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Abstract. Convolutional neural networks have been widely used in the field of
hyperspectral image (HSI) classification due to their excellent ability to model
local regions, and have achieved good classification performance. However, HSI
classification still faces challenges such as insufficient representation of spectral-
spatial features and inadequate fusion of multi-level features. To address these
issues, we propose a Multi-scale Densely Connected and Feature Aggregation
Network (MSDC-FAN) for HSI classification. The network mainly consists of
a Spectral-Spatial Feature Extraction (SSFE) module, three Multi-scale Fea-
ture Extraction (MSFE) modules, and a Multilevel Feature Aggregation Module
(MFAM). Firstly, the SSFE module is carried out to extract more comprehensive
spectral-spatial features. Secondly, three MSFE modules are used in sequence to
extract multi-scale features and highlight significant features, thus further improv-
ing the model’s performance. Finally, the MFAM is designed to aggregate features
at different levels, enhancing the model’s feature representation ability. Experi-
mental results on two commonly used hyperspectral datasets demonstrate the
superiority of the proposed method.
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1 Introduction

Hyperspectral images (HSIs), containing abundant spectral-spatial information, have
been widely used in environmental monitoring [1], mineral exploration [2], precision
agriculture [3] and other fields. Early HSI classification methods only considered spectral
features, such as support vector machine [4], k-nearest neighbor [5], and random forest
[6], which had certain limitations. To simultaneously consider spectral-spatial infor-
mation, methods such as sparse representation [7] and Markov random field [8] were
proposed. However, spectral-spatial feature extraction and fusion still face challenges.

Convolutional neural networks (CNNs) have been widely used in HSI classifica-
tion tasks due to their excellent ability to model local regions [9, 10]. Zhong et al.
[11] designed spectral and spatial residual blocks to learn discriminative features and
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alleviate the problem of accuracy degradation in deep networks. Song et al. [12] con-
structed a very deep network to extract more discriminative features and fused low-level,
mid-level, and high-level features by addition to improve performance. Yu et al. [13]
introduced an image-based global learning framework into HSI classification to fully uti-
lize global information and achieved good classification results. Shi et al. [14] designed
spectral feature extraction branch and spatial feature extraction branch to fully exploit the
spectral-spatial information of HSIs and further improve the classification performance.

In addition, redundant information and noise in HSIs can interfere with model clas-
sification decisions, so it is important to extract effective information. To address this
issue, attention mechanisms have been introduced into HSI classification [15] to help the
model focus on more important features and regions. Zhu et al. [16] designed a spectral
attention module and a spatial attention module to emphasize useful bands and pixels,
achieving good classification results. In addition, the Transformer has been introduced
into HSI classification tasks due to its excellent global feature modeling ability [17]. Sun
et al. [18] introduced the Transformer for global features modeling, achieved good clas-
sification results and improved computational efficiency. Mei et al. [19] significantly
improved the HSI classification accuracy by introducing a grouped pixel embedding
module and constructing the Transformer in a hierarchical manner.

These networks have improved the HSI classification performance to some extent.
However, limited by the fixed size of the CNN’s convolutional kernel, the local features
it extracts are limited, resulting in insufficient spectral-spatial feature representation.
Additionally, multi-level features that are complementary and correlated have not been
fully fused and utilized, and the classification performance needs to be further improved.
To address the above issues, we propose a Multi-scale Densely Connected and Feature
Aggregation Network (MSDC-FAN) for HSI classification. The main contributions of
this paper are summarized as follows.

(1) A spectral-spatial feature extraction (SSFE) module is devised to capture the spectral-
spatial features of HSIs more comprehensively. Firstly, features of different scales
are extracted by dilated convolution, and then concatenated and fused by skip
connections.

(2) A multi-scale feature extraction (MSFE) module is designed to fully extract HSI
features. The multi-scale branch is adopted to extract multi-scale features, and the
residual branch is carried out to make the information flow between the shallow
layer and the deep layer. Then the cross-attention module is employed to enhance
the feature fusion of the two branches, thus improving the model’s performance.

(3) A multi-level feature aggregation module (MFAM) is proposed to enhance the
model’s feature representation ability. Three MSFE modules are used in sequence
to extract multi-scale features at different levels, which are then aggregated through
the top-down channel to enhance the feature representation.

The rest of this paper is organized as follows. Section 2 provides a detailed introduc-
tion to the MSDC-FAN method. Section 3 presents the experimental results and analysis.
Section 4 concludes the paper.
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2 Proposed Method

In this section, we will introduce in detail our proposed MSDC-FAN for HSI classifi-
cation, the overall framework of which is shown in Fig. 1. Firstly, the SSFE module is
adopted to extract features from the dimension-reduced HSI after principal component
analysis (PCA), in order to acquire the spectral-spatial information effectively. Then, the
two-dimensional (2D) convolution is used to unify the number of channels. Secondly,
multi-scale and multi-level features are extracted by stacking three MSFE modules in
sequence, and features of different levels are aggregated by the MFAM module to obtain

the final feature representation for classification. Finally, the aggregated features are fed
into the linear layer for classification.

MSFE ‘ MSFE \ 7 MSFE 4 MFAM [ Linear Softmax,
7 - Layer
0 1 2 3

Classification results

Fig. 1. Overall framework of the proposed MSDC-FAN

2.1 Spectral-Spatial Feature Extraction Module

The three-dimensional (3D) convolution can move simultaneously in both spectral and
spatial dimensions, making it more effective to extract the spectral-spatial features of
HSIs. Therefore, we construct the SSFE module to capture the features in HSIs more
comprehensively, and the specific structure of the SSFE module is shown in Fig. 2.

Spectral-Spatial Feature Extraction

K=3x3x3,8 K=3x3x3,16 K=3x3x3,24
rate=3 rate=2 rate=1

A

1x1x1,16

Concat

K=

YyvYyy

|:|=Conv+ReLU+BN E =Conv

Fig. 2. Specific structure of the SSFE module. Conv, ReLU and BN represent convolution opera-
tion, ReLU activation function and batch normalization, respectively. K = 3 x 3 x 3, 8 represents

eight convolution kernels of size 3 x 3 x 3. Rate and Concat represent the dilation rate and the
concatenation operation, respectively
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The SSFE module mainly consists of dilated convolutions and skip connections. By
increasing the dilation rate (i.e., rate in Fig. 2), the receptive field of the convolution kernel
can be expanded while keeping the kernel size fixed, thereby improving the network
performance. Skip connections can fully utilize the multi-level features extracted by the
module, enhancing the feature representation capability of the network. Firstly, three
convolution kernels are cascaded for multi-scale feature extraction. Then, the features
extracted by each kernel are concatenated along the channel dimension through skip
connections. Finally, the channel number is unified to 16 by a convolution kernel of size
1 x1x1.

2.2 Multi-scale Feature Extraction Module

Overall Structure of the MSFE Module. Using fixed receptive field, CNNs cannot cap-
ture all details and features in the HSI. To enhance the feature representation capability
of the model, multi-scale convolutions are used to extract features of different scales. In
addition, redundant and noisy information in HSI may lead to decreased classification
accuracy. The introduction of attention mechanisms can help the model focus on pixels
and spectral bands with important information, thereby improving classification accu-
racy and performance. Therefore, we propose the MSFE module to extract multi-scale
features and highlight significant features, and the specific structure of the MSFE module
is shown in Fig. 3.

Multi-scale Feature Extraction

Multi-scale branch

input

Output

iy

Cross-attention Module

EConv+ReLU+BN [ |=Conv  P=Element-wise addition

Fig. 3. Specific structure of the MSFE module. 3 x 3, 16 represents 16 convolution kernels of
size 3 x 3, and r represents the size of dilation rate

The MSFE module consists of the multi-scale branch, the residual branch and the
cross-attention module. The multi-scale branch is constructed by dilated convolutions
and dense connections. The dilated convolutions extract features of different scales
by cascading convolution kernels with different dilation rates. The dense connections
connect the features of all previous layers to the input of the current layer, increasing
the reusability of features and avoiding information loss. The residual branch uses skip
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connections to allow shallow and deep features to complement each other, improving
the ability of the model to represent the features. The cross-attention module aims to
highlight the significant features and enhance the feature fusion of the two branches,
thereby improving the performance of the model.

As shown in Fig. 3, MSFE first uses 1 x 1 convolution kernel to unify the channel
number of the input feature x; € R****“ to 16, denoted as x; o € R**** 16, Secondly, four
convolution kernels are cascaded and dense connections are used to extract multi-scale
features, where the size and number of the four convolution kernels are 3 x 3 and 16, and
the dilation rates (i.e., r in Fig. 3) are 4, 3, 2 and 1, respectively. In dense connections,
for the /th layer, it receives x; o and all the previously extracted features, denoted as
Xi,0,Xi1,Xi2, -+ ,Xi1—1, and uses them as input to calculate the output, as shown in
Eq. (1):

Xi| = BN(B(Conv([xiﬁo, Xi1, Xi2, - ,xi,l,l]))), [1=1,2,3,4 (D)

where BN and § represent the batch normalization and ReLU activation functions, respec-
tively. [-] represents concatenation operation, Conv represents 3 x 3 convolution opera-
tion. Then, the input feature x; ¢ and the output feature x; ; of each convolutional layer
are concatenated along the channel dimension, and the output is unified to have the same
channel number as x; by a 1 x 1 convolution. In addition, in the residual branch, a 3 x 3
convolution kernel is used to convolve the input feature x;.

Cross-Attention Module. The cross-attention module aims to combine the comple-
mentary information from two different-level features to better highlight the effective
information and enhance the feature fusion of the two branches, and the specific struc-
ture is shown in Fig. 4. It mainly consists of the spectral attention block and the spatial
attention block. The former aims to generate band weights to recalibrate the importance
of each band and adjust the correlation of each band, while the latter aims to enhance
spatial information of pixels that have the same class as the center pixel and suppress
pixels from other classes. The specific implementation of the cross-attention module is
described as follows.

The features M and N extracted by the residual and the multi-scale branches have
the shape of H x W x C. The feature Fyp, € RI*WxC is obtained by adding and fusing
the two features element-by-element and sent to the spectral attention.

In spectral attention, firstly, the input features are processed by the global average
pooling and max pooling operations in two branches, respectively, to obtain Fype v and
Fype,max, whose shapes are 1 x 1 x C. Then, they are passed through the multilayer
perceptron (MLP) to obtain features F, ;pe’ avg and F, épe,max. Finally, the two obtained
features are added and normalized using the Softmax function to obtain the band weight
Wpe € R'1XC The operations above are described as shown in Eqgs. (2)—(4):

Fs/'pe,avg = S(Wl * S(WO * Fspe,avg)) 2)
F;pe,max = S(Wl * 8(W0 * Fspe,max)) 3)

Wipe = G(add [Fs/pe,avg’ Fs/pe,male) 4)
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Spectral attention block Spatial attention block

Spectral
Attention

Q=Element-wise multiplication ~ P~Element-wise addition

Fig. 4. Specific structure of the cross-attention module

where * represents the convolution operation, add[-] represents element-wise addition,
o and § represent the Softmax normalization function and ReLU activation function,
respectively. Wy and W) are the weight parameters of the two fully connected layers
sharing weights.

Then, the obtained band weights Wy, are used to recalibrate the bands of features
M and N to highlight the informative bands. Next, we additively fuse the calibrated
features to obtain the feature F,, € RHXWXC which is fed into the spatial attention.

In spatial attention, firstly, the input features are subjected to global average pooling
and max pooling operations in the two branches, respectively, to obtain Fypq ave and
Fypa,max, whose shapes are both H x W x 1, and they are concatenated along the
channel dimension to obtain Fye max € RH*WX2 Then, it is fed into a two-dimensional
convolution to obtain the spatial weight Wj,,. The operations above are described as
shown in Eq. (5):

Wipa = U(WO * Cat[Fspa,avgv Fspa,max]) (5)

where * represents the convolution operation, cat[-] represents concatenation along the
channel dimension, o represents the Sigmoid activation function, and Wy represents the
weight parameter of a 3 x 3 convolution kernel.

Then, the resulting spatial weight Wy, is used to recalibrate the spatial information
of the features to highlight the useful information. Next, we add the original features
through the skip connections and the features passed through the attention blocks to
avoid the loss of information of features with lower weights.

2.3 Multi-level Feature Aggregation Module

In deep neural networks, shallow features contain spatial details such as edges and tex-
tures, whereas they are lacking of semantic information. Conversely, deep features have
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stronger semantic information but lose spatial details. Therefore, fusing complementary
information between features at different levels can further improve the performance of
HSI classification. In this paper, by stacking MSFE modules, features at different levels
can be extracted. To fully utilize these features, we construct the MFAM module, the
specific structure is shown in Fig. 5.

Firstly, MFAM aggregates all levels of features through a top-down channel to
enhance the feature representation, as shown in Eq. (6).

Xi =8(Wi*add[xi,x,-+1]),i=0, 1,2 (6)

where * and é represent convolution operation and ReLU activation function respectively,
W, represents the weight parameter of a 3 x 3 convolution kernel, and add|-] represents
element-wise addition. Then, the enhanced features of each level are concatenated along
the channel dimension, and the 3 x 3 convolution kernel is used to unify the channel
number.

Multilevel Feature Aggregatio Module

Conv
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%
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=
(3]
Y
M<
P
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(=]
=
<
a
o
=
g
s
|

Fig. 5. Specific structure of the MFAM module

3 Experiment and Analysis

3.1 Dataset Description and Experiment Setup

Dataset Description. To evaluate the performance of the proposed method, two classic
datasets are selected for the experiments: Indian Pines (IP) and Pavia University (PU).
IP dataset is a hyperspectral remote sensing image with a size of 145 x 145. It contains
200 available spectral bands and 16 classes of land cover with a total of 10,249 labeled
samples. The PU dataset is a hyperspectral remote sensing image with a size of 610 x
340. It contains 103 available spectral bands and nine classes of land cover with a total
of 42,776 labeled samples.
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Evaluation Metrics. Overall accuracy (OA), average accuracy (AA), and Kappa coef-
ficient are used as evaluation metrics. OA indicates the ratio of the number of correctly
classified samples to the total number of samples. AA represents the average of the
accuracy values with which the samples of each class are classified. Kappa coefficient
can measure the consistency of classification results.

Experiment Setup. The Pytorch deep learning framework is used to train the network
in the experiments, and epoch and batch_size are set to 100 and 32, respectively. The
learning rate is set to 0.001, and Adam is selected as the optimization method for the
experiment. Each group of experiments is performed five times independently, and the
average values are taken as the experimental results, and the standard deviations about
three metrics are also provided.

The patch sizes (Patch_Size) in IP and PU are set to 21 and 15, respectively, and
the numbers of the principal components of PCA (PCA_Components) is set to 32. The
percent of the training samples are set to 10% and 5%, respectively.

3.2 Experiment Results and Analysis

SVM [4], SSRN [11], DFEN [12], SSFTT [18] and GAHT [19] are selected as compar-
ative methods to validate the effectiveness of MSDC-FAN. The experimental results of
these methods on the IP and PU datasets are as follows.

IP Dataset. Firstly, the IP dataset is used to evaluate the performance of the proposed
model, and the experimental results are shown in Table 1. The results of the evaluation
metrics indicate that the MSDC-FAN model proposed in this paper performs the best,
achieving the highest OA, AA, and Kappa values.

As shown in Fig. 6, SSFTT and GAHT perform poorly in the “Corn-notill” (class
2, in blue) category and at the edges of the region, while MSDC-FAN generates a more
accurate classification map. This is because MSDC-FAN not only uses cross-attention
to highlight the significant features but also fully utilizes the multi-scale and multi-level
features, which leads to better feature representation ability of the model.

PU Dataset. We further evaluate the performance of the proposed model on the
PU dataset, and the experimental results are shown in Table 2. The PU dataset has
a large number of samples and relatively balanced sample sizes for each land cover
category, so the classification results of each method are relatively ideal. The evaluation
data shows that MSDC-FAN performs the best and has relatively uniform accuracy on
each category. As shown in Fig. 7, several comparative methods perform poorly in the
“Gravel” (class 3, in orange) category, while MSDC-FAN improves the accuracy of
“Gravel” by 6.45% and 3.38% compared to SSFTT and GAHT, respectively, achieving
99.85%. This indicates that MSDC-FAN has a better ability to represent spectral-spatial
features and can distinguish spectrally similar classes well.

3.3 Parametric Analysis

Impact of Patch_Size and PCA_Components on OA. We analyze the impact of
Patch_size and PCA_Components on classification performance on IP and PU datasets.
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Table 1 Classification results of IP dataset obtained by different methods

Class SVM SSRN DFFN SSFTT GAHT MSDC-FAN
1 38.10 98.54 93.17 99.02 98.05 96.59
2 77.84 93.21 86.40 95.22 96.17 99.47
3 70.41 86.96 92.34 96.17 93.82 99.12
4 45.79 98.97 99.25 99.53 96.43 99.15
5 90.80 98.80 95.36 98.67 97.43 99.17
6 96.19 99.82 99.21 99.79 99.12 99.06
7 76.92 87.20 84.80 99.20 99.20 100
8 96.29 99.95 99.91 100 99.49 100
9 27.78 78.89 75.56 81.11 93.33 92.22
10 71.78 94.40 92.46 95.59 98.29 98.19
11 83.67 95.82 94.34 96.99 97.90 99.10
12 68.54 86.85 90.60 90.64 94.61 97.79
13 94.05 100 88.76 100 96.54 99.78
14 93.77 99.81 97.70 99.68 99.75 100
15 56.03 88.59 93.78 91.30 94.87 99.31
16 85.71 95.71 95.71 97.62 78.81 98.10
OA 80.81 95.04 93.67 96.82 97.19 99.13
+0.01 +1.01 +3.52 +0.24 +0.31 + 0.09
AA 73.35 93.97 92.46 96.28 95.86 98.57
+0.01 + 1.64 =+ 6.50 +0.70 +0.32 +0.29
Kappa 78.05 94.33 92.78 96.38 96.80 99.01
+0.01 +1.15 +4.04 +0.27 +0.35 +0.11

Fig. 6. Classification maps of the IP dataset. (a) Ground-true map. (b) SVM (OA = 80.81%). (c)
SSRN (OA = 95.04%). (d) DFEN (OA = 93.67%). (e) SSFTT (OA = 96.82%). (f) GAHT (OA
=97.19%). (g) MSDC-FAN (OA = 99.13%)

Among them, the Patch_size increases in the range of [11,21], and PCA_Components
are among [32,128] and [32,112] on IP and PU datasets, respectively. It can be seen
from Fig. 8(a) that the impact of Patch_size and PCA_Components on the OA val-
ues of IP dataset fluctuates slightly, and a local maximum region can be obtained by
selecting appropriate Patch_size and PCA_Components. As can be seen from Fig. 8(b),
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Table 2 Classification results of PU dataset obtained by different methods

Class SVM SSRN DFFN SSFTT GAHT MSDC-FAN
1 93.37 97.61 98.43 99.40 99.58 99.86
2 98.04 99.58 99.96 99.89 99.95 99.96
3 72.53 86.13 97.28 93.40 96.47 99.85
4 94.40 95.29 92.17 98.83 94.59 97.36
5 98.36 99,98 99.77 100 99.66 100
6 87.02 94.31 99.94 99.65 99.98 100
7 83.23 97.58 99.92 99.70 100 99,95
8 90.82 92.64 99.21 98.92 99.37 99.43
9 99.89 99.31 86.49 99.62 90.71 96.98
OA 93.47 97.03 98.66 99.30 99.08 99.65
+0.02 +0.18 £ 0.63 +0.15 £ 0.07 £ 0.04
AA 90.85 95.82 97.02 98.82 97.81 99.27
+0.01 +0.36 +0.85 +0.24 +0.17 + 0.04
Kappa 91.31 96.06 98.22 99.07 98.78 99.53
+0.01 +0.24 + 0.83 £ 0.20 +0.10 + 0.05

(2

Fig. 7. Classification maps of the PU dataset. (a) Ground-true map. (b) SVM (OA = 93.47%).
(c) SSRN (OA = 97.03%). (d) DFEN (OA = 98.66%). (e) SSFTT (OA = 99.30%). (f) GAHT
(OA =99.08%). (g) MSDC-FAN (OA = 99.65%)

smaller Patch_size and PCA_Components are more suitable for PU dataset. The best
classification performance is obtained when Patch_size is 15 and PCA_Components is
32.

OA of Different Models Using Different Percentages of Training Samples. Figure 9
shows the OA values of different models that use different percentages of training sam-
ples. From Fig. 9, it can be seen that the OA values of all methods increase as the
percentages of training samples increase. Among them, the OA values of SSFTT and
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GAHT are close to our MSDC-FAN, demonstrating their good classification perfor-
mance. On the whole, MSDC-FAN achieves the best results in almost all cases and it
can obtain good performance even with extremely few training samples.
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3.4 Ablation Experiments

We conduct ablation experiments about SSFE and MFAM modules on the IP and PU
datasets. Three variants of MSDC-FAN are compared with MSDC-FAN, among which
Base represents the network constructed only by MSFE. The experimental results are
shown in Fig. 10. The Base network has the worst classification performance on IP and
PU datasets. When SSFE or MFAM is added, there is a significant improvement in clas-
sification performance compared to the Base network, which verifies the effectiveness
of SSFE and MFAM. The MSDC-FAN network has the best classification performance,
which reflects that using two modules at the same time can not only fully extract spectral-
spatial features, but also make full use of multi-level features, which further enhances

the ability of the network to represent the features, thus contributing to the improvement
of classification performance.
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Fig. 10. Ablation experiments on IP and PU datasets. (a) IP dataset. (b) PU dataset

4 Conclusion

In this paper, we propose a Multi-scale Densely Connected and Feature Aggregation
Network (MSDC-FAN) to improve the performance of hyperspectral image (HSI) clas-
sification. The experimental results show that the proposed MSDC-FAN performs better
than several state-of-the-art methods in almost all cases, because MSDC-FAN has better
ability of spectral-spatial feature representation by fully utilizing multi-scale and multi-
level features. MSDC-FAN is able to perform well even with extremely few training
samples. In the future, we will investigate how to improve HSI classification performance
further with limited samples.
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