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Abstract. Topic modeling is used in the analysis of textual data to
estimate the underlying topics within the dataset. Knowledge distilla-
tion has been attracting attention as a means of transferring knowl-
edge from a large teacher model to a small student model in the field
of deep learning. Knowledge distillation can be categorized into three
types depending on the type of knowledge to be distilled: response-based,
feature-based, and relation-based. To the best of our knowledge, previous
studies on knowledge distillation used in topic models have all focused
on response and/or feature knowledge, but these methods cannot trans-
fer the structural knowledge of the teacher model to the student model.
To solve this problem, we propose a generalized knowledge-distillation
method that combines all three types of knowledge distillation, includ-
ing the relation-based knowledge distillation with contrastive learning,
which had not been used for neural topic models. Our experiments show
that our neural topic model, trained with the proposed method, improves
topic coherence compared to baseline models without knowledge distil-
lation.
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1 Introduction

Topic modeling is a common method for estimating latent topics behind data
from documents and has been applied to various tasks. A typical topic model,
latent Dirichlet allocation (LDA) [2], generates documents probabilistically
assuming that there are multiple latent topics behind each document. LDA is
typically trained using variational Bayesian methods; however, the challenge is
that a new inference process needs to be mathematically derived depending on
the purpose of the model. Neural topic models have been proposed to solve this
problem. One such model is Srivastava et al.’s PRODLDA [8], which is based
on a variational autoencoder (VAE) [6]. It can approximate complex posterior
distributions using a flexible inference network that is based on neural networks.
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In deep learning, knowledge distillation has attracted attention as a method
for transferring knowledge from a large-scale teacher model to a small-scale stu-
dent model. Knowledge distillation can be classified into three types depending
on the type of knowledge to be distilled: response-based, feature-based, and
relation-based [4]. In a previous study on knowledge distillation for neural topic
models, Hoyle et al. proposed a response-based knowledge-distillation method
that trains student neural topic models using the output of BERT, which is pre-
trained on large corpora, as the teacher model [5]. Adhya et al. also conducted
response-based and feature-based knowledge distillation simultaneously using a
large neural topic model as the teacher and a small neural topic model as the
student [1]. However, these methods focus only on the individual sample repre-
sentations, which means that they are unable to transfer structural knowledge,
the relationships between samples, from the teacher model to the student model.

To solve this problem, we propose a relation-based knowledge-distillation
method using contrastive learning for neural topic models. The method uses
contrastive loss to distill the structural knowledge of the teacher by learning
the latent representations of the student model, while maintaining the relation-
ships in the individual document representations generated by the teacher model.
We further propose a generalized knowledge distillation by combining response-
based, feature-based, and relation-based knowledge distillation. Through eval-
uation experiments measuring topic coherence, we show that the neural topic
model trained using the proposed method improves on a baseline neural topic
model [3] and its variant.

2 Overview of Neural Topic Models

As an earlier neural topic model, PRODLDA [8] was developed using VAE [6].
A generalization of PRODLDA is SCHOLAR [3]. These neural topic models
replace the Dirichlet prior used in the original LDA [2] with a logistic normal
prior (LN ) to facilitate inference. Now suppose wBoW

i is a V -dimensional vec-
tor counting the words in document wi, and zi is its corresponding topic vector.
The VAE-based neural topic model learns to minimize the Kullback-Leibler (KL)
divergence between the true posterior distribution p(zi) and variational distri-
bution q(zi|wBoW), which cannot be obtained analytically. The evidence lower
bound (ELBO) is expressed as

ELBO = Eq(zi|·) [LRE ] − DKL

[
q
(
zi | wBoW

i

) ‖p (zi | α)
]
, (1)

where LRE = (wBoW
i )� log σ(ηi). The notation σ(·) is a softmax func-

tion, σ(ηi) corresponds to the word distribution (multinomial distribution
over the vocabulary) of document wi, LRE is the reconstruction error, and
DKL

[
q
(
zi | wBoW

i

) ‖p (zi | α)
]

is the KL divergence between q(zi|wBoW
i ) and

p(zi|α). As in VAE, the inference process uses a multilayer neural network to
generate the variational parameters. Since the logistic normal distribution is
assumed for the prior distribution of z, the inference network outputs a mean
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vector μ(·) and diagonal covariance matrix σ2(·). The variational distribution is
q(zi | wBoW

i ) = LN (μi,σi).

μi = Wμπi + bμ, log σ2
i = Wσπi + bσ, πi = f

(
WwwBoW

i

)
, (2)

where f is the multilayer perceptron and the variational parameters are all the
weight matrices Ww, Wμ, and Wσ and biases bμ and bσ in Eq. (2).

Fig. 1. Conceptual diagram of generalized knowledge distillation.

3 Methodology

On the basis of the neural topic model SCHOLAR [3], our method unify
response-based and feature-based knowledge distillation using transfer learning
and relation-based knowledge distillation using contrastive learning. It differs
from previous methods in that we apply relation-based knowledge distillation [9]
to the neural topic model, which has not been studied previously, and in that
we propose to integrate the three types of knowledge distillation in a unified
framework. As knowledge distillation require s employing an identical dataset
for both student and teacher models, we initialize the teacher model’s weight
matrix Ww for the target data by leveraging the weight matrix Ww pre-trained
on a source data. Figure 1 shows a conceptual diagram of generalized knowledge
distillation.

For the inference process of neural topic models described in Sect. 2, we use
the following objective function instead of LRE in Eq. (1),

L = (1 − γ)LRE + γLResKD + λ1LFeaKD + λ2LRCD. (3)

Here, LResKD, LFeaKD, and LRCD corresponds to response-based, feature-
based, and relation contrastive distillation, respectively. The details of these
terms are explained in the rest of this section. The notations γ, λ1, λ2 are hyper-
parameters to adjust the effect of each term.
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Response-Based Knowledge Distillation: The generative process of the models
trained with our proposed method is the same as that of SCHOLAR. The infer-
ence process uses the SCHOLAR inference network but adds a pseudo-document
wt

i to Eq. (2), which is generated from the logit of the teacher model.

πi = f
([
WwwBoW

i ;Wwtwt
i

])
, (4)

where
[
WwwBoW

i ;Wwtwt
i

]
denotes the horizontal concatenation of WwwBoW

i

and Wwtwt
i . To apply knowledge distillation to a neural topic model, the fol-

lowing objective function LResKD is used

LResKD = τ2(wt
i)

� log ŵi, wt
i = σ(ηt

i/τ)Ni, ŵi = σ(ηi/τ), (5)

where wt
i is the probability estimated from the logit ηt

i of the teacher model,
scaled by the document length N and treated as a smoothed pseudo-document,
and τ is the temperature of the softmax function.

Feature-Based Knowledge Distillation: Feature-based knowledge distillation dis-
tills the topic multinomial distribution of the documents from the teacher model
to the student model as knowledge. The objective function of feature-based
knowledge distillation is expressed as

LFeaKD = −
∑

(zt
i − zs

i )
2 (6)

where zt
i and zs

i indicate the latent representations (i.e., features or topics)
generated by the teacher and student models, respectively, for document wi.

Relation Contrastive Distillation: Now, we describe the method for achieving
relation-based knowledge distillation by maximizing the mutual information of
the relation Y t between the latent representations of the teacher model and that
Y t,s between the latent representations of the teacher model and student model.
The idea is inspired by [9]; however, we employ it in the context of inference of
neural topic models. Let p(W ) be the empirical distribution of the document set
W = {wi : i = 1, ...,D} of the training data and model the conditional marginal
distributions of topic relations p(Y t|W ) and p(Y t,s|W ) as follows.

wi,wj ,wm,wn ∼ p(W ), yt
i,j = gt(zt

i ,z
t
j), yt,s

m,n = gt,s(zt
m,zs

n), (7)

where zt
i is the latent representation generated by the decoder of the teacher

neural topic model for document wi, and zs
n is that generated by the student

neural topic model for document wn. The gt is a network that computes the
relation between the latent representations of the teacher model and gt,s is a
network that computes the relation between the latent representations of the
teacher model and student model. We also model p(Y t, Y t,s|W ) as follows.

wi,wj ∼ p(W ), yt
i,j = gt(zt

i ,z
t
j), yt,s

i,j = gt,s(zt
i ,z

s
j ). (8)
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The mutual information of p(Y t|W ) and p(Y t,s|W ) is expressed as follows.

I(Y t, Y t,s) = Ep(Y t,Y t,s|W ) log
p(Y t, Y t,s|W )

p(Y t|W )p(Y t,s|W )
. (9)

To derive the objective function, we define a latent variable δ that indicates
whether the relation pairs (yt,yt,s) are generated from the joint distribution or
product of marginal distributions. When δ = 1, it means that yt and yt,s are
computed by the same input pair, as in Eq. (8), and when δ = 0, it means that
yt and yt,s are computed by independently selected input pairs, as in Eq. (7).
Maximizing the mutual information is equivalent to maximizing the following
objective function LRCD of relation contrastive distillation [9].

LRCD =
∑

q(δ=1)

log h(yt,yt,s) + N
∑

q(δ=0)

log[1 − h(yt,yt,s)], (10)

where{(yt,yt,s)|δ = 1} is a positive pair and {(yt,yt,s)|δ = 0} is a negative
pair, and N is the number of negative pairs for a positive pair. h is a model for
approximating true distribution q(δ = 1|Y t, Y t,s), where h : {Y t, Y t,s} → [0, 1].
Not only h, but also the student network and subnetworks are optimized when
LRCD is minimized.

Table 1. Datasets that differ in total number of documents D and vocabulary size. V

Wiki (Source) IMDb (Target) 20NG (Target) BBC (Target)

D 6,078,287 50,000 18,745 2,225

V 50,000 5,000 1,995 9,635

Table 2. NPMI and sample standard deviation.

Model IMDb 20NG BBC

SCHOLAR 0.164 (0.006) 0.316 (0.005) 0.279 (0.011)

SCH.+Wiki 0.162 (0.003) 0.321 (0.003) 0.280 (0.006)

SCH.+ResKD+FeaKD+RCD 0.167 (0.002) 0.349 (0.010) 0.321 (0.012)

4 Experiments and Results

We used the English Wikipedia dataset (Wiki)1 as the source data for pre-
training SCHOLAR, and the IMDb dataset of movie reviews (IMDb)2, 20News-
1 https://huggingface.co/datasets/wikipedia.
2 http://ai.stanford.edu/∼amaas/data/sentiment/.

https://huggingface.co/datasets/wikipedia
http://ai.stanford.edu/~amaas/data/sentiment/
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groups dataset (20NG)3, and BBC dataset (BBC)4 as the target data to
be analyzed. We split the datasets into training, development, and test sets
(train/dev/test) in the following proportions: 20NG: 48/12/40, IMDb: 50/25/25,
BBC: 70/15/15. The vocabulary of the Wiki dataset used for the pre-training
was formed by keeping the top 50,000 words that occurred in most documents.
Details of the datasets are listed in Table 1. We set the number of topics to 50
in the evaluation experiment. We used Optuna5 to tune the hyperparameters τ ,
γ, λ1, and λ2.

The models trained with the proposed method were evaluated using nor-
malized pointwise mutual information (NPMI) [7], a measure of topic coher-
ence based on the co-occurrence of words in a corpus, using a test set of the
top 10 words for each topic in the same corpus. Table 2 lists the experimental
results. The NPMI in the table is the average of five runs with different random
initialization. The baseline models are SCHOLAR [3] and SCH.+Wiki, which
was trained by transferring parameters from the SCHOLAR pre-trained on the
large dataset, i.e., Wiki, and used as a teacher model in the knowledge distil-
lation. The model (SCH.+ResKD+FeaKD+RCD) trained using the proposed
method, which combines the three types of knowledge distillation (response-
based, feature-based and relation-based), achieved the best NPMI on all three
datasets compared with the two baselines: SCHOLAR [3] and SCH.+Wiki. We
found that the SCH.+Wiki achieved better NPMI than the original SCHOLAR
on the 20NG and BBC datasets, but slightly worse on the IMDb dataset.

5 Conclusions

We proposed a generalized knowledge distillation for training neural topic mod-
els, by unifying three types of knowledge distillation: response-based, feature-
based, and relation-based. The response-based and feature-based knowledge-
distillation are based on parameter transfer from a teacher model trained with a
larger dataset. The relation-based knowledge distillation is based on contrastive
learning that transfers topic relationships of a teacher model into a student
model. This is the first work on relation-based knowledge distillation for neu-
ral topic models, to our knowledge. Evaluation experiments indicated that all
three types of knowledge distillation improved the performance of the neural
topic models trained with our method in several datasets. For future work, we
plan to investigate which type of teacher is best suited for each of dataset to be
analyzed. The use of large language models as teacher models is also a possible
extension of our work.
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3 https://github.com/akashgit/autoencoding vi for topic models.
4 http://mlg.ucd.ie/datasets/bbc.html.
5 https://optuna.org/.

https://github.com/akashgit/autoencoding_vi_for_topic_models
http://mlg.ucd.ie/datasets/bbc.html
https://optuna.org/
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