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Preface

Greetings and welcome to 20th Pacific Rim International Conference on Artificial
Intelligence (PRICAI 2023). It was an honor to convene this significant event in a hybrid
format in Jakarta, Indonesia. It was indeed a privilege for the Faculty of Computer
Science at Universitas Indonesia to undertake the role of hosting these pivotal discus-
sions that reach beyond the academic realm, advancing societies and economies across
the Pacific Rim and Oceania.

This year, we received a remarkable 422 submissions: 354 for the Main track and
68 for the AI-Impact track. Every submission underwent a rigorous double-blind review
process, receiving a minimum of 3 reviews, and in some cases up to 6. Throughout the
process, the program committee (PC) members engaged in discussions, with additional
reviews sourced as needed, prior to finalizing recommendations. The program chairs
then assessed the reviews and comments, calibrating discrepancies in individual reviews
and ratings to maintain decision consistency. The collective effort of the entire program
committee, including chairs, 409 PC members, and 91 external reviewers, was monu-
mental in ensuring a fair and consistent selection process. We ultimately accepted 95
regular papers and 36 short papers for oral presentation, resulting in a 22.51% accep-
tance rate for regular papers and an overall acceptance rate of 31.04%. Additionally, a
comprehensive quality control procedure was introduced for camera-ready papers. The
aim was to prompt authors to incorporate the feedback provided by PC members and
reviewers into their final submissions. Content similarity checks were also performed to
ensure that the similarity rate did not exceed 15%.

The technical program was comprehensive and intellectually engaging, featuring
five workshops, nine tutorials, two panel discussions, and the main conference sessions.
All regular and short papers were orally presented over three days in parallel and in
topical program sessions. We were honored to have some of the brightest minds in AI
to share their insights and enrich our collective understanding: Thomas Anton Kochan
(Massachusetts Institute of Technology, USA), Hanna Kurniawati (Australian National
University, Australia), Anand Rao (Carnegie Mellon University, USA), and Geoff Webb
(Monash University, Australia).

A heartfelt thanks was expressed towards the organizing committee for their tireless
and unwavering efforts that facilitated the success of this event. A special recognition
to Adila Alfa Krisnadhi for his leadership on local arrangements. We would also like to
acknowledge our workshop and tutorial organizers, who formed the core of our technical
program. These dedicated individuals brought a diverse range of expertise that promised
to deepen our exploration of AI technologies.

We would like to thank our advisory board members for their invaluable guidance
during the planning stages. A special recognition to Abdul Sattar for his extraordinary
contribution towards planning, execution, and a conference site visit that contributed
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to the success of PRICAI 2023. Furthermore, we extend our gratitude to the PRI-
CAI Steering Committee for entrusting us with the privilege of hosting this impactful
conference.

Wewould not havebeenherewithout the support of our sponsors,whose commitment
enabled us to keep pushing boundaries. To them, as well as all participants in this event,
thank you.

As we delved into the various topics that PRICAI 2023 had to offer, let us remind
ourselves that our deliberations have a lasting impact on the future of AI in the Pacific
Rim and beyond. We genuinely hope that our time spent at PRICAI 2023 will pave the
way for innovations that are both groundbreaking and beneficial.

November 2023 Fenrong Liu
Arun Anand Sadanandan

Duc Nghia Pham
Dickson Lukose
Petrus Mursanto
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A Spatial Interpolation Method Based on BP
Neural Network with Bellman Equation

Liang Zhu, Haiyang Wei(B), Xin Song, Yonggang Wei, and Yu Wang(B)

Hebei University, Baoding 071002, Hebei, China
hywhbu@163.com, wy@hbu.edu.cn

Abstract. Spatial interpolation is a valuable technique that uses the data of a sam-
ple set to estimate the property values at unsampled locations. Neural networks
for spatial interpolation can capture spatial trends effectively; however, they may
not be optimal when a strong local correlation is present, which leads to unreli-
able outcomes. Neural Network Residual Kriging methods use Kriging to handle
residuals, assuming strict conditions such as the stationarity of the random field
and stable spatial variability. In many applications without these strict conditions,
however, those Neural Network interpolation methods have limitations for obtain-
ing highly accurate estimates. To address this problem, in this paper, we propose
a new spatial interpolation method, called NNRB, based on the mechanisms of
BP Neural Network with Bellman Equation. Firstly, our NNRB method employs
a BP neural network for capturing nonlinear relationships and spatial trends in the
data of a sample set. Secondly, NNRB uses Bellman Equation to handle residuals
by accounting for interactions between multiple adjacent data and reducing the
influence of distant data on the current data. Our NNRB method is utilized for a
system of soil testing and formulated fertilization for intelligent agriculture. We
compared NNRB with four state-of-the-art interpolation methods, and the results
show that our NNRB method outperforms the three methods significantly and is
highly competitive with one approach.

Keywords: Spatial Interpolation · Backpropagation Neural Network · Bellman
Equation · Interpolation Residual · Data Gridding · Markov Reward Process

1 Introduction

Continuous spatial data (e.g., geological data, meteorological data, etc.) is a fundamen-
tal requirement for various projects, systems or scientific studies. In many applications
(say, formulating fertilizer recommendations), however, high-density sampling cannot
be performed due to time and capital costs, technical means, terrain factors, etc. Geo-
graphical First Law suggests that characteristic values of spatially close points are more
likely to be similar, while distant points are less likely to have similar values [1]. Based
on this Law, various spatial interpolation methods have been proposed to fill gaps in
incomplete data and applied in hydrology [2], ecology [3], agriculture [4], economics
[5], and other fields [6]. For instance, one of the most popular methods for spatial mod-
eling and prediction is Ordinary Kriging (OK) [7], which is a regression algorithm using

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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the covariance function to estimate a random process/field [8]. Two conditions must be
met for Kriging method to be applicable: Firstly, the random field has a mathematical
expectation that is location-invariant. Secondly, a suitable covariance function is found
to describe the spatial correlation structure of the random field.

A three-layer neural network can theoretically approximate any complex function
[9]; thus, several kinds of Neural Network methods are studied by using the non-linear
feedback mechanism to interpolate the estimated value of a predicted property (e.g.,
nitrogen, phosphorus, or potassium, etc.). For example, Backpropagation Neural Net-
work Interpolation (BPNNI) [10] and Neural Network Residual Kriging (NNRK) [11]
are two state-of-the-art ones in the family of Neural Network methods. However, the
interpolated result for a certain point in BPNNI-like methods is exclusively derived from
auxiliary data at that point, regardless of the spatial autocorrelation of the surrounding
measurement data [12]. The NNRK-like ones entail forecasting trends using a neural
network, computing predicted residuals, and subsequently fitting these residuals using
OK; however, OK has its own limitations, such as strict assumptions as mentioned above
and difficulty in finding a reliable geostatistical model that suits all residual data.

To address the above problems,wediscuss a newkindof spatial interpolationmethod.
The contributions of this paper are summarized below: (1) For a spatial sample dataset
with the values of locations and properties, we propose a novel spatial interpolation
method by employing the mechanisms of BP neural network and Bellman Equation,
namely Neural Network Residual Bellman (NNRB), which can be used to overcome the
limitations of some neural network interpolation methods (say, NNRK, and BPNNI). (2)
We utilize the griddingmethod to discretize the prediction errors (i.e., residuals) between
the predicted values of a BP neural network model and the actual observed/measured
values in the sample dataset, and then we handle the residuals by updating the grid itera-
tively with the Bellman Eq. (3) Our NNRB method is applied to a system of soil testing
and formulated fertilization for intelligent agriculture; moreover, extensive experiments
are conducted to compare NNRB with four methods over four datasets of soil samples.

The rest of this paper is organized as follows. Section 2 briefly reviews related work.
In Sect. 3, our method NNRB is proposed. Section 4 presents the experimental results.
Finally, Sect. 5 concludes the paper.

2 Related Work

In this section, we provide a brief review of related work concerning spatial datasets.
In 2019, Sergeev et al. used an artificial neural network (ANN) to simulate the non-
linear trends of extensive data and then modeled the residuals using Ordinary Kriging
[13]. Their model showed higher accuracy in estimation compared to traditional BPNNI
models. In 2020, Zhu et al. utilized conditional generative adversarial neural networks
(cGANs) for altitude interpolation in China, and the experimental results in [14] showed
that cGANs have excellent performance in the fields of temperature, rainfall, altitude and
so on. In 2023, Luo developed a Generalized Heterogeneity Model (GHM) to enhance
the interpolation accuracy ofmarine chlorophyll [15]. It is also pointed out that GHMhas
the potential to be integrated with machine learning and advanced algorithms to improve
spatial prediction accuracy in broader fields. In 2023, Lee observed challenges in apply-
ing traditional regionalization techniques to address extreme weather data acquired from
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unevenly distributed meteorological stations [16]. The Markov chain random field tech-
nique was employed to complete the dataset, followed by the application of the Kriging
method to assess precipitation extremes. Results highlight the method’s effectiveness in
addressing data gaps within unmeasured regions.

Neural networks are able to fit function relationships well; however, there are sig-
nificant flaws in their ability to estimate the residuals, which limits the use of neural
networks for spatial interpolation purposes. We will propose a new method, namely
NNRB, to make up for the flaws and improve the interpolation accuracy.

3 NNRB Method

The main idea of the Neural Network Residual Bellman (NNRB) method proposed in
this paper is as follows: Firstly, the spatial trends t∗BPNN (·) are modeled by a BP neural
network (BPNN). Secondly, the residual r∗BE(·) is estimated by the Bellman Equation.
Finally, for a vector u = (c1, c2, ···, cq), the NNRB estimator denoted by e∗

NNRB(u) is
defined by Formula (1), which is the summation of the spatial trends t∗BPNN (u) and the
residual r∗BE(u).

e∗
NNRB(u) = t∗BPNN(u) + r∗BE(u) (1)

The flow diagram of the NNRB method for spatial prediction of soil nutrient data is
presented in Fig. 1.

Fig. 1. Flow diagram of NNRB method for spatial prediction of soil nutrient data

3.1 BP Neural Network

Interpolation methods typically deal with small datasets. However, utilizing complex
neural networks on these datasets may lead to overfitting. Despite its simplicity, the
BP neural network has a strong theoretical foundation and learning mechanisms, which
make it a commonly used model in interpolation problems. In the spatial interpolation
problem, the sample dataset can be defined as a tuple set T = {t1, t2, ···, tn} [15] (|T|
means the number of tuples in T). The schema of T is T(A1, A2, ···, Ad , B1, B2, ···,
Bp, C1, C2, ···, Cq) = T (S, Z, U), where S = (A1, A2, ···, Ad) is a set of independent
variables, Z = (B1, B2, ···, Bp) is a set of covariates, and U = (C1, C2, ···, Cq) is a set of
dependent variables. Each tuple ti in T is defined as ti = (ai1, ai2, ···, aid , bi1, bi2, ···, bip,
ci1, ci2, ···, ciq) = (si, zi, ui) ∈ T, where si = (ai1, ai2, ···, aid) is a vector of the values
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of independent variables, zi = (bi1, bi2, ···, bip) is a vector of the covariate values, and
ui = (ci1, ci2, ···, ciq) is a vector of the values of the dependent variables. Therefore, T
= {(s1, z1, u1), (s2, z2, u2), ···, (sn, zn, un)}.

For instance,T is a soil sample set in our experiment, inwhich thed (=2) independent
variables are location variables such as the latitude and longitude, and the covariates
are various terrain factors such as elevation, slope, aspect, and slope gradient change
rate, while the dependent variables are the properties such as organic matter, total
nitrogen, available phosphorus, quick-acting potassium, and slow-acting potassium. For
a interpolation point t = (a1, a2, b1, b2, ···, bp, x1, x2, ···, xq) = (s, z, x) where s = (a1,
a2) and z = (b1, b2, ···, bp) are known, we will predict x = (x1, x2, ···, xq) by the sample
set T with our NNRB method.

We design the structure of the BP neural network (BPNN) used in the NNRBmethod
as follows. The number of input layer nodes is determined by the dimensionality of the
longitude and latitude and the dimensionality of the geographic attributes. The number
of nodes in the hidden layer in our model is defined by the empirical Formula (2).

H = (I + O)1/2 + α (2)

where H is the number of hidden layer nodes, I is the number of input layer nodes, O is
the number of output layer nodes, and α is an integer [17]. We predict one property at a
time, then O = 1, i.e., the output layer contains one node. To eliminate the influence of
the value units on the NNRB method, the data need to be normalized by

w∗
i = (wi−wmin)/(wmax−wmin) (3)

where wmax and wmin are the maximum and minimum values of each dimension value
wi (e.g., wi may be the value of latitude or nitrogen) for a sample point.

After the dataset T is cleaned, normalized and randomly shuffled, T will be divided
into five subsets T1, T2, T3, T4 and T5, satisfying T = T1 ∪ ··· ∪ T5, T i ∩ T j = ∅ and
|T i | = |T j | (1 ≤ i �= j ≤ 5). Then we obtain four datasets: D1 = T2 ∪ T3 ∪ T4, D2 = T1
∪ T3 ∪ T4, D3 = T1 ∪ T2 ∪ T4 and D4 = T1 ∪ T2 ∪ T3. For each i (1 ≤ i ≤ 4), let Di

be the training set, while both T i and T5 be the test set. We use Di to train a BP neural
network, obtain predicted values yi = (yi1, ···, yik) for the subset T i and the prediction
y

′
i = (y

′
i1, ···, y′

ik) for T5. Then, we calculate the residuals {εi: i = 1, ···, 4} for the four
subsets {T i: i = 1, ···, 4} using their actual observed/measured values vi = (vi1, ···, vik),
that is, εi = (εi1, ···, εik) = yi − vi = (yi1 − vi1, ···, yik − vik). Let residual ε5 for subset
T5 be an empty set (i.e., ε5 = ∅). Thus, we obtain the five residual datasets with the
format (S, ε), in which S = (A1, A2, ···, Ad) is a set of d location coordinates (say, d = 2
for the latitude and longitude in our experiments) of tuples, and ε is the corresponding
residual values for the tuples.

3.2 Data Gridding

As depicted in Fig. 2, for the sample set T, a grid technique will be used in our NNRB
method to handle the residuals [18]. Firstly, the minimum Euclidean distance dmin =
min{d(ti[S], tj[S]): 1≤ i �= j≤ |T|} is applied as the diagonal length of the grid cell, where
d(ti[S], tj[S]) is the Euclidean distance between the location coordinates (e,g., latitude
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and longitude) in the residual dataset with the format (S, ε). Secondly, according to the
location coordinates of each residual value, its relative position was identified within the
grid. For arbitrary ti and tj in a cell, therefore, if the diagonal length of this cell is less
than or equal to dmin, then ti and tj represent the same point. Finally, each grid cell is
set to contain at most one residual value, which in general leads to a sparse grid.

In Fig. 2(a), gray and blue colors are employed to distinguish empty and non-empty
cells, respectively. As an efficiency enhancement strategy, the diagonal length of the
cell is increased progressively by a certain factor; meanwhile, the placement records of
residual values aremaintained. In case of a location conflict, subsequent points are placed
in an adjacent position to the conflicting point, such as its top, bottom, left or right side.
We ensure the overall relative position of each point remains unchanged but limit the
number of moved points to within 2% of the total points. The maximum diagonal length
of the cells within the range is used in the scaled grid, as demonstrated in Fig. 2(b). We
designate the above subset T5 of T as the test set and use an orange cell to illustrate the
location of a point from T5 in Fig. 2(c). Under the condition of keeping the original grid
data value unchanged, the gray grid cells are iteratively updated to describe the updated
situation. The final result of the iteration is represented using a green cell, as shown in
Fig. 2(d), where the interpolation outcome of a point from T5 is displayed in the pink
cell.

(a) placement               (b) scaling             (c) partitioning         (d) completed

Fig. 2. Schematic of data gridding

3.3 Bellman Equation Processes Residuals

Considering a stochastic/random process, if the conditional probability distribution of
the future state given the present and past states depends only on the present state and is
independent of the past states of the process, then this process is called aMarkov process
[19], which can be defined by Formula (4).

P(ωt+1|ωt) = P(ωt+1|ω1, · · ·, ωt) (4)

Motivated by the idea of the Markov process, we assume that residual values are
influenced only by the values of their neighbors [20].A cellwith adjacent edges is defined
as a neighboring cell in this paper. Figure 3(a) shows the spatial relationship between
the sampling points and their neighbors. Light-colored cells represent the neighbors
of dark-colored cells. A Markov reward process (MRP) denoted by (Ω, P , Φ, γ) is
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a valuable extension of Markov process, where Ω is the finite set of states. The state
transition matrix, denoted asP , describes the conditional probability that the stateωwill
transition to another state ω

′
at time t + 1, given its current state at time t [21], which is

expressed by Formula (5).

ωω' = P(ωt+1 = ω'|ωt = ω) (5)

In the residual grid, as shown in Fig. 3, each cell can be viewed as a state, and the
state transition probability is used tomeasure the proportion of influence that neighboring
cells have on the current cell [22]. For simplicity, we assume that each neighbor has the
same influence. For example, if cell ω8 has three neighbors, ω

′
5, ω

′
7, and ω

′
9, then the

influence of ω
′
5, ω

′
7, and ω

′
9 on ω8 is equal, with a proportion of 1/3 for each, as shown

in Fig. 3(b) and Fig. 3(c).
In (Ω, P , Φ, γ),Φ is defined by Formula (6), which is the expected reward that state

ωt at time t will receive at the next time step (t + 1), where Rt+1 is the actual reward that
the state ωt at time t will receive at the next time step (t + 1).

Φ(ω) = E(Rt+1|ωt = ω) (6)

In (Ω, P , Φ, γ), γ (0 ≤ γ ≤ 1) is the discount factor. We use γ to measure the degree
of spatial correlation contained within the residual grid [19].

(a) neighborship (b) equal-weight (c) weight matrix

Fig. 3. Illustration of neighboring cells and their influence

In aMarkov reward process, the returnGt is defined as the sum of rewards discounted
by a factor γ, which is obtained from a starting state ωt at time t to the terminal state
ωt+K+1, as shown in Formula (7).

Gt = Rt+1 + γRt+2 + · · · + γ KRt+K+1 =
∑K

k=0
γ kRt+k+1 (7)

The expected return of a state is called its value function, defined by Formula (8).

v(ω) = E(Gt |ωt = ω) (8)

In our residual grid, we use the value function of a state as the value of the grid,
which is calculated by using the Bellman Equation with Formula (9).

v(ω) = Φ(ω) + γ
∑

ω′∈Ω
Pωω′v(ω′) (9)
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The discount factor γ is utilized to quantify the correlation among points.We traverse
the scaled interpolation grid and remove the value of a non-empty cell with a probability
based on the subsampling ratio. This process results in the generation of a subsampled
grid after a single pass of traversal. We determine the best value of γ on the subsampled
grid utilizing a random search method and use it as the optimal discount factor for the
entire grid.

The value of the current cell is calculated as the weighted average of its neighbors.
For simplicity, the values of a reward function Φ(ω) for all cells are set to 0 during the
calculation of all cell values. As an example, Formula (10) is the result of substituting
actual values into Formula (9) for cell ω8 in Fig. 3(b).

v(ω8) = γ (
1

3
v(ω′

5) + 1

3
v(ω′

7) + 1

3
v(ω′

9)) (10)

Formula (9) is used to update the subsampled grid. For a grid with I × J cells, we use
δ to record the magnitude of each update. In Formula (11), v(i, j) and v*(i, j) represent
the values before and after the update at position (i, j). When the magnitude is no more
than a threshold, we consider the model to have converged and stopped iterating; then
the interpolated residual grid is returned.

δ = 1

I × J

∑I

i=1

∑J

j=1

∣∣v(i, j) − v∗(i, j)
∣∣ (11)

The best value of γ is obtained through the random search function thatminimizes the
root mean square error of the subsampled grid interpolation. In the entire residual grid,
we use this γ, Formula (9) and Formula (11) to update the value of each cell iteratively.
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4 Experimental Results

The program is written using Python 3.11 and PyTorch 1.13.1 CPU version, and the
experiments are conducted on a PC with an Intel(R) Core(TM) i5-10505 CPU @
3.20 GHz and 16 GB of RAM.

4.1 Parameters and Settings

Four real-world soil datasets from different regions of China are used in our experiments,
and the properties of the four datasets include organic matter (or om for short), total
nitrogen (tn), available phosphorus (ap), quick-acting potassium (qak), or slow-acting
potassium (sak). The dataset Tangshan (om, tn, ap, qak, sak) comes from [23]. The
three datasets Togtoh (tn, ap, qak), Hohhot (tn, ap, qak), and Baiyin (tn, ap, qak) can be
obtained from [24], and the values were extracted using ArcGIS software.

For each dataset, we conducted cross-validation by randomly selecting 80% of the
tuples from it for spatial interpolation and using the remaining 20% for validation. For
the same dataset and property, we ensured consistent use of the same training and testing
sets. The Root Mean Square Error (RMSE) defined by Formula (12) are used to measure
the accuracy of each interpolation method, where n is the number of sample points
involved in the validation, x

′
i means the predicted value of the i-th predicted point, and

xi is the actual observed/measured value of the i-th predicted point. A smaller RMSE
indicates a higher accuracy of the measurement data.

RMSE =
(
(1/n)

∑n

i=1
(xi−x′

i)
2)1/2

)
(12)

The parameters used in our method (or others) over four soil datasets include data
size, number of training epochs, and maximum expanded ratio of initial residual grid.
The parts of these parameters are illustrated in Table 1.Moran’s I and the optimal value
of γ for the residual grid of each property in different datasets are illustrated in Table 2.

Table 1. Parameters of BP Neural Network and Data Gridding

Tangshan Togtoh Baiyin Sanyuan

Data size 450 2000 1740 670

Epochs 200 450 350 200

Expanded ratio 726 349 519 284

We will compare our NNRB method with four representative or state-of-the-art
interpolation methods: OK [7], CAIDWR [23], BPNNI [10], and NNRK [11]. The
performance of the baseline methods was evaluated on various datasets and properties,
andwedetermined their optimal parameters. Subsequently, the best results of the baseline
methods were compared with our proposed approach. Specifically, we computed the
residual prediction value ε5 and added it to y

′
i (1 ≤ i ≤ 4). This step produced four sets

of NNRK results, which were then averaged to obtain the final prediction outcome.
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Table 2. Parameters of Moran’s I and γ used in Bellman Equation

om tn ap qak sak

Tangshan Moran’s I 0.3016 0.4988 0.4077 0.1172 0.5314

γ 0.5418 0.4926 0.4127 0.3633 0.2998

Togtoh Moran’s I - 0.8659 0.7720 0.7886 -

γ - 0.2797 0.3314 0.1091 -

Baiyin Moran’s I - 0.8463 0.7266 0.7033 -

γ - 0.1942 0.3655 0.3716 -

Sanyuan Moran’s I - 0.5794 0.8255 0.8651 -

γ - 0.4122 0.4126 0.4371 -

4.2 Results of Spatial Interpolation Over Soil Nutrient Datasets

Table 3 illustrates the experiment results with five spatial interpolation methods over the
four datasets. Our NNRBmethod outperforms the other four methods over the Tangshan
dataset with five properties and the Baiyin dataset with three properties. For Togtoh with
three properties and Sanyuan with three properties, our NNRB method outperforms the
OK, NNI, and NNRK methods; meanwhile, our NNRB method and CAIDWR have
similar performances, in which the CAIDWR method slightly outperforms our NNRB
for Togtoh (tn, ap) and Sanyuan (tn), but slightly underperforms our NNRB for other
properties over these two datasets. Moreover, the accuracy of our NNRB is much better
than that of the five OK-like and IDW-like methods as the baselines of the CAIDWR
method in [23]; the results are omitted due to space limitations.

The CAIDWR method clusters sample points with similar property values and uses
only relevant samples in the cluster to minimize the impact of irrelevant samples on
the interpolation results. It optimizes alpha parameters based on local spatial patterns
and adapts results using data trends. These factors actually make the interpolation of
CAIDWR higher accuracy than five state-of-the-art OK-like and IDW-like methods.
The NNRK overcomes the shortcomings of the BPNNI by using OK to further fit the
residuals; compared to BPNNI, NNRK has higher interpolation accuracy; meanwhile,
the results in Table 3 also confirm the founding by Kazuya Ishitsuka [25].

The advantages of Bellman Equation used in our NNRB to handle the residual data
can be seen as follows. Firstly, the recursive formulation used in Bellman Equation is
effective in decomposing a complex issue into smaller ones, enhancing computational
efficiency significantly. Secondly, Bellman Equation offers a framework of residual
prediction that accounts for interactions between multiple adjacent data while reducing
the influence of distant data on the current data, and this framework is especially relevant
for soil type data, because soil properties are more spatially susceptible to anthropogenic
factors than most of the continuous properties such as temperature, humidity and air
pressure. Our calculation of Moran’s I also corroborates this discovery [26]. Finally,
Bellman Equation can be adjusted to different data types and models without strict
requirements, making it a versatile solution for processing residual data.
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Table 3. RMSE of five spatial interpolation methods

datasets methods om tn ap qak sak

Tangshan OK 0.1272 0.2096 0.1406 0.1647 0.1417

CAIDWR 0.0825 0.1360 0.0946 0.1497 0.1136

BPNNI 0.2573 0.2605 0.2760 0.2561 0.2482

NNRK 0.2377 0.2053 0.2272 0.2077 0.2600

NNRB 0.0784 0.0909 0.0813 0.1045 0.0966

Togtoh OK - 0.1305 0.1127 0.0899 -

CAIDWR - 0.0985 0.0731 0.0863 -

BPNNI - 0.2572 0.2271 0.2771 -

NNRK - 0.1908 0.2161 0.2128 -

NNRB - 0.1045 0.0746 0.0704 -

Baiyin OK - 0.0810 0.1390 0.1175 -

CAIDWR - 0.0712 0.1032 0.0794 -

BPNNI - 0.2180 0.2257 0.2798 -

NNRK - 0.1983 0.2119 0.2229 -

NNRB - 0.0699 0.0958 0.0761 -

Sanyuan OK - 0.0734 0.1774 0.1247 -

CAIDWR - 0.0637 0.1294 0.1085 -

BPNNI - 0.2707 0.2625 0.2455 -

NNRK - 0.2367 0.2411 0.3210 -

NNRB - 0.0784 0.1078 0.0945 -

As an example, we only give the distribution map of sample points in Tangshan
dataset as shown in Fig. 4 and the visualization of interpolation results on quick-acting
potassium property for Tangshan dataset as shown in Fig. 5.
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Fig. 4. Distribution map of soil nutrient
sample points

Fig. 5. Visualization of interpolation results of
NNRB method

5 Conclusion

To improve the performances of the generic Neural Network interpolations and Neural
Network Residual Kriging approaches, in this paper, we proposed the NNRB method
based on the mechanisms of the BP Neural Network and Bellman Equation. This NNRB
method employs a BP neural network to capture nonlinear relationships and spatial
trends in the data of a sample set [27]; meanwhile, it uses Bellman Equation to handle
residuals. NNRBmethod is applied in a systemof soil testing and formulated fertilization
for intelligent agriculture, which can be used to address complex non-linear spatial
variability, the nonstationarity of the random field, and local correlation issues, and
provide a high degree of accuracy [28]. We compared NNRB with four state-of-the-art
interpolation methods over four datasets, and the results show that our NNRB method
outperforms OK, BPNNI and NNRK significantly and it is highly competitive with the
CAIDWR approach.
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Abstract. Continuous Sign Language Recognition (CSLR) is a challenging task
in the field of action recognition. It requires splitting a video into an indefinite num-
ber of glosses, which belong to different classes. Nowadays, researchers usually
use deep learning methods with end-to-end training. One popular CSLR model
paradigm is a three-step network, i.e., using a visual module to extract 2D frame
features and short-term sequential features, then using a sequential module to
analyze contextual associations, and finally Connectionist Temporal Classifica-
tion (CTC) loss is used to constrain the output. Gloss alignment ability is found to
be an important factor affecting CSLR model performance. However, the three-
step CSLR paradigm mainly depends on the sequential module to align gloss, the
visual module only focuses on local information and contributes little to module
alignment ability, leading to training inconsistent between these two modules.
This paper proposes an Attention Auxiliary Supervision (AAS) method to opti-
mize the parameter of visual module and help it pay more attention to global
information, thereby improving the alignment ability of the whole model. As an
external part of the main model, the proposed AAS method has flexible applica-
bility and is expected to be used in other CSLR models without increasing the
cost of inference. The model performs well on two largescale CSLR datasets, i.e.,
PHOENIX14 (21.1%Test) and PHOENIX14-T (20.9%Test), which demonstrates
its competitiveness among state-of-the-art models.

Keywords: Continuous Sign Language Recognition · Attention · Auxiliary
supervision

1 Introduction

Sign language is a communication tool used by deaf-mute people in daily life. It is
different from the spoken language we usually use. Spoken language is transmitted by
sound, while sign language is transmitted by light and shadow. Due to different modes
of transmission, this increases the cost of people learning sign language, resulting in
fewer hearing people mastering sign language. Therefore, the study of Sign Language
Recognition (SLR) technology is necessary to help normal people to communicate with
deaf-mute people. SLR is a transdisciplinary research topic, which involves computer
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vision (CV) and natural language processing (NLP). SLR can be divided into Isolated
word Sign Language Recognition (ISLR) and Continuous Sign Language Recognition
(CSLR). ISLR only needs to classify single action, while CSLR needs to deal with
multiple consecutive actions, which are bound to align in addition to classify. Therefore,
CSLR research is not only challenging, but also meaningful.

Recently, deep learning has achieved great success in video analysis, and some
studies have begun to use deep convolutional neural networks (CNNs) to solve CSLR
task [1, 2]. Bi-directional Long Short-Term Memory (BiLSTM) [3] and transformer [6]
are used for sequence processing. Some non-end-to-endmethods [12, 14], which require
an additional fine-tuning process, are proposed to greatly improve the performance of
CSLR model. In order to adapt to CSLR task and promote WER performance, Graves
et al. [4] presents Connectionist Temporal Classification (CTC), which is an efficient
method to align predictions with tags for sequences of different lengths.

Obviously, the gloss alignment ability is very important for CSLR tasks, where the
input and output are both sequential data. The visualization results of feature similar-
ity matrix show that visual module could learn little about alignment information. In
addition, some research [11] has found the convergence rate of the visual module is
slower than that of the sequential module. As a result, even when the sequential module
is overfitting, the visual module still may not get effective feedback or adequate train-
ing. In this regard, a method called Attention Auxiliary Supervision (AAS) is proposed
in this paper to enhance the supervision of visual module, thereby enabling it to learn
alignment ability in advance, and enhancing the connection between visual module and
sequential module. AAS uses a weakly supervised approach to avoid the high computing
cost of strong supervision, such as facial expression, hand segmentation, body skeleton,
etc. Furthermore, AAS is an end-to-end network, which is more elegant than iterative
training. The research results are summarized as follows:

• By combining the attentionmechanismwith auxiliary supervision, theAASmethod is
proposed to optimize the parameter distribution of visual module, thereby enhancing
its constraint capability for gloss alignment.

• AASmodule has simple structure and flexible applicability, which is only used during
training, so that model performance can be improved without changing the inference
structure. The proposed network is validated on PHOENIX14 and PHOENIX14-T,
and achieves the best WER (Test) based on PHOENIX14-T.

2 Related Works

2.1 Mechanism of Attention

The attention mechanism is widely used in current deep learning models, and plays
an important role. In earlier times, Bengio et al. [5] proposed the classical attention
mechanism (Bahdanau attention), which was used in the field of NLP. Vaswani et al.
[6] proposes the structure of transformer that involves self-attention and multi-head
attention. In addition, there aremany other basic attention variants, such as hard attention
[15], local attention [16]. The attention mechanism has also developed much in the CV
field, such as ViT [17], Swin-T [18], DETR [19], in which images are usually divided
into sequences and then fed into attention operation.
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Different from CNN, which extracts local information, the attention mechanism
extracts global information, making it suitable for long-distance modeling analysis of
sequences. Therefore, its computational efficiency is much higher than that of CNN and
RNN, and it can even replace them under certain circumstances, which also makes a
great contribution to the research on multi-modal task. The experiment results in this
paper show that the attention mechanism is helpful for gloss alignment. Therefore,
cross-attention method is used to extract and integrate the information associated with
the visual module and sequential module, so that the visual module can learn the proper
gloss alignment ability by backpropagation in advance.

2.2 Auxiliary Supervision

Due to the deepening of the neural network layers, the feature transparency of the middle
layer of the network is low, and the phenomenon of gradient vanishing or exploding is
accompanied, which hinders the network training and fitting. Lee et al. [7] introduces the
concept of deep supervision as a training trick. This method adds an auxiliary classifier
to some middle layers of the deep neural network as the intermediate output. In 2014,
GoogLeNet [9] used multiple fully connected layers as auxiliary classifier to conduct
auxiliary supervision of the network. In 2015, Wang et al. [8] attempts to use this
supervision technique in a deeper structured network.More andmore works have started
to add branch network and train the main network with auxiliary supervision.

Each module in CLSR network has its own function, and direct supervision and
training of a specific module can effectively inform its learning task. However, there
are progressive dependency relationships between different modules, and complex and
redundant network structures can hinder the transmission of information. So, supervising
themodules separately can notmake the network learn the distributed features efficiently.
To solve these problems, this paper designs an auxiliary supervision method that has
a simple and straightforward structure, which can enable modules to learn from each
other.

3 Our Approach

The proposed network structure is shown in Fig. 1. It ismainly divided into fourmodules,
which are visual module, sequential module, distillation module and AAS module. The
network construction including these modules will be described in detail next, through
four sections.

3.1 Main Stream Design

As shown in Fig. 1, the input data is X = {xi}Ti=1 ∈ R
T×c×h×w, which represents T

frames, and the value of T is indeterminate. Through the processing of main stream
neural network, comes out CS ∈ R

T̃×(|Q|+1), where Q is the gloss dictionary space
generated by the data set, and |Q| is gloss dictionary space length. To align the output
with label L = {li}ni=1 ∈ Q, beam search strategy [27] is used to get the most likely N
gloss fragments Y = {yi}Ni=1 ∈ Q.
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Fig. 1. Overview of the proposed network. Network structure ismainly divided into fourmodules,
which are visual module, sequential module, distillation module, and AAS module. Only visual
module and sequential module participate in the inferencing process.

Visual Module. A pre-trained 2D CNN is used to extract image features for each video
frame in X = {xi}Ti=1 ∈ R

T×c×h×w, and then obtain the Frame-wise Features (FFs)
F ∈ R

T×C . That is, an image with a size of c × h × w is converted to a C dimensional
vector:

F = {fi}Ti=1 = {C2d (xi)}Ti=1 ∈ R
T×C (1)

The features of each frame in FFs are independent of each other. Since the recognition
of action needs to consider the temporal relationship, the relationships between the
adjacent frame features are needed to be established. This paper uses conventional 1D
CNN to extract the temporal features, then the Gloss-wise Features (GFs) are obtained:

G = {gi}T̃i=1 = C1d
({fi}Ti=1

) ∈ R
T̃×C (2)

Dimension T is downsampled to get T̃ , T > T̃ . The GFs at this point are visual
features containing local temporal information, with classification and a little alignment
effect.

Sequential Module. This module uses a two-layer BiLSTM to model the long time
relationships inGFs, so that themodule could analyze the long time semantic information
and obtain the Sequential Features (SFs) S ∈ R

T̃×C . Through the classifier, the output
CS ∈ R

T̃×(|Q|+1) is obtained:

S = {si}T̃i=1 = RBi

(
{gi}T̃i=1

)
∈ R

T̃×C (3)
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CS = {ci}T̃i=1 = WST̃×C + b ∈ R
T̃×(|Q|+1) (4)

The ‘1’ in |Q| + 1 represents the space occupied by the blank class generated by the
CTC algorithm.

Alignment and Output Sentence. CS , after softmax processing, contains repetitive
glosses that are much longer than their corresponding label. So, CTC loss is used to
constrainCS to align it with label, and lossLS is obtained. The final result Y = {yi}Ni=1 ∈
Q is obtained through the beam search strategy, which calculates the probabilities of all
possible hypotheses at each time slice and selects the highest few as a group. It is an
iterative process and stops when the last time slice is reached.

3.2 CTC Loss for Alignment

Since the input and output have different lengths, the corresponding labels have different
lengths, which causes CSLRmodel to output multiple duplicate classes. These duplicate
values may represent single class or multiple classes, where some necessary blank items
are needed to be generated by classifier. Combining the blank classwith the original gloss
vocabularyQ generates a new gloss vocabularyQ

∧

= Q
⋃{blank}. In order to explain the

effect of blank items, this paper uses a speech recognition example that outputs sequence
B(hhelllo) = hello. If one merges the duplicate values as per the original strategy, it
will be processed as helo. If proper blank items are generated by classifier, the output
sequence might become B(hh · ell · lo). Merge the repeated items and then the correct
result hello is obtained.

For the same label, there might exist multiple correct output sequences (paths) with

blank items at different positions, that is multiple paths π ∈ Q
T
∧

can represent the
same label, such as B(hh · ell · lo·) = B(·h · ell · l · oo·) = hello. CTC calculates the
probabilities of all possible paths:

p(π |X ) = ∏T
∧

t=1 p(πt |X ), π ∈ B−1(l) (5)

B−1(l) represents all the possible paths. Then minimize their negative logarithmic
likelihood sum to get the CTC loss:

p(l|X ) = ∑
π∈B−1(l) p(π |X ) (6)

LCTC = −logp(l|X ) (7)

3.3 Knowledge Distillation for CSLR

Distillation network is a good approach as it can effectively transfer teacher’s knowledge
to student, and build a lightweight and efficient student network. Zhang et al. [10] pro-
posed a self-distillation network to simplify an otherwise complex structure by enabling
the network to learn from itself without the help of external information. Min et al. [11]
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modified the self-distillation network for CSLR tasks, which is also utilized in this paper
to improve effectiveness of model.

In order to enhance the classification capability of visual module, an auxiliary clas-
sifier is added directly after GFs to obtainCG ∈ R

T̃×(|Q|+1), and generate corresponding
CTC loss LG . However, the lack of context capability makes it difficult for CG to align
with the label. This paper treats sequential module as teacher network and visual module
as student network to make GFs learning feature distribution more efficiently. Take the
value of CS as the learning target (soft target) of CG , calculate the divergence between
them as distillation loss:

Ldist = KL
(
softmax

(
CS
τ

)
, softmax

(
CG
τ

))
(8)

where τ represents the distillation temperature and plays a smoothing role in the output
of the network. A relatively large τ value is used to soften the peak probability and
smooth the distribution of labels.

Fig. 2. Self-similarity matrix heat map. A sample from the PHOENIX14 dataset (01April 2010
Thursday heute default-1) is used as input to the model. (a) is generated from GFs in baseline. (b)
is generated from the SFs in baseline.

3.4 Attention Auxiliary Supervision

In Fig. 2(a), the similarity between adjacent frames in GFs is large, but there is no
clear boundary between glosses, i.e., no obvious alignment effect. This indicates that
the previous feature extraction process only extracts partial temporal information, but
the range of information required for alignment is larger. In Fig. 2(b), the alignment
of the SFs is obvious, with the lighter part representing non-blank class and the rest
representing blank class. Therefore, it is necessary to design a module that helps visual
module focus more on global information to enhance their gloss alignment ability.

As the depth of the network increases, the deeper-layer network tends to ‘forget’ the
information learned by the shallower-layer network, and the shallower-layer network
also ‘forgets’ the task to learn. In other words, there is some information loss in the
transmission, and the more layers it is transmitted through, the greater the loss. Cross-
attention mechanism [6] has the structure of multi-input and single-output. If the outputs
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of different modules in CSLR network are fed into cross-attention as inputs, the output
of cross-attention which integrates information of different modules is expected to be
obtained. As a result, the cross-attention mechanism with supervision has the potential
of enhancing module connections.

Fig. 3. The internal structure of attention block in AAS module. AAS module includes two
attention blocks, whose input consists of two parts. One part is Sequential Features (SFs), the
other part is Frame-wise Features (FFs) or Gloss-wise Features (GFs).

This paper designs the Attention Auxiliary Supervision (AAS) module based on
cross-attention mechanism as shown in Fig. 3. The AAS module includes two attention
blocks with different K and V inputs, i.e., GFs in attention block 1 (att1) and FFs in
attention block 2 (att2). Firstly, let SFs pass through the linear layer to get Q ∈ R

T̃×C .
FFS or GFs are also mapped to K and V via a linear layer (they are the same shape as the
FFs or SFs that generate them). Multiply Q with KT to get the attention score matrix. In
order to stabilize the gradient, the attention scorematrix is scaled by dividing it with

√
C.

Normalize the attention score matrix with softmax function, then the attention weight
matrix is obtained. Finally, multiply the attention weight matrix with V:

Attentioni = softmax
(
Q×KT√

C

)
× V (9)

A single attention operation is not sufficient to handle multiple kinds of information,
so multiple-head attention is used in AAS module. Concatenate multiple-head attention
and combine them through a linear transformation:

Attention = cat(Attention1, . . .Attentionh)WO,WO ∈ R
hc×c (10)

Regardless of whether FFs or GFs are input, Attention always has the same shape as
Q, so residuals can be implemented. In order tomitigate gradient vanishing or exploding,
layer normalization is carried out:

A = LN (Q + Attention) (11)

Through the classifier and softmax, the outputs of two attention blocks Ca1 and Ca2
are obtained. La1 and La2 are the CTC losses that are used to constrain the attention
outputs. The overall loss of AAS module is:

LAAS = La1 + La2 (12)
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AAS module has not some operation which are contained in original transformer,
such as position encoding, weight mask and Feed Forward Neural Network. This is
because we believe that these operations will clutter the alignment information and
increase the amount of computation. AASmodule only plays the role of auxiliary super-
vision during network training, and this module is ignored when inferencing, without
increasing the cost of inference.

The loss function of the whole network consists of four parts, includingLS generated
by SFs,LG generated byGFs,LAAS generated byAASmodule, and distillation lossLdist .
Because of the different types of loss functions (all belong to CTC loss except Ldist),
the hyper parameter α is used to balance the loss:

L = LG + LS + LAAS + αLdist (13)

4 Experiments

4.1 Experimental Setup

Datasets. Two widely used CSLR datasets are adapted to verify the proposed method,
i.e., RWTH-PHOENIX-Weather-2014 and RWTH-PHOENIX-Weather-2014-T.

PHOENIX14, the German sign language dataset is built from the 2014 German TV
sign language weather forecast. Nine signers generate 6,841 sentences containing 1,295
signs and nearly 80,000 words.

PHOENIX14-T is an extension of PHOENIX14 that can be used to evaluate CSLR
and Sign Language Translation (SLT) tasks. It has fewer signs, but more content. The
dataset contains 8,247 sentences, and its dictionary consists of 1,085 signs.

Evaluation Metric. Word Error Rate (WER) is widely used in CSLR as an indicator
to judge recognition results. The lower WER value is, the better the performance will
be. The number of error results can be calculated by summing the number of insertions
(#ins), substitutions (#sub), and deletions (#del). WER is the proportion of error results
in the whole length of labels (#lab):

WER = #ins+#sub+#del
#lab (14)

Implementation Details. The experiment used two Nvidia RTX 3090s. During train-
ing, all video frames are randomly cropped into 224 × 224. In order to reduce the
boundary effect during the one-dimensional convolution, the first frame and the last
frame are padded. The padding length is determined by the degree of one-dimensional
convolution. Since the number of frames in the input video is indefinite, all videos in
the same batchsize are padded into the same length, which is the maximum number
of sample frames in the batchsize. In visual module, pre-trained ResNet18 is used as
the backbone to extract image features. ResNet18 has low complexity, and can extract
enough image feature information. In the sequential module, a two-layer BiLSTM with
a hidden state dimension of 2 × 516 is used. In the distillation module, τ of Ldist is set
to 8. Finally, the number of neurons in the classifier is set to |Q| + 1.
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4.2 Ablation Studies

In this section, ablation experiment results based on PHOENIX14 are given to verify
the effectiveness of the proposed methods. The main stream network introduced in the
Sect. 3.1 is designed as the baseline of the experiment, and other modules or methods
are added on this basis to compare and demonstrate their effects.

Table 1. Ablation studies of AAS module on the PHOENIX-2014 (att1 connects the GFs and
SFs. Att2 connects the FFs and SFs)

Methods Dev (%) Test (%)

Base. 23.3 23.8

Base. + att1 20.6 21.9

Base. + att2 21.0 22.3

Base. + att1 + att2 20.3 21.7

Ablation ofAttentionBlocks inAAS. AsTable 1 shows, both att1 and att2 are effective
when used alone. Because FFs and SFs are far away from each other, the information
difference between them is large, so the performance of att2 is inferior to that of att1.
The best results are achieved when att2 and att1 are used together. Figure 4 is the self-
similarity matrix heat map that is generated by the GFs after adding the AAS module
when the same input sample is used as Fig. 2. As Fig. 4 shows, obvious alignment
effect appears in the self-similarity matrix of GFs when AAS module is used, which
demonstrates that the proposed AASmodule can enhance the alignment ability of visual
module.

Fig. 4. Self-similarity matrix heat map. It is generated by the GFs after adding the AAS module.

Ablation of Positional Encoding Methods in AAS. In this work, several positional
encodingmethods are tried like transformer does, with the expectation to further improve
the model performance. However, as Table 2 shows, these positional encoding methods
do not have positive effect, and even cause model deterioration. The reason might be that
CSLR task only needs to align the glosses without adjusting their order. In addition, SFs
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Table 2. Effect of positional encoding in AAS,
based on PHOENIX-2014. (PPE: Parameter train-
able positional encoding. APE: Absolute posi-
tional encoding. RPE: Relate positional encoding.
NPE: Non-positional encoding)

Methods Dev (%) Test (%)

PPE 21.8 23.6

APE 21.7 23.4

RPE 21.4 22.8

NPE 20.3 21.7

Table 3. Ablation of AAS and distilla-
tion module on the PHOENIX14. (Dist.:
distillation module)

Base. AAS Dist. Dev (%) Test (%)

* 23.3 23.8

* * 21.2 22.3

* * 20.3 21.7

* * * 19.9 21.2

after BiLSTM contain some positional information, and adding additional positional
information may mess up the features and hence increase the training burden.

Table 4. Performance comparison on PHOENIX14 dataset and PHOENIX14-T dataset. ∗ indi-
cate extra cues such as face, hand features or information of other modes. ‘del’ and ‘ins’ stand for
deletion error and insertion error, respectively.

Methods PHOENIX14 PHOENIX14-T

Dev (%) Test (%) Dev (%) Test (%)

SubUNet [24] 40.8 40.7 - -

SFL [23] 26.2 26.8 25.1 26.1

FCN [22] 23.7 23.9 23.3 25.1

CMA [21] 21.3 21.9 - -

VAC [11] 21.2 22.3 - -

TLP [13] 19.7 20.8 19.4 21.2

C+L+H* [26] 26.0 26.0 22.1 24.1

SLT* [25] - - 24.5 24.6

DNF* [12] 23.1 22.9 - -

STMC* [20] 21.1 20.7 19.6 21.0

AAS (ours) 19.9 21.1 19.5 20.9

Ablation of AAS and Distillation Module. The proposed AAS module is inspired by
the self-distillation operation [11]; they both belong to auxiliary supervisionmethod, that
can facilitate information transmission and optimize parameter distribution. As shown
in Table 3, the AAS module outperforms the distillation module when only one of them
is used. The reason is, in addition to intermediate information generated by network
modules, the AAS module also utilizes the final label information to supervise the
training process, while the distillation module only uses self-generated pseudo labels.
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Using AAS and distillation modules together can then achieve the best result, which
demonstrate these two modules can complement each other.

4.3 Comparison with State-of-the-Arts

As shown inTable 4, the proposedmodel is comparedwith other state-of-the-artsmodels.
WERs on PHOENIX14 are 19.9% (Dev) and 21.2% (Test). WERs on PHOENIX14-T
are 19.5% (Dev) and 20.9% (Test). The proposed model achieves the best performance
on WER (Test) of PHOENIX14-T.

The * in Table 4 represents that the model uses extra cues, including hand, face,
or other modal information. Most indicators of the proposed model are better than
STMC* [20], which is the best model in *. The proposed model also outperforms most
other models using only video information except TLP [13]. The performance of the
proposed model is comparable with the current best model (TLP) to our known, and it
even outperforms TLP on WER (Test) of PHOENIX14-T. As a pooling method, TLP
needs tomodify themain network ofCLSR.However, as an auxiliary supervisionmethod
proposed in this paper, it can maintain the original CSLR main network and is only used
during training.

5 Conclusions

The visual module in CSLR network mainly focuses on the 2D spatial features of input
frames, and can extract only short-term temporal relationships, which is detrimental to
the gloss alignment ability of CSLR network. This paper designs an attention auxiliary
supervision network based on the distillation module and the proposed AAS module,
which can enhance the information interaction between visual module and sequential
module, and enable them to learn gloss alignment ability in advance. The experiment
results based on PHOENIX14 and PHOENIX14-T demonstrate the superiority of the
proposed network among state-of-the-art models. As a kind of auxiliary supervision
method, the AAS module is only active during training, and needs no change of CSLR
main network, thereby it is expected to facilitate other sequential related tasks.
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Abstract. As a main part of automated machine learning, Neural Architecture
Search (NAS) has been employed in exploring effective Click-Through Rate
(CTR) prediction models of recommender systems in recent studies. However,
these studies update the architecture parameters by different strategies, such as
gradient-based methods or evolutionary algorithms, and may suffer from either
interference problems or high time-consuming in the search stage. Besides, the
blocks in the search space were usually homogeneous, which means they have the
same candidate operations to choose. Such design will result in redundancy in the
search space, because many structures are inherently invalid and just increase the
complexity of searching. To address the above issues, we implement the three-
level automatic design of CTR prediction models using NAS via Shapley value,
named as AutoShape. For the search space, we divide it into three parts according
to the characteristics of the CTRmodel. Each part comprises distinctive candidate
operations and forms a cell as an individual processing level, which improves the
stability of the searched models’ effect and reduces the computational complexity.
For the search strategy, we leverage Shapley value, a metric derived from cooper-
ative game theory, to estimate the contribution of the operations in each block and
the connections between the blocks, which can find effective models and reduce
the time cost. Furthermore, experiments on different benchmark datasets show that
the structure obtained from the search performs better than several hand-crafted
architectures and is more stable than another NAS-based algorithm.

Keywords: Neural architecture search · Click-through rate prediction · Shapley
value

1 Introduction

In recent years, the development of deep neural networks has significantly influenced
the Click-Through Rate (CTR) prediction in Recommender Systems (RSs). The success
of CTR prediction architectures depends on their ability to capture and exploit effective
low-order and high-order feature interactions [1]. By incorporating and learning from
the interactions of different features, models can gain a more general and comprehensive
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understanding of the explicit relations between the features of users and items, leading
to enhanced performance. However, the choice of operation is crucial as simple oper-
ations may lead to information loss, while complex operations can introduce noise or
increase the complexity. Consequently, the integration of explicit and implicit interac-
tions remains an underexplored area that extensive manual efforts are required to find
the most suitable structure for each scenario, making it difficult to design an efficient
CTR model tailored to various tasks.

To overcome these challenges, recently, there has been a growing interest in automat-
ing the components of Deep Recommender Systems (DRS) due to the advancements in
Automated Machine Learning (AutoML) [2], especially applying Neural Architecture
Search (NAS) approaches to design CTR models automatically. NAS has been success-
fully applied in various computer vision tasks, and the automatically searched architec-
tures have achieved highly competitive performance in image classification and object
detection. However, directly applying NAS methods from the computer vision field to
the CTR prediction in RSs poses two main challenges, i.e., the redundancy of the search
space and the instability of the search strategy. Specifically, it is studied and pointed out
that the search space in NAS often contains redundancy increasing the complexity of the
search process but not significantly contributing to performance improvements [3]. This
is a serious problem and worth studying, especially for the CTRmodels very sensitive to
noise information, because it will lead to a large number of ineffective interaction blocks
in the search space, resulting in the very low efficiency of a large number of structures
and the highly unstable structure searched in each iteration. Besides, the search strategy
also plays a key role in the whole search process.Most of the previous studies using NAS
to design CTR architectures or feature interactions mainly adopt gradient method [1, 2,
4, 5] to update architecture parameters. But there exists interference problem that makes
the search unstable, because the shared operators in the weight-sharing NAS methods
receive different gradient directions from child models with distinct architecture during
optimization, which leads to a poor ranking correlation between the estimated accuracy
and the ground truth accuracy.

To address the above issues, we implement the three-level automatic design of CTR
prediction models using NAS via Shapley value, which is named as AutoShape. Consid-
ering the redundancy problem of search space, we construct the search space consisting
of three parts with different operations according to the general characteristics of exist-
ing CTR prediction models. To be more specific, the overall search space consists of
three different cells, and the blocks in each cell contain different operations to extract
useful information. These blocks are used to extract important features from the raw
input, perform explicit interactions at the vector level, and perform implicit interactions
at the bit level. Finally, we use multi-head attention mechanism to capture important out-
put information for prediction. This design follows the prior knowledge about the basic
process of feature processing in CTR prediction models, and narrows down the search
space by reducing the number of ineffective structures. It is worth pointing out that cur-
rent NAS-based work primarily emphasizes the efficiency of searching for the optimal
structure, without extensively investigating the stability of efficiency for each search
iteration. Our design significantly improves the search stability, which was neglected by
previous NAS-based approaches.
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To address the interference issue in gradient-based search, we adopt a novel search
strategy using the Shapley value,which is ametric derived fromcooperative game theory.
The Shapley value provides a straightforward way to assess the importance of operations
and edges in the supernet by analyzing the variations of validation accuracy.We consider
the relationships between blocks that composed of different operations by the average
marginal contribution. This approach is effective in obtaining the importance of the
candidate operations as architecture parameters and does not require gradient computa-
tions through backpropagation, thereby reducing interference problems. Shapley-NAS
[6] first introduced Shapley-value in the field of computer vision to compute the con-
tributions of each operation and edge in the search space for NAS. While our work is
the application of the Shapley value in NAS for the automatic design of CTR prediction
models in RSs.

By leveraging this innovative approach, we aim to overcome the challenges posed
by interference and improve the effectiveness of the search process for the automatic
design. The main contributions are as follows:

– We propose a staged and refined search space for CTR models, which aligns with the
characteristics of CTR prediction and ensures the majority of structures are effective,
thereby improving search stability and reducing redundancy.

– We are the first to adapt the Shapley value from the NAS for computer vision to the
NAS forRSs.Wepropose a single-block sampling strategy to evaluate the architecture
parameters via Shapley value based on the structure of CTR prediction models.

– We employ the multi-head attention mechanism to corresponding weights of
each block, facilitating the selection of relevant output information and reducing
interference from noisy signals.

– Experimental results demonstrate that our algorithm achieves higher efficiency
compared to manually designed models and exhibits greater stability.

2 Related Work

CTRprediction plays a significant role in predicting user engagement and enhancing rec-
ommendation quality. Factorization Machine (FM) [7], as a classical feature interaction
method, captures feature interactions through vector inner products. In recent studies,
there has been a growing emphasis on exploring deep learning methods to enable effec-
tive interactions among diverse feature types, such as Dot Product [8], Cross Network
(CN) [9], Compressed Interaction Network (CIN) [10], and Bilinear-based [11, 12].
These works usually put efforts into designing explicit feature interactions, which are
combined with implicit interactions.

AutoML has become a widely adopted approach for exploring and identifying suit-
able model structures. There has been increasing attention on the application of AutoML
in RSs in recent years. AutoCTR [13] pioneered the automatic search for effective
architectures in CTR prediction. AutoPI [4] employed a gradient-based search strategy
to enhance computational efficiency. To further reduce the computational complexity
of search, NAS-CTR [5] proposed a differentiable NAS approach based on proximal
iteration to jointly optimize the network weights and architecture parameters.
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3 Method

3.1 Search Space of AutoShape

For the design of the search space, we partition the space into three parts considering
the feature characteristics of input, interaction, and output in CTR models. Each stage
corresponds to a cell, namely Input Cell, Inter Cell, and MLP Cell. The blocks within
each cell exclusively contain operations specific to that stage.

Fig. 1. Schematic diagram of three-level search space.

Figure 1 illustrates the three-level search space of AutoShape. The initial input is the
embedding representation of the features, where the high-dimensional sparse features are
embedded using an embedding table, resulting in each feature being a low-dimensional
embedding vector. We define C = [C1, C2, C3] that contains three cells in the search
space. Bi = [B1

i . . . ,Bmi

i ] describes the blocks in the i-th cell, where 1 ≤ i ≤ 3, and

mi is the total number of blocks in the i-th cell. Oi = [O(B1
i ) . . . ,O(Bmi

i )] enumerates

the set of operations, and O(Bj
i) includes all operations of block Bj

i , 1 ≤ j ≤ mi. .
The Input Cell (i.e., C1) primarily focuses on extracting relevant information from the
raw embeddings and enabling feature interactions among vectors. C1 consists of three
blocks, each containing different operations.B1

1 is used to learn and select the importance
of each feature interaction. It includes operations such as Multi-Head Attention (Attn)
[14], SENet (SE) [12], Gating andMask. These operations enable the selection of salient
latent information from the original embedding vectors for further feature processing.
The operations in B2

1 and B
3
1 perform feature interactions among the information derived

from B1
1 and the original feature embeddings to extract explicit information, including

CrossNet [9], PNN [8], Bilinear [12] and Identity operation. SupposeX j
i andY

j
i represent
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the input and output information of block Bj
i respectively, and X 0

1 is the embedding for
raw features. The information processing flow of blocks in C1 is depicted by Eq. (1):

Y j
1 =

∑

o∈O(Bj
1)

(
X j−1
1

)
(1)

The Inter Cell (i.e., C2) allows each block to receive the outputs from the previous
two blocks. The blocks in C2 are designed similarly to EDCN [15], which enables the
concatenation of two previous tensors andC2 performs interactive operations among the
bits, serving as a bridge. The operations in include summing (Add), averaging (Avg),
taking the maximum value (Max), Hadamard product (Product), and Bi-linear operation
(Bifusion) between the two input feature vectors. The information processing flow of
blocks in C2 is shown as Eq. (2):

Y j
2 =

∑

o∈O(Bi
2)

o
[
Concat

(
Y j1
i1

,Y j2
i2

)]
(2)

Both Y j1
i1
and Y j2

i2
are the output information of blocks Bj1

i1
and Bj2

i2
, which are blocks

in front of Bj
2. The two output tensors are concatenated, and then the operations existing

within the block are applied to the input features, and the aggregated information is used
as the output of this block.

C3 is referred as the MLP Cell because the blocks in it only contain MLP operation.
Common CTR prediction models typically place the MLP layer after or in parallel with
the feature interaction layer, enabling the extraction of implicit interaction information
from features. The processing flow of blocks in the MLP Cell can be shown as Eq. (3):

Y j
3 =

∑

d∈Dim
MLP(d)

[
Concat

(
Y j1
i1

,Y j2
i2

)]
(3)

Dim is a set of numbers of hidden layer units. MLP(d) represents an MLP network
with d neurons in the hidden layer, where d ∈ Dim. This allows for searching different
MLP architectures by varying the number of hidden neurons and finding an appropriate
scale for prediction.

Compared to the search space of NAS-CTR, AutoShape divides the original space
into three parts according to the characteristics of different stages of feature information
processing, reducing the structure redundancy and improving the search stability.

3.2 Search Strategy

In cooperative game theory, a group of players collaboratively form a coalition. Shapley
value is used to allocate the payoffs in cooperative games, considering the contributions
of participants in different coalitions. Specifically, the Shapley value indicates the relative
contribution of one player by calculating the average marginal contribution of this player
over all possible coalitions.
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During the process of using NAS methods to search for CTR models, AUC (Area
Under the ROCCurve) is used as the metric to measure the performance of a CTRmodel
searched in the supernet. We consider that all candidate operations O in the supernet
and the edges E between the blocks as players. All players collectively form a coalition
P = O ∪ E = {p(1), p(2), . . . . . . , p(n)}, where |P| = n, which is the total number of
players and p(i) is the i-th player, i.e., one operation of one block or an edge. Here
we use the AUC on the validation dataset as the validation accuracy V to evaluate the
contribution of one player in P. φ(i)

p is the Shapley value of p(i). To obtain φ
(i)
p , first, we

figure up all possible subnets of the coalition without p(i), denoted as P\{p(i)} and S is
one of them, i.e., S ∈ P\{p(i)}. . Then for the network Net(S) corresponding to S, we
calculate the difference in the validation accuracy of Net(S) with p(i) before and after
removing it, which is taken as the marginal contribution of p(i) over subset S. Finally,
we sum up all the marginal contribution of p(i) over different S and normalize them as
the Shapley value of p(i). Therefore, the Shapley value for the player p(i) is calculated
by Eq. (4):

φ(i)
p (V ) = 1

|P|
∑

S⊆P\{p(i)}
[V (S ∪ {p(i)}) − V (S)]/C |S|

|P|−1 (4)

As the number of candidate operations |O| and the edges |E| in the supernet is
large, obtaining the Shapley value will become extremely difficult, which requires about
2(|O|+|E|) calculations. Therefore, to reduce the evaluation time, a Monte Carlo sam-
pling method is employed to estimate the Shapley value. Monte Carlo sampling method
estimates the Shapley value by generating some random permutations of player orders,
rather than computing marginal contributions through all the permutations. However,
the order of calculating player contributions in each permutation will have a significant
impact on the efficiency of the model, as the removal of specific edges will affect the
integrity of the supernet. Through extensive analysis and experimentation, we propose
a Single-Block sampling strategy, which can obtain effective permutation sequences at
the permutation generation stage of Monte Carlo sampling method.

During the sampling, to avoid generating invalid networks, as shown in Fig. 1, we
only consider the subset S corresponding to the network that contains all suggested
blocks, and each block only has one operation with only specified number of edges.
After multiple samplings for all the players in P, we will obtain the Shapley values for
all the players, which are the operations and edges within or between different blocks.
That means there will exist multiple prominent operations and edges with the same
highest Shapley values related to one block. These prominent operations and edges
related to each block are picked out to form a downsized set, over which the Shapley
values of the elements in it are calculated in the same way as before. The operation and
the edge related to each block with the highest Shapley values in that block are selected
to form the final network.

This strategy samples among different blocks evenly in the initial stage, and concen-
trates the sampling on elements with higher Shapley values later, which enables faster
and more accurate identification of significant operations and edges.
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3.3 Training and Prediction of Supernet

We adopt the One-Shot NAS approach, which is one of the most promising methods in
the current field of NAS. The core of this method is training a weight-sharing supernet,
where the entire search space is represented by a computation graph that includes all
possible operations. Any potential architecture within the search space can be obtained
by sampling paths in the supernet graph.

Two types of parameters need to be updated and optimized in the supernet: network
parameters w and architecture parameters α. We conduct the pre-training of the supernet
on the training set, primarily focusing on optimizing the network parametersw. Then, for
the pre-trained supernet, we use the sampling method mentioned in Sect. 3.2 to compute
the Shapley value for each operation and edge. The Shapley values of all candidate
operations and the edges obtained through multiple samples are used as the architecture
parameters α. Among all candidate operations and edges of each block, we select both
of them with the highest Shapley value as the final operation and edge.

For the final prediction of the model, we combine the output information from
different cells to formNout output modules of dimension d for the final prediction. As the
outputs of these blocks are generated by different operations interacting with different
blocks, some outputs are effective while others contain noise. Therefore, selecting and
extracting useful output information while suppressing noise can effectively improve
prediction accuracy. We utilize attention mechanism to extract useful information from
these d-dimensional vectors for the final prediction, as shown in Eq. (5):

ui = Attention(Yi) =
Nout∑

j=1

a(j)
i Yj (5)

Here aji denotes the attention of output information between Yi and Yj. The output vector
Yi of the original i-th block is weighted and fused through the attention mechanism to
obtain ui. The fused vectors are then concatenated and flattened intoDout ∈ R1×(Nout×d).
Finally, a linear transformation, the sigmoid operation is applied as one part of the final
prediction value. The other part of the prediction value is composed of the output from
the MLP Cell, as shown in Eq. (6):

y = Sigmoid(Linear(Dout )) + MLPout (6)

The Logloss is adopted as the loss function to train the model, defined as Eq. (7):

Logloss = − 1

N

N∑

i=1

(
yi log

(
ŷi

) + (1 − yi) log
(
1 − ŷi

))
(7)

where yi and ŷi are the ground truth of user clicks and predicted CTR, respectively, and
N is the number of training samples.

4 Experiments and Results

4.1 Experiment Setting

In this paper, we use two commonly used datasets for CTR prediction, including Avazu
and Frappe. The information about these datasets is shown in Table 1:
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Table 1. Statistics of datasets.

Datasets Samples Fields Features

Avazu 40,428,967 23 2,018,003

Frappe 288,609 10 5382

Each dataset is split into three parts:Dtrain (80%),Dval (10%), andDtest (10%).Dtrain
is used to train the network parameters w,Dval is used to compute the Shapley Value and
update the architecture parameters α, and the structure obtained through supernet search
is tested on Dtest. The overall search space consists of three cells with a total of seven
blocks. The first stage is the Input Cell with three blocks, followed by the Inter Cell with
three blocks as the second stage, and the final stage is the MLP Cell with one block. The
output dimensions between adjacent blocks are set to 400, and the embedding size is 16.
The Adam optimizer is used to optimize the network parameters.

4.2 Performance Comparison

To validate the effectiveness of the CTR model obtained through AutoShape search,
we compare it with the human-crafted models including: Logistic Regression (LR), FM
[7], Wide & Deep (WD) [16], Deep & Cross Network (DCN) [9], Product-based Neural
Networks (IPNN) [8], Deep Factorization Machine (DeepFM) [17]. For the NAS-based
method, we compare the best architectures of NAS-CTR provided in the original paper
[5], which only included the Avazu dataset. AUC is to measure the performance of CTR
models. LogLoss is adopted as the loss function. Each model is subjected to three tests,
and the average value is calculated as the final results.

Table 2. Comparison with baseline models.

Dataset Metric Human-Crafted Models NAS-method

LR FM WD DCN IPNN DeepFM NAS-
CTR

Auto-
Shape

Avazu AUC ↑ 0.7563 0.7766 0.7782 0.7799 0.7879 0.7823 0.7867 0.7885

Loss ↓ 0.3928 0.3914 0.3885 0.3826 0.3751 0.3819 0.3765 0.3732

Frappe AUC ↑ 0.9367 0.9787 0.9812 0.9803 0.9822 0.9802 0.9820 0.9822

Loss ↓ 0.4879 0.1831 0.1853 0.1439 0.1353 0.1446 0.1783 0.1762

From Table 2, we can observe that AutoShape performs well on large-scale datasets
with a substantial number of features, resulting in improvements compared to some tra-
ditionally human-designed models and the NAS-based method. Figure 2 shows the best
architecture searched by AutoShape on two datasets. By observing these two structures,
we can see that for data with a high proportion of sparse features, selecting the Bilinear
operation in the first stage is more suitable for extracting effective features.
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(a) Avazu (b) Frappe

Fig. 2. The best architecture searched by AutoShape on two datasets.

To validate the stability of the models searched by our methods, we compared it
with another NAS-based method NAS-CTR and the random search. To mitigate the
interference caused by an excessive presence of a particular feature in the data, we
sample 200k and 2 million data from the Avazu dataset. Each method is tested 10 times.
The results of 10 times are shown in Fig. 3.

(a) Metrics on 200k (b) Metrics on 2 million

Fig. 3. Experimental results of different NAS-based methods.

From Fig. 3, it can be observed that AutoShape significantly enhances the efficiency
of the searched models. This leads to a great improvement in the reliability of the search.
This improvement primarily stems from the design of the search space,which reduces the
number of ineffective structures. Additionally, the utilization of Shapley value enables
the discovery of high-performing structures within the search space.

4.3 Ablation Experiments

Effect of Three-level Search Space. We further investigate the role of the Three-level
search space in preserving effective structures. We compare the NAS-CTR search space
with the proposed search space in this paper. To reduce the influence of different search
strategies on the search results, we adopt the simplest random search on both search
spaces and test the structures obtained from 10 searches.

The results in Fig. 4 show that the efficiency of the network searched on the 200k and
2 million datasets, where we adopt the simplest random search on both search spaces
(i.e., three-level search space in Autoshape and the NAS-CTR [5] search space) and
test the structures obtained from 10 searches. The ten results of the three-level search
space are shown in the red line, which has been significantly improved in AUC values
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(a) Metrics on 200k (b) Metrics on 2 million

Fig. 4. Experimental results for stability of different search spaces.

with less fluctuation. However, as for the search space of the original NAS-CTR, due
to the existence of many redundant structures in the space, the results of the network
structure obtained through search show great instability, as shown in the blue line in the
figure. In fact, the design of the first three blocks in the first stage of space searching
is crucial because subsequent blocks primarily interact based on the information within
these preceding blocks. Therefore, the effectiveness of the output information in the
first stage of space searching directly impacts the overall network performance. In our
designed search space, the operations within B1

1 are primarily used to extract relevant
portions of features and facilitate feature interaction. In the NAS-CTR search space, the
operations corresponding to the initial few blocks in the first stage are randomly selected.
Therefore, there is a high probability of selecting ineffective operations that disrupt the
valid information within the original embeddings.

Effect of Single-Block Sampling Strategy. During the computation of Shapley value,
we employ the Single-Block Sampling Strategy for sampling. In the initial stage, each
block selects only one operation, and after multiple samplings, operations with the same
contribution are grouped together. The process is repeated until the operation with the
maximum contribution is selected. We set the number of samples per iteration to 10 and
conduct 10 tests on the 2-million dataset sampled from the Avazu dataset to compare it
with the conventional random sampling method.

Table 3. Comparison with different Sampling Strategies.

Sampling method Average value Optimum value Average Time

Single-Block 0.7535 0.7563 448.66

Random 0.7519 0.7553 698.37

As shown in Table 3, the models obtained by Single-Block Sampling Strategy
exhibit superior average performance compared to conventional random sampling, with
a reduced average time cost. By limiting the single operation sampling within each block
in the initial stage, we ensure that each block has at least one operation with its corre-
sponding marginal contribution value. This prevents excessive computation frequency
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in a single module, which could overshadow the contributions from other modules. In
essence, it enhances the global search capability in the early stage and subsequently
selects a batch of operations with equal and maximum contributions for calculation,
effectively performing local search with promising operations.

Effect of AttentionMechanism. Themodel concatenates the output information from
different types of cells’ modules and performs a linear transformation before using it for
final prediction.Toverify its effectiveness,we randomly select five structures searchedon
200k dataset and arrange them in descending order based on their performance. Then,
we compare their performance with the performance after incorporating an attention
mechanism on output information.

Fig. 5. Effect of attention mechanism.

From Fig. 5, it can be observed that for high-performing models, the attention mech-
anism has little effect. However, for models with average or poor performance, the
attention mechanism can significantly improve the model’s performance. This means
that for poorly performing architectures, certain blocks may generate noise, resulting
in lower performance, while using attention mechanism can reduce the interference of
noise and improving the model’s performance.

5 Conclusion

We implement the three-level automatic design of click-through rate prediction models
by using neural architecture search (NAS) via Shapley value, named as AutoShape. In
AutoShape, the search space is narrowed down,which effectively eliminates a significant
portion of redundant network structures. The use of the single-block samplingmethod for
computing Shapley value helpmitigate interference. Extensive experiments demonstrate
that AutoShape is capable of discovering excellent network structures while maintaining
good stability. In the future, we will focus on developing lightweight NAS frameworks
for recommender systems.
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Abstract. Byzantine-robust Federated Learning focuses on mitigating
the impact of malicious clients by developing robust algorithms that
ensure reliable model updates while preserving privacy. The key insight
of the state-of-the-art approaches entails statistical analysis on the local
model updates uploaded by clients, concurrently eliminating any mali-
cious updates prior to their aggregation. Some of these methods also
require the assistance of server-side data for a reliable root of trust.
However, these methods may not perform well and can even disrupt
the normal process when the amount of data on the server-side is lim-
ited or the structure of the model is complex. We address this challenge
by introducing FLSMoE, a novel Byzantine-robust Federated Learning
approach that utilizes a Server-side Mixture of Experts. Our approach
introduces a novel methodology by implementing a server-side Mixture
of Experts(MoE) model, where the model parameters uploaded by indi-
vidual clients are considered as expert models. Through the utilization of
the gating unit within the MoE, even with low server-side data require-
ment, we are able to effectively identify and exclude malicious clients
by assigning appropriate weights to their contributions. Empirically, we
show through an extensive experimental evaluation that FLSMoE with
low server-side data requirement can effectively mitigate the threat of
malicious clients while also exhibiting greater Byzantine-robustness com-
pared to previous Byzantine-robust Federated Learning approaches.

Keywords: Federated Learning · Mixture of Experts ·
Byzantine-robustness

1 Introduction

In numerous real-world contexts, the exponential growth of internet-connected
devices generate an unprecedented volume of private data, creating a challenge
for machine learning to efficiently leverage extensive datasets while upholding
confidentiality. Federated Learning (FL) [18] represents a prospective distributed
learning framework targeted at this objective, focusing on decentralized data,and
has garnered considerable attention.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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However, in light of the distributed architecture inherent in FL, one of
major challenges of FL is the potential threat of malicious clients who may
attempt to compromise the integrity of the FL process through various attack
approaches [15]. Two common types of attacks are data poisoning attacks [3,19],
where a malicious client injects poisoned data into its local training dataset, and
local model poisoning attacks [1,2,9,23], where a malicious client sends a mod-
ified model update to the server. In cases of global model corruption, it has
the potential to produce erroneous predictions across a significant portion of
testing instances without discrimination [9], or it can be exploited to forecast
attacker-selected target labels for particular testing examples, all while retaining
its original behavior for other non-target testing instances [1,2,23].

Hence many Byzantine-robust approaches [4–6,12,20,24,25] have been sug-
gested within the FL domain. Most of these approaches rely on statistical anal-
ysis of the model updates uploaded by clients to identify and exclude malicious
clients or select trustworthy updates. However, some studies [2,9] have shown
that even this class of Byzantine-robust Federated Learning approaches can be
attacked based on their specific characteristics. To overcome this, Byzantine-
robust Federated Learning approaches that require server-side data [5,20] have
emerged, which provide a root of trust to the server. However, our subsequent
experiments have shown that these approaches do not perform well when there
is limited server-side data.

Mixture of Experts (MoE) [17,26] constitutes a category of neural network
architecture that combines the predictions of multiple expert models to achieve
better overall performance. Each expert model can be trained in a different input
subspace, which means that each expert can focus on learning its own specific
domain and improve performance as a whole. In FL, MoE has be used to address
the heterogeneity of client data [8,13,14,21,27]. Due to potential disparities in
data distribution and client features, the overall model’s effectiveness might be
compromised for specific clients [4]. Through MoE utilization, the diverse data
distribution across clients can be aligned with distinct expert models, resulting
in improved overall performance. Additionally, MoE can also be used to address
the quality differences in client data in FL. Poor-quality clients can be mapped
to weaker expert models, while better clients can be mapped to stronger expert
models, making the overall model more robust and accurate.

Inspired by this, we propose the server-side MoE approach FLSMoE, where
we treat each client’s uploaded model parameters as an expert model, train
the MoE using a limited volume of data situated on the server side, and use the
gating unit of the MoE to assign a weight for each client. Our approach combines
the strengths of MoE and FL, providing robustness that significantly reduces the
interference of malicious clients. Furthermore, due to MoE’s characteristics, our
approach can clearly identify and remove poorly performing clients, rather than
analyzing updates to speculate like Krum [4], Trimmed Mean [25] or judging
based on the direction of model updates like FLTrust [5]. Our approach provides
a strong and specific criterion for judgment, making it difficult for malicious
clients to deceive the system while also making it difficult to attack our model.
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We extensively experiment to evaluate our algorithm’s performance and com-
pare against existing methods. We use various datasets and attacks to prove the
proposed algorithm achieve higher global test accuracy than FLTrust and others.

In summary, our primary contributions include:

• We introduce FLSMoE, a novel Byzantine-robust Federated Learning app-
roach, which combines robustness and generalization. This represents the
first application of MoE on the server-side in Byzantine-robust Federated
Learning.

• We address the challenge of low server-side data requirement. Based on our
FLSMoE approach, for a server dataset with less than 100 samples, we have
achieved accuracy comparable to the FedAvg under normal conditions.

• We thoroughly analyze our approach concerning various existing attacks,
while also accounting for the varying sizes of server-side data. And our app-
roach exhibits higher Byzantine-robustness and effectiveness compared to
existing Byzantine-robust Federated Learning approaches.

The subsequent sections of the paper are organized as follows. Section 2
offers an overview of related studies on Federated Averaging (FedAvg) algo-
rithm, Byzantine-robust Federated Learning. Section 3 outlines the comprehen-
sive design of the FLSMoE approach. Performance evaluation results and com-
parisons with other approaches are presented in Sect. 4. Lastly, the paper con-
cludes with Sect. 5.

2 Related Work

2.1 FedAvg [18]

In FedAvg, the model training process involves iterative rounds of local model
training on client devices, where each client performs training using its own local
data. Subsequently, the central server aggregates client updates via averaging to
derive a global model. This iterative and decentralized approach allows the global
model to improve over time without requiring the direct exchange of raw data
between clients and the server.

2.2 Byzantine-Robust Federated Learning

Based the FedAvg process, it can be inferred that the FedAvg is highly vulnerable
and susceptible to malicious clients. Therefore, it is crucial to develop Byzantine-
robust Federated Learning.

Krum [4]. Krum works by comparing the contributions and similarities among
clients to identify reliable clients and exclude suspicious clients that significantly
deviate from the consensus. The specific formal expression for the score is as
follows:

di =
∑

uj∈Si,n−f−2

||ui − uj ||22 (1)
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In Eq. (1), ui represents the local model update for client i and Si,n−f−2

represents the n − f − 2 local model updates that are closest to ui based on
the Euclidean distance. The determination of the global model update involves
selecting the local model update from the client with the lowest score, denoting
the highest degree of reliability.

Trimmed Mean [25]. The trimmed mean is an aggregation rule that com-
putes the average of model parameter values after removing a certain number
of extreme values. Specifically, the server sorts the values from all local model
updates and discards the largest and smallest values according to a trim parame-
ter, leaving only the middle range of values. The remaining values are then com-
bined through averaging to determine the parameter value in the global model
update. This strategy has the capacity to endure a particular count of malicious
clients, contingent upon the suitable configuration of the trim parameter.

Median [25]. In contrast, the Median aggregation rule also sorts the parameter
values but chooses the median value as the parameter for the global model
update, instead of using the trimmed mean.

FLTrust [5]. FLTrust requires the server-side to have a certain amount of
data. While clients undergo training during each iteration, the server indepen-
dently trains the same model as the client local model for evaluation purposes.
FLTrust computes the cosine similarity between the client-uploaded updates and
the server-side model update to determine corresponding weights. Additionally,
before aggregation, FLTrust trims all client updates to match the size of the
server-side update.The formal expression for the global update g is as follows:

g =
m∑

i=1

ReLU(cos〈θi, θg〉) · ‖θg‖
‖θi‖ · θi

∑m
j=1 ReLU(cos〈θj , θg〉) (2)

In Eq. (2), θi represents the model update for client i, θg represents the
additional model update on the server-side, ‖ · ‖ represents the magnitude of a
vector and m represents the total number of clients involved.

However, some studies [9] have shown that Krum, Trimmed Mean and
Median are all susceptible to poisoning attacks tailored to their specific charac-
teristics. Furthermore, we believe that relying solely on cosine similarity between
parameters, as done in FLTrust, is insufficient for determining client weights and
our subsequent experiments have also shown that its performance is poor when
the amount of server-side data is limited.

3 Our Approach

3.1 Overview of FLSMoE

Our FLSMoE is expected to overcome previously mentioned challenges and
exhibit strong robustness even with limited server-side data, while preserving
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the normal flow of FL without compromising its functionality in the absence of
attacks.

In FLSMoE, the server retains a small portion of clean data, a feasible under-
taking, alongside a MoE model consisting of expert models and a gating unit.
The overall process is similar to the aforementioned FedAvg [18], but with an
additional MoE model trained at the server-side. Specifically, upon receiving the
model parameters from the clients, the server proceeds to update the correspond-
ing expert models and freezes their gradients. Subsequently, the MoE model is
trained using the server-side data, thereby incorporating the collective knowl-
edge from the experts. After the completion of training, an additional forward
pass is performed on the gating unit of the MoE model to obtain the weights
assigned to each client.

Intuitively, training a gating unit of a MoE requires a reduced amount of
data and is relatively easier compared to training a comprehensive large model.
Additionally, the inherent lack of interpretability in machine learning models
makes them less susceptible to attacks. Furthermore, the use of MoE allows for
assigning appropriate weights to each client, enabling a fair evaluation of their
contributions.

3.2 Model of FLSMoE

In FLSMoE, as shown in Fig. 1, the server requires a small amount of clean data
and maintains a MoE model M(θ1, θ2, . . . , θn, β;x) that contains a set of n expert
models F (θ;x) for each client and a gating function G(β;x) while θk represents
the local model parameters for client k, β represents the server gating function
parameters, x denotes the input, and n signifies the total count of clients. Every
round, after the clients upload their updates, in the MoE model, the expert
models F (θ;x) are frozen and have no gradients, while the gating function is
trained by the server. The gating function’s output serves as the weight for each
client’s update during the aggregation process. If the weight is less than a certain
threshold, the server will consider the corresponding client as a malicious client
and set its weight to 0, thus excluding it from the aggregation in this round.

The formal optimization objective for the server model is given by:

argminβLS(Σn
i=1(G(β;x)[i])F (θi;x), y) (3)

And in (3), n represents the number of clients involved in FLSMoE, LS rep-
resents a task objective of supervised learning, such as cross-entropy loss, while
G(β;x)[i] represents the output of the gating function for the client i. Finally,
the global model parameters θ is aggregated based on the weights generated
by the gating function and let the ωi equal to G(β;x)[i] then the global model
parameters θ will be formally given by:

θ =
n∑

i=1

ωi · θi∑n
j=1 ωj

(4)
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Fig. 1. The MoE model structure in the server. The grey boxes represent no gradient
flow, only participating in the forward process, while the pink box represents gradient
flow, participating in both the forward and backward processes. (Color figure online)

3.3 FLSMoE Algorithm

In this subsection, we will provide a comprehensive algorithm to make FLSMoE
applicable to the majority of FL scenarios. FLSMoE can be broadly categorized
into three phases:

Clients Upload Their Updates. Similar to FedAvg [18], each client retrieves
the global model from the server, conducts model training using its local dataset,
and then uploads its respective update back to the server. And malicious clients
may exist among the participating clients, who could potentially poison the
aggregation process by uploading maliciously crafted updates. We utilize the
function ClientUpdate to replace the specific client training procedures.

Server Train the MoE Model with Server-Side Data. Specifically, before
aggregation, the server updates the corresponding expert model in the MoE
model using the received updates and trains the MoE model with the server-
side data. It should be noted that, as mentioned earlier, the expert models in the
MoE model do not have gradients, only the gating function has gradients. We
utilize the function ServerMoEUpdate to replace the server training procedures.

Server Aggregate the Updates. In particular, as demonstrated by Alg.1,
after training, the MoE model is forwarded with the server-side data to acquire
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the current gating function’s output, which allocates a weight to each client.
Then the server aggregates the updates based on the weights assigned by the
gating function, resulting in a global model, rather than basing the aggregation
on the size of the clients’ datasets.

Algorithm 1. Aggregate
Require: server MoE model structure M including gating function G; server gating

function parameters β; server-side dataset Dserver; the set of clients participating
in the aggregation St; threshold ε; clients’ local model parameters θi, i = 1, 2, . . . , n.

Ensure: global model parameters θ
1: // Assign weights
2: for batch (x, y) ⊂ Dserver do
3: // W is a dict {client id : L} for all clients, the value is a list.
4: // Each batch, the gating function outputs a weight list V .
5: // The length of V is the overall count of clients throughout the procedure.
6: // Each element of V appends the corresponding L in W .
7: W ← G(β; x)
8: end for
9: for i in W do

10: W [i] ← mean(W [i])
11: end for
12: // Aggregate the local model updates.
13: total weight =

∑
i∈St

ReLU(W [i] − ε)

14: θ ←
∑

i∈St
ReLU(W [i]−ε)·θi

total weight

15: return θ

In conclusion, we have derived a comprehensive algorithm, as illustrated by
Algorithm 2, that encompasses all the necessary steps and considerations dis-
cussed earlier.

4 Experiments

4.1 Settings

The experiments in this paper were carried out utilizing PyTorch and the model
computations were performed on a GTX 1080 Ti. We use two datasets, five
baselines, and four types of attacks to demonstrate the robustness and efficiency.

The following will describe the experimental settings. For each scenario, we
executed the experiment ten times and computed the average to obtain the final
result. Moreover, we found that their variances were so small that they could be
ignored.

Datasets. We used MNIST [7] and CIFAR10 [16] as the experimental data-
sets. Both of them are image classification datasets.
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Algorithm 2. Byzantine-robust Federated Learning via Server-side Mixture of
Experts with Low Data Requirement
Require: local model structure F ; server MoE model structure M including gating

function G; server gating function parameters β; global communication rounds Tg;
server training epochs Es; client training epochs Ec; server learning rate ηs; client
learning rate ηc; n clients with local training datasets Di, i = 1, 2, . . . , n; randomly
initialized client local model parameters θi, i = 1, 2, . . . , n; server-side dataset Ds;
number of clients sampled per round τ ; client loss function Lc; server loss function
Ls; threshold ε.

Ensure: global model θ
1: // Phase 0: initialization
2: for each client do
3: send its local model parameters θi to server
4: end for
5: server receives the client local model parameters, creates corresponding expert

models, and initializes the gating function
6: for t in Tg do
7: St ← randomly select τ out of n clients
8: // Phase 1: Clients Update
9: for each client i in St in parallel do

10: θi ← ClientUpdate(F, Ec, ηc, Di, θ, Lc)
11: send its local model parameters θi to server
12: end for
13: server receives the local model parameters and updates corresponding experts
14: // Phase 2: Server MoE Update
15: β ← ServerMoEUpdate(M, G, β, Es, ηs, Ds, Ls, θ1, θ2, . . . , θn)
16: // Phase 3: Assign weights for each participant and aggregate
17: θ ← Aggregate(M, G, β, Ds, St, ε, θ1, θ2, . . . , θn)
18: end for

Baselines. We compared approach with FedAvg with no defense mech-
anism [18] against Byzantine attacks, and with other Byzantine-robust
approaches, including Krum [4], Trimmed Mean [25], Median [25] and
FLTrust [5], to demonstrate the superiority of our approach in defensing attacks.

Attacks. To demonstrate the robustness of our approach, we assume that
attackers have full knowledge. We implement one data poisoning attack: Label-
flip Attack [22]. In addition, we conduct three types of local model poisoning
attacks: Krum Attack [9], Trimmed Mean Attack [9] (also called Median
Attack), and Omniscient Attack. The Omniscient Attack is designed by us,
where the attacker always uploads the negation of the global model parameters.

Model Architecture and Parameter Settings. We utilize CNN [11] to
implement the global model and local model, and realize the gating function of
the MoE model with MLP [10]. We set up a total of 100 clients, out of which 30
are malicious and the server selects 100 clients in each round. The server dataset
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is fixed to have ten samples for each class, to demonstrate that our approach
only requires a small amount of data.

4.2 Results

The performance of the proposed FLSMoE approach is assessed and con-
trasted with state-of-the-art Byzantine-robust Federated Learning methods
under diverse attack scenarios. And results are shown in Table 1 and Table 2.

Table 1. The mean global test accuracy values across five baselines and FLSMoE on
CIFAR10. Bold font signifies the highest accuracy among all approaches.

FedAvg Krum Trimmed Mean Median FLTrust FLSMoE

No Attack 0.8255 0.7504 0.8295 0.818 0.7961 0.8218

Label-flip Attack 0.6358 0.4526 0.6212 0.6489 0.6332 0.6646

Krum Attack 0.8025 0.6742 0.8098 0.8097 0.7638 0.8158

Trimmed Mean Attack 0.1 0.7336 0.741 0.7328 0.7655 0.7963

Omniscient Attack 0.1 0.7418 0.6138 0.6054 0.798 0.7785

Table 2. The mean global test accuracy values across five baselines and FLSMoE on
MNIST. Bold font signifies the highest accuracy among all approaches.

FedAvg Krum Trimmed Mean Median FLTrust FLSMoE

No Attack 0.991 0.9876 0.9894 0.9896 0.9907 0.9899

Label-flip Attack 0.9327 0.8919 0.9483 0.9455 0.735 0.9724

Krum Attack 0.9889 0.1459 0.9878 0.9894 0.9889 0.9906

Trimmed Mean Attack 0.8395 0.9861 0.8771 0.9686 0.9893 0.99

Omniscient Attack 0.1135 0.9854 0.9623 0.9829 0.9891 0.9902

Our Approach is Effective and Better than Others. Experimental find-
ings illustrate the enhanced roubstness of our approach in comparison to alter-
native Byzantine-robust Federated Learning strategies, showcasing superior per-
formance across most scenarios. In the only case where our approach is outper-
formed, we still achieve a similar performance to the best-performing approach.
Specifically, as shown in Fig. 2(a) on the CIFAR10 dataset, under omniscient
attack, FLTrust achieves a test accuracy of 0.79, which is the best result, while
our approach achieves a similar performance with a test accuracy of 0.77, which is
the second best. And to demonstrate the robustness of our approach, we present
a typical scenario which is on the MNIST dataset under Label-flip Attack in
Fig. 2(b).
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Fig. 2. The global test accuracy vs. the global communication rounds for (a) FLSMoE
and five baselines on the CIFAR10 under Omniscient Attack; (b) FLSMoE and five
baselines on the MNIST under Label-flip Attack; (c) FLSMoE and five baselines on
the CIFAR10 under normal conditions; (d) FedAvg without attack and FLSMoE under
different attacks on the MNIST. (e) The global test accuracy vs. the number of the
server-side data per class for on the MNIST for FedAvg without attack and under
Label-flip Attack; FLSMoE and FLTrust under Label-flip Attack.

Our Approach Does Not Interfere with the Regular FedAvg Process.
Without attack, our approach does not affect the normal execution of the process
and achieves similar performance to FedAvg. Despite the presence of malicious
clients, our approach can still achieve a performance similar to the performance
of FedAvg when not subjected to attacks in certain instances. And it’s important
to note that our approach and FedAvg converge at the same speed, because we
did not add any extra tasks to the client-side and training the gating units on
the server-side incurs negligible computational overhead for a powerful server.
As an example, on the CIFAR10 dataset, under normal conditions, as shown in
Fig. 2(c), the proposed approach shows comparable results with FedAvg, achiev-
ing a test accuracy of 0.82, while Krum and FLTrust achieve a test accuracy
of 0.75 and 0.79 respectively. Moreover, on the MNIST dataset, under different
attack scenarios, also shown in Fig. 2(d), FLSMoE also achieves similar testing
accuracy rates to that of FedAvg without attacks.

Our Approach Requires Minimal Server-Side Data. To demonstrate that
our approach achieves superior accuracy with fewer server-side data, we con-
ducted additional experiments to compare it with FLTrust. As shown in Fig. 2(e),
we maintained all other conditions unchanged and only modified the server-side
data to evaluate the final test accuracy of FLSMoE and FLTrust under the
Label-flip attack on the MNIST dataset. Additionally, for ease of comparison,
we also included the final test accuracy of FedAvg under normal conditions and
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the Label-flip attack in the same figure. It can be observed that FLSMoE out-
performs the attacked FedAvg with only 5 data samples per class, while FLTrust
requires 50 data samples per class to surpass its performance.

5 Conclusion

In this paper, we present FLSMoE, a novel FL framework for countering Byzan-
tine attacks. Our approach employs a server-side MoE, ensuring robustness and
preserving data privacy. Extensive empirical evaluations confirm the superior
efficacy of FLSMoE compared to other Byzantine-robust Federated Learning
approaches. Remarkably, FLSMoE exhibits exceptional resilience against a sub-
stantial number of malicious clients, even in data-limited scenarios.

We aim to evaluate FLSMoE practically through smartphone deployment.
Our focus is on designing a streamlined parallel interface for multi-CPU servers
to minimize computation time. Additionally, we plan to explore asynchronous
user participation during training as part of our future research.
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Abstract. This paper proposes deep architectures for learning instance-
specific abstain (reject) option multiclass classifiers. The proposed app-
roach uses novel bounded multiclass abstention loss for multiclass classifi-
cation as a performance measure. This approach uses rejection cost as the
rejection parameter in contrast to coverage-based approaches. To show
the effectiveness of the proposed approach, we experiment with several
real-world datasets and compare them with state-of-the-art coverage-
based and cost-of-rejection-based techniques. The experimental results
show that the proposed method improves performance over the state-of-
the-art approaches.

Keywords: Reject Option · Multiclass Classification · Deep Learning

1 Introduction

In many classification problems, the cost of misclassification is very high (e.g.,
healthcare, financial decision, etc.). In such cases, it is more appropriate to avoid
(reject) the decision-making on confusing examples, especially when the cost of
the rejection option is much lesser than the cost of misclassification. The reject
option is to refrain from making a classification decision on some samples. Clas-
sifiers having such an option are called reject option classifiers. These classifiers
can be vital when learning in critical tasks such as medical diagnosis [17], speech
emotion recognition [32], text categorization [10], software defect prediction [23]
[6], financial forecasting [29], genomics [14], crowd-sourcing [20], social discrimi-
nation control [16], safety in autonomous vehicles [24] etc. The availability of the
reject option improves the classifier’s reliability in such decision support systems.

The desired goal of reject option classification is to minimize the risk by
achieving high accuracy on most samples while minimizing the number of rejec-
tions. There have been two major rejection options classification approaches:
(a) coverage-based and (b) rejection cost-based. Coverage-based methods [26]
don’t assume any cost of rejection. In such techniques, two metrics evaluate the
model’s performance: (1) selective risk, defined as the misclassification rate com-
puted over examples accepted for prediction, and (2) coverage corresponding to
the fractions of examples accepted for prediction. An optimal strategy for the
bounded-improvement model [8] maximizes the coverage because the selective
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risk does not exceed a target value. On the other hand, cost-based approaches
assume a cost involved for every rejection (pre-decided). The goal is to minimize
the number of rejections and misclassifications on unrejected examples. Below
we discuss the existing approaches for reject options and classify them into two
categories: (a) kernel-based and (b) neural network based.

1.1 Kernel Based Approaches for Learning with Abstention

Abstaining classifiers have been explored extensively in binary classification set-
tings. Generalized hinge SVM [1], double hinge SVM [13], double ramp SVM [22],
SDR-SVM [30], max-hinge SVM and plus-hinge SVM [4] etc. are some variants
of support vector machine (SVM) for abstaining classifiers. Nonlinear classifiers
in these approaches are learned using kernel functions. A boosting algorithm for
abstaining classifiers is proposed in [3]. Active learning of abstaining classifiers
is discussed in [31].

Various algorithms have been proposed in the multiclass setting, which
extends naturally to one vs. all implementations. In [27], excess risk bounds
of Crammer-Singer loss [5] and one vs. all hinge surrogates [28] are established.
They propose a new surrogate, a binary encoded prediction method, and excess
risk bounds. These algorithms also require a threshold hyper-parameter for the
risk coverage trade-off. These approaches face two significant challenges. (a) The
approach to relying on kernel tricks to learn nonlinear classifiers makes them
infeasible for big data. (b) Parameter ρ, which captures rejection bandwidth, is
considered independent of the instances (i.e., ρ(x) = ρ, ∀x ∈ X ).

1.2 Neural Network Based Approaches for Learning
with Abstention

A post-processing-based deep learning approach for reject options has been
explored in [11] where best-abstaining thresholds are found for each class using
the softmax function for a pre-trained network. Recently, coverage-based meth-
ods have been proposed for learning with abstention [8,12]. Coverage is defined
as the ratio of samples that the model does not reject. Such approaches do not
take the cost of rejection d as an input. The purpose of the selective function
is to select enough examples to match the coverage condition. Such methods
try to learn an appropriate selection function and a classification function in a
deep learning setting for a given coverage. Learning is based on optimizing risk-
coverage trade-offs. As this approach does not consider rejection cost d in their
objective function, it can avoid rejecting hazardous examples. This, in particu-
lar, becomes a severe issue in high-risk situations (e.g., healthcare systems, etc.).
The work in [33] assumes the reject option as another category and extends the
cross-entropy for the same. The modified cross-entropy function uses a learnable
hyperparameter expressing the degree of penalty for abstaining from a sample.
However, considering the rejection region as a different class itself may not serve
the fundamental purpose of rejection as it captures the gray regions in the feature
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space. In [15], the authors propose a cost-based rejection deep neural network,
which works only for binary classification tasks.

Learning to defer is a slightly related problem to learning abstaining classi-
fiers. Learning to defer uses abstaining classifiers with a human expert in the
loop. Abstaining classifiers discussed so far are trained independently from the
human decision-maker; however, when a human expert and an abstaining classi-
fier work together, rejection parameters must be learned adaptively. For binary
classification, [21] propose learning to defer model. In a multiclass setting, such
models are presented in [25].

1.3 Proposed Approach

This paper introduces deep neural network architectures for multiclass classifica-
tion with abstention, which involves cost for rejection also. This paper presents
a novel loss function that supports multiclass classification with abstention. This
is the first paper that explores the abstain option in multiclass deep neural net-
works (DNN), where the cost of rejection can be utilized as a hyperparameter to
train the network. Note that the proposed approach does not consider abstention
as a separate class.

Key Contributions: Our key contributions in this paper are as follows.

1. We propose a new loss function for the multiclass abstention option classifier,
called bounded multiclass abstention (LBMA

d ) loss.
2. We propose a novel deep abstain network called CDAN. We consider two vari-

ants of CDAN with (a) input-independent rejection function and (b) input-
dependent rejection function.

3. We show the effectiveness of the proposed approach by comparing its perfor-
mance with state-of-the-art algorithms on benchmark datasets.

2 Multiclass Reject Option Classifier

Let X ⊆ R
D be the feature space and Y = [k] be the label space, where [k] =

{1, . . . , k}. Let S = {(x1, y1), . . . , (xm, ym)} be the training dataset such that
(xi, yi) ∈ X ×Y. For a given cost of rejection d, the objective here is to learn a set
of decision functions h(x) = [h1(x), h2(x), . . . , hk(x)] ∈ R

k and corresponding
rejection bandwidth parameters ρ(.) = [ρ1(.), ρ2(.), . . . , ρk(.)] ∈ R

k. Here ρ can
be dependent on feature vector x. Let ŷ = argmaxr∈[k] hr(x), then the multiclass
reject option classifier f : X → [k] ∪ {reject} is given as follows.

f(h(x),ρ) =

{
ŷ, hŷ(x) − max

y′ �=ŷ
hy′(x) > ρŷ

reject, hŷ(x) − max
y′ �=ŷ

hy′(x) ≤ ρŷ
(1)

Note that here we allow different rejection bandwidths for different classes. To
measure the quality of the prediction, we use 0 − d − 1 loss (denoted as Ld)



56 B. Kalra and N. Manwani

described below.

Ld(f(h(x),ρ), y) =

⎧⎪⎨
⎪⎩
1 f(h(x),ρ) �= y and f(h(x),ρ) �= reject

d f(h(x),ρ) = reject

0 f(h(x),ρ) = y

(2)

Cost of rejection (d) can take values in the range [0, k−1
k ] [27]. For a given loss L,

score functions h and rejection bandwidth parameters ρ and cost of rejection d,
risk is written as RL

d (h,ρ) = EX×Y [Ld(f(h(x),ρ), y)]. For the multiclass reject
option classifier, the risk under Ld loss is minimized by the generalized Bayes
classifier f∗

d [2,27], which is described as follows.

f∗
d (x) =

{
argmaxr∈[k] px(r) maxr∈[k] px(r) ≥ 1 − d

reject else
(3)

where px(r) = P (Y = r|X = x). Thus, f∗
d is composed of h∗ and ρ∗ as follows.

h∗
i (x) = P (Y = i|x), ∀i ∈ {1, . . . , k}

ρ∗
i (x) = 1 − d − max

j �=ŷ
P (Y = j|x), ∀i ∈ {1, . . . , k}

where ŷ = argmaxl∈{1,...,k} P (Y = l|x). Minimizing empirical risk under loss
Ld is computationally difficult as Ld is not continuous. In practice, surrogate
loss functions, which are continuous upper bound to Ld, are used to learn the
classifiers.

3 Bounded Multiclass Abstention Loss

We first describe a new loss function for multiclass reject option classification
called bounded multiclass abstention (BMA) loss. The BMA loss LBMA is an
extension of the double ramp loss [22] for multiclass reject option problems.
LBMA loss differs from double ramp loss in two aspects. (a) LBMA loss is designed
for multiclass cases, whereas double ramp loss is designed for the binary case.
(b) LBMA loss also accommodates different rejection bandwidths corresponding
to different classes. Rejection bandwidths can be instance specific also. On the
other hand, double ramp loss considers the same rejection bandwidth parameter,
which is a scalar.

The intuition behind the construction of loss LBMA is as follows. Loss Ld can
be written as a sum of two-step functions (one has a step at ρ and the other and
step at −ρ.). Each of the step functions is approximated using a ramp function
(which is continuous). Summing these two ramps will provide LBMA loss. Given
h(x) = [h1(x), . . . , hk(x)] ∈ R

k and ρ = [ρ1, . . . , ρk] ∈ R
k, we define LBMA

loss as follows.

LBMA(h(x),ρ, y) =
d

μ

[
[μ − t + ρy]+ − [−μ2 − t + ρy]+

]

+
1 − d

μ

[
[μ − t − ρy]+ − [−μ2 − t − ρy]+

]
(4)
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Fig. 1. Bounded multiclass abstention loss for different values of µ.

where t = hy(x) − maxj �=y hj(x), μ > 0 and [a]+ = max(0, a). LBMA is a
continuous upper bound for Ld (Eq. (2)), which can be easily seen from The-
orem 1 of [22]. Figure 1 shows BMA loss for ρy = 2. The rejection region
for LBMA is between [−ρy, ρy]. Loss LBMA can achieve zero value when
hy(x) − maxj �=y hj(x) ≥ ρy + μ. The risk under LBMA is given as,

RBMA(h,ρ) = EX×Y [LBMA(h(x),ρ, y)].

In this paper, we model h(.) and ρ using a neural network and learn the param-
eters by minimizing the risk RBMA described above.

4 Proposed Approach: Cost Dependent Abstention
Network (CDAN)

This section proposes a new deep-learning approach for multiclass classifica-
tion with a reject option. This approach uses the proposed loss function LBMA

d .
Since the proposed approach depends on the cost of rejection, it is called cost-
dependent abstention network (CDAN). The proposed model integrates the
decision functions h(.) = [h1(.), h2(.), . . . , hk(.)] and the rejection functions
ρ(.) = [ρ1(.), ρ2(.), . . . , ρk(.)] into a single DNN model. The main body of the
CDAN can have fully connected, convolution, or recurrent layers, depending
on the problem at hand. We propose two different architectures for CDAN as
follows. (a) CDAN Input Independent Rejection: in this architecture, the rejec-
tion bandwidth parameter vector ρ is assumed to be independent of the input
vectors, i.e., ρ(x) = ρ, ∀x. (b) CDAN Input Dependent Rejection: here, the
rejection bandwidth parameter vector ρ depends on the input vector. In both
variants, the objective is to optimize the decision function (h(x)) and rejection
bandwidths (ρ(x)). The utility of each of the variants depends on the dataset’s
size and the dataset’s type.
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4.1 CDAN: Input Independent Rejection

Here, we assume that the rejection bandwidth is independent of the input feature
vector. The architecture of input-independent rejection CDAN is given in Fig.
2. In this setting, the model assumes that ρ(x) = ρ, ∀x ∈ X . CDAN for input
independent rejection has 2k output nodes, k nodes for predicting scores for each
class (h(x)), and k nodes outputting values of rejection bandwidth parameters
(ρ). The input data x is fed into the fully connected (FC) layers, while k neurons
feed constant values into the rejection heads. The associated weight to rejection
heads then becomes the rejection parameter. The task of the k prediction heads
is to learn the k decision surfaces h(x), and the rejection heads are to learn
the corresponding k rejection bandwidths. The network parameters are learned
using the backpropagation algorithm, which minimizes LBMA

d .

Fig. 2. Input Independent Rejection Architecture for CDAN

4.2 CDAN: Input Dependant Rejection

The input-dependent CDAN (CDAN-dependent) is an abstention model where
rejection bandwidths depend on the specific instance (Fig. 3 and Fig. 4). The
rejection heads are fed input from the final layer of the main body block. Thus,
the rejection head outputs become a function of the instance. These outputs are
refined and assist in finding optimal rejection bandwidths, unlike constant inputs,
when the variance and dimensionality of data are high. We add an auxiliary head,
Fig. 4 for larger datasets. The core architecture has two sets of output heads,
k prediction heads (h(x)) and k rejection heads (ρ(x)). The depth and size of
a fully connected network preceding these two heads are independent and vary
depending on the underlying task.

4.3 CDAN: Input Dependent Rejection with Auxiliary Heads

In this architecture, we have an additional set of k auxiliary heads (g(x)) as
shown in Fig. 4. We compute cross-entropy loss using g(x) to the actual class
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Fig. 3. Input Dependent CDAN Architecture without Auxiliary head

labels. Thus, Input Dependent CDAN aims to find optimal decision functions and
rejection bandwidth parameters in an auxiliary task (simple classification task
without rejection). A similar idea has been used in [12]. Therefore, the overall
objective for CDAN is to minimize a weighted combination of cross-entropy loss
LCE and BMA loss LBMA

d as follows.

Lcdan = αLBMA
d + (1 − α)LCE (5)

Here, α is a hyper-parameter chosen in the interval (0, 1). We observe that
during the initial learning phase, the auxiliary heads play an important role in
assimilating complex features from the main body block. Thus, it leads to more
meaningful representations in the shared layer. This facilitates the prediction and
rejection heads to build better features and optimize themselves to minimize the
overall loss. Without the auxiliary loss, the network has two ways to reduce
the loss. It can either opt to reject everything or focus on improving accuracy.
Depending on the initialization parameters and cost of rejection, it opts for
one of those options before accurate low-level features are assembled. With the
addition of auxiliary loss, the network can focus on learning optimal features for
prediction and rejection parameters instead of solely on building features only
to improve accuracy.

Fig. 4. Input Dependent CDAN with an Auxiliary head
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Remarks: CDAN-Independent is a simpler model than CDAN-Dependent. It
depends on the application which method is more suitable. In the applications
where overlap between classes (region of confusion) is uniform across the feature
space, CDAN-Independent is sufficient. On the other hand, when the overlap
between the classes is nonuniform across the feature space, CDAN-Dependent is
more beneficial.

5 Experiments

To show the efficiency of the proposed approach, we perform experiments on
various benchmark datasets. We compare the proposed approach with various
state-of-the-art baseline algorithms. The complete details are as follows.

5.1 Datasets Used

We use two kinds of datasets for our experiments: small and large. Some baseline
approaches (e.g., kernel-based methods) are more optimized for smaller datasets
and fail to converge for larger ones. On the other hand, deep learning based
approaches can handle even larger datasets. The two kinds of datasets used are
described below.

– Small Datasets: Image, Satmage and covertype [7]. We use these datasets to
experiment with kernel-based approaches and non-deep methods.

– Image Datasets: SVHN [9], CIFAR-10 [18], Fashion MNIST [19]. We used
these datasets to experiment with deep learning based approaches.

5.2 Baselines for Large Datasets Experiments:

We use the following baselines methods for CIFAR-10, SVHN, and Fashion
MNIST.

– SelectiveNet (SNN) [12]: a deep neural architecture with an integrated reject
option that optimizes a prediction and selection function. Selective Net (SNN)
takes as input a coverage parameter. Coverage denotes the fraction of points
that are not abstained by the network.

– DAC: Deep abstaining classifier, a deep neural network trained with a modi-
fied cross-entropy loss function introduced in [33] to accommodate an abstain
option. DAC takes the abstention rate as an input parameter.

– Softmax Response (SR): The SR method [11], is a post-processing method
that makes a selective prediction on samples with a maximum softmax con-
fidence score above a certain threshold based on a pre-trained network.
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5.3 Baselines for Small Datasets Experiments:

We use the following baseline methods for small datasets.

– BEP: multiclass reject option classifier introduced in [27] which minimizes
the double hinge loss.

– OvA: multiclass reject option classifier based on Hinge loss also proposed in
[27].

– Softmax Response (SR) [11].
– SelectiveNet(SNN) [12]: We remove the auxiliary network from SNN for these

experiments.
– DAC: Deep abstaining classifier [33].

5.4 Experimental Settings

For Image and Satimage datasets [7] datasets, we perform ten repetitions of ten-
fold cross-validation for each of the baseline methods and the proposed approach.
We perform ten repetitions of five-fold cross-validation for Covertype, SVHN,
CIFAR-10, and Fashion MNIST datasets. We do these for the cost of rejection
(d) varying from [0.1, k−1

k ] with a step size of 0.1. We monitor the accuracy (on
unrejected samples) vs. rejection rate curves for various values of d.

5.5 Network Architecture and Implementation Details

We use the sample independent (Fig. 2) and sample dependent (Fig. 3) architec-
tures with relu activation at each layer, including the final layer at the rejection
head. However, no activation function is applied to the final outputs at the pre-
diction head.

Architecture for Small Datasets: For small datasets, the network contains
three layers, each of 128 neurons, and trains it with a learning rate scheduler
beginning with an initial learning rate of 1e−2. Batch normalization layers follow
each layer. We use SGD optimizer with gradient clipping to train the networks.
The loss function parameter μ is set to 2. For each run, we train the network for
150 epochs.

Architecture of Large Datasets: For large datasets, the architecture follows
the VGG-net architecture, but instead of 3 fully connected layers of size 1024, we
use a single layer of size 512. We also deploy batch normalization and dropout
layers. For our network, the final layer of the rejection head uses a sigmoid as
the activation function, which bounds values of rejection parameters between
0 and 1. This reduces the prediction head function space, helps the network
learn appropriate head functions, and leads to stable models. When rejection
bandwidth parameters aren’t bounded in [0, 1], the final models have either
shallow rejection values or very high rejection values leading to high variance in
the corresponding accuracy results. We run all the experiments for 250 epochs
and initialize the learning rate scheduler with an initial learning rate of 1e − 2
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drops by 0.5 when the validation loss stops changing by 1e − 4. The batch size
used for all the experiments is set to 128. The μ parameter gives optimal results
at μ = 1. We also do image data augmentation with width and height parameter
range set to 0.1. We also allow horizontal image flips and a rotation range of 15.
The α parameter is also set to 0.5

As our approach is a cost-based method, rejection cost dictates the coverage.
To get a wide range of rejection rates (or coverage), we select the cost of rejection
d parameter for our CDAN methods from {0.0001, k−1

k }. We vary the abstention
rate parameter for DAC [33] from [0.1, 1.0] with a step size of 0.1. Similarly, the
coverage parameter from SNN [12] is varied from [0.1, 1.0] with a step size of
0.1. We plot the rejection rate vs. accuracy for each algorithm to compare the
various abstention methods (Figs. 5 and 6).

Image Dataset SatImage Dataset Covertype Dataset

Fig. 5. Results on Small Datasets

CIFAR-10 Dataset Fashion MNIST Dataset SVHN Dataset

Fig. 6. Results on Large Dataset

5.6 Empirical Observations on Small Datasets

We evaluated the effectiveness of CDAN by plotting accuracy and rejection rates
for all the methods. We observed that CDAN-independent does much better, 4–
5%, on average than BEP and OvA, which are optimized for small datasets on
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all datasets. We also observe that SNN does better than the Image dataset. How-
ever, CDAN-dependent performs comfortably better than all the other methods
except for SR at lower rejection rates on the Image dataset. In addition, we make
another important observation that DAC fails to reject any of the samples on
smaller datasets.

5.7 Empirical Observations on Large Datasets

We evaluated the effectiveness of CDAN for large datasets by plotting accuracy
vs. rejection rates computed over five iterations. We observed that the results
obtained on large datasets are comparable with the other baseline methods. How-
ever, we notice a few critical observations. Firstly, the CDAN network requires
an additional auxiliary task. Otherwise, the network converges to meager rejec-
tion rates (0–2%) or very high rejection rates(99–100%). Secondly, an advantage
over methods parameterized by the cost of rejection, such as BEP and OvA, is
that they fail to work due to computational restraints even on marginally large
dimensional datasets. We also observe our network performs comparably to the
state-of-the-art techniques SelectiveNet, DAC, and SR on large datasets and
performs moderately better across the three datasets when the rejection rate is
lower (<10%). In addition, we also observed that DAC and CDAN could achieve
zero rejection rates. Still, SelectiveNet cannot achieve full coverage, and some
post-processing needs to be done to achieve full coverage in SNN. The DAC
loss function is independent of any other loss function; CDAN and SNN use a
convex combination of cross-entropy loss and independent losses, while SR only
uses cross-entropy loss.

6 Conclusions and Future Research Directions

We presented an effective deep-learning model for classification with abstention.
This model also learns both the decision surface and bandwidth rejection param-
eters simultaneously. Novel loss function Bounded Multiclass Abstention loss is
proposed in this paper. We empirically established the network’s performance by
comparing it against the state-of-the-art methods on small and large datasets.
The results motivate the use of CDAN in critical applications where the cost of
misclassification is high.

There are several directions for future research. On the explainability of rejec-
tion decisions, we can look further into the features learned by the model and
how they differ from features learned by non-abstention networks. We would
also like to explore the network’s performance when noise is introduced into the
datasets.
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Abstract. In this paper, we introduce a new method for learning and
regression from a finite set of noisy points on Grassmann manifolds. In
contrast to previously existing methods, we propose a new Riemannian
Monte Carlo method to sample from the posterior distribution of the
tangent space of a Grassmann manifold. Specifically, we investigate and
exploit the geometric structure of this manifold which can be used as a
solid basis to extend the proposed method to other manifolds in a similar
manner. We demonstrate our method for regression using different setups
and datasets.

Keywords: Regression Model · Grassmann Manifolds · Riemannian
Monte Carlo · Manifold-valued Data

1 Introduction

Manifold-valued data [2] are often encountered in various fields such as computer
vision [10], natural language processing [12], and shape analysis [17]. Some exam-
ples include images, speech signals, and landmarks. Traditional learning methods
may not be effective when dealing with manifold valued data. To address this
challenge, several regression models taking into account the intrinsic geometry
of the manifold have been developed [15,19]. Geodesic regression models as an
extension of linear regression models are designed to handle data that resides on
nonlinear manifolds. In linear regression, the relationship between the response
variable and the predictors is assumed to be linear, and the least squares method
is established to estimate the model parameters. In contrast, the geodesic regres-
sion deals with the concept of geodesics, which are the shortest paths on a man-
ifold. By learning a geodesic regression model one can capture the underlying
nonlinear relationship between the input and target variables. Geodesic regres-
sion models have been applied to a wide range of problems, including medical
imaging, neuroscience, and computer vision.

The Grassmann manifold, denoted by Gr(n, p), is a mathematical concept
that represents the collection of all linear subspaces of a fixed dimension p in
a given vector space R

n [3,20]. Geodesic regression on the Grassmannian is an
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active area of research with several applications [5]. Firstly, [13] proposed a gradi-
ent method for geodesic data fitting on some symmetric Riemannian manifolds,
which is still applicable for Grassmann manifolds. Secondly, [18] addressed the
problem of estimating full curves/paths on quotient spaces of matrix nonlin-
ear manifolds, using only a set of time-indexed points. Recently, [8] discussed
extensions of linear and cubic spline regression on the Grassmannian within an
optimal-control perspective. More recently, there has been interest in applying
deep learning techniques to geodesic regression on the Grassmannian. For exam-
ple, [9] used a neural network to estimate geodesic regression models on the
Grassmannian.

In literature, there are various avenues for generating samples from complex
posterior distributions with Markov chain Monte Carlo (MCMC) methods [7],
ranging from simple Metropolis Hasting (MH) methods with symmetric proposal
distributions to component-wise Gibbs samplers. The basic principle of MCMC
is to construct a Markov chain trajectory whose stationary distribution is the
desired probability distribution. The Markov chain is constructed in such a way
that it satisfies the detailed balance condition, which ensures that the chain will
converge to the desired probability distribution [6]. One of the main advantages
of Monte Carlo sampling is that it can be used to sample from distributions that
are not analytically tractable, such as posterior distributions in Bayesian statis-
tics. Additionally, MCMC can handle non-convex and multi-modal distributions,
which are difficult to sample using other basic techniques.

In this paper, we propose to learn a regression model on the Grassmannian
based on a Riemannian Monte Carlo sampling that could overcome some limi-
tations of deterministic optimization algorithms [14]. The main advantage is its
ability to efficiently explore the manifold and avoid getting trapped in local min-
ima. This is because Riemannian Monte Carlo algorithms can sample from the
posterior distribution of the Grassmannian’s tangent space, which provides a rich
set of candidate directions [11]. They can also handle noise and uncertainty in
data by incorporating prior knowledge and uncertainty into the optimization pro-
cess. This can improve the robustness and accuracy of the underlying model [1].
Additionally, the proposed algorithm can be easily parallelized, which allows for
efficient exploration of the manifold and speed up the learning step. Overall,
the ability of the Riemannian Monte Carlo sampling to efficiently explore the
manifold, handle noise and uncertainty, and parallelize well, make it a powerful
tool for Riemannian optimizations.

Organization. The paper is organized as follows: Sect. 2 introduces some back-
ground about the geometry of the Grassmann manifold in connection with the
Stiefel representation. In Sect. 3 we present our proposed method about the
regression on Grassmannian as well as the corresponding algorithm. Section 4
then presents experimental results whereas Sect. 5 concludes the paper with a
discussion and an outlook on future work.
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2 The Geometric Structure

The set of n×p matrices with p-dimensional orthogonal columns in R
n, is known

as the real Stiefel manifold denoted by St(n, p), which is a (compact) Riemannian
manifold of dimension np − 1

2p(p + 1) satisfying

St(n, p) = {U ∈ R
n×p | UT U = Ip}. (1)

We define the orthogonal group by

O(p) = {R ∈ R
p×p | RT R = RRT = Ip}. (2)

We denote the action of O(p) on St(n, p) by the right multiplication as an equiv-
alence class

[U ] =
{

UR | R ∈ O(p)
}

. (3)

We remark that, up to right rotations R ∈ O(p), the mapping U �→ [U ] maps
an element of the Stiefeld manifold St(n, p) to an element of the quotient space
St(n, p)/O(p). This quotient space is in one-to-one correspondence with the set
of p-dimensional linear subspaces of Rn, namely the Grassmann manifold, satis-
fying

Gr(n, p) =
{

U = [U ] | U ∈ St(n, p)
}

, (4)

according to Gr(n, p) ∼= St(n, p)/O(p). Note that the dimension of the Grass-
mann manifold is n(n− p). Let TUGr(n, p) denote the tangent space of Gr(n, p)
locally at U . The canonical Riemannian metric gU : TUGr(n, p) × TUGr(n, p) →
R on Gr(n, p) is defined by

gU (Δ1,Δ2) = tr(ΔT
1 Δ2). (5)

Let U be an orthogonal class representative in St(n, p) with columns spanning
U i.e., [U ] = U . Then the projection of an arbitrary matrix M ∈ R

n×p onto the
tangent space at U is a tangent vector Δ such that

Δ = (In − UUT )M. (6)

Therefore, the canonical Riemannian metric between two tangent vectors Δ1

and Δ2 becomes

gU (Δ1,Δ2) = tr(MT
1 (In − UUT )M2). (7)

Geodesic paths on the Grassmannian Gr(n, p) denoted γ are locally the shortest
curves between two points that are parametrized by the arc length. Moreover,
exponential maps ExpU1 : TU1Gr(n, p) → Gr(n, p) maps a tangent vector Δ ∈
TU1Gr(n, p) to the end point of the geodesic γ. To summarize, exponentials and
geodesic paths are related by γ(t) = ExpU1(tΔ). Consider a curve γ : [0, 1] →
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Gr(n, p); t �→ γ(t) such that γ(0) = U1 and γ(1) = U2. The geodesic equation
for such curve on Gr(n, p), given that γ̇ = d

dtγ(t) = (In − UUT )M , is

γ̈(t) + γ(t)
(
γ̇(t)T γ̇(t)

)
= 0. (8)

The Grassmann geodesic path, as a solution of the geodesic equation [5], starting
at γ(0) = U1 with a direction Δ ∈ TU1Gr(n, p) is

γ(t) = U1V cos(tΣ)V T + Q sin(tΣ)V T , (9)

with Δ
SVD
:= QΣV T , Q ∈ St(n, p), Σ ∈ diag(Rp×p) and V ∈ O(p). More-

over, the arc-length of the Grassmann geodesic path connecting two points
U1 = [U1] and U2 = [U1] ∈ Gr(n, p) is related to the canonical angles Φ =
(φ1, . . . , φp)T ∈ [0, π/2] between U1 and U2 according to dist(U1, U2) = ||Φ||2.
This is the geodesic distance which can be computed from the SVD decomposi-
tion UT

1 U2 = Q cos(Σ)V T (where Σ is a diagonal matrix with principle angles
φj) as

dist(U1, U2) = || cos−1(diag(Σ))||, (10)

where ||.|| denotes the Frobenius norm induced by the trace inner product. This
shows that, for any two points U1 and U2 on the Grassmann manifold Gr(n, p)
represented in the Stiefel level by U1 and U2, the geodesic distance is bounded
by

dist(U1, U2) ≤ √
p
π

2
. (11)

The inverse exponential map (log-map) on the Grassmannian LogU1 : Gr(n, p) →
TU1Gr(n, p) is a diffeomorphism that maps a neighborhood of U1 to TU1Gr(n, p).
We write

LogU1(U2) = Δ if ExpU1(Δ) = γ(1) = U2. (12)

Using the SVD decomposition (U2 − U1U
T
1 U2)(UT

1 U2)−1 = QΣV T yields that

Δ = Q arctan(Σ)V T . (13)

Let U1,U2 ∈ Gr(n, p), and a direction matrix Δ1 ∈ TU1Gr(n, p) such that U2 =
γ(1) = ExpU1(Δ1). The parallel transport consists of transporting an arbitrary
tangent vector Δ2 ∈ TU1Gr(n, p) to TU2Gr(n, p) along the geodesic connecting
U1 and U2, satisfying

ΓU1→U2(Δ2) = −U2V sin(Σ)QT Δ2 + Q cos(Σ)QT Δ2 + (In − QQT )Δ2, (14)

based on the SVD decomposition Δ1 = QΣV T .
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3 The Regression Model

It is important to mention that there are many other representations of the
Grassmann manifold. For instance, it can be seen as a quotient space of the
orthogonal group O(n) from Gr(n, p) ∼= O(n)/

(
O(n − p) × O(p)

)
or a quotient

space of the “noncompact Stiefel manifold” (the set of all n × p matrices whose
columns are linearly independent) denoted R

n×p
∗ from Gr(n, p) ∼= R

n×p
∗ /GLp

where GLp denotes the set of all p × p invertible matrices [1]. However, in this
paper, we prefer its connection to the Stiefel manifold Gr(n, p) ∼= St(n, p)/O(p)
for which the geodesic distance, parallel transport, as well as the Riemannian
Exp-map and its inverse are relatively simple to compute (9 → 14).

3.1 Formulation

In this section, we introduce a geodesic regression model for the Grassmann
manifold. Let (ti, yi)Ni=1 be a finite set of measurements in the Grassmann man-
ifold Gr(n, p). For simplicity and without loss of generality, we assume that the
input ti is a time instance in [0, 1] and yi refers to its corresponding output in
Gr(n, p). The regression captures the relationship between data points on the
Grassmannian yi and their associated independent variables ti. We remind that
the geodesic distance, induced by this metric, was denoted as dist(., .) in (10).

Definition 1. A random matrix X ∈ R
n×p is said to have a matrix-variate

Gaussian distribution that we denote X ∼ MN(m|C1, C2) if and only if its
probability density function is given by

Pr(X|m,C1, C2) = (2π)−
np
2 det(C1)−

n
2 det(C2)−

p
2 (15)

× e− 1
2 tr

(
C−1

2 (X−m)T C−1
1 (X−m)

)
,

with a mean matrix m ∈ R
n×p and positive semi-definite covariance matrix

C1 ∈ R
n×n, C2 ∈ R

p×p where det(.) is the matrix determinant.

We define the regression model as

yi = Expγ(0)

(
Logγ(0)(γ(ti)) + εi

)
; εi ∼ MN(0|σIn, σIp); i = 1, . . . , N (16)

where εi is a matrix-variate Gaussian noise realization assumed to be added on
the tangent space at γ(0). Here, γ(t) refers to the Grassmann geodesic path at
initial point γ(0) with an initial direction γ̇(0) ∈ T[γ(0)]Gr(n, p). From (9) yields

γ(t) = Expγ(0)(tγ̇(0)) = γ(0)V cos(tΣ)V T + Q sin(tΣ)V T , (17)

for γ̇(0)
SVD
:= QΣV T . The main objective is to estimate the geodesic path γ :

[0, 1] → Gr(n, p) entirely determined by initial conditions: the initial position
γ(0) and the initial direction γ̇(0). The injectivity radius at any U ∈ Gr(n, p)
is defined as the distance from U to its cut locus, or the radius r for which
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ExpU (.) is a diffeomorphism from the open ball Br(0) ⊂ TUGr(n, p) into its
image. From (11) we state that the injectivity radius is r = π

2 since there is
always a subspace for which the principal angles between a first point U1 and a
second one on the cut locus U2 are all equal to zero, except one, which is equal
to π

2 . Consequently, the noise realization εi should be controlled in such a way
that ||Logγ(0)(γ(ti)) + εi|| < π

2 allowing the model in (16) to be well-defined.

3.2 Inferring on the Optimal Model

The likelihood is the probability of measurements y1, ..., yN in Gr(n, p) satisfying

Pr(y1, . . . , yN |t1, . . . , tN , γ(0), γ̇(0)) ∝ e− 1
2σ2

∑N
i=1 dist2

(
yi,γ(ti)

)
. (18)

Maximizing the likelihood above can be reformulated as a minimization problem

min
{θ,v}

E(θ, v) : =
1

2σ2

N∑
i=1

dist2
(
yi, γ(ti)

)
, (19)

s.t. {θ, v} = {γ(0), γ̇(0)}; θT θ = Ip and θ ⊥ v.

The two initial conditions θ and v correspond to intercept and slope in lin-
ear regression. The goal is then to find a geodesic curve t �→ γ̂(t) = γ(t, θ̂, v̂)
that minimizes the sum of the squared Riemannian distances between the data
points yi and their corresponding points on the geodesic curve γ(ti). On the one
hand, by applying the Logarithm map at γ(0) to (16) we have Logγ(0)(yi) =
Logγ(0)(γ(ti)) + εi which implies that εi = Logγ(0)(yi) − Logγ(0)(γ(ti)) =
Logγ(ti)(yi). This means that the i-th residual measurement εi results to be the
Log-map of yi into the the tangent space at γ(ti). On the other hand, we state
that dist

(
(yi, γ(ti)

)
= ||Logγ(0)(yi)−Logγ(0)(γ(ti))|| since the Log-map is a Rie-

mannian isometry from the Grassmannian to its tangent space. Consequently, we
get dist2

(
yi, γ(ti)

)
= ||εi||2. Therefore, the maximum likelihood estimate (MLE)

of (θ, v) coincides with the least-squares solution in the Euclidean tangent space
obtained by minimizing the loss function E(θ, v) = 1

2σ2

∑N
i=1 ||εi||2.

Many methods have been proposed to deal with data that possess a dynamic
behavior. For instance, [13] proposed a method based on a gradient descent
technique on the tangent bundle of the Grassmannian. In addition, [8] extended
the basic Riemannian optimization to time-warped variants and cubic splines.
In contrast to these methods, our idea consists of adding a prior information
on θ and v in a Bayesian framework with two prior matrix-variate Gaussian
distributions

θ ∼ MN(0|C1,θ, C2,θ) × 1{θT θ=Ip}, (20)
v ∼ MN(0|C1,v, C2,v) × 1{θT v=0p}, (21)

where 1{θT θ=Ip} and 1{θT v=0p} denotes the indicator function restricting θ to be
an orthogonal matrix and v to be its corresponding tangent vector, respectively.
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Algorithm 1. Grassmann Riemannian Monte Carlo (GRMC) sampling.
Require: (ti, yi)Ni=1

Initialize θ0 and v0

for l = 0, 1, 2, . . . , iter do
Define θ = θ(l) and v = v(l)

Generate a velocity v∗ ∼ q(.) from a proposal distribution q
Project simulated velocity into the tangent space (for consistency)

v∗ ← (In − θθT )v∗
Map v into the Grassmannian locally at θ

θ′ ← Expθ(v) = θV cos(Σ)V T + Q sin(Σ)V T with v
SVD
:= QΣV

Transport v∗ along the geodesic connecting θ to θ′

v′ ← −θ′V sin(Σ)QT v∗ + Q cos(Σ)QT v∗ + (In − QQT )v∗
Compute the acceptance probability

α =
Pr(θ′, v′)
Pr(θ, v)

q(v)
q(v′)

where Pr(., .)is the posterior distribution in (22)

Evaluate r = min(α, 1)
Generate u ∼ U(0, 1)
if u ≤ r then

θ(l+1) ← θ′ and v(l+1) ← v′
else

θ(l+1) ← θ(l) and v(l+1) ← v(l)

end if
end for

From Bayes’ rule the posterior on (θ, v) satisfies

Pr(θ, v|y1, . . . , yN , t1, . . . , tN ) ∝ Pr(y1, . . . , yN |t1, . . . , tN , θ, v) (22)
×Pr(θ|0, C1,θ, C2,θ) × Pr(v|0, C1,v, C2,v)

∝ e− 1
2σ2

∑N
i=1 dist2

(
yi,γ(ti)

)
× e− 1

2 tr
(
C−1

2,θθT C−1
1,θθ

)

×1{θT θ=Ip} × e− 1
2 tr

(
C−1

2,vvT C−1
1,vv

)
× 1{θT v=0p}.

Now, we are ready to maximize the posterior distribution subject to (θ, v)
to get the maximum a posteriori (MAP) estimate. The Grassmann Rieman-
nian Monte Carlo (GRMC) described in Algorithm 1 samples from distributions
with Grassmannian structures. However, it can be computationally intensive and
require careful tuning of the proposal distribution to ensure an efficient conver-
gence to the target distribution.

3.3 A Specific Example of the Grassmannian

Affine invariance refers to the property of an object or shape that remains the
same even after applying an affine transformation, such as rotation, scaling,
and translation [4]. Landmark shapes, which are commonly used in computer
vision and pattern analysis, often require affine invariance to ensure accurate
and reliable analysis [16]. One way to achieve affine invariance for landmark
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shapes is by using SVD or QR decomposition. Both decompositions can be
used to represent the landmark shapes as a linear combination of a few basis
shapes, which can be maintained to reconstruct the original shape with affine
invariance. If we have a set of planar shapes represented as 2D points in a matrix
L = [(x1

1, x
2
1); (x

1
2, x

2
2); . . . ; (x

1
n, x2

n)], where each row represents a landmark point
and each column represents one direction we can use SVD or QR decomposition
to factorize L into a product of three or two matrices, such that L = QΣV T

or L = QR, respectively. In both cases, the matrix Q contains the orthonormal
basis vectors of L, while the matrix Σ or R contains scaling information about
each basis vector. This establishes a mapping from the shape matrix to a point
on the Grassmannian (with Q as a Stiefel representation). Such representation
has been used for a wide range of applications, including image classification,
image registration, and object tracking.

Fig. 1. An illustration on Gr(3, 1). From left to right: Initial conditions γ(0), γ(1) =
Expγ(0)(γ̇(0)) in pink with true geodesic path in blue and tangent space in green, noisy
observations in black, and predicted path in red. (Color figure online)

4 Experimental Results

In order to validate the efficacy of our approach, we conducted series of exper-
iments on various dataset and present results in this section. We employ the
GRMC sampling to generate samples from the posterior distribution of the
Bayesian model with iter = 105 iterations. At each iteration, we propose a new
candidate using a proposal distribution that was designed to move the chain
through the parameter space in a way that preserved detailed balance. Specifi-
cally, we use a Gaussian random-walk proposal distribution q(.) on the tangent
space of the Grassmannian with a fixed variance. There are several frequently
employed measures for assessing the effectiveness of our model, which include:

– Mean squared geodesic distance (MSGD): the average squared geodesic dis-
tance between the predicted values and the observed values on the Grass-
mannian, providing a quantitative measure of the model’ accuracy.
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– R-squared: measures the variation in the dependent variable that can be
explained by the independent variables in the model.

– Data-to-noise-ratio (DNR): quantifies the amount of useful information in
data relative to the amount of noise.

To validate the effectiveness of our proposed methodology, we performed a com-
prehensive comparison against two existing deterministic techniques focusing
on regression problems on the Grassmannian: i) the gradient method (GM) for
geodesic data fitting [13] and ii) the standard Grassmannian geodesic regression
(Std-GGR) [8].

Synthetic Data. We consider two examples of simulated data on Gr(3, 1) and
Gr(3, 2) represented in the Stiefel level St(3, 1) and St(3, 2), respectively. Note
that St(3, 1) results to be the unit two-dimensional sphere denoted S2 while
St(3, 2) can be also considered as the unit sphere, modulo rigid transformations,
usually called the Kendall space. The time instants are uniformly spaced in [0, 1]
using N = 20 points ti; i = 1, . . . , N . The two initial conditions γ(0) and γ̇(0)
are chosen randomly to cover a large range of configurations. The full geodesic
path γ(t) depending on those conditions is then obtained from (17). We then
simulate data from the following model

yi = Expγ(0)

(
Logγ(0)(γ(ti)) + εi

)
; εi ∼ MN(0|

√
0.1I3,

√
0.1Ip); p = 1, 2

An example of initial conditions when p = 1 is given in Fig. 1 (left). The
true geodesic path is then corrupted with a Gaussian noise in Fig. 1 (middle).
The result of Fig. 1 (right) shows that the learned path closely approximated the
underlying path mainly in the presence of noise. Let γ̂(0) and ˆ̇γ(0) denote the
MAP estimates of γ(0) and γ̇(0) obtained from Algorithm 1. Table 1 indicates
that the proposed method achieves superior performance compared to other
state-of-the-art methods in these experiments.

The second experiment concerns the regression problem where observations
are elements of the Grassmannian with (n, p) = (3, 2). Figure 2 (top) shows some
true observations (in blue), along with a set of noisy observations (in interrupted
black) sampled from the path. In Fig. 2 (bottom) we predict the same data
(in red) using the sampling algorithm, which aims to maximize the posterior
distribution in the Grassmann metric space. The learned path closely follows
the observations and captures the underlying structure of the true path, despite
the presence of noise. Table 2 demonstrates the effectiveness of our approach for
modeling and analyzing complex data on Grassmann manifolds.

Real Data. We conducted several experiments using a real data to investigate
the degeneration of the corpus callosum, collected from N = 32 subjects, repre-
sented as planar shapes and scaled through the QR decomposition. Each shape
is comprised of n = 64 of 2D landmarks (p = 2) and is accompanied by the age
of the subject, which ranges from 19 to 90 years old. Overall, main results in
Fig. 3 suggest that the corpus callosum over age has a significant deformation on
the brain, and our regression model provides a reliable way to make prediction.
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Fig. 2. An illustration on Gr(3, 2). (Top) True observations in blue with corner points
taking the rows of γ(ti) and noisy observations in black and (Bottom) predicted ones
with corner points taking the rows of γ̂(ti) in red. (Color figure online)

Fig. 3. (top) Four examples of observed corpus callosum and (bottom) their associated
predictions among a list of planar shapes from age 19 to 90 years old.

Fig. 4. (left) Trajectory of GRMC sampling: The (1, 1) element of the position γ(0)
(top) and the (1, 1) element of the velocity γ̇(0) (bottom), (middle) their kernel density
estimations, and (right) the total energy loss function illustrated in a base-10 logarith-
mic scale.
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Regarding Table 3 our proposed method achieves the best performances on two
among three criteria: R-squared and DNR, while it still competitive in terms of
MSGD.

In Fig. 4 (left) we illustrate the Markov chain trajectory over the iterations
particularly for the (1, 1) element of both γ(0) and γ̇(0). We also apply the
“burn-in” allowing the sampler to reach its stationary distribution as well as
the “thinning” allowing to reduce the autocorrelation between samples and saves
computational resources. The trace plot shows how the GRMC sampler is able
to explore the stationary posterior distribution that we want to approximate
based on the kernel density estimation (KDE) method in Fig. 4 (middle). Finally,
Fig. 4 (right) shows how the loss function steadily decreases with each iteration,
indicating that our method is effectively learning the parameters. This is strong
evidence that our method is capable of achieving high performance.

Table 1. Results on Gr(3, 1).

Method |γ(0) − γ̂(0)| |γ̇(0) − ˆ̇γ(0)| MSGD R-squared DNR
GM 0.018 0.06 0.002 0.979 49.29
Std-GGR 0.033 0.042 0.0016 0.984 64.69
GRMC 0.017 0.026 0.0015 0.985 64.91

Table 2. Results on Gr(3, 2).

Method |γ(0) − γ̂(0)| |γ̇(0) − ˆ̇γ(0)| MSGD R-squared DNR
GM N/A N/A N/A N/A N/A
Std-GGR 0.0416 0.0687 0.0014 0.959 24.98
GRMC 0.0172 0.0638 0.0013 0.962 26.54

Table 3. Results on Corpus callosum.

Method MSGD R-squared DNR
GM 0.0156 0.2469 1.3278
Std-GGR 0.0144 0.3470 1.5314
GRMC 0.0147 0.3560 1.5528
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5 Conclusion

We have proposed a new method to learn the best regression model on Grass-
mann manifolds. In particular, we have designed a new GRMC sampling algo-
rithm that is simple and easy to implement. Moreover, this framework can be
extensible to other Riemannian manifolds by adjusting the appropriate geomet-
rical tools. Regarding the applicability, we have used several setups and datasets.
From experiments, we can conclude that the proposed method could solve many
problems with competitive accuracy when compared to some connected works.
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Abstract. Partial Multi-label Learning is a multi-label classification
problem where only candidate labels are given for training data. These
candidate labels consist of relevant labels and false-positive labels. In this
paper, we consider the PML when a few accurately labeled data are avail-
able. In practice, it is difficult to remove false-positive labels fully due to
a large cost, but it is possible to do that in a few instances with a smaller
cost. Conventional PML methods do not assume those accurately labeled
data so it is hard to utilize data effectively. We propose a new algorithm
called PML-VD to utilize those accurately labeled data. PML-VD first
disambiguates the noisy-labeled data with both accurately labeled data
and noisy labeled data and then learns a classifier. This two-stage app-
roach enables the effective utilization of accurately labeled data without
overfitting. Experiments on nine PML datasets shows the effectiveness
of explicit utilization of accurately labeled data. In best cases, PML-VD
improves 7% classification accuracy in terms of ranking loss.

Keywords: Partial Multi-label Learning · Multi-label Learning ·
Machine Learning · Ranking Loss

1 Introduction

Multi-label learning is a classification problem where multiple labels are simul-
taneously associated with a single instance. Multi-label learning aims to learn
a function to predict all labels associated with a new instance. Since all com-
binations of labels should be taken into consideration, multi-label learning is
more challenging than traditional single-label learning [12]. Multi-label learn-
ing has been widely used in text classification [7], bioinformatics [2], and image
annotation [1].

In conventional multi-label learning, it is assumed that all training instances
are accurately labeled, but in practice, the training data may be compromised
with false-positive labels and only a candidate set of labels are available. This
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specific challenge, training instances associated with not correct labels but can-
didate labels, is referred to as Partial Multi-label Learning (PML) [8]. This PML
is commonly encountered in crowd-sourcing scenarios where accurate labels may
not be guaranteed to obtain.

In general, those false-positive labels give negative impacts on classification
performances. Thus, conventional PML methods attempt to mitigate this impact
[5,8]. If we could remove false-positive labels, this impact could potentially be
further reduced. In practice, it is possible to remove false-positive labels in a few
instances does not require a large cost. Nonetheless, conventional PML methods
do not assume those accurately labeled data, thus, PML methods cannot utilize
those data effectively.

The only previous work tackling PML with a few accurately labeled data
is a meta-learning-based method called PML-MD [10]. PML-MD minimizes a
weighted ranking loss with the label “confidence”. This confidence represents the
likelihood of a label being the correct label. It serves to mitigate the impact of
false-positive labels by weighting the loss function. The key concept of PML-MD
is the utilization of a few accurately labeled data for confidence estimation. PML-
MD learns both confidence and a classifier in an iterative manner, the confidence
estimation using a small amount of accurately labeled data can incrementally
causes over-fitting and harm the classifier’s performance.

In this paper, we propose a two-stage method to mitigate this over-fitting
issue in PML-MD. The proposed method first learns the confidence based on
the smoothness assumption, a principle frequently employed in semi-supervised
learning. Then, it learns a multi-label classifier in accordance with the learned
confidence. The proposed method considers a few accurately labeled data called
“validation set” and noisy labeled data separately and explicitly in the estima-
tion of the confidence. Therefore, it effectively utilizes the validation set. Figure
1 shows the difference between PML-VD and PML-MD. Empirical studies have
demonstrated that the proposed method outperforms the state-of-the-art meth-
ods across various datasets.

Fig. 1. An overview of PML-VD and PML-MD. (a) PML-VD first estimate confidence
and second update the model. (b) PML-MD updates confidence and model iteratively.
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2 Related Work

Existing PML methods can be broadly divided into two categories: end-to-end
methods and two-stage methods. In the end-to-end methods, true labels are con-
sidered latent variables and are optimized iteratively with a classifier. PML-lc
[8] and PML-fp [8] learn a classifier by minimizing the pairwise ranking loss
weighted by confidence. PML-NI [9] assumes that false-positive labels are gener-
ated due to specific features and learns a multi-label classifier and a false-positive
label identifier simultaneously to reduce the impact of noise labels. On the other
hand, the two-stage methods divide the estimation of true labels and the learn-
ing of the classifier into two stages, as the end-to-end method is susceptible to
the influence of false-positive labels. PARTICLE [11] estimates the confidence
by a label propagation-like approach [13], and then learns a multi-label classifier
based on the estimated true labels from the estimated confidence.

Those conventional PML methods have the uncertain assumption on labels
for ambiguity resolution because they assume only candidate labels are given.
Thus, those cannot utilize accurately labeled data even if available. PML-MD
[10] is the only one previous research tackling the PML problem with a few
accurately labeled data called a validation set. The aim of PML-MD is to use the
validation set to estimate the confidence for noisy-labeled data through a meta-
learning framework. PML-MD estimates the confidence and learns a classifier
iteratively with a weighted pair-wise label ranking loss. In each iteration, it
adjusts the confidence of noisy-labeled data with the validation set [10]. However,
this method has a drawback, that is, it is prone to over-fitting a validation set
through its iterative learning, especially when the size of the validation set is
small. In this paper, we propose a two-stage method to mitigate the over-fitting
issue in PML-MD due to its iterative learning.

3 Proposed Method

3.1 Problem Setting

In this paper, we consider a d-dimensional space X ⊆ R
d for a feature vector

x ∈ X and a label space of q labels Y = {0, 1}q for a corresponding candidate
label vector ỹ ∈ Y. In PML, n training data points is given as D = {(xi, ỹi)}n

i=1.
Note that ỹ is superfluously labeled, that is, ỹi includes false-positive labels in
addition to true labels. Thus, the relationship between a candidate label vector
ỹ and a true label vector y can be represented as (ỹ = y + ε) where ε ∈ Y is a
false-positive label vector.

We consider additional accurately labeled data. Thus, we introduce a set of
m accurately labeled data points, distinct from D. This smaller set, referred to
as the validation set, is denoted by Dval = {(xv

i ,yv
i )}m

i=1, with (m � n). For
clarity, hereafter, we refer to the training data D that excludes the validation
set as the “noisy set.” The goal of this study is learning a function f(x, θ) =
{f1(x, θ), f2(x, θ), . . . , fq(x, θ)} with a parameter set θ to predict all labels from
noisy set D and validation set Dval.



82 H. Mizuguchi et al.

In this paper, we propose a two-stage method called PML-VD (Patial Mutli-
label Learning with Validation Data). PML-VD learns a classifier as follows:

1. Learning confidence which represents the likelihood of a label being the true
label from both noisy set D and validation set Dval

2. Learning a classifier f(x, θ) with the learned confidence

This is the same approach as other two-stage PML methods, however, the pro-
posed method explicitly utilizes validation set Dval on the confidence estimation.

3.2 Confidence Estimation with the Noisy Set and the Validation
Set

PML-VD first estimates the confidence from the validation set and the noisy set.
We define a confidence vector pi where pij is the likelihood of j-th label being
a true label of i-th instance. Estimating this confidence only from the noisy
label set may harm the classification accuracy due to its false-positive labels.
On the other hand, estimating only from the validation set also may harm the
classification accuracy due to over-fitting. Therefore, PML-VD uses both the
validation set and the noisy set. This is the key concept of the PML-VD.

In the confidence estimation, PML-VD takes into account the “smoothness
assumption” which is commonly employed in semi-supervised learning, that is,
the assumption that data points that are close together in feature space have the
same labels. We consider applying this relationship in feature space to confidence.
PML-VD learns this confidence from the validation set and noisy set separately.

First, we approximate an instance of D with instances of Dval linearly in
feature space:

xi �
m∑

j=1

wv
ijx

v
j , where wv

ij ≥ 0. (1)

Here, wv
ij ≥ 0 is introduced to ensure the non-negativity of confidence values

obtained later. The weight wv
ij is obtained by minimizing the following objective

function:

min
wv

ij

‖xi −
m∑

j=1

wv
ijx

v
j ‖22, s.t. wv

ij ≥ 0. (2)

This problem can be solved by the non-negative least square method [4]. Next,
we estimate the confidence value with the learned weight wv

ij . We use wv
ij as the

weight to calculate the confidence vector with true labels:

p̂i
v =

m∑

j=1

wv
ijy

v
j , (1 ≤ i ≤ n), (3)

where p̂v
i is a confidence vector estimated from the validation set. Note that we

estimate the confidence vector for each instance in the noisy set. The estimation
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Algorithm 1. Partial Multi-label Learning with Validation Data
1: Input: A noisy set D:{(xi, yi)}n

i=1, a validation set Dval:{(xv
i , ỹ

v
i )}m

i=1, An unseen
instance x, parameters α, k and maximum number of iterations T

2: Output: f
3: Estimate wv for each x ∈ D linealy with all xv ∈ Dval by solving (1).
4: Estimate wn for each x ∈ D linealy with knn of x xi ∈ D, i ∈ κ by solving (4).
5: Calculate the confidence pi for each x ∈ D according to (3), (5), (6) and (7)
6: Initialize the parameter θ(0)

7: for t = 1 : T do
8: Sample a minibatch Db = {(xi, yi)}b

i=1 ⊆ D + Dval

9: Update θ(t) by minimize (10) with Db

10: end for

may be inaccurate when the size of the validation set is small. Thus, PML-VD
also estimates the confidence from the noisy set. This is done in the same manner
as the validation set:

xi �
∑

j∈κi

wn
ijxj , where wn

ij ≥ 0. (4)

Here, κi is the k-nearest neighbor index set of instance xi. We only introduce
this k-nearest neighbor for the noisy set because of the smoothness assumption.
Next, we estimate the confidence value with the learned weight wn

ij :

p̂i
n =

∑

j∈κi

wn
ij ỹ

n
j , (1 ≤ i ≤ n), (5)

where p̂i
n is a confidence vector estimated from the noisy set. At last, those two

separately estimated confidence is combined with the weight α(0 ≤ α ≤ 1):

p̂i = (1 − α)p̂i
v + αp̂i

n. (6)

Since PML does not assume false-negative labels, not-assigned labels in noisy
sets are always negative, thus, confidence values can be fixed as:

p̂ij =
{

p̂ij (ỹij = 1)
0 (ỹij = 0) . (7)

This estimated confidence mitigates the influence of false-positive labels by
weighting the loss function of a classifier, thereby facilitating the classifier’s
learning process.

3.3 Learning a Classifier

We use the weighted ranking loss proposed in [10] as an objective function of
a classifier. This uses confidence (7) to mitigate the impact of false-positive
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labels. For the output of the classifier for each class of instance xi, f(xi, θ) =
{f1(xi, θ), f2(xi, θ), . . . , fq(xi, θ)}, the ranking loss is defined as follows:

l(f(xi, θ),yi) =
∑

j:yij=1

∑

k:yik=0

I [fj (xi, θ) < fk (xi, θ)] , (8)

where I(·) is the indicator function. This loss function represents the number
of times irrelevant labels scored higher than relevant labels. Optimizing loss
function (8) is NP-hard due to non-convexity and discreteness. Therefore, a
convex surrogate loss is introduced for the optimization. A common surrogate
loss for ranking loss is the following Hingeloss:

L(f(xi, θ),yi) =
∑

j:yij=1

∑

k:yik=0

� (fj (xi, θ) − fk (xi, θ)) , (9)

where, �(z) = max(0, 1 − z).
The classifier should score relevant labels higher than false-positive labels.

However, since (9) treats all candidate labels as relevant labels, this could prevent
the relevant labels from being scored higher than the false-positive labels. To
mitigate this problem, the loss function is weighted by the difference in confidence
between each label pair:

L(D, θ) =
1
n

n∑

i=1

∑

j:yij=1

∑

k:yik=0

max (0, p̂ij − p̂ik) � (fj (xi, θ) − fk (xi, θ)) , (10)

max(0, ·) is introduced to prevent the loss from becoming negative. This makes
the estimation of the confidence order more important for those with larger
differences. Note that we used the classifier as employed in [10], however, PML-
MD is classifier-agnostic, and thus, any classifier with the confidence such as
VLS and MAP in PARTICLE [11] can be employed.

The computational complexity of the proposed PML-VD is O(n2d) where n
is the number of instances in the noisy set. This is because the k-nearest neighbor
requires the calculation of similarities on the noisy set. On the other hand, the
existing method PML-MD requires only O(mnd) for the confidence estimation
where m is the number of the validation set and m � n. Therefore, theoretically,
PML-VD requires larger computational time than PML-MD. However, PML-
MD needs to estimate confidence for each iteration, and thus, practically PML-
VD often requires less computational time than PML-MD.

In summary, we proposed the PML method using a few accurately labeled
data. Our approach divides the learning process into two stages: confidence esti-
mation and classifier learning. In the first stage, we estimate the confidence by
reflecting on the relationships in the feature space to the label space. During
this stage, to supplement the estimations from the validation set, we also use
the noisy set. In the second stage, we train a classifier by minimizing the ranking
loss, weighted by the estimated confidence.

The pseudo-code of PML-VD is described in Algorithm 1.
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Table 1. The summary of datasets. CLs means the average number of candidate labels.
GLs means the average number of ground-truth labels.

Datasets Domain #Ins #Fea #Class CLs GLs

music_emotion image 6833 98 11 5.29 2.42
music_style image 6839 98 10 6.04 1.44
mirflickr image 10433 100 7 3.35 1.77
emotions image 593 72 6 – 1.87
enron text 1702 1001 53 – 3.38
CAL500 music 502 68 174 – 26.04
scene image 2407 294 6 – 1.07
genbase biology 662 1186 27 – 1.25
yeast biology 2417 103 14 – 4.24

4 Experiments

4.1 Experiments Setting

The summary of the dataset used in this paper is shown in Table 1. PML datasets
are music_emotion, music_style and mirflickr [3]. These datasets come from an
image search task [3], where candidate labels were assigned by web users and
related labels were selected by the authors of [11]. For synthetic PML datasets,
We employed the same setting in [10] to compare the proposed PML-VD with
existing method PML-MD [10]. We converted six multi-label data into partial
multi-label data. We constructed two variants (“high”, “low”) of the partial multi-
label dataset for each dataset by flipping irrelevant labels. Those two are different
in how noise labels are included:

1. High: each irrelevant class can be flipped by a randomly sampled probability.
The probability is sampled from (0.5,0.6,0.7,0.8)

2. Low: each irrelevant class can be flipped by a randomly sampled probability.
The probability is sampled from (0.2,0.3,0.4,0.5)

To verify the impact of the size of the validation set on the performance, we
conducted experiments with quantities corresponding to {1, 3, 5, 7, 9}% of the
total training data. We used Ranking Loss [10,11] as a measurement. This is
because the classifier (10) returns a ranking of labels for each instance thus a
binarization is required to obtain the binary classification result for each label.
This is out of the scope of this paper.

To demonstrate the effectiveness of the proposed PML-VD, we compared
with four PML methods, PML-MD [10], PML-NI [5], PAR-VLS [11] and
PAR-MAP [11]. PML-MD is the only method to take the validation set into
account explicitly. For the other method does not consider the validation set, the
validation set and the noisy set were merged and given as training data. We also
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compared Baseline as multi-label learning methods. Baseline is the classifier
explained in Sect. 3.3 regarding all candidate labels as true labels.

PML-VD has two hyperparameters k and α. We tuned them by 5-fold cross-
validation on the training data. On the other hand, the hyperparameters for each
comparative method were picked from their original paper. For PML-NI, we
tuned its hyperparameters with 5-fold cross-validation as well.

4.2 Comparison Results

Table 2. Ranking loss on 1% validation set. The bold indicates the best method.

data noise PML-VD PML-MD Baseline PML-NI PAR-MAP PAR-VLS

music_emotion 0.239 0.242 0.247 0.242 0.362 0.265

music_style 0.137 0.166 0.139 0.137 0.239 0.165

mirflickr 0.066 0.075 0.077 0.103 0.227 0.117

emotions high 0.270 0.355 0.300 0.283 0.479 0.311

low 0.202 0.292 0.224 0.220 0.469 0.216

enron high 0.163 0.179 0.299 0.290 0.340 0.334

low 0.163 0.158 0.267 0.210 0.316 0.260

CAL500 high 0.282 0.301 0.360 0.330 0.353 0.358

low 0.242 0.263 0.288 0.254 0.271 0.346

scene high 0.144 0.293 0.269 0.228 0.509 0.211

low 0.112 0.236 0.172 0.126 0.471 0.119

genbase high 0.020 0.238 0.044 0.022 0.462 0.104

low 0.007 0.210 0.026 0.006 0.325 0.039

yeast high 0.218 0.260 0.318 0.282 0.400 0.326

low 0.209 0.253 0.245 0.259 0.285 0.243

Table 2 shows the result with the 1% validation set.1 The proposed method
outperformed the compared methods on all datasets except on enron and gen-
base with low-level noise. For enron, this is probably due to the small number
of validation sets compared to the number of classes. In this situation, valida-
tion data tend to lack the relevant labels of the data to be estimated. For gen-
base, this is probably due to the fact that the average number of labels is 1.07.
Indeed, it is known that this dataset is relatively easier to classify in the standard
multi-label classification [6]. Compared to PML-MD and Baseline, the pro-
posed PML-VD significantly improves the classification accuracy in most cases.
PML-NI showed comparative performance on low-level noises even though this
method does not assume the validation set. However, on high-level noises, the
performances were negatively impacted by false-positive labels. Table 3 shows
the results with the 3% validation set. The results are almost the same as that

1 Due to the space limitation, we report the detail only with 1% and 3% validation
sets.
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Table 3. Ranking loss on 3% validation set. The bold indicates the best method.

data noise PML-VD PML-MD Baseline PML-NI PAR-MAP PAR-VLS

music_emotion 0.232 0.231 0.247 0.241 0.363 0.266

music_style 0.133 0.149 0.136 0.137 0.239 0.163

mirflickr 0.063 0.066 0.071 0.090 0.241 0.077

emotions high 0.239 0.279 0.285 0.274 0.467 0.355

low 0.191 0.240 0.228 0.217 0.470 0.215

enron high 0.135 0.161 0.308 0.282 0.365 0.460

low 0.129 0.147 0.274 0.207 0.319 0.283

CAL500 high 0.243 0.249 0.359 0.322 0.351 0.383

low 0.227 0.245 0.289 0.251 0.269 0.343

scene high 0.145 0.237 0.259 0.223 0.512 0.189

low 0.101 0.148 0.167 0.126 0.472 0.117

genbase high 0.018 0.230 0.049 0.021 0.518 0.247

low 0.010 0.161 0.034 0.006 0.356 0.035

yeast high 0.197 0.266 0.321 0.278 0.390 0.331

low 0.192 0.259 0.247 0.260 0.285 0.247

with the 1% validation set. However, PML-MD slightly performed better than
PML-VD on music_emotion dataset. This implies that if the number of val-
idation sets becomes large, it would be enough to estimate confidence without
over-fitting. On the other hand, on PML-NI, PAR-VLS, and PAR-MAP,
the improvements from the 1% validation set (on Table 2.) are limited compared
to PML-VD and PML-MD. This implies that those methods cannot utilize
accurately labeled data effectively.

Figure 2 (a) shows the results on emotions dataset with high-level noise.
As seen, on PML-MD and PML-VD, the classification accuracy improves as
the size of the validation set increases. On the other hand, the accuracies of
PML-NI and Baseline which do not take validation set into account explicitly
were steady. This shows the importance to use the validation set explicitly. In
addition, PML-VD showed significant improvement against PML-MD when
the validation set is small. This implies that PML-MD mitigates the negative
effect of over-fitting. Figure 2 (b) shows the result on enron dataset with low-
level noise. We can see PML-VD performed worse than PML-MD when the
validation set is small (1%) but it improves as the size becomes larger. Figure 2
(c) shows the result on scene dataset with low-level noise. On this dataset,
PML-VD showed steady performances with a varied size of the validation set.
This is probably because the number of instances on scene dataset is relatively
large and thus even it is enough to estimate the confidence with 1% validation
set. On the other hand, PML-MD suffered from over-fitting. This also supports
the proposed PML-VD mitigates the over-fitting issue. Figure 2 (d) shows the
results on music_emotion. In Table 3, PML-MD outperformed PML-VD on
the 3% validation set. However, as seen in Fig. 2 (d) this is only on 3%. This is
probably because the 3% validation set was chosen to fit the whole data. The
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selection of instances to remove false-positive labels is out-of-scope in this paper.
However, this is one of our future work.

We analyzed the accuracy of the estimated confidence p̂ on noisy set D to
show how effective the first stage of the proposed PML-VD is. We measured
Mean Squared Error between the estimated confidence p̂ and true labels y. Figure
3 (a) shows the result of music_emotion and Fig. 3 (b) shows the result of scene
with high-level noise. As seen in both, PML-VD estimates confidence better
than PML-MD and Baseline (candidate labels ỹ). This better confidence esti-
mation brings better classification accuracy shown in Table 2 and 3.

Fig. 2. Sensitivity analysis on the size of the validation set.

4.3 Parameter Analysis

We analyzed the relation between the noise and the parameter α on the ranking
loss with fixing parameter k = 9.2 Fig. 4 (a) and (b) show the result of the param-
eter analysis in the scene dataset with 1% and 5% validation set, respectively.
As shown in Fig. 4 (a), with the 1% validation set, the ranking loss first appears
to decrease as the parameter α (the weight on the noisy set) is increased. This
indicates that the confidence estimation from the noisy set is effective to some

2 PML-VD also has another parameter k but the effect is small and thus omitted due
to the space limitation.



Partial Multi-label Learning with a Few Accurately Labeled Data 89

Fig. 3. The accuracy of the estimated confidence p̂ on the noisy set

extent. However, when the parameter α increases more than a certain value, the
ranking loss starts to increase. This can be considered as noise labels affect when
it is too much weighted, and the confidence estimation becomes inaccurate. In
fact, this is especially remarkable for the high-level noise data. This shows the
importance to estimate the confidence not from just one but both the validation
set and the noisy set. On the other hand, in Fig. 4 (b), with the 5% validation
set, the best accuracy was achieved with α = 0 on high-level noise and with
α = 0.2 on low-level noise. This indicates that when the validation set is large
enough, it is better to use only the validation set especially when the noise level
is high. PML-VD can handle various settings by changing the parameter α
depends on which sets are more reliable.

Fig. 4. Sensitive analysis on the weight parameter α.

5 Conclusion

In this paper, we consider partial multi-label learning using a few accurately
labeled data. In practice, it does not require a large cost to remove false-positive
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labels in just a few instances. However, all conventional PML methods except
[10] cannot utilize the accurately labeled data since they do not assume that is
available. Besides, an iterative learning approach in [10] could potentially lead
to over-fitting due to the accumulation of errors. To mitigate this problem, we
proposed a two-stage method called PML-VD. PML-VD takes a few accurately
labeled data into account explicitly. In experiments on nine real and synthetic
datasets, the proposed PML-VD showed its effectiveness compared to other con-
ventional PML methods especially when the number of accurately labeled data
is small and the noise on labels is large. In best cases, PML-VD improved the
7% accuracy in terms of ranking loss.
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Abstract. Object-oriented Bayesian networks (OOBNs) allow modellers to con-
struct compositional and hierarchical models, using an inheritance hierarchy of
classes ad subclasses, enabling reuse and supporting maintenance. Reasoning
with both ordinary Bayesian networks (BNs) and OOBNs requires the important
computational task of inference, the computing of new posterior probability dis-
tributions given a set of evidence. A widely used inference technique in ordinary
BNs involves compiling the BN into a so-called junction tree (JT) before per-
forming the inference; the compilation step is only performed when the model
changes. In current OOBN software, the OOBN is first transformed into the
underlying BN, so-called flattening, then the standard inference is performed.
Researchers have proposed methods for incremental compilation of BNs, rather
than recompiling from scratch for each network modification; these can apply to
OOBNs also after flattening. Here, we propose a new incremental compilation
technique that reuses existing compiled JTs of both embedded components and
superclasses, and does not require flattening. We demonstrate through experimen-
tal analysis that this can reduce compilation time, and produces compact JTs that
are cost-effective for inference.

Keywords: Graphical Models · OOBN · Incremental Compilation

1 Introduction

Bayesian networks (BNs) [5] are a powerful and widely used tool for reasoning under
uncertainty. They can be built by automated learning if data is available, or using elic-
itation methods to capture expert knowledge when it is not. Especially when most
or all of the model is built by hand, BN modelling methods don’t scale up well; the
resultant large complex BNs are difficult to visualise and hard for the domain experts
and decision-makers to understand, reducing the acceptance and subsequent use of the
model. Researchers have tried to address this issue by dividing the problem into sub-
parts and then combining the BN models for the subproblems, and by re-using with
some modifications of BN models previously built and validated for another applica-
tion. These techniques include object-oriented BNs (OOBNs) [1,6], PRM and OOPRM,
generalised decision-graphs, BN fragments, varieties combining probabilistic relational
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 91–103, 2024.
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models and objects, such as module networks, probabilistic relational models and plate
models, multi-entity BNs (MEBNs), and template-based representations.

In this paper, we focus on a variant of OOBNs, that includes all the key concepts
introduced by Koller and Pfeffer [6]: sub-parts of the overall model are represented in
classes, which contained both nodes and objects, which are instances of other classes,
giving a composite and hierarchical structure. These provide the advantages of OO soft-
ware engineering concepts such as encapsulation, abstraction and information hiding,
and support the building of large OOBNs in parallel by multiple modellers. OOBNs
also provide modularity, which limits the scope of changes and reduces the chance of
a model change introducing errors. The first implementation of OOBNs, without inher-
itance, was Hugin [7], a widely used commercial BN software tool. The research BN
software UnBBayes [8] also includes OOBN functionality, also without inheritance,
while the OOBN framework presented in [1] provides a limited form of inheritance.
More recently, our iOOBN framework [13,15] extends the Hugin OOBN implementa-
tion with a full treatment of inheritance and its associated OO concepts, namely object
formation, instantiation, polymorphism, dynamic maintenance, and type checking.

Inference in BNs is the computation of new posterior probability distributions given
evidence for a set of nodes. One widely used approach is to compile the BN into a so-
called Junction Tree (JT) (e.g. [3]). To our knowledge, in Hugin and UnBBayes, to
perform inference in OOBN, the network is first transformed into the underlying “flat-
tened” ordinary BN, then a JT-based compilation is performed. Flores et al. [2] pro-
posed “Incremental Compilation” (InC), to make ordinary BN inference more efficient
by only re-compiling part of the network, with Bangsø et al. [1] proposing a similar
incremental compilation for OOBNs, after flattening the network first.

In this paper, we present a new incremental inference algorithm (Sect. 3) for iOOBN
that re-uses compiled structures constructed for either embedded classes, or when the
new class is inheriting from a previously compiled class. Then we evaluated it exten-
sively in Sect. 4 using a large synthetic dataset. Finally, we conclude our paper in Sect. 5
and outline plans for extending this work.

2 Background

A Bayesian network (BN) (following [5]) is a Directed Acyclic Graph (DAG) given by
a 3-tuple < V,E,Π >, where (i) V = a set of nodes representing random variables, (ii)
E = a set of directed edges representing the direct dependencies between nodes, with
no directed cycles (iii) Π = a set of conditional probability distribution (CPD), one for
each node. A node vi is a parent of node vj if there exist an edge vi → vj . For each
v ∈ V , par(v) ⊂ V is the set of parent nodes of v, and the CPD P (v|par(v)) is a
function Φ: par(v) ∪ {v} → [0 : 1].

Formally, Inference in a BN is the process of calculating posterior probabilities of
a set of variables X (where each variable is represented as a node v), given a set of
evidence E and can be denoted as P (xi|E) for xi ∈ X .

Next, we give the iOOBN definitions and terminologies required for the proposed
new compilation algorithm; these follow and extend the OOBNs definitions and ter-
minologies used in [5,15] and implemented in Hugin BN. Note that while iOOBN is
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defined for Bayesian decision networks [5], incremental compilation applies only to the
chance nodes representing random variables, so we limit the definitions given and do
not consider decision and utility nodes. We also limit the treatment to discrete Bayesian
networks, where all nodes have discrete state spaces.

An iOOBN Concrete Class C is a Directed Acyclic Graph (DAG) given by a 4-
tuple < V,O,E,Π >, where V = a set of nodes representing random variables, E = a
set of edges and Π = set of CPDs, one for each node, and O is a set of objects, repre-
senting instances of an iOOBN concrete class. We say that each o ∈ O is encapsulated
within C, the encapsulating class. An instance CI

i is a replica or instantiation of a
concrete class Ci with all the properties of that class.

Note that the iOOBN framework [15] has another type of class, an abstract class,
for which some of the parameters Π are not fully defined. Since only instances of
concrete classes can be compiled, and hence are the only classes used in the compilation
algorithm, for the remainder of this paper, we refer to concrete classes as simply classes.
Note also that once two iOOBN nodes have been joined by a referential edge, it implies
that they represent the same random variable, which must be taken into account in any
inference algorithm, including ours. The edges within an iOOBN must be such that it
will “flatten out” to a valid BN, that is, a directed, acyclic graph.

An iOOBN Subclass C ′ =< V ′, O′, E′,Π ′ > of a Super class C = <
V,O,E,Π > is a class that inherits the interface nodes (input nodes VI and output
nodes VO) of C, implying that VI ⊆ VI′ and VO ⊆ VO′ . Figure 1 shows an example
iOOBN class having two input nodes (dashed ovals) namely A and S, two embedded
objects (rectangles) and an output node N (double-lined oval). The embedded object on
the left is an instance of the well-known Asia BN where V and S are also the names of
its input nodes, X and D are its output nodes, and T, L, B, and F are its embedded nodes.
The other embedded object is an instance of another class with A and S also being its
input nodes, X and G being its output nodes, and C, L, and R being its embedded nodes.
This class flattens into the BN given in Fig. 3 [P].

A S

T L B

F

X D

A S

C M

R

Y G

A S

N

Embedded Node F

Output Node O

Input Node I

Ordinary Edge

Referen�al Edge

Fig. 1. Example iOOBN Class
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X D

A S

C M

R

Y G

A S

N

Embedded Node F

Output Node O

Input Node I

Ordinary Edge

Referen�al Edge

Fig. 2. Limitation of Flores’s Inc. Compila-
tion

A Clique Graph CG = {V , E } of an iOOBN class C is a weighted undirected
graph where V is a set of clique nodes, V = {Clq1, Clq2, ..., Clqn}, with each clique
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containing nodes of C, and E is a set of edges, where each edge is a connection
between a pair of clique nodes Clqi and Clqj and the weight of the connection is
|Clqi ∩Clqj | ≥ 1. Clqi ∩Clqj is called the separator set. Associated with each clique
node is a probability potential, which is a function of the variables in the clique, used
later in inference. The product of all the potentials is the joint probability of all the
variables in the clique graph.

A graph, denoted as JT , is a Junction tree (the basis of inference in BNs and the
outcome of compilation) if it is a clique graph that (i) is a tree; and (ii) it has the running
intersection property: for any pair of cliques, Clqi, Clqj ∈ JT , all the cliques in the
path between Clqi and Clqj in the tree must contain Clqi ∩ Clqj . A Junction Forest,
JF , is a finite set of disjoint junction trees.

2.1 Inference

Inference, the most important purpose behind BN construction, has been extensively
studied and explored in numerous pieces of research. One of the very widely used tech-
niques of BN inference is “JT Based Inference” [3]. The main steps of this method are
(i) moralization, (ii) triangulation, (iii) clique graph formation (where nodes are cliques
and any two nodes will be connected by an edge if there are common items between
them with weight equal to the number of common items), (iv) formation of JT/ Junction
Forest (finding Maximum spanning tree of the clique graph, where cost function works
on the weight of the edge), (v) message passing to propagate joint probabilities.

The incremental compilation (InC), proposed by Flores et al. [2], was motivated
by the fact that all the operations in JT-based Inference, especially triangulation and
clique finding, are computationally expensive [10]. InC is an MPS (Maximal Prime
Subgraph) decomposition [12] based compilation technique where any modification to
the BN does not require performing the above-mentioned steps and constructing JT
from scratch. Instead, it constructs an MPS tree in parallel with JT construction during
ordinary BN compilation. It keeps track of the changes done in the last BN structure
and marks the affected parts of the MPS tree and the JT. Then the marked portion is re-
triangulated and an intermediate JT for only the affected portion is constructed, which
finally replaces the marked portion of the original JT. The InC method is particularly
useful when the modification to the BN is minor and local, with expensive operations
avoided for parts of the networks that are unchanged.

To our knowledge, there is no inference algorithm that works on the OOBN structure
itself. In Hugin, an OOBN is flattened into an ordinary BN and any traditional exact or
approximate inference technique may be applied. Any change, however minor, to the
OOBN structure, generates full re-compilation, starting from flattening the new OOBN.

In an OOBN framework that supports inheritance, such as iOOBN (i.e. iOOBN [14,
15]), where any OOBN class can be derived from another class, then any change in the
hierarchy generates a series of changes to all the subclasses below it in the inheritance
hierarchy, so incremental compilation becomes even more important.

A potential solution to avoid the cost of repeated JT construction that utilises InC
was proposed by Bangsø [1], with an implemented version described by Merten [9].
Changes in the OOBN classes are transformed into a series of equivalent changes of the
corresponding flattened BN, then InC is applied. There are also some situations where,
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using this method, a large portion of the BN needs to be re-triangulated (because InC
re-triangulates affected portions of the MPS tree); we give an example in Sect. 3.1.

Algorithm 1: SIIC
Input: C: an iOOBN class
Output: JTnew : A JT

1 begin
2 C ← Preprocessing(C) /* Adding

pseudo Ref. edges */
3 < JF, RE > ←

CreateJunctionForest(C)
4 Edges ← ConnectJunctionTrees(JF,

RE)
5 JTnew ← φ
6 foreach edge E ∈ Edges do
7 {Clqi, Clqj} ←

getTerminalCliques(E)
8 JTi ← JunctionTree(Clqi)
9 JTj ← JunctionTree(Clqj )

10 if JTi == JTj then
11 /* connection between two

cliques of the same JT */
12 JTnew ← AddByMaintain-

ingJTProperty (JTi, Clqi,
Clqj )

13 else
14 JTnew ← JoinJTPair(JTi ,

JTj , Clqi, Clqj )

15 JTnew ← PostPruning(JTnew)

16 JTnew ← Thinning(JTnew , 3) //
Assuming minimum clique size = 3

17 JTnew ← PostPruning(JTnew)
18 return JTnew

Algorithm 2: Thinning
1 /*It performs a specialised operation, thinning, on the JT*/

Input: JT : a JT,
τ : Clique size threshold

Output: JT : a thinned JT
2 begin
3 CS ← stack of cliques in JT of size ≥ τ
4 while CS is not empty do
5 C ← CS.pop()
6 NC ← NeighborCliques(C)
7 AOC ← AssociatedOriginalCliques(C)
8 JT is thinner ← True
9 foreach Partition P of AOC into |NC| parts

do
10 NewCliques ← φ
11 foreach Part of Cliques of P do
12 NP ← MergeCliques(Cliques)
13 if |NP | == |C| then
14 JT is thinner ← False
15 break

16 NewCliques ←
NewCliques ∪ NP

17 if JT is thinner then
18 JT ← Replace(JT , C,

NewCliques)
19 push any clique in NewCliques

of size ≥ τ onto CS
20 break

21 return JT

3 SIIC Compilation Algorithm

In this section, we present our proposed “Shareable Inheritable Incremental Compila-
tion” (SII Compilation) algorithm that constructs the junction tree (JT) for an iOOBN,
by re-using previously constructed JTs (of embedded objects and of superclasses) with-
out flattening it into ordinary BN. The algorithm can significantly reduce the amount of
recompilation required when a class in an iOOBN class hierarchy is modified.

The proposed SIIC algorithm takes an iOOBN class C as input, performs some
preprocessing, retrieves any previously constructed JTs for its superclass (if there is
one) and for any of its embedded objects, constructs any new JTs required, giving a
Junction Forest (JF), then connects the JTs in JF to form a single resultant JT for C.
The algorithm (see Algorithm 11 has four main stages: (i) Pre-processing (line 2) (ii)
Creating a junction forest, including previously compiled JTs (line 3), (iii) Construction
of the JT (lines 5–15), and (iv) Post-processing (lines 16–17).

In the Pre-processing stage, for each ordinary edge from an output node in an
embedded object to an embedded node in the encapsulating class, we introduce a copy

1 The SIIC code along with the iOOBN implementation is available on GitHub https://github.
com/MdSamiullah/iOOBNFinal v1.git.

https://github.com/MdSamiullah/iOOBNFinal_v1.git
https://github.com/MdSamiullah/iOOBNFinal_v1.git
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of the output node together with a referential edge between the original output node and
its copy (see Fig. 3 [B]). We will refer to these referential edges as pseudo-referential
edges, as in practice these edges do not have to ever exist; this step is only added to
simplify the explanation of the algorithm.

The second stage requires the recursive generation of the junction forest (via Algo-
rithm 3). First, we retrieve (if previously compiled) or recursively create a JF from the
superclass. We then (Algorithm 3, Line 10) identify components (nodes and edges)
of the class being compiled that were not present in the superclass; this will be all of
them if no superclass exists. The referential edges and pseudo-referential edges are then
removed (Lines 11–13), as well as any embedded object, before these components are
used to create new JT(s) (Line 14); this can be done using any JT-based BN inference,
since there are no embedded objects. This is the base step of the recursion.

Algorithm 3: CreateJunctionForest
1 /* It creates a set of JTs */

Input: C: an iOOBN class
Output: JF : A set of JTs

RE: A set of referential edges
2 begin
3 Csup ← superClass(C)
4 if Csup exists then
5 if Csup is Compiled then
6 JF ← getJunctionForest(Csup)

7 else
8 JF ← CreateJunctionForest(Csup)

9 /*If any class C is extended from Csup with additional components in C then only
the Junction Forest for C − Csup needs to be formed*/

10 C ← removeComponents(C, Csup)// Remove inherited components from C
11 RE ← popOutReferentialEdges(C)
12 Obj ← popOutInstanceNodes(C)
13 /*TraditionalJTConstruction( ) returns a set of JTs using traditional JTBased

inference approach*/
14 JF ← JF ∪ TraditionalJTConstruction(C)
15 /*Due to the deletion of instance nodes and Referential edges, the remaining C will

return a Junction Forest with at least one JT.*/
16 foreach instance O ∈ Obj do
17 /* Get/create the JF for the corresponding classes of the instances */
18 if O.class is Compiled then
19 /* a compiled class will have its JT constructed */
20 JF ← JF ∪ getJunctionForest(O.class)

21 else
22 JF ← JF ∪ CreateJunctionForest(O.class)

23 return JF , RE

In the third stage, the JTs are then linked together into a single JT. During this
process, the latest clique graph (JTnew) is regularly pruned, which involves removing
unnecessary cliques and separators. Finally, in the Post-processing stage, we do some
thinning (Algorithm 2), which involves splitting large cliques up into a path of smaller
connected cliques, using information about the cliques they were constructed from; this
thinning step is a simple linear checking and removal of redundant fill-in edges similar
to the recursive thinning proposed in [5]. We then do a final pruning step.

Theorem 1. SII compilation (Algorithm 1) generates a valid junction tree.

Proof. We omit the proof for reasons of space and refer the interested reader to [13,
Theorem 1, Page 125, Sect. 4.3, Chap. 4].
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Fig. 3. Example: SIIC in iOOBN [Line numbers of Algorithm 1 are shown]

Worked Example: Figure 3 shows how Algorithm 1 constructs a JT for the exam-
ple OOBN in Fig. 3[A]. Note that this example only shows the re-use of the JT from
the embedded object JTs, but does not show the re-use of a JT from a superclass.
Figure 3[B] shows the result after pre-processing where duplicate names have been
changed (L changed to M, and X to Y in the right embedded object), and pseudo-
referential links are added to the copies of the embedded output nodes S, Y, and G
that are parents of N. In Fig. 3[C], the JF has been formed using previously compiled
JTs, JT4 and JT5, as well as the derived JTs, namely JT1, JT2 and JT3, and con-
nected into a JT via referential edges (shown with double lines); e.g. JT4 and JT3 are
connected via a referential edge between clique nodes FX and GNXY. Note that each
clique is given a unique index, shown in blue. Figure 3[D] shows the networks after
these referential edges have been converted to edges in the clique graph (red-coloured
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dashed lines), indicating connections between the JTs, with the separators also shown;
e.g., X is the separator on the red-coloured edge connecting JT4 and JT3. Figure 3[E]
shows the result after joining JT1 and JT4. Next, post-pruning removes clique node
1 containing only variable A, shown in Fig. 3[F]; note that clique AT is now labeled
“1,3”, indicating it was created by the merger of cliques 1 (A) and 3 (AT). Figure 3[G]
shows the result after joining JT1,4 and JT5; this step was straightforward, with the
edge between AT and AC (with separator A) remaining and no other changes or post-
processing are required. Similarly, Fig. 3[H] shows the formation of JT1,2,4,5, then post
pruning merging clique 2 (S) with clique 8 (BLS) in Fig. 3[I]. Next, the removal of
the connection between BLS and MS by adding S (shown in blue in Fig. 3[K]) where
required to cliques along another path between BLS and MS, to preserve the running
intersection property, giving Fig. 3[K]. Figure 3[L] shows the structure after joining all
five original JTs in the JF, JT1,2,3,4,5, while Fig. 3[M] shows the result after removing
the connection from RY to GNXY (post-pruning step), which required adding Y to two
other cliques; at this point, there is only one unresolved connection from the original
referential edges remaining (coloured red), that from FX to GNXY. Figure 3[N] shows
the JT after merging cliques 4 and 5, and resolving that final edge, with the associated
addition of X to cliques 13, 9-10-11, 1-3 and the new 4-5, and another post-pruning.

The last remaining step is the thinning, which uses the information about the orig-
inal cliques that were stored throughout the JT combination steps (via the blue num-
bers associated with each clique). The thinning takes large cliques (using a clique size
threshold) and iteratively splits them. For example, the CMRSXY clique is removed,
first replaced by CMSX and CMRXY, then by CMSX, CMRX, RXY, and finally by
CMSC and CMRX (after the final post-pruning of the unnecessary RXY); Fig. 3[O]
shows the final resultant JT.

For comparison purposes, we show the flattened ordinary BN for the example
OOBN class C (Fig. 3[P]) and the Hugin generated JT (flattening and recompiling
from scratch) in Fig. 3[Q]. There are some similarities, e.g. the two cliques (GRXY and
GNXY) at the right end of our JT, with the clique at the left end (BDR) also being a leaf
in the Hugin JT. Overall, however, the JTs are quite different, with the SII Compilation
JT tending to have larger cliques; we discuss this further in the following subsection.

3.1 Efficiency Analysis

The efficiency of the proposed technique can be evaluated from two perspectives: how
much compilation time (i.e., time complexity of the JT construction) is reduced, and
the efficiency of the resultant JT for subsequent inference.
1) Time complexity of JT Construction: SII Compilation allows re-use of the JT of
its superclass, if it exists, and when the modification from superclass to subclass does
not involve the removal of any of the superclass nodes and edges, as well as previously
compiled JTs from embedded objects. At the base recursion of the algorithm, new JTs
are compiled on a standard BN using any JT compilation method. However, it is not
possible to give performance guarantees about the reduction of compilation computa-
tion because that will depend on the specific structure of the class being compiled and
the structures of any embedded objects. Naturally, in the extreme case, if there are no
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superclasses or embedded classes (i.e. if it is not an iOOBN) SII Compilation will incur
computation overheads without any reduction in compilation computation time.

The widely used traditional flattening-based approach always starts from scratch
and does not allow the reuse of existing outcomes at all. Its primary computation
involves flattening of the OOBN as well as the standard triangulation and JT construc-
tion cost. Though flattening is a linear time operation, with hierarchies of embedded
classes, it may introduce significant complexities to the computation [10]. The JT con-
struction cost is polynomial in the number of cliques in the clique graph, the same as
Prim’sMinimum Spanning Tree construction cost. Minimal triangulation is an NP-Hard
problem, though heuristic-based suboptimal triangulation requires polynomial time to
the number of variables in the Bayesian network.

As described in Sect. 2.1, the incremental compilation (InC) approach allows
reusing existing compiled structures, however, it still re-triangulates a portion of the
existing structure as well as incurring extra computational and storage burden for the
MPSD structure maintained in parallel with the JT. We have also observed that it may
encounter scenarios where the whole network structure or a large portion of the structure
needs to be re-triangulated, and therefore leads to similar computation as the traditional
flattening-based approach. For example, suppose we are using InC to add an edge X →
N to the network shown in Fig. 2. The figure also contains the JT for the initial network
with the affected and marked JT segment due to the addition of the edge. The incremen-
tal compilation approach will affect 8 cliques out of 10 of the JT, meaning almost the
whole network needs to be re-triangulated and the modified portion needs to be joined,
to get the resultant structure. However, in our SIIC algorithm, a simple merging of JTs
will be enough and that is a straight-forward operation.

2) Efficiency of the resultant JT: The structure of the resultant JT has implications
for the subsequent inference computation time. A measure to roughly quantify this
based on a message passing inference algorithm is the so-called JT cost (as proposed by

Kanazawa [4]): JTcost =
∑

Ci∈{C1,...,Cn}

(
Ki

∏

X∈Ci

|ΩX |
)
, where C1, ..., Cn represent

the cliques in the JT, Ki denotes the sum of the number of parent and child cliques of Ci

in JT (reflecting the arity of the JT), and ΩX is the state space of node X in clique Ci.
The JT cost, therefore, depends on the structure of the JT, as well as the size of the state
spaces of the nodes of the OOBN class. For our example OOBN class C, if all the nodes
are binary, The JT in Fig. 3[O] has 8 cliques with four variables (24 combinations) and
two neighbours, 1 clique with 3 variables (23 combinations) and one neighbour, and 1
clique with 4 variables and 1 neighbour. This produces JTcost = 280. The cost of the
Hugin-generated JT is 240.

Although our JT cost is a little higher than the JT cost of Hugin, our produced JT
is binary (a JT where no clique node has more than three connections). In the Shenoy-
Shafer architecture, it is proved that a binary JT is more efficient than a non-binary JT,
however a theoretical result about the arity of the resultant JT given the arity of the
pre-compiled JTs remains an area for further research.

The overlapping factors influencing the performance of the compilation algorithms
make it difficult to provide any performance guarantee. Hence, in the following section,
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empirical analyses are conducted on synthetic OOBN classes with various parameters
and their different combinations.

Table 1. Experimentation parameters and terms

Parameters Terms Ranges

(Values)

Parameters Terms Ranges

(Values)

Num. of Nodes NON 5, 10, 15, 20,
25, 30, 50

#Fold per
configuration

Folds 5

Num. of States NOS 2, 3, 4, 5 #Repeated
Runs

Runs 4

Num. of Parents NOP 2, 3, 4, 5 JT Exist? SIIC No

Num. of Foreign
Classes

NOC 0, 1, 2, 3 SIIC# Yes

Num. of Objects NOO 1, 2, 3, 4 Average
NOP

NOPAvg –

Table 2. SIIC vs SIIC# vs Hugin (Runtime)

Breakdown Hugin SIIC SIIC# Hugin-SIIC Hugin-SIIC#

Min 3.44 3.44 0 −3.15 −2.19

1st Qu 4.14 4.36 2.71 −0.38 1.04

Median 4.36 4.6 2.77 −0.13 1.44

Mean 4.87 4.78 3.21 0.09 1.67

3rd Qu 4.94 5.05 3.83 0.19 2.11

Max 10.59 9.98 7.16 5.29 7.33

4 Experimental Analysis

We next analyze and compare the performance of two versions of the proposed incre-
mental algorithm, SIIC and SIIC# to Hugin. SIIC# is the same as SIIC except it uses
pre-compiled JTs of all embedded objects and superclasses; in a sense, it provides an
upper bound for the compilation time savings available to SIIC.

We compare the performance of the compilation algorithms in terms of (i) the run-
time, and (ii) the cost of the JTs, JTcost (see above). The compilation times for all 3
algorithms are computed with a PC (Intel(R) Core(TM) i5-8259U CPU, 8GB RAM).
Due to the unavailability of real-life iOOBN class repositories, the analysis was per-
formed on a repository of synthetic OOBN classes that were generated using a range
of values for parameters such as the number of nodes, states, parents, foreign classes
(classes that are used to create embedded objects), embedded objects (see Table 1), in
combination giving 1456 configurations (7 × 4 × 4 + 7 × 4 × 4 × 3 × 4). Five different
OOBN models were generated for each configuration, producing 7280 OOBNs.

To produce synthetic OOBN classes for the experimentation, we first produce a set
of BNs using the parameters (see the 2nd column of Table 1). Then we convert them into
OOBN classes using a simple heuristic that identifies potential interface nodes from the
set of nodes of a BN: (1) all nodes in the BN with no parent nodes (‘root’ nodes) are
potential input nodes, and (2) all the nodes in the BN with no child nodes (‘leaf’ nodes)
form the set of potential output nodes in the OOBN class.

We also look at the comparative performance of the algorithms in terms of the com-
plexity of the OOBN, using the number of parameters in the OOBN as a measure of
complexity proposed in [11]. For each OOBN, we ran the compilation algorithms 4
times, to reduce the fluctuation in run time, giving 29120 runs. We found that many of
the generated OOBNs were too large and complex for the compilation algorithms to
handle; they ran out of memory and didn’t produce a valid JT. For the analysis, we use
only the results for OOBNs where all the algorithms produced JTs in 2 or more of the
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runs. Moreover, to deal with unusual behaviour of the values, e.g., scattered, some of
the outliers were removed; this left us with 11043 runs across 3515 unique OOBNs.

Unsurprisingly, all three algorithms’ running time increase as the size and complex-
ity of the OOBN increases. We refer the interested reader to the thesis [13, Sec 4.6,
Chap. 4] for a full set of results. However, a summary of the run-time comparison of
the algorithms is given in Table 2. The 1st column of the table shows the distribution of
the complexities of the input OOBNs, using the complexity measure M given above, in
four quartiles (i.e. a tabulated version of results often shown as box plots). The next 3
columns show the run times for each algorithm, and then the differences between Hugin
and SIIC and SIIC#, with bold indicating where SIIC or SIIC# performs better. It can
be seen that SIIC performs better than Hugin in terms of runtime for the OOBNs in
the upper half in terms of complexity. SIIC# performs better in all except the min case,
although of course, this depends on pre-compiled JTs being available.

Table 3. Breakdown of failed
runs (F=Fail, C=Complete)

Hugin SIIC SIIC# Count %

C C C 14060 48.28

F C C 7161 24.59

F F C 2908 9.99

F F F 4991 17.14

Total 29120 100

Table 4. t-test statistics of experi-
mentation

Algo 1 Algo 2 Algo 1 wins Algo 1 loses Tied

cnt % cnt % cnt %

Hugin SIIC 312 8.88 65 1.84 3138 89.28

Hugin SIIC# 4 0.11 762 21.68 2725 78.21

SIIC SIIC# 0 0.00 1151 32.75 2340 67.26

Table 5. JT cost summary.
Bold is better.

Breakdown Hugin SIIC SIIC-Hugin

Min 2.77 2.77 −5.60

1st Qu 9.57 11.62 0.79

Median 12.89 16.07 2.35

Mean 13.02 16.63 3.62

3rd Qu 16.25 20.76 5.10

Max 21.89 49.67 31.23

Table 3 shows the number and percentage of cases in which the algorithms ran or
failed. In 51% of cases, Hugin failed to produce any JT, and SIIC and SIIC# also failed
in some runs because they call the Hugin compilation on a component (they never failed
when Hugin completed). Unsurprisingly, SIIC# has the least number of failed runs.

Table 4 compares the algorithms (Hugin, SIIC, SIIC#) on their relative performance
against each other and shows the number and percentage of wins, losses and tied out-
comes for each. In order to make the comparisons statistically significant, the algo-
rithms were compared using the paired t-test for the four runs of each of the trialled and
distinct networks. The detailed comparison of how many times Hugin wins and loses
against SIIC and SIIC#, how many times the algorithms tie, and how many times SIIC#
outperforms SIIC, are listed. As mentioned, in the table, where it is clear that even if
the 51% of times when Hugin failed are ignored, SIIC# outperformed both Hugin and
SIIC. The percentage of cases in which Hugin outperformed SIIC is low, at 8.88%.

Next, we compare SIIC to Hugin compilation in terms of the cost of the JTs they
produce; these results are given in Table 5. Note that we do not give separate results
for SIIC#, as its JT is always identical to that of SIIC. Clearly the JTcost of SIIC is
higher than the JTcost of Hugin, due to the SIIC JT’s clique sizes being larger, as we
saw above for our running example. So the improvement in compilation runtime SIIC
obtained through the re-use of previously compiled components does come with a slight
trade-off in terms of the complexity of the resultant JT.
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5 Conclusions and Future Work

We have proposed a new incremental compilation algorithm, SII compilation, for
OOBNs, that unlike previous methods does not require transforming the OOBN into
its underlying BN. The SII method incorporates two kinds of re-use: (1) when com-
piling a subclass, re-use the JT of its superclass; and (2) when compiling a class with
embedded objects, re-use the JTs from those objects. We have proven [13] that the algo-
rithm produces a valid JT. The constructed JT from our algorithm may, and in examples
tends to, contain larger cliques in comparison to the cliques of existing approaches.
Nevertheless, after the final thinning step, the resultant JT can be more compact, using
a JT-cost measure that captures the complexity of inference on that JT. We conducted
an empirical analysis across a range of synthetic classes, exploring what benefits can
be achieved in practice. Results showed that, as expected, compilation time and JT cost
increase with the increase of the size and complexity of the OOBN (and underlying
BN). In most of the cases, in terms of compilation runtime, SIIC outperforms Hugin’s
compilation (which flattens the OOBN into a BN and then compiles the BN), and SIIC#
outperforms Hugin in all cases, particularly when the OOBN has embedded objects. In
terms of JT-cost, Hugin’s JTs are far better than non-thinned JTs constructed by SIIC
(or SIIC#). Moreover, with the success of compilation also being a performance fac-
tor, both SIIC# and SIIC successfully generated JTs for iOOBN models that the Hugin
inference could not handle. We plan to explore whether we can further optimise the
algorithm to reduce the clique sizes, and also investigate whether there are theoretical
results regarding the arity of the resultant JT.
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2. Flores, M.J., Gámez, J.A., Olesen, K.G.: Incremental compilation of Bayesian networks. In:
Proceedings of 19th International Conference of Uncertainty in Artificial Intelligence UAI
’03, pp. 233–240 (2003)

3. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal probabilistic net-
works by local computations. Comput. Stat. Q. 4, 269–282 (1990)

4. Kanazawa, K.: Probability, time, and action. Ph.D. thesis, PhD thesis, Brown University,
Providence, RI (1992)

5. Kjærulff, U.B., Madsen, A.L.: Bayesian networks and Influence Diagrams, vol. 200, p. 114.
Springer, Cham (2008)

6. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the 13th Con-
ference on Uncertainty in Artificial Intelligence (UAI), USA, 1997, pp. 302–313 (1997)

7. Madsen, A.L., Lang, M., Kjærulff, U.B., Jensen, F.: The Hugin tool for learning Bayesian
networks. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711,
pp. 594–605. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45062-7 49

8. Matsumoto, S., et al.: UnBBayes: a Java framework for probabilistic models in AI. Java
Academia Res., 34 (2011)

9. Merten, C.: Incremental compilation of object-oriented Bayesian networks (2005)

https://doi.org/10.1007/978-3-540-25945-9_45
https://doi.org/10.1007/978-3-540-25945-9_45
https://doi.org/10.1007/978-3-540-45062-7_49


Shareable and Inheritable Incremental Compilation in iOOBN 103

10. Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangulation of a graph and
backward selection of a decomposable Markov network. Theory Comput. Sci. 411(7–9),
958–966 (2010)

11. Nicholson, A., Flores, J.: Combining state and transition models with dynamic Bayesian
networks. J. Ecol. Modell. 222(3), 555–566 (2011)

12. Olesen, K.G., Madsen, A.L.: Maximal prime subgraph decomposition of Bayesian networks.
IEEE Trans. Syst. Man Cybernet. Part B 32(1), 21–31 (2002)

13. Samiullah, M.: iOOBN: an object-oriented Bayesian network modelling framework with
inheritance. Ph.D. thesis, Faculty of IT, Monash University, Clayton, Vic, Australia (2020).
available to view: https://tinyurl.com/268wt635

14. Samiullah, M., Albrecht, D., Nicholson, A.: Automated construction of an object-oriented
Bayesian network (OOBN) class hierarchy. In: 2022 IEEE 34th International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE (2022)

15. Samiullah, M., Hoang, T.X., Albrecht, D., Nicholson, A., Korb, K.: iOOBN: a Bayesian
network modelling tool using object oriented bayesian networks with inheritance. In: Pro-
ceedings of 29th ICTAI, BOSTON, MA, USA, 6–8 November pp. 1218–1225 (2017)

https://tinyurl.com/268wt635


A Dynamic Pricing Strategy in Divided
Regions for Ride-Hailing

Bing Shi1,2(B), Yan Lu1, and Zhi Cao1

1 School of Computer Science and Artificial Intelligence, Wuhan University of
Technology, Wuhan 430070, China
{bingshi,yanlu }@whut.edu.cn

2 Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000,
China

Abstract. Nowadays, ride-hailing services play a significant role in daily
transportation. In the ride-hailing system, the temporal and spatial dis-
tribution of demand and supply in different regions is different. There-
fore, it is necessary to differentiate pricing for regions based on demand
and supply. Instead of setting discriminatory prices by simply dividing
the whole area into some fixed regions, which failed to take into account
the demand and supply dynamics over time, we developed a dynamic
region-division based pricing strategy according to demand and supply
in different regions, with the goal of maximizing the platform’s long-term
profit. Furthermore, we perform comprehensive experiments on a real-
world dataset to demonstrate the effectiveness of the proposed algorithm.
The experimental results indicate that our algorithm can outperform
other typical benchmark approaches.

Keywords: Ride-hailing · Demand and Supply · Dynamic Pricing

1 Introduction

Ride-hailing services have played a crucial role in people’s daily transportation.
In the ride-hailing system, passengers will choose the ride-hailing platform based
on the requested riding price. Therefore, how to set the price for orders is a key
issue. There exist some works which determine prices based on demand and
supply, such as Lyft’s Peak-hour Pricing, Uber’s Surge Pricing, and so on [3,7].
However, these works consider dynamic pricing based on demand and supply
over the whole area. In fact, different regions in the same city may have different
demand and supply at the same time. At this moment, the platform may need to
divide the whole city into several regions and set discriminatory prices for each
region according to its demand and supply, such as [5,6]. However, these works
are usually based on fixed region-division, i.e., the region size and shape do not
change over time. In fact, demand and supply in the same region may change
dynamically over time. In this situation, the platform may need to dynamically
divide regions, and then develop an effective pricing strategy to determine prices
for each divided region according to demand and supply. In this paper, we aim
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 104–110, 2024.
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to analyze how to dynamically set prices for orders based on the dynamic region-
division, aiming to maximize the platform’s long-term profit.

Specifically, considering that it is difficult to divide the entire area into some
irregular regions, we first divide the whole area into a number of rectangular
zones that do not overlap with each other. Intuitively, the platform should set
the same or similar prices for zones with similar demand and supply and nearby
locations. If not, passengers may leave the platform since they will feel unfair
when they are charged discriminatorily and thus damage the long-term profit.
Therefore, we design a dynamic region-clustering algorithm (DRC) by combin-
ing Deep Q Network (DQN) and K-Means algorithms to cluster zones with sim-
ilar demand and supply and nearby locations into one region. Furthermore, we
propose an adaptive multi-region dynamic pricing algorithm (AMRDP), which
maximizes the platform’s long-term profit based on the states of demand and
supply in different regions. Finally, we run comprehensive experiments based on
a real-world dataset. The results indicate that the platform’s profit is increased
under different pricing algorithms combined with DRC. Furthermore, the com-
bination of AMRDP with DRC can bring higher profits, serve more orders,
and have a higher service rate than typical benchmark approaches.

The remaining sections of this paper are structured as follows: We introduce
the settings in Sect. 2, present the algorithm in Sect. 3, perform experimental
analysis in Sect. 4, and summarize the paper in Sect. 5.

2 Basic Settings

In this section, we introduce the basic settings and give the problem formula-
tion. The whole time period is divided into a group of time steps, denoted as
t ∈ {1, 2, · · · , T}. Since it is difficult to divide the area into irregular regions, sim-
ilar to [8], we first divide the whole area into a set of non-overlapped rectangular
zones, denoted as g ∈ {g1, ..., gN}, and then can cluster these rectangular zones
into regions based on the demand and supply of each zone. Specifically, we use
{{g11 , g

2
1 , . . . g

c1
1 }, {g12 , g

2
2 , . . . g

c2
2 }, . . . , {g1mt

, g2mt
, . . . g

cmt
mt }} to represent the divi-

sion result when the whole area is divided into mt regions at time step t, where
{g1i , g

2
i , . . . g

ci
i } is the i-th region, which consists of ci zones.

Definition 1 (Order). Order oi ∈ O is denoted as oi =
(
ri, priceri

, tmri

)
, where

ri =
(
leri

, lsri
, tri

, gri
, valri

, fri

)
is the riding demand, leri

and lsri
are the drop-off

and pick-up locations respectively, tri
represents the time when the ri is sub-

mitted, gri
is the pick-up zone, valri

is the highest unit price per kilometer the
passenger with ri is willing to accept for the service, fri

is the status of ri, tmri

is the highest waiting time and priceri
is the order’s price.

Specifically, valri
is private to the passenger and is unknown to the plat-

form, and we assume it is independently and identically drawn from a uniform
distribution within [pmin, pmax][4].
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Definition 2 (Vehicle). Vehicle vi ∈ V is denoted as vi = (gvi
, lvi

, dvi
, svi

),
where gvi

and lvi
are the current zone and location of vi respectively, dvi

denotes
the travel cost of the vehicle, and svi

is the vehicle status.

We make the assumption that the vehicles belong to the platform and only
serve orders within the region since the service range of the vehicles is limited.

Definition 3 (Platform’s long-term profit). The long-term profit of the
platform is calculated as the total amount paid by all served passengers minus
the overall cost of vehicles throughout the whole period.

EP =
T∑

T =1

N∑

i=1

Mi
T∑

j=1

G
(
pT
gri

)
I
(
frj

= 2
) (

pT
gri

× dis
(
lsrj

, lerj

)
− Crj

)
(1)

where N and T are the number of zones and time steps respectively, Crj
denotes

the travel cost associated with serving riding demand rj, M i
T and pT

gi
denotes the

number of riding demands and unit price in zone i at time step T respectively,
frj

= 2 means that an idle vehicle has been arranged to serve the passenger.

Definition 4 (Dynamic Region-Division and Pricing Problem). Given
the riding demands Rt and idle vehicles Vt for the current time step, the platform
should make a division decision according to the demand and supply of the cur-
rent time step σt = {{g11 , g

2
1 , . . . g

c1
1 }, {g12 , g

2
2 , . . . g

c2
2 }, . . . , {g1mt

, g2mt
, . . . g

cmt
mt }},

and then set the unit price Pt =
(
p1t , p

2
t , . . . , p

mt
t

)
for each region in order to

maximize the long-term profit LP over the whole time period.

3 Dynamic Region-Division Based Pricing Strategy

3.1 Dynamic Region-Clustering Algorithm

As we mentioned previously, in order to prevent unfair treatment on passengers
caused by discriminatory pricing in zones with similar demand and supply, we
need to cluster these zones with similar demand and supply and nearby locations
into the same region. In this paper, we first determine the number of regions
in each time step and then use K-Means to cluster zones. Since the platform
needs to divide regions in each time step and the division and further demand
and supply are affected by each other, the dynamic region-division problem is
modeled as a Markov decision process (MDP). Therefore, we can use a deep
reinforcement learning algorithm to address the problem. We provide a detailed
description of MDP as follows, which is denoted as (S,A, P, r, γ).

State: st = (vt, ct) ∈ S, where vt and ct are the numbers of idle vehicles and
riding demands in each zone at time step t respectively.

Action: at = mt ∈ A, where mt is the number of clusters(regions).
Reward: rt denotes the profit of the platform at time step t, which is:

rt =
N∑

i=1

Ri∑

j=1

G
(
pgrj

)
I
(
frj

= 2
) (

pgrj
× dis

(
lsrj

, lerj

)
− Crj

)
(2)
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where Ri and Crj
denote the number of riding demands in zone i and the travel

cost of the vehicle serving the riding demand rj respectively.
P and γ are the state transfer probability function and discount factor respec-

tively. Specifically, the value of γ typically ranges from 0 to 1, and we set it at
0.9 to achieve a balance between short-term and long-term rewards.

We use Deep Q Network(DQN) to determine the number of regions since the
action space of the platform to determine the region numbers is discrete. The
dynamic region-clustering algorithm(DRC) is presented in Algorithm 1.

3.2 Adaptive Multi-Region Dynamic Pricing Algorithm

Note that the dynamic pricing will impact future demand and supply in different
regions, which will further affect the dynamic pricing. Therefore, it is also a
sequential decision problem, and thus we can model it as a MDP and apply
deep reinforcement learning to solve it. Now we describe the MDP as follows.
State: s′

t = (at−1, et−1,mct−1, vt, ct) ∈ S′, where at−1 denotes the average unit
price in each region, mct−1 denotes total number of orders that were successfully
matched with idle vehicles in each region and et−1 denotes the total profit in
each region at the last time step. Since the whole area is dynamically divided,
the number of regions is changing dynamically. We add some virtual regions to
fill the original state information into a fixed dimension, and we set the state
information of these virtual regions to 0.

Algorithm 1. Dynamic Region-Clustering Algorithm(DRC)
Input: Distribution of the riding demands and vehicles

Output: Dynamic region-division strategy τ

1: Initialize action-value function network Qθ, target value network Qθ− , replay mem-
ory D and set the weight θ− ← θ;

2: for κ = 1 to K do
3: Initialize the state s1;
4: for t = 1 to T do
5: Choose the action at by the ε-greedy strategy, that is, the number of regions;
6: Use K-Means algorithm to cluster zones into at regions;
7: Set the unit price and then match the orders;
8: Get the reward rt and transfer to the next state st+1;
9: Store the state transition tuple (st, at, rt, st+1) into D;

10: Randomly select a set of samples (si, ai, ri, si) from D for training;

11: Calculate Yi =

{
ri terminated in generation i + 1

ri + maxa′ Q (
si+1, a

′; θ−)
otherwise

;

12: Calculate the loss function of N sequences: L = 1
N

∑
i (Yi − Q (si, ai; θ))

2;

13: Perform gradient descent on L: ∇θ = 2
N

∑N
i=1 (Yi − Q (si, ai; θ)) ∇Q (si, ai; θ);

14: Update network parameters: θ = θ + ∇θ and update θ− = θ every C step;
15: end for
16: end for
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Action: a′
t =

(
p1t , p

2
t , . . . p

mt
t

)
∈ A′, where pit represents the unit price for i-th

region at time step t.
Reward: r′

t (at, st) = μ1 × CPt + μ2 × ratio, where CPt denotes the profit of
the platform at time step t according to Eq. 2, the parameters μ1 and μ2 are the
normalization coefficients of CPt and ratio respectively, and ratio signifies the
proportion of the actual number to the highest achievable number of the served
orders. Note that in the reward function, we consider both the platform’s profit
and order service rate. In so doing, we can guarantee that the platform will not
set an excessively high price, which may cause passengers to leave the platform.
This can increase the passengers’ participation rates and lead to higher profits
for the platform. Specifically, we tried different parameter combinations in the
experiments to balance the impacts of the profit and service rate on the reward
and finally set them as 1/70 and 2 respectively, which ensures that the dynamic
pricing algorithm can effectively balance profit and service rate. And the value
of γ′ is also set to 0.9.

Due to the action space for pricing is continuous, we employ deep determin-
istic policy gradient(DDPG) to design an adaptive multi-region dynamic pricing
algorithm(AMRDP), as described in Algorithm 2. At different time steps, due
to the changing number of regions, the input state dimensions are different.
Therefore, when the platform observes the state information about each region,
it will add some virtual regions to fill the original state into a fixed dimension,
and the state information of these virtual regions is set to 0. At the end of each
round, the platform collects information about passengers who have accepted the
platform’s price and idle vehicles, and then matches idle vehicles with orders.
We model the order matching as a bipartite graph maximum weighted matching
problem, and use Kuhn-Munkres [2] to match vehicles with passengers, with the
aim of maximizing the platform’s profit in the current time step.

Algorithm 2. Adaptive Multi-Region Dynamic Pricing Algorithm(AMRDP)
Input: Distribution of the riding demands and vehicles

Output: Dynamic Pricing strategy π

1: Initialize Actor network μ (s | θμ), Critic network Q (
s, a | θQ)

, replay memory D′

and set the weights of target network Q′ and μ′ as θQ′ ← θQ, θμ′ ← θμ;
2: for κ = 1 to K do
3: Initialize the state s1 and noise function N ;
4: for t = 1 to T do
5: Observe the state st and pad it to a fixed dimension s′

t;
6: Select the action at = μ (s′

t|θμ) + Nt based on s′
t and then executes it.

7: Matches the orders and get the reward rt and move to next state st+1;
8: Pad st+1 to the fixed dimension s′

t+1 and store (s′
t, at, rt, s

′
t+1) into D′;

9: Randomly sample (sχ, aχ, rχ, sχ+1) from D′;
10: Update Critic: L = 1

x

∑
x(Yχ − Q(sχ, aχ | θQ))2;

11: Update Actor: ∇θμJ ≈ 1
X

∑
χ ∇aQ(s, a | θ2)|s=sχ,a=μ(sχ)∇θμμ(s | θμ)|s=sχ ;

12: Update target networks: θQ′ ← vθQ + (1 − v)θQ′
, θμ′ ← vθμ + (1 − v)θμ′

;
13: end for
14: end for
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4 Experimental Analysis

In this section, we use Chengdu Didi ride-hailing data to evaluate our algo-
rithm against GREEDY, SDE [6] and FIX[1] in terms of platform’s profit,
the number of served orders and service rate.

First, we evaluate the effectiveness of DRC on the long-term profit by com-
bining it with different pricing algorithms respectively. The results are presented
in Fig. 1. It shows that DRC can increase the platform’s profit by 3.13%, 3.02%
and 3.34% respectively when the platform divides the region dynamically, which
demonstrates the effectiveness of DRC improving the platform’s profit.

Fig. 1. Impact of dynamic region-clustering on platform’s profit

To justify the effectiveness of AMRDP, we analyze the results of the four
algorithms on the metrics mentioned above, which are presented in Fig. 2. We
find that AMRDP combined with DRC can achieve more profits than all
other algorithms from Fig. 2a. Specifically, we can find that the dynamic pricing
algorithms(AMRDP, GREEDY and SDE) achieve more profit than FIX.
It is because FIX uses a fixed pricing algorithm that can not adjust prices in
response to dynamic changes in supply and demand. From Fig. 2b and 2c, it
shows that when the platform combines AMRDP with DRC, the number of
served orders and the service rate are the highest. It indicates that AMRDP
can serve more orders, which can improve the efficiency of platform services.
In summary, the combination of AMRDP with DRC can achieve more profit,
serve more orders, and have a higher service rate with respect to dynamic demand
and supply and region-division compared to other algorithms.

Fig. 2. Metrics of different algorithms with dynamic region-clustering
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5 Conclusion

In this paper, we propose a dynamic region-division based pricing strategy
according to demand and supply in different regions, with the goal of maxi-
mizing the platform’s long-term profit. The experimental results show that the
platform’s profit is increased when using different pricing algorithms combined
with DRC, which means that DRC can effectively divide regions. Furthermore,
we find that the combination of AMRDP with DRC can bring higher long-
term profit, serve more orders and have a higher service rate.
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Abstract. Multimodal depression detection is an important research
topic that aims to predict human mental states using multimodal data.
Previous methods treat different modalities equally and fuse each modal-
ity by näıve mathematical operations without measuring the relative
importance between them, which cannot obtain well-performed mul-
timodal representations for downstream depression tasks. In order to
tackle the aforementioned concern, we present a Cross-modal Attention
Network with Adaptive Multi-modal Recurrent Fusion (CANAMRF)
for multimodal depression detection. CANAMRF is constructed by a
multimodal feature extractor, an Adaptive Multimodal Recurrent Fusion
module, and a Hybrid Attention Module. Through experimentation on
two benchmark datasets, CANAMRF demonstrates state-of-the-art per-
formance, underscoring the effectiveness of our proposed approach.

Keywords: Depression Detection · Multimodal Representation
Learning · Recurrent Fusion

1 Introduction

Depression stands as a prevalent psychiatric disorder while preserving implicit
symptoms. Patients haunted by depression often resist timely treatment for fear
of misunderstanding from other people, which casts tremendous shade on both
their physical and mental health. Recently, a significant amount of research
attention has been directed towards the development of multimodal depression
assessment systems. These systems leverage diverse cues from text, audio, and
video to evaluate depression levels and facilitate diagnostic processes.

However, previous works either focus on single-modality text information or
treat each modality equally, and then propose various fusion methods on this
basis. Gong et al. [5] utilized topic modeling to partition interviews into seg-
ments related to specific topics. Additionally, a feature selection algorithm was
employed to retain the most distinctive features. Hanai et al. [1] analyzed data
from 142 individuals undergoing depression screening. They employed a Long-
Short Term Memory neural network model to detect depression by modeling
interactions with audio and text features. Yuan et al. [11] proposed a multimodal

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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multiorder factor fusion method to exploit high-order interactions between dif-
ferent modalities. This fusion method, which does not discriminate between each
modality, cannot well mine the main features that are more effective for depres-
sion detection. At the same time, the traditional audio, text, and vision features
have not been better in making the category distinction.

In response to these limitations, we introduce a Cross-modal Attention
Network with Adaptive Multi-modal Recurrent Fusion. CANAMRF first
extracts features of four modalities, including textual, acoustic, visual, and the
newly proposed sentiment structural modalities, by specific feature extractors
separately, then fuses textual features with the other three features through
AMRF module. Finally, it utilizes a hybrid attention module to generate distin-
guishable multimodal representations for subsequent depression detection tasks.

Our primary contributions can be succinctly summarized as follows:

1) We introduce sentiment structural modality as a supplementary modality as
a means to augment the performance of multimodal depression detection.

2) We present an innovative approach to modality fusion called Adaptive Mul-
timodal Recurrence Fusion (AMRF). It can dynamically adjust the fusion
weights of different modalities, which realizes the trade-off between modali-
ties and has excellent performance.

3) We build a hybrid attention module, which combines cross-modal attention
and self-attention mechanisms, to generate representative multimodal fea-
tures. Extensive experiments and comprehensive analyses are provided to
showcase the efficacy of our suggested method.

2 Methodology

In this section, we elucidate the specifics of CANAMRF, illustrated in Fig. 1.

2.1 Feature Extractor

We use specific open-source toolkits and pretrained models, including OpenFace
[2], OpenSMILE [4], and BERT [3], for extracting features for textual, visual, and
acoustic modalities. In addition, we also introduce a novel high-level semantic
structural modality, which consists of five word-level features and three sentence-
level features. All features are passed into a 1D temporal convolutional layer to
be reshaped into vectors of the same dimention d for subsequent depression
detection tasks.

2.2 Adaptive Multi-modal Recurrent Fusion

The detailed framework of Adaptive Multi-modal Recurrent Fusion (AMRF)
module is illustrated in Fig. 2(a).

Following Wu et al. [10], we always fuse textual features with features of
other modalities (probably visual, acoustic, and sentiment structure), because
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Fig. 1. The overall framework of CANAMRF. (a) Feature extraction procedure for mul-
tiple modalities; (b) Fusion of modalities through AMRF module; (c) Hybrid Attention
Mechanism.
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Fig. 2. Subfigure (a): the framework of AMRF module. (a) Features from different
modalities are projected into a same low-dimensional space by fully-connected lay-
ers; (b) The low-dimensional features are further processed by Recur operation; (c)
Features are fused according to the adaptive fusion mechanism, and transformed via
fully-connected layers to obtain the final representation; Subfigure (b): the framework
of Hybrid Attention Module.

of the predominance of textual features. Given two feature vectors of different
modalities, for example acoustic characteristics x ∈ R

m and textual charac-
teristics y ∈ R

n, we first map them in a common dimension space d utiliz-
ing two projection matrices W1 ∈ R

d×m and W2 ∈ R
d×n(d ≤ min(m,n)) by

X = xWT
1 , Y = yWT

2 , where WT
1 and WT

2 are the transpose of W1 and W2,
respectively.

Then we construct recurrent matrices A ∈ R
d×d and B ∈ R

d×d using pro-
jected vectors X ∈ R

d and Y ∈ R
d by A = Recur(X), B = Recur(Y ), where

Recur(·) is the operation to construct the recurrent matrix from a vector as
visualized in part (b) of Fig. 2(a), which illustrates that all rows of A forms a
circular permutation of vector X. In order to fully fuse the elements in the pro-
jected vector and recurrent matrix, each row vector of the recurrent matrix is
multiplied with the projected vector and then added to the average, as shown
in Eq. (1):

X
′
=

1
d

d∑

i=1

ai � A, Y
′
=

1
d

d∑

i=1

bi � B, (1)
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where ai ∈ R
d and bi ∈ R

d are the ith row vectors of A and B, respectively. �
denotes the elementwise multiplication.

The final fused features are obtained by Z = (αX
′
+ βY

′
)WT

3 , where α and
β (0 ≤ α, β ≤ 1) are two learnable weight parameters, and W3 ∈ R

d×k is a
projection matrix.

2.3 Hybrid Attention Module

In this subsection, we illustrate the hybrid attention module, whose framework
is shown in Fig. 2(b). The hybrid attention module consists of cross-modal atten-
tion module, AMRF, and self-attention module.

Following Wu et al. [10], we conduct the attention operation between textual
modality and the remaining three modalities. Let Xαβ be the fusion result from
modality α and modality β. With the AMRF module, the fusion process can be
formulated as:

Q = AMRF (XS ,XT ), (2)

KV T = VV T = XV T = AMRF (XV ,XT ), (3)

KAT = VAT = XAT = AMRF (XA,XT ), (4)

The cross-modal attention mechanism can be formulated as:

ZATS = CMA(Q,KAT , VAT ) = softmax

(
QKT

AT√
dk

)
VAT , (5)

ZV TS = CMA(Q,KV T , VV T ) = softmax

(
QKT

V T√
dk

)
VV T , (6)

where ZATS and ZV TS are the output of Cross-Modal Attention. In order to fully
integrate four features and have a certain adaptive weight ratio, we pass ZATS

and ZV TS through the AMRF module, followed by a Self-Attention module to
get the final fused feature, as shown in Eq. (7):

Zf = Self − Attention(AMRF (ZATS , ZV TS)). (7)

2.4 Training Objective

The fused multimodal feature Zf is flattened and then fed into the fully-
connected layers to predict whether a subject has depression or not: ŷ =
σ(FC(Flatten(Zf ))), where Flatten(·) is the flatten operator, FC(·) is the fully-
connected layers, and σ(·) is an activation function.

We use the Focal loss to train the model: Lfl = −(1 − ỹ)γ log(ỹ), where ỹ
is the estimated probability of being a positive class, and γ ≥ 0 is a tuning
parameter.
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3 Experiments

In this section, we assess the performance of the proposed CANAMRF using
two benchmark datasets, including the Chinese Multimodal Depression Corpus
(CMDC) [13] and EATD-Corpus [8] which are frequently used in previous work.

3.1 Baselines

For CMDC and EATD-Corpus, we compare CANAMRF with the following
machine learning models: (1) Linear kernel support vector machine (SVM-
Linear); (2) SVM based on sequential minimal optimization [7] (SVM-SMO);
(3) Logistic regression; (4) Näıve Bayes; (5) Random Forest; (6) Decision
Tree; and the following deep learning models: (1) Multimodal LSTM [1]; (2)
GRU/BiLSTM-based model [6]; (3) Multimodal Transformer [9]; (4) TAMFN
[12].

Table 1. Performance comparison between baseline models and CANAMRF.

Model CMDC(AT) CMDC(ATV) EATD(T) EATD(A) EATD(AT)

P. R. F1 P. R. F1 P. R. F1 P. R. F1 P. R. F1

SVM-Linear 0.90 0.91 0.91 0.91 0.91 0.91 0.48 1.00 0.64 0.54 0.41 0.46 – – –

SVM-SMO 0.92 0.91 0.91 0.91 0.89 0.89 – – – – – – – – –

Näıve Bayes 0.91 0.89 0.89 0.84 0.84 0.84 – – – – – – – – –

Random Forest – – – – – – 0.61 0.53 0.57 0.48 0.53 0.50 – – –

Logistic
Regression

0.92 0.91 0.91 0.82 0.82 0.82 – – – – – – – – –

Decision Tree – – – – – – 0.59 0.43 0.49 0.47 0.44 0.45 – – –

Multi-modal
LSTM

– – – – – – 0.53 0.63 0.57 0.44 0.56 0.49 0.49 0.67 0.57

GRU/BiLSTM-
based
Model

0.97 0.91 0.94 0.87 0.89 0.88 0.65 0.66 0.65 0.57 0.78 0.66 0.62 0.84 0.71

MulT 0.87 0.96 0.91 0.97 0.85 0.91 – – – – – – – – –

TAMFN – – – – – – – – – – – – 0.69 0.85 0.75

CANAMRF 0.94 0.97 0.95 0.95 0.93 0.93 – – – – – – 0.71 0.83 0.77

3.2 Main Results

Table 1 displays the performance comparison of the benchmark models and the
CANAMRF model on the CMDC and EATD datasets. For both CMDC and
EATD datasets, CANAMRF consistently outperforms the state-of-the-art base-
lines on F1 scores, which highlights the effectiveness of CANAMRF, both in
unimodal and multimodal depression detection tasks.

4 Conclusion

In this article, we present CANAMRF, a comprehensive framework consisting
of three key components. First, we introduce an effective sentiment structural
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modality as a supplementary modality to enhance the performance of multi-
modal depression detection tasks. Next, we treat the textual modality as the
dominant modality and fuse it with the remaining three modalities using the
AMRF module. Finally, we process the fused features using a hybrid attention
module to obtain distinct multimodal representations. The experimental results
demonstrate the high effectiveness and promising potential of CANAMRF in the
detection of depression.
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Abstract. Ordinal regression aims at solving the classification problem, where
the categories are related in a natural order. Due to the difficulty in distinguishing
between highly relevant categories, label noise is frequently present in ordinal
data. Moreover, the varying degrees of relevance between categories can lead
to an inconsistent distribution of misclassification loss across categories, posing
a challenge to select clean data consistently from all categories for training. To
overcome this limitation, we develop a sample selection method termed ‘Class-
Aware Sample Selection for Ordinal Regression’ (CASSOR). To be concrete,
we devise a class-specific sample selection strategy in order to adaptively acquire
sufficient clean examples for robust model training. Moreover, a label-ranking
regularizer is designed to help guide the sample selection process via exploring
the ordinal relationship between different examples. As a result, our proposed
CASSOR is endowed with strong discrimination abilities on ordinal data. Inten-
sive experiments have been performed on multiple real-world ordinal regression
datasets, which firmly demonstrates the effectiveness of our method.

Keywords: Ordinal regression · Label noise · Weakly-supervised learning

1 Introduction

Ordinal regression, also known as ordinal classification, aims to predict categories on an
ordinal scale [5]. Unlike the nominal classification setting, ordinal regression involves
labels that naturally possess a specific order [6]. To now, ordinal regression has found its
applications in various fields, such as age estimation [2]. The existing methods to deal
with ordinal regression tasks can be roughly divided into two types, namely regression
and classification. The regression approaches aim to predict the values of the latent
variable by mapping the input space to a one-dimensional real space [3] before pre-
dicting the categories of the input examples. The classification approaches, on the other
hand, embed the ordinal relationship between categories into loss functions [12], labels
[4,17], or architectural design [16].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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The existing ordinal regression techniques are primarily designed for clean-label
settings. However, the class labels observed in ordinal data may not always be cor-
rect. This is because the potential relevance between adjacent categories will make it
challenging for annotators to accurately distinguish between different categories. As a
result, the label noise can probably lead to performance degradation in model training.
To now, various deep learning approaches have been proposed for handling classifica-
tion problems with label noise. Most of them focus on the estimation of the noise tran-
sition matrix [15] or the selection of clean examples [8,14]. The former aims to employ
the transition matrix to build a risk-consistent estimator or a classifier-consistent estima-
tor, while obtaining an accurate noise transition matrix can be challenging in practical
scenarios [7]. Here, [5] is the only method designed for ordinal regression under label
noise, which uses the noise transition matrix to construct the unbiased estimator of
the true risk. On the other hand, the sample selection methods focus on selecting clean
examples for model training and yield relatively satisfactory performance [8]. They usu-
ally predefine a loss threshold heuristically to regulate the number of clean examples,
assuming that examples with loss below the threshold are probably clean [8,10].

Nevertheless, the above-mentioned sample selection methods are designed for nom-
inal classification problems, which fail to exploit the fundamental characteristics of
ordinal data. To be specific, if a category is highly relevant to its neighbors, it can
be misclassified with a high probability, which leads to a large misclassification loss.
Meanwhile, if a category is weakly related to its neighbors, the corresponding misclas-
sification loss could be small. This will result in inconsistent distribution of misclassi-
fication loss across categories. Simply selecting the small-loss examples with a single
threshold can lead to imbalanced sample selection across categories. As a result, highly
relevant categories cannot provide sufficient information for model learning, ultimately
degrading the model performance. In addition, ordinal data typically exhibit a natural
label order that benefits the learning of ordinal models [6], which is, however, neglected
by the nominal classification methods.

In light of the aforementioned challenges, we propose a new type of sample selec-
tion method termedClass-Aware Sample Selection forOrdinalRegression (CASSOR).
Firstly, we design a class-aware sample selection strategy via calculating a class-specific
score for each category. The score determines the number of examples chosen from
each category, ensuring that categories with significant misclassification contribute ade-
quate examples for model training. Considering the varying misclassification loss asso-
ciated with different categories during the training phase, the class-specific score can
be dynamically adjusted. This could also help prevent the model from overfitting to
certain noisy examples and improve the generalization abilities. Additionally, since a
biased selection of training examples is inevitable [7], we employ a dual-network archi-
tecture. As such, the potential errors caused by the biased selection can be reduced by
the dual networks in a mutually beneficial manner [8]. Furthermore, to incorporate the
inherent ordinal relationship between labels, we design a new type of OT loss called
‘Optimal Transport regularized by label Ranking’ (OTR). Unlike the traditional OT
loss [1,12,16], which neglects the ordinal relationship among examples, our proposed
OTR loss preserves the label order between the predicted results of the dual networks.
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Therefore, the inherent ordinal relationship can help guide the sample selection process
and further reduce the accumulated errors caused by the biased sample selection.

2 Our Method

Fig. 1. The pipeline of our proposed method.

2.1 Preliminaries

In ordinal regression problems, the label of an example with a feature vector x is
denoted as y, where y ∈ Y = {1, 2, . . . ,K}. That is, y is in a label space with K
different labels, and the class labels satisfy 1 ≺ 2 ≺ . . . ≺ K with ‘≺’ represent-
ing order relation. The objective of ordinal regression is to find a classification rule or
function to predict the categories of new examples given a training set of N examples,
namely D = {xi, yi}N

i=1. Label noise refers to the situation that the observed label does
not match the ground-truth label y∗, i.e., y �= y∗. To ensure the unimodality of model
prediction, we adopt the architecture in the ordinal regression model [16] as the back-
bone of our method and the baseline methods. Let f (·; θ) be the latent function for the
network parameterized by θ. Furthermore, the Optimal Transport (OT) loss [12,16] of
the example xi is employed to measure the misclassification in ordinal regression tasks:

LOT (f (xi; θ) , yi) =
∑K

k=1,d (yi, k) fk (xi; θ) , (1)

wherein d (yi, k) = |yi−k|m measures the label distance between yi and k withm ≥ 1.

2.2 Overall Framework

As shown in Fig. 1, the proposed method consists of two critical components which
are designed for ordinal regression with label noise: (1) Class-Aware selection strategy,
which adaptively selects reliable data from each category for robust modeling training
(see Sect. 2.3); (2) Regularization with label ranking, which aims to incorporate the
label order inherently contained in ordinal data for model learning (see Sect. 2.4).
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2.3 Class-Aware Sample Selection

We develop a Class-Aware sample selection strategy for ordinal data in order to suffi-
ciently learn from the categories with much misclassification. Firstly, we aim to com-
pute an insufficiency score which can be obtained based on the distance between the
average distribution of the prediction from each category and the distribution of each
target category. Here, the average distribution py=k of each observed category can be
calculated by py=k = 1

Nk

∑Nk

i=1 1[yi = k]f (xi; θ), where f (xi; θ) indicates the pre-
dicted probability distribution of the example xi by network parameters θ, and Nk is
the number of examples in the k-th category. The j-th element in py=k represents the
probability of predicting an example of the k-th category to the j-th category. After that,
we use Jensen-Shannon Divergence (JSD) [11] represented as JS(·||·) to measure the
dissimilarity between the average distribution and Dirac point mass [16] characterized
by a one-hot probability mass function. We choose JSD because it is relatively simple
and efficient for computation. A smaller JSD value indicates that the two distributions
are more similar to each other. On this basis, we construct a matrix S with Si,j denoting
the JSD between the average distribution of prediction related to the i-th category and
the one-hot distribution Dirac (j) of class j:

Si,j = JS (py=i||Dirac (j)) , ∀i, j ∈ {1, ..., K}. (2)

With Eq. (2), we can obtain the insufficiency score for the j-th category, which is
expressed as vj = 1

K

∑K
i=1 Si,j . Here, the insufficiency score can be used to measure

misclassification in a specific category, and a larger score often corresponds to more
misclassified examples. For practical use, the insufficiency score is normalized as fol-
lows in order to eliminate the influences of different scales: ṽj = vj−mean(v)

max(v)−min(v) , where
ṽj ∈ (−1, 1). The normalized insufficiency score can then be utilized to adjust the ratio
of selected examples for each category. Concretely, the selection ratio of the j-th cate-
gory is presented as rj = 0.5 + λ × ṽj , where λ is a hyperparameter assigned to the
insufficiency score ṽj . Afterward, we select the examples with small classification loss,
i.e., Dclean, based on the ratio rj at each epoch, so that the model can be encouraged to
learn from the categories with relatively much misclassification. Note that the misclas-
sification loss is measured by OT loss [12,16] in our method. Consequently, the model’s
discrimination abilities towards prone-to-misclassification categories will be enhanced.

2.4 Regularization with Label Ranking

We believe the ordering information of ordinal labels can enhance the performance
of the model in ordinal regression tasks [6]. To this end, we have introduced an OTR
loss that aims to maintain the label ranking between the predicted results of the dual
networks, which consists of the traditional OT loss and a label-ranking loss LLR. Dif-
ferent from OT loss which focuses on the individual example, the proposed OTR loss
concentrates on the relationship between each pair of examples. Here, the OTR loss is:

LOTR = L̃OT + β × LLR, (3)



CASSOR: Class-Aware Sample Selection for Ordinal Regression with Noisy Labels 121

where β is a hyperparameter and L̃OT represents the average OT loss of the selected
examples. The label-ranking loss LLR in Eq. (3) can be expressed as

LLR =
∑K−1

k=1

∑
d(yi,yj)=k JS(f(xi;θ1),f(xj ;θ2))

∑
d(yi,yj)≥k JS(f(xi;θ1),f(xj ;θ2))

, (4)

where f (xi; θ1) is the prediction of xi generated from the network parameterized by
θ1, and so on. In Eq. (4), d (·, ·) is the label distance function also used in Eq. (1). The
objective of the Eq. (4) is to enforce a condition where given a pair of examples, the
estimated distribution distance between the sample pair with a greater label distance is
larger than the estimated distribution distance between the sample pair with a smaller
label distance. Finally, the OTR loss of Eq. (3) is used to update the network parameters.

3 Experiments

3.1 Experimental Settings

Datasets. Given the research emphasis on ordinal regression and label noise, we adhere
to established practices [4,16] by using three standard datasets for assessment: Histor-
ical Color Image (HCI), Adience, and Diabetic Retinopathy (DR). HCI [13] comprises
1,325 images for a five-class ordinal task spanning the ‘1930s’ to ‘1970s’. Adience [9]
focuses on age estimation, where we selected and adapted the first six age groups from
train-test splits1. DR2 includes retinal images with diabetic retinopathy categorized into
severity levels. We categorize and adapt it into ‘no DR,’ ‘Mild,’ ‘Moderate,’ and ‘Severe
DR and Proliferative DR,’ and 1,680 images per class are used for evaluation.
Ordinal Label Noise Generation. Similar to [5], we hold the assumption that the prob-
ability of mislabeling decreases with the increase of label distance. By letting T be
the noise transition matrix and ρ be the total noise rate, Ti,j denotes the probability
of flipping label i to label j, Ti,i = 1 − ρ(i ∈ {1, . . . , K}), and Ti,j(i �= j) can be
calculated as Ti,j = ρ e

T∗
i,j

∑K
k=1 e

T∗
i,k
. Here, T∗

i,j follows the standard normal distribution and

can be formulated as T∗
i,j = 1√

2πσ
e− 1

2 , where σ is set to 2 empirically.
Baseline Methods. We evaluate the effectiveness of our method by comparing it
with multiple representative approaches, including the typical ordinal methods such
as UNIORD [16], SORD [4], and CORAL [2]; label noise-robust learning algorithms
such as forward correction (F-correction), backward correction (B-correction) [15], and
Co-teaching [8]; and label noise-robust ordinal regression methods such as RDORLN
[5]. For RDORLN [5], we use the same ordinal regression loss as our method.

3.2 Experimental Results

For HCI, we evaluate the proposed method with synthetic label noise, where the noise
rate ρ is chosen from {0.2, 0.4}. We run five individual trials for all compared meth-
ods under each noise level and report the mean MAE, RMSE, and standard deviation

1 https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds.
2 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.

https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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Table 1. Experimental results of all compared methods on noisy HCI, Adience, and DR.

Dataset ρ UNIORD [16] SORD [4] CORAL [2] F-correction [15] B-correction [15] Co-teaching [8] RDORLN [5] Our method

HCI 0.2 MAE↓ 0.790 ± 0.039 0.767 ± 0.047 0.935 ± 0.058 0.782 ± 0.037 0.862 ± 0.026 0.809 ± 0.049 0.777 ± 0.025 0.642± 0.029

RMSE↓ 1.224 ± 0.038 1.200 ± 0.058 1.377 ± 0.069 1.196 ± 0.048 1.301 ± 0.058 1.261 ± 0.061 1.221 ± 0.041 1.047± 0.044

0.4 MAE↓ 0.990 ± 0.044 0.998 ± 0.069 1.100 ± 0.082 0.972 ± 0.031 1.106 ± 0.084 1.020 ± 0.075 1.032 ± 0.049 0.728± 0.074

RMSE↓ 1.403 ± 0.057 1.418 ± 0.074 1.555 ± 0.090 1.382 ± 0.015 1.573 ± 0.103 1.487 ± 0.088 1.467 ± 0.071 1.137± 0.070

Adience 0.2 MAE↓ 0.566 ± 0.043 0.566 ± 0.032 0.810 ± 0.081 0.533 ± 0.030 0.533 ± 0.043 0.423 ± 0.040 0.543 ± 0.039 0.407± 0.030

RMSE↓ 0.898 ± 0.046 0.886 ± 0.033 1.125 ± 0.075 0.876 ± 0.037 0.861 ± 0.048 0.737 ± 0.043 0.881 ± 0.039 0.704± 0.038

0.4 MAE↓ 0.759 ± 0.037 0.797 ± 0.053 0.947 ± 0.072 0.812 ± 0.060 0.811 ± 0.070 0.492 ± 0.033 0.786 ± 0.022 0.420± 0.035

RMSE↓ 1.091 ± 0.045 1.150 ± 0.057 1.301 ± 0.065 1.264 ± 0.086 1.180 ± 0.074 0.797 ± 0.028 1.149 ± 0.031 0.715± 0.037

DR 0.2 MAE↓ 0.636 ± 0.015 0.651 ± 0.021 0.730 ± 0.011 0.635 ± 0.017 0.673 ± 0.016 0.597 ± 0.025 0.653 ± 0.011 0.577± 0.016

RMSE↓ 0.911 ± 0.014 0.948 ± 0.017 1.041 ± 0.015 0.917 ± 0.019 0.973 ± 0.019 0.927 ± 0.030 0.936 ± 0.012 0.862± 0.020

0.4 MAE↓ 0.769 ± 0.012 0.775 ± 0.017 0.848 ± 0.017 0.777 ± 0.016 0.792 ± 0.021 0.617 ± 0.020 0.762 ± 0.019 0.609± 0.012

RMSE↓ 1.029 ± 0.011 1.057 ± 0.025 1.155 ± 0.024 1.048 ± 0.020 1.093 ± 0.029 0.943 ± 0.030 1.029 ± 0.013 0.902± 0.021

in Table 1. Note that the performance of the ordinal regression methods consistently
decreases as the noise level increases. Particularly, RDORLN [5] achieves poor results
due to its reliance on the assumption that the noise transition matrix accurately reflects
the true-noisy label relationship, which may not hold for the HCI dataset. In contrast,
our method consistently achieves good results, showcasing its effectiveness across all
noise rates. For Adience, the ordinal regression methods, such as UNIORD, SORD, and
CORAL, exhibit unsatisfactory performance as a result of their inability to address label
noise. Similarly, the label noise-robust methods, such as B-correction and Co-teaching,
also yield poor results due to the inadequate consideration of ordinal information. We
also performed well on DR, especially in RMSE.

Table 2. Experimental results of the proposed method with different key components.

Dataset ρ MAE↓ RMSE↓
A B C D A B C D

DR 0.2 0.632 ± 0.020 0.593 ± 0.008 0.579 ± 0.011 0.577 ± 0.016 0.964 ± 0.015 0.888 ± 0.015 0.879 ± 0.017 0.862 ± 0.020

0.4 0.671 ± 0.006 0.632 ± 0.010 0.621 ± 0.013 0.609 ± 0.012 0.983 ± 0.007 0.922 ± 0.008 0.908 ± 0.006 0.902 ± 0.021

3.3 Ablation Study

Our method includes three crucial elements, namely the class-aware sample selection,
the dual-network architecture, and the label-ranking regularization. We incrementally
add these key components from A to D. A: A naı̈ve baseline method, where 50% of
small-loss examples over all the training data are selected for training. B: Incorporating
the class-aware selection strategy. C: Incorporating the dual-network architecture. D:
Incorporating the regularization with label ranking equipped with dual-network. The
experimental results are shown in Table 2. As expected, the performance of the model
can be improved when each component is applied.

4 Conclusion

In this paper, we introduce CASSOR, a novel sample selection approach for handling
label noise in ordinal regression. CASSOR aims to mitigate the negative effects of
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inconsistent misclassification loss in the sample selection of ordinal data. Furthermore,
a label-ranking regularizer is devised to guide the sample selection process with ordinal
relations. As a result, our proposed method demonstrates strong performance on various
real-world ordinal datasets. Future work will focus on developing a robust quantitative
framework for measuring the essential differences between ordinal class labels.

Acknowledgement. This research is supported by NSF of Jiangsu Province (Nos: BZ2021013,
BK20220080).
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6. Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F., Hervás-

Martinez, C.: Ordinal regression methods: survey and experimental study. TKDE 28(1),
127–146 (2015)

7. Han, B., et al.: A survey of label-noise representation learning: past, present and future.
arXiv:2011.04406 (2020)

8. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy
labels. In: NeurIPS, vol. 31 (2018)

9. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In:
CVPRW, pp. 34–42 (2015)

10. Li, J., Socher, R., Hoi, S.C.: DivideMix: learning with noisy labels as semi-supervised learn-
ing. In: ICLR (2019)

11. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor. 37(1),
145–151 (1991)

12. Liu, X., Han, X., Qiao, Y., Ge, Y., Li, S., Lu, J.: Unimodal-uniform constrained Wasserstein
training for medical diagnosis. In: ICCVW (2019)

13. Palermo, F., Hays, J., Efros, A.A.: Dating historical color images. In: Fitzgibbon, A., Lazeb-
nik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 499–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3 36

14. Patel, D., Sastry, P.: Adaptive sample selection for robust learning under label noise. In:
WACV, pp. 3932–3942 (2023)

15. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural networks
robust to label noise: a loss correction approach. In: CVPR, pp. 1944–1952 (2017)

16. Shaham, U., Svirsky, J.: Deep ordinal regression using optimal transport loss and unimodal
output probabilities. arXiv:2011.07607 (2020)
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Abstract. A variety of modern applications exhibit multi-view multi-label learn-
ing, where each sample has multi-view features, and multiple labels are correlated
via common views. Current methods usually fail to directly deal with the set-
ting where only a subset of features and labels are observed for each sample, and
ignore the presence of noisy views and imbalanced labels in real-world problems.
In this paper, we propose a novel method to overcome the limitations. It jointly
embeds incomplete views and weak labels into a low-dimensional subspace with
adaptive weights, and facilitates the difference between embedding weight matri-
ces via auto-weighted Hilbert-Schmidt Independence Criterion (HSIC) to reduce
the redundancy. Moreover, it adaptively learns view-wise importance for embed-
ding to detect noisy views, and mitigates the label imbalance problem by focal
loss. Experimental results on four real-world multi-view multi-label datasets
demonstrate the effectiveness of the proposed method.

Keywords: Multi-View Multi-Label Learning · Weakly Supervised Learning ·
Hilbert-Schmidt Independence Criterion · Focal Loss

1 Introduction

In many real-world applications, samples are often represented by several feature sub-
sets, and meanwhile associated with multiple labels [10]. In addition, it is probably
that only a subset of features and labels are observed for each sample. Current related
methods [5,12] usually treat multiple view equally and complete the missing data by
encouraging low-rankness, which may not hold in practice.

To address the challenge, we propose a novel method for iNcomplete multi-view
weAk-label learning with noIsy features and imbaLanced labels (NAIL). NAIL tackles
the problem by projecting multiple incomplete views into a common latent subspace
using the L2,1 norm, adaptively adjusting view-wise weights to detect noisy views. It
also embeds weak labels into the same subspace, employing Focal Loss to handle label
imbalance. To remove the redundancy during the embeding, NAIL utilizes the auto-
weighted Hilbert-Schmidt Independence Criterion (HSIC) to drive embedding weight
matrices to differ from each other in Reproducing Kernel Hilbert Spaces (RKHSs). The
workflow of NAIL is illustrated in Fig. 1.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 124–130, 2024.
https://doi.org/10.1007/978-981-99-7022-3_12
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Fig. 1. The framework of NAIL. NAIL first reconstructs incomplete views {Xv}m
v=1 and weak

labels Y by a common low-dimensional representation F, i.e., Xv ≈ FUv(∀v) and Y ≈
σ(FUm+1), where σ denotes the sigmoid function. The reconstruction errors for {Xv}m

v=1

and Y are measured by L2,1-norm and focal loss, respectively, and are adaptively weighted by
{αv}m

v=1. It then projects weight matrices {Uv}m+1
v=1 into RKHSs and promotes the differences

between weight matrices via β auto-weighted HSIC, in order to reduce the redundancy during
embedding. Finally, NAIL predicts unobserved labels inY based on σ(FUm+1).

2 Methodology

Let Xv = [xv
1,x

v
2, . . . ,x

v
n]

T ∈ R
n×dv denote the feature matrix in the v-th view, and

Y = [y1,y2, . . . ,yn]T ∈ {0, 1}n×l denote the label matrix, where yij = 1 means that
the j-th label is assigned to the i-th instance and yij = 0 otherwise. We introduceOv

X ∈
R

n×dv and OY ∈ R
n×l to denote indices of the entries in Xv and Y, respectively,

such that (Ov
X)ij = 1 or (OY)ij = 1 if the (i, j)-th entry is observed in Xv or Y,

and (Ov
X)ij = 0 or (OY)ij = 0 otherwise. The goal of NAIL is to predict unobserved

labels in presence of both noisy views and imbalanced labels.

2.1 Auto-weighted Incomplete Multi-view Embedding

Given a multi-view dataset, we seek to find a shared latent subspaceF ∈ R
n×k (k < dv ,

∀v) by integrating complementary information from different views [3], which can be
formulated asminF,{Uv}≥0

∑m
v=1 ||Xv −FUv||2F , where || · ||F represents the Frobe-

nius norm and Uv ∈ R
k×dv is the weight matrix of the v-th view. It embeds multi-

ple views into an identical subspace by treating each view equally, deviating from the
true latent subspace when multiple views have different importance during embedding.
Furthermore, the existence of missing entries poses another challenge. To address the
problems, we propose the auto-weighted incomplete multi-view embedding:

min
α ,F,{Uv}≥0,∑

αv=1

m∑

v=1

αs
v||Ov

X � (Xv − FUv)||2,1 (1)

where � is the Hadamard product, and ||A||2,1 =
∑n

i=1 ||ai:||2 represents the L2,1

norm, which is insensitive to outlier samples by decreasing the contribution of the out-
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lier to the reconstruction error. In (1), αv is introduced to weight the embedding impor-
tance of the v-th view (α = [α1, α2, . . . , αm]), and s is a constant, which is fixed as
0.5 in experiments. According to (1), Xv is mapped to a common latent representa-
tion F ∈ R

n×k with view-specific adaptive weight αv . For the v-th view, the more
importance contributed to embedding F, the higher weight of αv , and vice versa.

2.2 Imbalanced Weak-Label Embedding

Cross Entropy (CE) [2] is often used to measure the classification loss between the
ground truth and predictions. However, possible label imbalance, i.e., a large difference
between the proportions of positive and negative labels, can lead to a drop in prediction
accuracy. Here we adopt Focal Loss (FL) [6] to mitigate this problem. For the j-th label
in the i-th sample, focal loss FL(yij , pij) is computed based on the ground truth yij and
the predicted label probability pij , i.e., FL(yij , pij) = −aij(1 − qij)γ log(qij), where
γ is a constant, and aij takes a value a ∈ [0, 1] if yij = 1 and aij = 1 − a otherwise.
In experiments, we fix γ = 2 and a = 0.5. In focal loss, qij = pij if yij = 1, and
qij = 1 − pij otherwise. Predicted probability pij is calculated by pij = σ(fT

i: u
m+1
:j ),

where σ(·) is the sigmoid function, fi: is the i-th row of the latent embedding F in
(1), and um+1

:j is the j-th column of the weight matrix Um+1 for label embedding.
Therefore, imbalanced weak-label embedding can be modeled as follows:

min
F,Um+1≥0

∑

(i,j)∈OY

FL(yij , σ(fT
i: u

m+1
:j )). (2)

Thus, the label imbalance problem is alleviated by applying focal loss on the observed
labels, which helps the model to focus on learning hard misclassified samples.

2.3 Correlation Modeling by Auto-weighted HSIC

Next, we adopt the Hilbert-Schmidt Independence Criterion (HSIC) [4] to model the
nonlinear correlations among weight matrices {Uv}m+1

v=1 in an adaptive manner. Specif-
ically, HSIC estimates the dependency between Uv and Uv′

(v′ �= v) in the Reproduc-
ing Kernel Hilbert Spaces (RKHSs), i.e.,HSIC(Uv,Uv′

) = (n−1)−2tr(KvHKv′
H),

where Kv ∈ R
n×n is the Gram matrix that measures the similarity between row vec-

tors of Uv . H = I − 1
n11

T is the centering matrix, where I ∈ R
n×n is an identity

matrix, and 1 ∈ R
n is an all-one vector. It is guaranteed that the lower the value of

HSIC, the lower the dependence betweenUv andUv′
. Thus, to reduce the redundancy

amongUvs during embedding, we can minimize the HSIC between each pair of weight
matrices. However, noisy views make directly minimizing the HSIC too restrictive in
practice. To address the problem, we propose to minimize auto-weighted HSIC, i.e.,

min
β ,{Uv}≥0
||βv||2=1

m+1∑

v=1

∑

v′ �=v

βvv′HSIC(Uv,Uv′
) (3)

where βvv′ ≥ 0 measures the importance of the correlation between Uv and Uv′
and

βv = [βv1, βv2, . . . , βv(m+1)]. Once the v-th view is indeed noisy, a relatively larger
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value will be assigned to βv , leading to the decorrelation betweenUv andUv′
(∀v′ �= v)

by imposing a stronger degree of penalty on HSIC. Therefore, multiple views and labels
are correlated in a non-linear and adaptive way.

2.4 The Proposed NAIL Method

By incorporating (1), (2) and (3), we now have the optimization problem of NAIL:

min
α ,β ,

F,{Uv}

m∑

v=1

αs
v||Ov

X � (Xv − FUv)||2,1 + λ
∑

(i,j)∈OY

FL(yij , σ(fT
i: u:j)) (4)

+ μ

m+1∑

v=1

∑

v′ �=v

βvv′HSIC(Uv,Uv′
), s.t.

∑
αv = 1, ||βv||2 = 1,α,β,F, {Uv} ≥ 0,

where λ and μ are nonnegative hyperparameters. It is worth noting that αv weights the
reconstruction error between Xv and FUv , while βv weights the correlation between
Uv and Uv′

(∀v′ �= v). In other words, once Xv is noisy, αv will be assigned to a
small value as it cannot be recovered well by FUv , while βv will take a large value
in order to decorrelate Uv with Uv′

(∀v′ �= v). In this way, NAIL adaptively embeds
incomplete views and weak labels into a common latent subspace, and non-linearly
decorrelates weight matrices with adaptively weights, enabling to complete missing
labels in presence of both noisy views and imbalanced labels. Once (4) is solved, the
prediction for missing labels is made by thresholding σ(fT

i: u:j) with a threshold of 0.5.

3 Experiments

3.1 Experimental Settings

We conduct experiments on four benchmark multi-view multi-label datasets: Corel5k1,
Pascal07 (see Footnote 1), Yeast dataset2 and Emotions3. The proposed NAIL4 is com-
pared with four state-of-the-art methods: lrMMC [7], McWL [9], iMVWL [8] and
NAIM3L [5]. lrMMC and McWL are adopted by filling missing features with zero,
and iMVWL and NAIM3L are originally designed for incomplete multi-view weak-
label learning. NAIL uses the Gaussian kernel in HSIC, and NAIL-L is its variant with
the linear kernel.

We tune the hyperparameters of lrMMC, NAIL-L and NAIL on all datasets, and
tune the hyperparameters of McWL, iMVWL and NAIM3L on the Yeast and Emotions
datasets by grid search to produce the best possible results. On the two image datasets,
hyperparameters of McWL, iMVWL and NAIM3L are selected as recommended in
the original papers. We select the values of hyperparameters λ and μ from {10i|i =
−3, . . . , 3}, and the ratio rk of k

d from {0.2, 0.5, 0.8} for NAIL and NAIL-L.We set s =

1 http://lear.inrialpes.fr/people/guillaumin/data.php.
2 http://vlado.fmf.uni-lj.si/pub/networks/data/.
3 http://www.uco.es/kdis/mllresources.
4 The code and supplement: https://github.com/mtics/NAIL.

http://lear.inrialpes.fr/people/guillaumin/data.php
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.uco.es/kdis/mllresources
https://github.com/mtics/NAIL
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a = 0.5 and γ = 2 in experiments. We randomly sample 2000 samples of each image
dataset, and use all samples from the Yeast and Emotions datasets in the experiment.
We randomly remove r% samples from each feature view by ensuring that each sample
appears in at least one feature view, and randomly remove s% positive and negative
samples for each label. We randomly select 70% of the datasets as the training set and
use the rest as the validation set, and repeat this procedure by ten times and report the
average values and the standard deviations. The prediction performance is evaluated by
two metrics: Hamming Score (HS) [11] and Average Precision (AP) [1]. In this work,
our goal is to complete the missing labels in the training set.

3.2 Experimental Results

Table 1. Experimental results on four real-world datasets at r% = 50% and s% = 50%. The
best results are highlighted in boldface, and the second best results are underlined.

lrMMC McWL iMVWL NAIM3L NAIL-L NAIL

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Emotions HS 0.5057 0.0125 0.6303 0.0031 0.6281 0.0082 0.6911 0.0068 0.6920 0.0307 0.7135 0.0104

AP 0.5293 0.0140 0.6102 0.0111 0.6006 0.0029 0.6783 0.0149 0.6923 0.0291 0.7017 0.0099

Yeast HS 0.7275 0.0002 0.7420 0.0020 0.7337 0.0113 0.7089 0.0003 0.7522 0.0049 0.7462 0.0081

AP 0.6503 0.0000 0.6936 0.0040 0.7219 0.0037 0.6665 0.0113 0.7267 0.0102 0.7235 0.0187

Corel5k HS 0.9084 0.0089 0.9070 0.0001 0.9581 0.0090 0.9575 0.0174 0.9792 0.0064 0.9800 0.0058

AP 0.1897 0.0021 0.1527 0.0052 0.2643 0.0005 0.5212 0.0142 0.3594 0.0834 0.3436 0.0028

Pascal07 HS 0.9194 0.0009 0.8132 0.0004 0.8690 0.0144 0.9211 0.0071 0.9450 0.0131 0.9480 0.0096

AP 0.3998 0.0013 0.3438 0.0032 0.4364 0.0169 0.4494 0.0076 0.4892 0.0138 0.4828 0.0188

Evaluation of Comparing Methods. Table 1 shows the experimental results of all
comparing methods on four real-world datasets at r% = 50% and s% = 50%. From
Table 1, we can see that NAIL and NAIL-L outperform comparing methods in most of
the cases. The performance superiority probably comes from their ability on handling
noisy views and imbalanced labels, and decorrelating weight matrices for redundancy
removal in an adaptive way. The incompleteness of multi-view data causes the perfor-
mance degradation of lrMMC and McWL. iMVWL and NAIM3L outperform lrMMC
and McML in most cases, but perform worse than NAIL and NAIL-L. There are two
possible reasons: one is that iMVWL assumes that the label matrix is low-rank, and the
other is that both iMVWL and NAIM3L treat multiple views equally. In contrast, NAIL
and NAIL-L measure the importance of each view by adaptively choosing appropri-
ate values of α and β. In summary, it shows that once a low-dimensional space indeed
contains nonlinear transformations about features and labels, NAIL enables to save their
structural properties and uses the HSIC to capture correlations between them.
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Fig. 2. Ablation study of NAIL on the Corel5k
dataset at r% = 50% by varying s% from 10%
to 50% by step 10%.

Ablation Study. To investigate the
effects of NAIL-L’s components, we
introduce three variants of NAIL-L,
namely NAIL-1, NAIL-2 and NAIL-3.
NAIL-1 uses Frobenius norm to mea-
sure the reconstruction error of fea-
tures and labels, instead of L2,1 norm
and focal loss. NAIL-2 ignores the
decorrelation between weight matrices
during embedding by simply remov-
ing auto-weighted HSIC. NAIL-3 treats multiple views equally in both reconstruction
and decorrelation, by omitting α and β. Figure 2 shows the ablation study of NAIL-L
on the Corel5k dataset at r% = 50% by varying values of s%. Among the variants,
NAIL-3 performs the worst as it fails to detect noisy views. NAIL-1 and NAIL-2 per-
form worse than NAIL-L, probably because the simple Frobenius norm based loss in
NAIL-1 is sensitive to sample outliers and imbalanced labels, and the removal of HSIC
in NAIL-2 is harmful for generalization. In contrast, NAIL-L has the best performance
in RS and AUC on all datasets, indicating the effectiveness and necessity of its compo-
nents.

4 Conclusion

In this paper, we propose a novel method called NAIL to deal with incomplete multi-
view weak-label data. NAIL jointly embeds incomplete views and weak labels into
a shared subspace with adaptive weights, and facilitates the difference between the
embedding weight matrices via auto-weighted HSIC. Moreover, to deal with noisy
views and imbalanced labels, adaptive L2,1 norm and focal loss are used to calculate the
reconstruction errors for features and labels, respectively. Empirical evidence verifies
that NAIL is flexible enough to handle various real-world problems.
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Abstract. Nowadays, gunshot detection is closely related to social security, but
it needs more attention. The data driven method for gunshot detection which a
large corpus of gunshots will be needed for training a neural network is urgently
needed. To address this requirement, we propose a novel unified framework, the
GunshotGeneration andDetection (GGD), specifically designed for gunshot event
detection. It merges an audio generation model with a detection model to partially
alleviate the issue of data scarcity problem. Comparative analysis indicates that the
GGDmodel surpasses non-generativemodels. Remarkably, it outperformsmodels
employing data augmentation techniques. Furthermore, the GGD framework is
easy to incorporate with diverse detection network architectures, such as VGGish
and Mobile Net. When coupled with a Convolutional Neural Network (CNN),
our methodology yields recall varying from 93.98% to 98.20%. These findings
demonstrate that this integrated approach significantly enhances the detection
performance of gunshot detection models.

Keywords: Gunshot Detection · Audio Generation · Deep Learning

1 Introduction

The issue of public safety is undoubtedly becoming increasingly important for numer-
ous cities across the globe. According to [1], many gunshot incidents are not noticed
by emergency organizations. Numerous event detection systems and products rely on
video or image. Tuncer et al. [2] propose a real-time system and network architecture
for identifying gun violence, which enhances performance of networks well-known in
object detection. Gunshot detection technology is designed to note gunfire accident
to minimize casualties and losses. While there are areas that cannot be monitored by
the video surveillance system, it can be complemented by audio detection, especially
gunshot detection.

Gunshot detection is typically tackled using deep learning technique together with
data augmentation or designed features, which normally needs a large amount of training

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 133–144, 2024.
https://doi.org/10.1007/978-981-99-7022-3_13
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data. Some methods are aimed to solve rare sound event detection on the dataset used in
DCASE 2017 task 2. Ding et al. [3] propose an adaptive multi-scale detection(AdaMD)
method that processes acoustic events with different temporal and frequency resolutions.
To better understand the model’s detection capability, Kao et al. [4] investigate the
dynamics of LSTM model and nine different pooling methods. They find max pooling
on the prediction level gained the best performance. Lydia et al. [5] propose a two-
stage pipeline gunshot detection system to detect hunting in the wild with limited data.
However, there are limited datasets due to the distinctiveness of gunshots, which is a
major obstacle to the advancement of gunshot detection.

Generativemodels likeGANs and diffusionmodels have remained a research hotspot
for a long time. In particular, the diffusionmodel, once well-known in the field of text-to-
image generation [6], has recently been adapted for text-to-audio synthesis domain[7].
AudioLM et al. [8] apply language modeling techniques and gain high-quality audio.
Furthermore, the diffusion model [9], based on prompt enhancement, aims to address
data scarcity by constructing natural language text that aligns well with audio. It intro-
duces a spectrogram autoencoder for self-supervised representation, rather than mod-
eling through waveform, to ensure effective compression and preservation of speech
characteristics.

Due to the data augmentation techniques to enhance gunshot detection models [10]
and popularity of diffusion models in image generation [11], we introduce audio genera-
tion into gunshot detection. By leveraging audio and corresponding textual descriptions,
we generate audio that is similar yet distinct from the original one, thereby increasing
the amount of data. Specifically, we establish a strong connection between data genera-
tion and detection network. To prevent the impact of poor-quality data, we constrain the
proportion of generated data fed into the network through a joint loss function for the
two tasks. In this manner, we maximize the use of the limited available data.

We summarize our contributions as three points below. (1) Addressing data scarcity
through audio generation: We utilize audio generation techniques to expand the lim-
ited gunshots, effectively alleviating data scarcity. (2) Connecting audio generation and
gunshot detection models: We establish an effective connection between the audio gen-
eration model and the gunshot detection model, forming the gunshot generation and
detection(GGD) model. By controlling the quantity and proportion of generated data
fed into the network through conditional constraints, we ensure the training quality of
the detection model. (3) Superior performance compared to models without GGD: Our
approach demonstrates improved performance in gunshot detection when compared to
models without audio generation and even models with augmentation.

2 Related works

Gunshot detection is normally solved by either more designed features, data augmen-
tation or various networks. Baliram Singh et al. [12] focus on the analysis of feature
importance about gunshot and gunshot-like sounds, which applies machine learning
methods like random forest mean and the SHapley Additive exPlanations. Arslan et al.
[13] propose a gunshot recognition system containing impulsive sound detection based
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on frequency information and MFCC. Furthermore, Bajzik et al. [14] propose new fea-
tures such as spectrogram, MFCC and self-similarity matrix, thereby training the CNN
network for gunshot detection.

Though these methods can detect gunshot in a simple but effective way, their perfor-
mance is severely obstructed by the scarcity of gunshot datasets. Therefore, it’s essential
to incorporate data augmentation approaches. The ICRCN [15] applies random back-
ground mixing, random time shift and random Gaussian noise addition to expand gun-
shots. The Dos et al. [16] investigate the impact of noise-addition on gunshot detection
system, which shows that the noise-addition may affect feature, and decrease detection
performance. Another typical way is collecting more data, which crawls gunshot from
widely used video websites like YouTube, Tiktok and IMDB [2]. Besides, Rahul et al.
[17] record the audio clips in residential areas and at a gun range. Busse et al. [18] create
relatively limited gunshots in a physical way, which rely on other kinds of data to gen-
erate gunshot-like sound. Park et al. [19] gather gunshots in game to perform gunshot
detection in reality, which are similar to real sounds to some extent. The method perform
well on gunshots data in UrbanSound8K. However, the cost of these methods and the
diversity of gunshots require further improvements. Thus, we propose an effective and
controllable GGD model that enriches gunshots by generation.

3 Methods

3.1 GGD Architecture

Data generation can enhance the robustness and generalization of models. To address the
challenge of scarcity in high-quality, authentic audio data for gunshot detection tasks, we
introduce a strategy that incorporates audio generation into the model training process.
This integration culminates in our proposed joint framework GGD, which has online
and offline modes corresponding to Figs. 1 and 2 respectively. In the online mode, Mel
spectrograms are generated are utilized as partial input, and the parameters of both the
generation and detection models are simultaneously updated. The aim is to empower
the generation model to produce a large volume of quality superior-quality data during
training the detection model. In the offline mode, the parameters of the generation model
are frozenwhich generates features from different textual contents to expand the gunshot
category.

Theoverall onlinemodeoperational flow is depicted inFig. 1. For illustrative simplic-
ity, the figure provides a reduced schematic of a CNN. The GGD input comprises three
components: audio of all classes, category labels, and textual descriptions of gunshots.
Regarding the generationmodule, it requires gunshot audio and textual descriptions. The
output of the generation module is the spectrogram feature of the gunshot. Within the
generation model, the spectrogram is sent into a Self-Supervised Audio Spectrogram
Transformer (SSAST) encoder [20]. The generated image is constrained by the text
description. The spectrogram, produced by diffusion, denoising, and SSAST decoder,
undergoes a data selection module to determine the proportion incorporated into the
detection model along with original data. Then the generated features, in conjunction
with the features from original data, are directly transmitted to the detection model,
thereby extending the amount of available gunshots. Other categories of data are also



136 J. Yin et al.

sent together into the detection model. Notably, this architecture can be adapted for other
sound event detection tasks.

The offline mode flow is depicted in Fig. 2, where the parameters are frozen and the
generation model is only used for generating features from gunshot text contents. The
features generated are sent into detection model directly along with features extracted
from original gunshots and other categories. The offline mode saves more time for
training and resource consumption compared to online mode.

……

Fig. 1. GGD architecture. Mel spectrogram is obtained from gunshots and fed into SSAST
encoder. The text description constrains the generated feature. The feature is generated by diffu-
sion, denoising and SSAST decoder, then goes through data selection module. It determines the
proportion of the generated spectrograms that will be integrated with original data in the detection
model. Within the data selection module, the output of the gated function, denoted by ‘g’, signifies
the proportionality factor.

3.2 Audio Generation

GenerationModule. During audio generation, textual descriptions and gunshot audio
are fed into this module. The textual description of gunshot is artificially created. After
extracting spectrogram, generation progress starts, which is similar to diffusion model
[11]. The first step is to make use of SSAST encoder to characterize the feature. Next
the representation vector is sent into diffusion model, which input consists of original
data, text embedding, random noise embedding and time step embedding. The output of
diffusion model is an image with similar feature corresponding to the text. The Diffusion
model consists of encoder and decoder module. The encoder compresses origin data into
lower dimension data i.e. latent data, which is called diffusion procedure. The decoder
is responsible for restoring the latent data to original data, which is called denoising,
which means reverses diffusion procedure.
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……

……

Fig. 2. Offline mode of GGD structure for gunshot detection.

After t diffusion processes, latent data xt is obtained. Denoising process means the
transition from xt to xt−1 until x0, which is implemented by U-Net [21]. Denoising
process [22] from latent xt to xt−1 can be simply represented in (1), where αt and
σt are hyper-parameters and Z represents random Gaussian noise. The first addition
term represents the latent distribution predicted by U-Net, where εθ (xt, t) represents the
predicted distribution of noise by U-Net. The difference of xt and noise distribution is
scaled by 1√

αt
. Then we get the preliminary distribution of latent xt−1. If the second

addition term is absent, the predicted latent is prone to overfitting during training, which
means the same xt−1 value may appear several times. Thus, the additional noise is added
for introducing more diversity to generated latent in our generation module. We can get
more diverse gunshots feature after t denoising procedures in this way. It can further
improve the effectiveness of the generation module and create more diverse inputs for
gunshot detection model.

xt−1 = 1√
αt

(
xt − 1 − αt√

1 − αt
εθ (xt, t)

)
+ σtZ (1)

We take some real and generated spectrograms of gunshots for example to show
diversity intuitively between them in Fig. 3. The spectrograms of generated gunshots and
real gunshots look similar. While there are differences in background noise, intensity,
number of shots and durations. We can qualitatively observe that generated features
own rich diversity. It is obviously shown from the Fig. 3 that Audio Generation method
enriches the realistic diversitywith limited gunshots, which strengthen the generalization
of gunshot detection model. It’s not just a random reshuffling of the same statistic data.
Meanwhile, the gunshot detection model type is less constrained due to generated data,
which means less cost for network structure design.

To achieve multimodal conversion from text to speech and ensure that the text and
final audio are closely matched, a constraint on the latent space should be applied using
the text. Firstly, the CLAP [23]. Text encoder depicts the textual description. The text
embedding feature representation is obtained by following transformer structure and
then is used to compute cross-attention matrix to constrain the model output image,
ensuring the data and text are related. After N denoising processes, x0 is calculated.
The SSAST decoder then decodes the data to get generated spectrogram. We simplify
this process by removing the vocoder of Make-An-Audio and directly feeding generated
feature and original feature into network without saving audio files.
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Fig. 3. Mel Spectrograms of real gunshots and generated gunshots. The row 1 represents real
gunshots, the remaining spectrograms represent generated gunshots based on real gunshots.

Loss Function.The loss function is the sumof the two losses. The formula is represented
as Eqs. (2–4) below, where L denotes loss for GGD frame, L1 for audio generation
module, L2 for CNN network, εθ represents the calculated noise in denoising process
and ε for the diffusion in (3). The t respectively represents every diffusion and denoising
procedure, which is a random value determined by a hyper-parameter and text is the
input textual description. In (4), yic denotes sign function. If sample i belongs to class
c, yic equals 1 otherwise 0. pic Denotes the inference probability belonging to class c.
Cross entropy loss function is used in detection network to minimize the gap between
label and prediction to optimize model.

L = L1 + L2 (2)

L1 = ‖εθ (xt, t, text) − ε‖22 (3)

L2 = − 1

N

∑
i

∑10

c=1
yiclog(pic) (4)

Data Selection for Training. During training, not all generated data is fed into the
network due to noise and poor quality of generated data. The proportion of added data
changes gradually throughout the training process according to loss value of L1. L1,i
denotes the loss of generation module at epoch i. When L1,i becomes less than 20% of
L1,0, which is the loss value of the first epoch, we set Es as i as Eq. (5). The quality of
generated data at this time is better compared to the first epoch. The proportion equals
0.05 as shown in (6) and the generated data is added into network.

Es = i,whenL1,i < 0.2 ∗ L1,0 (5)

g =
{

0, i < Es

min
(
0.2, � i−Es

15 + 1� ∗ 0.05
)
, i ≥ Es

(6)

This upper bound of proportion is 0.2 and 15 are hyper-parameters, which are deter-
mined by multiple experiments and a trade-off choice between performance and time
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cost. Subsequently, the proportion is adjusted every 15 epochs, with each adjustment
increasing the quantity by 0.05 until reaches bound. The method of data selection is
random sampling. When the proportion of data is confirmed, we select data without
replacement until the quantity meets requirements. In this way, the diversity and qual-
ity of dataset have both been enhanced, which results in improving the capability of
detection model.

3.3 Offline Mode for GGD

Figure 2 illustrates the implementation of the GGD framework in an offline mode, where
the generation module operates independently from CNN. Specifically, the generation
module can be frozen, indicating its exclusive use for the generation of spectrograms,
without concurrent training with the CNN. After the training and parameter fixation
of the generation network, this module models the features corresponding to provided
textual contents. It is noteworthy that the diversity in textual content engenders variance
in the derived features, substantially augmenting data diversity.

The offline mode facilitates the segregation of the generation model from the CNN,
circumventing the need for time-consuming, simultaneous online training, thereby
reducing training duration and resource utilization. Subsequent stages adhere to the
process established in online training, whereby data generated by the generation model
is amalgamated with the original dataset, and then relayed to the neural network. This
process elucidates offline data generation for gunshot event detection.

4 Experiments and Analysis

4.1 Dataset

Our benchmark dataset consists of two parts, which are used to train and evaluate.
The training dataset encompasses 10 distinct audio categories, including other sound
categories that could potentially generate false alarms. The data is derived from a com-
bination of publicly available datasets and our recordings. The public datasets we utilized
contain AudioSet, Dcase2017, Dcase2018 and Dcase2020, while self-recorded data cat-
egories feature speech, footstep, and others. In the case of gunshots, which is inherently
challenging to acquire, we have supplemented the data obtained not only from public
datasets but also from shooter games or videos. This approach has enabled us to compile
an extensive set ofWAV format audio files, totaling approximately 22,000 original audio
files. These audio files were resampled with 16kHz and cut into 1s length segments. For
the length of data less than 1s, we extended these files into 1s with zero. By imposing
a maximum limit of 10,000 samples per category, we ensured a balanced distribution
across all categories. As a result, we obtained approximately 75,000 audio clips training
our benchmark model. A comprehensive overview of our data can be found in Table 1
below.
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Our benchmark test dataset is derived from the publicly accessible and authentic,
real-world recorded dataset, the Gunshot Audio Forensics Dataset [24]. This invaluable
dataset is a subset of the comprehensive firearms audio forensics dataset funded by
NIJ Grant 2016-DN-BX-0183. It encompasses a diverse range of gun types, recording
devices, various directions and distances. There are about 6,400 gunshot samples for the
models’ performance evaluation.

In summary, our data is methodically partitioned into three distinct components: the
training set, the validation set, and the test set. The training and validation set share a
common origin, with a fixed allocation of 1,000 samples per category designated for
the validation set. Meanwhile, the test set comprises the aforementioned 6,400 samples
from the Gunshot Audio Forensics Dataset.

Table 1. Overview of the dataset.

Class Percentage(%)

Gunshot 13.3

Speech 13.3

Clap 8.3

Footstep 9.5

Door 6.7

Glass break 4.2

Dog 13.3

Engine 13.3

Drilling 9.8

Honk car 8.1

4.2 Implementation Details

In this study, Mel spectrograms are extracted and then sent to GGD framework. They
are extracted using the Torchaudio toolkit. The number of Mel filters is set to 32. Three
network structures are carried out on a range of experiments consisting of CNN, VGGish
[25] and MobileNet [26]. We performed experiments utilizing both benchmark datasets
and generated datasets for a robust analysis of performance. Each of the models was
subjected to a rigorous training process with 300 epochs. We employed Adam optimizer
with an initial learning rate of 0.001.

We experimented with various upper limits for adding the proportion of generated
data, including 50%, 20%, 16.7% and 10%. By testing various proportions, we were
able to identify the most suitable ratio of generated data to be added. This careful
implementation of generated data contributes to the development of more accurate and
reliable gunshot detection systems.
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4.3 Experiments Results

In this investigation, we utilized deep learning architectures to train models on our
dataset, subsequently assessing performance on test set to calculate recall rate. Table 2
delineates the results of models trained with and without synthesized data. The results
reveal that the inclusion of synthesized data typically enhances the recall rate of gunshot
detection across the three models. The results imply that supplementing models with
generated data can bolster their performance to a certain degree. Taking theCNNnetwork
as an example, we observed that when the proportion of generated data added is 20%,
the result increases from 93.98% to 96.76%. When the proportion becomes 50%, the
result reaches an impressive 98.20%. What’s more, the GGD framework is suitable for
various network. The performance of GGD with Mobile Net and VGGish is superior to
the models without audio generation.

We also conducted experiments to validate the effects of reducing training dataset
size from 10,000 to 8,000. The results are shown in Table 3. The overall result is lower
than when the original training dataset size is 10,000, but it’s also evident the addition
of generated data improves the model’s performance. Results have shown that GGD can
achieve good results on data from different sources and even with a smaller training
set. We can ensure that the model remains balanced and effective across various data
categories by carefully selecting the optimal proportion of generated data.

Table 2. The experimental results for adding various proportions of data.

Network architecture Proportion of generation data Recall rate

CNN 0 93.98%

1/2 98.20%

1/5 96.76%

1/6 97.11%

1/10 97.66%

Mobile Net 0 66.72%

1/2 97.55%

1/5 97.31%

1/6 81.04%

1/10 67.74%

VGGish 0 94.15%

1/2 98.47%

1/5 95.56%

1/6 97.81%

1/10 97.16%
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Table 3. The result of reducing the number of training sets.

Network architecture Proportion of generation data Recall rate

CNN 0 90.59%

1/2 93.09%

1/5 94.51%

1/6 93.14%

1/10 92.61%

Mobile Net 0 61.05%

1/2 76.34%

1/5 90.20%

1/6 80.74%

1/10 81.23%

VGGish 0 95.28%

1/2 96.53%

1/5 98.03%

1/6 96.56%

1/10 98.34%

Data generation can be considered a data augmentation method. To demonstrate the
feasibility of data generation, we compared it to augmentation using the CNN detection
network. The augmentation includes noise addition, pitch-shifting, reverberation, and
spectrogram mask. The results are presented in Table 4, where the result of generated
data in training phase was the lowest recall rate in Table 2. The results indicate that
without applying augmentation techniques, the recall rate is 93.98%. Adding different
augmentation techniques has varying effects on the results, with noise addition and pitch
shifting achieving the closest results to GGD.

Spectrogram mask get a lower 78.82% recall rate than no augment, which is usually
added for imitating channel loss in network transmission and does not exist in test dataset.
That may bring negative impact to results. Reverberation method get a lower 81.38%
recall rate than no augment, which is usually added for imitating room impulse response,
while our test dataset is recorded in wild absent of obvious room impulse response. Pitch
shifting could change the frequency component of audio, which draws diversity into data
but may also affect feature. If the added noise mismatches noise in test dataset or its
intensity is improper, it may bring impact to detection system. Our method generates
more gunshots without affecting original features and bringsmore diversity, which result
in a 96.76% advantage over other methods. This experiment further demonstrates that
GGD offers significant advantages over data augmentation techniques. Furthermore,
integrating generated data and original data into the training process can enhance the
model’s robustness and generalization capabilities, ultimately improving the detection
ability of models on real data.
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Table 4. Comparison between our method and augment method.

Augment method Recall rate

No augment 93.98%

Pitch-shifting 94.28%

Noise addition 96.17%

Reverberation 81.38%

Spectrogram mask 78.82%

Ours 96.76%

5 Conclusion

We focused on the detection of gunshots. To tackle the data scarcity issue, we proposed
GGD, that jointly trains generation and detection networks. We can obtain a larger num-
ber of gunshots in this way, thereby mitigating the shortcomings of inadequate detec-
tion capabilities and weak generalization abilities in detection networks caused by data
scarcity. The framework GGD successfully combines generation and detection models
which outperformed those methods that only consist of detection models, even with data
augmentation in gunshot detection. It can also be considered for application in other
detection tasks. In the future, we may explore better integration of data augmentation
methods and further optimize our model to achieve a more lightweight generation model
component. Besides it’s possible to consider combining it with the physical generation
of data to generate possibly more realistic gunshots. These advancements will pave the
way for more efficient and accurate detection systems, capable of handling a wide range
of rare sounds and contributing to the development of safer environments.
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Abstract. Ancient Chinese Reading Comprehension (ACRC) is challenging for
the absence of datasets and the difficulty of understanding ancient languages.
Further, among ACRC, entire-span-regarded (Entire spaN regarDed, END) ques-
tions are especially exhausting because of the input-length limitation of semi-
nal BERTs, which solve modern-language reading comprehension expeditiously.
To alleviate the datasets absence issue, this paper builds a new dataset ACRE
(Ancient Chinese Reading-comprehension End-question). To tackle long inputs,
this paper proposes a non-trivial model which is based on the convolution of
multiple encoders that are BERT decedents, named EVERGREEN (EVidence-
first bERt encodinG with entiRE-tExt coNvolution). Besides proving the effec-
tiveness of encoding compressing via convolution, our experimental results also
show that, for ACRC, first, neither pre-trained AC language models nor long-text-
oriented transformers realize its value; second, the top evidence sentence along
with distributed sentences are better than top-n evidence sentences as inputs of
EVERGREEN; third, comparing with its variants, including dynamic convolution
and multi-scale convolution, classical convolution is the best.

Keywords: Ancient Chinese · Reading comprehension · Dataset · Evidence
extraction · Convolution

1 Introduction

To preserve ancient Chinese culture, where Ancient Chinese (AC) is a pivotal carrier,
natural language processing (NLP) on AC is an interesting and imminent [15] task,
where the lacking of linguistic resources harden the difficulty of AC understanding
tasks, including AC reading comprehension (RC). Among ACRC tasks, entire-text-
span regarded (Entire-text-spaN regarDed, END) questions are especially complicated
because they promote the difficulty of learning syntactic features for NLP models from
sentence-level to document-level and cannot be answered based on the first few tokens
of the questions or word matching [10]. Unfortunately, to the best of our knowledge,
there are no available ACRC datasets yet, especially for END questions.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 145–158, 2024.
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To alleviate this situation, we built a new dataset, named ACRE (Ancient Chinese
Reading-comprehension End-question) along with a newmodel, which is called EVER-
GREEN (EVidence-first bERt encodinG with entiRE-tExt coNvolution). ACRE com-
prises of 4100 AC passages with END questions, which are manually collected. EVER-
GREEN has multiple pre-trained language models (PLMs) as encoders for splitting
input parts and a convolution component which condenses an entire-text encoding.1

Besides building the first ACRC dataset, our experiments showed that:

1. PLMs trained with similar languages that have abundant resources like modern Chi-
nese are better than PLMs trained with target low-resource languages (e.g., AC) [13]
more often than not.

2. Length-text oriented PLMs cannot outperform customized ensemble models.
3. When we compress the encoding of long text via CNN, classical CNN beats its

variants, such as dynamic convolution (DCN) [19] and multi-scale convolution
(MsCNN) [14].

4. Evidence extraction, which has been proved to be successful in RC [18], should be
combined with the sentences distribution strategy to boost the prediction accuracy.

The rest of this paper is organized as follows. Related work is briefly written in the
next section. Then, the architect of EVERGREEN is proposed after introducing ACRE
and the problem. At last, experiments are followed by a conclusion section.

2 Related Work

2.1 Ancient Chinese Reading Comprehension

As a sub-task of RC, which is a principal task of natural language understanding that
keeps attracting attentions from researchers [18], ACRC aims to automatically answer
questions according to an ancient Chinese passage. RC in language other than English
can also be viewed as new tasks, because the processing of difference language might
be varied widely in many aspects, including segmentation, part-of-speech tagging, and
syntactic analysis [13]. E.g., the prominent Chinese writer and educator, Ye Shengtao,
believed that the three key differences between modern and ancient Chinese are: first,
from the aspect of vocabulary, ancient Chinese used one-character words which could
not be used along nowadays; second, from the aspect of grammar, many unambiguous
words in modern Chinese have multiple explanations in ancient Chinese; third, from
the aspect of function words, many ancient Chinese words vanished.

The difficulty of ACRC lies in its exploratory and comprehensive for the inference
and deduction requirements2. Because the above-mentioned differences between mod-
ern and ancient Chinese make ACRC harder than modern Chinese RC, ACRC had been
employed to measure the level of mastering the Chinese in almost all formal examina-
tion for native speakers in China [15], including the destiny-decided and 10-million-
students-involved Gaokao. Questions in ACRC can be categorized into at least four

1 Both ACRE and the source code of EVERGREEN will be released on GitHub after publica-
tion.

2 See eea.gd.gov.cn.

http://eea.gd.gov.cn/news/content/post_2514248.html
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Fig. 1. A Minimum ACRC END Question Illustration.

types: ancient-modern Chinese translation, sentence segmentation, span extraction and
END questions [18], where END questions are often placed at the end of ACRC section
and further promote the difficulty of learning syntactic features for NLP models from
sentence-level to document-level [12].

Figure 1 is an ACRC END question in the 2021 Gaokao, where the article has 637
Chinese characters, and the question is an entire-passage-regarding question whose
length is 259. In Fig. 1, the blue excerpted article passage is in ancient Chinese, and
purple sentences are the question with four options in modern Chinese. Further, words
as crucial evidence for this problem are colored in teal, and we provide the English
translation of key sentences in black along with the question and options.

Because ancient Chinese is a low-resource language, for ACRC, building datasets is
one of our top priority duties. There are over 50 English RC datasets, including RACE
[5], which is collected from the English exams for the Chinese students, ReClor [16],
whose questions are obtained from the Law School Admission Council, and Adversar-
ialQA [1]. By contrast, many low-resource language RC dataset are only recently built
[8]. Further, while challenging datasets are more interesting, most existing Chinese RC
datasets are in modern Chinese and collected from primary examinations which are
designed for Chinese-as-a-second-language students, e.g., C3 [11] and GCRC [12]. As
far as we know, only Native Chinese Reader (NCR) [15] provides 1125 ACRC passages.

2.2 Reading Comprehension via Pre-trained Language Models

Most state-of-the-art (SoTA) models for RC are based on PLMs. E.g., the SoTA app-
roach on Race is an ensemble ALBERT-xxlarge [4]; the best model for ReClor is
ALBERT [6]; the first choice for AdversarialQA is RoBERTa [1]; (ensembled) BERT
is the SoTA model for and C3 [17] and GCRC [12]. While our one eye is on the fruition
of BERT and the other eye on the shift between modern Chinese and ancient Chinese
[13], a few ancient Chinese PLMs were proposed. AnchiBERT [13] and GuwenBert3

are the only two available models, as far as we know. AnchiBERT is based on BERT
and trained with its self-built ancient Chinese corpora, and focused on poem classifi-
cation, ancient-modern Chinese translation, poem generation, and couplet generation.

3 The model of GuwenBERT is available on the github.

https://github.com/ethan-yt/guwenbert
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GuwenBERT is based on RoBERTa [7] and trained with ancient literature of Shuzhige4,
and focused on sentence segmentation, punctuation, and named entity recognition.

However, the 512 tokens input length limitation of BERT is the Achilles’ heel
of PLMs like BERT, e.g., both AnchiBERT and GuwenBERT have the input-length-
limitation as BERT, and therefore for tasks like entire-text-span regarded questions,
truncation is unavoidable. To overcome the length limitation, previous studies proposed
four solutions: first, truncate the passage; second, extract evidences and feed it into
BERTs [18]; third, ensembleing multi-BERT, including straightforward voting, which
decides according to the majority vote, and stacking; and fourth, facilitating PLMs
whose length limitation is bigger than 512 token, including T5 [9] and Longformer
[2].

Chunking long text into segments and inputting them to different branches is the
step stone of BERTs based solutions. However, for END questions, all encoding are to
be put together to remedy failures in extracting processes, eventually. Leveraging the
recurrent mechanism for cross-segments-attentions can put all information together, but
convolution has proven to be more successful in computer vision tasks. E.g., DCN net-
works [19], which adds 2D offsets to the regular grid sampling locations in the standard
convolution along with deformable RoI pooling, is a previous SoTA approach for the
Microsoft common objects in context dataset. As another example, MsCNN that adap-
tively selects multi-scale features in a CNN model also leads to better results [14].

3 ACRE

This paper collected the first ancient Chinese reading comprehension entire-text-span
regarded question dataset, which is called ACRE. In this section, we will discuss the
collecting procedure with the statistics and biases of ACRE after specifying our task.

3.1 Task Specification

ACRC END question are questions that have four options, among which exactly one
is the answer. These questions are exceptional-questions that are based on the sum-
marization of an AC passage, but the question itself is expressed in modern Chinese.
This bi-language setting is risen because, although AC recorded historic decisions that
reshaped our world everlastingly, people only use modern Chinese nowadays. There-
fore, ACRE items are only available in papers from different examinations.

3.2 Statistics of ACRE

ACRE has 2975 passages (with END questions) from websites and 1125 passages from
NCR. We study the length of ACRE, in which over 99.85% items are shorter than 1536,
and most of them are select-false questions, see Table 1.

4 Shuzhige.

https://github.com/garychowcmu/daizhigev20
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Table 1. Length Statistics of Items in ACRE.

# tokens

≤ 512 ≤ 1024 ≤ 1536 total

# items 275 4029 4094 4100

ratio 0.67% 98.27% 99.85% 100%

3.3 Data Collecting

ACRE is collected from the web with data cleaning and pre-processes, which include
duplication eliminating, translation, function words erasing and data argumentation.

Data Source. Following suggestions from previous studies [3], ACRE is manually col-
lected from publicly available legal educational resources websites, and we did not use
any spider. In ACRE, all questions are proposed and answered by experts and prepared
for public exams, which are not protected by the Copyright Law. The source Websites
are listed in Table 2.

Table 2. Source Web Site of ACRE.

# url

1 http://yinruiwen.com

2 http://www.5156edu.com

3 https://www.wenyiso.com

4 http://www.yuwen360.com

5 http://m.cyyangqiguan.com

6 https://yuwen.chazidian.com

Removing duplication and adjusting label distributions on those raw data from dif-
ferent web sources are the major tasks of the data cleaning operation. At last, we merge
all ACRC END questions in NCR5 into ACRE.

Translation. As a remedy for the bi-language setting, we use Bing for the translation.
As shown in Fig. 1, the passage in ACRE is in AC, while the question and options
are in modern Chinese. However, while this setting might alleviate the reading burden
for the students, previous evidence-extraction-based RC approaches prefer all passages,
question, and options in the same language. Therefore, as the translation between AC
and modern Chinese is available but unsteady, we append modern Chinese translations
to the passage and attached AC translations to the options and questions to ACRE.
Figure 2 provides an example of translating question and options into AC.

5 https://sites.google.com/view/native-chinese-reader/.

http://yinruiwen.com
http://www.5156edu.com
https://www.wenyiso.com
http://www.yuwen360.com
http://m.cyyangqiguan.com
https://yuwen.chazidian.com
https://sites.google.com/view/native-chinese-reader/
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Fig. 2. Example of Question & Options Translation.

Function Words Erasing. A unique feature of AC is the function word, which can
be erased. The vanished function words (e.g., pronouns, adverbs, prepositions, con-
junctions, auxiliary words, and exclamations) of ancient Chinese signaled grammatical
relationships but have no lexical meaning. Therefore, erasing vanished function words
appears attractive because the erasing can shorten the input length. See Fig. 3 for an
illustration.

Fig. 3. Example of Function Word Erasing.

3.4 Data Biases and Challenges

ACRE is collected from exams devised by experts in AC, which induces four biases.

1. END questions are often opinions where experts can make mistakes.
2. ACRE items are designed for test papers, therefore the length is limited, as longer

passage will take longer time for students.
3. Some questions are extraordinarily sophisticated because they are prepared for tests

like Gaokao, which is one of the toughest selective exams in the world. Hence, the
hardness of those questions will cause a very low accuracy rate.

4. Most passages are written before the Ming dynasty.6

4 EVERGREEN

We proposed EVERGREEN in this section after formally defining our problem.

6 Thanks to the anonymous NeurIPS reviewer. Although we can draw a line at the Chinese
renaissance around 1920 as the boundary between ancient and modern Chinese, fictions which
are written in or after the Ming dynasty are not in this scope.
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4.1 Problem Formalization

For ACRE problems, there is a 3-tuple < D,Q,A > with an answer label L, where D
is a set of passages, Q is a question, and A is the set of four options, and L is the label
which indicates the correct answer. We look for a prediction L̂ whose conditional prob-
ability is maximal among all answer candidates L′ = l1, l2, l3, l4 given < D,Q,A >.

L̂ = argmax
L′

P (L′|D,Q,A) (1)

4.2 Overview of Network Architecture

The architect of EVERGREEN is as Fig. 4, which leverages multi-BERT as a base
encoder and a convolution layer to fit the encoding into a fixed-length, flattened layer.
First, inputs of the model include question, options, and passage, where we reduce ques-
tion into one token to save space because the question is either “select the only correct
option among four options” or “select the only wrong option among four options”. Sec-
ond, every option, along with sentences that are evidences for this option, are encoded
by a PLM. We illustrate four branches at the bottom of Fig. 4. Third, because encod-
ing from four PLMs is still too long for a transformer layer, we facilitate a convolution
layer and pool them into a sequence of proper-size tokens. Fourth, a fully connected
layer attached to a transformer encoder layer predicts answers with a Softmax function.

4.3 Formalized Procedure

Let the passage be D =< s1, ..., s|D| >, all options are A =< a1, a2, a3, a4 >, and
the question is Q. S = {D ∪ Q ∪ A} = {s1, s2, ...s|S|} are the set of sentences,
where sm =< c1, c2, ...c|sm| >, 0 < m ≤ |S| is a sequence of |sm| tokens. Then,
EVERGREEN has four word-level encoders, each has a question token q, an option ai,
(0 ≤ i ≤ 4), and evidence sentences si

j , 0 ≤ j ≤ 6 for ai. I.e. inputs of each encoders
is a evidence set esi =< q ◦ai ◦ si

1 ◦ ...◦ si
6>, where “◦” is the concatenation operation.

All sentences are encoded to a hidden embedding.

hsi = hc1 ◦ hc2 ◦ ... ◦ hc|si| (2)

Therefore, the output of the encoders are the encoding of the entire text.

hesi = hq ◦ hai ◦ hsi
1 ◦ ... ◦ hsi

6 (3)

h<D,Q,A> = hes1 ◦ hes2 ◦ ... ◦ hes4 (4)

For each kernel k in the kernel set K, EVERGREEN convolves the reshaped
h<D,Q,A>.
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Fig. 4. The Architect of EVERGREEN.

hk
Conv = Conv(reshape(h<D,Q,A>), k) (5)

All convolutions should be finished with a ReLU pooling layer.

Hk
Conv = φ(hk), whereφ(x) = max(0, x) (6)

Results of the convolution with different kernels are concatenated.

H<D,Q,A>
Conv = Σk∈KHk

Conv (7)

Then, this entire-text encoding will be fed to the standard attention mechanism.

ATTθ(Qatt,Katt, V ) = softmax(
QattK

T
att√

dkatt

)V (8)

where Qatt is a query vector, Katt is a key vector,V is a value vector, and
√

dkatt
is

the scale factor. The bilinear attention function ATT in Eq. (8) is used with parameters

θ ∝ exp
(
WH<D,Q,A>

Conv + B
)
, where the weight is W and the bias is B.
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At last, a fully connected network decoder (FCN) with Softmax is used to ensemble
all branches’ predictions while obtaining each option’s score at the final layer, in which
the loss function is the negative log-likelihood (NLL) of predicted answers, where L̂ =
l1, l2, l3, l4 is the prediction, and L is the golden answer.

L̂ = softmax(FCN(ATTθ(H
<D,Q,A>
Conv )) (9)

LOSSNLL(< D,Q,A >,L) = −
4∑

i=1

li logP (li | D,Q,A) (10)

Algorithm 1: Evidence Sets Building and Sentences Distribution Algorithm
input : question token q,

options a1, a2, a3, a4,
passage D = s1, ...s|D|

output: evidence sets es1, es2, es3, es4
1 Initialize esi ← ∅, 0 < i ≤ 4;
2 for i ← 1 to 4 do
3 for j ← 1 to |D| do
4 Initialize sj as unused;
5 Calculate sentence similarity Similarity(ai, sj);
6 for i ← 1 to 4 do
7 esi ← q + ai;
8 for j ← 1 to |D| do
9 if Similarity(ai, sj) is the biggest (top evidence) then
10 esi ← esi ∪ sj−1 ∪ sj ∪ sj+1;
11 mark sj−1, sj , sj+1 as used;
12 while Σsk∈esi

|sk| < 512 do
13 if s is unused and Similarity(esi, s) is the smallest then
14 esi ← esi ∪ s;
15 mark s as used;
16 return es1, es2, es3, es4

4.4 Evidence Extraction

EVERGREEN extract evidence sentences based on the cosine-similarity between the
option and sentences in the passage. We try two evidence extraction strategies: first
(Algorithm 1), locate the top relevant sentence for an option in the passage and extract
it along with the sentence right before it and the sentence right next to it, and then fill
in the left space with sentences which are the less similar with the already selected
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sentences; second, select the top relevant sentences for an option in the passage as
evidence. The reason for only extract six sentences for an option is the space limitation.
In Algorithm 1, we put the top evidence with its pre and next sentence into a current
evidence set at line 6–11, right after an initialization process at line 1–5, and distribute
sentences which are dissimilar with the current evidence set at line 12–15.

4.5 Entire-Text Convolution

EVERGREEN does the entire-text convolution. However, to verify the effectiveness of
convolution, the component of EVERGREEN also supports MsCNN and DCN.

5 Experiments

5.1 Experiment Settings

The platform employed in the experiments is PyTorch 1.9.0 with Python 3.8.13 on
Ubuntu 20.04.1 LTS, which exerts an Intel Core i7-17700 CPU with two RTX 3090
GPUs. Table 3 list all hyper-parameters of different models used in our experiments.

Table 3. Hyper-parameters of Models.

EVERGREEN BERT Lonformer T5

train batch size 4 4 4 4

dev batch size 4 4 4 4

test batch size 4 4 4 4

epoch 3 3 3 3

learning rate 2e-6 2e-6 2e-6 2e-6

gradient accumulation steps of SGD 1 1 1 1

seed 42 42 42 42

The dataset is divided into the training set, validation set, and test set according to
the ratio 8:1:1. From both the length and question type aspect, the data distribution is
consistent. I.e., not only the train, dev, and test sets keep similar passage and option
length distribution, but also the distribution of select-true or select-false questions is
almost identical. We further ensure the distribution of answers in these sets, see Table 4.

5.2 Model Comparison

Table 5 compares models which include BERT, AnchiBERT, GuwenBERT, Long-
former, T5, and EVERGREEN. Inputs of these baselines are the question and options,
along with a truncated passage (if necessary). Because most items in ACRE are
shorter than 1536, we take the ensemble model of three PLMs to discover behaviors
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Table 4. Answer Distribution in Training, Validation and Test Set.

Answer Split

training validation test total

A 822 102 102 1026

B 822 102 102 1026

C 821 102 102 1025

D 821 101 101 1023

of baselines. We used a stacking mechanism that facilitates a four-level fully con-
nected network with input logit vectors from PLMs models. Each ensemble leverages
three branches equipped with the same baseline model, i.e., three BERT models (tri-
BERT), or three AnchiBERT models (tri-AnchiBERT), three GuwenBERT models (tri-
GuwenBERT), or three MacBERT models (tri-MacBERT).

Table 5.Model Comparison on ACRE.

Model

Mode
originala t. passageb t. questionc f.w.e.d

tri-BERTe 26.29 23.59 24.82 29.24↑
tri-AnchiBERT 28.75 27.76 27.03 25.80

tri-GuwenBERT 26.78 23.34 26.29 21.87

tri-MacBERTf 24.08 29.24↑ 25.80↑ 28.26↑
Longformer 23.83 25.06↑ 26.54↑ 28.75↑
T5 24.82 23.83 25.06↑ 23.34

EVERGREEN-BERT 35.38 34.40 28.50 31.94

EVERGREEN-AnchiBERT 35.14 30.96 25.55 31.20

EVERGREEN-GuwenBERT 23.10 27.27↑ 25.80↑ 24.82↑
EVERGREEN-MacBERT 34.89 34.89 25.06 36.36↑
Human 32.00 N/A N/A N/A
a Original passages, question, and options.
b Passages are translated into modern Chinese.
c Passages with translated questions & options.
d Passages after function word erasing (f.w.e.).
e BERT-Base for Chinese.
f MacBERT(large).

We asked 184 10th-grade students as users to take tests that are comprised random
questions from ACRE. Every randomly sampled question is assigned to four students,
and the average accuracy is 32%.
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5.3 Results Analysis

Table 5 brings three observations:

1. translating AC passage into modern Chinese, make MacBERT, Longformer and
EVERGREEN with GuwenBERT better, which indicates the advantage of trans-
lation on low-resource language datasets;

2. by contrast, translating modern Chinese options into AC is good for Longformer
and T5, but can only slightly boost EVERGREEN with GuwenBERT as the base
encoder;

3. removing function words from passages can improve the accuracy of many cases,
such as using MacBERT on ACRE;

5.4 Ablation Test

Table 6 shows the results of ablation test of EVERGREEN on ACRE.

Table 6.Ablation Test on EVERGREEN (f.w.e.). Base model is a tri-MacBERT without evidence
extraction or any convolution layer. Top1++ indicates the Top-1 evidence with its pre and next
with sentences dissimilar to existing sentences.

Mode Convolution Accuracy %

base 28.26

base + Topn evidence

Classical Convolution 34.40

DCN 24.08

MsCNN 22.11

base + Top1++

Classical Convolution 36.36

DCN 26.04

MsCNN 22.11

Summarizing Table 6, we can draw the conclusion that classical convolution is the
best and our sophisticated evidence extraction can slightly boost the accuracy.

6 Conclusion

This paper built the first dataset for the low-resource ancient Chinese reading compre-
hension task, ACRE, and proposed EVERGREEN, a PLM-based long-text-encoding-
via-convolution model. The questions in ACRE are entire-text-regarding exception
questions which distinguish intelligent people from others and are highly comprehen-
sive. Experiments showed that ACRE is challenging, yet our newly proposed evidence
extraction with sentence distribution approach can slightly boost the accuracy of EVER-
GREEN.
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Two limitations of this paper are the limited size of ACRE and the to-be-improved
accuracy of the proposed model. With all the variants we tried, the accuracy of EVER-
GREEN is still to-be-improved. It shows the difficulty of ACRE, but we believe there
are better models. Therefore, besides keeping building ACRE, at least three attempts
are on our schedule. First, elaborated sentences or span extraction algorithms might be
helpful. Second, incorporating ancient Chinese knowledge [11] is another promising
future direction. Third, we need a larger scale human evaluation.
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Abstract. Most previous studies on discourse parsing have utilized dis-
criminative models to construct tree structures. However, these mod-
els tend to overlook the global perspective of the tree structure as a
whole during the step-by-step top-down or bottom-up parsing process. To
address this issue, we propose DP-GF, a macro Discourse Parser based on
Generative Fusion, which considers discourse parsing from both process-
oriented and result-oriented perspectives. Additionally, due to the small
size of existing corpora and the difficulty in annotating macro discourse
structures, DP-GF addresses the small-sample problems by proposing a
distant supervision training method that transforms a relatively large-
scale topic structure corpus into a high-quality silver-standard discourse
structure corpus. Our experimental results on MCDTB 2.0 demonstrate
that our proposed model outperforms the state-of-the-art baselines on
discourse tree construction.

Keywords: Macro discourse analysis · Distant supervision ·
Generative fusion

1 Introduction

Discourse analysis is one of the fundamental tasks in natural language process-
ing. A discourse is a linguistic entity composed of consecutive paragraphs or
sentences, expressing a complete linguistic information. Discourse analysis is
mainly divided into two levels: micro and macro. Micro-level discourse analysis
focuses on the organizational structure and semantic relationship between sen-
tences, while Macro-level discourse analysis examines the organizational struc-
ture and semantic relationship between paragraphs. Taking article chtb 0236
from the Macro Chinese Discourse Treebank (MCDTB) [1] as an example, the
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Fig. 1. Macro Discourse Structure Tree of chtb 0236

macro discourse structure is shown in Fig. 1. In the figure, the leaf nodes rep-
resent paragraph-level elementary discourse units (PDUs), while non-leaf nodes
indicate the relationship between two adjacent discourse units (DUs).

The existing methods for discourse structure parsing mainly focus on three
main aspects: enhancing the semantic representation of discourse units [6,9],
strengthening the interaction between semantics [2,4], and improving construc-
tion methods [3,5,7,8]. However, all of these approaches view discourse structure
parsing as a process-oriented task that requires incremental parsing of the struc-
ture to ultimately obtain a discourse structure tree. This process-oriented pars-
ing method relies on the calculation of local semantic similarity and can easily
neglect the overall understanding of the tree structure from a global perspective.

When parsing a document, the importance of comprehending the document
as a whole cannot be ignored. Annotators must understand the theme and con-
tent of the document after reading it, to better grasp the structure and language
characteristics of the document. Only with a global understanding can annota-
tors accurately parse the document into a tree structure and convert it into a
linear sequence as the learning objective of the model. Process-oriented pars-
ing methods mainly simulate the human annotation process, while ignoring the
global understanding stage. Therefore, it has become a challenge to explore how
to use linear sequences representing tree structures to construct result-oriented
parsing methods, and how to combine the advantages of process-oriented and
result-oriented parsing methods.

In addition, due to the coarser granularity of macro-level discourse text and
the more complex information it contains, the annotation process is very diffi-
cult, leading to a smaller corpus size. From the perspective of data, it cannot
support the model in fully understanding the discourse information. Therefore,
recent research has shifted to unsupervised and semi-supervised learning [10–13].
However, due to the limited supervision signal strength of unsupervised learning
and semi-supervised learning, the performance cannot match that of supervised
learning. Therefore, acquiring high-quality and large-scale datasets has become
the second challenge.

We propose a Discourse Parser on Generative Fusion (DP-GF), which inte-
grates result-oriented generative methods into traditional process-oriented meth-
ods, and combines the two methods for jointly learning while sharing the encod-
ing layer. This method not only retains the advantages of process-oriented meth-
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ods, but also models the entire article from a holistic perspective, avoiding the
tedious tree-building process and more intuitively reflecting the structural fea-
tures.

To address the second challenge, we propose a Distant Supervised Pre-
training Method that transforms a relatively large topic-structured corpus into a
silver-standard discourse structure corpus. This conversion method uses golden
topic boundary information to ensure the quality of the converted discourse
structure. The silver standard discourse structure corpus was used for pre-
training the model, and the gold standard discourse structure corpus was used
for incrementally training, greatly alleviating the small sample problem.

2 Related Work

Previous research on discourse structure parsing was mainly categorized as three
frameworks: top-down, bottom-up, and bidirectional parsing frameworks.

For the first category, most of the relevant research is based on pointer net-
work frameworks and proposes some effective strategies to enhance the represen-
tations of discourse units and semantic interaction between discourse units. In
these studies, Lin et al. [4] first used a pointer network framework. Fan et al. [2]
further proposed a pointer network that integrates global and local information
to enhance semantic interaction. Koto et al. [5] defined the task as a sequence
annotation problem, thereby eliminating the decoder and reducing the search
space for segmentation points. Zhang et al. [14] regarded text parsing as a recur-
sive split point sorting task and effectively improved the efficiency of the split
point sorting task by encoding the split points in the pointer network. Zhang et
al. [15] introduced a new method to convert the gold standard and prediction
tree into a tree graph with two color channels.

For the second type, mainstream bottom-up frameworks are all transition-
based methods. Mabona et al. [16] proposed a model based on beam search
algorithm that can track structure and word generation actions. Zhou et al. [6]
used the method of Shift-Reduce to extract macro discourse semantic informa-
tion and construct a Chinese macro discourse structure tree from multiple views.
Jiang et al. [7] utilized the left-branch bias characteristic of Chinese discourse
structure to propose global and local reverse reading strategies to construct a
discourse structure tree. Jiang et al. [8] explored a new construction method by
introducing topic segmentation models into transition-based construction meth-
ods, improving the parsing capabilities of long texts.

The third framework combines the advantages of the first two frameworks,
and there is relatively little research. Recently, He et al. [17] proposed a bidi-
rectional parsing method that includes decision-makers, which can freely switch
between splitting and merging actions, and select appropriate parsing actions.
The above three frameworks are all process-oriented parsing methods, with a
main focus on each step of parsing.
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3 Discourse Parsing on Generative Fusion

To model discourse from both the process-oriented and result-oriented perspec-
tives, we propose a Discourse Parser based on Generative Fusion (DP-GF). As
shown in Fig. 2, the parser can not only be used as a discriminant model to
perform bidirectional parsing using pointer networks but also can be used as a
generative model to directly output tree structured linear sequences according
to the original input. Due to the encoder-decoder architecture of T5 [18] being
suitable for generating fusion methods [23], we have chosen it as the backbone
of the DP-GF model. DP-GF mainly includes three parts: an encoder based on
T5, a decoder based on the discriminant model, and a decoder based on the
generative model. For an article, DP-GF generates two bare tree results and
then uses the nuclearity and relationship classifier proposed by Lin et al. [4] for
nuclearity and relationship recognition based on the tree structure.

Fig. 2. The architecture of DP-GF model

3.1 T5-Based Encoder

Due to the shared encoder between two decoders, it means that DP-GF only
needs to process one input information. We define the input part of DP-GF.
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Given a document T = {t1, t2, . . . , tn}, where n is the number of PDUs in the
document, and ts(1 ≤ s ≤ n) is the text of the s-th PDU.

We insert [unusedx] at the beginning of each PDU, where x(1 ≤ x ≤ n) is the
PDU serial number, and then get ˜T =

{

[unused1], t1, [unused2], . . . [unusedn],
tn

}

. We enter ˜T into T5EncoderStack1 to obtain R = {r1, r2, . . . , rm}, where
m is the total number of all words. Then we input R into BIGRU to obtain the
final representation P = {p1, p2, . . . , pm}, and finally extract the representations
of all [unusedx] (x refers to 1 to m) positions to obtain the representation ˜P =
{p̃1, p̃2, . . . , p̃m} of all PDUs.

3.2 Decoder on Discriminant Model

We first introduce the model architecture of UnifiedParser [4], which is the base
model of the decoder. UnifiedParser adopted a pointer network parsing frame-
work which is a typical process-oriented parsing method that recursively seg-
ments the span to obtain a discourse structure tree.

At each decoding step, the decoder takes the last DU representation in the
span to be parsed and the hidden state ht−1 from the previous step as input to
the Gated Recurrent Unit (GRU), obtaining the current decoder state dt and
hidden state ht. ht contains both the document-level representation of the full
text as well as all the decoding information from the previous decoding step. The
attention score is calculated based on dt and the representation of the current
span to be parsed P̃STP , as follows.

αt = softmax(σ(dt, P̃STP )) (1)

where ˜PSTP is the set of all position representations in the span to be parsed, and
σ is the dot product operation. αt represents the semantic connection closeness
scores between adjacent DUs in STP. The higher the probability, the looser the
semantic connection between DUs located beside the split position becomes. As
a result, based on the probability distributions αt of the output of decoder, we
can obtain the split positions in step t.

3.3 Decoder on Generative Model

During training, the decoder based on the generative model has two inputs: the
output R of the T5 encoder and the target sentence G, and outputs the decoder
state ˜D. Since R has been obtained through the encoder, in this section we
first introduce the construction of the target sentence G and then introduce the
constrained decoding strategy.

Target Sentence Construction. The representation method for the target
sentence should to be able to summarize the hierarchical structure and shape
of the tree from a holistic perspective. We have drawn inspiration from the

1 https://github.com/renmada/t5-pegasus-pytorch.

https://github.com/renmada/t5-pegasus-pytorch
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method of structured label embedding and made some modifications. Two types
of vocabulary are selected to construct the target sentence, namely the Root
Node representing the root node of each subtree and the [unusedx] symbolizing
the entire PDU representation at the beginning of each PDU in the input text.

Taking the tree structure in the upper left corner of Fig. 2 as an example,
we first construct the bottom-level subtrees, namely DU1−2 and DU3−4. Using
[unusedx] to represent Paragraph Px, we then insert the Root Node in front of
P1 and P2, as well as in front of P3 and P4, and then add parentheses to the
outermost layer. This method is recursively used to merge subtrees and generate
the linear sequence shown in the upper right corner of Fig. 2.

If the root node and bracket information are directly inserted between PDUs,
the target sentence will be too long and truncated, resulting in information loss.
However, using the [unusedx] approach not only originates from the initial input
text and is considered as a compressed representation of the entire paragraph,
but also simplifies the generation difficulty of T5 model in subsequent tasks.

Constrained Decoding. Because the linear sequence generated during the
inference process must comply with the convention, otherwise it cannot be trans-
formed into a legitimate tree. In this study, we borrowed a tire-based constraint
decoding algorithm [19,20] to achieve controllable text generation. Specifically,
there are three candidate vocabulary items for each step: Parentheses, PDU
serial number markers, and root nodes.

We maintain a stack and two counters, where the stack is used to store
subtree states, and the two counters are used to store the number of unused root
nodes and the number of leaf nodes, respectively, to control the generation of
parentheses and root node characters. The vocabulary generated in step i will
mask out the invalid vocabulary set Vi in step i, which is used to protect the
legality of the generated sequence. Joint learning by adding the losses of two
decoders during training.

4 Discourse Parsing on Distant Supervision

There is a clear similarity between topic structure and discourse structure [8],
and the corpus of topic structure is easier to obtain compared to that of discourse
structure. In the topic structure corpus, there is no structure within or between
topics. Simple rules cannot generate a tree structure based on standard topic
boundaries, while simple topic segmentation models cannot utilize standard topic
boundary information. Therefore, we propose a distant supervision framework
that combines rules and models, which can be used to generate a large-scale,
silver standard macro-discourse structure corpus, as shown in Fig. 3.

This distant supervision framework consists of four steps: 1) training a topic
segmentation model using a topic structure corpus; 2) converting the topic struc-
ture corpus into a silver-standard discourse structure corpus using the topic seg-
mentation model; 3) pre-training the discourse structure parsing model using the
silver-standard discourse structure tree as the pre-training dataset; 4) fine-tuning



Parser Based on Generative Fusion and Distant Supervision 165

Fig. 3. Discourse parsing on distant supervision

the discourse structure parsing model on the gold-standard discourse struc-
ture corpus. The topic segmentation model uses the TM-BERT triple seman-
tic matching model proposed by Jiang et al. [8]. The convert method of the
silver-standard discourse structure corpus is shown in Fig. 4.

Relying solely on the gold topic boundaries is not enough to convert topic
structure into discourse structure, as it is unable to establish connections between
the subtrees. Therefore, a topic segmentation model is needed to further predict
the segmentation probabilities between the subtrees. The topic segmentation
model is used to perform a binary classification task, which is to judge whether
there is a topic transition or continuation at the end of each paragraph. There-
fore, the segmentation probabilities are predicted at the boundary positions of
each paragraph. Meanwhile, the document also has gold-labeled topic bound-
aries, and we need to use these boundaries to divide the document into several
subtrees, maximizing the quality of the discourse structure tree. Therefore, in
the case of knowing the gold topic boundaries in advance, the gold segmen-
tation probability at the segmentation point position is set to 1, and 0 is set
at non-segmentation point positions. The two probabilities are added together
to obtain the final probability. Finally, the segmentation points are sorted in
Descending order according to the final probability, and the discourse structure
tree is obtained by cutting at the sorted segmentation points.

Fig. 4. The convert method of the silver-standard discourse structure corpus

Taking the document on the left side of Fig. 4 as an example, the document
has 8 paragraphs. P1 and P2 belong to the same topic, P3 and P4 belong to
the same topic, and the remaining four paragraphs belong to the same topic.
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According to the above segmentation probability calculation rule, the gold topic
boundary positions are always given priority for segmentation. Among the gold
topic boundary positions, the positions with higher final probabilities have higher
priorities. Therefore, the cutting is first performed after the fourth paragraph,
dividing the eight paragraphs into two subtrees, the first four paragraphs and
the last four paragraphs. This rule is recursively applied to the subtrees that
have not been completely segmented, resulting in the discourse structure tree on
the right side.

5 Experimentation

5.1 Dataset and Experimental Settings

To obtain an extraterritorial topic structure corpus, we collected 14393 Chi-
nese news corpora from Xinhua News Agency from the Gigaword corpus2. Each
document has several subheadings as explicit topic boundaries. By removing
all subheadings, a topic structure corpus is obtained. Finally, a silver standard
discourse structure corpus is constructed using the transformation method in
Sect. 4.

The dataset and evaluation metrics used in this study are consistent with He
et al. [17]. MCDTB 2.0 is an expanded version of MCDTB 1.0, and its annota-
tion process is highly consistent with MCDTB 1.0. MCDTB 2.0 contains 1200
articles, with an average length longer than MCDTB, which further tests the
model’s generalization ability. We report micro-averaged F1 scores for predict-
ing span attachments in discourse tree construction (Span), span attachments
with nuclearity (Nuclearity), and span attachments with relation labels (Rela-
tion). Specifically, we evaluate the nuclearity with three classes, and we use 15
finer-grained types for evaluation in relation classification.

In the pre-training stage, the model architecture and parameters of the
decoder based on the discriminative model used in this study are the same as
those of UnifiedParser [4], with a learning rate of 1e-5. The learning rate of the
generative decoder is 5e-4. The maximum input length is 512, and the model
is trained for 40 epochs. In the fine-tuning stage, the learning rates of the two
decoders are 1e-4 and 5e-3, respectively, and the model is trained for 10 epochs.

5.2 Experimental Results

We compare the proposed model with various strong baselines as follows.

– UnifiedParser [4]: a parser incorporating information from parent and sib-
ling nodes.

– GBLRR [7]: a parser that inverts the order of parsing to achieve reverse
reading.

– MDParser-TS [8]: a parser that uses the topic segmentation method.

2 https://catalog.ldc.upenn.edu/LDC2009T2.

https://catalog.ldc.upenn.edu/LDC2009T2
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– DGCNParser [9]: a parser that used topic graphs to model the semantic
relationships within and between DUs.

– AdverParser [15]: a SOTA model on micro-level, which converted predicted
trees and gold trees into graphs and trains an adversarial bot to exploit global
information.

– Vanilla T5: a baseline using the T5 framework is proposed in this paper,
without using generative fusion methods and distant supervision methods.

– UnifiedParser(T5): Similar to the UnifiedParser introduced above, the only
difference is to replace the encoder with the encoder of T5.

Table 1. Performance comparison of discourse tree construction (Micro F1)

Model Pre-training Models Span Nuclearity Relation

UnifiedParser ELMo 52.64 36.92 31.85

GBLRR BERT 61.87 54.25 28.35

MDParser-TS BERT 59.68 45.76 27.95

DGCNParser BERT 61.98 49.95 28.97

AdverParser XLNet 64.64 57.96 40.26

Vanilla T5 T5 59.16 46.49 27.48

UnifiedParser(T5) T5 62.58 48.23 29.62

DP-GFgen
ours T5 66.19 53.97 36.89

DP-GFdis
ours T5 69.02 56.89 37.96

The results are shown in Table 1. DP − GF gen
ours and DP − GF dis

ours are our
two models, which respectively represent the results generated by DP − GF
using the generative and discriminative methods with five-fold cross-validation.
DP −GF dis

oursoutperformed all baselines in terms of structural performance, with
a 4.38 improvement over the previous state-of-the-art model AdverParser, also
significantly better than the two baseline models that used T5. The performance
on nuclearity and relation are slightly lower than that of AdverParser, which is
because AdverParser added the nuclearity and relation channel in the adver-
sarial graph, while our method only focuses on the span. Despite having only
half the input length of AdverParser, more truncated text, and greater loss of
information, our method demonstrates better performance, demonstrating its
effectiveness. One reason for this is that the T5 pre-training model has larger
model parameters and corpus scale in the pre-training stage compared to XLNet,
making it superior. In addition, distant supervision and joint learning also play
an indispensable role. The performance of DP − GF gen

ours is slightly inferior in
comparison, but as a preliminary attempt at a generative method, its perfor-
mance remains comparable.
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5.3 Ablation Analysis

In order to investigating the effectiveness of distant supervision and generation
fusion framework, ablation experiments were conducted and analyzed in this
section. As shown in Table 2, the first four rows represent the use of distant
supervision, while the last four rows represent the removal of distant supervision.
The first two rows in each group employ the joint framework of generation and
discrimination, while the last two rows did not use the joint model of generation
and discrimination.

Table 2. Ablation analysis

Model Span

w/ Distant Supervision w/ Joint Model DP-GFgen 66.38

DP-GFdis 69.04

w/o Joint Model Vanilla T5 63.87

UnifiedParser(T5) 65.94

w/o Distant Supervision w/ Joint Model DP-GFgen 62.09

DP-GFdis 64.51

w/o Joint Model Vanilla T5 59.16

UnifiedParser(T5) 62.58

It can be observed from the experimental results that both methods signifi-
cantly improve the model performance, and distant supervision brought greater
improvement. In addition, the fusion of the two methods is superior to using
them separately. The effectiveness of the two methods has been verified, indi-
rectly validating the quality of the silver-standard rhetorical structure corpus.

5.4 Analysis on Different Target Sentences

As generative models offer a high flexibility in constructing target sentences,
we summarize some construction methods used in other fields. For example, the
target sentence generation method based on GAS templates [21] primarily inserts
special markers in the input sentence, replacing supervised signals with markers
and positional information. The target sentence generation method based on
Paraphrase templates [22] mainly generates action sequence processes. These
two methods are both process-oriented methods for generation.

Figure 5 shows the application of these two templates in the structure parsing
task. Taking the tree structure in the figure as an example, the target sentence
generation method based on the GAS template primarily converts the text of
each PDU into a [unused] tag and arranges them in order. Then, following the
top-down splitting order of the structure tree, it inserts the sequence tag “Top”
at each position. Meanwhile, the target sentence generation method based on
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Fig. 5. Differences in different target sentence templates

Table 3. Differences in different target sentence templates.

Approach Span

DP-GFgen 66.38

DP-GFdis 69.02

DP-GFgen
GAS 62.98

DP-GFdis
GAS 65.16

DP-GFgen
Paraphrase 63.45

DP-GFdis
Paraphrase 64.87

the Paraphrase template describes the main process of recursive splitting to
construct the tree structure. These two methods are incorporated into DP-GF,
and the constraint decoding method proposed in this chapter is added to ensure
the legality of the generated sentences. The results obtained are shown in Table 3.

6 Conclusion

In this paper, we propose a macro-level discourse structure parsing method based
on the distant supervision and generation fusion. This method can integrate
high-quality data within the domain and large-scale data outside the domain,
using both process-oriented and result-oriented approaches for discourse struc-
ture parsing. Meanwhile, the proposed constraint decoding algorithm can pro-
tect the legality of the generated sequence, resolving the problem of small-sample
discourse structure parsing and the lack of a holistic parsing perspective. Exper-
imental result shows that, compared to all baselines, our proposed model can
effectively alleviate these two major problems. Our future work will focus on
how to introduce more effective prompts to macro discourse parsing.

References

1. Jiang, F., Xu, S., Chu, X., et al.: MCDTB: a macro-level Chinese discourse tree-
bank. In: Proceedings of the 27th International Conference on Computational Lin-
guistics, pp. 3493–3504 (2018)

2. Fan, Y., Jiang, F., Chu, X., et al.: Combining global and local information to
recognize Chinese macro discourse structure. In: Proceedings of the 19th Chinese
National Conference on Computational Linguistics, pp. 183–194 (2020)



170 L. He et al.

3. Liu, L., Lin, X., Joty, S., et al.: Hierarchical pointer net parsing. arXiv preprint
arXiv:1908.11571 (2019)

4. Lin, X., Joty, S., Jwalapuram, P., et al.: A unified linear-time framework for
sentence-level discourse parsing. arXiv preprint arXiv:1905.05682 (2019)

5. Koto, F., Lau, J.H., Baldwin, T.: Top-down discourse parsing via sequence
labelling. arXiv preprint arXiv:2102.02080 (2021)

6. Zhou, Y., Chu, X., Li, P., et al.: Constructing Chinese macro discourse tree via mul-
tiple views and word pair similarity. In: Natural Language Processing and Chinese
Computing: 8th CCF International Conference, pp. 773–786 (2019)

7. Jiang, F., Chu, X., Li, P., et al.: Chinese paragraph-level discourse parsing with
global backward and local reverse reading. In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 5749–5759 (2020)

8. Jiang, F., Fan, Y., Chu, X., et al.: Hierarchical macro discourse parsing based on
topic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 14, pp. 13152–13160 (2021)

9. Fan, Y., Jiang, F., Chu, X., et al.: Chinese macro discourse parsing on depen-
dency graph convolutional network. In: Natural Language Processing and Chinese
Computing: 10th CCF International Conference, pp. 15–26 (2021)

10. Kobayashi, N., Hirao, T., Nakamura, K., et al.: Split or merge: which is better for
unsupervised RST parsing? In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pp. 5797–5802 (2019)

11. Huber, P., Carenini, G.: Unsupervised learning of discourse structures using a tree
autoencoder. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 14, pp. 13107–13115 (2021)

12. Nishida, N., Nakayama, H.: Unsupervised discourse constituency parsing using
Viterbi EM. Trans. Assoc. Comput. Linguist. 8, 215–230 (2020)

13. Kobayashi, N., Hirao, T., Kamigaito, H., et al.: Improving neural RST parsing
model with silver agreement subtrees. In: Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol. 2021, pp. 1600–1612 (2021)

14. Zhang, L., Xing, Y., Kong, F., et al.: A top-down neural architecture towards text-
level parsing of discourse rhetorical structure. arXiv preprint arXiv:2005.02680
(2020)

15. Zhang, L., Kong, F., Zhou, G.: Adversarial learning for discourse rhetorical struc-
ture parsing. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, pp. 3946–3957 (2021)

16. Mabona, A., Rimell, L., Clark, S., et al.: Neural generative rhetorical structure
parsing. arXiv preprint arXiv:1909.11049 (2019)

17. He, L., Jiang, F., Bao, X., et al.: Bidirectional macro-level discourse parser based
on oracle selection. In: PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific
Rim International Conference on Artificial Intelligence, pp. 224–239 (2022)

18. Raffel, C., Shazeer, N., Roberts, A., et al.: Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551
(2020)

19. Chen, P., Bogoychev, N., Heafield, K., et al.: Parallel sentence mining by con-
strained decoding. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 1672–1678 (2020)

20. Lu, Y., Lin, H., Xu, J., et al.: Text2event: controllable sequence-to-structure gen-
eration for end-to-end event extraction. arXiv preprint arXiv:2106.09232 (2021)

http://arxiv.org/abs/1908.11571
http://arxiv.org/abs/1905.05682
http://arxiv.org/abs/2102.02080
http://arxiv.org/abs/2005.02680
http://arxiv.org/abs/1909.11049
http://arxiv.org/abs/2106.09232


Parser Based on Generative Fusion and Distant Supervision 171

21. Zhang, W., Li, X., Deng, Y., et al.: Towards generative aspect-based sentiment
analysis. In: Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 504–510 (2021)

22. Zhang, W., Deng, Y., Li, X., et al.: Aspect sentiment quad prediction as paraphrase
generation. arXiv preprint arXiv:2110.00796 (2021)

23. Jiang, F., Fan, Y., Chu, X., et al.: Not just classification: recognizing implicit dis-
course relation on joint modeling of classification and generation. In: Proceedings
of the. Conference on Empirical Methods in Natural Language Processing, pp.
2418–2431 (2021)

http://arxiv.org/abs/2110.00796


GHGA-Net: Global Heterogeneous Graph
Attention Network for Chinese Short

Text Classification

Meimei Li1,2, Yuzhi Bao1,2, Jiguo Liu1,2(B), Chao Liu1,2, Nan Li1,2,
and Shihao Gao1,2

1 Chinese Academy of Sciences, Institute of Information Engineering, Beijing, China
liujiguo@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. As an important research content in the field of natural lan-
guage processing, Chinese short text classification task has been facing
two challenges: (i) existing methods rely on Chinese word segmentation
and have insufficient semantic understanding of short texts; (ii) there is
lacking of annotated training data in practical applications. In this paper,
we propose the Global Heterogeneous Graph Attention Network (GHGA-
Net) for few-shot Chinese short text classification. First, we construct the
global character and keyword graph representations from the entire orig-
inal corpus to collect more text information and make full use of the
unlabeled data. Then, the hierarchical graph attention network is used
to learn the contribution of different graph nodes and reduce the noise
interference. Finally, we concatenate embedding with text vector and
fuse the keyword and character features to enrich the Chinese semantics.
Our method is evaluated on the Chinese few-shot learning benchmark
FewCLUE. Extensive experiments show that our method has achieved
impressive results in the classification tasks of news text and sentiment
analysis, especially in minimal sample learning. Compared with existing
methods, our method has an average performance improvement of 5%
and less training consumption, which provides a new idea for few-shot
Chinese natural language processing without relying on pre-training.

Keywords: Chinese short text classification · Few-shot learning ·
Heterogeneous graph · Hierarchical graph attention · Feature integrate

1 Introduction

Short text classification (STC) is applied in many research scenarios, such as
sentence pair matching [1], news classification [2] and sentiment analysis [3].
Different from the long text which includes several paragraphs, short text gen-
erally only contain one or a few sentences. Due to its length limitation, short
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text cannot carry as rich semantic and grammatical information as long text.
The fragmented text makes it difficult to obtain information beyond single word
semantics, and it is almost impossible to understand text in combination with
context. So STC task is much harder than long text when proper nouns appear
in the text or some words have multiple meanings. Many studies based on graph
neural network [4] aim to enrich the semantic information of short texts. The
HGAT introduced [5] HIN structure builds graph based on the topic, entity and
documents information and STGCN [6] uses words. However, topic acquisition
and entity recognition methods cannot achieve high accuracy and requires addi-
tional training consumption. Others introduce part-of-speech (POS) tags [7] or
use external wiki knowledge [8]. But these methods ignore the global text infor-
mation in the original documents and have deviations in semantic understanding
while Chinese texts carry more complex semantic information.

In natural language processing (NLP), the biggest difference between Chinese
and English is that the character in English do not express meaning in most cases
but Chinese did. For example, a text in TNEWS is “现实中的大司马是什么样
的? (What is Da Sima like in reality?)”, its category belongs to the game because
“大司马(Da Sima)” is a game anchor. However, the “司马(sima)” was a type of
official position in ancient China, and “马” is translated to horse directly. So that
the complex meanings of Chinese words and characters are the biggest difficulty
in Chinese STC and separate words from sentence in Chinese is much harder
than English. The main way to solve this gap is to combine learning word and
character features from Chinese text [2,9]. And there are also methods integrate
sentences and words feature [10]. Lexicon [11] can match word through the tree
structure more accurate, but it rely on external vocabulary.

General neural network methods [1] rely on large amount of training data to
learn text features and perform poor while lacking labeled data. However, the
cost of manually annotating all texts is unacceptable in practical STC tasks,
while the extreme zero-shot learning rely heavily on pre-training and unable to
adapt to multiple domains. In contrast, few-shot learning [12] only need a small
amount of annotated texts and could achieve similar performance as normal.

To address the aforementioned problems, in this paper, we propose a Global
Heterogeneous Graph Attention Networks (GHGA-Net) for few-shot Chinese
STC. By building the global heterogeneous graph, we make full use of the unla-
beled texts information from entire original corpus to better fit few-shot learning.
Then, we use the hierarchical graph attention networks to learn the contribu-
tions of different nodes to text categories and integrating word and character
features to achieve deep understanding of the semantics of Chinese short texts.

The main contributions of this paper are summarized as follows :

– We propose the GHGA-Net method, which constructs heterogeneous graph
to integrate keyword and character features to better represent the semantic
information of Chinese short text. Graph attention mechanism is used to learn
the contribution of different nodes and reduce noise interference.

– The unlabeled data are fully used by generating the global graph represen-
tation, which deeply collect the global semantic information of the original
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data without pre-training and optimize the classification learning in the small
number of annotation scenarios.

– The experimental results on the FewCLUE datasets show that the proposed
method significantly improves the classification performance compared with
other existing models.

2 Related Work

Graph Network for STC: In the text classification task, the global structure
of the graph can model the complex semantic relationship between words in the
text, and it is one of the most effective research methods to transform the text
into a document graph and then use the graph neural network for learning and
training. The graph convolutional neural network (GCN) [13] adds convolution
operation to graph network, which can effectively compress the size of the model
and increase the input size of text. The SHINE [7] model use GCN to combine
documents, entities and position features, but it ignore the global information of
short text. Addressing the lack of short text information, SimpleSTC introduce
the external wiki text to enrich the global information, which benefits the STC
task effectively. Attention mechanism is also applied to graph neural networks
[14]. HyperGAT [15] introduces the concept of supergraph into text represen-
tation and uses dual attention mechanism to learn the nodes and edges of the
graph respectively. Methods based on graph neural network can better represent
the various feature information of short text. However, there is lacking in-depth
research for Chinese STC based on graph neural network.

Pre-training for STC: In order to reduce training costs and adapt to more
NLP tasks, pre-training models have been widely used in recent years [16–18].
These models are usually pretrained on large-scale corpora, enabling them to
be more generalized and adaptable to few-shot learning scenarios. Thus, simply
fine-tune the target dataset can achieve good results. However, most of pre-
training models have large parameters and there are limitations in the actual
deployment and operation process. Moreover, many models based on BERT has
not made special optimizations in Chinese word segmentation, and it is still
character segmentation, which hinders the understanding of Chinese semantics.

Chinese STC: Due to the particularity of Chinese text, the research based
on integrate the word and character features of the text [9] has achieved good
application results, and there are also methods to hierarchical learning sentence
and words [10]. In addition, since the radicals of Chinese characters also belong
to hieroglyphs, the radicals can also be added as a feature to the construction
of Chinese text representation [2], but these methods are limited by embedding
special word vectors. It is a valuable way to express Chinese text in the form of
text map and integrate Chinese character and word features for learning.
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Fig. 1. The overall architecture of GHGA-Net Model.

3 Proposed Method

First, we give the task definition. For the given Chinese short text set Sdoc =
(text)n and its training set Strain = (text, label)m, where m << n. Our goal is
to train the classification model under the training set Strain, and finally predict
the class label of remaining texts in Sdoc.

The architecture of our GHGA-Net is shown in Fig. 1. Our idea is to extract
the keywords and characters from each text in the whole corpus Sdoc to con-
struct the global graph representation. The hierarchical graph attention network
is introduced to learn the graph features, which weighted the original graph
representation and word embedding. Then our method fuse the heterogeneous
features to document feature. Another hierarchical graph attention layer update
the feature and the final prediction is made through softmax.

3.1 Global Graph Representation

In the case of only a small number of sample annotations, relying solely on
training data to construct text features is clearly not enough. The unlabeled
text in the original dataset can also be learned as implicit features to better
obtain the semantic and category features of the text. So we choose to use the
entire text set to construct the global graph representations.

Not all words contain specific information in Chinese. Therefore, we traverse
each text in Sdoc, extract and segment words of different parts of speech based on
the term frequency-inverse document frequency (TF-IDF) and finally construct
a global words vocabulary, only nouns, gerunds and some proper nouns under
Chinese grammar are retained. Then, Sdoc is cleaned according to the obtained
global vocabulary. Next, we use point-wise mutual information (PMI) to calcu-
late the word co-occurrence relationship between each keyword in vocabulary
[13]. Let vi, vj be different keyword nodes in the global vocabulary, the relation-
ship calculation method between them follows the following formula :
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[Cword]ij = max(PMI(vi, vj), 0) (1)

Cword is a vector space with vocabulary length dimension in both rows and
columns, which records the relationship between each node and other nodes in
the global vocabulary. For each word in the global vocabulary, we match it with
the pre-trained word2vec word vector to construct the word vector map.

According to the differences in grammar structure between Chinese and
English. Besides word features, using character as the feature input of Chinese
text classification can enrich the semantic and grammatical information of text.
Therefore, we also propose and construct a global character vocabulary. For each
short text in Sdoc, we remove the numbers and symbols, only remain common
words with word frequency above 10 and match with pre-trained character vec-
tors. Similarly, the relationship [Cchar]ij in character vocabulary is calculated
by formula 1. Finally, we obtain the global features of keywords Ggword and
characters Ggchar of documents with matched word vectors.

3.2 Hierarchical Graph Attention

In short text, not all words contribute same to the category information, espe-
cially in the case of lacking text information. To better focus on key features
and reduce the interference of noise, we added the attention layers to update the
weights of different nodes and perform weighted summation output.

For the constructed global heterogeneous graph representations Cword and
Cchar, the word vector Vword and Vchar, we update the node vector H based on
the two-layer graph attention networks:

H = GAT (C,ReLU(GAT (C, V ))) (2)

where RELU is the activation function, representing [ReLU(x)]i = max([x]i, 0).
We directly introduce the pre-trained word vector here. Specifically, we regard

the relation graph matrix as the input node vector, and the word vector embed-
ding as the node feature. Performing a linear transformation on the node embed-
ding h

(l)
i in l-layer, similar to direct weighting in convolution operations [4], W (l)

is a trainable weight parameter :

z
(l)
i = W (l)h

(l)
i (3)

Unlike concatenating the embedding of two nodes [14], our method uses a
similar self-attention mechanism to calculate the original attention score for word
nodes and character nodes respectively :

e
(l)
i = LeakyReLU(�a(l)T z

(l)
i ) (4)

The attention weight is obtained by applying the softmax operation to the
original attention score of the node. Finally, the features of all adjacent nodes
are weighted and summed based on the attention weight:
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a
(l)
i =

exp(e(l)i )
∑

k∈N(i) exp(e(l)k )
(5)

h
(l+1)
i = σ(

∑

j∈N(i)

a
(l)
i z

(l)
i ) (6)

For the weighted word encoding, we concatenate it with the word vector
again to make better use of the semantic information between words. Finally,
the graph representation is transformed into character embedding and keyword
embedding.

E = concat(E,Ebedding) (7)

3.3 Integrated Heterogeneous Feature Learning

At last, we learn the text features based on global heterogeneous text graphs.
For each content of the original Chinese short text, the text graph Gtext is
constructed by transforming the text into a vector. The word features of the text
are encoded as aggregation nodes and embedded into hwi. The text relationship
after word segmentation is calculated by:

hwi = �(ET si), [si]m = TF − IDF (vm, xi) (8)

where T stands for matrix transpose operation, � stands for regularized x/||x||2,
The TF-IDF vector is calculated by [19], where vm represent the nodes in Ggword

and xi represent the nodes in Gtext. Words in text but not belong to the global
vocabulary will not be calculated. Note that the character feature encoding hc

is also calculated using the same way. The final fusion text representation is
concatenate encoded for word embed and character embed:

h = concat(hw, hc) (9)

Our original intention is to use a similar way to graph attention network,
where word and character embedding are input as adjacent nodes, and an addi-
tional attention layer is added to achieve feature fusion. However, due to the
difference between Chinese words and characters, the attention method did not
lead in all test datasets, while the concatenate operation generally achieved good
results. The specific ablation study will be discussed in Sect. 4.4.

After obtaining the fused text coding, we first use linear transformation to
obtain the feature vector F of the text, and then calculate the adjacency matrix
A of the text based on cosine similarity :

F = linear(h) (10)

[A]ij = ReLU(cos(hi, hj) − τ) (11)
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τ is the correlation threshold, and the final text category prediction is also
updated by the two-layer GAT method we proposed:

Prediction = SoftMax(GAT (A,ReLU(GAT (A,F ))) (12)

SoftMax represents [softmax(x)]i = exp([x]i)/
∑

j exp([x]j). Finally, we use
the cross entropy as loss function for optimization process of the model.

Loss = −
∑

i∈ιl

(yi)T log(yi) (13)

The complete procedure of GHGA-Net is described in Algorithm 1:

Algorithm 1: GHGA-Net Algorithm
Input: short text dataset Sdoc, global graph set G, pretrained embedding Epre

Output: predict label list L = l1, l2, ..., ln and trained model
1 for G=Ggword, Ggchar do
2 update and generate the word embedding Ew and character embedding Ec

by (2)
3 for E=Ew, Ec do
4 concatenate with the pretraind embedding by (7)
5 end

6 end
7 for E=Eword,Echar do
8 obtain the aggregated heterogeneous text graph feature by (8)
9 end

10 fuse the word and char embedding to final text embedding h by (9)
11 generate the text feature F and adjacency matrix [A]ij by (10), (11)
12 update learning final text representation and predict the label by (12)
13 optimize model parameter by (13)

4 Experiments

4.1 Datasets

We conducted experiments on short text classification datasets from the Chinese
few-shot learning benchmark FewCLUE [12] (Table 1):

1. TNEWS: The headline Chinese news short text classification dataset for
few-shot learning tasks contains a total of 15 categories.

2. EPRSTMT: E-commerce product sentiment analysis dataset for sentiment
polarity binary classification.
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Table 1. Summary of used FewClue datasets.

Dataset TrainSingle TrainAll DevAll Classes Unlabeled LenAvg

EPRSTMT 32 160 160 2 20000 22

TNEWS 240 1185 1098 15 19565 36

4.2 Experimental Setup

BaseLines. We compare our method with the following three kinds of baselines:

– General Method: (1) TextCNN: Sentence classification method based on
convolutional neural network [1]. (2) BiLSTM-Att: Bidirectional long short-
term memory network with attention mechanism [20]. (3) Transformer:
Encoder-decoder structure with multi-head attention [21].

– Pre-training Model: (1) BERT(Bert-wwm-Chinese): Pre-training model
based on bidirectional Transformer architecture [16]. (2) BERT-CNN:
Text encode by BERT and use CNN to train. (3) RoBERTa(RoBerta-
wwm-Chinese): A robustly optimized BERT pre-training approach [18]. (4)
ERNIE: Baidu’s Pre-training model for Chinese natural language processing
[17].

– Graph Based Method: (1) HyperGAT: Hypergraph attention neural net-
work classification method based on LDA algorithm to extract text topics [15].
(2) SimpleSTC: GCN based short text classification method with external
wiki knowledge [8].

4.3 Performance Comparison

Table 2 shows the performance. It can be seen that TNEWS is harder to clas-
sify due to its larger amount of categories. Our GHGA-Net achieves optimal
results in almost all tasks and reaches an average improvement of about 5% com-
pared with the second best baseline. Original methods achieve the worst average
performance. All pre-training models perform well, and the RoBERTa model
has achieved the highest accuracy on TrainAll set in TNEWS, which proves
the advantages of using a large amount of corpus for pre-training in few-shot
Chinese STC tasks. For graph based methods, HyperGAT performs obviously
worse under small samples while SimpleSTC improves a little by external wiki
knowledge. Besides, both of them are unable to deeply understand the complex
semantics contained in Chinese. Our GHGA-Net is optimized for the semantic
features of Chinese text, which integrates the heterogeneous graph features and
introduce the hierarchical graph attention, receives the best result.

In the case of minimal training samples (TrainSingle), our method achieves
state-of-the-art in both news multi-classification and sentiment binary classifica-
tion tasks, which outperforms the second best baseline model by 6%. Almost
all non pre-trained methods have a significant reduction in accuracy under
extremely few-shot learning, which indicates their strong dependence on training
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Table 2. Test performance (%) mesured on FewCLUE datasets. Normally trained
under TrainAll data, the * mark represant trained in TrainSingle data. The best results
are marked in bold, and the second-best results are underlined. The last row records
the relative improvement of GHGA-Net over best results among other methods.

TNEWS EPRSTMT TNEWS* EPRSTMT*

Model ACC F1 ACC F1 ACC F1 ACC F1

TextCNN 44.08 44.36 50.78 50.78 23.59 21.18 49.38 47.89

BILSTM-ATT 14.30 9.18 41.41 40.97 7.74 3.28 45.62 45.52

Transformer 14.31 13.11 53.12 50.77 6.83 1.01 53.75 53.68

BERT 51.09 49.67 50.00 44.59 44.54 43.56 49.38 44.65

BERT-CNN 46.08 44.90 51.56 34.02 44.46 44.03 53.75 34.69

RoBERTa 52.55 51.16 49.22 45.12 45.26 44.69 48.13 44.85

ERNIE 51.73 51.13 47.66 34.71 42.17 40.22 46.88 35.58

HyperGAT 33.70 32.99 65.62 65.46 14.21 12.52 54.37 54.07

SimpleSTC 35.33 35.62 59.37 59.01 20.67 20.45 50.00 40.47

GHGA-Net 51.45 51.91 68.75 68.03 47.17 47.13 58.74 57.63

relative↑(%) −2.13 1.47 4.77 3.93 4.22 5.46 8.04 6.58

data. Although the pre-training model has undergone a large amount of corpus
training, there is still a gap in accuracy compared with our method. The results
strongly prove the influential contribution of our global heterogeneous graph
constructing based on the original documents information.

Table 3. Training cost compare with pre-training models. Evaluated in TNEWS
dataset with 200 epochs.

Mode Parameters Hidden size Layers Times

BERT 102.28M 768 12 9m 37 s

RoBERTa 102.28M 768 12 9m 40 s

ERNIE 99.88M 768 12 5m 02 s

GHGA-Net 0.605M 256 6 58.88 s

For training cost, we compare GHGA-Net with pre-training models. Table 3
shows the results. Our method has much fewer training parameters and less time
consumption, but it achieves better performance. A lightweight structure makes
GHGA-Net more efficient for real task and deployment.

4.4 Ablation Study

Recall that the proposed global heterogeneous graph and attention mechanism,
we designed ablation experiments with different variants of GHGA-Net: (1)
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WGC-Net: without character features and attention layers, use GCN for train-
ing; (2) HGC-Net: without attention layers and use GCN for training; (3)
WGA-Net: without character features; (4) GHGA-Net(-ebd): using iden-
tity matrix instead of pre-trained vector in 2; (5) GHGA-Net(fuse method):
As mentioned in Chap. 3, besides concatenate operation in 9, we test the effect
of linear interpolation and attention network for the fusion of features.

Table 4. Ablation Study (%) mesured on FewCLUE datasets. Trained under TrainAll
set for 500 epoch. The - mark means unable to fit. The best results are marked in bold.

TNEWS EPRSTMT

Method ACC F1 ACC F1

WGC-Net 36.24 36.37 66.25 65.71

GHGC-Net 35.7 35.96 66.87 66.65

WGA-Net 50.36 51.08 67.5 66.61

GHGA-Net(-ebd) 49.82 49.90 68.12 67.66

GHGA-Net(linear) – – 46.25 31.62

GHGA-Net(att) 47.81 47.54 70.62 70.28

GHGA-Net(ours) 51.45 51.91 68.75 68.03

Table 4 lists the results, we can see the improvement of introducing pre-
trained word vectors compared with initial encoding in both datasets. Figure 2(a)
shows the significant effect of our proposed graph attention mechanism for graph
representation learning. Compared with the graph convolution method, the accu-
racy rate is improved by more than 15%. Due to the fact that the simple convo-
lution does not pay attention to all key category features. As can be seen from
the loss curves in Fig. 2(b) and Fig. 2(d), with the increase of training rounds,
the loss of ordinary convolution methods will rise, and the introduction of atten-
tion mechanism can effectively solve this problem. Among all the curves, our
proposed GHGA-Net is the smoothest and also the most stable, which strongly
proves that we have adopted the optimal method.

In terms of embedding fusion, the linear interpolation method has the worst
performance, which indicates that the simple weighted average will lose the
original information. As shown in Fig. 2(c), the attention-based fusion method
achieves the best accuracy on the EPRSTMT dataset. Although the performance
on the TNEWS dataset is slightly worse, it proves the feasibility of using neural
network based methods to fuse text features. However, it cannot be ignored that
with the increase of the number of training rounds, the accuracy rate of the
att-fusion method has declined and the loss has increased, which may be caused
by overfitting and needs further experiments in future research.
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Fig. 2. Performance in the first 140 epoch training.

5 Conclusions

In this paper, we propose the GHGA-Net for Chinese STC without relying on
pre-training. By constructing heterogeneous global graph, we can make full use of
the unlabeled texts, and the finally feature fusion of character and word is more
suitable for the classification task of Chinese text. Experiments results show that
our method outperforms existed models on few-shot learning in Chinese STC
scenario, especially in case of minimal training data. The additional ablation
study strongly prove that our graph representation learning based on attention
mechanism can effectively reduce the noise and highlight the key information.
Despite those achievements, there are also some limitations to improve: (i) we
have tested that remove some high frequency words in different domains may help
reduce noise. (ii) we could create embedding by diagonal matrix for words out
of vocabulary to capture rare semantics. (iii) radicals and some implied features
of Chinese can be added to heterogeneous graph. (iv) we intend to adapt our
hierarchical attention to transformer-like, which could further benefit the text
feature learning. We will conduct in-depth research in future works.
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Abstract. Chinese named entity recognition (CNER) constitutes a piv-
otal undertaking entailing the identification and classification of named
entities present within Chinese text. Traditional approaches based on
CNN and BiLSTM have been effective for sequence labeling tasks. Addi-
tionally, graph neural networks (GNNs) have shown promising results in
improving Chinese NER performance by incorporating lexical knowledge.
However, these methods may still face challenges in handling ambiguity
and inaccurate boundary recognition in Chinese NER. To tackle these
challenges, we propose a knowledge and semantic relation enhancement
framework. This framework integrates N-gram information and lexical
knowledge into a gated graph neural network (GGNN) to capture Chi-
nese lexical information and reduce ambiguity. Moreover, we leverage
the Transformer model to update the weight information of each node,
aiming to eliminate the influence of incorrect matching lexicons and aug-
ment the model’s capability to recognize entity boundaries. Compre-
hensive experiments conducted on diverse datasets, including Resume,
CCKS2017, MSRA, and a self-constructed History dataset, substantiate
that our proposed model attains comparable results.

Keywords: Natural language processing · Chinese named entity
recognition · Gated graph neural network · Transformer · N-gram

1 Introduction

Named entity recognition (NER) [15] is a pivotal component within the domain
of natural language processing (NLP). It has demonstrated extensive utility
across a myriad of downstream applications, including relation extraction [13]
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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and information retrieval [2]. In contrast to English, Chinese text encounters
greater challenges due to the lack of natural separators like spaces. This gives
rise to issues such as ambiguous entity boundaries and intricate compositions.

To enhance the effectiveness of NER, Lample et al. [8] achieved great success
in CNER by using a character-based approach. After that, Zhang and Yang [24]
introduced the Lattice LSTM model, which can effectively integrate lexical infor-
mation. Building upon this foundation, Liu et al. [11] introduced four different
strategies to integrate lexical knowledge, and Gui et al. [5] and Ding et al. [3]
used GNNs to fuse a large amount of lexical knowledge to assist in improving
the performance in CNER task. However, these methods are not without limi-
tations, including the challenge of precisely identifying entity boundaries when
incorporating significant amounts of lexical knowledge, as well as the issue of
ambiguity. For instance, as illustrated in Fig. 1, the character “长(Long)” is con-
tained in the lexicons “市长(Mayor)” and “长江大桥(Yangtze River Bridge)”.
These ambiguous lexicons often share a common character, posing challenges
for the model in accurately pinpointing entity boundaries through reliance on
such lexical knowledge.

Fig. 1. Example of entity matching.

In response to the challenges posed by the introduction of incorrect word
matching leading to ambiguity and the inaccuracies in entity boundary posi-
tioning observed in the aforementioned studies, we propose a Knowledge and
Semantic Relation Enhancement framework for Chinese NER (KSRE-CNER)
in this paper. The architecture utilizes GGNN to obtain character and lexical
information in the sequence, utilizes Transformer to avoid the negative impact
of incorrect lexicons, and utilizes BiLSTM to encapsulate contextual semantic
understanding. The experimental outcomes underscore the remarkable perfor-
mance achieved by the proposed model across three CNER datasets as well as
a self-constructed dataset. Our contributions can be summarized as follows:

1. We propose the KSRE-CNER model, which can effectively capture contex-
tual semantic information from sequences and mitigate the adverse effects of
introducing erroneous lexicons, thus eliminating ambiguity in CNER.

2. We use Transformer to focus on important features and augment the model’s
capacity to accurately locate boundaries.
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3. The conducted experiments showcase the proposed method’s achievement of
exceptionally satisfactory performance. Furthermore, ablation studies indi-
cate that the proposed model effectively integrates lexical knowledge and
contextual semantic information.

2 Related Work

With the progression of NLP, NER methodologies have evolved through three
distinct developmental stages: (1) rule-based and dictionary-based approaches;
(2) methodologies founded on statistical machine learning; (3) approaches rooted
in deep learning.

Early NER methodologies predominantly revolved around rules and dictio-
naries. Rule-based techniques predominantly hinged on language experts to man-
ually formulate rules, such as selecting punctuation marks, keywords and cen-
tral words as feature construction rule templates, and using patterns and string
matching as the primary means. This method is relatively simple and applica-
ble, and many vocabularies can be identified based on existing dictionaries and
rules [14,20]. Nonetheless, the limitations inherent in this rule-based approach
are evident. It not only requires a huge amount of human labor, but also cannot
be easily extended to other entity types or datasets.

Statistical machine learning-based approaches encompass a range of method-
ologies, notably the hidden markov model (HMM) [25], conditional random field
(CRF) [18], and support vector machine (SVM) [7]. These models rely more
on the feature selection of text. Selecting impactful features from the text to
construct feature vectors, computing label scores using these feature vectors,
and ultimately determining the optimal label sequence for the sentence are all
imperative tasks. The introduction of statistical methods into NER also has
some shortcomings. Machine learning models demand rigorous feature engineer-
ing, a process with stringent prerequisites. The quality of feature engineering
significantly impacts the model’s efficacy.

The development of neural networks has enabled huge performance improve-
ment in NER. Deep learning approaches have demonstrated superior perfor-
mance in comparison to traditional machine learning methods. The end-to-end
BiLSTM-CRF model [6] is a representative and commonly used structure in
NER. The Lattice LSTM [24] efficiently encodes both the character sequence
and latent lexicons aligned with the dictionary, thereby effectively leveraging
Chinese lexical insights. Building upon the foundation of the Lattice LSTM, the
Flat [10] and NFLAT [22] utilize positional encoding lexical information and
make good use of the masking mechanism of the Transformer [21]. In addition,
methods [4,26] based on convolutional neural network (CNN) of Chinese NER
can use a rethinking mechanism to integrate lexical information. [12] incorporate
lexical dictionaries into character representations to improve model performance.
Utilizing a graph structure [3] to capture lexicon information can fully use lexicon
information while disambiguating.
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3 Methodology

The objective of the CNER task is to discern and categorize entities alluded
to in a provided sentence S = (s1, s2, . . . , sn) into predefined label categories
Y = (y1, y2, . . . , yn). Figure 2 illustrates the comprehensive architecture of the
proposed KSRE-CNER model, encompassing four principal modules: a) fea-
ture encoding module; b) graph module; c) Transformer module; d) information
fusion and decoding module.

Fig. 2. The overall architecture of the KSRE-CNER model.

3.1 Feature Encoding Module

Character Embedding: Word2Vec is a widely used tool for word embedding
representation in various NLP tasks. Here, we associate each character in the
sentence S with a corresponding word vector from Word2Vec, thereby establish-
ing the initial vector representation for the character node.:

h0
g =

[
(T c)T ,

(
T bi

)T ]T
(1)

where T c and T bi represent the lookup table of characters and bigram embedding
table [1], respectively.

Lexical Embedding: The previous method [3,11,24] proved that using Chi-
nese lexical knowledge can improve the performance. To fully utilize lexical
knowledge, we employ both forward maximum matching (FMM) algorithm and
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backward maximum matching (BMM) algorithm to ascertain the lexical knowl-
edge associated with each character. For instance, for a sentence “南京市长江
大桥(Nanjing Yangtze River Bridge)”, the character “长(Long)” finds the lexical
knowledge “长江(Yangtse River)”, “长江大桥(Yangtze River Bridge)” through
FMM, and finds the lexical knowledge “市长(Mayor)” through BMM. There-
fore, the lexical knowledge matched by the character “长(Long)” includes “长
江(Yangtse River)”, “长江大桥(Yangtze River Bridge)”, and “市长(Mayor)”.
After that, we obtain the embedding of the lexicons to represent the initial
state of the lexical node.

h0
g = T v (2)

where T v is lookup table for the lexical node represents.

N-gram Embedding: Zhang and Yang [24] have demonstrated that N-gram
knowledge is very effective in extracting boundary information of entities in sen-
tences. Therefore, we enhance the sensitivity of the model to entity boundary
information in the sentence by introducing the concept of frequency-based fil-
tering in N-gram knowledge. First, we obtain 2-gram, 3-gram, and 4-gram infor-
mation for all sentences in the dataset. Subsequently, we tally the frequency of
each N-gram to compile the N-gram lexicons. For each sentence, we extract N-
gram information by setting different thresholds. For example, for 4-gram, if the
number of times that a certain character’s 4-gram information appears in the
N-gram lexicons is greater than 3, we keep it, otherwise we discard it. Similarly,
we obtain the embedding of the N-gram lexicons to represent the initial state of
the N-gram nodes.

h0
g = Tu (3)

where Tu is lookup table for the N-gram node represents.

3.2 Graph Module

In this subsection, we first describe how to construct the nodes and edges of the
graph, and then describe our approach in detail.

Nodes: As depicted in Fig. 2, there exist three different node types, namely
character nodes, lexical nodes, and N-gram nodes. The yellow solid circles rep-
resent character nodes, which are intended to represent the character features
of the sentence. The blue solid circles signify lexical nodes, while the green solid
circles represent N-gram nodes.

Edges: Similarly, the graph encompasses three distinct types of edges: a black
edge connecting character nodes, a blue edge connecting character nodes to word
nodes, and a green edge connecting character nodes to N-gram nodes
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Construct Graph: Based on our observation, the lexical knowledge and N-
gram knowledge matched to the sentences may contain duplicates, which can
augment the model’s capability to learn the boundary information of entities
in the sentences. In addition, the non-duplicated lexical information can also
improve the model’s generalization capacity.

Specifically, we construct a directed graph G := (V,E,L). V = {Vc, Vv, Vu}
represents the collection of nodes, where Vc, Vv, and Vu denote character nodes,
lexicon nodes, and N-gram nodes, respectively. E and L represent the collection of
edges and their labels. Each edge in E carries a label signifying the connection
between different nodes. For label set L = {Lc, Lv, Lu}, the label Lc is allo-
cated to the edges connecting the characters. Lv is allocated to edges connecting
characters and lexicon. And Lu is allocated to edges connecting characters and
N-gram dictionary. In the given graph structure, we use adapted GGNN [3] to
learn the weighted combination of the lexical dictionary and N-gram dictionary,
and update the node information. We assign a trainable contribution coefficient
βc, β1, β2, . . . , βk (where k represents the number of all lexicons and N-gram enti-
ties matched by characters) to each edge. Subsequently, we broaden the scope of
the adjacency matrix A to encompass edges characterized by diverse labels. This
extended adjacency matrix A is utilized to retrieve neighboring node states at
each stage. The contribution coefficients are further translated into edge weights
within A via the application of a sigmoid activation function.

αc, α1, α2, . . . , αk = σ (βc, β1, β2, . . . , βk) (4)

The GGNN employs GRU to transmit and update the hidden information
of nodes within the graph. The node formula is then updated in the following
manner:

H =
[
ht−1
1 , ht−1

2 , . . . , ht−1
|V |

]�
(5)

at
g =

[
(HW 1)

T
, (HW 2)

T
, . . . ,

(
HW |L|

)T ]T
AT

g + b (6)

ztg = σ
(
W zat

g + Uzht−1
g

)
, rtg = σ

(
W rat

g + Urht−1
g

)
(7)

ȟt
g = tanh

(
Wat

g + U
(
rtg � ht−1

g

))
, (8)

ht
g =

(
1 − ztg

) � ht−1
g + ztg � ȟt

g (9)

At each time step t, the vector representation H is composed of the concate-
nated vector representations of all nodes at time step t−1. The interaction of the
g-th node with its adjacent nodes is symbolized as at

g, where Ag denotes the row
vector associated with the g-th node in the adjacency matrix A of the graph. The
trainable parameters W and U are used to compute the interaction between the
nodes. The output ztg controls the forgotten information, rtg controls the freshly
incorporated information, and ht

g embodies the ultimate updated node state at
time step t.
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Furthermore, inspired by Gui [5], we construct a transposed graph. Similarly,
we obtain the hidden information of the all nodes. Ultimately, the ultimate vector
representation of the node is determined in the subsequent manner:

hg = (
−→
hg;

←−
hg) (10)

3.3 Transformer Module

To capture global sequence information and extract essential features from the
text sequence for the purpose of bolstering entity boundary information, we
utilize the encoder module of Transformer [21]. As shown in Fig. 2, within the
architecture of the Transformer, two sub-layers are integral components: the
multi-head Attention mechanism and the feedforward neural network (FFNN).
The specific calculation formulas are outlined below:

ha = LayerNorm(hg + MHAttention(Q,K, V )) (11)

ht = LayerNorm (ha + FFNN(ha)) (12)

The MHAttention corresponds to the multi-head Attention mechanism
integrated within the Transformer encoder module. This extraction aims to
amplify the precision of entity boundary information. Here, Q, K, and V
denote the query, key, and value vectors, respectively. These vectors are derived
through linear transformations of the vector hg. The output of the first layer of
MHAttention is labeled as ha, while the ultimate output of the Transformer is
designated as ht.

3.4 Fusion and Decoding Module

To better integrate context information and obtain the final labeled result for the
sequence, we input ht into the BiLSTM-CRF model [6] for fusion and decoding.

hl(i) =
(−−−−→
LSTM

(
ht(i),

−−−−→
hl(i−1)

)
;
←−−−−
LSTM

(
ht(i),

←−−−−
hl(i−1)

)
(13)

where “;” signifies the concatenation operation. Ultimately, the representation
of the character sequence can be denoted as hl =

{
hl(1), . . . , hl(i), . . . , hl(n)

}
.

After that, hl is fed into the CRF layer, which is responsible for assigning labels
to each word in order to generate the label sequence Y = (y1, . . . , yi, . . . , yn).

yi = argmaxy′ P
(
y′ | hl(i)

)
, Lloss = −

n∑
i=1

logP
(
yi | hl(i)

)
(14)

where y′ denotes all possible label sequences, P
(
yi | hl(i)

)
is the probability of

label sequence y′ given hl(i). Lloss denotes the loss function.
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4 Experiments

4.1 Datasets

To assess the impact of the proposed KSRE-CNER model, we perform experi-
ments on three publicly available datasets as well as our self-constructed datase,
including Resume [24], MSRA [9] , CCKS20171, and History2. The Resume,
MSRA, CCKS2017 and History datasets are composed of Chinese resumes,
news, biomedical and historical data, respectively. Table 1 presents the statistics
regarding the number of sentences and characters within each dataset. Further-
more, our dataset includes 9 distinct label categories, including organization,
location, date, person, salutation, appellation, event, army, and place of affilia-
tion. To facilitate specific entity identification, we partition the History dataset
into two classifications. The initial category comprises nine tag types, denoted
as History-9types. Meanwhile, the second category, History-3types, encompasses
entities related to location, appellation, and event.

Table 1. Statistics of datasets.

Datasets Type Train Test Dev

Resume Character 124.1K 15.1K 13.9K
Sentence 3.8K 0.48K 0.46K

MSRA Character 2169.9K 172.6K –
Sentence 46.4K 4.4K –

CCKS2017 Character 200.0K 33.6K 31.8K
Sentence 5.9K 1.09K 0.82K

History Character 289.1K 29.9K 30.9K
Sentence 8.9K 0.81K 0.97K

4.2 Implementation Details and Evaluation Metrics

Throughout the training process, we conduct 100 epochs, with each epoch involv-
ing a batch size of 10. The learning rate is configured at 0.001, while the word
embedding dimension is maintained at 50. Moreover, we use the SGD optimizer.
Additionally, we utilize precision (P), recall (R), and F1 score (F1) as evaluation
metrics to assess the performance of our model on these datasets.

1 https://www.biendata.xyz/competition/CCKS2017_2/.
2 https://github.com/BIG-SMILE/history_dataset_ner.

https://www.biendata.xyz/competition/CCKS2017_2/
https://github.com/BIG-SMILE/history_dataset_ner
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4.3 Main Results

To assess our model’s effectiveness, we benchmark it against a baseline, BiLSTM-
CRF [6]. Additionally, we contrast our model with several recently proposed
models, outlined as follows. (1) Lattice [24] significantly enhances the perfor-
mance of the CNER task by integrating word knowledge into characters through
a lattice structure for the first time. (2) WC-LSTM [11] provides four strategies
to fuse word knowledge. (3) Multi-digraph [3] is a model to fuse lexical knowl-
edge by adapting a GGNN. (4) SoftLexicon [12], as introduced by Ma et al.,
presents a unique strategy for fusing lexical knowledge.(5) LR-CNN [4] enables
the model to have the ability to re-select words through a rethinking mecha-
nism. (6) CAN-NER [26] uses a convolutional attention to enhance the perfor-
mance of CNER. (7) TENER [23] adapts the Transformer encoder to model both
character-level and word-level attributes, thus enhancing NER performance. (8)
FLAT [10] enhances NER with flat lattices, while NFLAT [22] further reduces
memory usage and improves efficiency by decoupling lexicon fusion and context
encoding. (9) The Locate and Label model [16] effectively recognizes entities
by leveraging boundary information and partially matched spans, surpassing
previous methods. (10) The Sequence-to-Set model [19] captures dependencies
between entities and achieves good performance on NER. (11) PIQN [17] extracts
entities in parallel using learnable instance queries, outperforming previous NER
models.

As evident from Tables 2, 3, and 4, our model shows excellent results in
contrast to the above models. One potential explanation is that our model pro-
ficiently identifies entity boundaries within the sentences. Simultaneously, our
model can sufficiently capture the semantic information and contextual knowl-
edge in the sentences.

Table 2. Performance on Resume.

Models Resume
P R F1

Baseline [6] 93.73 93.44 93.58

Lattice [24] 94.81 94.11 94.46

CAN-NER [26] 95.05 94.82 94.94

WC-LSTM [11] 95.14 94.79 94.96

LR-CNN [4] 95.37 94.84 95.11

TENER [23] – – 95.00

FLAT [10] – – 95.45

NFLAT [22] 95.63 95.52 95.58

KSRE(ours) 95.66 95.59 95.62

Table 3. Performance on MSRA.

Models MSRA
P R F1

Baseline [6] 91.28 90.62 90.95

Locate and Label [16] 92.20 90.72 91.46

Sequence-to-Set [19] 93.21 91.97 92.58

TENER [23] – – 92.74

CAN-NER [26] 93.53 92.42 92.94

Lattice [24] 93.57 92.79 93.18

PIQN [17] 93.61 93.35 93.48

KSRE(ours) 93.17 93.92 93.55
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Table 4. Performance on History and CCKS2017 datasets.

Models History-9types History-3types CCKS2017
P R F1 P R F1 P R F1

Baseline [6] 76.01 60.68 67.48 76.15 50.45 60.69 88.45 87.35 87.90

WC-LSTM [11] 82.43 68.48 74.81 83.19 61.15 70.48 88.96 87.33 88.14

Multi-digraph [3] 75.31 71.70 73.46 76.14 59.36 66.71 89.50 88.40 88.94

SoftLexicon [12] 82.65 70.11 75.86 82.47 67.13 74.02 89.67 87.23 88.43

KSRE(ours) 80.57 73.09 76.65 76.57 73.87 75.20 89.92 88.37 89.14

4.4 Ablation Study

To scrutinize the efficacy of lexical knowledge and various modules within our
framework, we undertake a comparison between the complete model and its
ablation variants.

As illustrated in Table 5, the utilization of external knowledge contributes
to the enhanced performance of our model. Specifically, on the History-9types
dataset, when the lexical knowledge is not used, w/o Lexicon drops 2.30%
F1; when the N-gram knowledge is not used, w/o N-gram knowledge drops
1.56% F1; when both lexical knowledge and N-gram knowledge are not used,
w/o Lexicon+N-gram drops 4.02% F1. On the History-3types dataset, when
the lexical knowledge is not used, w/o Lexical drops 1.49% F1; when the N-
gram knowledge is not used, w/o N-gram drops 0.24% F1; When both lexical
knowledge and N-gram knowledge are not used, w/o Lexicon+N-gram drops
1.90% F1. These results suggest that integrating lexical knowledge and N-gram
knowledge has a positive impact on our model’s performance.

Table 5. Ablation study of the influence of lexical knowledge on model performance.
“w/o” means to remove a component.

Models History-9types History-3types
P R F1 P R F1

KSRE(ours) 80.57 73.09 76.65 76.57 73.87 75.20
w/o Lexicon 75.32 73.41 74.35 74.57 72.88 73.71
w/o N-gram 77.13 73.16 75.09 73.39 73.59 74.96
w/o Lexicon+N-gram 75.53 69.95 72.63 71.30 75.42 73.30
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Table 6. Ablation study of the influence of different components on model perfor-
mance. “w/o” means to remove a component.

Models CCKS2017 Resume
P R F1 P R F1

KSRE(ours) 89.92 88.37 89.14 95.66 95.59 95.62
w/o Transformer 89.17 87.61 88.38 94.15 93.87 94.01
w/o LSTM 87.61 89.36 88.48 93.91 94.60 94.25
w/o Transformer+ LSTM 87.41 87.76 87.59 93.45 93.62 93.53

As depicted in Table 6, On the CCKS2017 dataset, the absence of the Trans-
former module (w/o Transformer) results in a decline of 0.76% in F1. Similarly,
the absence of the LSTM module (w/o LSTM) leads to a decrease of 0.66% in
F1. When both the Transformer module and LSTM module are excluded (w/o
Transformer + LSTM), a more substantial drop of 1.55% in F1 is observed.
On the Resume dataset, the exclusion of the Transformer (w/o Transformer)
leads to a decrease of 1.61% in F1 score, while the omission of the LSTM mod-
ule (w/o LSTM) results in a reduction of 1.37%. The exclusion of both the
Transformer module and LSTM module (w/o Transformer + LSTM) leads
to a 2.09% decrease in F1. These findings affirm the crucial roles played by both
the Transformer module and the LSTM module within our framework.

5 Conclusion

In this study, we propose a knowledge and semantic relation enhancement frame-
work for Chinese NER. Lexical information and N-gram information are intro-
duced into the GGNN to enhance the model’s capability to eliminate ambiguity.
In addition, we use Transformer and BiLSTM to enhance boundary and context
representation. The results obtained from experiments on the Resume, MSRA,
CCKS2017, and self-constructed History dataset affirm the efficacy of our pro-
posed approach. Ablation studies show that the lexical information, N-gram
information, Transformer and BiLSTM are beneficial for CNER.

Acknowledgements. This work was supported in part by Natural Science
Foundation of Shandong Province (No. ZR2022MF328, No. ZR2019LZH014 and
ZR2021MF059), and in part by National Natural Science Foundation of China (No.
61602284 and No. 61602285).

References

1. Chen, X., Qiu, X., Zhu, C., Liu, P., Huang, X.J.: Long short-term memory neural
networks for Chinese word segmentation. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1197–1206 (2015)



196 J. Dong et al.

2. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-
pooling convolutional neural networks. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, vol. 1: Long Papers, pp. 167–176
(2015)

3. Ding, R., Xie, P., Zhang, X., Lu, W., Li, L., Si, L.: A neural multi-digraph model
for Chinese ner with gazetteers. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 1462–1467 (2019)

4. Gui, T., Ma, R., Zhang, Q., Zhao, L., Jiang, Y.G., Huang, X.: CNN-based Chinese
ner with lexicon rethinking. In: IJCAI, pp. 4982–4988 (2019)

5. Gui, T., et al.: A lexicon-based graph neural network for Chinese NER. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 1040–1050 (2019)

6. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 (2015)

7. Ju, Z., Wang, J., Zhu, F.: Named entity recognition from biomedical text using
SVM. In: 2011 5th International Conference on Bioinformatics and Biomedical
Engineering, pp. 1–4. IEEE (2011)

8. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

9. Levow, G.A.: The third international Chinese language processing bakeoff: word
segmentation and named entity recognition. In: Proceedings of the Fifth SIGHAN
Workshop on Chinese Language Processing, pp. 108–117 (2006)

10. Li, X., Yan, H., Qiu, X., Huang, X.J.: Flat: Chinese NER using flat-lattice trans-
former. In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 6836–6842 (2020)

11. Liu, W., Xu, T., Xu, Q., Song, J., Zu, Y.: An encoding strategy based word-
character LSTM for Chinese NER. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol. 1 (Long and Short Papers), pp. 2379–2389 (2019)

12. Ma, R., Peng, M., Zhang, Q., Wei, Z., Huang, X.J.: Simplify the usage of lexicon
in Chinese NER. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 5951–5960 (2020)

13. Mooney, R., Brew, C., Chien, L.F., Kirchhoff, K.: Proceedings of human language
technology conference and conference on empirical methods in natural language
processing. In: Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing (2005)

14. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

15. Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: language-
independent named entity recognition. arXiv preprint cs/0306050 (2003)

16. Shen, Y., Ma, X., Tan, Z., Zhang, S., Wang, W., Lu, W.: Locate and label: a
two-stage identifier for nested named entity recognition. In: Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, vol. 1: Long
Papers), pp. 2782–2794 (2021)

17. Shen, Y., et al.: Parallel instance query network for named entity recognition. In:
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, vol. 1: Long Papers, pp. 947–961 (2022)

http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1603.01360


KSRE-CNER: A Framework for Chinese NER 197

18. Skeppstedt, M., Kvist, M., Nilsson, G.H., Dalianis, H.: Automatic recognition of
disorders, findings, pharmaceuticals and body structures from clinical text: An
annotation and machine learning study. J. Biomed. Inform. 49, 148–158 (2014)

19. Tan, Z., Shen, Y., Zhang, S., Lu, W., Zhuang, Y.: A sequence-to-set network for
nested named entity recognition. arXiv preprint arXiv:2105.08901 (2021)

20. Tsuruoka, Y., Tsujii, J.: Boosting precision and recall of dictionary-based protein
name recognition. In: Proceedings of the ACL 2003 Workshop on Natural Language
Processing in Biomedicine, vol. 13. pp. 41–48. Citeseer (2003)

21. Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30,
1–11 (2017)

22. Wu, S., Song, X., Feng, Z., Wu, X.: Nflat: non-flat-lattice transformer for Chinese
named entity recognition. arXiv preprint arXiv:2205.05832 (2022)

23. Yan, H., Deng, B., Li, X., Qiu, X.: Tener: adapting transformer encoder for named
entity recognition. arXiv preprint arXiv:1911.04474 (2019)

24. Zhang, Y., Yang, J.: Chinese NER using lattice LSTM. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, vol. 1: Long
Papers, pp. 1554–1564 (2018)

25. Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger.
In: Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pp. 473–480 (2002)

26. Zhu, Y., Wang, G.: Can-ner: convolutional attention network for Chinese named
entity recognition. In: Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, vol. 1 (Long and Short Papers), pp. 3384–3393 (2019)

http://arxiv.org/abs/2105.08901
http://arxiv.org/abs/2205.05832
http://arxiv.org/abs/1911.04474


Low-Frequency Aware Unsupervised
Detection of Dark Jargon Phrases

on Social Platforms

Limei Huang, Shanshan Wang, Changlin Liu, Xueyang Cao, Yadi Han,
Shaolei Liu, and Zhenxiang Chen(B)

School of Information Science and Engineering, University of Jinan, Jinan, China
{lmhuang,xueyangcao}@stu.ujn.edu.cn, {ise wangss,zxchen}@ujn.edu.cn,

15253464198@163.com, yadi@163.com, lcl go@163.com

Abstract. With the development of the Internet, the number of peo-
ple communicating on social platforms has soared, which means that it
is crucial for platform moderators to review and remove illegal content
to create a clean network environment for users. However, identifying
such content becomes complex due to the use of dark jargons. These
jargons are seemingly innocent or newly coined words and phrases, such
as “coke” for cocaine or “vanilla sky” for synthetic cathinone, to con-
vey illegal meanings, aiming to evade detection by moderators. Existing
methods primarily focus on detecting dark jargons at the word level,
yielding commendable results. However, given the prevalence of phrase-
level dark jargons in the context, relying solely on word-level detection
can introduce ambiguity. For example, “black” is not a dark jargon, but
“black bart” is a dark jargon. As a result, there is a growing interest
in developing techniques specifically targeting phrase-level dark jargon
detection. Unfortunately, such efforts are relatively limited, potentially
resulting in the oversight of numerous low-frequency dark jargon phrases.
To tackle this challenge, we propose the Low-Frequency Aware Dark
Jargon Phrases Detection (DJPD) model. Our approach centers around
finding a noun phrasal attention map pattern based on Transformer that
enhances the perception of low-frequency phrases, enabling the selection
of candidate dark jargon phrases. Subsequently, the candidate dark jar-
gon phrases’ sentence-level context is analyzed to detect dark jargon
phrases. Remarkably, our model achieves a significant 84.66% improve-
ment in F1-score compared to the current state-of-the-art method for
dark jargon phrase detection in the corpus.

Keywords: Dark jargon phrases · Low-frequency awareness ·
Unsupervised learning · Attention maps · Context representation

1 Introduction

With the development of the Internet, large social platforms begin to employ
a large number of moderators to review and delete content related to cyber
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 198–209, 2024.
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crimes, so as to ensure that the content on the platform conforms to rele-
vant laws and regulations. However, according to Forbes [8], Facebook makes
300,000 content moderation mistakes every day for some reasons. First and fore-
most, cybercrime-related underground industries, such as drugs, pornography,
weapons, etc., engage in online transactions while evading moderation filters.
As a result, they constantly evolve their use of dark jargon, such as referring to
cocaine as “coke” to elude detection [5]. Dark jargon refers to the use of seem-
ingly innocuous words, such as “coke” for cocaine, or newly coined expressions,
such as “vanilla sky” for synthetic meth, which carry illicit connotations and
is deliberately employed to evade the scrutiny of moderators [19]. This hidden
and constantly changing dark jargon has brought great challenges to content
moderation on social platforms.

The current detection methods of dark jargon are divided into word level(such
as “weed” for marihuana) and phrase level(such as “black bart” for marijuana):

(1) Most of these detection methods focus on the automatic detection of word
level [6,10,16–20,22], and have achieved relatively good research results.
However, the minimal expression unit of a large number of dark jargon in
the context is always the phrase, and the automatic detection of unigram
words will lead to semantic ambiguity, which will cause the problem of missed
detection or false detection of dark jargon. For example, “oil” is not a dark
jargon, but “cbd oil” is one. Here, a dark jargon phrase is a sequence of words
of arbitrary length that appear continuously in a sentence and contain illegal
content, forming a complete semantic unit in a specific context [15]. Only
detecting dark jargon at the phrase level can capture the contextual seman-
tic information of minimal expression units, effectively detect dark jargon,
and help moderators improve the efficiency of purifying the content of social
platforms.

(2) To the best of our knowledge, there is a relative lack of research on auto-
mated phrase-level dark jargon detection. Moreover, previous work relies
on general domain methods for selecting high-quality phrases [21]: Frequent
n-grams are usually used to find candidate phrases based on the corpus. How-
ever, this scheme is not suitable for detecting dark jargon phrases for the
following reasons: (1)Due to the moderator detecting and filtering the dark
jargon, criminals must constantly evolve the dark jargon to conduct illegal
transactions online, resulting in most of the dark jargon being low-frequency
phrases. (2)And the frequency threshold of candidate phrases obtained by
using the high-frequency n-gram method based on a corpus, many dark jar-
gons at the low-frequency phrase level have been missed. Therefore, how to
design a model of low-frequency dark jargon phrase perception to improve
the accuracy of dark jargon phrase detection has become an urgent problem
to be solved.

In order to solve the above problems, this paper designs a low-frequency
aware Dark Jargon Phrases Detection (DJPD) model. The model consists of
three modules: candidate dark jargon phrase selection module, phrase-level con-
text representation module, and dark jargon phrase detection module. Firstly, we
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transform phrase selection into image classification to select candidate dark jar-
gon phrases. Secondly, the context representation module uses the Black-BERT
model to generate the high-quality contextual representation of each complete
semantic unit. Thirdly, the dark jargon phrase detection module based on cross-
representation comparison detects the dark jargon phrases. Finally, our model
improves F1-score by 84.66% compared with the state-of-the-art model in dark
jargon phrase detection.

The main contributions of this study are as follows:

• We propose a selection module of candidate dark jargon phrases to fill the gap
of missing low-frequency dark jargon phrases by current detection methods.

• We innovatively fine-tune a phrase-based pre-trained BERT model called the
Black-BERT model to generate a high-quality contextual representation.

• We carry out extensive experiments on our dataset and show our model has
superior performance in detecting dark jargon phrases on social platforms.

2 Related Work

Dark jargon detection is a relatively new research field that is still in its infancy.
Due to the continuous evolution of dark jargon, existing researches on dark
jargon detection are divided into word level and phrase level.

Word-level dark jargon detection has achieved good results, including super-
vised, semi-supervised, and unsupervised learning.

For example, Wang et al. [18] and Li et al. [10] proposed a supervised method
to detect dark jargon. Nevertheless, Wang et al. ’s and Li et al.’ s methods require
a large number of data annotations, and their detection results are extremely
dependent on the quality of data annotations.

Another group of related studies [17,19] proposed a semi-supervised method.
[17] extracts seven new features of Chinese jargon, used transfer learning to
improve the quality of word vectors, and finally used statistical outlier detec-
tion to determine whether a word was Chinese dark jargon. However, the results
depend on the limited labeled samples for model training, which leads to poor
generalization ability of the model. In addition, Yang et al. [19] adopted a differ-
ent idea to capture the Chinese dark jargon by searching for seed keywords and
crawling the pages of search engine alerts. However, the dark jargon it captures
depends on the alarm of search engines.

Next, we introduce four unsupervised approaches [6,16,20,22]. Takuro et al.
[16] and Ke et al. [6] use an unsupervised cross-corpus comparison method to
detect Chinese dark jargon. SCM improved word2vec so that it can compare the
difference of word vectors of the same words in two corpora (i.e., legal corpus
and illegal corpus), to detect dark jargon used for illegal purposes. In addition,
Zhu et al. [22] proposed a different idea, a self-supervised way, using the BERT
masked language model. Specifically, by analyzing words in their sentence-level
context detect dark jargon. However, as shown in the discussion of SCM [20]
and Euphemism Detection [22], these two methods only perform word-level dark
jargon detection and do not support phrase-level one.
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Phrase-level dark jargon detection is scarce. EPD [21] uses the statistical
feature-based method Autophrase [15] to detect phrases and then uses the word
vector generated by Word2vec to filter out the candidate dark jargon phrases
related to the underground industry. Finally, the masked language model of
SpanBERT is used to rank each candidate’s dark jargon phrase by predicting
the weighted sum of its mask.

In conclusion, the existing methods for detecting jargon have many common
limitations: most of them rely on high-frequency n-gram statistical features to
detect dark jargon phrases. However, for the sake of regulators, most of the
jargon phrases are low-frequency, which have been missed by previous methods.

3 Methodology

In order to detect dark jargon phrases on social platforms more efficiently, we
propose the DJPD model, which has three modules, as shown in Fig. 1: (1) select-
ing candidate dark jargon phrases, (2) generating the contextual representation
of phrases, (3) detecting dark jargon phrases.

Fig. 1. Low-frequency aware unsupervised dark jargon phrases detection model.

3.1 Candidate Dark Jargon Phrases Selection Module

3.1.1 Candidate Dark Jargon Phrases Pseudo-label Generation
In this step, We collect high-quality candidate dark jargon phrase pseudo-labels
from underground industry corpus1 in an unsupervised manner, which will

1 https://www.reddit.com/r/bigquery/comments/3cej2b/17 billion reddit
comments loaded on bigquery/.

https://www.reddit.com/r/bigquery/comments/3cej2b/17_billion_reddit_comments_loaded_on_bigquery/
https://www.reddit.com/r/bigquery/comments/3cej2b/17_billion_reddit_comments_loaded_on_bigquery/
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be training used for candidate dark jargon phrase classifier fθ, parameterized
by θ. We treat the whole corpus as D, which consists of individual sentence
[ token1,...,tokenN ]. Here, N is the length of the sentence. Firstly, we regard the
largest continuous span that appears more than once in the corpus as candidate
dark jargon phrase pseudo-labels Lij . Here Lij is the j-th phrase pseudo-labels
in the i-th sentence. In other words, we select the largest continuous the j-
th span [ tokenlj ,...,tokenrj

] from the i-th sentence [ token1i ,...,tokenNi
], where

tokenl is the leftmost token of the phrases, tokenr is the rightmost token of
the phrases, i is the i-th sentence, and j is the j-th phrase. The “largest” here
refers to the phrase represented as a complete semantic unit in a sentence [15].
Secondly, to ensure the completeness of dark jargon phrases, we only keep span
[ tokenl,...,tokenr] that is not a sub span of another span. Thirdly, to further
improve the informativeness of candidate dark jargon phrase pseudo-labels Lij ,
that is, high-quality candidate dark jargon phrases should be words specific to
the field of underground industry. We use the stop words list [15] to filter out the
span [ tokenl,...,tokenr] containing stop words. Fourthly, most of the candidate’s
dark jargon phrases are noun phrases. Here, noun phrases refer to pronouns or
nouns plus simple modifiers, like adjectives and demonstratives [4]. we apply
Natural Language Toolkit (NLTK) [11] to perform part-of-speech tagging, and
then use part-of-speech rules of noun phrases in the form of regular expressions,
as shown in Eq. 1, to select candidate dark jargon phrase pseudo-labels Lij .

R = “NP : < JJ > ∗ < NN.∗ > +” (1)

where R defines the part-of-speech rules of noun phrases in the form of regular
expressions, NP represents the name of these rules, <JJ>* refers to zero or
more adjectives, and <NN.*>+ indicates at least one noun.

Finally, to ensure the same number of positive and negative samples, which
is used for training candidate dark jargon phrase classifier fθ, parameterized by
θ, we add the above-obtained effective span [ tokenl,...,tokenr] to the positive
sample library Sp

max, while randomly draw the same number spans from the
remaining spans to the negative sample library Sn

max. Here, p is the positive
sample, max refers to “the largest”, and n refers to the negative sample.

3.1.2 Span Attention Distribution Representation Extraction
In order to increase the generalization ability of the Candidate Dark Jargon
Phrases Selection Module, the testing phase is not assisted by word frequency,
and the perception ability of low-frequency dark jargon phrases is enhanced to
select high-quality candidate dark jargon phrases. We are inspired by [7] showing
that patterns often appear in the self-attention heatmaps of pre-trained BERT
models, which indicate that the distribution of attention across words in the same
phrase is relatively similar. Therefore, we propose to leverage pre-trained BERT
models to obtain the attention distribution representation of the span labeled by
Sect. 3.1.1 in the positive sample library Sp

max and the negative sample library
Sn

max.
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Firstly, the sentence [ token1,...,tokenN ] is input into the pre-trained BERT
model as units. Then, We map the sentence [ token1,...,tokenN ] to their cor-
responding integer encoding ids=[ id1,...,idN ]. And, we format ids by adding
bos token id before the integer encoding and pad token id at the end and mak-
ing ids have the same length in each batch(using the longest sentence as the
criterion in each batch) using pad token id padding ids, as shown in Eq. 2. Here,
bos token id is a special identifier used to indicate the beginning of a sequence.
And, pad token id is a special identifier used to indicate a padding tag. And,
the pre-trained BERT modelg represents the “allenai/cs roberta base” model
without fine-tuning, as shown in Eq. 2.

B = g(ids, atten mask, out atten, ret dict) (2)

where atten mask is the binary mask used to control the attention mechanism,
in which “1” is converted by a real ids and “0” is converted by a pad token id;
out atten indicates whether to output the attention distribution representation.
Whether the BERT model g will return the results in dictionary form is indicated
by the variable ret dict. And, B is the output results of the BERT model.

Accessing values through dictionary retrieval (i.e. B.attentions), we obtain
attention distribution representations of each sentence for each token from the
output results of the BERT model B, as shown in Eq. 3. Assuming that the
pre-trained BERT model has L layers with H attention heads per layer, the
attention distribution representation of each sentence is C ∈ R

L×H×N×N , as
shown in Eq. 3. Here, N refers to the length of each sentence[ token1,...,tokenN ] ;

C = B.attentions (3)

For each span [ tokenlj ,...,tokenrj
] annotated in Sect. 3.1.1, we extract its atten-

tion distribution representation Aij = C[:, :, l : r + 1, l : r + 1] from a sentence
attention distribution representation C ∈ R

L×H×N×N .

Candidate Dark Jargon Phrases Selection. Based on the span attention
distribution representation Aij in Sect. 3.1.2, we need to find a classifier to accu-
rately select the attention distribution representation of the candidate dark jar-
gon phrases P . The span attention distribution representation Aij can be viewed
as a rectangular picture of pixels of height and width |l − r| ∗ |l − r| with the
number of channels L∗H. Here, |l−r| is the length of phrases. Now we transform
the problem of candidate dark jargon phrase selection into an image classifica-
tion problem, input a span attention distribution representation Aij , and judge
whether the corresponding span [ tokenlj ,...,tokenrj

] is a candidate dark jargon
phrase P .

Firstly, we adopted a Convolutional Neural Network (CNN) model [9]. Then,
we input span attention distribution representation Aij to the 3 CNN layers’
CNN model fθ, parameterized by θ, as shown in Eq. 4.

p = fθ(Aij) (4)
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Here, p is the final classification probability; Aij is the span attention distri-
bution representation of the j-th span in i-th sentence.

Secondly, to prevent the CNN model from overfitting, we propose to improve
the logistic regression layer by introducing a regularization term in the cost
function to penalize the model for having too large parameter values. Then, in
the CNN model output layer, we output the Fully Connected layer (FC layer)
to the enhanced logistic regression layer. In other words, the FC layer is output
to the sigmoid function, to obtain the final classification probability.

Finally, the span attention distribution representation Aij is assigned a
binary label in the way of threshold division. Here the threshold value is set
to θp. And the Stochastic Gradient Algorithm (SGD) [2] is used to minimize the
value of the cost function on the training set{Aij , Lij}, as shown in Eq. 5 to con-
tinuously optimize the parameter θ, so that the performance of the classification
model reaches the optimal.

J(θ̂) = −min
θ

(
n∑

i=1

(Lij log p + (1 − Lij ) log(1 − p))

)
+ λ

m∑
j=1

θ2j (5)

where Lij represents the label of the j-th span in i-th sentence; p is the final
classification probability of classifier fθ, parameterized by θ ; J is the cost func-
tion; n is the number of the span attention distribution representation Aij ; m is
the number of parameters to be learned, and λ is the regularization parameter.

3.2 Phrase-Level Context Representation Generation Module

Based on the fact that the candidate’s dark jargon phrases P in Sect. 3.1 have
been selected, then we selected the pre-trained BERT model to obtain the high-
quality context representation R of these phrases. Unfortunately, at present,
most of the English pre-trained BERT models trained on the underground indus-
try corpus D are based on the word level [3].

To generate high-quality phrase-level context representation, We propose the
Black-BERT model, a phrase-based pre-trained language model trained on the
underground industry corpus D. Firstly, in the Black-BERT model, we add the
candidate’s dark jargon phrase P to the Tokenizer’s vocabulary V of the pre-
trained language model to flexibly segment sentences. Secondly, the Tokenizer
will loop through the span in each sentence and check whether the span is in the
Tokenizer’s vocabulary V . If the span is in the Tokenizer’s vocabulary V , it will
be held on. Otherwise, the native Tokenizer will divide the span. Then, we will
concatenate each phrase segmentation result in an ordered way to form the final
phrase segmentation result. Finally, Black-BERT continues the mask prediction
task based on the “allenai/cs roberta base” model.

After fine-tuning the Black-BERT model, we use Tokenizer Black tokenizer,
to tokenize each sentence [ token1,...,tokenN ] into phrase segmentation result
P=[ phrase1,...,phraseM ],e.g. “vendor/review/crack cocaine/on dream”. Here,
M is the number of the phrase in a sentence.
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Then, We map the phrases P=[ phrase1,...,phraseM ] to their corresponding
integer encoding ids=[ id1,...,idM ]. Next, we format the ids as in Sect. 3.1.2. In
order to obtain high-quality phrase context representation, inspired by [1], we
choose the third-to-last layer of the hidden layer of the Black-BERT Model (e.g.
.h states[10]) as the context representation of phrases, as shown in Eq. 6.

R = Black BERT (ids, atten mask, out h states, ret dict).h states[10] (6)

where atten mask and return dict have explained in Eq. 2. out h states indi-
cates whether to output the hidden states; Finally, We obtain sentence context
representation R=[ r1,r2,...,rd] for each full semantic unit, where each ri is a
768-dimensional vector and d is the dimension of R.

The context representation of the candidate’s dark jargon phrases rc is
obtained by filtering out the context representation of underground industry
terms (a collection of the formal names of illegal products, such as “cocaine”).
For convenience, the underground industry terms are simply referred to as terms
in the following. In our study, we set three kinds of terms, including drugs,
pornography, and weapons. It is next to extract the high-quality contextual rep-
resentations rt= [rt,1, rt,2, ..., rt,768] of terms [ T1,...,Tk], which is similar to the
method of obtaining high-quality phrase context representation above. Here, k
is the number of underground industry terms.

3.3 Similarity Calculation’s Dark Jargon Phrases Detection Module

The context representations of terms rt = [rt,1, rt,2, ..., rt,768] and the context
representations of candidate dark jargon phrases rc= [rc,1, rc,2, ..., rc,768] have
been obtained. Then, we select the cosine similarity to compute the similarity
sim between these two context representations, as shown in Eq. 7.

sim =
rc · rt

|rc| · |rt| =
rc,1 ∗ rt,1 + rc,2 ∗ rt,2 + ... + rc,768 ∗ rt,768√

r2c,1 + r2t,2 + ... + r2c,768 ∗
√

r2t,1 + r2c,2 + ... + r2t,768

(7)

If the cosine value sim is close to 1, we consider that the direction of these two
context representations are the same, and their semantics are similar. Therefore,
we need to set the context similarity threshold θd. In other words, if the similarity
sim is greater than the threshold θd, the candidate dark jargon phrase will be
detected as a dark jargon phrase.

4 Experiments

4.1 Experiment Setting

Dataset. We validate our proposed DJPD model on our dataset related to
three underground industries’ categories: drugs, pornography, and weapons. In
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our experiments, we need two inputs: the terms and the underground industry
corpus. (1)terms: the term is a collection of official names of illegal products. We
refer to [22] for drug terms from the DEA Slang Terms and Code Words list,
and pornography and weapons terms from the online slang dictionary. Table 1
summarizes the term’s information. (2)the underground industry corpus: We use
the original underground industry corpus from social platforms published by Zhu
et al. [22]. The data covers three categories: drugs, pornography, and weapons.
Table 1 shows the dataset used in our study.

Table 1. Dataset statistics.

Categories Sentences (numbers) Underground Industry Terms (numbers)

Drugs 87,876 110

Pornography 81,117 60

Weapons 55,678 130

Evaluation Metrics. Although we conducted our experiments in an unsuper-
vised setting, to better evaluate our experimental results and compare them with
state-of-art technologies we use three metrics to evaluate the results, including
Recall, Precision, and F1-score [17].

Hyperparameter Settings. In our experiments, the parameters of the model
are set as follows.

• Classifier: The batch size of the dataset is 2048, the learning rate is 1e–5.
• Black-BERT model: The parameters to fine-tune this model are as follows:

per device train batch size = 16, learning rate = 1e–5, mlm probability =
0.15.

• Threshold: In the experiment, two thresholds of DJPD model in Drugs cate-
gory to fine-tune are as follows: θp = 0.19, θd = 0.48.

4.2 Comparison Experiment

Compared Methods. To demonstrate the superiority of our proposed DJPD
model in detecting dark jargon phrases, we compare the state-of-the-art methods
for dark jargon phrase detection as follows:

• EPD [21] uses AutoPhrase [15] to select phrases, then uses Word2vec to filter
phrases related to the underground industry, and finally uses SpanBERT’s
masked language model to obtain the ranking of dark jargon phrases.

• AutoPhrase [15] is a data-driven phrase mining tool. We replace the Candi-
date Dark Jargon Phrase Selection Module with AutoPhrase, and the remain-
ing modules remain unchanged.



Detection of Dark Jargon Phrases 207

• Word2vec-Skip-gram [12] is a neural language model. We change the pre-
trained Black-BERT model in the Phrase-level Context Representation Gen-
eration Module to Word2vec-Skip-gram, and the remaining modules of our
model remain unchanged.

• ELMo [14] is a pre-trained language model which can generate contextual
representations of words. Similarly, we replace the Black-BERT model with
the ELMo algorithm, and the remaining modules remain unchanged.

• ChatGPT [13] is a large language model from OpenAI based on an archi-
tecture called GPT-3.5. It can be used to answer questions in a similar way
to a human.

Evaluation Results. Table 2 shows the experimental results of the performance
of dark jargon phrase detection. It can be seen that our proposed model scores
better than other baseline models on our dataset in our study in each metric.
It proves the superiority of our proposed DJPD model in detecting dark jargon
phrases.

Table 2. Results of comparative experiments. The best results are shown in bold.

Models Recall(%) Precision(%) F1-score(%)

EPD [21] 1.56 1.55 1.55

AutoPhrase [15] 3.12 0.17 0.32

Word2vec+Skip-gram [12] 21.87 34.57 26.79

ELMo [14] 87.02 30.16 44.79

ChatGPT [13] 5.46 6.36 5.88

DJPD(our model) 87.72 84.75 86.21

Firstly, The most robust baseline in our dataset is the ELMo algorithm, which
has relatively good performance, but its Precision and F1-score values are much
lower (54.59% and 41.42%) compared to the DJPD model. A reasonable explana-
tion is that the ELMO algorithm to generate context representation is based on
the word level, without the minimum complete semantic unit phrase as the unit,
which will cause semantic ambiguity when generating context representation. In
addition, compared with ELMo [14], the performance of Word2vec+Skip-gram
[12] is relatively worse. The reason is that Word2vec+Skip-gram can only gener-
ate the context representation of static words. Secondly, among the six models,
the two with the worst performance are AutoPhrase [15] and EPD [21], which is
explained by the fact that the method based on high-frequency n-gram to select
candidate dark jargon phrases lacks the ability to detect low-frequency phrases.
One thing to point out here is that the ChatGPT [13] has poor performance
in jargon phrase detection. It may be because that ChatGPT does not see the
jargon phrase before and it can not learn their patterns.
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Ablation Experiments. To further understand our proposed DJPD model, we
conduct ablation experiments and investigate the effectiveness of several com-
ponents of our method. Table 3 shows the results of the ablation study.

Ours - noun phrase pseudo-labels, Ours - pre-trained Black-BERT model
represent the performance of our model without noun phrase pseudo-labels, and
without fine-tuning the BERT model respectively. Compared with our Ours,
the performance of Ours-Noun Phrase Pseudo-labels and Ours-Pretrain Black-
BERT degrades evidently, with a range of 64.55–66.52% in F1-score. It verifies
the effectiveness of the collaborative work of each part. At the same time, it also
proves that these two parts are crucial to the detection of dark jargon phrases.

Table 3. Ablation of DJPD model. The best results are shown in bold.

Models Recall(%) Precision(%) F1-score(%)

Ours-Noun Phrase Pseudo-labels 24.43 16.49 19.69

Ours-Pretrain BlackBERT 62.01 13.10 21.66

Ours 87.72 84.75 86.21

5 Conclusions

In this paper, we propose DJPD model, a novel model for low-frequency aware
unsupervised dark jargon phrase detection on social platforms. The DJPD model
implements a noun phrase tagging method that does not require high-frequency
statistics, in conjunction with the pre-trained Black-BERT model that fine-tunes
the phrase level. Experimental results have proved that the DJPD model per-
forms significantly better than the most advanced methods on dataset, and it
also proves that the proposed detection model is innovative and practical.
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Abstract. Image Captioning task is one of the important tasks in com-
puter vision. In this paper, we propose a Multilayer Vision and Lan-
guage Augmented Transformer (MVLAT) method for improving the cor-
rectness of image description statements. In MVLAT, we have matched
image and text features by adding regional object image features as well
as grid image features and introduced them into the image description
task by cross-modal retrieval. We refer to this process as the visual con-
textual relationship module (VRM) to enhance the visual and contextual
features of the image description model. In addition, to focus attention
more on the focused information, we propose an attention enhancement
module (AEM) that enhances the attention weight of important informa-
tion while weakening the attention weight of non-essential information.
Finally, we propose a multi-label Focal loss in the image description
task that balances the positive and negative sample imbalance in the
training model. Experiments on the MSCOCO image description base-
line dataset show that the present method can obtain good performance,
and the overall performance of the model is better than many existing
state-of-the-art methods. The improvement over the baseline model is
7.7 on the CIDEr score and 1.5 on the BLEU-1 score.

Keywords: Image captioning · computer vision · visual contextual

1 Introduction

A very important task in image description tasks is the rational use of the
relationships between the semantic information of the exact target objects
extracted by image features. Based on the classical top-down attention mecha-
nism for region feature recognition [1], many state-of-the-art image description
tasks [5,6,24] have been studied from two directions: visual relations and posi-
tional relations. Nowadays, with the popularity of many Visual Transformer
frameworks, which can adequately refine visual and positional relations, many
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 210–222, 2024.
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state-of-the-art models are applied to image description tasks [2,3,8,15,17,22,23]
and achieve very excellent results.

Although the previous task has achieved very good results, the modeling
process is still very dependent on the quality of the image feature extraction,
and the quality of the image description statements is easily affected by the
single image feature input vector. As shown in Fig. 1, in the local description,
the common description as “people sitting chairs”. Obviously, such a description
is not comprehensive and does not focus on other important information in
the image. By introducing the VRM module, we add visual features and textual
features to the original image, which is the visual contextual relationship missing
in the original model. With the input of visual contextual relationships, we can
add the weight of the object “passengers”, the weight of the verb “wait”, and the
weight of the scene information “at the platform”. Diversity of input information
helps the model to generate more accurate image captions and, in some cases,
can help us to resist interference. Relying only on individual image feature inputs
will make it very easy to generate one-sided image captions. If the model is based
on diverse feature inputs, it will have rich prior knowledge to assist the model
in learning and reasoning about the images. The problem of generating lopsided
image descriptions can be greatly alleviated. This is also the starting point of
our work, and we can use the rich visual contextual relationships as a priori
knowledge to combine into the image captioning generation model to imitate
the human reasoning process when seeing images and get more accurate image
captions by diversified inputs.

people,sitting,chairs

green and yellow,train

Passengers,wait,train,at the platform

Fig. 1. Using visual context to discover the implicit meaning in the image and the
importance of different words in the image description sentence.

The common methods for image feature extraction include CNN, R-CNN,
and faster-RCNN [20]. However, a single feature input tends to generate one-
sided image description statements. Therefore, we propose the visual contextual
relationship module (VRM), which employs different feature extraction meth-
ods to complement the input of visual and textual features. First, visual fea-
tures in the MSCOCO dataset are extracted by the Visual Transformer Encoder
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method in CLIP [19]. Second, the text label features in the MSCOCO dataset
are extracted by the Text Transformer Encoder method in CLIP. Then, the con-
textual relationship between image features as well as text features is established
by cosine similarity matching, and for an image feature, we take the top k (k =
12) text features with the highest similarity for pairing. Finally, they are merged
with the base image features by stacking and fed into the Transformer Decoder
to achieve the purpose of compensating the missing visual information of the
traditional image description task by additional compensating inputs of visual
contexts. We will classify the compensated visual features into three categories:
globe, object, and grid. Each of their image regions generates visual contextual
relationship pairs that are used to complement the visual contextual relation-
ships in the model. In addition, we propose an attention enhancement module
(AEM) to filter the output attention weights. AEM will filter the attention vec-
tor weights of some unimportant categories and increase the attention weights
of important categories so that our model will focus more on useful information.
Since a large number of visual features are added to the model, it causes the
problem of positive and negative sample imbalance during the training process.
Therefore, we propose a multi-label Focal loss method based on the single-label
Focal loss [11] in the training of the model, combined with the original cross-
entropy loss function. We use it to balance the weights of positive and negative
samples, which makes the training of the model more effective. Finally, by com-
bining VRM, AEM, and the pair-label Focal loss method, the Multilayer Vision
and Language Augmented Transformer (MVLAT) method is implemented to
form a modeling approach that realizes the combination of image feature infor-
mation and visual contextual relationship information to achieve the purpose of
diversified input.

The primary contributions of this paper are as follows:

– We propose a visual contextual relationship module (VRM) that compen-
sates for the easily missing contextual relationship information of the image
description task.

– We propose an attention enhancement module (AEM) that enhances the
attentional weight of important information and reduces the attentional
weight of easily distracting information.

– We propose a multi-label Focal Loss training method based on Focal loss,
which improves the utilization of positive and negative samples in the model
and enhances the training of more difficult training samples.

– We propose the MVLAT method, which combines VRM, AEM, and multi-
label Focal loss methods. We balance the parameters of the model through
a large number of experiments and verify the effectiveness of our method
through experiments, and prove that the MVLAT method can make the per-
formance of the model improve effectively.

The other sections of this article are organized as follows: Sect. 2 mainly intro-
duces the method of the model in this article, Sect. 3 presents the experiments
and results of our model, and Sect. 4 presents the conclusions of the model.
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2 Method

MVLAT is mainly composed of two core modules: VRM and AEM. The overall
structure of the model is shown in Fig. 2. The core framework of MVLAT is
similar to the classic Transformer model. The model is divided into an encoder-
decoder structure. We will mainly introduce these two parts in the following
content.

Fig. 2. Overall framework of MVLAT.

2.1 Transformer Basic Models

The basic flow formula of a standard Transformer model is as follows:

V̂ = softmax(
QKT

√
dk

)V = ΩAV, (1)

MultiHead(Q,K, V ) = Concat(H1, ...,Hh)WO, (2)

Hi = Attention(QWQ
i ,KWK

i , V WV
i ) = ΩAV, (3)

FFN(x) = max(0, xW1 + b1)W2 + b2, (4)

where the embedded feature vectors X are used as the input to the first encoder
layer, after processed by three learned projection matrices WQ, WK and W V ,
the attention weights represent the visual relation of different Q and K are com-
puted and the weighted average vectors V̂ are obtained according to formula 1,
dk is the constant scaling factor, which is equal to the dimension of W Q, W K
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and W V . WQ
i ,W K

i ,W V
i ∈ R

d
h×d are head projection matrices for head i, W O

denotes the linear transformation. Where W 1,b1 and W 2,b2 are the weights and
biases of two fully connected layers.

As shown in Fig. 2, in our MVLAT, image features are also used as the input
of self-attention. At the same time, before the input of image feature vectors, the
visual context information contained in the preprocessed visual context database
is merged into the input image feature vectors to optimize the attention weight
matrix as the Q, K matrix-vector of attention. Furthermore, Fig. 3 (a) is the
traditional Transformer architecture, and Fig. 3 (b) is the improved Transformer
architecture in this paper.

Fig. 3. Comparison between traditional Transformer and our proposed Transformer.
Figure (a) shows the traditional Transformer architecture, and Figure (b) shows the
improved Transformer architecture in this paper.

2.2 Visual Contextual Relationship Module

In this section, the basic implementation method of the visual contextual rela-
tionship module is mainly introduced. The detail process of the visual contex-
tual relationship module shown as the Fig. 4. First of all, this paper establishes
a visual context information database containing “attribute object” pairs and
“subject predicate object” triples by parsing attributes and relational annota-
tions from Visual Genome. Secondly, based on the ready-made cross-modal joint
embedding method in CLIP’s work, we can obtain the image sub-region feature
vector and use the image sub-region feature vector to query the relevant text
description in the visual context information database.
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Fig. 4. This is framework of VRM. VRM mainly utilizes CLIP to extract image features
of globes, objects and grids.

For the extraction of visual context, we need an image encoder module and
a text encoder module. The image encoder module encodes the input image into
an image feature vector as visual input. The text encoder module encodes the
text annotations under the annotations directory in Visual Genome into a text
feature vector, as input to the context of our visual context. In order to maintain
the integrity of the model, we use the image encoder and text encoder included
in the CLIP model, which is both trained based on the Transformer architecture.
In this context, we label them as CLIP-I for the image branch and CLIP-T for
the text branch. These branches transform images and text into comprehensive
feature representations. CLIP employs a large-scale training approach for image-
text pairs, utilizing comparative learning. This method brings pairs of images
and text closer together in the embedded space, simultaneously creating sepa-
ration between unmatched images. Using a pre-trained model, the multi-modal
search problem is transformed into a nearest neighbour search problem. The
basic processes involved can be summarized as follows:

if = ImageEncoder(I), tf = TextEncoder(T ), (5)

ie = Norm(if · Wi), te = Norm(tf · Wt), (6)

s(ie, te) =
ie · te

‖ie‖ × ‖te‖ , (7)

ivram = iglobe + (1 − α) × (iobjects) + α × igrids, (8)

where I belong to global, objects, grids, indicating the image data that has been
divided after object and grid recognition. Images are divided into three types:
global, objects, and grids. if represents the original global image feature obtained
after image encoding. The image encoder can choose to use ResNet or Visual
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Transformer. To ensure the integrity of the model, we use the Visual Transformer
recommended in CLIP. T comes from annotations, which represents the anno-
tations text label content of Visual Genome. tf represents the original global
text tag feature obtained after passing through a text encoder, where the text
encoder can choose RNN or Text Transformer. Like image encoders, to maintain
the model’s integrity, we use the Text Transformer recommended in CLIP in
our article. Wiand Wt is the built-in multimodal embedding, ie and te is the
enhanced image and text feature vector obtained after multimodal embedding.
We use CLIP-T to encode all text annotations in the image description text as
search keywords. The main object image sub-region, grid image sub-region, and
original image are encoded and queried through CLIP-I. The algorithm of cosine
similarity is used to train and calculate the similarity between the two vectors,
search for text descriptions with the first k highest cosine similarity scores among
text description features, and store them with corresponding image feature vec-
tors for weighted training of subsequent image description tasks. The weight
ratio of indexed object regions and grid regions directly affects the final perfor-
mance of the model, so we set a super parameter α to adjust the proportion of
object regions and grid regions in the model. The value of α will be shown in
the following experiments.

At this step, we use the CLIP-T that has been pre-trained to encode each
set of retrieved text description T into a global representation, obtain the text
description vector of visual context information, and then extract the input
image feature vector through the pre-trained CLIP-I as the image encoder.
Finally, because the model of image caption is typically an auto-regressive
model, it is only necessary to concatenate the generated image feature vector
and the text description vector containing visual context information to obtain
an enhanced image feature input vector with visual context.

2.3 Attention Enhancement Module

The Transformer model is widely used in the self-attention mechanism, which
can efficiently extract the internal correlation of features or data. A self-attention
mechanism, like most attention mechanisms, needs to obtain three vectors, Q,
K, and V, and extract the internal correlation between Q, K, and V through the
inner product of Q and K; In the self-attention mechanism, the normalization
method is used to maintain the stability of the gradient. The main method is
to divide the inner product by the root of the dimension of the K vector, and
then obtain a vector that is positively related to attention through the softmax
activation function, and then dot the V vector to obtain the final weighted
attention vector. The calculation formula for self-attention is as follows:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (9)

Â = Add&N(A + σ(W q
g Q + W v

g fmhatt(Q,K, V )+

bg) � (W q
i Q + W v

i fmhatt(Q,K, V ) + bi)),
(10)
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where formula 9 is the standard attention formula. In formula 10, W q
g , W v

g , W q
i

and W v
i is the weight matrix of attention, Q, K, and V are the three input vectors

of attention, and fmhatt is the multi-headed self-attention function, and σ is the
sigmoid function. In formula 10, the original input feature vector A is invariant.
An enhanced attentional feature is obtained by summing the inner product of
the upper and lower two channels in the AEM module with the original input
features.

Fig. 5. Framework of the AEM. The function of AEM is divided into two routes,
the upper link filters the attention weights by descending and ascending through the
operation of the sigmoid, and the lower link keeps the dimensionality unchanged and
finally gets the enhanced attention weights by the inner product.

As shown in Fig. 5, combined with the formula, it can be seen that in order
to improve the performance of attention usage in Transformer, we have added a
compensation attention module on top of the original output attention vector.
This compensation attention module constructs the correlation between channels
through two fully connected layers, and the number of output weight values is the
same as the number of input feature attention vector channels. Through channel
descent and ascent operations, finally, the attention vector is more focused on
highlighting information through the Sigmod function. Essentially, it is to enable
our model to focus more on channel features with large amounts of information
while suppressing unimportant channel features, thereby achieving an attention-
enhancing effect.

2.4 Objectives

In the training and reasoning stages, the two schemes proposed in this paper can
not only be properly combined to guide the description of the generation process,
but also each scheme can be implemented separately to solve the different defects
in the previous model. The model adopts the mainstream sequence generation
method, that is, the description statement is generated from word to word, and
the model is usually trained by optimizing the cross-entropy(XE) loss function:
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LXE = −
T∑

t=1

log(pθ(y∗
t ‖y∗

1:t−1)), (11)

where pθ is probability and y∗
t is the phrase of the output word.

The multi-label Focal loss based on Focal loss combined with the original
cross-entropy loss is given by the following equation:

LXE(p, y, βt) = −βt · (1 − pθ)γ ·
T∑

t=1

log(pθ(y∗
t ‖y∗

1:t−1)), (12)

where β is used as a hyperparameter to regulate the balance between positive
and negative samples. When its value is less than 0.5, the model will optimize
the training of negative samples. When its value is greater than 0.5, the model
will optimize the training of positive samples. Additional, The (1−pθ)γ is used as
a modulation factor to automatically adjust the training weights of the difficult
samples. As the model’s probability pθ approaches 1, the model will decrease the
training weight for this classification. As its value approaches 0, the model will
increase the training weight for this classification. Differ from the XE loss, we also
improve the CIDEr-D score with the beam search. During the decoding phase,
we sample the leading k words at every step and retain the highest probability
top-k sequences as well:

∇θLRL(θ) = −1
k

k∑

i=1

(r(yi
1:T ) − b)∇θlogpθ(yi

1:T ), (13)

where k is the beam size, r is the CIDEr-D score function, and b=(
∑

ir(y
i
1:T ))/k

is the baseline.

3 Experiments

This section evaluates the effectiveness of the proposed model through experi-
ments. First, it introduces the benchmark dataset and evaluation indicators used
in the experiment, and gives details of the implementation of the experiment.
Then, it compares the method in this paper with other advanced methods. This
paper uses the Karpathy branch noted and uses images to describe the standard
evaluation indicators BLEU (B-1, B-4) [18], CIDEr-D (C) [21] , METEOR (M)
and SPICE (S) in the task, The results of generating descriptive statements are
analyzed quantitatively and qualitatively.

3.1 Implement Details

In this paper, we use DLCT [15], one of the current sota performances, as the
baseline model and verify the effectiveness of VRM and AEM through DLCT.
For the DLCT baseline model, first use Adam optimizer [9] to train the model
under cross-entropy loss. In the beginning, set the learning rate to 1 × 10−4.
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In 10–15 epochs, the learning rate is set to 5 × 10−4. After 15–18 epochs, the
learning rate is set to 5 × 10−7. The batch size is set to 100 in the cross-entropy
stage. When entering the CIDEr score intensive learning stage, the batch size is
set to 50, and the learning rate is set to 5 × 10−6. In the whole process, both
the cross entropy training stage and the CIDEr reinforcement learning stage are
set to 50. The hyperparameters α and β are selected as shown in Table 1a and
1b, and it referring to the BLEU-1 and CIDEr scores.

Table 1. Performance variation with different α and β values. From this table, we can
see that the model can achieve better performance when we set α to 0.6 and set β to 0.8.

α Values 0.4 0.5 0.6 0.7 0.8

BLEU-1 82.9 83.0 82.9 82.9 82.8
CIDEr 140.8 141.3 141.5 141.4 141.2

(a) α Values

β Values 0.5 0.6 0.7 0.8 0.9

BLEU-1 83.0 83.1 83.0 82.9 82.7
CIDEr 141.3 141.2 141.4 141.5 141.3

(b) β Values

3.2 Ablation Studies

Since three core modules are proposed in this paper to optimize the model, the
main purpose of this section is to make a quantitative analysis of the role of each
module on the overall model, and the role generated by each module is shown in
Table 2. From the data shown in this Table, either VRM or AEM, or multi-label
Focal loss, can more or less improve the performance of the baseline model.

From the ablation experiments in Table 2 , it is recognized that the model-
boosted performance is mainly provided by VRM. However, VRM does not per-
form adequately due to the large amount of interference introduced. Therefore,
we propose AEM and multi-label Focal loss to filter most of the noise interference
and greatly improve the performance of the model.

Table 2. Performance comparison of baseline model combined with VRM and AEM
modules

VRM(image) VRM(image-text) AEM Muti-FLoss B-1 B-4 M R-L CIDEr

– – – – 81.4 39.8 29.5 59.1 133.8

� – – – 82.0 40.1 29.7 59.3 137.5

– � – – 82.5 40.8 30.1 59.6 139.8

– – � – 81.8 39.8 29.6 59.4 135.3

– – – � 82.1 40.2 29.7 59.5 136.1

– � � � 82.9 41.4 30.4 59.6 141.5

3.3 Results and Analysis

In order to verify the effectiveness of the MVLAT architecture proposed in this
paper, on the basis of ensuring that the evaluation indicators are consistent,
we compare the performance results of some mainstream models in recent years
and present the final results in the form of tables. We submitted the results
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generated by the MVLAT model on the MSCOCO online test set to the online
server, as shown in Table 3. In addition, the experimental results of MVLAT at
the reinforcement learning stage are shown in Table 4.

Table 3. Leaderboard of various methods on the online COCO test server.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METER R-L CIDEr

Model c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

BUTD [1] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

X-Linear [17] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4

AoA-Net [7] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

SGAE [25] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

DLCT [15] 82.0 96.2 66.9 91.0 52.3 83.0 40.2 73.2 29.5 39.1 59.4 74.8 131.0 133.4

M2-
Transformer [3]

81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

Ours(MVLAT) 82.8 97.3 69.4 93.3 55.2 85.2 42.5 75.5 30.4 40.2 59.6 77.2 139.2 140.5

It is clear from Table 4 that after combining VRM and AEM, the CIDEr
scores of MVLAT have increased to 141.5%, respectively, by 7.7%. Where the
visual features of the base model in our model refer to the pre-processed visual
features based on the MSCOCO dataset in Oscar [13] and Vinvl [27]. The per-
formance of MVLAT for most metrics is more competitive than current state-
of-the-art models.

Table 4. Performance comparison of VRM and other state-of-the-art models in the
reinforcement learning stage.

Models BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

Up-Down [1] 80.2 36.9 27.6 57.1 117.9

GCN-LSTM [26] 80.5 38.7 28.5 58.5 125.3

AoANet [7] 80.2 38.9 29.2 58.8 129.8

SGAE [25] 80.8 38.4 28.4 58.6 127.8

NG-SAN [4] 80.8 38.8 29.0 58.7 126.3

ORT [5] 80.5 38.6 28.7 58.4 127.8

X-Transformer [17] 80.9 39.7 29.5 59.1 132.8

GET [8] 81.5 38.5 29.3 58.9 131.6

M2 Transformer [3] 80.8 39.1 29.2 58.6 131.2

SCD-Net [14] 81.3 39.4 29.2 59.1 131.6

TransDIC [16] 81.6 39.3 29.2 58.5 132.0

DLCT [15] 81.4 39.8 29.5 59.1 133.8

BPOD(+oscar) [10] 81.5 39.7 30.0 59.5 135.9

OSCAR [13] – 40.5 – – 137.6

Ours MVLAT(+oscar) 82.0 40.5 29.6 59.2 136.5

BLIP [12] – 40.4 – – 136.7

BPOD(+vinvl) [10] 81.8 41.3 30.1 59.7 139.9

VINVL [27] – 40.9 – – 140.5

Ours MVLAT(+vinvl) 82.9 41.4 30.4 59.6 141.5
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4 Conclusions

In this paper, we propose a MVLAT architecture to achieve the purpose of
supplementing visual contextual features for the underlying image description
model. First, the visual context features are supplemented by VRM. Second,
the attention weights are purified by AEM. Then, the positive and negative
samples in the model are balanced by multi-label Focal loss. The results show
that MVLAT can effectively complement the contextual features of vision and
improve the accuracy of image description statements.
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Abstract. Machine translation requires that source and target sen-
tences have identical semantics. Previous neural machine translation
(NMT) models have implicitly achieved this requirement using cross-
entropy loss. In this paper, we propose a sentence Semantic-aware
Machine Translation model (SaMT) which explicitly addresses the issue
of semantic similarity between sentences in translation. SaMT inte-
grates a Sentence-Transformer into a Transformer-based encoder-decoder
to estimate semantic similarity between source and target sentences.
Our model enables translated sentences to maintain the semantics of
source sentences, either by using the Sentence-Transformer alone or by
including an additional linear layer in the decoder. To achieve high-
quality translation, we employ vertical and horizontal feature fusion
methods, which capture rich features from sentences during translation.
Experimental results showed a BLEU score of 36.41 on the IWSLT2014
German → English dataset, validating the efficacy of incorporating
sentence-level semantic knowledge and using the two orthogonal fusion
methods. Our code is available at https://github.com/aaa559/SaMT-
master.

Keywords: Sentence Semantic-aware · Multi-branch Attention ·
Fusion Mechanism · Transformer

1 Introduction

Neural machine translation (NMT) has made significant progress in recent years,
thanks to extensive research on deep learning techniques. The encoder-decoder
architecture [1–4] has enabled end-to-end training of NMT models. Specifically,
the Transformer [3] has led to remarkable improvements in machine translation
performance. The attention mechanism in the Transformer model allows the
decoder to focus on the most relevant parts of the input sentence, resulting in
more coherent sentence generation. In addition, multi-task learning has been
employed to improve the generalization ability of NMT models by learning an
inductive bias shared between related tasks [5–7]. Furthermore, several NMT
models have attempted to achieve state-of-the-art performance by employing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 223–235, 2024.
https://doi.org/10.1007/978-981-99-7022-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7022-3_20&domain=pdf
https://github.com/aaa559/SaMT-master
https://github.com/aaa559/SaMT-master
https://doi.org/10.1007/978-981-99-7022-3_20


224 J. Li et al.

multi-task learning based on the Transformer architecture [14]. However, most
of the previous methods have not emphasized enough on the semantic consistency
between the input and translated sentences.

Although these methods ensure that the cross-entropy loss used for model
training can accurately generate every token in a translated sentence while
retaining the semantics of its input sentence, they overlook the fact that
an inaccurate generation for even one token can alter the semantics of the
entire translated sentence. To address this issue, we propose SaMT, a sentence
semantic-aware machine translation model that prioritizes the semantic consis-
tency between input and translated sentences. SaMT is a Transformer-based
NMT model that leverages sentence-level semantic knowledge. We train SaMT
to extract sentence semantics using Sentence-Transformer [15], which produces
vectors that capture the semantics of sentences. We measure the semantic simi-
larity between input and translated sentences with Sentence-Transformer alone
or in conjunction with an additional linear layer in the decoder. Our semantic
similarity loss is added to the cross-entropy loss for model training. Addition-
ally, we employ vertical and horizontal feature fusion mechanisms to improve the
translation quality. These orthogonal feature fusion mechanisms allow our model
to capture richer information during translation. Our model was evaluated on
the IWSLT-2014 translation task and outperformed the original model [10] by
achieving a higher BLEU score of 36.41. This demonstrates the superiority and
innovation of our approach.

Our study’s main contributions are as follows:

• We propose SaMT, which prioritizes the semantic consistency between input
and translated sentences. SaMT combines sentence-level semantic knowledge
with a Transformer-based NMT model and explicitly adds the constraint on
semantic consistency to the loss function.

• The inter-layer and intra-layer feature fusion mechanisms employed by SaMT
improve the model’s representational capability due to their orthogonal fusion
strategies.

• Our experimental results on the IWSLT2014 German → English transla-
tion task demonstrate the effectiveness of combining sentence-level semantic
knowledge with NMT models, as evidenced by a maximum increase of 0.71
BLEU to the original model.

The remainder of this paper is organized as follows: Sect. 2 introduces the
related work on NMT. In Sect. 3, we describes the proposed SaMT in detail.
Subsequently, we explain how to train our model with the semantic-aware loss
function. Our experimental results are presented in Sect. 4. We conclude this
paper in Sect. 5.

2 Related Work

Transformer [3], with its encoder-decoder structure and self-attention mecha-
nism, has emerged as the leading architecture for machine translation. Various
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scaled-up variants of the Transformer model have been extensively explored.
However, overly deep Transformer sometimes lead to unexpected performance
degradation due to the mere stacking of layers, which causes gradients to vanish
or explode. Recent studies [8,9] have addressed the scaling challenge by incor-
porating inter-layer feature fusion techniques between the encoder and decoder
features. Fan et al. [10] introduced a Transformer-based model utilizing multi-
branch attention, where the multi-head attention layers of the encoder and
decoder form a branch. These studies have demonstrated that fusing and group-
ing mechanisms can effectively enhance the performance of NMT models.

Cross-entropy loss is widely used as the loss function in machine trans-
lation models, and its effectiveness has been demonstrated by the success of
numerous neural machine translation models [2,3,11]. However, cross-entropy
loss essentially predicts probabilities at the word level. This word-level focus
can cause models to primarily perform word-for-word substitution to preserve
semantics between input and translated sentences. To encourage higher-level
semantic preservation, auxiliary losses have been proposed. Li et al. [12] pro-
posed a hybrid cross-entropy loss to convert translation from a one-to-one to a
one-to-many mapping problem. CBBGCA [13] proposed a confidence-based bidi-
rectional global context-aware training framework, which jointly trains the NMT
model and the auxiliary conditional mask language model to improve the decod-
ing ability. Unlike CBBGCA, Jung et al. [11] uses various information produced
by the decoder to add sentence-level scores to penalize cross-entropy, directly
incorporating sentence-level semantics into NMT frameworks. SBERT [16] is a
state-of-the-art sentence embedding model in which the semantic vectors of two
sentences with similar meanings are located close to each other.

As a summary, it is crucial for NMT models to preserve the semantics of the
source and target sentences, rather than simply substituting words. However, the
ability to capture semantics is dependent on the data and representations learned
by the entire neural network architecture. It is also not feasible to rely solely
on cross-entropy loss to ensure sentence-level semantic preservation. To address
this, we propose utilizing a well-pretrained, multi-lingual Sentence-Transformer
to constrain the training loss, based on the insight that the semantic vectors for
two sentences in a translation pair should be similar. Additionally, our model is
built upon a sophisticated and scalable Transformer architecture.

3 Sentence Semantic-Aware Machine Translation

This section begins by describing the problem to be addressed, followed by the
introduction of a sentence Semantic-aware Machine Translation (SaMT), which
is a solution that preserves the meaning of the source sentences in the trans-
lated sentences. The architecture of SaMT is then outlined, and subsequently its
various modules and techniques are explained in detail.
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3.1 Problem Definition

In the field of linguistics, language translation refers to the process of convert-
ing a written sentence from a source language into the target language while
preserving the meaning of the input sentence. The preservation of semantic con-
sistency is a critical aspect of machine translation. In general, the NMT model
is trained by minimizing the difference between input and translated sentences
using cross-entropy loss at the word level. The cross-entropy loss function is
depicted in Eq. (1).

Cross − entropy loss = − 1
m

m∑

j=1

log p(yj |y<j, x) (1)

where m is the length of the translated sentence, x is a source sentence, yj is
the ground-truth word (i.e., token) at the j-th position, and y<j is the partial
sentence that has been translated before predicting word yj .

In the realm of machine translation utilizing cross-entropy loss, there exists an
underlying assumption that ensuring the accurate prediction of every word in a
translated sentence guarantees that the sentence will maintain the same meaning
as its source sentence. However, in practice, cross-entropy loss has its limitations
in preserving the original meaning. The calculation of cross-entropy loss at the
word-level fails to consider the potential impact of incorrectly predicted words
on sentence semantics. While an incorrect prediction may only have a minimal
effect on the overall loss due to the averaging of the loss over all words in a
translated sentence, it may slightly affect or even entirely change the meaning
of the input sentence. Therefore, it is imperative to devise a novel loss function
that can accurately capture the meaning of a translated sentence as closely as
possible to that of its source sentence.

3.2 Model Architecture

We propose the sentence Semantic-aware Machine Translation (SaMT) model,
which ensures the consistency between the semantics of the input and trans-
lated sentences. The architecture of SaMT is illustrated in Fig. 1, and it com-
prises three components: an encoder, a decoder, and a semantic vector generator
named SVG. Unlike previous works, SaMT employs a pre-trained multi-lingual
Sentence-Transformer to construct sentence vector representations for both the
input and translated sentences, measures their semantic similarity, and incorpo-
rates the differences as an auxiliary loss to the model. Moreover, SaMT utilizes
horizontal and vertical fusions to leverage richer features during translation.
The subsequent subsections provide detailed explanations of each of these com-
ponents.

Encoder and Decoder. Despite being extensions of the typical Transformer
architecture, the encoder and decoder in the proposed model incorporate the
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design principles and methods of multi-branch attention Transformer [10] and
feature aggregation techniques [8]. This approach enables the model to leverage a
more diverse set of information during the translation process, achieved through
the use of fusion mechanisms that operate both within and between different
layers.

Horizontal Feature FusionWithin Layers. Our model utilizes a basic self-attention
module that closely mirrors the standard Transformer. The only difference is that
we have replaced all multi-head attention layers with multiple multi-branch atten-
tion layers, which we refer to as multi-branch attention layers. As a result, our
new module performs a Horizontal Feature Fusion to integrate intra-group infor-
mation. The improved functionality and flow within the self-attention module of
this new structure is illustrated in Fig. 2.

Fig. 1. Architecture of SaMT.(When using the Type II, the shaded areas in the figure
will be replaced with SV GLinear, which is a linear layer)

To prevent co-adaptation between branches, we have incorporated the drop-
branch technique into our model, where a random selection of branches are
dropped during training. Let MatAttnN,M (Q,K, V ; ρ) denote a multi-branch
attention layer with drop branch rate ρ ∈ [0, 1]. The formula for this technique
is expressed as follows:

MatAttnN,M (Q,K, V ; ρ) = Q +
1
N

N∑

i=1

I(Ui
>= ρ)

1 − ρ
SelfAttnM (Q,K, V ; θi) (2)

where Ui is uniformly sampled from [0, 1], l is the indicator function. SelfAttnM

denotes a multi-head attention layer with M heads. N is the number of branches.
θi = (W i

Q,W i
K ,W i

V )M
i=1 is the parameter set of the i-th multi-head attention

layer.
The utilization of a multi-branch attention mechanism by both the encoder

and decoder enables our model to extract comprehensive and diverse features.
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Fig. 2. Architecture of MAT-E Layer

This is because the various branches within the layer focus on different aspects of
the same input. The horizontally fused features are integrated within the layers
through an average operation, resulting in richer features at every multi-branch
attention layer.

Vertical Feature Fusion Between Layers. In order to vertically fuse features from
higher to lower layers, we have incorporated the feature aggregation method
mentioned in Yang et al. [8]. The fusion of these features, as illustrated in Fig. 1,
enables the model to make full use of all layer features, unlike traditional Trans-
former models that only use the top features. The experimental results have
demonstrated that this approach effectively improves the overall performance of
the model.

Encoder. All layers of the encoder are grouped to obtain the group features of
each group. Different sets of features represent different levels of features. Specif-
ically, let He = he

1, ..., h
e
Le

be the hidden state of the encoder, and Le represents
the number of layers of the encoder. We set Fe() as the fusion function of the
encoder. It fuses the hidden state He of the encoder into a single representation
hf

e , which is expressed as follows:

hf
e = Fe(He) = LN(

1
Ne

Ne∑

i=1

σ(we
i )h

e
αi

) (3)

where Ne = �Le/Te� is the number of groups of the encoder, and Te is the number
of layers of the encoder in each group. αi = min(iTe, Le); LN() denotes layer
normalization; σ is the sigmoid activation function.

Decoder. Let the hidden state of each layer of the decoder be expressed as
Hd = hd

1, ..., h
d
Ld

, where Ld represents the number of decoder layers. Likewise,
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decoders are also divided into different groups, Nd = �Ld/Td� is the number of
decoder groups, Td is the number of decoder layers in each group, where the
(k − 1)Td + 1 ∼ kTd adjacent layers belong to the k-th group. The k-th fused
representation h

df

k can be computed by describing representation-based merging:

h
df

k =
min(kTd,Ld)∑

i=(k−1)Td+1

σ(wdr
i )hd

i (4)

Subsequently, we get the fused features [hdf

1 , · · · , h
df

k , · · · , h
df

Nd
].

3.3 Semantic Vector Generator

Our Semantic Vector Generator (SVG) is designed to produce a unique semantic
vector for each sentence in various languages. The purpose of this vector is to
facilitate the calculation of semantic similarity between two sentences. This sim-
ilarity measure is then utilized in the training phase to ensure that translations
accurately convey the meaning of the source sentence. We have developed two
types of SVGs that are capable of generating semantic vectors for sentences.

Sentence-Transformer Based SVG. The first SVG is based on a pre-trained
Sentence-Transformer model, which is a multi-lingual model. This SVG can be
shared to generate semantic vectors for both input and translated sentences,
which are then located in the same vector space. This approach enables us to
leverage the power of pre-trained models and multilingualism to improve the
accuracy and efficiency of our translation system.

Equation (5) shows the equation of generating a semantic vector of a source
sentence.

Si = SV GST (I) (5)

where SV GST indicates the SVG based on the pre-trained Sentence-
Transformer, I = (i1, ..., im) is an input sentence of m length, and Si is a
semantic vector of the input sentence with d dimensions.

The SV GST is shared for a translated sentence, as shown in Eq. (6).

St = SV GST (T ) (6)

where T = (t1, ..., tn) is a translated sentence of n length, and St is a semantic
vector of the translated sentence with d dimensions.

It is noteworthy that despite the discrepancy in length between the input
and translated sentences, SV GST is capable of generating vectors of the same
dimensionality, facilitating similarity comparisons.

SVG with a Linear Layer. The second SVG, namely SV GLinear, has been
proposed to generate the semantic vector of a translated sentence by linearly
mapping the decoder’s hidden vector. The input sentence, on the other hand, is
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still generated using SV GST , Specifically, the output of SV GLinear is a projec-
tion of the decoder’s final hidden states onto the vector space of the Sentence-
Transformer, as depicted in Eq. (7). It is evident that this is a more challenging
task, and experimental results have shown that it helps the model achieve better
translation performance.

St = SV GLinear(H) (7)

where H is the aggregated vector by the group fusion in the decoder, and St is
a semantic vector of the translated sentence with d dimensions.

4 Experiments

4.1 Experimental Settings

Cost Functions. As mentioned earlier, we propose a novel cost function to
guide our model in explicitly retaining the meaning of source sentences in the
translated sentences. This cost function includes the degree of semantic difference
between the source and translated sentences in addition to the cross-entropy loss.
The proposed cost function can be expressed as follows:

L = LMT + αLsim (8)

where LMT is the cross-entropy loss, Lsim is the semantic similarity distance,
and a hyper-parameter α controls the guiding role that the semantic similarity
plays in contributing to the total loss. The proposed Lsim is inspired by our
insight that the semantic vectors of two sentences in the source-target relation-
ship should be located the same or close to each other in the same vector space.
The measurement of semantic similarity is the factor that affects the transla-
tion quality in our model. We measure Lsim by three similarity metrics: cosine
similarity, KL divergence, Pearson correlation coefficient. The more similar the
meaning two source and translated sentences are, the lower the value of Lsim

gets. The three metrics are defined as follows:

Lcos = cos

∑d
i=1(xiyi)√∑d

i=1 x2
i

√∑d
i=1 y2

i

(9)

LKL = KL(softmax(
xi

τ
), softmax(

yi

τ
)) (10)

LPearson =
∑d

i=1(xi − x)(yi − y)√∑d
i=1(xi − x)2

√∑d
i=1(yi − y)2

(11)

On the other hand, LMT is calculated by considering layer groupings. The layers
of the decoder are divided into different groups, we take the fused features of
all the groups to predict words. For this, we use the probability-based fusion
function Fdp

to obtain the weighted average probability. Therefore, the multi-
level loss is expressed as below:
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LMT = −
∑

(x,y∈D)

Nd∑

i=1

ψ(wdp

i ) log Pi(y|x; θ) (12)

where θ represents the model parameters, ψ(wdp

i ) is the normalized weight that
aggregates the probabilities, and Pi(y|x; θ) is the translation probability gener-
ated by the i-th group of features.

Model Settings. We implemented SaMT with 6 encoder layers and 6 decoder
layers. We adopted the default settings provided in the official fairseq as the
backbone. The drop-branch rate ρ was 0.3 and the number of branches N was 3.
We trained the model using the Adam optimizer and the inverse sqrt learning
rate scheduler [3] with an initial learning rate of 5 × 10−4, β1 = 0.9, β2 = 0.98.
The weight of the final loss function α was 3.

Dataset. We used the IWSLT2014 German → English dataset for training
and testing. The dataset consisted of 16k sentence pairs in the training set and
7k sentence pairs in the validation set.

Model Types. As mentioned earlier, in order to calculate Lsim, it is necessary
to obtain semantic vectors of two input and translated sentences that have the
same dimensions. Therefore, we have designed two combinations of SV GST and
SV GLinear to measure the semantic similarity.

Type I. The SV GST is shared to generate the semantic vectors of both the
source and translated sentences.

Type II. The SV GST is used to generate the semantic vectors of source sen-
tences while the SV GLinear is used to generate the semantic vectors of translated
sentences.

4.2 Results

We conducted an evaluation with two different model types to explore the best
approach for implementing SVG, as presented in Table 1. Our proposed method
outperforms the original MAT model, achieving a BLEU score of 36.41. This
suggests that our method compensates for the decline in semantic understand-
ing caused by using cross-entropy loss by seeking semantic consistency between
input sentences and translated sentences. In comparison to other state-of-the-art
models, such as Gtrans, which utilizes feature fusion of encoder and decoder on
the basis of Transformer to enhance model performance, our two types of mod-
els achieve a higher BLEU score by 0.78 and 1.09, respectively. Moreover, we
observe a significant improvement in BLEU scores of 1.27 and 1.58, compared
to MLRF.

As shown in Table 2, we analyze the performance of the two types under
different similarity measures. Both Type I and Type II achieve the best BLEU
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Table 1. BLEU-4 scores on the IWSLT-2014 De → En Task.

Model BLEU-4

DynamicConv [17] 35.20

MLRF [18] 34.83

ReZero [20] 33.67

Lite-Transformer [19] 33.60

Gtrans [8] 35.32

MAT [10] 35.70

SaMT (Type I) 36.10

SaMT (Type II) 36.41

scores on cosine similarity. The performance of KL divergence and Pearson cor-
relation coefficient is comparable. We believe that cosine similarity can better
guide model learning and alleviate semantic understanding problems that may
be caused by cross-entropy loss. Comparing the experimental results of the two
types under the same measurement method, it can be concluded that Type II is
superior to Type I in all measurement indicators. We conclude that the seman-
tic vector obtained by linearly transforming the hidden state of Type II can
more directly represent the semantics of translated sentences. Type I is slightly
worse, probably because it leads to information loss in the process of generat-
ing predicted sentences and semantic vectors, making the semantics of sentences
incomplete.

Table 2. BLEU-4 scores of different similarity calculation methods.

Similarity calculation methods Type I Type II

Kullback-Leibler 35.78 36.17

Pearson correlation similarity 36.05 36.19

Cosine similarity 36.10 36.41

Table 3 elaborates the effects of the major components for performance accel-
eration on performance. The model with the intra-layer and inter-layer feature
fusion (i.e., SaMT (w/o similarity)) increases the BLEU score by 0.26. On the
other hand, the semantic similarity alone (i.e., SaMT (w/o group)) improves the
BLEU scores by 0.09 and 0.24 with Type I and II, respectively. This figure clearly
indicates that Type II translates input sentences by capturing their semantics
more accurately than Type I. Finally, our SaMT with the two fusion methods
and sentence semantics produces the best performance.

Next, we examine the effect of the group size of the encoder on the perfor-
mance. Type II achieves the best performance when the group size is 3, as shown
in Table 4. The performance changes according to the group size. The group size
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Table 3. Performance comparsion of different modules.

Model Type I Type II

SaMT (w/o both) 35.70 –

SaMT (w/o similarity) 35.96 –

SaMT (w/o group) 35.79 35.94

SaMT 36.1 36.41

has an effect on the fused feature. When the group size is 1, the features at each
layers of the encoder are fused into the aggregated feature without the bene-
fit of the in-group fusion mechanism. Therefore, the aggregated feature is more
largely affected by the low-level feature in the group size of 1 than in the larger
groups. According to the result, the in-group fusion of the larger groups helps
the encoder generate good features, especially with Type II.

Table 4. Performance comparison of different encoder and decoder sizes.

Encoder group size Type I Type II

1 36.11 36.08

2 36.24 36.15

3 36.10 36.41

Decoder group size Type I Type II

1 36.07 36.23

2 36.10 36.41

3 35.99 36.05

Table 4 also shows the effect of the decoder’s group size on performance. Type
II outperforms Type I in all the three cases of different group sizes. Both types
make the best performance when the group size is 2. According to our investi-
gation on this result, larger groups do not lead to the performance enhancement
always. Large groups obscure low-level features. It means that the diverse fea-
tures from high to low levels might help the decoder overcome the lack of the
information inherited from the autoregressive property of decoding.

5 Conclusion

In this paper, we present a novel machine translation model, named sentence
Semantic-aware Machine Translation (SaMT), to tackle the challenge of seman-
tic similarity between source and target sentences in neural machine transla-
tion (NMT). SaMT incorporates Sentence-Transformer into a Transformer-based
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encoder-decoder architecture to estimate the semantic similarity between sen-
tences. The model utilizes both vertical and horizontal feature fusion techniques
to capture rich features from sentences during the translation process. Exper-
imental results on the IWSLT2014 German → English dataset demonstrate
that SaMT outperforms competing models, achieving a BLEU score of 36.41.
The proposed model explicitly imposes a constraint on semantic consistency in
the loss function, which constitutes a significant contribution to NMT research.
In future work, we plan to evaluate the generalization capability of SaMT for
translations between diverse languages.
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Abstract. Automatic short answer scoring (ASAS) has received con-
siderable attention in the field of education. However, existing methods
typically treat ASAS as a standard text classification problem, following
conventional pre-training or fine-tuning procedures. These approaches
often generate embedding spaces that lack clear boundaries, resulting
in overlapping representations for answers of different scores. To address
this issue, we introduce a novel metric learning (MeL)-based pre-training
method for answer representation optimization. This strategy encourages
the clustering of similar representations while pushing dissimilar ones
apart, thereby facilitating the formation of a more coherent same-score
and distinct different-score answer embedding space. To fully exploit the
potential of MeL, we define two types of answer similarities based on
scores and rubrics, providing accurate supervised signals for improved
training. Extensive experiments on thirteen short answer questions show
that our method, even when paired with a simple linear model for down-
stream scoring, significantly outperforms prior ASAS methods in both
scoring accuracy and efficiency.

1 Introduction

Automatic short answer scoring (ASAS) is an important natural language pro-
cessing (NLP) application used in education, which not only lightens the teacher
workload but also addresses the problem of evaluation inconsistency.

A variety of approaches for performing ASAS have been proposed. In early
times, short answer scoring was treated as a machine learning problem where
discrete features, such as answer length [10] or TF-IDF [2], were extracted man-
ually and then classified using support vector machines or decision trees. Later,
with the emergence of deep neural networks, it became common to let the answer
texts pass through a recurrent neural network (RNN) and perform a supervised
learning for score prediction [1]. More recently, the advent of large-scale Trans-
former encoders, especially Bidirectional Encoder Representations from Trans-
formers (BERT [5]), have extended new state-of-the-art results in many tasks
including ASAS by providing more comprehensive, contextual embeddings. The
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 236–248, 2024.
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Fig. 1. Diagram of answer representation optimization effects using past methods and
metric learning

use of BERT-based ASAS methods can be mainly divided into three groups: (i)
using a pre-trained BERT as a word embedding encoder and feeding the embed-
dings into RNNs [24], (ii) fine-tuning a BERT directly [12], or (iii) performing a
second-stage BERT pre-training before the downstream scoring process [18].

However, while employing more advanced encoders, past ASAS methods have
predominantly relied on self-supervised pre-training (such as masked language
model target in BERT training) or supervised training using Cross-Entropy (CE)
or Mean Squared Error (MSE) loss to adapt the encoder for scoring. The funda-
mental steps in applying ASAS have generally mirrored those used in traditional
text classification/regression tasks. As shown in recent work [9,15], although
CE/MSE supervised training focuses on giving correct classifications, they are
still weak in forming label-distinct clusters, giving loose boundaries between
them (Fig. 1-(b), let alone the unsupervised methods). As a result, there are
considerable overlaps among the representations of the answers with different
scores, which may lead the classifier to misclassify more frequently and in turn,
impact the overall scoring accuracy.

To address this issue and achieve better accuracy, we propose to use metric
learning (MeL [22]) to optimize the answer representations. Originally proposed
and widely applied in computer vision fields, MeL operates on a simple yet
effective principle: it brings the similar representations together while pushing
dissimilar ones further apart by the given metric. By employing MeL, we can
effectively form compact embedding clusters for answers at each score level,
while pushing clusters of different scores further apart and enhancing their sep-
aration (Fig. 1-(c)). Consequently, the differences in their representations are
better exposed, benefiting the downstream scoring procedure.

To exploit the full potential of MeL, another important thing to consider is
what “metric” should we use. An intuitive choice is the label-based metric, in
which, for a given answer (referred to as the “anchor” example), answers with
different labels (scores) are treated as the “negative” examples, and those with
the same score are considered as the “positive” examples. However, we argue that
answers often have a nuanced but stronger similarity relationship, particularly
when addressing the same question, which can not be fully expressed by mere
score labels. To quantify and leverage this relationship, while considering data
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availability, we introduce two novel similarity definitions as the metric for MeL:
a score-based similarity for the most common scenarios, and a more detailed and
precise rubric-based similarity when scoring criteria are accessible.

By conducting MeL pre-training, finally, a linear network is sufficient to
deliver superior scoring results. In summary, our main contributions are as fol-
lows: We propose an efficient MeL-based method to create a distinctly separated
answer embedding space, enhancing scoring efficiency; we innovatively consider
two answer similarity definitions based on scores and question rubrics; extensive
experiments on thirteen questions across two languages demonstrate the superi-
ority of our method to existing scoring methods in both accuracy and efficiency.

2 Related Work

The development of automatic scoring systems parallels the progression of text
feature extraction techniques: In early research, handcraft discrete features such
as answer length [10], n-grams [16], and TF-IDF [2] were used for scoring.
Despite offering better interpretability, they require extensive feature design and
network tuning to obtain satisfactory results. After the emergence of deep neu-
ral networks, feature extraction has evolved into an automatic process, where
employing static word embeddings (e.g., word2vec, GloVe) with a variety of
network structures, such as Long Short-Term Memory (LSTM) [1], hierarchical
Convolution Neural Networks (CNN)/CNN [6], and CNN/LSTM with attention
[7], became the most common implementations. More recently, since the advent
of large-scale pre-trained language encoders such as BERT, using them to pro-
vide a contextual and comprehensive text representation for the answers has
become commonplace. Approaches typically involved fine-tuning BERT directly
[12,14,23] or performing a second pre-training iteration before scoring [18,21].
Some recent studies have also adopted strategies that either combine BERT as
the encoder with RNNs as the scoring network [13,19,24] or integrate features
extracted from BERT along with hand-crafted features [11] for final scoring.

From the review above, it is clear that while there have been advancements in
answer feature extraction techniques, existing research rarely focuses on improv-
ing encoder training to produce superior answer representations. To the best
of our knowledge, our work is the first to utilize metric learning in conjunction
with score and rubric information to optimize the formation of answer repre-
sentations. Several papers have claimed “to consider rubrics”, but they mostly
only added the rubric contents to the answer inputs [3,4], or additionally applied
laborious word embedding re-weighting before scoring [20]. We will show later
that this initial usage cannot outperform ours in Sect. 5.

3 Methodology

3.1 Problem Definition

Task: The task of ASAS can be formulated as a supervised machine learning
problem, where the objective is to learn a mapping from a short answer x to its
corresponding score y, i.e., f: X →Y, given the training data (xi, yi)

N
i=1.
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Fig. 2. Proposed similarity-MeL pre-training – MLP scoring framework

Workflow: A common ASAS workflow first extracts the feature (representation)
h of the answer x, then predicts the score ŷ based on it. This work used to be
performed manually, but is now typically done by feeding the answer text to a
fixed word embedding layer or directly to a language encoder:

answer x
encode−−−−→ embedding h

scoring−−−−−→ score ŷ

On this point, however, past methods often overlook the upstream training
process (i.e., x→h), but mainly focus on adding more contents to the input x,
switching to heavier encoders, or applying more complex downstream scoring
methods. In this paper, we employ MeL to refine the encoder training process
to produce better answer representations, thus enable achieving superior scoring
results using only a simple feed forward network (Fig. 2).

3.2 Preliminary: Metric Learning

Metric learning (MeL) is a well-established method widely applied in both the
field of computer vision [9] and natural language processing tasks [17]. It employs
a simple but effective approach that strives to reduce the distance between simi-
lar examples while simultaneously increase the distance between dissimilar ones
in the representation space. Compared to traditional machine learning tech-
niques, MeL is able to provide a new data representation space that offers clearer
and more meaningful discrimination between categories. Given these advantages,
we believe applying MeL to ASAS should also give better representations for the
answers and thus improve final scoring.

There are two ways to apply MeL. A typical and convenient way is to des-
ignate certain anchor-positive/negative example pairs for learning by the label.
For instance, if we use this mode for ASAS encoder training, for a specific answer
(the anchor text), we can assign the answers with different scores as its negative
examples, and those with the same score as the positive examples. When con-
ducting MeL, the anchor-positive examples are brought closer together and the
negatives are pushed further apart. This is realized through a Triplet loss [8]:



240 B. Wang et al.

LossMeL−tri = max(||hanc − hpos|| − ||hanc − hneg|| + ε, 0) (1)

However, the drawback of this learning mode is obvious, as it treats answers
with different scores as isolated categories. We propose that answers to the same
question should exhibit stronger similarity relationships – a subtle concept that
cannot be entirely captured by score labels alone. Fortunately, there is another
learning mode of MeL that can exactly leverage these similarity relationships
between examples. Specifically, in this mode, we need to construct example pairs
as follows: [answer 1, answer 2, sim(ans1, ans2)], and implement MeL in a
Siamese structure (Fig. 2-(a)) with the following mean squared error loss:

LossMeL−sim = [sim(hans1,hans2) − simgt(xans1,xans2)]2 (2)

where simgt denotes the defined, ground truth similarity between two answers,
while the embedding similarity is usually calculated using the cosine distance:

simcos(hans1,hans2) =
hans1 · hans2

‖hans1‖‖hans2‖ (3)

It is clear that employing this method provides more precise supervision sig-
nals for MeL, thereby enhancing the efficiency of the encoder’s training process.

3.3 Defining the Answer Similarity with Score and Rubric

Having determined the learning mode of MeL, we next need to consider a rea-
sonable definition of similarity between the answers since it is not explicitly
included in the original training data (xi, yi)

N
i=1. We propose two definitions

suited to different application scenarios and data availability. Note that to pre-
vent confusion, in the rest of the paper, we use symbols like x(m) to denote
answers x that receive an m-point score.

1) Score-based Similarity
In situations where only (answer, score) data is available, we propose to simply
use the score ratio as a quick estimate of the answer similarity:

Definition 1 (score-based similarity). Let x(m) and x(n) represent answers
with scores of m and n points. The similarity between them is defined as:

simsco(x(m),x(n)) =
m

n
(m ≤ n) (4)

2) Rubric-Based Similarity
While the score-based similarity is straightforward and easy to compute, it pro-
vides only a basic estimation and may not fully reflect the intrinsic relationships
between answers. We propose to refine this by further incorporating “rubric”
data into the similarity definition.

The inspiration comes from the actual scoring process. Answers are generally
evaluated in several separated sections, each corresponding to a “scoring point”.
Therefore, we can use the comparison of fulfilled scoring points between two
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Fig. 3. An example question, its model answer, rubric and the rubric-based similarity
calculation process

answers as an approximation for their similarity, where these scoring point rules
and final scoring criteria are indeed contained within the scoring rubrics.

For clarity, we here give a specific example of the answer evaluation process
using rubric in Fig. 3. The calculation of rubric-based similarity is also shown
there: using the rubric “reversely”, we determine the average number of scoring
points that an answer must meet to achieve a certain score, and then calculate
the similarity as the ratio of those fulfilled numbers between two answers.

Definition 2 (rubric-based similarity). Let R(m) and R(n) be the average
number of satisfied scoring points of x(m) and x(n). The rubric-based similarity
is defined as:

simrub(x(m),x(n)) =
R(m)

R(n)
(m ≤ n) (5)

where R(m) (and R(n) in the same way) is calculated as:

R(m) =
1

k(m)

k(m)∑

i=1

sp(m),i (6)

where sp(m),i is the number of satisfied scoring points for the i-th possible answer
case with score m, and k(m) is the total number of such possible cases.

3) Further Refinements to simsco and simrub

Considering the fact that answers with the same scores still have minor semantic
differences, and the potential data imbalances, we propose two further refine-
ments to the definitions of score-based and rubric-based answer similarities.
(a) The first kind of refinement simply subtracts five percentage points from the
defined similarity simsco or simrub:

sim(s)
sco/sim

(s)
rub(x(m),x(n)) = simsco/rub(x(m),x(n)) − 0.05 (7)
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Table 1. Basic information of EN-SAS

Question
e.g.

Score
range

Word
limit

Num
for pre-
training

Num
used in
MeL

Num for
scoring

sci-Q1 0–3 50 1,672 1,356 558
Eng-Q3 0–2 50 1,808 1,450 406
bio-Q5 0–3 60 1,795 374 599

Table 2. Basic information of JP-SAS

Question
No.

Score
range

Char.
limit

Num
for pre-
training

Num
used in
MeL

Num
for

scoring
Q1 0–3 30 id. 7,138 id.
Q2 40 1–10k 8,260 10–20k
Q3 80–120 (10,000) 6,784 (10,000)

(b) The second kind of amendment is more complex, considering possible data
imbalances and the variety of answer cases, and is used exclusively for simrub:

sim
(c)
rub(x(m),x(n)) = simrub(x(m),x(n))−[α(r(m)+r(n))+β(v(m)+v(n))] (8)

where r(m) (and r(n)) denotes the ratio of the number of used m-point answers
to the total available data, and v(m) (and v(n)) denotes the answer variety as
the entropy of possible answer cases obtaining m points:

r(m) =
|xused

(m) |
|xtotal| v(m) = −log2

1
k(m)

To fit the range of cosine similarity of [0,1], we set α=β=0.1 empirically this
time, and leave systematic parameter optimization for future work.

3.4 Downstream Scoring Procedure

Upon being trained using MeL with defined similarities, the encoder exhibits
an enhanced ability to recognize semantic differences among answers of varying
scores, thereby producing more distinguishable representations for scoring. As a
result, a simple feed-forward network structure, such as a Multi-Layer Perceptron
(MLP), can perform the downstream scoring process efficiently and accurately
(Fig. 2-b), eliminating the need for time-intensive RNN-based training or full-
parameter BERT fine-tuning. Throughout this paper, we refer to our proposed
method as a whole as sim-MeL-mlp.

4 Experiments

4.1 Datasets

We evaluate our method on diverse datasets comprising thirteen questions: the
first ten are from the English ASAP-SAS project across three subjects, and the
remaining are from Japanese Common University Entrance Examination trial
test, 2018. Detailed dataset compositions can be found in Tables 1 and 2.
EN-SAS Dataset: Provided by the ASAP-SAS project (https://kaggle.com/
c/asap-sas), this dataset contains ten questions spanning science, biology, and
English reading. The given rubrics are generally simplistic and somewhat vague
(e.g., “3 points: Three key elements.” or “The response demonstrates an explo-
ration of the ideas in the text.”), resulting in minimal differences between simsco

and simrub. Therefore, we solely apply simsco for MeL on this dataset.

https://kaggle.com/c/asap-sas
https://kaggle.com/c/asap-sas
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JP-SAS Dataset: This internal dataset, sourced from Japan National Center
for University Entrance Examinations, consists of three Japanese reading ques-
tions. The provided rubrics are more explicit and detailed (e.g., the rubric shown
in Fig. 3 is the exact rubric of Q1 of this dataset), enabling us to apply both
simsco and simrub with MeL for evaluation on this dataset.

4.2 Metrics

In our experiments, we frame the scoring task as a regression problem, using
mean absolute error (MAE) and root mean square error (RMSE) to compare
model performances. Lower values of both metrics indicate better performance.

4.3 Baselines

We selected the following representative ASAS methods not requiring additional
pre-processing or handcraft feature generation as the baseline methods.

(1) bert-pre-lstm [19,24]: This method pre-trains BERT twice using the
Masked Language Modeling (MLM) target, with the answer texts from all
questions serving as the pre-training data. The generated word embeddings
are then processed by a BiLSTM network with attention to predict the score.

(2) bert-pre-fine [18,21]: This method also performs a twice pre-training on
BERT, but then fine-tunes pre-trained BERT directly on the scoring data.

(3) bert-fine-fine [12,23]: Despite having more texts, the bert-pre-based base-
lines did not use score labels during pre-training, thus may give inferior
results to the proposed method. To offer a fair comparison, we apply this
method which performs supervised fine-tuning on the data for pre-training,
and performs a twice fine-tuning on the scoring data.

(4) (rub text)-fine-fine [3,4]: A method similar to bert-fine-fine, but adds the
corresponding rubric text to the answer text as input during the first-stage
fine-tuning.

(5) label-MeL-mlp: An ablation study that uses the label as the metric to
perform MeL (i.e., Triplet loss as described in Sect. 3.2 and Eq. 1).

(6) half/fourth-data : An efficiency study on JP-SAS dataset, using only half
or a quarter of the data to build answer pairs for MeL-mlp.

4.4 Implementation Details

Data usage: the training set of both datasets are served as pre-training data
for all models, with scoring performance assessed through 5-fold cross-validation
on the test set. Encoders: we used “bert-base-uncased” and “bert-large-wwm”
for EN-SAS, and “bert-jp-base/-base-wwm” for JP-SAS. Scoring networks: A
BiLSTM network with 3 layers (300 neurons/layer) and attention enabled was
used for bert-pre-lstm. For our methods, a 5-layer MLP network (512,256,128,32,1
neurons/layer) sufficed. Loss: Mean Squared Error was used as the loss function
for scoring. Infrastructure: Experiments were run on a machine with Ubuntu
18.04, 128GB RAM, an Nvidia RTX8000 GPU, and an Intel i9-7940X CPU.
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Table 3. Results on EN-SAS dataset, all result values multiplied by 102. The best
baseline results are underlined and the best overall results are in bold.

Method science biology English Overall

Q1,2,10 avg. Q5,6 avg. Q3,4,7–9 avg. 10-que. avg.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

bert-pre-lstm 18.47 25.00 8.94 16.96 21.29 29.85 16.23 23.94
bert-pre-fine 20.89 26.47 9.18 14.62 23.46 29.01 17.84 23.36
bert-fine-fine 17.29 22.96 7.80 13.15 19.91 25.89 15.00 20.67
(rub text)-fine-fine 19.61 25.35 8.02 13.37 22.86 28.60 16.83 22.44

bertwwm-pre-lstm 17.71 24.01 9.94 16.40 20.28 28.41 15.98 22.94
bertwwm-pre-fine 19.27 24.69 10.48 14.38 22.24 28.08 17.33 22.38
bertwwm-fine-fine 16.46 21.03 7.74 13.51 19.74 26.04 14.65 20.19
(rub text)wwm-fine-fine 18.80 24.14 7.74 13.17 22.04 27.94 16.19 21.75

sim(s)
sco-MeL-mlp 16.57 21.10 6.40 12.22 20.01 25.65 14.33 19.66

sim(s)
sco-MeLwwm-mlp 15.48 19.83 5.73 11.37 18.82 24.89 13.34 18.70

label-MeL-mlp 18.18 23.02 7.19 13.14 23.07 27.64 16.15 21.27
label-MeLwwm-mlp 15.84 20.12 5.94 11.48 21.53 25.17 14.44 18.92

Table 4. Results on JP-SAS dataset, all result values multiplied by 102.

Method Q1 Q2 Q3 Pre-training Scoring
MAE RMSE MAE RMSE MAE RMSE Time Time

bert-pre-lstm 1.59 6.24 4.27 10.67 4.90 10.82 39m 59m
bert-pre-fine 4.51 7.83 9.40 13.54 7.59 12.52 6m10 s
bert-fine-fine 3.39 5.45 5.39 8.82 5.48 9.67 4m40 s
(rub text)-fine-fine 3.45 6.16 6.22 10.62 6.57 11.24 5min 20 s

bertwwm-pre-lstm 1.41† 5.54 3.71 9.55 4.78 10.44 37m 5h 22m
bertwwm-pre-fine 2.93 6.18 5.89 10.12 6.64 11.43 9m10 s
bertwwm-fine-fine 2.09 5.55 5.13 9.18 5.24 9.86 7m50 s
(rub text)wwm-fine-fine 3.35 7.10 6.06 10.59 7.27 12.77 10min 10 s

sim(s)
sco-MeL-mlp 2.02 5.03 3.97 8.39 4.74 9.31* 3m40 s 30 s

sim
(s)
rub-MeL-mlp 1.61 4.91 3.81 8.30** 4.67* 9.36

sim
(c)
rub-MeL-mlp 1.57 4.83** 3.62† 8.36 4.77 9.43

label-MeL-mlp 2.26 5.72 4.98 9.41 5.69 10.65 4min 50 s
half-data 2.25 5.46 5.00 9.60 5.70 10.47 2m10 s
fourth-data 2.36 5.69 5.77 10.40 6.47 11.51 1m
Note: (1) We only show the results of MeL using “bert-jp-base-wwm” encoder in this table.
(2) We performed one-way ANOVA test to compare our results with the best baseline’s.
*: sig < 0.1, **: sig < 0.05, †: 0.1< sig< 0.2

5 Scoring Results and Analysis

The scoring results on the two datasets are presented in Tables 3 and 4. It is clear
that our method, sim-MeL-mlp, outperformed previous ASAS methods across
most questions. The only exception is the MAE result of JP-SAS Q1. However,
our approach significantly improved RMSE results on the JP-SAS dataset with
10x faster than bert-fine-fine in prediction time, and outpaced bert-pre-lstm by
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over 300x speed with comparable MAE accuracy. This demonstrates the sub-
stantial efficiency advantage of our method when processing large datasets.

Furthermore, on the EN-SAS dataset, aside from the significant advantage of
our method, we found that the two-stage fine-tuning method bert-fine-fine, which
always conducted supervised learning, obtained better results than pre-training-
based methods. We suspect that this could be due to the insufficient data and the
large variance in contents among questions from the three subjects in EN-SAS,
which led to a reduction in the effectiveness of pre-training. In contrast, on the
JP-SAS dataset, the facts that the data for pre-training solely includes answers
from Japanese reading subject, and with the availability of substantial data,
all methods achieved better scoring accuracy. This time, the pre-training-based
methods secured all the best baseline MAE results.

From another perspective, although label-MeL that used score labels directly
as metrics also delivered commendable results, it was not as effective as our sim-
MeL. This gap was especially noticeable on the JP-SAS dataset that expects
higher accuracy due to its abundance of data, which highlights our claims
about the importance of giving a more nuanced and comprehensive estima-
tion of answer similarity as the metric. Additionally, the baseline method (rub
text)-fine-fine that added rubric rules to answer texts did not achieve better
results than methods without them, except in the case of biology in EN-SAS.
We attribute this to the detailed rubric rules in biology (e.g., bio-Q5: “List and
describe four major steps involved in protein synthesis”; Rubric 3 points: “Four
key elements...”), compared to the vague requirements in other subjects such
as English (e.g., Eng-Q3, rubric 2 points: “The response demonstrates an explo-
ration or development of the ideas...”), which offer little help in further shaping
answer features. The existence of those more precise and less variable answers
in biology also led to all methods performing the best than in English.

Lastly, it can be concluded that using BERT with whole word masking (wwm)
can improve scoring accuracy, helping bert-pre-lstm obtain superior MAE results
on JP-SAS, and also gave significant improvement to bert-fine-fine on the less
data-rich EN-SAS dataset. We consider the reason as the unique training ways
of bert-wwm, which treats specific answer segments, such as proper nouns, as a
whole, leading to a better comprehension of the phrases. Moreover, it appears
that connecting the pre-trained BERT with an RNN structure might be a more
effective approach, as it generally outperformed the bert-pre-fine model on both
datasets. In summary, our method presents a promising balance between accu-
racy and efficiency, and holds significant implications for building a practical
and efficient ASAS system.

6 Answer Embedding Space Analysis

To provide an intuitive understanding of the representation optimization effect
of our approach, we present a 2D visualization of answer embedding spaces using
t-SNE technique. Specifically, we compare the embedding spaces obtained from
the encoder trained with our sim-MeL method to those obtained from the MLM



246 B. Wang et al.

Fig. 4. Visualization of answer embedding spaces on EN-SAS-Q1 (upper) and JP-SAS-
Q2 (bottom) test set

pre-training, and MSE fine-tuning method. The answers being embedded come
from the test set of EN-SAS-Q1 and JP-SAS-Q2 (first 1,000 answers) and were
all encoded with the “bert-wwm” encoder.

From the results shown in Fig. 4-(b) and (f), we can observe that traditional
MLM pre-training gave only minor changes to the embedding distributions, pro-
viding less distinguished semantic information for downstream scoring. This is as
expected since MLM is self-supervised. Meanwhile, as demonstrated in Figs. 4-
(c) and (g), even after once supervised fine-tuning, the answer representations
of different scores remained distributed with very little separation in the embed-
ding spaces. This outcome observation coincides with our previous claim and
prediction as depicted in Fig. 1-(b). Finally, with the use of the proposed sim-
MeL approach, we noted that the answer embedding distributions transformed
into a well-separated form, featuring much clearer inter-answer separation. We
believe this provides a better condition for downstream scoring to achieve the
best results even with a simple linear scoring network.

7 Conclusion

In this paper, we addressed the often-overlooked problem of answer represen-
tation optimization in ASAS studies, proposing a metric learning-based pre-
training method to create distinct and separated answer embeddings. Using
defined answer similarities based on scores and rubrics, we achieved superior
results over previous ASAS approaches in both scoring accuracy and efficiency.

The future work will mainly focus on refining the similarity definition meth-
ods. For instance, we may further distinguish between each individual scoring
point to build a more accurate rubric-based similarity metric. We would also like
to experiment with more complex metric learning structures, such as supervised
contrastive learning [9], to further optimize the representation space, striving for
more compact answer clusters to improve scoring results.
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Abstract. Aspect Sentiment Triplet Extraction (ASTE) is a challenging
task in natural language processing concerning the automatic extraction
of (aspect term, opinion term, sentiment polarity) triplets from a given
text. Current end-to-end generative methods achieved high results by
treating it as a sequence generation task with a generative pretrained
language mode (e.g., T5). However, these architectures usually suffered
from the objective gaps between the pre-training tasks and fine-tuning
tasks, leading to suboptimal results. Further more, they can only provide
information on what is a valid triplet, but no explicit guidance on what is
not a triplet, which can not fully capture the correlation between aspects
and opinions. To address above issues, we propose the generative prompt
to bridge the gap between pre-training and fine-tuning of generative pre-
trained language model via text infilling task. And we propose guid-
ing augmentation, which drops the aspect or opinion in the sentence by
depicting a tree structure to generate diverse similar sentences and new
target sequences. In this way, the main differences between these aug-
mented samples are the dropped aspect or opinion term, and the model
can understand the ASTE task knowledge better through the explicit
variant constraints. Experimental results confirm that our method out-
performs previous state-of-the-art (SOTA) methods on four public ASTE
datasets.

Keywords: ASTE · Prompt · Data Augmentation

1 Introduction

Aspect-based Sentiment Triplet Extraction(ASTE) is a branch of the Aspect-
based Sentiment Analysis(ABSA), which aims at identifying and analyzing
aspects, their corresponding opinion terms and sentiment in text. As shown
in Fig. 1, given the sentence “Service was slow, but the people were friendly”,
the output would be two triplets: (service, slow, negative) and (people, friendly,
positive).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. An example for ASTE task

Early ABSA research employed a pipeline approach [7] that decomposed
ASTE into multiple subtasks. However, this approach suffered from cascading
errors. Thus, recent research has focused on end-to-end methods to address the
issue. Zhang et al. [17] introduced a generative model, GAS, which employed
manually constructed templates to transform target triplets into a target
sequence. The model was subsequently trained to generate this target sequence.
Zhang et al. [16] further proposed a paraphrasing paradigm that integrated sen-
timent elements in natural language, making better use of the semantic infor-
mation of sentiment labels. Mao et al. [6] used beam search to independently
decode each triplet, alleviating the issue of false dependencies between triplets
during the generation process in generative models.

Although existing generative methods have achieved promising results, they
still suffered from two main issues: 1) The fine-tuning process of genera-
tive models for ASTE task differs from the pre-training task: current
generative ASTE methods typically use generative models (such as T5 [12] and
BART [4]) as their backbone model, which pretrains the model with sequence-
to-sequence mask language modeling (MLM) task, while fine-tuning the model
with a natural language generation task. Therefore, there may be a gap between
the pre-training and fine-tuning processes in the ASTE task. 2) Can not fully
capture the correlation between aspects and opinions: generative mod-
els need to transform triplets into target sentence. Although the transformed
sentences can make use of the semantic information of the labels, some task
information may be lost during the transformation process. This can make the
model only know what is an aspect-opinion pair but ignore what is not an aspect-
opinion pair. As a result, generative models may generate non-existent triplets
during the generation process.

To address the aforementioned issues, we propose two techniques: 1) gener-
ative prompt: Petroni et al. [8] used BERT to complete downstream tasks in a
cloze-style manner and achieved promising results. Inspired by this, we propose
the generative prompt. As shown in Fig. 2 (c), we concatenate the generative
prompt to the end of the input sentence. The special tokens “<extra id 0>”,
“<extra id 1>”, and “<extra id 2>” in the prompt represent the aspect term,
opinion term, and sentiment polarity, respectively. We use text infilling to allow
the model to generate the aspect term, opinion term and sentiment, then obtain-
ing the triplets. 2) guiding augmentation: To enable the model to learn task
knowledge, we propose the guiding augmentation. We construct a tree structure
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as shown in Fig. 3, where each aspect and opinion information are dropped at
different levels. We treat the leaf nodes in the tree as independent samples and
input them into the model. Based on the remaining task-related information in
the leaf nodes, we construct new target sequences and train the model to gen-
erate them. By constraining the model with the remaining information and the
new target sequences, we guide the model to learn task knowledge, including
each sentiment element and its relationship in the ASTE task.

Our contributions are as follows:

1. We propose the generative prompt, which bridges the gap between pre-
training process of generative language model and fine-tuning on ASTE task.

2. We develop the guiding augmentation to drop different sentiment element
information and train the model to generate new target sequences based on
the remaining information, thereby guiding model to comprehensively under-
stand the sentiment triplet knowledge.

3. We conduct experiments on public ASTE datasets. The average F1 score is
improved by 2.54%, 0.99%, and 1.14% compared to SOTAs (COM-MRC [15],
BDTF [18], Span-Bidirectional [2]).

2 Our Approach

2.1 Task Definition

Given a sentence S = {w1, w2, ..., wn}, where wi represents the ith word in the
sentence, the objective of ASTE is to extract all sentiment triplets T . Each triplet
T is defined as (a, o, s), where a represents the aspect terms in the sentence that
contain sentiment, o represents the opinion terms associated with the aspect
terms, and s represents the sentiment polarity expressed in the aspect terms,
s ∈ {positive, negative, neutral}.

2.2 Generative Prompt

Current generative methods [17] typically used manually designed templates to
transform sentiment triplets into target sentence, and then fine-tune generative
model to generate the target sentence to obtain triplets. As shown in Fig. 2(b),
given sentence “Service was slow, but the people were friendly”, let model gener-
ate target sentence “(Service, slow, negative); (people, friendly, positive)”. How-
ever, as shown in Fig. 2(a), in the pre-training of T5[12], given the sentence
“Thank you for inviting me to your party last week”, replace the words “for
inviting” and “last” with special tokens, and ask the model to generate them.
Thereby, there is a gap between the fine-tuning and the pre-training task used
in language models (e.g., T5 [12]).

Inspired by the Paraphrase [16], which used the natural language to combine
sentiment elements in a triplet to enhance the model’s understanding of the
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Fig. 2. The pre-training and fine-tuning of T5

semantic relationship between each element. We have developed a generative
prompt method, as shown in Fig. 2(c). The prompt consists of the phrase:

It is <extra id 2> because <extra id 0> is <extra id 1> (1)

where “<extra id 0>”, “<extra id 1>”, and “<extra id 2>” representing
aspect terms, opinion terms, and sentiment polarity, respectively. Then train the
model to generate aspect terms, opinion terms and sentiment polarity through
text infilling.

As for target sequence, we follow the Paraphrase [16], and define a mapping
function for each sentiment element in a sentiment triplet (a, o, s): 1) Pa(a) =
xat, where xat represents the aspect terms in the sentence; 2) Po(o) = xot,
where xot represents the opinion terms in the sentence; and 3) Ps(s) = xsp,
where xsp is a word in the semantic space to which sentiment s is mapped, and
xsp ∈ {great, bad, ok}, indicating the sentiment polarity. Afterwards, we insert
these values into the following template paradigm:

<extra id 2> xsp <extra id 0> xat <extra id 1> xot (2)

It is worth noting that when a sentence contains multiple triplets, we con-
catenate them based on the order of appearance of the aspect terms and opinion
terms in the sentence to obtain the target sequence y.

2.3 Guiding Augmentation

Some ASTE-related information in the triplets may be lost after the conversion
process. Given the sentence: “Service was slow, but the people were friendly”,
the previous generative methods could only inform the model that there are
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Fig. 3. TreeMask: using the binary tree structure, we drop the aspect information from
the original sentence, where each non-leaf node represents an aspect. Each edge from a
non-leaf node to its child is labeled to indicate whether the information represented by
the non-leaf node should be dropped or retained. Each leaf node (except for the gray
nodes) represents a sample. The same process applies to the opinion.

two aspect-opinion pair: “(service, slow)” and “(people, friendly)”, but couldn’t
inform the model that “(service, friendly)” is non-existent aspect-opinion pair.
As a result, the model may generate completely non-existent triplets (either the
aspect term or the opinion term in the triplet does not overlap with the aspect
and opinion terms in the aspect-opinion pairs of the ground-truth triplets). To
address this issue, we propose guiding augmentation. This approach enables the
model to utilize different task-related information within the similar samples to
generate different target sequences. By doing so, the model can understand what
to generate and what not to generate in the absence of certain aspect or opinion
information, thereby guiding the model to understand ASTE task.

As shown in Fig. 3, We propose a TreeMask operation for guiding augmenta-
tion with a binary tree structure. Each non-leaf node in the tree corresponds to
an aspect or opinion in S, and the leaf nodes represent the sub-spans of S that
remain after the aspect or opinion information has been dropped. Each edge
from a non-leaf node to its child is assigned a label of “keep” or “drop”, based
on whether the child contains the aspect or opinion information.

By using the labels assigned to the edges, we generate an attention mask M
that indicates which token wi in S should be dropped out. Specifically, for each
non-leaf node’s edge labeled “drop”, we set the attention weights of all token
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wi in the corresponding sub-spans to zero in M . For each non-leaf node’s edge
labeled “keep”, we set the attention weights of all tokens in the corresponding
sub-spans to one in M . And the attention weights of other tokens are one.

Mk =

{
0, if wi is dropped
1, others

(3)

Here, k represents the kth leaf node. As shown in Fig. 3, the attention weight
of “slow” is zero in sentence7, others are one. Considering a sentence should
contain at least one complete triplet in real data, we discard the gray nodes that
all aspects or opinions have been dropped. And we ignore the sentence5 because
it is repeated with sentence1. Then we use the original sequence S and the kth

attention mask Mk to generate the target sequence yk.

yk = LM(S,Mk) (4)

LM is generative language model. We construct target sequence yk for
each leaf node according to the paradigm rules described in Sect. 2.2, based
on the complete triplet information contained in that node. As show in Fig. 3,
in sentence7, there is a complete triplet “(people, friendly, POS)”, so the target
sequence y7 is “<extra id 2>great<extra id 0> people<extra id 1> friendly”.

2.4 Training and Inference

Training. As show in Fig. 4, We use the T5 model as the backbone, for each
input sample j in dataset, we obtain a input set Xj with guiding augmentation
and a corresponding target sequence set Yj . We then train the LM using Xj and
Yj as input and output pairs, respectively. The model is trained using a negative
log-likelihood loss function Lθ, defined as:

Lθ = −
N∑

j=1

∑
(yk,xk)∈(Yj ,Xj)

n∑
i=1

log Pθ(yk,i|yk,<i, p, xk) (5)

xk = (S,Mk) (6)

where θ is the model parameters, N is the number of training examples, p is the
prompt in Sect. 2.2, and the n is the length of the yk, S is the original sentence
in the samplej , Mk is the kth attention mask obtained by TreeMask.

Inference. In the inference phase, we do not use the guiding augmentation.
We just concatenate the prompt p with the input sentence and feed it directly
into the trained model to generate a sequence. We then decode the generated
sequence according to the paradigm rules to obtain the triplets.
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Fig. 4. Model architecture, P is the prompt in Sect. 2.2, m represents the total number
of sentences obtained from sample j after the TreeMask operation.

3 Experiments

3.1 Datasets

We conduct experiments on the public datasets, sourced from SemEval14 [11],
SemEval15 [9] and SemEval16 [10]. Our data was downloaded from GAS [17].

3.2 Baseline Methods

We classify the baseline methods into four categories: 1) Pipeline methods:
Peng et al. [7] divided the triplet extraction into two stages, and BMRC [2] and
COM-MRC [15] divided the task into multiple rounds reading comprehension.
2) Table-filling methods: GTS [13] designed an inference method that con-
structed a relationship table and inferred triplets through table labeling. BDTF
[18] used region detection in computer vision to identify the potential relationship
regions and then determine the type of relationship. 3) Span-based methods
enumerated all spans and identified the type of each span, while determining
the relationship between them to infer the triplet. Span-ASTE [14] introduced a
dual-channel span pruning strategy to reduce the high computational cost caused
by span enumeration. Span-Bidirectional [2] used KL divergence to encourage
similar spans to be as far apart as possible in feature space and employed a
dual-channel decoding approach to improve model performance. 4) Generative
methods: GAS[17] transformed triplets into target sequences, treating ASTE
as a sequence generation task. Paraphrase [16] mapped sentiment elements to
words in the semantic space, fully utilizing the semantic information of the labels.

3.3 Implementation Details

We use T5-base [12] as the backbone model, with a maximum of 30 epochs during
training. We verify the model’s performance on the validation set, and test the
best model on the test set. The experimental hyperparameters are set according
to Paraphrase [16], with a learning rate of 1e-4 for rest14 and laptop14, and 3e-4
for rest15 and rest16. We use the AdamW optimizer [5] with a batch size of
16, and train the model using an RTX Titan. We conduct experiments on each
dataset using five different random seeds, and then average the results.
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3.4 Main Result

Table 1. The main experimental result

Model Rest14 Lap14 Rest15 Rest16 average F1

F1 F1 F1 F1

Pipeline method

two-stage [7] 51.46 42.87 52.32 54.21 50.21

BMRC [2] 67.99 57.82 60.02 65.75 62.90

COM-MRC [15] 72.01 60.17 64.53 71.57 67.07

Table-filling method

GTS-BERT [13] 67.50 54.36 60.15 67.93 62.49

BDTF [18] 74.35 61.74 66.12 72.27 68.62

Span-based method

Span-ASTE [14] 71.85 59.38 63.27 70.26 66.19

Span-Bidirectional [2] 74.34 62.65 64.82 72.08 68.47

Generative method

GAS [17] 72.16 60.78 62.10 70.10 66.29

Paraphrase [16] 72.03 61.13 62.56 71.70 66.86

Ours 74.38 64.86 65.66 73.55 69.61

As shown in Table 1, our approach has demonstrated its effectiveness by
outperforming the current state-of-the-art (SOTA) methods: COM-MRC [15],
BDTF [18], and Span-Bidirectional [2], on all four datasets. Specifically, our aver-
age F1 score is 2.54%, 0.99%, and 1.14% higher than the three SOTA methods,
respectively, further supporting the effectiveness of our approach in addressing
the ASTE task. Notably, compared to Paraphrase [16], which is like our method,
our F1 scores increased by 2.35%, 3.73%, 3.1%, and 1.85% on the four datasets,
demonstrating the effectiveness of our generative prompt and guiding augmen-
tation in improving the performance of generative models.

3.5 Ablation Study

Our ablation experiments on the four datasets are presented in Table 2. The
“w/o aug” refers to experiments without guiding augmentation, and “w/o p”
refers to experiments without the prompt (in Sect. 2.2). The results show a signif-
icant drop in performance without guiding augmentation or generative prompt,
indicating their effectiveness. Moreover, the results suggest that guiding aug-
mentation is more effective than the generative prompt.

Furthermore, the inclusion of guiding augmentation result in a higher preci-
sion increase than recall on all four datasets, with a precision increase of 4.18%,
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Table 2. Ablation Study: “w/o aug” means that the experimental method does not
include guiding augmentation, while “w/o p” means that the experimental method
does not include the prompt(in Sect. 2.2).

Rest14 Lap14 Rest15 Rest16

P R F1 P R F1 P R F1 P R F1

Ours 75.34 73.44 74.38 69.32 60.92 64.86 65.48 65.86 65.66 73.12 75.02 73.55

w/o aug 71.16 71.23 71.19 64.78 62.33 63.52 60.34 64.58 62.38 69.65 73.39 71.46

w/o p 74.00 72.31 73.14 69.35 60.63 64.49 64.61 64.33 64.47 72.88 73.54 73.20

4.54%, 5.13%, and 3.47%, respectively. This indicates that the model generated
triplets more accurately with guiding augmentation, and that guiding augmen-
tation can suppress the generation of non-existent triplets. Overall, our ablation
experiments provide evidence for the effectiveness of guiding augmentation and
generative prompt in improving the performance of our approach.

3.6 More Analysis

Table 3. The experimental results are recorded separately for single-aspect and multi-
aspect cases. “Single” refers to the case where there is only one aspect mentioned in the
sentence, while “Multi” refers to the case where there are multiple aspects mentioned.
“w/o aug” represents the case without guiding augmentation method.

Rest14 Lap14 Rest15 Rest16

P R F1 P R F1 P R F1 P R F1

Single 68.20 79.32 73.34 66.57 73.26 69.75 61.35 70.00 65.39 64.98 75.31 69.76

w/o aug 63.40 76.70 69.42 60.64 71.52 65.63 56.40 69.90 62.43 61.40 74.48 67.30

Multi 77.68 71.90 74.68 71.37 54.62 61.86 69.49 62.69 65.88 79.20 73.23 76.08

w/o aug 73.76 69.79 71.72 67.73 57.59 62.23 64.32 60.51 62.34 75.88 72.73 74.27

Our guiding augmentation tends to construct shorter target sequences with
more single aspect cases. To demonstrate that the performance improvement is
not due to generating shorter sequences, we conduct an analysis of single and
multiple aspect cases on the four datasets, as presented in Table 3. The results
show that adding guiding augmentation improves the F1 and recall for all single
aspect cases, as well as most multiple aspect cases on all datasets. Moreover,
the precision score for both single and multiple aspect cases improved after the
addition of guiding augmentation, further supporting the effectiveness of our
approach. These results indicate that our approach is not simply generating
shorter sequences but rather capturing the knowledge relevant to the ASTE
task.

To verify that our method can suppress the generation of non-existent triplets
(either the aspect term or the opinion term in the triplet does not overlap with
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Table 4. The proportion of non-existent triplets among the incorrect triplets: “w/o
aug” refers to the case without guiding augmentation. The lower value, the better.

Rest14 Lap14 Rest15 Rest16

Ours 52.54 46.09 46.67 49.31

w/o aug 57.65 54.46 55.07 54.46

the aspect and opinion terms in the aspect-opinion pairs of the ground-truth
triplets) by the model, we count the proportion of non-existent triplets among the
incorrect triplets generated by the model with/without Guiding Augmentation.
The results are shown in Table 4. We find that the proportion of completely
non-existent triplets decreased by 5.12%, 8.37%, 8.40%, and 8.58% after adding
Guiding Augmentation. This experiment confirms that Guiding Augmentation
can suppress the generation of non-existent triplets by the model.

3.7 Case Study

Table 5. Case study: ✔ means the tirplet is right, ✘ means the triplet is wrong.

Exp 1: the atmosphere is very nice, and a welcome escape from the rest of the SI mall.

Ground Truth Ours (w/o aug) Ours

(atmosphere, nice, POS) (atmosphere, nice, POS)✔ (atmosphere, nice, POS)✔

(atmosphere, welcome, POS)✘

Exp 2: The service is always great, and the owner walks around to make sure you enjoy.

Ground Truth Ours (w/o aug) Ours

(service, great, POS) (service, great, POS)✔ (service, great, POS)✔

(owner, enjoy, POS)✘

Exp 3: The service was dreadfully slow and a smile would have been nice...

Ground Truth Ours (w/o aug) Ours

(service, dreadfully slow, NEG) (service, slow, NEG)✘ (service, slow, NEG)✘

In Table 5, we compare the results with and without guiding augmentation.
In the first example, given the sentence “the atmosphere is very nice, and a wel-
come escape from the rest of the SI mall”, due to the closeness between “atmo-
sphere” and “welcome” and the presence of the word “and” between them, the
model without guiding augmentation wrongly interprets “welcome” as the opin-
ion of “atmosphere”, and generates an extra triplet (“atmosphere”, “welcome”,
“POS”), where “welcome” is not an opinion term that modifies “atmosphere”.
With guiding augmentation, the model is able to discern it is not opinion. In
the second example, given the sentence “The service is always great, and the
owner walks around to make sure you enjoy”, without guiding augmentation,
the model interprets “owner” and “enjoy” in the second half of the sentence
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as a pair, and generates an extra triplet (“owner”, “enjoy”, “POS”). With the
guiding augmentation, the model is able to correctly identify that they are not a
pair. This demonstrates that guiding augmentation can help the model identify
what is not an aspect and opinion term. However, in the third example, while
there are adverbs (e.g., “dreadfully”) in the aspect terms or opinion terms, the
model is unable to correctly extract the aspect-opinion pair due to incorrect
boundaries of extracted aspect or opinion terms. This is a challenging problem
in the ASTE task, and this is also our future research work.

4 Related Work

Recently, the ASTE task has received widespread attention. Peng et al. [7] pro-
posed the concept of ASTE and decomposed it into two steps: 1)extract aspect
terms and opinion terms respectively; 2) determine whether there is a sentimen-
tal relationship between the two. Another mainstream pipeline method for the
ASTE task is to use the MRC [2] mechanism to extract the sentiment elements
in the triplets sequentially. However, the pipeline method suffers from cascad-
ing errors, so Jing et al. [3], Chen et al. [1], Mao et al. [6] and others proposed
the end-to-end methods. The end-to-end method is divided into two categories:
discriminative and generative. Discriminative methods generally model the rela-
tionship between tokens and then infer triplets through table annotations [13],
or enumerate each span in the sentence [14], determine its type and the rela-
tionship between spans, then infer triplets. Generative methods [16] generally
transform triplets based on rule templates into the target sequence, and then let
the model generate the target sequence to infer triplets.

5 Conclusion

This paper proposes two techniques, Generative Prompt and Guiding Augmen-
tation, to complete the ASTE task using a generative model. Generative Prompt
is designed to bridge the gap between downstream fine-tuning and pre-training in
generative pretrained models. Guiding Augmentation drops information about
aspects or opinions in the sentence to generate multiple similar samples, which
enables the model to acquire knowledge related to the ASTE task. Experiments
are conducted on four public datasets, and the results show that our proposed
method outperforms the current SOTA methods and the approximate method
Paraphrase. The ablation study demonstrates that both Generative Prompt and
Guiding Augmentation are effective. Moreover, we analyze the errors produced
by the model and find that our proposed method can prevent the model from
generating completely non-existent triplets. However, we also find that the model
still faces challenges in terms of boundary errors, which is our future work.

Acknowledgement. This work was supported by Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (No. XDC02040400).



260 K. Huang et al.

References

1. Chen, H., Zhai, Z., Feng, F., Li, R., Wang, X.: Enhanced multi-channel graph
convolutional network for aspect sentiment triplet extraction. In: Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (vol. 1:
Long Papers), pp. 2974–2985 (2022)

2. Chen, S., Wang, Y., Liu, J., Wang, Y.: Bidirectional machine reading comprehen-
sion for aspect sentiment triplet extraction. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pp. 12666–12674 (2021)

3. Jing, H., Li, Z., Zhao, H., et al.: Seeking common but distinguishing difference, a
joint aspect-based sentiment analysis model. In: Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 3910–3922 (2021)

4. Lewis, M., Liu, Y., et al.: BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp.
7871–7880 (2020)

5. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

6. Mao, Y., Shen, Y., Yang, J., Zhu, X., Cai, L.: Seq2Path: generating sentiment tuples
as paths of a tree. In: Findings of the Association for Computational Linguistics:
ACL 2022, pp. 2215–2225 (2022)

7. Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and
why: a near complete solution for aspect-based sentiment analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8600–8607 (2020)

8. Petroni, F., Rocktäschel, T., Riedel, S., et al.: Language models as knowledge
bases? In: Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2463–2473 (2019)

9. Pontiki, M., Galanis, D., et al.: SemEval-2015 task 12: aspect based sentiment
analysis. In: Proceedings of the 9th International Workshop on Semantic evaluation
(SemEval 2015), pp. 486–495 (2015)

10. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In:
ProWorkshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for
Computational Linguistics (2016)

11. Pontiki, M., Papageorgiou, H., et al.: SemEval-2014 task 4: aspect based sentiment
analysis. In: SemEval 2014, p. 27 (2014)

12. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21, 5485–5551 (2020)

13. Wu, Z., Ying, C., Zhao, F., Fan, Z., Dai, X., Xia, R.: Grid tagging scheme for
aspect-oriented fine-grained opinion extraction. In: Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 2576–2585 (2020)

14. Xu, L., Chia, Y.K., Bing, L.: Learning span-level interactions for aspect sentiment
triplet extraction. In: Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (vol. 1: Long Papers), pp. 4755–4766 (2021)

15. Zhai, Z., Chen, H., Feng, F., Li, R., Wang, X.: COM-MRC: a context-masked
machine reading comprehension framework for aspect sentiment triplet extraction.
In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3230–3241 (2022)

http://arxiv.org/abs/1711.05101


Prompting Generative LM with Guiding Augmentation for ASTE 261

16. Zhang, W., Deng, Y., Li, X., Yuan, Y., Bing, L., Lam, W.: Aspect sentiment quad
prediction as paraphrase generation. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 9209–9219 (2021)

17. Zhang, W., Li, X., Deng, Y., Bing, L., Lam, W.: Towards generative aspect-based
sentiment analysis. In: Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (vol. 2: Short Papers), pp. 504–510 (2021)

18. Zhang, Y., et al.: Boundary-driven table-filling for aspect sentiment triplet extrac-
tion. In: Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 6485–6498 (2022)



Prompting GPT-3.5 for Text-to-SQL
with De-semanticization and Skeleton

Retrieval

Chunxi Guo, Zhiliang Tian(B), Jintao Tang(B), Pancheng Wang, Zhihua Wen,
Kang Yang, and Ting Wang(B)

College of Computer, National University of Defense Technology, Changsha, China
{chunxi,tianzhiliang,tangjintao,wangpancheng13,zhwen,yangkang,

tingwang}@nudt.edu.cn

Abstract. Text-to-SQL is a task that converts a natural language ques-
tion into a structured query language (SQL) to retrieve information
from a database. Large language models (LLMs) work well in natural
language generation tasks, but they are not specifically pre-trained to
understand the syntax and semantics of SQL commands. In this paper,
we propose an LLM-based framework for Text-to-SQL which retrieves
helpful demonstration examples to prompt LLMs. However, questions
with different database schemes can vary widely, even if the intentions
behind them are similar and the corresponding SQL queries exhibit sim-
ilarities. Consequently, it becomes crucial to identify the appropriate
SQL demonstrations that align with our requirements. We design a de-
semanticization mechanism that extracts question skeletons, allowing us
to retrieve similar examples based on their structural similarity. We also
model the relationships between question tokens and database schema
items (i.e., tables and columns) to filter out scheme-related information.
Our framework adapts the range of the database schema in prompts to
balance length and valuable information. A fallback mechanism allows
for a more detailed schema to be provided if the generated SQL query
fails. Ours outperforms state-of-the-art models and demonstrates strong
generalization ability on three cross-domain Text-to-SQL benchmarks.

Keywords: Large language model · Text-to-SQL · Prompt learning

1 Introduction

Text-to-SQL tasks aim to transform natural language questions (NLQ) into
structured query language (SQL), enabling users without expertise in database
querying to retrieve information from a database [1,2]. Considering that
databases are used in various scenarios involving different domains (e.g., edu-
cation, financial systems), researchers have adapted encoder-decoder architec-
ture [3,4], which eliminates the need for domain-specific knowledge through
end-to-end training. To train the model, these approaches require diverse and
extensive training data, which can be prohibitively expensive [5].
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Large pre-trained language models (LLMs) (e.g., GPT-3 [6] and Codex [7])
encompass more extensive data and parameters than traditional pre-trained lan-
guage models (e.g., BERT [8], RoBERTa [9], BART [10] and T5 [11]) and exhibit
superior performance on a variety of tasks, including Text-to-SQL. Rajkumar et
al. [12] and Liu et al. [13] evaluate LLMs’ performance in Text-to-SQL in zero-
and few-shot settings. Cheng et al. [14] present a neural-symbolic framework
that maps the input to a program, which incorporates symbolic components
into LLMs. However, many studies found that LLMs perform worse than tra-
ditional non-LLM-based approaches in Text-to-SQL [3,15,16]. As the existing
LLMs are not designed for understanding the syntax and semantics of SQL
commands, it is challenging for them to accurately generate complex SQL com-
mands (e.g. SELECT, WHERE, AVG, DESC ). To accurately map out these
SQL commands, it is essential to distinguish the question intention. Intention
in Text-to-SQL tasks refers to the collection of query-related specifications and
directives that encompass the desired scope, criteria, and actions to be performed
on a database. This concept encompasses various desired result set attributes,
including data volume, sorting sequence, and filtering prerequisites. For exam-
ple, the skeleton corresponds to the question “What are the names of the singers
who are not French?” is “What are the [MASK] of the [MASK] who are not
[MASK]?”, whose intention is to query a term with a conditional constraint.

Fig. 1. Comparison of three examples (i.e. question, question skeleton, SQL). The first
example is similar to the second in terms of question intention (sorting), and to the third
in terms of vocabulary of the questions. Note that the intention of the third question is
to get two attribute items and there may be a table join. We aim to obtain SQL queries
with the same commands (i.e. ORDER BY, DESC ) in the prompt. Compared with
the full question similarity score, the question skeleton increases the absolute value as
well as the relative ranking.

LLMs are proven to fast adapt to new paradigms with few-shot examples [17–
19]. We argue that LLMs probably quickly learn to follow some demonstration
examples of SQL generation, even if the SQL generation involves multiple SQL
commands and nested clauses.

In this paper, we propose an LLM-based Text-to-SQL framework that
retrieves a few demonstration examples to prompt the LLM according to the



264 C. Guo et al.

skeleton of the input question. Notice that questions with different database
schemes may be distinct since questions contain much scheme-related informa-
tion (i.e. the blue texts in Fig. 1’s upper side), even if they have similar intention
and SQL queries. It can be difficult for the model to retrieve helpful examples.
To solve this issue, we design a de-semanticization mechanism to extract skele-
tons of questions. We retrieve similar SQL demonstrations, which share similar
question skeletons with the input question. Besides, during de-semanticization,
we model the relationships between question tokens and scheme items to filter
out the scheme items related to the question tokens. In this way, we achieve
schema linking concerning the question-scheme relevance. Finally, we adaptively
control the range of the database schema in prompts to balance length and
valuable information. Through a fallback mechanism, the model receives a more
detailed schema if the generated SQL query needs revision. Our framework excels
compared to commercial Text-to-SQL engines like AI2sql1 by emphasizing trans-
parent, flexible algorithms for better performance and deeper insights into the
conversion process, whereas comparisons to large models like GPT-4 might not
be entirely fair due to data volume discrepancies.

Our contributions are as follows: (1) We propose an LLM-based framework
for Text-to-SQL tasks that retrieves similar examples to augment prompts for
LLMs. (2) We design a de-semanticization mechanism that effectively removes
scheme-related information for retrieving texts with similar skeletons. (3) Our
method surpasses the SOTA models and exhibits strong generalization.

2 Related Work

The evolution of SQL generation techniques showcases a progression from
encoder-decoder architectures [2] to LLM-based solutions.

Encoder-Based SQL Generation. Guo et al. [20] introduced IRNET, uti-
lizing attention-based Bi-LSTM to encode and an intermediate representation-
based decoder for SQL prediction. Afterwards, graph-based encoders were inte-
grated to enhance input representations [21,22]. Works such as RATSQL [1],
LGESQL [23], R2SQL [24], SDSQL [3], S2SQL [25], and STAR [26] focused
on refining structural reasoning by explicitly modeling relationships between
schemas and questions. Notably, GRAPHIX-T5 [4] overcame prior limitations
by incorporating graph representation learning into the encoder. Simultaneously,
RASAT [16] augmented T5 with structural insights by introducing edge embed-
dings into multi-head self-attention.

Decoder-Based SQL Generation. We categorize the methods into four dis-
tinct groups: Sequence-based methods like BRIDGE [27] and PICARD [15]
directly translate natural language queries into SQL queries token by token.
Template-based methods, represented by X-SQL [28] and HydraNet [29], uti-
lize predefined templates to guide SQL generation, ensuring structural coher-
ence. Stage-based methods, exemplified by GAZP [30] and RYANSQL [31],
1 https://app.ai2sql.io.

https://app.ai2sql.io
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Fig. 2. The overview of our framework. The grey box on the left shows the details of
the de-semantization process. The rest is the process of prompt construction. We revise
the SQL following the blue line. (Color figure online)

involve establishing a coarse-grained SQL framework, subsequently employing
slot-filling methodologies to complete missing details within the framework.
Lastly, hierarchical-based methods, such as IRNet [20] and RAT-SQL [1], adopt
a hierarchical approach to tackle NLQ-to-SQL translation.

LLM-Based SQL Generation. Recently, LLM-based models are now promi-
nent options for this task. Unlike full-data fine-tuned models, LLM-based models
can achieve good performance with just a few unsupervised in-context exem-
plar annotations [5]. Yu et al. [32] introduced a method to classify and cluster
SQL queries based on question characteristics. Inspired by some retrieval-related
research [33–35], we retrieve SQL examples with the same intention as a demon-
stration, thereby enhancing the comprehension of the diverse operators and their
respective applications. Our approach improves the LLM’s performance to gen-
erate valid and accurate SQL queries.

3 Methodology

Our framework consists of two modules as shown in Fig. 2: (1) Question De-
semanticization (Sect. 3.1) removes tokens that are semantically related to
the domain and preserves the question skeletons, which represent the question’s
intentions. (2) LLM-Based Adjustable Prompting (Sect. 3.2) involves using
the SQL demonstrations with the same intention and corresponding database
schema to create prompts that guide the LLM in generating SQL queries.

Given a natural language question Q and the database schema S = 〈T,C〉,
the goal of Text-to-SQL tasks is to generate the corresponding SQL P . Here
the question Q =

(
q1, q2, . . . , q|Q|

)
is a sequence of words. The database schema

consists of tables T =
(
t1, t2, · · · , t|T |

)
, and columns C =

(
c1, c2, · · · , c|C|

)
.

3.1 Question De-semanticization

We remove question tokens that are semantically related to the database schema
(i.e., table, column) and obtain the question skeletons, which represent the ques-
tion’s intentions. In this way, from a matching perspective, by eliminating the
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schema-related information from the question, we can better match examples
with similar question intent when retrieving.

There are two steps involved in this process: the first step is schema linking,
which finds the question tokens related to the schema. Meanwhile, we obtain
the relevance of the question tokens to the schema. As a second step, we mask
the tokens and obtain the skeletons of the questions. In the first step, we cannot
determine how relevant the tokens are to the schema, so we design schema-
related detection (Sect. 3.1.1), token matching (Sect. 3.1.2) and part-of-speech
tagging (Sect. 3.1.3) strategies to find relevant tokens.

3.1.1 Schema-Related Detection

We use a masking technique to identify correlations between question words and
their corresponding database schema. Concretely, we calculate the similarity
between question tokens and schema items. There are three steps:

(1) Masking and Concatenation. We concatenate a question Q and schema
(i.e., table T , column C) into one long sequence. We also mask each token of the
question in the sequence to generate a series of sequences. Formally, we obtain
a series of sequences as follows, where [CLS] and [SEP] denote classification and
sentence separation, respectively:

[CLS]q1q2 · · · q|Q|[SEP ][CLS]t1 · · · t|T |[SEP ][CLS]c1 · · · , c|C|[CLS]

[CLS][MASK]q2 · · · q|Q|[SEP ][CLS]t1 · · · , t|T |[SEP ][CLS]c1 · · · , c|C|[CLS]

· · ·
Later, we put all sequences into a pre-trained language model to obtain deep

contextualized representations. We denote hs
j as the representation of schema

item sj and hs
j\qi as the representation if the question token qi is masked out.

(2) Representation Transformation. We utilize the standard Poincaré
ball [36]-a unique model of hyperbolic spaces to project the representations. We
get the hyperbolic representations, denoted as h̃, using the following method:

h̃ = g0( h) = tanh(‖h‖)
h

‖h‖ . (1)

The hyperbolic space provides a suitable geometry for modeling the hier-
archy [36]. The hyperbolic space has a property called a negative curve which
allows for a more efficient representation of the hierarchy, enabling our method to
capture long-term dependencies and the overall sentence structure [37]. Further-
more, the hyperbolic space has a greater power to represent than the Euclidean
space low-dimensional space, thus allowing for a more efficient representation of
sentences with semantic hierarchy.

(3) Correlation Measurement. We measure the correlation between the ques-
tion token qi and the schema item sj in the hyperbolic space. Concretely, we
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elicit the correlation between question tokens and schema items from a pre-
trained language model based on the Poincaré distance matrix [37].

By computing dp on each pair of tokens (qi, sj), we get the Proton matrix
Dp ∈ R

|Q|×|S| as follows:

Dpi,j = 2 tanh−1
(∥
∥
∥−h̃s

j\qi ⊕ h̃s
j

∥
∥
∥
)

, (2)

where ⊕ is the Möbius addition [36], h̃s
j represents the embedding of the schema

item sj , and h̃s
j\qi represents the embedding if the question token qi is masked

out. Both h̃s
j and h̃s

j\qi are hyperbolic representation defined in Eq. (1).
We argue that the sequence concatenating all tables and columns represents

the domain knowledge of the example, which consists of the vocabulary of the
domain/scenario. We mask each token in the question sequence to detect whether
it is relevant to the domain. This measure works by masking the token and
checking if it causes a significant shift in the vector representation of the entire
sequence. If the shift is beyond a pre-defined threshold, we consider the masked
token to be important for the sequence. This means that the token is strongly
correlated with the meaning expressed by the sequence.

3.1.2 Token Matching

To discover the question tokens closely related to the scheme, we match each
question token and each schema item (i.e., table names, column names, and
values) with two kinds of explicit information in the input: name-based and
value-based matching.

Name-based matching identifies direct lexical matches between each question
token and each schema item. If a sub-sequence of the question sequence qi...j
matches the schema names sj , score one point for matching similarity. While
value-based matching detects possible value correspondences within the query.
If the question word qi is equal to specific values vj in the database, where
vj represents the set of values in the jth column of the corresponding table or
column, score one point for the corresponding matching similarity. We define
matrix Mm ∈ R

|Q|×|S| to represent the question-schema matching similarity:

Mmi,j
=

⎧
⎪⎨

⎪⎩

2, qi...j ⊆ sj ∧ qi = vj

1, qi...j ⊆ sj ∨ qi = vj

0, otherwise
. (3)

So far, coupled with the previously calculated Proton matrix Dp, we get
the question-schema relevance score, which measures the probability that the
schema items will be used to compose the SQL query. We define the relevance
score matrix R ∈ R

|Q|×|S| as follows:

R = Dp + β · Mm, (4)

where β determines the relative influence of these two strategies.



268 C. Guo et al.

3.1.3 Part-of-Speech Tagging

We perform part-of-speech (POS) tagging on questions to improve the recogni-
tion of the question skeleton.

Formally, we tag the question Q with POS analysis to obtain a set of POS
tags t1, t2, . . . , tn, where ti is the POS tag of a token qi. Then we generate the
lexical matrix P ∈ R

|Q| for each token qi based on its POS tag ti as follows:

(1) If ti is a noun or a number, then Pi is assigned the value α.
(2) Otherwise, Pi is assigned the value 0.

POS information is crucial for constructing a question skeleton as it aids in
comprehending the sentence’s structure and the grammatical roles of the words.

Incorporating the three strategies mentioned above, we obtain a question
relevance score Qscoi for each question token qi using the following equation:

Qscoi =
1
2

⎛

⎝ 1
n

|S|∑

j=1

Rij + Pi

⎞

⎠ , ∀i ∈ 1, . . . , |Q|. (5)

We generate the question skeleton based on Qsco and τ , where τ is a hyperpa-
rameter that controls the minimum relevance score required for a token.2

After calculating the R (in Sect. 3.1.2) and P , we remove domain-relevant
tokens of the questions and generate the de-semanticized question skeletons,
which allows for better retrieval of examples where the question intentions are
more consistent and more applicable to the in-context demonstration.

3.2 LLM-Based Adjustable Prompting

To construct prompts for the LLM to generate new SQL queries, we utilize
the SQL queries obtained from the question skeleton and the relevant database
schema, which are filtered by the question-schema relevance score. Then we revise
the SQL queries via a fallback mechanism, which adjusts the schema range. The
prompt we designed consists of three parts as shown in Fig. 2.

3.2.1 kNN-Based Skeleton Retrieval

We retrieve k-NN examples based on the new question skeleton. We project de-
semanticized question skeletons into a vector space and retrieve k-NN examples
corresponding to the new question skeleton. We use cosine similarity to measure
the text vectors. The new question skeleton serves as the key for the retrieval pro-
cess, and the returned value consists of the k-NN examples. Questions with the
same intention can aid in generating SQL queries by sharing common structures
and requiring comparable SQL queries to extract information from a database.
Recognizing patterns and similarities between questions enables the language
model to produce suitable SQL queries for a given inquiry.
2 If qsco is below the threshold of τ , we retain the original question token; otherwise,

we replace it with the pre-defined [MASK] token.
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3.2.2 Schema-Relevance Filtering

We utilize the filtered database schema items to generate SQL queries. We get the
schema with a scaled-down range by the relevance scores between the question
and the schema. We apply a threshold θ to filter out less relevant schema items
based on the question-schema relevance score obtained in Sect. 3.1. Specifically,
we only consider schema items with scores higher than the θ. with a scaled-down
schema range, we prompt the LLM to generate the SQL queries. Narrowing
the schema range prevents irrelevant schema from interfering with the model’s
response to the current question.

3.2.3 Fallback Revision

We propose a fallback mechanism to revise and regenerate SQL queries, in cases
where the LLM outputs a message indicating SQL generation failure or when
the generated SQL query cannot be executed successfully. We first check if the
generated SQL query is valid and can be executed on the database. If the query
fails, we retrieve the complete database schema and use it to revise the SQL
query. This ensures that the revised SQL query is valid and can be executed
on the database. We then pass the revised SQL query to the LLM for further
processing. To avoid generating an infinite loop of fallbacks, we set a maximum
number of fallback attempts. If the maximum number of fallback attempts is
reached and the SQL query still cannot be generated, we terminate the process.

4 Experiment

4.1 Experimental Setup

Datasets. In our study, we perform experiments on three widely recognized
benchmark datasets: (1) Spider [38] covers a diverse range of 138 domain
databases, offering a large-scale evaluation platform. (2) Spider-Syn [39] is
a modified version of Spider that introduces difficulty by replacing explicit
question-schema alignments with synonymous phrasing. (3) Spider-DK [40] is
an augmentation of Spider, incorporating artificial domain knowledge to further
test model adaptability and comprehension.

Evaluation. Valid SQL (VA) measures the percentage of SQL queries that are
executed without any errors. Execution accuracy (EX) measures the accuracy
of the execution results by comparing them with the standard SQL query. Test-
suite accuracy (TS) [41] measures the effectiveness of the distilled test suite
in achieving high code coverage for the database through execution, which can
serve as a better proxy for semantic accuracy. Note that we do not rely on the
mainstream exact match accuracy metric (EM), as SQL queries that serve the
same purpose may be expressed in different ways. EM is tailored to a limited
style of the dataset and serves as an intermediate solution evaluation metric for
Text-to-SQL tasks.
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Baselines. Full-data fine-tuned models: PICARD [15] employs incremental
parsing to constrict auto-regressive decoders in language models; RASAT [16]
enhances transformer models with relation-aware self-attention, combined with
constrained auto-regressive decoders; and RESDSQL [3] introduces a novel
framework featuring ranking-enhanced encoding and skeleton-aware decoding.
LLM-based models: We select the ChatGPT [13] and Codex [12] baseline
models for our study, as they are currently the top performers in evaluating Text-
to-SQL capability using LLMs. Furthermore, our approach utilizes the latest
GPT-3.5 model, text-davinci-003. We all use the best performing with prompt
engineering methodologies adapted to our respective models.

Experimental Setting. We use FAISS [42] to store and retrieve question skele-
tons. For hyperparameter settings, we assign k = 8, α = 0.9, β = 0.5, τ = 0.6,
and θ = 0.4. Our approach expands the database content beyond the limitations
of the Text-to-SQL prompt used in the OpenAI demo website3, which only con-
tains table and column names. We re-formatted the prompt to achieve better
results, though it differs from the format used in the official data training.

4.2 Main Results

Table 1. Comparison of the performance of our model and others on three datasets
(“-” indicates the results are not available. The Codex model could not be reproduced
due to an invalid Codex’api. The TS metric did not apply to the Spider-DK dataset).

Models\Datasets SPIDER SPIDER-SYN SPIDER-DK

VA EX TS VA EX TS VA EX TS

Full-data
Fine-tuned
Models

PICARD 98.4 79.3 69.4 98.2 69.8 61.8 97.8 62.5 -

RASAT 98.8 80.5 70.3 98.3 70.7 62.4 98.5 63.9 -

RESDSQL-3B 99.1 84.1 73.5 98.8 76.9 66.8 98.8 66.0 -

LLM-based
Models

GPT-3.5 87.0 57.2 56.7 83.1 39.3 39.2 88.6 48.8 -

Codex [12] 91.6 67.0 55.1 - - - - - -

ChatGPT [13] 97.7 70.1 60.1 96.2 58.6 48.5 96.4 62.6 -

Ours 99.0 87.8 84.8 99.0 79.4 75.9 99.4 74.2 -

We present a comparison between LLM-based models and full-data fine-tuned
models which are SOTA as shown in Table 1. Ours outperforms all models in
almost all evaluation metrics, except for the Spider dataset where the VA is
only 0.1 worse than the next best model (RESDSQL-3B). LLM-based models
may face difficulty generating SQL queries that conform to strict syntactical
and semantic rules, resulting in lower VA scores, compared with the fine-tuned
models. We further investigate the effectiveness of ours and compare it to the
3 https://platform.openai.com/examples/default-sqltranslate.

https://platform.openai.com/examples/default-sqltranslate
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models using LLMs directly. We observe that the improper utilization of LLMs is
generally less effective in generating complex SQL commands. Additionally, the
regular LLM-based models are confused with selecting the appropriate schema
items required. On the contrary, ours demonstrates its effectiveness in generating
accurate and semantically meaningful SQL queries.

4.3 Ablation Study

We investigate the contributions of various components of ours as shown
in Table 2: (1) DESEM+P, which uses Poincaré distance for schema-related
detection in de-semanticization; (2) DESEM-P+E, which uses Euclidean dis-
tance for schema-related detection in de-semanticization; (3) -DESEM, which
retrieves questions without de-semanticization using cosine similarity; (4) -
Skeleton Retrieval, which demonstrates random examples without retrieval; (5)
-Schema Filtering, which uses the full range of schema without filtering; (6) -SQL
Revision, which directly outputs the generated SQL without revision.

Table 2. Ablation study of different modules. “-” means not using that strategy, while
“+” means using that strategy.

Methods/Datasets SPIDER SPIDER-SYN SPIDER-DK

VA EX TS VA EX TS VA EX TS

DESEM +P (Ours) 99.0 87.8 84.8 99.0 79.4 75.9 99.4 74.2 69.7

DESEM -P+E 96.6 84.6 79.6 97.1 77.2 74.3 99.1 71.3 68.2

-DESEM 93.5 71.6 69.8 94.7 59.2 57.7 86.5 56.8 55.0

-Skeleton Retrieval 94.3 66.9 65.9 92.9 56.8 55.3 93.3 59.4 57.9

-Schema Filtering 96.7 79.6 78.3 97.3 73.6 71.5 98.5 68.6 64.3

-SQL Revision 98.5 81.2 78.2 95.0 69.9 67.3 97.6 71.8 67.1

Using Poincaré distance instead of Euclidean distance for schema detec-
tion (DESEM + P) improves efficacy. Removing de-semanticization (-DESEM)
reduces accuracy, highlighting the importance of relevant examples for utiliz-
ing SQL components and expressing intent. Removing skeleton retrieval and
comparing question sequences directly lowers performance, indicating domain
knowledge’s impact on the SPIDER-DK. SQL revision enhances generated SQL
accuracy, as seen in higher VA scores of methods with revision. Schema filtering
boosts performance by narrowing the schema range, even without revision.

4.4 Case Study

To illustrate our method, we show a comparison of predicted SQLs in Fig. 3
using PICARD, RESDSQL, ChatGPT, and our approach.
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Fig. 3. An illustrative case from Spider-DK [40]. Blue is the correct generation, and
red is the wrong generation. (Color figure online)

It shows that PICARD and ChatGPT generate an extra column “Age”, and
the three models fall short of accurately capturing the desired sorting order. This
is because the database schema only has a “birthday” column, and sorting by age
is equivalent to sorting by “birthday” in ascending order. ChatGPT attempts to
generate a more comprehensive SQL query by including an unnecessary JOIN
operation with the singer in concert table. Ours considers the requirement of
ordering the results, albeit in the opposite direction specified in the question.
However, fine-tuned models like PICARD and RESDSQL may struggle with
complex questions due to limitations in learned patterns and structures.

5 Conclusion and Future Work

We propose a Text-to-SQL generation framework that prompts LLMs with few
retrieved demonstrations. A limitation of ours is over-reliance on LLMs’s ability
for SQL code generation. LLMs with certain capabilities can work well with our
method. Future research will focus on external knowledge reasoning, as well as
efficiency when dealing with large databases. Our approach can be generalized
to knowledge base question answering and code generation tasks.
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Abstract. Context-dependent Text-to-SQL aims to translate multi-
turn natural language questions into SQL queries. Despite various meth-
ods have exploited context-dependence information implicitly for con-
textual SQL parsing, there are few attempts to explicitly address the
dependencies between current question and question context. This paper
presents QURG, a novel QUestion Rewriting Guided approach to help
the models achieve adequate contextual understanding. Specifically, we
first train a question rewriting model to complete the current question
based on question context, and convert them into a rewriting edit matrix.
We further design a two-stream matrix encoder to jointly model the
rewriting relations between question and context, and the schema linking
relations between natural language and structured schema. Experimental
results show that QURG significantly improves the performances on two
large-scale context-dependent datasets SParC and CoSQL, especially for
hard and long-turn questions.

Keywords: Semantic Parsing · Context-dependent Text-to-SQL ·
Question Rewriting

1 Introduction

The past decade has witnessed increasing attention on text-to-SQL semantic
parsing task, which aims to map natural language questions to SQL queries.
Previously, works have mainly concentrated on the context-independent text-
to-SQL task [32], which translates single questions to SQL queries. The key to
solving context-independent text-to-SQL is to model the relationships between
questions and schema. Recent works have made great progress [2,14,22,24,25]
by employing pre-train language model. Compared with the context-independent
text-to-SQL task, the context-dependent text-to-SQL task faces more challenges,
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Fig. 1. An example of the context-dependent Text-to-SQL task with the phenomenon
of co-reference and omission. urw

t denotes the rewritten question of the current question
ut at t-th conversation turn.

that not only need to consider the relationship between natural language ques-
tions and the schema, but also the relationship between the current question and
question context.

In a multi-turn scenario, as shown in Fig. 1, current questions may contain
two contextual phenomena: co-reference and omission which are heavily asso-
ciated with the historical context, meanwhile the question context may also
contain information irrelevant to current questions. Thus models are required to
selectively leverage contextual information to correctly address the user’s inten-
tion of the current questions.

Previous works [7,19,31,35] on context-dependent text-to-SQL typically
model the context dependencies in a simple way that feeds the concatenation
of the current question, question context and schema into a neural networks
encoder. Several works directly leverage historical generated SQL [34,35] or
track interaction states associated with historical SQL [1,23] to enhance the
current SQL parsing. However, these works neglect the explicit guidance on
resolving contextual dependency. [3] is the first attempt at context-dependent
text-to-SQL task by question rewriting, but this approach relies on in-domain
QR annotations and complex algorithms to obtain the rewritten question data.

To address the above limitations, we propose QURG, a novel QUestion
Rewriting Guided approach, which consists of three steps: 1) rewriting the
current question into self-contained question and further converting it into a
rewriting edit matrix; 2) jointly representing the rewriting matrix, multi-turn
questions, and schema; 3) decoding the SQL queries. Firstly, we train and eval-
uate the QR model on the out-of-domain dataset Canard [6] and initialize the
QR model with a pre-trained sequence generator for more precise rewritten ques-
tions. Secondly, inspired by [16], we propose to integrate rewritten results into
the text-to-SQL task in the form of a rewriting relation matrix between ques-
tion and context. We observed that directly replacing or concatenating original
input with rewritten question may mislead the model for correctly SQL parsing.
The reason is the unavoidable noise in rewritten questions and some questions
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Fig. 2. An example of rewriting edit matrix. Given rewritten question urw
t , we convert

it to relations between current question ut and question context u<t.

are semantically complete and do not need to be rewritten. Taking Fig. 2 as an
example, the rewriting edit matrix denotes the relations between question and
context words, these relations could clearly guide the model in solving long-range
dependencies.

Furthermore, we propose a two-stream relation matrix encoder based on the
relation-aware Transformer (RAT) [20] to jointly model the rewriting relation
features between the current question and the context, and the schema linking
relation features between multi-turn question and database schema. Finally, we
aggregate the representations from the two relation matrix encoders to gener-
ate current SQL queries.We evaluate our proposed QURG on two large-scale
cross-domain context-dependent benchmarks: SParC [33] and CoSQL [30]. We
summarize the contributions of this work as follows:

– We present a novel context-dependent text-to-SQL framework QURG that
explicitly guides models to resolve contextual dependencies.

– Our framework incorporates rewritten questions in a novel way that explicitly
represents multi-turn questions through rewriting relation matrix and two-
stream relation matrix encoder.

– Experimental results show that QURG achieves comparable performance to
recent state-of-the-art works on two context-dependent text-to-SQL datasets.

2 Related Work

Natural language processing tasks [9–11] have grown significantly with the devel-
opment of pre-train language model. The task aims to map natural language
questions to database-related SQL queries. Spider [32] is a widely evaluated
cross-domain context-independent dataset and numerous works [2,14,18,20,22,
26,27,29] have shown that modeling the relation between question and schema
can effectively improve performance on Spider.

In the face of the co-reference and omission in multi-turn questions, context-
dependent text-to-SQL task is more challenging. Several works [23,34,35] utilize
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previously generated SQL queries to resolve long-range dependency and improve
the parsing accuracy. Some works [1,7] use graph neural networks to jointly
encode multi-turn questions and schema. Others [12,31] propose auxiliary state
switch prediction tasks to model multi-turn question relations. [19] simply con-
strain the auto-regressive decoders of super large pre-trained language models
T5-3B. In this work, we propose to adopt the rewriting matrix to explicitly
model the relationships between the current question and context.

3 Preliminaries

In this section, we first formalize the context-dependent Text-to-SQL task, and
then we introduce the relation-aware Transformer (RAT) [22], which is widely
adopted to encode relations between sequence elements in text-to-SQL tasks,
and which we use to build our two-stream encoder.

3.1 Task Formulation

The context-dependent text-to-SQL task is to generate the SQL query yt given
current user question ut, historical question context u<t = {u1, u2, . . . , ut−1},
and database schema S = 〈T , C〉, which consists of a series of tables T =
{t1, ..., t|T |} and columns C = {c1, ..., c|C|}.

3.2 Relation-Aware Transformer (RAT)

The relation-aware transformer is an extension of the vanilla transformer [21].
RAT can integrate the pre-defined relation features by adding relation embed-
ding to the self-attention mechanism of the vanilla transformer:

e
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where h denotes the h-th head, a
(h)
ij is the attention weights, W(h)

Q , W(h)
K , W(h)

V

are learnable projection parameters, rij is the pre-defined relation embedding
between input xi and xj .

4 Methodology

Figure 3 illustrates our framework of QURG. It contains three parts: 1) Question
rewriting model which is employed to obtain rewritten question urw

t from cur-
rent question ut and context u<t. 2) Rewriting matrix generator which converts
rewritten question to word-level relation matrix between ut and u<t. 3) SQL
parser with two-stream encoder which can effectively integrate rewrite matrix
for solving context dependencies.
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Fig. 3. Illustration of QURG framework: Left: Question rewriting module which pro-
duces rewritten questions urw

t and rewriting matrix Rrw. Right: PLM encoder and our
proposed two-stream relation matrix encoders.

Table 1. Relation types between question and context. Relation edges exist from source
token xi ∈ Xutter to target token xj ∈ Xutter if the pair meets one of the descriptions
listed in the table, where Xutter is token set of ut and u<t.

Type of xi Type of xj Relation type Description

Question ut Context u<t Q-C-Ins Insert xj before xi

Q-C-Sub Substitute xj for xi

None None operation

Context u<t Question ut C-Q-Ins Insert xi before xj

C-Q-Sub Substitute xi for xj

None None operation

4.1 Question Rewriting Model

Following [13] and [8], we employ a pre-trained T5-base sequence generator [5,17]
as our QR model. Due to the lack of QR annotations on the text-to-SQL task,
we directly use the out-of-domain QR dataset Canard [6] for QR model train-
ing and evaluation. Specifically, given the current user question ut and histor-
ical context u<t, we train QR models to produce rewritten question urw

t as:
P(urw

t |{[history], ut−1, [query], ut}), where [history] and [query] are spe-
cial symbols to distinguish the context input and current question.

4.2 Rewriting Matrix Construction

Instead of feeding the rewritten question directly into the text-to-SQL model,
we further convert the rewritten question into rewriting matrix which contains
the key information to resolve context dependencies in current question. Follow-
ing [16], we adopt a heuristic method to construct the bi-directional rewriting
matrix. Bi-directional rewriting relation types between ut and u<t are shown in
Table 1.
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Through the above method, we can associate the existing omission and co-
reference in the current question ut with the historical context u<t, retaining
context-dependencies in the form of a rewriting matrix, while ignoring trivial
information or noise in the rewritten question urw

t .

4.3 QURG: SQL Parser with Rewriting Matrix

Our QURG model is an extension of RAT-SQL [22] following the common
encoder-decoder architecture, which consists of three modules, as shown in Fig. 3:
1) Pre-trained Language Model (PLM) encoder which jointly transforms ques-
tion ut, context u<t and schema S into embedding as Xu,Xctx and Xsc respec-
tively; 2) Two-stream relation matrix input encoder which further encodes ele-
ment embedding with pre-defined pairwise relation features as H; 3) Grammar-
based decoder which generates SQL query corresponding to the current question.

Pre-trained Language Model Encoder. We concatenate the current ques-
tion ut, context u<t and schema S as the input sequence of pre-trained language
models:

X ={[CLS], ut, [SEP], ut−1, ..., u1, [SEP], t1,

, t2, ..., t|T |, [SEP], c1, c2, ...c|C|, [SEP]}.

Following [2], we randomly shuffle the order of tables and columns in different
mini-batches to alleviate the risk of over-fitting. Moreover, since each table name
or column name may consist of multiple words, we use the average of the begin-
ning and ending hidden vector as the schema element representation. Finally,
the joint embedding vector of X is represented as X = Concat(Xu;Xctx;Xsc).

Two-Stream Relation Matrix Encoder. This module contains two streams
of relation matrix encoders: Schema Linking matrix Rlink encoder and Rewriting
matrix Rrw encoder. Firstly, the schema linking aids the model with aligning col-
umn/table references in the question and context to the corresponding schema
columns/tables id. The schema linking relation matrix Rlink is borrowed from
RATSQL [22] which builds relations between natural language and schema ele-
ments. Through the schema linking method, we can get schema linking matrix
Rlink ∈ R

(|X|×|X|). Then, the schema linking matrix Rlink encoder takes joint
embeddings of current question Xu, context Xctx and schema word Xsc as input
and applies Llink stacked RAT layers to produce contextual representation Hlink

u ,
Hlink

ctx and Hlink
sc respectively:

Hlink
(0) = Concat (Xu;Xctx;Xsc) (3)

Hlink
(l) = RAT(l)

(
Hlink

(l−1), R
link

)
(4)

where l ∈ [1, Llink] denote the index of the l-th RAT layer.
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Table 2. Detailed statistics for SParC dataset [33] and CoSQL dataset [30].

Dataset Question
Interactions

Train/Dev/Test Database/
Domain

User
Questions

Average
Turn

Vocab System
Response

Cross
Domain

SParC 4,298 3,034/422/842 200/138 15,598 3.0 9,585 � �

CoSQL 3,007 2,164/293/551 200/138 12,726 5.2 3,794 � �

Similarly, the rewriting matrix Rrw encoder takes the joint embeddings of the
current question Xu and context Xctx as input and applies Lrw stacked RAT
layers to get the rewriting enhanced representations Hrw

u , Hrw
ctx of question and

context respectively:

Hrw
(0) = Concat (Xu;Xctx) (5)

Hrw
(l) = RAT(l)

(
Hrw

(l−1), R
rw

)
(6)

where l ∈ [1, Lrw] denote the index of the l-th RAT layer.
Finally, we aggregate the representations of the two-stream encoder as:

H=Concat
(
Hlink

u +Hrw
u ;Hlink

ctx +Hrw
ctx;Hlink

sc

)

Grammar-Based Decoder. We follow [22] and [2], using a grammar-based
syntactic neural decoder that generates the target SQL action sequence in the
depth-first-search order of the abstract syntax tree (AST). We refer the reader
to [28] for details.

5 Experiments

In this section, we describe the experimental setups and evaluate the effective-
ness of our proposed QURG. We compare QURG with previous works and con-
duct several ablation experiments. We also compare our method with the other
two approaches of incorporating rewritten questions into text-to-SQL, to further
verify the advantages of our QURG.

5.1 Experimental Setup

Datasets. We train our QURG model on two large-scale cross-domain context-
dependent text-to-SQL datasets, SparC [33] and CoSQL [30]. The details of
those datasets are organized in Table 2.

Evaluation Metrics. For evaluation, we employ two main metrics on both SParC
and CoSQL datasets: Question match (QM) accuracy and Interaction match
(IM) accuracy. Specifically, for QM, if all clauses in a predicted SQL are exactly
matching those of the target SQL, the matching score is 1.0, otherwise, the score
is 0.0. For IM, if all the predicted SQL in interaction is correct, the interaction
match score is 1.0, otherwise the score is 0.0.
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Implementation Details. For Text-to-SQL tasks, we use Electra [4] as our
pre-trained language model for all experiments. We set the learning rate to 1e-4,
batch size to 32, and the maximum gradient norm to 10. The number of training
epochs is 300 and 320 for SParC and CoSQL respectively. The numbers of RAT
layers Llink = 8 for schema linking matrix encoder and Lrw = 4 for rewriting
matrix encoder respectively. During inference, we set the beam size to 5 for SQL
parsing.

5.2 Experimental Results

Table 3. Performances on the development set of SParC and CoSQL dataset. The
models with � mark employ task adaptive pre-trained language models.

Models SParC CoSQL

QM IM QM IM

EditSQL [34] 47.2 29.5 39.9 12.3

GAZP [36] 48.9 29.7 42.0 12.3

IGSQL [1] 50.7 32.5 44.1 15.8

RichContext [15] 52.6 29.9 41.0 14.0

IST-SQL [23] 47.6 29.9 44.4 14.7

R2SQL [7] 54.1 35.2 45.7 19.5

DELTA [3] 58.6 35.6 51.7 21.5

SCoRE� [31] 62.2 42.5 52.1 22.0

HIE-SQL� [35] 64.7 45.0 56.4 28.7

RAT-SQL+TC� [12] 64.1 44.1 - -

QURG (Ours) 64.9 46.5 56.6 26.6

Table 4. Detailed question match accuracy (QM) results in different interaction turns
and SQL difficulties on the development set of SParC and CoSQL datasets. Results of
a [34],b [1],c [23],d [12],e [23] and f [31] are from the original paper.

SParC (→) Turn 1 Turn 2 Turn 3 Turn� 4 / Easy Medium Hard Extra

EditSQLa 62.2 45.1 36.1 19.3 / 68.8 40.6 26.9 12.8

IGSQLb 63.2 50.8 39.0 26.1 / 70.9 45.4 29.0 18.8

R2SQLc 67.7 55.3 45.7 33.0 / 75.5 51.5 35.2 21.8

RAT-SQL+TCd 75.4 64.0 54.4 40.9 / - - - -

QURG (Ours) 75.4 66.1 53.7 44.3 / 80.1 64.4 43.4 35.1

CoSQL (→) Turn 1 Turn 2 Turn 3 Turn 4 Turn > 4 Easy Medium Hard Extra

EditSQLa 50.0 36.7 34.8 43.0 23.9 62.7 29.4 22.8 9.3

IGSQLb 53.1 42.6 39.3 43.0 31.0 66.3 35.6 26.4 10.3

IST-SQLe 56.2 41.0 41.0 41.2 26.8 66.0 36.2 27.8 10.3

SCoREf 60.8 53.0 47.5 49.1 32.4 - - - -

QURG (Ours) 64.5 55.4 55.7 50.0 42.3 77.2 50.0 40.5 20.6



QURG 283

Table 5. Ablation studies for the components of QURG. Note that −Encrw is also the
baseline without the integration of rewritten questions u<t.

Models SParC CoSQL

QM IM QM IM

QURG 64.9 46.5 56.6 26.6

−Rrw 62.6 43.6 55.6 25.2

−Encrw 63.4 44.7 55.0 24.5

As shown in Table 3, we compare the performances of QURG with previous works
on the development set of SParC and CoSQL datasets. QURG achieves compa-
rable performance to previous state-of-the-art methods, including SCoRE [31],
RAT-SQL-TC [12] and HIE-SQL [35] which effectively promote performances
by using task-adaptive pre-trained language models. Besides, our QURG outper-
forms DELTA [3] which directly uses rewritten questions to predict SQL queries.
In terms of IM accuracy on the CoSQL, QURG also surpasses Picard [19] which
is based on the super large pre-trained models T5-3B [17].

To further study the advantages of QURG on contextual understanding, as
shown in Table 4, we evaluate the performances of the different question turns on
SparC and CoSQL, and compare our QURG with previous powerful methods.
Our QURG can achieve more improvements as the interaction turn increase.
Furthermore, we evaluate the performance of QURG on the different difficulty
levels of target SQL as shown in the right of Table 4, we observe that our QURG
consistently achieves comparable performances to recent state-of-the-art works.

5.3 Ablation Study

As shown in Table 5, we conduct several ablation studies to evaluate the contri-
bution of rewriting matrix integration for our QURG.

Fig. 4. Detailed results on different question turns for models Only, Concat and
QURG.

To explore the effects of the rewriting matrix (−Rrw), we set all the relation
types in the rewriting matrix to None and keep the model structure unchanged.



284 L. Chai et al.

It degrades the model performances on both datasets by 1.0%–2.9% which con-
firms that rewriting matrix can effectively improve SQL parsing ability through
enhanced context understanding. Then we further remove the whole rewriting
matrix encoder (−Encrw) to verify the effect of the additional encoder parame-
ters on question ut and context u<t, we observe that the additional parameters
slightly degrade the performance on SParC, while slightly improving on CoSQL
(−Encrw → −Rrw), which indicates that the additional parameters have little
effect on the improvements of QURG.

Table 6. Studies on different approaches to inject rewritten question into context-
dependent text-to-SQL.

Models SParC CoSQL

QM IM QM IM

Only 52.4 29.4 45.9 15.0

Concat 62.3 41.2 53.0 20.8

QURG 64.9 46.5 56.6 26.6

Moreover, we explore the effects of different approaches to integrating rewrit-
ten questions into text-to-SQL tasks, as shown in Table 6: 1) “Only” indicates
only using rewritten questions urw

t to generate SQL queries, discarding the orig-
inal question ut and context u<t; 2) “Concat” indicates concatenating original
question ut, context u<t with rewrite questions urw

t , treating urw
t as additional

information. As shown in Table 6 and Fig. 4, Only feeding rewritten questions
into text-to-SQL models results in a substantial performance drop, since the QR
model is trained on out-of-domain data, the rewritten questions may contain
a lot of noise. For “Concat”, question and context are retained to meet the
potential noise in rewritten questions, while it is still not ideal and causes per-
formance to degraded against QURG, especially with the increase of turns, the
performance of Concat decreases more significantly.

6 Conclusions

We propose QURG, a novel context-dependent text-to-SQL framework that uti-
lizes question rewriting to resolve long-distance dependencies between the cur-
rent question and historical context. Experimental results show that our QURG
achieves comparable performance with recent state-of-the-art works.
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Abstract. This paper presents a deep learning-based framework to
detect sarcasm in relation to time. Deep N -gram features generated using
the FastText algorithm, combined with temporal handcrafted temporal
features are used to train several machine learning classifiers. Experi-
mental results show that Logistic Regression performs the best among
all the classifiers. The introduction of the handcrafted temporal features
has also whosn to improve overall detection performance when compared
to existing works in the field.

Keywords: Sarcasm Detection · Temporal Features · Natural
Language Processing · Deep Learning · Sentiment Analysis

1 Introduction

The multitude of personal social media data generated up till today has shown
to be useful for analysis purposes, where organizations can use this data to
better understand their target audience [4,17]. Specifically, the main interest is
to understand sentiment, hence the growing field of sentiment analysis [24].

Sarcasm can be defined as a positive sentence (or phrase) with negative
intent [33]. In Natural Language Processing (NLP), the ability for systems to
automatically identify and detect sarcasm, even when using state-of-the-art algo-
rithms, is still very challenging [25]. Wrongly identifying sarcasm (or vice versa)
can change the polarity of a sentence and therefore jeopardize overall sentiment
analysis [20,25]. Earlier works such as [12,33] attempted sarcasm detection using
rule-based techniques. This quickly became problematic as the number of rules
to consider became bigger and bigger. Hence, more recent studies such as [26,30]
began to adopt machine learning and deep learning where algorithms could be
trained either on engineered (handcrafted) features or through automatic feature
discovery.
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In this paper, both deep and machine learning are applied. Deep features are
generated through a deep learning architecture. These are then combined with
handcrafted temporal features to represent each data instance (tweet). The sig-
nificant contribution in this work is the use of temporal features, which attempts
to represent different tones and gestures used in normal day-to-day conversa-
tions. This is based on the intuition that people tweeting sarcasm commonly
add ‘creativity’ to their tweets. These come in the form of semantic clues indi-
cating their sarcasm [12,33]. These clues is what this work is trying to represent
and manipulate, particularly the temporal clues. All features are generated from
the dataset found in [31].

2 Related Work

Earlier works in sarcasm detection employed rule-sets. Barbieri et al. [7] identifies
sarcasm by looking at frequency of words. Their technique is slightly advanced
by [11] by adding more rules in the form of word patterns. Among features taken
into consideration in the rules are the number of +ve/-ve words, and the number
of words based on emotion. Rules are also used in [35] where the authors define
specific seed phrases. These are such as “being sarcastic”, which are then to
identify other sarcastic instances.

A majority of sarcasm detection work employ deep learning architectures,
such as [30] and [26]). For example, [30] designed their own Convolutional Neu-
ral Network (CNN) to discover feature sets, which in turn are used train a
Support Vector Machine (SVM) classifier. The work in [19] based their detector
on Embeddings from Language Models (ELMo), which derives its vector repre-
sentation from a bi-directional Long Short Term Memory (for the fundamentals
of this technique, readers can be directed to [29]. Riloff et al. [33] used classifiers
to locate positive verbs that occur together in negative situations, followed by
other researches to further refine their own rule-sets (e.g. [6,21,30])

Historical user tweets were also used for feature generation. The authors in
[6] analysed the thread of tweets, from the same user, for relevance. Relevance is
indicated when features exhibit specific rules. For example, “audience feature” is
evident in historical correspondences between the tweet’s author and its intended
recipient. Kreuz & Caucci [22] furthered this idea based on their claim that
sarcasm is more commonly directed/projected towards people whom the writer
knows (or is familiar with). Other works that follow this trend are [3,16,32]. For
example, Rajadesingan et al. [32] proposed their SCUBA (Sarcasm Classification
Using a Behavioural Modeling Approach) framework. SCUBA classifies a user’s
behaviour based on Bamman & Smith [6]’s method, but additionally considered
the difference between current and past tweets.

In this paper, a deep feature set (in the form of N -grams) is used along with
a handcrafted set (i.e. temporal set). The justification for this temporal set is
based on the results of [13], where it is strongly assumed that sarcastic sentences
can have a negative connotation at one instance of time, but can change into
a positive at a different instance of time. In addition, when a person is being
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sarcastic, abnormal tones are commonly utilized [5,34] as well as exaggerations
as stated in [23]. Our feature set is based on these assumptions.

3 Proposed Method

The overall work flow of our work is shown in Fig. 1.

3.1 Data Acquisition

For our experiments, the publicly available dataset in [31] is used. It is worth
noting that this dataset is imbalanced, where from the total of 780,000 English
tweets, 130,000 are sarcastic where 650,000 are non-sarcastic. The authors how-
ever justify this imbalance as sarcastic utterances occur more rarely. In this work,
80 percent is used for training whereas 20 percent is used for testing.

3.2 Data Preprocessing

We follow the standards set by [16], since preprocessing is essential in any Natu-
ral Language Processing (NLP) task. The five types of preprocessing techniques
applied are (i) conversion to lower-case, (ii) punctuation removal, (iii) “#sar-
casm” hashtags removal, (iv) stopwords removal, and (v) lemmatization.

3.3 Sarcasm Detection

Deep Learning Extraction. As mention, the majority of work in sarcasm
detection is mostly done using deep learning (DL) [16,26,30,36]. The biggest
advantage of DL is its ability to generate optimal features for various NLP tasks
[26,30].

This endeavor involves constructing a Convolutional Neural Network archi-
tecture to derive ten profound features. The specific architecture for sarcasm
detection task is shown in Fig. 2.

FastText. Notice in Fig. 2 that before going into the CNN, word-embedding
is firstly performed. We adopt FastText [10] to convert tweets into the CNN
input vectors. Note that we choose FastText as compared to the commonly used
Word2Vec [27] because our input features are N -grams (as opposed to individual
words generated by Word2Vec). For example, FastText breaks the word “human”
into the trigram “hum”, “uma” and “man”. Note also that FastText has the
ability to generate unigrams and birgams as well. FastText’s output is therefore
a word-embedding vector of all broken N -grams in the dataset. We see this as
giving a more effective representation for each data instance, especially for rare
and/or wrongly spelled words.
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Fig. 1. Overall Framework of the Study

Convolutional Neural Network (CNN): The deep features extraction part
is performed by out vanilla CNN architecture (Fig. 3). This is the detail of the
CNN part from the overall architecture of the sarcasm detection part shown
in Fig. 2.
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Fig. 2. Overall Architecture of Sarcasm Detection Part

Fig. 3. Vanilla CNN for detecting sarcasm

The CNN in Fig. 3 is displayed in a top-down fashion. Note that NL is the
abbreviation for N -gram Length. The specifics for the CNN is as follows:

1. The input layer: 1 × 100 ×N , where N is the number of instances from the
dataset. Embedded-word vectors are the initial input.

2. Layer before concatenation:
– 1 convolutional layer consisting 200-neurons (filter size = 1 × 100 × N ,

with a stride of 1), followed by
– 2 convolutional layers consisting 200-neurons (filter size = 1× 100× 200,

with a stride of 1), followed by
– 3 batch normalizations (200-channels), followed by
– 3 Rectified Linear Unit (ReLU) activations, followed by
– 3 dropout layers (20%), followed by
– 1 max-pooling layer with stride 1, followed by

3. A depth concatenation layer
4. Finally, a fully connected layer of 10-neurons.

Specifically, the convolutional layers will produce feature maps followed by
batch normalizations that also improve training time and stability. Regulariza-
tion is performed at a minimum of 20% dropouts so that overfitting does not



292 M. S. Razali et al.

occur. The inputs are in the form of word vectors generated by Fasttext, where
the vector size is set to [1 100]. These vectors are respectively split into their own
groups of N -grams, i.e. - unigrams, bigrams, and trigrams. These groups are then
fed into the three concurrent graph architectures. The deep features vector are
the 10-neuron fully connected layer at the end. These are finally concatenated
with the handcrafted temporal features for final instances representation.

3.4 Temporality Detection

According to [13], sarcasm also has to do with time (hence, the temporal dimen-
sion). For example, the following phrase “You think like Trump!” if uttered in
2016, after Donald Trump won the United States elections, would have a differ-
ent connotation then if it were uttered in the year 2020 (after he was ousted).
This illustrates how time plays a role in determining whether sarcasm is implied
or otherwise.

Due to this, we identify temporal features. These features are handcrafted
where specific rules apply depending on the lexicon. These lexicons are explained
as follows.

3.5 Lexicons

All the handcrafted features are extracted using the following two lexicons:

1. Temporal Words: These are more commonly referred to as transition words
in grammar. These words relate to time and examples are such as previously,
instead and furthermore. For a more complete list, readers can be directed to
[2]. In this work, a list of 52-instances were used.

2. Nouns: This lexicon is downloaded from [1]. A total of 1500-instances are
used.

3.6 Experimental Results

We evaluated the performance of five different traditional machine learning clas-
sifier based on the handcrafted and deep features combination. These are the (i)
K-Nearest Neighbor (KNN) [15], (ii) Support Vector Machine (SVM) [28], (iii)
Decision Tree (DT) [8], (iv) Logistic Regression (LR) [9], and (v) Discriminant
Analysis (DISCR) [14].

For each classifier, we obtained the following metrics (where TP is true pos-
itives, TN is true negatives, FP is false positives and FN is false negatives):

Accuracy:

accuracy =
Correct predictions

Total predictions
(1)

Precision:
precision =

TP

TP + FP
(2)
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Recall:
recall =

TP

TP + FN
(3)

F1-measure:
F1 = 2.

precision · recall

precision + recall
(4)

It is common to determine a classification algorithm’s accuracy score to
determine effectiveness [18]. However, since this measure is an overall view of how
the classifier performs on both positive and negative classes, it might not provide
the best insight. Hence, precision and recall are also calculated as they provide
insights on classifier performance with regards to each class (i.e. sarcastic vs. non-
sarcastic). Specifically, precision looks at the proportion of genuinely sarcastic
instances out of all the system-predicted sarcastic instances. When this ratio is
low, only a small quantity of truly sarcastic tweets are identified as such. Recall
on the other hand looks at actual sarcastic instances over everything that is
actually sarcastic. When this measure is low, many sarcastic tweets are classified
as non-sarcastic. F1 − measure, also called the harmonic mean, attempts to
provide an overall measure of precision and recall. This is especially useful when
dealing with imbalanced datasets.

For the experiments, we divided the dataset [31] into a 64 : 16 : 20 split
for training, validation and testing, respectively. Specifically, from the overall
780,000 English language tweets, 83% are non-sarcastic instances, whereas the
remaining 17% are sarcastic instances.

4 Results and Discussion

4.1 Classification Results

Table 1 shows the metrics calculated for each classifier, based on the handcrafted
and deep features combination.

Table 1. Classification Results for the SVM, KNN, LR, DT and DISCR

Classification Algorithm F1 Precision Recall Accuracy

SVM 0.87 0.87 0.87 87%

KNN 0.86 0.86 0.86 86%

LR 0.89 0.90 0.89 89%

DT 0.87 0.87 0.87 87%

DISCR 0.87 0.87 0.86 86%

The Logistic Regression (LR) classifier seems to be giving the overall superior
results, based on all calculated metrics. The SVM and Decision Tree on the
other hand are also promising, showing high accuracy and F1-measure. Since LR
performed the best, further analysis in this paper will be based on its results.
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4.2 Logistic Regression vs. Existing Works

Using the same dataset, we compared the LR classifier with works from Ilić et
al. [19] and Shmueli et al. [35], as to the best of our knowledge, these works are
most relevant. The comparative results are shown in Table 2.

Table 2. Performance comparison with Existing Works

Method F1 Precision Recall Accuracy

Ilić et al. [19] 0.87 0.87 0.87 88%

Shmueli et al. [35] 0.86 0.87 0.91 87%

Proposed Method 0.89 0.90 0.89 89%

Overall, our proposed framework shows better performance across almost
metrics (recall is slightly lower at 0.89 but arguably comparable).

4.3 Performance Comparison Among Feature Sets

The performance of feature sets are also presented. For this, we only measure
accuracy (Fig. 4).

Fig. 4. Performance of Individual Feature Sets

Compared to deep feature, temporal feature shows a lower performance.
Based on our observations, the main reason for this is not frequently present
in the dataset. We also observed that, since informal language is most often
used on Twitter, the detection of temporal words become more difficult to reli-
ably detect. However, we argue that an accuracy of more than 60% shows the
importance of this feature and that it adds value to the overall performance of
a sarcasm detection system.
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5 Conclusion Remarks and Future Works

The results provide insights into the use of handcrafted temporal features and
deep features for sarcasm detection. The temporal features seem to provide added
value for tweets that contain temporal/transitional words. Experimental results
have demonstrated that when the temporal features are combine with deep fea-
tures, with a Logistic Regression classifier as the main classifier, all presision,
recall, F1−measure and overall accuracy is high. In the future, more datasets
will be explored with the hope of better generalization.
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Abstract. Finding an agreement among diverse opinions is a challeng-
ing topic in social intelligence. Recently, large language models (LLMs)
have shown great potential in addressing this challenge due to their
remarkable capabilities in comprehending human opinions and gener-
ating human-like text. However, they typically rely on extensive human-
annotated data. In this paper, we propose Self-Agreement, a novel frame-
work for fine-tuning LLMs to autonomously find agreement using data
generated by LLM itself. Specifically, our approach employs the genera-
tive pre-trained transformer-3 (GPT-3) to generate multiple opinions for
each question in a question dataset and create several agreement can-
didates among these opinions. Then, a bidirectional encoder representa-
tions from transformers (BERT)-based model evaluates the agreement
score of each agreement candidate and selects the one with the high-
est agreement score. This process yields a dataset of question-opinion-
agreements, which we use to fine-tune a pre-trained LLM for discover-
ing agreements among diverse opinions. Remarkably, a pre-trained LLM
fine-tuned by our Self-Agreement framework achieves comparable per-
formance to GPT-3 with only 1/25 of its parameters, showcasing its
ability to identify agreement among various opinions without the need
for human-annotated data.

Keywords: Social intelligence · Consensus building · Opinion
summarization · Large language models

1 Introduction

Social intelligence (SI) is the capacity to navigate relationships effectively and
garner cooperation from others [2,4]. A crucial component of SI is consensus
building, which involves achieving substantial agreement within a group on a
particular topic. This studies on how to reach an agreement through discus-
sions involving a variety of opinions, which is often challenging [4]. The recent
rise and success of large language models (LLMs), such as the generative pre-
trained transformer-3 (GPT-3) [3], offer promising opportunities for addressing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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this challenge, by leveraging their capabilities in comprehending human opinions
and generating human-like text.

Currently, employing LLMs for finding agreement among diverse opinions can
be divided into two kinds of approaches. The first approach involves zero-shot
learning on a pretrained LLM, such as GPT-3/4, which can output agreement
without additional training. However, accessing these models requires the use of
an application programming interface (API), which can introduce latency, high
costs, and limited accessibility for research. Moreover, while some pretrained
LLMs like Meta’s LLaMA [9] are available for local download, their massive
parameters often lead to substantial storage and computational requirements
during inference, making them less feasible for certain applications.

The second approach focuses on few-shot learning, which entails fine-tuning
a LLM using a dataset containing opinions and agreement data. One notable
example is [1], which relies on a 70 billion parameter model and expert-annotated
data. However, this dependence on high-quality, human-generated data and the
associated costs can be a significant barrier for many researchers and organi-
zations seeking to leverage these models for consensus-building tasks. These
limitations highlight the need for more accessible and cost-effective solutions in
applying LLMs to find agreement among diverse opinions without heavily relying
on human resources.

In this paper, we address the above challenges by proposing Self-Agreement,
a framework designed to autonomously find agreement among diverse opinions
using LLMs. Our method consists of the following four key steps. First, we
employ GPT-3 to generate multiple opinions on each question given a dataset
containing various questions. Next, we use GPT-3 to generate several potential
agreements among these diverse opinions for each question. We then evaluate the
agreement score of each agreement candidate, choosing the one with the high-
est score as the optimal agreement to construct a question-opinion-agreement
dataset. Finally, we fine-tune a pre-trained LLM using the above dataset. This
step allows the model to adapt to the specific task of finding agreements among
various opinions. In our evaluation, we fine-tuned a 7 billion pre-trained LLM
using our Self-Agreement framework. Remarkably, our model achieves a similar
performance to GPT-3 with only 1/25 of its parameters, showcasing its ability
to identify areas of agreement among conflicting views.

In summary, our contributions include: 1) a large dataset consisting of var-
ious questions, opinions, and agreement candidates, which can serve as a valu-
able resource for building and evaluating consensus-building models; 2) the Self-
Agreement framework which is designed to autonomously find agreement among
diverse opinions using LLMs without human-annotated data; 3) a demonstra-
tion of fine-tuning a pre-trained model, with a comprehensive set of experiments
confirming its effectiveness and performance.
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2 Related Work

The concept of agreements can vary depending on the task. In this paper, we
consider agreement as a form of opinion summarization from users, which may
be agreed upon by all the users, similar to the approaches used in [1,8].

Opinion Summarization. Most opinion summarization methods follow a
three-step process [5]: First, aspect extraction is performed, which involves iden-
tifying the relevant features or aspects of the product that the user is comment-
ing on. Second, sentiment prediction is used to determine the sentiment of the
extracted aspects, whether it is positive, negative, or neutral. This step helps
to understand the overall opinion of the user. Finally, summary generation is
used to present the identified opinions to the user in a concise and easily under-
standable manner. This step involves condensing the extracted aspects and their
corresponding sentiments into a brief summary. Most methods rely on extractive
techniques for creating textual summaries, which select representative segments
from the source text. However, this can result in loss of information that may
be useful depending on user needs.

Most current approaches for opinion summarization, as described in the ref-
erence [7], involve encoding documents and then decoding the learned repre-
sentations into an abstractive summary. These methods leverage the success of
sequence-to-sequence neural network architectures and are trained using sets of
opinions and their corresponding summaries. In this approach, there is no need
to explicitly identify aspects and sentiment for the opinion summarization task,
as these are learned implicitly from the training data. However, due to mem-
ory limitations, training these models end-to-end with a large number of input
reviews for each target entity is practically infeasible [6].

LLMs for Opinion Summarization. The LLMs have shown great poten-
tial in opinion summarization tasks, largely due to their ability to process and
generate natural language. Bakker et al. [1] fine-tuned a 70 billion parameter
pretrained LLM to produce statements that maximize the expected approval
for groups with diverse opinions. The model demonstrated exceptional perfor-
mance, generating consensus statements preferred by over 70% of human users
compared to prompted LLMs. However, their approach relies on human anno-
tations. Although the Self-Instruction framework proposed by Wang et al. [10]
utilizes pre-trained LLM outputs for fine-tuning LLMs to follow human instruc-
tions, it still requires the preparation of seed instructions. Our Self-Agreement
framework, on the other hand, specifically targets consensus-building tasks and
does not depend on any human-generated instructions. This distinction high-
lights the advantages of the Self-Agreement framework in handling diverse opin-
ions and generating agreement statements without extensive reliance on human-
annotated data.
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3 Problem and Method

3.1 Consensus-Building Problem

In this section, we address the problem of identifying agreement among a set
of users, represented as N = {1, ..., j, ..., |N |}. We first define a consensus-
building instance CBi for each question i described by the tuple CBi =<
qi, OP i, ACi >. Here, qi is the question i, OP i = {opi1, ..., op

i
j , ..., op

i
|N |} rep-

resents the set of opinions (with opij denoting user j’s opinion for question qi),
and ACi = {aci1, ..., aci|ACi|} is set of potential agreement candidates. Agree-
ment, as previously outlined, is understood as an opinion summary that could
be universally accepted by the user base. For each user j, there exists a function
Probj : OP i × ACi → [0, 1] which determines the likelihood of agreement with
an opinion opij ∈ OP i based on a specific agreement candidate acik ∈ ACi. For
instance, Probj(opij , acik) = 0.6 indicates a 60% probability that user j would
agree with the agreement candidate acik. An agreement threshold εi is defined for
each question, establishing agreement if all users possess a probability exceeding
this threshold, i.e.,

∀j ∈ N,Probj > εi (1)

Fig. 1. The framework of the Self-Agreement.

3.2 Automatic Opinion-Agreement Data Generation

Generating agreement data mentioned in 3.1 for consensus building often entails
significant human involvement, especially when dealing with vast arrays of
human-crafted questions and corresponding agreement data. In this section, we
harness the capabilities of LLMs to automate the creation of consensus-building
instances, streamlining the entire process as depicted in Fig. 1.

For each question qi, our strategy for generating opinions leans on the prin-
ciples of the Self-Agreement method. This method capitalizes on the prowess
of extensively pre-trained language models, such as GPT-3, prompting them to
forge new and diverse instructions in a cyclical bootstrapping manner. Specifi-
cally, our model employs GPT-3 to produce a range of diverse opinions using the
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prompt “Generate |OP i| opinions for the question qi,” illustrated in Steps 1 and
2 of Fig. 1. A distinction worth noting is that while the Self-Instruct approach
hinges on an initial batch of human-crafted opinions as seeds, our Self-Agreement
method is devoid of any reliance on pre-existing human opinions.

Proceeding to Step 3, concerning the generation of agreement, GPT-3 is
once again put to task. This time, it is to conceive |ACi| agreement candidates
in response to the prompt “Find an agreement for the following opinions OP i,”
with a representative example presented in Table 1. Given a collection Q =
{q1, q2, ..., q|Q|} of questions, our overarching goal is to fabricate |Q| consensus-
building instances, culminating in a cohesive question-opinion-agreement dataset
{CB1, CB2, ..., CB|Q|}.

3.3 Scoring Agreement Candidates

In every consensus-building instance, the objective is to identify an agreement
as delineated in Eq. (1). However, directly ascertaining Probj for each user is
challenging. To address this, we introduce a scoring function Mat : OP i×ACi →
R to gauge the compatibility between agreement acik and opinion opij .

In this work, Mat is bounded within the interval [0, 1]. Specifically,
Mat(opij , acik) = 0 indicates that the agreement acik is entirely unrelated to
opinion opij , while a score of 1 implies complete alignment. As an illustration,
when acik matches opij , the score is unity: Mat(opij , acik)|acik=opi

j
= 1.

For each question qi, with |OP i| opinions and |ACi| agreement candidates,
the model assigns a score reflecting each candidate agreement’s pertinence and
congruence with the opinions. By aggregating scores across all agreement candi-
dates, we identify the preeminent candidate encapsulating diverse perspectives.
The ideal agreement candidate aci∗ boasts the apex agreement score:

aci∗ = argmaxacik∈ACi

∑

opi
j∈OP i

Mat(opij , acik) (2)

While a myriad of functions can serve as the scoring mechanism, this study
leverages a BERT-based model to assess the semantic congruence between opin-
ions and agreements. This model extracts contextualized embeddings for sen-
tences, encapsulating their nuanced meanings. A similarity metric, like cosine
similarity, then evaluates the proximity of these embeddings. Thus, the result of
an instance is given by aci∗, as expounded in Step 5 of Fig. 1.

3.4 Fine-Tuning the Language Model

After building the question-opinion-agreement dataset, we fine-tune a pre-
trained language model for the task of consensus building, as shown in Step
6 of Fig. 1. In this paper, we employ a 7-billion(7B)-parameter LLaMA model
based on the Alpaca-LoRA architecture for fine-tuning. The Alpaca-LoRA archi-
tecture comprises two components: 1) the original 7-billion-parameter model,
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Table 1. A sample of self-agreement process with three opinions and two candidate
agreements on the topic of trans fats.

Topic How the human species evolved?

Opinion 1 Humans evolved from the African continent, where the climate and
environment provided the perfect conditions for the species to
develop and thrive.

Opinion 2 Humans evolved through the process of natural selection, where
traits that allowed for greater survival and reproduction were
selected for, and those that did not were eliminated.

Opinion 3 Humans evolved through the process of genetic mutation, where
random changes in the genetic code allowed for new traits and
adaptations to develop.

Agreement
Candidate 1

All three opinions agree that humans evolved through a
combination of environmental adaptation, natural selection, and
genetic mutation. These processes allowed humans to develop and
thrive in the African continent, and allowed for new traits and
adaptations to develop over time.

Agreement
Candidate 2

All three opinions agree that humans evolved through a
combination of environmental conditions, natural selection, and
genetic mutation. These processes are all intertwined and have
helped shape the modern human form

and 2) an adapter module. During the fine-tuning process, only the adapter
module’s parameters are updated, while the original model’s parameters remain
unchanged. Both components contribute to the inference process.

Each instance in the training dataset consists of an “Instruction”, an “Input”
and an “Output”, as shown in Fig. 1. Focusing on the task of consensus building,
we set the instruction as “Find an agreement among the following opinions”. This
fine-tuning process equips the language model with the capability to efficiently
identify consensus among diverse opinions.

4 Evaluation

4.1 Evaluation Setting

Dataset. In this paper, we use Yahoo! Answers topic classification dataset [11]
which includes 1,400,000 training samples and 60,000 testing samples. Each sam-
ple includes following 5 parts: id, topic (class label) question title, question con-
tent and best answer. We topically choose the first 1000 question titles from
training samples for generating training dataset. We then use each question con-
tent to generate opinions by using GPT-3. We consider both of the opinions
have conflict and not, where the corresponding prompts are as follows, prompt1:
Generate |OP i| opinions for the topic of topici which do not have a conflict
and prompt2: Generate |OP i| opinions for the topic of topici which have a con-
flict. Then we use GPT-3 to generate an agreement by inputing the prompt as



304 S. Ding and T. Ito

Table 2. Four cases to fine-tune LLMs.

Random Agreement Candidate Optimal Agreement Candidate

Without
conflict
opinions

Prompt: Generate three opin-
ions for the topic which do not
have a conflict
Output: Randomly choosing
one from all agreement
candidates as Output

Prompt: Generate three opin-
ions for the topic which do not
have a conflict
Output: Optimally choosing
one from all agreement
candidates as Output

With conflict
opinions

Prompt: Generate three opin-
ions for topic which have a con-
flict
Output:Randomly choosing
one from all agreement
candidates as Output.

Prompt: Generate three opin-
ions for topic which have a con-
flict
Output: Optimally choosing
the one with maximized
consensus score from all
agreement candidates as Output

Please generate an agreement of the following opinions. independently for |ACi|
times. Thus, for each question, we have |OP i| opinions and |ACi| agreement
candidates. We set |Q| = 1000, |OP i| = 3 and ACi = 4 in this paper, which
totally corresponds to 1000 questions, 6000 opinions (with conflict:3000, without
conflict:3000) and 8000 agreement candidates.

Fine-tuning LLM. For fine-tuning the LLM, we select a 7 billion model from
LLaMA [9] as a pre-trained model to be fine-tuned. We utilized the above dataset
containing opinions with and without conflicts. Additionally, we divided it into
two datasets based on the method of choosing an agreement candidate. We con-
sidered two approaches: selecting an optimal agreement candidate or randomly
picking one for training. Consequently, this generated four distinct cases, as
shown in Table 2.

Correspondingly, we employ GPT-3 as a baseline for comparison. For the test
set, we randomly select 100 questions from the same dataset, excluding those
used in the training dataset, to generate both opinions with conflicts and without
conflicts.

4.2 Evaluation Results

We compare our methods with GPT-3 and present the results for the four cases
depicted in Fig. 2. To calculate the average agreement score, agreements are gen-
erated from the 100 test samples, and each agreement score is calculated using
the summation component in Eq. (1). First, when randomly selecting an agree-
ment candidate as the final opinion summarization, Agreement-LoRA-7B (Self-
Agreement) achieves comparable results in both cases of opinions with conflicts
and without conflicts. Also, both Agreement-LoRA-7B (Self-Agreement) and
GPT-3 exhibit lower scores for opinions with conflict than for opinions without
conflict. This can be attributed to the fact that it is generally more challenging
for agreement candidates to accommodate conflicting opinions.
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Fig. 2. The comparison of finding agreement results between GPT-3 and Agreement-
LoRA-7B (Self-Agreement) in four cases. To calculate the average agreement score,
agreements are generated from the 100 test samples, and each agreement score is cal-
culated using the summation component in Eq. (1).

In the case where we select one optimal agreement candidate, the scores for
both models improve. For instance, in the case of Agreement-LoRA-7B (Self-
Agreement), the score increases to 0.86 from 0.85 in the situation without con-
flicting opinions and to 0.81 from 0.79 in the situation with conflicting opinions.
These improvements highlight the benefits of selecting the optimal agreement
candidate for opinion summarization tasks. Most notably, Agreement-LoRA-7B
(Self-Agreement) demonstrates competitive performance in opinion summariza-
tion when compared to GPT-3, which has 175 billion parameters. This under-
scores the effectiveness of our Self-Agreement framework to fine-tune an LM
model in handling diverse opinions.

Further, we list an instance of the above result. Table 3 shows the com-
parison results of the agreement candidates generated by GPT-3 models and
Alpaca-LoRA (Self-Agreement), in response to a given topic: Which is the coun-
try with top development indicators?. The opinions represent three different views
on which country has the top development indicators. In the GPT-3 generated
agreement candidate, the model introduces India, China, and The United States
as countries with high development indicators. Although these countries are
well-regarded for their development, the response deviates from the given opin-
ions. This indicates that GPT-3 may not effectively capture the essence of the
conflicting opinions in this scenario. However, the Agreement-LoRA-7B (Self-
Agreement) generated agreement candidate acknowledges all three opinions and
successfully incorporates the key points from each. It emphasizes the strengths
of India, China, and the United States while also recognizing that it is difficult
to determine which country has the top development indicators, as each has
its own strengths and weaknesses (shown in the highlighted parts of Table 3).
This response demonstrates the effectiveness of the Agreement-LoRA-7B model
framework provides a more balanced perspective by acknowledging the underly-
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Table 3. One instance of comparing Agreement candidates of GPT-3 and Agreement-
LoRA-7B (Self-Agreement) from opinions with conflict.

Topic Which is the country with top development indicators?

Opinion 1 India is the country with top development indicators because it
has achieved great progress in the fields of education, health,
and poverty alleviation.

Opinion 2 China is the country with top development indicators because it
has made great strides in economic growth and infrastructure
development.

Opinion 3 The United States is the country with top development
indicators because it has the highest GDP per capita and the
most advanced technology.

Agreement
Candidate
(GPT-3)

We agree that India, China, and the United States are all
countries with top development indicators. India has achieved
great progress in the fields of education, health, and poverty
alleviation; China has made great strides in economic growth
and infrastructure development; and the United States has the
highest GDP per capita and the most advanced technology.
Together, these three countries demonstrate the highest level of
development in the world.

Agreement
Candidate
(Self-Agreement)

We agree that India, China, and the United States are all
countries with top development indicators. India has achieved
great progress in the fields of education, health, and poverty
alleviation, China has made great strides in economic growth
and infrastructure development, and the United States has the
highest GDP per capita and the most advanced technology.
However, we disagree on which country has the top
development indicators, as each country has its own
strengths and weaknesses.

ing disagreement and avoiding a definitive conclusion. This illustrates the effec-
tiveness of the Self-Agreement framework in handling conflicting opinions and
generating a consensus statement that fairly represents the diversity of view-
points.

4.3 Fine-Tuning Analysis

The Agreement-LoRA-7B model is fine-tuned based on the pre-trained LLaMA-
7B model. Our analysis focuses on how this fine-tuning under the Self-Agreement
framework has impacted the performance, comparing it with the pre-trained
LLaMA-7B model. Specifically, we examine the effects on domain-specific tasks
and general tasks.

For domain-specific tasks, we assess the extent of performance improvement
for generating agreement tasks. For general tasks, we consider the model’s per-
formance after fine-tuning. A critical concern is catastrophic forgetting, a phe-
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nomenon where a model, after being trained on a new task, significantly degrades
its generalization performance on the original task, leading to a substantial loss
of previously learned knowledge.

4.3.1 Domain-Specific Task Comparison

We utilize the data from the test dataset, with instructions and input (opinions)
serving as prompts for testing. We discovered that the pre-trained LLaMA-
7B model could only replicate the opinions without generating a new opinion.
Table 4 provides an example about the topic of “What’s your favorite Christmas
memory”. This demonstrates the significant improvement brought by our Self-
Agreement fine-tuning in finding agreement among diverse opinions.

Table 4. Compare domain-specific instruction responses between Agreement-LoRA-7B
and LLaMA-7B

Topic What’s your favorite Christmas memory?

Opinion 1 My favorite Christmas memory was when my family gathered
around the dinner table to have a big feast and exchange gifts.

Opinion 2 My favorite Christmas memory was when I stayed up all night
playing video games with my friends.

Opinion 3 My favorite Christmas memory was when I went to church with
my family to celebrate the birth of Jesus.

LLaMA-7B 1. My favorite Christmas memory was when my family gathered
around the dinner table to have a big feast and exchange gifts.
2. My favorite Christmas memory was when I stayed up all night
playing video games with my friends.
3. My favorite Christmas memory was when I went to church with
my family to celebrate the birth of Jesus.

Self-agreement We agree that our favorite Christmas memories include gathering
around the dinner table to have a big feast and exchange gifts,
staying up all night playing video games with our friends, and
going to church with our families to celebrate the birth of Jesus

4.3.2 General Task Comparison

To assess performance for general tasks and detect any signs of catastrophic
forgetting, we use instruction data from the Self-Agreement framework. We
find that the Agreement-LoRA-7B model, even after fine-tuning with the Self-
Agreement framework, still exhibits a solid response to general instructions.
Some instances are listed in Table 5. We further note that the Agreement-LoRA-
7B model can provide more detailed responses than the LLaMA-7B model, even
though such instructions do not directly feature in the dataset. For example,
when prompted with “What are the three primary colors?”, both models cor-
rectly identify the three primary colors, but our Agreement-LoRA-7B model sup-
plements this by explaining, “These colors can be used to create any other color
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by mixing them together”. Furthermore, for the 4th prompt “Instruction: Iden-
tify the odd one out. Input: Twitter, Instagram, Telegram”, while the LLaMA-
7B model gives an incorrect answer, the Agreement-LoRA-7B model correctly
identifies the outlier and further elaborates on its choice.

Table 5. Compare general instruction responses between Agreement-LoRA-7B and
LLaMA-7B.

Prompt Completion(LLaMA-7B) Completion(Agreement-LoRA-7B

)

Instruction: Give

three tips for staying

healthy.

\begin{itemize}
\item Eat a balanced diet.

\item Exercise regularly.

\item Get enough sleep.

\end{itemize}

1. Eat a balanced diet of fruits,

vegetables, and whole grains.

2. Exercise regularly to keep your

body in shape.

3. Get enough sleep to recharge

your body and mind.

Instruction: What are

the three primary

colors?

The three primary colors are red,

blue, and yellow.

The three primary colors are red,

blue, and yellow. These colors can

be used to create any other color

by mixing them together.

Instruction: Describe

the structure of an

atom.

An atom is made up of a nucleus,

electrons, and neutrons. The

nucleus is made up of protons and

neutrons. Protons have a positive

charge and neutrons have no

charge. Electrons have a negative

charge

An atom is made up of a nucleus

surrounded by a cloud of

electrons. The nucleus is made up

of protons and neutrons, while

the cloud of electrons is made up

of negatively charged electrons.

Instruction: Identify

the odd one out.

Input Twitter,

Instagram, Telegram

Twitter Telegram is the odd one out as it

is a messaging app, while Twitter

and Instagram are social media

platforms

5 Conclusion

Developing LLM for consensus-building usually comprises two main phases:
training and deployment. During training, we aim to refine our LLM to pro-
duce agreement candidates likely to be accepted by humans. The deployment
phase tests the LLM’s capability in real human discussions. While we recognize
the value of human feedback, our focus in this paper is on the training phase.
This is to avoid potential biases that might limit the model’s broad applicability.

Specifically, we introduced the Self-Agreement, an efficient framework to fine-
tune LLMs to autonomously find agreement among diverse opinions. Our method
eliminates the need for expensive human-generated data. We also presented a
large dataset of questions, opinions, and agreement candidates, serving as a
valuable resource for future consensus-building models. Since it is hard to identify
the preference for each users, we use the similarity calculated by the BERT-based
model. Although such kinds of similarity can somehow reflect how the agreement
candidate match opinion, there is a gap which should be tackled as our future
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work. Our experiments highlight the effectiveness of our framework in consensus-
building tasks while achieving comparable performance to GPT-3 with only 1/25
of its parameters.
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Abstract. With the continuous expansion of network size, existing
complex networks have dynamic characteristics gradually. The effective
detection of communities in dynamic networks has become a current
research hotspot. Detection methods based on label propagation are rel-
atively mature and classical. However, they failed to address the insta-
bility issue caused by the randomness of propagation itself. Furthermore,
the state-of-the-art methods ignore the learning ability of the algorithm
itself and do not have a validation module. Therefore, we propose a self-
paced and spreading label propagation algorithm (Self-SLP) for com-
munity detection in dynamic networks. To prevent the consumption of
computational resources due to random propagation, we design a self-
paced spreading activation algorithm. On this basis, we propose belong-
ing coefficient difference for validation, which improves the stability and
reliability of our algorithm. To the best of our knowledge, we are the
first to consider this idea of self-learning to improve community detec-
tion. In contrast, the method proposed in this paper makes propagation
more flexible while limiting excessive randomness. Experimental results
on large-scale real-world and synthetic networks show that Self-SLP per-
forms well for community detection in dynamic networks and confirms
computational efficiency and reliability.

Keywords: Community detection · Dynamic network · Spreading
Label Propagation · Self-paced learning · Belonging coefficient
difference

1 Introduction

In complex network analysis, community detection is a crucial task. The commu-
nity structure is generally understood as a collection of closely connected nodes
in the network, where internal edges are dense and external edges are sparse.
Community detection involves employing a range of methods to identify closely
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 310–322, 2024.
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connected nodes. Its applications are diverse; for instance, social networks can
employ community detection to identify social circles, while protein networks
can identify specific protein modules [1].

Static network community detection needs to consider the characteristics
of the network data for supervised or unsupervised clustering of closely linked
nodes, and common methods include modularity-based methods [2], network
embedding [3], and so on. And dynamic network association detection also needs
to consider the node-link tightness of each time snapshot.

Label Propagation (LP) is an efficient method to detect community, which
updates the label of each node by replacing it with the label used by the node
with the largest number of neighbors. The improved method based on LP is suit-
able for discovering communities in dynamic networks [4]. In addition, the com-
munity results are highly randomized. Especially when updating asynchronously,
changes in the update order can also lead to different community detection
results. Aiming at this problem, [5] proposed a spreading activation label prop-
agation method, which assigns an activation value to each node and propagates
through a spreading activation process and LP.

Despite these successes, the research on community detection has never taken
into consideration the concept of self-learning, which could potentially limit the
random propagation of the label propagation. This prompts us to investigate
the learning capabilities of the propagation algorithm. Our newly introduced
Self-Paced and Spreading Label Propagation Algorithm (Self-SLP) utilises three
innovative strategies: the self-paced approach, the spreading label propagation
method and belonging verification strategy.

Specifically, the main contributions of our study are as follows:

• We design a soft spreading strategy for propagation, which reduces the label
oscillation caused by the inherent random strategy of label propagation.

• We introduce a self-paced learning with diversity algorithm to alleviate the
randomness in the label propagation process without reducing its efficacy.

• We design a validation module to enhance the reliability of the community
detection algorithm through proposing belonging verification difference.

This paper is arranged as follows. In Sect. 2, we review the definitions of
the proposed algorithm and related work about community detection. Then, we
expatiate the details of our proposed Self-SLP in Sect. 3. Section 4 reports the
experimental results and the conclusion is drawn in Sect. 5.

2 Background and Related Work

In this section, we introduce the background information of community detection
in dynamic networks and self-paced learning with diversity. Then we review
related prior research.
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2.1 Community Detection in Dynamic Network

Let G = (V,E) be a graph, with V = {v1, ..., vn} and E = {e1, ..., em}, n = |V |,
m = |E|. The adjacency matrix of G is denoted by A = (Aij), where Aij = 1 if
there is an edge between node i and node j, and Aij = 0 otherwise.

The dynamic complex network adds the attribute of time t, which can be
abstracted by a series of network snapshots G = {G(0), G(1), ..., G(S)}, where
G(t) = (V (t), E(t)) is the snapshot point of the network at that time 0 ≤ t ≤ s.
The change between two consecutive snapshots G(t) and G(t−1) is denoted by
ΔG(t) = (ΔV (t),ΔE(t)) where ΔV (t) = V (t) � V (t−1) and E(t) = E(t) � E(t−1).

2.2 Self-paced Learning with Diversity

Self-paced learning (SPL) [6] is a learning mechanism, in which complex exam-
ples are gradually incorporated into the training. It facilitates data-efficient
learning [7], adversarial robustness [8] and positive-unlabeled learning [9]. Self-
paced learning with diversity (SPLD) [10] solves the problem of sample selection
diversity in self-paced learning. Here, diversity refers to the diversity of samples
selected by self-paced. Diversity tends to select samples with low similarity and
large diversity between samples, which is suitable for multi-classification tasks
such as community detection.

Suppose that the sample set X = (x1, x2, ..., xn) ∈ Rm×n can be divided into
b clusters. That is X(1), ...,X(b), Where X(j) ∈ Rm×nj

represents the sample
set belonging to the j-th cluster and nj represents the number of samples of the
j-th cluster. Suppose that the model is f(x), and the loss function is L(f(x), y),
where f(x) is the predicted output value of the corresponding sample x, and
y is the true label value of the sample x. The objective function of self-paced
learning with diversity can be defined as follows:

min
w,v

E(w, v;λ, γ) =
n∑

i=1

viL(yi, f(xi,w)) − λ

n∑

i=1

vi − γ||v||2,1 (1)

where v ∈ [0, 1]n, λ and γ represent easy sample items and diverse sample items,
respectively.

2.3 Prior Research

SLPD [11], as a dynamic version of the SLP method, randomly selected receiver
node and its neighbor nodes as the speaker to spread labels. K. Liu et al. pro-
posed DLPE [12], which decides the label through the neighbors of the node and
attaches confidence to each neighbor. H. Zhang et al. also proposed DSLPA [13],
which improved the SLPA algorithm by using the history label. AC2CD [14] by
A. Costa et al. uses a deep reinforcement learning strategy for regional optimi-
sation of modular density functions to identify dynamic associations. SALP [5]
addressed the problem of LP creating unwieldy communities in dynamic social
networks by assigning an activation value to nodes while constructing two weight
variants.
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3 The Proposed Method

The method proposed in this paper fully utilises the learning ability of label
propagation, which has three components. Firstly, the soft spreading strategy is
introduced. Next, a self-paced learning algorithm with diversity is designed to
reduce the randomness in the label propagation process. In the third section,
we propose using the belonging coefficient difference to determine the nodes
at the boundary between communities, improving the algorithm’s stability and
reliability. The Self-SLP framework’s architecture is depicted in Fig. 1.

Fig. 1. Overview of the community detection framework using self-paced and label
propagation (Self-SLP).

3.1 Soft Spreading Strategy

To minimize the impact of the avalanche effect induced by the random strategy
of label propagation, we propose utilizing soft spreading in propagation. Specif-
ically, we commence by assigning label matrices (label name, soft label value,
activation value) to designated nodes. To decrease resource consumption during
propagation, we opt to choose nodes with degrees in the top 10% rather than
every node, as in the study by [5], which utilises a scale-free architecture where
nodes have a degree of 4. The selected source nodes are labelled as S, with a
label matrix of (1, 1, 1) and the remaining nodes as (0, 0, 1). Each node modifies
or includes its label matrix based on neighbour information. The recipient node
updates its label matrix in accordance with Eq.(2) and (3).

S[j] =
∑

i∈n(j)

(S[i] ∗ P [i, j] ∗ D1) (2)

A[j] = A[i] +
∑

i∈n(j)

(A[i] ∗ W [i, j] ∗ D2) (3)

where S[o] and A[o] represent the soft label and activation values of nodes i.
Symbol Di, i ∈ {1, 2} is the decay factor, and P [i, j] and W [i, j] represent the
transition probability and weight between nodes i and j. When using Algorithm
1, we set α as the parameter for depth-first traversal.
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Algorithm 1: Soft-Spreading Algorithm: Soft-Spreading(G)
Input: G = (V, E), α, D1, D2

Output: G = (V ′, E)
1 begin
2 for v ∈ V do
3 Create set Λ = {}
4 Add v and v.neighbours to Λ
5 for i = 0 → α do
6 Select nv from Λ
7 Computer nv.softlabel based on Eq.2
8 Computer nv.label.activationvalue based on Eq.3
9 if nv.label.activationvalue ≥threshold then

10 Add nv.Neighbours to Λ

11 return G = (V ′, E)

3.2 Self-paced Propagation Learning with Diversity

Self-paced learning with diversity (SPLD) seeks to learn varying information
from data and compensate for the absence of supervision when obtaining precise
annotations of large amounts of unlabeled data proves challenging. In view of
this, to address the instability of the LP-based method created by the random-
ness of propagation without compromising its effectiveness, we adopt self-paced
propagation learning with diversity to progressively partition communities. To
the best of our knowledge, this is the first time that self-learning techniques have
been implemented to enhance community detection. The algorithmic process is
outlined in Algorithm 2.

Algorithm 2: SPLDWeighting(G)

Input: Dataset D, groupsX1, ...,Xb,w;λ, γ
Output: Global solution v = (v1, ..., vb) of minvE(w, v;λ, γ)

1 begin
2 for j = 1 to b do
3 Sort the samples in X(j) as (X(j)

1 , ...,X
(j)
nj ) in ascending order of

their loss values L

4 Accordingly, denote the labels and weights of X(j) as (y(j)
1 , ..., y

(j)
nj )

and (v(j)
1 , ..., v

(j)
nj ); for i = 1 to nj do do

5 if L(y(j)
i , f(x(j)

i , w)) < λ + γ 1√
i+

√
i−1

then

6 v
(j)
i = 1

7 else
8 v

(j)
i = 0

9 return v
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3.3 Belonging Verification

Considering the instability of community detection due to the growth of dynamic
networks, we introduce verification to adjust the division. Taking into account
the changes in dynamic community nodes, [15] proposed the use of a belonging
coefficient to measure the link strength between nodes. Building on this, we pro-
pose using the belonging coefficient difference to verify the nodes in community
boundaries. This improves the stability and reliability of the algorithm.

BCd(v) =
∑

xi,xj∈C∗
||

∑
xi∈N

′
i

k
xi
int

|N(xi)|
− ∑

xj∈N
′
j

k
xj
int

|N(xj)|

|N(v)| || (4)

where N
′
i = N(xi) ∩ C,N

′
j = N(xj) ∩ C, and C∗ represents the detected com-

munities.
In brief, to mitigate label propagation’s randomness and enhance its depend-

ability, we propose using a soft spreading strategy and adopting self-paced prop-
agation learning with diversity. This constrains the propagation process by min-
imizing the loss function. Additionally, we optimize the algorithm parameters
by comparing the belonging coefficient differences. The complete algorithm is
presented in Algorithm 3.
Algorithm 3: Self-SLP
Input: {G1 =< V1, E1 >,G2 =< V2, E2 >, · · · , GT =< VT , ET >}, T, β
Output: Set of communities of Gn

1 begin
2 for ts = 1 : T do
3 G, α=SPLDWeighting(Soft-Spreading(G));
4 for i, j = {1, 2, · · · , T} do
5 if Gi =< Vi, Ei >∈ G then
6 SPLDWeighting(G);
7 if |VT | > |VT−1| or |ET | > |ET−1| then
8 Self-SLP(G,T);

9 if BCd(v) < β then
10 return;

11 return {G1, G2, · · · , Gc}

3.4 Time Complexity

In the soft spreading strategy, it takes O(n) to initialize the labels, and at most
O(2m) for soft labelling and spreading. It requires a total of O(n ∗ m). In the
belonging verification part, we need to calculate the difference of the belonging
coefficients which takes O(k∗nC), where k is the average degree of G. In the self-
paced diversity phase, the time complexity is O(b∗nj). Moreover, in the snapshot
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increase phase, O(T ∗T ) is required. Therefore, the total time complexity of Self-
SLP is O(n ∗ m).

4 Experiment

In the experimental section, we assess the effectiveness of Self-SLP on four actual
networks and four synthetic networks. Our algorithms have been implemented
using Python 3.8 with NetworkX, sci-kit learn, numpy and matplotlib libraries.
The evaluation of our algorithms has been conducted on a server with 128GB
of memory and two Intel Xeon CPUs E5-2640. To ensure accuracy and stability
of the experimental results, each experiment has been run ten times, and the
resulting average values have been taken.

4.1 Baseline Methods

We select SLPD [11], DLPE [12], DSLPA [13], AC2CD [14], RWSALP [5] and
SBSALP [5] as the baseline methods for the Self-SLP algorithm since they can
detect communities in dynamic networks.

SLPD: It is a dynamic community discovery algorithm based on the speaker-
listener label Propagation.

DLPE: It is an evolutionary clustering method that assigns a community
label to a node based on its neighbors and also assigns a confidence coefficient
to each neighbor.

DSLPA: It is a multi-label propagation algorithm that uses the history label
to initialize the labels in community discovery.

AC2CD: The approach utilises local optimisation of modular density func-
tions to dynamically detect associations under a deep reinforcement learning
strategy.

RWSALP: It uses a weighting method, known as a random walk, which
assigns an activation value to each of the labels.

SBSALP: It utilises a social behavioural weighting technique that assigns an
activation value to each label.

4.2 Quality Measurement

Modularity [16] quantifies the quality of network partition compared to the entire
network. A higher modularity indicates a superior division of the network.

Q =
1

4m

∑

ij

(Ai,j − kikj
2m

)sisj (5)

Where Aij represents the number of edges between node i and node j in the
adjacency matrix A. For binary classification, assign si the value of 1 if vertex i
belongs to group 1 and −1 if it belongs to group 2.



Self-paced and Spreading Label Propagation 317

The Normalized Mutual Information (NMI) is a potent index adopted in
various community discovery algorithms to appraise the likeness of identified
communities and actual communities. The NMI value is directly proportional to
the relatedness of both communities. When there are actual communities present
in the network, NMI proves to be the most accurate and resilient evaluation
metric.

NMI(A,B) =
−2

∑|A|
i=1

∑|B|
j=1Nij log( NijN

NisNjs
)

∑|A|
i=1Nis log(Nis

N ) +
∑|B|

j=1Njs log(Njs

N )
(6)

Where A = {a1, a2, ...ak} represents the standard division labelled by real-
world communities and B = {b1, b2, ...bl} denotes the detected division obtained
by a community detection algorithm. N is the confusion matrix with rows
and columns corresponding to the “real world” and “detected” communities,
respectively.

Table 1. Introduction to the Real-world Networks Dataset

Dataset Type Content

Arxiv
HEP-PH

Citation
networks

Articles published between January 1993 and
April 2003

Arxiv
HEP-TH

Citation
networks

High-energy physics theory publications from
January 1993 to April 2003

Enron Email Email network Enron Email dataset over 15 years
DBLP Bibliography

network
Computer science bibliography providing a
comprehensive list of research papers in
computer science

4.3 Experiments on Real-World Networks

We carried out algorithm evaluation experiments on four real-world networks:
Arxiv HEP-PH, Arxiv HEP-TH, Enron Email, and DBLP. The datasets are
described in detail in Table 1 and Table 2. Parameters were set at α = 3,D1 =
0.55,D2 = 0.41, β = 0.2, following iterative result training.

Experimental Results and Analysis: The comparison of modularity between
the proposed method Self-SLP and other available methods is presented in
Table 3. The results derived from the Arxiv HEP-PH dataset indicate a declining
trend in the modularity of all methods with the increasing number of snapshots.
It is normal and unavoidable for the algorithm to account for changes in both
edges and nodes as part of the process. Furthermore, the decline rate of modu-
larity in Self-SLP gradually slows down, resulting in a higher overall modularity
value compared to other methods. This is attributed to the algorithm’s abil-
ity to adapt as the number of early snapshots increases, leading to increased
performance robustness. Furthermore, the proposed method demonstrates more
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Table 2. Overview of the Real-world Networks Dataset

Dataset Number of
nodes

Number of
edges

Number of
snapshots

Snapshots
frequency

Arxiv HEP-PH 34546 421578 124 one month
Arxiv HEP-TH 27770 352807 62 two months
Enron Email 36692 367662 90 two months
DBLP 317080 1049866 365 ten days

stable detection performance compared to other methods that show clear points
of inflection in modularity.

On the Arxiv HEP-TH dataset, Self-SLP shows high modularity in most
snapshots, especially in later ones. Additionally, when there are many snap-
shots, Self-SLP’s modularity decreases more slowly and is clearly superior to
that of other methods. Moreover, as the number of snapshots increases, the
overall modularity decreases at the slowest rate.

Table 3. Modularity values of Self-SLP, RWSALP, SBSALP, AC2CD, DSLPA, DLPE
and SLPD on Arxiv HEP-PH, Arxiv HEP-TH, Enron and DBLP.

Dataset Snapshot Self-SLP RWSALP SBSALP AC2CD DSLPA DLPE SLPD

Arxiv
HEP-PH

30 0.8623 0.6883 0.6764 0.6883 0.6861 0.6799 0.6962

60 0.8451 0.6693 0.6664 0.6729 0.6652 0.6499 0.6462
90 0.8346 0.6791 0.6789 0.6632 0.6447 0.6189 0.6169
120 0.8232 0.6483 0.6264 0.6401 0.6399 0.5529 0.5862

Arxiv
HEP-TH

15 0.8451 0.6983 0.6465 0.6819 0.6872 0.6601 0.6462

30 0.8218 0.6734 0.6328 0.6698 0.6628 0.5779 0.5852
45 0.8171 0.6493 0.6169 0.6421 0.6595 0.5731 0.5369
60 0.8159 0.6281 0.6164 0.6313 0.6477 0.5599 0.5032

Enron 20 0.8551 0.6783 0.6463 0.6443 0.6329 0.6127 0.6062
40 0.8359 0.6681 0.6204 0.6392 0.6296 0.5759 0.5757
60 0.8236 0.6553 0.6164 0.6296 0.6037 0.5751 0.5561
80 0.8212 0.6189 0.6153 0.6011 0.5961 0.5669 0.5692

DBLP 50 0.8458 0.7883 0.7664 0.7688 0.7791 0.7292 0.7362
100 0.8371 0.7599 0.7689 0.7541 0.7203 0.6761 0.6771
150 0.8299 0.7511 0.7469 0.7513 0.7059 0.6193 0.6699
200 0.8151 0.7485 0.7411 0.7443 0.6891 0.6099 0.6168

On the Enron email network, it is clear that Self-SLP achieves greater mod-
ularity than other methods in all snapshots. This indicates that the proposed
Self-SLP method uncovers more accurate and consistent communities than other
methods for larger communities. Furthermore, addition or removal of nodes from
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the Enron email data does not have a negative effect on the proposed method’s
performance.

As a consequence of the experiment conducted on DBLP, the performance of
Self-SLP aligns with that of RWSALP and SBSALP when the snapshot time is
brief on the dataset containing a considerable number of nodes and snapshots. As
time passes, our suggested method gradually surpasses other techniques, espe-
cially SLPD and DLPE.

Table 4. Average running time(sec) achieved by SLPD, DLPE, DSLPA, AC2CD,
SBSALP, RWSALP and Self-SLP on real networks.

Datasets SLPD DLPE DSLPA AC2CD SBSALP RWSALP Self-SLP

Arxiv HEP-PH 176 211 531 1486 6291 6438 871
Arxiv HEP-TH 149 176 472 1169 5709 5997 732
Enron Email 262 218 386 1531 7900 8424 513
DBLP 569 598 621 1744 35498 36712 899

In Table 4, the average duration of Self-SLP and other available methods
on real networks is displayed. The figures in Table 4 suggest that the suggested
approach’s community detection is slower than SLPD and DLPE, yet markedly
quicker than SBSALP and RWSALP. Our technique leverages self-learning, offer-
ing adaptability to dynamism in real-world community networks, ultimately
resulting in heightened robustness and consistency.

4.4 Experiments on Synthetic Networks

The LFR network [17] exhibits significant characteristics of real-world complex
networks. Its node degree and association size distribution adhere to a scale-free
pattern, characterised by an adjustable exponential power law. This network
model is suited to evaluate diverse networks. This investigation evaluates the
proposed algorithm employing four sets of synthetic networks, each with real-
world community structures. In Table 5, the primary parameters utilised for the
synthetic networks are presented. To specify: α is set to 4, D1 is set to 0.52 and
D2 is set to 0.48. Meanwhile, β is set to 0.3 by way of iterative result training.

Experimental Results and Analysis: As shown in Table 6: (a) In the case
of Birth/Death, our method exhibits a considerable performance advantage over
DLPE and SLPD when the snapshot time is small. While the time increases,
Self-SLP maintains a stable performance and supersedes SLPD by a large mar-
gin. (b) For Birth/Expand, Self-SLP outperforms all other methods. As time
progresses, the performance of Self-SLP decreases more evenly. (c) In the case
of Expand/Contract, the impact of Self-SLP is particularly pronounced, and its
stability is high, especially as the snapshot size increases. This is evident in the
fact that the proposed method presents a significant improvement in comparison
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Table 5. Parameters of LFR benchmark networks

Parameters of LFR Explanation Value

n Number of nodes vary
on Number of nodes vary
om Number of memberships vary
mu Mixing parameter vary
davg Mixing parameter 20
dmax Maximum degree 50
t1 Exponent for node degree distribution 2
t2 Exponent for community size distribution 1
Cmin Minimum community size n/50

Cmax Maximum community size n/10

Table 6. NMI values of Self-SLP ,RWSALP, SBSALP, AC2CD, DSLPA, DLPE and
SLPD on Synthetic networks. (a) Birth/Death (b) Birth/Expand (c) Expand/Contract
(d) Expand/Death.

Dataset Snap-shot Self-SLP RWSALP SBSALP AC2CD DSLPA DLPE SLPD

Birth/Death 2 0.7751 0.6383 0.6664 0.6533 0.6538 0.6149 0.5662
4 0.7439 0.6181 0.6359 0.6317 0.6217 0.5951 0.5561
6 0.7128 0.5853 0.5681 0.6086 0.6088 0.5438 0.5371
8 0.7057 0.5807 0.5474 0.6086 0.5726 0.5279 0.5169

Birth/Expand 2 0.7636 0.6350 0.6064 0.6199 0.6136 0.5848 0.5862
4 0.7201 0.6019 0.5709 0.5826 0.5957 0.5355 0.5348
6 0.7192 0.6008 0.5638 0.5673 0.5695 0.5351 0.5091
8 0.6838 0.5781 0.5489 0.5673 0.5261 0.5122 0.5355

Expand/Contract 2 0.7651 0.6155 0.6355 0.6399 0.6238 0.6009 0.5804
4 0.7488 0.6386 0.6055 0.6018 0.6096 0.5782 0.5521
6 0.7155 0.5744 0.5659 0.5611 0.5437 0.5458 0.5499
8 0.6452 0.5159 0.5118 0.5304 0.5273 0.5137 0.5368

Expand/Death 2 0.7779 0.6499 0.6368 0.6427 0.6248 0.6099 0.5862
4 0.7443 0.6383 0.6093 0.6003 0.5931 0.5791 0.5638
6 0.7199 0.5559 0.5429 0.5836 0.5782 0.5675 0.5218
8 0.6887 0.5506 0.5351 0.5406 0.5633 0.5392 0.5432

to other methods, exhibiting minimal NMI fluctuations, particularly in scenarios
where other methods experience multiple turning points.

Based on our analysis, it can be concluded that Self-SLP outperforms other
methods in dynamic community detection tasks on both real-world and synthetic
networks. The experimental findings indicate an increase in modularity of the
method proposed by 26.5% on average while the NMI sees an average increase of
24.6%. Additionally, Self-SLP algorithm demonstrates efficient rates in dynamic
community detection.
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5 Conclusion

To solve the problem of community detection in the dynamic network, this paper
proposes a Self-SLP algorithm. In Self-SLP, a label propagation technique that
utilises self-paced and spreading is proposed as a solution to the instability issue
triggered by the arbitrary propagation of LP. The experimental study demon-
strates the effectiveness and efficiency of the Self-SLP algorithm in both dynamic
real-world and synthetic networks. Moving forward, we will continue to inves-
tigate this technique to enhance the efficiency of valuable community detection
in more intricate and variable networks, possibly by combining it with local
dynamic extension and reduction methods.
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Abstract. Unlike Western languages, word segmentation is necessary
for Japanese sentences because they do not have word boundaries. The
performances of existing morphological analyzers for Japanese sentences
are very high. However, it is difficult to segment sentences mostly writ-
ten in Hiragana, which is a Japanese writing system simpler than Kanji,
because clues to segment the sentences decrease. In this study, we cre-
ated a word segmentation model of Hiragana sentences using two types
of BERT: unigram and bigram BERT models. We pre-trained the BERT
models with Wikipedia and fine-tuned them with the core data of the
Balanced Corpus of Contemporary Written Japanese for word segmen-
tation. In addition to the two types of BERT-based word segmenta-
tion systems, we developed a word segmentation system for Hiragana
sentences using KyTea, a toolkit developed for analyzing text, with a
focus on languages requiring word segmentation. We compared them in
word segmentation of Hiragana sentences. The experiments revealed that
the unigram BERT-based word segmentation system outperformed the
bigram BERT-based word segmentation system and the KyTea-based
word segmentation system.

Keywords: Word segmentation · Japanese Hiragana · BERT

1 Introduction

Japanese sentences contain various kinds of characters, such as Kanji (Chinese
character), Hiragana, Katakana, numbers, and alphabets, which makes it difficult
to learn. Japanese speakers usually learn Hiragana first in their school days
because the number of characters is much smaller than the Kanji; Hiragana has
46 characters, and Japanese uses thousands of Kanji. Most Japanese sentences
are composed of all kinds of characters. These sentences are called Kanji-Kana
mixed sentences. However, it is difficult for many non-Japanese speakers to learn
thousands of Kanji, so children and new Japanese language learners use Hiragana
sentences.
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Unlike Western languages, Japanese and Chinese do not have word bound-
aries, so word segmentation is necessary for the natural language processing of
these languages. MeCab1 and Chasen2 are morphological analyzers for Japanese
that segment Japanese sentences into words. The existing Japanese morpholog-
ical analyzers’ performances are very high. However, it is difficult to segment
sentences written almost entirely in Hiragana3 into words using these systems
because they are designed for Kanji-Kana mixed sentences. When almost all
sentences are written in Hiragana, which makes it challenging to identify the
location of words to be segmented.

This paper developed two types of BERT [1] (Bidirectional Encoder Rep-
resentations from Transformers) models for Hiragana sentences: unigram and
bigram BERT models (see Sect. 3). We utilized a large amount of automatically
tagged data for pre-training and used manually tagged data for fine-tuning (see
Sect. 4). In addition, to compare with the performances of our Hiragana BERT-
baed word segmentation models, we developed a Hiragana word segmentation
model using KyTea4, a toolkit developed for analyzing text, with a focus on
languages requiring word segmentation. The experiments revealed that the uni-
gram BERT model outperformed the bigram BERT model and KyTea model
(see Sect. 6). We discussed the reason (see Sect. 7) and conclude this paper (see
Sect. 8).

The contributions of this paper are as follows:

1. We developed Hiragana unigram and bigram BERT models,
2. We showed that automatically tagged data is effective for pre-training of

Hiragana BERT models, and
3. We discussed why the Hiragana unigram BERT-based word segmentation

model outperformed the Hiragana bigram BERT-based or KyTea-based word
segmentation models.

2 Related Work

There are some studies on word segmentation and morphological analysis of
Hiragana sentences, which include the following. First, Kudo et al. [5] modeled
the process of generating Hiragana-mixed sentences, which are sentences that
include words written in Hiragana but usually written in different characters
such as Kanji, using a generative model. They proposed a method to improve
the accuracy of parsing Hiragana-mixed sentences by estimating its parameters
using a large Web corpus and an EM algorithm. Hayashi and Yamamura [2]
reported that adding Hiragana words to the dictionary improves the accuracy of
morphological analysis. Izutsu et al. [3] converted MeCab’s ipadic dictionary into

1 https://taku910.github.io/mecab/.
2 https://chasen-legacy.osdn.jp.
3 Numbers and symbols are included.
4 http://www.phontron.com/kytea/.

https://taku910.github.io/mecab/
https://chasen-legacy.osdn.jp
http://www.phontron.com/kytea/
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Hiragana and used a corpus consisting only of Hiragana to perform morphologi-
cal analysis of Hiragana-only sentences. In addition, Izutsu and Komiya [4] per-
formed a morphological analysis of Hiragana sentences using the Bi-LSTM CRF
model and reported how the accuracy of morphological analysis could be changed
by training and fine-tuning over multiple domains of sentences. Moriyama et al.
[6] also performed the morphological analysis of plain Hiragana sentences using
the Recurrent Neural Language Model (RNNLM) and reported that its accu-
racy significantly outperformed conventional methods in the strictest criterion
where the answers were deemed as correct when all word segmentation and
word features were correct. Furthermore, Moriyama and Tomohiro [7] proposed
a sequential morphological analysis method for Hiragana sentences using Recur-
rent Neural Network and logistic regression and reported that the performance
was improved and the system was speed-up.

In addition, this study creates and uses a Hiragana BERT, which is a BERT
model specialized for Hiragana sentences, to create a word segmentation model
for Hiragana sentences. Examples of the creation of Japanese domain-specific
BERTs include Suzuki et al. [8]. This paper reports the creation of a BERT
specialized for sentences of the financial domain using financial documents. The
paper also examines the effectiveness of fine-tuning using a financial corpus for
a BERT model pre-trained from a general text corpus.

3 Proposed Method

BERT is a pre-trained language model based on Transformer [9]. In this paper,
we generated two types of Hiragana BERT models specialized for Hiragana sen-
tences and used each to develop a word segmentation system for Hiragana sen-
tences. The first model is the unigram BERT model, which is a BERT model
trained from sentences consisting of the Hiragana character unigrams. The sec-
ond model is the bigram BERT model, which is trained from sentences consisting
of the Hiragana character bigrams. We created a word segmentation system for
Hiragana sentences by creating unigram and bigram BERT models and fine-tune
them using data for word segmentation of Hiragana sentences. We compared the
performances of these two Hiragana sentence word segmentation systems. In
addition, we created a model of word segmentation of Hiragana sentences using
KyTea and compared it to the models we proposed. These Hiragana word seg-
mentation systems are useful for children and new Japanese language learners.

3.1 Unigram BERT Word Segmentation System

Unigram BERT is a BERT model trained with sentences composed of Hiragana
unigrams. We converted Wikipedia’s Kanji-Kana mixed sentences into Hiragana,
reformed them into character unigrams, and used the Hiragana-character uni-
gram data for training of the BERT model. Since Wikipedia does not have data
only written in Hiragana, the reading data from MeCab’s analysis results were
used as pseudo-correct answers. The reading data is Hiragana data based on the
words’ pronunciation. They are usually used for Hiragana writing.
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The vocabulary size of the unigram BERT is 300. It includes Hiragana,
Katakana, alphabets, numbers, and multiple symbols.

We also created a word segmentation system for Hiragana sentences by fine-
tuning the unigram BERT using data on the word segmentation of Hiragana
sentences. We refer to this system as the unigram BERT word segmentation
system. Depending on the experiment, we used either the Balanced Corpus of
Contemporary Written Japanese (BCCWJ), which is a corpus used for many
Japanese research, or Wikipedia data for fine-tuning.

3.2 Bigram BERT Word Segmentation System

Bigram BERT is a BERT model that is trained with sentences composed of Hira-
gana bigrams. We converted Wikipedia’s Kanji-Kana mixed sentences into Hira-
gana, reformed them into character bigrams, and used the Hiragana-character
bigram data for training of the BERT model. Because there is no Hiragana-only
data available, like pre-training of the unigram BERT word segmentation sys-
tem, the bigram BERT model was trained with the reading data from MeCab’s
analysis results, which were used as pseudo-correct answers.

The vocabulary size of the bigram BERT is 80,956. It includes Hiragana,
Katakana, alphabets, numbers, and any two combinations of multiple symbols.

We also created a word segmentation system for Hiragana sentences by fine-
tuning the bigram BERT using data on the word segmentation of Hiragana
sentences. We refer to this system as the bigram BERT word segmentation sys-
tem. Depending on the experiment, we used either BCCWJ or Wikipedia data
for fine-tuning.

4 Data

4.1 Pre-training Data from Wikipedia

We used Wikipedia for pre-training to create two types of Hiragana BERT
models: unigram and bigram BERT models. This data was extracted from the
Japanese Wikipedia home page. 56

Since Wikipedia consists of Kanji-Kana mixed sentences, we converted them
into Hiragana texts. For the conversion, as mentioned in Sect. 3.1, we utilized
MeCab. MeCab is a morphological analyzer, which segments Kanji-Kana mixed
texts into words. It also outputs reading data of the words. The reading data is
based on pronunciation and it is usually used for Hiragana writing. Therefore,
the reading data from MeCab could be deemed as pseudo-correct word segmen-
tation for Hiragana texts. However, please note that the pseudo-correct answers
have errors because Japanese has many homographs, i.e., words with ambiguous
pronunciations. For example, “ ” could be pronounced as KONNICHIWA,

5 jawiki-latest-pages-articles.xml.bz2.
6 https://dumps.wikimedia.org/jawiki/latest/.

https://dumps.wikimedia.org/jawiki/latest/
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which means “hello,” or KYOWA, which means “As for today,” according to
contexts. We employed Unidic as the dictionary for MeCab.

After we obtained Hiragana texts, we converted them into character unigrams
and bigrams, respectively. The data converted to character unigrams were used
as pre-training data for the unigram BERT, while the data of character bigrams
were used as pre-training data for the bigram BERT. However, we added the
character string “*” to the end of the bigrams to align the number of tokens
with unigrams. Finally, we assigned [CLS] and [SEP] tags to the beginning and
end of the sentence, respectively.

Table 1 shows example pre-training data for the unigram and bigram BERT
models.

Table 1. Example of pre-training data

We generated 3 million sentences of Wikipedia data for pre-training through
these steps. The data contents are identical, except for the representation as
either bigrams or unigrams.

4.2 Word Segmentation Data for Hiragana Sentences
from Wikipedia

From Wikipedia, we generated data for word segmentation of Hiragana sentences
to fine-tune unigram BERT and bigram BERT. We obtained Hiragana texts
from Wikipedia using MeCab as described in Sect. 4.1. MeCab outputs not only
reading data but also the word boundaries. Therefore, we used the output of
MeCab to train the word segmentation system again. However, we did not add
[CLS] and [SEP] tags for the data of fine-tuning.

We also created tag information consisting of 0 s and 1 s. We set the first
unigram/bigram of the word’s reading to 1 and the rest to 0. These data are the
labels for the word segmentation task. Tag 1 represents the word boundary.

Table 2 shows an example of word segmentation data for Hiragana sentences.
We generated 1,000,000 Wikipedia word segmentation data for Hiragana sen-

tences through these steps. The contents of the generated data are identical,
except for the representation as either unigrams or bigrams.
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Table 2. An example of word segmentation of Hiragana sentences

4.3 Word Segmentation Data for Hiragana Sentences from BCCWJ

In contrast to Wikipedia, the core data of the BCCWJ has information on
word boundaries and reading. Since they are automatically tagged and manually
revised, the word boundaries are accurate. However, the reading data of mono-
graphs are sometimes unknown. In these cases, the reading data are determined
by the annotators. Also, sometimes there were some guidelines to determine the
reading data. We utilized the core data of the BCCWJ for testing and fine-tuning
of word segmentation.

We extracted the reading data of BCCWJ core data and converted them into
character unigrams and bigrams. We also created tag information consisting
of 0 s and 1 s to show the word boundaries followed procedures described in
Sect. 4.2. The data format of word segmentation data for Hiragana sentences
from the BCCWJ is the same as that from Wikipedia, as shown in Table 2. The
above operations resulted in 40,928 sentences of BCCWJ Hiragana data that are
segmented into words.

4.4 Data for the Hiragana KyTea Word Segmentation System

To train a word segmentation system for Hiragana sentences using KyTea, we
used the reading data of the BCCWJ core data. Because KyTea does not train
pre-trained language models, we did not pre-train the KeyTea model.

Table 3 shows an example of the data used to train the Hiragana KyTea word
segmentation system. Hiragana words with word boundaries are directly used to
train the Hiragana KyTea word segmentation system.

Table 3. Data used to train the Hiragana KyTea word segmentation system
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5 Experiment

We conducted two experiments to test how the accuracy of word segmentation
of Hiragana sentences varies with the amount and type of data used in fine-
tuning in the two types of BERTs. In the experiments, the accuracies of the
unigram, bigram BERT word segmentation systems, and Hiragana KyTea word
segmentation system were compared.

5.1 Experiment 1: Fine-Tuning with BCCWJ

The first experiment was a fine-tuning experiment using BCCWJ. This exper-
iment compared three word segmentation systems using accurate segmentation
information for Hiragana sentences. We used 3 million sentences from Wikipedia
to pre-train the Hiragana BERT models and 40,928 sentences from BCCWJ to
fine-tune and test the BERT models using five-fold cross-validation. The ratio
of data for fine-tuning, validation, and testing is 3:1:1.

We assessed the Hiragana KyTea word segmentation system using 40,928 sen-
tences from BCCWJ with five-fold cross-validation. These data are the same as
those used for the experiments with the two BERT models. However, Wikipedia
data were not used in the KyTea word segmentation system. The ratio of training
to test data is 4:1.

Tables 4 and 5 list the parameters used in BERT pre-training and fine-tuning,
respectively. These parameters were determined through preliminary experi-
ments using the validation data.

Table 4. Parameters in pre-traning

Number of Layers 12

The dimensionality of hidden layers 120

Learning rate 1e−4

Batch size 8

Number of Steps 1,000,000

Table 5. Parameters in fine-tuning

Number of labels 12

Learning rate 1e-5

Epoch number 50
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5.2 Experiment 2: Fine-Tuning with Wikipedia

The second was a fine-tuning experiment conducted on Wikipedia, which used
a large amount of pseudo-data (Wikipedia word segmentation information) to
test the accuracy of the three word segmentation systems. In this experiment,
we used 3 million sentences from Wikipedia to pre-train the BERT models and 1
million sentences from Wikipedia to fine-tune the word segmentation of Hiragana
sentences. The pre-training and fine-tuning data did not overlap; however, the
pre-training data used in Experiments 1 and 2 were identical. The data used for
training the Hiragana KyTea word segmentation system were the same as the
fine-tuning data for the unigram and bigram BERT word segmentation systems.
We used 400,000 sentences from Wikipedia and 40,928 sentences from BCCWJ,
both word-segmented Hiragana sentences, as test data. Wikipedia data used as
the test data did not overlap with the pre-training data for the BERT models.

In Experiment 2, the parameters used for BERT pre-training and fine-tuning
were identical to those used in Experiment 1, except for the number of epochs.
The number of epochs in Experiment 2 was 24.

5.3 Evaluation Methods

Unigram and bigram BERT word segmentation systems accept sentences as
inputs. The input data formats were character unigrams for the unigram BERT
word segmentation system and character bigrams for the bigram BERT word
segmentation system (Table 2). Word segmentation systems estimate and output
0 and 1 tag information based on whether to segment Hiragana sentences for
each character unigram or bigram. Tag-based accuracy, word-boundary-based
precision, recall, and F-measures were evaluated.

The Hiragana KyTea word segmentation system directly outputs word
boundary information, instead of 0 and 1 tags. Therefore, we converted the out-
puts into 0 and 1 tags and evaluated tag-based accuracy. In addition to tag-based
accuracy, word-boundary-based precision, recall, and F-measure were evaluated
for the Hiragana KyTea word segmentation system.

6 Results

Table 6 lists the accuracy, precision, recalls, and F-measure of the five-fold cross-
validation tests for each system in Experiment 1: fine-tuning with BCCWJ.

As summarized in Table 6, the unigram BERT word segmentation system
improves the F-measure by 4.64 points compared with the Hiragana KyTea word
segmentation system. Compared with the Hiragana KyTea word segmentation
system, the bigram BERT word segmentation system improved the F-measure
by 2.92 points. Furthermore, comparing the F-measures of the unigram and
bigram BERT word segmentation systems, the unigram BERT word segmenta-
tion system has an F-measure of 1.72 points higher than the bigram BERT word
segmentation system.
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Table 6. Experiment 1: Results of each system in the fine-tuning experiments with
BCCWJ

Unigram BERT Bigram BERT Hiragana KyTea

Accuracy 97.74 96.98 95.83

Precision 94.36 92.56 90.93

Recall 94.24 92.60 88.56

F-measure 94.30 92.58 89.66

Table 7. Experiment 2: Results of each system in the fine-tuning experiments with
Wikipedia

Testing on Wikipedia

Unigram BERT Bigram BERT Hiragana KyTea

Accuracy 99.32 99.08 97.17

Precision 98.14 97.41 92.83

Recall 97.83 97.15 91.76

F-measure 97.98 97.28 92.29

Testing on BCCWJ

Unigram BERT Bigram BERT Hiragana KyTea

Accuracy 95.65 95.36 93.96

Precision 90.85 89.94 86.68

Recall 86.67 85.93 81.72

F-measure 88.71 87.89 84.12

Table 7 summarizes the results of Experiment 2: Fine-tuning with Wikipedia.
As summarized in Table 7, the unigram BERT word segmentation system

improved the F-measure by 5.69 points when testing on Wikipedia and 4.59
points when testing on the core BCCWJ data, compared with the Hiragana
KyTea word segmentation system. The bigram BERT word segmentation system
also exhibited a 4.99-point improvement in F-measure when tested on Wikipedia
and 3.77-point improvement when tested on the BCCWJ core data, compared
with the Hiragana KyTea word segmentation system. Furthermore, when com-
paring the F-measures of the unigram and bigram BERT word segmentation
systems, the F-measure of the unigram BERT word segmentation system was
higher. The difference in F-measure was 0.70 points when testing on Wikipedia
and 0.82 points when testing on BCCWJ core data.

7 Discussion

From Table 7, we can confirm that the F-measures of the two Hiragana BERT
word segmentation systems were higher than those of the Hiragana KyTea word
segmentation system in Experiment 1. Furthermore, as summarized in Table 7,
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the F-measures of the two Hiragana BERT word segmentation systems were
higher than those of the Hiragana KyTea word segmentation system in Experi-
ment 2. This result is expected because the Hiragana KyTea word segmentation
system did not use any large language models that were pre-trained with a large
amount of data.

Comparing the F-measures of the unigram and bigram BERT word segmen-
tation systems in Tables 6 and 7, we can confirm that the F-measures of the uni-
gram BERT word segmentation system are higher than those of the bigram BERT
word segmentation system. Because bigrams are more informative than unigrams,
we expected the bigram BERT word segmentation system to outperform the uni-
gram BERT word segmentation system. However, the results were the opposite.
A possible reason for this is the difference in the training data required in response
to the model size. The number of Hiragana BERT words used in this study was
300 for the unigram BERT and 80,956 for the bigram BERT. In other words, the
vocabulary used for bigram BERT was approximately 270 times larger than that
used for unigram BERT. The difference in vocabulary size makes the model more
significant, thereby requiring more training data. However, the data used in the
pre-training of the two Hiragana BERT word segmentation systems was 3 mil-
lion sentences in the both cases. In other words, there may be more training data
for bigram BERT than the amount of training data required for the model size,
which may explain why the results of the unigram BERT word segmentation sys-
tem exceeded those of the bigram BERT.

Noting the significant difference in vocabulary, we calculated the results of
each system using the test data from Experiment 1, excluding symbols and rare
character types, such as emojis. The character types that were not removed from
the test data in Experiment 1 were Hiragana, Katakana, punctuation marks,
dashes for long vowels, and spaces. Therefore, we calculated the results for each
system by inputting sentences comprising only the aforementioned character
types into each system. In other words, sentences containing character types
other than those listed were not evaluated. Table 8 lists the accuracy, precision,
recall, and F-measure of the five-fold cross-validation for each system in this
additional experiment.

Table 8. Experiment 1: Accuracy of each system when symbols and rare character
types are removed from the test data in the fine-tuning experiment by BCCWJ.

Unigram BERT Bigram BERT Hiragana KyTea

Accuracy 98.06 97.41 96.45

Precision 95.04 93.38 92.15

Recall 94.93 93.44 89.81

F value 94.99 93.44 90.91

When the results in Table 8 are compared with those in Table 6, the results of
Experiment 1 show that the results were improved by restricting the character
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types. In addition, as listed in Table 8, the difference in the F-measures between
the unigram and bigram BERT word segmentation systems is 1.55 points. The
difference in F-measures between the unigram and bigram BERT word segmenta-
tion systems in Table 6 was 1.72 points, indicating that restricting the character
types in the test data reduces the difference between the F-measures of bigram
and unigram BERT.

Next, we compared the results of Experiments 1 and 2, which are the results
of fine-tuning experiments with BCCWJ and Wikipedia testing on BCCWJ
(Tables 6 and 7). The results of the unigram/bigram Hiragana BERT word
segmentation system in Experiment 1 were better than those in Experiment
2. We believe that this is because the fine-tuning data in Experiment 1 were
BCCWJ, the same as the test data, whereas Experiment 2 used Wikipedia data.
In addition, the quality of Wikipedia data is considered lower than that of the
BCCWJ data because BCCWJ uses accurate readings and word segmentation
delimitation information, whereas Wikipedia uses pseudo-data. Considering that
BCCWJ used in Experiment 1 had approximately 45,000 data points, whereas
the Wikipedia data used in Experiment 2 had 1 million data points, it is clear
that increasing the amount of pseudo-data in fine-tuning does not come close to
the exact data in the same domain as the test data.

However, when given a large amount of Wikipedia pseudo-data, the accu-
racy of the unigram/bigram Hiragena BERT segmentation system for the same
Wikipedia test data exceeded 99% (Table 7). Therefore, it is observed that fine-
tuning with a large amount of data in the same domain as the test data and
word segmentation information that is consistent with the test data can produce
word segmentation with reasonably high accuracy.

Finally, the amount of pre-trained data for BERT used in this study was 3
million data points; however, increasing this amount may improve the accuracy
of the Hiragana BERT word segmentation system. Therefore, we will consider
this for future studies.

This research has some limitations. It takes time to train the unigram and
bigram BERT. Our method relies on the Kanji-Kana to Hiragana translator to
preprocess the sentences. We did not compare our method with methods used in
other languages where word boundaries do not exist. We did not test trigrams
or more lengths n-gram models.

8 Conclusions

In this study, we created word segmentation systems using two types of BERT
trained specifically for Hiragana sentences: unigram and bigram BERT word
segmentation systems. For the pre-training of BERT, we used character uni-
grams or character bigrams created from Wikipedia Hiragana sentence data
using MeCab. Thereafter, each BERT was fine-tuned using the word segmen-
tation data of the Hiragana sentences. We conducted fine-tuning experiments
using BCCWJ and Wikipedia. For the fine-tuning experiment with BCCWJ,
we evaluated the systems using a five-fold cross-validation. For the fine-tuning
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experiment with Wikipedia, we tested the systems on BCCWJ and Wikipedia
data. In these experiments, the accuracy, precision, recall, and F-measure of
the unigram/bigram Hiragana BERT word segmentation systems outperformed
those of the Hiragana KyTea word segmentation system. Additionally, the results
of the unigram Hiragana BERT word segmentation system surpassed those of
the bigram Hiragana BERT word segmentation system. We believe that this is
because the amount of pre-training data for the bigram BERT word segmen-
tation system is smaller than that for the unigram BERT word segmentation
system when comparing their vocabulary size. The experiments also showed
that a small amount of in-domain data was better for fine-tuning than a large
amount of out-of-domain pseudo-data.
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Abstract. Transformer-based open-domain dialog models have become
increasingly popular in recent years. These models typically represent
context as a concatenation of a dialog history. However, there is no crite-
rion to decide how many utterances should be kept adequate in a context.
We try to figure out how the choice of context length affects the model.
We experiment on three questions from coarse to fine: (i) Does longer
context help model training? (ii) Is it necessary to change the training
context length when dealing with dialogs of different context lengths? (iii)
Do different dialog samples have the same preference for context length?
Our experimental results show that context length, an often overlooked
setting, deserves attention when implementing Transformer-based dia-
log models. Code is available at https://github.com/PKUAI-LINGroup/
context-study.

Keywords: Transformer · Context · Dialog · Language model

1 Introduction

Since the advent of Transformer [10], language models trained on large-scale
corpora have dominated the field of machine translation and other NLP
tasks, including open-domain dialog generation [11,14]. Despite the success
of Transformer-based dialog models, they were often criticized for not under-
standing dialog context [8,9], which can lead to generic responses [4] or self-
contradictions [3]. For Transformer-based dialog models, context is usually rep-
resented as a concatenation of historical utterances. However, there is no uniform
standard for deciding how many utterances to keep in a context. For example,
Meena [1] limited the context to no more than seven utterances, while PLATO [2]
limited the total length of the context sequence to no more than 256 tokens. We
have no idea whether the context length they choose is optimal and how changing
the context length would affect the performance of the model.

In this paper, we focus on the setting of context length in Transformer-based
dialog models. We pose three questions about the possible impact of context
length on the model: (i) Does longer context help model training? (ii) Is it
necessary to change the training context length when dealing with dialogs of dif-
ferent context lengths? (iii) Do different dialog samples have the same preference
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 336–341, 2024.
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for context length? Regarding model selection, since we care about the impact
of the context length on the model rather than the absolute performance, we
take two most basic practices to implement a dialog model: training a Trans-
former from scratch and fine-tuning a pre-trained GPT2 [7] model. Although the
performance of these two models is not comparable with the current state-of-
the-art chatbots, such as ChatGPT1, we believe that the study of these classic
paradigms can help us better understand and leverage context when designing
Transformer-based dialog models.

Our experimental results are summarized by the following three findings:

– Considering both performance and efficiency, a longer context is not neces-
sarily better for Transformer-based dialog models.

– The best-performing models on the entire set perform well on dialogs with
varying history lengths, so there is no need to train separate models for dialogs
of different lengths.

– For different dialog samples, the optimal context length at test time is differ-
ent. Considering a specific context length for each sample during the testing
phase further improves model performance.

2 Experimental Setup

We treat the response generation problem as conditional language modeling. We
denote a multi-turn dialog as (u1, u2, · · · , uT ), where {u2k}�T/2�

k=1 are utterances
from one speaker and {u2k−1}�T/2�

k=1 are those from the other. The model is trained
to maximize the conditional probability P (uT |C; θ), where C = (uT−N , ..., uT−1)
is the context (dialog history), N is the context window size, and θ is the model
parameters. We investigate the impact of context length on the model by con-
trolling the size of N during training and testing.

Experiments are conducted on two widely used open-domain dialog datasets:
DailyDialog [5] and PersonaChat [13]. For each multi-turn dialog, we train (or
test) the model on each utterance except the first one. We study the effect of con-
text length on the dialog models built on Transformer and GPT2. Specifically,
we implement a Transformer model with three encoder layers, three decoder lay-
ers, two attention heads, and 256 hidden dimensions and train it from scratch
on our experimental datasets. For GPT2, we choose its small version with 12
layers, 12 attention heads, and 768 hidden dimensions and initialize the model
with the pre-trained parameters released by HuggingFace [12]2. Models are opti-
mized by AdamW [6]. The model checkpoints that perform best on the validation
set are selected for testing. We choose Perplexity as the metric because of its
strong correlation with human judgment [1] and widely used for dialog model
evaluation [3,9,11].

1 https://chat.openai.com/
2 https://github.com/huggingface/transformers

https://chat.openai.com/
https://github.com/huggingface/transformers
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3 Results and Discussion

3.1 Does Longer Context Help Model Training?

We first focus on the effect of context length on model training. Due to computa-
tional constraints, it is often impossible to feed the entire dialog history into the
model. Intuitively, giving the model as much history as possible during training
should help the model learn how to generate responses since more information
is available. But is this the case for Transformer-based dialog models? To figure
this out, we compare models trained with the context of different lengths. As
shown in Fig. 1, although GPT2 outperforms Transformer on all context length
settings, we can observe similar trends for both models: Initially increasing the
number of history utterances in the context can improve the performance of
the model, but after the context reaches a certain length, continuing to grow
the context length is no longer effective. To more concretely reflect the effect of
increasing the context length on the model, we define perplexity gain Gi as a
representation of the gain brought by increasing the context length to i:

Gi = min
1≤j<i

pj − pi, (1)

in which pj is the test perplexity of the model trained with context length j.
A positive Gi means that increasing the training length of the model to i can
improve performance, and a larger Gi means a more significant improvement.
As shown in Fig. 1, when the training context length exceeds 5 on DailyDia-
log and 9 on PersonaChat, increasing the context length will either make the
model performance worse or bring minimal gain. This result suggests that, for
Transformer-based dialog models, whether trained from scratch or fine-tuned
from pre-trained models, the limitation of context length at training time must
be carefully considered. Although longer context length in the training phase
does not necessarily lead to worse model performance, it does incur unnecessary
computational costs.

Fig. 1. Perplexity of models trained under different context length settings on the
DailyDialog (left) and PersonaChat (right) test set. The x-axis represents the maximum
number of dialog turns allowed in the context when training the model. ‘x’ means the
perplexity gain of this context length is less than 0.1.
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3.2 Is It Necessary to Change the Training Context Length When
Dealing with Dialogs of Different Context Lengths?

Previous results concern the overall effect of training context length on the
model. But if we take a deep look into the dataset, we find that the context
length of the samples varies a lot, ranging from 1 to 25 in both test sets. So here
we raise a new question: Do dialogs of different lengths have the same preference
for models? To answer this question, we group the test data according to the
context length and compare the performance of models trained with different
context lengths in each group separately. We denote the model that achieves
the lowest perplexity on the entire set as M, the model that achieves the lowest
perplexity on group g as Mg. For each g ∈ {short,medium, long}, we measure
the gap between M and Mg as

PM(g) − PMg
(g), (2)

where PM(g) is the perplexity of M on group g. As shown in Table 1, M is
optimal on half of all groups. On the remaining groups, the gap between M and
the optimal model is quite small. This result suggests that dialogs of different
lengths do not have a clear preference for context length in the training phase.
The model that performs best on the entire set is a proper choice for dialogs
with varying history lengths.

Table 1. Perplexity gap between the overall-optimal and group-optimal models. The
numbers in parentheses are the maximum context length for samples in each group. ‘–’
means that the overall best-performing model is also the best in this group.

Model DailyDialog PersonaChat

short(3) medium(6) long(25) short(4) medium(8) long(25)

Transformer 0.10 0.13 – 0.10 – –

GPT2 0.09 – – 0.20 0.13 –

3.3 Do Different Samples Have the Same Preference for Context
Length?

Previous experiments reflect the average performance on the test set, but not all
dialog samples benefit from long context. To illustrate this, we split the test set
according to context length, where Di consists of all samples with context length
i. For each sample in Di, we use a trained model to test its perplexity with all
available test context length settings. Then, we count the proportion of sam-
ples in each group that achieve optimal perplexity for each test context length.
Figure 2 shows the results on DailyDialog. No matter which test model is used,
an unignorable proportion of samples in each test context length setting achieve
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optimal perplexity. Although most samples achieve optimal perplexity with the
longest test context, this ratio shrinks as the dialog history length increases,
which indicates that setting a uniform test history length for all dialogs may not
be the best practice. Furthermore, we show to what extent setting different con-
text lengths for each sample during the testing phase can improve the model’s
performance. For each sample, we specify the context length that makes it the
lowest perplexity at test time as its optimal context length. We compare the
gap between testing with the maximum context length and the optimal context
length on each group and the whole test set. As shown in Table 2, using optimal
context length improves the performance of the model in each group, especially
on dialogs with longer histories. This improvement is especially noticeable on the
Transformer, where we can observe improvements of more than 1 point in most
groups. It is surprising that removing part of the history information during the
test phase can improve the test performance of the model so much. However, the
optimal context length is unavailable in practice because we cannot compute the
perplexity without the real responses. We have to determine the context length
according to the context itself, which is left to future work.

Fig. 2. The proportion of test samples that achieves optimal perplexity under different
test context lengths. We present results of D2 D5 and D≥10(=

⋃
i≥10 Di), as repre-

sentatives of samples with short, medium, and long context. We use Transformer and
GPT2 trained under the setting of context length 10 as test models, respectively.

Table 2. Perplexity reduction on DailyDialog test set by using optimal context length

Model D1 D2 D3 D4 D5 D6 D7 D8 D9 D≥10 all

Transformer 0 0.84 1.05 1.12 1.58 1.46 1.44 1.58 1.26 1.75 1.09

GPT2 0 0.28 0.49 0.56 0.66 0.71 0.76 0.78 0.76 0.82 0.51

4 Conclusion

We conducted an empirical study on the context length of Transformer-based
open-domain dialog models. We found that a carefully chosen context length
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balances performance and efficiency and that the overall best-performing model
performs equally well on conversation data of different lengths. We pointed out
that choosing the context length individually for each sample during the testing
phase significantly improves the performance of the model.

For a dialog model to perform well, the context length in the training phase
needs to be carefully considered. If we want the model to perform better, a
potential direction is to learn the context length in the model.

Acknowledgements. This work was supported by the NSFC under grant numbers
62086009/61732001.

References

1. Adiwardana, D., et al.: Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977 (2020)

2. Bao, S., He, H., Wang, F., Wu, H., Wang, H.: PLATO: pre-trained dialogue gen-
eration model with discrete latent variable. In: Proceedings of ACL (2020)

3. Kim, H., Kim, B., Kim, G.: Will I sound like me? Improving persona consistency in
dialogues through pragmatic self-consciousness. In: Proceedings of EMNLP (2020)

4. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective
function for neural conversation models. In: Proceedings of NAACL (2016)

5. Li, Y., Su, H., Shen, X., Li, W., Cao, Z., Niu, S.: DailyDialog: a manually labelled
multi-turn dialogue dataset. In: Proceedings of IJCNLP (2017)

6. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings
of ICLR (2019)

7. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI blog (2019)

8. Saleh, A., Deutsch, T., Casper, S., Belinkov, Y., Shieber, S.: Probing neural dialog
models for conversational understanding. In: Proceedings of the 2nd Workshop on
Natural Language Processing for Conversational AI (2020)

9. Sankar, C., Subramanian, S., Pal, C., Chandar, S., Bengio, Y.: Do neural dialog
systems use the conversation history effectively? An empirical study. In: Proceed-
ings of ACL (2019)

10. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS (2017)
11. Wolf, T., Sanh, V., Chaumond, J., Delangue, C.: Transfertransfo: a transfer

learning approach for neural network based conversational agents. arXiv preprint
arXiv:1901.08149 (2019)

12. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of EMNLP (2020)

13. Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., Weston, J.: Personalizing
dialogue agents: I have a dog, do you have pets too? In: Proceedings of ACL (2018)

14. Zhang, Y., et al.: DIALOGPT: large-scale generative pre-training for conversa-
tional response generation. In: Proceedings of ACL (2020)

http://arxiv.org/abs/2001.09977
http://arxiv.org/abs/1901.08149


COVER: A Heuristic Greedy Adversarial
Attack on Prompt-Based Learning

in Language Models

Zihao Tan1, Qingliang Chen1(B), Wenbin Zhu1, and Yongjian Huang2

1 Department of Computer Science, Jinan University, Guangzhou 510632, China
tzhtyson@stu2022.jnu.edu.cn, tpchen@jnu.edu.cn

2 Guangzhou Xuanyuan Research Institute Co., Ltd., Guangzhou 510006, China

Abstract. Prompt-based learning has been proved to be an effective
way in pre-trained language models (PLMs), especially in low-resource
scenarios like few-shot settings. However, the trustworthiness of PLMs is
of paramount significance and potential vulnerabilities have been shown
in prompt-based templates that could mislead the predictions of language
models, causing serious security concerns. In this paper, we will shed light
on some vulnerabilities of PLMs, by proposing a prompt-based adversar-
ial attack on manual templates in black box scenarios. First of all, we
design character-level and word-level heuristic approaches to break man-
ual templates separately. Then we present a greedy algorithm for the
attack based on the above heuristic destructive approaches. Finally, we
evaluate our approach with the classification tasks on three variants of
BERT series models and eight datasets. And comprehensive experimen-
tal results justify the effectiveness of our approach in terms of attack
success rate and attack speed.

Keywords: Prompt-based Learning · Heuristic Greedy Attack ·
Few-shot Classification Tasks

1 Introduction

The introduction of pre-trained language models (PLMs) has greatly revolu-
tionized natural language processing with pre-training+fine-tuning paradigm.
However, such a paradigm suffers from some drawbacks of high computational
resources and poor inference due to too little or unbalanced data during fine-
tuning [1]. To tackle this problem, prompt-based learning has been proposed in
recent years [2], which can stimulate the potential of language models with less
data and computational resources by designing templates and verbalizers.
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As for the template designs, however, malicious design like adversarial attacks
will mislead the model predictions. In general, adversarial attacks on PLMs
are divided into white-box [3,4] and black-box [5] ones. The former requires
obtaining information about the parameters, gradients, and structure of the
model. In the latter case, only the output distribution of the model is needed.
Nonetheless, existing research on adversarial attacks on prompt-based learning
mainly focuses on white-box scenarios, while there is little study on black-box
ones, which can generate more serious security concerns in practices.

To address the deficit, we propose a Character-level and wOrd-leVel
hEuristic gReedy (COVER) approach in this paper. First, we design character-
level and word-level heuristic destruction rules against the manual template,
which act to corrupt the template before each model’s prediction. Then, we
introduce a greedy strategy in the attack phase. We conducted extensive exper-
iments with three BERT series models on eight classification tasks, and the
experimental results have justified the destructive power and attack speed of
our proposed method. In summary, the contributions of the paper are as follows:

– We present the manual template black-box attack method in prompt-based
learning, which is an attack scenario with significant practical implications,
and almost no other works focus on it.

– We design character-level and word-level heuristic manual template destruc-
tion rules that can work before each prediction, and furthermore with a greedy
approach based on the above rules.

– Experiments show that our attack method achieves high attack success rates
and low number of queries on most of the classification task datasets.

2 The Proposed Method

Consider a publicly released PLM f : X → Y after few-shot tuning of a text
classification task. An input text x ∈ X is transformed by a clean template Tc

like x′
c = Tc(x). Then it can be passed into the f to make a correct prediction:

arg max
yi∈Y

P (yi|x′
c) = ytrue. (1)

where ytrue is the correct label. Attackers try to use a series of destruction
rules to attack the clean template, fooling the PLM with the processed poisoned
template x′

p = Tp(x). And the classifier will finally predict wrongly:

arg max
yi∈Y

P (yi|x′
p) �= ytrue. (2)

In our setting, it is worth noting that our attack scenario is totally based on the
black-box ones, without the need of the gradient, score, structure and parameter
information of the PLM to carry out the attack. The overview of prompt-based
learning adversarial attack in black-box scenarios is shown in Fig. 1.

Inspired by Chen et al. [6] for real-world attackers’ sabotage rules on texts,
we devise a series of character-level and word-level heuristic destruction rules of
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prompt-based learning. The difference is that they simply use six of the destric-
tion rules (rule 1–5, 10) and did not normalize destruction level. Table 1 gives a
summary of the whole destruction rules.

Fig. 1. Overview of the adversarial attack in black-box scenarios

Table 1. Destruction rules on template based on character-level and word-level

Level Rule Description Example

Char (1) Insert a space into words x. The sen timent is <mask>
(2) Insert a punctuation into words x. The sent*iment is <mask>
(3) Swap two adjacent character x. The senitment is <mask>
(4) Delete a character of words x. The seniment is <mask>
(5) Replace a character of words x. The 5entiment is <mask>
(6) Duplicate a character of words x. The senttiment is <mask>

Word (7) Exchange mask token’s position x. The <mask> sentiment is
(8) Swap two word except mask token x. The is sentiment <mask>
(9) Add negative word after linking verb x. The sentiment is little <mask>
(10) Add prefixes and suffixes x. sad The sentiment is <mask> sad

Now, we introduce a greedy attack strategy based on the heuristic destruction
rules described above. Specifically, we use an ordered dictionary Dict in the data
structure, which includes the value to record the time of successful attacks and
the corresponding template is recorded by its key. The dictionary is arranged in
descending order by values. For future data, the first k templates with the top
dictionary sorting are taken out as the candidate template set Ctemplate:

Ctemplate = topk
di∈Dict

(di.value) (3)

The complete algorithm pipeline is shown in Algorithm 1.
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3 Experiments

Dataset and Victim Model. The datasets we chose to evaluate our method
have four domains as shown in Table 2. The sentiment domain includes SST2 [10]
and IMDB [11], and the remaining disinformation, toxic and spam domains con-
sist of six datasets which are compiled by Chen et al. [6]. And we use three pre-
trained language models of the BERT family: BERT-base (109M) [7], RoBERTa-
base (125M) and RoBERTa-large (355M) [8].

Algorithm 1: Adversarial Attack by COVER
Input: Text x ∈ X with correct prediction ytrue ∈ Y , clean template Tc,

ordered dictionary Dict, destruction function gi, PLM f , iteration
ITER, repeat time REP , and max length LEN .

Output: Attack success (true) or fail (false)
1 iter ← 0;
2 if len(Dict) > 0 then
3 Ctemplate = Dict.get_top_k();
4 for tp in Ctemplate do
5 if f(tp(x)) �= ytrue then
6 Dict.record(tp);
7 iter ← iter + 1;
8 return true;
9 end

10 end
11 end
12 Tp ← g9(g10(Tc));
13 iter ← iter + 1;
14 if f(Tp(x)) �= ytrue then
15 Dict.add(Tp);
16 return true;
17 end
18 while iter < ITER · REP and len(Tc(x)) < LEN do
19 i ← Random(rules), rules ∈ [1, 19];
20 Tp = gi(Tp);
21 if f(Tp(x)) �= ytrue then
22 Dict.record(Tp);
23 iter ← iter + 1;
24 return true;
25 end
26 end
27 return false;

Parameter Settings. For each dataset in the pre-trained model, 8 shots of few-
shot tuning were performed. We designed two sets of manual templates for each
dataset separately, each containing two and swapped sentences of the original
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Table 2. Dataset details

Region Dataset Class Description

Sentiment SST2 2 Movie reviews and human comments data
IMDB 2 Large movie review dataset

Disinformation Amazon-LB 2 Small subsets of Amazon Luxury Beauty Review
CGFake 2 Computer-generated Fake Review Dataset

Toxic HSOL 2 Hate offensive speech dataset
Jigsaw2018 2 Toxic Comment Classification Challenge in Kaggle

Spam Enron 2 Collections of emails include legitimate and spam
SpamAssassin 2 Collections of emails include ham and spam

Table 3. COVER versus rocket-prompt and COVE in ASR and Query.

Task Sentiment Disinformation Toxic Spam

PLM Method|Dataset SST2 Amazon-LB HSOL Enron
ASR(%) Query ASR(%) Query ASR(%) Query ASR(%) Query

BERT-base rocket-prompt 94.8 3127.5 100 1537.8 14.4 13118.5 58.3 6985.3
COVE 99.8 962 100 1006.3 57.2 6638.8 85.8 2668
COVER 100 494 100 773 89.9 2058 96.7 1008.3

RoBERTa-base rocket-prompt 92.3 4180.5 81.5 5535.8 22.6 12036.3 94.3 2414.5
COVE 97.5 1698.8 90.2 3222.8 35.3 6638.8 97.2 1402
COVER 99.9 757.5 98 1527 87.5 2293.3 99.4 998

RoBERTa-large rocket-prompt 92.3 4021.5 93 4417.75 3.7 14560 80.4 4962.8
COVE 97.3 1663.5 93.5 4136.25 13.2 12456.8 90.9 2621.5
COVER 99.8 733.25 95.8 3150 27.7 10624 93.8 1933

Average Accuracy (%) 83 71.8 70.5 76.6
PLM Method|Dataset IMDB CGFake Jigsaw2018 SpamAssassin

ASR(%) Query ASR(%) Query ASR(%) Query ASR(%) Query
BERT-base rocket-prompt 24.1 12624.5 99.9 1537.8 20.1 12392 74.5 4699

COVE 72.8 5834.8 100 1097.5 46.2 7989 92.3 1862.3
COVER 94.9 1703 100 674.3 86.4 2473.5 99.8 536.75

RoBERTa-base rocket-prompt 40.4 10479.3 97.5 3417.8 28.5 11673.3 99.7 1725.3
COVE 64.6 6900.8 97.4 2798.8 37.6 9307 99.8 984.5
COVER 92.3 2250.8 98.5 1589.3 77.2 3776 100 525.8

RoBERTa-large rocket-prompt 49.1 10888.5 95.2 4828.25 15.9 13328.8 93.3 4043.5
COVE 79.1 5719 91.1 4683 22.2 11376.8 96.2 2520
COVER 96.1 1607.3 91.8 4369.5 31.7 10225 97.4 1994.25

Average Accuracy (%) 79.2 62.5 74.2 81.8

input. On the training phase, we tune 10 epochs by AdamW optimizer [9] with
learning rate of 1e− 5 and weight decay 1e− 2. On the attack phase, we iterate
30 times for each sentence and the k value of the ordered dictionary is set to 2.

Metrics and Baselines. We apply two evaluation metrics: (1) Attack success
rate (ASR): the percentage of data which has been attacked successfully. (2)
Attack efficiency (Query): the query times to the PLM after crafting a victim
input.

Since there is no prior work for black-box adversarial attacks on prompt-base
learning, we think about two baselines. The first is the heuristic attack method
ROCKET proposed by Chen [6] et al. for text to templates, we keep the stop
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words with minor modifications and name it rocket-prompt. And the other
baseline is character-level and word-level heuristic approaches without greedy
strategy and is labelled COVE.

Experimental Results. Table 3 shows the performance of our proposed
COVER. The ASR of COVER achieves an average accuracy of 96%, 94.1% and
75.3% in BERT-base, RoBERTa-base and RoBERTa-large, respectively, signif-
icantly outperforming that of rocket-prompt and COVE. And COVER has the
least Query times in all cases, where it is almost one-sixth of that of rocket-
prompt and almost one-third to one-half of that of COVE in the Sentiment
domain. This demonstrates the vulnerabilities of prompt-based learning where
an attacker can corrupt PLM predictions through heuristic greedy means, which
needs to be taken into account by real-world practitioners.

4 Conclusion

In this paper, we explore black-box attacks for prompt-based learning, which car-
ries more practical values. First, we design a series of heuristic template destruc-
tion rules at character-level and word-level. Then we propose a greedy strategy
based on this to mimic real-world malicious attacks. And finally the experimen-
tal results justify the power of our approach in terms of both attack success rate
and speed, exhibiting great vulnerability in prompt-based learning.
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Abstract. Table-to-text generation task refers to converting tabular data into lan-
guage text to facilitate easier understanding and analysis of the table. Recently,
pre-trainedmodels havemade significant advancements in this kind of tasks. How-
ever, the inherent structural differences between tabular data and text, and the lack
of domain-specific knowledge in few-shot datasets, make it challenging for pre-
trained models to generate faithful text. To solve these problems, we proposed
a framework that encodes tables by obtaining structural bias attention through
pruning full self-attention, distinguishing the importance of cells from a structural
perspective. We use the pre-trained model with the structural bias framework to
the generation component of Prototype-to-Generation. To encourage prototype
memory to adhere to the table content and generate more accurate and aligned
sentences, we employ Reinforcement Learning. We conducted extensive experi-
ments on three few-shot table datasets. Compared to previous advanced methods,
our model achieved superior performance across multiple evaluation metrics.

Keywords: Few-shot Generation · Table-to-text Generation · Structural Bias
Attention

1 Introduction

Table-to-text generation task aims to generate natural language descriptions for the key
information within a table. It has found significant applications in various domains,
including biography summarization [1], report generation [2], and question answering
[3]. With the rapid development of neural networks, researchers such as Liu et al. [4],
have proposed various neural models to address this problem. While these models have
achieved promising results, they require a significant amount of table data for training.
Due to the scarcity of table data, it has hindered the widespread use of neural models in
current applications. With the emergence of pre-trained models, natural language gener-
ation task based on these models have demonstrated remarkable generation capabilities.
However, the main challenge of applying pre-trained models to tabular datasets is the
structural disparity between tables and text.
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In this work, we propose a structural bias framework (SF) to address the structural
disparity between tables and text. Furthermore, to achieve better generation performance,
we also applied the P2G [5]. It can alleviate the drawback of pre-trained models lack-
ing domain-specific knowledge. Our framework (SF) can be integrated into pre-trained
models, applying the enhanced language model to the generation component of the
P2G. This allows for a more comprehensive capture of the structural information in
tables and is particularly suitable for table-to-text generation under the few-shot scenar-
ios. We conducted extensive experiments on three open-domain table datasets, and our
method outperformed the state-of-the-art approaches across multiple evaluation metrics.
In summary, our main contributions are as follows:

• We propose a structural bias framework and integrated it into a pre-trained model.
Furthermore, we integrate the improved model into the P2G.

• We conduct extensive experiments and analysis on three open-domain table data sets,
demonstrating the effectiveness of our method.

2 Methodology

2.1 Preliminaries

In our approach, the training dataset D = {(T ,Y )i}|D|i=1, where Ti = t1, . . . , t|T | repre-
sents linearized representations of tables. In addition, Yi = (y1, . . . , y|Y |) refers to the
reference text, and yi represents the textual description corresponding to table Ti.

2.2 Structural Bias Framework (SF)

Transformer [6] utilizes self-attention to capture information about all tokens in the input
sequence. But this attention can’t capture the key structural of the table. In tables, cells
within the same row or column are semantically related. We consider cells that aren’t in
the same row or column as being unrelated to the table structure. Based on this feature,
we propose a structural bias attention as shown in Fig. 1, which captures the structural
dependencies in tables. Specifically, to extract the structural bias attention, we remove
the attention that is unrelated to the table structure from the overall attention. We only
retain the attention within the cells and the attention between related cells in the same
row or column. This process allows us to focus on the important structural elements of
the table and discard irrelevant attention connections.

Fig. 1. An example of original attention and structural bias attention. In this example, we omit
attention between tokens within the same cells.
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2.3 Table-to-Text Generation Models

By incorporating the structural bias framework into the pre-trained model, we apply it
to the generation component of the P2G. The overall architecture of our approach is
illustrated in Fig. 2.

Fig. 2. The overall architecture diagram of our method applied to the P2G generation part. The
P2G is divided into two components: the prototype selector and the generator.

Structural Bias LR Training. For a given input data Di = {(T ,Y , S)} and a sample
output sequence O = {o1, . . . , o|O|}, the RL training objective is defined as:

LRL = −R(Y ,O)
|O|∑

i=1

logP(Yi|Y<i,E(T , S)) (1)

whereE(·) represents the encoder module. S represents the prototypememory generated
by the P2G model. The reward function R(Y ,O) represents the similarity between the
generated text and the reference text.DefineR(Y ,O) = B(Y ,O),whereB(·, ·) represents
the BLEU score [7].

Learning Objective. We divide the learning process of the model into two stages. In
the first stage, we employ traditional conditional language modeling learning objective:

LLM = −
|Y |∑

i=1

logP(Yi|Y1:i−1,E(T ,F)) (2)

where F represents the key structural information from the table. In the second stage,
the learning objective is shown in Eq. (3).

Lmix = LRL + LLM (3)
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3 Experiments and Results

3.1 Datasets and Baselines

We evaluate our approach on three popular few-shot datasets [8]. We consider advanced
few-shot table-to-text generation methods as baselines, including Switch + PLM [8],
TableGPT [9], Prefix-Tuning [10], AMG [11], PCG [12], and P2G [5]. We chose T5[13]
as the base pre-trained language model for our experiments.

3.2 Results

WeselectedBLEU-4 [7] and utilized the F1 score of PARENT [14], denoted as PARENT-
F. Additionally, the best performance is indicated in bold, and the second best is marked
with an underline. All (R) values are from the original paper (Table 1 and 2).

Table 1. The BLEU-4 results for the three datasets.

Domain Humans Books Songs

Training set size 50 100 200 500 50 100 200 500 50 100 200 500

Switch + GPT-2(R) 25.7 29.5 36.1 41.7 34.3 36.2 37.9 40.3 36.1 37.2 39.4 42.2

TableGPT(R) 29.8 34.5 40.6 45.6 35.1 37.3 38.5 41.6 36.7 37.8 39.3 42.3

Prefix-Tuning + T5(R) 34.5 39.9 41.6 44.1 35.5 37.3 39.6 41.2 37.5 38.5 40.0 41.1

AMG(R) - - - 49.0 - - - 43.9 - - - 45.1

PCG(R) 39.9 43.3 45.8 49.4 36.6 36.9 39.0 45.6 38.0 41.7 42.5 44.5

P2G (R) 39.3 42.6 46.2 50.1 41.2 43.4 46.4 49.2 42.8 45.9 47.6 50.7

Ours 41.7 44.3 46.5 50.2 42.4 44.2 47.5 49.7 49.3 50.2 51.9 52.6

Table 2. Here are the PARENT-F results for the three datasets. Baseline models that weren’t
evaluated with PARENT aren’t shown in this table.

Domain Humans Books Songs

Training set size 50 100 200 500 50 100 200 500 50 100 200 500

Switch + GPT-2(R) 30.6 34.6 40.5 45.6 42.7 42.8 43.4 44.9 40.2 41.7 44.0 44.8

Prefix-Tuning + T5(R) 39.3 40.6 41.8 42.1 32.8 34.8 36.0 36.8 34.4 36.1 36.0 34.6

AMG(R) 43.6 47.7 50.1 51.9 43.4 46.0 47.5 48.6 42.0 43.3 45.9 46.9

PCG(R) 46.7 48.3 50.4 51.8 46.3 46.2 47.5 49.3 44.8 45.7 46.9 46.0

Ours 46.2 47.9 50.2 51.7 46.1 46.4 47.4 49.1 44.1 45.2 46.5 47.1

Our method outperformed other baselines in terms of BLUE scores, demonstrating
that our approach has the best overall performance. From the results, it can be observed
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that P2G achieved the second-best performance. We choose to apply our method within
the P2G because it contributes to the improvement of the model.

For fidelity-based PARENT scores, although our method does not achieve the high-
est scores in all categories, the overall performance is considered second-best. This is
because the PCG module utilizes BART-large as the base model for the generation part,
which has stronger text generation capabilities. However, the average PARENT score
difference between our model and theirs is around 0.4.

3.3 Case Study

We will utilize the case presented in Fig. 3 to visually demonstrate the effectiveness
of our approach. It can be observed from Fig. 3 that our approach generates informa-
tion that encompasses all the content of the table. On the other hand, when using P2G
alone for generation, it includes partial table content and generates erroneous informa-
tion that deviates significantly from both the table content and the reference text. This
demonstrates that our framework can reduce the generation of erroneous information by
P2G.

Fig. 3. Comparison between the generation results of P2G based on our method and using P2G
alone. Blue represents correct text, red represents incorrect text, and green represents text that
aligns with the table but is not completely consistent with the reference text.

4 Conclusion

In this paper, we propose a structural bias framework that effectively reduces the genera-
tion of text by the P2G that don’t alignwith the table content. The framework captures the
crucial information from the table using structural bias attention, which guides themodel
in generating aligned text. We conduct experiments on three datasets to demonstrate the
effectiveness of our approach.

Acknowledgments. This work is supported by National Natural Science Foundation of China
(Nos.62066033, 61966025); Inner Mongolia Key Research and Development Fund Project (No.
2023YFSW0001); Inner Mongolia Autonomous Region Over-seas Students Innovation and
Entrepreneurship Startup Program.



354 D. Liu et al.

References

1. Lebret, R., Grangier, D., Auli,M.:Neural text generation from structured datawith application
to the biography domain. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics (2016)

2. Hasan, S.A., Farri, O.: Clinical natural language processing with deep learning. Data Sci.
Healthcare: Methodol. Appli., 147–171 (2019)

3. Li, Y., Li, W., Nie, L.: MMCoQA: conversational question answering over text, tables, and
images. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4220–4231 (2022)

4. Liu, T.,Wang, K., Sha, L., et al.: Table-to-text generation by structure-aware seq2seq learning.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32(1) (2018)

5. Su, Y., Meng, Z., Baker, S., et al.: Few-shot table-to-text generation with prototype memory.
In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 910–917
(2021)

6. Vaswani, A., Shazeer, N„ Parmar, N., et al.: Attention is all you need. Adv. Neural Inform.
Proc. Syst. 30 (2017)

7. Papineni, K., Roukos, S., Ward, T., et al.: Bleu: a method for automatic evaluation of machine
translation. In: Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311–318 (2002)

8. Chen Z, Eavani H, Chen W, et al. Few-Shot NLG with Pre-trained language
model[C]//Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 2020: 183–190

9. Gong, H., Sun, Y., Feng, X., et al.: Tablegpt: few-shot table-to-text generation with table
structure reconstruction and content matching. In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 1978–1988 (2020)

10. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. In: Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4582–4597 (2021)

11. Zhao, W., Liu, Y., Wan, Y., Yu, P.: Attend, memorize and generate: towards faithful table-
to-text generation in few shots. In: Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Punta Cana, Dominican Republic, pp. 4106–4117. Association for
Computational Linguistics (2021)

12. Luo, Y., Lu, M., Liu, G., Wang, S.: Few-shot table-to-text generation with prefix-controlled
generator. In: Proceedings of the 29th International Conference onComputational Linguistics,
pp. 6493–6504 (2022)

13. Raffel, C., Shazeer, N., Roberts, A., et al.: Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

14. Dhingra, B., Faruqui, M., Parikh, A., Chang, M.-W., Das, D., Cohen, W.: Handling divergent
reference texts when evaluating table-to-text generation. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4884–4895 (2019)



Generalized Knowledge Distillation
for Topic Models

Kohei Watanabe(B) and Koji Eguchi(B)

Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi-Hiroshima, Japan

{m224406,kxeguchi}@hiroshima-u.ac.jp

Abstract. Topic modeling is used in the analysis of textual data to
estimate the underlying topics within the dataset. Knowledge distilla-
tion has been attracting attention as a means of transferring knowl-
edge from a large teacher model to a small student model in the field
of deep learning. Knowledge distillation can be categorized into three
types depending on the type of knowledge to be distilled: response-based,
feature-based, and relation-based. To the best of our knowledge, previous
studies on knowledge distillation used in topic models have all focused
on response and/or feature knowledge, but these methods cannot trans-
fer the structural knowledge of the teacher model to the student model.
To solve this problem, we propose a generalized knowledge-distillation
method that combines all three types of knowledge distillation, includ-
ing the relation-based knowledge distillation with contrastive learning,
which had not been used for neural topic models. Our experiments show
that our neural topic model, trained with the proposed method, improves
topic coherence compared to baseline models without knowledge distil-
lation.

Keywords: Topic models · Knowledge distillation · Contrastive
learning

1 Introduction

Topic modeling is a common method for estimating latent topics behind data
from documents and has been applied to various tasks. A typical topic model,
latent Dirichlet allocation (LDA) [2], generates documents probabilistically
assuming that there are multiple latent topics behind each document. LDA is
typically trained using variational Bayesian methods; however, the challenge is
that a new inference process needs to be mathematically derived depending on
the purpose of the model. Neural topic models have been proposed to solve this
problem. One such model is Srivastava et al.’s PRODLDA [8], which is based
on a variational autoencoder (VAE) [6]. It can approximate complex posterior
distributions using a flexible inference network that is based on neural networks.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 355–361, 2024.
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In deep learning, knowledge distillation has attracted attention as a method
for transferring knowledge from a large-scale teacher model to a small-scale stu-
dent model. Knowledge distillation can be classified into three types depending
on the type of knowledge to be distilled: response-based, feature-based, and
relation-based [4]. In a previous study on knowledge distillation for neural topic
models, Hoyle et al. proposed a response-based knowledge-distillation method
that trains student neural topic models using the output of BERT, which is pre-
trained on large corpora, as the teacher model [5]. Adhya et al. also conducted
response-based and feature-based knowledge distillation simultaneously using a
large neural topic model as the teacher and a small neural topic model as the
student [1]. However, these methods focus only on the individual sample repre-
sentations, which means that they are unable to transfer structural knowledge,
the relationships between samples, from the teacher model to the student model.

To solve this problem, we propose a relation-based knowledge-distillation
method using contrastive learning for neural topic models. The method uses
contrastive loss to distill the structural knowledge of the teacher by learning
the latent representations of the student model, while maintaining the relation-
ships in the individual document representations generated by the teacher model.
We further propose a generalized knowledge distillation by combining response-
based, feature-based, and relation-based knowledge distillation. Through eval-
uation experiments measuring topic coherence, we show that the neural topic
model trained using the proposed method improves on a baseline neural topic
model [3] and its variant.

2 Overview of Neural Topic Models

As an earlier neural topic model, PRODLDA [8] was developed using VAE [6].
A generalization of PRODLDA is SCHOLAR [3]. These neural topic models
replace the Dirichlet prior used in the original LDA [2] with a logistic normal
prior (LN ) to facilitate inference. Now suppose wBoW

i is a V -dimensional vec-
tor counting the words in document wi, and zi is its corresponding topic vector.
The VAE-based neural topic model learns to minimize the Kullback-Leibler (KL)
divergence between the true posterior distribution p(zi) and variational distri-
bution q(zi|wBoW), which cannot be obtained analytically. The evidence lower
bound (ELBO) is expressed as

ELBO = Eq(zi|·) [LRE ] − DKL

[
q
(
zi | wBoW

i

) ‖p (zi | α)
]
, (1)

where LRE = (wBoW
i )� log σ(ηi). The notation σ(·) is a softmax func-

tion, σ(ηi) corresponds to the word distribution (multinomial distribution
over the vocabulary) of document wi, LRE is the reconstruction error, and
DKL

[
q
(
zi | wBoW

i

) ‖p (zi | α)
]

is the KL divergence between q(zi|wBoW
i ) and

p(zi|α). As in VAE, the inference process uses a multilayer neural network to
generate the variational parameters. Since the logistic normal distribution is
assumed for the prior distribution of z, the inference network outputs a mean
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vector μ(·) and diagonal covariance matrix σ2(·). The variational distribution is
q(zi | wBoW

i ) = LN (μi,σi).

μi = Wμπi + bμ, log σ2
i = Wσπi + bσ, πi = f

(
WwwBoW

i

)
, (2)

where f is the multilayer perceptron and the variational parameters are all the
weight matrices Ww, Wμ, and Wσ and biases bμ and bσ in Eq. (2).

Fig. 1. Conceptual diagram of generalized knowledge distillation.

3 Methodology

On the basis of the neural topic model SCHOLAR [3], our method unify
response-based and feature-based knowledge distillation using transfer learning
and relation-based knowledge distillation using contrastive learning. It differs
from previous methods in that we apply relation-based knowledge distillation [9]
to the neural topic model, which has not been studied previously, and in that
we propose to integrate the three types of knowledge distillation in a unified
framework. As knowledge distillation require s employing an identical dataset
for both student and teacher models, we initialize the teacher model’s weight
matrix Ww for the target data by leveraging the weight matrix Ww pre-trained
on a source data. Figure 1 shows a conceptual diagram of generalized knowledge
distillation.

For the inference process of neural topic models described in Sect. 2, we use
the following objective function instead of LRE in Eq. (1),

L = (1 − γ)LRE + γLResKD + λ1LFeaKD + λ2LRCD. (3)

Here, LResKD, LFeaKD, and LRCD corresponds to response-based, feature-
based, and relation contrastive distillation, respectively. The details of these
terms are explained in the rest of this section. The notations γ, λ1, λ2 are hyper-
parameters to adjust the effect of each term.
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Response-Based Knowledge Distillation: The generative process of the models
trained with our proposed method is the same as that of SCHOLAR. The infer-
ence process uses the SCHOLAR inference network but adds a pseudo-document
wt

i to Eq. (2), which is generated from the logit of the teacher model.

πi = f
([
WwwBoW

i ;Wwtwt
i

])
, (4)

where
[
WwwBoW

i ;Wwtwt
i

]
denotes the horizontal concatenation of WwwBoW

i

and Wwtwt
i . To apply knowledge distillation to a neural topic model, the fol-

lowing objective function LResKD is used

LResKD = τ2(wt
i)

� log ŵi, wt
i = σ(ηt

i/τ)Ni, ŵi = σ(ηi/τ), (5)

where wt
i is the probability estimated from the logit ηt

i of the teacher model,
scaled by the document length N and treated as a smoothed pseudo-document,
and τ is the temperature of the softmax function.

Feature-Based Knowledge Distillation: Feature-based knowledge distillation dis-
tills the topic multinomial distribution of the documents from the teacher model
to the student model as knowledge. The objective function of feature-based
knowledge distillation is expressed as

LFeaKD = −
∑

(zt
i − zs

i )
2 (6)

where zt
i and zs

i indicate the latent representations (i.e., features or topics)
generated by the teacher and student models, respectively, for document wi.

Relation Contrastive Distillation: Now, we describe the method for achieving
relation-based knowledge distillation by maximizing the mutual information of
the relation Y t between the latent representations of the teacher model and that
Y t,s between the latent representations of the teacher model and student model.
The idea is inspired by [9]; however, we employ it in the context of inference of
neural topic models. Let p(W ) be the empirical distribution of the document set
W = {wi : i = 1, ...,D} of the training data and model the conditional marginal
distributions of topic relations p(Y t|W ) and p(Y t,s|W ) as follows.

wi,wj ,wm,wn ∼ p(W ), yt
i,j = gt(zt

i ,z
t
j), yt,s

m,n = gt,s(zt
m,zs

n), (7)

where zt
i is the latent representation generated by the decoder of the teacher

neural topic model for document wi, and zs
n is that generated by the student

neural topic model for document wn. The gt is a network that computes the
relation between the latent representations of the teacher model and gt,s is a
network that computes the relation between the latent representations of the
teacher model and student model. We also model p(Y t, Y t,s|W ) as follows.

wi,wj ∼ p(W ), yt
i,j = gt(zt

i ,z
t
j), yt,s

i,j = gt,s(zt
i ,z

s
j ). (8)
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The mutual information of p(Y t|W ) and p(Y t,s|W ) is expressed as follows.

I(Y t, Y t,s) = Ep(Y t,Y t,s|W ) log
p(Y t, Y t,s|W )

p(Y t|W )p(Y t,s|W )
. (9)

To derive the objective function, we define a latent variable δ that indicates
whether the relation pairs (yt,yt,s) are generated from the joint distribution or
product of marginal distributions. When δ = 1, it means that yt and yt,s are
computed by the same input pair, as in Eq. (8), and when δ = 0, it means that
yt and yt,s are computed by independently selected input pairs, as in Eq. (7).
Maximizing the mutual information is equivalent to maximizing the following
objective function LRCD of relation contrastive distillation [9].

LRCD =
∑

q(δ=1)

log h(yt,yt,s) + N
∑

q(δ=0)

log[1 − h(yt,yt,s)], (10)

where{(yt,yt,s)|δ = 1} is a positive pair and {(yt,yt,s)|δ = 0} is a negative
pair, and N is the number of negative pairs for a positive pair. h is a model for
approximating true distribution q(δ = 1|Y t, Y t,s), where h : {Y t, Y t,s} → [0, 1].
Not only h, but also the student network and subnetworks are optimized when
LRCD is minimized.

Table 1. Datasets that differ in total number of documents D and vocabulary size. V

Wiki (Source) IMDb (Target) 20NG (Target) BBC (Target)

D 6,078,287 50,000 18,745 2,225

V 50,000 5,000 1,995 9,635

Table 2. NPMI and sample standard deviation.

Model IMDb 20NG BBC

SCHOLAR 0.164 (0.006) 0.316 (0.005) 0.279 (0.011)

SCH.+Wiki 0.162 (0.003) 0.321 (0.003) 0.280 (0.006)

SCH.+ResKD+FeaKD+RCD 0.167 (0.002) 0.349 (0.010) 0.321 (0.012)

4 Experiments and Results

We used the English Wikipedia dataset (Wiki)1 as the source data for pre-
training SCHOLAR, and the IMDb dataset of movie reviews (IMDb)2, 20News-
1 https://huggingface.co/datasets/wikipedia.
2 http://ai.stanford.edu/∼amaas/data/sentiment/.

https://huggingface.co/datasets/wikipedia
http://ai.stanford.edu/~amaas/data/sentiment/
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groups dataset (20NG)3, and BBC dataset (BBC)4 as the target data to
be analyzed. We split the datasets into training, development, and test sets
(train/dev/test) in the following proportions: 20NG: 48/12/40, IMDb: 50/25/25,
BBC: 70/15/15. The vocabulary of the Wiki dataset used for the pre-training
was formed by keeping the top 50,000 words that occurred in most documents.
Details of the datasets are listed in Table 1. We set the number of topics to 50
in the evaluation experiment. We used Optuna5 to tune the hyperparameters τ ,
γ, λ1, and λ2.

The models trained with the proposed method were evaluated using nor-
malized pointwise mutual information (NPMI) [7], a measure of topic coher-
ence based on the co-occurrence of words in a corpus, using a test set of the
top 10 words for each topic in the same corpus. Table 2 lists the experimental
results. The NPMI in the table is the average of five runs with different random
initialization. The baseline models are SCHOLAR [3] and SCH.+Wiki, which
was trained by transferring parameters from the SCHOLAR pre-trained on the
large dataset, i.e., Wiki, and used as a teacher model in the knowledge distil-
lation. The model (SCH.+ResKD+FeaKD+RCD) trained using the proposed
method, which combines the three types of knowledge distillation (response-
based, feature-based and relation-based), achieved the best NPMI on all three
datasets compared with the two baselines: SCHOLAR [3] and SCH.+Wiki. We
found that the SCH.+Wiki achieved better NPMI than the original SCHOLAR
on the 20NG and BBC datasets, but slightly worse on the IMDb dataset.

5 Conclusions

We proposed a generalized knowledge distillation for training neural topic mod-
els, by unifying three types of knowledge distillation: response-based, feature-
based, and relation-based. The response-based and feature-based knowledge-
distillation are based on parameter transfer from a teacher model trained with a
larger dataset. The relation-based knowledge distillation is based on contrastive
learning that transfers topic relationships of a teacher model into a student
model. This is the first work on relation-based knowledge distillation for neu-
ral topic models, to our knowledge. Evaluation experiments indicated that all
three types of knowledge distillation improved the performance of the neural
topic models trained with our method in several datasets. For future work, we
plan to investigate which type of teacher is best suited for each of dataset to be
analyzed. The use of large language models as teacher models is also a possible
extension of our work.

Acknowledgements. This work was supported in part by the Grant-in-Aid for Sci-
entific Research (#23K11231) from JSPS, Japan, and in part by ROIS NII Open Col-
laborative Research 2023 (#23FS02).

3 https://github.com/akashgit/autoencoding vi for topic models.
4 http://mlg.ucd.ie/datasets/bbc.html.
5 https://optuna.org/.
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Abstract. Many existing speaker recognition algorithms have the prob-
lem that single-domain feature extraction cannot represent the speech
characteristics well, and this problem will affect the accuracy of speaker
recognition. To solve this problem, we propose a time-frequency domain
feature enhanced deep speaker (TFDS). The proposed algorithm can
combine time domain and frequency domain, enhance the traditional
MFCC feature extraction, and make up for the shortcomings of other
algorithms that only extract features in a single domain. The deep
speaker network architecture includes ResCNN, GRU, time averaging
layer, style transformation layer, length normalization layer, and the loss
is triple loss. Representation of experimental results performed on the lib-
risspeech dataset results show that TFDS has higher accuracy and lower
Equal Error Rate than deep speaker, and the time-frequency domain
feature enhanced method can also be combined with other networks to
improve the accuracy of speaker recognition.

Keywords: speaker recognition · feature enhancement ·
time-frequency domain · deep speaker · deep learning

1 Introduction

Speaker recognition has been used in information security, financial payment,
intelligent hardware, attendance authentication and fraud control [1,6]. Tradi-
tional methods to solve this problem are mainly based on GMM to map voice
features into low-dimensional vectors [3].

In particular, [2] proposed a speaker recognition method for a new speaker
embedding system, which maps the speech sentence to a hyperplane and then cal-
culates the similarity between speakers by cosine similarity. The speaker recog-
nition technology has been more mature, but the above papers have certain
shortcomings, the key is that because the single domain feature extraction can-
not be a good performance of speech features, there is no good feature vector
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 362–367, 2024.
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corresponding to speech. No amount of work on training and loss function is in
vain, which will affect the accuracy of speaker recognition [5].

Therefore, this paper proposes an algorithm of time-frequency domain feature
enhanced deep speaker (TFDS) for speaker recognition. Firstly, the algorithm
extracts the speaker features through the feature enhancement method in time
and frequency domain, and comprehensively considers the speech features of
multiple domains of audio. Then, the deep speaker algorithm is used for speaker
modeling and recognition to improve accuracy. The experimental results ver-
ify the effectiveness of the algorithm, and the time-frequency domain feature
enhanced method can improve the accuracy.

2 Method

2.1 Time-Frequency Domain Feature Enhanced Method

In this part, we introduce the time-frequency domain feature enhanced method
in detail, and its structure diagram is shown in Fig. 1. A piece of continuous
speech has features in time domain and frequency domain. We add these two
dimensions to enhance the feature vector extracted by MFCC from the perspec-
tive of multiple domains.

Fig. 1. Time-Frequency Domain Feature Enhanced Method

Time Domain Feature Enhanced Method. Firstly, a piece of continuous
speech is pre-weighted. In the time domain, the pre-weighted continuous speech
is segmented to obtain a speech segment within a short time.

The fast Fourier transform (FFT) is adopted. Through a Mel filter bank,
the logarithmic energy of the output of each filter bank is calculated. After the
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FFT transform, the convolution becomes a multiplication, and after taking the
logarithm, the multiplication becomes an addition, converting the convolution
signal into an additive signal. Finally, the MFCC coefficients of this small part
of speech after framing are obtained by discrete cosine transform.

After the above calculation, the vector obtained after this framing is
denoted as Xtime(1), Similarly, Xtime(2), . . . , Xtime(n) can be obtained in
the same way. Finally, the matrix merging operation is performed on Xtime(1),
Xtime(2),. . . ,Xtime(n) to obtain the feature vector based on time domain feature
enhancement, which is denoted as Xtime, and each of these elements is called
xtime(i).

Frequency Domain Feature Enhancement Considering that the relation-
ship between the time domain and the frequency domain is the relationship
between the horizontal axis and the vertical axis in the coordinate axis, the
processing method for the frequency domain is mostly similar to the above pro-
cessing for the time domain, except that the feature vector based on the fea-
ture enhancement in the frequency domain obtained at the end is denoted as
Xfrequency, and Xfrequency needs to transpose the matrix, and the transposed
matrix is called XT

frequency(i). Each of these elements is called xT
frequency(i).

Time-Frequency Domain Feature Enhanced Method. In addition to the
time domain and frequency domain calculation, this continuous speech also needs
to go through a complete MFCC feature extraction process, and the obtained
feature vector is denoted as XMFCC , and each of these elements is called xMFCC .
The feature vector based on the time frequency domain enhanced method needs
to add the above three parts element-by-element, which are the feature vector
based on time domain enhancement, the feature vector based on time domain
enhancement and the feature vector extracted by MFCC of the complete speech,
and the formula is as follows:

x(i) = xMFCC(i) + xtime(i) + xT
frequency(i) (1)

where the vector composed of all x(i) is the enhanced feature vector in the time-
frequency domain. Considering that there may be elements with values greater
than 1 in this vector, a sigmoid activation function is needed to obtain the values
in the (0,1) interval for the convenience of subsequent model training.

At this point, the feature vector based on the time-frequency domain
enhanced method is computed.

2.2 Deep Speaker Network

In this subsection, we will introduce the deep speaker network, using the feature
vectors extracted in Part 2.1 as the input of the network. The network archi-
tecture includes ResCNN, GRU, time averaging layer, stylized transformation
layer, length normalization layer, and the loss is triplet loss. These architectures
are further explained below.
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3 Experimental Setup

In this subsection, we present the experimental setup of the time-frequency
domain feature enhanced deep speaker (TFDS). The dataset we use is the train-
clean-100 dataset from LibriSpeech, which contains about 100 h of clean speech.

The following experiments are carried out on the above data sets.
They are GMM-UBM, x-vector/PLDA, i-vector/Cosine, i-vector/PLDA, x-
vector/Softmax loss, d-vector, GAN, and the time-frequency domain feature
enhanced deep speaker (TFDS). The Equal Error Rate corresponding to these
algorithms under the data set is obtained as the evaluation index [4].

To prove that the feature enhancement method based on time-frequency
domain can improve the accuracy of speaker recognition and reduce the Equal
Error Rate, we set up the following four groups of ablation experiments. They
are the method based on MFCC, the method based on time domain feature
enhancement, the method based on frequency domain feature enhancement and
the method based on time and frequency domain feature enhancement are used
to extract features, and then input into the deep speaker network for training.

4 Results and Analysis

We will introduce the experimental results and result analysis of TFDS. The
results on Equal Error Rates for GMM-UBM, x-vector/PLDA, i-vector/Cosine,
i-vector/PLDA, GAN, and the time-frequency domain feature enhanced deep
speaker (TFDS) are shown in Table 1. The results of the time-frequency domain
feature enhanced method applied to deep speaker are shown in Fig. 2 and Fig. 3.
And the results on accuracy and Equal Error Rate for four experiments are
shown in Table 2.

Table 1. Performance comparison (EER) of the baseline model and the proposed
method.

system GMM-UBM i-vector/Cosine i-vector/PLDA x-vector/PLDA

EER[%] 6.02 8.48 5.61 5.87
system x-vector/Softmax loss d-vector GAN TFDS
EER[%] 5.08 7.95 5.90 3.42

It can be found from Table 1 that GMM-UBM, i-vector/Cosine, i-
vector/PLDA, x-vector/PLDA, x-vector/Softmax loss, d-vector, GAN have dif-
ferent effects on the task of speaker recognition in the case of the same data set
and Equal Error Rate as the evaluation index. However, their effects are not as
good as the effect of the time-frequency domain feature enhanced deep speaker
(TFDS). The experimental results show that TFDS is more effective than other
models mentioned in this paper under the same data set.
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Fig. 2. Plot of Equal Error Rate as a
function of number of iterations.

Fig. 3. Plot of Loss function, average
loss function, accuracy, and average
accuracy.

Figure 2 shows how the Equal Error Rate changes with the number of itera-
tions. It can be found that the Equal Error Rate reaches the minimum value at
step=24500, with a value of 3.42%.

The upper part of Fig. 3 shows the change of loss function and average loss
function with the number of iterations, and the lower part shows the change of
accuracy and average accuracy with the number of iterations. It can be found
that the loss function is in a downward state as a whole and is becoming increas-
ingly stable. With the increase of iterations, the accuracy is getting higher and
closer to 100%. Its maximum value is 99.78%.

Table 2. Ablation experiment comparison of the proposed method (ACC, EER).

system ACC[%] EER[%]

MFCC/deep speaker 98.5714286 7.3686852
time domain feature enhanced deep speaker 99.1428571 7.1064142
frequency domain feature enhanced deep speaker 99.0327869 7.0801271
time-frequency domain feature enhanced deep speaker 99.7857143 3.4208765

We set up ablation experiments. It can be found from Table 2 that the time-
frequency domain feature enhanced method is superior to the traditional MFCC
method, the time-frequency domain feature enhanced method and the frequency
domain feature enhanced method in terms of accuracy and EER. According to
this result, we can conclude that, compared with single domain feature extrac-
tion, the time-frequency domain feature enhanced method can extract increas-
ingly comprehensive speech feature information, which improves the accuracy
and EER of voiceprint recognition to a certain extent. The time domain feature
enhanced method and the frequency domain feature enhanced method has per-
formance improvement compared with the traditional MFCC method in terms
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of accuracy. In addition, the time domain feature enhanced method is better
than the frequency domain feature enhanced method in terms of accuracy, but
it does not perform as well in terms of EER.

5 Conclusion

In this paper, we propose a TFDS algorithm for text-independent speaker recog-
nition. This algorithm extracts features through time-frequency domain feature
enhanced method, considers speech feature information in multiple domains, and
then maps the features to a hyperplane through the deep speaker method, and
trains the model through cosine similarity and triplet loss. The deep speaker
network architecture includes ResCNN, GRU, time averaging layer, style trans-
formation layer, length normalization layer.

Experiments show that under the same circumstances, the time-frequency
domain feature enhanced deep speaker can achieve lower Equal Error Rate.
Compared with the traditional GMM-UBM, x-vector/PLDA, x-vector/Softmax
loss, d-vector, and GAN, TFDS algorithm can further improve the accuracy of
speaker recognition based on deep speaker, which also shows that under the
same circumstances, the feature enhancement based on time-frequency domain
can improve the accuracy compared with the traditional MFCC. This method
is hopeful to be applied to other networks to improve the accuracy of speaker
recognition.
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Abstract. Knowledge-based question answering is a hot topic in Natu-
ral Language Processing (NLP), especially in addressing complex ques-
tions. Existing methods, which transform complex questions into query
graphs, often struggle with low-quality graphs. To improve this, we pro-
pose a dual-encoder model for generating and ranking query graphs. We
incorporate beam search and a scoring function for high-quality graph
generation, and use a dual-encoder model with attention mechanism for
graph ranking. By extracting semantic structures from complex ques-
tions, we further refine the ranking process. Our experiments on bench-
mark datasets show competitive results, suggesting practical applications
in complex question answering.

Keywords: Knowledge base · Question answering · Complex
questions · Query graphs · Dual encoder model

1 Introduction

The main task of question answering over knowledge base (KBQA) is to find
answers to questions from a knowledge base. The focus of research has shifted from
simple QA to complex QA, which shows greater application potential. Existing
methods mainly parse questions into query graphs and search for answers in the
knowledge base. This process involves topic entity recognition and the challenging
tasks of multi-hop path reasoning and constraint association.

To cope with aforementioned challenges, considerable prior work addresses
core path reasoning and constraints association separately and suffers from poor
performance due to excessive incorrect query graphs they produce. Recognizing
this, we propose an approach to answering complex questions. In particular, our
approach narrows down the search space for query graph generation through
beam search and semantic structure matching, where dual encoders are incor-
porated. The experimental results on the benchmark dataset demonstrate the
effectiveness of our proposed approach.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Contributions. The contributions of the paper are summarized as follows.

– We introduce a module that applies the beam search along with a scoring
function for query graph generation. Our scoring function accurately measures
the quality of core paths of a question, by using the dual-encoder architecture.

– We develop a module to rank query graphs using a dual-encoder model. More-
over, we extract five typical semantic structures from complex questions and
develop a classifier to predict the semantic structure of a question. The pre-
dicted semantic structure is used to filter out query graphs that do not con-
form to it.

– We conduct experimental studies on typical benchmark datasets. The results
demonstrate promising improvements over existing techniques, highlighting
the effectiveness of the proposed method in addressing complex question
answering on knowledge bases.

2 Related Work

We categorize prior works into two types: Semantic Parsing (SP-based) [3,11,13]
and Information Retrieval (IR-based) [1,2,5,10,12].

SP-Based. Semantic Parser typically converts a question posed in natural lan-
guage into a logical structure, which can then be processed to procure the
answer. [13] revisited the value of semantic parsing annotations and demon-
strated that training models with annotated semantic parsing can significantly
improve the performance of KBQA on a large-scale dataset. However, annotat-
ing semantic parsing is an expensive and time-consuming process. [3] offered
a neural semantic parsing approach tailored for KBQA. It includes a retriever
for efficiently retrieving relevant KB items, a transducer for generating logical
forms with guaranteed grammatical correctness, and a checker for improving
the transduction process. [11] improved question answering using comparative
learning and transformers for entity linking and relationship prediction.

IR-Based. This technique generates candidate answers from a knowledge base
according to the question’s topic entity, then uses scoring methods to select the
best answer based on information from the question and candidates. [1] intro-
duced a novel approach to KBQA, where multi-constraint questions are con-
verted into multi-constraint query graphs to address their complexities. [5] in
knowledge-based relation extraction, the number of hops is not limited, thereby
reducing the search space. However, the use of greedy search for each hop results
in slower retrieval efficiency. [2] develop a methodology for answering complex
queries, involving the use of simple queries to construct complex ones. [12] pro-
pose a sequential reasoning self-attention mechanism to address multi-hop rea-
soning. Lastly, [10] use an attention mechanism and a memory-based network to
generate query graphs.
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3 An Approach

Our approach to complex question answering uses a two-module system to find
answers from a knowledge base. The modules, detailed in Sects. 3.1 and 3.2,
generate and rank query graphs. See Fig. 1.

3.1 Query Graph Generation

Given a question q, the Query Graph Generation module (QGG) produces a
set of candidate query graphs, as follows.

Fig. 1. Influence by varying ξ and η

Core Path Generation. QGG applies the traditional model BERT, and utilizes
BiLSTM and CRF for span detection tasks. Entity linking is achieved via the
Google Knowledge Graph API1, linking entity mentions to candidates in a knowl-
edge base. Once we have linked entities, we obtain the topic entity. Starting from
the topic entity, the beam search is applied to generate core paths; meanwhile,
QGG incorporates a scoring function to guide the search on KG, thereby reduc-
ing search cost and improving the quality of core paths. Specifically, the scoring
function leverages a Dual Encoder Scoring Model (DESM), whose architecture
is shown in Fig. 1. For the model training, both the question q and the core
path pi pass through two towers, respectively to obtain two fixed-length feature

1 https://developers.google.com/knowledge-graph.

https://developers.google.com/knowledge-graph
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vectors. The cosine similarity cos(q, pi) between two feature vectors is then cal-
culated as the similarity of q and pi. Training samples consist of positive samples
and negative samples. Starting from the topic entity of a question, the one-hop
path to the golden answer is picked as the positive sample, while the others are
chosen as negative samples; starting from the one-hop positive sample of a ques-
tion, the two-hop path to the golden answer is also considered as the positive
sample while the others are marked as negative samples. A well trained DESM
guides the search as follows. During the traversal, DESM calculates the weight
of each hop and only k hops with the largest weights are considered to generate
core paths. Here, parameter k is the beam size and used to restrict the number
of branches.

Constraints Association. Another difficulty in complex question answering comes
from various constraints taken by questions. Typically, constraints in complex
questions are categorized as entity, type, time, and order constraints [9]. QGG
associates each of them either to the entity node that is in the middle of a core
path or the answer node of a core path. When dealing with an entity constraint,
QGG simply determines whether the expanded node has a name in the question
and treats it as an entity constraint if so. For time constraints, QGG recognizes
them through regular matching. For type constraints and order constraints, man-
ual rules are used to distinguish them.

3.2 Query Graphs Ranking

Given a set of candidate query graph sequences, we build a Query Graph
Ranking module (QGR) to score candidate query graphs. Via ranking, the query
graph with the highest score is used to find the object in the KB as the final
answer to the input question q. The core part of QGR is the Multi-head Self-
attention Ranking Model (MSRM). We next introduce MSRM in details.

Model Details. Similar to DESM, MSRM also utilizes the dual-encoder archi-
tecture to compute the relevance between a question q and its query graphs
gqi (i = 1, 2, ...). As shown in Fig. 1, MSRM is a Siamese network with two iden-
tical towers, in which the parameters of the BERT layer are shared. For the
model training, the question q and its query graph gqi pass through two towers,
respectively to obtain two fixed-length feature vectors. The relevance between q
and gqi is measured through cosine similarity between features of q and gqi . We
use the MSEloss function to measure the overall similarity between question and
query graph pairs.

Sample Strategy. For model learning, we applied the following sampling strategy
to construct the training data for MSRM. For a given question q and its candidate
query graphs, if a query graph can correctly (resp. incorrectly) find the answer
of q, it is deemed as a positive (resp. negative) sample and assigned a value of
1 (resp. 0); otherwise, if a query graph can partially identify correct answers,
i.e., its F1 score ranges from 0 to 1, it is given a value η ∈ (0, 1). Intuitively, the
value quantifies the match degree of a pair of question and its candidate query
graph, and serves as supervision for defining the loss function.
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3.3 Optimization

To improve performance, we refine the candidate set of query graphs using a clas-
sification model that predicts semantic structures of questions, inspired by [8].
This model uses pre-trained BERT for question representation and is trained on
data where the labels are semantic structures extracted from SPARQL queries
of the questions. The optimization process refines the candidates by extracting
a subset Sh from the candidate query graph set Sc. This subset Sh consists of
Ss and Sd, where Ss includes candidate query graphs matching the predicted
semantic structure, and Sd contains top-ranked graphs that do not conform to
this structure, as defined in Eq. 1.

Sd = Gi|i ∈ [1, ξ × m] ∩ Z, Gi ∈ SC \ Ss (1)

In Eq. 1, ξ controls the number of differing semantic structure graphs; m is the
count of SC \Ss; and Z represents integers. Sd contains top ξ ×m query graphs,
and when ξ is 0, Sd is empty. Experiments show a nonempty Sd is beneficial,
and the best graph in the refined set is used for answering the question.

4 Experimental Studies

4.1 Settings

Knowledge Base. We use Freebase as our knowledge base and, following the
method of [7], we filter Non-English triples, leading to a total of 900M triples.

Questions. We utilized two datasets for performance evaluation. The first is
ComplexQuestion [1], a set of 2,100 diverse, challenging questions divided into
1,300 for training and 800 for testing. The second dataset is WebQuestionSP
[13], comprising 4,737 questions with a split of 3,098 for training and 1,639 for
testing.

Baseline Methods. We used a list of models [2–7,9,10,12] as baseline methods,
for performance comparison. † denotes the re-implementation by [7].

4.2 Results and Analysis

Overall Performance. Table 1 lists the F1 scores of our approach and other
baseline methods. As can be seen, the F1 scores of our approach reach 74.2%
and 43.2% on WebQuestionSP and ComplexQuestion, respectively. This indicates
that our approach outperforms most state-of-the-art methods.

Performance of Sub-modules2. Our model exhibits superior performance,
achieving an accuracy of 91.9% in topic entity recognition and an impressive F1
2 Since ComplexQuestion does not provide ground truth, the performance evalua-

tion of sub-modules is tested on WebQuestionSP only. For the submodule training
on ComplexQuestion, we use the data provided by [4].
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Table 1. Performance evaluation (F1)

Methods WebQuestionSP (%) ComplexQuestion (%)

[Luo et al., 2018] [9] - 42.8
[Chen et al., 2018] [5] † 68.5 35.3
[Bhutani et al., 2019] [2] 60.3 -
[Chen et al., 2020] [4] - 43.1
[Lan et al., 2020] [7] 74.0 43.3
[Gu et al., 2021] [6] 67.0 -
[Chen et al., 2021] [3] 71.0 -
[Xie et al., 2022] [12] 69.2 -
[Wang et al., 2022] [10] - 42.6
Ours 74.2 43.2

score of 97.5% in entity span detection. The efficacy of QGG is validated by a
91.34% DESM F1 score in generating the core path. The MSRM, maintaining
constant parameters, stands out with a mean squared error of 46.56%�, leading
to a final answering F1 score of 74.2%. The semantic structure classification
model underscores an admirable F1 score of 86.23%, demonstrating successful
optimization.

Influences by Parameters. We show the influences of parameters.

Varying k. As the beam size k increases, the overall quality of our query graphs
improves. However, after k = 3, the rate of improvement slows, leading us to
select k = 3 for an optimal balance of cost and performance.

Varying ξ and η. We find the following. (1) With the increase of ξ, Avg-G
increases as well, which is as expected; while Avg-G is independent of η.
(2) MSRM achieves the best performance when ξ is around 0.2 and 0.3 for
WebQuestionSP and ComplexQuestion, respectively. (3) When ξ = 0, MSRM
performs worst no matter which η is chosen. This shows that it is insufficient to
only consider Ss when picking the best query graph. While when ξ = 1, MSRM
performs worse than other ξ, indicating the effectiveness of our optimization
technique. (4) When η equals to 0.5, MSRM achieves the best performance on
both datasets.

5 Conclusion

In this paper, we propose a comprehensive approach, that is based the dual-
encoder architecture to answering complex questions on knowledge bases. Exten-
sive experiments on typical benchmark datasets show that: (1) our approach
outperforms most existing methods; (2) the sub-modules perform quite well,
i.e., have higher F1 scores. This verifies that the dual-encoder architecture is
able to improve the performance of complex KBQA.
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Abstract. Unsupervised contrastive learning of sentence embedding has
been a recent focus of researchers. However, issues such as unreasonable
division of positive and negative samples and poor data enhancement
leading to text semantic changes still exist. We propose an optimized
data augmentation method that combines contrastive learning’s data
augmentation with unsupervised sentence pair modelling’s distillation.
Our data augmentation uses in-sentence tokens for positive examples and
text similarity for negative examples, while the distillation is conducted
without supervised pairs. Experimental results on the STS task show that
our method achieves a Spearman correlation of 81.03%, outperforming
existing STS benchmarks.

Keywords: Contrastive Learning · Unsupervised Sentence
Embedding · Distillation · Semantic Similarity

1 Introduction

Sentence representation is a vector with semantic information that represents
sentences in natural language. The pre-trained language model BERT has been
successful in many downstream NLP tasks. However, researchers have found
that its performance on the STS task is not effective when directly using BERT
embeddings [1]. This is due to the word vector representations in all layers of
BERT are not isotropic and are unevenly distributed in direction [2]. To solve this
problem, researchers have used Contrastive Learning by well-designed natural
language augmentation methods.

However, there are still issues with the current models. Specifically, Sim-
CSE [6] only uses dropout, so the positive samples are very similar, and there
is a problem of learning saturation caused by feature suppression. When con-
structing negative examples, it is limited to using sentences in a batch as negative
examples and ignores other sentences with similar semantics in the corpus. Trans-
Encoder [3] exploits the advantages of both bi-encoder and cross encoder and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 375–381, 2024.
https://doi.org/10.1007/978-981-99-7022-3_35
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guides knowledge from them in an unsupervised manner to solve the unsuper-
vised sentence pair modeling problem, but the important problem of obtaining
the most suitable sentence representation is not fully resolved.

To address these issues, we propose a distillation-based model for unsuper-
vised sentence vector representation learning. Our model allows our encoder to
be trained on the positive and negative samples constructed by our data aug-
mentation method. The main contributions of our study are as follows:

• We have integrated data augmentation for contrastive learning with the distil-
lation approach used in unsupervised sentence pair modelling in a novel way.
This combination has enabled us to leverage the strengths of both techniques
and yield superior results in our model training.

• Our model requires no labels for training. For data augmentation, positive
examples are generated by reusing in-sentence tokens, and negative examples
are constructed by considering the text similarity of in-batch sentences. The
distillation is conducted without supervised sentence pairs in an unsupervised
manner.

• Our experimental results demonstrate that our sophisticated data augmenta-
tion improves the performance with the distillation orthogonally. Our model
achieves state-of-the-art performance on the STS benchmark test among
‘BERT-based’ models in an unsupervised setting.

2 Distillation-Based Unsupervised Sentence
Representation Learning

2.1 Model Architecture

Figure 1 illustrates our model architecture, which mainly consists of three parts:
base-encoder, bi-encoder, and knowledge distillation.

The base-encoder uses a contrastive learning framework. The sentence after
the subword repetition of the input sentence is used as a positive example, and
other randomly sampled sentences in the same batch are used as negative exam-
ples. GS-InfoNCE is used as a contrastive learning loss function.

The bi-encoder calculates the similarity score between the input sentence and
other sentences in the corpus, and ranks them according to the score to obtain a
ranking vector. By calculating the inner product of the ranking vectors, we can
obtain their similarity score sij . We calculate the cross-entropy loss between sij

and the similarity score obtained by the base-encoder.
In knowledge distillation, the pre-trained language model BERT and the bi-

encoder are each other’s teacher and each other’s students, and use the similarity
score of each other’s marks as labels for knowledge distillation.

2.2 Data Augmentation Strategy

Subword Id Self-replication. We use subword repetition as a data augmen-
tation strategy to construct positive examples corresponding to the input text.
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Fig. 1. Architecture of distillation-based unsupervised sentence representation
learning.

Convert the input text into an id list S = {s1, s2, s3, . . . , sn} through the tok-
enization, use uniform distribution to randomly select 1 or 2 ids in the id sequence
for repetition, and obtain the id sequence after subword repetition , such as
S′ = {s1, s2, s2, s3, . . . , sn}. Then S and S′ are sent to the Encoder with the
same dropout probability, and two different representations

−→
h and

−→
h+ corre-

sponding to similar semantics are obtained, which are used as positive sample
pairs after the contrastive learning data expansion.

Text Similarity Score Ranking. We reconstruct the negative examples of the
input text by ranking the samples by their similarity scores. First we send all
sentences in the same batch to the base-encoder to get the corresponding vector
representation. We use the vector representation hi of the input sentence xi

and the vector representation {h1, h2, h3, . . . , hn} of other sentences in the same
batch to calculate the cosine similarity score, and make a similarity ranking
for other sentences according to the score (similarity score from high to low),
such as {x3, x1, xn, . . . , x2}. Next, the rank vector ri of the input sentence xi is
obtained, such as [3, 1, n, . . . , 2], and each value in the rank vector ri is normalized
to −1 ∼ 1, and the result is represented by ui . Finally, do the inner product for
all ui to calculate another representation of the similarity score sij .

We filter out sij that are too high and too low (0.5 < sij < 1). Finally,
we calculate the cross-entropy loss, reducing the KL divergence between base-
encoder and bi-encoder. At this point, the loss function of the bi-encoder is:
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Ltotal = Lgs + λ{ 1
n2

n∑

i=1

n∑

j=1

(Sij − cos(E(xi), E(xj)))2}

= −log
esim(hi,h

+
i )τ

∑n
j=1 esim(hi,hj)τ +

∑m
k=1 esim(hi,gk)τ

+ λ{ 1
n2

n∑

i=1

n∑

j=1

(Sij − cos(E(xi), E(xj)))2}

(1)

2.3 Knowledge Distillation

In the distillation process, BERT and the bi-encoder are teachers and students
of each other, teaching and learning. Specifically, when the bi-encoder is used
as the teacher model, the cosine similarity score obtained by the sentence pair
through the bi-encoder is used as the training label of the student model BERT.
Conversely, when BERT is used as the teacher model, the scalars mapped by
BERT’s [CLS] representation are used as the training labels of the student model
bi-encoder.

In every distillation process, the predicted value and the real value are used
to calculate the mean square error loss and minimize the two KL divergence
between scores. The loss function of the model in this process is:

LMSE = − 1
N

N∑

n=1

(θn − φn)2 (2)

According to the method described above, the knowledge distillation pro-
cess is iteratively repeated, and finally a bi-encoder with stronger sentence pair
scoring ability isobtained.

3 Experiments

3.1 Datasets

We randomly sampled 1 million pieces of data on English Wikipedia to train
the model in an unsupervised manner, and used the STS dataset1 to evalu-
ate the ability of the model to measure the semantic similarity of sentences,
including 7 subtasks, namely STS12-16, STS-B (STS Benchmark) and SICK-R
(SICK-Relatedness). This dataset is the most widely used benchmark dataset for
evaluating unsupervised sentence embedding tasks. Each sentence pair is given
a score of 0–5 by humans based on semantic similarity.

1 https://github.com/dingyan0352/dyfinalcode.

https://github.com/dingyan0352/dyfinalcode
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3.2 Results and Discussion

We compare our method with current heuristic and advanced unsuper-
vised sentence vector representation models, such as post-processing meth-
ods BERT flow [4], BERT whitening [8], contrastive learning methods Con-
SERT [5], SimCSE [6], DCLR [9], SNCSE [10], SimCSE+RankEncoder [7],
Trans-Encoder [3]. The experimental results are shown in Table 1.

Table 1. Evaluation results of sentence vector representations on the STS task.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERT flow(2020)† 63.48 72.14 68.42 73.77 75.37 70.72 63.11 69.57

BERT whitening(2021)† 63.89 73.76 69.08 74.59 74.40 71.43 62.20 69.90

ConSERT(2021)† 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74

SimCSE(2021)† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

DCLR(2022)† 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22

SimCSE+RankEncoder(2022)† 75.00 82.00 75.20 83.00 79.80 80.40 71.10 78.10

Trans-Encoder(2022)† 72.17 84.40 76.69 83.28 80.91 81.26 71.84 78.65

SNCSE(2022)† 70.67 84.79 76.99 83.69 80.51 81.35 74.77 78.97

ours 79.14 85.13 78.59 85.14 81.90 83.31 74.03 81.03

Table 1 shows the STS performance of our method on 7 STS datasets and
their average performance in the unsupervised setting. The experiments are
based on BERT base, and the results with † are all from the original paper.
We report the Spearman correlation coefficient between the similarity scores
annotated by human annotators and those predicted by the model. With the
exception of SICK-R, we achieved the best results on every single dataset.

On the SICK-R dataset, our method also improves a lot compared to previous
models, but does not surpass the SNCSE score. Because the SICK-R dataset
labels the relationship between two sentences: implication, contradiction and
neutrality. It may be due to the fact that SICK-R contains more contradictory
pairs, resulting in the model not being able to learn more similarities with the
input sentences in the process of ranking the sentences in the corpus, so the
results are not achieving the best compared with other datasets.

3.3 Ablation Study

To verify the effectiveness of our proposed method and explore better hyper-
parameter settings, we conduct ablation studies on the STS-B validation set to
evaluate the model.

Effect of Hyperparameters on Bi-encoder Loss. In the model training,
we introduced the main hyperparameter λ of the loss function Ltotal to balance
the weight of the base-encoder and the bi-encoder. In the experiment, we found
that λ = 0.05 is the best value (Table 2).
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Table 2. Spearman score of STS-B validation set under different λ settings.

λ 0.03 0.04 0.05 0.06 0.07

STS-B 85.98 85.42 86.91 85.57 85.28

Effect of Data Enhancement and Knowledge Distillation. We augment
the baseline, SimCSE, with the proposed data enhancement methods and knowl-
edge distillation strategy: GS-InfoNCE, subword id self-replication, text similar-
ity score ranking and knowledge distillation strategy. We investigate the effect of
combinations of these methods on performance. Table 3 shows that each method
contributes the performance improvement, demonstrating the effectiveness of
our methods.

Table 3. The Spearman score of the STS-B validation set in the SimCSE-based com-
parison test, the results with † are from the original paper.

Model STS-B

SimCSE † 82.5

+Gaussian noise 83.45

+Gaussian noise+Text similarity ranking 84.34

+Gaussian noise+Text similarity ranking+Repeat subword id 84.72

+Gaussian noise+Text similarity ranking+Repeat subword id+Knowledge distillation 86.91

4 Conclusion

Our proposed unsupervised sentence embedding method addresses the limita-
tions of BERT sentence vectors and significantly improves the representation
ability of sentence embeddings. We construct data augmentation strategies such
as subword id self-replication and text similarity score ranking and we also
employ a pre-trained language model BERT and bi-encoder for knowledge dis-
tillation in an unsupervised manner. The experimental results demonstrate that
our method achieves outstanding performance on the STS benchmark test, sur-
passing other ’BERT-based’ models in an unsupervised environment. In future
work, we plan to explore sample construction methods based on generative lan-
guage models and assess the method’s transfer and generalization performance
for downstream tasks.
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Abstract. In recent years, genetic programming-based evolutionary fea-
ture construction has shown great potential in various applications. How-
ever, a critical challenge in applying this technique is the need to select an
appropriate selection operator with great care. To tackle this issue, this
paper introduces a novel approach that leverages the Thompson sam-
pling technique to automatically choose the optimal selection operator
based on semantic information of genetic programming models gathered
during the evolutionary process. The experimental results on a standard
symbolic regression benchmark containing 37 datasets show that the pro-
posed adaptive operator selection algorithm outperforms expert-designed
operators, demonstrating the effectiveness of the adaptive operator selec-
tion algorithm.

Keywords: Genetic Programming · Evolutionary Feature
Construction · Adaptive Operator Selection

1 Introduction

Automated feature construction is an important technique in the machine learn-
ing domain and has achieved significant success in various applications [1,2]. For-
mally, given a dataset {X,Y }, the objective of automated feature construction
is to develop a set of features Φ1(X), . . . , Φm(X) that enhance the performance
of a learning algorithm on the given dataset. The effectiveness of automated
feature construction techniques has been well-demonstrated by deep learning [2]
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and kernel methods [3]. However, the interpretability of the constructed fea-
tures remains a notable point of criticism within the field, demanding further
investigation and deliberation [4].

In recent years, interpretable automated feature construction techniques, par-
ticularly those based on genetic programming (GP), have demonstrated impres-
sive performance for enhancing ensemble learning algorithms [5,6], compared to
learning with original features. The variable-length representation and gradient-
free search mechanism make GP suitable for exploring flexible high-order fea-
tures, like (x1 + x2) ∗ x3, on non-differentiable machine learning algorithms.
Based on the evaluation methods, evolutionary feature construction methods can
be categorized into filter-based [7], wrapper-based [1,8], and embedded meth-
ods [9,10]. Filter-based methods do not rely on any specific machine learning
algorithm, making them efficient and generalize well to different learning algo-
rithms [7]. On the other hand, wrapper-based methods evaluate the constructed
features on a specific learning algorithm, which may lead to better features at
the cost of higher computation time [8]. Finally, embedded methods integrate
the feature construction into model learning, with GP-based symbolic regression
being a representative example [9].

To improve the search effectiveness, numerous selection operators have devel-
oped for GP, which are used in GP to select promising individuals for crossover
and mutation to generate new solutions, playing a crucial role in driving the evo-
lutionary progress. Representative examples include standard tournament selec-
tion [11], clustering tournament selection [12], lexicase selection [13], and multi-
dimensional archive of phenotypic elites (MAP-Elites) [14]. Each of these oper-
ators demonstrates unique advantages in different scenarios, such as dynamic
selection pressure adjustment [12], specialist preservation [15], and diversity
enhancement for ensemble learning [14]. However, selecting the most appropriate
selection operators in real-world tasks is challenging because suitable operators
vary with different optimization landscapes or phases, often unknown in advance.
Recent work has shown that GP performs well using tournament selection for the
first 10% of generations, then lexicase selection for the rest [16]. Therefore, an
adaptive operator selection (AOS) algorithm for the selection operator is needed.

There are two potential approaches for automatic operator selection. First,
operators can be selected based on historical knowledge [17], also known as
algorithm recommendation. However, obtaining historical knowledge requires
running numerous experiments in advance. Furthermore, the best operator may
change during the evolutionary process. Therefore, adaptive operator selection
may be a better choice [18]. Given the success of AOS techniques in select-
ing genetic operators for continuous numerical optimization problems [19–21],
particularly AOS based on the multi-armed bandit and dynamic Thompson sam-
pling [21], this paper explores the feasibility of automatically selecting the opti-
mal selection operators during evolution. However, in GP, relying only on the
improvement of fitness values may not provide sufficient rewards to selection
operators. Thus, this paper explores the use of GP semantics to design an effec-
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tive AOS method, where the semantics of each GP program refers to the output
values of each GP individual [22].

Goals: The main goal of this paper is to develop an AOS method for determin-
ing selection operators in GP-based feature construction. The specific objectives
of this work are as follows:

1. Developing a portfolio of selection operators for AOS in evolutionary feature
construction.

2. Proposing a semantic-based AOS method using dynamic Thompson sampling
to adaptively determine an appropriate selection operator during the evolu-
tionary process.

3. Evaluating the effectiveness of different selection operators and credit assign-
ment strategies on 37 datasets.

2 Related Work

2.1 Multi-armed Bandit

The multi-armed bandit is a reinforcement learning technique that aims to bal-
ance the exploration and exploitation of different options, also known as “arms”,
based on past rewards [21,23,24]. In the context of GP, selection operators can
be considered arms. In each generation, an operator with the highest estimated
rewards is chosen, and applying this operator to select two parents is a trial. The
goal is to find the optimal selection operator for GP through trials. Numerous
multi-armed bandit algorithms have been developed for various scenarios, and
two key techniques are particularly useful for GP.

– Dynamic Multi-armed Bandit [23,24]: In GP, the optimal selection operator
may change during the evolution process. Therefore, the multi-armed bandit
algorithm should have the ability to forget long-term history and focusing
on recent knowledge in order to adapt to these changes, which is known as
the dynamic multi-armed bandit. This is achieved via a forgetting mechanism
through explicit drift detection algorithm [24] or simple decay over time [21].

– Thompson Sampling [21]: GP is a population-based optimization algorithm,
and it requires to have a sampling algorithm that can generate multiple trials
of selection operators simultaneously. Thus, it is desirable to have an explicit
reward distribution for each selection operator, and each trial can sample a
value from each distribution to determine which selection operator to choose.
This process is known as Thompson sampling. Compared to using the upper
confidence bound and expected improvement, Thompson sampling allows for
trying different selection operators in each round, which is more naturally
suited for GP.

2.2 Automatic Operator Selection

In the evolutionary computation domain, numerous genetic operators have been
developed, and studies have shown that combining the advantages of different
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Fig. 1. Workflow of the proposed algorithm.

operators is beneficial for addressing optimization problems [25]. Instead of sim-
ple hybridization, automatic operator selection has become a hot topic in the
evolutionary computation (EC) domain, aiming to dynamically choose the opti-
mal operator at each stage [20]. One pioneering approach is probability match-
ing, which adjusts the probability of selecting each individual based on reward
distribution [19], where the reward is typically defined as the improvement in
fitness values, either in a real-valued form [18] or a boolean-valued form [21].
However, probability matching does not consider accumulative reward distribu-
tion. To address this limitation, adaptive purist was proposed to accumulate
reward during the evolutionary process, leading to improved operator selection
performance [19]. Building upon this idea, a dynamic multi-armed bandit algo-
rithm with the Page-Hinkley test was proposed to further enhance operator
selection effectiveness [23,24]. Under the framework of fitness-rate-rank-based
multi-armed bandit (FRRMAB) [20], dynamic Thompson Sampling [21], deep
reinforcement learning [18,26], and other methods have been developed. While
numerous approaches have been proposed for automatic operator selection, most
of them primarily focus on solving numerical optimization problems and empha-
size the selection of genetic operators. For GP-based feature construction algo-
rithms, the effectiveness of automatic operator selection methods for selection
operators still requires further investigation.

3 The New Algorithm

3.1 Model Representation

In this paper, we focus on evolutionary feature construction for a linear regression
model due to its simplicity and effectiveness. Specifically, each GP individual
consists of m GP trees, representing m constructed features φ1, . . . , φm. Based on
these constructed features, a linear model is trained to make predictions for the
given data. To ensure accurate and robust predictions, the final predictions are
made by an ensemble model that incorporates the top-|A| individuals obtained
during the evolutionary process, where |A| is an algorithm parameter referring
to the ensemble size.
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3.2 Algorithm Framework

The algorithm follows a general framework of GP, as illustrated in Fig. 1, where
credit assignment and operator selection are the key components for the new
AOS method to determine the best selection operator. The main components of
the proposed algorithm are described as follows:

– Population Initialization: During the initialization stage, GP trees are ini-
tialized using the ramped half-and-half method [11]. Specifically, each GP
individual with m trees is randomly generated, with each tree representing a
constructed feature.

– Solution Evaluation: In the evaluation stage, all GP individuals are evaluated
using ridge regression. Specifically, m trees construct m features, and these
constructed features are then fed into a linear model to make predictions for
the given data. Fitness is determined by the R2 score on training data, with
leave-one-out cross-validation to avoid overfitting by selecting a regularization
coefficient from {0.1, 1, 10}.

– Credit Assignment: This phase updates the reward distribution of operators
based on evaluation results. The details of the credit assignment are presented
in Sect. 3.4.

– Operator Selection: Selection operators are sampled to select pairs of individ-
uals for crossover and mutation. For a population of n individuals, it needs to
sample n

2 operators. In this paper, lexicase selection and tournament selection
are defined as candidate operators since they are commonly used in GP.

– Parent Selection: At this stage, GP individuals are selected using the n
2 sam-

pled selection operators to select promising individuals.
– Archive Maintenance: In addition to selecting offspring, the top individuals in

the population and the archive A are compared, and the top |A| individuals
are stored in the archive to form an ensemble model.

– Offspring Generation: Offspring generation is a stage where new GP individ-
uals are generated using random subtree crossover and guided subtree muta-
tion operator [6]. In this paper, each individual has m GP trees, and thus
genetic operators are invoked m times for each individual to ensure sufficient
variations.

3.3 Selection Operators

This paper considers two widely used selection operators:

1. Tournament Selection: The tournament selection operator randomly samples
t individuals from the population, where t is the tournament size, and selects
the best as the parent. Here, t = 7 is used according to common settings in
GP literature.

2. Lexicase Selection [13]: The lexicase selection operator iteratively constructs
filters to progressively narrow down the selection pool until one individual
remains. In each round, the filter is constructed as minΦ∈P Lk(Φ) + εk, with
εk as the median absolute deviation of the loss on the k-th instance among
all individuals Φ ∈ P .
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Intuitively, tournament selection tends to converge by favoring individuals with
higher overall fitness values. In contrast, lexicase selection emphasizes improving
fitness on different instances, thus promoting diversity. Thus, using an AOS
method to choose between these can simultaneously improve the overall accuracy
and the accuracy on tough instances, leading to a superior ensemble model. This
idea is inspired by AdaBoost, where some learners have good overall accuracy
while others focus on hard instances. The ensemble model can then achieve good
accuracy on all instances.

Fig. 2. Credit assignment update in multi-armed bandit using beta distribution.

3.4 Dynamic Multi-armed Bandit

To apply the dynamic multi-armed bandit in GP, two components, credit assign-
ment and operator selection, must be carefully designed: credit assignment allo-
cates rewards to each operator, and operator selection samples operators based
on estimated rewards. This section delves into these components.

Credit Assignment: Credit assignment is a stage where rewards are assigned
to each selection operator, involving two main questions:

– How to define a successful trial? In this paper, a successful trial for a
selection operator is defined as having any improvement in one dimension
of the semantics compared to the best semantics among all parents. Seman-
tics (Φ(X1), . . . , Φ(XN )) refer to the output values of each GP individual
Φ, which can determine a loss vector (LΦ,1, . . . ,LΦ,N ). At each generation,
all individuals in the population Φ ∈ P can collectively form the best loss
vector, where each element corresponds to the minimum loss value that indi-
viduals in P achieve on each training instance. This vector is denoted as
{minΦ∈P LΦ,i|i ∈ [1, N ]}. For a new individual Φ+, if ∃i∈[1,N ]LΦ+,i <
minΦ∈P LΦ,i, it is considered a successful trial and is rewarded with one point.
This reward strategy is based on the principle that if a new individual out-
performs all existing individuals on a data sample, it indicates that useful
knowledge has been discovered, allowing the new individual to achieve the
best performance on that sample, even if average fitness does not increase.

– How to update estimated reward distribution? As shown in Fig. 2, in
order to use Thompson sampling, k = 2 beta distributions θ = (θ1, . . . , θk) are
defined for k selection operators with two sets of parameters α = (α1, . . . , αk)
and β = (β1, . . . , βk). All these parameters are initialized to one. After obtain-
ing a successful trial for each operator, the α parameters are updated, i.e.,
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αi = αi +1 and βi = βi. Otherwise, if the trial is unsuccessful, the β parame-
ters are updated, i.e., αi = αi and βi = βi+1. Due to the changing dynamics of
the evolutionary process, the reward distribution for k operators may change.
Therefore, weight decay is applied to all distributions. After each round of
updating, the distribution parameters α, β are decayed by a decay factor γ,
which is set to 0.9 in this paper. In order to prevent the probability from
diminishing to an extremely low value, which could lead to an operator never
being chosen in the future, the decayed value is restricted to a minimum of 1.

Operator Selection: Once the parameters of all selection operators have been
updated, the selection operators are sampled based on the probabilities associ-
ated with each selection operator in the operator selection stage. Specifically,
the probability of choosing selection operator i is defined in Eq. (1) [21], where
Γ (x) is the gamma function, that is, Γ (x) =

∫ ∞
0

tx−1e−tdt.

PBeta (θi) =
Γ (αi + βi)
Γ (αi)Γ (βi)

θαi−1
i (1 − θi)

βi−1
, (1)

After applying the selected operator to select an individual, the selected
operator is marked associated with the selected individual to be able to make
credit assignments.

Table 1. Parameter settings for GP.

Parameter Value

Maximal Population Size 30D (500)
Number of Generations 200
Ensemble Size 30
Crossover and Mutation Rates 0.9 and 0.1
Maximum Tree Depth 10
Initial Tree Depth 0–2
Number of Trees in An Individual 10
Elitism (Number of Individuals) 1
Functions Add, Sub, Mul, AQ, Sin, Cos, Abs,

Max, Min, Negative

4 Experimental Settings

4.1 Experimental Dataset

The experimental datasets are obtained from the Penn Machine Learning Bench-
mark (PMLB) [27] 1. Due to the constraints of computational resources, we
1 Details of Datasets: https://epistasislab.github.io/pmlb/

https://epistasislab.github.io/pmlb/
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selected datasets with fewer than 5000 instances. Additionally, we only evalu-
ate performance on real-world datasets. Based on these criteria, 37 datasets are
finally selected. Specifically, the number of instances in these datasets ranges
from 47 to 3848, and the number of dimensions falls between 2 and 124.

4.2 Parameter Settings

The parameters follow the conventions established in the GP literature, as out-
lined in Table 1. The population size is set to 30 times the number of original fea-
tures, with a maximum limit of 500. To address the issue of zero-division errors,
we replace the division operator with the analytical quotient operator [28]. The
analytical quotient operator is defined as AQ (a, b) = a√

1+b2
, where a and b are

two parameters.

4.3 Evaluation Protocol

The experiments are conducted on the New Zealand e-science infrastructure
(NeSI), which consists of a cluster of AMD EPYC 7713 CPUs. For the evaluation
protocol, each algorithm is independently tested on each dataset for 30 runs. The
comparisons between algorithms are performed using the Wilcoxon signed-rank
test. For each run, the datasets are split into training and test sets in an 80:20
ratio. The performance of an algorithm is evaluated using the R2 score as the
performance metric based on the test set.

4.4 Baseline Algorithms

This work considers three baseline selection operators within GP-based feature
construction algorithms:

– Lexicase [13]: Only the automatic epsilon lexicase selection operator is used
in GP.

– Tournament: Only the tournament selection operator is used in GP.
– TR/LS [16]: TR/LS is a heuristic operator selection strategy designed by

GP experts. Tournament selection is used in the first q generations to avoid
hyper-selection, and lexicase selection is used in the remaining generations.
In the original paper of TS/LS [16], q is set to 10% of the total generations.
Therefore, q is set to 10 in this paper.

Moreover, two different credit assignment strategies are studied to determine
the best one for GP:

– Semantics: Any improvement achieved by the selection operator over a value
in the vector of squared errors of parents is considered a successful improve-
ment. This is the credit assignment strategy used in this paper.

– Fitness: Any improvement achieved by the selection operator over the best
R2 score of parents is considered a successful improvement.
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5 Experimental Results

5.1 Comparison Between Selection Operators

Test Score: The experimental results using different selection operators are
presented in Table 2 2. The results demonstrate that AOS significantly outper-
forms tournament selection and lexicase selection operators on 16 and 9 datasets,
respectively, while not performing worse on any dataset. These results highlight
the advantages of combining different selection operators in the evolutionary
process. Interestingly, AOS also outperforms TL/LS, a hybrid operator designed
by GP experts. As shown in Table 2, AOS performs better than the TR/LS oper-
ator on 6 datasets, similar on 30 datasets, and worse on only one dataset. These
results suggest that AOS can provide an advantage over the heuristic operator
selection strategy designed by GP experts.

Table 2. Comparison of R2 scores for different selection operators.

TR/LS Tournament Lexicase

AOS 6(+)/30(∼)/1(-) 16(+)/21(∼)/0(-) 9(+)/28(∼)/0(-)
TR/LS — 11(+)/25(∼)/1(-) 5(+)/30(∼)/2(-)
Tournament — — 0(+)/26(∼)/11(-)

Fig. 3. Evolutionary plots of test R2 scores using four different selection operators.

To gain further insights into the advantage of using AOS over determinis-
tic operators, we plot the curve of test R2 scores for representative datasets in
Fig. 3. The results demonstrate that AOS can improves test R2 scores in later
generations, whereas tournament selection operators suffer from severe overfit-
ting, leading to degraded test R2 scores in later generations. Therefore, in the
following sections, we focus on analyzing the reasons behind the improved gen-
eralization ability of the ensemble models made by AOS.

2 Detailed Results: https://tinyurl.com/AOS-GP-Supplementary-Material

https://tinyurl.com/AOS-GP-Supplementary-Material
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Operator Selection Patterns: To understand why AOS outperforms TS/LS,
lexicase selection and tournament selection, we analyze the selection ratios of
different operators during the evolutionary process on four datasets, as shown in
Fig. 4. The results indicate that the lexicase selection operator performs well and
is selected more frequently than the tournament selection operator. For instance,
on the “OpenML_547” dataset, the lexicase selection operator has selected an
average of 181 times at the last generation, while the tournament selection oper-
ator is selected only 29 times on average. Although the proportion of tournament
selection operators is relatively small compared to the lexicase selection operator,
this small proportion is not negligible considering the significant improvements
achieved with using AOS compared with using lexicase selection alone, as pre-
sented in Fig. 3.

Fig. 4. Selection ratios of different operators during the evolutionary process.

Cosine Distance: To further demonstrate the reasons behind the superior per-
formance of AOS, we introduce the average cosine distance. The average cosine
distance is used as a metric to measure the complementarity of different models in
the archive, which is crucial for ensemble learning [14]. A larger cosine distance
indicates greater complementarity. The results in Fig. 5 demonstrate that the
adaptive selection operator achieves the greatest cosine distance by adaptively
balancing lexicase and tournament selections. Although lexicase selection fosters
a high level of diversity, incorporating a small proportion of tournament selection
appears to enhance it further. This may be because lexicase selection can suffer
from hyper-selection [29], where a superior individual dominating the other indi-
viduals can be chosen up to 90% of the time [29]. In such cases, introducing a
moderate proportion of tournament selection may improve archive diversity. In
other cases, the high usage of lexicase selection ensures a high level of population
diversity for discovering well-performing models on different training instances,
thereby forming a strong ensemble learning model.

5.2 Comparison of Credit Assignment Strategies

To demonstrate the superiority of the proposed credit assignment strategy, this
section compares the effectiveness of two different credit assignment strategies
for GP. The comparison results between semantics-based credit assignment and
fitness-based credit assignment are presented in Fig. 6a. The results indicate that
utilizing semantic information for credit assignment leads to significantly better
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Fig. 5. Cosine distance of archived individuals.

results on 10 datasets while performing worse on 2 datasets. This performance
can be attributed to the fact that credit assignment based on semantics encour-
ages the discovery of solutions with diverse semantics, thereby facilitating the
formation of a high-quality ensemble model. The evolutionary plots of the cosine
distance of archived individuals are shown in Fig. 6b, clearly demonstrating the
advantage of the semantic-based credit assignment strategy in terms of diversity
maintenance.

Fig. 6. (a). Statistical comparison of test R2 scores. (“+"/red bar indicates that for a
dataset, the semantic-based credit assignment strategy outperforms the fitness-based
credit assignment strategy.) (b). Evolutionary plots of cosine distances. (Color figure
online)

6 Conclusions

This work aims to automate the determination of the optimal selection operator
during the process of evolutionary feature construction. To achieve this, we use
the Thompson sampling technique to sample selection operators based on their
estimated rewards, where the reward is defined as an improvement in semantics.
The experimental results on 37 datasets demonstrate that the proposed method
outperforms using sole lexicase selection, sole tournament selection and a manu-
ally designed hybrid selection operator, highlighting the advantages of employing
AOS. However, it should be noted that this paper is limited to the use of AOS
for determining selection operators. In future research, it would be valuable to
extend this framework to the selection of genetic operators and environmental
selection operators in order to further enhance the performance.
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Abstract. AI Generated Content (AIGC) is becoming phenomenally
prominent and impactful. One of the key generative algorithms used
in AIGC is the diffusion model which is widely used in generative
images and audio. In comparison with other generative methods such
as GAN (Generative Adversarial Network) and VAE (Variational Auto
Encoder), diffusion models can generate samples of higher quality. To fur-
ther improve diffusion models, especially in terms of sampling speed, we
propose an evolutionary algorithm in this paper. That is to enhance the
noise scheduler of the diffusion framework, thereby improving both per-
formance and sampling speed. This is the first diffusion model that incor-
porates evolutionary algorithms. Our experiments show that evolved
schedulers can bring concrete improvement in the generative process.

Keywords: Evolutionary Algorithms · Mutation Operators · Diffusion
Models · Image Generation

1 Introduction

Generative artificial intelligence (GAI) has become a highly celebratised topic in
recent years. Prominent examples include large language models like the genera-
tive pre-trained transformer (GPT), which can handle human interaction in nat-
ural languages and produce answers that closely resemble human-like responses.
Other than text information, generative models can produce images and audio,
such as DALL-E, Stable Diffusion, and Midjourney, which can generate incred-
ibly realistic images based on provided keywords or prompts. In many areas
e.g. customer services, consultancy, media, and design, generative models have
demonstrated an undeniable potential to revolutionize the current practice.

One of the most promonient generative models is the diffusion model. It has
rapidly gained increasing popularity among researchers. It also serves as a key
algorithm for various generative tools for image and audio data. The Denoising
Diffusion Probabilistic Models (DDPM) [7] is often considered as a significant
milestone as DDPM brings the performance of diffusion models to the state-of-
the-art level. DDPM establishes a fundamental framework for diffusion models,
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comprising two main components: the noise scheduler and a U-net neural net-
work model. Unlike the previous best-performing generative algorithm, Genera-
tive Adversarial Network (GAN) [5], DDPM stands out in several ways. Firstly,
while GAN requires two distinct networks trained in an adversarial or compet-
itive manner, DDPM only requires one network. This approach dramatically
simplifies the training process, mitigating issues like the vanishing gradient [1]
problem. Secondly, in GAN, the generator transforms noise into desired data,
whereas in DDPM, the neural network predicts the noise added during the dif-
fusion process at each time step. Subsequently, a sampling method is employed
to eliminate this noise from randomly generated noise data and progressively
“recover” it to realistic data. In other words, the sampling process in DDPM
necessitates the noise data to undergo a complete backward process, typically
involving hundreds or even thousands of steps, depending on the size of the
data. Nonetheless, a notable limitation of diffusion models is their slow inference
speed. This is a place where diffusion models can be improved.

In this study, a novel method is proposed to enhance the inference perfor-
mance of diffusion models by utilizing evolutionary algorithms, which are to
evolve a more efficient noise scheduler. Two major contributions are as follows:

– Introducing a novel evolutionary component in diffusion model to improve
both the inference speed and the quality of outputs;

– Revealing the impact of various key parameters in the noise scheduler on the
performance of inference.

2 Related Works

Diffusion models can be divided into two parts, forward process and backward
process. Given some real data x0 from a real distribution preal, and sample
some noise z from Gaussian distribution N (μ, σ), in the forward process, the
sampled noise z is gradually added to the real data x0 over a large number
of steps T . The output of the forward process, denoted as xT , represents noisy
data that closely resembles the noise distribution. On the other hand, during the
backward process, the diffusion model aims to restore the noisy data xT back to
its original state, x0. The forward and backward processes can be mathematically
represented by Eqs. 1 and 2 respectively.

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI)

(1)

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt),

pθ(xt−1|xt) := N (xt−1;μθ(xt, t),Σθ(xt, t))

(2)
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Denoising Diffusion Probabilistic Models (DDPM) [7] is one the earliest diffu-
sion models that achieves state-of-the-art performance in generative area. DDPM
designs a neural network (U-Net) to predict the noise that has been added to
the real data at each forward step t, where t ∈ [1, T ]. The backward process is
actually the opposite, where a complete image can be generated out of given
Gaussian noise. The noise is gradually removed through step T to 0 by the neu-
ral network that is trained to predict noise to be removed at each step. Then the
output of the process is a generated sample that is similar to the real sample.
In DDPM, the diffusion or forward process relies on a set of pre-defined noise
schedules {β}T

1 , and it can be simulated for any step t ∈ [1, T ] with the closed
formula in Eq. 3.

yt =
√

ᾱty0 +
√

1 − ᾱtε, αt = 1 − βt, ᾱt =
t∏

i=1

αi (3)

where yt is the diffused data at time step t, y0 is the original data at time
step 0; βt are the pre-defined noise parameter at time step t. Soon after, a
study by Song et al. [20] introduced a novel approach for modeling diffusion
models. In their work, the diffusion process is treated as a stochastic differential
equation (SDE). Instead of predicting the noises used for data diffusion, they
train a neural network to estimate the “score” and employ Langevin dynamics
to sample the generated data. More importantly, they demonstrated that the
Denoising Diffusion Probabilistic Models (DDPM) could be modeled within their
framework as well. The forward and backward processes can be represented by
the following SDEs, as shown in Eqs. 4 and 5.

dx = f(x, t)dt + g(t)dw (4)

dx = [f(x, t) − g2(t)∇x log pt(x)]dt + g(t)dw̄ (5)

Diffusion models have gained significant popularity due to their ability to
generate outputs with superior fidelity. In a study by Dhariwal et al. [3], it
was reported that diffusion models exhibited higher quality results on vari-
ous datasets, both in unconditional and conditional settings, when compared
to other state-of-the-art image generative algorithms, including GANs. How-
ever, one drawback of both the original Denoising Diffusion Probabilistic Models
(DDPM) and the SDE diffusion model is that they require a complete inference
process with T inference steps to generate a batch of data. In order to ensure that
the noise added at each step remains sufficiently small, the value of T is often set
to a large number (which may also depend on the size of the data), such as 1000
or even larger. As a consequence, the inference process takes longer compared
to other methods like GANs, making it a major limitation of diffusion models.

In recent years, extensive research has been conducted on diffusion models
with the aim of addressing the aforementioned limitation and further enhancing
their generative performance. Researchers have explored various approaches and
techniques to improve the efficiency and effectiveness of diffusion models. These
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efforts have led to advancements in areas such as accelerated inference meth-
ods, optimization algorithms for noise scheduling, architectural modifications to
neural networks, and novel training procedures. Song et al. [18] introduce Denois-
ing Diffusion Implicit Models (DDIM), which models the diffusion process as a
deterministic process without the addition of random noise. This unique app-
roach allows DDIM to bypass the need for inference through the entire T steps
that the model is trained with. In other words, the inference step T ′ does not
have to be the same as the training step T . This flexibility enables the diffusion
model to utilize a significantly smaller inference step during the inference phase,
resulting in a considerable acceleration of the inference process. However, it is
important to note that there exists a trade-off between the speed of inference
and the quality of the generated data when using DDIM. Additionally, Nichol
et al. [14] propose an improved version of the original Denoising Diffusion Prob-
abilistic Models (DDPM). Their approach incorporates a new hybrid learning
objective and utilizes a cosine noise schedule instead of a linear schedule. They
claim that their enhanced DDPM can directly reduce the number of required
inference steps while only experiencing a negligible reduction in the quality of
the generated data. This advancement aims to strike a balance between faster
inference and maintaining high-quality outputs. [19] is a follow-up research on
score-based diffusion models. They proposed several techniques to improve the
generative quality of high-resolution image datasets. These techniques include
the following aspects: 1) manipulating the initial noise scale; 2) using a T that
is as large as possible; 3) during the sampling phase, applying exponential mov-
ing average (EMA) to parameters. [12] proposed a method called PriorGrad
that tunes the prior distribution from a simple Gaussian distribution to a data-
dependent adaptive distribution.

Apart from reporting that the diffusion model has outperformed GANs, [3]
also proposed a method called classifier guidance. This method was inspired
by the utilization of class label information in GANs. They trained a classifier
using the noisy images at each time step t and utilized the gradients of this
trained classifier to steer the outputs towards the desired class label. In their
work, [9] further built upon previous research by incorporating a discrimina-
tor into their approach. Instead of solely relying on a classifier, they trained
a discriminator inspired by GANs. Similar to the classifier mentioned earlier,
the discriminator was trained using the noisy images at each time step t. Dur-
ing training, diffused real images from the training dataset were considered as
true, while diffused generated images were considered as false. The output of
the discriminator was then combined with the computed score in the SDE diffu-
sion model. The authors reported new state-of-the-art results on CIFAR-10 [10]
and ImageNet [2] datasets under both conditional and unconditional settings.
In a different approach from the methods mentioned above, [16] developed a
progressive method based on knowledge distillation [6]. In each iteration, they
constructed a student model with half the number of inference steps compared to
the previous iteration and distilled knowledge from the previous model (referred
to as the teacher model). Through several iterations, they achieved state-of-the-
art performance on CIFAR-10 by using only 4 sampling steps. Similarly, [13] also
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employed knowledge distillation to reduce the inference steps. However, unlike
the previous method, they established a training objective that minimizes the
difference between the generated distributions of the student and teacher mod-
els. Additionally, their method trains the student model only once instead of
progressively reducing the sampling steps.

In addition to the methods that focus on improving neural networks in dif-
fusion models, there are also approaches that work on the noise schedule. [17]
introduced a neural network, denoted as Pθ, which can estimate a more optimal
noise parameter

√
ᾱt at any given time step t. The idea behind this approach

is to provide continuous control and adjustment for the noise level between dif-
ferent steps, allowing for better performance. Similarly, the bilateral denoising
diffusion model (BDDM) [11] [8] trains a neural network to generate a surrogate
noise schedule that replaces the original one during the inference phase. One
advantage of BDDM compared to others is that the inference steps in this new
noise schedule can be reduced, resulting in a significantly higher inference speed.

GAN, as a prominent generative algorithm, has been actively studied and
integrated into diffusion models. In work [22] Xiao et al. argued that the require-
ment for large sampling steps in diffusion models stemmed from the Gaus-
sian assumption during the denoising phase. To address this, they proposed
the denoising diffusion GAN, which utilizes a multimodal conditional GAN to
re-model the diffusion distribution. On a similar note, [21] incorporated the
forward diffusion process into a GAN framework. The discriminator in their
approach, similar to [9], classifies diffused real data and generated data. The
authors demonstrated that the generator can effectively learn from the discrimi-
nator feedback, leveraging the diffusion process, as supported by both theoretical
and experimental evidence. Along a similar line, [23] introduced a method with
a similar idea but also incorporated a classifier to provide further guidance in
the diffusion process. Furthermore, [4] aimed to unify GAN and score-based dif-
fusion models by integrating the generator component into the diffusion model.
This unification allows for leveraging the strengths of both approaches.

3 Methodology

The proposed method in this study integrates an evolutionary algorithm to
search for a better noise scheduler, also known as a scheduler, in diffusion mod-
els like DDPM and DDIM. The ordinary definition of a DDPM/DDIM noise
scheduler is as follows:

Noise Scheduler := F(βstart, βend, stepstrain, stepsinference, schedule method)
(6)

In DDPM/DDIM noise schedulers, a list of betas, denoted as βi
T
1 , is generated.

Here, T represents the number of training/inference steps. The values βstart

and βend determine the starting value, β0, and the end value, βT , respectively.
The schedule method refers to a mapping that converts a range of betas into a
sequence of betas. The schedule method can be linear, scaled linear, or squared
cosine. This list of βs determines the amount of noise that is added to the
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Fig. 1. Flow of Evolutionary Scheduler. The whole algorithm can be decomposed into
three steps. 1) pre-training the diffusion network using the original scheduler; 2) evolv-
ing the scheduler using the proposed evolutionary algorithm; 3) inference images using
diffusion network trained from Step 1 and scheduler evolved from Step 2.

images during the forward process or removed from the noisy images during the
backward or inference process at specific time steps.

In most diffusion model research, the noise scheduler is typically pre-defined
before training or fixed during training as a hyperparameter. The noise scheduler
plays a crucial role in achieving better performance, and thus, it needs to be
carefully tuned. Evolutionary algorithms have been commonly used to optimize
hyperparameters in machine learning methods. This inspiration led us to propose
our method, the evolutionary noise scheduler in diffusion models.

Originally, our method involved evolving the list of betas (βi
T
1 ) directly, which

is generated by the noise scheduler. This approach aimed to optimize the perfor-
mance by finding the best betas. However, the step size T is often a large number,
such as 1000, resulting in each gene in the population containing a large number
of individual parts to be evolved. The computational resources required to evolve
such a population become prohibitively expensive. On the other hand, the noise
scheduler defined in Eq. 6 has only five different parameters. By modifying these
parameters, it is possible to generate different betas.

The flow of our proposed method is shown in Fig. 1. The design of the evo-
lutionary algorithm strictly follows the four steps of evolutionary search. The
algorithm pseudo-code is displayed in Algorithm 1 and explained below.

Initialization. N noise schedulers are initialized. Based on empirical prior stud-
ies, it is beneficial to initialize one of the schedulers using the original parameters
that were used during training. The remaining schedulers are randomly initial-
ized by sampling values from a Gaussian distribution, specifically N (μ, σ), for
both βstart and βend. The mean values μ for each parameter are set to the corre-



404 Z. Liu et al.

Algorithm 1. Evolutionary Scheduler Algorithm
Require: mutation size m; population size n = 1; original scheduler S; expected value

of βstart, μstart = 0.0001; expected value of βend, μend = 0.02; pre-defined variance
of βstart, σstart = 0.00005; pre-defined variance of βend, σend = 0.005; mutation
step size s = 0.01;
Initialization
S1 = S(μstart, μend, steptrain, stepinference)
for i = 2, .., n do

sample βstart from N (μstart, σstart)
sample βend from N (μend, σend)
Si = S(βstart, βend, steptrain, stepinference)

end for
{S} = {S1, ... , Sn}
for Training Epochs do

Variation
for Si in {S} do

for mut in {mutation} do
S′
i = M(Si, mut)

end for
end for
{S′} = {S′

1, ..., S′
n×m}

Evaluation
for S′

i in {S′} do
fitnessi = F(S′

i)
end for
fitness scores = {fitness1, ..., fitnessn×m}
Selection
fitness scores = argsort(fitness scores)
{S} = {Sfitness scores0 , ..., Sfitness scoresn−1}

end for
return {S}

sponding original scheduler values, while the variances σ are manually specified.
The training steps, inference steps, and schedule method of the initialized sched-
ulers will remain the same as those of the original scheduler.

Variation. During the variation phase of the algorithm, we solely use the
mutation operators. The following mutations are defined: 1) increasing βstart,
2) decreasing βstart, 3) increasing βend, 4) decreasing βend, 5) increasing
stepsinference and 6) decreasing stepsinference. Note that mutations (5) and (6)
only apply when dealing with DDIM noise schedulers since they do not require
the inference steps to be equal to the training steps. In contrast, for DDPM noise
schedulers, the training steps and inference steps must be the same. Altering the
training steps is not included in our mutation operators due to the poor per-
formance observed, as discussed in later sections. The step sizes for betas and
inference steps are denoted as ε and δ, respectively. The variances of βstart and
βend are represented as σstart and σend.
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Evaluation. The fitness evaluation stage in our proposed method is crucial. We
designed three different types of fitness calculations, including comparing gener-
ated images, comparing added noises and utilizing guidance from the discrimina-
tor. Prior studies show that utilizing guidance from the discriminator is the cur-
rent best. The performance of the other fitness calculation methods is discussed in
Sect. 5. Discriminator guidance was originally proposed in [9]. They use the out-
puts of the discriminator to improve the score in score-based diffusion models. The
discriminator in our method takes the time step t and the given images at the t-th
step as inputs. It then outputs the probabilities, indicating whether these images
are blurred versions of real images from the provided dataset or generated images.
A higher probability indicates a better diffused effect. This characteristic of the
discriminator makes it an ideal evaluator for assessing the performance of differ-
ent noise schedulers. The detailed evaluation process is as the following. Firstly,
sample a batch of time steps {t} from range [1, T ], and a batch of real images {x0}
from the training data set. Secondly, for every offspring generated from the previ-
ous variation step, add noise to {x0} with {t}, and get noisy images {xt}. Third
and finally, input {xt} and {t} to the discriminator to get the probabilities of them
being real noisy images, then, calculate their average values and output those as
the fitness score for each noise scheduler.

Algorithm 2. Fitness Evaluation
Require: batch size b; discriminator D; maximum inference step T ;

Sample a batch of time steps {ti}b
1, where ti ∈ [1, T ]

Sample a batch of real images {xi
0}b

1

for Si in S do
{xi

t} = AddNoise (Si, {xi
0}b

1, {ti}b
1)

fitness score = 1
b

∑b
i=1(D(xi

t, ti))
end for
fitness scores = {fitness scorei}n×m

i=1

return fitness scores

Selection. The selection process uses a straightforward method, which simply
picks the top-n offspring with the highest fitness scores to proceed to the next
iteration.

4 Experiments

Our experiments are implemented based on the open package diffusers [15]. The
dataset is the well-known CIFAR-10. The Frechet Inception Distance (FID) is
computed as the evaluation metric for assessing the quality of the generated
samples. A lower FID indicates better quality. The original diffusion model is
trained using 500 training and inference steps. All experiments were conducted
on an NVIDIA A100 GPU. DDIM results with varying numbers of inference
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steps are used as benchmarks in our experiments. This allows us to compare
and demonstrate the improvements in FID under the same inference times in
each setting. Based on the experimental results shown in Table 1, we observe
an increase in performance in almost all settings, with relatively low variance,
where the number of inference steps is less than 500 inference steps. In the case
of 500 inference steps, our method did not achieve a better result compared to its
original scheduler. This could be due to the network being trained and optimized
specifically for this noise scheduler with the same inference step, making any
modifications to βstart and βend ineffective as to the original configuration.

Table 1. Experiment Results

Inference Steps Benchmark Our Method Inference Time(s)

50 19.06 17.95 ± 0.13 1675

100 18.48 17.60 ± 0.43 3343

150 20.74 18.53 ± 0.29 4956

200 29.29 21.59 ± 0.31 6616

250 18.16 17.14 ± 0.23 8265

500 16.61 17.01 ± 0.19 16448

Furthermore, an interesting observation from our experiments is that the
performance of inference steps at 50, 100, and 250 is better than that of 150
and 200. This observation holds true for both the benchmark (DDIM) and our
proposed method. Theoretically, one might expect that higher inference steps,
approaching the original training steps (i.e., 500), would produce higher quality
generated data. However, our experimental results do not support this assump-
tion. Instead, we hypothesize that inference steps that are exactly divisible by
the original training steps tend to perform better than other values. This obser-
vation suggests that there might be a certain relationship between the number
of training steps and inference steps in diffusion models. It highlights the impor-
tance of carefully considering the choice of inference steps to achieve the best
performance in terms of image quality. Our further research will aim to fully
understand and possibly leverage this phenomenon.

5 Discussions

5.1 Optimal βstart and βend

Our experiments observe the impact of the two most important parameters,
βstart and βend, in the noise scheduler. Table 2 shows some representative check-
points selected in our investigation with the corresponding FID value computed
from the experiments where the inference step equals 50. What can be observed
from the table is that the βend values of the top-performing offspring are very
similar, with slight reductions or almost equal to their starting point of 0.02.
Conversely, offspring with higher βend values exhibit poorer FID scores in com-
parison. As for βstart, it is evident that the best-performing offspring have βstart
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values around 0.00005 or 0.00006, which is approximately half of the original
value (i.e., 0.0001). Offspring with values lower than this threshold or higher
βstart values tend to perform relatively poorly in our experiments. In some rare
cases, we encountered negative βstart values, which resulted in destructive out-
comes. This occurs because negative βstart implies the addition of noise to the
data instead of its removal in the final stages of the backward process, hence
generating worse output.

Table 2. FID and their βstart and βend

βstart 5.76e-05 6.38e-05 6.33e-05 0.0001295 0.0001588 2.53e-05 0.0001231 7.56e-05 -1.87e-05

βend 0.01988 0.01996 0.02006 0.01917 0.01922 0.02122 0.02048 0.01886 0.02060

FID 17.72 17.96 17.99 19.17 20.17 21.09 21.20 22.22 679

5.2 Choices of Fitness Functions

As described in the methodology, Sect. 3, three different fitness functions were
developed in this study. This subsection discusses their advantages and disad-
vantages respectively (Table 3).

Table 3. Results of Different Fitness Functions

Fitness Image Comparison Noise Comparison Discriminator

FID 17.37 23.76 17.01

Image Comparison. This is an intuitive fitness function, as it involves comparing
real images x0 with samples obtained by applying the evolved noise scheduler to
diffuse them to a given time step t (t ∈ [1, T ′]). The trained diffusion model and
the same evolved noise scheduler are then used to backward-diffuse xt to obtain
x′
0. This fitness score is calculated based on the L1 or L2 distances between x0

and x′
0. This fitness function performs quite well in terms of its outputs. It guides

the offspring to evolve in the correct direction, and the achieved FID is very close
to the intermediate results of our final method. However, the main limitation
of this method is the inference speed. Sampling a batch of images from xt to
x′
0 during each evaluation step can be very time-consuming, particularly when

dealing with large values of t. We attempted to limit the sampled t to a smaller
range, such as 50. However, even on our experimental machine, training just 5
iterations could take more than 24 h.

Noise Comparison. Since sampling diffused images back to their original forms is
time-consuming, we proposed another fitness function that directly compares the
added noise and the predicted noise. Similar to the previous method, we sample a
batch of real images x0 and a time step t, and then diffuse the images to xt. Next,
we sample another batch of random noise z from a Gaussian distribution and add
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it to xt in just one step, resulting in diffused images xt+1. We input xt+1 and t+1
to the trained diffusion neural network to predict the added noise z′. Finally, we
compute the fitness score using the L1 or L2 distance between z and z′. Unlike the
previous method that predicts all noises from t + 1 to 0, the noise comparison
fitness function only predicts the noise once for each individual image. This
significantly reduces the computational requirements. However, based on our
experiments, this fitness function does not provide effective guidance to facilitate
evolution. Offspring does not seem to converge to a better state in repeated runs.

Discriminator Fitness. The details of the discriminator are described in Sect. 3.
Besides its fabulous performance, discriminator is also highly time-efficient and
is not affected by the number of sampled inference steps t.

5.3 Population Size

The population size is a typical hyper-parameter in evolutionary algorithms. In
most of our settings, the population size is set to 1, to restrain the computational
cost. We have also tested larger population sizes, such as 2 and 3. However,
despite the dramatic increase in training time, the performance improvement is
negligible. Upon close analysis of the intermediate training status, we observed
that the remaining offspring in the same iteration were very similar to each
other. The randomly generated initial offspring were usually quickly discarded
since they couldn’t outperform the original offspring.

6 Conclusion and Future Work

This study presented a novel algorithm that incorporates evolutionary algo-
rithms into diffusion models to search. This approach has allowed us to discover
improved noise schedulers, resulting in improvements in both performance and
efficiency. By reducing the number of inference steps required, our method offers
a more efficient generative process while maintaining high-quality outputs. Over-
all, our proposed evolutionary diffusion model contributes to advancing diffusion
models and opens up new possibilities for their applications in real-world prac-
tices.

This study leads to a series of future work. Firstly, one of the key parameters
in the noise scheduler, the schedule method, can be further studied. Currently,
there are three different schedule methods: linear, scaled linear, and squared
cosine. We plan to incorporate mutation of the schedule method to find the
optimal one based on the circumstance. Secondly, our observations show that the
output score of the discriminator is related to the inputted time step. Through
further investigation of the discriminator, we may obtain better guidance from
the discriminator by identifying a more accurate time step.
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Abstract. Holey Latin square (HLS) is a special combinatorial design
of interest to mathematicians and is helpful in the construction of many
important structures in design theory. In this paper, we investigate the
existence of HLSs satisfying the seven kinds of identities with auto-
mated reasoning techniques. We formulate this problem as propositional
logic formulae. Since state-of-the-art SAT solvers have difficulty solving
many HLS problems, we further propose a symmetry breaking method,
called partially ordered HLS (POHLS), to eliminate isomorphic solutions.
We have achieved the following goals through experimental evaluation.
First, we have solved a dozen of open problems interested by mathemati-
cians. Second, we identify the impact of different encodings. Third, we
demonstrate the advantages of SAT solver over other FOL-based solvers.
Fourth, we show that the proposed POHLS reduction can improve the
efficiency of solving and find the complementarity between two types of
symmetry breaking techniques.

Keywords: Holey Latin square · Combinatorial designs · Symmetry
breaking

1 Introduction

Automated reasoning is one of the key components of artificial intelligence. In
recent decades, a series of great progress has been made to solve hard problems in
combinatorics by modeling them as logical formulae and solving via automated
reasoning techniques. This powerful paradigm has attracted the attention of
both mathematicians and computer scientists. Schur number five, a century-old
problem, was successfully resolved recently, using SAT solvers [15]. Moreover,
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in 2021 automated reasoning solvers produced nonexistence certificates of the
Lam’s problem [5]. Among various hard problems in combinatorics, we are inter-
ested in investigating the existence of Latin squares with some specific properties.
A Latin square of order n is an n × n matrix filled by the elements from a set
{1, 2, . . . , n}, such that an element appears exactly once in each row and each col-
umn. The popular Sudoku can also be seen as a special variant of Latin square.
Research on this important combinatorial structure can be traced back to Leon-
hard Euler, who proposed a famous conjecture about the existence of mutually
orthogonal Latin squares (MOLS) that was disproved by computer search in 1963
[26]. A number of important applications are related to Latin squares, such as
experimental designs [14], error correcting codes [8] and cryptography [25]. Com-
pleting partial Latin squares has been proved to be NP-complete [6]. Initially,
the existence of Latin squares was mainly found by mathematicians through
manual construction. However, the recent developments are strongly supported
by automated reasoning. Since the 1990s, the existence of Latin squares of small
orders are studied using finite model generators such as MGTP [12], SEM [30],
and SAT solvers such as SATO [28], DDPP [27], respectively. In recent years,
people have proposed different techniques to improve the efficiency of reasoning,
and more open problems about Latin squares are resolved [17,19].

In this paper, we investigate the existence of holey Latin squares (HLSs).
The use of holes, as a carefully designed relaxation of the original structures, is
one of the most powerful tools in combinatorial design theory, which has helped
mathematicians find the existence of many advanced structures such as Steiner
pentagon system [20] and t pairwise orthogonal diagonal Latin squares [1]. The
formal definition of HLS is deferred to Sect. 2. According to the definition, some
cells in HLS should be empty due to the existence of holes, while necessary prop-
erties must still be valid in the hole-free area. More specifically, we mainly focus
on finding the existence of HLSs satisfying the seven specific properties (called
identities) summarized by mathematicians [3]. Technically, we encode the exis-
tence problem of HLS as propositional logic formulae, considering the superiority
of SAT solving techniques for many difficult problems [16,18,31]. Our encoding
is highly universal, meaning that it can be easily applied to HLS instances with
different orders, hole types and identities. Although some simple cases can be
solved in the original encoding, the time consumption is not satisfactory when
the order of HLS becomes larger. In order to eliminate isomorphic solutions
and reduce the search space, we propose a symmetry breaking method called
partially ordered HLS (POHLS), in which the priorities of some elements in the
first row are fixed. We prove that the existence of any HLS and its corresponding
POHLS are equivalent.

We work on a benchmark of 273 HLS instances, which includes a number of
open cases and is provided by Lie Zhu, a renowned mathematician. Three ways
to improve the solving efficiency are evaluated. First, at-most-one (AMO) is one
of the most important constraints for this problem. We compared three kinds of
AMO encodings and find that suitable encoding can significantly improve the
performance of SAT solvers. Second, we wonder whether other techniques based
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on first-order logic (FOL) are more suitable for solving this problem. Compared
to three powerful FOL-based solvers, the SAT solver shows the best performance
on the benchmark. Third, we apply two kinds of techniques: the syntax-based
automatic symmetry breaking tools, as well as the proposed semantic-based
POHLS reduction. Experiments show that symmetry breaking can further accel-
erate the resolution of instances, and these techniques can be complementary to
each other. As a result of our efforts in technical improvements, 222 new existence
results are determined within a one-week time limit per instance. Appendix,
source code and benchmarks can be found at: https://github.com/minghao-
liu/HLS.

2 Preliminaries

A quasigroup is an algebraic structure (Q, ∗), where Q is a non-empty set and
∗ is a binary operation, satisfying the property that for every pair of elements
a, b ∈ Q, the equations a ∗x = b and y ∗ a = b are uniquely solvable for variables
x, y ∈ Q. A Latin square is known as the multiplication table of a quasigroup,
which can be defined as follows.

Definition 1 (Latin Square). Given a non-empty set Q = {1, 2, . . . , n}, a
Latin square L of order n is an n × n matrix filled by the elements of Q, and
every element occurs exactly once in each row and each column.

In addition to the simplest form of Latin squares, researchers have long been
interested in the existence of Latin squares with some specific properties. This is
because many of them have a close relationship to the construction of advanced
combinatorial structures, such as orthogonal array (OA) and pairwise balanced
design (PBD) [7]. These properties of Latin squares are commonly represented
as equations, which are called short conjugate-orthogonal identities (abbreviated
as identity). In 1975, Evans [10] summarized the non-trivial identities systemat-
ically, and Bennett [3] further simplified the number to seven. These identities
and their common names (if any) are listed as follows:

(1) (x ∗ y) ∗ (y ∗ x) = x Schröder’s second law; Schröder quasigroup
(2) (y ∗ x) ∗ (x ∗ y) = x Stein’s third law
(3) ((x ∗ y) ∗ y) ∗ y = x C3-quasigroup
(4) x ∗ (x ∗ y) = y ∗ x Stein’s first law; Stein quasigroup
(5) ((y ∗ x) ∗ y) ∗ y = x
(6) (y ∗ x) ∗ y = x ∗ (y ∗ x) Stein’s second law
(7) (x ∗ y) ∗ y = x ∗ (x ∗ y) Schröder’s first law

Furthermore, the definition of holey Latin square is shown as follows:

Definition 2 (Holey Latin Square). Given a non-empty set Q= {1, 2, . . . , n}
and a hole set H = {H1,H2, . . . ,Hm} such that Hi ⊆ Q for 1 ≤ i ≤ m, H1 ∪
H2 ∪ · · · ∪ Hm = Q and Hi ∩ Hj = ∅ for 1 ≤ i, j ≤ m (i 	= j), a holey Latin
square L is an n × n matrix satisfying the following properties:

https://github.com/minghao-liu/HLS
https://github.com/minghao-liu/HLS
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(1) Every cell of L is either filled by an element of Q or empty;
(2) Every element occurs at most once in each row and each column;
(3) A cell L(x, y) is empty if and only if there exists a hole Hi ∈ H, such that

x ∈ Hi and y ∈ Hi;
(4) An element x ∈ Q occurs in the y-th row/column if and only if there does

not exist a hole Hi ∈ H, such that x ∈ Hi and y ∈ Hi.

Fig. 1. An example of three isomorphic HLS(5)(24) with different hole sets H.

The type of a hole set H is typically represented as a string in the form
h1

m1h2
m2 . . . hr

mr (h1 < h2 < · · · < hr), which denotes the presence of m1

holes of size h1, m2 holes of size h2, and so on. For example, given that H =
{{1, 3}, {2, 6}, {4}, {5, 7}}, its type should be denoted as 1123.

Moreover, if for any x, y ∈ Q such that L(x, y) is non-empty, the computation
process of identity (i) based on x, y does not reference any empty cells and the
identity is holds, we can say that HLS L satisfies identity (i). If a holey Latin
square with hole type T satisfies identity (i), it can be denoted as HLS(i)(T ).
Nevertheless, HLSs that satisfy one of the seven identities mentioned above have
yet to be systematically investigated. Our work, aiming to find the existence of
HLSs satisfying specific identities through SAT solving, yields a number of new
findings presented in Sect. 5.

3 Modeling

In this section, we introduce the methodology to model the existence problem
of HLS. We establish a standardized form, which facilitates the encoding into
propositional logic formulae in a universal manner.

3.1 Standardization

In the previous notation, the introduction of hole type T is because it can serve
as a standardized representation for a group of isomorphic HLSs. There is an
important property about hole type and its corresponding hole sets:
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Proposition 1. If there exists an HLS(i)(T ) L1 with hole set H1 = {H1,H2,H3,

. . . ,Hm}, then there exists another HLS(i)(T ) L2 with hole set H2 = {H ′
1,H

′
2,

H3, . . . , Hm}, such that a ∈ H1, b ∈ H2, H ′
1 = (H1\{a}) ∪ {b}, and H ′

2 =
(H2\{b}) ∪ {a}.

The proof can be found in the Appendix. From Proposition 1, it is equivalent
to asserting the existence of two HLSs with the same hole type, as one can be
transformed into the other within a finite number of steps. Figure 1 is an example
that demonstrates the mutual convertibility of HLSs with different hole sets. In
the modeling, to rebuild the hole set H from T , we have an ordered assignment
of the elements in each hole. For example, given T = 1322, the hole set should be
H = {{1}, {2}, {3}, {4, 5}, {6, 7}}. For convenience, we set up a Boolean constant
matrix C of order n, such that for any x, y ∈ Q, Cx,y = 1 if and only if ∃Hi ∈ H,
x ∈ Hi ∧ y ∈ Hi. This matrix encodes the hole set H as a binary relation on Q.

3.2 SAT Encoding

Next, we demonstrate the method we used for encoding various constraints of
HLS(i)(T ) instances into propositional logic formulae. This method is universal,
meaning that it can be applied to any possible order, hole type, and identity.

Assuming the HLS we are searching for is denoted by L. First, we define the
Boolean variable lx,y,v, which means whether L(x, y) = v is true or not. A set
of unit clauses is set to forbid illegal assignments due to the presence of holes:

∀x, y, v ∈ Q, (Cx,y ∨ Cx,v ∨ Cy,v) → ¬lx,y,v. (1)

Next, two sets of clauses are introduced to keep the consistency of domains:

∀x, y ∈ Q, ¬Cx,y →
∨

v∈Q lx,y,v,

∀x, y ∈ Q, AMO ({lx,y,v | v ∈ Q}) ,
(2)

where AMO stands for the “at-most-one” encoding, which means that at most
one literal in the set could be true.

The following step is to encode the Latin square property, which means that
an element cannot occur twice in the same row or column:

∀x, v ∈ Q, AMO ({lx,y,v | y ∈ Q}) ,
∀y, v ∈ Q, AMO ({lx,y,v | x ∈ Q}) .

(3)

Finally, the seven identities can be encoded as follows. Note that for any
v ∈ Q, we have assigned lx,y,v to False when Cx,y = 1, so there is no need to
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explicitly restrict that the computation step would not go into the holes:

Identity (1) : ∀x, y, u, v ∈ Q, (lx,y,u ∧ ly,x,v) → lu,v,x,

Identity (2) : ∀x, y, u, v ∈ Q, (ly,x,u ∧ lx,y,v) → lu,v,x,

Identity (3) : ∀x, y, u, v ∈ Q, (lx,y,u ∧ lu,y,v) → lv,y,x,

Identity (4) : ∀x, y, u, v ∈ Q, (lx,y,u ∧ lx,u,v) → ly,x,v,

Identity (5) : ∀x, y, u, v ∈ Q, (ly,x,u ∧ lu,y,v) → lv,y,x,

Identity (6) : ∀x, y, u, v ∈ Q, (ly,x,u ∧ lu,y,v) → lx,u,v,

Identity (7) : ∀x, y, u, v ∈ Q, (lx,y,u ∧ lu,y,v) → lx,u,v.

(4)

Fig. 2. An example of an HLS and its corresponding POHLS. In the first row of
POHLS, the elements {8, 9, 10} in the same hole should occur in ascending order.

4 Symmetry Breaking

Isomorphic solutions are common in many combinatorial problems due to the
presence of symmetry, and they are also helpful in improving the solvability
[17,21,29]. In this section, a static method is proposed to break the symme-
tries by appending constraints to the formula. Firstly, the partially ordered HLS
(POHLS) is defined below, which is closely related to our symmetry breaking
method.

Definition 3 (Partially Ordered HLS, POHLS). A partially ordered HLS
L′ is a holey Latin square, such that there exists a hole Hi ∈ H with |Hi| ≥ 2,
where for every two elements x, y ∈ Hi, if x < y and L′(1, a) = x, L′(1, b) = y,
it must hold that a < b.

Figure 2 shows an HLS instance and its corresponding POHLS. Compared
with general HLSs, the order of some elements occurring in the first row of
POHLS is constrained. Next, we prove the existence of POHLS.
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Proposition 2. If there exists an HLS(i)(T ) denoted as L, then there must be
a POHLS L′ also satisfying identity (i) with hole type T .

The proof can be found in the Appendix. Proposition 2 suggests that we
can search for the existence of POHLS instead of finding HLS directly, which is
referred to as POHLS reduction. Generally, we choose the largest hole Hm as the
ordered one. To break symmetry, the corresponding constraints can be added:

∀x, y ∈ Hm (x < y), ∀a ∈ Q, l1,a,y →
a−1∨

b=1

l1,b,x, (5)

The clauses generated from Eq. 5 can eliminate |Hm|! isomorphic HLSs theo-
retically. Meanwhile, our method can also be combined with automatic symme-
try breaking tools to achieve better performance. We will further provide more
detailed comparison results of SAT solvers under different techniques in Sect. 6.

5 Benchmarks and Results

To investigate the existence of HLSs, we model a group of interesting and chal-
lenging benchmarks of orders from 7 to 14, with different identities and hole
types. The benchmarks are kindly provided by Lie Zhu1. For each case, we
encode HLS satisfying the seven identities, respectively, so there are 39×7 = 273
instances in total, and the existence of most of them remain open.

We present a comprehensive compilation of the existence results of these HLS
benchmarks in Table 1, which are determined by running Kissat [4], a state-of-
the-art SAT solver. For each instance, it runs for a maximum of one week (168 h).
Among the 262 existence results, 40 are previously known, so the left 222 are
newly reported results. This indicates that our approach can efficiently find HLS
instances with diverse structures in a universal manner. For most HLS instances
with orders 12–14, symmetry breaking techniques can help reduce their solving
time, especially for those unsatisfiable ones. In fact, there are 9 instances that
could only be solved with symmetry breaking in our experiments. Besides, as
demonstrated later, our POHLS reduction also has a crucial effect on reducing
the computational time to solve these instances.

6 Experiments

In this section, we would like to present more experimental details. All exper-
iments were conducted on a server with Intel Xeon E5-2680 CPU (2.40GHz),
32GB of RAM and Ubuntu 20.04 operating system.

1 L. Zhu, private communication with F. Ma, July 2020.
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Table 1. The spectrum of existence results for the HLS benchmarks. ‘Y’ indicates
that a valid HLS was found, ‘N’ indicates that such an HLS has been proven not to
exist, and ‘TO’ indicates that the solver failed to make a decision within the time limit
(1 week). The new results first presented in this work are marked with *, while the
results that can only be solved via symmetry breaking are marked with **.

Order Problem Id. (1) Id. (2) Id. (3) Id. (4) Id. (5) Id. (6) Id. (7)

7 HLS(1521) Y N N* N* N N* N

HLS(1322) N* N* N* N* N* N* N*

HLS(1123) N N* N* N* N* N* N*

8 HLS(1621) N N N* N* N N* N

HLS(1422) N* N* N* N* N* N* N*

HLS(1223) N* N* N* N* N* N* N*

HLS(24) N N* Y* N* Y* N* N*

9 HLS(1721) N N N* N* N N* N

HLS(1522) Y* N* N* N* N* N* N*

HLS(1323) N* N* N* N* N* N* N*

HLS(1124) Y Y* N* N* N* N* N*

10 HLS(1821) N Y N* N* N N* N

HLS(1731) Y Y N* N* N N* N

HLS(25) Y Y* N* N* N* N* N*

HLS(1224) N* N* N* N* N* N* N*

HLS(1423) Y* Y* N* N* N* N* N*

11 HLS(1921) Y Y N* N* N N** N

HLS(1831) Y Y N* N* N N* N

HLS(1523) Y* Y* N* N* N* N* N*

HLS(1125) Y Y* N* N* N* N* N*

HLS(2431) Y Y* N* N* N* N* N*

12 HLS(1822) Y* Y* N* N* N* TO N**

HLS(1632) Y* Y* N* N* N* N* N*

HLS(1424) Y* Y* N* N* N* N** N*

HLS(2332) N* N* N* N* N* N* N*

HLS(26) Y Y* N* N* N* N** N*

HLS(34) Y N* Y* Y* N* N* Y*

13 HLS(1941) Y* Y* Y* Y* N* N* Y*

HLS(1126) Y Y* N* N* N* TO N**

HLS(1732) Y* Y* N* N* N* N* N*

HLS(1134) Y* Y* N* N* N* N* N*

HLS(2531) Y Y* N* N* N* N* N*

HLS(142331) Y* Y* N* N* N* N** N**

14 HLS(11221) Y* Y* N* TO TO TO TO

HLS(11131) Y* Y* N* TO TO TO TO

HLS(2134) Y* Y* N* N* N* N* N*

HLS(2541) Y Y* N* N* N* N** N*

HLS(27) Y Y* Y* Y* N** TO Y*

HLS(142341) Y* Y* N* N* N* N* N*

Number of Y/N 28/11 26/13 4/35 3/34 1/36 0/34 3/34
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6.1 Comparison of At-Most-One Encodings

At-most-one (AMO) clauses are an essential gadget in encoding the ‘alldifferent’
constraint in Latin squares. Therefore, it is necessary to find suitable AMO
encodings for solving HLS problems through experimentation. We tested three
representative AMO encodings, which are:

– Pairwise encoding: The most straightforward method, which directly restricts
that no two literals can both be True. This encoding does not introduce new
variables, but it generates O(n2) clauses.

– Binary encoding [11]: It introduces O(log n) Boolean variables and generates
O(n log n) clauses. This encoding strikes a balance between the number of
new variables and clauses required.

– Ladder encoding [13]: It builds an efficient inference chain for the AMO con-
straint by introducing n − 1 new variables, which allows the requirement to
be satisfied with only O(n) clauses.

The formal description of these encodings can be found in the Appendix.

Table 2. The number of solved instances and the average time taken to solve by Kissat
(in seconds) using the three AMO encodings.

Order # Pairwise Binary Ladder

#Solve T ime #Solve T ime #Solve T ime

7 21 21 0.01 21 0.01 21 0.02

8 28 28 0.09 28 0.14 28 0.11

9 28 28 116.08 28 86.34 28 71.58

10 35 34 274.00 34 165.79 34 126.98

11 35 34 4952.14 34 3080.61 34 2672.33

12 42 38 11694.24 38 6109.78 38 6689.53

13 42 36 18283.23 38 21313.15 38 21320.52

14 42 30 21617.63 30 16254.64 31 13926.42

Total 273 249 7759.23 251 6543.86 252 6322.56

We generate SAT formulae using each of the three AMO encodings, and
Table 2 demonstrates the comparison of them. As the order increases, the dis-
advantage of pairwise encoding becomes apparent compared to the other two,
while binary and ladder encodings do not show significant difference in solving
time. This indicates that efficient AMO encodings such as ladder and binary can
enhance the solving efficiency and potentially find more existence results.

6.2 Comparison with Other Solvers

Apart from propositional logic, the problem can also be modeled as first-order
logic formulae over finite domains, and solved by other solvers. Thus, we tried to
solve all instances using 3 automated reasoning tools from different backgrounds:
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– MiniZinc [24]: A powerful constraint programming (CP) platform with the
backend solver Gecode, which has implemented efficient propagation tech-
niques for the ‘alldifferent’ constraint.

– Mace4 [22]: A classical finite model generation tool, which has inherent sym-
metry breaking ability. However, it has been no longer maintained since 2009.

– Z3 [23]: A popular SMT (satisfiability modulo theories) solver. The problems
are encoded with the EUF (equality and uninterpreted function) theory.

Fig. 3. The number of instances each solver solved within different time limits. Kissat
has advantages over other automated reasoning techniques in terms of efficiency.

We record the time consumption of each solver in tackling these instances, as
shown in Fig. 3. Each data point represents the number of instances solved by the
solver within a particular time limit. The experimental results show that Kissat
outperforms other solvers, regardless of which AMO encoding is used. Note that
no symmetry breaking clause is added to the SAT formulae at this time. The
results indicate that the proposed SAT-based solution is more powerful, which
is promising to find more HLSs in a shorter amount of time. Moreover, while
Mace4 has some advantages on simple instances (which require <10 s to solve),
MiniZinc and Z3 have relatively better performance on harder instances instead.

6.3 Effect of Symmetry Breaking

Although we have implemented efficient encodings and state-of-the-art solvers,
some hard benchmarks still remain unsolved. To further improve the efficiency of
solving, we have considered two kinds of symmetry breaking approaches in this
work. The first one is automatic symmetry breaking tools, which can identify
and eliminate symmetries from SAT formula. The second one, as introduced in
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Sect. 4, is the POHLS reduction which breaks symmetries from semantics. We
employ two automatic symmetry breaking tools, Shatter [2] and BreakID [9],
which can be viewed as preprocessors for the input formulae.

Table 3. The number of instances solved by Kissat using different symmetry breaking
techniques within one week. ‘Bin’ and ‘Lad’ refer to binary and ladder encoding; ‘S’
and ‘B’ refer to Shatter and BreakID, and ‘P’ denotes the proposed POHLS reduction.

Method SAT UNSAT Total Method SAT UNSAT Total

Bin 65 186 251 Lad 65 187 252

Bin+S 65 190 255 Lad+S 65 188 253

Bin+B 65 188 253 Lad+B 65 187 252

Bin+P 65 190 255 Lad+P 65 190 255

Bin+P+S 65 195 260 Lad+P+S 65 190 255

Bin+P+B 65 193 258 Lad+P+B 65 191 256

From Table 3, symmetry breaking has a positive impact on solving unsat-
isfiable instances, resulting in several new nonexistence results. Figure 4 shows
the details of time consumption for solving unsatisfiable instances. It can be
observed that the proposed POHLS reduction shows the best performance com-
pared to Shatter and BreakID. Furthermore, we would like to highlight that
our POHLS reduction can be used in conjunction with the automatic symmetry
breaking tools. As shown in Table 3, the combination of binary encoding, POHLS
and Shatter solved the most instances, including two cases: HLS(6)(1921) and
HLS(7)(142331), which are not solvable by all other methods. The results show
that our semantic-based POHLS can complement the syntax-based automatic
symmetry breaking tools, and successfully improves the solving efficiency.

Fig. 4. Time consumption for solving unsatisfiable instances using different symmetry
breaking techniques. The instances costing less than 60 s to solve are excluded for
clarity.
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7 Concluding Remarks

We investigate the existence of holey Latin squares (HLSs) satisfying the seven
kinds of identities, which are of special interest to mathematicians. After mod-
eling the existence problem of HLS as propositional logic formulae, a static
symmetry breaking method is proposed to further reduce the search space. We
utilize efficient SAT solver to test the existence of HLSs in a set of challeng-
ing benchmarks, which includes many open cases. Through multiple technical
improvements, the existence results of 222 instances are newly reported.

We expect that the methodology and results can serve as the basis for con-
structing more interesting combinatorial designs, and help to enlighten general
existence theorems about HLSs. Another promising direction of future work is
to search for more disjoint HLSs based on the single ones we have found, and
then discuss the possibility of the existence of corresponding large sets.
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Abstract. Community Detection (CD) in large social networks is a
highly active research area due to its immense practical value in many
real-world applications. Genetic algorithms (GAs) are widely used to
solve the CD problem due to their strong ability to explore the global
discrete search space. However, existing GA-based algorithms focus more
on the effectiveness of the solution rather than the capability of han-
dling large social networks scalably. In this paper, we propose Leiden
Fitness-based GA (LeFGA) to tackle the scalability issue, allowing GA to
effectively and efficiently process large social networks. This is achieved
specifically by using the newly developed individual and the fitness eval-
uation method. LeFGA further adopts a niching method to maintain its
population diversity. Experimental results prove that LeFGA can sig-
nificantly outperform multiple state-of-the-art algorithms, especially on
large real-world social networks.

Keywords: Community Detection · Leiden · Niching · Large Social
Networks

1 Introduction

For many real-world social networks, communities are the fundamental building
blocks that reveal the underlying architecture of these networks [4]. A commu-
nity is formed by the nodes of the same network N that are tightly connected
among each other while loosely connected to the rest of the nodes in N [2,16,21].
The aim of community detection (CD) is to identify a community structure (CS)
that consists of a set of non-overlapping communities. The CD is an impor-
tant problem for many real-world applications such as product recommendation
and criminology [11]. Since a large number of nodes (i.e., more than 100k) can
participate in a social network, communities are important for people to gain
a comprehensive insight into the functionality of these networks [3]. However,
identifying communities within such large networks is challenging because it
contains a large number of nodes with complex relationships among each other
[2,17].
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During the past decade, many interesting approaches have been introduced to
effectively detect high-quality community structures of various networks, includ-
ing heuristic-based approaches [22], mathematical-based approaches [9,10], evo-
lutionary computation (EC)-based approaches [7,8,13,19] and deep learning
(DL)-based approaches [21]. Among them, EC-based approaches can achieve
a good balance between effectiveness and efficiency [16]. Among all EC tech-
niques, Genetic Algorithm (GA) is widely explored for CD due to its flexibility
in solution representation and the capability of maintaining the balance between
exploitation and exploration [4].

Leiden-based Genetic Algorithm (LGA) [6] is recently proposed to detect
communities in moderate-sized networks. The algorithm adopts the popular Lei-
den [22] algorithm to improve the chromosomes evolved by GA, which allows
LGA to significantly outperform several cutting-edge GA approaches. While
LGA achieved impressive results on several benchmark networks, the design of
LGA faces some key challenges regarding its scalability and the issue of prema-
ture convergence, as explained below.

LGA requires performing an encoding operation to map the community struc-
ture obtained by the Leiden algorithm (refer to Sect. 4) to an equivalent chromo-
some (i.e., a chromosome that can be decoded to reproduce the same community
structure), which will be further evolved by GA. Referring to Sect. 4, the time
complexity of the encoding process as well as LGA is high. As a result, LGA
cannot scale well to detect communities in large networks, including popular net-
works such as Amazon [12] and DBLP [12]. Moreover, LGA converges very fast
and can quickly lose its population diversity [6]. This is because the improved
solutions obtained by Leiden are very similar and can quickly dominate the
rest of other evolved community structures in the GA population, hurting the
diversity of the population and resulting in premature convergence.

To address these issues, in this paper, we introduce a new algorithm named
Leiden Fitness-based Genetic Algorithm (LeFGA) to make LGA a scalable algo-
rithm while maintaining the population diversity to enhance its effectiveness.
LeFGA eliminates the encoding operation of LGA with its newly designed indi-
vidual and fitness evaluation. According to the computation complexity analysis
in Sect. 5, LeFGA is significantly more scalable than LGA. Our experimental
results further indicate that LeFGA can outperform several state-of-the-art CD
algorithms on multiple benchmark networks. The key contributions of this paper
are listed below:

– We propose a novel construction of the individual to be evolved by LeFGA,
s.t. I = (c, CSL), where c is the chromosome evolved by LeFGA and CSL is
the community structure obtained by Leiden based on the initial community
structure obtained from the chromosome c. Moreover, the fitness value of the
individual is calculated on CSL. The proposed individual together with the
fitness evaluation method reduces the algorithm’s complexity as it eliminates
the encoding operation of LGA and makes it more scalable.

– Develop a niching method consisting of two components (i.e. niche cre-
ation and fitness sharing) to maintain population diversity throughout the
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evolution process. The concept of clustering is used for niche creation, and
fitness sharing is used to penalize the fitness values among individuals of the
same niche while giving them a fair chance to survive and contribute to the
population’s diversity.

– Comprehensive experiments have been conducted on widely used real-world
benchmark networks. The obtained results clearly show that our proposed
algorithm can perform significantly better compared to several state-of-the-
art CD algorithms.

2 Related Works

Recently, numerous research has been carried out to solve the CD problem due
to its practical importance for many real-world applications [11,21]. This paper
focuses on non-overlapping CD in unweighted and undirected large social net-
works. Among the existing approaches [16,21] for CD, heuristic-based [5], greedy
search [22] and EC-based [7,19] approaches have been commonly used to design
effective and scalable CD algorithms.

LCDR [1] is one of the heuristic-based algorithms that use the local informa-
tion of the nodes to identify the core nodes which helps to extract the communi-
ties around them. LCDR can process large networks efficiently and is often used
as a competing algorithm. Besides LCDR, the Leiden [22] algorithm is another
commonly used greedy search algorithm that can scalably identify high-quality
community structures. It continuously merges smaller communities into larger
communities to increase the modularity (given in Eq. (2)). The merging process
is conducted locally and may be potentially trapped by poor local optima. Actu-
ally, Leiden is capable of refining a given community structure. If a community
structure can be given as the initial community structure for Leiden to perform
its merging process, then it is possible for Leiden to find significantly better
community structures.

Besides the aforementioned approaches, different EC-based approaches have
been proposed for CD [8,16]. A comprehensive review can be found in [16]. As
shown in [16], GA is the most commonly studied technique. Several state-of-
the-art GA approaches, including LSSGA [7], CCGA [19], and LGA [6], have
been developed successfully in the past few years. However, most of the exist-
ing GA approaches focus on identifying optimal community structures of small-
and medium-scale networks. They face difficulties in processing large social net-
works efficiently and effectively due to the complexity of the relationship among
individuals participating in such networks.

3 Problem Formulation

A social network can be modeled as a graph N = (V,E), where V is the set of
n nodes, i.e., V = {v1, v2, ..., vn} and E is the set of edges, i.e., E = {ei,j |ei,j ∈
V × V }. This paper considers CD on undirected and unweighted networks.
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A community structure of a given social network N refers to a set of commu-
nities, denoted as CS = {C1, C2, ..., Cp}, p ≥ 1. In this paper, each community is
non-overlapping with any other communities in CS. i.e., ∀q �= l, Cq ∩Cl = ∅ and
∪p

q=1Cq = V . The ultimate goal of the CD problem is to identify the community
structure CS∗ with the maximum modularity defined in Eq. (2). CS∗ is defined
in Eq. (1).

CS∗ = arg max
CS

Q(CS) (1)

In Eq. (1), Q(CS) refers to the modularity of community structure CS
[14] to measure the quality of a given community structure CS. It is the most
widely used evaluation metric to determine the effectiveness of a CS, as defined
in Eq. (2).

Q(CS) =
1

2m

∑

ij

(Aij − kikj

2m
)δ(Ci, Cj , CS) (2)

In Eq. (2), m refers to the total number of edges in N , while ki and kj refer
to the degree of nodes i and j, respectively. Aij is 1 if nodes i and j are adjacent
(i.e., connected directly by an edge) or 0 otherwise. δ(Ci, Cj , CS) returns 1 if
nodes i and j belong to the same community or 0 otherwise.

4 Scalability of Leiden-Based Genetic Algorithm (LGA)

This section briefly describes the baseline LGA algorithm [6] to understand its
scalability problem which is the motivation behind the new algorithmic devel-
opment in this paper. LGA proposed to use Leiden to improve the effectiveness
of the mutation operator in GA. As one of the most popularly used CD algo-
rithms, Leiden can optimize any CS given as its input. Leiden starts to perform
its community refining process (i.e., merging process) based on every community
of the given CS.

For Leiden-based mutation, a CS decoded from an evolved chromosome is
given as the input for Leiden to optimize. Then CS′ improved by Leiden is
encoded back to become a mutated chromosome. This encoding operation must
produce a mutated chromosome that is equivalent to CS′. Hence the mutated
chromosome can be decoded to reproduce CS′ precisely. For this purpose, during
the encoding process, LGA creates a spanning tree for each community in CS′

by conducting the breadth-first search (BFS) to determine a unique parent node
of every node in the same community. The time complexity of BFS in the worst
case is O(n2). BFS is executed on every community in CS′. Due to this reason,
the complexity of the encoding process is also O(n2). Consequently, the total
complexity of LGA can be expressed as O(NpNgn

2), where Np, and Ng are the
population size and the maximum number of generations, respectively. In view
of its high time complexity, LGA is hard to scale well for large and complex
social networks such as DBLP [12] and Amazon [12].
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5 Proposed Algorithm

5.1 Overall Algorithm Design

This section proposes a new algorithm named Leiden Fitness-based GA (LeFGA)
that improves the scalability of LGA for CD in large social networks. The fit-
ness evaluation of LeFGA is based on the high-quality community structures pro-
duced by Leiden upon giving different initial community structures for Leiden to
optimize. As elaborated in Subsect. 5.2, individuals in LeFGA are constructed
to hold the chromosome evolved by GA together with the corresponding CS
obtained by Leiden. Since the individual explicitly maintains the CS obtained
by Leiden, it is unnecessary to encode CS back to the chromosome as in LGA.
Since the encoding process is eliminated in the proposed LeFGA, the compu-
tation complexity is reduced significantly from O(NpNgn

2) to O(NpNgnlogn),
allowing LeFGA to process large networks scalably. Moreover, to address the pre-
mature convergence issue, an effective niching method is proposed to maintain
the diversity of the population during the evolution process.

In LeFGA, all the evolved chromosomes follow the Locus-based Adjacency
(LBA) representation [15] explained in Subsect. 5.2. The population initializa-
tion and the fitness evaluation of each chromosome are performed as described in
Subsects. 5.3 and 5.4 respectively. In each generation, we adopt the elitism mecha-
nism that allows a certain number of individuals with the highest fitness to survive
directly to the next generation. The rest of the individuals in each generation are
created by performing crossover and mutation on the parent individuals, which
will be selected randomly based on the shared fitness values using the niching tech-
nique developed in Subsect. 5.5. The evolution process is performed iteratively
over multiple generations until the termination criteria are reached. Finally, the
algorithm returns the best CS with the highest fitness value.

5.2 Construction of the Individual

Traditionally GA directly uses the chromosomes as its individuals in a popula-
tion. This requires us to adopt a time-consuming encoding operation described
in Sect. 4. To reduce computation complexity, LeFGA completely avoids the
encoding process by keeping the CS obtained by Leiden inside every individual.

Concretely, in LeFGA, an individual I is defined as a tuple I = (c, CSL),
where c is the chromosome evolved by LeFGA and CSL refers to the community
structure optimized by Leiden using CSc decoded from c (i.e., CSc = decode(c))
as its input s.t. CSL = Leiden(N,CSc). Figure 1 illustrates the construction of
an example individual in LeFGA.

As illustrated in Fig. 1(b), the chromosome c in any individual evolved by
LeFGA consists of n genes where n is the number of nodes of the social network
N (e.g., Fig. 1(a)) under processing. The index of each gene refers to a specific
node. If the allele value of node vi is vj in the chromosome, that means an edge
exists between nodes vi and vj . Therefore, nodes vi and vj should be grouped into
the same community according to c. Obeying this rule, LBA performs a decoding
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Algorithm 1. Leiden Fitness-based GA (LeFGA)
Input: Social Network N ; Population size Np; Crossover rate Pc;

Mutation rate Pm; Elitism ratio Pe; Generation size Ng;
Population ratio to generate the offspring Ps

Output: Community structure CS∗

1: Generate a population with randomly created Np chromosomes � Refer Subsection 5.2
2: for each chromosome c in Np do
3: Obtain CSL s.t. CSL = Leiden(N, CSc) and CSc = decode(c)
4: Construct the individual I s.t I = (c, CSL) � Refer Subsection 5.2
5: Update the initial population with the individual I � Refer Subsection 5.3
6: Evaluate the fitness f(I) of individual I : Q(CSL) � Refer Subsection 5.4
7: end for
8: for each generation g in Ng do
9: Pass the best Pe individuals of Np to generation g + 1
10: Perform niching method to obtain the shared fitness F (I) values for all I

� Refer Subsection 5.5
11: Update the fitness of each individual I in the population with F (I)
12: Select parent individuals NOS with the probability of Ps based on F (I)
13: for each individual I in NOS do
14: Perform crossover on pair of chromosomes in two Is with a probability of Pc to obtain

Ic � Refer Subsection 5.6
15: Perform random mutation on chromosome c in Ic with a probability of Pm to obtain Im

� Refer Subsection 5.6
16: Evaluate fitness of individual Im: Q(CSL) � Refer Subsection 5.4
17: Update population with Im for the next generation g + 1
18: end for
19: end for
20: Return the community structure CS∗ obtained by Leiden for the I which has the highest fitness

value: CS∗ = CSL

process to obtain the corresponding CSc as given in Fig. 1(c). For example, as
given in Fig. 1(b), the allele value of node 1 is node 2, which means node 1
and node 2 belong to the same community. The formation of all communities in
CSc can be determined using this idea. Then, CSL is obtained by optimizing the
CSc by the Leiden algorithm. Further, modularity values of CSc (i.e., Q(CSc) =
0.2985) and CSL (i.e., Q(CSL) = 0.3036) show that Leiden can find CSL with
higher modularity that improves CSc. Demonstrated by the example individual
in Fig. 1(d), LeFGA keeps track of c and CSL throughout the evolution process.
Hence the encoding operation becomes unnecessary.

5.3 Population Initialization

LeFGA randomly generates a set of chromosomes to build its initial population.
An example of a randomly generated chromosome is given in Fig. 1(b). Accord-
ing to the social network given in Fig. 1(a), the list of neighbors for node 1 is
{2,4}. Hence, the allele value for node 1 is selected randomly from this neighbor
list. Every chromosome c is paired with its respective CSL to form a complete
individual, which will be evaluated to determine its fitness. These individuals
together become the initial population.

5.4 Fitness Evaluation

LeFGA uses a simple fitness function to perform the fitness evaluation of each
individual in the population. Specifically, for any individual I = (c, CSL),
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Fig. 1. An example individual: (a) an example social network; (b) an example chro-
mosome based on the network given in (a); (c) community structure CSc obtained
through decoding the example chromosome c (different communities in CSc and CSL

are distinguished by different colors); (d) a complete example of an individual.

LeFGA calculates its fitness as the modularity (Q) (given in Eq. (2)) of CSL.
This fitness function f(I) of individual I is defined in Eq. (3).

f(I) = Q(CSL) (3)

According to Eq. (3), the fitness of I = (c, CSL) can be interpreted as its
capability to allow Leiden to generate high-quality CSL by improving upon the
evolved chromosome c. It is worthwhile to note that Leiden’s computation com-
plexity is O(n · log n) [22], implying that it is an efficient and scalable algorithm
for CD. Hence, utilizing Leiden in fitness evaluation does not hurt the scalability
of the LeFGA algorithm. Once the evolution process is completed, the CS of
the fittest individual I will be reported by LeFGA as its best solution for any
given social network N .

5.5 Niching Method

Maintaining the population diversity over the generations ensures that the
evolved populations can retain good coverage of different regions of the solution
space for continued exploration. Since LeFGA uses Leiden-based fitness eval-
uation, after a few generations, the community structures CSL found among
the evolved individuals may become highly similar, resulting in low population
diversity. We propose a niching method to tackle this issue in this subsection.

The niching method is composed of two components. i.e. niche creation and
fitness sharing. The niches are created based on the distance between each indi-
vidual, where the distance is inversely proportional to the similarity between the
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individuals of the population. Note that different individuals represent different
CSs of the same social network.

We use Normal Mutual Information (NMI) to compute the similarity score
between any two individuals. The formal definition of NMI is given in Eq. (4).

NMI(X,Y ) =
−2

∑gX

i=1

∑gY

j=1 Pij log(Pijn/Pi.Pj.)∑gX

i=1 Pi. log(Pi./n) +
∑gY

j=1 P.j log(P.j/n)
(4)

where P represents the confusion matrix, and the element Pij refers to the
number of nodes of the community Xi ∈ X that are also in the community
Yi ∈ Y . The values of i and j span within a range of {1, . . . , n} where n is
the number of nodes in N . gX refers to the number of groups in partition X.
gY refers to the number of groups in partition Y . Pi. denotes the sum of the
elements of P in the i-th row and P.j denotes the sum of the elements of P in
the j-th column. For any X and Y , NMI(X,Y ) falls between 0 (i.e., X and Y
are completely different) and 1 (i.e., X is exactly the same as Y ).

Based on NMI, we can further create the distance matrix DIiIj that is for-
mally defined in Eq. (5).

DIiIj = 1 − NMI(CSIi
L , CS

Ij
L ) (5)

where NMI(CSIi
L , CS

Ij
L ) refers to the NMI score (i.e., similarity) between indi-

viduals Ii and Ij , CSIi
L and CS

Ij
L denote respectively the community structures

found in the two individuals Ii and Ij . If the two individuals are similar (i.e.,
high NMI score), then their distance should be small and vice versa. Hence we
subtract 1 by the NMI value to obtain the distance between any two individuals,
as defined in Eq. (5).

After computing DIiIj , we use a clustering algorithm to identify the niches.
For this purpose, we choose the Density-based spatial clustering of applications
with noise (DBSCAN) algorithm due to several key reasons [20]. DBSCAN has
the capability of identifying the clusters without relying on a given number
of clusters. Further, DBSCAN is computationally efficient (i.e., O(n · logn)) and
does not hurt the scalability of LeFGA [20]. LeFGA uses the clusters obtained by
DBSCAN among all individuals of a population as its niches. Based on the niches,
it further calculates the adjusted/shared fitness value F (I) for each individual
I in a niche, according to Eq. (6).

F (I) =
f(I)
sI

(6)

where f(I) refers to the original fitness value of the individual I defined in Eq.
(3) and sI is the niche count that gives the number of individuals in the same
niche as individual I. Based on the shared fitness F (I) of all individuals, the
rest of the evolution process is done in each generation.
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5.6 Genetic Operators

Similar to [7,19], we use the uniform crossover operator to generate offspring
chromosomes. The gene values of the offspring are decided according to a
randomly generated binary vector. If the binary value of the corresponding gene
is 1, then the respective gene value of the first parent is selected, otherwise, the
gene value of the second parent is selected. The parents are selected based on the
tournament selection with a size of 7 to maintain a good balance between the explo-
ration and the efficiency [19]. Moreover, we use the random neighbor-based muta-
tion strategy, following many existing works [16]. It randomly selects a position in
the chromosome that is to be mutated. Then it selects another neighbor randomly
from the list of all neighbors of the node at the mutated position.

6 Experiment and Analysis

Subsection 6.1 gives a detailed explanation of the experimented benchmark net-
works. Four competing algorithms are elaborated in Subsect. 6.2. Parameter
settings of LeFGA are reported in Subsect. 6.3. All the experiments were con-
ducted on desktop computers equipped with Intel(R) Core(TM) i7-8700 with
16GB RAM, Python 3.9, and Networkx 3.1.

6.1 Benchmark Networks

Our experiments are performed on multiple widely used real-world social net-
works, including large networks, e.g. DBLP and Amazon. The details of each
benchmark network have been summarized in Table 1.

Table 1. Experimented real-world benchmark networks.

Network Type |V | |E|
Karate [18] Social 34 78

Dolphins [18] Social 62 159

Polbooks [18] Social 105 441

Football [18] Social 115 613

Jazz [18] Collaboration 198 2742

Ecoli [19] Biological 418 519

Email [18] Communication 1005 25571

Cora [18] Citation 2708 5429

Facebook [19] Online social 2888 2981

Citeseer [18] Citation 3312 4732

Protein [19] Biological 3724 8748

DBLP [12] Collaboration 317080 1049866

Amazon [12] Product co-purchasing 334863 925872
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6.2 Baseline Algorithms

The performance of the proposed algorithm LeFGA is compared to four state-
of-the-art algorithms. LCDR [1] is a heuristic-based algorithm designed for CD
in large social networks. Leiden [22] is a greedy search algorithm. CCGA [19]
and LGA [6] are recently developed GA approaches for CD.

6.3 Parameter Settings

LeFGA closely follows the parameter setting of CCGA [19] as CCGA was used
as the baseline algorithm for the design of LGA. In particular, the population
size is 300, the ratio of elitism is 0.05, the probability for crossover is 0.8, the
probability for mutation is 0.2, and 200 generations are performed in each run.
The algorithm was run 30 times independently. Similarly, all the competing
algorithms were executed with the same parameter setting.

Table 2. Average modularity and standard deviation over 30 runs obtained by LeFGA
and competing algorithms. Since the CD problem is a maximization problem, the high-
est mean rank implies the best performance (on several benchmark networks, LeFGA
achieved the best results among all competing algorithms; the respective experiment
values are bolded). LeFGA does not perform worse than any other competing algo-
rithms across all benchmark networks.

Network LCDR [1] CCGA [19] Leiden [22] LGA [6] LeFGA

Qavg(std) Qavg(std) Qavg(std) Qavg(std) Qavg(std)

Karate 0.3707(0.00) 0.4192(2.39e-03) 0.4197(3.01e-04) 0.4198(0.00) 0.4198(0.00)

Dolphins 0.3780(0.00) 0.5158(5.13e-03) 0.5259(2.59e-03) 0.5285(0.00) 0.5285(0.00)

Polbooks 0.5020(0.00) 0.5201(3.57e-03) 0.5269(1.31e-04) 0.5272(0.00) 0.5272(0.00)

Football 0.6020(0.00) 0.5006(2.71e-02) 0.6046(5.48e-05) 0.6046(0.00) 0.6046(0.00)

Jazz 0.4088(0.00) 0.4003(8.26e-03) 0.4444(9.85e-04) 0.4451(0.00) 0.4451(0.00)

Ecoli 0.7634(0.00) 0.7605(5.64e-03) 0.7802(6.49e-04) 0.7815(0.00) 0.7815(0.00)

Email 0.2807(0.00) 0.2657(1.52e-02) 0.4344(5.29e-04) 0.4347(0.00) 0.4348(0.00)

Cora 0.7645(0.00) 0.7578(5.48e-03) 0.8220(6.86e-04) 0.8249(1.27e-04) 0.8250(1.42e-04)

Facebook 0.8087(0.00) 0.8087(3.70e-05) 0.8087(0.00) 0.8087(0.00) 0.8087(0.00)

Citeseer 0.8125(0.00) 0.8084(5.50e-03) 0.8948(2.78e-04) 0.8969(3.88e-05) 0.8970(1.63e-05)

Protein 0.7314(0.00) 0.7313(3.15e-04) 0.7861(4.70e-04) 0.7892(8.56e-05) 0.7893(6.22e-05)

DBLP 0.6930(0.00) 0.6533(2.31e-02)* 0.8315(1.04e-03) 0.8349(7.55e-04)* 0.8359(1.29e-04)

Amazon 0.7780(0.00) 0.7534(1.43e-02)* 0.9320(1.56e-04) 0.9324(2.16e-04)* 0.9328(5.40e-05)

Mean Rank 1.69 1.31 3.11 4.15 4.73

* indicates that the respective algorithms couldn’t complete their full run of 200 generations within 10 days.

Hence the reported results are the best results found after 10 days.

6.4 Experiment Result Analysis

Table 2 compares the performance of LeFGA and all competing algorithms in
terms of modularity. The performance of each algorithm is reported as the aver-
age obtained modularity (Qavg) along with the standard deviation (std) over 30
independent runs on each benchmark network.

According to Table 2, LeFGA achieved the same average modularity as LGA
on small social networks (i.e., less than 1k nodes). This indicates that LeFGA and



Leiden Fitness-Based Genetic Algorithm (LefGA) 433

LGA can consistently produce high-quality community structures on small net-
works. Furthermore, on networks with more than 1k nodes (except the Facebook
network), LeFGA performed significantly better than all competing algorithms.
This implies that LeFGA is able to identify high-quality community structures
most of the time on medium and large-scale networks. On the other hand, the
Facebook network appears to be simple despite of its large size since all algo-
rithms can manage to obtain the same modularity on this network.

The most interesting observation of the experiments is that LeFGA can han-
dle large networks scalably (i.e., DBLP and Amazon). The algorithm requires
running on our Linux desktop for approximately 10 days in order to find high-
quality community structures of these two networks. In comparison, we run LGA
and CCGA for 10 days without getting good results. In Table 2, CCGA and LGA
reported the Qavg and std for DBLP and Amazon, based on the results obtained
for up to 10 days. This observation confirms that LeFGA can effectively han-
dle large networks and is much more scalable than other GA-based approaches,
including LGA and CCGA. Even though LCDR and Leiden are very efficient
on large networks, their effectiveness is not as good as LeFGA. The results for
the DBLP and Amazon networks reported in Table 2 clearly show that LeFGA
achieved higher modularity than Leiden [22] and LCDR [1].

We further conducted the Friedman test with a confidence level of 95% to
compare the performance of LeFGA with the other competing algorithms. The
obtained mean rank for each algorithm is reported in Table 2. The highest mean
rank (i.e., 4.73) was obtained by LeFGA, proving that LeFGA achieved the
best performance among all the competing algorithms. Based on these experi-
ment results, it is safe to conclude that LeFGA significantly outperforms several
state-of-the-art algorithms on most of the large networks, including DBLP and
Amazon networks.

7 Conclusions

In this paper, we developed a novel GA-based algorithm, named LeFGA, to
scalably detect high-quality community structures of large social networks. We
introduced a new design of the individual in the population that simplifies the
fitness evaluation to completely avoid expensive encoding steps. Additionally, a
niching approach was proposed to maintain population diversity, further enhanc-
ing the reliability and effectiveness of our new algorithm. Comprehensive exper-
iments have been conducted on a wide range of real-world benchmark networks.
Our experiment results proved that LeFGA can significantly outperform multi-
ple state-of-the-art algorithms, especially on large social networks. In the future,
it is interesting to develop new techniques based on LeFGA to effectively detect
community structures in social networks that are changing dynamically across
time.



434 A. de Silva et al.

References

1. Aghaalizadeh, S., Afshord, S.T., Bouyer, A., Anari, B.: A three-stage algorithm
for local community detection based on the high node importance ranking in social
networks. Phys. A 563, 1–16 (2021)

2. Al-Andoli, M.N., Tan, S.C., Cheah, W.P., Tan, S.Y.: A review on community
detection in large complex networks from conventional to deep learning methods:
a call for the use of parallel meta-heuristic algorithms. IEEE Access 9, 96501–96527
(2021)

3. Azaouzi, M., Rhouma, D., Ben Romdhane, L.: Community detection in large-scale
social networks: state-of-the-art and future directions. Soc. Netw. Anal. Min. 9(1),
1–32 (2019). https://doi.org/10.1007/s13278-019-0566-x

4. Behera, R.K., Naik, D., Rath, S.K., Dharavath, R.: Genetic algorithm-based com-
munity detection in large-scale social networks. Neural Comput. Appl. 32, 9649–
9665 (2020)

5. Chen, X., Li, J.: Community detection in complex networks using edge-deleting
with restrictions. Phys. A 519, 181–194 (2019)

6. de Silva, A., Chen, A., Ma, H., Nekooei, M.: Genetic algorithm with a novel Leiden-
based mutation operator for community detection. In: Aziz, H., Corrêa, D., French,
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Abstract. In recent years, automatic graph learning (AutoGL) has been
widely concerned by academia and industry because it can significantly
reduce the threshold and labor cost of graph learning. It has shown pow-
erful functions in hyper-parameter optimization, model selection, graph
neural architecture search, and feature engineering. With the develop-
ment of the network structure, the time and computing resources con-
sumed by the AutoGL process are increasing. AutoGL can be viewed as
a bilevel optimization problem encompassing inner and outer optimiza-
tion. The inner optimization focuses on optimizing the model parameters
through techniques like stochastic gradient descent, aiming to minimize
the loss function and enhance model performance. On the other hand,
the outer optimization aims to identify the best configuration settings
for hyperparameters and neural network structures. To address the com-
putational cost associated with heuristic algorithms in bilevel optimiza-
tion for AutoGL, the non-revisiting idea is proposed to keep a record of
all previously evaluated individuals to avoid redundant search. Exper-
iments on multiple search algorithms demonstrate that non-revisiting
can improve the time performance of AutoGL. The time performance
of the search algorithm with non-revisiting is improved by 40% to 80%
compared with that without non-revisiting under the condition that the
experimental accuracy remains unchanged.

Keywords: Automatic graph learning · population-based search ·
non-revisit

1 Introduction

Selecting appropriate hyperparameters (such as learning rates and regularization
parameters) and neural network structure (such as the number of layers and
the number of hidden units) in traditional machine learning typically requires
manual experience and a large number of experiments [9]. This process is time-
consuming and often relies on the knowledge of domain experts. Automated
graph machine learning (AutoGL) aims to discover optimal hyperparameter and
neural network structure configurations for different graph tasks or graph data
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 436–447, 2024.
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without manual design [2]. There are various structures of graph neural networks,
among which the typical ones are GCN and GAT [10]. AutoGL has received
increasing attention due to its ability to significantly reduce the threshold and
human cost of graph learning.

From an optimization point of view, AutoGL can be regarded as a bilevel
optimization problem consisting of inner optimization and outer optimization
[4]: 1) Inner optimization focuses on learning and optimizing the model param-
eters (e.g., the weights of the neural network) [11], by training the model on the
given data using the specified hyperparameters and neural network structure
configuration. Typically, traditional optimization methods like stochastic gradi-
ent descent are employed to solve these inner optimization problems. The goal
is to minimize the loss function and improve the model performance through
parameter updates. 2) Outer layer optimization involves finding the best con-
figuration settings in the search space of hyperparameters and neural network
structures to achieve the optimal solution for the inner optimization problem.
This can be accomplished using various methods such as grid search, random
search, Bayesian optimization, and evolutionary algorithms. By treating auto-
matic graph machine learning as a bilevel optimization problem, we can auto-
mate the process of discovering the optimal hyperparameter and neural network
structure configurations. It should be pointed out that in this two-layer optimiza-
tion problem, each fitness evaluation in the outer layer optimization problem
corresponds to a model training process in the inner layer optimization problem.
This implies that the optimization process can be computationally expensive [3].

Bilevel optimization has received extensive attention in the field of machine
learning [6]. Existing methods for solving bilevel optimization problems mainly
include the following categories: analytical methods, gradient descent methods,
and heuristic methods. 1) Analytical methods refer to finding closed-form solu-
tions by solving the analytical expression of the problems. This kind of method
requires the problem to have a simple structure and the mathematical model
is known. 2) Gradient descent methods update the parameters using the gradi-
ent information through the backpropagation algorithm. This type of method
typically requires the function to be linear, or strongly convex to guarantee con-
vergence to the global optimum. 3) Heuristic algorithms are suitable for solving
complex, high-dimensional or nonlinear optimization problems that are diffi-
cult to solve directly using traditional analytical methods or gradient descent
methods. Typical heuristic algorithms such as evolutionary algorithms [1], has
the advantages of parallelization and adaptability, and have shown good perfor-
mance in many practical problems.

In response to the computational cost associated with heuristic algorithms
for bilevel optimization, some researchers have attempted to combine heuristic
approaches with classical optimization methods. This integration aims to lever-
age the strengths of both approaches and further reduce computational time by
employing surrogate models. Surrogate models refers to the utilization of a simpli-
fied model or function to approximate the value of the objective function, thereby
mitigating the need for frequent evaluations of the actual objective function.
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Fig. 1. Traditional AutoGL process and non-revisiting AutoGL process

By employing the surrogate model, the computational cost associated with eval-
uating the objective function can be significantly reduced (Fig. 1).1

Due to the lengthy training time of the model, the number of sample points
may be limited, which can cause the failure of neural network-based methods.
An intuitive approach to constructing a surrogate model is to keep a record of all
previously evaluated individuals to avoid redundant searches. However, storing
this information using arrays or similar methods can be inefficient. Hence, in
this study, to reduce the time consumption of heuristic optimization methods
for automated graph learning, we propose a non-revisiting mechanism that can
be applied to any population-based search method.

In summary, the contributions of this study are as follows:

1 https://github.com/710965953/Non-revisiting.

https://github.com/710965953/Non-revisiting
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1. This is the first time that the non-revisiting idea has been applied to the
field of automatic machine learning. By using the real history model and
its performance saved in the non-revisiting mechanism, we can reduce the
resources wasted due to the repeated evaluation of similar models in AutoGL.

2. We apply the non-revisiting mechanism to five classical evolutionary algo-
rithms and the hyperparameter optimization of two representative graph
neural networks. The experimental results on three real datasets demonstrate
that, for the tested evolutionary algorithms and tasks, the search algorithm
utilizing the non-revisiting mechanism exhibits superior time performance
compared to the search algorithm without the non-revisiting mechanism,
without statistically significant reductions in accuracy.

The remaining sections of this paper are organized as follows. Section 2
presents the relevant background information. Section 3 introduces the proposed
mechanism. Section 4 describes the experimental setup and results. Finally, the
paper concludes with a summary of the findings.

2 Background

In this section, we introduce the background of bilevel optimization and auto-
matic graph learning.

2.1 Bilevel Optimization

The bilevel optimization problem originally originated from the field of economic
game theory [7], involving a hierarchical form of mathematical programming.
The feasible domain of one optimization task is restricted by the solution set
mapping of another optimization task, with the latter embedded within the for-
mer. The upper-level problem denotes the external optimization task, while the
lower-level problem refers to the internal optimization task. Bilevel optimization
problems have found numerous applications in intricate machine learning prob-
lems, including hyperparameter optimization, meta-learning, neural architecture
search, and deep reinforcement learning [4,7]. Consequently, these problems have
garnered significant attention within the machine-learning community.

2.2 Automatic Graph Learning

In recent years, deep learning has shown excellent performance in various fields
and has been used by researchers to solve many challenging tasks. At the same
time, to achieve better performance, the structure of deep neural networks has
become more and more complex. For example, VGG-16 [8] has more than 130
million parameters, occupies nearly 500 MB of memory, and requires 15.3 billion
floating-point operations to process the input image of size 224× 224. However,
such models are developed by human experts with a lot of trial and error, that
is, even experts need a lot of resources and time to design a good model. To
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Fig. 2. Model architecture diagram. In the Network Encoding Module, the model’s
hidden layer units, number of attention heads, and maximum epoch are encoded and
stored. In the Non-revisiting Storage History Solution Module, all evaluated models
and their evaluation values are stored in the non-revisit module. In the Hyperparame-
ter Optimization Module, the non-revisitation mechanism and optimization algorithm
work together until a satisfactory model is obtained.

reduce these heavy development costs, the idea of automated machine learn-
ing (AutoML) [3] has emerged, which refers to the automation of the entire
machine learning workflow from model building to application. Compared with
some general-purpose machine learning workflows, automated machine learn-
ing can achieve comparable or better results than human experts with little or
no human intervention. Therefore, automated machine learning can lower the
threshold for algorithm learning and use, and is of great help to the applica-
tion of machine learning algorithms in practical scenarios. Traditional AutoML
methods are mainly used to process structured data (such as one-dimensional
time series signals and two-dimensional images).

3 Algorithm

The basic idea of the non-revisiting mechanism is to use a BSP tree to store the
positions and fitness values of all previously evaluated individuals, as shown in
Fig. 2, which helps determine if a new individual needs to be re-evaluated. This
reduces the redundancy of evaluating similar or identical individuals, thereby
saving computational resources. This section introduces the tree-building pro-
cess, non-revisiting process, and potential advantages compared to other surro-
gate models.
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Fig. 3. GNN individual decoding evaluation process. In this process, the model struc-
ture and hyperparameters in the chromosome will be reduced to a complete model,
and a model evaluation value will be obtained after training.

Fig. 4. BSP tree preservation history evaluation solution

3.1 Tree Building Process

We use a BSP tree to partition the search space and store all historically eval-
uated individuals. Traditional methods for storing memory individuals include
array-based methods and tabu lists. However, these existing methods have draw-
backs, especially from the perspective of surrogate models.

Binary Space Partitioning (BSP) refers to the method of recursively dividing
a search space into two subspaces using hyperplanes. Each node in the tree
corresponds to a subregion in the search space. Based on the assumption that the
search space has smoothness, we assume that individuals with similar positions
have similar fitness values. Therefore, for all unevaluated individuals within a
region, we approximate their fitness values with the fitness values of the evaluated
individuals in that region. As more individuals are evaluated, the prediction error
of the surrogate model may gradually decrease.

The basic structure and construction process of the BSP tree are as fol-
lows, and shown in Figs. 3 and 4. All non-leaf nodes in the BSP tree are virtual
nodes used for assisting search, while leaf nodes are used to store all evaluated
individuals. Each node stores three attributes: the position x of the individ-
ual, its fitness value fx, and the dimension dim along which the subregion is
partitioned, represented as node = k, fk, dim. Initially, the tree is empty, and
the first inserted node becomes the root. For each new evaluated individual
Z = {Z1, Z2, ..., Zj , ..., Zk}, we find the evaluated individual X in the BSP tree
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that is closest to Z based on distance similarity. We then use a hyperplane in the
j-th dimension to partition the region where node X is located into two parts,
where j = arg max

j
|Zj −Xj |. After the region is partitioned, the original region

X is divided into two new subregions, X and Z, which are stored in the left and
right child nodes, respectively. The parent node is represented as a virtual node
X ′ (with the same position and fitness as its left child node X).

3.2 Non-revisiting Process

After the BSP tree is constructed, newly generated individuals resulting from
crossover and mutation undergo a non-revisiting check before evaluation. The
basic idea is to determine the distance between the new unevaluated node and the
evaluated nodes in the BSP tree. If the distance is less than a certain threshold,
we consider the evaluation of the new individual unnecessary. The specific details
are as follows.

For a new unevaluated solution vi, we use cru to denote the current search
node. We start the search from the root node of the BSP tree and use the
following method to find similar nodes until cru reaches a leaf node. If the final
solution cru found through the search is similar to vi (i.e., the Euclidean distance
is less than the threshold), it means that vi does not need to be re-evaluated.

cru =
{
Left Child of cru if vi,j < cruj ,
Right Child of cru otherwise

(1)

where j represents the specific dimension along which the search space was
partitioned using hyperplanes during the tree construction phase (the stored j
may differ for each node).

4 Experiments

4.1 Experimental Setup

Three famous datasets were used in the experiment, namely Cora, Citeseer, and
Pubmed. The statistics of these datasets is given in Table 1. Two representative
models of graph neural networks, i.e., GCN and GAT, were selected as the base
models. The hyperparameters along with their search ranges are as follows: The
Learning Rate ranges from 0.01 to 0.05; Weight Decay Rate ranges from 0.0001
to 0.001; Dropout Rate ranges from 0.2 to 0.8; Number of Hidden Units is a
discrete value with a range of {4, 5, ..., 16}; Number of Attention Heads is a
discrete value with a range of {6, 8, 10, 12}; Activation Function is a discrete
value with a range of {leaky relu, relu, elu, tanh}; Max Epoch is a discrete value
with a range of {100, 101, ..., 300}; Early Stopping Round is a discrete value with
a range of {10, 11, ..., 30}. The relevant settings for the evolutionary algorithm
are as follows: Population size is 100, Max gen is 20, Mutation rate is 0.5, and
Crossover rate is 0.7, the specific implementation of EA comes from [5].
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Table 1. Statistics for the datasets

Dataset Category Nodes Edge Characteristic

Cora 7 2708 5429 1433

Citeseer 6 3327 4732 3703

Pubmed 3 19717 44338 500

Table 2. Experimental results on the Cora dataset

Model Algorithm Original version Non-revisit Time improvement

Time ACC Time ACC

GCN DE-best-1-L 2501.4 s 0.831 1026.8 s 0.8286 58.9%

DE-rand-1-L 3226.4 s 0.826 1245.8 s 0.8308 61.3%

ES-1-plus-1 2713 s 0.836 1237.4 s 0.8308 54.3%

EGA 2307.2 s 0.8316 440.6 s 0.8314 80.9%

SEGA 2184.8 s 0.8268 542.8 s 0.829 75.1%

GAT DE-best-1-L 3096.2 s 0.8414 1531.6 s 0.8376 50.5%

DE-rand-1-L 2951 s 0.8324 1848.8 s 0.8356 40.0%

ES-1-plus-1 2875.6 s 0.8356 1984.6 s 0.8352 42.1%

EGA 2806.8 s 0.8302 799 s 0.8356 71.5%

SEGA 2733.8 s 0.8368 765.8 s 0.8412 71.9%

4.2 Experimental Results

To verify the time performance and accuracy of AutoGL after incorporating
the non-revisit mechanism, this section selects three datasets (Cora, Citeseer,
and Pumbed) as target tasks and conducts experiments on two graph neural
network models, GCN and GAT. The data sizes of Cora, Citeseer, and Pumbed
progressively increase. To validate the effectiveness of the non-revisit mechanism,
we conducted experiments on five evolutionary algorithms within AutoGL. The
results demonstrate that the approach utilizing the non-revisit mechanism signif-
icantly improves the time performance of the model without sacrificing accuracy,
as compared to the original evolutionary algorithms without the mechanism. A
detailed analysis of the experimental results is provided below.

Comparative results regarding average running time in Tables 2, 3 and 4
indicate that the non-revisit mechanism saves at least 40% of the time in all
cases. This aligns with our expectations as the mechanism avoids redundant
evaluations of identical or similar models. For instance, in the case of the five
evolutionary algorithms on the Citeseer dataset with the GCN model, ES-1-
plus-1 reduces the time consumption by 40%, while EGA reduces it by 78%.
These data further support our argument that the integration of the non-revisit
mechanism with AutoGL improves its time performance.
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ACC data in Tables 2, 3 and 4 demonstrate that the accuracy of AutoGL
does not decrease when the non-revisit mechanism is added. For example, in the
Cora dataset and GAT model, the acc of the ES-1-plus-1 algorithm without the
non-revisit mechanism is 0.8356, while it is 0.8352 with the mechanism added.
Similarly, in the larger Pumbed dataset and GAT model, the original acc of the
ES-1-plus-1 algorithm is 0.7846, which increases to 0.7882 after incorporating
the non-revisit mechanism. These data indicate that the accuracy of the original
algorithm and the algorithm with the non-revisit mechanism remains within the
same range, supporting our argument that the non-revisit mechanism does not
compromise the accuracy of AutoGL.

Fig. 5. Nemenyi test on the accuracy metric for the GCN tasks. A larger ranking indi-
cates a better performance. Models on the same horizontal line have similar predictive
performance. The EA with non-revisit mechanism and the EA without non-revisit
mechanism are in the same level interval in terms of testing accuracy.
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Table 3. Experimental results on the Citeseer dataset

Model Algorithm Original version Non-revisit Time improvement

Time ACC Time ACC

GCN DE-best-1-L 2646.4 s 0.7278 1259.8 s 0.728 52.3%

DE-rand-1-L 2652 s 0.7226 1504.6 s 0.7222 43.2%

ES-1-plus-1 2698.4 s 0.716 1618.2 s 0.727 40.0%

EGA 3066.2 s 0.7286 671.8 s 0.7264 78.0%

SEGA 2705.2 s 0.7218 735.8 s 0.7244 72.8%

GAT DE-best-1-L 3181.2 s 0.7318 1654.4 s 0.7258 47.9%

DE-rand-1-L 3080.2 s 0.7182 1856.6 s 0.7172 41.0%

ES-1-plus-1 2962.6 s 0.7228 1755.4 s 0.7208 40.7%

EGA 4910.8 s 0.729 668.2 s 0.7116 86.3%

SEGA 2796.6 s 0.7106 741.2 s 0.7136 73.4%

Table 4. Experimental results on the Pubmed dataset

Model Algorithm Original version Non-revisit Time improvement

Time ACC Time ACC

GCN DE-best-1-L 2288.6 s 0.788 913.4 s 0.7922 60.0%

E-rand-1-L 2506.2 s 0.789 1344.8 s 0.7892 46.3%

ES-1-plus-1 2499 s 0.79 1366.6 s 0.79 45.3%

EGA 2562 s 0.786 556.2 s 0.79 78.2%

SEGA 2264.8 s 0.7884 755.6 s 0.79 66.6%

GAT DE-best-1-L 4317.6 s 0.788 2359.6 s 0.7904 45.3%

DE-rand-1-L 4221 s 0.7818 2446.6 s 0.7908 42.0%

ES-1-plus-1 4434 s 0.7846 2619.4 s 0.7882 40.9%

EGA 5022.8 s 0.7892 1311 s 0.7864 73.8%

SEGA 4985 s 0.7896 1020.4 s 0.7878 79.5%

Among the six sets of data in Tables 2, 3 and 4, the genetic algorithm EGA
consistently exhibits the greatest improvement in time performance compared to
SEGA. For instance, in the Cora dataset and GCN model, the time improvement
of both algorithms is 80.9% and 75.1%, respectively. In the Citeseer dataset and
GAT model, the time improvement of both algorithms is 86.3% and 73.4%,
respectively. In the Pumbed dataset and GCN model, the time improvement
of both algorithms is 78.2% and 66.6%, respectively. One possible reason is
that offspring individuals in genetic algorithms inherit more genes from parent
individuals, increasing the likelihood of similarity between the generations.

The comparative results of the Nemenyi test on the ACC metric can be found
in Fig. 5, where the average ranks of each algorithm are labeled along the axis
(lower ranks on the right side). In the Nemenyi test, if the average ranks of two
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models differ by at least a critical difference (CD), significant differences are con-
sidered to exist. The critical difference is calculated using a significance level of
5%. In Fig. 5, models on the same horizontal line exhibit similar predictive per-
formance. For example, in case (b), EGA has a rank of 7.8, while EGA NR (NR
indicating the use of the non-revisitation mechanism) has a rank of 6.8, which
does not differ by more than one CD value. Therefore, there is no statistically
significant difference between the version with and without the non-revisitation
mechanism of the algorithm in terms of the ACC metric. This also validates
our conclusion that the non-revisitation mechanism, which improves time per-
formance, does not statistically reduce the accuracy of the original algorithm.

5 Conclusion

In this study, we propose the integration of the non-revisiting mechanism with
evolutionary algorithms for application in AutoGL. Extensive experiments were
conducted on three real datasets, namely Cora, Citeseer, and Pubmed. The
experimental results demonstrate that AutoGL with the non-revisiting mecha-
nism achieves significant improvements in time performance, ranging from 40%
to 80%, without statistically significant differences in algorithm accuracy com-
pared to the original algorithm. In future research, we plan to extend the appli-
cation of the non-revisiting mechanism to additional evolutionary algorithms
and propose operators based on the non-revisiting mechanism. These endeavors
aim to further enhance the efficiency and effectiveness of automated machine
learning techniques.
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Abstract. AI planning systems can solve complex problems, leaving
domain creation as one of the largest obstacles to a large-scale application
of this technology. Domain modeling is a tedious, error-prone and manual
process. Unfortunately, domain modelling assistance software is sparse
and mostly restricted to editors with only surface-level functionality such
as syntax highlighting. We address this important gap by proposing a
list of potential domain errors which can be detected by problem parsers
and modeling tools. We test well-known planning systems and modeling
editors on models with those errors and report their results.

Keywords: Automated Planning · Modelling support · Knowledge
Engineering · PDDL Modeling · HDDL Modeling

1 Introduction

Automated planning, a branch of artificial intelligence (AI), is concerned with
generating sequences of actions that turn one state of a system into a desired one.
This requires a formal specification of the planning model, which is written in
text files and adheres to a specific syntax such as the planning domain description
language (PDDL) [3] for classical (non-hierarchical) planning and its extension
HDDL [6] for hierarchical task network (HTN) planning [1].

Although modeling is a complex and error-prone task, the few existing mod-
eling tools focus on syntax highlighting, integrating a planner, and visualizing
solutions – but they are of limited use if the domain modeler makes mistakes.
Planning systems’ parsers provide even less support for detecting such errors; in
many cases they just crash, or even worse they don’t find solutions or find wrong
or inconsistent ones. There are a few more evolved works for modeling support
[7], but they all assume a syntactically correct model and are hence orthogonal
to our contributions.

To address this problem, we make the following contributions: (1) We provide
a compilation of potential modeling errors. (2) We supply a public repository
of 56 (flawed) benchmark domains containing each of these errors, to the best
of our knowledge the first benchmark database for AI modeling support. (3)
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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We conduct an evaluation of well-known AI planning tools for their ability to
diagnose those errors, showing that not a single tool is able to spot all errors,
with no tool being strictly stronger than another.

2 AI Planning Formalism

Due to space restrictions we do not provide a formal introduction to the descrip-
tion languages PDDL [3] and HDDL [6] or their underlying formalisms [1] and
only refer to the respective literature. Instead, we explain the input languages
based on a PDDL example taken from the PDDL textbook [3].

Listing 1.1. A PDDL action for moving a truck between locations [3].

( :action dr ive
:parameters (? t − truck ? from ? to − l o c a t i o n )
:precondition ( at ? t ? from )
: e f f e c t (and (not ( at ? t ? from ) ) ( at ? to ) ) )

Classical planning evolves around the transition of states, finite set of facts,
propositions that encode what’s currently true. States are changed by actions
(see Listing 1.1), which have preconditions (here that the truck is at the location
?from) and effects, specifying how the respective state changes (here that the
truck is not at ?from anymore but at ?to). Problems are defined in a “lifted”
fashion, where variables (parameters) are used to abstract away from concrete
constants such as specific trucks or locations. These constants/objects are given
in the problem description so that actions can be instantiated as required.

Hierarchical planning adds further constraints [1]. Here, we are additionally
given a set of compound tasks and a set of decomposition methods that spec-
ify how these tasks could be refined into more primitive tasks and finally into
actions. This process is quite similar to formal grammars, where production rules
(corresponding to decomposition methods) are used to turn non-terminal sym-
bols (compounds tasks) into terminal symbols (actions). The goal is to turn an
initially given task network – a partially ordered sequence of tasks – into an exe-
cutable action sequence (just as in classical planning), but now tasks can only be
obtained by adhering to the hierarchy defined by the decomposition methods.

3 Potential Errors in Planning Domains

This section details a list of errors or potential errors that may be encountered
when modelling planning domains in PDDL/HDDL, separated into:

– syntax errors: these are actual errors, but often not spotted by parsers and
– semantics errors: these would be warnings as they indicate a potential mod-

eling error, to be checked by the domain modeler.

All errors we identify for classical planning (PDDL) naturally transfer to
HTN planning (HDDL) as well, whereas HTN errors are unique to HTN plan-
ning. We hence present the respective flaws in two different lists.
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The list has been translated into a repository1 which we see as a first step
towards a public testbed for PDDL and HDDL parsers. We invite others to add
additional cases we might not have thought of.

3.1 Syntax Errors

(1) Inconsistent Parameter Use. The modeller attempts to use a predicate or
task with either a parameter of an incompatible type or a different number of
parameters than it was defined with. This second error is only possible in HTN
planning since in classical planning actions are only defined once (and thus never
referenced anymore), whereas HTN planning could re-use a task (primitive or
compound) multiple times in decomposition methods.

(2) Undefined Entities. The modeller attempts to use an undefined predicate,
type, or task. (Again “using undefined tasks” is only possible in HTN planning
for the same reason as mentioned above).

(3) General Syntax Errors. The modeller forgets to include a key piece of syntax
or makes a typo - for instance, forgets to write “:parameters” in a task definition
(which lists the sequence of typed task parameters), adds an extra parenthesis,
forgets a dash when defining a variable, or forgets to write a questionmark in
front of a variable name to differentiate it from a constant. It is expected that
most of these errors are captured by any parser, but not all are, and useful error
messages are not always produced.

(4) Duplicated Definitions. The modeller repeats some definitions (e.g., some
task, decomposition method, predicate, or constant). Closely related, the mod-
eller writes duplicate entries in a task definition – for example, includes multiple
“:parameters” entries.

(5) Cyclic Type Declaration. When two types are directly or indirectly declared
to be subtypes of each other, forming a cycle.

(6) Undeclared Parameters. The modeller tries to use a variable in the defini-
tion of a task (or decomposition method in case of HTN planning) that wasn’t
declared as a parameter of that task (or method).

(7) Cyclic Ordering Constraints. Task networks are defined over a partial order-
ing – which excludes cycles. – HTN-specific

(8) Duplicate Orderings. A method contains both the “ordered subtasks” key-
word (which implies that only a sequence of tasks is provided), but also a (thus
redundant) set of explicit ordering constraints. – HTN-specific

1 https://github.com/ProfDrChaos/flawedPlanningModels.

https://github.com/ProfDrChaos/flawedPlanningModels
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3.2 Semantic Errors

These are potential errors, which do not contradict PDDL/HDDL.

(9) Complementary Effects. There is an intersection between the ground negated
and positive effects of a task.

(10) Unsatisfied Preconditions. Some action’s preconditions can never be ful-
filled. This may be due to syntactically complementary preconditions (with
identical predicates, including parameters), or simply since in the given plan-
ning problem the precondition can’t be made true. While the first possible cause
is a simple syntax check the second involves complex reasoning, which is as hard
as planning.

(11) Unused Elements. The modeller defines a type or predicate or a parameter
in a task (or decomposition method in case of HTN planning) that is not used.
In the case of HTN planning, tasks may be “unused”, which can be defined as
being unreachable from the initial task network.

(12) Redundant Effects. Some effect will never change the state to which the
respective action is applied. There are two possibilities how this can happen:
The simplest case is if some effect also occurs as a precondition (with identical
parameters). The redundancy can however also be problem-dependent, i.e., if
any grounding of some effect is contained in any state in which the respective
action is applicable.

(13) Immutable Predicate. A predicate is defined which never occurs in task
effects. This means the state of that predicate is constant.

(14) Compound Tasks Without a Primitive Refinement. The modeller defines a
compound task which can never be refined into a primitive plan (it is therefore
useless). A special case of this is not providing any decomposition method for
some compound task. – HTN-specific

4 Evaluation of Existing Parsers

From the proposed list, we created a large benchmark set with flawed domains.
We tested some of the best-known AI planning tools (planning system parsers
or domain editors) that parse PDDL and HDDL domains and evaluated their
performance. These tools were: editor.planning.domains [9], Visual Studio PDDL
Plugin [2], Fast Downward [4], PANDA [5], HyperTensioN [8], and LiloTane [10].
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4.1 Results

The software was evaluated for each flawed domain based on three categories:

Error Detection. Whether the software recognises the error and stops the
parsing process (‘yes’ – green), crashes without catching the error (‘crashes’
– yellow), or provides a solution/reports unsolvable despite the model being
wrong (‘no’ – red).

Location Guidance. Whether the software pinpoints the correct line number
of the error (‘yes’ – green), points toward the correct area of code, usually
by naming the task which contains the error (‘close’ – yellow), or provides an
inaccurate or no indication of the location of the error (‘no’ – red).

Error Description. Whether the software provides a clear and helpful descrip-
tion of the error (‘yes’ – green), a correct description which is unclear or
confusing (‘close’ – yellow), or no or incorrect error description (‘no’ – red).

The results are reported in Fig. 1 for the individual domains, and in Fig. 2
with an overview. We also provide all data collected (including the actual output
messages of the tested software) in a Zenodo repository [11]. We can report that
none of the software tested addressed any of our potential semantics errors, with
the exception of the VSCode plugin diagnosing the unused predicate error.

Fig. 1. Results of each software: Planning.Domains (PD), VSCode plugin (VS), Fast
Downward (FD), (PAN) DA, Lilotane (LT), Hypertension (HT). We tested error detec-
tion (1), line pinpointing (2), and error message quality (3). We first list syntax errors,
then (potential) semantic errors. For VS, the lighter shade of green corresponds to
errors caught by PD, which the plugin uses as default planner. (Color figure online)
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Fig. 2. The overall success rates of the evaluated software. The location guidance and
error description rates are percentages of the number of errors caught by the parser, not
the total number of errors tested (e.g. if a parser catches 6 of 10 errors, and provides
a helpful error message for 3 of them, its success rate for Error Description would be
50%). For hierarchical planners, performance on only the domains which were tested on
both classical and hierarchical planning systems is included (called ‘excluding HDDL-
specific’) to allow for fair comparison between the two kinds.

5 Conclusion

We provided a comprehensive list of potential domain modelling errors for classi-
cal and hierarchical AI planning. It is accompanied by example domains contain-
ing each of these errors, proposed to form the foundation of a set of standardized
tests for domain modelling assistance software and improving existing and future
PDDL and HDDL parsers.

In our empirical evaluation, we show that a selection of successful well-known
– and thus often used – AI planning systems and modeling tools for both PDDL
and HDDL domains fail to recognize many of these errors. We thus hope that
our list and benchmark set will act as a valuable contribution towards improving
these and future software. We furthermore hope that other domain modelers see
the benefit in our list and these test cases and thus provide additional bench-
marks themselves.

Acknowledgements. We would like to thank Bernd Schattenberg for discussions
(and one of the reported errors).
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Abstract. Clustering is one of the unsupervised learning methods for
grouping similar data samples. While clustering has been used in a wide
range, traditional clustering methods cannot provide clear interpreta-
tions of the resulting clusters. This has led to an increasing interest in
interpretable clustering methods, which are mainly based on decision
trees. However, the existing interpretable clustering methods are typi-
cally designed for tabular data and struggle when applied to time series
data due to its complex nature. In this paper, we propose a novel inter-
pretable time-series clustering method with decision trees. To address
the interpretability challenges in time-series data, our method employs
two separate feature sets, intuitive features for decision tree branching
and original time-series observed values for evaluating a given cluster-
ing metric. This dual use enables us to construct interpretable clustering
trees for time series data. In addition, to handle datasets with a large
number of samples, we propose a new metric for evaluating clustering
quality, called the surrogate silhouette coefficient, and present a heuristic
algorithm for constructing a decision tree based on the metric. We show
that the computational complexity for evaluating the proposed metric is
much less than the silhouette coefficient, which is commonly used in deci-
sion tree-based clustering. Our numerical experiments demonstrated that
our method constructed decision trees faster than the existing methods
based on the silhouette coefficient while maintaining clustering quality. In
addition, we applied our method to a time-series data on an e-commerce
platform and succeeded in constructing an insightful decision tree.

Keywords: Interpretable Clustering · Timeseries Clustering ·
Silhouette Coefficient

1 Introduction

Clustering is one of the unsupervised learning methods that groups a set of
samples on the basis of their similarities. It is an effective method for under-
standing the underlying structure of data, and it is applied in various fields
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 457–468, 2024.
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such as marketing [12,17], finance [14,16], natural language processing [5,22],
and image recognition [4,6]. Due to its practicality, various kinds of clustering
algorithms, such as k-means [15] and hierarchical clustering [11], have been pro-
posed. However, traditional clustering algorithms merely output the grouping
of samples and do not provide explanations or interpretations for the resulting
groups. Consequently, it is sometimes difficult for these algorithms to ensure the
reliability and transparency of the output [20,21].

Against this background, interpretable clustering has attracted much atten-
tion in recent years [21]. One of the interpretable clustering methods proposed
so far is decision tree clustering. [1–3,8–10,13]. The decision tree [18] is a binary
tree model that recursively divides samples into two groups at each node accord-
ing to certain rules. Typically, at each node, samples are divided into two child
nodes on the basis of a threshold value of one feature. Since decision trees have
the advantage that their decision rules can be easily visualized as a tree struc-
ture, Bertsimas et al. [2] proposed a method that constructs a decision tree
for clustering by minimizing the silhouette coefficient [19], which is a clustering
evaluation metric, with mixed-integer optimization.

Most of the existing interpretable clustering methods are focused on tabular
data. Applying these methods to time series data presents several challenges.
In tabular data, each feature often corresponds to a distinct attribute with a
specific meaning. Thus, if we construct a decision tree to cluster tabular data
based on the threshold values of these features, the resulting clustering rules can
be easily interpreted. On the other hand, time series data consists of a sequence
of values collected at different time points, and these values often have complex
time-dependent relationships. Therefore, if we simply construct a decision tree
using the values at each period as features, it becomes difficult to interpret the
resulting clustering rules. Moreover, in many business settings, analysis is often
performed using data with large sample size. Since the silhouette coefficient
used by Bertsimas et al. [2] requires O(N2) computation for clustering using N
samples, the existing method will be computationally expensive for large N .

In this paper, we propose a specialized interpretable time-series clustering
algorithm based on decision trees. To the best of our knowledge, this paper is
the first to propose a decision tree based interpretable clustering method for time
series data. The key to our approach is the use of new interpretable features for
the branching rules of the decision tree instead of the observed values. Specifi-
cally, while we optimize a certain metric for clustering that is calculated from the
observed values, we use the other interpretable features for the branching rules
in the decision tree. This approach allows us to construct a decision tree taking
into account the similarity of time-series data while keeping the interpretability
of the resulting decision tree. Furthermore, to accommodate large amounts of
data, we propose a surrogate measure that requires less computation than the
silhouette coefficient, called the surrogate silhouette coefficient. As a result, our
proposed metric reduces the computational complexity from O(N2) to O(N) for
clustering using N data, demonstrating that it allows for more effective use of
decision rules generated by decision trees for decision support. It is also shown
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that the decision rules generated by the decision tree can be used more effectively
for decision support.

2 Related Work

Traditional clustering methods such as k-means and hierarchical clustering have
a significant drawback: they sometimes fail to provide meaningful results that can
be easily understood by humans. As a result, the idea of interpretable clustering
has attracted attention. Interpretable models tackle this limitation by generating
outcomes that are reliable and straightforward to comprehend, enabling efficient
debugging. These models play a crucial role in guiding human decision-making
and establishing trust between humans and machines.

To the best of our knowledge, Luc et al. [8] are the first to propose a decision
tree-based interpretable clustering method. The proposed algorithm explores
a wide range of potential features and cutting points, evaluating the distance
between the prototypes of two clusters. Ultimately, it selects the feature and
cutting point that yield the greatest distance. This algorithm establishes a fun-
damental framework for decision tree-based clustering approaches.

Moshkovitz et al. [7] proposed a method that combines decision trees with
k-means and k-medians clustering to improve interpretability. By partitioning
the data set into clusters using a decision tree, their method can provide a
straightforward characterization of each cluster. While the approach provides
explanations for clustering results, there are problems with interpretability when
applied to time series data, and the number of clusters must be set manually.

Bertsimas et al. [2] proposed an optimization-driven approach to generating
interpretable tree-based clustering models. Their algorithm performs clustering
by optimizing the silhouette coefficient, which is a measure of clustering quality.
Their approach achieves comparable or superior performance to other clustering
methods on both synthetic and real-world datasets while offering significantly
higher interpretability. However, calculation of silhouette coefficients is compu-
tationally expensive, and it takes time to train the decision tree.

3 Method

3.1 Branch Features and Time Series Features

In general tree-based clustering, the same features are used for both construct-
ing decision trees and calculating evaluation metrics such as the silhouette coef-
ficient. This can sometimes make intuitive interpretation difficult. Particularly,
when applying decision tree-based clustering to time series data, this problem is
likely to be encountered. For example, when clustering a series of sales data of
each product on an e-commerce site, the rules of the decision tree may be some-
thing like “sold more than 1000 units in April 2020, and moreover, sold more
than 1200 units in November 2021.” Interpreting what such rules indicate can be
challenging, making it difficult to utilize them in decision-making. Therefore, we
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propose an interpretable time-series data clustering algorithm that uses easily
interpretable features for constructing decision trees, while utilizing time series
data for calculating evaluation metrics.

Branch Features. Even if decision tree clustering is applied to time-series data,
it only determines the features and thresholds of the time-series data for each
cluster, making it difficult to link them directly to decision-making. Therefore,
to connect the interpretation of clustering using decision tree rules to decision-
making, we generate features that are easily understandable to humans and
facilitate intuitive comprehension. For example, on an e-commerce site, we can
use features such as the growth rate due to a promotion. By incorporating these
features, it becomes easier to intuitively understand the clustering results and
obtain interpretable insights for decision-making. This approach not only makes
the clustering results easier to interpret but also allows flexibility in including
different features in the decision tree. This means we can incorporate external
data or information not present in the time series data, enabling us to perform
clustering and interpretation using additional information. We call these features
“branch features” and use them to construct decision tree rules.

Time Series Features. In many supervised decision tree classification models,
the focus is on a single feature, and splitting is performed using metrics such
as the Gini coefficient. Therefore, it is not a problem to have various types of
features mixed together. On the other hand, in the case of decision tree-based
clustering, it is an unsupervised learning method where the use of the Gini coef-
ficient is not applicable. Instead of the Gini coefficient, the silhouette coefficient
is used. However, it is not desirable to use different types of features since it
involves calculating distances on the basis of features. Furthermore, it becomes
difficult to capture the meaning of sequential data. Therefore, we refer to time
series data as “time series features” and use them to calculate the evaluation
metric. We will discuss the evaluation metric in more detail in Sect. 3.2. By
using interpretable features for decision tree construction and simultaneously
utilizing time series data for calculating evaluation metrics, it becomes possible
to perform clustering of time series data that is easily interpretable.

3.2 Surrogate Silhouette Coefficient

When performing clustering, it is necessary to determine a metric for the “good-
ness” of a cluster. For example, the sum of squares, as used in k-means, considers
a clustering to be good when the distance between data points within a cluster
and the centroid of that cluster is small. In other words, it is considered good
when the data belonging to the same cluster are densely populated. However,
the sum of squares, like k-means, can only look at the variance within clusters
and cannot observe the spread between clusters. Therefore, in this study, we
focus on the silhouette coefficient, which is capable of considering both factors.
The silhouette coefficient is a metric for measuring the goodness of clustering,
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proposed by Rousseeuw [19]. In the case where the number of data points is N ,
the silhouette coefficient is given as follows:

s =
1
N

(
b1 − a1

max (a1, b1)
+

b2 − a2
max (a2, b2)

+ · · · +
bN − aN

max (aN , bN )

)
, (1)

where ai and bi are referred to as the mean intra-cluster distance and the mean
nearest-cluster distance of data i, respectively, and are defined as follows:

ai =
1

|Ci| − 1

∑
j∈Ci

‖xi − xj‖, bi = min
Ck∈C\{Ci}

1
|Ck|

∑
j∈Ck

‖xi − xj‖, (2)

where C represents the set of all clusters of the entire data, Ci ∈ C is the cluster
containing data i, and xi represents the features of data i. A silhouette coefficient
value close to 1 indicates a good partition, while a value close to −1 indicates
a poor partition. The following issue can be considered when calculating the
silhouette coefficient.

Issue 1. Due to the use of the L2 norm for distance calculation, each term of
the sum in (2) cannot be combined.

Issue 2. It is necessary to calculate the average distance between all clusters,
which results in a large number of clusters for the calculation of bi.

Issue 3. The computational complexity is high because the denominator
max (ai, bi) varies between data points.

To address these issues, we propose a surrogate silhouette coefficient that requires
less computational effort than the silhouette coefficient.

Solution to Issue 1. To address the first issue, we use the squared L2 norm when
calculating the distance between data points, allowing us to group common terms
together. In this case, for data point i belonging to cluster Ci ∈ C, the mean
intra-cluster distance ai and the mean nearest-cluster distance bi are as follows:

ai =
1

|Ci| − 1

∑
j∈Ci

‖xi − xj‖2 , bi = min
Ck∈C\{Ci}

1
|Ck|

∑
j∈Ck

‖xi − xj‖2 . (3)

Solution to Issue 2. To address the second issue, we propose calculating the
average distance for the two clusters split within a branch node. Let us denote
the clusters within the branch node as C1, C2 and suppose data i belongs to
cluster C1. Then, the mean intra-cluster distance ai and the mean nearest-cluster
distance bi are as follows:

ai =
1

|C1| − 1

∑

j∈C1

‖xi − xj‖2 =
1

|C1| − 1

(
|C1| ‖xi‖2 − 2xT

i

∑

j∈C1

xj +
∑

j∈C1

‖xj‖2

)

(4)

bi =
1

|C2|
∑

j∈C2

‖xi − xj‖2 =
1

|C2|

(
|C2| ‖xi‖2 − 2xT

i

∑

j∈C2

xj +
∑

j∈C2

‖xj‖2

)
. (5)
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Solution to Issue 3. To address the last issue, we calculate the mean intra-
cluster distance a and the mean nearest-cluster distance b for each cluster. For
the clusters Ck, k ∈ {1, 2} that have been split within a branch node, a and b
are as follows:

aCk =
1

|Ck|
∑

i∈Ck

ai =
1

|Ck| (|Ck| − 1)

∑

i∈Ck

⎛

⎝|Ck| ‖xi‖2 − 2xT
i

∑

j∈Ck

xj +
∑

j∈Ck

‖xj‖2

⎞

⎠

=
2

|Ck| − 1

⎛

⎝
∑

j∈Ck

‖xj‖2 − |Ck|
∥∥∥∥∥∥

∑

j∈Ck

xj

|Ck|

∥∥∥∥∥∥

2⎞

⎠ (6)

bCk
=

1
|Ck|

∑
i∈Ck

bi =
1

|Ck|
∣∣Ck̃

∣∣
∑
i∈Ck

⎛
⎝∣∣Ck̃

∣∣ ‖xi‖2 − 2xT
i

∑
j∈Ck̃

xj +
∑
j∈Ck̃

‖xj‖2
⎞
⎠

=
∑

l∈{1,2}

⎛
⎝ 1

|Cl|
∑
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‖xj‖2
⎞
⎠ − 2

⎛
⎝ ∑

j∈Ck

xj

|Ck|

⎞
⎠

T ⎛
⎝ ∑

j∈Ck̃

xj∣∣Ck̃

∣∣
⎞
⎠ , (7)

where if k = 1 then k̃ = 2, and if k = 2 then k̃ = 1. Using (6) and (7), the
surrogate silhouette coefficient can be calculated as follows:

s =
|C1|

|C1| + |C2|
bC1 − aC1

max (aC1 , bC1)
+

|C2|
|C1| + |C2|

bC2 − aC2

max (aC2 , bC2)
. (8)

Thus, the computational complexity has been reduced from O(N2) to O(|C1| +
|C2|) using the surrogate silhouette coefficient.

3.3 Algorithm for Decision Tree Construction

The algorithm for constructing a decision tree using Sect. 3.1 is as follows.

Step1: Split the data within a branch node into two subsets, C1 and C2, using
a threshold value based on the branch feature values of the data points in
the node. Calculate the evaluation metric using the time series features of
C1 and C2. If the number of data points in either C1 or C2 is less than
Nmin, set the evaluation metric value to −∞. Repeat the above steps for all
data points within the branch node and all features to calculate the maximum
evaluation metric value, denoted as max-score. The corresponding partitioned
data subsets are denoted as C∗

1 and C∗
2 . If max-score is −∞, proceed to Step

3. Otherwise, proceed to Step 2.
Step2: If max-score is not −∞, calculate the silhouette coefficient using the

previously partitioned data subsets and the newly partitioned data subsets,
C∗

1 and C∗
2 . If the silhouette coefficient value is less than a threshold value,

Th, proceed to Step 3. If the silhouette coefficient value is greater than or
equal to Th, split this branch node into C∗

1 and C∗
2 , creating new branch

nodes as child nodes in the lower level. Then proceed to Step 4.
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Step3: Make this branch node a leaf node without splitting it into C∗
1 and C∗

2 .
Then proceed to Step 4.

Step4: Move to the right adjacent branch node and restart from Step 1. If there
is no branch node on the right side, move to the leftmost node in the lower
level and restart from Step 1. If there is no such node either, terminate the
algorithm.

Nmin and Th are hyperparameters. Nmin represents the minimum number of
data points within a cluster, and Th is the minimum threshold for the silhouette
coefficient.

4 Numerical Experiments

To investigate the effectiveness and practicality of our method, we conducted
numerical experiments with synthetic and real datasets1.

4.1 Comparison of Computational Time

We first compare the computational time and clustering accuracy of two meth-
ods: a baseline method that uses the silhouette coefficient as the objective func-
tion and our proposed method that uses the surrogate silhouette coefficient as the
objective function. Furthermore, we were concerned that the number of divisions
might change in the algorithm described in Sect. 3.3, so we made a modification
to accurately compare computational times. Specifically, the modification was
as follows: the condition for transitioning to Step 3 in Step 2 was changed to a
condition under which “the silhouette coefficient computed on the newly divided
data groups C∗

1 is smaller than the silhouette coefficient based on the data groups
C∗

2 that had been divided before the new division.”

Fig. 1. Scatter plots of synthetic data consisting of four clusters.

1 All code and scripts for our method are available at https://github.com/tokyotech-
nakatalab/interpretable time-series clustering.

https://github.com/tokyotech-nakatalab/interpretable_time-series_clustering
https://github.com/tokyotech-nakatalab/interpretable_time-series_clustering
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Fig. 2. Computational time and silhouette coefficient for each number of data points.

In this experiment, we used two-dimensional synthetic data. The datasets
consist of four clusters, and each data point is generated from its correspond-
ing normal distribution. We show an illustration of the synthetic dataset in
Fig. 1. We changed the number of data points from 400 to 4,000 in increments
of 400 and measured the computational time and clustering accuracy for each
case. The clustering accuracy was evaluated with the silhouette coefficient. The
results of the computational time and clustering accuracy are shown in Fig. 2.
For the baseline method, the computational time significantly increased as the
number of data points grows. In contrast, the proposed method showed only
a slight change in computational time. When the number of data points was
4,000, the computational time of the baseline method was 4,562 s, whereas the
proposed method took only 36 s. This means the computational time of the sur-
rogate silhouette coefficient was reduced to 1/125 compared with the silhouette
coefficient. Additionally, both methods achieved a clustering accuracy with a sil-
houette coefficient of approximately 0.57, indicating little difference in clustering
performance between the two methods.

From the results of the experiments, it was observed that the surrogate silhou-
ette coefficient significantly reduced the computational time without sacrificing
clustering accuracy compared with the original silhouette coefficient in Fig. 1.

4.2 Comparison Based on Distributions

From Sect. 4.1, it was observed that the surrogate silhouette coefficient signifi-
cantly reduced the computational time without sacrificing clustering accuracy.
In this section, we examine the limitations of the silhouette coefficient, especially
our proposed one, and the usefulness of branch features by using data with var-
ious distributions. In Fig. 3, both methods construct a decision tree using the
features in Sect. 3.1 and the algorithm in Sect. 3.3, but the baseline uses the sil-
houette coefficient, and our model uses the surrogate silhouette coefficient as an
evaluation metric. First, for non-convex clustering cases where scoring based on
the silhouette coefficient is not suitable, it can be seen that the clustering results
were not successful, as shown in Figs. 3a and 3b. Moreover, since the surrogate
silhouette coefficient evaluates the data within the branch nodes of the decision
tree, rather than considering the evaluation across the entire dataset, the results
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Fig. 3. Clustering results for various distributions

were heavily influenced by the previous splits. Therefore, while the clustering
based on the silhouette coefficient in Fig. 3a attempted to create cohesive clus-
ters, the surrogate silhouette coefficient generated fragmented clusters, as seen
in the case of the brown colored cluster. In Fig. 3d, clustering was performed by
incorporating 1.65x+ y as one of the branch features for each data point (x, y).
This suggests that with the addition of branch features, it may be possible to
solve the problem of decision tree clustering that cannot create divisions that
are not parallel to the axes.

4.3 Application for Time Series Data

We investigate the practicality of our method with a real dataset of purchase
histories from an e-commerce marketplace provided by Rakuten Group, Inc. We
clustered genres of products with their weekly sales quantity from 2019 to 2020.
For each genre, We used the weekly sales quantity for the time series feature,
where each feature is standardized so that its mean and variance are 0 and 1,
respectively. For branch features, we used three features: 1) the proportion of
sales quantity for each season, 2) the sales growth rates compared with the cor-
responding period of the previous year, and 3) the sales growth rates compared
with the previous week.

Figure 4 shows a decision tree constructed using only time series data on the
left and another constructed using the proposed method on the right. By using
branch features, it becomes easier to interpret the characteristics of each cluster.
This enables us to devise business strategies tailored to each cluster’s unique
features. The silhouette coefficient value for the decision tree with the branch
features was 0.019.
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Fig. 4. Decision tree constructed using only time series data (left), decision tree con-
structed using branch features (right).

4.4 Accuracy of Time Series Prediction Using Clustering Results

To assess the validity of the clustering results, we examined whether the cluster-
ing has yielded meaningful outcomes related to the problem it aims to solve from
various perspectives. We compared evaluation metrics of time series prediction
models for sales data with and without cluster labels as features.

Experimental Setup. We evaluated the performance of the sales prediction
model using the data from Sect. 4.3. We first normalized the sales data for each
genre to the range of 0–1 and predicted weekly sales for each genre on the basis of
the sales of the previous five weeks. We also used the presence of promotions as a
feature. The data was divided by holding out the 2020 data as the test set. The
2019 data was divided into training and validation sets, using time-series K-fold
cross-validation, and the prediction model was trained using LightGBM. In addi-
tion, for generating cluster labels, we performed clustering using the proposed
method. The normalized sales quantity was used as a time-series feature, and as
branch features, we utilized the rate of increase in sales quantity comparing the
week of and two weeks immediately prior to a promotion.

Results. The evaluation metric for the prediction model was RMSE. Addition-
ally, we used k-means with Dynamic Time Warping (DTW) as a baseline for
the clustering methods. According to Table 1, adding cluster labels as features
resulted in a lower RMSE. Furthermore, even among those that added cluster
labels as features, our model achieved a lower RMSE than the combination of
DTW and k-means. Such results suggest that the cluster labels generated from
our model can be useful for sales prediction.

In addition, the decrease in RMSE due to the addition of cluster labels in
Setting 2 was most pronounced in the samples during promotions. For the case
where the decrease in RMSE was sorted in descending order for each sample, the
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Table 1. Average and standard deviation of RMSE for 20 trials in each setting

Without Cluster Label With Cluster label

DTW+kmeans our method

0.2282 ± 0.0375 0.2144 ± 0.0126 0.2042 ± 0.0077

Table 2. Proportion of samples during promotions for each Top@K

Top@100 Top@500 Top@1000

100.0% 64.6% 41.9%

proportion of sales weeks included in the Top@K is shown in Table 2. Considering
that the overall proportion was 11.5%, this value indicates that the cluster labels
have captured the trend of promotions for each cluster.

5 Conclusion

We proposed an interpretable and fast time-series clustering method based on
decision trees. To ensure interpretability of time series clustering, we used inter-
pretable features for branching rule in decision tree and time-series features for
evaluating the clustering quality. To speed up the computation for constructing
decision tree, we also proposed to construct a decision tree with a new metric,
called surrogate silhouette coefficient. In our experiments, our method can sig-
nificantly reduced the computation time while keeping clustering quality. Also,
our method succeeded in yielding an interpretable and reasonable decision tree
with a real dataset.

For future work, since our current method requires us to design “branch
features” by hand, it is interesting to explore how to generate such features
automatically. Also, a user study is required to evaluate the interpretability of
our method quantitatively and qualitatively.

Acknowledgments. This study was conducted as a part of the Data Analysis Com-
petition hosted by Joint Association Study Group of Management Science. The authors
would like to thank the organizers and Rakuten Group, Inc. for providing us with a
real data set.
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Abstract. The widespread application of artificial intelligence algo-
rithms has brought about various ethical concerns, such as algorithm
discrimination. While there have been some efforts focused on enhanc-
ing the ethical performance of algorithms, the evaluation of their ethical
behavior has been largely neglected. However, conducting practical eval-
uations is often infeasible due to factors such as cost, legal, and other
constraints. In this context, computational experiments have emerged
as novel and powerful computational theories and tools for quantitative
analysis in complex social systems. This paper proposes an ethical evalu-
ation method of algorithmic behavior, called EMAB, which leverages the
computational experiment and simulation to construct an AI-driven arti-
ficial society, providing a dynamic and feedback-based environment for
evaluating the ethics of algorithms. EMAB includes users, algorithms,
and a dynamic data circulation mechanism between them. Taking the
recommendation algorithm as an example, we design test scenarios to
verify the superiority of the fair recommendation algorithm over the
unfair recommendation algorithm. The experimental results illustrate
the effectiveness and necessity of EMAB. The proposed method provides
a novel perspective for algorithm evaluation involving ethics.

Keywords: Algorithm evaluation · Agent-based Modeling ·
Computational experiments · AI ethics

1 Introduction

With the advent of the Internet and big data, artificial intelligence (AI) algo-
rithms have permeated into human daily life and even the realm of national gov-
ernance, transforming the functioning and progress of society comprehensively.
While algorithms have empowered society, their ethical issues have also trig-
gered a series of debates and research. Issues such as information cocoon rooms
[1], algorithm black boxes [2] and algorithm discrimination [3] continue to arise.
In this context, algorithmic governance has become an increasingly concerning
topic for researchers [4].
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Most research on algorithm ethics focused on improving algorithmic ethi-
cal performance and developing governance frameworks based on legal norms.
Few researchers have paid attention to evaluating the ethical behavior of algo-
rithms, which is essential for ensuring they operate in an ethical and socially
responsible manner. Evaluating the ethical behavior of algorithms is a complex
task that presents many challenges. Firstly, algorithms are self-evolving, contin-
uously updating their knowledge through interaction and information. Secondly,
the complex relationships between users can significantly affect users’ behavior
and the performance of algorithms that rely on user feedback. Furthermore, pri-
vacy concerns and legal restrictions often make it difficult to access sensitive
information required to evaluate the ethics of algorithms.

Taking the fairness evaluation as an example, existing methods can be divided
into two categories: one is based on indicators derived from static benchmark
datasets without feedback [5,6], but static data can hardly reflect the complexity
of real social systems. Another uses simulation to study the long-term fairness
performance [7]. However, it does not take into account the impact of complex
interactions between users. In fact, the interaction between users affects their
behavior and preferences, which in turn affects the fairness performance of the
algorithm.

The computational experiment provides a computational method for the
quantitative analysis. It cultivates the computing laboratory of the real system
in the information world, forming the artificial society [8]. This paper proposes a
method for evaluating the ethical behavior of algorithms based on computational
experiments. Overall, the contributions of this paper are mainly:

– The paper introduces EMAB, a novel ethical evaluation method for algorith-
mic behavior, which provides a dynamic and feedback simulation environment
to evaluate long-term fairness performance.

– The impact of user interaction is explored experimentally. The results high-
light the inadequacies of traditional evaluation methods and emphasize the
need for more realistic environments.

– A comparative experiment between a fair recommendation algorithm and an
unfair recommendation algorithm was conducted to demonstrate the efficacy
of EMAB. The results indicate that the fairness of both algorithms becomes
worse in the dynamic environment, but the fair algorithm still outperforms
the unfair algorithm.

2 Related Work

2.1 Ethical Research on Algorithmic Behavior

Nowadays, issues such as information cocoons narrowing cognition [9], discrim-
inatory pricing harming user rights [10], and unfair judicial rulings [11] have
raised concerns about AI algorithms. Some works aim to directly improve the
ethical performance of algorithms [12], while others focus on evaluating their
ethics. Algorithm auditing [13,14] involves a series of methods for reviewing
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algorithms to assess whether they comply with laws and ethical considerations.
However, challenges such as the lack of uniform standards and difficult access
have hindered the implementation. In terms of the fairness evaluation of algo-
rithms, there are some open-source tools that provide a visual representation of
the ethical performance [15,16]. However, these methods rely on static datasets
and are unable to evaluate algorithms in an interactive feedback environment.
The literature introduces ml-fairness-gym [7], which utilizes simulation to inves-
tigate the long-term fairness of algorithms. The article demonstrates that the
issue of long-term fairness is complicated by dynamic feedback. However, this
method does not consider the effects of intricate interactions between users.

2.2 Computational Experiments

Computational experiments have emerged as a new social science research
method. It can overcome limitations such as costs, legal restrictions, and ethi-
cal considerations. Moreover, this method combines qualitative and quantitative
analysis to better study complex phenomena and dynamic evolution. Currently,
the computational experiment has become a mainstream analysis method for
analyzing complex systems successfully [17–19]. The computational experiment
method can provide an artificial laboratory for the ethical evaluation of algorith-
mic behavior in a virtual environment, thereby solving the constraints of cost,
information acquisition, legal norms, and morality in the ethical evaluation of
algorithmic behavior [20–23]. Artificial society modeling is a key step in computa-
tional experiments. It needs to consider the agent’s autonomous decision-making,
heterogeneity, bounded rationality, and learning evolution mechanisms [24,25].
However, few works focus on including anthropomorphic features in agent mod-
eling, which can enhance the simulation of human society.

3 The Ethical Evaluation Method of Algorithmic
Behavior

3.1 Overall Framework

The EMAB consists of a recommendation algorithm, an artificial society, and
a loop feedback mechanism between them. During each recommendation cycle,
the algorithm collects user feedback data and generates a recommendation list.
The recommendation results are then analyzed using evaluation indicators. The
user agent perceives the recommendation list and then scores the items based on
the decision-making mechanism, and updates its states. After all users complete
the scoring, the algorithm collects the scoring data and performs self-evolution,
updating existing knowledge, and making the next recommendation, thus form-
ing a dynamic circular feedback mechanism between the algorithm and users.
Figure 1 depicts the overall framework of the proposed method, taking the fair-
ness evaluation as an example.
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Fig. 1. The framework of the EMAB method.

3.2 Artificial Society

Individual-Level Embedded-Psychology Modeling. The user agent is an
autonomous individual with the ability to perceive, make decisions, engage in
behavior, and optimize his actions. The formal expression of the user agent
is represented in the Eq. (1). R denotes the agent’s time-invariant character-
istics, while St denotes the time-variant ones. Et encompasses external events
observed by the user agent, which modify its state and behavior. Yt represents the
decision-making mechanism used by the agent to produce behaviors in response
to external stimuli and interactions. Vt is the set of behaviors, and N represents
the bounded rational constraint condition of the agent.

Agent =< R,St, Et, Yt, Vt, N > . (1)

The Perception module embodies its ability to perceive external stimuli Et and
output the perceived information Pert. The State module comprises a set of
states, which include R and St, as shown in Table 1. The neighbors refer to
other users who share a social relationship with the current user and the scoring
record denotes the memory capacity of the agent, enabling it to retain historical
scoring information within a specified time range. The user makes an action
Actt ∈ Vt according to Pert, Yt, Memoryt and Statet at time t, and its formal
representation is shown in Eq. (2). Then, the user updates the state according
to Pert and Actt.

Decision : Pert × Yt × Memoryt × Statet → Actt. (2)
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Table 1. Attributes of the User Agent

Type Attribute Attribute description

Fixed User identity(ID) Unique user ID
Gender User gender
Age User age

Mutable Preference vector Mean ratings
Neighbors Other users with social relationship
Scoring record User’s historical scoring records

Fig. 2. The decision of psychology-embedded user agents .

Based on the bandwagon effect [26] and crowd psychology [27], we imbue the
user agent with anthropomorphic features. Specifically, the user’s score for an
item will be influenced by other users who have similar preferences. This phe-
nomenon reflects how individuals with similar tastes interact in real life. The pro-
cess of generating simulated user ratings is shown in Algorithm 1. Figure 2 illus-
trates the decision-making framework for the psychology-embedded user agent.

Social-Level Modeling. EMAB builds a social network within the artificial
society by referring to the literature [28]. Specifically, at time t, the connection
probability between the newly added user node ut and the user node uw that
has joined in the past w time is based on the similarity of their preferences and
the influence, as shown in Eq. (3). S̄tw represents the standardized preference
similarity. cos(·) represents the cosine similarity, P represents the user’s prefer-
ence vector, and q indicates the number of nodes that have joined the artificial
society. F̄w is the normalized influence of node uw, represented by the degree
dw of node uw, as shown in Eq. (6). Once the network is formed, users with
connected edges become neighbors.

πtw = αS̄tw + (1 − α)F̄w. (3)

S̄tw = Stw(
q−1∑

j=0

Stj)−1. (4)
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Algorithm 1. User agent rating behavior.
Input: The collection of items to be rated Irate, the collection of users U , user historical
rating data R, rating similarity matrix between users SimRating, the number of similar
users K.
Output: User u’s rating for item i, u ∈ U , i ∈ Irate.
1: Refer to ratings from public datasets.

If the user u and item i being scored are present in the public data set, utilize the
score assigned to the user as the score for the item. If not, go to the next step.

2: Refer to the rating values of K similar users based on the interaction.
Choose the users who have rated the target item and have a positive rating similar-
ity with the target user. Select the top K users and perform a weighted summation
based on their rating similarity, e.g., rui =

∑K
j=0 SimRatinguj ∗ rji. rji represents

user j’s rating on item i.

Stj = cos(Pt, Pj) =
PT
t Pj

|Pt||Pj | . (5)

F̄w = dw(
q−1∑

j=0

dj)−1. (6)

3.3 Recommendation Algorithms and Metrics

Recommendation algorithms utilize user-item historical interaction data and
other information, such as social networks, to capture user preferences and item
characteristics, known as knowledge. Algorithm2 describes the operation process
of the recommendation algorithm based on embedding.

The recommendation performance is measured using R, as shown in Eq. (7),
where E means mathematical expectation and Rec(u) means the proportion of
items that the user u gives high ratings in the recommendation list. LikeNumu

represents the number of highly rated items by user u. Nu represents the recom-
mendation list for u. len(·) denotes the length of the set.

R = Eu∈U [Rec(u)]. (7)

Rec(u) = LikeNumu/len(Nu). (8)

Fairness means that the recommendation should be independent of sensitive
attributes. For example, if item i is only recommended to male users, it is unfair
because it heavily depends on gender. However, for recommendations that are
closely related to sensitive attributes (i.e., items that are uniquely specific to
one gender or age), blindly guaranteeing fairness may lead to poor recommenda-
tions, so a trade-off needs to be made. Here, we consider fairness within general
recommendation scenarios. Specifically, we use Eq. (9) to measure the fairness.
Using gender as an example, Arri is an array that records the number of times
item i is recommended to male users and female users respectively. V ar(i) is the
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Algorithm 2. The recommendation algorithm process.
Input: Collection of users U , collection of items I, user historical rating data R, pref-
erence similarity matrix between neighbors SimPre.
Output: A collection of recommended items for users.
1: Train a recommendation model based on R.

Train the model according to the specific recommendation algorithm.
2: Based on prior knowledge, predict user ratings for items.

Algorithms use learned knowledge to predict user ratings for items.
3: Generate a recommendation list from items with high predicted scores.

Recommended items for the current user are selected based on predicted scores
greater than the threshold. If no such items exist, proceed to step 4.

4: Refer to the user’s social relations.
Select the user u′ with the highest similarity to the current user’s preference among
the neighbors, as Eq. (5). If the algorithm generates a recommendation list for u′,
assign it to u. If there is no recommendation list for u′, search for the second most
similar user until a recommendation list is found for u. If no suitable recommen-
dation list can be found for u after traversing the neighbors, proceed to step 5.

5: Generate a list of random items as a recommendation list.
Generate a random recommendation list according to the specified length.

6: Collect user feedback data and update knowledge.
Collect user feedback scoring data, fine-tune the recommendation model, update
the knowledge, and then proceed to step 2 for the next recommendation.

variance of Arri. A smaller V ar(i) indicates that the recommendation for item
i is fairer.

F = Ei∈I [V ar(i)]. (9)

V ar(i) = E[|Arri − E[Arri]|2]. (10)

In addition, we identify the set of items with V ar(i) greater than the threshold
β, denoted as UnfairItem. These items are not considered to be fairly recom-
mended. If the unfairly recommended item appears in user u’s recommendation
list more than γ times, we consider the recommendation for u to be unfair, as
shown in Eq. (11) and (12).

UnfairItem = {i}, i ∈ I, V ar(i) > β. (11)

UnfairUser = {u}, u ∈ U, len(Nu ∩ UnfairItem) > γ. (12)

4 Experiment

4.1 Experiment Setup

The experiments are based on the MovieLens-1M [29] dataset. Firstly, the
fair recommendation algorithm and unfair recommendation algorithm [30] are
trained based on the dataset. According to the description in Sect. 3, an artifi-
cial society is constructed. The algorithm interacts dynamically with users, and
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co-evolves based on the data cycle. We evaluate the performance of the algo-
rithm after each round of recommendations. The parameter settings are shown
in Table 2. A fair recommendation algorithm learns user representations through
adversarial training and self-supervised learning so that they contain less sensi-
tive information. Besides, it restricts the predictive score to be independent of
user-sensitive attributes through regularization methods. Unfair algorithms do
not consider the impact of sensitive information.

Fig. 3. Comparison of the fair recommendation algorithm and the unfair recommen-
dation algorithm. The x-axis runEpoch indicates the number of artificial society runs.
(a) Recommendation performance under age attribute. (b) Fairness performance under
age attribute. (c) Recommendation performance under gender attribute. (d) Fairness
performance under gender attribute.

4.2 Analysis of Experimental Results

Comparison of the Fair Recommendation Algorithm and the Unfair
Recommendation Algorithm. First, we compare the performance of fair
and unfair recommendation algorithms in the artificial society. Figure 3 shows
the recommendation and fairness performance of the two algorithms when age
and gender are considered sensitive attributes. The experimental results demon-
strate that the fairness of the recommendation results decreases when user inter-
action and the cyclic interaction between the algorithm and users are taken into
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Table 2. Experimental parameter settings.

System variable Value

Number of users [30,40,...,100,200,...,1000,2000]
Length of recommendation list 20
runEpoch 20
Evaluation cycle 1
The number of fine-tuned training 40
α 0.5
β 1
γ 15
K [10,15,20,25]

Fig. 4. User preference similarity heat map. (a) The first recommendation. (b) The
fifteenth recommendation.

account. This further emphasizes the importance of considering the dynamic
environment when evaluating algorithm behavior. However, the fair recommen-
dation algorithm can still achieve better fairness performance without significant
loss in recommendation performance, which aligns with our expectations.

User-Centric Analysis. We analyze the change in user preference similarity
during the recommendation and plot the heat map of Pearson correlation coeffi-
cient [31] of preference vectors between connected users, as shown in Fig. 4, where
darker colors indicate greater similarity. It is evident that the similarity of prefer-
ences between users gradually increases, which confirms our previous ideas and
reveals that this phenomenon can negatively impact the fairness performance
of the recommendation algorithm to some extent. Additionally, according to
Eq. (12), we find out the users who are recommended unfairly and visualize the
situation in the social network, as shown in Fig. 5. Red nodes represent users
who have not received fair recommendations, and green nodes represent users
who have received fair recommendations. Through computational experiments,
the situation of each agent can be analyzed at the micro level.
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Exploring the Causes of Unfairness from a Data Perspective. We set
different proportions of users in the artificial society. The experimental results
reveal that unfairness becomes more pronounced when there are more male users.
We believe this is because the dataset contains more male user ratings. To val-
idate this hypothesis, we use different proportions of data for training. As the
ratio of male to female rating data increases from 1:1 to 2:1, and then to 3:1,
the corresponding fairness performance also increases from 0.3602 to 0.3641, and
finally to 0.3917.

Fig. 5. Fairness comparison of recommendations accepted by users. (a) With the unfair
recommendation algorithm. (b) With the fair recommendation algorithm.

5 Conclusion

This paper proposes EMAB, a method for evaluating the ethical behavior of
algorithms based on computational experiments. A simulated test environment is
constructed, which is dynamic, feedback-driven, and evolving. The experimental
results demonstrate that the fairness performance of the algorithm deteriorates
gradually in this environment. This highlights the limitations of static data and
the need for EMAB. Our method is suitable for algorithms that operate in
dynamic environments and interact with people. The current method is relatively
simple for user behavior modeling. Future more complex user behavior will be
considered. This method provides a new approach to the ethical evaluation of
algorithmic behavior, where there is little similar work, effectively addressing
the challenge of practical evaluation in complex situations.
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Abstract. To enable recourse, explanations provided to people should
be actionable, that is, explain what a person should do to change the
model’s decision. However, what actionability means in the context of
explainable AI is unclear. In this paper, we explore existing tools that
others developed to evaluate actionability in their respective domains. To
our knowledge, no prior work in the XAI field has developed such a tool to
evaluate the actionability of explanation. We conducted an experimental
study to validate two existing actionability tools for discriminating the
actionability of two types of explanations. Our results indicate that the
two existing actionability tools reveal metrics relevant for conceptualising
actionability for the XAI community.

Keywords: Algorithmic decision-making · explanation ·
actionability · metrics · machine learning

1 Introduction

Explainability is vital in domains like finance, medical diagnoses, and judicial
decisions [2–4]. Given the rapid adoption of decision-making systems, models
must offer both accuracy and actionable explanations for recourse, that is, to
help users understand what they could do or change in the future to get a
desirable outcome [8,9,11].

Previous studies suggest that counterfactual explanations could aid recourse,
possibly requiring multiple of these to accommodate diverse backgrounds
[6,9–11]. While multiple counterfactuals offer insights into favourable outcomes,
they do not detail the actions for achieving them. Consequently, others pro-
pose explanations with action recommendations, guiding users on reaching the
counterfactual state [2,8].
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These suggestions from prior works to enable recourse often rely on
researchers’ understanding of what constitutes an ‘actionable’ explanation. How-
ever, no metrics for evaluating explanation actionability in XAI exist. We aim
to identify such metrics by leveraging validated tools from other domains.
We selected two validated actionability tools for patient education materi-
als (PEMAT) [7] and cybersecurity advice [5]. In an experimental study, we
assessed whether these metrics effectively gauge actionability in the directive [8]
and counterfactual explanations [11]. We chose these two explanations because
we believed that directive explanations were more actionable as they included
explicit recommendations on what a user could do to change the outcome.

We ran an online study on Amazon MTurk with 90 participants in which we
exposed participants to lending and employee turnover scenarios. Our results
show that some of the metrics from existing actionability tools effectively
assessed the two explanations’ actionability. This suggests that the metrics these
tools cover are relevant to how we conceptualise actionability for XAI. The rat-
ings also suggested that counterfactual and directive explanations are almost
equally actionable; they differed only on one metric across the two domains.
Therefore, we could differentiate between the two explanations using the met-
rics from existing actionability tools. We find that having information that allows
users to identify steps they would take is an important criterion and that making
this information explicit is perhaps important. We also learn that some metrics
may be domain or individual-dependent.

2 Study Design and Methodology

To provide an actionable explanation, we aim to identify metrics helpful in devel-
oping an actionability assessment tool for XAI. Our independent variable was the
explanation type. Our dependent variable was the rating we collected using the
metrics inspired by the PEMAT and cybersecurity tools. We manipulated our
independent variables under the same control factors in three conditions to see
the effect of presenting explanations on rating actionability metrics. Experimen-
tal conditions one and two were used to test differences between responses under
different explanation conditions. We assumed that direct comparisons between
explanation types might affect actionability perceptions. Therefore, we added
experimental condition three to test whether exposure to multiple explanation
types for a single scenario would have different effects than repeated exposure
to a single explanation type.

– Condition C1: All three explanation options are counterfactual explanations
(CF) [11]. For example, a counterfactual explanation could explain the mini-
mum income needed to approve a loan. One of the options in each condition
was an attention check.

– Condition C2: All three explanation options are directive explanation
(DX) [8]. For example, to increase their income, the customer might be rec-
ommended to rent a room in their house.
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– Condition C3: Explanation options are of different types - one directive expla-
nation and the other counterfactual explanation.

2.1 Scenarios

We designed eight scenarios: four for credit risk assessment and four for employee
turnover decisions (refer to Appendices A and B for scenario details). Using the
Lending Club dataset1, we trained a logistic regression model for loan default
prediction, and another model for employee resignation prediction using the
employee turnover dataset2. These models achieved 85% and 80% accuracy
on the respective datasets. After training, we selected four customer/employee
records for scenario creation. We generated counterfactual and directive expla-
nations by employing existing techniques: [6] for the counterfactual and [8] for
the directive explanations.

Each scenario consisted of three parts: a customer/employee profile with rel-
evant details, an incomplete explanation including the AI decision (e.g., loan
approval/denial), and participant instructions. The participants selected one of
the three explanations they thought they could use to change an AI decision in
the future (e.g. from denying to approving a loan). In the credit domain, partic-
ipants acted as customers interacting with the AI. In contrast, in the employee
turnover domain, they played the role of an employee’s supervisor engaging
with the AI system. All scenarios concluded with an adverse outcome for the
individual.

2.2 Actionability Metrics

We used actionability metrics from PEMAT and the cybersecurity questionnaire.
We did not include audio and visual metrics (items) from PEMAT because
we provided primarily textual explanations. We asked participants to rate the
following three questions (answered on a scale of 0 (completely disagree) to 10
(completely agree):

IT1 My chosen explanation clearly identifies at least one action I can take.
IT2 My chosen explanation addresses me directly when describing what to

do.
IT3 My chosen explanation breaks down any action into manageable, explicit

steps.

We modified and incorporated statements from the cybersecurity question-
naire into the scenarios. Participants assessed these using the same scale (see
above).

IT4 I considered how difficult it would be for me to implement the chosen
explanation.

1 https://www.kaggle.com/datasets/husainsb/lendingclub-issued-loans.
2 https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-

dataset.

https://www.kaggle.com/datasets/husainsb/lendingclub-issued-loans
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset
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IT5 I considered the amount of time it would take me to implement the chosen
explanation.

IT6 I considered the amount of disruption it would cause me to implement the
chosen explanation.

IT7 I considered the level of confidence I have in implementing the chosen
explanation.

2.3 Online Study

We conducted an online study with 90 individuals (30 participants in each exper-
imental condition) using Amazon MTurk. The experiment was designed as
a Qualtrics3 survey. Ethics approval was obtained from our university before
the experiment. Participants were compensated USD $7 for participating in the
experiment.

The survey had five steps, adapted from [1,8]. The participants were first
given a plain language statement and then a consent form. If participants agreed
to continue, they answered logical questions to remove the robotic respondents
and filled out a demographic questionnaire. Following this, participants were
randomly assigned to one of three explanation conditions. These three condi-
tions had the same scenarios and questions, but the difference was just the type
of explanation. Next, participants were provided with instructions and then sce-
narios. The main tasks involved four scenarios; two of the four were randomly
selected from credit and two from the employee domain. The order of scenarios
and domains was randomised to reduce ordering effects.

We asked participants two questions in each scenario. The first question asked
the participants to select one explanation (of the three, with one being the atten-
tion check) they thought was most actionable for them to use to reach a desirable
outcome (e.g. approved loan) in the future. The explanation options were ran-
domised to reduce ordering effects. The second question asked the participants to
rate their chosen explanation using the actionability questions discussed earlier.
Data from the Qualtrics survey was first transferred to R software for analysis.
The Mann-Whitney U test was used to identify the differences in the rating
between metrics and Cohen’s d for effect size measure.

3 Results and Discussion

Our results show that some of the metrics from existing actionability tools effec-
tively assessed the two explanations’ actionability. The ratings also suggested
that counterfactual and directive explanations are almost equally actionable;
they differed only on one metric across the two domains. Therefore, we could
differentiate between the two explanations using the metrics from existing action-
ability tools. We used the attention check question to remove the three partici-
pants who were not engaged with the experiment. Of the 90, we had 87 partici-
pants after removal, with 27 in condition 1, 26 in condition 2 and 34 in condition
3. The average study time was 29 mins (SD = 11).
3 https://www.qualtrics.com/au/.

https://www.qualtrics.com/au/
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All participants were from the United States. 51.7% were Male ,46.0% were
female and 1.1% did not state their gender. In terms of age, 19.5% were 25–34,
33.3% were 35–44, 29.9% were 45–54, 13.8% were 55–74, and the rest were above
65 (3.4%). Regarding education, 13.8% were High school graduates, 18.8% had
some college but no degree, 48.3% had an Associate or Bachelor’s degree, 5.7%
had a Master’s degree, and 1.1% had a Professional degree. Participants experi-
enced applying for a credit comprised Not familiar at all (4.6%), Slightly famil-
iar(17.2%), Moderately familiar (32.2%), very familiar (31.0%) and Extremely
familiar (14.9%). For familiarity with human resource management, 13.8% were
Not familiar at all, 35.6% were Slightly Familiar, 31.0% were Moderately famil-
iar, 13.8% were very familiar, and 5.7% were extremely familiar.

3.1 Experimental Condition One and Two

We show the ratings for the two explanation types in both domains in Fig. 1
(we report detailed statistics in the Appendix). We observed that the median of
each actionability metric was slightly higher in the directive explanation (DX)
than in the counterfactual explanation (CF). Hence, it is evident that DX had
a positive trend across most actionability metrics.

Fig. 1. Comparing actionability metrics; credit domain show on top.

The Mann-Whitney U test indicated that, in both domains, the directive
explanation (DX) received significantly higher ratings than the counterfactual
explanation (CF) for the metric “breaks down any action into manageable,
explicit steps” (credit: W = 493.5, p = 0.01; employee: W = 506, p = 0.005). This
highlights DX’s provision of more detailed information, aiding users in identifying
actionable steps more effectively than the CF model. Furthermore, domain dis-
tinctions influenced explanation assessments. In the employee turnover domain,
the Mann-Whitney U test showed that DX had significantly higher ratings than
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CF for two additional metrics inspired by PEMAT: “clearly identifies at least
one action” (W = 492, p = 0.009) and “explanation addresses me directly”
(W = 457, p = 0.05). This suggests that counterfactual explanations include
implicit actions, while directive explanations explicitly state them.

However, the cybersecurity tool did not differentiate between the two expla-
nation types. One reason could be that the metrics from the cybersecurity ques-
tionnaire were more relevant to the specific action someone would take. At the
same time, the PEMAT had metrics that judged whether the explanation had
information for someone to identify the action in the first place. This suggests
that the three PEMAT-inspired metrics are essential in conceptualising and
developing an actionability assessment tool for XAI (Table 1).

Table 1. Comparing the actionability metrics inspired by PEMAT and cybersecurity
between C1 and C2 by Mann Whitney U Test and Cohen’s d calculations in credit and
employee domains.

Actionability metrics Credit Employee turnover
W p-value Cohen’s d W p-value Cohen’s d

Clearly identifies at least one action 449 0.06 – 492 0.0096 0.67 (medium)

Addresses me directly 422 0.20 – 457 0.05 0.60 (medium)

Breaks down any action 493.5 .01 –0.80 (large) 506 0.005 0.68 (medium)

Difficulty 376 0.66 – 319 0.57 –

Time Consumption 307.5 0.44 – 430.5 0.15 –

Disruption 409.5 0.30 – 449.5 0.07 –

Confidence 381 0.59 – 411.5 0.28 –

3.2 Experimental Condition Three

In condition three, most participants favoured directives over counterfactual
explanations. Of 68 responses, 58 in the credit domain and 63 in the employee
domain chose DX. Consequently, a direct comparison between DX and CF in
C3 is unfeasible due to the limited number of participants who selected CF.
Nevertheless, we compared C2 (all DX options) with C3 by excluding a few
CF respondents. A Mann-Whitney U test demonstrated a significant disparity
in directive explanation ratings between conditions 2 and 3 in specific metrics,
suggesting that participants’ appreciation for directive explanations improved
significantly when they were given counterfactual and directive explanations in
the same scenario.

4 Conclusion

We evaluated two existing actionability tools to test whether these metrics effec-
tively assess the actionability of the two types of explanations, directive and
counterfactual. We identified three items that effectively assessed the actionabil-
ity of directive and counterfactual explanations. We hope these metrics assist
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designers in creating more actionable explanations that allow end users to act
effectively. We recommend that future works consider our results as a starting
point to develop an actionability assessment tool for XAI.
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