign.

Because the simulator of each RO Hi, i ∈ {1, 2, 3}, can decide the RO answers
independently of the history of previous queries, hash functions meet the history-
free reduction requirements. These three ROs can be modeled as QROs.

Theorem 1. The BAHS scheme is correct, assuming the hash function H1

is collision-resistant and the blockchain follows the BAHS scheme description
correctly.

Proof. On one hand, if a signer A is corrupt, there will be two cases. Firstly,
he can predict the honest signer’s signing key skh and the corresponding com-
mitment is successfully submitted with the same H1(skh) in a previous session.
However skh must be selected at random, and the probability of A picking the

432 Y. Wang et al.

same signing key, i.e., ski = skh, is negligible in the security parameter. Except
this, the only probability is that skh 	= ski but H1(skh) = H1(ski) – when this
happens, the collision of the hash function H1 is found, which contradicts to the
assumption that the function H1 is collision-resistant. Therefore, the probability
of this case happening is negligible. Secondly, there is another signer i created
by A with ski = skh and this signer i is revoked when h is valid. If the adversary
attempts to add i with ski = skh after the signer h, it will be rejected by the
blockchain. Therefore, the adversary’s attempt will always fail.

On the other hand, based on statushβ = (H1(skh), +), we can get that at
epoch β, the honest signer h has been submitted and is allowed to sign. Following
the BAHS scheme description, the signature on the blockchain for this valid
signer h can pass the Verify algorithm.

Theorem 2. The BAHS scheme is unforgeable if the hash function H1 holds
properties of one-wayness and collision-resistance, the hash functions H2 and
H3 hold properties of collision-resistance, and the blockchain follows the BAHS
scheme descriptions correctly and holds integrity.

Proof. The adversary wins the unforgeability experiment in any one of the two
scenarios: (1) The adversary generates (σh, infoh) for an honest signer h, where
comh and σh are respectively a valid signer commitment and signature for m at
epoch β, statushβ = (H1(skh), +). (2) The adversary generates (σi, infoi) for a
corrupted signer i, who is controlled by the adversary, and the adversary does
not get help from the blockchain. The proof for unforgeability is as follows.

In scenario (1), The adversary outputs (σh, infoh), which meets following
conditions:

– statushβ = (H1(skh), +) ∧ Verify(infoh, σh) = 1.
– (cInputh, m) /∈ iS ∨ (σh, m) /∈ cS.

This may happen in any one of the following cases:

1. The honest signer h generated an input to the commitment cInputh and
H1(skh), which have been recorded on the blockchain. If the adversary wins
the game, there are some sub-cases described as follows:

– Case 1. Given certain record H1(skh) on the blockchain, the adver-
sary gets the right signing key skh. Using skh and a different mes-
sage m′, the adversary can create a valid commitment input cInput′ =
H1(skh)||H2(m′, skh) by querying the oracle H2. Then the commitment
input cInput′ can pass the blockchain’s check and the algorithm Verify.
This means the one-wayness of the hash function H1 is broken which is
contradicted with the assumption that the hash function H1 is one-way.
Therefore, the probability of this sub-case happening is negligible.

– Case 2. The adversary can use a different pair of sk′ and m′ to query ora-
cles H1 and H2 to get H1(skh) = H1(sk′), H2(mh, skh) = H2(m′, sk′).
Then the adversary can forge a valid commitment input and open it on
the blockchain before the honest signer h opens it. This means two sce-
narios happened at the same time: (1) the challenger can find a collision

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 433

sk′ and skh in the oracle H1, which contradicts the assumption that the
function H1 is collision-resistant; (2) the challenger can find a collision
m′||sk′ and mh||skh in the oracle H2, which contradicts to the assump-
tion that the function H2 is collision-resistant; Therefore, the probability
of this case happened is negligible.

2. The honest signer h has send the input to the opened commitment oInputh =
(cInputh, mh, skh) to the blockchain. In this case, the adversary can get
the signing key skh directly. Using the signing key skh, the adversary can
use a different message m′ to generate the commitment input cInput′ =
H1(skh)||H2(m′, skh), which can be submitted to the blockchain. However,
this is contradicted with the assumption the blockchain follows the scheme
description. Therefore, the probability of this case happening is negligible.

3. During computing the Merkle tree, the adversary can have access to the
blockchain to change some input value of hash function H2. For example,
the adversary changes certain leaf values zh to be z′. If the final record on
(including the authentication path ai) the blockchain can keep the same,
which means the challenger finds a collision for the hash function H2. This
is contradicted to the assumption the hash function H2 is collision-resistant.
Or the final record on the blockchain can be changed. This is contradicted to
the assumption that the blockchain is trusted. Therefore, the probability of
this case happening is negligible.

In scenario (2) i 	= h, the adversary outputs (σi, infoi) and there are some cases,
which meet the following conditions:

– Verify(σi, infoi) = 1
– (σi, m) /∈ cS.

This may happen in any one of the following cases:

1. The adversary uses a different signing key ski to query oracles H1 and H2 to
make H1(ski) = H1(skj) and H2(m, ski) = H2(m, skj), then submits the
commitment input cInputj on the blockchain to claim that this commitment
is valid for an uncorrupt signer j. This means the challenger can find a collision
in oracles H1 and H2, which is contradicted to the assumption that hash
functions H1 and H2 are collision-resistant. Therefore, the probability of this
case happening is negligible.

2. The adversary can use a different pair of ski and mi to query oracles H1 and
H2 to get H1(ski) = H1(skj), H2(mi, ski) = H2(mj , skj). Then the adver-
sary can forge a valid commitment input and submit it on the blockchain,
which is considered as a valid commitment input generated by the signer
j. This means two scenarios happened at the same time (1) the challenger
can find a collision ski and skj in the oracle H1, which contradicts to the
assumption that the function H1 is collision-resistant; (2) the challenger can
find a collision mi||ski and mj ||skj in the oracle H2, which contradicts to the

434 Y. Wang et al.

assumption that the function H2 is collision-resistant; Therefore, the proba-
bility of this case happened is negligible.

3. Because the adversary can control a corrupted signer to get the signer’s sign-
ing key ski. The adversary can send a number of commitment inputs cInputj ,
j ∈ [1, R] with one signing key ski and different messages mj , j ∈ [1, R] to
the blockchain in one block. These commitment inputs can be recorded on
the blockchain. Then the adversary can try to open these commitments to the
blockchain. However, this is contradicted to the assumption that one signing
key can be used only once. If there is more than one commitment input using
the same signing key recorded on the blockchain, all of these commitment
inputs will be rejected. So the probability of this case happening is negligible.

4. Considering a signer i has submitted the input to the opened commit-
ment (cInputi, mi, ski) to the blockchain, the adversary uses a differ-
ent pair of (m′, sk′) to generate the input to the opened commitment
cInput′i = H1(sk′)||H2(m′, sk′) = cInputh to make H1(skh) = H1(sk′),
H3(H1(sk′)||H2(m′, sk′)||m′||sk′) = H3(H1(skh)||H2(mh, skh)||mh||skh).
This means the challenger finds a collision in H1, H2 and H3, which is contra-
dicted to the assumption that hash functions H1, H2 and H3 are all collision-
resistant. Therefore, the probability of this case happening is negligible.

5. During computing the Merkle tree, the adversary can have access to the
blockchain to change some input value of hash function H2. The adversary
changes a certain leaf value zh to be z′. If the final record (including the
authentication path ai) on the blockchain can keep the same, which means
the challenger finds a collision for the hash function H2. This is contradicted
to the assumption the hash function H2 is collision-resistant. Or then the
final record on the blockchain can be changed. This is contradicted to the
assumption that the blockchain is trusted. Therefore, the probability of this
case happening is negligible.

Overall, the BAHS scheme provides unforgeability.

6 Implementations

We have made a prototype implementation, in which we only measure the com-
munication and computational overhead of our commitment scheme rather than
the cost or transaction overhead on the blockchain.

Implementation of a Specific Blockchain. We implement our BAHS scheme
in Python. Note that the signing time includes the time for the blockchain to
generate the whole Merkle tree in one block and the corresponding hash value of
the block header. The programs were compiled using Pycharm and executed on
a laptop (processor: 2.6GHz, 6-Core, Intel Core i7; Memory: 16GB 2667MHz)
with the macOS operating system. We set the security level as 256-bit. As shown

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 435

in Table 2, J is the number of signers in a block. For simplicity, we assume J
2

signers to submit commitments and the other J
2 signers to open signatures. We

implement two blocks as an example of blockchains. We choose 210,..., 215,...,220
as different parameters for the number of signers, which are larger than that in
Bitcoin. According to Table 2, we can see that the signing time is far less than
15 s in Ethereum or 10min in Bitcoin. Our scheme is practical.

Fig. 5. The returned proof from the OriginStamp service

Implementation Based on Public Blockchains. In this implementation,
we want to test performance of the BAHS scheme on known blockchain plat-
forms. Therefore, classic signature algorithms, such as ECDSA, used in exist-
ing blockchain does not influence our implementation. Considering existing
blockchains, we use the platform “OriginStamp” to publish and timestamp
our opened signature, which contains three typical blockchains, i.e., Bitcoin,
Ethereum, and Aion. Due to the page limit, we take the Bitcoin as an example.
We upload data to Bitcoin and each time the web server calculates the Merkle
tree root value and inserts it into a Bitcoin transaction. After the transaction
is committed, the web server returned a proof for verification, which is shown
in Fig. 5. Also, the information on the certificate can be accessed at the website
https://verify.originstamp.com.

Our BAHS scheme is the first blockchain-aided hash-based signature scheme
and it is different from any traditional digital signature schemes, so we do not
compare the BAHS scheme with other signature schemes.

https://verify.originstamp.com

436 Y. Wang et al.

Table 2. The implementation results for the signature scheme

Parameters SS(KB)a CIG(ms)b ST(ms) c

J = 210 1.69 5.42 ∗ 10−3 3.38
J = 211 1.81 5.36 ∗ 10−3 5.94
J = 212 1.93 5.79 ∗ 10−3 11.55
J = 213 2.06 6.03 ∗ 10−3 23.15
J = 214 2.19 5.61 ∗ 10−3 53.23
J = 215 2.31 5.26 ∗ 10−3 102.04
J = 216 2.43 2.82 ∗ 10−3 258.52
J = 217 2.55 1.3 ∗ 10−3 499.65
J = 218 2.67 0.68 ∗ 10−3 1123.12
J = 219 2.79 0.32 ∗ 10−3 2131.42
J = 220 2.91 0.16 ∗ 10−3 4337.23
a SS stands for the signature size and KB means
kilobytes.
b CIG stands for the commitment input gener-
ation time and ms stands for millisecond.
c ST stands for the signing time and ms stands
for millisecond.

7 Conclusion

In this paper, we propose a new one-time signature scheme, i.e., BAHS, in which
signing keys, commitments and opened commitments are publicly accessible via
a distributed blockchain. The BAHS scheme is much simpler than traditional
signature schemes and other post-quantum signature schemes. We also provide
a formal definition of the security model for the BAHS scheme and security
proof. Finally, we implement this scheme and show its practicality.

Acknowledgments. We thank the European Union’s Horizon research and innova-
tion program for support under grant agreement numbers: 101069688 (CONNECT),
101070627 (REWIRE), 952697 (ASSURED), 101019645 (SECANT) and 101095634
(ENTRUST). These projects are funded by the UK government’s Horizon Europe
guarantee and administered by UKRI. The first author thanks the China Scholarship
Council (CSC) for providing the research scholarship. We also thank the anonymous
reviewers from ISPEC for their valuable comments.

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 437

Appendix

A Oracles for the Unforgeability

Fig. 6. Oracles for the unforgeability

References

1. ISO/IEC 10118–1. Information technology - Security techniques - Hash functions
- Part 1: General. Standard (2016)

2. ISO/IEC CD 14888–4.2. Information technology - Security techniques - Digital
signatures with appendix - Part 4: Stateful hash-based mechanisms (2022)

438 Y. Wang et al.

3. Yakubov, A., Shbair, W., Wallbom, A.: A blockchain-based PKI management
framework. In: The First IEEE/IFIP International Workshop on Managing and
Managed by Blockchain (Man2Block) colocated with IEEE/IFIP NOMS (2018)

4. Becker, G.: Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-
University Bochum, Technical report, 12:19 (2008)

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

6. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7_5

7. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 128–153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1_7

8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

9. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann, J.:
State management for hash-based signatures. In: Chen, L., McGrew, D., Mitchell,
C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49100-4_11

10. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X_3

11. Bernstein, D.J., Hülsing, A.: The SPHINCS+ signature framework. In: ACM CCS,
pp. 2129–2146 (2019)

12. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

13. Adja, Y.C.E., Hammi, B., Ahmed, S., Zeadally, S.: A blockchain-based certifi-
cate revocation management and status verification system. Comput. Secur. 104,
102209 (2021)

14. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - a multivariate
sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-45871-7_25

15. Groot Bruinderink, L., Hülsing, A.: “Oops, I Did It Again” – security of one-time
signatures under two-message attacks. In: Adams, C., Camenisch, J. (eds.) SAC
2017. LNCS, vol. 10719, pp. 299–322. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-72565-9_15

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

17. Holmes, S.: Impact of post-quantum signatures on blockchain and DLT systems.
In: DLT (2023)

18. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. J. Cryptol. 33(4), 1822–1870 (2020)

19. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS, pp. 28–36
(1999)

20. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
Crystals-dilithium: digital signatures from module lattices (2018)

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-72565-9_15
https://doi.org/10.1007/978-3-319-72565-9_15

BAHS: A Blockchain-Aided Hash-Based Signature Scheme 439

21. Lamport, L. : Constructing digital signatures from a one way function (1979)
22. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing

efficient protocols. In: ACM CCS (1993)
23. Marco, L., Talayhan, A., Vaudenay, S.: Making classical (threshold) signatures

post-quantum for single use on a public ledger. Cryptology ePrint Archive
(2023/420)

24. Li, Q., Cao, G.: Multicast authentication in the smart grid with one-time signature.
IEEE Trans. Smart Grid 2(4), 686–696 (2011)

25. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

26. Chang, S.M., Shieh, S., Lin, W.W., Hsieh, C.M.: An efficient broadcast authenti-
cation scheme in wireless sensor networks. In: ASIACCS, pp. 311–320 (2006)

https://doi.org/10.1007/978-3-319-39555-5_9

Lever: Making Intensive Validation
Practical on Blockchain

Mingming Wang1 and Qianhong Wu2(B)

1 School of Electronic and Information Engineering, Beihang University,
Beijing 100191, China

wangmingming@buaa.edu.cn
2 School of Cyber Science and Technology, Beihang University, Beijing 100191, China

qianhong.wu@buaa.edu.cn

Abstract. Blockchain heralds the dawn of decentralized applications
that coordinate proper computations without the need for prior trust.
Existing blockchain solutions, however, are incapable of dealing with
intensive validation. Duplicated execution leads to limited throughput
and unacceptable expenses. Furthermore, the absence of secure incentive
mechanisms derives undesired dilemmas among rational verifiers. This
work presents Lever, the first off-chain solution that makes intensive
validation cost-efficient and scalable among rational verifiers. To achieve
the best scalability, Lever curtails the scale of each validation to a single
node and introduces novel challenge-response games between potential
adversaries and rational stakeholders, optimizing validation redundancy
according to the practical adversarial capability confronted. Meanwhile,
compelling incentive design efficiently transfers adversary collateral to
specialized rewards for honest participants, therefore allowing the user
to lever sufficient endorsement with minimum cost. A backstop protocol
is designed to resolve intractable disputes and circumvent the well-known
Verifier’s Dilemma. Experiments show that Lever significantly improves
the throughput and reduces expenses of intensive validation with a slight
tradeoff in latency. It is also robust to conceivable attacks on validation
and performs distinguishable ability to purify Byzantine participants.

Keywords: Blockchain · Crypto-economic Protocols · Verifiable
Computation · Incentive Compatibility

1 Introduction

In modern computation and application systems, it is difficult to obtain reliable
public services without a trusted third party. Public blockchain thrives to remove
such dependency with the help of permission-less consensus and ingenious incen-
tive mechanisms. Furthermore, the innovation of smart contract endows it with
the potential to subvert most existing applications, processing computational
tasks in a fair and ordered manner.

Validation, as the inevitable procedure to ensure the correctness of compu-
tation, is the most fundamental functionality of blockchain. Advanced backbone
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 440–461, 2023.
https://doi.org/10.1007/978-981-99-7032-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_26&domain=pdf
http://orcid.org/0009-0006-4701-9763
http://orcid.org/0000-0003-4604-1142
https://doi.org/10.1007/978-981-99-7032-2_26

Lever: Making Intensive Validation Practical on Blockchain 441

frameworks based on Byzantine Agreement [1,2] plus Sharding [3,4] have sig-
nificantly improved its efficiency, enabling strong consistency and linear opti-
mizations on scalability. Yet, they have to assume negligible workload during
execution. The restriction stems from two sides. On the one hand, all nodes are
potentially required to independently verify every transaction in their region.
Such redundancy makes the execution of intensive workload extremely inef-
ficient and expensive. To prevent resultant congestion, complexity limits like
GasLimit [5] have to be set up, which sacrifices the applicability of the system.
On the other hand, altruism is heavily relied. The lack of fair and secure incentive
mechanisms fails to allocate rewards according to the actual workload of veri-
fiers. When the overhead becomes increasingly high, rational nodes choose to
skip or refuse validation, which leads to the Verifier’s Dilemma [6]. No guarantee
for validity or liveness is available in this state of affairs.

State-of-the-art research trend focuses on off-chain solutions to circumvent the
problem. By moving intensive workloads elsewhere off the blockchain, the solu-
tions decouple costly operations from the backbone. According to the major trade-
off imported, they can be roughly classified into three types. 1. Contract-specific
solutions [7–10] necessitate a significant amount of effort from stakeholders, the
set of nodes with an initial vested interest in the task. The requirements could
include frequent interactions [7,11], a high amount of collateral [7,8,10,11] and
strict on-line response [7–9,11]. Once not satisfied, protocols will be aborted or
taken over by the adversary. 2. Resource-dominant solutions [12–16] introduce
costly procedures such as duplicated executions with high redundancy [12] and
zero-knowledge proof generation [13–16], which is difficult to scale and too expen-
sive for users. 3. The other existing solutions resort to extra trust dependencies
from TEE [17,18] or TTP [19] to break such limitations, which is fragile and not
practical in many scenarios. It is also noteworthy that the validity of most solu-
tions builds on the altruism of verifiers. The abandoning of rationality may ren-
der plausible incentive design pointless since rational players have full motive to
freeload the rewards from altruists. To date, there lack of sound designs and secure
arguments ensuring a compatible reward for every honest verifier.

To tackle the above challenges, we intend to build a self-contained off-chain
solution with the following intuitions. Let redundancy denote the times of dupli-
cated validation required to finalize a transaction in a blockchain framework.
Intuitively, to make intensive validation scalable, the uppermost target is to
remove unnecessary redundancy for each task. Our approach is to simplify the
actual redundancy of a task by tracing the capability of its adversary. Concretely,
we add sequential rounds of single validation before a backstop scheme driven by
the costly SNARK execution. Stakeholders of each incoming task can report a
dispute by proposing challenges whenever the validation result is invalid. In the
worst-case scenario, the adversary has to persistently endorse the wrong verdict
until his budget runs out. Otherwise, the task gets finalized in early rounds with
no further challenge proposed. For tasks without a wealthy and stubborn adver-
sary, a correct execution could be achieved with optimized redundancy under
single validation. Only intractable disputes will be resolved by the powerful but
costly backstop. This promises the scalability of the system.

442 M. Wang and Q. Wu

In terms of incentive, each round of single validation brings about a nature
confrontation between the verifier and the challenger who hold verdicts contra-
dictive to each other. By imposing an exponentially round-increasing collateral
on every participant, the forfeit of the adversary can not only cover the reward
of honest verifiers and stakeholders, but also leads to the rapid incentive accu-
mulation of the task itself. The user only needs to pay the minimal expense for
the initial validation and then waits for the adversary to cover the incentive
gaps of subsequent duplicated executions. Meanwhile, every honest participant
can receive a compatible and undisputed reward for his efforts. As a result,
the design is both cost-effective and incentive-compatible. As the game evolves,
the increasing reward will entice more rational nodes into participation. We
adopt randomly-select neutral nodes as the subject of validation, which natu-
rally expands the bounds of the stakeholder set. Incumbent Byzantine verifiers
will also be timely evicted from the system for their misbehaviors, resulting in
a major relief on the protocol’s collateral and interaction requirements.

Combining the inspirations, we present Lever, the first scalable and incen-
tive compatible off-chain framework specialized for intensive validation. Besides,
Lever achieves cost-efficiency and perfect applicability that are usually absent
in related works. Lever can tolerate at most n/4 Byzantine participants and
can be deployed on top of current backbone frameworks underlying the classical
Byzantine Agreement [20,21]. Suitable examples are Solida [1], Algorand [2].

Contributions

– Creation of Lever-Boost Game, a pattern for optimized execution
and incentive accumulation. The pattern iteratively organizes multiple
rounds of single validation with randomly selected verifiers. Nodes can report
disputes and evolve the game by proposing challenges. Incentive designs trans-
form the forfeits of the adversary to make an exponentially growing of reward.
Validation gets efficiently finalized when no challenge occurs, which greatly
reduces the redundancy of the framework. Disputes can at most last for log-
arithmic rounds since adequate incentives will be accumulated for dispute
resolution. The game makes cost-efficiency and scalability of the framework.

– Construction of secure backstop, an incentive-compatible pattern for
dispute resolution. The pattern employs rational nodes in a Sybil-resistant
group to bid for chances to finalize the task once a handsome reward is accumu-
lated. The winner then builds costly SNARK proof off-chain to indisputably
assert the correct verdict on the backbone. We combine the backstop with a
robust incentive design that enables Lever to handle the adversary with unlim-
ited budget and ensures honest validation as the unique dominant strategy. The
backstop pledges validity and finality of the framework.

– Game-theoretic analyses and implementation. We provide convincing
proofs and build a proof-of-concept implementation to evaluate Lever. Exper-
imental results suggest that, Lever linearly scales the throughput with the
increase of nodes and resolves over 98.3% workload via single validation even

Lever: Making Intensive Validation Practical on Blockchain 443

in the worst-case configuration. Let Eb denote the cost ratio between back-
stop execution and single validation execution, it ensures the scheme’s reliable
finalization within O(log Eb) rounds. Also, Lever reduces the user expense to
a single validation and provides any honest participant an attractive incentive
linear with his collateral.

Table 1. Comparison of Lever with state-of-the-art solutions (Let Pg denote the total
number of instructions in the intensive validation program. As for payoff, a denotes
the expense for a single validation, F denotes the transaction fee per time to anchor a
digest to the backbone. Let BA be the budget of adversary to commit attack. We use
A|B where A denotes the average case, B refers to the worst case. In Yoda’s scheme,
k′ denotes the number of nodes in an execution set. In ACE’s scheme, contract owners
have full rights to choose the number of verifiers x when deploying their contracts)

Protocol Assumption ICb Redundancy Finalitya Cost Applicability

State

Channels [9]

BA No O(1)|O(n) O(1)|Inf 0| logn · a Restricted

Arbitrum [7] BR No O(1) O(1)|O(BA log(Pg)) 0| 1
Pg

a + log(Pg)F Restricted

ACE [10] BA No O(x) O(1)|Inf xa Restricted

Truebit [11] BR No O(1) O(1)|Inf a|a + log(Pg)F Complete

Yoda [12] Semi-honest No O(k′) O(1) k′a Complete

BDR [19] BR+TTP Yes O(1) O(1) 2a Restricted

Lever BR Yes O(1)|O(log EB) O(1)|O(log EB) a Complete
a The rounds expected to achieve finality, the metric reflects the latency of each solution.
b Incentive Compatibility.

2 Definitions and Background

2.1 Intensive Validation on Blockchain

Blockchain maintains an open and distributed ledger through a peer-to-peer
network, which provides data immutability and computation verifiability. Smart
contract extends its functionality to general-purpose computation. Prominent
platforms like Ethereum [5] equip Turing-complete languages to make sophis-
ticated logic executable on-chain. A smart contract is defined by a prescribed
collection of code, while its execution is triggered by transactions, which can be
parsed as a successful transition of state: Tx : oi → of . In Lever, we denote each
attempt for state transition as a Task T .

Inspired by Chainspace [4], we adopt an asymmetric model to simplify the
validation workload. The fulfillment of every task is dissolved into two parts.
An private computation procedure Com for user to derive the final state of the
contract in advance and obtain the necessary data to form a transaction:

T .Com(oi) → of , data;

Tx := 〈oi, of , data〉sk

444 M. Wang and Q. Wu

and a deterministic validation procedure Ver for nodes to check the correctness
of execution on-chain:

T .Ver(Tx) → {valid, invalid}

Other than being obfuscated with the execution of contracts, validation is
reduced to a decision problem with optimized complexity which provides better
privacy concerns.

We further define the difficulty of a task ηT as the precise complexity mea-
surement of its validation procedure weighted by a prescribed instruction set.
The workload is considered as intensive if its difficulty is beyond a fixed bound η′.
Accordingly, we name the transaction carrying intensive workload as Validation
Intensive Transaction (VIT).

When handling intensive validation with non-trivial cost, the behavior of a
player can be described by his initial interest relevance towards the task. We
introduce a private valuation vT to describe his preference in conducting the
correct execution of T . Accordingly, all players involved in validation can be
classified into three types:

– Stakeholder S: nodes who have vT > 0 will actively safeguard the correct
result if their cost does not exceed vT .

– Disinterest D: nodes who have vT = 0 will participate in validation only for
chasing the reward of execution due to rationality.

– Adversary A: nodes who have vT < 0 will make every effort to keep the correct
result from being accepted on-chain. This type also includes Byzantine nodes
that could be irrational in launching attacks to break the system.

The intention of our design is to lever disinterest but rational verifiers to perform
correct validation on T against the potential adversary with minimal cost from
the stakeholders.

2.2 Challenge Response Pattern

We review the classical challenge response pattern [22] which serves as the build-
ing block of Lever. In this pattern, a task is privately executed by a proposer who
signs the VIT as his endorsement on its validity. After it is broadcast, any stake-
holder of the task can submit a challenge within a predetermined time limit to
declare against the proposal. Whenever a challenge is collected, a dispute occurs,
and the timeout resets. The VIT can only be accepted if no disputes arise before
the time limit expires.

The pattern’s safe deployment is clearly contingent on the safe and timely
resolution of disputes. Existing solutions, such as Truebit [11] and Arbitrum [7],
use an interactive bisection scheme between the proposer and the challenger to
resolve every dispute instantaneously. Let Pg denote the total number of instruc-
tions in the intensive validation program. It takes O(log Pg) rounds of bisection
to narrow their disagreement down to the execution of a single instruction, which
can be easily checked on-chain to assert the validity of the challenge.

Lever: Making Intensive Validation Practical on Blockchain 445

We consider the construction far from efficient and jeopardizes validation
finality owing to the abuse of the challenge interface. The scheme entails
O(2 log Pg) interactions from disputers to the backbone to maintain the integrity
of the bisection operation, incurring significant latency benchmarked by the con-
sensus interval. Stakeholders endure heavy collateral and strict online demand
throughout the process. What’s worse, the adversary may endlessly restart the
dispute by persistently challenging the same proposal until his budget BA runs
out, which further compromises the finality to O(BA log(Pg)). In terms of incen-
tive, though heavy forfeits are imposed to compensate the honest disputer, sly
adversaries can get around most penalties by challenging each other.

In Sect. 4, our design accordingly figures out the above drawbacks. Instead of
handling the dispute at once, we exploit the prolonged dispute to gather incen-
tives for subsequent executions. All confirmed proposals are merged into two
conflicting parties by their verdicts and every new challenge potentially increases
the reward of VIT by consuming the adversarial ones. Even if an adversary has
an unlimited budget, it only takes a limited number of challenges to accumu-
late adequate incentives and thoroughly resolve the dispute by backbone in one
shot. Finality is thus well preserved, and the entire procedure entails no dense
interaction or extra expense on honest participants.

2.3 Related Works

Many prominent works have been proposed to handle intensive workload with
blockchain, which we create a systematic taxonomy below and compare with
Lever in Table 1.

Contract-Specific Solutions. The pattern treats each contract as an indepen-
dent validation system and introduces stakeholders’ participation in optimizing
the validation procedure. State channels [8,9] simply define stakeholders as ver-
ifiers of the contract. If all members remain honest, state transitions can be
achieved with the best performance via unanimous assertions on each proposal.
Otherwise, execution has to move back to the backbone, which indicates the loss
of finality over intensive workloads. Arbitrum [7] allows stakeholders to challenge
wrong proposals and employs the bisection protocol to resolve possible disputes
off-chain. However, a wealthy and stubborn adversary can dramatically deteri-
orate the finality of the scheme by abusing the challenge interface. ACE [10]
attains efficiency by importing trust in contract creators to decide the veri-
fier set and threat model for their contracts. Hence a malicious contract creator
could fully manipulate the validation result of his contract. It is noteworthy that
existing contract-specific solutions suffer from heavy applicability restrictions.
Applications with dynamic membership, large stakeholder sets, and competitive
trigger requests could stop the protocols from working properly. To compare,
with the same level of optimized redundancy and cost-efficiency, Lever achieves
robust finality in all cases, maintains full applicability, and remains trustless
to any participant. Moreover, Lever largely remits the stakeholders’ burden in
interaction and collateral by importing rational disinterests into validation.

446 M. Wang and Q. Wu

Competition-Driven Solutions. The pattern promotes active competition
from rational disinterests to safeguard the validity of tasks. A typical solution
is Truebit [11], which allows multiple verifiers to compete for the validation
incentive of a VIT, incorporating the challenge response game to reflect disputes
and bisection protocol to resolve them. Unfortunately, it is vulnerable to the
Participation Dilemma [7]. The adversary could generate several Sybil identities
and burst to engage in one task, making the incentive become negligible to
rational verifiers which results in the loss of task validity. Comparatively, Lever
realizes a scheduled and robust task arrangement, achieves Sybil resistance over
verifiers, and conducts fair workload coordination to give every honest execution
a compatible reward.

Resource-Dominant Solutions. Such solutions consume intensive computa-
tion resources to gain undisputable evidence for VIT’s validity and finality. Pow-
erful schemes like zkSNARKs [14,16] and zkSTARKs [13,15] simplify arbitrary
computation to a zero-knowledge proof with fast validation time and short proof
size. However, the proof generation introduces considerable expenses on either
computation or storage from stakeholders of the task, which is not cost-efficient.
In Yoda [12], VITs are repetitively executed among several groups of randomly-
selected disinterests, and task finality is decided by threshold voting. However,
by releasing the BR model assumption to Quasi-Honest, the protocol avoids
discussing possible defective behaviors from rational nodes. Also, rewards could
become incompatible if termination cannot be attained as expected within cer-
tain groups. By contrast, Lever is more cost-effective and removes any depen-
dency on altruism. Both solutions can be integrated into Lever as a secure back-
stop, reducing user expenses to a single validation reward.

Other Solutions. TEE-based solutions like Eriken [17] and POSE [18] provide
support over confidentiality and intensive execution towards smart contracts.
Tasks are conducted off-chain in SGX or TrustZone enclaves with extremely
low redundancy. However, system validity along with finality depends on every
enclave executing the stored code correctly. A compromised enclave will cause
catastrophic effects like invalid blockchain states and privacy leakage. Dong et
al. [19] present a game-theoretic solution to obtain cost-effective outsourced com-
puting on blockchain. Unfortunately, it assumes the existence of a trusted third
party as the guarantee of validity. Lever eliminates any reliance on trust and
delivers substantially stronger resistance against compromised entities with aver-
age redundancy that is comparably effective.

3 System Overview

3.1 Actors

Lever considers a system with the following actors:

– Transaction Founder - privately executes the task, packs his result in a
VIT, and broadcasts it to the blockchain.

Lever: Making Intensive Validation Practical on Blockchain 447

– Verifiers - register themselves on-chain and chase rewards by undertaking
validation tasks. After each validation, a verdict vd ∈ {valid, invalid} is given
to the VIT.

– Challengers - propose challenges to oppose the verdict of a verifier.
– Judges - are incentivized to resolve intricate disputes on intensive workloads.

Every actor is uniquely identified by a public/private key pair. However,
nodes may play different roles at the same time and create multiple identities
over challengers or verifiers. We will prove such behaviors cannot interfere with
the validity of the protocol. Also, the adversary may take over any actor to
launch attacks. As a result, each participant is required to take collateral before
taking action, which will be forfeited once their malicious conduct is detected.

3.2 Methodologies

As shown in Fig. 1, in Lever, the intensive workload is taken by two phases:

Fig. 1. Overview of Lever

In Lever-Boost Game πL, a VIT takes at most τ rounds of single validation.
In each round, a randomly selected verifier submits his verdict on T while anyone
can serve as a challenger refuting him to revive the next game round. If no chal-
lenge is received within a pre-defined time limit, the protocol takes the result of
the last verifier as the final verdict. Otherwise, forfeits from the adversary double
the task reward for every new round, which swiftly covers the incentive demand
for dispute resolution. Workloads troubled with intricate disputes automatically
trigger the backstop scheme πB, in which a group of judges runs for eligibility to
create SNARK proof for the task to get the accumulated incentive. A final verdict
vd is accepted only if the SNARK proof w.r.t. the statement T .Ver(VIT) = vd
approved by the backbone. Once finality is achieved, Lever conducts settlement
to: 1) update the status of contracts, 2) distribute incentives to participants, and
3) remove Byzantine participants from the system.

In Lever, the utility of a participant P is defined by the following equation:

uP =

{
iP − cP + vT vd = T .Ver(VIT) .

iP − cP − vT vd �= T .Ver(VIT) .
(1)

448 M. Wang and Q. Wu

Where iP denotes the incentive he obtains from Lever (possibly be a reward or a
forfeit), cP denotes the computation cost he consumes on the intensive workload.
To evaluate the behaviors among various types of players, the initial interest of
the task is also counted according to the correctness of final verdict.

Essentially, Lever is a crypto-economic protocol [23]. It encodes an incen-
tive mechanism, seeking to promote honest validation of VIT among rational
stakeholders and disinterests. We aim to propose a dominant-strategy-incentive-
compatible (DSIC) mechanism that honest validation stays as a weakly domi-
nant strategy for every rational player. This means regardless of what any other
players do, the strategy earns a player a payoff at least as high as any other
strategy.

3.3 Assumptions

We assume a well-connected network with dynamic membership. Incumbent
participants can establish Sybil-resistant identities at backbone by mechanisms
like [24,25]. We adopt the Byzantine-Rational model (BR) as Lever’s threat
model. When dealing with intensive workloads, non-Byzantine nodes are assumed
to be rational and would take foremost interest in maximizing their payoffs. We
assume there exist at most f < n/4 Byzantine players out of n incumbent nodes.
They can behave arbitrarily to deviate from the protocol, including but not limited
to aborting, freeloading, taking bribes, or collusion. The adversary is computa-
tionally bounded such that cryptographic primitives are secure. We also assume
the existence of random oracle RO. Let c denote the cost to conduct an honest
validation. Regarding each task, we assume at least one rational stakeholder who
initially has vT > c exists. Our design is simplified from external economic risks
by assuming the relatively stable value of the currency.

3.4 System Properties

Lever achieves intensive validation with the following properties:

– Validity: For any VIT accepted by Lever, T .Ver(V IT) = valid always holds.
– Finality: Each VIT will get finalized within δf w.h.p.
– Agreement: All non-Byzantine nodes agree on the validity of a VIT.
– Incentive Compatibility: Lever ensures the honest validation is DSIC through-

out the game. All participants who follow the strategy will get the best pos-
itive payoffs. On the contrary, any strategy that deviates from the protocol
only ends up with a negative payoff.

– Scalability: System throughput grows linearly with the number of verifiers.
– Efficiency: Each VIT only incurs O(1) times of validation on average and

O(log EB) times to reach finality in the worst case.
– Cost-efficiency: Transaction founder only needs to pay a minimal reward to

proxy the intensive workload on-chain.
– Self-reinforcement: Lever efficiently confiscates the budget of the adversary as

well as purifies incumbent Byzantine nodes, thus adaptively performing lower
latency and redundancy on validation with the decline of the adversary.

Lever: Making Intensive Validation Practical on Blockchain 449

4 Lever-Boost Game

4.1 Preparation

Lever provides each VIT with an execution time-limit Te, which encodes the time
limit for endorsement collection, and an incentive benchmark a, which stays the
base payment for a single validation. The two factors are closely related to the
difficulty of the task ηT . In Lever, nodes lock up their stake to join in validation.
Specific accounts bound with public keys are built up to uniformly manage their
collaterals in the prevention of double-spending. After execution, a node makes
an endorsement for his verdict by sending a proposal:

proposal := 〈txid, vd, deposit〉sk

The proposal links with the unique identifier of VIT and transfers the collateral
to his account. During settlement, rewards or forfeits will also be directly applied
to the balance. Only when a VIT gets finalized, its related deposits are spendable.
Especially, verifiers are required to pre-store stakes for undertaking validation
tasks. We denote the set of incumbent verifiers as {V }.

Our design also entails the underlying functionalities from backbone which
will be realized in Sect. 6. We require the existence of a global clock that cuts
the whole timeline into multiple periods which are relatively even. The clock is
employed to measure Te and we denote the average time duration of a period as
Tp. At the beginning of each period, a fresh, unbiased random seed rnd is gen-
erated. In each period, nodes from a Sybil-resistant committee reach Byzantine
agreement on the proposals with strong consistency.

4.2 Construction

We present the Lever-Boost Game πL, a scalable off-chain pattern dominant by
single validation. The construction can be disassembled into underlying stages:

– (Lock) On receiving a VIT, committee members checks to assure: i. it carries
adequate reward and collateral according to ηT . ii. input state oi has no
conflict with any proposed transactions. The VIT will be discarded if any of
the checks fail. Otherwise, it will be anchored by backbone with oi locked to
secure the consistency of the game.

– (Task Assignment) In the next period, a verifier V ∈ {V } is randomly
selected to take the task with the required deposit frozen in his account. An
execution time-limit of �Te/Tp� periods is activated.

– (Verify) V obtains vd by executing T .Ver(VIT) and then broadcasts his pro-
posal to the backbone. Once it is confirmed, the game evolves into the chal-
lenge stage. If the timeout expires, the committee will forfeit his collateral
and restart the task assignment.

– (Challenge) Within a new execution time limit, any node could propose a
challenge refuting the verdict of the last verifier. It will be instantly recorded
by the committee if an adequate deposit is pledged. Note that, it is possible

450 M. Wang and Q. Wu

when two or more challenges emerge at the same time. By next period, the
fresh random seed rnd will be used to fairly confirm one of them and abort
the others. The game iteratively undergoes the same assign-verify-challenge
circle and finally converges to the following two outcomes: 1. In case the
dispute remains unsolved for complete τ rounds, it is regarded as intricate
and protocol resorts to the backstop scheme for a final verdict. 2. In any
round if no valid proposal is collected, the task efficiently finalizes with the
verdict from the last verifier.

– (Settlement) Lever transits the contract state to of if the final verdict equals
valid, otherwise unlocks oi to enable the next trigger. Towards those who have
made wrong proposals, deposits are forfeited to recursively award truthful
verifiers and challengers in each round, while other collaterals automatically
get unfrozen. Misbehaved verifiers are expelled from {V }, no longer assigned
any task. The alteration of membership and incentive is confirmed by the
backbone consensus for every new block.

Note that, a vital point in our design is to make the validation and challenge
unique in each round of the game. Validation thus evolves in an exclusive branch
with better consistency. It further prevents fierce competition or Sybil Attack to
impair the reward of execution. Each honest participant is promised a fair and
stable payoff, preventing the game from falling to the Participation Dilemma [7].

4.3 Incentive Design

Table 2 depicts the collateral and expenses required by πL where s ∈ [1, τ]
denotes the round number. The user only needs to pay the initial reward and
deposit which are both a to start the first execution. A transaction fee is also
required to anchor any information on backbone. We consider the cost for inten-
sive validation c 	 fee by default, and obviously a > c + fee. As for verifiers
and challengers, the required deposit doubles for every new round. Since they
hold contradictive verdicts towards each other, there always exists a share of the
deposit to double the incentive of T . Hence, validation reward of round IR(s) is
decided by the validity of last challenge proposal,1 which we denote as σ.

Table 2. Incentive Design of the Lever-Boost Game

Role Deposit Expense Incentive-Correct Incentive-Wrong

TxFounder a a + fee −a − fee −2a − fee

Verifier 2sa fee IR(s)a −2sa − fee

Challenger 2s+1a fee IR(s) −2s+1a − fee

a IR(s) =

{
2s−1a − fee σ = valid

2sa − fee σ = invalid
(2)

1 In the first round, it is determined by the correctness of VIT.

Lever: Making Intensive Validation Practical on Blockchain 451

The effect can be explicitly demonstrated in Fig. 2. Let uF , uV , uC respectively
denote the incentive of transaction founder, verifier, and challenger. The surplus
incentive of the game can be calculated as −(uF +uV +uC). In case the challenger
makes a wrong verdict, an extra reward of 4a is generated.2 While this value
becomes 2a in honest cases, it combines to encapsulate the task with double
reward and collateral.

Fig. 2. Role Utility of Lever-Boost Game at Round I

In general, the evolving of πL leads to an exponentially boosting incentive for
honest participants: uP ≥ 2s−1a − c. As the validation cost is constant, more
rational disinterests will be attracted to the game and help honest user leverage
adequate endorsements for his task. While the adversary covers up all expenses of
extra executions, their forfeits become explosively expensive. Thus we conclude
the following theorem.

Theorem 1. Lever achieves cost-efficiency and efficiently confiscates the budget
of the adversary.

4.4 Properties

The security threats of πL mainly come from two aspects. Malicious incumbent
verifiers could abort or take bribes to return a wrong verdict. Besides, external
adversaries could make false challenge proposals to delay the correct execution.
We define those who have the worst behaviors as:

Definition 1. External Stubborn Adversary. Potential malicious nodes who
exhaust their budgets to propose false challenges whenever the VIT receives cor-
rect verdicts in Verify phase of the game.

Below we analyze the game considering the threats, assuming the backstop πB

can always return a correct final verdict within finite periods.

Validity. Towards any task, the maintenance of a correct final verdict requires
all invalid Verify proposals to get timely challenged. While at least one stake-
holder initially has such motivation, they could avoid any loss, meanwhile, obtain
2 Here, fees are extracted as commissions for backbone confirmation.

452 M. Wang and Q. Wu

attractive rewards from malicious nodes. Even in the worst case, the secure back-
stop will be triggered to enforce correct execution. The key boils down to how
much collateral is required. We refer ρ ∈ [0, 1] to the Byzantine ratio of {V }, to
defend the validity of the game, the average deposit dh can be calculated as:

dh = a +
∑τ

s=1
ρs · 2s+1a . (3)

Theorem 2. Lever-Boost Game performs Sybil resistance over verifiers and will
never output a wrong final verdict if stakeholders own a collateral of (2τ+2−3)a.

Proof. Suppose all incumbent verifiers are Byzantine, according to Eq. (3) with
ρ = 1, stakeholders can still keep reporting disputes and then obtain the correct
verdict from πB with the maximum collateral. It also indicates creating arbitrary
Sybil identites over verifiers cannot undermine the validity of πL.

Fig. 3. Average deposit required for validity under various Byzantine ratios.

Although the worst situation entails substantial collateral from stakehold-
ers, such pressure is greatly released considering the following observations.
Figure 3 shows the overall variation of the deposit requirement. If we deploy
Sybil-resistant mechanisms over the registration of verifiers to suppress ρ within
a moderate level (like ρ < 1/4), the deposit will be trivial and friendly to the
user. Moreover, since the game timely evicts Byzantine verifiers, the requirement
will be consistently released as more tasks are taken. We testify such effect by
experiment in Sect. 7. In addition, πL releases the threats from collateral exhaus-
tion or being off-line by enlarging the scale of stakeholders. Consider a disinterest
verifier V who has conducted honest execution at round s. In subsequent rounds,
by proposing a correct challenge, he will gain an extra payoff uV ≥ 2sa − fee.
If no one defends the task, he will instead lose his collateral and execution cost
u′

V = −2sa − c − fee. This adjusts his interest relevance to vT = uV − u′
V > 0,

which will drive him to firmly defend the task as a stakeholder.

Finality and Scalability. Suppose πB requires EB times of exra execution
cost, the adequate incentive could be rapidly accumulated within τ = �log EB�

Lever: Making Intensive Validation Practical on Blockchain 453

rounds. This keeps the Lever-Boost Game from endless collateral competition.
Let BA denote the budget of the adversary, in Lever-Boost Game, a task will
take y ≤ τ times of execution to obtain a final verdict if:

BA <
∑y

s=1
(2s · a + fee) = (2y+1 − 2)a + y · fee . (4)

Recall the execution cost c < a, most intensive workloads could get optimized
execution, which helps the system to achieve significantly better scalability. Even
an extremely wealthy adversary cannot prevent finality by abusing the challenge
interface. The latency of the game is strictly bounded within 2τ�Te/Tp� periods
and adaptively reduced with the budget exhaustion of the adversary.

Incentive Compatibility. With the guarantee of validity and finality, we could
further derive the utility expectation of roles according to their strategies. Let
pσ refer to Pr[σ = valid]. As for stakeholders and disinterests, staying as honest
verifiers or challengers respectively earn them stable, positive payoffs, which stay
linear with their collaterals:

uV = (pσ · 2s−1 + (1 − pσ) · 2s)a − c − fee + vT > a − c − fee > 0

uC = (pσ · 2s−1 + (1 − pσ) · 2s)a + vT − fee > a − fee > 0

Whereas strategies without a correct verdict including taking bribes, aborting
and making false challenges only converge to negative expectations:

ubribe = uabort = −2sa − fee ≤ −2a < 0

ustubborn = −2s+1a − fee ≤ −4a < 0

Lazy verifiers who deviate by randomly guessing the verdict will suffer more
forfeits than their income:

uguess = 1/2 · pσ · (2s−1 − 2s)a − fee ≤ −pσ · a/2 < 0

Similar to the mechanism of Nothing at Stake Attack [26], a lazy verifier could
make collaterals on both verdicts. He could instantly challenge his own Verify
proposal, leaving the dispute to subsequent rounds. Suppose such an attempt is
made in round s, his total payoff expectation can be described as:

uP =

{
(pσ · 2s−1 + (1 − pσ) · 2s)a − 2s+1a − fee T .Ver(VIT) = valid

(pσ · 2s−1 + (1 − pσ) · 2s)a − 2sa − fee T .Ver(VIT) = invalid

Such attempts only bring him losses no matter which verdict outperforms. In
terms of the game, the strategy upgrades the incentive of task for a wider range
of executions with the attacker’s own collateral.

Obviously, honest validation is the unique dominant strategy of πL.
To conclude, Lever-Boost Game keeps the validity, finality, and incentive

compatibility of tne system if a secure backstop is served. It also significantly
reduces the expense and collateral required from stakeholders and simplifies the
dense interactions compared to the classical challenge-response pattern.

454 M. Wang and Q. Wu

5 Backstop Construction

In this section, we utilize succinct non-interactive arguments of knowledge, often
known as SNARK [13–16], to construct a secure backstop scheme πB for the
Lever-Boost Game. The scheme is executed among a group of Sybil-resistant
judges who hold the responsibility to figure out all intricate disputes in the
system. At any time, the ratio of incumbent Byzantine players satisfies ρ < 1/4.

SNARK allows one party to generate a succinct proof to another that a
given statement x is true. It is a triple of algorithms (Setup,SP,SV), where
Setup(λ, rnd, C) takes the security parameter λ and secure randomness rnd to
pre-process the circuit C derived from the statement, and public parameters
SP , SV are then generated respectively for the prover and the verifier. The prover
SP(SP , x, w) additionally takes the statement x and the witness w and outputs
a proof π. The verifier SV(SV , x, π) is a decisional deterministic algorithm that
checks the proof to assert whether the statement is true. SNARK is succinct
because its proof size should be O(log |C|) and the verifier’s running time should
be O(|x| + log |C|). By contrast, the prover algorithm SP is computationally
intensive and can only be deployed off-chain. A SNARK is said to be transparent
if it requires no trusted setup.

Below, we showcase the design of πB with a transparent SNARK:

– (Init) Upon detecting any task T involved in the dispute, a rational judge
assesses the expense upper-bound cB of its SNARK construction according to
the complexity of the validation procedure and the size of VIT. The expense
covers the proof generation cost cBP off-chain as well as the duplicated SV
execution cost cBV on-chain.

– (Bid) Starting with round s ≥ 2, the Lever-Boost Game πL leaves an extra
period before the task assignment for judges’ possible intervention to resolve
the dispute. A rational judge will make bid proposals when his own assessment
satisfies cB < 2s−1a−c. To prevent abuse, a valid bid should include a deposit
of 2s+1a. When the backbone confirms one or more valid bids, it fairly chooses
one as the winner using public randomness rnd and releases the rest. A new
execution timeout Te is activated for the execution of SNARK.

– (Construct) The selected judge first obtains the correct verdict vd by run-
ning the validation procedure, and then builds the circuit C based on the
statement x : T .Ver(VIT) = vd. Next, he completes Setup(·) and SP(·) to
generate the verifier parameter SV along with the proof π. Finally, before Te

expires, he signs the proof proposal 〈π, SV , vd〉 and delivers it to the backbone.
– (Resolve) Participants of the backbone run SV(·) on-chain. In case π is valid,

the task gets finalized with the verdict vd, leading to the settlement of πL.
Meanwhile, the truthful judge has his bid released with an additional reward
of IR(s) − cBV + fB. Otherwise, the judge gets ejected from the group with
his bid deposit forfeited as the surplus reward fB for the dispute’s subsequent
resolution. Since the forfeits directly doubles the current task incentive, πL

starts from round s + 1.

Lever: Making Intensive Validation Practical on Blockchain 455

Note that, the integration of πB with the other types of SNARK is entirely feasi-
ble. The only difference is that a trusted setup is launched before the Construct
step. The imported reliance on trust results in the possibility to achieve a con-
stant execution cost of SV and constant proof size. With the rise of universal
SNARKs, a single trusted setup can now support multiple circuits. Making the
tradeoffs will considerably improve the cost-efficiency of the backstop scheme.

The following theorem adapts to πB with any secure SNARK instance:

Theorem 3. πB is DSIC and finalizes with the correct verdict within δf =
�(2Te/Tp + 1) · (log EB − λ/ log ρ)� periods w.h.p.

Proof. For validity, given completeness of SNARK, the backbone accepts the
proof proposal w.h.p. from any truthful judge. Given knowledge soundness of
SNARK, the adversary cannot forge a valid π for the wrong statement. Thus,
πB always finalizes with the verdict vd that meets T .Ver(VIT) = vd.
For finality, assume the stubborn adversary has an unlimited budget, he can
continually propose bids with forged proofs to delay πB . Before πL accumulates
adequate incentive for πB , the adversary’s defection creates an extra execution
timeout Te. However, his forfeits facilicate the progression of πL by skipping
the entire round of game, saving 2Te instead. As a result, the finality of πL is
well-protected. When the task incentive fulfills the rational judges’ assessment,
the adversary only has the probability P = ρs∗

< 10−λ to delay πB for extra
s∗ = −λ/ log ρ rounds of Te until a rational judge wins the bid. To summarise,
recall EB = cB/c, incentive accumulation takes at most τ = log EB rounds of πL.
The worst-case finality parameter of Lever is bounded by �(2Te/Tp+1)·(τ +s∗)�.
For incentive compatibility, truthful judges’ utility equals uJ = IR(s) − cBV +
fB − cBP − c ≥ 2s−1a − cB − c > 0, whereas the defected judges’ utility equals
uA = −2s+1a < 0. Honest execution is the unique dominant strategy of πB .

Combining Theorem 3 with analyses in Sect. 4.4, we can conclude that Lever
achieves validity and DSIC tolerance of at most n/4 Byzantine participants.

6 Integration with Backbone

Difficulty Model. For the safe deployment of Lever, the primary thing is to
obtain the truthful difficulty of the task. In Lever, the transaction founder is
required to measure ηT in advance and attach ηT to VIT. To prevent possible
misstatements, the accuracy of this value is integrated into the validity of the
task. In other words, T .Ver(VIT) outputs Invalid if there is a mismatch between
ηT and the actual workload. As for intensive validation, uncertainty on the initial
task incentive may arouse catastrophic effects. An adversary could launch brib-
ing [27] and frontrunning [28,29] to disincentive faithful execution from rational
nodes. Other than allowing users to customize the incentive of a transaction,
we employ difficulty as the exclusive factor in configuration. For any VIT, we
set its incentive benchmark as a = γ1 · ηT . Also, its execution time limit is
stipulated as Te = γ2 · ηT . Here, γ1 and γ2 are system-defined constants that

456 M. Wang and Q. Wu

remain steady for a relatively long time. We assume they are reasonably set up,
which makes a attractive to most rational disinterests, and makes Te adequate
for them to independently finish the execution with high probability. The design
ensures the same initial yield in the initial task incentive, VITs are thus treated
indiscriminately in the execution order. Additionally, any participant in Lever
could obtain a compatible reward from honest validation.

Theorem 4. Any node could predicate the validity of a transaction carrying a
reward γ1 · η within the execution cost c, where c < γ1 · η, regardless of whether
there is a difficulty misstatement.

Proof. If an adversary attempts to cover up ηT with η, let ηx denote min(ηT , η).
T .Ver(VIT) will terminate after finishing operations weighted ηx, and marks the
VIT as invalid. Since c/γ1 < ηx ≤ η always holds, verifiers will never undertake
workloads with insufficient incentive or execution time limit.

Global Clock and Randomness. We set up the global clock with existing
committee-based consensus, Solida [1], as the backbone. It manages the com-
mittee membership in a sliding window fashion with PoW as the election source.
Every time a mining winner gets rolled into the committee, system time is driven
to the next period. Other than the use of Nakamoto consensus, it confirms the
election with strong consistency by creating a novel Byzantine consensus led
by external miners. Meanwhile, fresh randomness sources rnd can be timely
extracted from PoW of the winner. Note that, this is not the exclusive way
to realize such features. For instance, in frameworks like Algorand [2] which
achieves full swap reconfiguration with PoS, a clock can be established refer-
ring to the view number of consensus. And secure randomness can be obtained
by periodically running algorithms [30] for distributed randomness generation
despite a higher overhead being served.

Confirmation of Lever. In Lever, participants independently take intensive
validation and output a series of proposals to endorse their verdicts. Each pro-
posal can be viewed as a variant of ledger transfer with negligible overhead.
On receiving tasks or proposals, members of backbone conduct incentive and
confliction checks, then reach Byzantine agreement to anchor the eligible ones.
Whenever detecting a new period from election consensus, they first use the fresh
randomness and the collected proposals to derive the state of tasks and then fil-
ter out finalized VITs w.r.t. the global clock. Meanwhile, settlement is achieved
based on the final verdict. Finally, the states of the game will be updated by
the next round of consensus. Thus, the safety of backbone consensus pledges the
consistency of Lever.

7 Evaluation

Experimental Setup. We have implemented a proof-of-concept prototype to
evaluate Lever under more realistic scenarios. We employ uniform distribution

Lever: Making Intensive Validation Practical on Blockchain 457

to bootstrap the difficulty of transactions as well as the power of verifiers, while
Pareto distribution is used to simulate the deposits of verifiers and the budgets
of adversaries. Unless otherwise noted, we deploy the following tests under the
worst-case configuration, where there exist exactly �n/4 Byzantine incumbent
nodes, who always take bribes to propose the wrong verdict.

Performance. As for intensive validation, the concrete value on throughput
is heavily affected by the relative relationship between deposit level of verifiers
and the average difficulty of the tasks. Without loss of generality, we evaluate
the performance of Lever by setting comparative experiments with frameworks
deploying the duplicated execution pattern. We conduct the underlying tests on
the same sets of randomized nodes and VITs.

Fig. 4. (a) Increase in throughput brought by Lever (n ∈ [500, 5000]). (b) Average
rounds of game to achieve finality and the increase in latency introduced by Lever.(c)
Average percent of tasks triggering the backstop. (d) Average payoff per validation for
various roles (γ1 = 10, ηmax = 50, c = γ1 · η/2, n = 1000, EB ∈ [210, 213]).

By consistently infusing excessive VITs to both frameworks in one epoch,
we obtain the magnification on throughput incurred by Lever and distinguish
the cases with varying scales of verifiers and ratios of the external stubborn
adversary. As Fig. 4a shows, Lever scales linearly in the number of verifiers, and
the effect is adaptive to the number of external stubborn adversaries.

In terms of latency, we set a fixed scale of verifiers and infuse 5 ·104 random-
ized VITs into both frameworks. For comparison, we set the latency of duplicated
pattern as the execution time limit. As Fig. 4b tells, a task could be finalized at
the first round of Lever-Boost Game w.h.p. if no external stubborn adversary is
attached to it, this reflects the high efficiency of Lever under the most general

458 M. Wang and Q. Wu

case. By contrast, the worst-case latency is finite and affordable, the adversary
can averagely delay the task for no more than 4.5 rounds of game.

The backstop scheme is inherently inefficient due to the limited scale of judges
and the heavy computation cost for producing SNARK proofs, which could be
viewed as the bottleneck of the framework. However, we measure the average
percent workload triggering the game by 105 VITs verified in Lever. As Fig. 4c
shows, even in the worst case with extreme external pressure, over 98.3% of
intensive workload gets finalized in Lever-Boost game, which further embodies
the superior scalability of Lever and its robustness against DoS attack.

Table 3. Average tasks taken by various strategies in Lever.

R∗
st

Role
Rational Guess Abort Bribe

0.00 107.31 2.4 63.03 1.00

0.25 164.98 1.77 63.69 1.00

0.50 219.18 1.95 60.67 1.00

0.75 274.99 2.00 43.73 1.00

1.00 331.17 2.13 25.10 1.00
∗ Ratio of external stubborn adversary.

Self-reinforcement. To evaluate the effect of the game in restraining various
malicious behaviors, we build three groups of comparative tests, which respec-
tively equips Byzantine verifiers with typical deviated strategies of guessing,
aborting, and bribing. After handling 105 VITs, we measure the state of nodes
and illustrate their average validation opportunities in Table 3, and payoffs in
Fig. 4d. As we can see, rational verifiers undertake most chances of validation
and steadily obtains a positive payoff, whereas Byzantine nodes suffer substantial
forfeits. The ones who guess or bribe make trivial influence before being ejected
from the committee. The ones who abort the game exhaust their budget and suf-
fer from maximal losses. Noticeably, the increase of stubborn adversaries greatly
raises the incentive for honest validation as well as the severity of punishment.

8 Conclusion and Future Works

To the best of our knowledge, Lever is the first validation framework that sup-
ports intensive validation while being incentive-compatible, which makes com-
prehensive improvements compared to the existing solutions. We prove that the
optimized and secure single validation can be fit to blockchain without any dense
interaction by making execution redundancy flexible to the budget of the adver-
sary. With the subtle collateral pattern excavated, fair and incentive-compatible
mechanisms are proposed to incentivize verifiers according to their actual work-
load, avoiding any unfavourable dilemma on validation. Furthermore, we demon-
strate how Lever significantly releases excessive off-chain efforts from stakehold-
ers and eliminates the brittle dependency on altruism.

Lever: Making Intensive Validation Practical on Blockchain 459

Lever also offers several intriguing areas for additional research. Construct-
ing the backstop with duplicated validation can further optimize the off-chain
cost ratio EB and reduce the collateral needed, the key is to tolerate more abun-
dant defection strategies from parallelly working rational judges. Consider Lever
employs pessimistic locking to ensure the atomic execution of every VIT, a sub-
stitution of deterministic concurrency control (DCC) [10,31] will provide better
serializability and concurrency for the system. Inspired by Pisa [32], our sub-
sequent work will show that safe escrow-based contracts can be designed to
outsource such obligation to rational nodes with optimized expenses. This will
completely release all extra efforts required from stakeholders.

Acknowledgements. This paper is supported by the National Key R&D Program
of China through project 2020YFB1005600, the Natural Science Foundation of China
through projects U21A20467, 61932011, 61972019 and Beijing Natural Science Founda-
tion through project M21031 and CCF-Huawei Huyanglin Foundation through project
CCF-HuaweiBC2021009.

References

1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solida: a blockchain
protocol based on reconfigurable byzantine consensus. In: 21st International Con-
ference on Principles of Distributed Systems, pp. 25:1–25:19 (2017)

2. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

3. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948 (2018)

4. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace:
a sharded smart contracts platform. In: 25th Annual Network and Distributed
System Security Symposium (2018)

5. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2017).
Accessed 03 Jan 2018

6. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 706–719 (2015)

7. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: 27th USENIX Security Symposium, pp. 1353–
1370 (2018)

8. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966 (2018)

9. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7 30

https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30

460 M. Wang and Q. Wu

10. Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: Ace: asynchronous
and concurrent execution of complex smart contracts. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 587–
600 (2020)

11. Teustch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017)
12. Das, S., Ribeiro, V.J., Anand, A.: YODA: enabling computationally intensive con-

tracts on blockchains with byzantine and selfish nodes. In: 26th Annual Network
and Distributed System Security Symposium abs/1811.03265 (2019)

13. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zksnarks without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy, pp. 926–943. IEEE (2018)

14. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45727-3 15

15. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

16. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023. LNCS, vol. 14005, pp. 499–530. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-30617-4 17

17. Zhang, F., et al.: The ekiden platform for confidentiality-preserving, trustworthy,
and performant smart contracts. IEEE Secur. Priv. 18(3), 17–27 (2020)

18. Frassetto, T., et al.: Pose: practical off-chain smart contract execution. In: 30th
Annual Network and Distributed System Security Symposium (2023)

19. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, dis-
trust, and rationality: smart counter-collusion contracts for verifiable cloud com-
puting. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 211–227 (2017)

20. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third USENIX Symposium on Operating Systems Design and Implementation,
pp. 173–186 (1999)

21. Duan, S., Zhang, H.: Foundations of dynamic BFT. In: 2022 IEEE Symposium on
Security and Privacy (SP), pp. 1317–1334 (2022)

22. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 1

23. Harz, D., Gudgeon, L., Gervais, A., Knottenbelt, W.J.: Balance: dynamic adjust-
ment of cryptocurrency deposits. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1485–1502 (2019)

24. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

25. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

Lever: Making Intensive Validation Practical on Blockchain 461

26. Li, W., Andreina, S., Bohli, J.-M., Karame, G.: Securing proof-of-stake blockchain
protocols. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-
Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 297–
315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 17

27. SECBIT: How the winner got Fomo3d prize - a detailed explanation (2018)
28. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner

extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910–927. IEEE (2020)

29. Tjiam, K., Wang, R., Chen, H., Liang, K.: Your smart contracts are not secure:
investigating arbitrageurs and oracle manipulators in ethereum. In: CYSARM@
CCS, pp. 25–35 (2021)

30. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Hydrand: efficient continuous
distributed randomness. In: 2020 IEEE Symposium on Security and Privacy (SP),
Los Alamitos, CA, USA, pp. 73–89. IEEE Computer Society (2020)

31. Peng, Z., et al.: Neuchain: a fast permissioned blockchain system with deterministic
ordering. Proc. VLDB Endow. 15(11), 2585–2598 (2022)

32. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT 2019, pp. 16–30. Association for Com-
puting Machinery, New York (2019)

https://doi.org/10.1007/978-3-319-67816-0_17

Tikuna: An Ethereum Blockchain Network
Security Monitoring System

Andres Gomez Ramirez1,2(B), Loui Al Sardy2,3, and Francis Gomez Ramirez1,2

1 Edenia, Edificio Trifami, 10104 San José, Costa Rica
andres@edenia.com, andres.gomez@sakundi.io

2 Sakundi, Sepapaja tn 6, 15551 Tallinn, Estonia
loui.alsardy@fau.de

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Faculty of Engineering, Department of
Computer Science, Martensstr. 3, 91058 Erlangen, Germany

Abstract. Blockchain security is becoming increasingly relevant in today’s
cyberspace as it extends its influence inmany industries. This paper focuses on pro-
tecting the lowest level layer in the blockchain, particularly the P2P network that
allows the nodes to communicate and share information. The P2P network layer
may be vulnerable to several families of attacks, such as Distributed Denial of Ser-
vice (DDoS), eclipse attacks, or Sybil attacks. This layer is prone to threats inher-
ited from traditional P2P networks, and it must be analyzed and understood by col-
lectingdata and extracting insights from thenetworkbehavior to reduce those risks.
We introduce Tikuna, an open-source tool for monitoring and detecting potential
attacks on theEthereumblockchainP2Pnetwork, at an early stage.Tikuna employs
an unsupervised Long Short-Term Memory (LSTM) method based on Recurrent
Neural Network (RNN) to detect attacks and alert users. Empirical results indi-
cate that the proposed approach significantly improves detection performance,
with the ability to detect and classify attacks, including eclipse attacks, Covert
Flash attacks, and others that target the Ethereum blockchain P2P network layer,
with high accuracy. Our research findings demonstrate that Tikuna is a valuable
security tool for assisting operators to efficiently monitor and safeguard the status
of Ethereum validators and the wider P2P network.

Keywords: Ethereum blockchain · security · P2P network · deep learning ·
anomaly detection · vulnerabilities · eclipse attacks

1 Introduction

Ethereum was formally introduced by Vitalik Buterin in his whitepaper in 2014 [3] and
launched in 2015 as a public cryptocurrency blockchain platform that supports smart
contract functionality with Ether (ETH or �) as its native cryptocurrency and Solidity
as its programming language [37]; it is the second largest cryptocurrency after Bitcoin,
with around $200 billion as of March 2023 [7, 41].

Even though blockchain technology is highly secure and decentralized, it still offers
attack opportunities. For example, in blockchain networks, there are cases, such as the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 462–476, 2023.
https://doi.org/10.1007/978-981-99-7032-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_27&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_27

Tikuna: An Ethereum Blockchain Network Security Monitoring System 463

onesmentioned in [8, 20, 26, 27], in which the dApps, average users, or the network itself
are exposed to risks due to particular vulnerabilities [4, 8, 20, 21, 24, 26, 40, 42, 43].
Therefore, understanding the risks associated with blockchain networks and effectively
developing security-focused solutions is essential to any blockchain.

Peer-to-peer (P2P) networks are decentralized networks that include many nodes
storing and distributing data collectively, and each node operates as an individual peer.
The communication is carried out without a central authority; hence, all nodes obtain
the same amount of power and are responsible for the same activities. The P2P network
is one of the fundamental components of the blockchains that enable the creation and
operation of cryptocurrencies [28].

In the blockchain, the P2P network enables nodes (clients) to exchange data, for
instance, transactions and blocks. In general, there is an economic incentive for partic-
ipants to behave honestly. Given their public and distributed nature, blockchain com-
ponents are especially exposed to attackers who can easily reach and interact with the
different layers. Such adversaries may use a malicious node, tool, or software to take
advantage of specific weaknesses in the P2P network layer and launch several attacks
on the blockchain, like the ones described in [20, 26, 43]. The security of the entire
blockchain relies on the reliability of its P2P network.

The Ethereum P2P protocol [36] was influenced by the kademlia Distributed Hash
Table (DHT) design. Although kademlia possesses valuable properties, it has several
limitations in terms of its security [4, 22]. There are several known attacks for such a
protocol, including the eclipse attacks [20, 43], where it is possible to perform manip-
ulations against the Ethereum P2P network participants, and deanonymization attacks,
as presented in [14]. Other types of vulnerabilities are also present (s. Section 3.2).
Nevertheless, employing multiple detection and mitigation approaches [10, 11] can
significantly reduce or eliminate the severity of these risks.

This research paper introduces the following three main contributions:

• A Machine Learning (ML) approach that can detect several attacks at the Ethereum
P2P layer using peer message trace data in a testing simulation environment using
the libp2p testground framework;

• The detection of eclipse attacks on the mainnet is demonstrated by extracting custom-
generated discovery connection log data from the Ethereum client Prysm and utilizing
the LSTM neural network;

• A custom exploit of an eclipse attack was developed and tested against a modified
Prysm client on the mainnet. The peer table buckets could be fulfilled by a single
attacking machine, overcoming the limitation of a single peer per IP address by using
virtual addresses and Docker containers. With this exploit, the effectiveness of the
Tikuna approach can be tested.

Moreover, as a contribution to the Ethereum and blockchain security research com-
munities, we have made the Tikuna code publicly available as an open-source resource
at our GitHub repository [38].

This paper is organized as follows: Sect. 2 provides an overview of alternative and
related approaches. Next, in Sect. 3, the various types of blockchain P2P network attacks
are discussed, and the Tikuna approach, consisting of three primary steps, is introduced.
The efficacy of the Tikuna approach is evaluated in Sect. 4, utilizing a simulation and

464 A. Gomez Ramirez et al.

mainnet connection dataset. Finally, Sect. 5 concludes the paper by summarizing the
proposedwork, drawing conclusions, and identifyingpotential future researchdirections.

2 Related Work

Researchers have recently started focusing on the solution to address the different attack
vectors on the Ethereum platform and the P2P network security vulnerabilities. The
following are some of the most recent works that address the security challenges of the
Ethereum blockchain P2P networks:

Kabla et al. [21] focus on the security issues of each layer in theEthereumblockchain,
such as the network layer, by providing an in-depth analysis covering the following three
areas:

• Its potential attacks include eclipse attacks and account hijacking attacks.
• The vulnerabilities that lead to them are unlimited node creation and uncapped

incoming connections.
• Each incident’s consequences include double spending or a denial of service.

Furthermore, the work presents an overview of the effectiveness and limitations of
the current Intrusion Detection Systems (IDS) as a defense technique against various
Ethereum-based attacks.

Vyzovitis et al. [40] propose two different hardening measures for the GossipSub
protocol, the mesh construction and the score function. The authors describe some of the
countermeasures featured in the GossipSub protocol. However, the proposed methods
use fixed rules that should bemanually parametrized, which has limited their widespread
usage in the different Ethereum clients. We suggest the use of machine learning to select
parameters for the detection of attacks automatically.

The report from Least Authority [23] details the results of a security audit they con-
ducted on the next-generation node discovery protocol of the Ethereum P2P network
stack. It also reveals areas for improvement in the DevP2P specification, particularly the
lack of a proof-of-X scheme for identity generation, disjoint paths in the lookup oper-
ation, and broken handshake authentication. Finally, the report indicates that launching
eclipse attacks against the Ethereum clients using the current peer discovery specification
is trivial.

Marcus et al. [24] highlight the possibility of eclipse attacks on Ethereum nodes,
which could be carried out using only two hosts and could result in the victim’s view
of the blockchain being filtered or their computing power being co-opted. The authors’
contributions include a detailed explanation of the network and its relationship with the
kademlia protocol, two off-path eclipse attacks, and one involving time manipulation.
Furthermore, they have proposed countermeasures to prevent these attacks, such as using
a combination of IP address and public key for node identification and making design
decisions to harden Ethereum. Some of these countermeasures have been implemented
in Geth v1.8. Those measures restrict the number of peers connecting to a victim from
the same IP. We show that it is still possible to fulfill buckets from the peer table from a
single attacking server with a unique public IP address.

Xu et al. [43] discuss the eclipse attacks on the Ethereum P2P Network. The authors
developed an ETH-EDS eclipse-attack detectionmodel targeting the Ethereum platform.

Tikuna: An Ethereum Blockchain Network Security Monitoring System 465

This model used a random forest classification technique to examine the network’s
regular and attack data packets. The collected data packets included details like the size
of the tag packets, the frequency with which they were accessed, and the access time.
The findings of the experiments show that malicious network nodes could be identified
with a high degree of precision. We further propose using deep learning techniques
to automatically select features in the data and improve detection accuracy. We use
this research to compare our results. The details of our approach are discussed in the
following sections.

3 Tikuna Approach

3.1 Tikuna Terminology

Tikuna is a proof-of-concept peer-to-peer network security monitoring system devel-
oped initially for the Ethereum blockchain. It uses deep learning to extract security and
performance insights for the early detection of incidents [16, 30]. Our goal with Tikuna is
to support the Ethereum community by providing a cutting-edge open-source tool capa-
ble of collecting security-related data from the state of the P2P network and improving
network visibility by providing insights about the network’s current state.

The Ethereum peer-to-peer (P2P) discovery protocol [13, 36] enables nodes on the
network to locate and connectwith other peers.With this protocol, nodes on theEthereum
network can share information about transactions, blocks, and other network events. The
DevP2P architecture includes the discovery protocol as an essential component of the
communication system among Ethereum nodes.

Ethereum uses a discovery algorithm similar to Kademlia [25], a Distributed Hash
Table (DHT) communication protocol used before for other technologies such as torrents.
This protocol enables peers to identify and interact with each other in a decentralized
network without having to rely on a central server. Every node in the network is respon-
sible for its routing table, organized in the form of a binary tree with the node’s ID at the
tree’s root. Other peers are listed as leaf nodes. An existing peer can assist a new peer
in joining the network by checking its routing table to locate the node relatively closest
to the new peer’s ID. This is accomplished by utilizing a distance metric based on the
peer IDs’ XOR operation. This process of gathering information about other peers in
the network is repeated iteratively until the new peer has collected data on a significant
number of peers in the network. The distance metric is the reason for both the effective-
ness and the scalability of kademlia’s routing tables, even when applied to extremely
large networks.

The unsupervised anomaly detection method selected for this work is the long shor-
term memory. These algorithms are commonly used for analyzing time series data
and natural language processing. Below is a brief introduction to these neural network
algorithms.

Recurrent Neural Network. Recurrent neural networks [26] are frequently utilized
for processing sequential data, such as time series. RNN is specialized for processing a
sequence of values that are a function of time. We can define a data sequence as follows:

x(1), . . . , x(T) (1)

466 A. Gomez Ramirez et al.

where T is the number of available data samples. RNN can scale to long sequences
that would not be practical for networks without sequence-based specialization. Most
recurrent networks can also process sequences of variable length. One of these models is
especially interesting for this research. The long short-term memory model [1, 5, 26, 29,
34] uses a gatingmechanism to propagate information throughmany time steps properly.
LSTM networks have a specific memory cell and can capture long-term dependencies in
sequential data. They are valuable tools for language modeling problems. These models
are a version of recurrent neural networks useful for long interrelated sequences of data
[1, 5, 26, 29, 34]. LSTM was chosen in this research for anomaly detection to find
malicious connections to an Ethereum client. They can be defined with the following set
of equations:

−→
f t = σg(Wf

−→x t + Uf
−→
h t−1 + −→

b f) (2)

−→
i t = σg(Wi

−→x t + Ui
−→
h t−1 + −→

b i) (3)

−→o t = σg(Wo
−→x t + Uo

−→
h t−1 + −→

b o) (4)

−→c t = −→
f t

◦−→c t−1 + −→
i t

◦σc(Wc
−→x t + Uc

−→
h t−1 + −→

b c) (5)

−→
h t = ot

◦σh(ct) (6)

Similarly to the common RNN, −→x t is the input vector at a given iteration t,
−→
h t is

an output vector of the hidden layer, and −→c t is a cell state. In this case, W and U are

parameter matrices, and
−→
b are bias vectors.

−→
f t is a forget gate vector,

−→
i t is the input

gate vector and −→o t is the output gate vector. The operator ◦ is the entrywise product of
matrices.

In the next section, some attacks that can be detected using the described
unsupervised anomaly detection model are explained in detail.

3.2 Types of P2P Network Attacks

Adversaries can exploit some vulnerabilities in the blockchain’s P2P networks to.
perform a variety of attacks [4, 8, 20, 21, 24, 26, 40, 42, 43], including the following:

(1) Eclipse Attack [20, 24, 42]. An eclipse attack is an attack that can be carried out
against a single victim node or the whole network, where the adversary isolates the
victim nodewithin the P2P network by gaining complete control of the node’s access
to information or control over everything that the node sees.

(2) Censorship Attack [40]. During this type of attack, the adversaries will use the
nodes on the network that they have created with fake identities (i.e., Sybil nodes)
to propagate all messages, except for those the peer published that they are trying to
attack. In addition, the primary objective of the attacker is to censor the target and
stop its messages from being transmitted to the rest of the network.

Tikuna: An Ethereum Blockchain Network Security Monitoring System 467

(3) Sybil Attack [2, 12].Which is also known as pseudo-spoofing, is an attack that can
target any P2P network, such as blockchain networks, in which a single adversary
creates a large number of nodes on the network with fake identities to gain a more
significant presence in the network and eventually take control of the network. This
attack might also be used to carry out other types, such as an eclipse or censorship
attack.

(4) Cold Boot Attack [40]. In this type of attack, honest nodes and nodes with fake
identities (so-called Sybil nodes) join the network simultaneously; genuine peers
attempt to build their network while connecting to both Sybil and genuine peers.
Since there is no information about honest nodes to secure the network, the Sybils
can seize control. There are two possible scenarios for the attack: (1) when the
network bootstraps with Sybils joining from the start or (2) when new nodes join
the network when it is under attack.

(5) Flash andCovert FlashAttack [40].Sybilswill simultaneously connect and launch
attacks against the targeted network in a Flash attack.On the other hand, in theCovert
Flash Attack, Sybils join the network and act normally for some time to build up
their score. Then, they carry out a coordinated attack in which they stop propagating
messages altogether to disrupt the network entirely. Furthermore, as the adversaries
act appropriately up until that point and establish a valid profile, it is difficult to
identify the attack.

Our goal with Tikuna is to identify the described attacks using the anomaly detection
approach, that is, by finding peer connections to a victim that deviates from the expected
behavior of honest peers. We describe in detail the different components of Tikuna,
starting with the data collection and concluding with the anomaly detection module.

3.3 Tikuna Methodology

Figure 1 shows the methodology of Tikuna, which comprises three main steps: (1) data
extraction from a simulation environment using the testground [35] framework and the
Ethereummainnet; (2) training and classification analysis; and (3) P2P security incident
detection. The following subsections provide a detailed explanation of these steps.

Step 1: Data Extraction from Testground Simulation and Ethereum 2.0
Mainnet. Data extraction refers to extracting data from a simulation or mainnet envi-
ronment. It may include patterns that are challenging to identifywithout suitable analysis
and converting it into a format ideal for the training part, i.e., for training our LSTM
model.However, before this step, the datasetmust be preprocessed to extract the pertinent
features and convert the data into a format the AI model can interpret.

Every second, the measurement system gathers a sequence of monitoring data from
the participating peers in the network. The extracted data is parsed into structured data
represented by vectors of integers that are later normalized by applying the MinMaxS-
caler method fromSklearn. The used data includes timestamps and gossipmessage event
traces. The data extraction process in LSTM [1, 5, 6, 26, 29, 34] involves fourmain steps:
(1) the data cleaning step filters out any data from the simulation da-taset considered
irrelevant or corrupt; (2) the feature extraction step involves identify-ing and extracting
the relevant features from the dataset, which will be used to train the LSTM model; (3)

468 A. Gomez Ramirez et al.

Fig. 1. Overview of the proposed Tikuna Architecture.

The data normalization step scales the extracted features to a standard range, ensuring
that the LSTM model can handle them most effectively, and (4) in the sequence forma-
tion step, the extracted and normalized features are grouped into a time-series sequence
that can be utilized to train the LSTM model.

Step 2: Training and Classification Analysis. The model is fed with input sequences
and output labels corresponding to only normal data in the training phase. The model’s
weights and biases are then iteratively updated to reduce the difference between its
predictions and the actual outputs. This enables the model to understand the underlying
relationships in the data. in the evaluation part, on the other hand, the trained LSTM
model is utilized to predict new, unseen input sequences. The model receives a sequence
of input data and generates an output prediction based on the learning patterns during the
training process. This prediction may then be compared to the actual label to determine
the model’s accuracy. As illustrated in Fig. 2, the training data for Tikuna AI are the
output data from the preprocessing stage for regular peer communication within the
network. In addition, Tikuna uses this data to train the model and extract features that
the artificial neural network in the subsequent stage will utilize.

Step 3: Detection of P2P-Relevant Security Incidents. In this step, detecting security
incidents related to the P2P network involves identifying and recognizing connection
patterns that characterize the threats described in Sect. 3.2. The goal is to quickly identify
and respond to such incidents, minimize damage, and maintain network infra-structure
security. As shown in Fig. 2, an LSTM method [1, 5, 26, 29, 34] is used by Tikuna.
Such a model is based on a recurrent neural network, and it can remember long-term

Tikuna: An Ethereum Blockchain Network Security Monitoring System 469

dependencies over the input data (i.e., a series of connectionmonitoringdata). In addition,
a forecasting loss function is used to evaluate how well the neural network models the
training data by comparing the target and predicting output values to minimize this
function (i.e., to train the model to detect anomalies based on previous observations
under the assumption that honest peers monitoring data follow a consistent pattern).
Consequently, Tikuna detects P2P-relevant security incidentswhen the peers’ connection
data deviates from typical behavior.

Finally, Fig. 2 displays the essential steps of the process flow of tikuna that ensure
the model is thoroughly trained and capable of precisely detecting data anomalies.

Fig. 2. Tikuna AI Flow Diagram

4 Evaluation

4.1 Experiment Design

Experiments were conducted in two distinct network environments: one using the Pro-
tocol Labs simulation tool testground [35] and the other using the Ethereum mainnet to
evaluate the effectiveness and performance of the Tikuna approach thoroughly. In this

470 A. Gomez Ramirez et al.

research, we utilized simulations to demonstrate that Tikuna is a practical approach to
detecting Ethereum blockchain P2P network attacks.

For all the experiments performed, we have used a set of five dedicated root Hetzner
servers in different locationsworldwide. They all had 64GBofDDR4RAM, two 512GB
NVMe SSDs, and an AMD Ryzen CPU as hardware characteristics.

As mentioned before, we have only used the Ethereum mainnet client Prysm [31]
because it is the most popular node software at the time of writing. In future research,
we plan to explore other prevalent clients.

4.2 Attack Simulation Setup

Since we have two different environments for testing and the mainnet, we have used
various strategies to simulate the attacks we wanted to detect. The reason for using
two different settings is that the attacks are less complex and less harmful to evaluate
first in an isolated yet realistic testing environment. In the testing environment, we used
this repository [18], created from a research project by Protocol Labs aimed to recreate
several attacks on the libp2p (go-lang) library version, which is the one used byEthereum
(Prysm), Filecoin, and IPFS. All the attacks described in Sect. 3.2 are executed in such
a simulation environment. We have forked the gossipsub-hardening repository [19] and
modified it to store the peer message traces in a file. A considerable amount of traces
are produced during the simulation of the attacks; hence, we have grouped the traces
between the 12 types [17] of gossip-sub events and the number of events seen every 300
ms. In Fig. 3, we show samples of the kind of data used.

For the mainnet scenario, we have developed our own eclipse attack code to test
the effectiveness of our detection approach in a production environment. The exploit is
based on the work in [9] using the Rust programming language. It uses the testground
framework to run a series of Ethereum nodes that create fake node IDs specially crafted
to be located in specific buckets of a victim’s Ethereum client peer table. We have not
simulated the other attacks in the mainnet network because they are considerably more
complex to deploy than the eclipse attack. However, this attack shows the effectiveness
of Tikuna under real conditions.

4.3 Deep Learning Algorithm Setup

With the developed exploit code [33],we could simulate a realistic eclipse attack scenario
against a modified Prysm client (using the Geth discovery library). We have changed the
code of both projects so the victim node will not advertise the simulated fake peer IDs
to other honest peers in the network. We also added new logging features to collect the
UDP discovery connections and the gossip-sub message traces received and sent by the
victim client. The code forks are in the following repositories [15, 32]. Figure 4 shows
a sample of the collected UDP discovery connection data from the honest and attacking
peers. The data was collected from the debugging logs of a single victim Ethereum node.
Each line has several input features, including a timestamp, IP, and port removed from
the peer table, IP and port added to the peer table, and bucket where the peer is added.

Forecasting loss was utilized to model the sequences of peer traces and connection
log data and predict the subsequent observed event using the previous observations. By

Tikuna: An Ethereum Blockchain Network Security Monitoring System 471

Fig. 3. Example data extracted from testground simulations.

learning event patterns from regular series, we could automatically detect anomalies
when the event pattern deviates from the ordinary operation [5]. We divide the data into
fixed-length sequences to give the machine learning algorithm its inputs. Each input
sequence should correspond to a single output label, in our case, the following token in
the sequence. Then we needed to transform input sequences into tensors.

The tensors should have the shape (batch_size, time_steps, input_features), where
batch_size represents the number of input sequences in a single batch, time_steps rep-
resents the length of each input sequence, and input_features represents the number of
features in each input data point.

Fig. 4. Sample of normal and eclipse attack mainnet data

Formally, for an event ei at time step t, an input window W is created, which
contains m connection events preceding ei, i.e., W = [

et−m, . . . , et−2, et−1
]
. This is

achieved by splitting event sequences into subsequences. Window size and step size are
the parameters that control the division process.

Themodel is then trained to learn a conditional probability distributionP(et = ei|W)

for all ei in the set of distinct log events E = {e1, e2, ..., en}. In the detection phase, the
trained model predicts a new input window, which will be compared against the actual
event. An anomaly is seen if the ground truth is not one of the most k probable events
predicted by the model.

472 A. Gomez Ramirez et al.

Given the numerical labels, the trace data collected in the testground simulation
attacks required a mean squared error (squared L2 norm) loss function. On the other
hand, the discovery connection data collected from the mainnet attacks required a cross-
entropy loss function because of the categorical labels (the most probable following
tokens).

Table 1. Parameters selected for the LSTM model.

Parameters/ Data type Testground trace data Mainnet discovery connection data

hidden_size 20 128

num_layers 2 2

num_directions 2 2

embedding_dim 5 10

epochs 100 100

batch_size 1000 1024

learning_rate 0.01 0.01

topk - 5

patience 5 30

ranxdom_seed 50 42

Table 1 summarizes the various parameters that may be adjusted in the LSTMmodel
for the specific type of data modeled. The hidden_size, num_layers, num_directions,
and the embedding_dim were all fixed, and the suggested model defined the values for
each parameter. The parameters max_token_len, min_token_count, epochs, batch_size,
learning_rate, topk, patience, and random_seed had their values predetermined, and the
relevant experimental experience was used to identify their appropriate ranges.

4.4 Experiment Results

Regarding the eclipse attack on a mainnet client, it was possible to overcome the Prysm
restriction by adding many nodes from the same public IP address into the same peer
table bucket. We used the ECDSA signatures using the secp256k1 curve to generate fake
peer IDs and craft many Ethereum Node Records (ENR) for nodes that communicated
with the victim’s Prysm client. The exploit code will be published once it is reviewed
by the Ethereum Foundation to confirm whether a fix is needed. We include in this
paper the ML detection results for three different attacks in the testground simulation
environment: (1) multiple Sybil nodes launching eclipse attacks against a single node;
(2) various nodes trying covert attacks against several honest peers; and (3) several
attackers trying to eclipse an entire peer network. For the mainnet environment, we
show the detection results for multiple nodes trying to eclipse a single victim node, and
we compare the results with a previous approach using random forest classification over
network packets [29]. Refer to Sect. 3.2 for an explanation of such attacks.

Tikuna: An Ethereum Blockchain Network Security Monitoring System 473

The results include standard measures like precision, recall, F1 score, and accuracy,
using the equations listed in Table 2 to evaluate the models with the different data types.

Table 2. Standard measures equations used to evaluate the models

Equation

precision = TP
TP+FP

Recall = TP
TP+FN

F1score = 2∗precision∗recall
precision+recall

Accuracy = TP+TN
TP+TN+FP+FN

Table 3 presents the results of applying our Tikuna anomaly detection approach
for detecting attacks in simulated testground runs, including the described metrics, the
number of attackers, and the number of victims.

The results were collected after several LSTM iterations with training and evaluation
data. As can be seen in Table 3, the best results were obtained for the multiple attacker
single victim scenario, with metrics close to 100% of performance. For the other two
scenarios, the metrics indicate a lesser optimal performance, especially in recall and
accuracy metrics, but still, our approach shows good detection ability.

Table 3. Summary of Tikuna results using the simulation test data

Attack / Metric Attackers Victims Precision Recall F1 score Accuracy

Eclipse
Single Victim

100 1 1.00 0.99 0.99 0.99

Covert Attack 100 20 1.00 0.80 0.89 0.80

Eclipse Network 200 50 1.00 0.79 0.88 0.79

Table 4 presents the results of applying our Tikuna approach to the Ethereum main-
net discovery connection data, including precision, recall, F1 score, and accuracy. For
completeness, we have also included the results we obtained using the popular trans-
former deep learning architecture [39]. Four Hetzner servers were used for creating
attacking Ethereum nodes, and one was used as a victim node. Except for recall, the
Tikuna LSTM anomaly detection approach presented better results than the comparable
work in [43], using Random Forest Classification (RFC) over network packets in all the
metrics, especially the F1 metric that represents a better balance among true and false
positives. The recall measure was the only metric where the RFCwork performed better.
The transformer model performed similarly to the RFC technique, indicating that it did
not outperform the LSTM model. This result is surprising given transformers’ success
in natural language processing.

474 A. Gomez Ramirez et al.

Table 4. Summary of Tikuna results using the Ethereum mainnet

Approach / Metric Precision Recall F1 score Accuracy

Tikuna 0.81 0.88 0.85 0.87

RFC 0.71 0.95 0.62 -

Transformer 0.74 0.99 0.6 0.6

If we compare the results from the testground environment to the mainnet one,
more optimal results were obtained for the simulation case with connection trace data.
However, that same approach did not work for mainnet detection. Furthermore, the
selected discovery connection log data model performed well, making it appropriate for
usage in Ethereum blockchain validators.

Furthermore, we conducted experiments to assess the processing time of Tikuna for
evaluating new data. On the hardware setup described, our approach demonstrated an
average processing time of 3 ms to analyze 20 consensus client log lines. This finding
highlights the suitability of our approach for real-time attack detection.

5 Conclusion and Future Work

This paper presents Tikuna, an Ethereum blockchain network security monitoring and
anomaly detection system, using a long short-termmemory-based neural networkmodel.
We introduced three main contributions: our method can detect several attacks at the
P2P layer using peer message trace data in a testing simulation environment using the
testground tool.We demonstrate the detection of eclipse attacks on theEthereummainnet
by extracting discovery connection log data from the Prysm client. In addition, a custom
exploit implementing an eclipse attack was developed and tested against a modified
Prysm client on the mainnet.

Tikuna learns and encodes the expected behavior and the interaction between peers
within the network, including timestamps, gossip-sub connection features, and discovery
connection log data. It tries to classify this data as normal or malicious based on several
attack patterns, such as eclipse and Covert attacks. Moreover, we presented the results of
applying our approach to the Ethereum P2P network. We still need to work on reducing
the number of false positives in the detection task, a classical problem faced byML-based
intrusion detection systems.

In future work, our team will continue with the development of Tikuna. Our ongoing
efforts will be focused on identifying additional attacks, minimizing false positives,
detecting real-world incidents, and incorporating different Ethereum clients. Finally, we
will explore using our approach in other P2P networks based on the same technology
and libraries used by Ethereum, like Filecoin and IPFS.

Acknowledgment. The authors gratefully acknowledge that the Ethereum Foundation Academic
Research Grants supported the work presented. We also acknowledge all the support and helpful
suggestions from our colleagues on the Edenia team.

Tikuna: An Ethereum Blockchain Network Security Monitoring System 475

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J.
Mach. Learn. Res. 3, 1137–1155. ACM (2003)

2. Bit2Me: https://academy.bit2me.com/en/que-es-un-ataque-sybil/
3. Buterin,V.:Ethereum: anext-generation smart contract anddecentralized applicationplatform

(2014). https://ethereum.org/en/whitepaper/
4. Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on Ethereum systems security: vulner-

abilities, attacks, and defenses. ACM Comput. Surv., 53(3), 1–43, ACM (2021). https://doi.
org/10.1145/3391195

5. Chen, Z., et al.: Experience report: deep learning-based system log analysis for anomaly
detection. arXiv (2022). https://doi.org/10.48550/arXiv.2107.05908

6. C. Liu, et al.: Augmented LSTM framework to construct medical self-diagnosis android.
In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 251–260. IEEE
(2016). https://doi.org/10.1109/ICDM.2016.0036

7. CoinMarketCap: Today’s cryptocurrency prices by market cap (2023). https://coinmarketcap.
com/

8. Cortes-Goicoechea, M., Bautista-Gomez, L.: Discovering the Ethereum2 p2p network. In:
BCCA, pp. 81–88 (2021). https://doi.org/10.1109/BCCA53669.2021.9657041

9. Discv5-testground. https://github.com/ackintosh/discv5-testground. Accessed 15 Mar 2023
10. Du,M. Li, F. Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis from system

logs through deep learning. In: ACM SIGSAC, ACM (2017)
11. Ede, T.V., et al.: DeepCASE: semi-supervised contextual analysis of security events. In: 2022

IEEE Symposium on Security and Privacy (SP), pp. 522–539. IEEE (2022)
12. Eisenbarth, J.P., et al.: Ethereum’s peer-to-peer network monitoring and sybil attack

prevention. J. Netw. Syst. Manage. 30, 65. Springer (2022)
13. Ethereum peer-to-peer (P2P) discovery protocol. https://github.com/ethereum/devp2
14. Gao, Y., Shi, J., Wang, X., Shi, R., Yin, Z., Yang, Y.: Practical deanonymization attack

in Ethereum based on P2P network analysis. In: ISPA/BDCloud/SocialCom/SustainCom,
pp. 1402–1409. IEEE (2021)

15. Go-ethereum. https://github.com/sakundi/go-ethereum. Accessed 15 Mar 2023
16. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In:

Advances in Neural Information Processing Systems. arXiv (2019)
17. Go-libp2p-pubsub. https://github.com/libp2p/go-libp2p-pubsub/blob/master/pb/trace.pb.go.

Accessed 15 Mar 2023
18. Gossipsub-hardening. https://github.com/libp2p/gossipsub-hardening/tree/master/test.

Accessed 15 Mar 2023
19. Gossipsub-hardening. https://github.com/sakundi/gossipsub-hardening. Accessed 15 Mar

2023
20. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer

network. In: USENIX Security 2015, pp. 129–144. USENIX Association (2015)
21. Kabla, A.H.H., et al.: Applicability of intrusion detection system on ethereum attacks: a

comprehensive review. In: IEEE Access, 10, 71632–71655. IEEE (2022)
22. König, L., Unger, S., Kieseberg, P., Tjoa, S.: The risks of the blockchain: a review on current

vulnerabilities and attacks. JISIS 10, 110–127 (2020)
23. Least Authority: node discovery protocol, node discovery protocol, Ethereum founda-

tion (2019). https://leastauthority.com/blog/audits/audit-of-ethereum-foundations-node-dis
covery-protocol/

24. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on Ethereum’s peer-to-
peer network. In: IACR Cryptology ePrint Archive, vol. 2018, p. 236 (2020). https://eprint.
iacr.org/2018/236

https://academy.bit2me.com/en/que-es-un-ataque-sybil/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/3391195
https://doi.org/10.48550/arXiv.2107.05908
https://doi.org/10.1109/ICDM.2016.0036
https://coinmarketcap.com/
https://doi.org/10.1109/BCCA53669.2021.9657041
https://github.com/ackintosh/discv5-testground
https://github.com/ethereum/devp2
https://github.com/sakundi/go-ethereum
https://github.com/libp2p/go-libp2p-pubsub/blob/master/pb/trace.pb.go
https://github.com/libp2p/gossipsub-hardening/tree/master/test
https://github.com/sakundi/gossipsub-hardening
https://leastauthority.com/blog/audits/audit-of-ethereum-foundations-node-discovery-protocol/
https://eprint.iacr.org/2018/236

476 A. Gomez Ramirez et al.

25. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the
XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol.
2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

26. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network
based language model. In: Interspeech, vol. 2(3) (2010)

27. Saad, M., et al.: Exploring the attack surface of blockchain: a comprehensive survey. IEEE
Commun. Surv. Tutorials, 22, 1977–2008. IEEE (2020)

28. Neudecker, T., Hartenstein, H.: Network layer aspects of permissionless blockchains. IEEE
Commun. Surv. Tutorials 21, 838–857. IEEE (2019)

29. Olah, C.: Understanding LSTM Networks (2015). http://colah.github.io/posts/2015-08-Und
erstanding-LSTMs

30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. In: JMLR 12, 2825–2830.
arXiv (2011). https://doi.org/10.48550/arXiv.1201.0490

31. Prysm. https://github.com/prysmaticlabs/prysm. Accessed 15 Mar 2023
32. Prysm. https://github.com/sakundi/prysm. Accessed 15 Mar 2023
33. Sakundi. https://github.com/sakundi/discv5-testground/tree/sakundi. Accessed 08 July 2023
34. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In:

Interspeech, pp. 194–197 (2012)
35. Testground. https://docs.testground.ai/master/#/. Accessed 15 March 2023
36. The Ethereum Foundation: Devp2p—Ethereum peer-to-peer networking specifications.

https://github.com/ethereum/devp2p
37. The Solidity Authors. https://docs.soliditylang.org/en/v0.8.19/
38. Tikuna. https://github.com/edenia/tikuna. Accessed 08 July 2023
39. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing

Systems, vol. 30, arXiv (2017). https://doi.org/10.48550/arXiv.1706.03762
40. Vyzovitis, D., et al.: GossipSub: attack-resilient message propagation in the filecoin and

ETH2.0 networks. arXiv (2020). https://doi.org/10.48550/arXiv.2007.02754
41. Wood, D.D.: Ethereum: a secure decentralised generalised transaction ledger (2014). http://

paper.gavwood.com/
42. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Technical Report, ETH Zurich (2016)
43. Xu, G., et al.: Am I eclipsed? A smart detector of eclipse attacks for Ethereum. Comput.

Secur. 88, 101604. Elsevier (2019). https://doi.org/10.1016/j.cose.2019.101604

https://doi.org/10.1007/3-540-45748-8_5
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://doi.org/10.48550/arXiv.1201.0490
https://github.com/prysmaticlabs/prysm
https://github.com/sakundi/prysm
https://github.com/sakundi/discv5-testground/tree/sakundi
https://docs.testground.ai/master/#/
https://github.com/ethereum/devp2p
https://docs.soliditylang.org/en/v0.8.19/
https://github.com/edenia/tikuna
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2007.02754
http://paper.gavwood.com/
https://doi.org/10.1016/j.cose.2019.101604

Isogeny-Based Multi-signature Scheme

Mathieu de Goyon1(B) and Atsuko Miyaji1,2

1 Osaka University, Osaka, Japan
mathieu@cy2sec.comm.eng.osaka-u.ac.jp, miyaji@comm.eng.osaka-u.ac.jp

2 Japan Advanced Institute of Technology, Ishikawa, Japan

Abstract. Multi-signatures are protocols that allow multiple signers to
produce a joint signature on the same message. They are used in areas
such as blockchains for cryptocurrencies. In recent years, multi-signature
schemes have been proposed in lattice-based cryptography as well as
pairing-based cryptography but there are currently no multi-signature
schemes in isogeny-based cryptography.

In this paper, we propose a multi-signature scheme by extending
the Commutative Supersingular Isogeny based Fiat-Shamir signature
(CSI-FiSh), as well as its variant CSI-FiSh with Sharing-friendly Keys
(CSI-SharK) to the multiple signers setting. To adapt our scheme to
the isogeny setting, we use a round-robin during both the key aggrega-
tion and the signature aggregation. We also prove the security of our
scheme in the Random Oracle Model (ROM) by using the Double Fork-
ing Lemma Technique.

Keywords: Isogenies · Multi-Signature · CSI-FiSh · Hard
homogeneous spaces

1 Introduction

Isogenies - Isogeny-based cryptography was first introduced in 1997 by Cou-
veignes [8], and later independently rediscovered by Stolbunov and Rostovtsev
[21,22] a few years later. They used isogenies between ordinary-elliptic curves to
obtain an identification scheme (CRS) and a Diffie-Hellman type key agreement
scheme. However, those schemes were impractical and later proven to be insecure
by Childs et al. [7].

Isogeny only started gaining attention again in 2011 and 2014 after Jao et al.
[14,16] proposed a new Diffie-Hellman type key exchange scheme using supersin-
gular elliptic curves instead. The scheme was later named Supersingular Isogeny
Diffie Hellman (SIDH) and attracted most of the attention in isogeny-based cryp-
tography for a few years. However, SIDH is not a direct translation of CRS but
a completely different scheme which compensates the non-commutativity of the
endomorphism ring in the case of supersingular elliptic curves by revealing the
image of specific points. This later proved to be an issue as Castryck and Decru
[5] and Maino and Martindale [18] were able to exploit those points to break
Supersingular Isogeny Key Encapsulation (SIKE), the SIDH-based submission
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 477–491, 2023.
https://doi.org/10.1007/978-981-99-7032-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_28&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_28

478 M. de Goyon and A. Miyaji

to the National Institute of Standards and Technology (NIST). Robert [20] later
extended their attack to break SIDH in all instances.

The other isogeny-based key exchange scheme, Commutative Supersingular
Isogeny Diffie Hellman (CSIDH), was proposed by Castryck et al. [6] in 2018.
It is a direct adaptation of CRS to the supersingular setting by restricting the
endomorphism ring to Fp, making the key-exchange more efficient while improv-
ing the security. CSIDH is still believed to be secure under Quantum Computers
and is the main key exchange protocol in isogeny-based cryptography.

Two signature schemes were proposed based on CSIDH, SeaSign [13] by de
Feo and Galbraith and Commutative Supersingular Isogeny based Fiat-Shamir
signature(CSI-FiSh) [3] by Beullens et al. Both of them are obtained by apply-
ing a Fiat-Shamir transform on an isogeny-based identification scheme, which is
an idea originally proposed by Stolbunov in his PhD thesis [23]. While SeaSign
suffers some efficiency problem, CSI-FiSh managed to propose an efficient signa-
ture scheme by achieving a record-time computation of the underlying ideal-class
group, making it one of the first practical isogeny-based signature scheme.

As research on isogeny-based cryptography only started recently and schemes
that were built using SIDH have been broken, some useful primitives have
still not been adapted to isogeny-based cryptography. When considering sig-
nature schemes, while there are currently two main isogeny-based signature
schemes, some specific types of signature schemes have still not been adapted
to the isogeny-setting. One of the missing primitives is an isogeny-based multi-
signature, which we attempt to build in this paper. We first work on a protocol
in the Random Oracle model (ROM), while hoping to modify the protocol to be
secure in the Quantum Random Oracle Model (QROM) in the future.

Multi-signatures - A multi-signature scheme is a scheme in which n parties
with key pairs pki, ski (i ∈ {1, · · · , n}) sign on a common message and output a
multi-signature σ of size independent from n. This is commonly done by having
each party output a signature σi and aggregating them to obtain the multi-
signature. However, this becomes an issue in the isogeny setting as there is no
way to combine elliptic curves without knowing the corresponding isogeny. To
compensate this fact, we use a round-robin so that all signers participate in the
computation together instead of compiling everything.

There are several interesting properties that one might want to achieve
when constructing a multi-signature scheme. The first one, which is called Key
Aggregation [19] is to allow a verifier to verify a multi-signature against an
aggregated public key instead of the public key of each signer. As a result, the
verification function used in the multi-signature is the same one as in the signa-
ture which it originated from. The second one is to achieve security in the Plain
Public Key Model (PPK) [2]. This requires that each participant publishes
his public key in the clear without a dedicated key generation protocol and that
an adversary is unable to convince a verifier that an honest party has partici-
pated in signing any message unless the party has agreed to it. An alternative
to PPK is to have each signer generate a proof of knowledge of their secret key
by using a Trusted Third Party.

Isogeny-Based Multi-signature Scheme 479

Many multi-signatures schemes have been proposed based on Schnorr Signa-
ture schemes such as KAIAS [17], pairing signature schemes such as Pixel [11]
or Lattice signature schemes such as MuSig-L [4]. Threshold signature schemes
are another type of signature schemes generated by multiple signers. A threshold
signature k out of n can only be generated if k out of the n participants agree
to compute the signature together. As a result, multi-signatures share many
similarities with n out of n threshold signatures as they are both signatures
generated by n signers. However, while threshold signature schemes commonly
generate a secret and then distribute shares to each participant by using the
Shamir Secret Sharing [15] or alternatives such as Replicated Secret Sharing
[10], multi-signatures uses the same Key Generation algorithm as the base sig-
nature. Moreover, threshold signature are verified by recomputing the secret if
enough people have agreed to sign and then verifying the signature, so the secret
can only be used once. In a multi-signature scheme, the same key pair can be
used several times, and if the scheme supports Key Aggregation, the verification
algorithm is the same as in the base signature scheme. While several thresh-
old signatures have been proposed in isogeny based cryptography such as by de
Feo and Meyer [15] or Cozzo and Smart [10] and their variant versions using
CSI-FiSh with Sharing-friendly Keys (CSI-SharK) [1], there are currently to our
knowledge no multi-signatures in isogeny-based cryptography.

Our Contribution - We construct a multi-signature scheme, which sup-
ports Key Aggregation by extending CSI-FiSh to multiple signers. The result-
ing scheme is proven secure in the Random Oracle Model (ROM) in the Plain
Public Key Model (PPK) in a honest-but-curious setting by using the Double
Forking Lemma in a similar way to [19]. We also extend the variant of CSI-Fish,
CSI-SharK.

We first introduce multi-signature schemes, isogeny-based cryptography and
relevant signature schemes in Sect. 2. We introduce the multi-signature protocol
in Sect. 3 and prove its security in Sect. 4. Finally, we compare the computations
of the multi-signature scheme to CSI-FiSh in Sect. 5.

2 Preliminaries

In this section, we briefly introduce multi-signature schemes, Isogeny-based cryp-
tography, as well as CSI-FiSh [3] and CSI-SharK [1] which form the basis of our
multi-signature schemes.

2.1 Multi-signature

We describe the notion of multi-signature schemes and their security. We take
the approach taken in [4,17,19] where signers compute an aggregated public key
which is used during Verification. Each signer will output a signature on the
same message which is aggregated to obtain the multi-signature. We define the
algorithms as Key Aggregation and Signature Aggregation. A multi-signature
scheme is generally composed of the following algorithms:

480 M. de Goyon and A. Miyaji

– Param(1λ) −→ params: given the security parameter λ, output the param-
eters params

– Keygen(params) −→ (pk, sk): given the parameters, output a key pair
(pk, sk) with pk public key and sk secret key.

– KeyAgg(params,Lpk) −→ Agg: given the parameters and a list of all public
keys, output the aggregated public key Agg.

– Sign(params,Lpk, sk,m) −→ σ: given the parameters, a list of public keys
of all signers Lpk and the secret key, output a signature σ

– SignAgg(params,Lσ −→ Σ: given the parameters and a list of signatures
of all signers, output the multi-signature Σ

– Verif(params,Agg,m,Σ) −→ b: given the parameters, the aggregated public
key and the multi-signature, output a bit b. If the multi-signature is valid
output 1, otherwise output 0.

We define the notion of unforgeability for multi-signature by the following
three-stage game:

Setup: Challenger generates params ←− Param(1λ) and let (pk∗, sk∗) ←−
Keygen(params) be a challenge key pair. It runs the adversary A(params, pk∗).

Signature queries: A has access to the sign oracle for any message m and
any set of signer public keys Lpk = {pk1, · · · , pkn} where pki = pk∗ for any i.
Oracle will simulate the honest signer and output the forgery signature σi.

Output: Adversary outputs a forged multi-signature Σ∗ on a message m∗ not
previously queried and a set Lpk including pk∗. Adversary wins if the following
equation is satisfied:

V erif(params,KeyAgg(params,Lpk,m∗), Σ∗) = 1 (1)

We also introduce the notions of Generalized Forking Lemma [2] and Rogue
Key Attacks.

Definition 1. Generalized Forking Lemma- Fix integers q and l. Let A
be a randomized algorithm which takes as input some main input inp and l-bit
strings {h1, · · · , hq} and returns either ⊥ or a pair (i, out), where i ∈ {1, · · · , q}
and out is some side output. The accepting probability of A, denoted acc(A),
is defined as the probability, over the random draw of inp (according to some
well-understood distribution), {h1, · · · , hq} ←− {0, 1}l and the random coins of
A, that A returns a non-⊥ output. Consider algorithm ForkA, taking as input
inp, described in Algorithm 1. Let frk be the probability (over the draw of inp
and the random coins of ForkA) that ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
2l

)
(2)

One of the principal issues when dealing with multi-signature schemes is
rogue-key attacks, where a subset of corrupted signers 1 ≤ t < n, uses
public keys pk

′
n−t+1, · · · , pk

′
n computed as functions of public keys of hon-

est users pkn−t+1, · · · , pkn to produce forgeries on the set {pk1, · · · , pkn−t,
pk

′
n−t+1, · · · , pk

′
n}.

Isogeny-Based Multi-signature Scheme 481

Algorithm 1. Forking Algorithm
1: pick random coins ρ for A
2: h1, · · · , hq ←− {0, 1}l

3: α ←− A(inp, h1, · · · , hq, ρ)
4: if α =⊥ then
5: return ⊥
6: else
7: parse α as (i, out)

8: h
′
1, · · · , h

′
q ←− {0, 1}l

9: α
′ ←− A(inp, h1, · · · , hq, h

′
1, · · · , h

′
qρ)

10: if α
′
=⊥ then

11: return ⊥
12: else
13: parse α

′
as (i

′
, out

′
)

14: if i = i
′

and hi �= h
′
i then

15: return (i, out, out
′
)

16: else
17: return ⊥
18: end if
19: end if
20: end if

2.2 Isogenies

A good introduction to Isogeny-based cryptography can be found in the Lecture
Notes by De Feo [12]. Let E be an elliptic curve over a finite field Fp with p a
large prime. E is supersingular if and only if #E = p+1 and ordinary otherwise.

Let E,E′ be two elliptic curves over Fp. An isogeny φ : E −→ E′ is a mor-
phism from E to E′ such that OE = φ(0E′). An endomorphism φ is an isogeny
from an elliptic curve to itself. For an elliptic curve E, the set of endomorphisms
forms a ring, denoted End(E) and called the endomorphism ring. We denote
End(E)Fp

the restriction of End(E) to the base field. In the supersingular case,
we have a strict inclusion End(E)Fp

� End(E), where End(E) is an order in a
quaternion algebra while End(E)Fp

is an order in an imaginary quadratic field
Q(

√−p). In the rest of the paper, the endomorphism ring we will refer to is
End(E)Fp

, which we will denote as O.
The ideal class group of O is the quotient of fractional invertible ideals in O by

the principal fractional invertible ideals, denoted as Cl(O). Let a ⊂ O be an ideal,
we define the a-torsion group of E elliptic curve as E[a] = {P ∈ E|α(P) = 0 for
all α ∈ a}. Using this torsion group, we can define the isogeny φa : E −→ Ea

with Ea = E/E[a], which we denote as a � E. This isogeny is well-defined and
unique up to Fp-isomorphism and the group Cl(O) acts via � on the set E
of Fp-isomorphism classes of elliptic curves with endomorphism ring O. It is
possible to show that Cl(O) acts freely and transitively on E , i.e. E is a principal
homogeneous space for Cl(O). In the rest of paper, we will assume that Cl(O)
is cyclic of order N , generated by the class of an ideal g.

482 M. de Goyon and A. Miyaji

2.3 CSIDH

As stated in Sect. 1, CSIDH is the main key exchange protocol in Isogeny-based
Cryptography. It was proposed by Castryck et al. [6] in 2018 and uses an efficient
commutative group action � by using supersingular elliptic curves with many
small Fp-rational subgroups.

Given #E(Fp) = p + 1 for supersingular elliptic curves, CSIDH uses p of the
form p = 4 · l1 · · · ln −1 such that #E(Fp) = 4 · l1 · · · ln with li small distinct odd
primes. In Q(

√−p), li splits as (li) =< li, π − 1 >< li, π + 1 > where π =
√−p

is the Fp-Frobenius endomorphism. We denote the first ideal factor < li, π −1 >
as li.

CSIDH uses ideals of the form
∏

lei
i with ei exponents chosen uniformly

from some interval] − B,B[. Let E0 : y2 = x3 + x over Fp. Each isomorphism
class of a curve with endomorphism ring O = Z[π] can be represented by its
coefficient A defining the curve EA : y2 = x3 + Ax2 + x. We denote A the set
of such coefficients, the ideal class group Cl(O) acts freely and transitively on
A via the class group action � : Cl(O) ×A −→ A, or given Cl(O) is of order N ,
[] : ZN × A −→ A. In the rest of the paper, we will refer to a curve EA with its
isomorphic class by the corresponding coefficient A.

2.4 CSI-FiSh

In this section, we briefly describe CSI-FiSh and its variant CSI-SharK. CSI-FiSh
is an improved version of the signature scheme proposed by Stolbunov. Both CSI-
FiSh and CSI-SharK can be obtaining by applying a Fiat-Shamir Transform on
a basic three-pass ID Protocol. The starting curve is the same as for CSIDH,
as defined previously. CSI-FiSh uses several optimization such as using several
secret keys and including the quadratic twist to increase the soundness.

The protocol is given in Algorithms 2, 3, 4 more details can be found in [3]:

Algorithm 2. CSI-FiSh Key Generation
Input E0, N
Output pk, sk

1: for i = 1, · · · , S − 1 do
2: sample xi ←− ZN and compute Yi = [xi]E0

3: end for
4: return sk = (x1, · · · , xk−1), pk = (Y1, · · · , Yk−1)

CSI-Shark (short for CSI-FiSh with Sharing-friendly Keys) is an alternative
to CSI-FiSh proposed by Atapoor et al. [1]. The scheme is almost identical to
CSI-FiSh but the authors managed to reduce the size of the secret keys by using
an exceptional set instead of using k − 1 distinct secret keys.

Definition 2. Exceptional Set: An exceptional set modulo N is a set Ck−1 =
{c0, · · · , ck−1} ⊆ ZN where the pairwise difference ci − cj of all elements ci �= cj

is invertible modulo N .

Isogeny-Based Multi-signature Scheme 483

Algorithm 3. CSI-FiSh Sign
Input sk, m
Output σ

1: for i = 1, · · · , t do
2: sample bi ←− ZN and compute Ei = [bi]E0

3: end for
4: Set (c1, · · · , ct) = H(E1 · · · Et||m)
5: for i = 1, · · · , t do
6: set ri = bi − sign(|ci|) · x|ci| (mod N)
7: end for
8: return σ = (ri, ci)

t
i=1

Algorithm 4. CSI-FiSh Verif
Input pk, σ, m
Output bit b

1: for i = 1, · · · , t do
2: Compute E

′
i = [ri]Yci

3: end for
4: Set (c

′
1, · · · , c

′
t) = H(E

′
1 · · · E′

t ||m)

5: if (c
′
1, · · · , c

′
t) = (c1, · · · , ct) then

6: return 1
7: end if
8: return 0

Definition 3. Super-Exceptional Set: A super-exceptional set modulo N is
an exceptional set Ck−1 = {c0, · · · , ck−1} ⊆ ZN where also the pairwise sum
ci + cj of all elements ci, cj is invertible modulo N .

We briefly highlight the differences between CSI-FiSh and CSI-SharK. In
the key generation protocol, only one secret key a is sampled, as well as an
exceptional set CS−1 = {c1, · · · , ck−1}. The public key is calculated as Yi =
[ci · x]E0. In the Signing and Verification, (c1, · · · , ct) is changed to (d1, · · · , dt)
to prevent confusion with the exceptional set. Finally, ri is calculated as ri =
bi − sign(|di|)c|di|x (mod N).

Both signature schemes rely on the hardness of inverting a group action,
more specifically random instances of a multi-target inversion problem :

Definition 4. Multi-Target Group Action Inverse Problem (MT-
GAIP): Given k curves Ei, with End(E1) = · · · =End(Ek) = O, find an ideal
a ⊂ O such that Ei = a � Ej for some i, j ∈ {1, · · · , k} with i �= j.

Definition 5. Ck−1-Vectorization Problem with Auxiliary Inputs
(Ck−1-VPwAI): Given an element E ∈ E and the pairs (ci, [cix]E)k−1

i=1 , where
Ck−1 = {c0 = 0, c1 = 1, · · · , ck−1} is an exceptional set, find x ∈ ZN

CSI-FiSh is sEUF-CMA secure in the QROM under the MT-GAIP assump-
tion, while CSI-Shark is sEUF-CMA secure in the QROM under the MT-GAIP

484 M. de Goyon and A. Miyaji

assumption and the Ck−1-VPwAI assumption. See [1] for the full explanation.
Both signature schemes achieve similar running times, which vary depending on
the parameters t, k, λ chosen, satisfying t = λ log2(k). The hash function used
H : {0, 1}∗ −→ C is modeled as a random oracle. C is the challenge space, with
for i ∈ [1, t], ci ∈ [−k + 1, k − 1].

2.5 Hard-Homogeneous Spaces

Hard Homogeneous Spaces (HHS) were introduced by Couveignes in [9] as a
generalization of Diffie-Hellman schemes. A principal homogeneous space is a
set E that is acted upon transitively by a group G. It is defined by the following
map

G × E −→ E
g � E = E′

satisfying the following properties:

– Compatibility : g
′
� (g � E) = (g

′
g) � E for any g, g

′ ∈ G and E ∈ E ;
– Identity : e � E = E if and only if e ∈ G is the identity element;
– Transitivity : For any E,E

′ ∈ E there exists a unique g ∈ G such that
g � E = E

′
.

Couveignes defines a HHS as a finite principal homogeneous space with some
additional algorithmic properties. He requires that the following problems can
be solved efficiently (e.g., in polynomial time):

– Group operations: decide whether a string g represents an element of G,
decide whether g = g

′
, compute g−1 and gg

′
;

– Sampling : sample uniformly random elements from G;
– Membership: decide whether a string E represents an element of E , decide

whether E = E
′
;

– Action: Given g and E, compute g � E.

Furthermore, the following problems should be hard (e.g., not known to be solv-
able in polynomial time):

– Vectorization: Given E,E
′ ∈ E , find g ∈ G such that g � E = E

′
;

– Parallelization: Given E,E
′
, F ∈ E , such that E

′
= g � E, find F

′
= g � F .

CSI-FiSh is currently the only known instance of HHS in Isogeny-based cryp-
tography, with E the set of supersingular elliptic curves over Fp and Cl(O) the
group acting on E .

Isogeny-Based Multi-signature Scheme 485

3 Multi-signature Protocols

In this section, we introduce our multi-signature scheme, which is based on CSI-
FiSh and highlight how to adapt it to CSI-SharK. In the rest of this section,
we consider n parties P1, · · · , Pn attempting to generate a multi-signature. We
will denote as S the set {1, · · · , n}. For readability, we represent the indexes
representing the parties as (i) and the others as i. We use the notations of HHS
as defined in Sect. 2. Let G be the group acting on the set E . We will write [a]
for ga and [a]E for ga � E.

We introduce two different Hash Functions Hagg : {0, 1}∗ −→ G and Hsign :
{0, 1}∗ −→ C which will be used during key aggregation and signing respectively,
and later during the proof. C represents the challenge space which is identical
to CSI-FiSh, for i ∈ [1, t], ci ∈ [−k + 1, k − 1]. The parameters satisfy the same
relation as in CSI-FiSh, for a security level of λ, we have t = λ/ log2(k).

We briefly detail the protocol. The Key Aggregation, Signing and Signing
Aggregation can be found in Algorithm 5 to Algorithm 7. The Key Generation
and Verification is identical to CSI-FiSh.

Params - Pick E0 the starting curve as in CSIDH and compute N = #G.
Key Generation - As in CSI-FiSh, sample k − 1 secret keys

(x1, · · · , xk−1) ←− G and compute the corresponding public keys (Y1, · · · , Yk−1)
with Yi = [xi]E0.

KeyAgg - The first difficulty in constructing an isogeny-based protocol is in
the Key Aggregation. As there is no group operation E × E −→ E , in isogenies,
it is impossible to simply have each signer output their public keys and combine
them. As proposed by de Feo in his threshold signature scheme [15], the partic-
ipants will participate in a round robin where a party will execute the required
computations before sending it to the next party. The algorithm is as follows:

The curves are initialized as
(
Y

(0)

1 , · · · , Y
(0)

k−1

)
←− (E0, · · · , E0). For j ∈

S, i ∈ [1, k − 1], Pj will first compute the aggregation coefficients a
(j)
i =

Hagg(Y
(j)
i ||Lpk).

For j ∈ S, Pj will then receive
(
Y

(j−1)

1 , · · · , Y
(j−1)

k−1

)
from Pj−1 and compute

Y
(j)

i = [a(j)
i ·x(j)

i]Y
(j−1)

for i ∈ [1, k−1] by using his secret keys {x
(j)
1 , · · · , x

(j)
k−1}.

At the end, Pn computes

Y i = Y
(n)

i = [a(1)
i · x

(1)
i] · · · [a(n)

i x
(n)
i]E0 = [a(1)

i x
(1)
i + · · · + a

(n)
i x

(n)
i]E0

for i ∈ [1, k − 1] and broadcast Agg =
(
Y 1, · · · , Y k−1

)
to the other parties.

Signing - The Signing encounters the same issue as the Key Aggregation,
since it is impossible to combine the different public keys directly. As a result, the
parties will once again need to go through a round robin to compute the aggre-
gated public key. The Signing follows the same steps as the original signature
scheme.

– Commitments: For j ∈ S, Pj will sample
(
b
(j)
1 , · · · , b

(j)
t

)
←− G. However,

in order to compute (E1, · · · , Et) as in CSI-FiSh, the parties will have to

486 M. de Goyon and A. Miyaji

participate in a round robin. The curves are initialized as
(
E0

1 , · · · , E0
t

) ←−
(E0, · · · , E0). Then, each Pj for j ∈ S will receive

(
E

(j−1)
1 , · · · , E

(j−1)
t

)
,

compute E
(j)
i = [b(j)i]E(j−1)

i and send it to the next one. At the end, Pn will
compute

E
(n)
i = [b(n)i]E(n−1)

i = [b(1)i] · · · [b(n)i]E0 (3)

for i ∈ [1, t] and broadcast (E1, · · · , Et) =
(
E

(n)
1 , · · · , E

(n)
t

)
to the other

participants.
– Challenges: Compute (c1, · · · , ct) = Hsign (E1 · · · Et||m).
– Response: For j ∈ S, Pj will compute their signature. Compute r

(j)
i = b

(j)
i −

sign(ci)a
(j)
|ci|x

(j)
|ci| (mod N) for i ∈ [1, n].

– Signature: Pj outputs his signature σ(j) = (r(j)1 , · · · , r
(j)
t , c1, · · · , ct).

SignAgg - The multi-signature is computed by aggregating the signatures. For
i ∈ [1, t], ri =

∑n
j=1 r

(j)
i . Output Σ = (r1, · · · , rt, c1, · · · , ct).

Verification - The verification is the same as CSI-FiSh but verifies the multi-
signature against the aggregated public key instead. For i ∈ [1, t], compute E∗

i =
[ri]Y ci . Compute (c∗

1, · · · , c∗
t) = Hsign (E∗

1 · · · E∗
t ||m) and check if (c∗

1, · · · , c∗
t) =

(c1, · · · , ct)

Algorithm 5. Key Agg
Input Lpk, m
Output Agg

Set (Y
(0)
1 , · · · , Y

(0)
t) ←− (E0, · · · , E0)

for j ∈ S do
for i = 1, · · · , k − 1 do

a
(j)
i = Hagg(Y

(j)
i ||Lpk)

end for
end for
for j ∈ S do

for i = 1, · · · , k − 1 do

Y
(j)
i = [a

(j)
i x

(j)
i]Y

(j−1)
i

end for
end for
Return

(
Y

(n)
1 , · · · , Y

(n)
t

)

The CSI-SharK version can be made in the same way by adding a super-
exceptional set and sampling a single secret key during Key Generation. The
challenges also need to be changed to (d1, · · · , dt) to fit with the original scheme.
Both signatures are of the same size as CSI-FiSh, and depend on the parameter
chosen for k and t.

Isogeny-Based Multi-signature Scheme 487

Algorithm 6. Sign
Input sk, m
Output σ

Set (E
(0)
1 , · · · , E

(0)
t) ←− (E0, · · · , E0) � Initialize the curves to E0

for j ∈ S do � Round Robin to compute the commitments
for i = 1, · · · , t do

sample b
(j)
i ←− G

compute E
(j)
i = [b

(j)
i]E

(j−1)
i � Send to Pj+1

end for
end for
Set (c1, · · · , ct) = Hsign(E

(n)
1 · · · E(n)

t ||m) � Challenges
for j ∈ S do

for i = 1, · · · , t do
set r

(j)
i = b

(j)
i − sign(ci) · a

(j)

|ci| · x
(j)

|ci| (mod N)
end for
set σ(j) = (r

(j)
i , ci)

t
i=1

end for
return (σ(j))j∈S

Algorithm 7. Sign Agg
Input Lσ, m
Output Σ

for i = 1, · · · , t do
ri =

∑
j∈S r

(j)
i

end for
Σ = (r1, · · · , rt, c1, · · · , ct)
return Σ

4 Security

In this section, we discuss first prove the correctness of the scheme before ana-
lyzing the security of the scheme.

4.1 Correctness

As in Sect. 3, we consider n-signers with public key
(
E

(j)
1 , · · · , E

(j)
k−1

)
and secret

key (x(j)
1 , · · · , x

(j)
k−1) with j ∈ S.

For j ∈ S, i ∈ [1, k − 1], Pj will first compute the aggregation coefficients
a
(j)
i = Hagg(Y

(j)
i ||Lpk).

The aggregated public keys Agg = (Y 1, · · · , Y k−1) will satisfy the following
equation:

Y i = [a(1)
i · x

(1)
i] · · · [a(n)

i · x
(n)
i]E0 = [a(1)

i · x
(1)
i + · · · + a

(n)
i · x

(n)
i]E0 (4)

488 M. de Goyon and A. Miyaji

During Signing, each signer Pj for j ∈ S will sample b
(j)
1 , · · · , b

(j)
t ←− G.

They will then go through a round robin. At the end, (E1, · · · , Et) will satisfy
the following equation:

E
(n)
i = [b(1)i] · · · [b(n)i]E0 = [b(1)i + · · · + b

(n)
i]E0 (5)

The challenges will be computed in the following way with m the chosen
message:

(c1, · · · , ct) = HSign(E1 · · · Et||m)

For j ∈ S, Pj computes r(j)i = b
(j)
i − sign(ci)a

(j)
|ci| · x

(j)
|ci| (mod N) for i ∈

[1, t]. Each party then outputs σ(j) = (r(j)i , ci)t
i=1. To aggregate the signatures,

compute ri =
∑n

j=1 r
(j)
i for i ∈ [1, t] and output Σ = (ri, ci)t

i=1.
During verification, the verifier will compute

(c
′
1, · · · , c

′
t) = Hsign

(
[r1]Y c1 , · · · , [rt]Y ct ||m

)
(6)

For ci < 0, we take the quadratic twist as in CSI-FiSh:

Y ci =

⎡
⎣sign(ci)

n∑
j=1

(a(j)
|ci| · x

(j)
|ci|) (mod N)

⎤
⎦ E0 (7)

The verifier will then check if (c
′
1, · · · , c

′
t) = (c1, · · · , ct).

Indeed we have:

[ri]Y ci =

⎡
⎣ n∑

j=1

(b(j)i − sign(ci)a
(j)
|ci| · x

(j)
|ci|) (mod N)

⎤
⎦
⎡
⎣sign(ci)

n∑
j=1

a
(j)
|ci| · x

(j)
|ci|

⎤
⎦E0

=

⎡
⎣ n∑

j=1

b
(j)
i

⎤
⎦E0

= E
(n)
i

As a result,
(
[r1]Y

(n)
c1 , · · · , [rt]Y

(n)
ct

)
=

(
E

(n)
1 , · · · , E

(n)
t

)
and so the equality

(c
′
1, · · · , c

′
t) = (c1, · · · , ct) will hold.

4.2 Security

In this section, we analyze the security of both of our schemes. We consider
honest-but-curious adversaries, which is also called passive security, which is
the approach taken in [15]. In order to achieve active security, a Zero-Knowledge
proof would be required during the Key Aggregation and signing to ensure the
protocol is done correctly, in a similar way to Sashimi [10] but we do not develop
it in this paper.

Isogeny-Based Multi-signature Scheme 489

Theorem 1. Under MT-GAIP Assumption, the multi-signature scheme is
EUF-CMA in the Random Oracle Model (ROM).

Proof Sketch - We use the Double-Forking technique as described in [19].
We adapt the notations to our setting. The parameters (E0, G, N) are fixed
and the key pair (pk∗, sk∗) are generated for the honest signer with pk∗ =(
Y ∗
1 , · · · , Y ∗

k−1

)
and sk∗ = (x∗

1, · · · , x∗
k−1). The target public key is given to the

forger F , which will then be able to interact with the honest signer by choosing a
message m and a list of public keys Lpk with pk∗ ∈ Lpk and simulating all signer
except an instance of pk∗. To do so, we consider F has access to a interactive
signing oracle as follows:

F sends Lpk to the signing oracle which parses Lpk as {pk∗, pk2, · · · , pkn}
and computes a

(j)
i = Hagg(Y

(j)
i ||Lpk) for i ∈ [1, k − 1], j ∈ S.

The oracle will then sample (b(1)1 , · · · , b
(1)
t) ←− G, compute E

(1)
i = [b(1)i]E0

for i ∈ [1, t] and send E
(1)
1 , · · · , E

(1)
t to F .

The forger F will sample (b(j)1 , · · · , b
(j)
t) ←− G for j ∈ [2, n] and compute

Ei = [b(2)t + · · · + b
(n)
t]E(1)

i for i ∈ [1, t] and sends it to the oracle.
The oracle will then compute

(c1, · · · , ct) = Hagg (E1, · · · , Et||m) ,

r
(1)
i = b

(1)
i − sign(ci)a

(1)
|ci| · x

(1)
|ci| (mod N)

for i ∈ [1, t] and return σ(1) = (c1, · · · , ct, r
(1)
1 , · · · , r

(1)
t) to the forger. The forger

will complete the remaining steps by computing (σ(2), · · · , σ(n)) and sending
them to the oracle which outputs Σ = (r1, · · · , rt, c1, · · · , ct).

We invoke the general forking lemma twice, one at the return value of
Hagg and the second at the return value of Hsign. We obtain two valid forg-
eries (r

′
1, · · · , r

′
t, c

′
1, · · · , c

′
t) and (r1, · · · , rt, c1, · · · , ct) for the same set of pub-

lic keys Lpk and on the same message m. Hsign is programmed such that
Hsign(E1, · · · , Et||m) outputs the same value (c1, · · · , ct) and Hagg is pro-
grammed such that Hagg(Y

(j)
i ||Lpk) outputs the same value a

(j)
i for i ∈ [1, k−1]

and j ∈ S, j �= 1 and distinct values a
(1)′

i , a
(1)
i for Hagg(Y ∗

i ||Lpk).
At the end, we get the following results for i ∈ [1, t]:

ri = (b
(1)
i + · · · + b

(n)
i) + sign(ci)(a

∗
|ci|x

∗
|ci| + (a

(2)

|ci|x
(2)

|ci| + · · · + a
(n)

|ci|x
(n)

|ci|) (mod N)

r
′
i = (b

(1)
i + · · · + b

(n)
i) + sign(ci)(a

∗′
|ci|x

∗
|ci| + (a

(2)

|ci|x
(2)

|ci| + · · · + a
(n)

|ci|x
(n)

|ci|) (mod N)

By subtracting the two equations, it’s possible to extract

(a∗
|ci| − a∗′

|ci|)x
∗
ci = ri − r

′
i

and retrieve the value of x|ci| for i ∈ [1, t] which would solve the MT-GAIP
Problem.

490 M. de Goyon and A. Miyaji

5 Comparison

In this section, we compare the computations of our schemes to CSI-FiSh and the
threshold signature of de Feo and Meyer [15]. We assume the threshold signature
uses the same optimizations as the other two schemes by using (k − 1) public
keys, in which Key aggregation corresponds to recomputing the shared secret.
Table 1 shows the computation from the point of view of one of the signers. I
corresponds to the isogenies, Inv to inverses H to the hashing, M to multiplication
and Mod to the modulo.

Table 1. Comparison between the number of computation of our protocol compared
to the CSI-FiSh

CSI-Fish Our Scheme Threshold Signature

Key Generation (k − 1) I (k − 1) I (k − 1) I

Key Aggregation / (k − 1) I + (n · k) H (k − 1) I + (k − 1)M

Signing t I + t Mod t I + t Mod t I + t Mod

Signing Aggregation / / /

Verification t I t I t I

6 Conclusion

We propose a multi-signature scheme by extending the isogeny-based signature
CSI-FiSh as well as its variant CSI-SharK. Our scheme supports key aggregation,
which allows the scheme to use the same verification algorithm as the base
signature. To adapt the scheme to the isogeny-setting, we use a round robin
during both the signature aggregation and the key aggregation. We then prove
the sEUF-CMA of our scheme by using the Double Forking Technique, and
compare the computations to the base scheme CSI-FiSh.

Acknowledgment. This work is partially supported by JSPS KAKENHI Grant Num-
ber JP21H03443 and SECOM Science and Technology Foundation.

References

1. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with
sharing-friendly keys. In: IACR Cryptol. ePrint Arch, p. 1189 (2022)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma, pp. 390–399 (2006)

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: IACR Cryptol. ePrint Arch, p.
498 (2019)

4. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: lattice-based multi-signature
with single-round online phase. Cryptology ePrint Archive, Paper 2022/1036 (2022)

Isogeny-Based Multi-signature Scheme 491

5. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). In: IACR Cryptol. ePrint Arch, p. 975 (2022)

6. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: IACR Cryptol. ePrint Arch, p. 383
(2018)

7. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

8. Couveignes, J.M.: Hard homogeneous spaces. In: IACR Cryptol. ePrint Arch, p.
291 (2006)

9. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006)

10. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

11. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for consen-
sus. In: 29th USENIX Security Symposium (USENIX Security 2020), pp. 2093–
2110. USENIX Association (2020)

12. Feo, L.D.: Mathematics of isogeny based cryptography. CoRR abs/1711.04062
(2017)

13. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

14. Feo, L.D., Jao, D., Plut, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

15. Feo, L.D., Meyer, M.: Threshold schemes from isogeny assumptions. IACR Cryptol.
ePrint Arch, p. 1288 (2019)

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

17. Kojima, R., Yamamoto, D., Shimoyama, T., Yasaki, K., Nimura, K.: A new schnorr
multi-signatures to support both multiple messages signing and key aggregation.
J. Inf. Process. 29, 525–536 (2021)

18. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. In:
IACR Cryptol. ePrint Arch, p. 1026 (2022)

19. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Paper 2018/068 (2018)

20. Robert, D.: Breaking SIDH in polynomial time. In: IACR Cryptol. ePrint Arch, p.
1038 (2022)

21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. In:
IACR Cryptol. ePrint Arch, p. 145 (2006)

22. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

23. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis (2012)

https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-642-25405-5_2

Security Analysis of WAGE Against
Division Property Based Cube Attack

Bijoy Das(B) , Abhijit Das, and Dipanwita Roy Chowdhury

Indian Institute of Technology Kharagpur, Kharagpur, India
mantunsec@gmail.com, {abhij,drc}@cse.iitkgp.ac.in

Abstract. In recent years, as more Internet of Things (IoT) devices are
connected to the internet, lightweight cryptography has become more
and more important. WAGE is a LFSR-based authenticated encryption
algorithm and one of the candidates in the NIST standard Lightweight
Cryptography competition. It offers 128-bit security. In the literature,
the best cryptanalytic estimates available for WAGE pertain to a cor-
relation power attack that recovers the secret key up to 12 out of 111
rounds. In this paper, we evaluate the security of this cipher following
the (bit-based) division property based cube attack using mixed-integer-
linear-programming (MILP) models. Specifically, we investigate the secu-
rity of the nonlinear feedback based initialization phase. To the best of
our knowledge, our attack is the first one that investigates the security of
the nonlinear feedback-based initialization phase of WAGE cipher. The-
oretically, the results of our attack enable us to recover the secret key
up to the reduced 18-round of the initialization phase utilizing 2123 time
complexity and 26.32 keystream bits.

Keywords: Authenticated Encryption · WAGE · Lightweight cipher ·
Division Property · Cube Attack

1 Introduction

Inspired by the initialization stage of the Welch-Gong (WG) cipher [5], WAGE [1]
is designed with a state size of 259 bits. It operates in a unified duplex sponge
mode [2] to offer authenticated encryption with associated data (AEAD) func-
tionality. It is intended to develop efficient hardware implementation for AEAD
while still providing adequate security margins. WAGE includes 37-stage LFSR
with each stage working over the finite fields F27 . In addition, it consists of two
nonlinear functions such as Welch-Gong permutation (WGP) and Sbox (SB).
The LFSR is first loaded with 128-bit secret key and 128-bit nonce and the
remaining bits are set to zero. Next, the LFSR with its nonlinear components is
run for 111 rounds. Then the cipher generates the keystreams that are used for
message encryption. The cipher is mainly designed for encryption in resource-
constrained environments such as mobile phones, smart cards, and RFID appli-
cations.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 492–506, 2023.
https://doi.org/10.1007/978-981-99-7032-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_29&domain=pdf
http://orcid.org/0000-0002-9220-6932
https://doi.org/10.1007/978-981-99-7032-2_29

Security Analysis of WAGE Against Division Property Based Cube Attack 493

The only cryptanalysis on WAGE available in the literature is proposed by [4].
Here, Fei et al. [4] applied Correlation Power Analysis (CPA) technique. In this
attack model, they chose the Hamming Weight of the Status Register as the
leakage model to evaluate the security of WAGE. According to their attack
model’s studies, the secret key information can be found in the power traces for
up to 12 out of 111 rounds of the WAGE permutation.

Our attack targets the first 18 rounds of the WAGE permutation after load-
ing the 128-bit key and 128-bit nonce in the initialization phase. To the best of
our knowledge, our attack is the first one to investigate the security of the non-
linear feedback-based initialization phase of the WAGE lightweight AE scheme.
The running environment of our attack includes Python language and Gurobi
optimizer (as MILP solver).

Our Contribution. The cube attack is mounted on the initialization phase
of the reduced 18 rounds of WAGE. A 7-bit S-box trail is used to represent the
division trail that propagates through both WG-permutation (WGP) function
and SB function of WAGE. In order to model Linear Transformation function
x⊗ω, we chose S method [6]. Generally, S method has some restrictions over ZR
method [9] but it is simple and efficient in terms of the number of constraints.
Moreover, in WAGE, we verified that S method does not produce any invalid trail
for the function x⊗ω. Hence, our optimizations lead to a full key recovery using
only 26.32 bits in the keystream after 18 rounds of the initialization phase. This
approach is suited for realistic scenarios in lightweight constrained applications
where acquiring significant amounts of data is challenging, due to its small data
complexity.

The rest of the paper is organized as follows. In Sect. 2.1, we review the
concepts of cube attack. Section 2.2 presents a brief overview of division property,
bit-based division property, and how to model the division trails using Mixed
Integer Linear Programming (MILP). The specification of WAGE is provided
in Sect. 3. Section 4 elaborates our proposed cube attack on the initialization
phase of WAGE. We also provide a discussion on the results obtained from our
experiments. Section 5 concludes the paper.

2 Preliminaries

Here, we give the notations and definitions that are used in this paper.

2.1 Cube Attack

The cube attack was proposed by Dinur and Shamir in EUROCRYPT [3] to
recover secret key. For an n1-bit key k = (k1, k2, . . . , kn1) and m1-bit IV v =
(v1, v2, . . . , vm1), let f(x) be a boolean function from F

n
2 to F

1
2 such that x = k||v

and n = n1 + m1. Let u ∈ F
n
2 be a constant vector with u ← {u0, u1, . . . , un−1}.

Then the algebraic normal form (ANF) of f (x) is defined as f(x) = xu × p(x) +
q(x), where each term of q(x) is not divisible by xu. For a set of cube indices
I = {0 ≤ i ≤ n−1 : ui = 1} ⊂ {0, 1, . . . , n−1}, xu represents the corresponding

494 B. Das et al.

monomial. Therefore, the summation of f (x) over all values of CI = {x ∈ F
n
2 :

u � x} is given by
⊕

x∈CI

f(k, v) =
⊕

x∈CI

(xu × p(x) + q(x)) = p(x). (1)

where p(x) is called the superpoly of CI , and it only involves the variables xj

such that uj = 0 for 0 ≤ j ≤ n − 1.
Equation (1) implies that if the attacker gets a superpoly that is simple

enough, she can query the encryption oracle feeding CI . All the first keystream
bits returned are summed to evaluate the right-hand side of Eq. (1). Subse-
quently, she recovers the secret key bits by solving a system of equations.

2.2 MILP-Aided Bit-Based Division Property

Bit Product Function πu(x). For any u ∈ F
n
2 , let πu(x) be a function from

F
n
2 to F2. For any input x ∈ F

n
2 with x ← {x0, x1, . . . , xn−1}, πu(x) is the AND

of xi satisfying ui = 1. It is defined as πu(x) =
n−1∏

i=0

xui
i

Definition 1 (Division Property). Let X be a multi-set whose elements take
values from F

l0
2 × F

l1
2 × · · · × F

lm−1
2 . The multi-set X has the division property

Dl0,l1,...,lm−1
K

, where K denotes a set of m-dimensional vectors whose i-th ele-
ments take values between 0 and li, if it fulfills the following condition:

⊕

x∈X

πu(x) =

{
unknown, if there exist k ∈ K such that wt(u) � k,

0, otherwise.

If there are k, k
′ ∈ K such that k � k

′
in the division property D

l0,l1,...,lm−1
K

,
then k can be removed from K because it is redundant. When l0, l1, . . . , lm−1

are restricted to 1, we talk about bit-based division property. The main idea of
MILP-aided bit-based division property is to model the propagation rules as a
series of linear (in)equalities. We adopt the MILP models for copy, AND and
XOR from [7]. We rewrite these as follows:

Model 1 (copy): Let (a)
copy→ (b0, b1) be a division trail of the copy function.

The following constraints are sufficient to describe the division propagation
of copy.

{
a − b0 − b1 = 0,where a, b0, b1 are binary variables

Model 2 (AND): By (a0, a1)
AND→ (b), denote a division trail of the AND func-

tion. The following inequalities are sufficient to describe the division propa-
gation of AND.

{
b − ai ≥ 0 for i ∈ {0, 1}, where a0, a1, b are binary variables

Security Analysis of WAGE Against Division Property Based Cube Attack 495

Model 3 (XOR): Let (a0, a1)
XOR→ (b) be a division trail of the XOR function.

The following inequalities are sufficient to describe the division propagation
of XOR.

{
a0 + a1 − b = 0, where a0, a1, b are binary variables

3 Description of WAGE

Following the same notations from [1], we give a description of WAGE. The
WAGE permutation in the unified sponge duplex mode, a 111-round iterative
permutation with a state of 259 bits. Two separate S-boxes (WGP and SB) along
with a linear feedback function defined over F27 are the nonlinear components of
this cipher. In addition, the design contains five word-wise XORs and 111 pairs
of 7-bit round constants (rc1, rc0). One round of WAGE permutation is shown
in Fig. 1.

Fig. 1. The i-th Round of WAGE Permutation [1]

Nonlinear Components of WAGE. WAGE uses two different 7-bit S-boxes,
called WGP and SB, where SB is built iteratively at the bit level using quadratic
functions and WGP is specified over a finite field, F27 .

Welch-Gong Permutation (WGP). The WGPerm, denoted by WGP7, is
defined over F27 which is given by

WGP7(x) = x + (x + 1)33 + (x + 1)39 + (x + 1)41 + (x + 1)104, x ∈ F27

where F27 is defined by the primitive polynomial x7+x3+x2+x+1. WGP is con-
structed from WGP7 by applying decimation d = 13 as WGP(x) = WGP7(x13).
The hexadecimal representation of the WG permutation is given in a row-major
order.

SB S-box. The 7-bit S-box SB is constructed in an iterative way using the non-
linear transformation and the bit permutation. The hexadecimal representation
of the S-box is given in a row-major order.

496 B. Das et al.

Hex Representation of WGP for WAGE Hex Representation of S-box for WAGE
00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 05 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

State Update Function of WAGE. The state of WAGE comprises 37 words,
each consisting of 7 bits, resulting in a total state size of 259 bits. The symbol
S = (S36, . . . , S0) represents these 37 words, where Si indicates the number of
bits in a word. The state update function consists of the following three steps:

– Computing Linear Feedback. fb ← FB(S). The following primitive
polynomial of degree 37 over F27 is used as a feedback function

�(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω

where ω is a root of x7+x3+x2+x1+1, which is also a primitive polynomial
over F27 . Now the feedback computation is given by

fb = S31 + S30 + S26 + S24 + S19 + S13 + S12 + S8 + S6 + (ω ⊗ S0) (2)

For an input x ∈ F27 , the ANF representation of ω ⊗ x is given by

(x0, x1, x2, x3, x4, x5, x6) ⊗ ω → (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕ x6, x3, x4, x5)
(3)

– Updating Intermediate Words.

S5 ← S5 ⊕ SB(S8), S11 ← S11 ⊕ SB(S15)
S19 ← S19 ⊕ WGP (S18) ⊕ rc0, S24 ← S24 ⊕ SB(S27)

S30 ← S30 ⊕ SB(S34), fb ← fb ⊕ WGP (S36) ⊕ rc1

(4)

– Shifting register contents and update the last word.

Sj ← Sj+1, 0 ≤ j ≤ 35 and S36 ← fb (5)

Applying the state update function 111 times to an input state S yields the
WAGE permutation’s output. Notably, only the Eq. (4) transformation carries
out the nonlinear operations; all other operations are linear.

Security Analysis of WAGE Against Division Property Based Cube Attack 497

4 Cube Attack on WAGE

Our attack technique exploits the concept of division property based cube attack
using MILP. The attack consists of the following three phases.

Offline Phase: The objective of this phase is to recover the preferable superpoly
that involves only the secret variables in the cube indices I. The steps are
given below.

– Create an MILP model M for the cipher whose initialization is reduced
to R rounds.

– The model checks the feasibility of all R-round division trails by propa-
gating the division properties of all the basic operations employed in each
round. The model returns infeasible if there is no feasible solution.

– The model takes the cube indices I = {i1, i2, . . . , i|I|} as the chosen input
prepared by the attacker. The secret variables involved in the superpoly
are then computed. Let J = {kj1 , kj2 , . . . , kj|J|} be the computed key
bits involved in the superpoly. This operation is computationally feasible
using the MILP approach.

– The attacker chooses the IV, and computes
⊕
CI

f(k, v) = pv̄(k̄), where

v̄ = {v0, v1, . . . , vn−1} \ {vi1 , vi2 , . . . , vi|I|} and k̄ = {kj1 , kj2 , . . . , kj|j|}.
Then, all possible combinations of the secret variables kj1 , kj2 , . . . , kj|J|
are tried, and the superpoly is recovered. The complexity of this step is
2|I|+|J|.

Online Phase: The goal of this phase is to recover the subset of the secret key
bits. Once the superpoly is recovered in the offline phase, the attacker queries
the cube CI to the encryption oracle, and gets one bit pv̄(k̄) by summing all
the first keystream bits returned by the encryption oracle. So the attacker gets
one polynomial about the involved key bits. Since the superpoly is balanced,
about half of the values of the involved key bits are discarded.

Brute-Force search phase: The attacker gets the remaining bits of the secret
key by guessing.

4.1 Cube Attack on the Initialization Phase of WAGE Using MILP

We begin the cube attack by simulating the propagation of the division property
for each of the WAGE cipher’s functions in each round.

MILP model for the WG-permutation (WGP) and S-box (SB). We
find that the degree of each component of WGP (x) and SB(x) is six. A large
number of MILP variables and constraints are needed if we model this function
based on its ANF representation. As an alternative approach adopted from [8],
we represent these function as a 7-bit S-box, where (x0, x1, x2, x3, x4, x5, x6)
and (y0, y1, y2, y3, y4, y5, y6) are the input and the output of both WGP and
SB, respectively. Using Algorithms 1 and 2 in [8] and the inequality generator()
function in Sage1, we discover that just 22 and 49 inequalities are necessary to
1 http://www.sagemath.org/.

http://www.sagemath.org/

498 B. Das et al.

represent the transmission of the division property across the WGP and SB,
respectively. The reduced inequalities for WGP are given by:

x0 +x1 +x2 +25x3 +x4 +x5 +x6 −5y0 −5y1 −5y2 −5y3 −5y4 −5y5 −5y6 ≥ −4

6x1 − y0 − y1 − y2 − y3 − y4 − y5 − y6 ≥ −1

29x0 +x1 +x2 +x3 +x4 +x5 −x6 −6y0 −6y1 −5y2 −6y3 −6y4 −5y5 −6y6 ≥ −5

x0 +x1 +x2 +x3 +x4 +25x5 +x6 −5y0 −5y1 −5y2 −5y3 −5y4 −5y5 −5y6 ≥ −4

x0 +x1 +x2 +x3 +x4 +x5 +28x6 −6y0 −6y1 −5y2 −6y3 −5y4 −65y5 −5y6 ≥ −5

−x0 −x1 −x3 −x5 −2x6 −y0 −2y1 −y2 −2y3 −3y4 −y5 +8y6 ≥ −8

x0 − x2 + x5 − 2x6 − 3y0 − 4y1 − 2y2 + 12y3 − 2y4 − 3y5 − 4y6 ≥ −7

− x0 − x1 − x3 − x4 − x5 + y0 + y1 + y2 − 4y3 + y4 + y5 − 5y6 ≥ −9

−3x0 − x1 − 2x2 − x3 − x4 − 3x5 − x6 − y0 + 7y1 − 2y2 − 2y3 − 2y4 − y5 ≥ −13

x0 +x1 +x2 +x3 +24x4 +x5 +x6 −5y0 −5y1 −5y2 −5y3 −4y4 −5y5 −5y6 ≥ −4

−x0−3x1−2x2−2x3−3x4−x5−3x6+3y0+3y1+2y2+2y3+3y4+y5+3y6 ≥ −11

− x0 − x1 − 2x2 − x4 − x6 − 2y0 − y1 − y2 + 4y3 − y4 + y5 − y6 ≥ −7

−2x0 −3x1 −3x3 −3x4 −3x5 −x6 +3y0 +4y1 +y2 +4y3 +2y4 +3y5 +2y6 ≥ −11

− 2x0 − x2 − 2x3 − 2x4 − 2x5 − 2x6 + y0 + y2 + y3 + y4 + y5 − y6 ≥ −10

− 4x1 − 5x2 − 5x3 − 4x4 − 4x6 − y0 − y1 + 4y2 + 4y3 − y4 − 5y5 − y6 ≥ −23

− x0 − x1 − x2 − x3 − x5 − y4 + y6 ≥ −5

− x1 − x2 − x3 − x5 − x6 − 2y2 + y3 − y4 + y5 + y6 ≥ −6

− x0 − x2 − x3 − x4 − x5 + y0 + y2 + y3 + y4 + y5 + y6 ≥ −4

− 2x1 − x2 − x3 − 2x4 − x5 − 2x6 + y0 + y1 + 2y2 + y3 + y4 − y5 + y6 ≥ −8

x2 + x4 + x5 + 9y0 − 3y1 − 2y2 − 3y3 − 2y4 − 2y5 − 3y6 ≥ −3

−2x0−4x1−3x2−x3−4x4−3x5−4x6+3y0+4(y1+y2)+2y3+4y4+y5+4y6 ≥ −16

−4x0 − 3x1 − 2x2 − 4x3 − 2x4 − 4x5 − x6 + 19y0 + 18y1 + 17y2 + 19y3 + 17y4
+19y5 + 16y6 ≥ 0

(6)

Using these 22 inequality constraints, the MILP model for the WG-permutation
(WGP) is constructed as shown in Algorithm 1.

Similarly, the reduced inequalities for SB are given as follows:

2x0+2x1+2x2+36x3+3x4+3x5+2x6−9y0−9y1−6y2−9y3−6y4−9y5−9y6 ≥ −7

Security Analysis of WAGE Against Division Property Based Cube Attack 499

Algorithm 1. MILP model for the WG-permutation in WAGE
1: function WGP(S, index)

2: M.var ← s
′
index+i , xi , yi as binary for 0 ≤ i ≤ 6

3: M.con ← sindex+i = s
′
index+i + xi for 0 ≤ i ≤ 6

4: Add constraints to M based on the reduced set of inequalities WGPI

5: for j = 0 to 36 do
6: S

′
[j] = S[j] � S

′
[j] = (s

′
7j , s

′
7j+1, s

′
7j+2, s

′
7j+3, s

′
7j+4, s

′
7j+5, s

′
7j+6)

7: return (M, S
′
, [y0, y1, y2, y3, y4, y5, y6])

9x0+3x1+3x4+70x5+x6−15y0−21y1−14y2−21y3−14y4−6y5−16y6 ≥ −21

9x0 − 3y0 − 3y1 − y2 − y3 − y4 − 2y5 − y6 ≥ −3

x0+6x2+8x3+2x4−8x5+5x6−16y0−20y1+48y2−22y3−15y4−15y5−4y6 ≥ −30

5x0 + x1 + 24x4 + x5 + 2x6 − y0 − 8y1 − 5y2 − 8y3 − 5y4 − 6y5 − 8y6 ≥ −8

19x0+2x1+x2−x3+5x4+5x5−17y0−23y1−17y2+48y3−13y4−14y5−19y6 ≥ −24

−x1 −5x2 +3x3 −x4 −x5 +6x6 −y0 −5y1 +2y2 −8y3 −10y4 −7y5 +12y6 ≥ −16

−x1−x2+4x3−x4+6x5−2x6+3y0−8y1+23y2−14y3−11y4−10y5−7y6 ≥ −19

−3x0−5x1−2x2−x3−x4−4x5−x6+11y0+7y1−11y2−4y3+9y4+7y5+7y6 ≥ −20

3x0+3x1+x2+x3+x4+3x5+10x6−8y0−10y1−8y2−10y3−8y4−8y5+21y6 ≥ −9

−3x0 − x2 − x3 − 4x4 − 3x5 + x6 + 2y0 + y1 + 7y2 − 5y3 + y4 − 2y5 − 7y6 ≥ −17

2x0+2x1+2x2+36x3+3x4+3x5+2x6−9y0−9y1−6y2−9y3−6y4−9y5−9y6 ≥ −7

4x1 + 5x2 + 9x3 + x4 + x5 + x6 − 9y0 − 9y1 − 8y2 + 16y3 − 4y4 − 8y5 − 8y6 ≥ −9

−x1 −x2 −3x3 −7x4 −7x5 −7x6 +5y0 +6y1 +4y2 +2y3 +7y4 +6y5 −2y6 ≥ −21

x2 + 2x3 + x5 + 4x6 − 10y0 + 9y1 − 3y2 − 5y3 − 3y4 − 3y5 − 3y6 ≥ −10

12x0 + 4x1 + 4x3 + x4 + x5 − 15y0 + 11y1 − 11y2 − 7y3 − 7y4 − 14y5 + 6y6 ≥ −15

−5x0−3x1−4x2−x3−4x4−2x5−2x6+4y0−5y1+3y2−y3+y4−4y5+2y6 ≥ −21

8x0 − x1 − x2 + 4x4 − 2x5 + 3x6 − 6y0 + 7y1 + 2y2 − 6y3 − 8y4 − 5y5 − 5y6 ≥ −10

−2x0 − 2x1 − 2x2 − x4 + x5 − 2x6 − 3y0 + 2y1 + 2y2 − y3 + 2y4 + y5 + y6 ≥ −10

−3x0 +3x1 +3x2 −3x3 +9x4 +3x5 +x6 −y0 −7y1 −9y2 −7y3 −9y4 +5y5 ≥ −15

x0 + 4x1 + x2 + 5x3 − 2x4 − 2x6 − 4y0 − 3y3 − 6y4 − 3y5 + 2y6 ≥ −8

−5x0 −x1 −2x2 −3x3 −3x5 −2x6 +3y0 +4y1 +5y2 +5y3 +3y4 +5y5 +2y6 ≥ −9

6x0−4x1−4x2−3x4−3x5+3x6−11y0−10y1−8y2−5y3+26y4−7y5−6y6 ≥ −26

x2 + 6x3 + 5x4 + 2x5 + x6 − 3y0 − 10y1 + 21y2 − 10y3 − 7y4 − 9y5 − 7y6 ≥ −10

−x0 −4x1 −x2 −4x4 −2x5 −2x6 +3y0 +3y1 −7y2 −2y3 +6y4 +5y5 +5y6 ≥ −16

500 B. Das et al.

−x0 +2x1 −x2 +3x3 −x4 +3x5 −x6 − y0 − y1 − 3y2 − 2y3 + y4 − 2y5 − 2y6 ≥ −6

−2x0 + x1 + 2x2 − 2x3 + x5 + 5x6 + y0 − 4y1 + y2 − 8y3 + 2y4 + y5 − 10y6 ≥ −12

−x0−3x1−2x2−3x3−4x4−3x5−x6+2y0−y1+y2+y3+y4−3y5−2y6 ≥ −18

−4x0 − x1 − x2 − 4x3 − 2x5 − x6 + 4y0 + 6y1 + 3y2 + 7y3 + 3y4 + 4y5 + 5y6 ≥ −5

− 3x0 − 4x3 − x4 − 3x5 − x6 + 4y0 + 5y1 + 3y2 + 5y3 + y4 + y5 + 4y6 ≥ −6

− x0 + x1 + x2 − x3 + 3x6 − 2y1 − 2y2 − 2y3 − 2y4 + y5 ≥ −4

−x0 + x1 − x2 + 2x3 + 2x4 − x5 + x6 − y0 − 2y1 − 3y2 − 2y3 + y4 − y5 ≥ −5

−4x0 − 2x1 − 4x3 − x5 − 2x6 + 5y0 + 7y1 + 3y2 + 8y3 + y4 + 4y5 + 7y6 ≥ −5

3x1 + 2x3 − 2y0 − y1 − y2 − 2y3 + 2y4 − 2y5 − y6 ≥ −2

x0 − x1 − x4 + x5 + x6 − y1 − y3 − 2y4 ≥ −3

− x0 − x1 − x4 + 2x5 − 2x6 − y0 − 2y2 − 3y3 + 2y4 − 3y5 + 2y6 ≥ −8

x0 + 2x1 + 2x2 + x3 + x4 + x5 + x6 − y0 − 3y1 − 3y2 − 3y3 − 3y4 + 2y6 ≥ −2

− x0 − x3 − x6 + y0 + 2y1 + y2 + 2y3 + y4 + y5 + y6 ≥ −1

−11x0 − 6x1 − x2 − 10x3 − 4x4 − 5x5 − 5x6 + 20y0 + 22y1 + 11y2 + 23y3 + 3y4 + 14y5
+20y6 ≥ −14

3x0 + 4x1 + 3x2 + 24x3 + 6x4 + 5x5 + 6x6 − 21y0 − 24y1 − 21y2 − 28y3 + 68y4−
29y5 − 22y6 ≥ −26

−17x0 + x1 + 3x2 + 4x3 − 6x4 + 2x5 + 2x6 − 5y0 + y1 − 12y2 − 26y3 − 17y4 + 34y5
−13y6 ≥ −49

−8x0 − 2x1 − 2x2 − 6x3 − x4 − 3x5 − 2x6 + 17y0 + 20y1 + 15y2 + 22y3 + 12y4 + 17y5
+15y6 ≥ 0

−17x0 − 4x1 − x2 − 16x3 − 14x4 − 15x5 − 16x6 + 14y0 + 15y1 + 2y2 + 6y3 + y4+
3y5 + 5y6 ≥ −62

−3x0 − 7x1 − x2 − 2x3 − x4 − 4x5 − 6x6 + 8y0 + 6y1 + 11y2 + 13y3 − 5y4 + 11y5+
12y6 ≥ −15

−5x0 + 3x1 + 3x2 − 5x3 − 2x4 − 6x5 − x6 + 11y0 + 7y1 + 3y2 + 7y3 − 4y4 + 7y5+
11y6 ≥ −11

−12x0 − x1 − 3x2 − 12x3 − 4x4 − 7x5 − 12x6 + 8y0 + 9y1 − 3y2 + 3y3 + 5y4+
y5 + 9y6 ≥ −41

x0 + 12x1 + 3x2 + x3 + x4 + 7x5 + 8x6 − 17y0 − 26y1 − 12y2 + 38y3 − 7y4−
17y5 − 17y6 ≥ −25

(7)

−11x0 − 2x1 − x2 − 10x3 − 4x4 − 2x5 − 8x6 + 11y0 + 13y1 + 4y2 + 15y3 + 6y4
+5y5 + 9y6 ≥ −21

7x0 + 3x1 + 2x2 + 2x3 + 2x4 + 4x5 + 43x6 − 11y0 − 11y1 − 10y2 − 11y3 − 8y4−
11y5 − 10y6 ≥ −9

(8)

Security Analysis of WAGE Against Division Property Based Cube Attack 501

Algorithm 2. MILP model for the S-box in WAGE
1: function SB(S, index)

2: M.var ← s
′
index+i , xi , yi as binary for 0 ≤ i ≤ 6

3: M.con ← sindex+i = s
′
index+i + xi for 0 ≤ i ≤ 6

4: Add constraints to M based on the reduced set of inequalities SBI

5: for j = 0 to 36 do
6: S

′
[j] = S[j] � S

′
[j] = (s

′
7j , s

′
7j+1, s

′
7j+2, s

′
7j+3, s

′
7j+4, s

′
7j+5, s

′
7j+6)

7: return (M, S
′
, [y0, y1, y2, y3, y4, y5, y6])

Using these 49 inequality constraints, the MILP model for the S-box (SB) is
constructed as shown in Algorithm 2.

MILP Model for the Feedback Function (FBK). In WAGE, the function
FBK is expressed as S31+S30+S26+S24+S19+S13+S12+S8+S6+(ω⊗S0). We
first rewrite x ⊗ ω = (x0, x1, x2, x3, x4, x5, x6) ⊗ ω → (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕
x6, x3, x4, x5). In order to model this function x ⊗ ω, we have two methods
such as S method [6] and ZR method [9]. However, S method cannot handle
the cancellation phenomenon between terms, so it may introduce some invalid
trails. In WAGE, we verified that S method is enough as it does not produce any
invalid trail for this function. Using the technique [6], we get the following system
of equations by introducing 10 intermediate binary variables ti for 1 ≤ i ≤ 10
(see Eq. (9)).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = t1
x1 = t2
x2 = t3
x3 = t4
x4 = t5
x5 = t6
x6 = t7 + t8 + t9 + t10

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = t7
y1 = t1 + t8
y2 = t2 + t9
y3 = t3 + t10
y4 = t4
y5 = t5
y6 = t6

(9)

Algorithm 3 elaborates the MILP model.
Now, we describe the overall MILP model for the WAGE whose initialization is
reduced to R rounds. The function WAGEEval in Algorithm 4 computes all
the division trails.

502 B. Das et al.

Algorithm 3. MILP model for FBK operation in WAGE
1: function FBK(S, IndexSet)
2: M.var ← zj as binary for 0 ≤ j ≤ 6
3: Add constraints to M based on Equation (9) to model ω ⊗ S0

4: for i ∈ IndexSet do
5: M.var ← s

′
7i+j , x7i+j as binary for 0 ≤ j ≤ 6

6: temp = 0
7: for j ∈ [0, 1, 2, 3, 4, 5, 6] do
8: for i ∈ IndexSet do
9: temp ← temp + x7i+j

10: M.con ← zj = yj + temp � see Equation (9) for yj

11: for j ∈ {0, 1, . . . , 37} \ IndexSet do

12: S
′
[j] = S[j] � S

′
[j] = (s

′
7j , s

′
7j+1, s

′
7j+2, s

′
7j+3, s

′
7j+4, s

′
7j+5, s

′
7j+6)

13: return (M, S
′
, [z0, z1, z2, z3, z4, z5, z6])

4.2 Evaluate Secret Bits Involved in the Balanced Superpoly

We prepare a cube CI(IV) to start the evaluation using all feasible combinations
of {vI1 , vI2 , . . . , vI|I|}. Then, using Algorithm 5 from [7], we extract the relevant
secret variables J = {kj1 , kj2 , . . . , kj|J|} from the preferred superpoly. The cube
indices I = {I1, I2, . . . , I|I|} of the WAGE cipher and the MILP model M serve
as the algorithm’s inputs. The initial division property is used to calculate all
R-round division trails with the following values: vi = 1 for i ∈ I and vi = 0
for i ∈ {0, 1, 2, . . . ,m − 1} \ I. Table 1 summarize all the secret bits involved in
the preferable superpoly. Table 1 is built for 13 to 18 rounds of the initialization
phase based on our chosen cubes of Table 1.

Table 1. Involved Key bits in the Superpoly for the Cube C{I1,I2,...,I15}

Cube
Sequence

Cube
Indices

Output
bit

#Rounds Involved Secret Key Variables (J) |J | Time

I1 7,21,24,25 60 13 127,133,134,. . .,195 65 265+4

I2 8,21,24,25 14

I3 9,21,24,25 15

I4 10,21,24,25 16

I5 11,21,24,25 17

18 0,1,. . .,13,42,43,. . .,62,126,127,133,134,. . .,195 100 2100+4

I6 21,24,25,109 65 13 127,133,134,. . .,195 65 265+4

I7 21,24,25,97 14

I8 24,25,97,109 15

I9 21,25,106,109 16

I10 21,24,25,106 17 0,1,. . .,6,42,43,. . .,48, 56,57,. . .,62,127,133,134,. . .,195, 86 286+4

18 0,1,. . .,13,42,43,. . .,62,126,127,133,134,. . .,195 100 2100+4

I11 21,22, 23, 35 66 13 127,133,134,. . .,195 65 265+4

I12 21,22, 24, 35 14

I13 21,22, 25, 35 15

I14 21,22, 26, 35 16

I15 21,22, 27, 35 17 0,1,. . .,6,42,43,. . .,48, 56,57,. . .,62,127,133,134,. . .,195, 86 286+4

18 0,1,. . .,13,42,43,. . .,62,126,127,133,134,. . .,195 100 2100+4

Security Analysis of WAGE Against Division Property Based Cube Attack 503

Searching Cubes. We pick the cube I so that 2I+J has the smallest possi-
ble value. The cubes that we select for this attack meet the aforementioned
requirement are displayed in Table 1 as I1, I2, . . . , I15. There are a total of |I|
cubes of size |I| that can be created. The selection of so many cubes is compu-
tationally infeasible. We do not have the reasonable evidence that our choice of
cube indices are appropriate. However, we have tested many different cubes (see

Algorithm 4. MILP model for the Initialization Round of WAGE Cipher
1: function WAGEEval(R, OutputBit)
2: Prepare an empty MILP model M
3: M.var ← S0

i for 0 ≤ i ≤ 37 � S0
i = (s7i, s7i+1, . . . , s7i+6) and S0

i [j] = sj
4: for r ∈ {1, 2, . . . , R} do
5: (M, S1, a1) ← SB(Sr−1, 8)
6: (M, S2, a2) ← SB(S1, 15)
7: (M, S3, a3) ← WGP (S2, 18)
8: (M, S4, a4) ← SB(S3, 27)
9: (M, S5, a5) ← SB(S4, 34)

10: (M, S6, a6) ← WGP (S5, 36)
11: (M, S7, b) ← FBK(S6, [0, 6, 8, 12, 13, 19, 24, 26, 30, 31])
12: for i ∈ [5, 11, 19, 24, 30] do
13: M.var ← sr7i+j , xr

7i+j as binary for 0 ≤ j ≤ 6

14: for i ∈ [5, 11, 19, 24, 30] do
15: M.con ← S7

i [j] = sr7i+j + xr
7i+j for 0 ≤ j ≤ 6

16: b1 = a1 + X5

17: b2 = a2 + X11

18: b3 = a3 + X19 � Xi = {xr
7i, x

r
7i+1, . . . , x

r
7i+6}

19: b4 = a4 + X24

20: b5 = a5 + X30

21: fb = a6 + b
22: Sr

5 = b1
23: Sr

11 = b2
24: Sr

19 = b3
25: Sr

24 = b4
26: Sr

30 = b5
27: for i = 0 to 35 \ {5, 11, 19, 24, 30} do
28: Sr

i = S7
i+1

29: M.con ← S7
0 = 0

30: M.var ← Sr
36 as binary

31: M.con ← Sr
36 = fb

32: for i = 0 to 258 \ {OutputBit} do
33: M.con ← S7[j] = 0

34: M.con ← OutputBit = 1

504 B. Das et al.

Algorithm 5. Evaluate secret variables in superpoly by MILP [7]
1: function EvaluateKeyBits(MILP model M, Cube Indices I)
2: M.var ← ki for 0 ≤ i ≤ n − 1 � k0, k1, . . . , kn−1 are secret variables
3: M.var ← vj for 0 ≤ j ≤ m − 1 � v0, v1, . . . , vm−1 are secret variables
4: M.con ← vi = 1 for i ∈ I
5: M.con ← vj = 0for j ∈ {(0, 1, . . . , m − 1) \ I}
6: M.con ← ∑n−1

i=0 ki = 1
7: do
8: Solve MILP model M
9: if M is feasible then

10: pick an index j ∈ {0, 1, . . . , n − 1} such that kj = 1
11: J = J ∪ {j}
12: M.con ← kj = 0

13: while M is feasible
14: return J

Table 1 and Table 2) at random. Our tests suggest that the cubes of Table 1 are
the most effective for this cipher. How to choose appropriate cubes is still an
open question.

Table 2. Involved Key bits in the Superpoly for the Cube C{I′
1,I

′
2}

Cube
Sequence

Cube
Indices

Output
bit

#Rounds Involved Secret Key Variables (J) |J | Time

I
′
1 25,26,39,41 70 13 126,127,133,134,. . .,195 65 265+4

I
′
2 25,26,39,93 14

15

16 0,1,. . . ,13,42,43,. . .,62,126,127,133,134,. . . ,195 100 2100+4

17

Extract a Balanced Superpoly. In order to find the superpoly p(J, v̄), for
v̄ = {v0, v1, . . . , vm−1} \ I, we randomly select the constant part of the IV and
test a total of 24 × 2100 potential permutations (see Table 1 for the reduced
18-round of the cipher for each output bit ∈ {60, 65, 66}. Let J be one of the
2100 possible values represented by Ĵ . During the offline phase, we calculate the
values of p(J, v̄), store them in a table T1 with an index of Ĵ , and then evaluate
the ANF in accordance with those values. If p(J, v̄) becomes constant, we choose
a new random IV and repeat the process described above until we discover a
suitable one that ensures that p(J, v̄) is not constant.

To sum up, after computing 24+100 operations, we compute a table T1 of
size Ĵ . If the attacker can quickly locate the right IVs, the attack is feasible.
We suppose that for each of the cubes in Table 1, we can recover the balanced
superpoly in just one trial. In fact, there are 128−4 = 124 bits available to set the
constant portion of the IV because each of these cubes has a size of 4. Because

Security Analysis of WAGE Against Division Property Based Cube Attack 505

of this, we assume that Assumption 1 (which is indicated in [7]) is true with a
high degree of probability and derive the complexity numbers appropriately.

4.3 Key Recovery for 18-Round Initialization Phase

For the cubes I1, I2, . . . , I15, we employ the balanced superpolys. For each i ∈
{1, 2, . . . , 15}, the following procedures are performed during the online phase.

– Query the encryption oracle with CIi and compute S =
⊕

CIi
f(k, v)

– Compare S with each entry of T1. The values of k̄ = {kj1 , kj2 , . . . , kj100}
for which S does not match T1 are discarded. Given that the superpoly is
balanced, we observe that for 299 values of k̄, p(kj1 , kj2 , . . . , kj100 , v̄) = 0.
Conversely, for the remaining 299 values of k̄, p(kj1 , kj2 , . . . , kj100 , v̄) = 1.
Therefore, we can recover one bit of information in the secret variables.

For each output bit ∈ {60, 65, 66}, we can recover one bit of secret information
for each cube only in one trial. Since we work with five cubes, we recover five
secret variables. The remaining secret bits (128−5 = 123 of them) are recovered
by guessing involving a brute-force complexity of 2123. The total time complexity
for the attack is therefore 5 × 2104 + 2123 ≡ 2123. The data complexity for the
total computation is 5 × 24 = 26.32.

4.4 Discussion on Experimental Results

The initialization phase of WAGE involves 111 numbers of rounds. As the num-
ber of rounds increases, the output function’s degree in WAGE also grows, and
when utilizing the full 111 rounds, it is anticipated to be considerably high.
Consequently, if one aims to identify a cube after 111 rounds, the size of the
cube is also expected to be large. Such a task necessitates a significant amount
of computational time. Considering these factors, a cube attack was conducted
on reduced round versions of WAGE instead. Due to the large time complexity
involved in searching for larger cubes, our experiments focused on smaller cube
sizes. It is worth noting that the identified cubes for the 18 initialization rounds
are only of size 4, even though the degree of the output function after 18 rounds
is expected to be significantly higher. This observation indicates that the key
and the initialization vector are not thoroughly mixed yet after the completion
of the 18 rounds. However, the experimental results (small data complexity)
demonstrate that our proposed approach is well-suited for realistic scenarios in
lightweight constrained applications where gathering large amounts of data is
difficult.

5 Conclusion

The security of the nonlinear feedback-based initialization phase of the
lightweight stream cipher WAGE is examined in this study. By assuming that

506 B. Das et al.

the cipher’s structure is a non-blackbox polynomial, we can mount a division-
property-based cube attack. For the initialization phase of this cipher, our attack
suggests a MILP model. We work out the details of the model as specific to the
WAGE cipher. To the best of our knowledge, there exist only one correlation
power attack against this cipher, and it is mounted up to 12 out of 111 rounds.
Our method is able to attack this cipher to 6 more rounds, that is the 18-round
of the cipher.

References

1. AlTawy, R., Gong, G., Mandal, K., Rohit, R.: WAGE: an authenticated encryption
with a twist. IACR Trans. Symmetric Cryptol. 2020(S1), 132–159 (2020)

2. AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: sLiSCP: simeck-
based permutations for lightweight sponge cryptographic primitives. In: Adams, C.,
Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 129–150. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72565-9 7

3. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

4. Fei, Y., et al.: Correlation power analysis and higher-order masking implementation
of WAGE. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020.
LNCS, vol. 12804, pp. 593–614. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81652-0 23

5. Gong, G., Youssef, A.M.: Cryptographic properties of the welch-gong transformation
sequence generators. IEEE Trans. Inf. Theory 48(11), 2837–2846 (2002)

6. Sun, L., Wang, W., Wang, M.Q.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2019)

7. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 9

8. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral
distinguishers based on division property for 6 lightweight block ciphers. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

9. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary diffu-
sion layer. IET Inf. Secur. 13(2), 87–95 (2019)

https://doi.org/10.1007/978-3-319-72565-9_7
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-030-81652-0_23
https://doi.org/10.1007/978-3-030-81652-0_23
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-53887-6_24

When MPC in the Head Meets VC

Li Liu1,2 and Puwen Wei1,2,3(B)

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Qingdao, China

sdu liuli@mail.sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University, Qingdao, China

3 Quancheng Laboratory, Jinan, China
pwei@sdu.edu.cn

Abstract. In this paper, we investigate zero-knowledge proof systems
based on the “MPC-in-the-head” paradigm (MPCitH), which presents
the advantage of offering fast proof generation and post-quantum secu-
rity. However, current constructions suffer from the drawbacks of large
proof sizes and high memory consumption. Particularly, as the under-
lying circuit increases in size, the proof size grows significantly, and
the machine that executes MPCitH-based protocol quickly surpasses
its memory bounds due to the multiple parallel executions of MPC.
To overcome this challenge, we present the VC-then-MPCitH paradigm,
which integrates verifiable computation (VC) techniques into MPCitH.
We implement our protocol using concrete VC protocol Virgo++ and
MPCitH protocol BN++. Leveraging the properties of the underlying
protocols, we can embed Virgo++ into BN++ efficiently. The resulting
protocol can significantly reduce the memory consumption and the cost
of both computation and communication of MPCitH for large circuits.
We conduct our evaluation on a circuit over the field F2128 consisting
of 40,006 multiplication gates and almost 100000 gates in total. With
soundness error of 2−128, our protocol can generate proofs of size 8891
KB in 86 ms, and verify in 70 ms. Furthermore, our protocol outperforms
BN++ with the same parameter settings by reducing the proof size by
a factor of 10 and shortening both the prover and verifier time by 13
times. On a resource-constrained device that offers 10 GB of memory,
our protocol can handle effectively circuits with up to 10 million gates,
while BN++ only supports circuits with up to 330,000 gates.

Keywords: Zero-knowledge · MPC-in-the-head · Post-quantum

1 Introduction

Zero-knowledge (ZK) proof enables the prover to demonstrate the correctness of
a statement to the verifier without revealing additional information. Since its pro-
posal by Goldwasser, Micali, and Rackoff [16], zero-knowledge proof has become
an essential cryptographic primitive, which is widely used to construct privacy-
preserving protocols, e.g., anonymous transactions, verifiable voting, identifica-
tion protocols, etc. During the past decades, researchers have proposed quite a
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 507–526, 2023.
https://doi.org/10.1007/978-981-99-7032-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_30&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_30

508 L. Liu and P. Wei

few efficient constructions of ZK protocols for arithmetic circuits. In particu-
lar, Ishai et al.’s seminal work [20] presented the MPC-in-the-head (MPCitH)
paradigm which can construct ZK proofs using secure multi-party computation
(MPC). Then a series of works have shown concrete ZK protocols following the
MPCitH paradigm, e.g., ZKBoo [15], KKW [24], BN [4], Limbo [28], etc. Due
to the properties of MPCitH, the resulting ZK protocols do not need to rely on
structured (or number-theoretic) assumptions, and hence can offer post-quantum
security. Furthermore, these protocols can be transformed to post-quantum dig-
ital signatures via Fiat-Shamir transformation, e.g., Picnic 1/2/3 [10,11,21],
BBQ [29], Banquet [5], Rainer [13], the security of which only rely on the under-
lying symmetric key primitives. Compared with zk-SNARKs especially the popu-
lar “poly-IOP”-based schemes [12,14], constructions based on MPCitH typically
have a significant advantage in prover time, not only the asymptotic complexity
of which is linear in the circuit size O(|C|), where |C| represents the number of
multiplication gates of circuit C, but can achieve outstanding concrete efficiency.
Recently, TurboIKOS [19] and BN++ [22] further optimized the proof size of
BN while preserving proving efficiency.

However, the proof size of the current MPCitH-based ZK protocols increased
significantly with the number of multiplication gates of the circuit. In particular,
when the circuit has tens of thousands of multiplication gates, the resulting
proof size would be tens of megabytes. Another concern is the high memory
consumption which may limit the practical applicability of MPCitH. For large
circuits with over 105 gates, the memory cost of the current MPCitH-based
protocol, say BN++, would be prohibitive or even cause downtime, especially for
resource-constrained devices. This is also important in large-scale computational
scenarios, such as machine learning with privacy protection. In such scenarios,
the service provider needs to prove that a computationally intensive process
of the machine learning model is correct without disclosing sensitive data. As
the scale of the computation grows, it can become challenging for the service
provider to provide the proof in a timely manner.

Contributions. In this work, we introduce “VC-then-MPCitH”, a novel para-
digm for creating post-quantum zero-knowledge proofs. Our approach integrates
verifiable computation (VC) techniques with MPCitH and offers substantial
reductions in proof size, computational overhead, and memory consumption
when compared to current MPCitH-based constructions. The basic idea is to
make use of the efficient verification capabilities of VC methods to compress the
circuit size within the MPCitH process, which allows for faster and more effi-
cient operations. However, integrating VC and MPCitH comes with additional
consistency-proof requirements that may negate the advantages of using VC in
terms of communication and computation costs. To address this problem, we
investigate the characteristics of the concrete VC protocol Virgo++ [32] and
MPCitH, and devise a simple method of committing to the prover’s messages
in each round of Virgo++. This allows us to embed Virgo++ into the state-of-
the-art MPCitH-based proof system, BN++ [22], efficiently. It is worth noting

When MPC in the Head Meets VC 509

that for fixed-size circuits, our protocol’s proof size and running time are inde-
pendent of the multiplication gate density. Our protocol inherits the security
of the MPCintH protocols and relies only on symmetric primitives instead of
other structured or number-theoretic assumptions, providing sufficiently plausi-
ble post-quantum security.

We have implemented our protocol using a circuit defined over F2128 , contain-
ing 40,006 multiplication gates and almost 100,000 gates in total. With the sound-
ness error of 2−128, generating proofs of size 8891 KB takes 86 ms, while verifica-
tion occurs within 70 ms. Compared to BN++ with the same parameter settings,
our proof size is 10× smaller, with prover and verifier time sped up by 13×. Con-
trasting Virgo++ with ZK implementation, our overall prover time is between
1.2× to 4× faster, while our proof size is larger. It is also worth mentioning that
our protocol supports large circuits over any finite fields, whereas the ZK Virgo++
requires special restrictions of finite fields. More importantly, our protocol offers
superior scalability concerning memory consumption when compared to BN++.
Specifically, BN++ is unable to handle circuits with more than 330,000 gates on
devices with limited memory of 10 GB. In contrast, our protocol can support cir-
cuits with up to 10 million gates, allowing for high efficiency in proving circuits
over a wide range, and is compatible with large-scale computations.

Related Works. Many existing (zk-)SNARKs [12,18,31] use VC [1] as a build-
ing block to achieve succinct proof. However, the prover time comes with sig-
nificant computational overheads due to operations such as FFT and multi-
exponentiation. As the circuit scales in large outsourced verifiable computa-
tions, generating proofs becomes significantly delayed and inefficient. To address
this issue, some studies [9,25] leverage recursive combinations of proof systems
to iteratively construct verifiable computations incrementally. In recent years,
Interactive Proof (IP) has become an attractive tool for constructing VCs with
its superior prover time and statistical soundness. The IP protocols based on
GKR [17] and its variants [30,31] are crucial components in the construction of
doubly efficient ZK protocols. In the latest results, Virgo++ [32] achieves a strict
prover time (O(|C|)) for generic circuits. Recent work [6] utilizes a similar idea
to ours. It embeds a GKR-like VC into Groth’s SNARK [18] to reduce SNARK’s
prover time. However, their approach does not account for secret inputs, and con-
structions that rely on trusted setups make it difficult to add ZK functionality.
Ligero++ [8], which offers post-quantum security, achieves a trade-off between
proof size and prover time by combining Ligero [3] and Aurora [7]. However,
similar to Virgo [33], Ligero++ has constraints on the finite field of the circuit
to achieve the low degree test (LDT), and its prover time is marginally higher
than Ligero, the asymptotic prover time of which is O(|C| log |C|).

2 Preliminaries

Notations. We use κ as the security parameter and negl(·) as the negligible
function. Let xi denote the i-th variable of the vector x. [n] denotes the set

510 L. Liu and P. Wei

{1, . . . , n} and [a, b] stands for the interval from a to b. We formalize the state-
ment for the protocol as the arithmetic circuit satisfiability problem. A fan-in-2
arithmetic circuit C defined over any finite field F can be considered as a directed
acyclic graph (DAG) G, where gates and wires in C correspond to points and
edges in G, respectively. We assume that there are d layers in C, where d is exactly
the longest path of G. Layer d and layer 0 are the input layer and the output
layer, respectively. Following the notations of Virgo++, we use Si to denote the
number of gates at layer i and assume that Si = 2si for simplicity. Each layer
has a function Vi : {0, 1}si → F to map a gate label to its output value. The
wiring-predicate functions addi,j/multi,j : {0, 1}si−1×si×sj → {0, 1} output 1 iff
gate z in layer i − 1 is an addition/multiplication gate and takes the outputs of
gate x in layer i and gate y in layer j(j ≥ i) as inputs.

We write probabilistic polynomial time Turing machine as “PPT iTM” for
short. 〈P(inp),V(inv)〉(x) denotes a random variable describing the output of V
when running an interactive protocol with P on common input x, where P,V are
PPT iTM, and they take inp, inv as auxiliary inputs. Let View〈P(inp),V(inv)〉(x)
be the distribution of the entire transcript of the interaction. Let w ∈ F

Sd ,y ∈
F

S0 denote the inputs and outputs of the circuit C, respectively. The relation on
C is defined as R = {〈x = (C,y);w〉 : C(w) = y}.

Definition 1 (Interactive arguments and proofs). 〈P,V〉(w, x) is an inter-
active argument for the relation R if the following conditions hold:

– Completeness: For every w s.t. C(w) = y, Pr[〈P,V〉(w, x) = acc] = 1.
– Soundness: For any w s.t. C(w) �= y and any malicious PPT iTM P∗,

Pr[〈P∗,V〉(w, x) = acc] ≤ negl(|x|). If P∗ is computationally unbounded, then
〈P,V〉(w, x) is an interactive proof (IP).

Definition 2 (Honest Verifier Zero-Knowledge Argument of Knowl-
edge (HVZKAoK)). 〈P(w),V〉(x) is an HVZKAoK for the relation R with
knowledge error ξ if the following conditions hold:

– Completeness: For every w s.t. C(w) = y, Pr[〈P,V〉(w, x) = acc] = 1.
– Knowledge soundness: There exists a probabilistic extractor algorithm E

which takes x as input and holds that: for any malicious PPT iTM P∗, if
the probability δ(x) that V accepts on input x satisfies δ(x) > ξ, given oracle
access to P∗, E outputs w s.t. C(w) = y in the expected time O(1

δ(x)−ξ).
– Honest Verifier Zero-Knowledge: there exists a PPT simulator S that

can access to the randomness used by V s.t. S(x) ≈ View〈P(w),V〉(x).

Commitment. A commitment scheme Com allows a user to commit to a mes-
sage m with randomness r. The user can open the commitment Com(m; r) later
by revealing (m, r). The commitment should satisfy properties called hiding and
binding. Simply speaking, the hiding property requires that it is hard to distin-
guish between commitments of m0 and m1, while binding requires that it is hard
to find two different messages m0 and m1 such that Com (m0; r0) = Com (m1; r1).

When MPC in the Head Meets VC 511

In this work, the commitment scheme is instantiated by a hash function that
can be modeled as a random oracle.

Multi-linear Extension (MLE). Any �-variable function V : {0, 1}� → F

has a unique MLE Ṽ : F
� → F that is a multilinear polynomial such that

Ṽ (x1, x2, . . . , x�) = V (x1, x2, . . . , x�) for all x1, . . . , x� ∈ {0, 1}. Ṽ can be
expressed as below.

Ṽ (x1, x2, . . . , x�) =
∑

b1,...,b�∈{0,1}

�∏

i=1

((1 − xi) (1 − bi) + xibi) · V (b1, b2, . . . , b�)

MPC-in-the-Head and BN++. The main idea of MPC-in-the-head to con-
struct ZK is as follows. For the statement C(w) = y where w is the witness, the
prover simulates N parties of an MPC protocol “in the head”. Each party “in
his head” takes as input the secret-sharing of w and runs the MPC protocol to
evaluate C gate-by-gate. The prover commits to the inputs as well as each party’s
view and related randomness, and opens some of these commitments based on
the verifier’s challenges. The verifier checks the consistency of all the parties’
views and the correctness of the output. Due to the privacy of the underlying
MPC, the resulting protocol can achieve zero-knowledge.

BN++ improves the MPCitH paradigm with “lifting” strategies. Instead of
evaluating C gate-by-gate, BN++ takes advantage of the “sacrificing” technique.
In particular, shares of results of multiplication gates had been injected by the
prover at the beginning and the verifier needs to additionally select random
coefficients to run the Dot-Product Checking, which is a sub-protocol used for
checking the evaluation of L multiplication gates in batch. More precisely, to
prove that all (x�, y�, z�)L

�=1 are multiplication triples, the prover hides them by
an auxiliary random dot product ({a�, b�}�∈L, c) such that c =

∑L
�=1 a� ·b�, where

all b� = y� are fixed for optimization. Since in the MPCitH, each party holds one
share of each of these values (we write m(p) to indicate the share of m held by
party p), they run the following process:

a. The verifier chooses random challenge ε = (ε1, . . . , εL) ∈ F
L.

b. Each party p sets α
(p)
� = ε� · x

(p)
� + a

(p)
� .

c. Each party p open {α�} by broadcasting, i.e., α� =
∑

p∈[N] α
(p)
� .

d. Each party p sets v(p) =
∑L

�=1(ε� · z
(p)
� − α� · y

(p)
�) − c(p).

e. The verifier will accept iff
∑

p∈[N] v
(p) = 0.

The soundness of Dot-Product Checking is guaranteed by the General Schwartz-
Zippel lemma [22].

Sumcheck Protocol and Virgo++. Sumcheck Protocol [27] is a multi-round
IP that allows the prover to convince the verifier of a claimed correct eval-
uation of the sum of a polynomial f : F

� → F on the boolean hypercube:∑
b1,b2,...,b�∈{0,1} f (b1, b2, . . . , b�) = a, where the variable degree of f is at most

512 L. Liu and P. Wei

d. Obviously, computing the sum directly requires exponential time in � due to 2�

combinations of b1, . . . , b�. The sumcheck protocol provides a more efficient way
for the verifier to check the correctness of the evaluation. The protocol proceeds
for � rounds. In the i-th (1 ≤ i ≤ �) round, the prover sends a d-degree poly-
nomial fi(X) claiming equal to

∑
bi+1,...,b�∈{0,1} f (r1, . . . , ri−1,X, bi+1, . . . , b�).

The verifier checks if f(0)+f(1) = f(ri−1) and sends a random challenge ri ∈ F

for the next round. In the last round, the verifier evaluates f(r1, . . . , r�) with an
oracle query to f and will accept the statement iff f�(r�) = f(r1, . . . , r�). The
soundness error of the sumcheck protocol is at most d�

|F| .
Using sumcheck as the major building block, GKR [17] provides an efficient

IP for the verification of the evaluation of layered circuits. Virgo++ is a variant of
GKR. As in Virgo++, Si,j denotes the size of the set of gates at layer j connected
to layer i, and si,j =
log Si,j�. The function Vi,j : {0, 1}si,j → F maps the labels
of gates in the above set to their output value. With these symbol definitions,
the function Vi in layer i can be expressed in terms of Vi,i+1, . . . , Vi,d of all
layers above the layer i. For a fixed gi ∈ F

si , w.l.o.g., assuming that si,i+1 is
the largest, the expression of the function Vi can be formalized with MLEs as
following summation on 2-degree polynomial in Eq. (1), a sumcheck protocol
will be applied on it to prove the evaluation claim.

Ṽi(gi) =
∑

x,y∈{0,1}si,i+1

˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · · · ysi,i+1 · ˜addi+1,i+2(g, x, y1, . . . , ysi,i+2)(Ṽi,i+1(x) + Ṽi,i+2(y1, . . . , ysi,i+2))

+ . . . + ysi,d+1 · · · ysi,i+1 · ˜addi+1,d(g, x, y1, . . . , ysi,d
)(Ṽi,i+1(x) + Ṽi,d(y1, . . . , ysi,d

))

+ ysi,i+1+1 · · · ysi,i+1 · ˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y1, . . . , ysi,i+1))

+ ysi,i+2+1 · · · ysi,i+1 · ˜multi+1,i+2(g, x, y1, . . . , ysi,i+2)Ṽi,i+1(x)Ṽi,i+2(y1, . . . , ysi,i+2)

+ . . . + ysi,d+1 · · · ysi,i+1 · ˜multi+1,d(g, x, y1, . . . , ysi,d
)Ṽi,i+1(x)Ṽi,d(y1, . . . , ysi,d

)

(1)

In Virgo++, the sumcheck protocol on Eq. (1) consists of two si,i+1-round
phases that sum on x and y respectively. At the end of sumcheck, the prover
sends claims about all layers above the layer i: Ṽi,i+1(v(i,i+1)), ..., Ṽi,d(v(i,d))
and Ṽi,i+1(u(i,i+1)), where v(i,i+1), ..., v(i,d), u(i,i+1) are randomness determined
round by round during the sumcheck. At this point, the verifier receives i + 2
claims about the layer i+1. To reduce the multiple claims to a single claim, the
verifier will choose random coefficients {αk,i+1}k∈[0,i], α

′
i,i+1 to combine them

linearly as the left side of the Eq. (2), which can be simplified to a sum of the
hypercube {0, 1}si+1 on the right side. Then another sumcheck will be applied to
the Eq. (2). Since qi+1(x) can be computed locally by the verifier, the resulting
claim about the next layer will be Ṽi+1(gi+1) for some fixed random gi+1.

i∑

k=0

αk,i+1Ṽk,i+1(v
(k,i+1)) + α′

i,i+1Ṽi,i+1(u
(i,i+1)) =

∑

x∈{0,1}si+1

Ṽi+1(x)qi+1(x) (2)

The protocol will be run iteratively until the claims are reduced to layer d,
and the verifier who knows the input can directly check it.

When MPC in the Head Meets VC 513

3 Our Construction

Technique Overview. In the MPCitH-based ZK protocol Πmpc, each multipli-
cation gate requires the calculation of O(M ·N) multiplications in F [4], where M
and N denote the number of instances and parties in MPCitH, respectively. This
leads to significant computation and communication costs for both the prover and
the verifier when |C| is large. To mitigate proof size and reduce verification costs,
an intuitive method is to apply VC to the verification circuit of Πmpc, where the
proof generated by Πmpc serves as the witness of VC. We denote such method as
MPCitH-then-VC. However, the verification circuit of Πmpc, denoted as Cvrfy

mpc, is at
least M · N times larger than |C|. Thus, MPCitH-then-VC incurs significant com-
putation and communication costs for the prover, negating the benefits of using
VC. As a result, we consider the alternative solution VC-then-MPCitH.

Our idea is to apply VC to the original circuit C and obtain the correspond-
ing verification circuit, denoted as VIP of VC. Then the prover runs an MPCitH
protocol on VIP , which is much the smaller than both Cvrfy

mpc and C. Note that
executing VC requires the verifier to have the knowledge of the witness for each
round of VC. Therefore, the prover needs to commit to the relevant knowledge
of each round to guarantee the zero-knowledge. Thus, we require a modified VC
wherein the prover’s message in each round is the corresponding commitment.
Nevertheless, this necessitates additional consistency proofs for these commit-
ments in a zero-knowledge manner, which may result in an inefficient solution as
in MPCitH-then-VC. Fortunately, we can leverage the properties of the concrete
MPCitH and VC protocols to mitigate these additional costs. Specifically, we
consider BN++ and Virgo++ as the concrete instantiations of MPCitH and VC,
respectively. We observe that the “offset” of the prover’s messages in Virgo++,
which is obtained from the secret sharing of BN++, can serve as a commitment,
which will be sent to the verifier during each round of Virgo++. The “offset”
does not disclose any secret information and is bound to a unique “witness”
provided the relevant randomness commits correctly. As a result, we insert the
modified Virgo++ between the offline phase (commit to witness and secret shar-
ing) and the online phase (MPC for VIP) of BN++. Therefore, we can execute
the MPCitH protocol on the verification circuit of Virgo++, where the primary
operations are linear and multiplication gates are sparse.

3.1 VC-then-MPCitH

In this section, we introduce our VC-then-MPCitH protocol Π which uses BN++
and Virgo++ as major building blocks. The main idea is that the prover and the
verifier run a modified VC protocol for C(w) = y, where the prover’s messages
(proofs) are sent as a commitment. Then the prover proves that the committed
proofs in VC satisfy the verification circuit of VC for C(w) = y using MPCitH ZK
protocol. VC and MPCitH ZK are instantiated with Virgo++ and BN++, respec-
tively. Formal descriptions of Π are shown in Fig. 1, 2, 3 and 4, where Commit
denotes a commitment scheme. The function Sample samples values from random
tapes in order. ExpandTape denotes a function that expands the random tapes.
H0,H1 and H2 denote hash functions, which can be modeled as random oracles.

514 L. Liu and P. Wei

Fig. 1. Phase 1: MPCitH.Commit to witness and seeds.

In Phase 1, P follows BN++ to commit to witness and seeds, which are
used to generate the randomness of secret sharing and commitments. We denote
the VC proofs for C(w) = y using Virgo++ as π, which is considered as the
parts of the witness in BN++. So the prover needs to sample random shares
for both w (step 9) and π (steps 10–16). According to Virgo++ [32], π con-
sists of 4 parts: (a) 2-degree polynomials {πi,k}i∈[0,d−1],k∈[2si,i+1] created in each
round of the sumcheck on Eq. (1) in each layer, (b) {πi,claim}i∈[0,d−1] contain-
ing claims Ṽi,i+1(v(i,i+1)), ..., Ṽi,d(v(i,d)) and Ṽi,i+1(u(i,i+1)), (c) 2-degree poly-
nomials {π∗

i,k}i∈[0,d−1],k∈[si+1] that generated in each round of the sumcheck
on Eq. (2) between every two layers, and (d) {πi+1,0}i∈[0,d−1] containing all
claims Ṽi+1(gi+1) about “the next layer”. Each party’s random shares for the

When MPC in the Head Meets VC 515

above 4 parts are computed in steps 10–16. We denote by (ci,k,2, ci,k,1, ci,k,0) and
(c∗

i,k,2, c
∗
i,k,1, c

∗
i,k,0) the coefficients of 2-degree polynomials πi,k,π∗

i,k, respectively.

Fig. 2. Phase 2: Modified VC for C(w) = y

In Phase 2, P and V run a modified VC protocol for C(w) = y. Our modified
VC protocol is similar to Virgo++, with the exception that, instead of sending
the proofs π directly, the prover sends the commitments to π. (Hence V cannot
check the validity of the messages from P in this phase.) Here, the “offsets” (steps

516 L. Liu and P. Wei

7, 13, 20, 26) can be used as the commitments to simplify subsequent consistency
proofs, which will be explained later. More precisely, whenever a proof message of
π is generated, P computes its offset and sends it to V. Upon receiving an offset,
V sends a random challenge. As in Virgo++, the random challenges of all rounds
are merged into random vectors at the end of each sumcheck. For example, at
the end of layer i, x and y in Eq. (1) will be replaced by (ri,1, . . . , ri,si,i+1) and
(ri,si,i+1+1, . . . , ri,2si,i+1) respectively after removing the summation symbol. For
simplicity, let u(i,i+1) = (ri,1, . . . , ri,si,i+1) and v(i,j) = (ri,si,i+1+1, . . . , ri,si,i+1+j)
for j ∈ [i + 1, d].

Fig. 3. MPCitH for VIP

When MPC in the Head Meets VC 517

Phase 3, Phase 4 and Phase 5 follow the corresponding procedures of
BN++ to show that P knows the witness ŵ = (w,π) of the verification circuit
VIP , which is described in Fig. 5. Specifically, P and V in Phase 3 simulate the
MPC protocol of BN++ for the verification circuit VIP for relation R′ : {〈x′ =
(VIP ,y); ŵ〉 : VIP (ŵ,y) = 0}. In Phase 4, P and V run Dot-Product Checking
of BN++ to verify all multiplication gates in VIP , the number of multiplication
gates is Vm. P opens the challenged views of N − 1 parties in Phase 5.

Fig. 4. MPCitH.Verification for VIP

518 L. Liu and P. Wei

Finally, V will accept the proof iff all the checks described in Fig. 4 can hold.
Unlike BN++, the “offsets” Δw and Δπ are sent to the verifier in Phase 1
and Phase 2 instead of Phase 5. The verifier needs to merge received offsets
in Δŵ and run verification. And the verifier must first check h0 to ensure the
commitments are generated correctly. Since the verifier can only get N − 1 wit-
ness shares, the “offset” does not reveal any secrets. Assuming that the seed is
committed correctly, the offset can be uniquely bound to a fixed witness due to
the binding of the commitment. Hence the offset together with the commitment
of the seed can serve as the commitment to the witness.

Fig. 5. Description of VIP

The description of VIP is shown in Fig. 5. VIP takes as input ŵ = (w,π)
and y s.t. C(w) = y. VIP is similar to the verification procedure of Virgo++,
where the verifier runs the sumcheck for each layer and utilizes the claims from
the prover to verify the correctness of linear combinations. In VIP , all terms
˜addi,j , ˜multi,j , qi+1(gi+1) and Ṽy(g0) are constants used for linear operations,

which can be computed by P,V locally. Notice that the evaluation of these

When MPC in the Head Meets VC 519

constant terms does not require to be proven by the MPCitH protocol. V can pre-
compute these constants since the random challenges can be generated offline. All
˜addi,j , ˜multi,j only depend on the circuit wiring instead of the inputs. qi+1(gi+1)

identifies the correspondence of gate indexes in the subset of some layer with the
actual ones. Ṽy is the MLE of y and it should be equal to Ṽ0 if the circuit is evalu-
ated correctly. So these constants can be obtained simply from the instance (C,y)
and the randomness. More details of these constants can be found in [30,32]. If π
is a valid VC proof for C(w) = y, the output o of VIP must be a zero-vector 0.

Proof Size. We emphasize that the number of multiplication gates which dom-
inates the proof size of Π is only related to the number of layers of VIP instead
of C. The reason is that the multiplication gates to which BN++ is applied only
appear in step 8 of VIP . Let r[j..] represent the product rsi+1+si,j+1 · · · r2si,i+1 .
We give the expression of the claim at step 8 in Eq. (3). Note that the mul-
tiplication gate here means that two inputs are both variables (excluding the
multiply-constant operation which is a linear operation). Since there are d−i mul-
tiplication gates in the layer i: Ṽi,i+1(u(i,i+1)) · Ṽi,i+2(v(i,j)) for j ∈ [i + 1, . . . , d],
we have the number of multiplication gates Vm = d+(d− 1)+ . . .+1 = d(d+1)

2 .

e′ = ˜addi+1,i+1(gi, u
(i,i+1), v(i,i+1))(Ṽi,i+1(u

(i,i+1)) + Ṽi,i+1(v
(i,i+1)))

+ r[i+2..] · ˜addi+1,i+2(gi, u
(i,i+1), v(i,i+2))(Ṽi,i+1(u

(i,i+1)) + Ṽi,i+2(v
(i,i+2)))

+ . . . + r[d..] · ˜addi+1,d(gi, u
(i,i+1), v(i,d))(Ṽi,i+1(u

(i,i+1)) + Ṽi,d(v(i,d)))

+ ˜multi+1,i+1(gi, u
(i,i+1), v(i,i+1))Ṽi,i+1(u

(i,i+1))Ṽi,i+1(v
(i,i+1))

+ r[i+2..] · ˜multi+1,i+2(gi, u
(i,i+1), v(i,i+2))Ṽi,i+1(u

(i,i+1))Ṽi,i+2(v
(i,i+2))

+ . . . + r[d..] · ˜multi+1,d(gi, u
(i,i+1), v(i,d))Ṽi,i+1(u

(i,i+1))Ṽi,d(v(i,d))

(3)

All the messages sent by P during the protocol constitute the proof:
{

h(0), h(1), h(2), salt, ({seedse}, com(p̄e)
e , Δwe, Δπe, Δce, {Δze,�, α

(p̄e)
e,� }�∈[Vm])e∈[M]

}
.

where Δπ={(Δπi,k)k∈[2si,i+1], (Δπi,claim), (Δπ∗
i+1,k)k∈[si+1], (Δπi+1,0)}i∈[0,d−1] stands

for the messages sent by P in Phase 2. The proof size of Π is

|proof| = 8κ + M (κ · log N + 2κ + (2Vm + 1) · log |F| + |Δw| + |Δπ|) .

Compared to BN++ [22], the proof size of which is |proof ′| = 6κ + M(κ · log N
+2κ+ |Δw|+(2|C|+1)·log |F|), our protocol may reduce the proof size of BN++
by M(2Cm − 2Vm − |Δπ|) · log |F| for larger circuits with dense multiplication
gates. Furthermore, the advantage of our proof size becomes more obvious for
wider and shallower circuits since Vm < O(d2) which is always bounded by
O(|C|), and |Δπ| is bounded by O(d log |C|+ d2). More comparisons on concrete
efficiencies are shown in Sect. 5. Besides, our protocol preserves the flexibility of
BN++, allowing for a trade-off between proof size and proof time by adjusting
the parameters M and N .

Non-interactive Protocol. Our protocol Π is a multi-round interactive pro-
tocol which is “public coin”. Following the “so-far digest” model [6] and the

520 L. Liu and P. Wei

Fiat-Shamir paradigm, our interactive protocol can be transformed into a non-
interactive version. Notice that, when the protocol in Phase 2 is transformed to
be non-interactive, V cannot directly check the challenges of the random oracle
by the final verification algorithm. The evaluation of challenges will be encoded
into the circuit VIP . To improve the performance in practice, the random oracle
can be instantiated with hash functions with low multiplication gate density,
such as MiMC [2].

4 Security Analysis

Theorem 1. Assume that Commit is a random oracle-based commitment
scheme and H0,H1,H2 are collision-resistant Hash functions that are modeled as
random oracles. The protocol Π is an HVZKoK with knowledge error ξ ≤ ξa +ξb

where ξa is the knowledge error of BN++ and ξb is the soundness error of
Virgo++. More precisely,

ξ ≤
(

N + |F| − 1
N · |F|

)M

+
∑d

i=0(4
log Si,i+1� + 2
log Si+1�) +
∑d

i=1(i + 2)
|F| .

Due to space limitation, the proof sketch of Theorem 1 is shown in Appendix A
and detailed proofs are available in the full paper.

5 Implementation

Our interactive ZK protocol Π is implemented in C++. We run experiments on a
Virtual Machine with an Intel i7-8700 CPU with 3.20 GHz, 4 cores, and 10 GB of
RAM. We choose the field F2128 for Π, which could provide comparable security
with BN++ on F2128 and Virgo++ with the Virgo commitment working on its
optimal choice Fp2 and p = 261 − 1. Notice that, to run LDT, Virgo requires
that the field either be an extension of F2 or contain a multiplicative subgroup
of order 2k where k should be large enough. Our protocol which is compatible
with any finite field has no such restrictions on the field.

We compare the performance of our protocol with BN++ and Virgo++. For
fair comparisons, we modify BN++ based on the open source code [23] so that
the modified BN++ is interactive and can prove general circuits parsed from
DAGs. In our experiments, P proves the knowledge of the preimage of SHA-256.
The general circuit of SHA-256 follows the code of Virgo++, which has 40006
multiplication gates and 99,949 gates in total.

As shown in Table 1, our protocol only takes 86 ms to generate a proof when
N = 4,M = 64, which is 13.2× faster than BN++ with the same parameters,
and the proof size is close to 10× shorter than BN++. Furthermore, it is 1.2× ∼
4× faster than Virgo++ with the Virgo commitment. As mentioned in [26],
their implementation of Virgo++ does not fully realize zero-knowledge. Virgo++
only commits to the circuit inputs, without considering the commitments to the
secret messages generated during the interaction. In addition, realizing ZK for

When MPC in the Head Meets VC 521

Virgo++ also requires replacing the MLE with a low-degree extension. So the
actual running time and proof size of ZK Virgo++ will be slightly larger than
the data in Table 1.

Table 1. Performance Comparison.

M N Field Prover time Verifier time Proof size

Virgo++(ZK) − − F(261−1)2 �324 ms �6 ms �100.4 KB

BN++ 64 4 F2128 1140 ms 1090 ms 87273.1 KB

43 8 1422 ms 1370 ms 58647.8 KB

32 16 2002 ms 1950 ms 43652.6 KB

25 32 3060 ms 3010 ms 34109.9 KB

20 64 3 min 4 min 27292.9 KB

This work 64 4 F2128 86 ms 70 ms 8891.1 KB

43 8 102 ms 88 ms 5974.4 KB

32 16 137 ms 124 ms 4446.6 KB

25 32 202 ms 185 ms 3474.3 KB

20 64 307 ms 288 ms 2779.8 KB

Memory Bound and Circuit Size. The machine that executes MPCitH-based
ZK will quickly exceed its memory bounds as M · N increases. In the setting of
M = 20, N = 64 and 8 GB memory, the process of original BN++ will be killed
due to out-of-memory. Even allocating more memory, say 10 GB or 12 GB, still
takes a few minutes to run BN++.

Fig. 6. Comparison at different multiplication gate densities

522 L. Liu and P. Wei

Moreover, we compare our protocol with BN++ at different multiplication
gate densities by randomly generating layered circuits with the width of powers
of 2. The comparison for random circuits of various sizes and multiplication gate
densities is shown in Fig. 6 (the verifier time in two protocols are both close to
the prover time). Obviously, the performance of our protocol is independent of
the multiplication gate density, while the prover time and proof size of BN++
increase linearly with the multiplication gate density.

Fig. 7. Comparison at different circuit sizes

We also consider the performance for different circuit sizes at a fixed multi-
plication gate density of 0.5. We set depth d = 20 and width from 25 to 213 in
the instance of M = 64, N = 4. So the size of circuits scales from 640 to 1.6×105

gates. As shown in Fig. 7, the advantages of our protocol are obvious when the
circuit is larger and multiplication gates are denser. On devices that offer limited
memory of 10 GB, our protocol allows the circuit with up to 10 million gates,
while BN++ is only applicable to circuits with up to 330,000 gates.

6 Conclusion

We propose the “VC-then-MPCitH” technique to improve the proving efficiency
of existing post-quantum ZK protocols. By applying our technique to specific
MPCitH protocol BN++ and Virgo++, the resulting ZK protocol reduces the
concrete prover and verifier time significantly while expanding the range of sup-
ported circuit sizes with restricted memory consumption. Furthermore, our pro-
tocol supports circuits over any finite fields without special restrictions, providing
high performance in proving circuits over a wide range and making it compatible
with large-scale computations.

Acknowledgements. This work was supported by the National Key R&D Program
of China (Grant No. 2022YFB2701700, 2018YFA0704702) and Shandong Provincial
Natural Science Foundation (Grant No. ZR2020MF053).

A Proof of Theorem 1

Completeness. The completeness of Π follows from the completeness of Virgo++
and BN++.

When MPC in the Head Meets VC 523

HVZK. The HVZK property of Π is ensured by the underlying MPCitH-based
ZK protocol, which is HVZK for the statement VIP (ŵ,y) = 0. So the construc-
tion of simulator S for Π follows the main idea of the ZK simulator for BN++.
In the simulation, the offsets of w,π, c, z, α in the protocol are randomly chosen
instead of computing from the secret shares. Due to the randomness of shares and
the hiding property of Commit, the transcript output by S is indistinguishable
from the real script in distribution.

Knowledge Soundness. Under the premise that Commit,H0,H1 and H2 are mod-
eled as random oracles, the following lemmas hold.

Lemma 1. Π is an argument of knowledge for the relation: R′ = {〈x′ =
(VIP ,y); ŵ〉 : VIP (ŵ,y) = 0} with knowledge error

ξa =
(

N + |F| − 1
N · |F|

)M

.

Proof Sketch. The knowledge soundness of the relation R′ is inherited from
BN++. In one of the M independent executions, a malicious P∗ can cheat V
by first adjusting the output shares of multiplication gates, and then adjusting
one of the parties’ views if the challenges received from V cannot result in acc.
According to Lemma 2 of [22], the probability that P∗ successfully cheats is
at most 1

|F| in the first stage, and at most 1
N in the second stage due to the

opening of N − 1 views. Thus the total success probability of P ∗ is at most
(1

|F| + (1 − 1
|F|) · 1

N)M = ξa. The extractability of knowledge can be proven by
listing all possible challenges in Phase 3 and Phase 4 and their responses in
a N × |F|Vm matrix for each execution. The extractor E can extract the valid
witness by tracking entries in the expected time O(1

δ(x)−ξa)
) where δ(x) is the

probability that P∗ passes verification check. More details about the process of
knowledge extraction can be found in [4].

Lemma 2. If Lemma 1 holds and the event causing the knowledge error never
happened, then w in the extracted ŵ = (w,π) will satisfy C(w) = y except the
probability

ξb =
∑d

i=0(4
log Si,i+1� + 2
log Si+1�) +
∑d

i=1(i + 2)
|F| .

When |F| is large enough, ξb < negl(κ).

Proof Sketch. The proof of Lemma 2 follows the main idea of the soundness
analysis of Virgo++. The soundness error ξb consists of 3 parts: the soundness
error of the sumcheck protocol applied respectively in each layer of the circuit
and the linear combination between the adjacent layers, as well as the soundness
error of the linear combination itself.

According to Lemma 1, Π is knowledge-soundness for the relation R′ =
{〈x′ = (VIP ,y); ŵ〉 : VIP (ŵ,y) = 0} with knowledge error ξa. Then we

524 L. Liu and P. Wei

can invoke the extractor E in Lemma 1 to extract the witness ŵ such that
VIP (ŵ,y) = 0 in O(1

1−ξa
) steps, and the intercepted w from ŵ satisfies

C(w) = y with the probability at least 1 − ξb by Lemma 2. Considering the
knowledge error for the whole protocol, it is sufficient to ensure the consistency
of the extracted witness in the relation R with R′. Suppose P∗ holds w1,w2

trying to convince the verifier of C(w) = y and VIP ((ŵ),y) = 0. Conditioned
on the verifier of Π outputs acc, if w does not consist with ŵ, the cases in
which P∗ passes the verification are always reduced to the case that leads to the
knowledge error ξa or ξb. Therefore, Π is knowledge-soundness for the relation
R = {〈x = (C,y); w〉 : C(w) = y} with knowledge error at most ξ ≤ ξa + ξb.

References

1. Ahmad, H., et al.: Primitives towards verifiable computation: a survey. Front. Com-
put. Sci. 12, 451–478 (2018)

2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublin-
ear arguments without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 2087–2104
(2017)

4. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

5. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75245-3 11

6. Belling, A., Soleimanian, A., Bégassat, O.: Recursion over public-coin interactive
proof systems; faster hash verification. Cryptology ePrint Archive (2022). https://
eprint.iacr.org/2022/1072

7. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

8. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang,
Y.: Ligero++: a new optimized sublinear IOP. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (CCS), pp. 2025–
2038 (2020)

9. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/1021

10. Chase, M., et al.: The picnic signature scheme, design document v2.2 (2020)
11. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-

key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 1825–1842 (2017)

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://eprint.iacr.org/2022/1072
https://eprint.iacr.org/2022/1072
https://doi.org/10.1007/978-3-030-17653-2_4
https://eprint.iacr.org/2019/1021

When MPC in the Head Meets VC 525

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

13. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 843–857 (2022)

14. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019). https://eprint.iacr.org/2019/953

15. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium (USENIX Security), pp. 1069–1083
(2016)

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing (STOC), pp. 291–304 (1985)

17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM (JACM) 62(4), 1–64 (2015)

18. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

19. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: TurboIKOS:
improved non-interactive zero knowledge and post-quantum signatures. In: Sako,
K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 365–395. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78375-4 15

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 21–30 (2007)

21. Kales, D., Zaverucha, G.: Improving the performance of the picnic signature
scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 154–188 (2020)

22. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. Cryptology ePrint Archive (2022). https://eprint.iacr.
org/2022/588

23. Kales, D., et al.: BN++ implementation. https://github.com/IAIK/bnpp helium
signatures

24. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS), pp. 525–
537 (2018)

25. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13510, pp. 359–388. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15985-5 13

26. Liu, T., et al.: Virgo++ implementation. https://github.com/TAMUCrypto/virgo-
plus

27. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM (JACM) 39(4), 859–868 (1992)

https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-78375-4_15
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588
https://github.com/IAIK/bnpp_helium_signatures
https://github.com/IAIK/bnpp_helium_signatures
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://github.com/TAMUCrypto/virgo-plus
https://github.com/TAMUCrypto/virgo-plus

526 L. Liu and P. Wei

28. Delpech de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: efficient zero-
knowledge MPCitH-based arguments. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 3022–3036
(2021)

29. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES
in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 27

30. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 2071–2086 (2017)

31. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zksnarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 926–943. IEEE (2018)

32. Zhang, J., et al.: Doubly efficient interactive proofs for general arithmetic circuits
with linear prover time. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 159–177 (2021)

33. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 859–876. IEEE (2020)

https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27

Quantum Key Distribution as a Service
and Its Injection into TLS

Sergejs Kozlovičs(B) , Krǐsjānis Petručeņa , Dāvis Lāriņš ,
and Juris Vı̄ksna

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
{sergejs.kozlovics,krisjanis.petrucena,davis.larins,

juris.viksna}@lumii.lv

Abstract. Quantum key distribution (QKD) is a key agreement method
that relies on the laws of physics and ensures that the keys have not
been eavesdropped on or modified by a third party. While commercial
QKD devices are available, they are expensive, require specific infras-
tructure, and have high operational expenses. In this paper, we pro-
pose an architecture and a set of protocols that allow us to implement
QKD as a service (QaaS). End users communicate with QaaS via classi-
cal TLS channels secured with post-quantum cryptography (PQC). We
show how to further strengthen the security of these classical links to
make them sustainable to active attacks (classical and quantum) on any
single segment of QaaS. We also show how to integrate QaaS into the
state-of-the-art TLS 1.3 protocol. As a result, QKD becomes available
for a larger community of end-users. Furthermore, we show how QaaS
can reduce the number of digital signatures within a TLS 1.3 handshake,
which is essential since post-quantum signatures are much longer than
the conventional RSA/ECC-based ones.

Keywords: quantum key distribution · post-quantum cryptography ·
transport layer security · PQC · QKD · TLS · QaaS

1 Introduction

Quantum key distribution (QKD) is the first step on our way to a universal
Quantum Internet. QKD is a state-of-the-art technology that allows two distant
parties to agree on encryption keys. The key distribution process involves a
quantum channel (usually implemented via optical fiber transmitting photons),
but the agreed keys are intended to be used in classical internet communication.

The properties of quantum mechanics (in particular, the no-cloning theorem)
along with quantum key distribution protocols such as BB84 (and its successors
B92, SARG04, Lo05) and COW1 ensure that if some key has been eavesdropped
on or altered, the parties can notice that and discard the key [2,6].

Since it is difficult to emit single photons and to deal with attenuation over
long distances, certain attacks (such as photon number splitting, PNS, and other
1 Coherent One-Way protocol, patented by IDQ.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 527–545, 2023.
https://doi.org/10.1007/978-981-99-7032-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_31&domain=pdf
http://orcid.org/0000-0002-7085-383X
http://orcid.org/0009-0008-5713-5914
http://orcid.org/0009-0004-9484-4024
http://orcid.org/0000-0003-2283-2978
https://doi.org/10.1007/978-981-99-7032-2_31

528 S. Kozlovičs et al.

side-channel attacks against physical QKD implementations) are theoretically
possible [17]. However, these attacks are either hard to exploit on short dis-
tances or can be impeded by modified versions of algorithms such as BB84 Decoy
State [16]. Thus, for practical purposes, we can assume a short- to midterm
security of modern QKD technology with the hope for near-to-perfect security
of future QKD devices.

Sadly, the state-of-the-art commercial QKD devices are expensive, require
specific infrastructure (high-quality optical fiber links), and have high opera-
tional expenses (such as energy costs for cooling down the devices) [13]. In order
to make QKD available to a wider community of users, we deliver QKD as a
service (QaaS). With QaaS, end users are able to securely obtain a shared secret
from two remote key distribution centers (KDCs), where each KDC is directly
connected to the corresponding endpoint of the QKD link. KDCs may be located
in two cities with an established quantum channel between them. With QaaS,
the inhabitants of both cities have the ability to obtain quantumly distributed
keys without the need for a direct connection to QKD equipment. QaaS is a
technology for connecting end users to existing QKD networks that are now
being deployed all over the world [19,22].

The end users connect to KDCs via classical TLS channels, which, from the
QKD point of view, are the weakest links in the key distribution process. In order
to strengthen the security of classical links used in QaaS, we use post-quantum
cryptography (PQC). However, PQC algorithms still have to withstand the test
of time,—new attacks are constantly emerging, and the NIST standardization
process is not yet finished [1,3,5,7,8]. Thus, we strengthen the security even
further by proposing the architecture and a set of protocols that make QaaS
sustainable to active attacks (classical and quantum) on any single communi-
cation segment. In particular, the full key is not sent via any single classical
channel. Thus, a successful man-in-the middle attack would require compromis-
ing two independent TLS communication links.

The QaaS architecture and a set of underlying protocols are described in
Sects. 2 and 3. In Sect. 4, we offer QaaS-specific authentication options for all
involved parties. This is a noticeable contribution, since pure QKD does not offer
any authentication mechanism. In Sect. 5, we give insight into some implementa-
tion detail and show how to integrate the proposed QaaS into the state-of-the-art
TLS 1.3 protocol. We also show how QaaS can be used to reduce the number
of digital signatures within a TLS 1.3 handshake, which is essential since post-
quantum signatures are much longer than the conventional RSA/ECC-based
ones. We conclude by discussing the related work and further research direc-
tions (Sects. 6 and 7).

2 The Overall QaaS Architecture

Figure 1 depicts the overall architecture of the proposed QaaS.
At the bottom of Fig. 1, two QKD devices (called Alice and Bob) are con-

nected by multiple links implementing the quantum channel and the service

Quantum Key Distribution as a Service and Its Injection into TLS 529

Fig. 1. The architecture of the proposed QaaS.

channel (both channels are needed in most QKD protocols). Depending on the
protocol and hardware choice, there can be 2–3 optical links or a mix of a direct
optical link and a classical (routed) internet connection [11].

There are multiple QKD devices available in the market.2 While we conduct
our experiments with IDQ Clavis3 devices, our architecture can be applied to
other devices as soon as they meet the following assumptions:

– Alice and Bob are pre-paired at the factory (e.g., with several one-time sym-
metric keys) and are able to establish a secure service channel as well as the
quantum channel (the process of synchronizing the quantum channel usually
takes several minutes).

– Once the secure channels are established, both Alice and Bob are able to
generate two potentially infinite3 identical streams of symmetric keys. Some
of the shared keys can be used by Alice and Bob for technical purposes, e.g.,
to replace the pre-paired factory keys for subsequent re-initializations.

– Each key is of the same bit length (256 bit for IDQ Clavis3) and has an
associated unique truly random key ID, which is near to impossible to guess
(IDQ Clavis (See footnote 3) uses 128-bit key IDs; keys and IDs are generated
using the built-in QRNG4 chip).

2 e.g., Toshiba Multiplexed and Long Distance, IDQ Clavis and Cerberis series, QTI
Quell-X, LuxQuanta NOVA LQ, KEEQUANT Andariel, SeQre Aurora and Eclipse.

3 unless the link is physically broken, a hardware failure occurs, or there is constant
eavesdropping or intrusion.

4 quantum random number generator.

530 S. Kozlovičs et al.

From the architectural point of view, Alice and Bob are black boxes that
simultaneously produce synchronized key-identifier pairs (Kid, id) that are secure
against man-in-the-middle attacks.

We place Alice and Bob at two physically distant key distribution centers
(KDCs). Each KDC also has a physical server that is directly attached (e.g.,
by a short crossover cable) to the corresponding QKD device. We call these
servers Aija and Brencis (in order to distinguish them from the QKD devices,
Alice and Bob); we also call them KDC endpoints. Both Aija and Brencis run
QaaS server software that takes the stream of quantumly exchanged keys from
Alice and Bob, respectively, and implements the QaaS protocols (discussed in
Sect. 3), which securely forward the keys to end users, User 1 and User 2. In
order to simplify the QaaS server software and strengthen the security of Aija
and Brencis, we introduce two reverse proxies, RevProxy1 and RevProxy2. The
reverse proxies authenticate end users and ensure encrypted TLS connections
with them via the public internet. For such TLS connections, we utilize quantum-
safe key exchange methods and signature algorithms.

All backend connections within the boundaries of a KDC (e.g., RevProxy1 ↔
Aija ↔ Alice) are not encrypted; however, we assume that the corresponding
physical links are isolated from the external world, and no wiretapping is possible
within a KDC.

For technical reasons, we need also a controlling server (called Centis in
Fig. 1) that synchronizes key reservations at Aija and Brencis. Centis can be
an internal server (located at the premises of one of the KDCs) or an external
(cloud) server. Centis needs specific user credentials to pass through RevProxy1
and RevProxy2.

3 QaaS Protocols

The purpose of QaaS is to ensure that end users (User 1 and User 2 in Fig. 1)
obtain a shared key that has been quantumly exchanged between Alice and
Bob. The main issue is that, in QaaS, we are able to use only classical (i.e.,
non-quantum) channels between end users and KDCs.

In this section, we introduce two protocols: the Butterfly Protocol and the
Control Protocol. The former allows QaaS to tolerate active attacks on any single
classical link (even if TLS is decrypted). The latter is used by the controlling
server Centis in order to manage key reservations at Aija and Brencis.

3.1 The Butterfly Protocol

Figure 2 depicts message flows between the users and KDCs used in the Butterfly
Protocol (hence, the name).

The protocol allows User 1 and User 2 to agree on a shared key and ensures
that the full key is not transmitted via any of the classical links. During the
protocol, one KDC endpoint (Aija) sends only the first half of the key, and the
other (Brencis) sends the second half.

Quantum Key Distribution as a Service and Its Injection into TLS 531

Fig. 2. Message flows in the Butterfly protocol.

There are two types of connections: the butterfly connections (straight
lines in Fig. 2) and the user connection (dashed lines between User 1 and User
2).

All butterfly connections are implemented as bidirectional TLS sockets
secured with PQC key exchange mechanisms (KEMs) and digital signature algo-
rithms (for authentication). The butterfly connections require both server and
client authentication (see Sect. 4).

The user connection is also implemented as a bidirectional socket. However,
instead of a PQC KEM, we use the message flow of the Butterfly Protocol.
Since no key material but hashes are sent via the user connection, KEM-like
(Diffie-Hellman-like) encryption is unnecessary (although possible). Like in the
traditional client-server architecture, client authentication is optional for the user
connection. Server authentication can be performed either by a PQC signature
algorithm or our novel approach described in Sect. 4.2.

The protocol starts when User 1 wants to communicate with User 2 via a
TLS socket.

1→ Before initiating a TLS handshake with User 2, User 1 chooses one of the
two KDCs (say, Aija) and sends the reserveKeyAndGetKeyHalf message to
it. An alternative (symmetric) scenario, when User 1 chooses Brencis, is also
possible. Thus, Aija and Brencis can participate equally in key reservations.
We call it the equivalence property of KDCs.5

1← Aija chooses one of the quantumly shared keys key and replies with keyID,
the first (left) half of the key key[L], and the hash of the second (right) half
of the key hash(key[R]).

2→ User 1 asks Brencis for the second half of the key by sending the getKey-
Half(keyID) message.

5 One of the benefits of the equivalence property is that there is no advantage in
attacking either of KDCs. Another benefit is the ability to design algorithms and
protocols that can purposely choose the first receiver of the reserveKeyAndGetKey-
Half message.

532 S. Kozlovičs et al.

2← Brencis replies with hash(key[L]) and the second half of the key key[R].
User 1 validates key[L] (received from Aija) against hash(key[L]) received
from Brencis. User 1 also validates key[R] (received from Brencis) against
hash(key[R]) received from Aija.

3→ User 1 initializes the TLS handshake of the user connection by sending
the Client Hello message to User 2. In the handshake, User 1 sends keyID,
hash(key[L]), and hash(key[R]) to User 2. (User 2 will use these hashes as
proof that User 1 has been authenticated within KDC1).

4→ User 2 asks Aija for the first half of the key by sending the getKeyHalf(keyID)
message.

5→ User 2 asks Brencis for the second half of the key by sending the getKey-
Half(keyID) message.

4← Aija replies with key[L] and hash(key[R]).
5← Brencis replies with hash(key[L]) and key[R]. User 2 validates key[L] against

the two copies of hash(key[L]) (received from User 1 and from Brencis) and
key[R] against the two copies of hash(key[R]) (received from User 1 and from
Brencis).

3← User 2 computes hash(full key) and sends it in the Server Hello message to
User 1. User 1 validates its full key against this hash. Since hash(full key)
cannot be efficiently computed by User 2 without communicating to Aija and
Brencis, it serves as proof for User 1 that User 2 has been authenticated
within both KDC1 and KDC2.

Step 3 can be launched in parallel with step 2; steps 4 and 5 can be launched in
parallel as well.

The strength of the protocol relies on the underlying hash function (e.g.,
SHA-256 or SHAKE-128, used in our experiments) and PQC algorithms used
for the butterfly connections. Besides, the protocol is able to sustain an active
attack on any single link. By an active attack we mean the ability to decrypt or
wiretap the TLS session key.

– The quantum link is assumed to be secure against wiretapping by the law of
Physics.

– If Eve can decrypt one of the butterfly links (say User 1 to Aija), she can get
the key ID and the first half of the key. However, Eve would be unable to
connect also to Brencis (without breaking another butterfly link) since a new
connection to Brencis needs client authentication, and Eve lacks the private
keys owed by Users 1 and 2.

– If Eve attacks the user link (between User 1 and 2), she cannot wiretap the
session key since only key ID and hashes are transmitted there. If Eve alters
the key ID that is being sent to User 2, Aija and Brencis won’t reply to User
2 for a non-reserved key ID. In an unlikely case when the modified key ID
has also been reserved (e.g., by other QaaS users), the hashes won’t match.

Quantum Key Distribution as a Service and Its Injection into TLS 533

3.2 User Connection Management

The user connection is a TLS 1.3 connection with the distinction that we inject
the Butterfly Protocol as a new key share “group”6 in the TLS Key Share exten-
sion (see more detail on page 14 in Sect. 5). If all butterfly connections finish suc-
cessfully, and all Butterfly Protocol checks (e.g., hash validations) are passed,
both User 1 and 2 get the keys. On any failure (TCP, TLS, or Butterfly Pro-
tocol error) within any of the butterfly connections between User1/User2 and
Aija/Brencis, the TLS between User 1 and User 2 closes with an exception.
That may happen due to security checks (e.g., Aija or Brencis could not authen-
ticate the user, TLS error) or when Aija or Brencis is temporarily down (TCP
error). Besides, Aija or Brencis can reply with an error when they have been
(re-)launched but are not serving the keys yet (more on that in Sect. 3.4).

3.3 Key Reservation in the Butterfly Protocol

Since both Aija and Brencis can be used for key reservation (Step 1), they need
some distributed algorithm that resolves conflicts between them. Besides, if some
key has been reserved at one KDC, both KDCs must be ready to send their key
halves to Users 1 and 2 and to delete the used key afterward (even if the protocol
has started but not finished, e.g., due to a network interruption).

Our idea is to divide the keys into two classes depending on their parity
(keyID bit sum). Aija is allowed to reserve those keys for which parity is even,
and Brencis—those with odd parity; thus, no collision is possible. However, in
order to ensure the eventual consistency of key sets between Aija and Brencis,
we also need the following time constants:

– ε is a small time interval (ε < 1 second) that must pass before a newly
quantumly exchanged key can be reserved by end users. The need for ε arises
from the fact that new keys do not appear in the QaaS software of Aija
and Brencis simultaneously. Waiting for the time ε ensures that both KDC
endpoints receive the key (thus, ε can be compared to the cycle time in CPUs);

– the key reservation timeout T (T ≈ 90 seconds)7. If a key has been reserved
for User 1, but no getKeyHalf message has been received from User 2 during
the time T , the key is deleted. At the other KDC endpoint, T is the maximal
waiting time between the two getKeyHalf messages expected from Users 1
and 2;

– TTL (time-to-live ≈ 1 day) is the maximal time the key is available for
reservation. TTL limits the size of the key buffer and ensures that “zombie”
keys are eventually deleted.8

6 TLS 1.3 terminology; actually, it is a key exchange method.
7 We choose T such that each of the three connections at the longest path (Aija ↔

User 1 ↔ User 2 ↔ Brencis) can survive the maximal TCP back-off; T ≈ 3 × 30 s
≈ 3× TCP re-transmission timeout for five tries.

8 A key is called a “zombie” if it is being stored at one KDC endpoint but is not
present at the other, i.e., it has been reserved and deleted or hasn’t been received

534 S. Kozlovičs et al.

Each KDC endpoint has three disjoint dictionaries that map keyID-s to keys:
PreMy, My, and NotMy. New keys with the corresponding parity p are placed
temporarily to PreMy (for time ε) before they are moved to My. All the keys
with parity p− 1 are moved to NotMy without any delay. Therefore, when Aija
reserves a key, the time ε has already passed, and Brencis should contain the
same key in its NotMy dictionary (even if the key appeared at Brencis later
than at Aija but within the allowed ε time slot).

Keys in the My dictionary are stored for the TTL − ε time. Keys in the
NotMy dictionary are stored for the TTL+T time. Thus, if a key is reserved at
one KDC endpoint, it will still be available at the other endpoint while the But-
terfly Protocol is running. On the other hand, the reserved keys are eventually
deleted even if the protocol is aborted.

3.4 The Control Protocol

After the QKD initialization, Aija and Brencis start to receive identical streams
of keys from their corresponding QKD devices (Alice and Bob). However, due
to system reboots, hardware failure, or network interruptions, one or both KDC
endpoints can stop receiving keys from Alice and/or Bob. While it is possible to
re-initialize the QKD channels, the process takes a long time (e.g., up to 30 min
in IDQ Clavis3), and QKD devices consume more power than during normal
operation. The purpose of the Control Protocol (executed by the controlling
server Centis in Fig. 1) is to ensure that Aija and Brencis have the same streams
of QKD keys after they re-connect to Alice and Bob.

For Aija and Brencis, we define the following three states:

EMPTY—when there are no keys received from the QKD device yet;
RECEIVING—when at least one key has been received and put into the My

map;
RUNNING—when keys can be reserved by the users. If at some point in time

My∪PreMy becomes empty9, the state is automatically changed to EMPTY.

When launched, both KDC endpoints are in the EMPTY state. They can
change their state to RECEIVING or EMPTY, depending on the keystream
from the QKD device. The RUNNING state can be set only by Centis, when
both KDC endpoints are in the RECEIVING state.

Centis can send two types of messages to Aija and Brencis:

– getState is a no-argument message that asks for the current state; if the
state is RECEIVING or RUNNING, the KDC endpoint also sends two key
IDs in the reply: keyID0 and keyID1 corresponding to the first key IDs (the
oldest) of each parity;

at all (due to server restart or network interruption). “Zombie” keys can also be
deleted before TTL expires, e.g., by the Control Protocol.

9 e.g., due to too many key reservation requests or due to some technical failure, when
new keys stop appearing from the QKD device.

Quantum Key Distribution as a Service and Its Injection into TLS 535

– setState(state, keyID0, keyID1) instructs the KDC endpoint to change its
state and remove the unnecessary keys depending on keyID0 and keyID1.

On a regular basis, Centis sends the getState message to both KDC endpoints.
If one of them is in the EMPTY state or is not reachable, Centis sends the set-
State(EMPTY) to the other endpoint (thus, clearing the keys, if any). However,
if both Aija and Brencis are in the RECEIVING state, Centis gets four key
IDs (two from each endpoint): keyID0,Aija, keyID1,Aija, keyID0,Brencis, and
keyID1,Brencis. Then Centis sends

– setState(RUNNING, keyID0,Aija, keyID1,Aija) to Brencis and
– setState(RUNNING, keyID0,Brencis, keyID1,Brencis) to Aija.

When receiving keyIDparity,opponent, the endpoint looks up for this key ID
in the corresponding dictionary. We distinguish three cases:

– The key is not found. In this case, no keys are deleted because our endpoint
has fewer keys than the opponent. Keys will be deleted at the opponent’s
side, where our first key will be found.

– The key is found, and the parity is ours (corresponding to the keys we can
reserve). In this case, keys with the IDs received prior to the found one can
be deleted. The opponent does not have them and will not be able to reply
to getKeyHalf messages for those key IDs.

– The key is found, and the parity is the opponent’s parity. In this case, keys
received prior to currentT ime − T can be deleted. We keep a few older keys
(within the time frame T) since they could have been reserved and deleted at
our opponent while the Butterfly protocol is still running (thus, Users 1 and
2 can send us getKeyHalf requests for those keys).

In any case, the endpoint changes its state to RUNNING, meaning that it
can start serving Butterfly protocol requests from users 1 and 2.

While communicating with Aija and Brencis, Centis uses TLS with PQC.
Centis certificate is signed by CACentis, which differs from the CA that signs
certificates for Users 1 and 2; thus, reverse proxies can authorize Centis to execute
the Control Protocol if Centis possesses the corresponding private key. Since only
four key IDs are sent in the Control Protocol, no single bit of the keys themselves
is compromised. Though, an active attacker can use these key IDs to impede the
Butterfly Protocol. In order to mitigate such attacks, the keys corresponding to
the four key IDs are deleted and not distributed to end users.

4 Authentication

In the Butterfly and Control Protocols, User 1, User 2, and Centis act as clients,
which initiate the corresponding connections. Obviously, the clients need to val-
idate the authenticity of both KDC endpoints, which have control over all quan-
tumly shared keys. Since the speed of generating new shared keys is limited,
KDC endpoints (the servers) have to identify their clients in order to distribute

536 S. Kozlovičs et al.

the keys between them. Client authentication is a must if QaaS is offered as a
paid service, where different clients may have different payments (e.g., depending
on a subscription plan or the number of keys shared).

In addition, depending on the application, User 1 and User 2 (acting as the
client and the server in the user connection) may need to validate each other.

First, we show how both client and server authentication can be established
by means of PQC signatures. Since PQC signatures are much longer than tra-
ditional RSA/ECC-based ones, we also show how to minimize the number of
signatures used in the Butterfly and Control Protocols.

4.1 Authentication via PQC Signatures

At one extreme, there could be a single certification authority (CA) that signs the
public keys of all involved parties. At another extreme, there could be a separate
CA for each node from Fig. 1 with potential intermediate CA-s. A more realistic
model, though, is having two trusted root certification authorities (CA-s), CA1

and CA2, which are parts of KDC1 and KDC2, respectively. In this model (which
we stick to), KDC1 and KDC2 are located in different places (e.g., cities) and
managed by different organizations (e.g., city authorities).

Each QaaS client (User 1 and User 2 in Fig. 1) applies for a client certificate
either at CA1 or at CA2 (e.g., depending on the client’s city of residence).10.
The chosen CA verifies the client payment and issues a client certificate valid for
the time period paid up. Each of RevProxy1 and RevProxy2 from Fig. 1 accepts
client certificates signed by both CA1 and CA2. Besides, the reverse proxies
identify themselves with server certificates signed by CA1 and CA2, respectively.

The client key pair (generated), the client certificate (signed after receiving
payment), and both server certificates (public) are delivered to the client. We
call these data client bundle.

Authentication of the controlling server (Centis) is performed similarly. How-
ever, its certificate is signed by a specific CA (CACentis), which is trusted by both
RevProxy1 and RevProxy2. CACentis is used to sign public keys of controlling
servers only.

The servers (the reverse proxies) need only CA1, CA2, and CACentis to be
configured as trusted root CA-s. Since client authentication is performed by val-
idating digital signatures, no client database is required. However, in a rare case
when QaaS access has to be revoked from some client, the corresponding client
is added to the server-side certificate revocation list (CLR), which is delivered
to both RevProxy1 and RevProxy2.

Client and server authentication is performed via the normal TLS v1.3 flow,
following the traditional signed key exchange approach. However, in our case,
both the client and the server negotiate a post-quantum KEM and send cer-
tificates signed with a PQC algorithm (see Sect. 5). After the handshake, TLS
continues as usual using a symmetric cipher suite (e.g., AES in GCM mode).

10 A client can generate a key pair by himself and send a certificate signing request
(CSR) to the CA, or the whole process can be performed by the CA.

Quantum Key Distribution as a Service and Its Injection into TLS 537

While the user connection (between Users 1 and 2 in Fig. 2) can also use
PQC certificates to authenticate the client and the server, the following section
proposes a more elegant approach.

4.2 Reducing the Number of Post-Quantum Signatures

Eliminating Signatures in Client Certificates. Client certificates used in
butterfly connections can be replaced by arbitrary tokens. In this case, TLS starts
with server-only authentication, and the client sends its token in the encrypted
application data. Sending the token after the TLS handshake prevents its eaves-
dropping.

In the näıve approach, the issued tokens are stored in a database, shared
or replicated between both KDCs. In order to ensure database consistency, a
classical connection is needed between KDCs (a pre-shared symmetric key can
be used for it; KDCs may also update this key with quantumly exchanged keys
on a regular basis).

A more advanced approach is to rely on tokens with hash-based signatures
such as HMAC-SHA256-based JSON web tokens, JWTs11. Each KDC has a
secret key used to sign the header and payload (e.g., the client name + expiration
date + salt) of JWT tokens. Signed tokens are distributed to QaaS clients. Both
KDCs must have secret keys of each other in order to verify tokens signed by
either KDC. While not requiring a database, JWTs need a CRL alternative in
order to revoke previously issued tokens.

Since JWT tokens support only non-PQC RSA and ECDA asymmetric sig-
nature schemes, we suggest using the symmetric HMAC algorithm (considered
quantum-safe), where both KDC endpoints know the symmetric keys of each
other.

Reducing the Number of Server Signatures to Be Transmitted. Public
keys of both KDCs can be added to the client bundle (from Sect. 4.1). Thus, the
server can send only its public key instead of the full certificate chain. However,
albeit rarely, the client still has to download and verify the full chain after the
server key is renewed.

Eliminating Server Signatures in the User Connection. As we explained
in Sect. 3.1, the hash values for the full quantumly exchanged key and its halves
can be used by User 1 and User 2 as proofs that the counterparty has been
authenticated within one or both KDCs. We use this property to extend the
Butterfly Protocol with the support for server authentication. We consider the
idea of domain-based authentication, traditionally used in TLS certificates.12

When requesting a client certificate (or a JWT token), a QaaS client can
specify its domain name. This scenario is useful for QaaS clients that will play
11 https://jwt.io.
12 Technically, any string, e.g., a URI, can be used to identify the communicating

parties. In this paper, we use the term “domain name” to represent such strings.

https://jwt.io

538 S. Kozlovičs et al.

the server role in the user connection (i.e., User 2 in Fig. 2). The signing KDC
associates the issued certificate (or a token) with the client domain name (it has
to be done only at one KDC, which we call a “domain registrar” for the given
QaaS client).

For domain name validation, we introduce the following modifications to the
Butterfly Protocol (called the Butterfly Protocol with Domain Validation):

– User 1 (from Fig. 2) appends the domain name of User 2 (application server)
to each reserveKeyAndGetKeyHalf and getKeyHalf request.

– User 1 sends the reserveKeyAndGetKeyHalf and getKeyHalf messages to Aija
and Brencis before the handshake with User 2.

– After receiving the domain name in a request sent by User 1, the domain
registrar for User 2 associates the reserved key with the domain name and
waits for a getKeyHalf request from User 2. The other KDC endpoint (which
is not the registrar for User 2) just replies as usual and appends the domain
check result value of false.

– User 2 sends the getKeyHalf requests to Aija and Brencis. Each endpoint
checks whether the key has been associated with a domain name. If no, the
reply to User 2 is sent as usual. If yes, the registrar checks that the domain
name is indeed associated with User 2 and sends the requested half of the
key to User 2 only if the check returned true.13. In any case, the result of this
domain check is sent back to User 2. Thus, if the check fails, User 2 doesn’t
receive one half of the key and is not able to compute hash(full key).
After finishing processing the getKeyHalf request, the registrar (which was
waiting for it) can now reply to User 1 with the check result.

– After receiving both key halves from Aija and Brencis, User 2 validates both
hashes received from User 1 and computes hash(full key) to be sent to User 1.

– (Check 1) User 1 computes the OR function on both domain check results
received from Aija and Brencis. The value of true corresponds to the case
when the domain name of User 2 has been recognized by one of the KDC
endpoints.

– (Check 2) User 1 also validates hash(full key) received from User 2 (see Fig. 2).
The correct hash value means that User 2 received key halves from both
KDCs; thus, User 1 (application client) can now trust that it is talking to
User 2 (application server), having the corresponding domain name.

Notice that two checks associate the butterfly connections with the user con-
nection: Check 1 validates that fact of domain registration, while Check 2 val-
idates that User 2 possesses the full key (i.e., the two butterfly links between
User 2 and KDCs have been executed).

13 In the case of client certificates, the traditional certificate-based domain name vali-
dation is performed. In the case of JWT tokens, the check is performed by a database
lookup or by verifying the hash-based JWT signature.

Quantum Key Distribution as a Service and Its Injection into TLS 539

5 Implementation and Integration into TLS 1.3

The QaaS service software that runs on Aija and Brenics has been developed
using the Go programming language, which has built-in concurrency support.
The QaaS software implements the server-side part of both the Butterfly Pro-
tocol and the Control Protocol. In order to support QKD devices from different
vendors, we created a Go interface named KeyGatherer that is used to obtain
streams of indexed keys, i.e., tuples (keyID, key, timestamp). Currently, we have
three KeyGatherer implementations: one for the IDQ Clavis3 device (used in our
real testbed), another for fetching keys from the file system (e.g., when keys from
the QKD device are stored as files; a shared folder can also be used to simulate
a QKD device), and the third one for generating random keys on-the-fly inside
a single process used to simulate both Aija and Brencis.

The Go code implements the Butterfly Protocol and the Control Protocol
via non-TLS web sockets. Post-quantum key and certificate management and
TLS implementation on the server side are provided by reverse proxies. We have
implemented our own reverse proxy in Java by relying on the TLS implemen-
tation provided by the BouncyCastle library14. Alternatively, HAProxy based
on OpenSSL 1.1.1 with embedded PQC algorithms from the OpenQuantumSafe
project can be used [23].15

The QaaS client library (used by User 1, User 2, and Centis) has been imple-
mented in Java using the BouncyCastle library. A pure-Java client implementa-
tion allows us to deploy the QaaS client library for Linux, macOS, and Windows
by compiling it with GraalVM Native Image [25].16 For the PQC butterfly con-
nections, our Java implementation is interoperable with LibOQS (written in C);
thus, we can use any LibOQS-based reverse proxy to provide PQC to backend
endpoints.

Sadly, BouncyCastle, out of the box, does not support PQC algorithms in
TLS. Thus, we implemented a set of additional classes that allow us to inject
PQC KEMs and signature schemes into TLS 1.3 flow in the BouncyCastle code.17

We call it TLS Injection Mechanism. In particular, we extend the Bouncy-
Castle PQC JCA/JCE provider and add the ability to inject and invoke new
algorithms. These can be PQC algorithms from the BouncyCastle distribution,
PQC algorithms implemented in LibOQS (accessible via the liboqs-java Java

14 BouncyCastle provides pure Java implementations of cryptographic primitives,
including the majority of PQC algorithms from NIST Rounds 3 and 4 in the lat-
est releases. BouncyCastle can be downloaded from https://www.bouncycastle.org/
java.html.

15 Our scripts for building such HAProxy are available at https://github.com/LUMII-
Syslab/oqs-haproxy.

16 We used the same approach in our quantum random number generator service
https://qrng.lumii.lv [15].

17 We use TLS v1.3 since it supports KEMs and reduces the number of round-trips in
a TLS handshake. KEMs are promoted by NIST, while TLS is an IETF standard
supported by all browsers and networking libraries.

https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://github.com/LUMII-Syslab/oqs-haproxy
https://github.com/LUMII-Syslab/oqs-haproxy
https://qrng.lumii.lv

540 S. Kozlovičs et al.

wrapper18), or other algorithms (such as our “virtual” KEM below). We are
working hard on merging our code into the main BouncyCastle distribution.
Implementation of the TLS Injection Mechanism is not straightforward and has
several non-trivial pitfalls, such as:

– modifying the lists of default KEMs and signature schemes (these lists are
sent in the TLS Client Hello message);

– aligning BouncyCastle KEM and signature scheme code points with those
used by the OpenQuantumSafe project. Since code points for PQC algorithms
are not standardized yet, we stick to the reserved-for-private-use ranges, i.e.,
0xFE00..0xFEFF for KEMs and 0xFE00..0xFFFF for signature schemes;

– aligning BouncyCastle and OpenQuantumSafe X.509/X.660 object identifiers
(OIDs) for PQC algorithms. These OIDs are used in binary representations
of keys and certificates in the ASN.1 notation;

– creating converters between the ASN.1 notation and the internal BouncyCas-
tle representation of keys;

– adding support for PQC keys and certificates (in the ASN.1 DER notation)
retrieved from Java key stores, where client private keys and certificates, and
CA certificates, are located.

For the butterfly connections, currently, we use the SPHINCS+19 algorithm
for signatures and FrodoKEM20 as KEM in TLS 1.3. We use AES256-GCM-
SHA384 as a cipher suite. For application data, instead of using pure TCP+TLS
sockets, we use web sockets since 1) they can be used from client-side code run-
ning in web browsers and 2) they are compatible with HTTP(s) traffic (important
when configuring firewalls and proxies). All messages in the Butterfly Protocol
and Control Protocol are encoded in the ASN.1 binary notation21, with tradi-
tional object identifiers (OIDs) for denoting hash functions.22

For the user connection (between User 1 and User 2), we introduce a “virtual”
KEM called QKD KEM (we reserve the 0xFEFF code point for it). Unlike
in traditional KEMs, no key material is sent via the user connection (hence,
KEM is “virtual”); the Butterfly Protocol is executed instead. However, from
the BouncyCastle point of view, QKD KEM is treated like any other KEM. We
use our TLS Injection Mechanism to add QKD KEM support to BouncyCastle.

In order to implement a KEM, three KEM primitives (KeyGen,
Encapsulate, Decapsulate) have to be provided. For some KEMs, each of these
primitives is called twice (all six calls are intertwined between the client and
the server). In QKD KEM, each of the three KEM primitives is needed once:
KeyGen and Decapsulate on the client side and Encapsulate on the server side.
The primitives are implemented as follows:

18 https://github.com/open-quantum-safe/liboqs-java.
19 NIST PQC Round 3 winner, to be standardized.
20 NIST PQC Round 3 candidate, not participating in Round 4 but invented by

renowned scientists.
21 since it is a standard, which is already being used for keys and certificates.
22 thus, hash functions can be upgraded in the future.

https://github.com/open-quantum-safe/liboqs-java

Quantum Key Distribution as a Service and Its Injection into TLS 541

– KeyGen() at User 1: sends reserveKeyAndGetKeyHalf to Aija and getKey-
Half to Brencis (see Fig. 2).
Returns pk1 = (keyID, hash(key[L)), hash(key[R])) as a public key and
sk1 = full key (a concatenation of the key halves) as a secret key. The public
key is sent to User 2 in a TLS Client Hello message.

– Encapsulate(pk1) at User 2: sends getKeyHalf to Aija and Brencis.
Returns sk2 = full key (a concatenation of the key halves) as a shared
session key for User 2 and ct2 = hash(full key) as a (virtual) ciphertext to
be sent back to User 1 in the reply (=TLS Server Hello message).

– Decapsulate(sk1, ct2) at User 1: validates the hash ct2 (and performs other
checks if domain validation is used).
Returns the first argument sk1 = full key as is (sk1 has already been
obtained during KeyGen). It will serve as a shared session key for User 1.
Notice that in the true KEM, sk1 would be used to decrypt the shared key
from the server cipher text (ct2). In our “virtual” KEM, however, we do not
need to perform any actions with sk1 since the shared key has already been
exchanged quantumly and ct2 contains only the hash.

Our QaaS implementation is available at https://qkd.lumii.lv23. So far, we
have implemented all required modules and protocols described in this paper
except the extra features mentioned in Sect. 4.2.

With our current implementation, we could obtain some preliminary perfor-
mance test results. Notice that our current implementation has not been opti-
mized and contains some debug code. In our setup, we used BouncyCastle TLS
implementation with injected PQC algorithms from LibOQS (via the Java wrap-
per) and our own pure-Java implementation of the QaaS protocols. We also used
our reverse proxies written in Java.

Establishing one PQC TLS link, serializing and sending a short message (a
few bytes long), and receiving the result from the server takes 1.57 s on average
(on the i7-2600 CPU). TLS-related computations take 96% of that time. Estab-
lishing one TLS link with QaaS (by executing the whole Butterfly Protocol)
and sending/receiving a message takes 3.75 s on average. Thus, the whole QaaS
introduces the 2.38 slowdown factor compared to a single PQC TLS link. With
optimizations, we plan to achieve the performance of running the whole QaaS
cycle in less than a second on modern CPUs. Thus, using QaaS in the real-world
setup seems realistic.

6 Related Work

Multiple attempts to apply the QKD technology in practice have been made.
Most software-based solutions are based on re-keying, when the initial symmet-
ric AES keys are replaced by or combined with the QKD keys [18,20]. Both
proprietary protocols (such as IDQ Dual-Key agreement) and open modifica-
tions to TLS and IPSec have been proposed [4,10]. Such approaches introduce

23 See also: https://github.com/LUMII-Syslab/qkd-as-a-service.

https://qkd.lumii.lv
https://github.com/LUMII-Syslab/qkd-as-a-service

542 S. Kozlovičs et al.

significant modifications to existing protocols or require the ability to replace
AES keys at runtime. In contrast, our QaaS architecture keeps the TLS protocol
almost intact (with the exception of reserving the 0xFEFF code point for QKD
KEM). However, we factor out the key exchange flow (with the two proposed
protocols) as a pluggable KEM.

Several attempts have been made to strengthen TLS security with hardware
security modules (HSMs) such as IDQ HSMs and SafeNet Ethernet Encryptors
[9]. Currently, HSMs can be integrated into QaaS by developing the correspond-
ing drivers manually. While we anticipate more QKD-certified HSMs, the need
for common APIs that ensure HSM interoperability becomes more apparent.

Since QKD devices are expensive, the idea of QKD simulation naturally
appeared with QKDNetSim as a representative implementation [18].24 It corre-
lates with our idea of defining a common Go interface for different QKD imple-
mentations, where some implementations act as drivers for real QKD devices
while others are used as simulated test environments. Technically, QKDNetSim-
like simulators can be plugged into our QaaS software, though our Go interface is
very simple and cannot be used to tune simulation parameters—a preconfigured
simulator is expected.

KEMTLS is probably the most prominent attempt to eliminate the need
for long PQC signatures from the TLS handshake [21]. In KEMTLS, additional
KEM invocations are used to authenticate the client and the server implicitly at
the cost of non-standard TLS flow. While pursuing the same goal, our Butterfly
Protocol differs from KEMTLS in two points:

– We do not modify TLS but introduce a new KEM (QKD KEM).
– We use hash functions, not KEMs, for implicit authentication.

Another goal of KEMTLS is to reduce the number of round-trips used in a
TLS handshake. In contrast, our goal was to implement an architecture that is
sustainable for active attacks on any single segment. That has been achieved at
the cost of a larger number of round-trips in the Butterfly protocol. Still, if we
consider the user connection only, the number of round trips remains the same
as in TLS 1.3 (i.e., 3 for server-only authentication).

Our idea of domain name verification (in the Butterfly Protocol with Domain
Validation) involves checks performed by Aija and Brencis. That resembles the
Online Certificate Status Protocol (OCSP), which eliminates the need for cer-
tificates and certificates revocation lists (CLRs) on the client side but requires
an internet connection to the trusted server [12].

Currently, the QKD technology lacks its own authentication mechanism. In
2021, Wang et al. proposed a PQC-based mutual authentication of multiple
QKD network users that trust the same CA [24]. The authentication mechanism
is based on PQC signatures that are exchanged via a shared classical link. The
process is basically the same as TLS with PQC KEMs and signatures. In our
QaaS mechanism, we assume that QKD devices (Alice and Bob) authenticate
each other via factory pre-shared keys that can be extended/replaced by new

24 See also: https://www.qkdnetsim.info and http://open-qkd.eu.

https://www.qkdnetsim.info
http://open-qkd.eu

Quantum Key Distribution as a Service and Its Injection into TLS 543

quantumly exchanged keys. Otherwise, if Alice and Bob were relying on PQC,
we would get a chicken and egg situation with the User 1↔User 2 connection
that relies on the security of the Alice↔Bob link.

7 Conclusion

In this paper, we proposed the “QKD as a service” (QaaS) architecture, two
protocols (and the Domain Validation extension to the Butterfly Protocol), the
distributed key reservation algorithm, and several authentication mechanisms for
QaaS, including some ideas for reducing the number of (very long) post-quantum
signatures.

We hope our work will make QKD available for a larger community of end-
users. Still, a lot of work is yet to be done, including the development of formal
proofs of the proposed protocols, analysis of potential threats and attacks to
QaaS, standardization, supporting and extending our reference implementation
by reacting to new developments and standards in the PQC field, and developing
multi-hop (multi-node) QKD and QaaS (a very large field of research). Besides,
we think that PQC algorithms should find their way to Java chip cards, which
can be used for more secure user authentication.

We also look forward to integrating the proposed QaaS into our web appli-
cation infrastructure webAppOS [14].

Acknowledgements. Research supported by the European Regional Development
Fund, project No. 1.1.1.1/20/A/106 “Applications of quantum cryptography devices
and software solutions in computational infrastructure framework in Latvia”.

References

1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryp-
tography standardization process. Technical report, NISTIR 8413, NIST (2022)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, vol. 175, p. 8 New York (1984)

3. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (2022). https://
eprint.iacr.org/2022/975. Cryptology ePrint Archive, Paper 2022/975

4. Dervisevic, E., Mehic, M.: Overview of quantum key distribution technique within
IPsec architecture. In: Proceedings of the 18th International ISCRAM Conference,
pp. 391–403 (2021)

5. Dubrova, E., Ngo, K., Grtner, J.: Breaking a fifth-order masked implementation of
CRYSTALS-Kyber by copy-paste (2022). https://eprint.iacr.org/2022/1713. Cryp-
tology ePrint Archive, Paper 2022/1713

6. Gao, R.Q., et al.: Simple security proof of coherent-one-way quantum key distri-
bution. Opt. Express 30(13), 23783–23795 (2022)

7. Guo, Q., Johansson, A., Johansson, T.: A key-recovery side-channel attack on
classic McEliece implementations. IACR Trans. Cryptographic Hardw. Embed.
Syst., 800–827 (2022). https://doi.org/10.46586/tches.v2022.i4.800-827

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/1713
https://doi.org/10.46586/tches.v2022.i4.800-827

544 S. Kozlovičs et al.

8. Guo, Q., Nabokov, D., Nilsson, A., Johansson, T.: SCA-LDPC: a code-based
framework for key-recovery side-channel attacks on post-quantum encryption
schemes (2023). https://eprint.iacr.org/2023/294. Cryptology ePrint Archive,
Paper 2023/294

9. IDQ: Telecom Service Provider: 100G encryption with OKD (use case brochure)
(2017). https://www.idquantique.com/resource type/quantum-safe-security/

10. IDQ: ID Quantique partners with ADVA to commercialise a quantum-safe
encryption solution (press release) (2019). https://www.idquantique.com/
id-quantiquepartners-with-adva-to-commercialise-a-quantum-safe-encryption-
solution/

11. IDQ: Redefining Security: Clavis XG QKD System (2022). https://www.
idquantique.com/quantum-safe-security/products/clavis-xg-qkdsystem/

12. IETF Standard: X.509 Internet Public Key Infrastructure: Online Certificate Sta-
tus Protocol - OCSP (RFC 6960) (2013)

13. Jacak, M., Jacak, J., Jwiak, P., Jwiak, I.: Quantum cryptography: theoretical pro-
tocols for quantum key distribution and tests of selected commercial QKD systems
in commercial fiber networks. Int. J. Quantum Inf. 14(02), 1630002 (2016)

14. Kozlovis, S.: The web computer and its operating system: a new approach for
creating web applications. In: Proceedings of the 15th International Conference on
Web Information Systems and Technologies (WEBIST 2019), Vienna, Austria, pp.
46–57. SCITEPRESS (2019)

15. Kozlovis, S., Vksna, J.: POSTER: a transparent remote quantum random number
generator over a quantum-safe link. In: Zhou, J., et al. (eds.) Applied Cryptogra-
phy and Network Security Workshops. LNCS, vol. 13285, pp. 595–599. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-16815-
4 32

16. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev.
Lett. 94(23), 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504

17. Mailloux, L.O., Hodson, D.D., Grimaila, M.R., Engle, R.D., Mclaughlin, C.V.,
Baumgartner, G.B.: Using modeling and simulation to study photon number split-
ting attacks. IEEE Access?: Pract. Innovations Open Solutions 4, 2188–2197 (2016)

18. Mehic, M., Maurhart, O., Rass, S., Voznak, M.: Implementation of quantum key
distribution network simulation module in the network simulator NS-3. Quantum
Inf. Process. 16(10), 253 (2017)

19. Mehic, M., et al.: Quantum key distribution: a networking perspective. ACM Com-
put. Surv. 53(5), 1–41 (2021)

20. Neppach, A., et al.: Key management of quantum generated keys in IPsec. In:
Proceedings of the 3rd International SECRYPT Conference, pp. 177–183 (2008)

21. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1461–1480. ACM, Virtual Event USA (2020)

22. Stanley, M., Gui, Y., Unnikrishnan, D., Hall, S., Fatadin, I.: Recent progress in
quantum key distribution network deployments and standards. J. Phys: Conf. Ser.
2416(1), 012001 (2022)

23. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer International Publishing, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 2

https://eprint.iacr.org/2023/294
https://www.idquantique.com/resource_type/quantum-safe-security/
https://www.idquantique.com/id-quantiquepartners-with-adva-to-commercialise-a-quantum-safe-encryption-solution/
https://www.idquantique.com/id-quantiquepartners-with-adva-to-commercialise-a-quantum-safe-encryption-solution/
https://www.idquantique.com/id-quantiquepartners-with-adva-to-commercialise-a-quantum-safe-encryption-solution/
https://www.idquantique.com/quantum-safe-security/products/clavis-xg-qkdsystem/
https://www.idquantique.com/quantum-safe-security/products/clavis-xg-qkdsystem/
https://doi.org/10.1007/978-3-031-16815-4_32
https://doi.org/10.1007/978-3-031-16815-4_32
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2

Quantum Key Distribution as a Service and Its Injection into TLS 545

24. Wang, L.J., et al.: Experimental authentication of quantum key distribution with
post-quantum cryptography. npj Quantum Inf. 7(1), 67 (2021)

25. Wimmer, C.: GraalVM native image: large-scale static analysis for Java (keynote).
In: Proceedings of the 13th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages, pp. 3–3. ACM (2021)

XFedGraph-Hunter: An Interpretable
Federated Learning Framework

for Hunting Advanced Persistent Threat
in Provenance Graph

Ngo Duc Hoang Son1,2 , Huynh Thai Thi1,2 , Phan The Duy1,2 ,
and Van-Hau Pham1,2(B)

1 Information Security Laboratory, University of Information Technology, Ho Chi
Minh city, Vietnam

{19522137,19522256}@gm.uit.edu.vn, {duypt,haupv}@uit.edu.vn
2 Vietnam National University, Ho Chi Minh city, Vietnam

Abstract. Advanced persistent threats (APT) are increasingly sophis-
ticated and pose a significant threat to organizations’ cybersecurity.
Detecting APT attacks in a timely manner is crucial to prevent sig-
nificant damage. However, hunting for APT attacks requires access to
large amounts of sensitive data, which is typically spread across different
organizations. This makes it challenging to train effective APT detec-
tion models while preserving data privacy. To address this challenge, this
paper proposes XFedGraph-Hunter, an interpretable federated learning
framework for detecting APT attacks in provenance graphs. The frame-
work leverages federated learning to train APT attack hunting models
collaboratively on decentralized data stored on multiple devices. This
approach helps to preserve data privacy and security while improving
the model’s performance. The machine learning (ML) model employed
in the framework is GraphSAGE. Moreover, a pre-trained transformer
model is leveraged into the feature preprocessing process to enhance
GraphSAGE’s performance. Additionally, GNNexplainer is employed
to provide explanations for the APT attack hunting model’s predic-
tions, thereby increasing transparency and interpretability. The proposed
framework is evaluated on DARPA TCE3 datasets, using FedAvg as
the federated learning algorithm. The results indicate that the proposed
framework can effectively detect APT attacks, achieving high accuracy
and F1 scores. The interpretability provided by GNNexplainer helps in
understanding the features contributing to the detection of APT attacks.
The collaborative approach to APT attack hunting presented in this
paper enables multiple parties to contribute their data while preserving
privacy, providing an effective and scalable solution for APT detection.

Keywords: Federated Learning (FL) · Intrusion Detection System
(IDS) · Explainable Artificial Intelligence (XAI) · Graph Neural
Network (GNN) · Advanced Persistent Threat (APT) · Provenance
Graph · Transformers

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 546–561, 2023.
https://doi.org/10.1007/978-981-99-7032-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_32&domain=pdf
http://orcid.org/0009-0000-8101-7311
http://orcid.org/0009-0002-6611-5604
http://orcid.org/0000-0002-5945-3712
http://orcid.org/0000-0003-3147-3356
https://doi.org/10.1007/978-981-99-7032-2_32

Interpretable FL-Based APT Hunting in Provenance Graph 547

1 Introduction

Recently, the Advanced Persistent Threat (APT) has become a crucial issue,
using the most sophisticated techniques to exploit and lurk in the targeted sys-
tem in the long term, which could last for years. APT attacks are carefully
planned and primarily performed by well-resourced adversaries, usually nation-
states or state-sponsored groups, using advanced tactics, techniques, and proce-
dures [1,7,16]. Because significant resources and expertise are invested in APT
attacks, they typically focus on high-value targets like the government, large
business entities, and many other institutions with the objective of obtaining
intelligence-related and financial information. Cyber experts and researchers are
working towards finding efficient solutions to detect and prevent APT attacks.
Among state-of-the-art cybersecurity solutions, the Intrusion Detection Sys-
tem (IDS) maintains a concrete position in cyberwarfare against APT attacks.
While Network-based IDS (NIDS) fail to analyze malicious activities in net-
work traffic because obfuscation and encryption techniques are commonly used
by attackers, the Host-based IDS (HIDS) provide more capacity to detect APT
attacks by monitoring the hosts’ activities. Leveraging the HIDS advantage, the
Provenance-based IDS (PIDS), especially the provenance graph approach, shows
powerful semantic expression and correlation analysis capabilities that effectively
detect APT-style multistep attacks, as evidenced by many studies [6,8,10,20].

To perform the intrusion analysis process, PIDS represents the data flow and
data origin within a system in a graph format that can be processed by a cyber
security expert or some graph analysis techniques. However, provenance graphs
are particularly enormous and contain intricate interconnections among objects,
which are difficult to analyze. To accomplish this issue, Graph Neural Network
(GNN) offers a promising approach that can handle enormous provenance graphs
while maintaining its performance to make quick predictions. As a result, GNN
can be incorporated with the IDS in order to enhance performance and accuracy
when working with provenance graphs, especially for APT detections.

Unfortunately, the internal data of an organization contains deficient or no
APT attack activities, which can be a huge problem for training GNN-based IDS,
and the public data is not good enough because of privacy concerns and orga-
nizations’ data-sharing policies. Federated Learning (FL) has arisen due to its
decentralized training capabilities without sharing internal data. Organizations
participating in the FL training process train local models using their internal
data and then aggregate these models into the global model. From there, all
participants can use the global model and profit from it. Although some stud-
ies have used the FL approach to train Artificial Intelligence (AI)-based IDS
systems, only a limited number of studies have worked on this approach in the
context of GNN-based IDS.

Another issue with the GNN-based IDS and other DL-based IDS is the lack
of transparency and interpretability, which makes it difficult for both users and
developers to understand and troubleshoot the IDS’s operations. In addition,
comprehending how the AI model makes decisions would aid in detecting cyber
threat activities and creating a more accurate and effective DL-based IDS sys-

548 N. D. H. Son et al.

tem. Despite this, there have been few investigations into the interpretability of
these systems, especially GNN-based IDS systems with FL.

Inspired by the aforementioned difficulties, we present XFedGraph-Hunter,
an interpretable FL framework for APT attack detection using provenance graph
data. Our framework features an FL-based IDS system that utilizes GNN to
handle provenance graph data challenges. Then, we leverage a pre-trained trans-
former model into the framework to enhance FL-based IDS system performance.
Finally, to comprehend AI’s inference process, we utilize GNNExplainer [22], a
model-agnostic approach [14] for interpreting GNN’s predictions. By conducting
experiments on the DARPA Transparent Computing Engagement 3 (TCE3),
we show the performance and capability of our framework to explain our FL-
based IDS against APT attacks and provide a better view of understanding IDS
predictions.

Our contributions in this work are summarized as follows:

– Propose a robust collaborative APT hunting framework using federated learn-
ing. Our framework features an effective PIDS system employing GNN to
detect APT attacks using provenance graph data.

– Propose a robust methodology that leverages edge attributes into node rep-
resentation by utilizing the pre-trained transformer model. This approach
demonstrates its capacity to enhance the GraphSAGE model’s performance
and reduce the number of convergence rounds in the FL training process.

– Explore the factors that affect the decisions made by GNN-based APT attack
detectors by integrating Explainable AI (XAI) into the APT detection process
using the GNNExplainer methodology.

This article’s remaining sections are organized as follows: Related works
of APT detection utilizing explainable AI are introduced in Sect. 2. The pro-
posed framework and methodology are then covered in Sect. 3. The experimental
setups, analysis results of the APT detectors after being trained using the FL
method, and methodologies used to explain a detector choice are all described
in Sect. 4. In Sect. 5, we finally wrap up the paper.

2 Related Work

Numerous studies have been conducted to tackle the challenges posed by APT
attacks using provenance graphs. For instance, Xie et al. [21] proposed a PIDS
system known as Pangoda, which considers both the anomaly degree of an indi-
vidual path and the entire provenance graph to achieve fast and accurate detec-
tion in large data environments. Likewise, Wu and his colleagues [20] proposed
Paradise, a real-time, generalized, and distributed intrusion detection system
that exploits the characteristics of provenance graphs by analyzing various types
and quantities of dependency relationships collected by SPADE [3], a cross-
platform distributed data provenance collection, filtration, storage, and query-
ing service. The system prunes and stores them in a highly efficient memory

Interpretable FL-Based APT Hunting in Provenance Graph 549

database, constructs vectors for different events in provenance graphs without
extra data conversion.

Despite the various techniques proposed in previous studies to deal with the
complex and large provenance graph, the graph’s complexity remains a major
obstacle. In order to tackle this challenge, Hamilton et al. [4] proposed Graph-
SAGE, an inductive framework that utilizes node feature information, such as
text attributes, to create node embeddings for new data efficiently. Instead of
training embeddings for individual nodes, the framework learns a function that
generates embeddings by aggregating features from a node’s local neighborhood
through sampling. In another work, Lo et al. [9] have introduced a new app-
roach called E-GraphSAGE that employs the GNN method to capture both the
edge features and topological information of a graph to detect network intru-
sions in IoT networks based on NetFlow data. In a different approach, Velickovic
et al. [18] presents Graph Attention Networks (GATs), which are convolution-
style neural networks that work on graph-structured data using masked self-
attentional layers. The GATs are computationally efficient, allow assigning dif-
ferent importance to different nodes in a neighborhood, and do not require know-
ing the entire graph structure upfront. In another study, Wei et al. [19] presented
a GNN-based graph pattern-matching approach for cyber threat hunting named
DeepHunter that can capture provenance graph behaviors and compare them
with known APT attack behaviors despite the inconsistency. Although the prior
mentioned studies prove the benefits of employing GNN in detecting and pre-
venting APT attacks, none of them utilize the FL technique to overcome the
training data shortage.

In an effort to solve the interpretability issues of GNN models, Ying et al.
[22] introduced GNNExplainer, a model-agnostic method that identifies a con-
cise subgraph structure and a limited number of node features that significantly
impact the GNN’s prediction. In another study, Huang and his colleagues [5]
proposed a model-agnostic explainable GNN approach named GraphLIME. The
method explains a prediction for a node by generating a nonlinear interpretable
model from the explaining node and outputting most features that play a crucial
role in the prediction using LIME [15]. Another attempt was XGNN, a method
introduced by Yuan et al. [23] that explains the GNN models by generating graph
patterns that can maximize the model’s predictions using Reinforcement Learn-
ing. These investigations exhibit the effectiveness of using various explanation
methods for interpreting GNN models. However, there is a shortage of studies
that tackle the interpretability of predictions generated by FL-based models.

This study presents a framework that utilizes GNNExplainer to interpret and
clarify the outcomes of an FL-based APT detector. The proposed framework
also aims to enhance the detection accuracy of the detector by incorporating a
cutting-edge GNN-based PIDS in the context of a provenance graph.

550 N. D. H. Son et al.

3 Methodology

3.1 The APT Hunting System Architecture

Designing a completely robust APT hunting system involves a significant amount
of work, which could be too much for the scope of this research. Therefore, to
ensure that our proposed framework is efficient while avoiding overwhelming
tasks, we develop our APT hunting system from the scheme proposed by [17],
which has already proven to be effective in detecting APT attacks. Our proposed
system consists of zones and a centralized server, as shown in Fig. 1. Each zone
is a participant joining the FL training process and has four components: the
SDN network, the SIEM system, the FL-based IDS model, and the explainer
module. The details of each component’s architecture are discussed below.

Fig. 1. The architecture of XFedGraph-Hunter

SDN Network: In our proposed architecture, the SDN network plays a crucial
role as it may contain malicious activity in the provenance data on the host. To
collect and analyze these data, we utilize the SIEM agent, software installed on
a host or endpoint device that gathers and forwards system logs to the SIEM
collector of the SIEM system, to collect the log data necessary for generating
provenance graph data.

SIEM System: Before being stored in the SIEM storage, the data gathered
from the SDN network is standardized to meet the requirements of the FL-based
IDS system. The stored data can be utilized to visualize and analyze potentially

Interpretable FL-Based APT Hunting in Provenance Graph 551

malicious hosts, enabling organizations to promptly respond to potential APT
attacks. Moreover, to avoid missing any attacks, the stored data is transmitted
to the FL-based IDS system for advanced APT detection.

FL-Based IDS Model: To determine the malicious event from the provenance
graph data obtained from the collected system log data, we employ GraphSAGE
integrated with a pre-trained transformer model namely TGraphSAGE, as shown
in Fig. 2. First, the logs collected by the SIEM system are transformed into the
original provenance graph G. However, features of nodes and edges in the graph
are usually heterogeneous (difference in the number of features) and challenging
to process (exist in multiple types and have values in infinite ranges). Addi-
tionally, traditional GraphSAGE models can only learn based on node features
and disregard important information from edges. To address these issues, the
Transformer model is introduced to standardize the features across nodes and
incorporate the edge features into the nodes to form the embedded graph G′.
The newly created graph consists of homogeneous features (equal in the number
of features between nodes) and is easier to process (features are real numbers
that can be easily learned by DNN). Then, the GraphSAGE model analyzes and
detects anomalous nodes in the graph G′. The specifics of the utilized DNNs
will be given in Sect. 4.2. The GraphSAGE model is also trained using the FL
approach outlined in Sect. 3.2.

Fig. 2. The architecture of TGraphSAGE

Explainer Module: We utilize the GNNExplainer in this module to interpret
the prediction decisions made by the IDS and to validate the accuracy of the
model’s outputs. However, using the GNNExplainer requires frequent interaction
with the IDS, which can have a substantial impact on the performance of the IDS
system. Therefore, the module should include a copy of the original IDS model
to conduct explanations on that model instead. We will provide a comprehensive
discussion of the module architecture in Sect. 3.3.

3.2 Federated Learning Scheme for Hunting Model

To enable decentralized training among participants, we propose an FL model
as depicted in Fig. 1, which employs the FedAvg algorithm [11] for model aggre-

552 N. D. H. Son et al.

gation. During the training phases, each participant communicates with the cen-
tralized server using the FL-based IDS system. Each iteration of the FL training
process is summarized as follows:

– The participants will communicate with the centralized server to obtain fed-
erated parameters. These parameters, according to the FedAvg algorithm,
can either be the weights of the global model or the weights of a randomly
generated model.

– Then, the participants will use the parameters obtained from the centralized
server to train their local models with their internal dataset.

– Once the local training process is complete, the participants will send the
local parameters to the centralized server. The local parameters include the
local model’s weights after being trained and the dataset’s size used to train
the local model.

– The received local parameters from all participants are utilized on the cen-
tralized server to compute a new set of global model weights. This is achieved
using Eq. (1).

– The server sends the new global model’s weights to the participants. These
weights will serve as the federated parameters for continuous training or appli-
cation of the model.

The aggregation function of the FedAvg algorithm is defined as Eq. (1):

w =
K∑

k=1

nk

n
wk (1)

where w represents the new global model’s weights, K represents the number of
participants joining the federated training process, wk represents weights for the
k-th collaborator in the local model, nk represents the size of the dataset used
to train the local model for the k-th collaborator, and n is the total size of all
clients’ datasets.

3.3 Explainer Module

In order to enhance the transparency of the FL-based IDS system predictions,
we leveraged GNNExplainer and proposed a methodology described in Fig. 3.
Additionally, the explanation outputs are crucial for future security actions on
the network. As a result, we decided to validate the explanation outputs by
domain experts to maintain the accuracy and performance of the Explainer
Module.

Explaining Predictions with GNNExplainer: The goal of GNNExplainer
is to identify a minimal subgraph that can explain a GNN prediction. In order to
accomplish this, GNNExplainer tries to maximize the mutual information (MI)
between the input graph G and the minimal graph Gs to explain the prediction
made by the model φ:

Interpretable FL-Based APT Hunting in Provenance Graph 553

max
Gs

MI(Y, (GS ,XS)) = H(Y) − H(Y |G = GS ,X = XS) (2)

where XS denotes the associated features with the GS . Since φ is fixed,
and so is the entropy H(Y), the MI is maximized when conditional entropy
H(Y |G = GS ,X = XS), which is represented as Eq. 3, is minimized:

H(Y |G = GS ,X = XS) = −EY |GS ,XS
[logPφ(Y |G = GS ,X = XS)] (3)

The input graph can be different and depend on which task is focused on. For
our node classification task, our input graph is the k-hops neighbor of the node
that needs to be interpreted. Additionally, GNNExplainer presents important
factors using difference masks such as the feature mask, which represents features
that are crucial to the explained node, and the edge mask, which acts for the
minimal subgraph. In this study, we use the edge mask to explain the FL-IDS
predictions.

Fig. 3. The architecture of the Explainer Module

4 Experimental Evaluation

4.1 Dataset and Preprocessing

Dataset: In order to conduct experiments that closely resemble real-world sce-
narios, we utilize the real-life APT dataset named DARPA TCE31 dataset. The
DARPA TCE3 was conducted as an exercise involving multiple hosts, whose
activities were monitored and recorded to create provenance data. These hosts
were attacked by various attackers using APT attacks to steal proprietary and
personal information from the targeted organization. For our experiments, we
selected the CADETS FreeBSD host provenance data as our evaluation dataset,
which contains 13,880,763 events generated by benign activities and Nginx back-
doors with Drakon APT attacks.
1 DARPA TCE3: https://github.com/darpa-i2o/Transparent-Computing/blob/

master/README-E3.md.

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

554 N. D. H. Son et al.

Table 1. Sentence patterns for each object types

Type Pattern

net flow A net flow object has the local address of
{{local address}}:{{local port}} and the remote address of
{{remote address}}:{{remote port}}

file A file object has the subtype named {{sub type}}
subject A subject object has the subtype named {{sub type}}
unnamed pipe An unnamed piped object has no properties

Preprocessing: The DARPA TCE3 provenance data consists of objects and
events. Objects refer to entities that exist on the host, such as files, folders,
and unnamed pipes. Events are generated when these objects interact with each
other in some way. As a result, we decided to select objects as nodes and events
that feature both source and destination objects as edges for graph presenta-
tion. Subsequently, objects’ features are transformed into sentences as shown
in Table 1, which is embedded using the pre-trained sentence transformers [12]
model called all-MiniLM-L6-v2 [13].

When working with the dataset, there are two issues that come up with us.
First, because the number of malicious events is extremely small, using the whole
dataset can lead us to model training performance issues. Rather than selecting
all events present in the dataset, we opt to choose a specific subset that contains
the majority of the malicious activities, resulting in 237,721 events, of which
236,160 (99.3%) are benign, and 1,561 (0.7%) are malicious. Second, for our
classification task using GraphSAGE, which utilizes only node features, most of
the dataset’s objects contain too simple features like type and subtype. To solve
this problem, we construct strings from events’ features, as shown in Table 2.

Table 2. String patterns for each incorporating event types

Type Pattern for

source node

Pattern for Destination

node

Common pattern

execute executed was executed using {{exec}} with

the command line

“{{cmd line}}”
accept accepted the con-

nection from

was accepted to connect

with the address

{{address}} using {{exec}}

create object created an object was created using {{exec}}
modify process modified a pro-

cess

was modified using {{exec}}

rename renamed an

object

was renamed using {{exec}}

add attributes added attributes

to an object

attributes was added -

flows to flowed was flowed to another object

Interpretable FL-Based APT Hunting in Provenance Graph 555

These event strings are concatenated with object sentences into complete
node sentences. To demonstrate the effectiveness of incorporated node features,
we compare them with standalone node features in Sect. 4.4.

4.2 Experimental Settings

We conducted a training simulation for the Federated Learning (FL) model
using 10 clients over 10 rounds on an Ubuntu 20.04 virtual machine equipped
with 6 core CPUs and 32 GB of RAM. The IDS model architecture that utilizes
GraphSAGE is outlined in Table 3. Through experimentation, we trained all
clients and found that optimal performance could be achieved with the following
configuration: Adam optimizer with a learning rate of 0.001 and 100 epochs.
To prevent bias in the evaluation process, we ensured that the malicious and
benign samples were in the correct ratio while selecting 70% of samples for the
training set and the remaining 40% for the testing set. Lastly, we divided the
training dataset equally and distributed it to all clients.

Table 3. The architecture of IDS model

Layer (ID) Activation Output shape Connected to

Input (1) - (384) -

SAGELayer (2) ReLU (256) (1)

SAGELayer (3) ReLU (256) (2)

SAGELayer (4) ReLU (128) (3)

SAGELayer (5) - (2) (4)

4.3 Performance Metrics

Detection Metrics: To appropriately assess the model’s predictions, we estab-
lished the following definitions for ground truth values: True Positive (TP)
denotes the number of correct predictions assigned to the malicious class, while
True Negative (TN) denotes the number of correct predictions assigned to the
benign class. False Positive (FP) denotes the number of benign labels that were
miscategorized as belonging to the malicious class, and False Negative (FN)
denotes the number of malicious labels that were miscategorized as belonging to
the benign class.

Accordingly, we use the following metrics for our experiments:

– Accuracy refers to the proportion of correct predictions out of the total num-
ber of predictions made..

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

556 N. D. H. Son et al.

– Precision is the ratio of correct predictions with an malicious label to the
total number of predictions that were assigned to the malicious class.

Precision =
TP

TP + FP
(5)

– Recall is determined by dividing the number of correct predictions with an
malicious label by the sum of correct predictions with an malicious label and
those that were miscategorized as belonging to the benign class.

Recall =
TP

TP + FN
(6)

– F1-score is computed by multiplying the product of precision and recall by
two, and then dividing this result by the sum of precision and recall.

F1 − score = 2 · Recall · Precision

Recall + Precision
(7)

Interpretability Metrics: According to Gilpin et al. [2], explanations can be
evaluated using three methods: application-level evaluation, human-level evalua-
tion, and functionality-level evaluation. However, assessing the quality of expla-
nations can be challenging when relying on data that is difficult to evaluate for
non-experts. Moreover, the methods used to generate explanations, such as the
GNNExplainer and many other explanation methods for deep learning mod-
els, lack established mathematical formulas or methods for assessing the inter-
pretability of their generated explanations. Therefore, we will evaluate explana-
tions using the application-level evaluation method. Specifically, we will analyze
the explanations generated by explanation generation methods and utilize our
domain knowledge to evaluate the explanations based on the input data and the
structure of the model.

4.4 Evaluation Result

Detection Performance Evaluation: Table 4 provides the training results
of the TGraphSAGE model on the DARPA TCE3 dataset, evaluated accord-
ing to the criteria mentioned in Sect. 4.3. Overall, the TGraphSAGE achieved
very high performance, with all metrics exceeding 0.9 and the lowest score being
0.9173 (when using only node attributes). Moreover, the TGraphSAGE model
outperformed the GraphSAGE model using doc2vec, word2vec, and fasttext in
terms of overall performance. Additionally, despite the severe class imbalance
in the DARPA TCE3 dataset, with benign samples accounting for 99.3% of
the data, both the TGraphSAGE and GraphSAGE models integrated with fast-
text achieved perfect scores in the Recall criterion (1.0). This demonstrates the
impressive performance of TGraphSAGE and the GraphSAGE model integrated
with fasttext in detecting malicious events, particularly in scenarios where these

Interpretable FL-Based APT Hunting in Provenance Graph 557

Table 4. Evaluation results for FL-based GraphSAGE in different data preprocessing
models

Model Accuracy Precision Recall F1-Score

d2v+GraphSAGE 0.9976 0.9587 0.5946 0.7339

w2v+GraphSAGE 0.9992 0.8824 0.9984 0.9368

fasttext+GraphSAGE 0.9995 0.9258 1 0.9615

TGraphSAGE (node feature only) 0.9995 0.9173 0.9952 0.9547

TGraphSAGE 0.9996 0.9313 1 0.9645

Fig. 4. Convergent performance for TGraphSAGE utilizing (a) both node and edge
features and (b) only node features

events are a small fraction compared to benign events occurring daily in the sys-
tem. However, our proposed model excels in terms of Precision score, resulting
in a lower false-positive rate.

Beside that, it is worth noting that our approach, which uses both node and
edge features, converges faster and achieves the highest performance from round
3 (as depicted in Fig. 4a), while the traditional approach, which uses only node
features, gives a fluctuating performance until the final round (as depicted in
Fig. 4b).

Explanation Evaluation: We visualize the explanation results as shown in
Fig. 5 and Fig. 6. These results are subgraphs whose center node (the green node)
is the explained node. Surrounding the explained node are k-hops neighbors with
their labels and edges with their importance score from the edge mask, which is
within the range [0, 1]. By setting the threshold value to 0.5, we can determine
crucial pathways for message-passing to propagate and aggregate information,
which are blue edges and have an importance score greater than the threshold
value, as opposed to gray edges, which are not essential. Additionally, the change
in color from light blue to dark blue, as well as the transition from thin to thick
edges, signifies an augmentation in the importance score.

558 N. D. H. Son et al.

Figure 5 shows the explanation result of a benign node. Except for the two
bottom nodes, all the rest of the nodes show their importance for the explanation
by associating with edges that have an importance score greater than 0.6. To
gain a better understanding of the explanation, we analyze the original values of
the nodes. All single connections surrounding nodes have a value of “A subject
object has the subtype named process, and it modified a process using sshd.”.
The reason why the explanation does not care about two bottom nodes is that
GNNExplainer generates a minimal subgraph, not an able one, so the minimal
subgraph is transparent enough without bottom nodes. Moreover, the value of
the center node is “A file object has the subtype named file, and it was modified
using find, ...”, and the four-connection surrounding node has a value of “A
subject object has the subtype named process, and it modified a process using
find, ...”. These original values are all benign behaviors, so the center node is
truly classified as a benign node.

Fig. 5. The explanation for a prediction of a benign object produced by the FL-based
GraphSAGE model

Figure 6 shows the explanation result of a malicious node. All surrounding
malicious nodes have a certain degree of influence on the center node. Examining
the original values of the center node, it contains some malicious files in the
dataset, such as “/var/log/sendmail”, “/tmp/font” and “/tmp/minions”. Thus,
we can deduce that the central node is unequivocally classified as malicious.

Interpretable FL-Based APT Hunting in Provenance Graph 559

Fig. 6. The explanation for a prediction of a malicious object produced by the FL-based
GraphSAGE model

5 Conclusion

In conclusion, this paper proposed XFedGraph-Hunter, an interpretable fed-
erated learning framework for detecting advanced persistent threats (APT)
attacks in provenance graphs. The proposed framework leverages federated learn-
ing to train APT attack hunting models collaboratively on decentralized data
stored on multiple devices, preserving data privacy and security while improv-
ing the model’s performance. The results of the evaluation on the DARPA
TCE3 dataset, using FedAvg as the federated learning algorithm, showed that
XFedGraph-Hunter can effectively detect APT attacks, achieving high accuracy
and F1 scores. The interpretability provided by GNNexplainer helps in under-
standing the features contributing to the detection of APT attacks, increas-
ing transparency and interpretability. The proposed collaborative approach to
APT attack hunting enables multiple parties to contribute their data while pre-
serving privacy, providing an effective and scalable solution for APT detection.
XFedGraph-Hunter has the potential to enhance the security and privacy of
organizations by detecting APT attacks in a timely and effective manner.

Acknowledgement. This research is funded by Vietnam National University
HoChiMinh City (VNU-HCM), Viet Nam under grant number DS2022-26-02.

560 N. D. H. Son et al.

References

1. Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D.: A survey on advanced
persistent threats: techniques, solutions, challenges, and research opportunities.
IEEE Commun. Surv. Tutorials 21(2), 1851–1877 (2019)

2. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

3. Gehani, A., Ahmad, R., Irshad, H., Zhu, J., Patel, J.: Digging into big provenance
(with spade). Commun. ACM 64(12), 48–56 (2021)

4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

5. Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., Chang, Y.: Graphlime: local
interpretable model explanations for graph neural networks (2020)

6. Jenkinson, G., et al.: Applying provenance in APT monitoring and analysis. In:
Proceedings of the USENIX Workshop Theory Practice Provenance, pp. 16–16
(2017)

7. Khaleefa, E.J., Abdulah, D.A.: Concept and difficulties of advanced persistent
threats (APT): survey. Int. J. Nonlinear Anal. Appl. 13(1), 4037–4052 (2022)

8. Kurniawan, K., Ekelhart, A., Kiesling, E., Quirchmayr, G., Tjoa, A.M.: Krystal:
knowledge graph-based framework for tactical attack discovery in audit data. Com-
put. Secur. 121, 102828 (2022)

9. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-graphsage: a
graph neural network based intrusion detection system for IoT. In: NOMS 2022–
2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE
(2022)

10. Lv, Y., Qin, S., Zhu, Z., Yu, Z., Li, S., Han, W.: A review of provenance graph
based APT attack detection: applications and developments. In: 2022 7th IEEE
International Conference on Data Science in Cyberspace (DSC), pp. 498–505 (2022)

11. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR (2017)

12. Nils, R., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-
networks. arXiv:1908.10084 (2019)

13. Reimers, N., Iryna, G.: Making monolingual sentence embeddings multilingual
using knowledge distillation. arXiv: 2004.09813 (2020)

14. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine
learning. arXiv preprint arXiv:1606.05386 (2016)

15. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pp. 1135–1144 (2016)

16. Stojanović, B., Hofer-Schmitz, K., Kleb, U.: Apt datasets and attack modeling for
automated detection methods: a review. Comput. Secur. 92, 101734 (2020)

17. Thi, H.T., Son, N.D.H., Duv, P.T., Pham, V.H.: Federated learning-based cyber
threat hunting for apt attack detection in SDN-enabled networks. In: 2022
21st International Symposium on Communications and Information Technologies
(ISCIT), pp. 1–6. IEEE (2022)

18. Velickovic, P., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)
19. Wei, R., Cai, L., Zhao, L., Yu, A., Meng, D.: DeepHunter: a graph neural net-

work based approach for robust cyber threat hunting. In: Garcia-Alfaro, J., Li, S.,
Poovendran, R., Debar, H., Yung, M. (eds.) SecureComm 2021. LNICST, vol. 398,
pp. 3–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90019-9 1

http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2004.09813
http://arxiv.org/abs/1606.05386
https://doi.org/10.1007/978-3-030-90019-9_1

Interpretable FL-Based APT Hunting in Provenance Graph 561

20. Wu, Y., et al.: Paradise: real-time, generalized, and distributed provenance-based
intrusion detection. IEEE Trans. Dependable Secure Comput. 20(2), 1624–1640
(2023)

21. Xie, Y., Feng, D., Hu, Y., Li, Y., Sample, S., Long, D.: Pagoda: a hybrid app-
roach to enable efficient real-time provenance based intrusion detection in big data
environments. IEEE Trans. Dependable Secure Comput. 17(6), 1283–1296 (2018)

22. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: gener-
ating explanations for graph neural networks. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

23. Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of
graph neural networks. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM (2020)

XSS Attack Detection by Attention
Mechanism Based on Script Tags in URLs

Yuki Nakagawa(B) and Mamoru Mimura

National Defense Academy of Japan, Yokosuka, Kanagawa 2398686, Japan
{em61009,mim}@nda.ac.jp

Abstract. XSS (Cross-Site Scripting) attacks exploit vulnerabilities in
web applications, and many victims have been reported. As a counter-
measure for this, existing studies propose methods to detect XSS attacks
by combining natural language processing techniques and machine learn-
ing models. Few studies reveal the features that contribute to the clas-
sification and the validity of the dataset. In this study, we analyzed the
weights of words in the attention mechanism to identify the features that
contribute to classification. Our models are combinations of LSTM (Long
Short Term Memory) and attention mechanism. Validation experiments
were conducted on two different datasets. The experimental result shows
that typical features such as script tags and text-encoded hex strings
contribute to the classification. In addition, when the benign sample of
the test data was increased by a factor of 5, the f1 score was found to
decrease to a maximum of 0.55. Since the focused features depend on
the dataset, the generality and practicality of the classification model
are still to be evaluated. In other words, the utility of the classification
model based on the dataset is not high, and it is necessary to verify the
model to improve its utility.

Keywords: XSS · LSTM · attention mechanism · NLP

1 Introduction

In recent cyber attacks, XSS (Cross Site Scripting) vulnerabilities called CWE-
79 [4] in web applications continue to occur frequently and various damages
have been reported. CWE-79 is still a vulnerability that needs to be addressed,
as it ranks second in the overall score of the 2022 Top 25 list of weaknesses.
[23]. XSS attacks are mainly carried out by inserting scripts into web pages.
Therefore, as countermeasures against XSS attacks, input value restrictions and
script disabling are used in the operational field. For example, Fang et al. [5,6],
Lei et al. [12], Mokbal et al. [15,16] Raed et al. [19], Krishnan et al. [11] and
Gulit et al. [7], have proposed using machine learning models to detect XSS
attacks for various features including scripts and other linguistic features found in
XSS attacks. However, few studies have addressed how machine learning models
detect XSS attacks. The validity of the dataset has also not been adequately
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 562–578, 2023.
https://doi.org/10.1007/978-981-99-7032-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_33&domain=pdf
http://orcid.org/0000-0003-4323-9911
https://doi.org/10.1007/978-981-99-7032-2_33

XSS Attack Detection by Attention Mechanism 563

verified. This is because the datasets used are rarely made public due to legal
and ethical issues, and it is often difficult to mention the utility of the dataset
or the number of samples. In other words, many of the studies on XSS attack
detection are open to validation with respect to the credibility of the results.

Therefore, this study will examine two methods.
The first method is to classify the datasets used in each previous study that

use linguistic features such as URLs using a machine learning model with the
attention mechanism. From the classification results, we clarify which words
among the linguistic features of XSS attacks the machine learning model focuses
on to detect the attacks. If it can be shown that the machine learning model’s
classification is based on words that are typical linguistic features of XSS attacks,
it can be evaluated as a practical detection result with higher accuracy and more
credibility. The reason for targeting URLs is that they are in a simple text format
and it is easy to extract words and other linguistic features. To the best of our
knowledge, there have been few reports of machine learning models visually
indicating the words they focus on as important for classification. As a result,
we found that the model focused on symbols such as <> that make up scripts.

The second method investigates the change in detection rate when the num-
ber of benign samples in the test data is increased. This is based on the method
of Mimura [14] and assumes a situation similar to the actual environment in
which attacks are detected. By increasing the number of benign samples, it is
possible to simulate the case of detecting a small number of malicious samples
among a huge number of benign samples. Therefore, we believe that the detec-
tion accuracy results allow us to verify the utility of the classification model. As
a result, increasing the number of benign samples in the test data by a factor of
5 reduced to a F1 score as low as 0.45. We believe that this will allow us to verify
the practicality of this method in terms of detection accuracy when detecting a
small number of malicious samples from a large number of benign samples.

The contributions of this paper are as follows:

1. The practicality of the detection method based on linguistic features has
been enhanced by the confirmation that the machine learning model using
the attention mechanism detects XSS attacks by focusing on words used in
typical XSS attacks, such as “<>”.

2. Comparison of the top 20 words that the classification model focused on when
it detected the words correctly across datasets showed that only 7 to 10 words
matched, and that there was variation across datasets, confirming that the
words focused on by the classification model are influenced by the dataset.

3. Increasing the number of benign samples in the test data relative to the
data set decreased the detection rate, indicating that the practicality of the
classification model in a real-world environment is low.

2 Related Work

Various studies have been proposed to detect XSS attacks, as surveyed by
Sarmaha et al. [21], Rodŕıguez et al. [20] and Jasleen et al. [10]. Examples of

564 Y. Nakagawa and M. Mimura

various methods include detection by domain knowledge and threat intelligence
by Zhou et al. [25] and detection based on natural and programming language
processing by Maurel et al. [13].

In this chapter, we present key related studies that specifically focus on URLs
or natural language features.

Mokbal et al. proposed a method for detecting XSS attacks with the XGBoost
Model by selecting features from features based on URL, HTML and JavaScript
in the document of a webpage using a sequential backward selection method
called SBS [16]. As a result, accuracy, precision, recall, and f1 scores are all
greater than 0.99. However, there are concerns about the practicality and gener-
ality of the classification model, as only the source of collection and the number
of samples are given for the dataset used.

Raed et al. proposed a detection method using Word2vec and CNN-LSTM
models after performing various pre-processing procedures on the textual data
of each URL, both normal URLs and URLs containing XSS attacks [19]. The
various preprocessing steps include encoding the text data, replacing numbers,
URL hosts, scheme parts and String characters, and decoding into a readable
format. As a result, the accuracy, precision, recall, and f1 scores are all greater
than 0.99. However, it does not mention the characteristics of XSS attacks, and
the source of collection of benign samples is unknown. In addition, there are
concerns about the practicality and generality of the classification model due to
the many transformations of the dataset, such as the decoding process.

The method of Fang et al. [6] performs pre-processing on the dataset of XSS
attacks and on the dataset of benign samples collected from the database of an
open directory project called DMOZ [1]. The preprocessing is done by decod-
ing HTML-encoded and URL-encoded parts, replacing numbers, URL hosts, and
scheme parts, and then classifying scripts frequently used in XSS attacks into six
categories. The detection process is then performed using Word2vec and LSTM-
based classification models. The detection accuracy is 0.995, 0.979, and 0.987 for
precision, recall, and f1 scores, respectively. Lei et al. used a similar approach,
increasing the number of datasets and changing the classification model to an
LSTM-Attention-based classification model for detection [12]. The resulting pre-
cision, recall, and f1 scores are 0.993, 0.982, and 0.985, respectively. However,
obfuscated language features are lost, as the dataset is only published by Fang et
al. [6] and only the decoding process is performed on the dataset. In other words,
the utility and versatility of the classification model are also open to validation.

In summary, each of the related studies compared detection accuracy using
classification models that were devised with features to be acquired and trained
against machine learning models, without sufficient mention of the dataset. How-
ever, this method has not sufficiently validated the utility and versatility of the
classification model.

In this study, we examine the practicality and versatility of the classification
model by clarifying words that have a large impact on classification focusing on
character features, i.e., words, and by examining changes in detection rates as
the number of benign samples increases.

XSS Attack Detection by Attention Mechanism 565

First, a classification model using the attention mechanism is constructed to
detect XSS attacks focusing on character features. Then, we confirm whether
the classification model comprehensively focuses on the typical features of XSS
attacks by analyzing the contribution of the features that have a high contri-
bution to the detection of XSS attacks. Thus, we clarify the basis for the clas-
sification model to detect XSS attacks and analyze whether the model detects
XSS attacks in a practical manner. In addition to this, the utility is tested from
the accuracy of the classification model with reference to Mimura’s method [14].
In this method, performance is compared by increasing the number of benign
samples against the utility of the classification model. Although malware is the
target of the study in this literature, we believe that the same method can be
used to validate the classification model in this study.

3 Related Technique

3.1 LSTM

LSTM (Long Short Term Memory) [8] is a type of RNN (Recurrent Neural
Network), and is one of the models that solved the gradient vanishing problem
of RNN. RNN is a Neural Network that uses hidden layers and uses the previous
output as the next output. However, there was a problem that information could
not be handled over a long time horizon. LSTM solves this problem by using
forget gates (1), input gates (2), candidate storage cells (3), storage cells (4),
output gates (5), and hidden layers (6). The repeating module in an LSTM is
shown in Fig. 1, and the equations for each gate in the figure are shown below
[17].

The forgetting gate ft determines how much information to discard from the
input xt and one previous state hidden layer ht−1 and is defined by the following
equation, where W is the weight vector and b is the bias.

ft = σ(Wf · [ht−1, xt]) + bf (1)

The input gate it determines which information is to be stored in the cell
and is defined by the following equation

it = σ(Wi · [ht−1, xt]) + bi (2)

The candidate memory cell C̃t represents candidate values to be added to the
memory cell to be stored as long-term memory, and is defined by the following
equation

C̃t = tanh(WC · [ht−1, xt]) + bC (3)

The memory cell Ct is updated by the forgetting gate ft, the previous state
memory cell Ct−1, the input gate it and the candidate memory cell C̃t, defined
by the following equation

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

566 Y. Nakagawa and M. Mimura

Fig. 1. The repeating module in an LSTM

The output gate ot is used to determine the output value in combination
with the memory cell Ct and is defined by the following equation

ot = σ(Wo · [ht−1, xt]) + bo (5)

The hidden layer ht is also the output value for the input xt and is defined
by the output gate ot and the storage cell Ct by the following equation

ht = ot ∗ tanh(Ct) (6)

3.2 Attention Mechanism

The attention mechanism is a mechanism that learns the relationship between
elements introduced in the Encoder-Decoder model and the points of attention.
It implements an Encoder-Decoder model called Transformer. Among these, this
study utilizes a mechanism called self-attention [24]. Self-attention is a method
of acquiring the correspondence in the input data using the same input data.
First, three vectors called Query, Key and Value are calculated from the input
data. The similarity of Query and Key is calculated as weights by the Softmax
function. From these weights, the correspondence between Query and Value is
obtained and output. Assuming that Query is Q, Key is K, and Value is V , the
similarity is defined by the following equation.

Attention(Q,K, V) = Softmax(
Q · KT

√
dk

) · V (7)

3.3 Type of XSS Attacks

XSS attacks can be categorised into three main types. Reflected XSS in which
the attacker creates a malicious link containing a script to lure the victim into

XSS Attack Detection by Attention Mechanism 567

clicking on it. Inevitably, the victim’s request to the server will also contain
malicious strings. This means that the server response will also contain malicious
code, and the attack will be completed when the script containing this malicious
code is executed by the victim’s browser. Stored XSS allows attackers to inject
malicious code into vulnerable servers, e.g. via message forums. When the victim
navigates to this compromised server, the attack is established when malicious
code is executed as a script as part of the web page. DOM-based XSS is an
attack that primarily resides on the client’s browser caused by exploiting script
write operations. The attack is established when malicious code injected by
the attacker is executed as a script by normal DOM operations on the client’s
browser.

4 Proposed Method

4.1 Outline

This section describes the validation procedure to describe the utility of the
detection methods and the validity of the data sets. The validation is carried out
by two methods on two different datasets. The first is validation by classification
using a machine learning model combining LSTM and an attention mechanism
and extraction of linguistic features based on the classification results. This con-
firms whether the detection results focus on the features of XSS attacks and
refers to the validity of the dataset. Figure 2 shows the validation procedure.
The second is to verify the change in detection accuracy with an increase in the
number of benign samples. This makes reference to the usefulness of the dataset
and the classification model in a real-world environment. Each detail method is
presented.

4.2 Dataset

The assumption is that the data used for the validation target is the textual data
of the URLs. In other words, Reflected XSS is mainly targeted for detection.
However, even Stored XSS and DOM-Based XSS may also be subject to this
method under conditions where server-client communication occurs in which
the URL contains malicious scripts. Note that a benign sample refers to the
URL text when it does not contain scripts by the attacker, while a malicious
sample refers to the URL text in which the scripts by the attacker have been
inserted. Three different datasets are used in this verification. To ensure validity
and reproducibility, we used datasets that use textual data from URLs and are
publicly available in the literature on XSS attack detection.

Examples of each are shown with the host part and other parts
omitted. Benign samples include those that refer to html files such as
“ https://***.**/2010/1 0/october-19-1851-death-of-marie-therese.html”, which
refers to an html file. Malicious samples include
“ http://***.**/find.jsp?f=”“>< script> alert(1)< /scr ipt>”

568 Y. Nakagawa and M. Mimura

Fig. 2. Procedure flow of the proposed method

with the script inserted. Others, such as “ http://*****.**/%22%3E%3C
script%3Ealert%28%22 XSS BY C37HUN%22%29%3C/script%3E”.

Three datasets were prepared. The number of benign and malignant samples
in the dataset used is shown in Table 1. The first is the dataset used by Fang et al.
[6], consisting of 33,426 malicious samples collected by cloning from XSSed.com
and 31,407 benign samples generated from the DMOZ data. This is designated
as dataset A. However, fewer directories and parameters are included in the
normal data, and classification by data length is considered easier. The second
is the dataset we created, consisting of 13,586 malicious samples collected by
crawling from XSSed.com and 32,070 benign samples extracted from the CIC-
IDS2017 dataset [22]. This is designated as dataset B. This dataset is considered
more difficult to classify than the first dataset because the benign samples also
contains directories and parameters. The third is a dataset that only collected
benign samples. This is designated as dataset C. This is a data set collected from
proxy logs and other sources for use in increasing the number of benign samples
and consists of 482,780 benign samples.

XSS Attack Detection by Attention Mechanism 569

Table 1. Number of samples in the data set

dataset benign malicious

Dataset A [6] 31407 33426

dataset B (we created) 32070 13586

dataset C 482780 –

This dataset was collected in 2017 from benign traffic logs of a Class B
university network. This network has over 5000 computers connected to it. It also
has various security devices connected to it and has been verified as benign traffic
by several experts. Of the three datasets, we perform validation experiments on
datasets A and B. First, each dataset is divided into training and test data.
For the partitioning, k-fold cross-validation was used and the data was divided
into 5 parts. In other words, the ratio of training data to test data is 8:2. The
ratio of benign samples to malicious samples was kept the same for both the
training data and the test data. In this way, the linguistic features are extracted
repeatedly so that all samples in the data set used become test data.

4.3 Preprocessing

In preprocessing, data cleaning and tokenization are performed on the data.
Preparation for the tokenization process is the creation of a dictionary. The
dictionary consists of 452,020 words, which are derived from the text data of
450,176 URL lists of benign and malicious URLs collected from Kaggle [9] and
divided into unique words using the Tokenizer module of the Keras library, and
453,020 words with 1,000 special characters that indicate the starting position of
the text, etc. The 453,020 words were obtained by adding 1,000 special characters
to the 452,020 words that were divided into unique words using the Tokenizer
module of the Keras library. In addition, symbols such as “.”, “%”, “/”, and
other symbols are also set as one word in the dictionary.

Data Cleaning. The textual treatment is performed as data cleaning for the
input data. Only the host and scheme portions of the URL are removed, and the
text input to the URL is used directly for the query portion that describes other
parameters and directories. For obfuscation by encoding into other character
codes, which is often done in XSS attacks, we decided to use the HTTP commu-
nication log at the time of communication without processing decryption. This is
because it cannot be denied that the unreadability of strings due to obfuscation
may also be a linguistic feature of XSS attacks. This is also to make the dataset
structure closer to the actual environment in which XSS attacks occur.

570 Y. Nakagawa and M. Mimura

Tokenize. As a tokenization process for the input data, the Tokenizer module
of the Keras library is used to divide the text of the input data into the smallest
units based on the created dictionary, and assign a unique number to each unique
word. This converts the text data into numerical data on which the classification
model can be trained.

4.4 Machine Learning Model

Referring to the method of Lei et al. [12], we use a classification model that
combines LSTM and attention mechanism for classification. The reason for the
combined LSTM and attention structure is to take into account the pre- and
post-relationships of the words that split the text. The machine learning model
used in this experiment was implemented using Tensorflow 2.4 [2], Keras 2.4.3 [3],
Python-3.8.9, and scikit-learn 1.0.2 [18]. Parameter tuning of the classification
model was performed by selecting the best of the values set by grid search. As
a result, the input vector length was set to 128 out of 64, 128, and 256, and the
batch size to 16 out of 16, 32, 64, 128, and 256. In addition, the dropout value
of the classification model was set to 0.05, and the hidden layer was fixed at 128
dimensions. The maximum number of epochs during training was set to 50, and
training was terminated when the loss value no longer varied.

The model was configured as shown in Fig. 3 using the Keras library.

Fig. 3. Machine learning model structure

XSS Attack Detection by Attention Mechanism 571

First, determine the length of the sequence to be input by the Input layer.
Next, the Input layer is fed into the Embedding layer, which maps the input
words to vectors. In this study, the vector is a 128-dimensional vector. Then, the
SeqSelfAttention layer enables weight processing by the attention mechanism.
After that, the LSTM is trained on the Bidirectional layer and downsized on
the GlobalMaxPooling layer. The downsized vectors are combined in the Dense
layer to suppress over-training by the Dropout layer, and the results are output
in the last Dense layer. A sigmoid function is used as the activation function.

4.5 Aggregation of Focus Points by the Attention Mechanism

Each sample of input test data is detected by binary classification of a trained
classification model. The detection results are classified by the confusion matrix
class. In this process, each token of the tokenized sample is assigned a weight for
classification by the attention mechanism of the classification model. The tokens
with the highest weights are selected from the top 10 tokens in each sample.
Special tokens are excluded if they are included in the total. This is done for
all classified samples, and the extracted tokens are sorted in order of frequency
of occurrence. The tokens at the top of the list are considered more important
to the classification of the dataset, and the classification results are discussed.
If, as a result of the extraction and aggregation of the tokens and words with
high weights, we find that the words characteristic of XSS attacks are at the top
of the list, we can assume that the classification model focuses on the linguistic
features unique to XSS and performs the classification.

4.6 Change in Detection Rate When Benign Data Increases

In an environment where actual XSS attack detection techniques are required,
it is necessary to find a few malicious samples among many benign samples.
Therefore, the detection rate must be high even if the number of benign sam-
ples increases. Therefore, we investigate the change in detection rate when the
number of benign samples in the test data is increased. We increase the number
of benign samples in the test data by randomly adding benign samples from
dataset C to datasets A and B. The dataset is divided into five parts by k-fold
cross-validation, and the ratio of training data to test data is 8:2. Only benign
samples are added to the test data after the division, and the change in detection
rate is verified. The number of samples to be added is N times the number of
benign samples in the test data.

5 Result

5.1 Performance Evaluation Method

In our experiments, we consider benign samples to be benign and malicious
samples to contain malicious scripts used in XSS attacks, and test whether each

572 Y. Nakagawa and M. Mimura

Table 2. Benign and malicious prediction

Predict

benign malicious

Actual benign True Negative (TN) False Positive (FP)

malicious False Negative (FN) True Positive (TP)

of them is correctly predicted. The relationship between them is shown in Table 2
as a confusion matrix.

We used accuracy, precision, recall, and f1 as evaluation indices. Each eval-
uation index is expressed by the following equation.

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

f1 =
2Recall × Precision

Recall + Precision
(11)

5.2 Environment

The environment used in the experiment is shown in Table 3.

Table 3. Test environment

CPU Core i7-8700 K 3.70 GHz

GPU NVIDIA GeForce RTX 2080 Ti

Memory 64 GB

OS Windows10 Home

Programming Language Python3.8.9

5.3 Change in Detection Rate When Benign Data Increase

As in the previous section, the data set is divided into training and test data.
Then, only benign samples are added to the test data, the test data is classi-
fied, and the detection rates are compared. The number of benign samples to be
added is increased by a number equal to the number of samples in the test data.
In this experiment, the number of samples was increased by 6,000 up to 36,000.

XSS Attack Detection by Attention Mechanism 573

The experiment was repeated so that all malignant samples were tested. The
detection rate was calculated as the average of the results of repeated experi-
ments. The evaluation indices were similarly validated using accuracy, precision,
recall, and f1, respectively.

5.4 Verification of Detection Rate and Linguistic Features
by Attention Mechanism

First, the detection accuracies of datasets A and B are shown in the Table 4,
along with the detection accuracies of other previous studies.

Table 4. Accuracy comparison

study(used dataset) Accuracy Precision Recall f1

Proposed Method(dataset A) 0.983 0.995 0.971 0.983

Proposed Method(dataset B) 0.999 0.999 1.0 0.999

Mokbal et al. [16] 0.996 0.995 0.990 0.993

Mokbal et al. [15] 0.993 0.992 0.984 0.988

Methaq et al. [19] 0.991 0.999 0.995 0.993

Lei et al. [12] – 0.993 0.982 0.985

Fang et al. [6] – 0.995 0.979 0.987

Repeated experiments were conducted so that all samples in the datasets
were tested. The detection rate was calculated as the average of the results of
repeated experiments. Detection accuracy was high for both data sets. Compared
to the detection accuracies of other studies, there was no significant difference
in detection. Although dataset B is an unbalanced dataset with a large benign
sample size, no significant difference in detection accuracy was confirmed.

Next, we review the linguistic features extracted from datasets A and B. The
top 20 types for each class of TN, FP, FN, and TP, which are the detection
results, are shown in the Table 5 and 6.

In dataset B, there was only one sample classified as FP and FN, and the
top 20 were not tabulated. Therefore, the fields that did not correspond were
left blank. The table shows that for all classes, URL-specific symbols such as
“/”, “.” and “=”. The table also shows that at least 50% of the words in one
class overlapped with other words in the other class. The corresponding parts are
colored in gray in the tables. However, we also found that the samples classified
as Malicious TP focused on the symbols “<” and “>” that represent script tags
used in XSS attacks, as well as the hexadecimal components such as “3e” and
“3c” when the character encoding of these symbols is shown in the table. In
addition, a comparison of the data sets A and B shows that 10 of the top 20
words focused on in the TP class, including “<” and “>”, overlap, although
the malignant samples were collected from the same source. The corresponding
areas are colored in dark gray in the tables.

574 Y. Nakagawa and M. Mimura

Table 5. Classification featured
token in dataset A

rank TN FP FN TP

1 = amp = >

2 amp ; & <

3 & = / 3c

4 ; . . &

5 id / d ”

6 & 3e

7 / : alert

8 - % com /

9 soo search http script

10 selected 1 1)

11 + id search (

12 beschr www xss xss

13 menu http page +

14 . html www cookie

15 ring - action 2f

16 page com ; ’

17 cid + (=

18 1 2f - search

19 amg @ url 22

20 p : alert http

Table 6. Classification featured
token in dataset B

rank TN FP FN TP

1 - & id .

2 / ; email /

3 . 2015 < >

4 com page br <

5 = index > th

6 / ? 3c

7 the amp amp -

8 & 5b ; ?

9 2015 com

10 to php

11 % =

12 html

13 d9 +

14 of search

15 net script

16 + 3e

17 a lt

18 in 22

19 05 asp

20 ? amp

5.5 Transition of Detection Rate with the Increase of Benign
Samples

The change in detection rate when the number of benign samples in the test
data is increased in datasets A and B is shown in the Fig. 4 and 5.

The number of benign samples to be added was increased from the benign
sample size of the test data by 6,000 samples up to 36,000 samples for compar-
ison. The experiment was repeated so that all malignant samples were tested.
The detection rate was calculated as the average of the results of repeated exper-
iments. The evaluation indices were similarly validated using accuracy, precision,
recall, and f1.

In both datasets A and B, the accuracy, precision, and f1 values decreased as
the number of benign samples increased, but the recall value remained almost
constant. In addition, there was a difference in the range of decline in the scores of
the evaluation indices between datasets A and B. The accuracy value continued
to decrease in accordance with the precision value in dataset A, while it remained
around 0.9 in dataset B. For the f1 score, increasing the benign sample size of

XSS Attack Detection by Attention Mechanism 575

the test data by 24,000 resulted in a decrease to 0.55 for dataset A and 0.70 for
dataset B.

Fig. 4. Transition of accuracy on the dataset A

Fig. 5. Transition of accuracy on the dataset B

6 Discussion

6.1 Detection Rate and Linguistic Features by Attention
Mechanism

It was confirmed that the detection using natural language processing and
machine learning correctly learned and detected the features of malicious samples

576 Y. Nakagawa and M. Mimura

based on the given dataset, with a high accuracy. This accuracy is comparable
to that of other previous studies, suggesting that the method is quantitatively
effective. In addition, the results confirming the linguistic features suggest that
the method captures elements specific to typical XSS attacks, which are the
characteristics of malicious samples, and thus detection by linguistic features
are considered to be qualitatively effective as well. On the other hand, compar-
ing the extracted words among the datasets, the agreement rate of the top words
is not as high as 50% even for the datasets of malicious samples obtained from
the same collection source. This could be due to the influence of the dataset that
was configured when training the classification model, which may have resulted
in differences in the results. Other results include multiple words overlapping
when comparing words extracted from the same dataset across classes. In par-
ticular, the top words focused on are often typical symbols that compose URLs.
This is considered to represent a trend where linguistic features effective for
classification are detected from the relationship between multiple focused words.

6.2 Transition of Detection Rate with the Increase of Benign
Samples

When benign samples were increased, the detection rate decreased except for the
recall score. This indicates that the number of cases in which the added benign
samples were erroneously determined to be malicious was high. In other words,
this is a situation where many over-detections occur in the case of unknown data,
and is not considered to be practical in a real environment. Another possible
reason for the high number of over-detections could be that the composition of
the datasets used for training did not include a sufficient range and may have
been biased. This was inferred from the variation in detection rates when benign
samples were increased in datasets A and B. The rate of decline in dataset B
was slower than the rate of decline in dataset A. The accuracy score for dataset
B also remained around 0.9. This may be because the features of the benign
samples learned by the classification model were closer to those of the added
benign samples, resulting in fewer false positives compared to dataset A. In
other words, it can be said that the datasets had an impact on the classification
results, and that dataset B consisted of more generally benign samples.

6.3 Research Ethics

Although this research attempts to elucidate the principles of XSS attack detec-
tion, there is a large dependency on the training data of the classification model.
Therefore, we consider that it does not lead to avoiding the detection of attacks.

6.4 Research Limitations

The malicious sample of the dataset used in this study is textual data of URLs
collected from XSSed.com. Therefore, the XSS attacks targeted by this valida-
tion are limited. Moreover, these malicious samples are detoxified and not truly

XSS Attack Detection by Attention Mechanism 577

strings used in actual attack input. In other words, there is room for mention-
ing differences from actual attacks. In addition, the benign samples are data
extracted from two different datasets. Since the classification model is affected
by the datasets, there is room to examine the bias of the data.

7 Conclusion

In this study, we attempted to elucidate the features to focus on when detect-
ing XSS attacks from the weights of the attention mechanism using a machine
learning model that combines the LSTM and attention mechanisms. We also
tested the utility of the classification model by increasing the number of benign
samples. Experimental results confirmed that the classification model focused
on words such as “<” and “>” used in typical XSS attacks and detected XSS
attacks. However, even using malicious samples from the same collection source,
we found that only 10 of the top 20 words focused on by the TP class matched.
In other words, the words focused on by the classification model are influenced
by the dataset used, and there is room for validation of the dataset. In addition,
when the benign sample of the test data was increased by a factor of 5, the f1
score was found to decrease to a maximum of 0.55. In other words, detection
methods based on machine learning models using vocabulary-based features of
URLs [6,12,19] are considered to be of low utility when a realistic and valid
dataset cannot be constructed, due to the high influence of the dataset used.
This could potentially affect all URL-based detection methods, including unau-
thorized access detection as well as XSS attacks.

Future work is to verify the versatility and practicality of the dataset and
the classification model, and to improve the detection performance when the
number of benign samples is large.

References

1. AOL Inc. : Dmoz open directory project (2017). https://dmoz-odp.org/
2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-

tems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
3. Chollet, F., et al.: Keras (2015). https://keras.io
4. Corporation, T.M.: Cwe-79: improper neutralization of input during web

page generation (‘cross-site scripting’) (2006–2022). https://cwe.mitre.org/data/
definitions/79.html

5. Fang, Y., Huang, C., Xu, Y., Li, Y.: RLXSS: optimizing XSS detection model to
defend against adversarial attacks based on reinforcement learning. Future Internet
11(8), 177 (2019). https://www.mdpi.com/1999-5903/11/8/177

6. Fang, Y., Li, Y., Liu, L., Huang, C.: DeepXSS: cross site scripting detection based
on deep learning. In: Proceedings of the 2018 International Conference on Comput-
ing and Artificial Intelligence, ICCAI 2018, pp. 47–51. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3194452.3194469

7. Habibi, G., Surantha, N.: XSS attack detection with machine learning and n-
Gram methods. In: 2020 International Conference on Information Management
and Technology (ICIMTech), pp. 516–520 (2020)

https://dmoz-odp.org/
https://www.tensorflow.org/
https://keras.io
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://www.mdpi.com/1999-5903/11/8/177
https://doi.org/10.1145/3194452.3194469

578 Y. Nakagawa and M. Mimura

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Kaggle Inc. : kaggle (2017). https://www.kaggle.com/
10. Kaur, J., Garg, U.: A detailed survey on recent XSS web-attacks machine learning

detection techniques. In: 2021 2nd Global Conference for Advancement in Tech-
nology (GCAT), pp. 1–6 (2021)

11. Krishnan, M., Lim, Y., Perumal, S., Palanisamy, G.: Detection and defending the
XSS attack using novel hybrid stacking ensemble learning-based DNN approach.
Digit. Commun. Netw. (2022). https://www.sciencedirect.com/science/article/pii/
S2352864822001997

12. Lei, L., Chen, M., He, C., Li, D.: XSS detection technology based on LSTM-
attention. In: 2020 5th International Conference on Control, Robotics and Cyber-
netics (CRC), pp. 175–180 (2020)

13. Maurel, H., Vidal, S., Rezk, T.: Statically identifying XSS using deep learning.
Sci. Comput. Progr. 219, 102810 (2022). https://www.sciencedirect.com/science/
article/pii/S0167642322000430

14. Mimura, M.: Impact of benign sample size on binary classification accuracy. Expert
Syst. Appl. 211, 118630 (2023). https://www.sciencedirect.com/science/article/
pii/S0957417422016773

15. Mokbal, F.M.M., Dan, W., Imran, A., Jiuchuan, L., Akhtar, F., Xiaoxi, W.:
MLPXSS: an integrated XSS-based attack detection scheme in web applications
using multilayer perceptron technique. IEEE Access 7, 100567–100580 (2019)

16. Mokbal, F.M.M., Dan, W., Xiaoxi, W., Wenbin, Z., Lihua, F.: XGBXSS: an
extreme gradient boosting detection framework for cross-site scripting attacks
based on hybrid feature selection approach and parameters optimization. J. Inf.
Secur. Appl. 58, 102813 (2021). https://www.sciencedirect.com/science/article/
pii/S2214212621000533

17. Olah, C.: Understanding LSTM Networks (2015). http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed 28 July 2022

18. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Raed, W.K., Methaq, T.G.: A hybrid of CNN and LSTM methods for securing web
application against cross-site scripting attack. Indonesian J. Electr. Eng. Comput.
Sci. 21(2), 1022–1029 (2021)

20. Rodŕıguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.: Cross-site scripting
(XSS) attacks and mitigation: a survey. Comput. Netw. 166, 106960 (2020).
https://www.sciencedirect.com/science/article/pii/S1389128619311247

21. Sarmah, U., Bhattacharyya, D., Kalita, J.: A survey of detection methods for XSS
attacks. J. Netw. Comput. Appl. 118, 113–143 (2018). https://www.sciencedirect.
com/science/article/pii/S1084804518302042

22. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp 1, 108–116 (2018)

23. The MITRE Corporation’s Common Weakness Enumeration Program: 2022 cwe
top 25 most dangerous software weaknesses (2022). https://cwe.mitre.org/top25/
archive/2022/2022 cwe top25.html. Accessed 28 Feb 2023

24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

25. Zhou, Y., Wang, P.: An ensemble learning approach for XSS attack detection with
domain knowledge and threat intelligence. Comput. Secur. 82, 261–269 (2019).
https://www.sciencedirect.com/science/article/pii/S0167404818306370

https://www.kaggle.com/
https://www.sciencedirect.com/science/article/pii/S2352864822001997
https://www.sciencedirect.com/science/article/pii/S2352864822001997
https://www.sciencedirect.com/science/article/pii/S0167642322000430
https://www.sciencedirect.com/science/article/pii/S0167642322000430
https://www.sciencedirect.com/science/article/pii/S0957417422016773
https://www.sciencedirect.com/science/article/pii/S0957417422016773
https://www.sciencedirect.com/science/article/pii/S2214212621000533
https://www.sciencedirect.com/science/article/pii/S2214212621000533
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.sciencedirect.com/science/article/pii/S1389128619311247
https://www.sciencedirect.com/science/article/pii/S1084804518302042
https://www.sciencedirect.com/science/article/pii/S1084804518302042
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.sciencedirect.com/science/article/pii/S0167404818306370

Mining for Better: An Energy-Recycling
Consensus Algorithm to Enhance

Stability with Deep Learning

Zhen Xia1, Zhenfu Cao1,2(B), Jiachen Shen1(B), Xiaolei Dong1,2, Jun Zhou1,
Liming Fang3,4, Zhe Liu2, Chunpeng Ge5, and Chunhua Su6

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

jcshen@sei.ecnu.edu.cn
2 Zhejiang Lab, Hangzhou, China

zfcao@sei.ecnu.edu.cn
3 College of Computer Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing, China
4 Science and Technology on Parallel and Distributed Processing Laboratory (PDL),

Changsha, China
5 Shandong University, Jinan, China

6 University of Aizu, Fukushima, Japan

Abstract. As the most popular consensus algorithm for blockchain, the
Proof-of-Work (PoW) is suffering from the inability of handling comput-
ing power fluctuations. Meanwhile, PoW consumes a significant amount
of energy without producing actual value. To address these issues, this
paper proposes a deep learning-based consensus framework called Proof-
of-Improvement (PoI), which recycles the energy from mining blocks to
improve the blockchain itself. In PoI, a new reward mechanism is used
to encourage miners to include the high-accuracy model in their blocks.
Then, based on PoI, a difficulty adjustment algorithm is designed. Exper-
iments are done on real-world data and the result shows the proposed
algorithm’s proficiency in preserving block time stability with fluctuat-
ing hash rates. To the best of the authors’ knowledge, PoI is the first to
handle both energy recycling and difficulty adjustment concurrently.

Keywords: Blockchain · Consensus algorithm · Computing power
utilization · Difficulty adjustment algorithm · Deep learning

1 Introduction

Since Bitcoin [21]’s proposal, permissionless blockchain technology brings endless
possibilities to various fields with its extreme decentralization, high transparency,
and verifiability, and is considered the core technology for realizing the next
generation of Web. The consensus algorithm is the cornerstone to achieving
these features, and it also affects the performance, stability, and security of the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 579–594, 2023.
https://doi.org/10.1007/978-981-99-7032-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_34&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_34

580 Z. Xia et al.

blockchain. As the most successful application of blockchain, Bitcoin uses the
Proof-of-Work (PoW) algorithm. So far, PoW and its variants have been adopted
by more than 430 cryptocurrencies [1].

Even the most common consensus algorithm, PoW, has some weaknesses.
Firstly, the difficulty adjustment algorithm (DAA) of PoW lacks the ability to
cope with fluctuations in computing power. For example, the Price of Bitcoin,
a digital currency used PoW, has fluctuated wildly in recent years, leading to
large swings in the total hash rate of all miners, which in turn affects the sta-
bility of block times. The average block time by the end of June 2021 was 1.5
times the desired block time due to a large decline in the price of Bitcoin. The
substantial variances in block time will have a significant impact on transaction
processing speed, which is a critical performance metric for the user experience
of a digital currency. Simply shortening the block time is not a solution because
fewer computed blocks will result in inaccurate estimates of computing power
and difficulty targets.

Furthermore, since PoW consumes a huge amount of energy to calculate a
valid proof of work, no actual value is produced. The minimum yearly electricity
consumption for mining Bitcoin is 23.38 TWh [17]. Several new schemes have
been put up to address this issue. On the one hand, many new consensus algo-
rithms have been proposed, such as Proof-of-Stake (PoS) [13]. However, a notable
concern associated with PoS is its potential impact on the democratic nature
of the system due to the influence of wealth concentration. On the other hand,
meaningless hash computation in the PoW is transformed into actual tasks in
blockchain consensus. Consensus mechanisms constructed based on this idea are
generally referred to as Proof-of-Useful-Work (PoUW). These new algorithms
not only address the issue of wasted energy but also make it possible to use
blockchain in more scenarios. The paper intends to take this one step further
and apply it to more scenarios of the blockchain.

Motivation. Although PoUW has reduced energy consumption and used com-
puting resources in various scenarios, the blockchain remains suffering from the
instability of block time. It’s resulting in a poor transaction experience for cryp-
tocurrencies, which is at present the most widely used application of blockchain.
Is it possible to improve the blockchain itself through PoUW? The paper aims
to start from this point and recycle the power of computation during the mining
process to strengthen the blockchain itself.

Contribution. In this paper, we propose a consensus framework based on deep
learning, named Proof-of-Improvement (PoI), which recycles the energy from
mining blocks to improve the blockchain itself. Moreover, based on PoI, a new
difficulty adjustment algorithm is proposed to improve the stability of block
time, enabling the improvement of stability while reusing wasted computational
power. To the best of our knowledge, PoI is the first to handle both energy
recycling and difficulty adjustment at the same time. The main contributions of
this paper are as follows:

Mining for Better 581

1. Proposes a consensus framework, PoI, by combining deep learning with
blockchain. PoI utilizes the wasted computing power of PoW to yield actual
value. A new block structure is also designed to support block validation
without adding participants and minimizing changes to PoW.

2. Designs a difficulty adjustment algorithm based on PoI to adjust the network
difficulty target in real-time environments with fluctuating computing power.

3. Discusses the extension of PoI to more scenarios for improving blockchain
performance and security.

The remaining part of the paper proceeds as follows. We will present the
related work in Sect. 2. In Sect. 3 we present PoI in detail. And we perform sim-
ulation experiments and analysis in Sect. 4. In Sect. 5, we discuss the scalability
of PoI for application scenarios. Finally, the paper is summarized in Sect. 6.

2 Related Work

2.1 Difficulty Adjustment Algorithm

To increase the stability of block time, researchers proposed a number of improve-
ments based on the Bitcoin [21] difficulty adjustment algorithm. Related studies
can be categorized into two types: active adjustment and passive adjustment.
Active adjustment algorithms involve miners actively reporting their computa-
tional power and adjusting the network difficulty target based on aggregated
results. This approach requires miners to commit computational power through
pledge shares and involves highly complex algorithms to identify and defend
against attacks from malicious nodes [6].

On the other side, passive adjustment algorithms need nodes to estimate the
network’s overall computational capacity based on information in the chain and
then adjust the difficulty target accordingly. Some studies optimize hash rate
estimation algorithms, such as employing the least squares [19], linear predictor
[26], weak solutions [9]. In a recent study, Zhang et al. [25] attempted to calculate
the network’s difficulty by using a two-layer neural network model. However, it is
challenging to implement the concept because it only provides a model without
an approach to working with blockchain systems.

2.2 Energy-Recycling Consensus

In terms of energy recycling, researchers used useful work to replace the hash
search task in the Nakamoto Consensus (NC). Primecoin [12] was the first pro-
posed solution, requiring miners to search for long prime number chains. How-
ever, the Cunningham chains discovered by miners had no real applications. Sub-
sequently, several similar problems have been applied to consensus algorithms,
including matrix computation [24], orthogonal vector solutions, the 3SUM prob-
lem, and all-pairs shortest path (APSP) [4] as proof-of-work puzzles. However,
these methods show some innate non-deployable problems.

582 Z. Xia et al.

In addition to incorporating mathematical problems into consensus algo-
rithms, many scholars have attempted to address the issue through other types
of tasks. Permacoin [20] look into file or file fragment storage and memory using
Proof-of-retrievability (PoR), where mining is not based on computing but rather
is linked to storage resources. PieceWork [8] separates proof-of-work into internal
and external puzzles in order to divert wasted effort toward other goals through
outsourcing, such as spam protection and DoS mitigation. PoNW [11] utilizes
incremental verifiable computing (IVC) to apply the computational power con-
sumed by proof-of-work to assist in system verification. Huang et al. [10] propose
Proof-of-Data (PoD) in a mobile crowdsourcing-aware scenario, using compu-
tational power for valuable data quality verification tasks. The computational
abilities of miners used in the mining process are applied to diverse sectors in
the above research.

Several studies recently looked into the use of blockchain and machine learn-
ing to utilize energy for model training and prediction. Li et al. [16] integrated
biomedical image segmentation tasks with blockchain systems. PoDL [7] com-
bined deep learning with blockchain, requiring miners to complete a given task
to generate blocks; PoLe [18] built on this approach to improve dataset privacy.
Coin.AI [3] proposed a proof-of-storage scheme to reward users for providing
storage for deep learning models. In the context of federated learning, PoFL
[23] is a consensus algorithm based on federated learning, introducing two roles-
data provider and requester-allowing miners to contribute their computational
power to training models. These studies were able to leverage wasted computing
resources, but they also made major modifications to the entire blockchain sys-
tem, such as adding users, and did not completely secure the privacy of training
and testing dataset.

3 PoI Design

In this section, we will introduce the design of PoI. The PoI model will be briefly
introduced initially, and then the data structure, mining and verification proce-
dure, difficulty adjustment algorithm, and reward mechanism will be thoroughly
discussed.

3.1 Overview and Notaions

As mentioned above, there are many studies proposing the integration of deep
learning, federated learning, and other technologies with blockchain systems.
However, all of these solutions have major changes to the blockchain structure.
In our design, we want to integrate deep learning and blockchain naturally and
minimally invasively to support nodes using data of the chain for deep learning
training and prediction during the mining process.

Therefore, our system structure remains consistent with NC without adding
external participants. This unique design allows the blockchain to improve its
performance with deep learning. On top of this, a new difficulty adjustment

Mining for Better 583

algorithm is produced to address changes in the network’s computational power.
Additionally, deep learning technology gets improved on a daily basis. We believe
that the deep learning models used in blockchain must be unrestricted for the
integration of blockchain with deep learning to be able to adapt to the trend.
The PoI algorithm is introduced in more detail below, and the notations used
are shown in Table 1.

Table 1. Summary of notations

Notation Description

V Version number of the blockchain

Hashα Hash of α

B the B-th Block

i # of miners

Tx A set of transactions

τ The header of the block

M The model in the block

Texpect Expect block time

Pt A set of parameters for deep learning tasks

Em Evaluation baseline for deep learning tasks

m Size of the dataset fragment

St, Sv, Sp Dataset size for training, validation and testing

Dt, Dv, Dp Dataset for training, validation and testing

Hc Combinatorial hash rate

3.2 Data Structure

The block structure of PoI essentially follows the block structure of NC in order
to maximize compatibility. However, the current block structure lacks any model-
related parameters. In order to realize the mining and verification process based
on deep learning, PoI replaces the Nonce number field in the original block header
with the hash value of the model.The data structure of PoI is shown in Fig. 1.
The block header structure of PoI is as follows:

– Hashprev: A hash of previous block.
– V ersion: A version number of the block.
– Height: Block’s height of the blockchain.
– Hashtx: A hash of the root of the merkle tree of this block’s transactions.
– Timestamp: Unix timestamp.
– Target: Difficulty target for this block.
– Hashm: A hash of deep learning model.

584 Z. Xia et al.

To save storage, deep learning models are stored on distributed storage systems
such as IPFS [5]. There is no need for extra space to store addresses as distributed
storage systems use content addressing, also known as CID, to identify locations.

Fig. 1. Data structure of PoI

3.3 Mining Process

Define the system parameters before the mining process starts, such as the fol-
lowing: A version number V to track protocol upgrades; expected block time
Texpect (e.g. 10 min for Bitcoin); a set Pt of parameters for deep learning tasks,
such as model structure, hyperparameters, the size of the dataset and the eval-
uation metric; evaluation baseline Em of the model.

These parameters outline the models that are used to train the nodes and the
criteria used for evaluating the models’ performance after receiving blocks. Deep
learning tasks in PoI must be related to the blockchain system itself and require
only data from the chain to complete the training and prediction process. In
this paper, PoI is stated with the example task of predicting the network-wide
computations. For a given task, there are multiple methods to choose from. There

Mining for Better 585

are many options for evaluation metrics depending on the type of model, such
as accuracy and MSE (accuracy is used as an example in this paper). Similar
to Bitcoin, the blockchain maintainers decide and update system parameters,
which are following synced to all participants as version upgrades.

Algorithm 1 The block mining process
1: Tx ← getTransactions()
2: τ ← setHeaderInfo(B, Tx)
3: M ← buildModels(Pt)
4: Dt ← getPrevBlocks(B − St ,B − Sv)
5: Dv ← getPrevBlocks(B − Sv ,B − 1)
6: while Hashτ ′ > Target do
7: M ← trainModel(Dt)
8: E ← validateModel(Dv)
9: if E < Em then

10: Continue
11: else
12: HashM ← hash(M)
13: τ ′ ← setHeaderInfo(τ ,HashM)
14: Hashτ ′ ← hash(τ ′)
15: end if
16: end while
17: Block ← createBlock(τ ′);
18: Broadcast(Block)

Algorithm 1 gives the pseudo-code of the mining process in PoI. Miners
train the model and try to find a block that meets Target. Specifically, before
mining the block, the miner first selects a set of transactions Tx and fills the
information in the block header (Line 1–2). After that, the miner will perform
deep learning model training until reaching the minimum model accuracy Em.
Next, the miner needs to keep training and update the Hashm in the block
header while maintaining accuracy until the block’s hash meets the difficulty
Target (Line 6–16). Finally, the found blocks are broadcasted to the network
(Line 17–18). The node that finds the block first will get the bookkeeping rights
and receive a reward.

In the mining process, miners need to train a deep learning model and make
it meet three requirements:

1. Training with model parameters Pt and the specified dataset (described later).
2. Achieve the minimum model accuracy Em.
3. Hashm can make the hash of the block meet Target.

Besides, there are some differences compared to the general deep learning
training and validation process. First, when building models, to enhance secu-
rity and prevent model pre-training or sharing, we add a secure mapping layer

586 Z. Xia et al.

Fig. 2. Overview of model and datasets in PoI

(SML) in the front of the model, which is detailed in [18]. This results in every-
one’s training process being on the same main road, but with slight differences.
Because of this and the difficulty target, the mining process is random rather
than deterministic. Second, in terms of the dataset, the nodes will use only the
data on the chain. Because each bit of data on the public chain is transparent and
available to all, We design an approach to evaluate models as shown in Fig. 2.
When the training dataset size is St, the validation dataset size is Sv, and the
test dataset size is Sp, miner i needs to use at least St + Sv closest blocks prior
to block B for training and self-validation when mining block B. After the block
is verified, the model in block B will be used in the next mining epoch. Node i
will validate the performance of the model in block B against the next Sp blocks
and receive a training reward for doing so, as described in Sect. 3.5. Because
block data are public, all nodes are able to reconstruct the dataset from these
St+Sv blocks. When the training dataset is undersized, the consensus algorithm
of the blockchain is temporarily rolled back to PoW. Finally, in order to make
the hash of the block match the difficulty Target, miners need to keep searching
for suitable models. With the above requirements satisfied, miners can use any
way to find it, such as adding the training epoch while maintaining accuracy,
expanding the size of the training dataset, etc.

It is difficult for miners to find a model that meets all the requirements, but
in contrast, it is easier for other nodes to validate the model. It complies with
the norms of proof-of-useful-work algorithms. After a block is received by the full
node, the block needs to be verified according to Algorithm 2. Initially, the node
needs to check the block’s validity, which includes verifying the hash satisfies
the difficulty Target, its parent block is locally accessible and the transactions
are valid (Line 1–5). Second, the node needs to construct the validation dataset
(Line 6–12). The validation dataset will be composed of 3 parts from the St +Sv

blocks in front of the current block, each part has m data. The first two parts are
the beginning and ending data, while the remaining part is chosen at random
according to the hash of the block. The nodes then use these data to validate that
the accuracy of the model in the block satisfies the baseline Em (Line 13). The
model should produce highly accurate prediction results given that these data are
actually a part of the training dataset, thus it has to be taken into consideration
while setting the accuracy baseline. Finally, the model is used to predict the
metrics of the next mining epoch (Line 17). In the example task, the difficulty
target for the next mining epoch is adjusted based on the model’s output.

Mining for Better 587

Algorithm 2 The block verification process
Input: B: Recieved block; m: The size of the dataset fragment
Output: True or False
1: verifyTransactions(B)
2: verifyBlockTarget(B)
3: if any above verification fails then
4: return False
5: end if
6: M ← getModel(B)
7: HashB ← hash(B)
8: α ← getNonce(B − St, B − 1, m, HashB)
9: D1 ← getPrevBlocks(B − St, B − St + m)

10: D2 ← getPrevBlocks(B − 1 − m, B − 1)
11: D3 ← getPrevBlocks(B − α − m, B − α)
12: D′ ← createDataset(D1, D2, D3)
13: E ← validateModel(M , D′)
14: if E < Em then
15: return False
16: else
17: predict(M)
18: return True
19: end if

3.4 Deep Learning-Based Difficulty Control

In this paper, PoI is instantiated to adjust the difficulty to cope with computing
power fluctuations. The task of the model is to predict the computing power for
the next epoch. The input of the model is the information of the previous blocks
and the output is the computing power prediction for the next mining epoch,
represented by the hash rate Hest. PoI does not restrict the structure of the
model, in other words, the blockchain network can choose any block structures.
The choice of models is beyond the scope of this paper.

A hash attempt consists of generating a random nonce and performing two
SHA-256 processes in NC. But in PoI, a hash attempt involves an epoch of model
training and two SHA-256 operations, which we refer to as the combinatorial
hash. In this paper, the task of the model is also to predict the combinatorial
hash rate (Hc) for the next mining epoch.

Based on the mining and validation processes mentioned above, nodes utilize
the model’s output, the estimated hash rate Hest

c , for calculating the difficulty
of the next mining epoch. The calculation of the difficulty target for the n-th
round is shown as (1), where Targetn is the difficulty target for the n-th round,
Targetmax is the maximum output value of the hash function(for SHA-256,
Targetmax is a 256-bit binary string consisting of all ones), and texpect is the
expected block time (e.g., 10 min for Bitcoin).

Targetn =
Targetmax

Hest
c × texpect

(1)

588 Z. Xia et al.

In the difficulty adjustment process, we assume that the hash rate and FLOPs
change in direct proportion. Since deep model training is incorporated into the
consensus mechanism, GPU machines do not have an advantage over ASIC
machines. We believe that the above assumption is reasonable when mining
with GPUs. In addition, PoI follows the longest chain rule in NC when dealing
with forks.

3.5 Reward Mechanism

PoI requires a reward mechanism to incentivize participants to comply with
the specified protocol and include models with sufficiently high accuracy in the
blocks, rather than just meeting the minimum accuracy requirements of the net-
work. Similar to public blockchains, the miner i generating block B will receive
a fixed reward and transaction fees.

Furthermore, to encourage miners to include models with sufficiently high
accuracy in the blocks, we design a delayed reward mechanism and distributed
more than half of the total reward amount to this reward. The delayed reward
will be given to the miner based on the actual performance of the model in
the future, and the amount of reward will be correlated with the accuracy of
the model. These delayed rewards can be used once a block is confirmed by the
network based on the longest chain principle.

In the task of predicting hash rates, nodes will use the next St blocks after
the block as a test set to evaluate the models in B, and the amount of reward
that can be used will be determined based on the accuracy.

4 Simulation Experiment

In this section, PoI is evaluated through simulations based on real-world data.
First of all, we evaluate the performance of PoI in coping with fluctuating com-
puting power by using historical data from Bitcoin. Then, we simulate the behav-
ior of cheaters to analyze the effectiveness of our cheat detection approach.

A computer with an Intel Xeon CPU (2.00 GHz), Nvidia V100 GPU, and
16 GB RAM is used to simulate mining processes based on historical data. We
randomly select real data of Bitcoin in its history and test the performance of the
consensus algorithm under hash rate fluctuations by simulating the operation of
PoW and PoI. The final data chosen for the experiment is the block data of
Bitcoin with a height between 629775 and 636775 (7000 blocks in total).

For model selection, CEEMDAN-GRU [27] is used with a batch size of 8
and a dropout rate of 0.1. It is a time series prediction model, the input is the
time of past mining epochs and the estimated computing power, and the output
is the prediction of computing power for the next epoch. Figure 3 shows the
performance to predict the hash rate. We selected the first 50 records to check
the predictions in detail. It is observed that the model fits the overall trend well,
but there are still some gaps with the real values in the specific values.

Mining for Better 589

Fig. 3. Hash rate predict results with deep learning.

Difficulty Adjustment with PoI. The change in hash rate during the time
period that corresponds to the above-mentioned historical data is illustrated in
Fig. 4. For example, there are specific instances where the hash rate of all miners
experiences a sudden and significant increase. These instances can be observed
near the 1000th, 3000th, and 5500th blocks.

To make it easier to see the changes in the data, we sliding average the data
with a sliding average window of 100. Figure 5 shows the PoW and PoI block
time under fluctuating hash rate. It can be seen that PoI has stronger stability
compared to PoW.

To quantify the stability of block time, we calculated the average and variance
of block time, as shown in Table 2. It is evident that in terms of average block
time, PoW also reaches the expected level of 10 min. There is not much difference
between PoI and PoW in terms of average block production time. However, in
terms of the stability of block time, PoW cannot cope well with fluctuations in
hash rate, resulting in a large variance. PoI exhibits better stability because it
can use deep learning models to predict the entire network computing power
for the next mining epoch, adjusting difficulty targets in advance to adapt to
changes.

Table 2. The average and variance of the block time (min)

Algorithm Average of block time Variance of block time

Proof-of-Work 10.2232 145.5152

Proof-of-Improvement 10.0001 8.2032

590 Z. Xia et al.

Fig. 4. Hash rate of the data.

Detection of Miners’ Cheating. Malicious miners may not use the specified
parameters during the mining process to train the model, which can give them
an unfair advantage and impact the effectiveness of PoI. Due to the uniformity
of the global parameters, nodes can easily detect cheating behavior by miners in
terms of model structure and hyperparameters. To address cheating behavior by
miners on the training dataset, the paper proposes a method to verify whether
miners have used the specified dataset during the model training process based
on the fragmentation of the training data in the PoI verification process. In
this section, we will experimentally validate the effectiveness of this cheating
detection method. In the experiment, the CIFAR-10 [14] dataset is selected,
which is a widely used dataset in deep learning. It consists of 60,000 32 × 32-
pixel images divided into 10 different object categories, serving as a benchmark
for evaluating image classification algorithms. The AlexNet [15] model is used
in this experiment.

The experiment simulates both honest miners and malicious miners. Hon-
est participants participate in PoI mining according to the system’s specifica-
tions. Conversely, malicious miners train using the specified training dataset. The
dataset is divided into two non-intersecting parts, one considered as a compliant
dataset and the other not. Honest miners use the compliant dataset for training,
while malicious miners use the other part of the data for training. Finally, we
verify both parties’ models using the PoI verification algorithm, and the results
are shown in Table 3. It can be observed from the results that the accuracy of
the malicious miner’s model during the verification process is significantly lower
than that of the honest model, enabling the blockchain network to easily detect
cheating behavior.

Mining for Better 591

Fig. 5. Performance of PoI and PoW in terms of block time

Table 3. Model accuracy under honesty and cheating

Model Accuracy

Model (the honest participant with compliant dataset) 99.2756%

Model (the malicious participant with cheating dataset) 71.5733%

5 Discussion

In this section, the applications of PoI beyond enhancing the stability of block
chain are discussed. According to our analysis, PoI possesses the following char-
acteristics:

1. Model pluggability: The models used by miners in the mining process are
pluggable. As deep learning models continue to improve, the models in the
system can also be upgraded to enhance the performance of the system for
specific individuals.

2. Task compatibility: PoI’s system models are flexible to support any task that
is directly related to the blockchain. Its system architecture is generic and
can be adapted to different tasks by adjusting the system parameters.

3. System non-invasiveness: In terms of PoI system model architecture, it mat-
ters to note that there are no extra participants required for its implemen-
tation. Basically, this means that the current commercial blockchain that is
in use may be effortlessly upgraded to the PoI consensus without requiring
any changes to the underlying business model. As a result, there will be a
smooth transition and the integrity of the current system will be preserved,
allowing stakeholders to continue working effectively and efficiently within
the established framework.

592 Z. Xia et al.

As research into the combination of blockchain technology and deep learning
continues, it is becoming clear that many different aspects of blockchain could
benefit considerably from the application of the deep learning approach. In this
paper, an instance of PoI is presented by performing the task of predicting hash
rates. Nevertheless, it is important to note that it is only a subset of what PoI
can achieve.

For instance, certain studies made use of deep learning methods to detect ille-
gal activities within the Bitcoin network [22]. In order to evaluate the validity
of transactions, they used a deep learning model to extract 19 essential fea-
tures from the Bitcoin network. This approach has the potential to be imple-
mented within the blockchain system via PoI, allowing the energy used during
the blockchain mining process to be redistributed toward improving the financial
security of the blockchain.

In a different scenario, Baek et al. [2] proposed a deep learning-based
detection method for network-level distributed denial-of-service (DDoS) attacks
against Bitcoin. DDoS attacks may target Bitcoin networks, possibly by faking
messages with Transmission Control Protocol (TCP) serial numbers. This study
uses Bitcoin block data and transaction records to identify DDoS attack data
based on the multi-layer perceptron. The proposed model can be used in com-
bination with PoI to boost the blockchain system’s robustness in opposition to
attacks.

Meanwhile, some limitations of PoI are also noticed. Firstly, PoI can only
be used on blockchain-related tasks and requires that the task can complete the
training and prediction process using only on-chain data. Secondly, the complex-
ity of the model has restrictions. The nodes need to download the model during
the validation process, and the complexity of the model affects the communica-
tion overhead. These topics are the direction of our future work.

We are positive that PoI will provide a larger range of application possibilities
as the body of research in this field continues to expand and change. It is feasible
to open up new avenues for blockchain technology by utilizing deep learning,
which will ultimately improve efficiency, security, and adaptability across the
board.

6 Conclusion

In this paper, we proposed a novel consensus algorithm called Proof of Improve-
ment (PoI) that integrates deep learning into the mining process of blockchains.
It recycles the energy used to mine blocks in order to enhance the blockchain
itself. A difficulty adjustment technique is also designed in this paper using PoI
to improve block time stability while energy recycling. The performance and
security of PoI and its corresponding DAA are evaluated in experiments using
real-world data. The results demonstrate that PoI exhibits greater stability com-
pared to PoW in scenarios with fluctuating hash rates.

The integration of deep learning with blockchain continues to evolve, and PoI
is expected to find broader applications. We plan to keep on this research in the
future, optimize the features of PoI and extend it to more scenarios.

Mining for Better 593

Acknowledgements. This work was supported in part by the National Key Research
and Development Program of China (Grant No. 2022YFB2701400), in part by the
National Natural Science Foundation of China (Grant No. 62132005, 62172162,
62172161, U22B2029, 62272228).

References

1. Map of coins: BTC Map. https://mapofcoins.com/bitcoin. Accessed 09 May 2023
2. Baek, U.J., Ji, S.H., Park, J.T., Lee, M.S., Park, J.S., Kim, M.S.: DDoS attack

detection on bitcoin ecosystem using deep-learning. In: 2019 20th Asia-Pacific Net-
work Operations and Management Symposium (APNOMS), pp. 1–4 (2019)

3. Baldominos, A., Saez, Y.: Coin.AI: a proof-of-useful-work scheme for blockchain-
based distributed deep learning. Entropy 21(8), 723 (2019)

4. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work. Cryptology
ePrint Archive (2017)

5. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System (2014)
6. Bissias, G., Thibodeau, D., Levine, B.N.: Bonded mining: difficulty adjustment by

miner commitment. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-
Alfaro, J. (eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 372–390. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31500-9 24

7. Chenli, C., Li, B., Shi, Y., Jung, T.: Energy-recycling blockchain with proof-of-
deep-learning. In: 2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pp. 19–23 (2019)

8. Daian, P., Eyal, I., Juels, A., Sirer, E.G.: (Short Paper) PieceWork: generalized
outsourcing control for proofs of work. In: Brenner, M., et al. (eds.) FC 2017.
LNCS, vol. 10323, pp. 182–190. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70278-0 11

9. Feng, W., Cao, Z., Shen, J., Dong, X.: RTPoW: a proof-of-work consensus scheme
with real-time difficulty adjustment algorithm. In: 2021 IEEE 27th International
Conference on Parallel and Distributed Systems (ICPADS), pp. 233–240 (2021)

10. Huang, J., et al.: BlockSense: towards trustworthy mobile crowdsensing via proof-
of-data blockchain. IEEE Trans. Mob. Comput. 1–17 (2022)

11. Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with
fairness guarantees. Cryptology ePrint Archive (2020)

12. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work. July 7th
1(6) (2013)

13. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August 19(1) (2012)

14. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. Commun. ACM 60(6), 84–90 (2017)
16. Li, B., Chenli, C., Xu, X., Jung, T., Shi, Y.: Exploiting computation power of

blockchain for biomedical image segmentation. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2802–2811
(2019)

17. Li, J., Li, N., Peng, J., Cui, H., Wu, Z.: Energy consumption of cryptocurrency
mining: a study of electricity consumption in mining cryptocurrencies. Energy 168,
160–168 (2019)

https://mapofcoins.com/bitcoin
https://doi.org/10.1007/978-3-030-31500-9_24
https://doi.org/10.1007/978-3-319-70278-0_11
https://doi.org/10.1007/978-3-319-70278-0_11

594 Z. Xia et al.

18. Liu, Y., Lan, Y., Li, B., Miao, C., Tian, Z.: Proof of learning (PoLe): empowering
neural network training with consensus building on blockchains. Comput. Netw.
201, 108594 (2021)

19. Meshkov, D., Chepurnoy, A., Jansen, M.: Short paper: revisiting difficulty control
for blockchain systems. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H.,
Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp.
429–436. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 25

20. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: 2014 IEEE Symposium on Security and Privacy,
pp. 475–490. IEEE (2014)

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9 (2008)
22. Nerurkar, P.: Illegal activity detection on bitcoin transaction using deep learning.

Soft Comput. 27(9), 5503–5520 (2023)
23. Qu, X., Wang, S., Hu, Q., Cheng, X.: Proof of federated learning: a novel energy-

recycling consensus algorithm. IEEE Trans. Parallel Distrib. Syst. 32(8), 2074–
2085 (2021)

24. Shoker, A.: Sustainable blockchain through proof of exercise. In: 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), pp.
1–9. IEEE (2017)

25. Zhang, S., Ma, X.: A general difficulty control algorithm for proof-of-work based
blockchains. In: ICASSP 2020–2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3077–3081 (2020)

26. Zheng, K., Zhang, S., Ma, X.: Difficulty prediction for proof-of-work based
blockchains. In: 2020 IEEE 21st International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1–5 (2020)

27. Zhou, F., Huang, Z., Zhang, C.: Carbon price forecasting based on CEEMDAN
and LSTM. Appl. Energy 311, 118601 (2022)

https://doi.org/10.1007/978-3-319-67816-0_25

SIOCEN: Secure Integrity Verification
of Outsourced Data in Cloud Storage

using Blockchain

Ajay Chandra Korlapati1, Sanjeet Kumar Nayak1(B) ,
Partha Sarathi Chakraborty2 , and Somanath Tripathy2

1 Department of Computer Science and Engineering, IIITDM Kancheepuram,
Chennai, India

{ced18i029,sanjeetn}@iiitdm.ac.in
2 Department of Computer Science and Engineering, IIT Patna, Patna, India

{partha 1921cs26,som}@iitp.ac.in

Abstract. Storing large volumes of data is a bottleneck on edge devices.
Thus, Cloud Storage Technologies have emerged as a viable alternative
for large-scale data storage. However, the data owner loses control of the
file (once uploaded), which may lead to data integrity issues. Even though
there are existing schemes to check the integrity of the files using a third-
party auditor, they rely on the unrealistic assumption that the auditors
are completely trustworthy. It has been reported in many works of liter-
ature that auditors sometimes collude with the cloud server to cheat the
system. In this paper, we propose a scheme named secure integrity veri-
fication of outsourced data in cloud storage using blockchain (SIOCEN)
which protects the system from entity collusion. Using smart contract,
we enforce the incentive mechanism in the scheme, which is the most
appealing feature of the SIOCEN that increases fairness. The security
of the proposed scheme is analysed and proved to be secure. We imple-
ment the SIOCEN system on Ethereum network and do a performance
analysis, showing the effectiveness of the proposed system.

Keywords: Integrity Verification · Auditing · Cloud Storage ·
Blockchain · Outsourced Data · Security

1 Introduction

One of the most crucial resources for every organization is data. Regardless of
whether you’re an individual or a business, data storage has grown to be a critical
concern. There has been an increasing trend in the usage of on-demand Cloud
Storage Systems. Data is sent over a network, usually the Internet, and kept on
distant storage systems where it is maintained, managed, backed up, and made
accessible to users as part of a cloud storage service model. Users just pay a
per-consumption monthly fee for their cloud data storage.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 595–613, 2023.
https://doi.org/10.1007/978-981-99-7032-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_35&domain=pdf
http://orcid.org/0000-0003-4290-0632
http://orcid.org/0000-0002-6537-5730
http://orcid.org/0000-0002-6964-2648
https://doi.org/10.1007/978-981-99-7032-2_35

596 A. C. Korlapati et al.

Though Cloud Storage technologies have many benefits like cost-saving,
accessibility, usability, synchronization and sharing benefits, they also have sev-
eral security threats and privacy concerns. Once a file is uploaded by the data
owner/consumer, the control of the file is lost by the owner. The server/cloud
service provider, if malicious, can read the contents of the data, can delete parts
of the file or can also tamper with the data.

To ensure integrity of the data once uploaded, cryptographic algorithms
called Proofs of Retrievability (PoR) were proposed [1]. These schemes are used
to guarantee that the server has not tampered the uploaded file. A third person,
called Auditor, is introduced into the scheme, who sends a set of challenges to
the server, and the server has to response with the correct solution to prove that
it has actually stored the file. It monitors the issues of the integrity of the stored
files, but it also has other security issues which need to be solved. The Auditor,
who is newly introduced into the system, may not be completely trustworthy,
and this could lead to a loss of privacy for the owner. This is why we need to
choose/devise a proper algorithm that not only solves the file integrity problem
but also takes care of other problems like the confidentiality of the file.

Even if we consider that the PoR schemes are completely secure, the basic
assumption of such schemes is that the Owner and Auditor are completely trust-
worthy. This may not be the case in real-life situations. If we assume a Real-Life
system of a File Owner, Cloud Service Provider (Server) and Auditor, there is
a possibility of one cheating the other for monetary purposes. Hence, we use
blockchain technology to try and implement a system where all the parties may
not trust each other but have to work together.

Blockchain, a tamper-resistant distributed ledger, has seen several use cases.
Blockchain increases trust, security, transparency, and the traceability of data
shared across a network. Several works have used blockchain as a judge to set-
tle disputes among involved parties [2,6]. With the support of smart contracts,
we can reduce fraudulent activity using preset conditions coded into the smart
contract. This also results in the design of fault-tolerant systems, since a sin-
gle person cannot control the whole system. Smart Contracts also make the
whole system autonomous, i.e. there is no single control point or need for inter-
mediaries. In this paper, we propose a blockchain based auditing protocol for
cloud storage, named as SIOCEN. Also, we analyse and show that the system is
secure and privacy-preserving. We consider all the corrupt cases and argue that
the designed system is secure in all cases.

Our contributions can be summarized as:

– We design a blockchain based auditing protocol for any outsourced data stored
in a cloud storage system.

– We ensure that the privacy of the data being stored in the cloud is preserved.
– We use a blockchain based payment service as an incentive for the parties

involved in the system.
– We analyse the security of our proposed system.
– We implement a prototype version of SIOCEN on Ethereum Network and

also do performance analysis, showing effectiveness of the proposed system.

SIOCEN 597

The rest of this paper is organised as follows. Section 2, describes the related
work on integrity verification of outsourced data which stored in the cloud and
presents the preliminaries in Sect. 3. The proposed SIOCEN system model and
its design goals are present in Sect. 4. We describe the construction of our pro-
posed scheme and its correctness proof in Sect. 5. Subsequently, in Sect. 6, we
present the security analysis of the scheme. Section 7 presents the implemen-
tation result of SIOCEN and Sect. 8 gives the performance evaluation of our
proposed model in terms of computation cost. This paper finally concludes in
Sect. 9 with discussion on future improvements.

2 Related Work

Many new technologies and frameworks have been developed using Blockchain
Technology. Numerous review articles were published to demonstrate the advan-
tages of blockchain for existing applications. Blockchain has also been incorpo-
rated into Cloud Computing Technologies which addresses many security con-
cerns [3,19]. Blockchain has also been used in the healthcare and medical fields
[12,18,22].

There are many existing systems and frameworks which use Blockchain Tech-
nology for Data Storage. Different protocols involving Cryptographic Techniques
[5], Data Deduplication Scheme [15], Data Integrity Checking Schemes [28] were
proposed on this topic. Bitcoin, which is based on Blockchain, was also used to
develop Cloud Storage Technologies, with the payment modes and transactions
being done on the bitcoin network [23].

With regard to Proof of Retrievability Schemes, Shacham and Waters [20]
propose protocols based on the idea of using homomorphic authenticators for
file blocks. Due to the use of integrity values for file blocks, their scheme can
use a more efficient erasure code to encode the file; the block authenticators
transform the erasure code into an error-correcting code. Their scheme supports
an unlimited number of verifications.

Golle, Jarecki, and Miranov [9] propose techniques that enforce a minimum
storage complexity on the server responsible for storing file F . This involves
a minimum requirement for the size of the file to be stored, so as to meet the
security standards put forward by them. They describe protocols that ensure
dedicated use by a server of storage at least | F |, but do not enforce require-
ments on what data the server actually stores. Filho and Barreto [8] describe a
POR scheme that relies on the knowledge-of-exponent assumption. Shah et al.
[21] consider a symmetric key variant of full-file processing to enable external
audits of file possession. The scheme only works for encrypted files, and auditors
are required to maintain long-term state.

3 Background and Preliminaries

In this section, we discuss the background of the components involved in SIO-
CEN.

598 A. C. Korlapati et al.

3.1 Blockchain

Blockchain is a distributed, decentralized tamper-resistant digital ledger that
is used to record transactions in blocks. It was first introduced by Satoshi
Nakamoto in Bitcoin [16], as a hash-linked chain of blocks, with each block made
up of multiple transactions. Each block is made up of the main data block i.e. the
transactions and the header part which contains metadata of the present block
and the hash value of the previous block. Since all the blocks in the chain are
linked through their hash values, transactions once committed cannot be changed
or modified, hence, the system is tamper-resistant. Any attempts towards tam-
pering with the data already present is nullified, since a change in the main data
of the block leads to the change in the hash value of that corresponding block.
The whole chain is maintained by a network of nodes/systems. All the nodes
come together to decide on the block to be committed to the chain. Generally,
all the participants elect a leader to decide on the block to be committed and
there are various mechanisms or algorithms to pick the above-mentioned leader.

3.2 Ethereum and Smart Contracts

Ethereum [25] is one such flavour of Blockchain, where the leader is elected based
on the Proof-of-Work(PoW) Algorithm. In this system, the nodes that are part
of the network, called miners, are asked to solve a hash based challenge, and
whoever solves it first gets elected as the leader. This is done for each and every
block. The leader is rewarded with cryptocurrency called Ethers which act as
the incentive for potentials’ miners to be part of the network.

Apart from being a non-tamperable register, blockchain technology has the
capability to execute and perform arbitrary operations in the form of Smart
Contracts [14]. Certain Functions are executed when previously set conditions
are met and verified while running on the blockchain network. Because of the
digital and automated nature of these Smart Contracts, and also no necessity
for a mediator, they are very important in designing secure and privacy based
systems for real life applications.

Ethereum is one of the most popular blockchain network which supports
Smart Contract Execution. The contracts are executed in Ethereum Virtual
Machines (EVMs) which is uniform across all nodes, to have the same output
on all the nodes across the network. The amount of work done, in terms of the
number of operations performed is calculated in terms of gas. A user submits
transactions along with ethers (as the transaction fee) to compensate for the
work done by the miners. Ethereum is also open source with a large community.

3.3 Bilinear Pairings

We have G1 and G2 which are two multiplicative groups made of prime order ‘p’
[17]. In this case, a pairing is a mapping of a function e : G1 × G2 → G3. For a
pairing to be bilinear, the following conditions must be satisfied

SIOCEN 599

– Bilinearity: ∀α, β ∈ Z∗
p , ∀U ∈ G1, ∀V ∈ G2

e(αU, βV) = e(U, V)αβ

where Z∗
p = 1 ≤ α ≤ p - 1 : gcd(α, p) = 1 with group operation of multipli-

cation modulo p.
– Non-Degeneracy: e �= 1
– Computability: To calculate e, ∃ an effective algorithm.

3.4 Privacy Preserving Proof of Retrievability Scheme

PoR schemes, also called Auditing Protocols, are a set of mathematical schemes
that are used to guarantee that the server/storage provider has indeed stored
the file and not deleted it for his selfish purposes. They were first introduced by
Juels and Kaliski [11]. Normally, a third-party Auditor sends a set of challenges
to the server, and the server responds with the appropriate response to prove
that it has indeed stored the file uploaded by the owner. Our proposed system
is inspired from Yang et al. [27] scheme.

4 SIOCEN: System Model and Design Goal

4.1 System Model

In this section, we describe the construction of SIOCEN in multiple stages and
describe each stage. The system model diagram of SIOCEN is shown in Fig. 1.
The system model comprises four parties: Data Owner(DO), Cloud Server(CS),
Auditor or Third Party Auditor(TPA) and Blockchain.

– Data Owner: They are the entities who own the data, but do not have the
adequate infrastructure to store the data.

– Cloud Server: It is an entity that saves and stores the data of various data
owners and processes it accordingly. It is semi-trusted and might delete or
alter the data sometimes and hide this information from the data user to
maintain its reputation causing chaos, hence, verification of the integrity of
data that is stored in cloud server is necessary, which is done by the auditor.

– Auditor: It is an entity that checks the data integrity of the outsourced data
which is stored in the cloud. The auditor can be a trustworthy organization,
may manage by a government, capable of delivering impartial audit outcomes
for data owners and cloud servers. It forwards a challenge to the cloud server,
expecting proof of possession in return based on the challenge sent. Then it
verifies the data integrity by confirming if the proof is valid or not.

– Blockchain: We utilize blockchain services to log records of each data transfer
and data verification transaction. If any dispute arises between the parties,
then we resolve it using these valid records of transaction.

The workflow diagram is shown in Fig. 2 with detail explanation in the below
Sect. 5. From Fig. 2 represents during system initialization, the owner generates
the public parameters and also generates the keys and the tags for the data.

600 A. C. Korlapati et al.

Once the data is stored on the server, the owner requests the auditor to perform
confirmation auditing in order to verify the accurate storage of their data. Once
the confirmation is received, the owner has the option to delete the local copy of
the data. Subsequently, the auditor performs periodic sampling audits to ensure
data integrity.

4.2 Design Goals

Using the above designed system, we will try and achieve the following design
goals:

– Anti Collusion: Parties in SIOCEN will not be able to collude and work
together to compromise the system.

– Anti-Forgery: Server will not be able to forge false responses for a given
challenge set and cheat the protocol.

– Public Auditability: The Auditing process is publicly verifiable and any person
can generate challenges and verify the integrity of the stored data.

– Privacy Preserving: The data of the owner is kept safe from the Auditor,
since the audit process is publicly verifiable and we have to safegaurd the
data from random auditors.

Data Storage

Blockchain Service

Smart Contract

Cloud Server

Owner Auditor

Stor
e D

ata
 an

d T
ag

Challenge

Proof

Verification
Success

Data Storage

Blockchain Service

Smart Contract

Cloud Server

Owner Auditor

Stor
e D

ata
 an

d T
ag

Challenge

Proof

Verification
Success

Fig. 1. System Model

SIOCEN 601

5 SIOCEN: The Protocol

5.1 File Processing

To enhance the efficiency of an auditing scheme, we implement data fragment
technique. Data owners have a file F to be uploaded and stored in the server.
The owner first pays the necessary fee for the services provided by the cloud
storage provider/server and the auditor. The smart contract collects this fee.
The owner first splits the file into B data components. Let F be divided into
f1, f2, f3, . . . , fB. Then, data components fk divided into nk blocks Bk1,Bk2,Bk3,
. . . , Bknk

, where each data blocks made up of ‘s’ sectors, i.e. Each block is
divided into multiple constant size sectors using data fragment technique, to be
encrypted. The encrypted data component is denoted as F = {Bij}i∈[1,n],j∈[1,s].
The data block size should be limited for security purposes based on the security
parameter. The number of data blocks for a data component Bi can be calculated
as n = sizeof(Bi)

s·logp , where p is a large prime number, and the size of each sector is
constant and equal to p.

5.2 Key Generation and Registration with Smart Contract

Consider two multiplicative groups G1 and, G2 with z1 and z2 being their gener-
ators. Let H be a collision resistant secure hash function H : {0, 1}∗ → G1 maps
FBab(abstract information of FB) to a point in G1. The key generation algo-
rithm (KEYGEN) takes input λ (security parameter) and it picks two random
numbers ρ, μ ∈ Zp and considers Xτ = ρ as its private tag key and Xη = μ for
a private hash key. It calculates a publicly available tag key Yτ = zXτ

2 . It finally
outputs the key set (Xτ ,Xη,Yτ).

The server first submits a random number Ys to the smart contract as its
public key for its digital signature. The owner submits the private hash key Xη

and public tag key Yτ to the auditor. The auditor submits a random number Ya

to the smart contract as its public key.

5.3 File Processing and Tag Generation

Owner uses tag generation algorithm (TAGGEN) that chooses random values
r1, r2, . . . , rs ∈ Zp where s is the number of sectors. It takes each data component
B, Xτ , and Xη as input parameters. Then, calculates oj = z1

rj where oj ∈ G1

for all j ∈ [1, s] and also calculates a tag τi for each block as,

τi =
(

H (Xη, Ei) ·
s∏

j=1

o
Bij

j

)Xτ

(1)

where Ei = FID‖i and FID = number of blocks n and i represents the block
number in consideration. Finally, outputs Tag Set T = (τ1, τ2, . . . , τn). Data
Owner sends the encrypted message set B and tag set T to the cloud server for
storage.

602 A. C. Korlapati et al.

The Cloud server signs the Tag Set T using its private key and sends the
signed message back to the data owner. Data owner then verifies the signed
tag message sent by the server using the server’s public key. The owner then
counter-signs the tag message with its own private key, and commits the resultant
message to the blockchain. In this case, the tag set is signed by both the owner
and server and then committed to the blockchain. After this process, owner
submits abstract information FBab about the file (metadata of the file), the
private hash key Xη, public tag key Yτ to the auditor for the audit process.

5.4 Challenge Message Generation

The Auditor collects all information committed by the data owner on the smart
contract. Auditor uses a challenge set generation algorithm (CSETGEN) that
takes FBab as input. It chooses a random number of data block numbers Bi

(i ∈ C) from the total number of blocks of the file to construct the Challenge
Set C. For every value of chosen Bi, auditor generates a random value θi ∈ Z∗

p .
It then calculates the challenge stamp S = (Yτ)ϕ where ϕ ∈ Z∗

p is a random
number. Then, it outputs the challenge C and sends this to the server. The
challenge is computed as

C =
(
[i, θi]i∈C

,S
)

(2)

5.5 Response Generation by Server

Server receives the challenge set C sent by the Auditor, and generates the follow-
ing the Tag Proof (Tp) and the Data Proof (Dp) using the response generation
algorithm (RESPONSEGEN). The tag proof is computed as

Tp =
∏
i∈C

τθi
i (3)

To generate the Data Proof, it first computes the message proof M for each
sector as

Mj =
∑
i∈C

θiBij (4)

Using this, it generates the data proof as

Dp =
s∏

j=1

e (oj ,S)Mj (5)

The server sends this response set P = (Tp,Dp) to the auditor for further vali-
dation.

5.6 Verification by Auditor

In this stage, the Auditor calls verification algorithm (VERIFY) that takes
input the challenge C , response set P, private hash key Xη, public tag key Yτ

SIOCEN 603

and FBab. It first computes the challenge hash HC as

HC =
∏
i∈C

H (Xη, Ei)
ϕθi (6)

Then, runs the final verification equation, which is given in Eq. (7).

Dp.e(HC, Yτ) = e (Tp, z2
ϕ) (7)

If the above verification equation is successful, i.e. it outputs 1, the Audit process
is successful. Else, the Audit Process has failed, if output 0. The Auditor commits
the challenge C , response set P, challenge hash HC and the output of the
verification process (either 0 or 1) to the smart contract. According to result
r, blockchain gives incentive i or penalizes p to entities. In case of dispute, the
blockchain has the ability to perform verification by verifying the committed
data.

5.7 Correctness

Auditor can verify the integrity of data correctly if Eq. (7) holds. R.H.S. of the
Eq. (7) can be simplified as

e(Tp, z
ϕ
2)

= e(
∏

i∈C
τθi
i , zϕ

2)

= e

(∏
i∈C

(
H (Xη, Ei) ·

∏s
j=1 o

Bij

j

)Xτ θi

, zϕ
2

)

= e

(∏
i∈C

(
H (Xη, Ei) ·

∏s
j=1 o

Bij

j

)
, z2

)Xτ θiϕ

= e

(∏
i∈C

(
H (Xη, Ei) ·

∏s
j=1 o

Bij

j

)θiϕ

, zXτ
2

)

=
∏s

j=1 e

(
oj , z

Xτ ϕ
2

)∑
i∈C

θiBij

e

(∏
i∈C

H (Xη, Ei)
ϕθi , zXτ

2

)

=
∏s

j=1 e

(
oj , (Yτ)ϕ

)Mj

e

(∏
i∈C

H (Xη, Ei)
ϕθi , zXτ

2

)

=
∏s

j=1 e (oj ,S)Mj e(HC, Yτ)

= Dp.e(HC, Yτ)
∴ L.H.S. = R.H.S.

5.8 Payment by Smart Contract

Once the smart contract receives the information from the auditor after the
auditing process, it cross-checks by running the same final verification algorithm.
This way, it can find out if the server or auditor has tried to cheat the system. If
the smart contract successfully verifies all the audit process, it pays the Auditor
and the Server with the necessary fees they were promised. If the smart contract
finds fault with any of the parties of the protocol, it promptly penalizes the
party.

604 A. C. Korlapati et al.

Fig. 2. Flow of Protocol

6 SIOCEN: Security Analysis

Before analysing the security aspects of the proposed system, we will do the
following assumptions :

– Honest Party: A given party is known to be honest as long as he/she does
not deviate from the above-mentioned protocol.

– Attacker/Adversary: Any attacker is assumed as a polynomial time algorithm
that can attack and take control of any party from the protocol. But the
adversary can never break cryptographic primitives like Hash Functions and
Digital Signatures.

– Emolument: We also assume that the adversary does not do anything to harm
the protocol, without any certain motivation like money.

We assume the auditor is trustworthy but inquisitive or honest-but-curious.
Throughout the entire auditing process, it acts with honesty but maintains a
sense of curiosity regarding the received data. Conversely, the cloud server has
the potential to be untrustworthy and may initiate the attacks such as Forge
attack. A forge attack means, depending on the previous response message, the
server may generate the response message without retrieving the actual data of
the owner.

6.1 Anti-forgery

In this section, SIOCEN is analysed against anti-forgery.

Theorem 1. For CS, it is computationally infeasible to cheat TPA by construct-
ing a forgery response message without having equated data.

SIOCEN 605

Proof. CS can successfully construct a forgery response message for the challenge
message if it wins the following security game.

TPA send a challenge ([i, θi]i∈C
,S) to CS. The original response message

P is (Tp,Dp) where Tp =
∏

i∈C
τθi
i and Dp =

∏s
j=1 e (oj ,S)Mj . In-place of

generating a correct response message, CS generates a forgery response message
P over corrupt data B as {Tp,Dp} where Dp =

∏s
j=1 e (oj ,S)Mj and Mj =∑

i∈C
θiBij . Define ΔM = M − M. Here ΔM is non-zero, as θi’s are random

numbers and B �= B. CS will win this security game if the forgery response
message on B clears the verification Eq. (7) at the TPA. Else, it loses the game.

Let us assume CS wins the above security game and hence corrupt response
P passes the verification Eq. (7). So,

Dp = e (Tp, z2
ϕ) ÷ e(HC, Yτ) (8)

But, according to the proposed scheme SIOCEN, the correct response (Tp,Dp)
also passes the verification Eq. (7). Hence,

Dp = e (Tp, z2
ϕ) ÷ e(HC, Yτ) (9)

Now, from the Eqs. (8) and (9) it is clear that

Dp = Dp

⇒
∏s

j=1 e (oj ,S)Mj =
∏s

j=1 e (oj ,S)Mj

⇒
∏s

j=1 e (oj ,S)ΔM = 1
⇒ γΔM = 1

In Zp, for two elements α, β ∈ Zp,∃ω ∈ Zp|β = αω. Hence, given m,n ∈ Zp,
γ = αθβη, where θ and η are random numbers in Zp. So,

γΔM = 1
⇒ (αθβη)ΔM = 1
⇒ (αθΔMβηΔM) = 1
⇒ βηΔM = α−θΔM

Now taking the logarithm and solving the above equation, we get

⇒ β = α− θΔM
ηΔM

Hence, the DL problem solution is ω = − θΔM
ηΔM unless ηΔM is zero. However,

it is clear that ΔM cannot be zero, and according to security game ΔM is
non-zero as θi’s are random numbers. As η is a random element in Zp, so ηΔM
is zero with probability 1

p where p is a large prime. Hence, a solution to the DL
problem can be found with a probability 1 − 1

p . Therefore, it implies CS has
less probability of winning the game. If CS wins the game, then we have the

606 A. C. Korlapati et al.

solution of DL problem with a probability of 1 − 1
p , which is quite high. But,

it contradicts the DL assumptions1. Hence, it is impossible for CS to cheat the
TPA in SIOCEN.

6.2 Privacy Preserving

One Party Corrupt Cases. A corrupt owner can upload a file F but can
claim not to have sent the file in the first place. This cannot occur since the
owner must first sign the hashed blocks of the file before committing the file to
the blockchain. There is only one possibility that the owner has somehow found
a collision in the Digital Signature Algorithm, which only occurs with negligible
probability. There is no way of denying payments to the server since the smart
contract first takes money from the owner before executing the protocol.

A corrupt server might have received a file F̈ , but it can claim to have
received a completely different file. This can also happen due to communication
problems. This is impossible since the server signs the hash array of the file
before it gets committed to the blockchain. If the server signs a different file
block (say f̈i) and sends it back to the owner, the owner will check the hash
values anyway. Once a file is committed, the server cannot tamper with the file
anyway because of the usage of Blockchain Technology.

During the verification process, the server can try to forge a false response
to the queries sent by the auditor. But without the file, the verification process
cannot be completed. If the malicious server fails to complete the verification
process, the smart contract can easily deny the payment to the server.

A corrupt auditor can say that the verification has failed after an honest
server has submitted the appropriate response. But the smart contract can also
check for the verification process given the appropriate values. Hence, it will
punish the auditor by denying the payment it was promised.

Multi Party Collusion Cases. The cloud server and data owner can work
together to deny the payment to the auditor. But since the smart contract han-
dles the payment and can also do the verification process, this cannot happen.

The data owner and auditor are never in contact with each other with respect
to the protocol. Even if they collude together, the smart contract ensures a fair
process and algorithm execution.

The cloud server and auditor also cannot collude and cheat since the smart
contract also checks the challenge and response pairs itself before making the
payments.

1 Let ψ ∈ Z∗
p , given h and hψ ∈ G, it is computationally infeasible to determine ψ for

a polynomial time adversary Adl. Mathematically,

|Pr[Adl(h, hψ) = ψ : ψ ∈ Z∗
p]| ≤ ε (10)

where ε is negligible.

SIOCEN 607

6.3 Security of Ethereum Network

The Ethereum Network, which uses Proof-of-Work as its consensus protocol,
is vulnerable to the 51% attack. When a group of miners can control more
than 50% of the network’s mining hash rate, they get the power to alter the
blockchain, prevent new transactions, and halt all kinds of payments, thereby
compromising the whole network. We will assume that an Adversary does not
have the capability to take control of the whole network.

7 Result

Based on the above designed system, we try and develop a prototype on
Ethereum Network made up of 50 nodes. The code is written in Golang while the
smart contract is written using Solidity. We use one of the popular Ethereum
Implementations, Go Ethereum, also known as geth, which is also written in
Golang.

For the mathematical operations, mostly involving bilinear pairings, we use
the PBC Library available in Golang. The whole prototype has been imple-
mented on a Private Ethereum Network, which is deployed on a computer which
runs on i5-8265U CPU with 8 GB RAM. Do note that the Private Ethereum
Network, on which we have deployed our prototype, uses Proof-of-Work as it’s
consensus protocol.

First, we analyse the File Tag Generation and Upload Time taken by the
owner for sending the file and the tags to the cloud server (refer Fig. 3). We can
see that even though the time taken increases with the increase in number of
blocks, the average tag calculation time for each block is almost the same and
is approximately 5 s.

Fig. 3. Tag Generation Time by the Owner

608 A. C. Korlapati et al.

The Proof Set Generation Time taken by the server to respond to the chal-
lenges set by the Auditor is shown in Fig. 4. The Algorithm takes approximately
5 s to calculate the Proof Set for each block. We can safely assume that the Proof
Generation Time will not depend on the File challenged.

Finally, we check the verification time taken by the Auditor, given a proof
set and the query set and the same is shown in Fig. 5. This process seems to
be much quicker, taking milliseconds to finish the job by the Auditor. We have
also compared SIOCEN with another existing model Li [13], and found that our
system takes less time in terms of Verification Time by Auditor.

Fig. 4. Proof Generation Time by the Server

Fig. 5. Verification Time by the Auditor

SIOCEN 609

8 Performance Analysis

In this section, we discuss the performance of SIOCEN and compare it with four
other existing works, i.e., Wang [24], Chen [4], Huang [10] and Dredas [7]. With
this comparision and analysis, we want to show that the model that we proposed
is performing better than the existing works in one or other factors. In Table 1, we
provided all the notations used subsequently for discussing performance analysis.

Table 1. Nomenclature used for Performance Analysis

Notations Meaning

p A pairing operation

m A multiplication operation

e An exponentiation operation

h A hash operation

n Number of Blocks of File

q Number of Challenged Blocks

Table 2. Comparison of Computation Cost at different entity

Schemes Data Owner Cloud Server Auditor

Wang [24] (m + 2e + h)n p + e(1 + q) + h(1 + mq) 2m + 2p + 2e(1 + hmq)

Li [13] (e + h + 2m)n 2p + (q + 1)(e + h) + m(2q − 1) p + e + m(q + 1) + h(2q + 1)

Chen [4] n(nm + ne + h + e) q((2q − 2)m + qe) 2p + q(qm + (q + 1)e + h)

Huang [10] (m + 2e + h)n (2q − 1)m + qe 3p + qm + (q + 1)e + qh

Dredas [7] (m + 2e + h)n 2e + m(q + h) + qe(1 + h) 3e + m(2 + q + h) + 2p

SIOCEN (me + h + e)n qe + qm + ep heq + m + 2p

A comparison with the existing scheme is done in Table 2. We did the com-
parison in terms of the computation cost incurred for each party i.e. Data Owner,
Cloud Server and Auditor. It consists of cost for data proof and tag generation,
for proof generation and for verification. It is clearly shown in Table 2 that our
scheme SIOCEN performs fewer computations compared to Chen [4], Dredas
[7], Huang [10], Li [13], and Wang [24] for each participant to generate the proof
and to perform verification. The Huang [10] scheme comparatively takes the
same amount of computation time as SIOCEN to generate proof messages at
the cloud server, but it requires relatively higher computation in verification at
the auditor. Whereas scheme Li [13], Huang [10], Dredas [7], and Wang [24] per-
form better and consume less computation in data proof and tag generation at
the data owner side compared to SIOCEN.

610 A. C. Korlapati et al.

In Fig. 6, the comparison time of each party in SIOCEN is shown. It shows
a fast auditing process executes in less than a second. Table 3 gives the analysis
summary among a comparison of some related outsourced data integrity check-
ing schemes in terms of security analysis, privacy-preserving, cloud server proof
generation, computation cost during verification, computation cost-effectiveness,
blockchain services, and the incentive mechanism is considered to perform among
the participating parties in blockchain. The ✓ represents the comparison param-
eter considered in the scheme, and × represents the comparison parameter not
considered in the given scheme. From Table 3, we can find that PDP [1] and
[4] are not privacy-preserving and not considered as applied to cloud storage
systems. Xie [26] and Wang [24] are not performed the incentive mechanism,
only develop a scheme with blockchain. Further, Wang [24] is still vulnerable to
situations where multiple parties in the protocol collude together to cheat the
system. Having a third-party auditor is not possible using their system. Huang
[10] and Dredas [7] also use similar models which fulfill the minimum require-
ments of privacy and security, but they incur more computation costs and take
more time during the auditing and verification phases. Whereas SIOCEN is
also a blockchain initiative scheme with an incentive mechanism and privacy-
preserving that consumes less computation to perform scheme proof generation
and verification to form it as a computation cost-effectiveness scheme.

Fig. 6. Computation Time of all Parties

SIOCEN 611

Table 3. Summary and Comparison of Outsourced Data Integrity Checking Schemes.

System Design SA PP CPG VCP BS IM CCE

PDP [1] ✓ × ✓ ✓ × × ×
IPDP [29] ✓ ✓ ✓ ✓ × × ×
Li [13] ✓ ✓ ✓ ✓ × × ×
Xie [26] ✓ ✓ ✓ ✓ ✓ × ×
Wang [24] ✓ ✓ ✓ ✓ ✓ × ×
Chen [4] ✓ × ✓ ✓ ✓ ✓ ×
Huang [10] ✓ ✓ ✓ ✓ ✓ ✓ ×
Dredas [7] ✓ ✓ ✓ ✓ ✓ ✓ ×
SIOCEN ✓ ✓ ✓ ✓ ✓ ✓ ✓

SA: Detail Security Analysis, PP: Privacy Preserving,
CPG: Cloud Server Proof Generation, VCP: Verifica-
tion Computation Cost, BS: Blockchain Services, IM:
Incentive Mechanism, CCE: Computation Cost Effec-
tive
✓: It is examined in the work; ×: It is not examined in
the work.

9 Conclusion

In this paper, we have proposed a data auditing scheme using blockchain for
outsourced data stored in cloud storage (SIOCEN). We include blockchain in our
proposed scheme to show that it is secure, privacy-preserving, ensures correct
execution of the protocol, and it’s feasibility. Using Smart Contracts, we enforce
the incentive mechanism of the system for fairness. We implement a prototype
of the SIOCEN system, and we do a security analysis of the proposed system,
which analyses all possible malicious and collusion cases. We also successfully
achieve the design goals we set earlier. In future work, we will try to integrate
batch auditing for multi-owner and multi-cloud in our proposed model.

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS 2007,
pp. 598–609. Association for Computing Machinery, New York (2007). https://doi.
org/10.1145/1315245.1315318

2. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

3. Bodi, B., Chiu, W.Y., Meng, W.: Towards blockchain-enabled intrusion detection
for vehicular navigation map system. In: Su, C., Gritzalis, D., Piuri, V. (eds.)
ISPEC 2022. LNCS, vol. 13620, pp. 3–20. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-21280-2 1

https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-031-21280-2_1
https://doi.org/10.1007/978-3-031-21280-2_1

612 A. C. Korlapati et al.

4. Chen, R., Li, Y., Yu, Y., Li, H., Chen, X., Susilo, W.: Blockchain-based dynamic
provable data possession for smart cities. IEEE Internet Things J. 7(5), 4143–4154
(2020). https://doi.org/10.1109/JIOT.2019.2963789

5. Do, H.G., Ng, W.K.: Blockchain-based system for secure data storage with private
keyword search. In: 2017 IEEE World Congress on Services (SERVICES), pp. 90–
93 (2017). https://doi.org/10.1109/SERVICES.2017.23

6. Dziembowski, S., Eckey, L., Faust, S.: FairSwap: how to fairly exchange digital
goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 967–984. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3243734.3243857

7. Fan, K., Bao, Z., Liu, M., Vasilakos, A.V., Shi, W.: Dredas: decentralized, reliable
and efficient remote outsourced data auditing scheme with blockchain smart con-
tract for industrial IoT. Futur. Gener. Comput. Syst. 110, 665–674 (2020). https://
doi.org/10.1016/j.future.2019.10.014

8. Filho, D.L.G., Barreto, P.S.L.M.: Demonstrating data possession and uncheatable
data transfer. Cryptology ePrint Archive, Paper 2006/150 pp. 1–9 (2006). https://
eprint.iacr.org/2006/150

9. Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communi-
cation and storage complexity. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp.
120–135. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4 9

10. Huang, P., Fan, K., Yang, H., Zhang, K., Li, H., Yang, Y.: A collaborative auditing
blockchain for trustworthy data integrity in cloud storage system. IEEE Access 8,
94780–94794 (2020). https://doi.org/10.1109/ACCESS.2020.2993606

11. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
CCS 2007, pp. 584–597. ACM, New York (2007). https://doi.org/10.1145/1315245.
1315317

12. Khezr, S., Moniruzzaman, M., Yassine, A., Benlamri, R.: Blockchain technology in
healthcare: a comprehensive review and directions for future research. Appl. Sci.
9(9) (2019). https://doi.org/10.3390/app9091736

13. Li, X., Liu, S., Lu, R., Khan, M.K., Gu, K., Zhang, X.: An efficient privacy-
preserving public auditing protocol for cloud-based medical storage system. IEEE
J. Biomed. Health Inform. 26(5), 2020–2031 (2022). https://doi.org/10.1109/
JBHI.2022.3140831

14. Liu, J., Liu, Z.: A survey on security verification of blockchain smart con-
tracts. IEEE Access 7, 77894–77904 (2019). https://doi.org/10.1109/ACCESS.
2019.2921624

15. Liu, X.L., Sheu, R.K., Yuan, S.M., Wang, Y.N.: A file-deduplicated private cloud
storage service with CDMI standard. Comput. Stand. Interfaces 44, 18–27 (2016).
https://doi.org/10.1016/j.csi.2015.09.010

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decent. Bus. Rev.
21260 (2008)

17. Nayak, S.K., Tripathy, S.: SEMKC: secure and efficient computation over out-
sourced data encrypted under multiple keys. IEEE Trans. Emerg. Top. Comput.
9(01), 414–428 (2021)

18. Ng, Z.Y., Salam, I.: Blockchain-based multi-keyword search on encrypted COVID-
19 contact tracing data. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022.
LNCS, vol. 13620, pp. 75–92. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-21280-2 5

19. Park, J.H., Park, J.H.: Blockchain security in cloud computing: use cases, chal-
lenges, and solutions. Symmetry 9(8) (2017). https://doi.org/10.3390/sym9080164

https://doi.org/10.1109/JIOT.2019.2963789
https://doi.org/10.1109/SERVICES.2017.23
https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1016/j.future.2019.10.014
https://doi.org/10.1016/j.future.2019.10.014
https://eprint.iacr.org/2006/150
https://eprint.iacr.org/2006/150
https://doi.org/10.1007/3-540-36504-4_9
https://doi.org/10.1109/ACCESS.2020.2993606
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.3390/app9091736
https://doi.org/10.1109/JBHI.2022.3140831
https://doi.org/10.1109/JBHI.2022.3140831
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1016/j.csi.2015.09.010
https://doi.org/10.1007/978-3-031-21280-2_5
https://doi.org/10.1007/978-3-031-21280-2_5
https://doi.org/10.3390/sym9080164

SIOCEN 613

20. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 7

21. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to keep online
storage services honest. In: Proceedings of the 11th USENIX Workshop on Hot
Topics in Operating Systems, HOTOS 2007, pp. 1–6. USENIX Association, USA
(2007). https://doi.org/10.5555/1361397.1361408

22. Siyal, A.A., Junejo, A.Z., Zawish, M., Ahmed, K., Khalil, A., Soursou, G.:
Applications of blockchain technology in medicine and healthcare: challenges
and future perspectives. Cryptography 3(1) (2019). https://doi.org/10.3390/
cryptography3010003

23. Wang, H., Wang, X.A., Xiao, S., zhou, Z.: Blockchain-based public auditing scheme
for shared data. In: Barolli, L., Xhafa, F., Hussain, O.K. (eds.) IMIS 2019. AISC,
vol. 994, pp. 197–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
22263-5 19

24. Wang, H., Qin, H., Zhao, M., Wei, X., Shen, H., Susilo, W.: Blockchain-based fair
payment smart contract for public cloud storage auditing. Inf. Sci. 519, 348–362
(2020). https://doi.org/10.1016/j.ins.2020.01.051

25. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(2014), 1–32 (2014)

26. Xie, G., Liu, Y., Xin, G., Yang, Q.: Blockchain-based cloud data integrity veri-
fication scheme with high efficiency. Secur. Commun. Netw. 2021, 1–15 (2021).
https://doi.org/10.1155/2021/9921209

27. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013).
https://doi.org/10.1109/TPDS.2012.278

28. Yue, D., Li, R., Zhang, Y., Tian, W., Peng, C.: Blockchain based data integrity
verification in P2P cloud storage. In: 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 561–568 (2018). https://doi.org/
10.1109/PADSW.2018.8644863

29. Zhu, Y., Ahn, G.J., Hu, H., Yau, S.S., An, H.G., Hu, C.J.: Dynamic audit services
for outsourced storages in clouds. IEEE Trans. Serv. Comput. 6(2), 227–238 (2013).
https://doi.org/10.1109/TSC.2011.51

https://doi.org/10.1007/978-3-540-89255-7_7
https://doi.org/10.5555/1361397.1361408
https://doi.org/10.3390/cryptography3010003
https://doi.org/10.3390/cryptography3010003
https://doi.org/10.1007/978-3-030-22263-5_19
https://doi.org/10.1007/978-3-030-22263-5_19
https://doi.org/10.1016/j.ins.2020.01.051
https://doi.org/10.1155/2021/9921209
https://doi.org/10.1109/TPDS.2012.278
https://doi.org/10.1109/PADSW.2018.8644863
https://doi.org/10.1109/PADSW.2018.8644863
https://doi.org/10.1109/TSC.2011.51

Author Index

A
Abazari, Farzaneh 170
Al Sardy, Loui 462
Anand, P. Mohan 209

B
Balador, Ali 1
Basri, Rabeya 194
Bauer, André 284

C
Cao, Jin 52
Cao, Zhenfu 579
Chakraborty, Partha Sarathi 595
Chan, Kwan Yin 154
Charan, P. V. Sai 209
Chen, Liqun 419
Chiku, Sohto 299
Chowdhury, Dipanwita Roy 492
Chunduri, Hrushikesh 209
Cui, Handong 154

D
Das, Abhijit 492
Das, Bijoy 492
de Goyon, Mathieu 477
Dong, Xiaolei 579
Duy, Phan The 17, 546

E
Engel, Simon 284

F
Fang, Liming 579
Flammini, Francesco 1
Fu, Yulong 52

G
Gan, Qingqing 380
Gao, Yiwen 266
Ge, Chunpeng 579

Girdzijauskas, Šarūnas 36
Gomez Ramirez, Andres 462
Gomez Ramirez, Francis 462
Grześkowiak, Maciej 347
Guo, Yue 123

H
Halunen, Kimmo 138
Hara, Keisuke 299
Horn, Lukas 284
Hu, Jinglu 91, 250

I
Iffländer, Lukas 284

J
Jakubeit, Philipp 399
Jiang, Yuning 380

K
Kaiser, Dennis 284
Kaksonen, Rauli 138
Kamruzzaman, Joarder 194
Karmakar, Gour 194
Korlapati, Ajay Chandra 595
Kounev, Samuel 284
Kozlovičs, Sergejs 527
Krupitzer, Christian 284
Krzywiecki, Łukasz 347, 365

L
Laakso, Marko 138
Lāriņš, Dāvis 527
Li, Hui 52
Li, Ying 250
Lin, Yuhao 250
Liu, Bozhong 315
Liu, Chao 315
Liu, Guanghui 266
Liu, JiQiang 123
Liu, Li 507

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 615–616, 2023.
https://doi.org/10.1007/978-981-99-7032-2

https://doi.org/10.1007/978-981-99-7032-2

616 Author Index

Liu, Mengru 52
Liu, Ning 380
Liu, Yuejun 266
Liu, Zhe 579
Luong, Tran Duc 17

M
Manabe, Yoshifumi 332
Meng, Long 419
Mimura, Mamoru 562
Miyaji, Atsuko 477
Mohammadi, Samaneh 1
Morooka, Tomoya 332

N
Nakagawa, Yuki 562
Nayak, Sanjeet Kumar 595
Newaz, S. H. Shah 194
Nguyen, Linh 194
Niczyj, Karol 347

P
Palamidessi, Catuscia 74
Peter, Andreas 399
Petručeņa, Krišjānis 527
Petrui, Cezara 74
Pham, Van-Hau 17, 546
Pinzón, Carlos 74
Prantl, Thomas 284

R
Rani, Nanda 230
Rao, Xinyu 123
Rong, Jingfeng 91
Röning, Juha 138

S
Safarzadehvahed, Mahdieh 170
Saha, Bikash 230
Salin, Hannes 365
Samy, Ahmed E. 36
Shabani, Fateme 170
Shen, Jiachen 579
Shi, Huiyang 250
Shikata, Junji 105, 299
Shinagawa, Kazumasa 332
Shukla, Sandeep K 209
Shukla, Sandeep Kumar 230

Simon, Sebastian 74
Sinaei, Sima 1
Son, Ngo Duc Hoang 546
Su, Chunhua 579

T
Thi, Huynh Thai 546
Tian, Yangguang 419
Tien, Vuong Minh 17
Tripathy, Somanath 595

U
Usman, Muhammad 194

V
van Steen, Maarten 399
Vı̄ksna, Juris 527

W
Wang, Changji 380
Wang, Jiahui 52
Wang, Mingming 440
Wang, Na 91
Wang, Wenjie 250
Wang, Yalan 419
Watanabe, Yohei 105
Wei, Puwen 507
Wu, Gaofei 91
Wu, Qianhong 440

X
Xia, Zhen 579

Y
Yan, Zheng 52, 91
Yanai, Naoto 105
Yang, BoKai 123
Yin, Yuchen 380
Yue, Qiuling 91, 250
Yuen, Tsz Hon 154

Z
Zhang, Yuqing 91, 250
Zhao, Jia 123
Zhong, Yongchao 250
Zhou, Jun 579
Zhou, Yongbin 266
Zuo, Cong 380

	 Preface
	 Organization
	 Contents
	Secure and Efficient Federated Learning by Combining Homomorphic Encryption and Gradient Pruning in Speech Emotion Recognition
	1 Introduction
	2 Background and Related Works
	2.1 Speech Emotion Recognition Using Federated Learning
	2.2 Privacy-Preserving Federated Learning
	2.3 Communication and Computation-Efficient Federated Learning

	3 Application of Secure and Efficient Federated Learning for Speech Emotion Recognition
	3.1 Non-functional Requirements of Speech Emotion Recognition Application
	3.2 Threat Model
	3.3 Proposed Method: SEFL

	4 Experimental Results
	4.1 Use-Case Description and Simulation Setting
	4.2 Privacy Considerations
	4.3 Efficiency in Terms of Communication Traffic
	4.4 Efficiency in Terms of Computation Time
	4.5 Performance Metrics: Accuracy, F1-Score, Precision, and Loss

	5 Conclusions and Future Work
	References

	FedLS: An Anti-poisoning Attack Mechanism for Federated Network Intrusion Detection Systems Using Autoencoder-Based Latent Space Representations
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Threat Model
	3.2 Robust Federated Learning for NIDS
	3.3 Autoencoder Pretraining Process
	3.4 Workflow of FedLS

	4 Experiments
	4.1 Dataset and Data Preprocessing
	4.2 Experimental Settings
	4.3 Evaluation Result

	5 Conclusion
	References

	Mitigating Sybil Attacks in Federated Learning
	1 Introduction
	2 Federated Learning: Defending Against Sybil Poisoning Attacks
	2.1 FedSybil Design

	3 Security Analysis
	3.1 Threat Model
	3.2 Attacks and Mitigations

	4 Evaluation and Discussion
	4.1 Experiment Setup
	4.2 FedSybil Evaluation
	4.3 FedSybil Under Non-IID Settings
	4.4 Single Client Attacks
	4.5 Coordinated Attacks
	4.6 Scalability

	5 Related Work
	6 Conclusion
	References

	Privacy-Preserving Authentication Scheme for 5G Cloud-Fog Hybrid with Soft Biometrics
	1 Introduction
	2 Background and Related Works
	2.1 Background
	2.2 Related Works

	3 Proposed Scheme
	3.1 Registration Phase
	3.2 Authentication Phase
	3.3 Key Agreement

	4 Analysis of Our Scheme
	4.1 Performance Analysis
	4.2 Security Analysis

	5 Experiments and Results
	5.1 Experiments and Results Based on Real Dataset
	5.2 Experiments and Results Based on Public Datasets

	6 Conclusion
	References

	Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Problem Formalization
	2.1 Presentation in Terms of Privacy Leakage
	2.2 Why Not Differential Privacy?
	2.3 Simplification of the Output Set

	3 Algorithms
	3.1 Per-Object-Padding Scenario, PopRe
	3.2 Per-Request-Padding Scenario, PrpRe

	4 Experiments and Comparison
	4.1 Brute-Force Tests for Correctness
	4.2 Attacker Test for Illustration
	4.3 Dataset Tests for Comparison

	5 Conclusion
	References

	Cross-Border Data Security from the Perspective of Risk Assessment
	1 Introduction
	2 Cross-Border Data Status
	2.1 International Status
	2.2 Domestic Status

	3 Data Cross-Border Risk Assessment
	3.1 Introduction of Risk Assessment
	3.2 Data Cross-Border Risk Assessment Framework
	3.3 Modular Risk Assessment
	3.4 Cross-Border Data Risk Analysis
	3.5 Summary

	4 Remaining Problems
	4.1 Data Classification and Grading
	4.2 Risk Assessment Methods

	5 Suggestions on Cross-Border Data
	5.1 Promote Data Classification and Grading
	5.2 Improve Relevant Standards
	5.3 Research and Develop Technology or Method
	5.4 Actively Participate in Global Governance Framework

	6 Summary and Outlook
	References

	IoT-REX: A Secure Remote-Control System for IoT Devices from Centralized Multi-designated Verifier Signatures
	1 Introduction
	2 IoT-REX: REmote-Control System for IoT Devices
	2.1 System Setting
	2.2 System Model
	2.3 Assumptions and Requirements

	3 Centralized Multi-designated Verifier Signatures
	3.1 Syntax
	3.2 Correctness and Security

	4 CMDVS Constructions
	5 Experiments
	5.1 Results

	6 Related Work
	7 Concluding Remarks
	References

	CVAR-FL IoV Intrusion Detection Framework
	1 Introduction
	2 Related Work
	3 CVAR-FL Framework
	3.1 Data Transfer Between Vehicle and RSU
	3.2 DL Model Selection for RSU
	3.3 MEC Federal Learning

	4 Experimental Setup
	4.1 Evaluation Index
	4.2 Dataset Introduction
	4.3 Data Preprocessing
	4.4 Model Evaluation

	5 Conclusion
	References

	Transparent Security Method for Automating IoT Security Assessments
	1 Introduction
	1.1 Security Certification
	1.2 Manufacturer Usage Description
	1.3 Research Contribution

	2 Transparent Security Method
	2.1 Security Statement and Claims
	2.2 Entry-Level Security Claims
	2.3 Verification Tools

	3 Case Study
	4 Extending the Transparent Security Method
	4.1 More Claims and Tools
	4.2 Security Certification
	4.3 Other Uses

	5 Discussion
	6 Conclusions
	References

	DIDO: Data Provenance from Restricted TLS 1.3 Websites
	1 Introduction
	1.1 Decentralized Oracles for TLS
	1.2 Motivation: Compatibility with TLS 1.3
	1.3 Our Contributions

	2 Data Provenance with TLS 1.3
	2.1 Notations and Definitions
	2.2 Estimating the Performance of DECO with TLS 1.3
	2.3 Overview of Our Design

	3 Three-Party ECDHE Handshake
	3.1 Round-Optimal ECtF+ Protocol for All TLS 1.3 Curves
	3.2 Three-Party Handshake with X25519

	4 Design for 2PC Key Scheduling
	4.1 2PC-HMAC for Shared Message
	4.2 2PC-HMAC for Shared Key

	5 Decentralized Identification Oracles (DIDO)
	6 Conclusion
	References

	QR-SACP: Quantitative Risk-Based Situational Awareness Calculation and Projection Through Threat Information Sharing
	1 Introduction
	2 Related Work
	3 Assumptions and Modeling
	3.1 Modeling Network
	3.2 Modeling Threat

	4 Quantitative Risk-Based Situational Awareness Calculation and Projection
	4.1 Definite Effect Calculation
	4.2 Probable Effect

	5 Evaluation
	5.1 Evaluation Lab
	5.2 Evaluation Results
	5.3 Discussion
	5.4 Comparison

	6 Conclusion and Future Works
	A Appendix A
	References

	Dynamic Trust Boundary Identification for the Secure Communications of the Entities via 6G
	1 Introduction
	2 Related Works
	3 Proposed Dynamic Trust Boundary Identification Mechanism
	3.1 Features for Dynamic Trust Boundary Calculation
	3.2 Dynamic Trust Boundary Identification Techniques
	3.3 Splitting and Merging Trust Boundary Considering Communication Coverage

	4 Experimental Simulation and Results
	4.1 Data Preparation
	4.2 Metrics for Assessing the Accuracy of Trust Boundary Identification
	4.3 Simulation Results and Discussions

	5 Conclusion
	References

	RTR-Shield: Early Detection of Ransomware Using Registry and Trap Files
	1 Introduction
	2 RTR-Shield - Design Overview
	3 Correlation Between Ransomware Activity and Registry Modifications
	3.1 Volume Shadow Copy Service (VSS)
	3.2 Run Key
	3.3 AppCompatFlags
	3.4 Windows Script Host (WSH)
	3.5 RestartManager
	3.6 RecentDocs
	3.7 Adding a New Class Key and Icon
	3.8 Boot Configuration Data (BCD)
	3.9 Background Activity Moderator (BAM)
	3.10 Shell Bags

	4 Evaluation of RTR-Shield
	5 Related Works
	6 Conclusion and Future Work
	A Algorithm for RTR-Shield
	B Summary of Modifications Made to the Registry by Various Ransomware Families
	References

	MalXCap: A Method for Malware Capability Extraction
	1 Introduction
	1.1 Potential Application

	2 Related Work
	3 Proposed Methodology
	3.1 MalXCap
	3.2 Feature Engineering
	3.3 Model Implementation

	4 Experimental Setup
	4.1 Dataset
	4.2 System Setup
	4.3 Evaluation Metrices

	5 Experiment and Observation
	6 Real World Examples
	7 Conclusion
	References

	Multimodal Software Defect Severity Prediction Based on Sentiment Probability
	1 Introduction
	2 Related Work
	2.1 Software Bugs
	2.2 Natural Language Processing

	3 Emotion Annotation Model Based on Knowledge Enhancement
	3.1 Domain Enhancement
	3.2 Emotional Probability Labeling

	4 Multimodel Defect Severity Prediction Based on Integrated Learning
	4.1 Model Selection Phase

	5 Evaluation
	5.1 Experimental Assessment of Knowledge Enhancement
	5.2 Emotional Analysis Assessment
	5.3 Bug Severity Prediction Models: Comparison with State-of-the-art Baseline Methods

	6 Discussion
	7 Conclusion
	References

	Recovering Multi-prime RSA Keys with Erasures and Errors
	1 Introduction
	2 Preliminaries
	2.1 Noisy Leakage Models
	2.2 Recovering CRT-RSA Key Using Tree-Based Recovery Algorithm
	2.3 Terada-Villena Method ch16tv13
	2.4 Limitations and Solutions

	3 Recovering Key from Binary Erasure Error Model
	3.1 BESE Model
	3.2 BEAE Model
	3.3 Theoretical Bound

	4 Implementation and Performance
	5 Conclusion
	References

	Performance Impact Analysis of Homomorphic Encryption: A Case Study Using Linear Regression as an Example
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 Linear Regression with Gradient Descent

	3 Evaluation Architectures for Homomorphic Linear Regression
	3.1 Offline Client Architecture
	3.2 Online Client Architecture

	4 Evaluation
	4.1 Measurement Set up
	4.2 Offline Architecture Evaluation
	4.3 Online Architecture Evaluation
	4.4 Discussion
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Chosen Ciphertext Security for Blind Identity-Based Encryption with Certified Identities
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Preliminaries
	3 CCA Security for Blind IBE with Certified Identities
	3.1 Recap: The Syntax of Blind IBE with Certified Identities
	3.2 Definition of CCA Security

	4 Our Construction of CCA Secure Blind IBE with Certified Identities
	4.1 Construction
	4.2 Security Proofs

	5 Instantiation
	5.1 Instantiation from Pairing
	5.2 Instantiation from Lattice
	5.3 Space Cost Comparison

	6 Implementation of Our Pairing-Based Construction
	References

	A New Gadget Decomposition Algorithm with Less Noise Growth in HE Schemes
	1 Introduction
	1.1 Our Works
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 Subgaussian Random Variables
	2.2 Lattices

	3 Gadget Decomposition Algorithms
	3.1 Algorithm Rationale
	3.2 Power-of-Base Case
	3.3 Arbitrary Modulus, Arbitrary Base

	4 Implementation Results
	4.1 Complexity and Performance
	4.2 Quality

	5 Conclusion and Discussion
	A Nearest Plane Algorithm
	B Decomposition in CRT Form
	References

	Malicious Player Card-Based Cryptographic Protocols with a Standard Deck of Cards Using Private Operations
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Private Operations
	2.3 Opaque Commitment Pair
	2.4 Space and Time Complexities

	3 AND, XOR, and Copy with Three Malicious Players
	3.1 Base-Fixed Protocol with Three Players
	3.2 AND Protocol
	3.3 Copy Protocol
	3.4 XOR Protocol

	References

	Cryptanalysis of Human Identification Protocol with Human-Computable Passwords
	1 Introduction
	1.1 Contribution of the Paper
	1.2 Related Work
	1.3 Structure of the Paper

	2 Preliminaries and Notation
	2.1 System Model
	2.2 Impersonation Resilience
	2.3 Adversary Model
	2.4 Security Experiments

	3 The Original Protocol
	3.1 The Protocol Pattern
	3.2 Function F
	3.3 Secret and Challenge

	4 Attacks
	4.1 Active Attack Description
	4.2 Description of Passive Attack

	5 Conclusion
	References

	A Source Hiding Protocol for Cooperative Intelligent Transportation Systems (C-ITS)
	1 Introduction
	1.1 Challenges for Source Hiding
	1.2 Network Layer Pseudonyms
	1.3 Problem Statement
	1.4 Related Work
	1.5 Contribution
	1.6 Structure of Paper

	2 Preliminaries
	2.1 System Settings
	2.2 Requirements and Threat Model
	2.3 Cryptographic Building Blocks

	3 Proposed Scheme
	3.1 Notation
	3.2 Scheme Description
	3.3 Security Analysis
	3.4 Enhanced Protocol

	4 Benchmark
	5 Conclusion
	References

	A Revocable Outsourced Data Accessing Control Scheme with Black-Box Traceability
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairing
	2.2 Linear Secret Sharing Scheme
	2.3 Complexity Assumptions

	3 Syntax and Security Definitions for ROBBT-CPABE
	3.1 Security Model

	4 Construction of ROBBT-CPABE
	4.1 System Initialization
	4.2 Key Generation
	4.3 Encryption
	4.4 Revocation
	4.5 Match and Transform
	4.6 Decryption
	4.7 Trace

	5 Security and Performance Analysis
	5.1 Security Analysis
	5.2 Performance Analysis and Implementation Evaluation

	6 Conclusion
	A Black-Box Security Proof for ROBBT-CPABE
	References

	LocKey: Location-Based Key Extraction from the WiFi Environment in the User's Vicinity
	1 Introduction
	2 Foundations
	2.1 WiFi Beacon Frames
	2.2 Fuzzy Extractors

	3 Overview on LocKey
	3.1 Application and Integration Suggestions

	4 Instantiating LocKey
	4.1 Data Representation
	4.2 Fuzzy Extractor

	5 Evaluation
	6 Security Model and Analysis
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	BAHS: A Blockchain-Aided Hash-Based Signature Scheme
	1 Introduction
	2 Preliminaries
	2.1 Hash Functions
	2.2 Commitment Scheme
	2.3 Blockchains
	2.4 Quantum Random Oracle

	3 Generic Definitions for a Blockchain-Aided Hash-Based Signature Scheme (BAHS)
	3.1 Notation
	3.2 Description of a Generic Construction of BAHS
	3.3 Security Model for BAHS

	4 The Blockchain-Aided Hash-Based Signature Scheme (BAHS)
	4.1 BAHS Algorithms/Protocols

	5 Security Analysis
	6 Implementations
	7 Conclusion
	A Oracles for the Unforgeability
	References

	Lever: Making Intensive Validation Practical on Blockchain
	1 Introduction
	2 Definitions and Background
	2.1 Intensive Validation on Blockchain
	2.2 Challenge Response Pattern
	2.3 Related Works

	3 System Overview
	3.1 Actors
	3.2 Methodologies
	3.3 Assumptions
	3.4 System Properties

	4 Lever-Boost Game
	4.1 Preparation
	4.2 Construction
	4.3 Incentive Design
	4.4 Properties

	5 Backstop Construction
	6 Integration with Backbone
	7 Evaluation
	8 Conclusion and Future Works
	References

	Tikuna: An Ethereum Blockchain Network Security Monitoring System
	1 Introduction
	2 Related Work
	3 Tikuna Approach
	3.1 Tikuna Terminology
	3.2 Types of P2P Network Attacks
	3.3 Tikuna Methodology

	4 Evaluation
	4.1 Experiment Design
	4.2 Attack Simulation Setup
	4.3 Deep Learning Algorithm Setup
	4.4 Experiment Results

	5 Conclusion and Future Work
	References

	Isogeny-Based Multi-signature Scheme
	1 Introduction
	2 Preliminaries
	2.1 Multi-signature
	2.2 Isogenies
	2.3 CSIDH
	2.4 CSI-FiSh
	2.5 Hard-Homogeneous Spaces

	3 Multi-signature Protocols
	4 Security
	4.1 Correctness
	4.2 Security

	5 Comparison
	6 Conclusion
	References

	Security Analysis of WAGE Against Division Property Based Cube Attack
	1 Introduction
	2 Preliminaries
	2.1 Cube Attack
	2.2 MILP-Aided Bit-Based Division Property

	3 Description of WAGE
	4 Cube Attack on WAGE
	4.1 Cube Attack on the Initialization Phase of WAGE Using MILP
	4.2 Evaluate Secret Bits Involved in the Balanced Superpoly
	4.3 Key Recovery for 18-Round Initialization Phase
	4.4 Discussion on Experimental Results

	5 Conclusion
	References

	When MPC in the Head Meets VC
	1 Introduction
	2 Preliminaries
	3 Our Construction
	3.1 VC-then-MPCitH

	4 Security Analysis
	5 Implementation
	6 Conclusion
	A Proof of Theorem 1
	References

	Quantum Key Distribution as a Service and Its Injection into TLS
	1 Introduction
	2 The Overall QaaS Architecture
	3 QaaS Protocols
	3.1 The Butterfly Protocol
	3.2 User Connection Management
	3.3 Key Reservation in the Butterfly Protocol
	3.4 The Control Protocol

	4 Authentication
	4.1 Authentication via PQC Signatures
	4.2 Reducing the Number of Post-Quantum Signatures

	5 Implementation and Integration into TLS 1.3
	6 Related Work
	7 Conclusion
	References

	XFedGraph-Hunter: An Interpretable Federated Learning Framework for Hunting Advanced Persistent Threat in Provenance Graph
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The APT Hunting System Architecture
	3.2 Federated Learning Scheme for Hunting Model
	3.3 Explainer Module

	4 Experimental Evaluation
	4.1 Dataset and Preprocessing
	4.2 Experimental Settings
	4.3 Performance Metrics
	4.4 Evaluation Result

	5 Conclusion
	References

	XSS Attack Detection by Attention Mechanism Based on Script Tags in URLs
	1 Introduction
	2 Related Work
	3 Related Technique
	3.1 LSTM
	3.2 Attention Mechanism
	3.3 Type of XSS Attacks

	4 Proposed Method
	4.1 Outline
	4.2 Dataset
	4.3 Preprocessing
	4.4 Machine Learning Model
	4.5 Aggregation of Focus Points by the Attention Mechanism
	4.6 Change in Detection Rate When Benign Data Increases

	5 Result
	5.1 Performance Evaluation Method
	5.2 Environment
	5.3 Change in Detection Rate When Benign Data Increase
	5.4 Verification of Detection Rate and Linguistic Features by Attention Mechanism
	5.5 Transition of Detection Rate with the Increase of Benign Samples

	6 Discussion
	6.1 Detection Rate and Linguistic Features by Attention Mechanism
	6.2 Transition of Detection Rate with the Increase of Benign Samples
	6.3 Research Ethics
	6.4 Research Limitations

	7 Conclusion
	References

	Mining for Better: An Energy-Recycling Consensus Algorithm to Enhance Stability with Deep Learning
	1 Introduction
	2 Related Work
	2.1 Difficulty Adjustment Algorithm
	2.2 Energy-Recycling Consensus

	3 PoI Design
	3.1 Overview and Notaions
	3.2 Data Structure
	3.3 Mining Process
	3.4 Deep Learning-Based Difficulty Control
	3.5 Reward Mechanism

	4 Simulation Experiment
	5 Discussion
	6 Conclusion
	References

	SIOCEN: Secure Integrity Verification of Outsourced Data in Cloud Storage using Blockchain
	1 Introduction
	2 Related Work
	3 Background and Preliminaries
	3.1 Blockchain
	3.2 Ethereum and Smart Contracts
	3.3 Bilinear Pairings
	3.4 Privacy Preserving Proof of Retrievability Scheme

	4 SIOCEN: System Model and Design Goal
	4.1 System Model
	4.2 Design Goals

	5 SIOCEN: The Protocol
	5.1 File Processing
	5.2 Key Generation and Registration with Smart Contract
	5.3 File Processing and Tag Generation
	5.4 Challenge Message Generation
	5.5 Response Generation by Server
	5.6 Verification by Auditor
	5.7 Correctness
	5.8 Payment by Smart Contract

	6 SIOCEN: Security Analysis
	6.1 Anti-forgery
	6.2 Privacy Preserving
	6.3 Security of Ethereum Network

	7 Result
	8 Performance Analysis
	9 Conclusion
	References

	Author Index

