
Guiding Task Learning by Hierarchical RL
with an Experience Replay Mechanism

Through Reward Machines

Jinmiao Cong, Yang Liu, and Chuanjuan Liu(B)

School of Computer Science and Technology, Dalian University of Technology,
Dalian 116024, China

cjm111@mail.dlut.edu.cn, {ly,chanjuanliu}@dlut.edu.cn

Abstract. Recently, reinforcement learning (RL) has made great
progress in theory and application. Whereas, challenges remain in RL,
such as low sample utilization and difficulty in designing suitable reward
functions. Therefore, this paper focuses on optimizing the structure of
the reward function and improving sample utilization. We propose a hier-
archical reinforcement learning (HRL) algorithm based on the options
framework, which incorporates a segmented reward mechanism and an
experience replay mechanism. The reward mechanism can help the agent
grasp the reward function’s internal structure. The experience replay
mechanism includes a buffer for storing typical experiences and a partic-
ular buffer for storing the special state experiences of the agent access-
ing the subtasks, which are conducive to training. We conducted single-
task and multitask tests in multiple environments. Experimental results
demonstrate that our algorithm has a better performance than baseline
algorithms.

Keywords: HRL · Reward Mechanism · Experience Replay
Mechanism

1 Introduction

To address low sample utilization and slow learning rate of RL [7] in large-
scale problems, scholars have introduced the HRL algorithm, which decomposes
intricate problems into subproblems, such as HAMs, MAXQ, and Options [5].
However, owing to the hierarchical structure, these methods may not guarantee
convergence to the optimal strategy. To overcome this limitation, researchers
leveraged the prior knowledge of the Reward Machines (RM) [4] to mitigate the
problem of converging to suboptimal solutions. The RM has received widespread
research attention, including LSRM [8], CRM [2], and HRM [2]. These works use
RM to decompose tasks and to output the combination of reward functions under
different conditions. In spite of solving some tasks in the environments, they are
still prone to issues such as slow learning speed and poor performance.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 164–170, 2024.
https://doi.org/10.1007/978-981-99-7019-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7019-3_17&domain=pdf
https://doi.org/10.1007/978-981-99-7019-3_17


Guiding Task Learning by Hierarchical RL 165

Our Contribution. In order to improve learning speed and problem-solving
ability, this work proposes an algorithm, dubbed Hierarchy based on Options
with an Experience Replay Mechanism (HOERM). HOERM adopts an option-
based hierarchical structure, which is relevant to HRM [2]. However, we designed
a well-structured reward mechanism and included an experience replay mecha-
nism. We refined the segmented reward mechanism by using the value iteration
method to calculate the potential values of each state in the RM (See Sect. 2
for details). The difference in potential values between states can serve as inter-
mediate rewards. Therefore, the agent also receives appropriate rewards during
the transition of intermediate states in the RM. Besides, we designed an expe-
rience replay mechanism that includes two replay buffers. ReplayBuffer1 is a
typical buffer that normally stores various experiences during the learning pro-
cess. ReplayBuffer2 is a special buffer that specifically stores experiences when
the agent accesses task-specific states. We effectively utilized these experiences
to help the agent learn the strategy and complete tasks faster. Finally, we proved
the effectiveness of the proposed mechanism through experiments.

2 HOERM Through Reward Machines

This section will introduce the details of the definition of Reward Machine (RM)
and how the proposed HOERM learns strategies through RM.

2.1 Reward Machine

Reward Machine (RM) [6] is a special finite state machine that takes an abstract
description of the environment as input and outputs the combination of reward
functions under different conditions. The formal definition of RM is below:

Definition 1. (Reward Machine): Given a set of propositional symbols (P), a
set of environment states (S), and a set of feasible actions (A), an RM can be
defined as a five-tuple: RM = 〈U, u0, F, δu, δr〉, where U signifies a finite set of
states, u0 ∈ U is the initial state, and F constitutes a finite set of terminal states
such that U ∩ F = ∅. δu is the state transition function, δu : U × 2P → U ∪ F ,
and δr is the reward function outputted by the RM, δr : U → [S × A × S → R].

Fig. 1. The Minecraft environment and one RM for an example task



166 J. Cong et al.

Figure 1 depicts a “make-bridge” task and its associated RM in the Minecraft
environment. An RM R starts from an initial state u0 and is in a certain state
ut (ut ∈ U ∪ F ) after the agent moves some steps. Every edge in Fig. 1 (b) is
labeled as a tuple 〈ϕ, r〉, in which ϕ is a logical formula composed of propositional
symbols from P and r is the reward. When a truth assignment σ satisfies ϕ (i.e.,
σ |= ϕ), R transitions from state ut to ut+1 and gives a reward of r = δr(ut, ut+1).
The σ is a set containing propositions in P, which are true at the state ut of
RM.

To obtain the truth assignment σ, we introduced a labeling function L :
S × A × S → 2P . Given a state transition e = (s, a, s′), the labeling function
L(s, a, s′) assigns truth values to the proposition symbols in P. According to the
RM definition and L(s, a, s′), we can formally describe how to apply RMs in RL.

Definition 2. MDPRM: A Markov Decision Process with an RM (MDPRM)
can be represented by a tuple MR = 〈S,A, p, γ,P, L, U, u0, F, δu, δr〉, in which
S, A, p, and γ are the conventional definitions of an MDP; P is the set of
propositional symbols; L : S × A × S → 2P serves as the labeling function; and
U , u0, F , δu, and δr are the definitions of the RM.

In MR, the states of the environment and RM are updated after each step
of the agent’s execution. After the agent takes an action, then s is transitioned
to s′, the RM state will also transition to u′ = δu(u,L(s, a, s′)). Then, the agent
receives a reward r = δr(u,L(s, a, s′)), which is used to learn and adjust policies.

2.2 Proposed HOERM

This subsection introduces our HOERM for learning MDPRM policies. Our
HOERM learns a set of options [5] for each task, focusing on causing RM to
transition from one state to another. The high-level policy learns to select the
most suitable option, while the low-level policy is modeled using double DQN,
responsible for executing actions, and learns options to complete each subtask.

As mentioned above, our HOERM learns an option for each transition 〈u, ut〉
between RM states. The initial set of each option is defined as I〈u,ut〉 = {〈s, u〉 :
s ∈ S, u ∈ U}. Since option〈u,ut〉 can only be selected to execute when the RM
state is u, its policy can be represented as π〈u,ut〉(a|s) by the environmental
state s. The termination of an option〈u,ut〉 is defined by Eq. (1), that is, when
it transitions to a new RM state or reaches the final state of the task.

β〈u,ut〉
(
s′, u′) =

{
1 if u′ �= u or s′ is terminal
0 otherwise (1)

The goal of option strategy π〈u,ut〉 is to guide the agent to complete the
option as soon as possible. Thus, we designed an innovative reward mechanism.

r〈u,ut〉
(
s, a, s′) =

⎧
⎨

⎩

δr(u) (s, a, s′) + γΦ(ut) − Φ(u) if ut �= u and ut = δu (u, L (s, a, s′))
δr(u) (s, a, s′) + r+ if ut �= u and ut �= δu (u, L (s, a, s′))
δr(u) (s, a, s′) + r− otherwise

(2)



Guiding Task Learning by Hierarchical RL 167

In Eq. (2), δr(u) (s, a, s′) is the reward function output by RM, which outputs
1 only when it reaches the final state and 0 otherwise. Φ(u) is the potential
function used to measure the proximity of the current state to the terminal
state. In simple terms, the closer u is to the terminal state, the larger Φ(u) is.
γ is the discount factor defined in the MDP. The hyper-parameters r+ and r−

represent the auxiliary reward and punishment, respectively. If the transition
(s, a, s′) makes the RM state transition from u to ut (ut = δu(u,L(s, a, s′))),
agent will receive a reward of δr(u)(s, a, s′), as well as an additional reward of
γΦ(ut) − Φ(u), to encourage the agent for completing the RM state transition.

In addition, when the RM state transitions from u to another state u
(u /∈ {u, ut}, but u ∈ U), the agent receives a reward of δr(u)(s, a, s′) and
an additional auxiliary reward of r+. This is because even though the transition
is not the intended one, the experience is still valuable for the overall task.

For this reason, the experience replay mechanism includes a unique experi-
ence buffer, denoted as ReplayBuffer2 . It specifically stores the agent’s experi-
ences when triggering high-level events that lead to transition from u to another
state u = δu(u,L(s, a, s′)), where u /∈ {u, ut} but u ∈ U . The two main rea-
sons for this design are as follows: (1) The conventional random sampling from
the experience buffer often results in numerous irrelevant experiences, leading
to slow training. (2) No matter whether u is equal to ut, the experience gained
when the agent triggers a high-level event is valuable, which helps to expedite
the learning of policies for completing the subsequent subtask swiftly.

Finally, if the agent fails to trigger any high-level event and the RM state
remains unchanged, it will receive an auxiliary punishment (r−) in addition to
the reward (δr(s, a, s′)). This negative feedback can motivate the agent to adjust
its policy for the subtask as soon as possible.

3 Experiments

In this section, we perform algorithm performance tests on environments with
discrete (Minecraft [1]) and continuous (Water World [3]) state spaces. These
environments cover both single-task and multi-task scenarios. Three baseline
algorithms were used, which are representative, state-of-the-art approaches for
combining RMs with reinforcement learning. The first is Q-learning for RMs
(QRM), proposed by [4]. The second and third are counterfactual experiences
for RMs (CRM) and hierarchical RL for RMs (HRM), proposed by [2].

3.1 Experimental Setup

Each algorithm was run independently three times, and the average performance
was reported. The results are presented uniformly in this paper, with four algo-
rithms compared: the red line is the proposed HOERM; the green line is QRM;
the sky-blue line is CRM; and the magenta line is HRM. The X-axis corresponds



168 J. Cong et al.

to the number of training steps, in millions, while the Y-axis represents the aver-
age normalized reward across all tasks. Tables 1 and 2 also provide the average
and maximum reward values obtained by each algorithm.

3.2 Experiment 1: Results in Minecraft

The first experiment was conducted in the Minecraft environment with a dis-
crete state space, introduced by [1]. As shown in Fig. 1 (a), the environment grid
contains the agent and raw materials needed for the tasks, with randomly gener-
ated positions. The task set Ω = {ϕ1, ϕ2, . . . , ϕ9, ϕ10}, where ϕi ∈ Ω, i ∈ [1, 10]
is one task in Minecraft (e.g., the “make-bridge” task).

Fig. 2. Results in the Minecraft environment.

Figure 2 and Table 1 show the results obtained by each algorithm in single-
task and multitask tests. According to the experimental results, the HRM algo-
rithm has a fast initial learning speed in the two tests. In the single-task test,
HRM’s average reward is 0.6480, which is only slightly lower than our HOERM’s
0.6712. However, HRM’s maximum reward is the lowest, only 0.81. The QRM
and CRM have a slower speed of obtaining rewards than HRM but result in a
maximum reward of 1. The results are similar for the multitask test. On the
whole, our HOERM algorithm performs best in both tests. Although the initial
learning speed is slightly slower than that of HRM, it obtains the highest values
for both average and maximum rewards. The maximum rewards in two types of
tests are 1, indicating that HOERM can complete all tasks excellently.

Table 1. Rewards in the Minecraft environment.

Algorithm single task multiple tasks
maximum reward average reward maximum reward average reward

HOERM 1.0 0.6712 1.0 0.7746

QRM 1.0 0.6218 0.9642 0.7218
CRM 1.0 0.6095 0.9602 0.5803
HRM 0.81 0.6480 0.6779 0.5917



Guiding Task Learning by Hierarchical RL 169

3.3 Experiment 2: Results in Water World

The second experiment was conducted in “Water World”, which is an environ-
ment with continuous state space and consists of a 2D box containing balls
of various colors. We defined 10 tasks in this environment, including touching
different specific colored balls. More detailed information can be found in [2].

Fig. 3. Results in the Water World environment.

Figure 3 and Table 2 present the result of four algorithms in Water World. In
the single-task test, the four algorithms exhibit similar initial learning speeds,
but the HRM algorithm still achieves the lowest maximum reward of 0.666. In
multitask test, notably, HRM’s average reward is 0.6318, which is close to the
value for CRM and higher than QRM thanks to its fast initial learning speed.
However, HRM’s maximum reward of 0.7125 still remains the lowest. Both CRM
and QRM do not significantly improve their rewards compared to HRM in this
complex environment. Although HOERM has a slightly slower initial learning
speed than HRM, the effective sample utilization enhances its task completion
capability, resulting in the highest rewards than the three baseline algorithms,
demonstrating its excellent performance.

Table 2. Rewards in the Water World environment.

Algorithm single task multiple tasks
maximum reward average reward maximum reward average reward

HOERM 1.0 0.8571 0.9466 0.6918

QRM 0.9137 0.8257 0.7689 0.6038
CRM 0.9553 0.8255 0.7644 0.6391
HRM 0.6660 0.5898 0.7125 0.6318

4 Discussion

In this paper, we introduced the concept of RM and proposed an HRL algo-
rithm. The proposed algorithm effectively leverages RMs and achieves efficient



170 J. Cong et al.

sample utilization, leading to rapid strategy learning and impressive experimen-
tal results. In future work, we will explore the application of RMs in multi-agent
problems to tackle more complex tasks effectively by sharing RM knowledge.

Acknowledgements. This study was supported by the National Natural Science
Foundation of China (Grant Nos. 62172072).

References

1. Andreas, J., Dan, L., et al.: Modular multitask reinforcement learning with policy
sketches. In: 9th International Conference on Machine Learning, Proceedings, pp.
166–175 (2017)

2. Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward machines:
exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res.
73, 173–208 (2022)

3. Karpathy, A.: REINFORCEjs: WaterWorld demo (2015). http://cs.stanford.edu/
people/karpathy/reinforcejs/waterworld.html

4. McIlraith, S., Icarte, R.T., Klassen, R.: Using reward machines for high-level task
specification and decomposition in reinforcement learning. In: 10th International
Conference on Machine Learning, Proceedings, pp. 2107–2116 (2018)

5. Sutton, R.S., et al.: Between MDPs and Semi-MDPs: a framework for temporal
abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

6. Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., McIlraith,
S.: Learning reward machines for partially observable reinforcement learning. In:
Advances in Neural Information Processing Systems, vol. 32 (2019)

7. Wiering, M.A., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim.
12(3), 729 (2012)

8. Zheng, X., Yu, C., Zhang, M.: Lifelong reinforcement learning with temporal logic
formulas and reward machines. Knowl.-Based Syst. 257, 109650 (2022)

http://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
http://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html

	Guiding Task Learning by Hierarchical RL with an Experience Replay Mechanism Through Reward Machines
	1 Introduction
	2 HOERM Through Reward Machines
	2.1 Reward Machine
	2.2 Proposed HOERM

	3 Experiments
	3.1 Experimental Setup
	3.2 Experiment 1: Results in Minecraft
	3.3 Experiment 2: Results in Water World

	4 Discussion
	References


