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Abstract. Understanding user emotion is essential for Human-AI Inter-
action (HAI). Thus far, many approaches have been studied to recognize
emotion from signals of various physiological modalities such as car-
diac activity and skin conductance. However, little attention has been
paid to the fact that physiological signals are influenced by and reflect
various factors that have little or no association with emotion. While
emotion is a cross-modal factor that triggers responses across multi-
ple physiological modalities, features used in existing approaches also
reflect modality-specific factors that affect only a single modality and
have little association with emotion. To address this, we propose an app-
roach to extract features that exclusively reflect cross-modal factors from
multimodal physiological signals. Our approach introduces a multilayer
RNN with two types of layers: multiple Modality-Specific Layers (MSLs)
for modeling physiological activity in individual modalities and a single
Cross-Modal Layer (CML) for modeling the process by which emotion
affects physiological activity. By having all MSLs update their hidden
states using the CML hidden states, our RNN causes the CML to learn
cross-modal factors. Using real physiological signals, we confirmed that
the features extracted by our RNN reflected emotions to a significantly
greater extent than the features of existing approaches.

Keywords: EEG · ECG · GSR · LSTM · Multilayer RNN

1 Introduction

Understanding user emotions is extremely important for various human-AI inter-
action (HAI) scenarios including goal and non-goal oriented dialogue [6,8],
user-adapted content creation [1], and content recommendation [2]. While most
researchers collect ground truth of emotions by explicitly asking users what their
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emotions are, it is impractical to do so in real-world scenarios because doing so
interferes with users and degrades the user experience. Therefore, there has been
a great demand for recognizing user emotions from data that users generate.

Among various types of user-generated data, we focus on users’ physiologi-
cal signals such as electroencephalogram (EEG), electrocardiogram (ECG), and
galvanic skin response (GSR). Using wearable devices (e.g., watches, earphones),
these signals can be collected in a less constrained context compared to other
types of data such as texts, vocal tone, and facial expressions, which are avail-
able only when users write or say something or stay in front of a camera. In
addition, unlike these data, physiological signals provide robust signs of emotion
even when users exhibit their social masks to hide their true emotions [3].

Thus far, researchers have studied many approaches to recognize emotion
from physiological signals and have confirmed their significant utility for emo-
tion recognition [6]. However, little attention has been paid to the fact that
physiological signals are influenced not only by emotion but also by various fac-
tors that have little or no association with emotion. Among them are factors
that influence only a single physiological modality, i.e., a modality-specific fac-
tors. For example, heart muscle strength influences ECG signals, but has little
influence on modalities other than cardiac activity such as brain activity and
skin conductance. In contrast, emotion is a cross-modal factor, which triggers
responses across multiple physiological modalities, e.g., anger increases heart
rate and skin conductance level. Others are long-term factors such as body size
and gender. These factors also influence physiological activity, but they are very
different from emotion in a sense that they change very slowly or do not change,
whereas emotion changes over short periods of time, i.e., a short-term factor.

As such, while emotion is a cross-modal and short-term factor, physiological
signals are also influenced by and reflect factors that are modality-specific and/or
long-term. Although they have little utility for emotion recognition, existing
approaches extract and use features without distinguishing these factors, instead
mixing them into the features. We posit this has degraded emotion recognition.

In light of the above, we propose an approach to extract features that exclu-
sively reflect cross-modal and short-term factors. To achieve this, our approach
distinguishes factors reflected in physiological signals along two axes: long- or
short-term and modality-specific or cross-modal, and learns four types of factors
that are distinct from each other. By adopting RNN, our approach separately
models long- and short-term factors.

What is novel is that to model modality-specific and cross-modal factors,
we introduce a multilayer RNN that consists of two types of layers: multiple
Modality-Specific Layers (MSLs) that model physiological activity in individ-
ual modalities; and a single Cross-Modal Layer (CML) that learns cross-modal
factors, among which is emotion. Our RNN takes sequences of multimodal phys-
iological signals as input (e.g., ECG and GSR signals). Each MSL takes phys-
iological signals of its corresponding modality (e.g., MSL1 takes ECG signals,
MSL2 takes GSR signals) and reflects physiological states in its hidden state.
When updating the hidden state, the MSL uses not only its own hidden state
but also the CML’s hidden state. Since this is done in all the MSLs, it makes
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the CML’s hidden state affect physiological state in all the modalities the MSLs
correspond to. In effect, therefore, this enables the CML to learn factors that
affect physiological activities across multiple modalities, i.e., cross-modal factors.

To evaluate our approach, we recruited participants and measured their EEG,
ECG, and GSR signals while presenting them with musical pieces and movie
clips (i.e., stimuli). We trained our RNN by these signals and, using the CML’s
hidden states, evaluated how accurately we could recognize emotions that the
participants reported after each stimulus.

Our main contributions are as follows. 1) We propose a multilayer RNN that
separates the RNN layer to learn factors that affect physiological activities across
multiple modalities from the other layers designated to model modality-specific
physiological activities. This enables our approach to extract features that exclu-
sively reflect a cross-modal nature of emotion, which existing research has not
focused on. 2) Using real physiological data, we demonstrate our RNN extracts
features that reflect emotion to a greater extent than existing approaches.

2 Related Work

Similar to our approach, many existing approaches recognize emotion from mul-
timodal physiological signals. Subramanian et al. [11] and Miranda et al. [7]
used ECG, GSR, and EEG signals. Using feature extraction techniques that
are widely used for each modality, they extracted features from each modal-
ity (physiological features; e.g., standard deviation of heartbeat intervals from
ECG signals, mean skin conductance level from GSR signals). They then con-
catenated these physiological features and fed them into a classifier (i.e., early
fusion). However, modality-specific factors reflected in the physiological features
could not be removed by simple concatenation, thus limiting recognition accu-
racy. In addition, short- and long-term factors were not distinguished in the
features. While they also tested late fusion, in which they combined recognition
results in individual modalities to derive final results, the same issues remained
because they used the same physiological features as in the early fusion, whose
modality-specific factors hindered emotion recognition in each modality.

There are also multimodal approaches that adopt deep learning techniques.
However, they have the same issues. Liu et al. [5] and Yin et al. [12] used deep
autoencoders to learn shared representations of physiological features of multiple
modalities (e.g., EEG and Electrooculogram) and recognized emotions by feeding
the shared representations into classifiers. They trained the autoencoders so
that the physiological features of each modality could be reproduced from the
shared representations. This made the shared representations reflect not only
cross-modal factors but also modality-specific factors. In addition, the use of the
autoencoders did not help to distinguish between short- and long-term factors.

On the other hand, the approach proposed by Li et al. [4] can extract features
that exclusively reflect short-term factors. Using the dataset built in [7], they fed
time-series sequences of physiological features into LSTM, whose hidden states
were then fed into an attention network. These steps enabled them to focus on
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Fig. 1. An example of our multi-layered LSTM.

emotionally salient parts of the sequences, from which they extracted the hidden
states and fed them into a multilayer perceptron (MLP) to recognize emotions.
However, they performed these steps in each physiological modality and derived
final results by combining the results of individual modalities (i.e., late fusion).
Therefore, as in [7,11], emotion recognition in individual modalities was hindered
by modality-specific factors, which also degraded the final recognition results.

3 Proposed Approach

In contrast to the existing approaches, our RNN explicitly distinguishes the four
types of factors that influence physiological activity. Figure 1 exemplifies our
RNN (left) and shows how the four types, I−IV, are mapped to its variables
(right). Modality-specific factors, I and II, are modeled by the MSLs. Each MSL
corresponds to a single modality, e.g., MSL1 to EEG, MSL2 to ECG. It takes
sequences of 1) physiological features of the corresponding modality, which are
extracted in the same way as existing approaches (e.g., [7,11]), and 2) one-hot
vectors of user ID, by which a user representation (UR) is retrieved from the
user matrix. Since the physiological features fed to the MSL are limited to the
corresponding modality, its URs and hidden states reflect factors specific to this
modality (I and II). In addition, while the hidden states are updated sequentially,
the user matrix (set of URs) stays the same. This causes the MSL URs to reflect
long-term factors (I) and its hidden states to reflect short-term factors (II).

On the other hand, cross-modal factors, III and IV, are modeled by the CML.
As shown by link (A) in the figure, the CML sends its hidden states to the MSLs.
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Table 1. List of notations

The MSL cell uses these CML hidden states together with its input (the phys-
iological features and URs) and its previous hidden states to update its hidden
states. Because updated MSL hidden states are used to predict the physiological
features at the next timeslot, it can be regarded as representing physiological
state. Updating such MSL hidden states using the CML hidden states means
that the CML hidden states affect physiological activity of individual modal-
ities. Because all the MSLs update their hidden states in this way, the CML
learns factors that affect physiological activity across multiple modalities, i.e.,
cross-modal factors (III and IV). As in the MSL, the CML also reflect short-term
factors (III) in its hidden states and long-term factors (IV) in its URs, but the
difference being they are cross-modal.

In addition to modeling I∼IV, our RNN also models the process by which
individual physiological differences moderate the relationship between emo-
tion and physiological activity. For example, users with different heart mus-
cle strength would have different ECG signals even when their emotions are
the same. Our RNN models such moderating effect of individual differences
by updating the MSL hidden states (reflecting physiological state) using both
the CML hidden states (emotion) and the MSL URs (individual differences,
e.g., heart muscle strength). This also differentiates our RNN from the existing
approaches discussed in Section 2, all of which do not consider this moderating
effect.

The next section describes in detail the hidden state updating in our RNN
and its training process. See Table 1 for the notations and their descriptions.

3.1 Updating the Hidden States

Input to the CML and MSL are formatted as

CML : dataCa = [xC
a,1, x

C
a,2, ..., x

C
a,t, ..., x

C
a,T ] and (1)

MSL n : datana = [xn
a,1, x

n
a,2, ..., x

n
a,t, ..., x

n
a,T ], (2)

where xC
a,t = (iu , is,t) denotes user a’s t-th action (e.g., viewed t-th segment of

a movie clip M); and xn
a,t = (iu ,pn

t ) denotes his physiological features extracted
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from signals during t-th action. Once xC
a,t is input to the CML, it first retrieves

a UR and stimulus segment (SS) representation (SR) from the user and SS
matrices, i.e., eCu = WC

u iu and eCs,t = WC
s is,t , respectively. It then updates its

hidden state hC
t as follows:

hC
t = fC( hC

t−1, eCu , eCs,t ), (3)

where fC is a function implemented by LSTM. See the supplementary material
at https://osf.io/mj3nr/ for detail.

After updating the hidden state, the CML sends it to all MSLs via link (A),
which is done every time the CML updates its hidden state. When the MSL
receives hC

t , it retrieves a UR from its user matrix (enu = Wn
u iu ) and uses them

together with input physiological features (pn
t−1) to update its hidden state hn

t

as follows:
hn
t = fn( hn

t−1, hC
t , enu , pn

t−1), (4)

where fn is a function implemented by LSTM (see the supplementary material).

3.2 Model Training

Loss 
calculation

(A) (A)

Fig. 2. Loss calculation

When datan
a is fed, each MSL predicts

physiological features in each times-
lot, e.g., if the input is datan

a =
[xn

a,t, x
n
a,t+1, ..., x

n
a,T−1], the output is

[p̂n
t+1, p̂

n
t+2, ..., p̂n

T ]. The predicted phys-
iological features are compared with the
actual features to calculate the loss that
is used to learn the parameters of the
MSL and CML cells and the user and SS
matrices (Wn

u , WC
u , and WC

s ). Figure 2
shows how the prediction and loss calculation are performed. The MSL predicts
physiological features using its hidden state as follows: p̂n

t+1 = fn
MLP(hn

t+1),
where fn

MLP is an MLP with ReLu activation. Then, the MSL calculates the
residual sum of squares between actual and predicted physiological features as
the loss.

4 Experiment

We built datasets and evaluated the extent to which the CML hidden states
reflect emotion. We performed the following three steps: (1) Feature extraction
- from the physiological features stored in our datasets, we extracted another
set of features for emotion recognition (emotion features). In our RNN, the
CML hidden states were used as the emotion features; (2) feature selection -
we then performed LASSO regression to select the emotion features; and (3)
linear regression - using the selected emotion features, we built models to predict
emotions and evaluated their model fit and prediction accuracy.

https://osf.io/mj3nr/
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We performed (1)–(3) for our RNN and three approaches to compare. The
first approach, which was implemented following [7,11], did not distinguish
between the four types of factors at all when extracting the emotion features
(hereafter “baseline”). The second one distinguished between long and short-
term factors but not between cross-modal and modality-specific factors as in [4];
and the third one distinguished the four types of factors, but did not model
the moderating effect of individual physiological differences. The last two were
implemented by removing key features from our RNN (will be explained in 4.4
Ablation Study).

We built two different datasets and performed (1)-(3) for each dataset. In
addition, because combinations of physiological modalities available in real-world
scenario would be different depending on the devices users wear, we performed
(1)-(3) for all possible modality combinations available in our datasets. That is,
A) EEG+ECG+GSR, B) EEG+ECG, C) EEG+GSR, and D) ECG+GSR.

4.1 Dataset

Due to page limitations, only a brief summary of the datasets is described below.
See the supplementary material (https://osf.io/mj3nr/) for detail. Although sev-
eral datasets are publicly available today (e.g., [7,11]), we built and used our own
datasets. One reason is because the contacts of these datasets did not respond
to our requests. The other is because they used only videos as stimuli when col-
lecting physiological signals. Because music is another popular type of stimulus
that would be played more often especially while working, studying, etc., we
considered evaluation should be done for both music and video.

We built Music and Movie datasets by conducting data collection experi-
ments, in which 54 and 52 (out of 54) subjects participated, respectively. They
were presented with multiple stimuli, each of which was 60 s long, while their
EEG, ECG, and GSR signals were measured. In total, 2,336 and 2,119 trials
were performed for the music and movie datasets, respectively (one trial denotes
one subject listening to/viewing one stimulus). After listening to/viewing each
stimulus, they reported emotions according to the six dimensions whose scores
ranged 0–15, (a) sad-happy, (b) nervous-relaxed, (c) fear-relieved, (d) lethargic-
excited, (e) depressed-delighted, and (f) angry-serene. Although Russel’s cir-
cumplex model [10] has been widely used to determine emotion, we did not use
it because it is not easy for lay participants to report “arousal” and “valence”
defined in the model. We selected the six dimensions so that the participants can
easily report their emotions and the dimensions cover the Russel’s circumplex
as much as possible.

After collecting the physiological signals, we extracted the physiological fea-
tures from the raw signals by feature extraction techniques that are widely used
for each modality as in [7,11]. We extracted two types of features: window and
stimulus features, which are summarized in Table 2. For the window features,
we applied sliding window to the raw signals measured during one stimulus and
extracted features from each window. We set the window size to ten seconds and
used two different slide sizes, three and five seconds. That is, we had 17 and 11

https://osf.io/mj3nr/
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windows for each stimulus, respectively. The stimulus features were extracted
from entire signals measured during a stimulus. We stored the physiological fea-
tures in the datasets after performing z-standardization for each dimension.

Table 2. Physiological features. Bold numbers denote dimension.

4.2 Step1 - Extraction of Emotion Features

Proposed Approach. Of the two types of the physiological features, we used
the window features as the input to our RNN. That is, an input sequence to
the CML and MSL n (dataC

a and datan
a) corresponds to a trial. An element of

dataC
a (i.e., is,t) and datan

a (i.e., pn
t ) correspond to t-th window of a stimulus

and the physiological features extracted from the raw signals in t-th window of
the stimulus, respectively. The total number of input sequences was equal to the
number of trials, out of which 80% were used for training and 20% for validation.
We did not use the stimulus features because is,t corresponds to a stimulus if
we do so and thus the number of input sequences, which is equal to the number
of participants, was too small for training our RNN.

The hyper parameters were as follows: slide size of the sliding window =
[3sec, 5sec], learning rate = [5 × 10−4, 1 × 10−3], dimension of hidden layers of
the MSL’s MLP (i.e., fn

MLP) = [(16, 8), (32, 16)] (from input to output layer),
batch size = [16, 32], and dimension of UR, SR, and hidden state of the CML
and MSL = [8, 16]. For all possible combinations of the hyper parameters, we
conducted training and validation for 100 epochs and extracted the CML hidden
states of the validation samples when we observed the minimum validation loss.
We repeated this changing training and validation samples so that we could
obtain the CML hidden states for all trials. Because the prediction target is
emotion after each trial, we used the last CML hidden state of each trial as the
emotion features, i.e., if the last element of dataC

a was is,T , we used hC
T .

Baseline. Following [7,11], we first concatenated the physiological features
across modalities. This was done for both the stimulus and window features.
For example, if the modality combination was A) EEG+ECG+GSR, we built
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137 (116 + 10 + 11) dimension features from the stimulus features and 748
((29 + 7 + 8) × 17) dimension features from the window features (if there are 17
windows in a stimulus) for each trial. We then reduced their dimension by per-
forming PCA and extracted top n features in terms of their contribution ratio so
that their cumulative contribution ratio is maximum below a threshold. We used
these features as the emotion features. We set three different thresholds, 0.85,
0.90, and 0.95. In the following, S and W denote the emotion features extracted
from the stimulus and window features, respectively. Because Miranda et al. [7]
reported that recognition by unimodal features outperformed multimodal fea-
tures, we also extracted S and W for each physiological modality.

4.3 Step 2 and 3 - Feature Selection and Linear Regression

After extracting the emotion features, we performed feature selection and linear
regression. These were done for each of the six emotion dimensions.

We performed the feature selection because dimension of the emotion features
of the baseline was large relative to the sample size (i.e., the number of trials).
For fair comparison, this was done for both the baseline and our approach.
We first finetuned the LASSO parameter λ, which controls the strength of the
imposed regularization based on the number of selected features. Over a set of
λ values, we sought the value that output the most accurate prediction (i.e.,
minimum mean squared error between the actual and predicted emotion scores)
performing five-fold cross-validation multiple times. Second, we conducted the
LASSO regression again using the value of λ determined in the previous step
and selected features for which the regression coefficients were not zero.

After the feature selection, we performed two types of linear regression. One
is model fit evaluation using all samples. The other is prediction evaluation by
performing five-fold cross validation.

4.4 Ablation Study

AB1

AB2

Fig. 3. Variants for ablation study.

To determine the effectiveness of the
key features of our RNN, we eval-
uated its variants without the key
features, which are shown in Fig. 3.
One is a single layer RNN (AB1) that
takes concatenated multimodal phys-
iological features (ps,t in the figure)
as input and the other is a multilayer
RNN without the MSL URs (AB2).
We extracted their hidden states (the
CML hidden states in AB2) as the
emotion features and evaluated them
in the same way as our RNN.
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Similar to [4], while AB1 can extract emotion features that exclusively reflect
short-term factors, it cannot distinguish between modality-specific and cross-
modal factors, mixing both into the features. While the emotion features of AB2
would exclusively reflect short-term and cross-modal factors, the MSL in AB2
cannot model the moderating effect of individual physiological differences due
to lack of the MSL URs.

Table 3. Emotion recognition results. A−D represent the modality combinations (ref.
section 4). Shaded cells denote results inferior to our RNN (ours) in the same columns.
Cells with hatched lines indicate that LASSO selected no emotion feature. Black cells
denote the best results for the emotion dimensions. For the baseline, BL and U-BL,
the table shows the best results of the three PCA thresholds. U-BL uses a single
physiological modality in BL and the table shows the result of the best modality in a
corresponding combination (e.g., U-BL in column B show better of EEG and ECG).

5 Results and Discussion

Table 3 shows the results. Due to page limitations, the table shows only the
Akaike Information Criterion (AIC; model fit metric; the lower the better) and
the Root Mean Square Error (RMSE; prediction accuracy metric). See the sup-
plementary material (https://osf.io/mj3nr/) for the results of other metrics. As

https://osf.io/mj3nr/
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the table shows, the regression models of our RNN (ours) outperformed the
baseline models (BL, U-BL), AB1, and AB2 in most conditions not limited to
specific stimulus types, emotion dimensions, or modality combinations.

Compared to the baseline models, which do not distinguish between the four
types of factors at all, ours outperformed them in all conditions of both datasets
with only one exception (RMSE of (b)-C in the Movie dataset). The differ-
ences are significant according to the relative likelihood (RL) that are calculated
from their AICs; RL = exp((AIC(ours)−AIC(BL or U-BL))/2), where AIC(M)
denotes the AIC of regression model M . In all conditions, the RLs between ours
and the best baseline models are less than 0.05 (see the supplementary material),
which means that the likelihood of the best baseline models being closer to the
true model than ours is less than 0.05. This indicates that the features extracted
by our RNN reflect emotions to a significantly greater extent than the baseline.

The same is true between our RNN and its variants, AB1 and AB2. Out of
24 conditions, ours outperformed them in 23 conditions in the Music dataset and
20 conditions in the Movie dataset for both AIC and RMSE. The RLs between
ours and the better of AB1 and AB2 were less than 0.05 in all 23 conditions
in the Music dataset and 15 out of 20 conditions in the Movie dataset. These
results indicate that the following key features of our RNN, which were not
implemented in AB1 and AB2, significantly contributed to causing its emotion
features to reflect emotion. That is, the multilayer structure for distinguishing
cross-modal and modality-specific factors and the MSL URs for modeling the
moderating effect of individual physiological differences.

What is notable in our RNN is that using more modalities does not neces-
sarily make the emotion features (i.e., the CML hidden states) reflect emotion
more. As shown in the table, using all three modalities (i.e., A) performed best in
only three out of 12 cases (six emotion dimensions × two datasets). This accords
with the existing studies [7,11]. For example, in [11], ECG+GSR outperformed
EEG+ECG+GSR for recognizing arousal. The authors considered this would
be because EEG did not reflect arousal as well as the other two modalities and
would be noise for the recognition.

Although our RNN differs from them in the feature extraction, we consider
this is also true for our approach. In our RNN, the CML learns latent common
factors that affect all input physiological modalities. While this prevents the
CML from learning modality-specific factors, it would be also possible that the
CML fails to learn factors that are common to only a subset of input modal-
ities and useful for emotion recognition but do not affect the remaining input
modalities. For example, in the Music dataset, C) EEG+GSR outperformed A)
EEG+ECG+GSR to recognize c) fear-relieved. We consider using ECG as input
would have prevented the CML from learning factors that are common only to
EEG and GSR and useful for recognizing this emotion dimension.

In light of the above, as in the existing approaches, it is necessary to compare
possible modality combinations to identify the best combination in our approach.
Since the best modality combinations are different between emotion dimensions
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and stimulus types (music and movie), the comparison of modality combinations
should be done for each emotion dimension and stimulus type.

6 Conclusions, Limitations and Future Direction

In this paper, we proposed a multilayer RNN to extract features from multimodal
physiological signals for emotion recognition. Using a multilayer structure, our
RNN models the process by which emotion affects physiological activities across
multiple modalities. This enables our RNN to extract features that are cross-
modal, which is one of the characteristics of emotion but has been overlooked
in existing studies. The experiments conducted on EEG, ECG, and GSR sig-
nals showed that the features extracted by our RNN reflected the participants’
emotions to a significantly greater extent than existing approaches.

One limitation is that our RNN only models unidirectional relationship
between emotion and physiological activity, i.e., the former affects the latter.
According to Roberts et al [9], perception of internal physiological state (known
as interoception) would also affect emotion. Modeling this inverse relationship in
our RNN would make the features reflect emotion more. This possibility should
be explored. Another limitation is that we only examined physiological signals
collected while the participants stayed still. In real-world scenarios, however,
physiological signals would contain noise caused by body movements. Further
studies are warranted to investigate how our RNN performs with such signals.

References
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