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Preface

Greetings and welcome to 20th Pacific Rim International Conference on Artificial
Intelligence (PRICAI 2023). It was an honor to convene this significant event in a hybrid
format in Jakarta, Indonesia. It was indeed a privilege for the Faculty of Computer
Science at Universitas Indonesia to undertake the role of hosting these pivotal discus-
sions that reach beyond the academic realm, advancing societies and economies across
the Pacific Rim and Oceania.

This year, we received a remarkable 422 submissions: 354 for the Main track and
68 for the AI-Impact track. Every submission underwent a rigorous double-blind review
process, receiving a minimum of 3 reviews, and in some cases up to 6. Throughout the
process, the program committee (PC) members engaged in discussions, with additional
reviews sourced as needed, prior to finalizing recommendations. The program chairs
then assessed the reviews and comments, calibrating discrepancies in individual reviews
and ratings to maintain decision consistency. The collective effort of the entire program
committee, including chairs, 409 PC members, and 91 external reviewers, was monu-
mental in ensuring a fair and consistent selection process. We ultimately accepted 95
regular papers and 36 short papers for oral presentation, resulting in a 22.51% accep-
tance rate for regular papers and an overall acceptance rate of 31.04%. Additionally, a
comprehensive quality control procedure was introduced for camera-ready papers. The
aim was to prompt authors to incorporate the feedback provided by PC members and
reviewers into their final submissions. Content similarity checks were also performed to
ensure that the similarity rate did not exceed 15%.

The technical program was comprehensive and intellectually engaging, featuring
five workshops, nine tutorials, two panel discussions, and the main conference sessions.
All regular and short papers were orally presented over three days in parallel and in
topical program sessions. We were honored to have some of the brightest minds in AI
to share their insights and enrich our collective understanding: Thomas Anton Kochan
(Massachusetts Institute of Technology, USA), Hanna Kurniawati (Australian National
University, Australia), Anand Rao (Carnegie Mellon University, USA), and Geoff Webb
(Monash University, Australia).

A heartfelt thanks was expressed towards the organizing committee for their tireless
and unwavering efforts that facilitated the success of this event. A special recognition
to Adila Alfa Krisnadhi for his leadership on local arrangements. We would also like to
acknowledge our workshop and tutorial organizers, who formed the core of our technical
program. These dedicated individuals brought a diverse range of expertise that promised
to deepen our exploration of AI technologies.

We would like to thank our advisory board members for their invaluable guidance
during the planning stages. A special recognition to Abdul Sattar for his extraordinary
contribution towards planning, execution, and a conference site visit that contributed
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to the success of PRICAI 2023. Furthermore, we extend our gratitude to the PRI-
CAI Steering Committee for entrusting us with the privilege of hosting this impactful
conference.

Wewould not havebeenherewithout the support of our sponsors,whose commitment
enabled us to keep pushing boundaries. To them, as well as all participants in this event,
thank you.

As we delved into the various topics that PRICAI 2023 had to offer, let us remind
ourselves that our deliberations have a lasting impact on the future of AI in the Pacific
Rim and beyond. We genuinely hope that our time spent at PRICAI 2023 will pave the
way for innovations that are both groundbreaking and beneficial.

November 2023 Fenrong Liu
Arun Anand Sadanandan

Duc Nghia Pham
Dickson Lukose
Petrus Mursanto



Organization

PRICAI Steering Committee

Steering Committee

Quan Bai University of Tasmania, Australia
Tru Hoang Cao University of Texas Health Science Center at

Houston, USA
Xin Geng Southeast University, China
Guido Governatori Reasoning Research Institute, Australia
Takayuki Ito Kyoto University, Japan
Byeong-Ho Kang University of Tasmania, Australia
M. G. M. Khan University of the South Pacific, Fiji
Sankalp Khanna CSIRO Australian e-Health Research Centre,

Australia
Fenrong Liu Tsinghua University, China
Dickson Lukose Tabcorp Holdings Ltd., Australia
Hideyuki Nakashima Sapporo City University, Japan
Abhaya Nayak Macquarie University, Australia
Seong Bae Park Kyung Hee University, South Korea
Duc Nghia Pham MIMOS Berhad, Malaysia
Abdul Sattar Griffith University, Australia
Alok Sharma RIKEN, Japan & University of the South Pacific,

Fiji
Thanaruk Theeramunkong Thammasat University, Thailand
Zhi-Hua Zhou Nanjing University, China

Honorary Members

Randy Goebel University of Alberta, Canada
Tu-Bao Ho Japan Advanced Institute of Science and

Technology, Japan
Mitsuru Ishizuka University of Tokyo, Japan
Hiroshi Motoda Osaka University, Japan
Geoff Webb Monash University, Australia
Albert Yeap Auckland University of Technology, New Zealand
Byoung-Tak Zhang Seoul National University, South Korea
Chengqi Zhang University of Technology Sydney, Australia



viii Organization

Conference Organizing Committee

General Chairs

Dickson Lukose Tabcorp Holdings Ltd., Australia
Petrus Mursanto Universitas Indonesia, Indonesia

Program Chairs

Fenrong Liu Tsinghua University, China
Arun Anand Sadanandan SEEK, Australia
Duc Nghia Pham MIMOS Berhad, Malaysia

Local Organizing Chair

Adila Alfa Krisnadhi Universitas Indonesia, Indonesia

Workshop Chairs

Evi Yulianti Universitas Indonesia, Indonesia
Takahiro Uchiya Nagoya Institute of Technology, Japan

Tutorial Chairs

Fariz Darari Universitas Indonesia, Indonesia
M. A. Hakim Newton University of Newcastle, Australia

Publicity Chairs

Panca Hadi Putra Universitas Indonesia, Indonesia
Md Khaled Ben Islam Griffith University, Australia

Advisory Board

Abdul Sattar Griffith University, Australia
Hammam Riza KORIKA; University of Syiah Kuala, Indonesia
Patricia Anthony Lincoln University, New Zealand
Jirapun Daengdej Merlin’s Solutions International, Thailand
Seong Bae Park Kyung Hee University, South Korea
M. G. M. Khan University of the South Pacific, Fiji



Organization ix

Qingliang Chen Jinan University, China
Takayuki Ito Kyoto University, Japan
Tru Hoang Cao University of Texas Health Science Center at

Houston, USA
Sankalp Khanna CSIRO Australian e-Health Research Centre,

Australia
Stéphane Bressan National University of Singapore, Singapore
Hideyuki Nakashima Sapporo City University, Japan

Program Committee

Tooba Aamir Data61, CSIRO, Australia
Azizi Ab Aziz Universiti Utara Malaysia, Malaysia
Taufik Abidin Universitas Syiah Kuala, Indonesia
Kiki Adhinugraha La Trobe University, Australia
Martin Aleksandrov Freie Universität Berlin, Germany
Hissah Alotaibi University of Melbourne, Australia
Sagaya Amalathas University of Southampton, Malaysia
Galia Angelova Bulgarian Academy of Sciences, Bulgaria
Patricia Anthony Lincoln University, New Zealand
Ryuta Arisaka Kyoto University, Japan
Mohammad Arshi Saloot MIMOS Berhad, Malaysia
Siti Liyana Azman International Islamic University Malaysia,

Malaysia
Mohamed Jaward Bah Zhejiang Lab, China
Quan Bai University of Tasmania, Australia
Thirunavukarasu

Balasubramaniam
Queensland University of Technology, Australia

Arishnil Kumar Bali University of the South Pacific, Fiji
Vishnu Monn Baskaran Monash University, Malaysia
Chutima Beokhaimook Rangsit University, Thailand
Pascal Bercher Australian National University, Australia
Ateet Bhalla Independent Technology Consultant, India
Hanif Bhuiyan Monash University, Australia
Ran Bi Dalian University of Technology, China
Thomas Bolander Technical University of Denmark, Denmark
Chih How Bong Universiti Malaysia Sarawak, Malaysia
Aida Brankovic CSIRO, Australia
Chenyang Bu Hefei University of Technology, China
Agus Buono Bogor Agriculture University, Indonesia
Xiongcai Cai University of New South Wales, Australia



x Organization

Jian Cao Shanghai Jiao Tong University, China
Tru Cao University of Texas Health Science Center at

Houston, USA
Sixian Chan Zhejiang University of Technology, China
Narayan Changder National Institute of Technology Durgapur, India
Hutchatai Chanlekha Kasetsart University, Thailand
Kaylash Chaudhary University of the South Pacific, Fiji
Bincai Chen Dalian University of Technology, China
Gang Chen Victoria University of Wellington, New Zealand
Liangyu Chen East China Normal University, China
Qi Chen Victoria University of Wellington, New Zealand
Rui Chen Nankai University, China
Siqi Chen Tianjin University, China
Songcan Chen Nanjing University of Aeronautics and

Astronautics, China
Tingxuan Chen Central South University, China
Weitong Chen University of Adelaide, Australia
Weiwei Chen Sun Yat-sen University, China
Wu Chen Southwest University, China
Yakun Chen University of Technology Sydney, Australia
Yingke Chen Northumbria University, UK
Wai Khuen Cheng Universiti Tunku Abdul Rahman, Malaysia
Yihang Cheng Tianjin University, China
Boonthida Chiraratanasopha Yala Rajabhat University, Thailand
Cody Christopher Data61, CSIRO, Australia
Jinmiao Cong Dalian University of Technology, China
Dan Corbett University of Sydney, Australia
Zhihong Cui Shandong University, China
Jirapun Daengdej Assumption University of Thailand, Thailand
Li Dai Zaozhuang University, China
Fariz Darari Universitas Indonesia, Indonesia
Iman Dehzangi Rutgers University, USA
Zelin Deng Changsha University of Science and Technology,

China
Chandra Kusuma Dewa Universitas Islam Indonesia, Indonesia
Sarinder Kaur Dhillon Universiti Malaya, Malaysia
Shiyao Ding Kyoto University, Japan
Zheng Dong Baidu, China
Shyamala Doraisamy University Putra Malaysia, Malaysia
Ellouze Ellouze University of Sfax, Tunisia
Uzoamaka Ezeakunne Florida State University, USA
Lei Fan University of New South Wales, Australia



Organization xi

Chastine Fatichah Institut Teknologi Sepuluh Nopember, Indonesia
Shanshan Feng Shandong Normal University, China
Xiao Feng University of Electronic Science and Technology

of China, China
Valnir Ferreira Jr. Independent Consultant, Australia
Muhammad Firoz-Mridha American International University-Bangladesh,

Bangladesh
Tim French University of Western Australia, Australia
Xiaoxuan Fu China University of Political Science and Law,

China
Somchart Fugkeaw Thammasat University, Thailand
Katsuhide Fujita Tokyo University of Agriculture and Technology,

Japan
Naoki Fukuta Shizuoka University, Japan
Hua Leong Fwa Singapore Management University, Singapore
Marcus Gallagher University of Queensland, Australia
Dragan Gamberger Ru -der Bošković Institute, Croatia
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Abstract. For actor-critic algorithms in reinforcement learning, the pol-
icy update is guided by a Q function, so the quality of the policy is largely
affected by the quality of the Q function. Most work has focused on how
to estimate a more accurate Q function, such as using a dropout operator.
However, we show that for continuous control scenarios using determin-
istic policy gradient algorithms, the quality of the Q function does not
depend on the accuracy of the Q function itself, but on the accuracy of
the action gradient of the Q function. Motivated by this observation, we
propose Dropout with Action Gradient Estimator (DAGE), which aims
at estimating the action gradient of the Q function accurately instead
of the Q function itself. We conduct sufficient experiments on PyBullet
Control Suite, and empirically show that DAGE can estimate a more
accurate action gradient and achieve better performance than baselines.

Keywords: action gradient · dropout operator · continuous control

1 Introduction

In reinforcement learning [19], actor-critic [14] algorithms are one of the most
commonly used algorithms. In actor-critic algorithms, there is a critic which esti-
mates a Q-value, and an actor for policy learning based on the Q-value provided
by the critic. Therefore, the quality of the learned policy is largely determined by
the quality of the Q-value provided by the critic. There has been lots of work aim-
ing at improving the quality of the critic by estimating a more accurate Q-value.
Among these methods, ensemble [21] is commonly used. For example, REDQ [4]
uses Q-ensemble to reduce the standard deviation of Q-value estimation, REM
[1] weights the outputs of multiple Q-networks to estimate a more accurate Q-
value. However, compared to using a single network, ensemble methods have too
much computational burden since there are multiple networks to update. The
dropout operator [18], which has ensemble nature, can achieve similar perfor-
mance to ensemble, while the computational cost is much lower. Therefore, the
dropout operator has been applied to replace ensemble. For example, DroQ [10]
uses a small ensemble of Q networks to achieve much higher sample efficiency
than REDQ; MEPG [9] leverages the dropout operator, also greatly reducing
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the computation cost. Those methods all aim at estimating a more accurate Q-
value, just replacing ensemble with a dropout operator. However, we point out
that in continuous control tasks where deterministic policy gradient is leveraged,
the quality of the critic does not depend on the accuracy of the Q function itself,
but on the accuracy of the action gradient of the Q function. Hence, to guide
policy update better, we should focus on estimating the action gradient of the
Q function accurately.

To that end, we propose Dropout with Action Gradient Estimator (DAGE),
which aims at estimating a more accurate action gradient by utilizing a dropout
operator. DAGE can be seen as a framework and used for any deterministic pol-
icy gradient algorithm, such as DDPG [15], TD3 [7], etc. We conduct experiments
on a set of continuous control tasks on open-source PyBullet Suite [5], which is
more challenging than MuJoCo [20]. We show that DPG algorithms (such as
DDPG, TD3) combined with our framework results in better performance than
vanilla algorithms.

Our contributions can be summarized as follows.

– We give an insight into the role of the action gradient in DPG algorithms;
– As far as we know, we are the first to utilize a dropout operator to estimate

an accurate action gradient.
– On PyBullet Suite, DAGE achieves better overall performance compared

against popular baseline methods.

2 Related Work

Action Gradient Estimation. Deterministic Policy Gradient (DPG) [17] is
widely applied in continuous control tasks. Some early work [11,16] explored
the role of the action gradient and involved the gradient of the value function in
backpropagation process. However, they do not apply function approximation so
there are no performance guarantees on DPG algorithms with neural networks.
As far as we know, MAGE [6] is the closet to our work, which also utilizes
the action gradient to guide policy update. However, MAGE learns the action
gradient in a model-based scheme [13], which greatly increases computational
burden. We learn the action gradient in the context of model-free scenarios
instead.

Dropout Operator in RL. Dropout is a technique to avoid overfitting in
deep learning [18]. It has been applied to RL to improve the performance of
DRL algorithms. DRL algorithms use the dropout operator for different pur-
poses: [12] introduce dropout to model-based algorithms to replace ensemble
models. [8] apply dropout to a Q function to estimate uncertainty to encourage
exploration. In our work, we introduce consistent dropout operator similar to [9]
to a Q function, aiming to estimate the action gradient more accurately, which
is different from other work.
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3 Background

We consider a Markov Decision Process (MDP), which can be formulated by
tuple (S,A, r, p, γ, μ), where S is state space, A is action space, r is reward
function, p is state transition probability, γ is discount factor and μ is initial
state distribution. For actor-critic algorithms, the critic tries to estimate a Q
function, defined as Q(s, a) = E [

∑∞
t=0 γtr(st, at)|s0 = s, a0 = a]. And the actor

aims to find the optimal policy:

π∗ = argmax
π

[Q(s0, a0)|s0 ∼ μ, a0 ∼ π(s0)] (1)

For deterministic policy gradient algorithms, we denote J(θ) = E [Q(s0, πθ(s0))],
then the goal of reinforcement learning is to maximize J(θ). According to Deter-
ministic Policy Gradient (DPG) theorem [17]:

∇θJ(θ) = Es

[∇aQφ(s, a)|a=πθ(s)∇θπθ(s)
]

(2)

where ∇aQφ(s, a) is the action gradient of the Q function. Equation 2 shows that
policy gradient is only related to the action gradient of the Q function, instead
of the Q function itself. Therefore, to better guide policy update, it is necessary
to estimate a more accurate action gradient.

4 Estimate Action Gradient Accurately

4.1 You Need to Minimize Action Gradient Error

In this subsection, we formalize the concept of action gradient error and demon-
strate why it is necessary to minimize action gradient error for DPG algorithms.
In general policy evaluation process, critic aims to learn a Q function as accurate
as possible, that is:

φ∗ = argmax
φ

Es,a∼π

[(
Qπ

φ(s, a) − Qπ(s, a)
)2

]
(3)

where Qπ(s, a) is ground-truth and Qπ
φ(s, a) is a parametrized network. In

practice, Qπ(s, a) is hard to get, so we use target Q-value Qtarget(s, a) =
r(s, a) + γQφ(s′, a′) to approximate Qπ(s, a). Then the target is to minimize
TD-error:

φ∗ = argmax
φ

E(s,a,s′,a′)∼π

[(
Qπ

φ(s, a) − (
r(s, a) + γQπ

φ(s
′, a′)

))2
]

(4)

where TD-error is denoted as δφ =
(
Qπ

φ(s, a) −
(
r(s, a) + γQπ

φ(s
′, a′)

))2

. Propo-
sition 1 shows that bounding TD-error is beneficial for estimating a more accu-
rate objective function J(θ):
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Proposition 1. Let πθ be policy to be optimized, J(θ) be objective function esti-
mated by Qφ, J∗(θ) be ground-truth, then the difference between J(θ) and J∗(θ)
is bounded by TD-error:

|J(θ) − J∗(θ)| ≤ δ
1
2
φ (5)

Proof.

|J(θ) − J∗(θ)|2 =
∣
∣Eπ

[
Qπ

φ(s, a) − Qπ(s, a)
]∣
∣2

≤ Eπ

∣
∣Qπ

φ(s, a) − Qπ(s, a)
∣
∣2

≈ Eπ

∣
∣Qπ

φ(s, a) − (
r(s, a) + γQπ

φ(s
′, a′)

)∣
∣2

= δφ

so |J(θ) − J∗(θ)| ≤ δ
1
2
φ . ��

But is that enough? Even if bounding TD-error can estimate a more accurate
objective function, it does not guarantee that a better policy will be learned,
because the direction of policy update, that is, policy gradient, is not guaranteed.
We denote the norm of TD-error to the gradient of action as action gradient error:
‖∇aδφ‖. According to Proposition 2, we show that if we want to get a better
policy gradient, we need to bound action gradient error:

Proposition 2. Let ∇θJ(θ) be policy gradient to be optimized, ∇θJ
∗(θ) be

ground-truth, and we further hypothesize π is Lπ − Lipschitz continuous differ-
entiable deterministic policy, then the difference between ∇θJ(θ) and ∇θJ

∗(θ)
is bounded by action gradient error ‖∇aδφ‖:

‖∇θJ(θ) − ∇θJ
∗(θ)‖ ≤ Lπ ‖∇aδφ‖ 1

2 (6)

Proof.

‖∇θJ(θ) − ∇θJ
∗(θ)‖ =

∥
∥Eπ

[∇a

(
Qπ

φ(s, a) − Qπ(s, a)
) |a=πθ(s)∇θπθ(s)

]∥
∥

≤ Eπ

∥
∥∇a

(
Qπ

φ(s, a) − Qπ(s, a)
) |a=πθ(s)

∥
∥ ‖∇θπθ(s)‖

≤ Lπ ‖∇aδφ‖ 1
2

��
Proposition 2 shows that minimizing action gradient error can estimate a

more accurate policy gradient, thereby learning a better policy. To ensure the
accuracy of J(θ) and ∇θJ(θ), we add action gradient error into the process of
policy evaluation as a regularizer:

minφ Eπ |δφ|
s.t.Eπ ‖∇aδφ‖ ≤ η

(7)

In practice, we use the Lagrange multiplier method to transform the opti-
mization objective into:

min
φ

L(φ) = Eπ [|δφ| + λ ‖∇aδφ‖] (8)

where λ is a hyperparameter.
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4.2 Dropout Operator for Consistent Bellman Update

The dropout operator is often added to a Q function structure to achieve a sim-
ilar effect to ensemble. In fact, each update process with a dropout operator can
be seen as updating a sub-network of Q network, therefore the dropout operator
has ensemble nature. Previous work has focused on using the dropout operator
to estimate a more accurate Q-value, we use the dropout operator to estimate a
more accurate action gradient instead. However, since the dropout operator ran-
domly discards different neurons each time, applying regular dropout operator
directly into Q-network introduces source-target inconsistency, that is, online Q-
network and target Q-network are not the same sub-Q network(different neurons
are dropped). And it may cause Q-function to not converge, resulting in failure
of training. Therefore, we introduce the consistent dropout operator similar to
MEPG [9], but we further apply it in action gradient update process.

For a neural network, feed-forward process of layer l can be described as:

zl = wlxl + bl, xl+1 = f(zl)

where x is the input at layer l, w and b are weights and bias respectively, and f
is the activation function. If we apply dropout operator into layer l:

x̂l = xl 	 ml, zl = wlx̂l + bl (9)

where m ∼ Bernoulli(1 − p) is dropout mask, p is dropout rate, 	 is element-
wise product. We denote this dropout operator as Dl

m, which means applying
dropout with mask m at layer l. To avoid source-target inconsistency, we use
the same mask m on online Q-network and target Q-network:

Dl
mJQ(φ) = E(s,a)∼B

[(Dl
mQ(s, a) − (

r + γDl
mQ̄(s′, a′)

))2]
(10)

where we apply the same dropout operator Dl
m on Q and Q̄. Similarly, we apply

it on action gradient error:

∇aDl
mJQ(φ) = E(s,a)∼B

[
∇a

(Dl
mQ(s, a) − (

r + γDl
mQ̄(s′, a′)

))2]
(11)

Thus consistent dropout operator can eliminate the problem of inconsistency
while preserving Q diversity.

5 DAGE Framework

In this section, we propose Dropout with Action Gradient Estimator(DAGE).
DAGE realizes an accurate estimation of the action gradient through action
gradient estimator and consistent dropout operator. In the policy evaluation
process, a dropout operator mask m is sampled, then we apply Dl

m on Eq. 10
11 to update Q-function. In the policy improvement process, the complete Q-
network which doesn’t apply the dropout operator is used to train the policy
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network, equivalent to using the entire ensemble for policy improvement. DAGE
is summarized in Algorithm 1. Since DAGE is a framework for any DPG rl
algorithms, so we apply DAGE to DDPG and TD3 algorithm, called DE-DDPG
and DE-TD3. For DE-DDPG, there is one online Q-network and one target
Q-target, we apply the consistent dropout operator on both online and target
Q-network. For DE-TD3, there are two online Q-networks and two target Q-
networks. During forward propagation, we apply the same dropout operator on
both online networks and target networks, online networks are then updated by
min target.

Algorithm 1 Dropout with Action Gradient Estimator (DAGE)
Initialize: critic network Qφ, actor network πθ parameterized by φ and θ; target critic

network Qφ′ ; replay buffer B; Initial state s0.
Parameters: dropout rate p, regularization coefficient λ.
1: for t = 1 to T do
2: Perform action a ∼ πθ(s), observe the reward r and the next state s′.
3: Update replay buffer B ← B ∪ (s, a, r, s′)
4: Sample N transitions {(s, a, r, s′)}N from B.
5: Sample m ∼ Bernoulli(1 − p)
6: Calculate target value y = r(s, a) + γDl

mQφ′(s′, πθ(s
′))

7: Calculate TD-error LTD
φ = 1

N

∑ (
y − Dl

mQφ(s, a)
)2

8: Calculate action gradient error LAG
φ = 1

N

∑ ∇a

(
y − Dl

mQφ(s, a)
)2

9: Update critic φ ← argminφ LTD
φ + λLAG

φ

10: Update actor parameter θ by: ∇θJ(θ) = 1
N

∑ ∇aQφ(s, a)|a=πθ(s)∇θπθ(s)
11: Update target network: φ′ ← τφ + (1 − τ)φ′

12: end for

6 Experiment

In this section, we aim to answer the following questions: (1) Does DAGE perform
better than baseline methods on PyBullet Suite? (2) Does DAGE estimate a
more accurate action gradient? (3) What is the contribution of each component of
DAGE to the performance? (4) Is DAGE sensitive to the main hyper-parameters?
We conduct sufficient experiments on PyBullet Suite and compare our method
to common baselines. It is worth mentioning that PyBullet suite is considered
more challenging than Mujoco suite.

6.1 Overall Performance

We evaluate DAGE on four PyBullet tasks: HopperPyBulletEnv-v0, Walker2D-
PyBulletEnv-v0, AntPyBulletEnv-v0, HalfCheetahPyBulletEnv-v0. We imple-
ment DDPG, TD3 and DE-DDPG, DE-TD3. We run each algorithm under 5
different seeds, and the learning curves are presented in Fig. 1. Regarding the
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selection of hyper-parameters of each algorithm in the experiment, we list them in
Table 1. In particular, for DE-DDPG and DE-TD3, we set the hyper-parameter
λ to 0.1 and the dropout rate p to 0.1, other hyper-parameters are consistent
with DDPG and TD3. Learning curves in Fig. 1 shows that the application of the
DAGE framework to a vanilla DPG algorithm can significantly improve sample
efficiency and final performance on all four PyBullet tasks. To show the aggregate
performance of DAGE algorithm on these tasks, we compute SAC Normalized
Score of each algorithm as agent_score−random_score

SAC_score−random_score , where agent score repre-
sents the score of the corresponding algorithm on a given task; random score
represents the score of the random policy; SAC score represents the score of
SAC algorithm. Figure 2 shows the results aggregated over 4 tasks of PyBullet
Control Suite according to the metrics presented in [2]. IQM drops 25% of the
highest and lowest scores in all runs, and calculates the average of the rest. Opti-
mality Gap measures the performance gap between the estimated algorithm and
SAC. From Fig. 2, we can clearly see that DE-DDPG and DE-TD3 outperform
DDPG and TD3 in all four aggregated metrics.

Fig. 1. Learning curves for four different tasks in PyBullet Control Suite for DAGE
and vanilla DPG algorithms (5 runs, averaged return ± standard deviation). DE-TD3
and DE-DDPG are vanilla TD3 and DDPG algorithms after using DAGE framework.
As a reference, we use dotted lines to show the final performance of SAC algorithm on
each task (run and average with five different seeds).

6.2 Does DAGE Estimate Action Gradient More Accurately?

The core idea of DAGE is to estimate a more accurate action gradient. In
this subsection, we explore whether the action gradient estimated by DAGE
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Fig. 2. Aggregated metrics over 5 runs on 4 tasks of PyBullet Control Suite with
95% confidence intervals. The mean and intervals of metrics are estimated by per-
centile bootstrap with statified sampling according to [2]. The short black vertical lines
represent the mean of metrics and the shaded sections represent the 95% confidence
intervals. Higher Median, Mean, IQM and lower Optimality Gap, better the aggregated
performance.

Table 1. Hyper-parameters setup for experiment

Hyper-parameter Value

Shared
Actor network (256, 256)

Critic network (256, 256)

Batch size 256

Learning rate 10−3

Target update rate 5 × 10−3

Optimizer Adam
Discount factor 0.99

Replay buffer size 106

Warmup steps 104

DAGE
Exploration noise N (0, 0.1)

Noise clip 0.5

Action gradient regularization parameter λ 0.1

Dropout rate p 0.1

DDPG
Exploration noise N (0, 0.1)

Noise clip 0.5

TD3
Exploration noise N (0, 0.1)

Noise clip 0.5

Policy update frequency 2

SAC
Entropy weight 0.2

Maximum log std 2

Minimum log std −20
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is more accurate. To verify this, we compare the estimation of action gradi-
ent by TD3 and DE-TD3. To get true action gradient, we follow the defini-
tion of action gradient and use Monte Carlo method to estimate it. Specifically,
∇aQ(s, a) := limΔa→0

Q(s,a+Δa)−Q(s,a)
Δa , we use Monte Carlo method to esti-

mate the true Q-value, then we set Δa a small value so we can get an estimation
of the true action gradient. For ease of calculation, we conduct experiments
on MountainCarContinuous-v0 task on gym [3], where action-dim is 1. Figure 3
shows our experimental results. We can see that DE-TD3 estimates a more accu-
rate action gradient than TD3, which verifies our idea.

Fig. 3. Comparison of DE-TD3 and TD3 for estimation of action gradient. The solid
purple line is true action gradient.

6.3 Ablation Study

In this section, we aim to demonstrate how each component of DAGE contributes
to final performance improvement. We conduct ablation study on the same four
tasks of PyBullt Control Suite and show the ablation results of DE-DDPG and
DE-TD3 in Table 2. DAGE has two essential components: the action gradient
regularizer and the consistent dropout operator. We first remove the action gra-
dient regularizer and keep the consistent dropout operator, resulting in D-DDPG
and D-TD3. Then we only apply the action gradient regularizer and remove the
consistent dropout operator, resulting in AG-DDPG and AG-TD3. To further
verify the superiority of the consistent dropout operator over the regular dropout
operator, we replace the consistent dropout operator in DE-DDPG, DE-TD3
and D-DDPG, D-TD3 with the regular dropout operator, named DE-DDPG-R,
DE-TD3-R and D-DDPG-R, D-TD3-R respectively.

Table 2 shows that both the action gradient regularizer and the consistent
dropout operator are essential components for DAGE, and without either compo-
nent, the performance of the algorithm will decline. More specifically, we can see
D-DDPG-R(D-TD3-R) outperforms vanilla DDPG(TD3) while DE-DDPG(DE-
TD3) and D-DDPG(D-TD3) outperforms DE-DDPG-R(DE-TD3-R) and D-
DDPG-R(D-TD3-R) respectively, which shows that consistency is critical for the
dropout operator. AG-DDPG(AG-TD3) also outperforms vanilla DDPG(TD3),
showing that a more accurate action gradient is beneficial for DPG algorithms.
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Table 2. The average and std of the final returns over five runs for each algorithm
(mean ± std). We run each algorithm for 1M steps and take the return of the last
step as final return. The maximum average return for each task is bolded. Ant, Half,
Hopper, Walker are shorthands for AntPyBulletEnv-v0, HalfCheetahPyBulletEnv-v0,
HopperPyBulletEnv-v0, Walker2DPyBulletEnv-v0, respectively.

Algorithm Ant Half Hopper Walker

DE-DDPG 2531 ± 197 1064 ± 70 1879 ± 109 997 ± 49

DE-DDPG-R 2109 ± 207 894 ± 69 1655 ± 88 906 ± 32

AG-DDPG 2218 ± 117 871 ± 42 1520 ± 77 778 ± 44

D-DDPG 2290 ± 132 944 ± 55 1777 ± 91 824 ± 79

D-DDPG-R 2092 ± 341 667 ± 112 1544 ± 97 630 ± 64

DDPG 2006 ± 122 408 ± 11 1344 ± 78 474 ± 31

DE-TD3 3112 ± 78 2091 ± 133 2502 ± 50 2289 ± 211

DE-TD3-R 2984 ± 51 1809 ± 77 2335 ± 42 1893 ± 133

AG-TD3 2633 ± 43 1651 ± 98 2109 ± 21 1707 ± 132

D-TD3 2865 ± 102 1794 ± 35 2332 ± 43 1877 ± 88

D-TD3-R 2503 ± 51 1703 ± 44 2066 ± 56 1730 ± 10

TD3 2413 ± 197 1576 ± 23 2080 ± 74 1904 ± 22

6.4 Parameter Sensitivity

In this section, We study the effect of the main hyper-parameters on the perfor-
mance of DAGE algorithm. There are two main hyper-parameters of DAGE: the
action gradient regularization coefficient λ and the dropout rate p. We adjust λ
on HopperPyBulletEnv-v0 task and p over four PyBullet tasks. We use DE-TD3
to perform parameter sensitivity experiments. The original parameters of DE-
TD3 are consistent with Table 1, λ = 0.1, p = 0.1. First keep λ = 0.1, take the
following values for p respectively: [0.2, 0.1, 0.05, 0.01], draw the corresponding
heat map. Then keep p = 0.1, take the following values for lambda respectively:
[0.1, 0.5, 1, 5], draw the corresponding performance curve. As shown in Fig. 4,
DE-TD3 is robust to dropout rate p, which means we do not need to spend
time tuning the value of p. For λ, we observe that when λ is relatively small, as
the value of λ increases, the performance of the algorithm will improve because
action gradient guides the actor to update, but when λ is relatively large (like 5),
the performance of the algorithm will be greatly reduced. In further exploration,
we found that too large λ will cause the actor to fall into local optimum, that is,
the action gradient quickly decays to 0, and the actor stops updating. We leave
more in-depth exploration of this phenomenon for future work.
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Fig. 4. (a) Learning curves for HopperPyBulletEnv-v0 task in PyBullet Control Suite
for DE-TD3 with different λ. (b) Heat map for four different tasks in PyBullet Control
Suite for DE-TD3 with different p. The numbers in the heat map are Mean SAC
Normalized Score.

7 Conclusion

In this work, We show that for DPG algorithms, it is beneficial to use the action
gradient to guide the policy update, since policy gradient is only concerned
with the action gradient. Further, we use the consistent dropout operator to
estimate a more accurate action gradient and achieve improved performance
than baselines. We hope that our work sheds light on how to use the action
gradient to guide policy updates, and how to estimate the action gradient more
accurately. For future work, we first want to explore why the local optimum
phenomenon mentioned in Sect. 6.4 occurs, and we want to extend the use of
action gradient to the general policy gradient algorithms, through techniques
such as reparameterization.
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Abstract. Predicting pedestrian trajectories is vital for improving
safety and efficiency in human-robot interaction within traffic systems.
However, this task is inherently challenging due to the unpredictable
nature of human behavior. We present MotDiff, a method based on Vari-
ational Auto-encoders with a diffusion prior, which synthesizes latent
variables to capture the unobserved uncertainty and complex relation
among agents. We provide a comprehensive theoretical background of
our approach and evaluate it with various generative modeling meth-
ods using three public pedestrian datasets, showing its effectiveness in
achieving both accuracy and diversity.

Keywords: Generative Models · Motion Prediction · Probabilistic
Inference

1 Introduction

Accurate forecasting of pedestrian trajectories is essential for ensuring traffic
safety, yet the inherent stochastic nature of pedestrian motion behaviors signif-
icant challenges for prediction. Many deep generative models [3,9] have shown
great promise for this task by capturing multi-modal distributions of pedestrian
motion and enabling diverse trajectory generation. Specially, previous CVAE
based models [1,11] about to modeling the multi-modal distribution of future
trajectories, which usually requires an standard Gaussian prior on the latent
variables. Obviously, such convention often limiting the overall performance for
modelling complex and high-dimensional data tasks [19].

Denoising diffusion probabilistic models (DDPMs) [6] have showcased supe-
rior performances in various data generation tasks. To address this, we propose
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MotDiff, a variational Auto-Encoder based model for pedestrian motion predic-
tion with a latent diffusion prior. Besides, We design an attention-based diffusion
network for this prior module, which utilizes past routines and environmental
maps as conditions for classifier-free guidance. Experimental results confirm the
effectiveness of our framework design and demonstrate the efficacy of MotDiff
in three datasets.

2 Methodology

2.1 Preliminaries and Definitions

In each scene, the observable history states of agents are given by a tensor
X ∈ R

N×Th×D, where N is the agent number in the scene, Th is the history time
steps, D is the number of features of a agent (e.g. position, heading, speed). The
future trajectories of agents are given by a tensor Y ∈ R

N×Tf ×2, where Tf is the
future time steps. Despite of the agents stats, the road map features captured
from a bird-eye view [15] are also considered as context conditions, represented
by M ∈ R

L×Dl , where L is the number of lane segments and Dl is the feature
number of each lane segment (e.g. position, type).

Our task is to generate plausible future trajectories based on the past obser-
vation history states and the road map information, p(Y|X,M). For simplicity,
we absorb M to X as they both play as conditions in the distribution in further
expression, then the likelihood need to be maximize is p(Y | X).

2.2 Conditional Variational Inference with Latent Diffusion Prior

In our approach, a discrete latent variable of hidden size dK is adopted to capture
the unobserved features like pedestrains’ intention and driving habits, where
Z ∈ R

N×Th×dK represent the hidden states for each agent in the scene.

p(Y|X) =
∑

Z

p(Y|X, Z)p(Z|X). (1)

If we set a distribution over the latent variables, the likelihood gradient
log pφ (Y | X) can be formed as:

∑

Z

q(Z) log
pθ (Y, Z | X)

q(Z)
+ DKL (q(Z)‖pφ (Z | Y,X)) (2)

Here we choose q(Z) = qψ (Z | Y,X) as approximating distribution to pφ(Y, Z |
X) [4], and the associated evidence lower bound could be finally expressed as [22]:

Eq[log pφ (Y | Z,X) − log qψ(Z | Y,X)] + log Eq[p (Z | X)] (3)
Inspired by of DDPMs [6], the forward process could be fixed to a markov chain
gradually added a variance schedule β1, . . . , βK :

qψ (Z1:K | Z0) :=
K∏

k=1

qψ (Zk | Zk−1) , qψ (Zk | Zk−1) := N
(
Zk;

√
1 − βkZk−1, βkI

)

(4)
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Fig. 1. Approach overview: (a) shows the context encoding module, which processes
the past trajectories and available maps into a comprehensive condition embedding X.
This embedding is passed to the Latent Encoder (b) and Diffusion module (c) for
further processing. (b) shows the generation of latent variables Z. During training,
Z is produced through interactions between condition and past trajectories. During
sampling, Z is acquired from a normal Gaussian. Both processes require a uniformly
sampled time embedding k. (c) depicts the transformation of latent compound variable
Zk, which, after a forward diffusion process with the successive addition of Gaussian
noise, ultimately becomes close to pure Gaussian noise. For K sampling loops, Z first
interacts with the condition embedding and time embedding in a Multi-Head Self-
Attention module, followed by interactions with a concatenation of these two variables
through three MLP-based coupled layers. (d) the final output Z0 is then combined
with the past and background conditions to generate the predicted trajectories Y0 and
priors pθ (Z0 | X).

Then the ELBO could be expressed as Eq

[
log pθ(x0:K)

q(x1:K|x0)

]
≤ log pθ (x0), we

can replace the last term of Eq. (3) and leads to the expression:

Eq [log pφ (Y | Z0,X) − log qψ(Z0 | Y,X)] + Eq

[
log

pθ (Z0:K | X)

qψ (Z1:K | Z0)

]
≤ log pθ(Y | X)

(5)

2.3 Sampling with Classifier-Free Guidance

During inference, we add sufficient past trajectory and map as condition X for
prediction task. The reverse diffusion process can be fixed to a Markov chain,
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and the last term of Eq. (5) could be further decomposed as:

Eq

[
log

pθ (Z0:K | X)
qψ (Z1:K | Z0)

]
= Eq

⎡

⎣log qψ (ZK | X) +
∑

k≥1

log
pθ (Zk−1 | Zk,X)
qψ (Zk | Zk−1)

⎤

⎦

(6)
Ignoring Eq and applying the reparameterization of μθ (xt, t) [6], we get a sim-
plified surrogate loss function :

Ldiff(θ) := Ek,Z0,ε

[
‖ε − ε̂θ (Zk;X, k)‖2

]
(7)

ε̂θ (Zk;X, k) is a deep neural network designed for estimating noise ε.
Inspired by [7,8], We utilize classifier-free guidance to extract higher quality

sample. Formally, started Zk is sampled with Gaussian noise εk and refining Zk

to Zk−1 at each intermediate timestep with the generate noise ε̂θ:

ε̂ := ε̂θ (Zk, ∅, k) + ω (ε̂θ (Zk,X, k) − ε̂θ (Zk, ∅, k)) (8)

where ω is the guidance scalar to control the strength of guidance.

Table 1. Comparison on ETH/UCY dataset in ADE/FDE metric. For those that
simultaneously leverage multiple modes, we designate them with symbol †.

ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-GAN [5] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

SoPhie [16] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

†Goal-GAN [3] 0.59/1.18 0.19/0.35 0.60/1.19 0.43/0.87 0.32/0.65 0.43/0.85

†MG-GAN [2] 0.47/0.91 0.14/0.24 0.54/1.07 0.36/0.73 0.29/0.60 0.36/0.71

†Social-Ways [1] 0.39/0.64 0.39/0.66 0.55/1.31 0.44/0.64 0.51/0.92 0.44/0.83

†PECNet [11] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

†Trajectron++ [17] 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.15/0.33 0.19/0.41

MotDiff (ddpm) 0.40/0.82 0.12/0.32 0.28/0.54 0.26/0.37 0.29/0.37 0.27/0.48

MotDiff (ddim) 0.36/0.74 0.11/0.21 0.24/0.47 0.18/0.32 0.23/0.32 0.22/0.41

Table 2. Evaluating MotDiff on the Stanford Drone Dataset in ADE/FDE metrics.

Social-GAN [5] †DESIRE [9] SoPhie [16] †Goal-GAN [3] †PECNet [11] MotDiff(ddpm) MotDiff(ddim)

minADE 27.23 19.3 16.2 12.2 9.96 9.92 8.92

minFDE 41.44 34.1 29.3 22.1 15.88 19.64 13.61
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2.4 Training Objective and Model Design

The overall objective function is designed as follows:

L := Eq[log pφ (Y | Z0,X)]
︸ ︷︷ ︸

Lrecon

−DKL (qψ(Z0 | Y,X)‖pθ (Z0 | X))
︸ ︷︷ ︸

LKL

+wdiff ∗ Ldiff (θ)

(9)
Finally, the diffusion prior pθ is trained jointly with the reconstruction loss

of the likelihood pφ and KL divergence between the approximate posterior qψ

and prior pθ, which aims to help regularize the normalization of prior generation.
Besides, we find it’s beneficial to set the diffusion loss weight wdiff be 10 through
experiments.

Figure 1 shows the overall architecture and diffusion module. MotDiff mainly
has three models, the latent encoder qψ(Z | X,Y), Conditional prior diffusion
network pφ(Z | X), and latent decoder pθ(Y | X, Z). For diverse temporal
sequential generation, we adopt a transformer [21] that facilitates interaction
with latent variables.

3 Experiments

We evaluate our approach on widely-used pedestrian motion forecasting datasets:
ETH/UCY [10,13], Stanford Drone [14] and TrajNet++ Challenge [15]. Our
evaluation metrics include Minimum Average Displacement Error (minADE)
and Final Displacement Error (minFDE). All experiments were conducted on
a single NVIDIA V100 Tensor Core GPU with 32GB memory, utilizing the
PyTorch 1.12.1 framework [12].

3.1 Benchmark Results

As shown in Tabel 1 and Tabel 2, we perform quantitative comparison between
MotDiff and a diverse set of existing generative modeling methods on ETH/UCY
and SDD datasets. We apply DDIM [18] to expedited sampling with superior
quality for MotDiff. Experimental results show that MotDiff achieves an average
ADE/FDE of 0.22/0.41 in ETH/UCY with DDIM sampling, which surpasses
most of the past methods. Meanwhile, MotDiff achieves better performance in
larger dataset SDD with an average ADE/FDE of 8.92/13.61, which outperforms
all the multi-modal methods.

3.2 Ablation Study

We conduct ablation studies to evaluate the contributions of critical components,
specifically the diffusion prior and the architecture or hyperparameters of the
diffusion model.

Table 3 shows that the use of latent diffusion prior is effective over the normal
Gaussian prior and the relaxed Boltzmann prior [20] in ETH and TrajNet++
datasets.
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(a) Step ADE (b) Step FDE (c) Weight ADE (d) Weight FDE

Fig. 2. Influence of varying DDPM sampling steps and distinct guidance weights.

Table 3. MotDiff with different prior on ETH and TrajNet++ in ADE/FDE metrics.

Prior Type ETH TrajNet++

minADE minFDE minADE minFDE

Normal Guassian 0.82 1.44 0.128 0.234

Boltzmann [20] 0.52 1.09 0.125 0.228

Latent Diffusion 0.47 0.96 0.118 0.229

As shown in Fig. 2a and 2b, employing the ddpm sampling technique, across a
range of diffusion timesteps (50–400) in the SDD dataset, the ADE/FDE metric
scores initially decreased and reached a minimum at 250 timesteps, followed by
a slight increase. This phenomenon is likely attributed to overfitting, where the
diffusion model failed to enhance its performance beyond a particular point. As
shown in Fig. 2c and 2d, we perform a comparative analysis of Motdiff’s perfor-
mance under various guidance weights (0–2.0) in SDD dataset. Results indicate
this approach generally improves MotDiff’s performance, and the optimal clas-
sifier scale is approximately 1.50. These insights emphasize the importance of
carefully considering and calibrating the guidance weight to achieve optimal
performance.

4 Conclusion

We have developed a variational inference model with latent diffusion prior,
named MotDiff, which adeptly processes input data of heterogeneous structures
and generates intricate dynamic future trajectories conditioned on the input
data. The novel diffusion prior excels at learning latent variables enriched with
high semantic and geographical context information. The effectiveness of our
proposed method is substantiated via comprehensive experimental results on
three pedestrian datasets.
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Abstract. In the context of fair division, the concept of price of fairness
has been introduced to quantify the loss of welfare when we have to
satisfy some fairness condition. In other words, it is the price we have
to pay to guarantee fairness. Various settings of fair division have been
considered previously; we extend to the setting of indivisible goods by
using egalitarian welfare as the welfare measure, instead of the commonly
used utilitarian welfare. We provide lower and upper bounds for various
fairness and efficiency conditions such as envy-freeness up to one good
(EF1) and maximum Nash welfare (MNW).

Keywords: Fair division · Price of fairness · Egalitarian welfare

1 Introduction

Fair division is the problem of allocating scarce resources to agents with possibly
differing interests. It has many real world applications, such as the distribution
of inheritance, divorce settlements and airport traffic management. Economists
have studied fair division as far back as the 1940 s [8,11]. Recently, the problem
of fair division has also received significant interest in artificial intelligence [1,4,
6,9,10].

In a fair division problem, there are several possible goals to strive for. One
goal is fairness, where each individual agent should feel they get a fair allocation;
another is social welfare, where the goal is to optimize the welfare of all agents
as a whole. These goals are not always aligned. For example, to maximize the
sum of utilities of the agents (i.e. utilitarian welfare), the optimal allocation is to
assign each item to the agent that values it the most. Clearly this allocation can
be far from fair, as an agent might be deprived of every item. However, making
the allocation fairer comes at the cost of decreasing the total welfare. In other
words, there is a price to pay if we want a division to be fair.

The notion of price of fairness was introduced independently by Bertsimas
et al. [5] and Caragiannis et al. [7] to capture this concept. Initially, the setting
was for utilitarian welfare on divisible goods. Since then, there have been other
works discussing the setting of utilitarian welfare with indivisible goods [3,4],
as well as the setting of egalitarian welfare with divisible goods [2,7]. Since the
same cannot be said for egalitarian welfare with indivisible goods, our paper
completes the picture by investigating this setting.
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One problem with investigating fairness conditions is that they might not
have a satisfying allocation for some instances, especially when the goods are
indivisible. We follow Bei et al. [4]’s method of handling this problem by consid-
ering only fairness conditions which can always be satisfied in all instances for
any number of agents. As such, we do not investigate properties such as envy-
freeness and proportionality, which are not guaranteed to be satisfiable. Special
cases such as envy-freeness up to any good (EFX) which has been shown to be
satisfiable for n ≤ 3 agents can be considered for future works.

We study the price of fairness of three fairness properties: envy-freeness up
to one good (EF1), balancedness, and round-robin. Not only are these proper-
ties always satisfiable, but an allocation which has all three properties can be
easily found by the round-robin algorithm. Furthermore, these fairness notions
are widely studied in the literature. In particular, tight bounds for the utilitar-
ian price of fairness of these properties have been found [4], which allows for
comparison between the utilitarian and egalitarian prices of fairness.

Moreover, we also study the price of fairness of two welfare maximizers: max-
imum utilitarian welfare (MUW) and maximum Nash welfare (MNW). While
these are efficiency notions instead of fairness notions, they are crucial to the
study of resource allocation. Studying their prices of fairness helps us compare
between the different types of welfare maximizers, and might shed light on if
and when one type of welfare function would best quantify social welfare.

Preliminaries. We first define the terms used in this paper. An instance I
consists of the agents N = {1, 2, . . . , n}, the goods M = {1, 2, . . . ,m}, and each
agent’s utility function ui. We assume n ≥ 2. The utility function is nonnegative,
additive, and normalized, i.e. ui(M) = 1 for each i. An allocation A for an
instance is a partition (A1, . . . , An) of the goods M ; agent i receives bundle Ai.
A property P is a Boolean predicate on the allocations.

The egalitarian welfare of an allocation A of an instance I is EW(I,A) :=
mini∈N ui(Ai). We denote the maximum egalitarian welfare (MEW) of an
instance as MEW(I), where the maximum is taken over all allocations. For a
property P , we denote MEWP (I) as the maximum taken over allocations with
property P . The price of fairness (POF) of a property P for instance I is
POFP (I) := MEW(I)/MEWP (I). The price of fairness of a property P over a
family of instances is the supremum of the price of fairness over those instances.

For price of fairness, we use the convention 0/0 = 1 and x/0 = ∞ for x > 0.
Price of fairness is traditionally represented as a function in terms of the number
of agents n. We follow this convention in this paper. In this case, for any fixed n,
the price of fairness for that n is the supremum over all instances with n agents.

An allocation A is envy-free up to one good (EF1) if, for any pair
of agents i, j, there exists G ⊆ Aj with |G| ≤ 1 such that ui(Ai) ≥ ui(Aj \
G). An allocation A is balanced (Ba) if, for any pair of agents i, j, we have
|Ai| − |Aj | ∈ {−1, 0, 1}. An allocation is round-robin (RR) if it is produced
by the round-robin algorithm for some ordering of agents and tiebreak choices.
Note that a RR allocation is also EF1 and balanced [4]. As a result, since RR
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is always satisfiable, EF1 and balancedness are also always satisfiable. Lastly,
the utilitarian (resp. Nash) welfare of an allocation A is the sum (resp.
product) of utilities

∑
i ui(Ai) (resp.

∏
i ui(Ai)). An allocation is MUW (resp.

MNW) if it achieves the maximum possible utilitarian (resp. Nash) welfare for
its instance.

Our Results. We investigate the upper and lower bounds of the price of fairness
for five fairness and efficiency properties described above. Letting n be the num-
ber of agents in the instance, we show that EF1, balancedness, and round-robin
have price of fairness Θ(n). Meanwhile, MUW and MNW have infinite price of
fairness, except for the case of MNW with n = 2 where the price of fairness is
finite. Our results are summarized in Table 1. We have also included the utili-
tarian prices of fairness found by Bei et al. [4] for comparison. We restrict our
attention to the general instances for any fixed n; future work can be done on
specializing to, say, instances with identical ordering, or some other constraint,
in case it can bring down the price of fairness for some of the properties.

Table 1. Summary of results

Price of fairness

Property Egalitarian Utilitarian [3,4]

Envy-free up to one good (EF1) Θ(n) Θ(
√

n)

Balanced n Θ(
√

n)

Round-robin algorithm (RR) Θ(n) n

Maximum Nash welfare (MNW) (n = 2) ≈ 2 ≈ 1.2

(n ≥ 3) ∞ Θ(n)

Maximum utilitarian welfare (MUW) ∞ 1

Maximum egalitarian welfare (MEW) 1 Θ(n)

In a way, our results are surprising compared to the utilitarian results. Util-
itarian welfare is purely an efficiency notion, while egalitarian welfare captures
some sort of “fairness”, since maximizing the utility of the poorest agent means
that every agent’s utility is taken into consideration and no agent’s poverty
can be ignored. However, the egalitarian price of fairness for the properties are
actually worse (higher) than the utilitarian price of fairness. Despite appear-
ing “fairer”, egalitarian welfare turns out to be less fair when we impose other
fairness conditions.

2 Results

We provide the bounds of price of fairness along with their proofs. For space
reasons, these proofs are only sketched out; the reader is invited to fill in the
details.



26 K. F. Celine et al.

Theorem 1. POFEF1 ≥ n − 1 and POFRR,POFBa ≥ n.

Proof. Let m � n and ε � 1/m. Consider the instance I with following utilities:

– u1(1) = 1 and u1(j) = 0 for 2 ≤ j ≤ m.
– For i = 2, . . . , n − 1: ui(1) = 1 − (m − 1)ε and ui(j) = ε for 2 ≤ j ≤ m.
– un(1) = 1 − (m − 1)ε2 and un(j) = ε2 for 2 ≤ j ≤ m.

It can be shown that,

MEW = (m− (n−1)) ·ε2, MEWEF1 =
⌈

m − 1
n − 1

⌉

·ε2, MEWBa =
⌈m

n

⌉
·ε2.

Therefore, as m → ∞,

POFEF1(I) =
MEW

MEWEF1
→ n − 1 and POFBa(I) =

MEW

MEWBa
→ n.

Since any RR allocation is balanced, POFRR(I) ≥ POFBa(I) ≥ n. 
�
Theorem 2. POFBa ≤ n.

Proof. For simplicity, assume n divides m; the proof can be modified for the
general case. Consider any MEW allocation A for an instance I with n agents
and m goods. For each agent, let them keep the most valuable m/n goods from
their bundle in A; distribute all excess goods so that each agent receives m/n

goods exactly. Then each agent keeps at least m/n
m = 1

n of the value of their
bundle, and so MEWBa ≥ 1

n · MEW. Therefore,

POFBa(I) ≤ MEW

MEWBa
= n. 
�

Theorem 3. POFRR ≤ 2n − 1, and so, POFEF1 ≤ 2n − 1.

Proof. Consider an instance I with n agents and a MEW allocation A. Now
remove all goods except for the best good in each agent’s bundle. Call this
reduced instance I ′, and the restriction of A into the reduced instance to be A′.

We can find an allocation B on I ′ which is RR and weakly dominates A′.
First, find any Pareto-optimal balanced allocation that weakly dominates A′;
this will be our B. It can be shown that the envy-graph of B is acyclic and thus
admits a topological ordering. The desired round-robin ordering of B can be
obtained by reversing the topological order of the envy-graph.

We now apply this round-robin ordering to the original instance I. For our
analysis, we follow an agent and compare the goods chosen using the round-robin
ordering to the goods in their bundle in A. On her first turn, she takes a good
g1 that is at least as valuable as the best good in her A bundle, by construction
of B. On her k-th turn for k ≥ 2, she takes a good gk that is at least as valuable
as the (kn)-th good in her A bundle, simply because it hasn’t been chosen by
anyone.
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Therefore, g1 has value at least the mean of the 2n − 1 most valuable goods
in the A bundle, and gk has value at least the mean of the next n most valuable
goods in the bundle (i.e. the (kn)-th to (kn + n − 1)-th most valuable goods). It
follows that the goods {g1, g2, . . .} have total value at least 1

2n−1 times the value
of their A bundle, giving POFRR ≤ 2n − 1.

Since an RR allocation is EF1, it follows POFEF1 ≤ POFRR ≤ 2n − 1. 
�
Theorem 4. POFMUW = ∞.

Proof. Let ε � 1. Take the instance with n = 2, m = 3 and the utilities below:

– u1(1) = u1(2) = 1/2 and u1(3) = 0.
– u2(1) = u2(2) = 1/2 − ε and u2(3) = 2ε.

It can be shown that, as ε → 0,

MEW =
1
2
, MEWMUW = 2ε, and so POFMUW(I) =

MEW

MEWMUW
→ ∞.

For larger n, simply add additional goods; each agent exclusively desires one
new good. This does not influence the n = 2 instance above. 
�
Theorem 5. Consider instances with n = 2 agents. Let λ = 1.324 . . . be the
real number satisfying λ3 − λ − 1 = 0. Then,

POFMNW ≥ λ2 = 1.754 . . .

Proof. Let x, y be positive real numbers satisfying x > 1 and

1
x +

√
x

< y <
1
x2

. (1)

Consider an instance I with n = 2 and m = 3, with the following utilities:

– u1(1) = xy, and u1(2) = 1 − xy, and u1(3) = 0.
– u2(1) = 1 − xy, and u2(2) = (x − 1)y, and u2(3) = y.

Given that the inequalities in (1) hold, it can be shown that MEW = xy but
MEWMNW = y, giving POFMNW(I) = x.

However, y in (1) can exist if and only if the gap is non-empty, and this
happens if and only if x < λ2. Therefore

POFMNW ≥ supx = λ2 ≈ 1.754 . . . . 
�
Theorem 6. For n = 2 agents, POFMNW ≤ 2.

Proof. Consider an instance with n = 2 agents. In a MEW allocation, the agent
with greater utility gets ≥ 1/2 utility; otherwise the bundles can be swapped to
strictly improve both agents. Suppose the agent with lower utility gets utility x;
then the Nash welfare is ≥ x/2.

Since the MNW allocation must have Nash welfare ≥ x/2 and an agent can
have utility ≤ 1, then in a MNW allocation, the agent with lower utility must
still get ≥ x/2 utility. So POFMNW(I) ≤ x

x/2 = 2. 
�
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Theorem 7. For n ≥ 3 agents, POFMNW = ∞.

Proof. Let ε � 1. Take the instance with n = m = 3 and the following utilities:

– u1(1) = 1 and u1(2) = u1(3) = 0.
– u2(1) = 1/3 − ε/2, u2(2) = ε/2, and u2(3) = 2/3.
– u3(1) = 1 − ε/2 − ε2/2, u3(2) = ε2/2, and u3(3) = ε/2.

It can be shown that, as ε → 0,

MEW =
ε

2
, MEWMNW =

ε2

2
, and so POFMNW(I) =

MEW

MEWMNW
→ ∞.

For larger n, simply add additional goods; each agent exclusively desires one
new good. This does not influence the n = 3 instance above. 
�
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Abstract. Smart cities are enabled by cyber-physical systems (CPS)
which leverage the Internet of Things (IoT) to connect the physical
world and information systems. Due to lack of security protection, IoT
systems are vulnerable to various cyber attacks. In this paper, we inves-
tigate the network intrusion detection method for the security protection
of loT edge servers or gateways in CPS of smart cities. We develop an
abnormal flow detection algorithm based on deep learning (DL), where
a Long Short Term Memory (LSTM) model is utilized to identify abnor-
mal flows, followed by a Convolutional Neural Network (CNN) model to
distinguish the malicious flow. Based on this framework, we construct a
situational awareness system that consists of a real-time flow monitoring
module running on IoT edge servers, and a situation visualization mod-
ule deployed at a cloud server. The flow monitoring module is responsible
for capturing, parsing, and identifying the flow of the edge server, while
the situation visualization module demonstrates the security situations
with charts and curves in real-time. The experimental results show that
high recognition accuracy of 99.2% for the LSTM model and 97.4% for
the CNN model.
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1 Introduction

The cyber-physical system (CPS) integrates computing and physical processes
by organically combining computing, communication, and control. Smart cities
use the Internet of Things (IoT) to connect the digital and physical realms,
process data and provide management and decision-making services with artifi-
cial intelligence and cloud computing to improve urban governance and resident
satisfaction. However, smart city CPS faces the challenges of security and vul-
nerability of IoT devices. Recently, attacks against smart city CPS have become
increasingly sophisticated, including DDoS and code injection, and traditional
security measures are struggling to cope with such evolutionary attacks. Proac-
tive security systems are critical for CPS in smart cities, and situational aware-
ness can detect cyber-attacks in real time, alerting, protecting and tracking them
in a timely manner. Using machine learning and big data analysis [1], CPS net-
work attacks can be identified in real-time to ensure the security of smart city
information systems. Real-time identification of CPS network attacks and per-
ception of network posture are key ways to ensure the security of smart city
information fusion systems and are of great significance.

2 Related Work

Network Intrusion Detection (NID) is an important technical component of net-
work situational awareness [8]. The traditional network intrusion detection sys-
tem mainly takes two approaches feature-based detection methods and anomaly-
based detection methods. The former compares new data with known intrusion
features [5]. It cannot detect unknown attacks but is characterized by ease of
deployment. The latter compares new data with normal user behavior models
[4] and is able to detect unknown attacks.

Machine-learning-based anomaly detection techniques include support vec-
tor machine (SVM), K-approximation (KNN), decision trees, artificial neural
networks, etc. Ali [2] proposed a model based on FLN and Particle Swarm Opti-
mization (PSO-FLN) [3] to solve the IDS problem. Yao [10] proposed a modeling
framework called Multi-level semi-supervised ML (MSML) to solve the intrusion
detection problem. Its main shortcoming is the low detection rate for fewer attack
categories. The common techniques of intrusion detection based on deep learn-
ing include convolution neural network (CNN), self-encoder, recurrent neural
network(RNN), depth neural network (DNN) and so on. Shone [7] proposed an
intrusion detection method based on deep automatic encoder and decision tree.
Jiang [6] proposed an efficient IDS system by combining CNN and Bidirectional
Long Short-Term Memory (BiLSTM). Yin [11] proposed an RNN-based intru-
sion detection method for multi-class classification on NSL-KDD dataset. These
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methods show good results overall, but perform poorly with small amounts of
data.

To address the above issues, this paper designs and implements a complete
network security situational awareness system. The contributions of this paper
mainly include the following aspects:

1) Realize real-time capturing and parsing of network streams so that our system
can perceive the current status of the network in time.

2) In this paper, we propose two model algorithms: LSTM-based network traffic
attack identification algorithm and CNN-based malicious traffic classification
algorithm, which are used serially to enable our system to detect and react
to network attacks in a timely manner.

3) In this paper, we design a complete situational awareness system, which
includes flow capture module, flow parsing module, intelligent perception
module, and visualization module.

Fig. 1. Framework of Network Situation Awareness System

3 Construction of Network Situation Awareness System

3.1 Overall System Architecture

As shown in Fig. 1, the system is mainly composed of a real-time flow capture
module, a flow parsing module, and a deep learning flow monitoring module.
Flow capture is realized by the traffic tool that comes with the server operating
system itself. The flow data is further analyzed by the flow parsing algorithm.
The parsed flow data is sent to the deep learning algorithm module to deter-
mine the flow status in real time. For normal flow, the system releases it; for
malicious flow, the system filters it, and uploads the traffic identification results
to the cloud platform and displays them on the Security Situational Awareness
visualization interface.
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Fig. 2. On the left is our LSTM model structure, on the right is our CNN model
structure

3.2 Intelligent Sense Module Construction

The intelligent Sense module is an important module for network situational
awareness. It is responsible for detecting the flow from the data cleaning module.
The intelligent sensing module uses two models, the long short-term memory
neural network (LSTM) model and the convolutional neural network (CNN)
model. The LSTM model is used to identify malicious and benign flows, and the
malicious flow is fed into the CNN model for attack classification.

LSTM filters are suitable for the detection of attack flow containing session
flow characteristics. The structure of the LSTM model implemented in this paper
is shown in Fig. 2 on the left, and the LSTM model consists of three parts: Dense
fully connected layer, LSTM network layer, and Sigmoid classifier, where the
Dense layer is the input layer and the Sigmoid classifier is the output layer, and
the output result is either a bona fide flow or a malicious flow.

CNN senses local information and effectively improves the local feature
extraction ability of the network. And CNN has low time and space complexity.
As shown in Fig. 2 on the right, this paper builds a 7-layer convolutional neu-
ral network, consisting of convolutional layer, pooling layer, Flatten layer, fully
connected layer and Softmax layer. Because the network is to determine which
category the network flow belongs to, which is a multi-classification problem,
the Softmax layer is used in the last layer.

Fig. 3. Network situational awareness visualization interface

3.3 Flow Packet Capture and Parsing

The establishment of a network security situational awareness system first
requires the detection of flow that affects the security of the system to be
acquired. In this system we use tcpdump to capture flow packets.
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After capturing the packets, we extract the required feature attributes. There
are 41 of these feature attributes. Through the description related to feature
attributes in the literature [9], this paper is divided into two steps in extract-
ing features. The first step is to extract the basic network connection features.
The second step extracts the time-based and host-based network flow statistics
features.

Fig. 4. Accuracy evaluation results of four models with KDDCUP99. On the left is
our LSTM model, and on the right is our CNN model.

Fig. 5. Delay result of the System

3.4 System Visualization

The designed situational awareness visualization interface, shown in Fig. 3, is
used to display information such as threat type distribution, attack posture,
flow status, and attack sources in real time. The threat types mainly include
DOS, Probing, R2L, and U2R. The attack source is shown in the form of a map
showing the region from which the attacker comes.

4 Experiment Results and Analysis

The recognition accuracy of our LSTM model, compared with three machine
learning models(KNN, Bayes, ID3), was compared on the KDDCup99 dataset.
The results show that the average accuracy of our LSTM model is 99.2%, which
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is better than the highest accuracy of 98.3% of the compared machine learning
models. The detailed comparison results are shown in Fig. 4 on the left.

The recognition accuracy of our CNN model, compared with the three
machine learning models, was also compared on the KDDCUP99 dataset. The
results show that our CNN model has a classification accuracy of 97.4%, which
is better than the highest accuracy of 92.9% of the compared machine learn-
ing models. The detailed comparison results are shown in Fig. 4 on the right.
Because IoT is a very real-time system with high latency requirements, it should
not cause significant delays in identifying and classifying attacks. We calculate
the time to process each flow to be between 0.35∼0.70 s, as shown in Fig. 5.

5 Summarize

In this paper, we built a network security situational awareness platform. Where
the LSTM model is used to identify malicious flow and benign flow in the net-
work, and the CNN model is used to classify the identified malicious flow. The
results of identification and classification are then sent to the cloud for visual-
ization and display. In future work, advanced deep neural networks should be
studied to predict attack behaviors that threaten IoT edge servers, such as the
Transformer structures and the attention mechanism.
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Abstract. High-Dimensional and Incomplete (HDI) data is commonly encoun-
tered in big data-related applications like social network services systems, which
are concerning limited interactions among numerous nodes. Knowledge discovery
from HDI data is a vital issue in the domain of data science due to their embedded
rich patterns like node behaviors, where the fundamental task is to perform HDI
data representation learning. Nonnegative Latent Factor Analysis (NLFA) mod-
els have proven to possess the superiority to address this issue, where a Linear
Bias Incorporation (LBI) scheme is effective in preventing the model from the
training overshooting and fluctuation for good convergence. However, existing
LBI schemes are all statistic ones where the linear biases are fixed, which sig-
nificantly restricts the scalability of the resultant NLFA model and results in loss
of representation learning ability to HDI data. Motivated by the above discover-
ies, this paper innovatively presents a Dynamic Linear Bias Incorporation (DLBI)
scheme. It firstly extends the linear bias vectors into matrices, and then builds a
binary weight matrix to switch from the linear biases’ active states to their inactive
states. The weight matrix’s each entry is manipulated between the binary states
dynamically according to variation of the linear bias value, thereby establishing the
dynamic linear biases for anNLFAmodel. Empirical studies on threeHDI datasets
from real applications indicate that the proposed DLBI-based NLFA outperforms
state-of-the-art models in representation accuracy.

Keywords: Nonnegative Latent Factor Analysis · Knowledge Discovery from
High-Dimensional and Incomplete Data · Linear Bias · Missing Data Estimation

1 Introduction

With the burgeoning amount of data that is being generated every day, High-Dimensional
and Incomplete (HDI) data is becoming increasingly common in big data-related appli-
cations like recommender systems [3, 4, 28] and Quality-of-Service (QoS) predictor
in web service [6, 7, 29]. Note that HDI data is typically characterized by: 1) High-
Dimensionality, i.e., its large number of entities; and 2) Incompleteness, i.e., its interac-
tions among a large number of entities can be fully observed. Moreover, HDI data are
commonly filled with nonnegative values like user-service QoS data [6, 7]. Despite its
incompleteness, valuable knowledge like user-item preferences [3, 4] can be achieved.
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Hence, an analysis model should well represent HDI data for discovering such hidden
knowledge.

The development of sophisticated models has been a notable focus in terms of well-
representing HDI data. Among them, first of all, by taking interaction behavior among
many entities as a graph, recent years have witnessed well accuracy performance of a
Graph Convolutional Network (GCN) model in various applications like recommender
systems [3, 4, 28], social discovery [9] and bioinformatics [11]. A GCN model is able
to capture the node information from the graph and extract nonlinear features from HDI
data. However, it cannot represent HDI data filled with nonnegative values precisely.
Moreover, in spite of GPU acceleration, complex designs concerning network structure
and learning strategy make GCNmodels suffer high computational complexity. In com-
parison, a Nonnegative Matrix Factorization (NMF) model factorizes nonnegative HDI
data into nonnegative Latent Factor (LF) matrices in a low-rank way, which is iteratively
solved by a Nonnegative and Multiplicative Update (NMU) algorithm for discovering
valuable knowledge, such as Yang et al.’s B-NMF [13] and Cai et al.’s ANMF [14]. Note
that NMF is a linear single-layered auto-encoder in nature [13–15], which achieves lower
computational complexity than GCN does when representing nonnegative HDI data. In
spite of their effectiveness and efficiency, HDI data’s incompleteness is not taken into
consideration, i.e., HDI data’s missing values are desired to be prefilled before their
training, which leads to unnecessary computational costs and the loss of information.
For fully considering inherent characteristics of HDI data, a Nonnegative Latent Factor
Analysis (NLFA) model is proposed [16]. Its modeling is similar to NMF, but takes
incompleteness into consideration, i.e., its learning objective is defined on observed
interactions only. Then, a Single LF-dependent Nonnegative and Multiplicative Update
(SLF-NMU) algorithm is designed for efficiently solving such a learning objective.
Hence, NLFA achieves lower computational complexity than NMF does, as well as the
great representation accuracy.

Furthermore, a Linear Bias Incorporation (LBI) scheme has proven to be effective in
preventing NLFA from the training overshooting and fluctuation for good convergence
[2, 17]. For example, Luo et al.’s BNLFA [17] assigns a single linear bias vector for
each user/item of HDI data for describing the significant tendencies that some users give
higher ratings than others for certain items in recommendations. Chen et al. further assign
multiple linear bias vectors to each entity for achieving higher recommendation accuracy
[2]. Note that these LBI schemes are all statistic ones where the linear biases are fixed,
which significantly restricts the scalability of the resultant NLFA model and results in
loss of representation learning ability to HDI data. Motivated by the above discoveries,
this paper innovatively presents a Dynamic Linear Bias Incorporation (DLBI) scheme.
It firstly extends the linear bias vectors into matrices, and then builds a binary weight
matrix to switch from some linear biases’ active states to their inactive states. The weight
matrix’s each entry is manipulated between the binary states dynamically according to
variation of the linear bias value, thereby establishing the dynamic linear biases for an
NLFA model.

Hence, the main contribution of this paper includes:

1. It innovatively presents the DLBI scheme, thereby achieving a DLBI-based NLFA
(DNLFA) model;
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2. The proposed DNLFA’s algorithm design and analysis is presented in detail; and
3. Extensive experiments are performed on three real-world nonnegative HDI data to

indicate that the proposed DNLFA model outperforms state-of-the-art models in
representation accuracy.

2 Methodology

2.1 Problem Formulation

Definition 1. (Nonnegative HDI data): Given U and I, (|U|×|I|)-size Y describes user-
item interactions among them and these interactions are weighted. Given Y ’s known
entry set � and unknown one �, then Y is nonnegative HDI data if |

V

|�|�|.

Definition 2. (The NLFA problem): When Y and

V

are taken as the input, NLFA [16]
minimizes a learning objective defined on � only for acquiring rank-f approximation
ŷu,i = ∑f1

d=1 pu,dqi,d , where pu,d ∈ P ≥ 0 and qi,d ∈ Q ≥ 0. For avoiding the model’s
overfitting, an L2-norm-based regularization [1, 12, 23] is adopted in NLFA. Hence,
NLFA’s learning objective g with Euclidean distance [14, 18, 19, 24–27] is given as:

arg min
P,Q

g = arg min
P,Q

1

2

∑

yu,i∈�

⎛

⎝
(
yu,i − ŷu,i

)2 + λ

f1∑

d=1

((
pu,d

)2 + (
qi,d

)2
)
⎞

⎠,

s.t.∀u ∈ {1, 2, . . . , |U |}, i ∈ {1, 2, . . . , |I |}, d ∈ {1, 2, . . . , f1} : pu,d ≥ 0, qi,d ≥ 0,
(1)

where regularization coefficient λ > 0.

Definition 3. (The BNLFA problem): According to previous studies [17], nonnegative
HDI data generated from recommender systems exhibits significant tendencies that some
users prefer to give higher ratings than others for certain items. For well describing
such bias effects, two linear bias vectors N and M are assigned for NLFA’s P and Q,
respectively. Hence, ∀nu ∈ N and mi ∈ M, (1) can be extended as follows:

argmin
P,Q,N ,M

g = argmin
P,Q,N ,M

1
2

∑

yu,i∈�

(
(
yu,i − ŷu,i

)2 + λ
(
(nu)2 + (mi)

2
)

+
f1∑

d=1

((
pu,d

)2 + (
qi,d

)2
)
)

,

s.t. ∀u ∈ {1, 2, . . . , |U |}, i ∈ {1, 2, . . . , |I |}, d ∈ {1, 2, . . . , f1} :
pu,d ≥ 0, qi,d ≥ 0, nu ≥ 0,mi ≥ 0,

(2)

where ŷu,i in (2) becomes
∑f1

d=1 pu,dqi,d + nu +mi. . Hence, with (2), a BNLFA model
is achieved.

2.2 The Proposed Dynamic Linear Biases

First of all, we extend linear bias vectors |U|-length N and |I|-length M adopted in (2)
into matrix forms, i.e. (|U|×f 2)-size B and (|I|×f 2)-size C. Then, two weighted matrices
(|U|×f 2)-size W and (|I|×f 2)-size Z are introduced for B and C, respectively. For well
understanding them, the evolution fromN andM toB,C,W and Z are described in Fig. 1.
Then the problem arises: “How to dynamically set the values of optimized parameters
in W and Z as zeroes?” Hence, W and Z are manipulated with the following principle:
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Fig. 1. Evolution from N and M to B, C,W and Z.

1. Values of W and Z are all initialized as ones, i.e. ∀ wu,d = 1 and zi,d = 1; and
2. While the model iteratively updates optimized parameters in B/C, the rules at each

iteration for setting values of the corresponding optimized parameters in W /Z as
zeroes are: if ∀bu,d ≥ ε (ci,d ≥ ε), wu,d (zi,d) keeps unchanged, otherwise wu,d = 0
(zi,d = 0), where u ∈ {1,2,…,|U|}, i ∈ {1,2,…,|I|}, d ∈ {1,2,…,f 2} and ε > 0.

Note that a small example of dynamic linear biases is described in Fig. 2. With such
a design, DLBI is compatible for an NLFA model.

2.3 The Proposed DNLFA Model

With DLBI, (1) can be reformulated as:

argmin
P,Q,B,C

g = argmin
P,Q,B,C

1
2

∑

yu,i∈�

(
(
yu,i − ŷu,i

)2 + λ

f1∑

d1=1

(
(
pu,d1

)2 +
(
qi,d1

)2 +
f2∑

d=1

((
wu,d2 bu,d2

)2 +
(
zi,d2 ci,d2

)2
)))

,

s.t. ∀u ∈ {1, 2, . . . , |U |}, i ∈ {1, 2, . . . , |I |}, d1 ∈ {1, 2, . . . , f1}, d2 ∈ {1, 2, . . . , f2} :
pu,d1 ≥ 0, qi,d1 ≥ 0, bu,d2 ≥ 0, ci,d2 ≥ 0,wu,d2 = {0, 1}, zi,d2 = {0, 1},

(3)

where ŷu,i in (3) becomes
f1∑

d1=1
pu,d1qi,d1 +

f2∑

d2=1

(
wu,d2bu,d2 + zi,d2ci,d2

)
. With (3), a

DNLFA model is achieved.
To efficiently solve DNLFA’s learning objective, an SLF-NMU algorithm is adopted

[16, 17]. First of all, an additive gradient descent (AGD) algorithm is applied to (3).
Hence, learning rules of LFs pu,d1, qi, d1, bu,d2 and ci,d2 are given as:

argmin
P,Q,B,C

g
AGD⇒

∀u ∈ {1, 2, . . . , |U |}, i ∈ {1, 2, . . . , |I |}, d1 ∈ {1, 2, . . . , f }, d2 ∈ {1, 2, . . . , f2} :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pu,d1 ← pu,d1 + ηu,d1
∑

i∈�(u)

(
qi,d1

(
yu,i − ŷu,i

) − λpu,d1
)
,

qi,d1 ← qi,d1 + ηi,d1
∑

u∈�(i)

(
pu,d1

(
yu,i − ŷu,i

) − λqi,d1
)
,

bu,d2 ← bu,d2 + ηu,d2
∑

i∈�(u)

(
wu,d2

(
yu,i − ŷu,i

) − λbu,d2
)
,

ci,d2 ← ci,d2 + ηi,d2
∑

u∈�(i)

(
zi,d2

(
yu,i − ŷu,i

) − λci,d2
)
,

(4)

where ηu,d1, ηi,d1, ηu,d2 and ηi,d2 denote the learning rate for LFs
pu,d1, qi, d1, bu,d2 and ci,d2, respectively. With (4), LFs pu,d1, qi, d1, bu,d2 and ci,d2
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Fig. 2. A small example of dynamic linear biases.

might become negative owing to the negative terms −ηu,d1
∑

i∈�(u)

(
qi,d1 ŷu,i +

λpu,d1
)
, −ηi,d1

∑
u∈�(i)

(
pu,d1 ŷu,i + λqi,d1

)
, −ηu,d2

∑
i∈�(u)

(
wu,d2 ŷu,i + λbu,d2

)
and

−ηi,d2
∑

u∈�(i)

(
zi,d2 ŷu,i + λci,d2

)
. For canceling these negative terms, then we set

ηu,d1 = pu,d1/
∑

i∈�(u)

(
qi,d1 ŷu,i + λpu,d1

)
, ηi,d1 = qi,d1/

∑
u∈�(i)

(
pu,d1 ŷu,i + λqi,d1

)
,

ηu,d2 = bu,d2/
∑

i∈�(u)

(
wu,d2 ŷu,i+λbu,d2

)
and ηi,d2 = ci,d2/

∑
u∈�(i)

(
zi,d2 ŷu,i+λci,d2

)
,

thereby reformulating (4) as follows:

pu,d1 ← pu,d1

(∑

i∈�(u)

(
yu,iqi,d1

)
/
∑

i∈�(u)

(
ŷu,iqi,d1 + λpu,d1

))
, (5a)

qi,d1 ← qi,d1

(∑

u∈�(i)

(
yu,ipu,d1

)
/
∑

u∈�(i)

(
ŷu,ipu,d1 + λqi,d1

))
, (5b)
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bu,d2 ← bu,d2

(∑

i∈�(u)
yu,iwu,d2/

∑

i∈�(u)

(
ŷu,iwu,d2 + λbu,d2

))
, (5c)

ci,d2 ← ci,d2

(∑

u∈�(i)
yu,izi,d2/

∑

u∈�(i)

(
ŷu,izi,d2 + λci,d2

))
, (5d)

According to Sect. 3.1, after updating bu,d2 and ci,d2 at the t-th iteration, we update
wu,d2 and zi,d2 at the current iteration with the following learning rules:

{
wt
u,d2

= 0 if btu,d2 < ε ,

zti,d2 = 0 if cti,d2 < ε.
(6)

where btu,d2 , c
t
i,d2

, wt
u,d2

and zti,d2 denote the state of bu,d2, ci,d2, wu,d2 and zi,d2 at the
t-the iteration, and ε denotes the presetting threshold.

2.4 Algorithm Design and Analysis

Basedon the above inferences, the algorithmDNLFA is achieved.As shown inAlgorithm
DNLFA, we introduce auxiliary arrays, i.e., (|U|×f 1)-size of PU and PD, (|I|×f 1)-size
of QU and QD, (|U|×f 2)-size of BU and BD, (|I|×f 2)-size of CU and CD for caching
necessary intermediate status of P, Q, B and C to improve the model’s computational
efficiency. Considering them,

1. PU and PD are connected with ∀yu,i ∈ � to cache the numerator and denominator of
P’s learning increments in each single traverse; and

2. Similar designs (i.e., QU, QD, BU, BD, CU and CD) are also applied to Q, B and C.

Hence, DNLFA’s storage cost is given as:

S = �((|U | + |I |) × (f1 + f2) + |�|), (7)

which is linear with (|U|+|I|) and |�|. Meanwhile, its computational cost is given as:

T = �(|�| × (f1 + f2) × K), (8)

which is linear with |�| under the condition of |�|�(|U|+|I|). Following Algorithm
DNLFA’s S and T, the proposed DNLFA model is highly efficient.

3 Experiments

3.1 Experimental Setup

Tasks. This paper is concerned with the estimation of missing values from HDI data.
The performance of involved models is assessed based on the Root Mean Squared Error
(RMSE) [2, 5, 20–22], which serves as a metric for evaluating the prediction accuracy of
the model. Note that a low RMSE value implies a high prediction accuracy of the model
for missing values of HDI data. Additionally, each model’s total time cost is recorded
to evaluate its computational efficiency.
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Table 1. HDI data.

No Name |�|+|�| |U| |I| Density Source

D1 EM 2,811,718 61,265 1,623 2.83% EachMovie

D2 Flixter 8,196,077 147,612 48,794 0.11% [8]

D3 Douban 16,830,839 129,490 58,541 0.22% [10]

Fig. 3. Effects of λ.

Fig. 4. Effects of ε.

Datasets. Three HDI data in real big data-related applications are adopted in our exper-
iments, and their details are given in Table 1. Each dataset’s � is randomly divided into
ten disjoint subsets for tenfold cross-validation: each time 70% known data serve as the
training set, 10% known data serve as the validation set, and 20% known data serve as
the test set. The finally averaged results is obtained by repeating the process ten times.

TerminationCondition. Eachmodel’s training process terminates if: 1) iteration count
t = 1000; and 2) The RMSE gap in two consecutive iterations gets smaller than 10–5.

3.2 Effects of Hyper-Parameter on DNLFA’s Performance

As demonstrated in Sect. 2, it is necessary to test DNLFA’s performance sensitivity with
its λ and ε. DNLFA’s performances as one hyper-parameter varies with another fixed
on D1–3 are respectively described in Figs. 3–4, where t denotes DNLFA’s converging
iteration count. From these results, we find that:



A Dynamic Linear Bias Incorporation Scheme for Nonnegative Latent Factor Analysis 47

1. DNLFA’s representation accuracy heavily depends on λ. When λ becomes inap-
propriate, i.e. too large or too small value is adopted forλ,DNLFAsuffers considerable
accuracy loss. For example, as shown in Fig. 3(a), RMSE of DNLFA on D1 with λ =
2–8, 2–7, 2–6, 2–5, 2–4, 2–3 and 2–2 is 0.2524, 0.2451, 0.2376, 0.2393, 0.2559, 0.2887
and 0.3604, respectively. The gap between λ = 2–2 and λ = 2–6 is 34.07%;

2. Optimal ε for DNLFA varies on different datasets. This finding can be supported
by Fig. 4. Moreover, when the value of ε is set in an appropriate range, RMSE and
convergence rate of DNLFA tends to saturate.

3.3 Comparison Results

The proposed DNLFA is compared with the following state-of-the-art models: ANMF
[14], NLFA [16], NIR [5], BNLFA [17], EBNL [2], LightGCN [3] and HMLET [4],
where EBNL’s f 1 and f 2 are also set at 20 and 5, respectively, and other compared
models’ f 1 is set at 20 uniformly ( f 1 only for them). Note that the above compared
models are chosen with the following considerations:

1. ANMF is a recent NMF model, and NIR is a recent NLFA model. On the other hand,
BNLFA incorporates linear bias vectors into NLFA for HDI data’s each user/item,
and EBNL further extends BNLFA’s linear bias vectors into linear bias matrices;

Fig. 5. Count of ones in DNLFA’s W and Z on D1–3.

2. LightGCN is a commonly-adopted GCNmodel, and HMLET is a recent GCNmodel.

Figure 5 gives the count of ones in DNLFA’sW and Z on D1–3. RMSE and total time
cost of involved models on D1–3 are recorded in Tables 2–3. Note that “Intractable” in
Tables 2–3 denotes ANMF fails to achieve the final results owing to consuming over
one hour at each iteration on D3. From these results, we have the following findings:
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Table 2. RMSE of involved models on D1–3.

No D1 D2 D3

ANMF 0.2972 ± 1.3E-2 1.8235 ± 1.1E-2 Intractable

NLFA 0.2352 ± 9.3E-5 0.9619 ± 3.5E-4 0.7285 ± 2.8E-4

NIR 0.2404 ± 9.0E-3 0.9592 ± 7.4E-4 0.7284 ± 2.6E-4

BNLFA 0.2345 ± 6.5E-4 0.9502 ± 4.9E-4 0.7256 ± 8.1E-4

EBNL 0.2369 ± 6.8E-4 0.9422 ± 1.1E-5 0.7286 ± 1.1E-5

LightGCN 0.2433 ± 3.7E-4 1.0216 ± 9.5E-4 0.7681 ± 5.1E-4

HMLET 0.2495 ± 9.3E-4 1.0422 ± 4.9E-3 0.8405 ± 2.6E-3

DNLFA 0.2339 ± 5.4E-5 0.9268 ± 5.7E-5 0.7207 ± 2.5E-4

Table 3. Total time cost (Sec.) of involved models on D1–3.

No D1 D2 D3

ANMF 12,317 ± 1,015.97 318,016 ± 16,928.33 Intractable

NLFA 127 ± 19.65 840 ± 73.65 1,890 ± 211.32

NIR 96 ± 9.87 1,624 ± 165.64 1,941 ± 182.61

BNLFA 223 ± 24.16 123 ± 15.12 840 ± 78.36

EBNL 314 ± 46.92 293 ± 26.37 195 ± 17.45

LightGCN 2,795 ± 218.37 17,506 ± 1529.95 32,857 ± 2295.36

HMLET 7,527 ± 696.51 34,817 ± 2766.24 159,832 ± 7926.51

DNLFA 171 ± 14.19 89 ± 9.44 884 ± 101.06

1. Owing to the DLBI scheme, DNLFA outperforms state-of-the-art models in rep-
resentation accuracy.As shown in Fig. 5, during DNLFA’s convergence process, the
count of ones in W or Z decreases, i.e., its count of zeroes increases. Meanwhile, as
recorded inTable 2,DNLFA’sRMSE is lower than that ofNLFA/NIR/BNLFA/EBNL.
Hence,wehave the conclusion that theDLBI scheme can boostNLFA’s representation
accuracy. Moreover, compared with ANMF/LightGCN/HMLET, DNLFA achieves
lower RMSE, which contributes to DNLFA’s full consideration to the nonnegativ-
ity and incompleteness of HDI data or overly-complicated designs in terms of their
modeling.

2. DNLFA’s computational efficiency is promising.As recorded in Table 3, DNLFA’s
total time cost is the least on D2, and it has the third least total time cost on D1 andD3.
More specifically, total time cost of NLFA, NIR, BNLFA, EBNL and the proposed
DNLFA is close, since their computational complexity is linear with |�|. Meanwhile,
they are much lower than that of ANMF, LightGCN and HMLET, since 1) ANMF
does not consider the incompleteness of HDI data, i.e., its computational complexity
is linear with (|U|×|I|); and 2) Note that LightGCN and HMLET are implemented
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withGPU acceleration. Their high total time cost is caused bymulti-layered nonlinear
computation. Hence, DNLFA’s computational efficiency is promising.

4 Conclusion

This paper proposes the DLBI scheme that dynamically manipulates the corresponding
weighted matrix’s each entry between the binary states according to variation of the
linear bias value. With the proposed DLBI scheme, a DNLFA model is achieved for
attaining the highly-accurate representation to HDI data. Based on extensive experiment
results on three real-world HDI data, we have the conclusions that: 1) Owing to the
DLBI scheme, DNLFA outperforms state-of-the-art models in representation accuracy;
and 2) DNLFA’s computational efficiency is promising. Note that a DNLFA model’s
performance depends on the choice of its hyper-parameters, i.e., λ and ε. Hence, in
the future, it is highly necessary to investigate computing intelligence approaches for
making them self-adaptive.
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Abstract. Logs offer vital insights into system states and contextual
details, crucial for identifying anomalies. Numerous machine learning and
deep learning approaches have been proposed for log anomaly detection.
Recent studies reveal that distinct software systems tend to generate a
substantial volume of complexity and diversity of logs that exhibit con-
siderable discrepancies in class distribution. In this paper, we introduce
IELog, a framework for anomaly detection. IELog employs DSS (Denoise
Selection Sampling) to oversample the minority class, mitigating imbal-
anced data impact. Subsequently, IELog proposes the AW (Anomaly
Weighting) ensemble rule to effectively combine the prediction outcomes
of individual base models, leveraging their distinct strengths. Extensive
experiments have been performed on four different public log datasets,
which demonstrate the validity of the proposed framework IELog.

Keywords: Log anomaly detection · Ensemble learning · Imbalanced
data

1 Introduction

As systems grow in scale and complexity, system anomalies are bound to
occur, posing a major challenge for maintainers due to their impact on sys-
tem performance and availability [1]. Hence, efficiently identifying anomalies is
vital, enhancing software quality, system reliability, and reducing maintenance
costs [2].

Recent studies underscores system log importance in monitoring and
troubles- hooting [3–6]. These logs provide crucial historical insights into system
behavior and evolution. Initially, researchers primarily employ machine learning
to mine the relationships among logs to detect anomalies [7,8]. These methods
analyze quantitative event relationships to detect log sequence anomalies. Subse-
quently, more focus turned to the sequential event connections in log sequences,
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using sequence models like LSTM or Transformer to detect anomalies [2,3].
Recently, some studies have transformed log sequences into graphs, using Graph
Neural Networks for anomaly detection [5,6].

Despite fantastic advances in log-based anomaly detection, there are still
several aspects that are rarely taken into account:

Imbalanced Log Dataset. Data imbalance is a common issue in system logs,
with normal logs far outnumbering anomalous logs [9]. This is due to anomalies’
infrequent occurrence in contrast to the system’s normal operation. For instance,
HDFS dataset’s anomalous logs make up only 2.93%. Yet, in log anomaly detec-
tion, rare anomalous logs are crucial indicators for identifying and addressing
potential issues [4]. The excess of normal logs can result in anomalous logs
being overlooked or misunderstood as noise. Thus, focusing on these anoma-
lies is vital for comprehensive detection. Unfortunately, existing methods often
overlook data imbalance, favoring the majority class in learning process and
introducing detection biases. In consequence, how to mitigate the effect of data
imbalance on anomaly detection when monitoring and troubleshooting the sys-
tem by utilizing logs present a relatively major challenge.

Complexity and Diversity of Log Anomalies. The complexity and diver-
sity of log anomalies stem from the heterogeneous nature of anomalous behaviors
within software systems, resulting in a broad spectrum of anomalous behaviors
present in logs, which can manifest distinct underlying patterns [10]. Addition-
ally, log data is voluminous and exhibits variations in terms of format, structure,
and level of detail. A universal model excelling in identifying diverse log anoma-
lies is challenging due to different models’ distinct, strengths, weaknesses, and
applicability [1]. Given the intricate types and anomalous patterns of real-world
logs, a singular model isn’t universally applicable to detect all log anomalies.
Henceforth, how to combine the strengths of diverse models in enhancing the
performance of log anomaly detection remains a challenge.

To tackle the above challenges, we introduce IELog, a log anomaly detec-
tion framework. It addresses data imbalance by innovatively generating refined
anomalous samples through noise reduction, enhancing the performance by effec-
tively resolving class overlapping in imbalanced data. Additionally, IELog uti-
lizes a novel ensemble learning approach, synergizing the capabilities of base
models. This enhances performance beyond what individual models can achieve
and yields heightened result reliability.

The main contributions of our work are as follows:

– A data balancing method DSS (Denoise Selection Sampling) is proposed to
effectively alleviate the impact of imbalanced data for anomaly detection.

– A new ensemble rule AW (Anomaly Weighting) is proposed to combine the
strengths of multiple models in detecting complex and diverse anomalous log
patterns, thereby improving the performance of anomaly detection.

– A comprehensive series of experimental studies are conducted on four different
public log datasets for validating the effectiveness of IELog.



54 W. Xiong et al.

2 Related Work

Log-Based Anomaly Detection. Researchers extensively study logs to detect
anomalies. Liang et al. [8] adopt SVM to find the inherent relationships to detect
anomalies. Liu et al. [7] construct Isolation Trees for isolating anomalies. Various
approaches rely on deep learning to facilitate the identification of log anomalies.
For example, DeepLog [3] and LogRobust [4] employ an LSTM to detect the
anomalies. Wang et al. [5] transform log sequences into graphs, using Position
Aware Weighted Graph Attention Layer for detecting anomalies.

Ensemble Learning. Several studies demonstrated that ensemble learning is
an effective strategy for enhancing log anomaly detection. Wang et al. [11] use
spectral clustering for data balancing and propose an NW (Neighbor Weighting)
ensemble rule by considering the relationship between the tested samples and
historical samples. Pal et al. [12] predict faults in network systems using weighted
combination of block-divided data. Sun et al. [13] use SplitBal or ClusterBal to
balance the datasets and adopt ensemble rules to combine base classifiers’ results.

Imbalanced Data. High log imbalance has emerged as a prominent challenge
in anomaly detection. Sun et al. [14] incorporate the semantics of events and
the semantics of the region where each word is located through the Adaptive
Region embedding. Wang et al. [15] adopt the mean-shift clustering to calculate
samples’ weights thus reducing the effect of imbalance. Studiawan et al. [9] detect
anomalies based on the sentiment analysis, employing Tomek-Link to address the
imbalance and identify anomalies through the Gated Recurrent Unit.

While these methods have shown effectiveness in detecting log anomalies,
they often overlook the essential characteristics of imbalanced log datasets and
diverse log anomalies. On one hand, in order to mitigate the overlook of anoma-
lous logs due to data imbalance, we introduce a data balancing approach to
stress anomalous logs. On the other hand, for improved identification of diverse
anomalous logs, a novel ensemble rule is devised to combine multiple models,
thereby enhancing the performance of log anomaly detection.

3 Approach

3.1 Overall Framework

Given any system-generated logs, IELog serves as a tool to detect log anomalies
for aiding development and operations personnel in system maintenance. Figure 1
presents IELog’s overview, comprising two phases: training and testing. In the
training phase, Data Preprocessing is focused on processing raw logs into
vector representations. Then, calculate the weights of base model using AW
(Anomaly Weighting). In the testing phase, the processed logs are fed to the
framework, with each base model providing a result. Anomaly Detection with
Ensemble, through AW, IELog predicts the anomalies of log samples.
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3.2 Data Preprocessing

Data preprocessing comprises three steps: log parsing, log grouping, and event
embedding. (1)Log parsing converts the raw log messages into structured events,
removing irrelevant data like parameters. For example, a log message <2013-8-
21 15:04:54, INFO dfs.Responder: Responder 596 for block blk 388 terminating>
can be parsed into event <Responder * for block * terminating> and parameters
(e.g. <596>). In research, we utilize the state-of-the-art log parsing method Drain
[16]. (2)Log grouping divides logs into distinct groups, known as log sequences
(or graphs), serving as fundamental components for feature extraction during the
pre-construction of log anomaly detection models. (3)Event embedding generates
semantic representation vectors for log events. This representation distinguishes
the events, despite the dissimilar syntaxes of the various event types but similar
semantics [10]. Following prior work [6], we adopt a renowned word embedding
model Glove [17] and the TF-TDF [18] for this purpose.

3.3 Models Training

In this stage, considering the main log anomaly detection classifications of
machine learning, sequence-based, and graph-based models, we incorporate the
strengths each category in our model selection. This leads to the meticulous
choice of representative models from each category to be incorporated into our
ensemble framework. Eventually, we select 6 supervised models with distinct
traits as base models: SVM [8], IsolationForest [7], DeepLog [3], LogRobust [4],
CNN [19] and GLAD-PAW [5]. As previously mentioned, these models excel at
capturing various log features and displaying unique differences, making them
suitable for an ensemble learning framework and enhancing the performance of
log anomaly detection. Specifically, SVM and IsolationForest effectively identify

Fig. 1. An overview of IELog.
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Fig. 2. Visualization of samples’ features on BGL. The blue dots represent the features
of anomalous samples and the red dots represent the normal ones. (Color figure online)

event count anomalies by utilizing log event count vectors. DeepLog and LogRo-
bust employ LSTM to recognize sequence anomalies via event sequential vectors
or event semantic vectors as model inputs. CNN and GLAD-PAW detect anoma-
lies by capturing relationships in the context of log sequences and topology in
log graphs, respectively. Both models have demonstrated promising outcomes in
identifying sequential or structural anomalies within event sequences or graphs.

The mentioned models are trained using balanced data allocated to each of
them, which is obtained through the following designed method.

DSS. To mitigate the bias and issues stemming from data imbalance in the
log dataset, we devise a data balancing method termed DSS(Denoise Selec-
tion Sampling), tailored to the characteristics of logs. DSS consists of three
steps:Denoising, Selecting, and Sampling.

• Denoising. Imbalanced datasets are often accompanied by class overlapping
issues, where two samples may exhibit similar features despite belonging to
different classes [20]. Taking Fig. 2 as an example, it provides a insight into
the challenge of classifying log samples due to feature representation simi-
larities. Given this, we employ Tomek-Link [21] to minimize the influence of
class overlapping by removing the inter-class overlapping samples. Tomek-
Link considers pairs of close proximity samples from different classes as noisy
or borderline and eliminates majority class samples (normal samples in log
datasets) to clean the dataset. In our work, we use Smax to denote the major-
ity class (normal samples), Smin to denote the minority class (anomalous
samples), and d (x i, xj) is used to represent the Euclidean distance between
the sample x i and x j , where x i ∈ Smax and x j ∈ Smin. If no xk satisfies the
following equations, then < xi, xj > is considered a Tomek-Link:

d(xi, xk) < d(xi, xj) or d(xj , xk) < d(xi, xj) (1)
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by following the procedures above, we obtain the cleaned datasets by remov-
ing the x i ∈ Smax in < xi, xj >.

• Selecting. After data denoising, the next step involves generating new sam-
ples. To achieve this, we prioritize selecting samples with similarity to the
anomalous center rather than those situated at the boundary. K-Means [22]
is a powerful clustering algorithm that utilizes a rigorous distance metric to
achieve superior clustering performance, especially on datasets where samples
have relatively small distances between them, such as log datasets exhibiting
high similarity after feature representation. Additionally, K-Means demon-
strates remarkable efficiency in processing large-scale datasets. Hench, K-
Means is used to cluster the data and ascertain the center of anomalous
samples. Further, the cosine similarity metric is implemented to evaluate the
similarity between the samples and the anomalous center. Following this, we
select samples that closely resemble the anomalous center to generate new
samples.

• Sampling. Then, we refer to the generation formula suggested in [23], denoted
as Eq. 2. This formula will be employed to generate a new sample by utilizing
the feature of the chosen sample:

Fnew = Fi ∗ (Vi ∗ α + 1) (2)

where Fi is the feature of the selected sample according to the previous steps,
while in [23] is a random selection from the minority class, Vi is a random
vector with values between 0 and 1, and α is a coefficient.

3.4 Anomaly Detection with Ensemble

We design an ensemble rule AW(Anomaly Weighting), shown in Algorithm 1, to
enhance the performance of log anomaly detection by integrating diverse base

Algorithm 1: Ensemble Rule
Input: Balanced log dataset X = {x1, x2, x3, ..., xn}
Output: Ensemble result Y = {y1, y2, y3, ..., yn}
Require: Given a set with m models Model set = {M1, M2, M3, ..., Mm}, the
prediction probability of each model for input data xi is Prediction seti =
{predi1, predi2, predi3, ..., predim}, the set of model’s overall discriminative
ability is W set = {W1, W2, W3, ..., Wm}, and the set of weights for model’s
distinctive discriminative ability is D set = {D1, D2, D3, ..., Dm}.
for each xi ∈ X do

sum predi =
∑m

j=1predij∗Wj∗Dj

if sum predi > threshold then
yi = 1 ;

else
yi = 0 ;

end

end
return Y = {y1, y2, y3, ..., yn}
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models for stable and accurate results. Existing ensemble rules treat positive
and negative samples equally in terms of importance. However, in log anomaly
detection, the accurate judgment of anomalous logs holds greater importance,
due to the potential consequences of missed anomalies. In light of this, AW
assigns weights to the base models, favoring those with stronger capabilities in
identifying anomalous logs. When assigning weights to base models, AW focuses
on combining two metrics: (1) the overall discriminative ability, denoted as W ;
(2) the distinctive discriminative ability for the anomaly, denoted as D.

Given m base models for AW, denoted as Model set = {M1,M2,M3, ...,Mm},
each of these models produces a prediction result for each sample x i in the train-
ing dataset X = {x1, x2, x3, ..., xn}. For each base model j, its overall discrimi-
native ability is reflected in

Wj =
1
2

ln(
num(all)

num(error)
− 1) (3)

where num(error) is the number of samples that the model does not correctly
classify, num(all) is the number of samples. Here,n, m, j are positive integers.

Additionally, we aim to capture the differences among base models in rec-
ognizing anomalous logs through D. Specifically, from the perspective of log
anomaly detection, making accurate judgments on anomalous logs is more cru-
cial than on normal logs, as missing anomalous logs can potentially lead to
significant incidents or accidents. Furthermore, the ability of a base model is
particularly highlighted when it can identify anomalous logs that other base
models cannot recognize. As a result, we use Dj to represent the distinctive
discriminative ability of a model j for the anomalous logs.

Dj =
∑m

t=1 num(Distincttj)
num(Correctj)

(t �= j) (4)

where num(Correctj) is the number of anomalous logs that base model j can
correctly identify, num(Distinct tj) is the number of anomalous logs that model
j can correctly identify but not by model t. Here, m, j, t are positive integers.

At last, AW incorporates a threshold that assists in determining the presence
of anomalies. Specifically, the final outcome for a given sample x i, denoted as
sum pred i, is derived by combining the predictions from base models. Depend-
ing on whether sum pred i exceeds the predefined threshold, x i is classified as
anomalous or normal, respectively.

Theorem 1. For binary classification, consider a set of trained base mod-
els Model set = {M1,M2,M3, ...,Mm}, combined with weighted averaging
( sum pred =

∑m
j=1 predj ∗ ωj). Here, predj = Mj(x) is the prediction of base

model j for sample x and
∑m

j=1ωj = 1. In our study, ωj is Wj and Dj. Then,
for any second-order differentiable function, the error of the ensemble model can
be decomposed as

E = Ē − Ā (5)
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where
E = ED{ζ(sum pred, y)} (6)

Ē =
m∑

j=1

ωjED{ζ(predj , y)} (7)

Ā =
1
2

m∑

j=1

ωjED{ζ ′′(pred∗
j , y)predj

2 − ζ ′′(sum pred∗, y)sum pred2} (8)

in the above equations, ED {•} represents the expectation within sample space
D and y is the actual value of the sample. The variable pred∗

j assumes a real
value between 0 and predj, while sum pred∗ takes a real value ranging from 0
to sum pred. Analogous to the Lagrange Median Theorem, the values of pred∗

j

and sum pred∗ depend on the specific form of the loss function ζ(pred,y), and
the exact numerical values of predj and sum pred.

4 Experiment and Analysis

In this section, experiments are designed to answer the following questions:

• RQ1. Whether the proposed AW ensemble rule improves the per-
formance of log anomaly detection?

• RQ2. Whether the proposed data balancing method DSS is con-
ducive to the performance of log anomaly detection?

• RQ3. Whether the framework proposed is conducive to the perfor-
mance of log anomaly detection?

4.1 Experimental Setup

Log Datasets. In experiments, we select four public log datasets1 shown in
Table 1: HDFS, BGL, Hadoop, and TrainTicket. They are derived from real-
world and widely utilized in diverse studies on log analysis [3,4,6,11,15].

Ensemble Rule. Two ensemble rules are selected: voting and weighting. The
voting rule adheres to the principle of majority rule. The weighting incorporates
classifiers’ error rates using a weighted alpha for the final prediction.

Data Balancing Method. Two oversampling algorithms are chosen for com-
parison. One is SMOTE [24], generating new samples by randomly selecting a
sample from the neighboring classes of certain samples. Another is NAO [23],
generating new samples based on selected sample features (formula 2).

1 https://github.com/DeepTraLog/DeepTraLog/tree/main/TraceLogData https://
github.com/logpai/loghub.

https://github.com/DeepTraLog/DeepTraLog/tree/main/TraceLogData
https://github.com/logpai/loghub
https://github.com/logpai/loghub
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Table 1. Log Datasets

Datasets Log lines Anomalies Percentage of anomalies (%)

HDFS 11175629 16838 (blocks) 2.93%

BGL 4747963 348460 7.34%

Hadoop 21579470 1177062 5.45%

TrainTicket 9528670 6154083 64.5% �

� It has a high proportion of anomalies, as all logs within the anomalous folder
are treated as anomalous due to the absence of individual labels.

Baseline. Seven commonly used models and an ensemble method are as
baselines. SVM [8] and IsolationForest [7] are traditional machine learning
approaches. DeepLog [3] and LogRobust [4], employ LSTM to identify anomalous
log sequences. CNN [19] utilizes filters to capture relationships in the context of
log sequences. GLAD-PAW [5] transforms log sequences into graphs for detect-
ing. NeuralLog [2] introduces an approach based on the Transformer without log
parsing. NW [11] employs spectral clustering and introduces an ensemble rule
that leverages the relationship between test samples and historical data.

Performance Metrics. We use four metrics to measure the effectiveness of log
anomaly detection: (1) Precision = TP

TP+FP ; (2) Recall = TP
TP+FN ; (3)

F1-Score = 2∗precision∗recall
precision+recall ; (4) Accuracy = TP+TN

TP+TN+FP+FN

TP(True Positive) denotes correctly detected anomalies. FP(False Positive)
represents normal samples misidentified. FN(False Negative) is the undetected
anomalies. TN(True Negative) represents anomalies wrongly classified.

Fig. 3. Performance comparison of AW under different sampling methods.

Settings. For the models with existing public implementations2, such as SVM,
Isolation Forest, DeepLog, LogRobust, NeuralLog, and CNN, we use their pre-
defined parameters of the existing implementations. For models lacking publicly
implementations, like GLAD-PAW, we meticulously develop our implementa-
tions based on their papers, following their parameter values. Experiments are
2 https://github.com/LogIntelligence/LogADEmpirical.

https://github.com/LogIntelligence/LogADEmpirical
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conducted on a system with 16GB RAM and RTX 3070 with 8GB GPU memory.
The setup includes Windows 11, Python 3.7, and PyTorch 1.11.0. Log group-
ing uses block id for HDFS and a fixed window of 300 for other datasets. Each
dataset is randomly split into 20% training and 80% testing sets. To improve the
overall generalization performance, 50% of training set are randomly sampled for
base model to be used for training. Following thorough experimental validation,
AW’s threshold is set to 0.3 and α in formula 2 is set to 0.05.

Table 2. F1-Score and Acc comparison of log anomaly detection, with NS representing
No Sample.

Models BGL Hadoop TrainTicket HDFS

F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%)

DeepLog 54.02 90.80 59.57 44.20 56.34 55.65 36.91 96.30

LogRobust 72.25 94.97 68.61 53.43 65.73 52.82 54.70 98.11

NeuralLog 74.21 96.08 86.27 76.10 79.52 78.90 88.77 99.44

GLAD-PAW 35.40 78.44 67.92 52.84 66.12 66.68 70.84 98.63

CNN 72.56 95.51 60.50 45.09 55.97 45.61 51.13 97.80

SVM 73.50 96.06 65.25 49.66 73.85 71.70 81.70 99.03

IsolationForest 45.71 89.83 64.70 49.27 59.04 62.54 66.63 98.21

NS Vote 57.66 93.61 85.72 75.31 72.92 74.46 83.10 98.98

NS Weight 59.53 94.72 87.01 77.24 74.26 75.50 84.67 99.04

NS AW 64.78 94.86 88.05 78.86 75.92 75.68 88.19 99.29

SMOTE Vote 61.64 94.48 75.68 61.64 62.39 71.30 82.71 98.93

SMOTE Weight 62.81 93.79 77.81 64.33 76.28 76.00 85.75 99.23

SMOTE AW 72.62 95.96 86.59 76.61 76.69 77.74 87.55 99.21

NAO Vote 66.29 94.62 86.44 76.38 74.39 74.87 82.51 99.08

NAO Weight 70.23 95.03 88.81 80.05 74.17 74.19 85.30 99.15

NAO AW 72.84 95.73 94.57 89.19 76.46 76.98 89.29 99.30

DSS Vote 72.62 95.96 87.30 77.68 77.55 78.69 86.46 99.13

DSS Weight 77.15 96.52 92.21 85.61 79.12 78.91 88.38 99.37

DSS AW 78.21 96.65 97.07 94.32 83.39 83.78 93.23 99.57

4.2 Results and Analysis

For RQ1, we compare three ensemble rules under a consistent data-balancing
approach. AW outperforms other ensemble rules and base models (Table 2). For
instance, in the BGL dataset, AW achieves F1-Score of 78.21% and Acc of
96.65%, an improvement of 1.06%–42.81% and 0.13%–18.21% over base mod-
els and other ensemble rules. Notably, HDFS results show 93.23% F1-Score
and 99.57% Acc. Overall, AW excels in F1-Score and Acc compared to exist-
ing ensemble rules under the same data balancing strategy or without sampling.

Unlike prevailing ensemble rules, AW introduces a novel method using two
model weights. These weights not only comprehensively evaluate each model’s
anomaly detection ability but also consider disparities in the ability of detecting
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anomalous samples across the base models. By synthesizing the distinct recogni-
tion prowess of individual models, AW significantly boosts log anomaly detection
performance, surpassing the capabilities of existing ensemble rules.

To answer RQ2, we compare three distinct data balancing methods while
using a consistent ensemble rule. The results show that DSS outperforms other
methods across all metrics, as shown in Table 2 and Fig. 3.

In contrast to baselines, DSS exhibits the potential to generate more mean-
ingful samples. Figure 2 depicts similar features between numerous normal and
anomalous ones after semantic extraction, causing indistinct class boundaries.
As shown in Fig. 4 (a), the presence of samples located at the boundary and class
overlapping can confuse and impede the model’s ability to accurately classify.

Table 3. Performance of anomaly detection with IELog and NW on four datasets

Datasets NW IELog

P(%) R(%) F1(%) Acc(%) P(%) R(%) F1(%) Acc(%)

BGL 80.00 69.31 74.27 96.10 82.93 74.00 78.22 96.65

HDFS 87.93 96.09 91.53 99.48 89.44 97.37 93.23 99.57

Hadoop 94.49 83.64 88.74 79.93 94.49 99.80 97.07 94.32

TrainTicket 71.09 83.17 76.66 77.08 77.67 90.01 83.39 83.78

Repeated generation of minority samples by SMOTE or NAO may exacer-
bate overfitting, impeding the performance of log anomaly detection. Besides, it
is essential to note that selecting boundary samples for generation will diminish
the disparity between the classes as the number of boundary samples increases.
For DSS, it extends the distinction between normal and anomalous samples.
DSS utilizes the Tomek-Link to clean the dataset, removing the normal sample
in the overlapping pairs (Fig. 4(a) to (b)). To avoid introducing extraneous data,
DSS selects samples similar to the anomalous center for generating new samples,
enhancing the distinction between classes, ultimately yielding more precise clas-
sification results. The marked distribution difference between the two classes
after sampling in Fig. 4 (b) highlights DSS’s effectiveness.

Fig. 4. Examples of DSS. (a) and (b) show data distributions before and after sam-
pling. Blue triangles represent normal samples, green indicates anomalies, and orange
indicates newly generated DSS samples. Additionally, Dashed red boxes denote sam-
ples at the boundary, while those in the orange dashed box signify overlapping classes.
(Color figure online)
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Regarding RQ3, it pertains to the performance of IELog when compared to
alternative methods. Specifically, we compare IELog with NW [11], implementing
NW with the same classifiers. Results in Table 3 illustrate that IELog yields
superior results for all metrics. IELog particularly excels in Hadoop dataset,
with a 8.33% increase in F1-Score and a 14.39% increase in Acc. NW combines
base model’s prediction using k-nearest neighbors of test samples. Yet, as seen in
Fig. 2, numerous log dataset samples display similar features. In instances where
test samples are located at the boundary, they might share the same k-nearest
neighbors, which is a challenge in accurately classifying test samples via NW.

5 Conclusion

In this paper, we propose a framework for log anomaly detection, IELog. IELog
is designed to address the issue of data imbalance and the complex and diverse
nature of log anomalies. IELog introduces the DSS for generating samples that
are more conducive to anomaly detection to balance datasets. Additionally, an
ensemble rule AW is used to combine the predictions of base models and provide
more accurate results for anomaly detection. Through extensive experiments on
four public datasets, we demonstrate the superior performance of IELog in log
anomaly detection and highlight the importance of parts in IELog.
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Abstract. Many real-world applications are perturbed by the mispre-
diction of the unknown instances into the known or seen domain. The
issue is more compounded when we have to recognize the unknowns
as well as correctly classify the knowns in a mixed bag of known and
unknown instances. In this article, we present a scheme that can effi-
ciently classify instances from the seen classes and can also detect
instances coming from unseen (unknown) classes. We have integrated
the principles of reverse nearest neighborhood and the principles of intu-
itionistic fuzzy sets for this purpose. Reverse nearest neighborhood pro-
vides a natural and elegant way of tackling the issue of unknown class
without incommoding the known class classifications. Further, we incor-
porate intuitionistic fuzzy sets to infer the unknown class memberships
of the instances from the reverse nearest neighbor information of the
known classes. Empirical evidence on five real-world datasets indicates
the improved efficaciousness of the proposed method over six state-of-
the-art competing methods.

Keywords: open set classification · intuitionistic fuzzy · reverse
nearest neighborhood · openness

1 Introduction

Since the primal days of the development of machine intelligence, a machine
has been taught to efficiently carry out the tasks which it has been ’taught’.
However intelligent a machine is, it can only carry out a task in which it has
been trained. It can rarely have some perception and behave logically in circum-
stances of which it is uninformed [22]. To develop an automated and self-sufficient
system, we must focus on filling this critical gap. In machine learning context,
unknown class detection is the detection of unknown (unseen during training)
class instances in an open world of known and unknown classes. Fraud detection
[5], fingerprint spoof detection [15], impostor detection [10], and genre identifi-
cation [14] are some domains that constitute a pertinent context for unknown
class detection in the real-world domain. To tackle this issue, we need to work
on and address unknown class detection. Unknown class detection is different
from outlier detection [1], the latter is focused on detecting stray elements of one
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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given class. Detecting the unknown class is significantly different from anomaly
detection also. In anomaly detection [4], one decides whether a test element is
an outlier from a given set of known classes. The task of unknown class detec-
tion along with the traditional classification of known class instances is termed
open set recognition (OSR). The task of open set recognition (OSR) is much
more complicated than simply rejecting the uncertain test points. In OSR, one
has to correctly classify the known class points besides detecting the unknown
instances. In unknown class detection, a significant fraction of points can come
from the unseen class/es. In such a scenario, for efficacious performance, one
needs to balance and do well in both unknown class detection and known class
classification. A scheme addressing this task should be self-contained, and be
able to decide what it does not know, more favorably without any human inter-
vention. In recent years, the machine learning community has given considerable
attention to this particular aspect. As a result, developments in the domain of
open set recognition have been significant in terms of both quantity and quality
[6].

In this paper, we propose a novel scheme of simultaneous known class classifi-
cation and unknown class detection. In the training phase, we will have instances
from a certain number of known classes (seen during training). Let that number
be c and let us have instances from these particular c classes only at training.
During the test phase, the classifier can encounter instances from these c classes
or from some other class/es also to which the classifier is not exposed in the train-
ing phase. We denote the unknown class by c+1. We may note that there can be
more than one unseen class, which we should not know because technically that
information should be unknown also. Hence, we consider exactly one unknown
class which we consider as (c + 1). Hence, at training, we do not have instances
from (c+1)th class. The classifier has to correctly classify the instances from the
seen c classes and also detect the instances which belong to the unknown class.
In our scheme, we integrate two existing techniques to facilitate open set recog-
nition. The two techniques are i]. principles of reverse nearest neighborhood and
ii]. principles of intuitionistic fuzzy sets. k-nearest neighborhood of a query point
p identifies the points lying closest to p as the neighbors of p. On the contrary,
following principles of the reverse k-nearest neighborhood (RkNN), the neigh-
bors of p are those points to whose nearest neighborhood p lies. We may note
that in a search space with cardinality n, the reverse nearest neighbor count of
p can range from 0 to n. Unlike kNN, RkNN possesses an intrinsic capability
to handle unknown class detection through its zero neighbor count. The non-
zero neighbor count of 1 to n can accommodate the known class classifications.
The zero neighborhood property of RkNN gives the backbone for unknown class
detection. The other technique of intuitionistic fuzzy technique allows us to have
a three-way membership of instances to a certain class. The first two elements
are the membership and non-membership of an instance to a particular class.
In addition to that, the third component of intuitionistic fuzzy gives a measure
of the uncertainty or vagueness of the membership and non-memberships with
respect to that class. We associate the zero RkNN count of a test instance with
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this third element of uncertainty of class membership. This information on the
uncertainty of class memberships helps us in detecting unknown class instances.
In this work, we do not use the uncertainty in class membership (w.r.t. intu-
itionistic fuzzy) to fine-tune the known class memberships. In an open world,
the presence of unknown class/es primarily accounts for the uncertainty of class
membership to a considerable extent. Hence, we use the uncertainty in class
membership to resolve the issue of unknown class prediction.

Our technique can be summarized as follows.

– We build an ensemble of three-way decision-making. In each element (clas-
sifier) of the ensemble, the first two classes are represented by two random
and mutually exclusive partitions of the given known classes. The unknown
class (class/es not belonging to either of the first two) accounts for the third
component of this three-way decision-making.

– Ensemble size depends on and is proportional to the number of known classes
involved.

– Reverse nearest neighborhood coupled with intuitionistic fuzzy principles
allow us to make a three-way decision using two known class partitions only.

– Empirical results on five real-world datasets and three metrics manifest the
competence of the proposed method over a number of (six) state-of-the-art
openset classifiers.

The rest of this article is organized as follows. In the next section, we briefly
overview the existing works on Open Set Recognition. In Sect. 3 and Sect. 4,
we describe our approach and present the Experimental Setup respectively. In
Sect. 5 we demonstrate the results and conclude the paper in Sect. 6.

2 Extant Works

Open set recognition (OSR) in a mixed bag of seen and unseen classes has
acquired the interest of the machine learning community for quite some time
[13]. The primary reason is the application of this learning in real-world domains.
Several diversified techniques have been applied to tackle OSR [13]. [7] imple-
mented unknown class recognition through estimation of the prior probability of
the known classes and posterior probabilities for the known as well as unknown
classes. One class classifier representing a class through its positive instances
has been one of the primal solutions for dealing with the open-world problem.
Though it is sufficient to deal with a setup having one known class and the rest as
an unknown class, the need for a more refined scheme that can handle more than
two known classes along with the unknown is only natural. [19] addressed this
issue by implementing open set recognition in the context of two known and the
remaining as an unknown class. They modified the conventional SVM for this.
Besides drawing a decision boundary separating the two known classes, [19] con-
siders one more hyperplane which separates the unknown class from the known
subspace. The learning of the classifier model followed by incorporating Compact
Abating Probability (CAP) is another solution. An amalgamation of the extreme
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value theory and the probabilistic CAP model is implemented in [18] to classify
the instances from the known class/es and subsequently recognize the unknowns.
CAP model considers decreasing confidence of class membership as one moves
away from a known class instance into the unmarked space. Regions beyond a
thresholded radius are subsequently categorized as unknown or open space. In
[8], a posterior probability estimator is implemented for each training class. A
test instance is predicted into a known class only if the maximum probability
surpasses the threshold. If none is found, the point is recognized as unknown.
Distribution learning of the known classes through Extreme Value Theory (EVT)
and incremental learning are incorporated in [16] to implement open set classi-
fication. A few recent schemas have incorporated neural networks to recognize
samples from unseen classes along with the classification of samples into seen
or known classes. Open set recognition through a weightless neural network is
used in [3]. In [2], a neural network-based classifier detects the unknown samples
through comparison and computation of the similarity between the unknown
data and the known or bounded knowledge. A recent scheme uses fake data gen-
erated from GAN to identify the rightful training instances [9]. [21] uses latent
representations to reconstruct, thereby facilitating the detection of the instances
belonging to the unknown class without deteriorating the known-class perfor-
mance. [12] has tweaked traditional k-NN based classifier to facilitate open set
recognition. It has proposed two schemes. In the first variant, an instance is
classified as unknown on non-agreement in class labels of its first two neighbors,
agreement assigns the instance to its first (as well second) neighbor’s class. The
second considers the test instance’s distance from its two nearest neighbors and
calculates their ratio (nearer/ farther). If the ratio is beyond a threshold and
the two nearest neighbors are from different classes, the instance is classified as
unknown and vice versa. A recent work [17] has used a naive classifier based on
reverse nearest neighbor principles to facilitate open set classification.

In recent years, a number of works have explored domain-specific open set
classification [11,20].

3 Approach

Open set recognition is the process of simultaneous unknown class detection
and known class classification in a mixed bag of known and unknown instances.
Regular classification paradigms restrict their choices and predictions within one
of the known classes. To achieve a noteworthy performance in the context of open
set recognition, we have to devise a scheme that provides an open-ended answer.
We integrate the principles of reverse nearest neighborhood and intuitionistic
fuzzy for the same.

In a given search space with cardinality n, the reverse nearest neighbor car-
dinality of a query point p can be anything between 0 and n. Let us assume that
the points in a given search space come from different classes. A query point p is
more similar to the class from which it has the highest number of reverse nearest
neighbors. If it does not get any reverse nearest neighbor in the given space, it is
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probably dissimilar and does not belong to any of the existing (known) classes in
the search space. Though reverse nearest neighbor principles provide the funda-
mental framework for open set recognition, it alone may not be sufficient for an
efficacious solution. Reverse nearest neighborhood scores should be indicative of
the uncertainty in the known class memberships of the classes. In order to mate-
rialize the known class uncertainties into unknown class membership, we involve
the principles of intuitionistic fuzzy in our scheme. We describe our approach in
the following paragraph.

Dataset Partition: We partition the set of known classes into two non-
overlapping sets. Let the training and test sets be denoted by Dtr and Dte.
We denote the set of known classes (seen classes) with K. K = {1, 2, . . . , , c}.
The unknown class is denoted as c + 1. We randomly partition K into two sets
K1 and K2 such that K1 ∩ K2 = φ. We randomly select K1 from K such that
|K1| = �c/2� and K2 = K \ K1. Hence |K2| = �c/2�. It ensures that the size of
K1 and K2 are equal if the size of K is even, differs by exactly 1 otherwise. So,
a class i, i = 1, 2, . . . , c belongs to any one of K1 or K2. Reverse k-nearest
neighbor search: We perform the Reverse nearest search of a test point, p in
the context of these two class sets K1 and K2 and accumulate the results. We
obtain the RkNN data of test point p in context of these two known sets K1 and
K2. RkNN search is always performed with respect to the neighborhood size, k.
Its value has to be determined empirically through parameter optimization.

Integrating RkNN and Intuitionistic Fuzzy Scores: Let the number of
RkNNs of p from K1 and K2 be a1 and a2 respectively. This signifies that p has
got a1 neighbors from the classes (seen) belonging to K1. The same figure with
respect to classes belonging to K2 is a2.

We obtain the intuitionistic membership scores of p with respect to individual
classes 1, 2, . . . , c+1 from a1 and a2. Let μi(p), νi(p) and πi(p) be the intuition-
istic membership, non-membership and uncertainty scores of p with respect to
class i. Note that, the unknown class (instances of which are unseen at the train-
ing phase) does not have any active component like a1 or a2. But that does not
prevent us from computing the unknown class scores, which are circumstantially
determined from the uncertainty of the known classes, πi(p), i = 1, 2, · · · , c. The
number of RkNNs from a class is an indicator of the instance’s proximity to that
class. If between two classes (known), the instance has more RkNNs from one
class than the other, the instance is likely to belong to the former class. μi(p)
indicates p’s likelihood of belonging to class i. It is made proportional to the
RkNN count of p from the known class set to which class i belongs. Following
the same logic, the non-membership score of class i, νi(p) is made proportional
to the RkNN count of the other class.

A positive RkNN count from either (or both of) the known class ensemble/s
is indicative of p’s membership to a known class. To do the needful, on getting
a positive RkNN count from the known classes (a1 + a2 �= 0), we assign 0
to the uncertainty component of the known classes. On the contrary, a zero
RkNN count of p from both K1 and K2 indicates positive uncertainty of p’s
membership to both known classes K1 and K2. We assign 0 to the membership
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and non-membership scores to both sets of known classes when a1 + a2 = 0.
The technical foundation is—K1 and K2 because p cannot gather any evidence
of membership to the component of these two classes. Consequently, we will have
1 as the uncertainty of both K1 and K2.

μi(p) =
{ a1

a1+a2
, if i ∈ K1 and a1 + a2 �= 0

a2
a1+a2

, if i ∈ K2 and a1 + a2 �= 0

0, if a1 + a2 = 0

νi(p) =
{ a2

a1+a2
, if i ∈ K1 and a1 + a2 �= 0

a1
a1+a2

, if i ∈ K2 and a1 + a2 �= 0

0, if a1 + a2 = 0

Consequently,
πi(p) = 1 − μi(p) − νi(p)

πi(p) denotes the uncertainty associated with the memberships and non mem-
berships of class i. In a similar fashion, we calculate μi(p), νi(p) and πi(p) for
all known classes i=1, 2, . . . , c. Now, we obtain the membership score for the
unknown class, μc+1(p) from the uncertainty scores πi(p)’s of all the known
classes. We compute μc+1(p) as the average of the uncertainty scores from the c
known classes. We do not calculate the non-membership νc+1(p) and uncertainty
πc+1(p) because μc+1(p) is sufficient for our prediction.

μc+1(p) =
∑c

i=1 πi(p)
c

Classification Performance from the Ensemble: It is interesting to note
that the same membership scores will be given to all known classes belonging to
a partition. p will have same will have same μ(·)(p) values for classes belonging
to K1 and the same happens for K2 also. Because of the same Ri(p) across a
number of classes, μi(p) alone gives a lesser discriminating power among the
known classes. In order to remedy this, we use an ensemble of such classifiers
and accumulate the results. Let the ensemble size be denoted by N. For N times,
we randomly partition K set into two sets K1 and K2 and repeat the experiment
and gather the results. Let M(·)(p) be the variable where we will accumulate
the membership scores from the ensemble of classifiers. Let μi(p

n) be the μi(p)
membership scores of p w.r.t. class i at nth classification (nth iteration of the
ensemble), n = 1, 2, · · · , N , i = 1, 2, · · · , c+1. (***We compute the membership
scores for the individual known classes as well as the unknown class, as we are
in the final phase of prediction.)

Mi(p) =
N∑

n=1

μi(p
n), for i=1, 2, · · · , c, c+1

To maintain the integrity of the fuzzy membership scores (0 ≤ Mi(p ≤ 1),
we have to divide Mi(p) by N.

Mi(p) =
Mi(p)

N
, for i=1, 2, · · · , c, c+1
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For the test point p, the memberships values Mi(p), i = 1, 2, . . . , c+1 quan-
tifies p’s association with each known class. Consequently, we classify p to the
class from which it has the highest membership score. Let Pred(p) be the pre-
dicted class of instance p.

Pred(p) = argmax
i

Mi(p)

Hence, our scheme allows a test point p to be classified into any one of the
given known classes or to the unknown class. This decision-making is facilitated
without any human or empirical intervention.

Essential Remark on a Limitation of the Scheme and Its Redressal: The
proposed scheme involves reverse-nearest neighborhood search and intuitionistic
fuzzy principles. For high-dimensional real-world datasets, it is likely to suffer
from the curse of dimensionality. So we suggest a reduction in the features using
extraction or selection before proceeding with the learning for high-dimensional
datasets.

4 Empirical Setup

Datasets: We have employed five real-world datasets to assess the efficacy of
the proposed method with respect to six state-of-the-art methods in the field of
open-set recognition. These datasets are obtained in closed form—that is they
do not possess any openness and the class information of all the instances is
known. In order to accommodate them for the purpose of open set recognition,
we have generated the open version of each dataset following the same protocol
as done by [18]. In each dataset, we have kept �50%� of the total classes as
the known set and varied the cardinality of the unknown class set from 1 to
�0.5 ∗ |total classes|� to vary the openness. A brief description of these datasets
is given in Table 1. We believe that openness cannot be quantified because we
don’t know the unknown. But [19] is a state-of-the-art method in OSR that has
proposed a formula for the quantification of openness. The formula is given as
follows.

Openness = 1− 2

√
2∗Training classes

Target classes+ Test classes . Target class consists of all the
training and test classes as well as the leftover unknown classes that do not
participate in the training and testing.

Evaluating Metrics: We have used three metrics, namely—accuracy, average
F1 over known and unknown classes (AKUF1) [12] and F1 for known classes to
measure the performance of the schemes.

Comparing Methods and Parameter Optimization: We have used six
competing methods, namely, 1-vs-set [19], WSVM [18], PI-SVM [8], two vari-
ants of Nearest neighbor distance-ratio open set classifier [12] (OSNN-CV and
OSNN-NDR) and reverse-nearest neighbor based naive open-set classifier (Naive-
RkNN) [17] in the comparative study. The proposed method and each of the
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Table 1. Description of datasets. N, f, and C denote the number of instances, features,
and the total number of classes respectively. ck and cu denote the cardinalities of the
known and unknown classes respectively.

Datasets N f C ck cu

Optdigits 5620 64 10 5 1–5
Penbased 10992 16 10 5 1–5
Segment 2310 19 7 3 1–4
Vehicle 846 18 4 2 1–2
Vowel 990 13 11 5 1–6

comparing methods involve parameters whose values have to be fixed empiri-
cally through parameter optimization. The parameter optimization is performed
on a validation set that is carved out of the training set. This is done to maintain
the integrity of openness for the test dataset. The proposed method involves two
parameters, neighborhood search size k and ensemble size N. For each dataset,
a single k value is used and it is obtained through parameter-optimization on
the training and validation set. Ensemble size N of a dataset is equal to twice
the number of known classes present in the dataset. The optimized value of k
for a dataset is determined via cross-validation on the training set. We carve
out a cross-validation training set, T, and validation set V from the training set
Dtr only. For open set classification, we introduce openness in V following the
same protocol as described in the above section. If m is the number of classes
in Dtr, we fix the known class and unknown class cardinalities at �0.5 × m� and
�0.5 × m� respectively.

5 Results and Analysis

We present the performance of the proposed and competing methods in terms
of the three evaluating metrics in Tables 2 and 3. We obtained the results for 20
independent runs and reported the mean score. For each of the metrics, the range
of scores is between 0 and 1 and the higher the score better is the performance.

Dataset Specific Analysis: In Optdigits, we have considered 5 openness val-
ues. Hence, for each method, there are 15 scores (5 opennesses × 3 metrics).
The proposed scheme has delivered the best scores in 13 out of 15 cases. Naive-
RkNN has given the best scores on the remaining cases. The cardinality of the
unknown classes is same for Penbased dataset, resulting in 15 scores. Similar to
the previous case, the proposed method has achieved 14 out of 15 best scores on
this dataset and Naive-RkNN has emerged as the best scorer for the remaining
case. The superiority of the proposed method prevails on Segment and Vehicle
datasets, where it achieves the best scores on 11 out of 12 and 3 out of 4 cases
respectively. The performance of the proposed method is slightly subdued in
Vowel dataset, where it achieves the best scores in 9 out of 18 cases only. Naive-
RkNN has achieved the remaining 9 out of 18 best scores of Vowel dataset.
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Table 2. Performance of the methods on three metrics across various opennesses.
Results from two datasets – Optdigits and Penbased are given in this table. The back-
ground of the best score at each openness is highlighted in blue .

Proposed method Naive-RkNN 1-vs-set WSVM PI-SVM OSNN-CV OSNN-NDR

Optdigits
Accuracy

Unknown class = 1 0.928 0.882 0.164 0.901 0.869 0.878 0.806
Unknown class = 2 0.904 0.880 0.256 0.884 0.793 0.865 0.708
Unknown class = 3 0.904 0.885 0.313 0.876 0.758 0.851 0.631
Unknown class = 4 0.894 0.881 0.424 0.878 0.736 0.843 0.602
Unknown class = 5 0.902 0.884 0.508 0.869 0.678 0.828 0.502

AKU F1

Unknown class = 1 0.879 0.817 0.163 0.825 0.684 0.798 0.446
Unknown class = 2 0.884 0.829 0.208 0.823 0.667 0.794 0.401
Unknown class = 3 0.898 0.854 0.234 0.812 0.638 0.793 0.388
Unknown class = 4 0.892 0.840 0.301 0.822 0.636 0.791 0.360
Unknown class = 5 0.901 0.855 0.318 0.824 0.604 0.789 0.312

Known F1

Unknown class = 1 0.956 0.926 0.005 0.921 0.922 0.924 0.898
Unknown class = 2 0.932 0.919 0.012 0.914 0.896 0.903 0.854
Unknown class = 3 0.924 0.920 0.009 0.906 0.872 0.900 0.802
Unknown class = 4 0.892 0.916 0.004 0.902 0.835 0.891 0.787
Unknown class = 5 0.901 0.918 0.006 0.896 0.797 0.884 0.769

Penbased
Accuracy

Unknown class = 1 0.894 0.832 0.215 0.804 0.812 0.724 0.767
Unknown class = 2 0.865 0.786 0.312 0.795 0.752 0.712 0.688
Unknown class = 3 0.878 0.812 0.385 0.725 0.702 0.701 0.614
Unknown class = 4 0.872 0.732 0.426 0.692 0.682 0.713 0.582
Unknown class = 5 0.838 0.749 0.515 0.694 0.654 0.713 0.567

AKU F1

Unknown class = 1 0.824 0.747 0.208 0.581 0.605 0.618 0.423
Unknown class = 2 0.834 0.689 0.285 0.716 0.562 0.625 0.394
Unknown class = 3 0.867 0.875 0.301 0.625 0.559 0.619 0.385
Unknown class = 4 0.870 0.682 0.336 0.605 0.551 0.634 0.361
Unknown class = 5 0.838 0.701 0.415 0.617 0.534 0.636 0.343

Known F1

Unknown class = 1 0.935 0.902 0.137 0.896 0.904 0.818 0.864
Unknown class = 2 0.905 0.862 0.143 0.880 0.859 0.799 0.830
Unknown class = 3 0.904 0.875 0.126 0.840 0.829 0.776 0.777
Unknown class = 4 0.886 0.812 0.127 0.815 0.814 0.770 0.735
Unknown class = 5 0.844 0.792 0.151 0.805 0.777 0.775 0.714

Evaluating Metric Specific Analysis: Our method has achieved the best
accuracy score on 17 out of 22 cases (all five datasets and their opennesses taken
together). Naive-RkNN has achieved the remaining five best scores (all on Vowel
dataset). On AKUF1, the proposed method has emerged as the top scorer in 17
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Table 3. Performance of the methods on three metrics across various opennesses.
Results from three datasets – Segment, Vehicle, and Vowel are given in this table. The
background of the best score at each openness is highlighted in blue .

Proposed method Naive-RkNN 1-vs-set WSVM PI-SVM OSNN-CV OSNN-NDR

Segment
Accuracy

Unknown class = 1 0.885 0.823 0.467 0.752 0.757 0.758 0.734
Unknown class = 2 0.845 0.834 0.579 0.667 0.652 0.669 0.626
Unknown class = 3 0.858 0.829 0.614 0.589 0.578 0.602 0.541
Unknown class = 4 0.929 0.834 0.609 0.550 0.551 0.596 0.487

AKU F1

Unknown class = 1 0.821 0.783 0.354 0.521 0.510 0.615 0.424
Unknown class = 2 0.812 0.804 0.488 0.475 0.572 0.398 402
Unknown class = 3 0.857 0.800 0.531 0.488 0.460 0.584 0.386
Unknown class = 4 0.925 0.801 0.499 0.480 0.462 0.579 0.374

Known F1

Unknown class = 1 0.927 0.886 0.275 0.876 0.879 0.877 0.863
Unknown class = 2 0.875 0.880 0.309 0.789 0.778 0.773 0.752
Unknown class = 3 0.865 0.863 0.316 0.705 0.689 0.693 0.672
Unknown class = 4 0.919 0.851 0.200 0.685 0.680 0.686 0.654

Vehicle
Accuracy

Unknown class = 1 0.626 0.527 0.384 0.521 0.490 0.461 0.407
Unknown class = 2 0.557 0.534 0.447 0.492 0.472 0.504 0.395

AKU F1

Unknown class = 1 0.485 0.511 0.382 0.425 0.447 0.452 0.401
Unknown class = 2 0.545 0.534 0.427 0.446 0.452 0.576 0.403

Known F1

Unknown class = 1 0.754 0.585 0.446 0.684 0.612 0.500 0.389
Unknown class = 2 0.649 0.573 0.400 0.621 0.572 0.465 0.377

Vowel
Accuracy

Unknown class = 1 0.859 0.863 0.616 0.615 0.718 0.201 0.458
Unknown class = 2 0.875 0.862 0.618 0.617 0.669 0.281 0.402
Unknown class = 3 0.829 0.860 0.670 0.666 0.603 0.313 0.388
Unknown class = 4 0.821 0.863 0.689 0.689 0.590 0.438 0.384
Unknown class = 5 0.810 0.862 0.698 0.695 0.576 0.512 0.382
Unknown class = 6 0.809 0.871 0.714 0.710 0.555 0.510 0.362

AKU F1

Unknown class = 1 0.805 0.792 0.560 0.561 0.530 0.200 0.312
Unknown class = 2 0.837 0.805 0.602 0.600 0.528 0.267 0.304
Unknown class = 3 0.807 0.809 0.641 0.638 0.498 0.285 0.289
Unknown class = 4 0.817 0.814 0.662 0.663 0.497 0.341 0.286
Unknown class = 5 0.808 0.813 0.664 0.662 0.491 0.402 0.280
Unknown class = 6 0.804 0.817 0.681 0.679 0.488 0.413 0.279

Known F1

Unknown class = 1 0.874 0.828 0.713 0.714 0.824 0.129 0.620
Unknown class = 2 0.913 0.821 0.698 0.699 0.789 0.146 0.592
Unknown class = 3 0.868 0.800 0.701 0.703 0.757 0.099 0.547
Unknown class = 4 0.826 0.802 0.697 0.696 0.702 0.141 0.538
Unknown class = 5 0.798 0.795 0.690 0.687 0.692 0.143 0.525
Unknown class = 6 0.782 0.789 0.693 0.693 0.685 0.167 0.505
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out of 22 cases. The remaining four best scores are obtained by Naive-RkNN—
one on Penbased, one on Vehicle, and the remaining three on Vowel. On Known
class F1, the proposed method has rendered the top score on 18 out of 22 cases.
Naive-RkNN has achieved the remaining four best scores—two on Optdigits, one
on Vowel, and one on Segment. These findings manifest the competency of the
proposed method in handling both known class classification and unknown class
detection under open set constraints.

Robustness: The proposed scheme delivers a fairly constant performance (with
respect to the three metrics) across varying opennesses. The change in perfor-
mance scores of the proposed method is less than 7% across different openness
values (on over 90% of the cases). On the contrary, the six competing methods
show variations in performance (more than 10% change) across the openness
ranges. The second aspect indicates the robustness of the proposed method in
tackling different openness values (which is a characteristic of the real world)
and maintaining its performance. The proposed method maintains its superior-
ity on datasets with few classes (Vehicle, Segment) and more classes (Optdigits,
Penbased).

6 Conclusion

In this paper, we have presented an open-set classifier by integrating the con-
cepts of RkNN and intuitionistic fuzzy principles. RkNN based neighborhood
identification coupled with the 3-way decision making of intuitionistic fuzzy aids
the task of unknown class detection besides the regular known class classifica-
tion. A unique attribute of the proposed scheme is its implicit estimation of the
sampling window of the training data. The RkNN process adaptively adjusts
the class boundaries, depending on the local sparseness of the training data.
The outcomes of the empirical study demonstrate the capability of the proposed
classifier to efficiently classify the instances belonging to the known class and also
the unknown class. The findings of the empirical study demonstrate the capa-
bility of the proposed method to withstand varying levels of openness, thereby
maintaining its performance. Like any k-nearest neighborhood-based scheme, the
proposed scheme has an intrinsic multi-class framework. It is a favorable charac-
teristic for dealing with datasets with a variable number of classes. In this paper,
the results of the empirical study on five datasets establish the intrinsic ability of
the proposed scheme in addressing open set classification. In future work, we aim
to refine the proposed scheme further and also include more datasets (possibly
high-dimensional and multi-media data like images) in our study.
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Abstract. Network structure is formed by intricate connections
between nodes, exploring and learning the network topological struc-
tural features has a profound impact in the field of network representa-
tion learning. Role refers to a collection of nodes with similar structural
features in the network. So network representation learning that pre-
serves node structure in a low-dimensional vector representation space is
also known as role discovery, which focuses on partitioning the network
into different sets of roles based on structural features. Although exist-
ing methods for network structure embedding have made some progress
in role discovery tasks, most of them focus on the local structural fea-
tures to generate node representations, resulting in the inability to learn
multiaspect structural features of roles. Therefore, we propose a network
structure embedding model URold, which uses role domain feature to
enhance node structure representation capabilities and learn the prox-
imity between roles. We conduct role discovery experiments on six real-
world networks, and compare with eight state-of-the-art network struc-
ture embedding algorithms. The results show that our method URold
achieves the best performance and demonstrates excellent role discovery
ability.

Keywords: Network structure embedding · Role domain feature ·
Role discovery

1 Introduction

There are widespread networks around us, such as social networks, where nodes
represent users and edges represent social relationships. The network topological
structure is of great research significance. For instance, the interactions between
proteins and nucleic acids is beneficial for us to understand biological activi-
ties. By constructing graphs based on the structural contexts of target residues
and their spatial neighborhood, nucleic-acid-binding residues on proteins can be
effectively identified [26].

Network structure embedding(also known as network role discovery) is an
important research field in data analysis and mining. There are differences in
the structural features of nodes, and role refers to a set of nodes with similar
structural features. Community discovery is similar to role discovery, they both
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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use the equivalence rule to divide the nodes. Community discovery emphasizes
the close connection of nodes in the same community [8], while role discovery
is to divide the network with equivalent structure, independent of the distance
between nodes.

Although some network structure embedding models have made progress in
role discovery tasks, they ignore the proximity between the roles represented
by the nodes. For example, HORD [21] only learns node structure similarity
based on the local structure and high-order features of nodes and the consis-
tency between them, making the node representation unable to find the logical
correlation between roles. There are certain differences in the strength of asso-
ciations between roles in the real world, like the association between students
and teachers is stronger than that between students and singers. In view of
the shortcomings of the current models, we propose a novel network embedding
model to effectively integrate role domain features into role discovery, which can
effectively learn the structural embedding representation of nodes. Role domain
describes the role probability distribution of nodes in the network.

In this paper, the main contributions of our work can be summarized as
follows:

• Improve the representation learning module by introducing deep clustering
layer, which can learn global network topological features.

• By considering the role distribution of neighborhood nodes, learning the prox-
imity between different roles.

• We experiment on role discovery tasks in several real-world networks, the
results show that our model URold achieves significant improvements com-
pared to other state-of-the-art methods.

The rest of paper is organized as follows: Sect. 2 introduces some mainstream
frameworks in network structure embedding. Section 3 introduces the detail of
our model URold. Section 4 shows the performance of models in role discovery
tasks. Finally, we summarize the paper and propose future research on our work
in Sect. 5.

2 Related Work

With the continuous generation of network data, exploring network structure is
helpful for us to better explore the hidden important information. Network rep-
resentation learning develops rapidly. Generally speaking, according to the differ-
ent ways of learning embedding, the current network structure embedding algo-
rithms can be divided into three categories: based on matrix factorization [10],
random walk [1,19], and deep learning [23].

Matrix factorization refers to the generation of node embeddings by decom-
posing feature matrices or similarity matrices, among which representative algo-
rithms are: GraRep [3] considers the high-order similarity between nodes, and
combines the decomposition of high-order adjacency matrix to obtain node
embedding. XNetMF [9] uses the singular value decomposition to obtain the
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final embedding based on the similarity between K-degree vectors. AROPE [29]
proposes an embedding algorithm of any order of proximity, which requires less
resources for switching between different orders of proximity for different down-
stream tasks. Lemane [28] trains different proximity for different downstream
tasks, which improves the practical application ability of the model.

With the rise of Deepwalk [18] in the field of network embedding, random
walk has gradually been introduced into network structure embedding. For exam-
ple, struct2vec [19] constructs a multi-layer structure graph based on struc-
tural similarity, and then uses random walk on it to learn node representation.
Node2vec [5] considers the neighborhood and structural similarity of nodes at
the same time, using two hyperparameters control the random walk to bias the
width search and depth search. Role2vec [1] combines the subgraph obtained by
using motif features to establish a connection between the node and its corre-
sponding role attribute.

In order to obtain deeper nonlinear structural features, using deep learn-
ing methods for network structure representation has gradually become pop-
ular. Among them, SDNE [25] proposed to use supervised and unsupervised
models to reconstruct the first-order and second-order neighborhood features.
DRNE [23] aims to learn the rule equivalence between nodes, and combine node
degree information to learn node embedding. VERSE [22] uses three different
node similarities and combines single-layer neural networks for role embedding.
GAS [6] uses graph convolutional layers to obtain structural features, and then
uses this feature as input information to train graph autoencoders. MSVGAE [7]
learns the mixed probability distribution of the original feature space from mul-
tiple dimensions, and then obtains node embedding by reconstructing graph
features.

The existing network structure embedding algorithms are only suitable for
shallow role discovery. The learned embedding representations can only infer the
corresponding role categories of nodes, while neglecting to preserve the inherent
correlation between roles in the original network. Our model URold is committed
to exploring deeper role features, further capturing logical correlation between
roles in real-world networks.

3 Methodology

3.1 Notions

In this article, we learn the structural embedding of undirected and unweighted
graph G. Generally, we set G = (V,E), where V = {v1, v2, ..., vn} is the node
set, E = {e1, e2, ..., en} is the edge set, and n = |V | represents the total number
of nodes in the network. For node vi ∈ V , its neighborhood Ni = {vj |(i, j) ∈ E},
the first-order egonet of node vi is represented as ξ(vi). The goal of our model
is to learn a mapping M : X ∈ Rn×f → Z ∈ Rn×d, where X represents the
vector space composed of node structural features, Z represents the embedded
representation of the network, f represents the dimension of each original node
feature, and d represents the embedded dimension.
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3.2 Overall Framework

The overall framework of our model URold is shown in Fig. 1. Firstly, the struc-
tural features of nodes are extracted from the original network. Then we perform
node embedding representation learning. Specifically, we use an autoencoder to
reconstruct the initial feature space for reducing the impact of noise. At the same
time, unsupervised deep clustering algorithm is used to capture high-order role
domain features, and combine node neighborhood features to learn the proximity
between roles.

Fig. 1. Illustration of the proposed framework URold.

3.3 Feature Extraction

The adjacency matrix is usually used to describe the network topology, but due
to its sparsity, the nodes with similar structural may be far away from each
other and have no direct connection. Relying solely on the adjacency matrix is
not enough to obtain deeper structural information of nodes, so it is essential
to extract high-quality structural features from the original network. Refer to
ReFeX [11], we first extract the egonet-based infrastructure feature representa-
tion Xa, which contains six variables and is described as follows:

– The number of edges in the egonet of node v : xa1 = |Eξ(v)|
– The degree of node v : xa2 = |N(v)|
– The sum of node’s degree in the egonet of node v : xa3 =

∑
u∈ξ(v) d(u)

– The proportion of within-egonet edges to all edges within and leaving the
egonet of node v : xa4 = xa1/xa3
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– The proportion of non-egonet edges to all edges within and leaving the egonet
of node v : xa5 = (xa3 − xa1)/xa3

– The clustering coefficient for node v : xa6 = 2|T (v)|/(xa2(xa2 − 1))

Then we calculate the low-order role domain features Xb to further learn the
role features of nodes in the global network. The specific calculation process is
as Algorithm 1. In lines 1–2 of Algorithm1, we normalize Xa and use K-Means
algorithm to compute cluster centroids. In lines 3–7, we calculate the distance
from each node to all cluster centroids and convert it into probabilities. In line 8,
we obtain Xb by weighted aggregate neighborhood role domain features, where
Dii =

∑
j Aij represents the degree matrix.

Algorithm 1. Process of extracting low-order role domain features
Input: The network G = (V,E), the adjacency matrix A, the egonet basic structure

matrix Xa

Output: The low-order role domain features Xb

1: HNorm= MinMaxNorm(Xa)
2: Hc = KMEANS(HNorm)
3: for all u ∈ V do
4: dis(u) = CalcDist(HNorm, Hc)
5: Xb(u) =(Max(dis(u)) - dis(u))/(Max(dis(u)) - Min(dis(u)))
6: Xb(u) = Xb(u)/Sum(Xb(u))
7: end for
8: Xb=D−1 AXb

9: return Xb

Finally, we use Xa ◦ Xb to represent the initial structural features, where ◦
represents connection. We define Xout = Rec(Xin) as the aggregation operation,
which calculates the sums and means of neighborhood structural features of Xin.
Specifically, Xin represents the initial node features and we use the aggregation
result Xout to update node features. We compute the feature space X through
multiple iterations of aggregation, where Xin = Xa◦Xb in the first iteration, and
the input of each subsequent iteration is the output of the previous iteration.

3.4 Representation Learning

Code Reconstruction Layer. We use an autoencoder to further capture the
non-linear relationship between node feature representations. We choose the
multi-layer perceptron model as the encoder, which is defined as follows:

Zv = f(Xv|Wi, bi) = f(WiXv + bi) (1)

where Zv represents the embedding of node v, and f(·) represents the activation
function, here we choose tanh(·) as the activation function. Wi, bi are the weight
and bias of the ith layer network, respectively. The decoding process is:

X̂v = g(Zv|Ŵi, b̂i) = g(ŴiZv + b̂i) (2)
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In order to guide the autonomous learning process of the autoencoder, we
reconstruct the feature space X as follows:

Lr = min
Φ

||X − X̂||2F (3)

where Φ represents the parameters that need to be learned. X contains more zero
elements, if only the Eq. (3) is the target optimization function of the autoen-
coder, our model will focus on learning the zero elements in the feature space.
So we make a little change to the objective optimization function as follows:

Lr = min
Φ

||(X − X̂) � B||2F (4)

where � means the Hadamard product, and if Xij = 0, Bij = 1, else Bij = 3.
The reason for this is the reconstruction of non-zero elements in the feature
space imposes a greater penalty than zero elements, forcing the model to learn
the high-dimensional features of non-zero elements, so that model can capture
structural differences between different nodes.

Deep Clustering Layer. Inspired by [2], we introduced the deep clustering
loss into role discovery task for learn high-order role domain features. First,
we cluster the node representation zi ∈ Z, and get the centroid representation
ψ ∈ Rk×d in each cluster, where k represents the number of clusters. Then we
use the student distribution to calculate the probability distribution P between
nodes and cluster in the network:

pij =
(1 + ||zi − ψj ||2)−1

∑
j(1 + ||zi − ψj ||2)−1

(5)

Then we combine the role distribution of the node neighborhood to learn the
proximity features that exist between roles. Specifically, we calculate the role
distribution Q of the node’s neighborhood:

qij =
|yu∈N(vi) = lj |

∑
j |yu∈N(vi) = lj | (6)

where lj represents the label corresponding to the cluster centroid ψj , and yu

represents the potential label learned by node u. Combining the high-order role
domain features P and the neighborhood role distribution Q, that is, S = P +Q,
and then normalize it to obtain the final node role domain S. In order to improve
the cohesion between clusters and the differences among different clusters, we
construct the target distribution T by sharpening S to guide the entire model
learning process:

tij =
s2

ij/
∑

i sij
∑

j s2
ij/

∑
i sij

(7)

By training the network parameters, we use the KL-divergence between S
and T to define the optimization objection is:

La = KL(T ||S) =
∑

i

∑

j

tij log(
tij
sij

) (8)
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Finally, we use the node degree information to modify the embedding repre-
sentation [23]. The modification process is expressed as follows:

Ld =
n∑

i=1

(MLP (zi) − log(d(vi) + 1)) (9)

Among them, we use a multi-layer perceptron to reduce the dimensionality
of zi. In summary, we use Lc to represent the loss of the clustering layer:

Lc = La + γLd (10)

Training Strategy. The final optimization function of URold is as follows:

L = Lr + βLc (11)

where Lr represents the loss of the reconstructed feature matrix, and Lc rep-
resents the loss of the deep cluster layer. We update the model parameters by
backpropagation.

4 Experiments

4.1 Datasets and Baselines

We select several real-world networks as datasets, and list it as follows:

(1) Air-traffic networks [10]: There are three air-traffic networks, including Euro-
pean, Brazilian, and American air-traffic networks (Europe, Brazil, and USA
for short). In these networks, nodes represent airports and edges represent
existing flights between airports.

(2) Actor co-occurrence network [15]: In the network, nodes represent actors and
edges between actors represent their presence in the same wiki page. The
labels of the nodes are based on the influence of the actors. We use Actor to
represent this network.

(3) English-language movie network [13]: It’s a film-director-actor-writer net-
work (Film for short). In the network, nodes represent four types of identi-
ties: film, director, actor, and writer.

Table 1 shows the details of the real-world networks, including the number
of nodes, edges, classes, transitivity, and density. We choose 8 state-of-the-art
role discovery algorithms to compare with our model URold, including Graph-
Wave [4], RDAA [12], RESD [27], Role2vec [1], RoIX [10], SEGK [17], rip-
ple2vec [14], struc2vec [19].
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Table 1. The statistical information of several real-world networks.

Dataset Nodes Edges Classes Transitivity Density (%)

Brazil 131 1,074 4 0.4497 12.613
Europe 399 5,995 4 0.3337 7.5503
USA 1,190 13,599 4 0.4263 1.9222
Actor 7,779 26,733 4 0.0156 0.0888
Film 27,312 122,706 4 0.0278 0.329

4.2 Experiment Settings

In the feature extraction module, we set the number of feature aggregation iter-
ations to 3 and the number of bins to 4. In the representation learning module,
the encoder and decoder in the autoencoder have three-layer networks respec-
tively. In the joint optimization objective function of the model, we set β = 0.8,
and γ = 0.7. During the experiment, we used the default parameters in the
corresponding papers when running the baseline method, and the embedding
dimension was set to 128 unless otherwise specified. During model training, set
epoch to 100 and batchsize to 32.

4.3 Experiments on Role Classification

We use role classification tasks to measure the ability of algorithms to extract
structural roles from the network. Specifically, 70% of the embedded represen-
tation obtained from model learning is randomly selected as the training set,
which is used as input to train a simple linear regression classifier. The remain-
ing 30% of the embedded data is used as the test set. We set up 20 random
samples each time and calculate the average of the 20 test results and report
their F1-micro(F1 for short) and F1-macro(F2 for short) scores. The results are
shown in Table 2. In real-world networks, roles are not isolated, and there are
differences in their logical correlations. Learning only the similarity of structural
features is not sufficient. It is also necessary to learn the proximity between
roles, which is conducive to preserve the logical correlation between roles in
embedding representation. From Table 2, our model URold achieves the best
scores in five datasets. URold performs most prominently in the Brazil dataset,
compared with the second-ranked RESD, the F1 and F2 scores have increased
by 5.68% and 6.65% respectively. Both GraphWave and SEGK have memory
overflow when embedding Film dataset. The reason is that the former needs to
continuously simulate the graph wavelet diffusion process, and the latter needs
to calculate a graph kernel matrix containing global node similarity. Role2vec
has the lowest F1 and F2 scores of all datasets, indicating that its embedding
does not accurately identify the role represented by the node. ripple2vec con-
structs a context graph with ripple distance to capture neighborhood structure
features, and performs better than other baselines in the Film dataset, second
only to URold.
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Table 2. The results of role classification on five datasets, we report the average F1 and
F2 scores from 20 experiments. In the table, OM means that it cannot be calculated
in fixed memory, OT means that the result cannot be calculated within 12 h, and the
bold fonts indicate best results.

Method Brazil Europe USA Actor Film
F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

GraphWave 0.758 0.751 0.518 0.488 0.521 0.469 0.472 0.457 OM OM

RDAA 0.791 0.772 0.459 0.431 0.648 0.638 0.480 0.466 0.499 0.396

RESD 0.792 0.781 0.557 0.545 0.639 0.628 0.471 0.458 0.497 0.405

Role2vec 0.363 0.322 0.358 0.341 0.442 0.438 0.311 0.294 0.308 0.292

RolX 0.746 0.743 0.551 0.543 0.628 0.617 0.467 0.451 0.487 0.383

SEGK 0.723 0.716 0.536 0.524 0.615 0.607 0.479 0.459 OM OM

ripple2vec 0.755 0.748 0.563 0.553 0.618 0.613 0.470 0.463 0.511 0.391

struc2vec 0.768 0.747 0.578 0.562 0.627 0.614 0.463 0.451 OT OT

URold 0.837 0.833 0.591 0.586 0.663 0.653 0.487 0.468 0.517 0.411

4.4 Visualization

Here we choose Brazil network for the visualization experiment. We use the
t-SNE [24] algorithm to project the embedded representation into a two dimen-
sional plane space. The similarity between nodes can be more intuitively observed
in low-dimensional space, and closer nodes are more similar. Nodes of the same
color indicate that they belong to the same class of roles. The results are shown in
Fig. 2. ripple2vec can learn to capture the (dis)similarities of the local neighbor-
hood structures by constructing ripple vectors, but different color node regions
are very close together. GraphWave projects linearly in two-dimensional space,
but does not make clear distinctions between different roles. Role2vec has the
worst visualization effect, with nodes of different colors randomly interlaced
together. RESD relies on reconstruction features and neglects to learn more dis-
tinguishable structural features, making it difficult to distinguish between green
and purple nodes in the graph. RDAA learns the similarity between neighboring
nodes, but is not effective in structural similarity. UNRold is a variant of URold
that does not consider the distribution of neighborhood roles in deep clustering
layers. Although UNRold successfully divides the nodes by color, it ignores the
proximity between different colors, such as it is difficult to know which green or
yellow node is more similar to blue node. URold can not only partition nodes of
different colors, but also learn about the proximity between roles. For example,
the green nodes are more closely related to the yellow nodes, but the association
between them and the blue is weaker.

4.5 Case Study: Role Discovery

We conduct a case study of role discovery in the Ca-Netscience network [16,
20]. This network is mainly used to describe collaborations between scientists
working on network theory and experiments. In the network, nodes represent
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Fig. 2. Visualization of node representations on the Brazil network. (Color figure
online)

authors, and edges represent cooperation between nodes. Then we use K-Means
algorithm to assign roles by clustering the low dimensional embedding. The role
feature learning ability of model is reflected by analyzing whether the embedding
reflects the structural similarity. The results are shown in Fig. 3. In order to
better observe the experimental results, we use black boxes to select three types
of representative nodes in the network, respectively using squares, pentagons
and hexagons to represent the real node types. The color of nodes is obtained
by embedding through clustering. Role2vec and ripple2vec have the worst role
discovery performance, with the former tending to identify neighboring nodes as
the same role and the latter being very cluttered, especially with the complete
inability to correctly identify roles in complex structures. SEGK and struc2vec
correctly identify only three different types of roles in the left part of the black
box, indicating that they can only learn shallow structural similarity. Although
RESD can recognize both square and pentagon, it is easy to label nodes with
the same degree and the same color. RDAA depicts the different dependencies
between each node and its neighbors through the role attention mechanism,
which makes it easier for nodes in the same neighborhood to be labeled with the
same color. While both RoIX and URold label the three roles with the correct
colors, RoIX is unstable, such as assigning multiple colors to star subgraphs
across the global network. URold is robust and can also learn the proximity
between roles, such as red and blue nodes being more likely to appear together.
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Fig. 3. Case study of role discovery on the Ca-Netscience network.

5 Conclusion and Further Discussion

In this paper, we propose a network structure embedding model URold, which
based on role domain features for role discovery. We use the low-order role
domain features to enhance the ability of node structural feature representation.
We introduce deep clustering algorithm into the representation learning module,
which captures the high-order role domain features in the network. In addition,
we also consider the distribution of roles in the neighborhood to learn the prox-
imity between roles. The experimental results show that our model URold has
achieved excellent results in role discovery tasks such as role classification and
visualization. In future work, we will further explore the node structure repre-
sentation in dynamic graphs.
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Abstract. The application of machine learning in the nuclear field has
been considered for the prediction of neutron irradiation embrittlement
of reactor pressure vessel (RPV) steels in recent years. In this study,
the RPV irradiation surveillance data are summarized and the integra-
tion of physical mechanisms with machine learning is investigated. It
is found that the experimental results of the fusion model outperform
the single machine learning models or physics formulas. In addition,
the data amount of the RPV dataset is enhanced using the variational
auto-encoder (VAE) model. Then a combined model of VAE and physi-
cal formula guided multilayer perceptron (VPMLP) is proposed, and its
advantages in terms of prediction accuracy and generalization ability are
experimentally demonstrated.
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1 Introduction

Machine learning has been receiving increasing attention from researchers related
to engineering, including the nuclear field for its powerful ability to analyze the
intrinsic connections between data [9]. Nuclear reactor pressure vessel (RPV)
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is one of the most important safety barriers in light-water reactors [11], and
its neutron irradiation embrittlement is of crucial concern for the safe long-
term operation of reactors [7]. Therefore, it’s imperative to develop an accurate
prediction model for the irradiation embrittlement of RPV steels.

Since the 1980s, based on a gradual understanding of physical mechanisms,
RPV embrittlement prediction models have been largely developed, such as
FIS/FIM [1], JEAC4201-2007 [10], EONY [2], and ASTM E900-15 [5]. Machine
learning is now emerging as a new approach for the prediction. Morgan et al. [8]
pioneered the use of Gaussian kernel ridge regression to investigate the IVAR+
dataset. Diego Ferreño et al. [3] selected the best-performing gradient boost-
ing model. Kirk et al. [6] combined a K-nearest neighbor model with empirical
equation parameters. Tang et al. [4] constructed a neural network model. Xu et
al. [12] used the XGBoost method to construct a prediction model.

However, decades of research on the traditional embrittlement prediction
formulas developed with physical mechanisms have not been combined with
machine learning. To tackle this issue, a combined model of variational auto-
encoder and physical formula guided multilayer perceptron (VPMLP) is pro-
posed in this work. To verify its effectiveness, the proposed model and several
typical models are experimented on the RPV irradiation surveillance dataset.
The experiments show that the proposed model produces more accurate results
and obtains an improvement in the generalization ability.

The rest of this paper is organized as follows. In Sect. 2, the proposed model
and its components are described. Experimental results and analysis are pre-
sented in Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 Methodology

2.1 Proposed VPMLP Model

The structure of the proposed model is shown in Fig. 1. The VAE model is
first fit with the original data to generate new valid data. The newly generated
data are mixed with the original dataset to increase the training volume, and
the prediction effect is compared and analyzed using a physical formula guided
multilayer perceptron.

2.2 Framework of VAE Model

In order to investigate whether the VAE can play a role in supplementing addi-
tional data, we construct a VAE generation model applicable to the dataset in
this study, as shown in Fig. 1. We choose 15-dimensional input vectors, includ-
ing reactor type, product form, material composition, and irradiation condition
for the RPV steels. The selection of these variables is consistent with the tra-
ditional embrittlement prediction formulas. Based on the basic symmetry, we
set the number of hidden layers and the number of neurons for the encoder and
decoder to be the same. The single hidden layer structure is adopted for its
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Fig. 1. Schematic diagram of the structure of our proposed VPMLP model.

faster convergence. By means of grid search, the final hyperparameters of the
model are set to Batch Size 16, number of neurons in the linear hidden layer 32,
potential space dimension 8, and activation function sigmoid.

2.3 Physical Formula Guided Multilayer Perceptron

The 15-dimensional input vector is chosen as in the VAE model. The output
vector of the model is set to a one-dimensional ductile-to-brittle transition tem-
perature shift (TTS) which represents the degree of irradiation embrittlement of
RPV steels. The Batch Normalization layer speeds up the training process and
normalizes the weights. Too deep MLP networks tend to lead to more serious
overfitting, thus the two linear hidden layers achieve a relative balance between
the training speed, prediction performance, and generalization ability of the
model. The remaining hyperparameters are selected by grid search: RELU acti-
vation function, Adam optimizer, L2 regularization factor of 0.1, and number of
neurons 30 and 40, respectively.

To better integrate the physical formula with machine learning, through
experimental analysis, we choose to fuse the ASTM E900-15 model with the
multilayer perceptron by combining the loss function. We first choose squared
loss as the loss function: JMSE = 1

N

∑N
i=1(yi − g(xi; θ))2. And we use the L2

regular term to mitigate overfitting, based on the premise of computational effi-
ciency, where L2 = α

∑n
j=1 w2

j . The current objective function takes the follow-
ing form: L(θ) = 1

N

∑N
i=1(yi − g(xi; θ))2 + α

∑n
j=1 w2

j . Similarly, we pass the
constraints of the physical formula to the model by adding a “physical formula
regular term”. The formula of ASTM E900-15 can be essentially reduced to a
multivariate function, i.e., there is a corresponding function f with material
type t, alloy chemical composition (Cu, Ni, Mn, P ), neutron flux φ and irradia-
tion temperature T as variables, while satisfying: f(t, Cu,Ni,Mn, P, φ, T ) = 0.
The corresponding regularization term Rphy for one sample can be expressed as:
Rphy(t, Cu,Ni,Mn, P, φ, T ) = λf2(t, Cu,Ni,Mn, P, φ, T ). Adding this physical
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term results in an objective function of the following form: Loss = JMSE +
L2 + Rphy, whose specific expression is: L(θ, α, λ) = 1

N

∑N
i=1(yi − g(xi; θ))2 +

α
∑n

j=1 w2
j +λ

∑N
k=1 f2((t, Cu,Ni,Mn, P, φ, T )k), where θ denotes the hyperpa-

rameters of the model; α and λ denote the regularization coefficients; N denotes
the number of samples; yi and xi denote the label and characteristics of the ith
sample, respectively, where some of the dimensional characteristics in xi contain
the parameters required for the physical formula of t, Cu,Ni,Mn, P, φ, T ; wj is
the weight of the fitting process; g denotes the multiple regression function fitted
by the model. The predictive performance of the model after incorporating the
physical formulations is higher than the baselines, as demonstrated by the final
experiments, which are described in Sect. 3.2.

3 Experiments

3.1 Dataset, Evaluation Metrics and Baselines

Dataset. The RPV irradiation surveillance dataset achieves a total of about
1800 data. Based on statistical analysis, the structure of the dataset is highly
heterogeneous, caused by the design specifications of RPV steels and reactors.

Evaluation Metrics. The coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE) are adopted to evaluate the
prediction performance. R2 is defined as the ratio of the dispersion between
predicted and true values. The RMSE and MAE are used to measure the differ-
ence between the prediction and their true values. Here, the higher value of R2

and the lower values of RMSE and MAE indicate the better model prediction
accuracy.

Baselines. Two advanced methods are selected as the baselines to compare
with our proposed model. The first one is EONY [2], which is incorporated in
current U.S. NRC Regulations on Pressurized Thermal Shock. The second one
is RPV-GB [3], a gradient boosting model developed by Ferreño et al.

3.2 Experimental Results

For the accurate prediction of the RPV embrittlement, in addition to the fit of the
overall data, the extrapolation capability from the low-fluence irradiation data to
the high-fluence irradiation prediction requires consideration, which is because
the main cause of RPV embrittlement at the end of service is the accumulation
of large amounts of neutron irradiation.

Table 1 shows the performance of all experiment models. Our method out-
performs all baselines in all cases except on the high-fluence test set, where the
prediction accuracy is lower than ASTM E900-15. It can be seen that all mod-
els show some prediction performance degradation in the high-fluence region.
The degradation is relatively small for ASTM E900-15 and EONY, while it’s
much larger for the model containing machine learning, which proves that the
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Table 1. Prediction evaluation results. The best results are in bold.

Model Test Set High Fluence Test Set
R2 RMSE(◦C) MAE(◦C) R2 RMSE(◦C) MAE(◦C)

E900-15 0.7981 13.96 10.9 0.6827 15.96 13.6
MLP 0.831 13.33 9.98 0.5095 23.73 19.91
MLP + E900-15 0.8391 13.02 9.57 0.6178 19.25 16.86
EONY 0.4603 23.34 20.06 0.3202 26.46 22.94
RPV-GB 0.7948 14.69 10.71 0.5215 23.38 19.29

two physical formulas have stronger generalization ability. In addition, the fusion
model of E900-15 and MLP actually improves the prediction accuracy compared
to the single MLP or GB model, suggesting that incorporating suitable physical
formula into machine learning can improve the prediction ability of the models
even under high neutron fluence conditions. Considering the test metrics of these
models together, it can be seen that the integrated model fusing physical formula
and machine learning can achieve a balance between the prediction accuracy and
the extrapolation ability to high-fluence region.

Table 2. Prediction evaluation results. The best results are in bold.

New Data Percentage(%) 0 5 10 15 20 25 30 35 40 45

Train Set R2 0.827 0.726 0.686 0.607 0.501 0.458 0.397 0.344 0.356 0.280
RMSE(◦C) 11.82 18.53 19.20 24.28 28.66 32.33 35.85 39.52 41.49 43.89
MAE(◦C) 9.15 11.76 12.81 14.02 16.16 18.30 20.13 22.10 23.63 25.14

Test Set R2 0.839 0.846 0.825 0.804 0.756 0.693 0.645 0.589 0.516 0.413
RMSE(◦C) 13.02 12.64 13.33 14.04 15.68 17.51 18.78 20.27 21.95 24.15
MAE(◦C) 9.57 9.35 9.81 10.42 11.78 12.81 13.90 14.69 15.96 17.46

Table 2 shows the change in the evaluation metrics of the fusion model on
the dataset as new data generated by VAE model is added. It is found that the
prediction effectiveness of the model generally shows a decreasing trend with the
gradual increase of new data. However, it should be noted that when the new
data occupies 5% of the original volume, the model has a better prediction on the
test set for all three metrics, R2, RMSE, and MAE. This indicates that the newly
generated data effectively complement the original dataset in the sparse part and
improve the prediction accuracy. Nuclear power data are relatively scarce. The
experimental results demonstrate the potential of data enhancement through
VAE modeling in this field.

4 Conclusion

In this paper, a combined model of variational auto-encoder and physical for-
mula guided multilayer perceptron (VPMLP) is proposed for the prediction of
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RPV neutron irradiation embrittlement. The fused physical formula enables the
neural network to better utilize the physical information for prediction, and the
model can alleviate the problem of insufficient training data for RPV embrittle-
ment prediction and improve the prediction accuracy. The experimental results
demonstrate the advantages of the proposed VPMLP model in terms of predic-
tion accuracy and generalization ability.
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Abstract. We study the problem of mitigating the spread of misin-
formation in social networks, simulated by the Independent Cascade
model. We propose an intuitive community-based algorithm, which aims
to detect well-connected communities in the network and disconnect the
inter-community edges. Our experiments on real-world social networks
demonstrate that the proposed algorithm significantly outperforms the
prior methods, which mostly rely on centrality measures.

1 Introduction

The widespread adoption of social media platforms has undeniably resulted in a
significant increase in the dissemination of misinformation. This issue permeates
various domains such as politics, economics, and sociology [5].

One commonly employed strategy to contain the misinformation spreading
is edge blocking. Blocking an edge implies that the connection between the two
nodes connected by the edge is suspended, for example by not exposing posts
from one user to another. Edge blocking has garnered greater attention recently
(in comparison to node blocking), cf. [21,22], since it is less intrusive and provides
controlling power in a more granular level.

In the present work, we focus on designing an effective and efficient source-
agnostic edge-blocking strategy. To model the spread of misinformation, we
exploit the popular Independent Cascade model [9]. We investigate the problem
of minimizing the expected number of nodes that will be exposed to a piece of
misinformation when we are allowed to block k edges for some given integer k.

We propose a community-based algorithm, which partitions the nodes into
communities. Then, we try to slow down the flow of misinformation between
these communities by disconnecting the inter-community edges. We provide our
experimental findings on several real-world graph data. We observe that our
proposed algorithm significantly outperforms the existing algorithms.

An extended version of this paper can be found in [23].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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1.1 Preliminaries

Graph Definitions. Let G = (V,E, ω) be a weighted graph, where function
ω : E → [0, 1] assigns a value between 0 and 1 to each edge in the graph. Let
us define n := |V | and m := |E|. For a node v ∈ V , N (v) := {v′ ∈ V : (v, v′) ∈
E} is the neighborhood of v. Furthermore, N̂(v) := N(v) ∪ {v} is the closed
neighborhood of v. Let d (v) := |N (v) | be the degree of v in G. The girth of a
graph G is the length of the shortest cycle contained in the graph. If G has no
cycle, then the girth is defined to be infinity.

Independent Cascade Model [6,9]. Each node can have one of the following
three states: Ignorant (white): a node which has not heard of the misinformation,
Spreader (red): a spreader is a node who has heard the misinformation and
spreads it, Stifler (orange): a node who has heard the misinformation but does
not spread it. Let a coloring C be a function C : V → {w, r, o}, where w, r, and
o correspond to white, red, and orange, respectively. The process starts from an
initial coloring C0. Then, in each round t ∈ N , all nodes simultaneously update
their state according to following updating rules: (i) a white node v becomes red
with probability p∗(v) := 1−∏

v′∈N(v)&Ct−1(v′)=r (1 − ω ((v, v′))), (ii) a red node
becomes orange, (iii) an orange node remains orange.

1.2 Prior Work

The countermeasure of edge blocking has gained significant popularity, cf. [14,
18,21,22]. Kimura et al. [13] introduced a method of efficiently estimating the
influence of nodes using bond percolation. This bond percolation method then
was used in [11,12] to identify a set of edges which, when blocked, maximize the
contamination degree of the network. Yan et al. [19] proposed a greedy method
to identify the most critical edges among a set of candidate edges to minimize the
spread of a misinformation. Pagerank centrality [2] is used in [19] as a criterion for
blocking the edges to minimize the spread of misinformation. The susceptibility
of a graph to diffusion is defined in [10] as the sum of the expected influence of
each node when it is the single source for a cascade. Further, a greedy method
is proposed that minimizes the spread susceptibility of the network. Finally,
Zareie and Sakellariou [22] took into account additional features of edges (beyond
centrality), such as entropy, to determine what edges to block. Some more results
on edge blocking problems are discussed in, [3,20].

2 Proposed Algorithm

We rely on Louvain community detection algorithm [1]. It is used by our algo-
rithm to first find a set of communities such that the number of inter-community
edges is at most k, the budget for the number of edges to be blocked. Then, we
simply block all these edges. The Louvain algorithm receives a graph G and
a resolution parameter r. The value of r controls the number of communities
(and consequently, the number of inter-community edges) the algorithm will
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output. Our goal is to generate a set of communities such that the number of
inter-community edges is smaller than k but as close as possible to it.

To achieve this, we employ a multi-step process, which is described in Algo-
rithm1. This essentially follows a hit-and-trial process by updating the resolution
parameter. In addition to graph G and budget k, it also receives an initial res-
olution parameter r, two repetition parameters h1 and h2, and an increasing
factor f > 1. It initially sets S = ∅ and count = 0. Then, it runs in a while
loop until count is larger than the number of repetitions h1. Inside this, it first
runs a for loop for h2 times. Each time, it runs the Louvain algorithm and finds
the inter-community edges. Then, for each of these edge sets E , if the size of E
is smaller than k, but larger than current S, then we update S = E . This way,
the size of S gets closer to the budget k, but it does not exceed it. Note that
we run the for loop h2 times, since the Louvain algorithm is nondeterministic.
Once the for loop is over, we update the resolution factor to r = r ∗ f , where f
is the increasing factor. Furthermore, if |E| > k, we increment count. Note that
at the beginning, count might remain zero until r is large enough such that E
(the number of inter-community edges) becomes large. Then, count will increase
until it exceeds h1 and then the while loop is over. We then return the set S.

Algorithm 1 Pseudocode for our proposed algorithm
Input: G(V, E, ω), r, Increasing Factor f , Repetitions h1 and h2, and Budget k
Output: Set of edges S of size at most k to be blocked.

1: procedure Algorithm(G, r, f, h1, h2, k)
2: S = ∅
3: count = 0
4: while (count <= h1) do
5: for i from 1 to h2 do
6: C = set of communities returned by the Louvain algorithm for G, r
7: E = set of inter-community edges for C
8: if |E| > |S| and |E| <= k then
9: S = E

10: end if
11: end for
12: update r = r ∗ f
13: if |E| > k then
14: count++
15: end if
16: end while
17: return S
18: end procedure

3 Evaluation

Social Networks. For our experiments, we use three subgraphs of Face-
book, namely Facebook from SNAP dataset [15] and Facebook-Politician and
Facebook-Govt from Network Repository [17].
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Edge Weights. Most real-world networks are unweighted, and one needs to
introduce a meaningful procedure for weight assignment. There is a strong cor-
relation between the number of shared friends of two individuals and their level
of communication [7,16]. Therefore, we assign the edge weights according to the
Jaccard index [8] in our set-up. More precisely, for each edge (v, u) ∈ E, we set
ω ((v, u)) = |N̂(v)∩N̂(u)|

N(v)∪N(v) . We use |N̂(v) ∩ N̂(u)| instead of |N(v) ∩ N(u)| in the
numerator to ensure that the weight of an edge is never equal to zero.

Some of the prior algorithms that we discuss in Sect. 3.1 rely on a measure
of distance between two nodes. Since the edge weights represent the strength
of the relations, it is conventional to use their “opposite” form when calculating
distance. More precisely, for an edge (v, u), we use 1 − ω((v, u)).

Algorithm Parameters. For our algorithm, as discussed in Sect. 2, we need to
set the initial resolution parameter r, the repetitions h1 and h2, and increasing
factor f > 1. In our experiments, we set r = 0.01 for Facebook and Facebook-
Politician and r = 0.05 for Facebook-Govt, f = 1.05, and h1 = h2 = 5. Note
that the closer f is to 1 and the larger h1 and h2 are, the more precise our
algorithm would be. There is nothing specifically unique about these choices.
They are just some reasonable choices that allow our algorithm to perform well
on the datasets used, as will be discussed in Sect. 3.1.

Containment Factor. To measure the effectiveness of an edge blocking algo-
rithm that blocks edges in a set S, we rely on containment factor cf =
100 · φ(G(V,E,ω),R)−φ(G(V,E\S,ω),R)

φ(G(V,E,ω),R) .
Here φ(G(V,E, ω), R) and φ(G(V,E\S, ω), R) denote the expected final num-

ber of orange nodes (when initially nodes in R are red) before and after blocking
edges in S. (Note that we focus on orange nodes, since all red nodes eventually
become orange.) Thus, φ(G(V,E, ω), R) is the number of nodes that become
orange before blocking any edges, and cf measures what percentage of them
will remain white once edges in S are blocked. To be consistent with prior work,
cf. [22], we use cf in our evaluations to compare the algorithms.

3.1 Comparison of Algorithms

We compare our proposed algorithm against algorithms from prior work.

– RNDM: A set of edges is randomly selected to be blocked.
– HWT: Edges with the largest weight are blocked.
– DEG [9,19]: The edges for which the sum of the degree of their two endpoints

are the largest are blocked.
– WDEG: This is the same as DEG, except the weighted degrees (the sum of

the weight of adjacent edges for each node) are considered.
– CLO: The edges for which the sum of the closeness of their two endpoints

are the largest are blocked.
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– WCLO: This is the same as CLO, except the edge weights (their “opposite“
actually, as explained) are considered when calculating closeness.

– BET [4]: The edges with the highest betweenness centrality are blocked.
– WBET: The edges with the highest weighted betweenness are blocked.
– PGRK [2,19]: The edges for which the sum of the PageRank centrality of

their two endpoints are the largest are blocked.
– IEED [22]: In each iteration, a “critical” edge is determined and blocked

from the network. Criticality is determined using nodes’ influence and edges’
blocking efficiency, weighed using a notion of entropy. (Please refer to [22] for
more details on this algorithm.)

For each of our three networks, we select a randomly chosen set R of nodes of
size |R| = 0.001n to be red initially (and the rest white). We let the number of
blocked edges to range from 0.01m to 0.2m. Then, we compute the containment
factor cf for all the algorithms by blocking the corresponding edges and running
the Independent Cascade model. For each experiment, we select |R| nodes to be
red, and then run the Independent Cascade Model 10 times to obtain the cf for
the same set of initial red nodes. We run each of these experiments 10 times for
different sets of initial red nodes and report the average value of cf .

Fig. 1. The containment factor for different algorithms on Facebook (top-left),
Facebook-Govt (top-right), and Facebook-Politician (bottom) networks. (Color figure
online)

The outcomes of our experiments are provided in Fig. 1. We observe that
our proposed algorithm consistently outperforms all other algorithms, especially
by a significant margin for higher percentages of blocked edges. The only case
where our algorithm does not perform better than the other algorithms is for
small percentages of blocked edges on the Facebook-Govt dataset.
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Abstract. Multi-source domain adaptation aims to leverage multiple
labeled source domains to train a classifier for an unlabeled target
domain. Existing methods address the domain discrepancy by learn-
ing the invariant representation. However, due to the large difference
in image style, image occlusion and missing, etc., the invariant repre-
sentation tends to be inadequate, and some components tend to be lost.
To this end, a multi-source domain adaptation method with multi-modal
representation for components is proposed. It learns the multi-modal rep-
resentation for missing components from an external knowledge graph.
First, the semantic representation of the class subgraph, including not
only the class but also rich class components, is learned from knowledge
graph. Second, the semantic representation is fused with the visual repre-
sentations of each domain respectively. Finally, the multi-modal invariant
representations of source and target domains are learned. Experiments
show the effectiveness of our method.

Keywords: Domain adaptation · Multi-modal representation ·
Knowledge graph

1 Introduction

Domain adaptation (DA) aims to leverage a labeled-rich source domain to train
a model on an unlabeled target domain, where the distributions of the two
domains are different but related. In some applications, source training data is
collected from multiple domains, which leads to Multi-Source Domain Adapta-
tion (MSDA).

The existing MSDAs mainly fall into two categories. The first is weighting
on the individual alignment of each domain, such as ABMSDA [1], BSA [2]. The
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second is alignment on merged multiple source domains, such as M3SDA [3].
In applications, there are large gaps in image style among different domains,
image occlusion, or insufficient image. These will lead to the invariant features
being incomplete during alignment, and some class components are easily lost.
DAC [4] riches the representation of class prototype by fusing the visual rep-
resentation of components. LTC-MSDA [5] learns the class prototype with the
visual and semantic features, in which the semantic features are learned based
on the semantic similarity of the class prototype. Although these methods can
supplement the missing feature representations to a certain extent, they still
need to be further improved in terms of the missing components.

To this end, this paper introduces the knowledge graph as an external
resource to obtain more components and enriches the representations by fus-
ing the multi-modal component representations to improve multi-source domain
adaptation. The contributions are summarized as follows. (1) To address the
missing of the class components, a multi-modal representation for class compo-
nents is proposed. And it uses semantics of class components to compensate for
the lack of existing visual representations due to discrepancies of domains and
the occlusions in images. (2) With various structural relationships in the exter-
nal resource KG, some class components that are not present in the images can
also be captured to complement the component features.

2 Proposed Method

Given multiple labeled source domains XS =
{(

xS
i , wS

i

)}ns

i=1
, and unlabeled

target domain XT =
{(

xT
j

)}nt

j=1
, the labels of all domains are expressed as

W = {wi}ni=1, where n is the number of labels, and ns and nt are the number
of samples in multiple source and target domain. An knowledge graph KG =
(E,R, T ), (W ⊂ E) is treated as an external resource to capture class compo-
nents. Our task is to train a well-performing classifier for target domain. Figure 1
shows the framework of our proposed method.

2.1 Semantic Representation of Class Components

We use KG as an external resource to obtain semantic representations of class
related components to enrich the representations.

The Class Subgraph. We capture the related components related to class wi of
the image from the external KG. Here a popular KG, ConceptNet [6] is adopted.
Specifically, the class label wi is treated as the key to query the corresponding
node and its neighbors and relationships in ConceptNet. The queried result is
regarded as class subgraph G, and it contains rich components and the structural
relationships between class and components, which will compensate the missing
of some features in the images. It is noted that the number of relationships of
class-subgraph is decided by the external KG. The specific process of subgraph
division is as follows: (1) G is initialized to empty. (2) For each class label
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Fig. 1. The framework of our method.

wi ∈ W , the corresponding node is queried from the knowledge graph, and
then its k-hop neighbors, and the corresponding relationships between them are
extracted together to form the class subgraph G.

Semantic Representation of Class Components. The semantic representation of
the class subgraph, G = {E′, R′, T ′} is performed. First, the component nodes
are initialized to a 100-dimensional vector with glove [7], and the relations are
initialized randomly. The class nodes are initialized to a 100-dimensional vector
with all zeros, and then aggregates its neighborhoods to obtain its representa-
tion Secondly, the representation of class nodes, component nodes and relations
are concatenated into the triples, and then they are optimized together in an
attention way. The attention of the triple (wi ‖rh‖ ck) to the class node wi is
calculated as follows:

αihk =
exp

(
aT [wi ‖rh‖ ck]

)
∑

ck∈Ni

∑
rh∈Rwi,ck

exp (aT [wi ‖rh‖ ck])
(1)

From this, the representation of class components after aggregating the triples
can be expressed as:

xc = ReLU

⎛

⎝
∑

ck∈Ni

∑

rh∈Rwick

αihk [wi ‖rh‖ ck]

⎞

⎠ (2)

where (wi ‖rh‖ ck) represents the semantic representation of the triplet (class
node, relation, component node), where wi, rh, ck represent class node, relation
and component node respectively, and || is the splicing operation. Ni is the
set of component nodes of class node wi, and Rwi,ck is the set of all relations
between class node wi and all component nodes ck. Finally, we get the vector
representation of the class components Xc after the aggregating relationship.
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2.2 Multi-modal Invariant Representation Learning

In this subsection, the component semantic representation is fused with the
visual representation to complement the possible missing component features.
Secondly, invariant feature representations are learned based on the multi-modal
representations with MMD.

First, the semantic representation of class component, Xc, is fused with the
visual features of the source and target domains, FS and FT , to obtain the source
multi-modal representation FS

c and the target multi-modal representation FT
c .

The fusion formula is as follows:

FS
c =

[
FS‖Xc

]
, FT

c =
[
FT ‖Xc

]
(3)

Second, the multi-modal invariant representations is learned with MMD and
the cross-entropy loss is used to train the classifier. Thus, overall objective func-
tion is shown as follows:

L (θcls, θD) =
1
ns

ns∑

i=1

L
(
Fs

(
FS
c

))
+ MMD

(
FS
c , FT

c

)
(4)

3 Experiments

3.1 Datasets and Baselines

Two popular datasets, DomainNet [3] and Office-Home [8], are used to validate
the effectiveness of our method. Three types of baselines are compared with our
method, including 1) Single-best means performing the single source domain
adaptation, and selecting the best single-source result as the result of multi-
source domain adaptation. It includes DAN [9], DANN [10] and MCD [11].
2) Source-combine combines all source domains as a single domain to per-
form single-source domain adaptation. It also includes DAN [9], DANN [10] and
MCD [11]. 3) Multi-source means that the knowledge learned from multi-
ple source domains is transferred to the target domain. It includes M3SDA [3],
DRT [12], SPS [13], DAC [4] and LTC-MSDA [5]. The results of most baselines
come from their original paper [13,14].

In the training, the labels in target is unavailable and only labels in source
domains are fed. In addition, the epoch is 15, the initial learning rate is 0.001,
the batch size is 64, and the learning rate decays by 0.1 every five cycles.

3.2 The Performance

Overall Performance. The overall performance of all methods are in Table 1.
1) Compared with the single-source DA, MSDA methods perform better. 2)
Compared with methods based on visual representation, multi-modal methods
perform better generally. It indicates that the semantic information is helpful for
the learning of invariant representation of multiple domains. 3) Compared with
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Table 1. Overall performance (accuracy %) on DomainNet and Office-home dataset

Standard Models DomainNet Ofiice-home

clp inf pnt qdr rel skt Ar Pr Cl Rw

Single Best DANN 37.9 11.4 33.9 13.7 41.5 28.6 67.9 80.4 55.9 75.8

DAN 39.5 14.5 29.1 14.9 41.9 30.7 68.2 80.3 56.5 75.9

MCD 42.6 19.6 42.6 3.8 50.5 33.8 69.1 79.6 52.2 75.1

Source Combine DANN 45.5 13.1 37 13.2 48.9 31.8 68.4 79.5 59.1 82.7

DAN 47.3 11.4 36.7 14.7 49.1 33.5 68.5 79.0 59.4 82.5

MCD 54.3 22.1 45.7 7.6 58.4 43.5 67.8 79.2 59.9 80.9

Multi-Source M3SDA 58.6 26 52.3 6.3 62.7 49.5 67.2 79.1 63.5 79.4

DRT 71 31.6 61 12.3 71.4 60.7 72.6 68.5 54.6 75.4

SPS 70.8 24.6 55.2 19.4 67.5 57.6 75.1 84.4 66 84.2

LTC-MSDA 63.1 28.7 56.1 16.3 66.1 53.8 67.4 79.2 64.1 80.1

DAC 72.5 27.6 57.8 23 66.7 59.5 - - - -

Ours 74.3 37.2 67.2 34.8 73.4 63.6 80.1 85.6 67 86.6

other semantic-visual fusion methods, our method improves the performance
by 9.2% and 2.4%. It shows that our capturing the components from external
KG can strengthen the missing components and enrich the representations. 4)
Compared with DAC, which uses the visual representation of class components,
our method can classify better. It indicates that the semantic representation
of class component can enrich the insufficient visual representation when there
are large difference of image style and occlusion in each source domain, it also
complements relevant components that do not occur in the images. 5) When
the multiple source and target domains have large differences of style and occlu-
sions, our method outperforms more obviously. As for the difficult tasks, such
as qdr and inf, our method outperforms the best baseline by 11.8% and 5.6%,
respectively. As for easy tasks, such as clp and rel, our method outperforms the
best baseline by 3.3% and 2%, respectively.

Table 2. Ablation of our method on DomainNet and Office-home dataset

Models DomainNet Ofiice-home

clp inf pnt qdr rel skt Ar Pr Cl Rw

Only-Vision 71.0 31.8 61.0 12.5 71.4 60.7 72.6 68.5 54.6 75.4

Vision+similar attribute 73.2 36.4 65.8 23.7 72.3 63.2 75.3 77.1 56.6 76.9

Ours 74.3 37.2 67.2 34.8 73.4 63.6 80.1 85.6 67.0 86.6

Ablation. It can be seen from Table 2: 1) Compared with Only-vision, the
other two variants improve the performance by 5.7% and 7.9%. This indicates
that component-based semantic representations can supplement partly the class
components, thereby helping to learn more transferable features. 2) Our method
performs better than vision+similar attribute. This shows that considering the
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complex relations between components and classes, GAT can obtain a better
component semantic representation by considering the different importance of
these relations.

4 Conclusion

In this paper, we explore the role of component semantics in MSDA. We intro-
duce the multi-modal class components from an external KG to learn the seman-
tic representation of class components, which is integrated with the original
visual representation to perform MSDA. Extensive experiments validate that
our method can complement the missing representation of class components and
then improve the performance of MSDA. In the near future, we will further focus
on the domain generalization methods when the target is unknown.
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Abstract. The cooperation phenomenon in real life can often be viewed
as an interaction between multiple agents. The exchange of unstructured
information between agents is usually abstracted as the transmission of
node information in a graph. Various approaches have been proposed to
build graph models and fuse the information of agents in their observa-
tion range. However, it is inefficient to directly apply the related algo-
rithms of graph neural networks to integrate the information of each
agent, which can not effectively use the observation features of the dom-
inant agent in cooperation, and it may also be overly focused on the
weight of the edges. In this paper, we propose AWGmix, which is an
abbreviated weighted graph information-enhanced algorithm for multi-
agent reinforcement learning. Specifically, we propose a simple and con-
venient method to calculate the weight of edges between graph nodes
modeled from agent connections, and design an attribution module based
on attention mechanism to find the dominant agents and enrich the rep-
resentation of observations. Experimental results demonstrate the supe-
riority and effectiveness of our proposed method on Starcraft II micro-
management benchmark tasks.

Keywords: Reinforcement Learning · Multi-Agent Reinforcement
Learning · Partial Observable Markov Decision Process · Cooperative
Game · Graph Neural Network

1 Introduction

Cooperation is common from viruses, bacteria to social animals and humans [10].
Numerous cooperative issues in human society generally take the form of multi
agent cooperative systems where the goal is to maximize the team reward. Multi-
Agent Reinforcement Learning (MARL), which utilizes Reinforcement Learning
(RL) methods to co-train a group of agents, can be used to solve these coopera-
tive problems. However, many MARL approaches still struggle with the sample-
inefficiency and high-dimensional state-action spaces. Still, the joint state-action
space expands exponentially with the increasing number of agents, which is
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called the curse of dimensionality, will further deteriorate the training efficiency
of agents. One of the keys to solving this problem is to find a way to effectively
extract and fuse the information of agents and train the joint policy.

Recently, the mainstream algorithms have introduced the specific train-
ing pattern named Centralized-Training with Decentralized-Execution (CTDE),
which enables agents to get the global state information and opponents’ actions
during the training stage, to ease the non-stationarity and sample-inefficiency in
multi-agent systems. This framework enables some successful developments of
methods that directly extend some efficient single-agent algorithms to multi-
agent realm, for example, replacing the deep deterministic policy gradient
(DDPG) estimate with a multi agent style counterpart [8], or designing a precise
neural network structure to ensure Individual-Global-Max (IGM) principle [18].
However, it is ineffective to search for the optimal cooperative policy directly in
the joint state-action space, and this issue will get worse as this combined space
expands as the number of agents rises [8].

On the other side, the interactions for cooperation between agents are also cru-
cial to the training of joint policy, while this process is usually modeled as the infor-
mation exchange in a graph. Some researchers try to extend existing approaches
of Graph Convolutional Network (GCN) by extracting the features from obser-
vations of agents to enrich the representation of joint value function [4]. Gener-
ally, these approaches reckon that all agents share equal importance with the same
weighted value of edge in the modeled graph [4], or equip the attention mechanism
to integrate the observations of various agents more effectively [11]. In addition,
Graph indeed provides a good medium for information fusion, but current meth-
ods either crudely simplify the connection relations among all agents to be equal
and do not take the connection relationship and information outside the field of
view into account, or just roughly calculate the connection weights of agents, which
consume a large amount of computation. However, some attention-based strate-
gies ignore the role of the dominant agents and their behavior in collaboration in
favor of concentrating simply on the agents’ observations.

To address the problems above, we propose an abbreviated weighted graph
information-enhanced algorithm, named AWGmix, for multi-agent reinforcement
learning. Specifically, AWGmix contains an attribution module based on the
attention module to determine the dominant agents, which should be paid more
attention to training. Then a convenient and clean method is proposed to cal-
culate the edge weight of agents based on the Floyd hop-counting (FHC) in
the modeled graph through the relationship between the observation range and
relative location.

We briefly summarize the main contributions of AWGmix as follows:

– We propose an attribution module to determine the dominant agents in the
cooperative scenarios, which will boost the whole training.

– We abandon the complex attention-based mechanism of calculating the weight
of edges in vanilla Graph Neural Network (GNN), and then propose a simple
method based on Floyd hop-counting concerning the relationship between the
observation range and relative location of agents.
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– The Hypernetwork is implemented to mix all the individual utility of agents
together to improve the training efficiency, and we evaluate and demonstrate
the effectiveness of our method on the challenging StarCraft II micromanage-
ment benchmark tasks.

For the following components of this paper, we firstly present related works
about GNNs or attention based multi-agent algorithms, and other value decom-
position approaches in Sect. 2. Then the background of MARL is formulated
in Sect. 3. The novel Abbreviated Weighted Graph Information Enhanced algo-
rithm is introduced and illustrated in Sect. 4. Then the experiments and ablations
are described in Sect. 5, as well as the experiment description and parameters
setup. We also analyze the reasons for the effectiveness of our proposed method,
and then conclude it in Sect. 6.

2 Related Works

The simplest solution to the MARL problem is to extend the single agent RL
algorithm to the field of MARL [25]. However, such an approach may cause non-
stationarity due to the update of the policies during the training process [2]. Part
of the solution to this problem is to improve the representation of the policies by
considering the actions taken by other agents during training [8]. In addition, the
CTDE paradigm is widely applied in value-based MARL [8,14,15,18,20]. This
framework assigns centralized critics to each agent instance, which alleviates the
non-stationarity of cooperation. Qatten [26] analyzes the relationship between
Qtot of VDN and Qi (τi, ui), then assembles the utilities through the multi-head
attention structure. WQMIX [13] then reduces the weight of suboptimal joint
actions while maintaining the representativeness of the joint Qtot. QPLEX [21]
creates a unique network that factorizes the Qtot with the dueling structure.
ROMA [22] assigns similar roles to agents with the same trajectories to enhance
cooperation. ResQ [17] extends Qtran [18] with other joint-actions based on the
residual model[19]. VMIX [19] added an A2C framework to QMIX, and SMIX
[27] balanced variance and bias by incorporating λ-return into the Qtot. On the
other hand, such as HAPPO/HATRPO [5], all the information of the agent is
taken into account to consider the influence of the sequence of agents’ actions.
MAT [24] goes a step further, adding the Transformer architecture to HAPPO
to focus on the effect of observations on each agent.

In addition, many researchers have modeled and abstracted the cooperation
of agents into the information transfer between graph nodes in order to bet-
ter simulate interactions and enrich the representation of features in training.
G2ANet [7] aims to abstract the game during training to simulate the interac-
tion. Meanwhile, the multi-actor-attention-critic (MAAC) [3] enhances the rep-
resentation of values in MADDPG by using an attention mechanism to enrich
state information. ATT-MADDPG uses attention modules [9] to gather infor-
mation about teammates and ensure effective training of agents. VGN [23] takes
into account the influence of agents with the minimal Q-values and enriches the
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policy by applying double attention GCN. The DGN [4] approximates the inter-
action between agents as a fully-connected GCN and uses a multi-layer GCN
to integrate information from agents out of sight. GraphMIX [11] takes into
account situations where agents may have limited direct observations of each
other, and incorporates GCN into QMIX [15] for effective information fusion.
DVD [6] improves the joint value function by separating the confusing path
from the global state and instead enriches it with a fully connected graph of the
history of action-observation.

Throughout these approaches, there were two common ways to handle inter-
actions between agents. One way is to use GCN directly to integrate the agent’s
observations, while another requires designing a complex attention module to
obtain edge weights in the modeled graph. These methods do not effectively
capture interactions among agents beyond the observable range, nor do they
identify the key agents in the cooperation. In this paper, we explore a weight
calculation technique that makes it easy to abstract the relationships between
agents into weighted factors and examine the effect of dominant agents on coop-
erative behavior, to improve sample efficiency and training performance.

3 Background

3.1 Decentralized POMDP

The cooperative task in multi agent setting is usually described as a decentralized
partially observable Markov decision process (Decentralized POMDP) [12], which
is depicted with a tuple < S,U, P, r, Z,O, n, γ > where n means the number of
agents with n ∈ N . The state s ∈ S indicates the global state of environment.
An action ui ∈ U is chosen at each time step t to integrate into a joint action
u ∈ U ≡ Un, which leads to a transition of the environment state that follows
the transition function P (s′ | s,u) : S × U × S → [0, 1]. The reward function
r(s,u) : S ×U → R is shared among all agents. Each agent i receives an partial
observation value zi ∈ Z based on O(zi|s, ui) : S × U → Z and tracks its
action-observation history τi ∈ T ≡ (Z × U)∗, and their respective strategies
πi (u|τi) : T × U → [0, 1] form a joint state action value function Qπ (st,ut) =
Est+1:∞,ut+1:∞ [Rt | st,ut], to collectively optimize total performance, where Rt =
∑T

i=0 γirt+i.

3.2 Value Decomposition and CTDE Paradigm

Our primary focus revolves around the Centralized-Training with Decentralized-
Execution paradigm in MARL, where the learning algorithm is granted access to
s and τ of all agents to facilitate centralized policy training. However, agents only
make decisions based on their local observations during execution stage. Most
value-based algorithms implemented within CTDE adopt the IGM principle to
ensure consistency between the joint state action value function Qtot (τ,u) and
the utilities [Qi (τi, ui)]ni=1:

argmax
u

Qtot (τ ,u) = (argmax
u1

Q1 (τ1, u1) , . . . , argmax
un

Qn (τn, un)). (1)
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Following the IGM principle, we can ensure that the same set of maximum
actions is guaranteed between [Qi (τi, ui)]ni=1 and Qtot (τ,u). Therefore, if there
is a function fs(Q1(τ1, u1), . . . , Qn(τn, un), s) = Qtot(s,u), the ∂fs

∂Qu
≥ 0,∀u ∈

U ≡ (1, . . . , n) is all that is required. So far, VDN [20] and QMIX [15] have
emerged as two exemplary paradigms in this context. VDN factorizes Qtot into
a sum of utilities QVDN

tot (τ ,u) =
∑n

i=1 Qi(τi, ui), while QMIX combines a state-
dependent continuous monotone function, QQMIX

tot (τ ,u) =
∑n

i=1 |wi|Qi(τi, ui),
with the utility of each agent. Here | · | is an absolute function ensuring the
monotonicity between Qtot and [Qi (τi, ui)]ni=1.

3.3 GCN and Its Attentional Applications in MARL

GCN - Graph Convolutional Network. When cooperation between agents
is modeled as the interaction between GNN nodes, we can use GNN approaches
to deal with the information propagation process. The most straightforward app-
roach to fuse the information is GCN, which performs convolutional operations
on the nodes with connected relations, .i.e, the adjacent matrix as:

Hl+1 = σ
(
PHlWl

)
, (2)

where σ indicates the ReLU activation function, P is symmetric normalization
of the adjacency matrix, expressed as D− 1

2AD− 1
2 .

Attention Mechanism in MARL. Attention mechanisms have garnered con-
siderable interest in various domains of AI. The general idea of MARL is to utilize
the soft-attention to determine the important relationship of all other agents to
the present one as follows:

wk =
exp (f (Ω, ek))

∑K
i=1 exp (f (Ω, ei))

; (3)

where, ek represents the agent k’s feature vector, wk denotes the importance
weights of agent k, and Ω represents the feature vector of the current agent,
typically referring to its observation o.

4 Methods

We begin by constructing the agent relationship as a specific graph, with each
node representing an individual agent and all nodes connected in pairs. The
graph is also known as the Agent Coordination Graph [7]:

Definition 1. (Agent Coordination Graph) The agent-agent relationship is
specified as an undirected graph G = (N, V), which consists of the set of nodes N
and the set of edges V, which are unordered pairs of N components. Each node
represents an agent’s entry, while the edge shows the link between two agents.



118 S. Wang et al.

In this component, we will present our model AWGmix, an abbreviated
weighted graph information-enhanced algorithm for MARL, which can better
integrate the information of agents outside the visual field and rely on the dom-
inant agents to make better decisions. Figure 1 presents the overview of our
model. The entire model is mainly made up of two modules (1) Attribution
module (2) Abbreviated weighted graph module. The first module reacts to the
role of the dominant agents for cooperation; while the second module considers
the information of the agents outside the visual with the help of Floyd hop-
counting.

Fig. 1. General schematic diagram of AWGmix’s model, which contains 4 parts: (a)
policy network of agents, (b) attribution module, (c) mixing network, (d) abbreviated
weighted graph module.

4.1 Attribution Module

This module is mainly based on the attention module, fusing the observation
and action of other agents to enrich the representative capability of the policy
network. This module consists of the policy networks of agents and the soft-
attention part to obtain the information-enhanced utilities [Q̂i (τi, ui)]ni=1.

We consider the same policy network structure of agents as in QMIX [15],
which uses the GRU layer to generate the state-action Qi. As shown in part
(a) of Fig. 1, the agent model encodes the current observation ot and the last
taken action ut−1 as inputs through the feedforward network, and then the
encoding result and the GRU hidden embedding vector of the previous step are
put into the GRU layer to obtain the Q-value output vector. For value-based
MARL algorithms, the policy network generally computes the Q-values of all
actions and then uses the ε-greedy mechanism to get the final output utility
[13,15,18,26].

Once the vanilla utilities Qi are obtained, they are fed into a self attention
module to fuse the state-action information of agents with the soft attention
mechanism. This module will make the agents pay more attention to the allies
with larger Q-values, which are the dominant agents, and then focus on the
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impact of their actions in cooperation [23]. Here the self-attention in this module
follows Eq. (3) as:

wk =
exp (f (Qi, Qk))∑n

j=1 exp (f (Qi, Qj) , )
, (4)

and the enhanced Q̂i of agents can be obtained as in the (b) part of Fig. 1.

Fig. 2. Comparison of FHC and vanilla GCN in information propagation in MARL. If
agent a wants to get information from agent i, it needs 3-layers of GCN network for
information fusion, while FHC can achieve the same effect with only 1-layer.

4.2 Abbreviated Weighted Graph Module

Floyd Hop-Counting Part. In large cooperation scenarios, agents that are
too far away will not be able to observe each other and cannot collaborate better
to accomplish the cooperative tasks. As shown in Fig. 2, the typical 2s3z cooper-
ation scenario in StarCraft Multi-Agent Challenge (SMAC). The ally agents are
marked in red and enemies are marked in purple, and the dotted cycles depict
their observation range, respectively. Since we consider the partial observability
of agents, which means each agent i only receives a local observation oi

t at each
step t, it can only observe the agents in its sight range. Take the agent a as an
example, it can only observe the information of agent b, agent c and agent d at
the current moment, and if it needs to fuse the information of agents outside
of the field of view, it needs to use a multi-layer GCN network for information
transfer, which is time-consuming.

To avoid the limitation and to achieve information transfer and fusion outside
the field of view in a single-layer GNN approach, a weighted hop counting method
based on the Floyd shortest path calculation is proposed in AWGmix, named
Floyd hop-counting (FHC). The FHC constructs the virtual edges based on the
adjacent matrix of agents, and can calculate the hops between any agents pair
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Algorithm 1. Obtain Floyd Hop Counting Matrix
Input: A: adjacent matrix of agents; N : the number of all the agents;
Initial: M ∈ R

N×N , M = A + I with I the identity matrix;
for agent k = 1 to n do

for agent i = 1 to n do
for agent j = 1 to n do

if Mij > Mik + Mkj then
Mij = Mik + Mkj

end if
end for

end for
end for

based on Floyd shortest path approach, which can fuse the information of k-th
order neighborhood with only one layer FHC [28,29]. Algorithm 1 represents the
algorithm for constructing FHC.

When we get the hops of any two agents, we use a score function as (5) to
calculate the weight of the connection between them and get Floyd Weighted
Hop-Counting (FWHC) from FHC. The intuition of this score function is that
the closer the two agents are, the greater the weight, and vice versa. Thus the
information of the agents outside the field of view can also be fused using a single
layer of FWHC, and we can obtain the weight matrix E

Eij = Score(Mij) =
1

eMij−1
. (5)

Graph Structure and State Information Augmentation Part. This part
mainly focuses on the state and graph structure information augmentation for
the enhanced utilities obtained by the attribution module. We concatenate the
adjacency matrix A, enhanced utilities [Q̂i (τi, ui)]ni=1, and state information s
to obtain the augmented [Q̃i (τi, ui)]ni=1 as

Q̃ = MLP(A; Q̂1, · · · , Q̂n; s). (6)

At this point, the embedding Q̃ = (Q̃1, Q̃2, . . . , Q̃n) incorporates the struc-
tural information of the graph composed by the agents and also the global state
information, which enables them to work better with each other.

Mixing Part via Hypernetwork. The role of the mixing part is the same as
that in QMIX [15], i.e., we input the state s into a hypernetwork [1] to generate
the vector W which is consistent with the dimension of Q̃, and then to integrate
the Qtot. To ensure the continuity of the IGM, we also perform the absolute
operation | · | on the generated W vector. So far, we are able to integrate the
augmented Q̃ with the help of W to obtain Qtot and weigh the contribution
made by each Q̃i with the weight matrix E as follows:
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Qtot = W · Q̃ · E =
n∑

i=1

|wi| Q̃iei−1, (7)

where ei−1 indicates the (i-1)th column vector of E. Then Qtot can be
updated in a manner similar to DQN with the targets as Qtot ← r +
γQ′

tot(Q̃
′
1, · · · , Q̃′

n; s
′;A′).

Fig. 3. Training curves of AWGmix and other baselines. The solid lines reflect the
median values, and the shadowed zone represents the 25%–75% quartile results.

5 Experiments

In this part, we perform the experiments of AWGmix on the SMAC, which
provides a rich range of hard cooperative scenarios. Our focus is on addressing
micromanagement issues, in which each controlled unit is handled by an inde-
pendent learnable agent with limited local observation. The objective is to train
groups of units to engage in battles against the opposing units controlled by the
game’s built-in programmed AI. All approaches are executed in the PyMARL
framework [16], we run the experiments with 5 random seeds and plot the train-
ing results by shading the 25%–75% quartile range. In all the experiments, the
learning rate of AWGmix is set to 0.0005, the update interval of the target net-
work is 200 steps, the hyper-network has 2 hidden layers with 64 neurons and
γ = 0.99. We set the sampling batch size to 32 and the size of replay buffer to
5000, all the other parameters are the same as those of Qmix.

5.1 Results

SMAC provides a range of scenarios that serve as standard training experiments
for agent cooperation, providing an in-depth assessment of the cooperative char-
acteristics of trained agents. All of 8 battle scenarios are considered and grouped
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into Easy (1c3s5z, 2 s_vs_1sc), Hard (5m_vs_6m, 3 s_vs_5z, 2c_vs_64zg,
bane_vs_bane) and Super-Hard (6h_vs_8z, MMM2 ). By default, the game
AI difficulty level in SMAC is configured to Very Difficult to ensure a chal-
lenging environment for cooperation.

We consider GraphMIX, DGN, VDN, QMIX, and WQMIX as baseline algo-
rithms for comparison and evaluation. As shown in Fig. 3, the performance
improvement of our AWGmix is particularly noticeable in some super-hard sce-
narios requiring complicated cooperation between the agents, such as 6h_vs_8z
and MMM2, which fully demonstrates that introducing graph structure informa-
tion contributes to agents collaboration in complex scenarios. Moreover, AWG-
mix surpasses or achieves on par with the baseline performance in a wide variety
of battle scenarios, such as 5m_vs_6m, 1c3s5z and 2c_vs_64zg.

Fig. 4. Training curves of AWGmix and other baselines. The solid lines reflect the
median values, and the shadowed zone represents the 25%–75% quartile results.

However, our AWGmix method is not perfect and even fails to outperform
VDN in some scenarios such as the 3 s_vs_5z. One possible explanation for
this could be the relatively small number of agents involved in simpler tasks,
resulting in less expressive power in terms of the graph structure information
they form. Consequently, the inclusion of parameters associated with the graph
structure may not significantly enhance the representation of policies. Moreover,
this introduction of additional parameters related to the graph structure could
potentially lead to a decrease in training efficiency.

5.2 Ablations

To test the impact of the attribution module and FWHC in AWGmix, we remove
the attribution module and FWHC part from AWGmix and conduct the exper-
iments on the MMM2 and 5m_vs_6m, respectively. As shown in Fig. 4, the
training performance of AWGmix after removing these two modules was sig-
nificantly reduced. In particular, in the MMM2 scenario, AWGmix can reach
about 90% win rate, but only 60% after removing these modules, indicating
that both the graph structure information and the attribution module have a
greater impact on the collaborative ability of agents.
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6 Conclusion

In this paper we present AWGmix, a MARL approach based on the agent mod-
eled graph information. AWGmix builds an agent-coordination graph and cal-
culates the number of hops between agent pairs based on Floyd’s shortest path
method, and uses this to build the specific weights of the edges in a graph.
In addition, AWGmix contains an attribution module to integrate the Q-values,
which enables the agents to consider the action information of others and cooper-
ate more efficiently when making decisions. For work in future, we may consider
encoding the changing information of the graph structure and feeding it into the
policy network to test its effect on the actions and cooperation of agents.
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Abstract. Reinforcement learning has achieved great success in many
decision-making tasks, and traditional reinforcement learning algorithms
are mainly designed for obtaining a single optimal solution. However,
recent works show the importance of developing diverse policies, which
makes it an emerging research topic. Despite the variety of diversity
reinforcement learning algorithms that have emerged, none of them the-
oretically answer the question of how the algorithm converges and how
efficient the algorithm is. In this paper, we provide a unified diversity
reinforcement learning framework and investigate the convergence of
training diverse policies. Under such a framework, we also propose a
provably efficient diversity reinforcement learning algorithm. Finally, we
verify the effectiveness of our method through numerical experiments.

Keywords: Reinforcement learning · Diversity Reinforcement
Learning · Bandit

1 Introduction

Reinforcement learning (RL) shows huge advantages in various decision-making
tasks, such as recommendation systems [20,23], game AIs [3,10] and robotic
controls [17,24]. While traditional RL algorithms can achieve superhuman per-
formances on many public benchmarks, the obtained policy often falls into a
fixed pattern. For example, previously trained agents may just overfit to a deter-
mined environment and could be vulnerable to environmental changes [6]. Find-
ing diverse policies may increase the robustness of the agent [12,16]. Moreover,
a fixed-pattern agent will easily be attacked [21], because the opponent can find
its weakness with a series of attempts. If the agent could play the game with
different strategies each round, it will be hard for the opponent to identify the
upcoming strategy and it will be unable to apply corresponding attacking tac-
tics [13]. Recently, developing RL algorithms for diverse policies has attracted
the attention of the RL community for the promising value of its application
and also for the challenge of solving a more complex RL problem [4,7,11].

Current diversity RL algorithms vary widely due to factors like policy diver-
sity measurement, optimization techniques, training strategies, and application
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scenarios. This variation makes comparison challenging. While these algorithms
often incorporate deep neural networks and empirical tests for comparison, they
typically lack in-depth theoretical analysis on training convergence and algo-
rithm complexity, hindering the development of more efficient algorithms.

To address the aforementioned issues, we abstract various diversity RL algo-
rithms, break down the training process, and introduce a unified framework.
We offer a convergence analysis for policy population and utilize the contextual
bandit formulation to design a more efficient diversity RL algorithm, analyz-
ing its complexity. We conclude with visualizations, experimental evaluations,
and an ablation study comparing training efficiencies of different methods. We
summaries our contributions as follows: (1) We investigate recent diversity rein-
forcement learning algorithms and propose a unified framework. (2) We give out
the theoretical analysis of the convergence of the proposed framework. (3) We
propose a provably efficient diversity reinforcement learning algorithm. (4) We
conduct numerical experiments to verify the effectiveness of our method.

2 Related Work

Diversity Reinforcement Learning. Recently, many researchers are com-
mitted to the design of diversity reinforcement learning algorithms [4,7,11,19].
DIYAN [7] is a classical diversity RL algorithm, which learns maximum entropy
policies via maximizing the mutual information between states and skills.
Besides, [19] trains agents with latent conditioned policies which make use of
continuous low-dimensional latent variables, thus it can obtain infinite quali-
fied solutions. More recently, RSPO [26] obtains diverse behaviors via iteratively
optimizing each policy. DGPO [4] then proposes a more efficient diversity RL
algorithm with a novel diversity reward via sharing parameters between policies.

Bandit Algorithms. The challenge in multi-armed bandit algorithm design is
balancing exploration and exploitation. Building on ε-greedy [22], UCB algo-
rithms [1] introduce guided exploration. Contextual bandit algorithms, like
[14,18], improve modeling for recommendation and reinforcement learning. They
demonstrate better convergence properties with contextual information [5,14].
Extensive research [2] provides regret bounds for these algorithms.

3 Preliminaries

Markov Decision Process. We consider environments that can be repre-
sented as a Markov decision process (MDP). An MDP can be represented
as a tuple (S,A, PT , r, γ), where S is the state space, A is the action space
and γ ∈ [0, 1) is the reward discount factor. The state-transition function
PT (s, a, s′) : S × A × S �→ [0, 1] defines the transition probability over the next
state s′ after taking action a at state s. r(s, a) : S × A → R is the reward func-
tion denoting the immediate reward received by the agent when taking action
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a in state s. The discounted state occupancy measure of policy π is denoted as
ρπ(s) = (1− γ)

∑∞
t=0 γtPπ

t (s), where Pπ
t (s) is the probability that policy π visit

state s at time t. The agent’ objective is to learn a policy π to maximize the
expected accumulated reward J(θ) = Ez∼p(z),s∼ρπ(s),a∼π(·|s,z)[

∑
t γtr(st, at)]. In

diversity reinforcement learning, the latent conditioned policy is widely used. The
latent conditioned policy is denoted as π(a|s, z), and the latent conditioned critic
network is denoted as V π(s, z). During execution, the latent variable z ∼ p(z) is
randomly sampled at the beginning of each episode and keeps fixed for the entire
episode. When the latent variable z is discrete, it can be sampled from a categor-
ical distribution with Nz categories. When the latent variable z is continuous, it
can be sampled from a Gaussian distribution.

Table 1. Comparison of different diversity algorithms.

Method Citation Policy Selection Reward Calculation

RSPO [26] Iteration Fashion Behavior-driven / Reward-driven exploration

SIPO [9] Iteration Fashion Behavior-driven exploration

DIAYN [7] Uniform Sample I(s; z)

DSP [25] Uniform Sample I(s, a; z)

DGPO [4] Uniform Sample minz′ �=z DKL(ρπθ (s|z)||ρπθ (s|z′))

Our work Bandit Selection Any form mentioned above

4 Methodology

In this section, we will provide a theoretical analysis of diversity algorithms in
detail. Firstly, in Sect. 4.1, we propose a unified framework for diversity algo-
rithms, and point out major differences between diversity algorithms in this
unified framework. Then we prove the convergence of diversity algorithms in
Sect. 4.2. We further formulate the diversity optimization problem as a contex-
tual bandit problem, and propose bandit selection in Sect. 4.3. Finally, we
provide rigorous proof for regret bound of bandit selection in Sect. 4.4.

4.1 A Unified Framework for Diversity Algorithms

Although there has been a lot of work on exploring diversity, we find that these
algorithms lack a unified framework. So we propose a unified framework for
diversity algorithms in Algorithm 1 to pave the way for further research.

We use Div to measure the diversity distance between two policies and we
abbreviate policy πθ(·|s, zi) as πi. Vector zi can be thought of as a skill unique
to each policy πi. Moreover, we define U ∈ R

N×N as diversity matrix where
Uij = Div(πi, πj) and N denotes the number of policies.

For each episode, we first sample zi to decide which policy to update. Then
we interact the chosen policy with the environment to get trajectory τ , which
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Algorithm 1. A Unified Framework for Diversity Algorithms
Initialize: πθ(·|s, z); U ∈ R

N×N (Uij = Div(πi, πj))
for each episode do

Sample zi ∼ SelectZ(U);
Get trajectory τ from πi;
Get rin = CalR(τ) and update U ;
Store tuple (s, a, s′, rin, zi) in replay buffer D;
Update πi with D;

end for

is used to calculate intrinsic reward rin and update diversity matrix U . We
then store tuple (s, a, s′, rin, zi) in replay buffer D and update πi through any
reinforcement learning algorithm.

Here we abstract the procedure of selecting zi and calculating rin as SelectZ
and CalR functions respectively, which are usually the most essential differences
between diversity algorithms. We summarize the comparison of some diversity
algorithms in Table 1. Now we describe these two functions in more detail.

Policy Selection. Note that we denote by p(z) the distribution of z. We can
divide means to select zi into three categories in general, namely iteration
fashion, uniform sample and bandit selection:

(1) Iteration fashion. Diversity algorithms such as RSPO [26] and SIPO [9]
obtain diverse policies in an iterative manner. In the k-th iteration, policy
πk will be chosen to update, and the target of optimization is to make πk

sufficiently different from previously discovered policies π1, ..., πk−1. This
method doesn’t ensure optimal performance and is greatly affected by policy
initialization.

(2) Uniform sample. Another kind of popular diversity algorithm such as
DIAYN [7] and DGPO [4], samples zi uniformly to maximize the entropy of
p(z). Due to the method’s disregard for the differences between policies, it
often leads to slower convergence.

(3) Bandit selection. We frame obtaining diverse policies as a contextual ban-
dit problem. Sampling zi corresponds to minimizing regret in this context.
This approach guarantees strong performance and rapid convergence.

Reward Calculation. Diversity algorithms differ in intrinsic reward calcula-
tion. Some, like [4,7,19], use mutual information theory and a discriminator φ
to distinguish policies. DIAYN [7] emphasizes deriving skill z from the state
s, while [19] suggests using state-action pairs. On the other hand, algorithms
like [15,26] aim to make policies’ action or reward distributions distinguishable,
known as behavior-driven and reward-driven exploration. DGPO [4] maximizes
the minimal diversity distance between policies.
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4.2 Convergence Analysis

In this section, we will show the convergence of diversity algorithms under a rea-
sonable diversity target. We define P = {π1, π2, ..., πN} as the set of independent
policies, or policy population.

Definition 1. g : {π1, π2, ..., πN} → R
N×N is a function that maps population

P to diversity matrix U which is defined in Sect. 4.1. Given a population P, we
can calculate pairwise diversity distance under a certain diversity metric, which
indicates that g is an injective function.

Definition 2. Note that in the iterative process of the diversity algorithm, we
update P directly instead of U . So if we find a valid U that satisfies the diver-
sity target, then the corresponding population P is exactly our target diverse
population. We refer to this process of finding P backward as g−1.

Definition 3. f : R
N×N → R is a function that maps U to a real number. While

U measures the pairwise diversity distance between policies, f measures the
diversity of the entire population P. As the diversity of the population increases,
the diversity metric calculated by f will increase as well.

Definition 4. We further define δ-target population set Tδ = {g−1(U)|f(U) >
δ,U ∈ R

N×N}. δ is a threshold used to separate target and non-target regions.
The meaning of this definition is that, during the training iteration process, when
the diversity metric closely related to U exceeds a certain threshold, or we say
f(U) > δ, the corresponding population P is our target population.

Note two important points: (1) The population meeting the diversity require-
ment should be a set, not a fixed point. (2) Choose a reasonable threshold δ that
ensures both sufficient diversity and ease of obtaining the population.

Theorem 1. ( ∂f
∂U )ij = ∂f

∂Uij
= ∂f

∂Div(πi,πj) > 0, where i, j ∈ {1, 2, 3, ..., N}.

Proof. f measures the diversity of the entire population P. When the diversity
distance between two policies in a population πi and πj increases, the overall
diversity metric f(U) will obviously increase.

Theorem 2. We can find some special continuous differentiable f that, ∃ε > 0,
s.t. ( ∂f

∂U )ij > ε, where i, j ∈ {1, 2, 3, ..., N}.

Proof. For example, we can simply define f(U) =
∑

i�=j Uij, where ( ∂f
∂U )ij = 1.

So we can choose threshold 0 < ε < 1, then we can find ( ∂f
∂U )ij > ε obviously. Of

course, we can also choose other relatively complex f as the diversity metric.

Theorem 3. There’s a diversity algorithm and a threshold ν > 0. Each time
the population P is updated, several elements in U will increase by at least ν in
terms of mathematical expectation.
Proof. In fact, many existing diversity algorithms already have this property.
Suppose we currently choose πi to update. For DIAYN [7], Div(πi, πj) and
Div(πj , πi)(∀j �= i) are increased in the optimization process. And for DGPO [4],
suppose policy πj is the closest to policy πi in the policy space, then Div(πi, πj)
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and Div(πj , πi) are increased as well in the optimization process. Apart from
these two, there are many other existing diversity algorithms such as [15,19,26]
that share the same property. Note that we propose Theorem 3 from the per-
spective of mathematical expectation, so we can infer that, ∃ν > 0, j �= i, s.t.
Div(π′i, πj) − Div(πi, πj) > ν, where policy π′i denotes the updated policy πi.
And for k /∈ {i, j}, we can assume Uik and Uki are unchanged for simplicity.

Theorem 4. With an effective diversity algorithm and a reasonable diversity
δ-target, we can obtain a diverse population P ∈ Tδ.
Proof. We denote by P0 the initialized policy population, and we define f0 =
f(g(P0)). Then ∃M ∈ N , s.t. f0 + M · νε > δ. Given Theorem 2 and Theo-
rem 3, we define PM as the policy population after M iterations, then we have
f(g(PM )) > f0 + M · νε, which means we can obtain the δ-target policy pop-
ulation in up to M iterations. Or we can say that the diversity algorithm will
converge after at most M iterations.

Remark. Careful selection of threshold δ is crucial for diversity algorithms. Rea-
sonable diversity goals should be set to avoid difficulty or getting stuck in the
training process. This hyperparameter can be obtained through empirical exper-
iments or methods like hyperparameter search. In certain diversity algorithms,
both δ and P may change during training. For instance, in iteration fashion
algorithms (Sect. 4.1), during the k-th iteration, P = {π1, π2, ..., πk} with a tar-
get threshold of δk. If policy πk becomes distinct from π1, ..., πk−1, meeting the
diversity target, policy πk+1 is added to P and the threshold changes to δk+1.

4.3 A Contextual Bandit Formulation

As mentioned in Sect. 4.1, we can sample zi via bandit selection. In this section,
we formally define K-armed contextual bandit problem [14], and show how it
models diversity optimization procedure.

Algorithm 2. A Contextual Bandit Formulation
Initialize: Arm Set A; Contextual Bandit Algorithm Algo
for t = 1, 2, 3, ... do

Observe feature vectors xt,a for each a ∈ A;
Based on {xt,a}a∈A and reward in previous iterations, Algo chooses an arm at ∈

A and receives reward rt,at ;
Update Algo with (xt,at , at, rt,at);

end for

We show the procedure of the contextual bandit problem in Algorithm 2. In
each iteration, we can observe feature vectors xt,a for each a ∈ A, which are
also denoted as context. Note that context may change during training. Then,
Algo will choose an arm at ∈ A based on contextual information and will receive
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reward rt,at
. Finally, tuple (xt,at

, at, rt,at
) will be used to update Algo.

We further define T-Reward [14] of Algo as
∑T

t=1 rt. Similarly, we define the
optimal expected T-Reward as E[

∑T
t=1 rt,a∗

t
], where a∗

t denotes the arm with
maximum expected reward in iteration t. To measure Algo’s performance, we
define T-regret RT of Algo by

RT = E[
T∑

t=1

rt,a∗
t
] − E[

T∑

t=1

rt,at
]. (1)

Our goal is to minimize RT .
In the diversity optimization problem, policies are akin to arms, and context

is represented by visited states or ρπ(s). Note that context may change as policies
evolve. When updating a policy, the reward is the difference in diversity metric
before and after the update, linked to the diversity matrix U (Sect. 4.1). Our
objective is to maximize policy diversity, equivalent to maximizing expected
reward or minimizing RT in contextual bandit formulation.

Here’s an example to demonstrate the effectiveness of bandit selection. In
some cases, a policy πi may already be distinct enough from others, meaning that
selecting πi for an update wouldn’t significantly affect policy diversity. To address
this, we should decrease the probability of sampling πi. Fixed uniform sampling
fails to address this issue, but bandit algorithms like UCB [2] or LinUCB [14]
consider both historical rewards and the number of times policies have been
chosen. This caters to our needs in such cases.

4.4 Regret Bound

In this section, we provide the regret bound for bandit selection in the diversity
algorithms.

Problem Setting. We define T as the number of iterations. In each iteration
t, we can observe N feature vectors xt,a ∈ R

d and receive reward rt,at
with

‖xt,a‖ ≤ 1 for a ∈ A and rt,at
∈ [0, 1], where ‖ · ‖ means l2-norm, d denotes the

dimension of feature vector and at is the chosen action in iteration t.

Linear Realizability Assumption. Similar to lots of theoretical analyses of
contextual bandit problems [1,5], we propose linear realizability assumption to
simplify the problem. We assume that there exists an unknown weight vector
θ∗ ∈ R

d with ‖θ∗‖ ≤ 1 s.t.

E[rt,a|xt,a] = xT
t,aθ∗. (2)

for all t and a.
We now analyze the rationality of this assumption in practical diversity

algorithms. Reward rt,a measures the changed value of overall diversity metric
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�f(U) of policy population P after an update. Suppose πi
t is the policy corre-

sponding to the feature vector xt,a in the iteration t. While xt,a encodes state
features of πi

t, it can encode the diversity information of πi
t as well. Therefore,

we can conclude that rt,a is closely related to xt,a. So given that xt,a contains
enough diversity information, we can assume that the hypothesis holds.

Theorem 5. (Diversity Reinforcement Learning Oracle DRLO). Given a rea-
sonable δ-target and an effective diversity algorithm, let the probability that the
policy population P reaches δ-target in T iterations be 1− �δ,T . Then we have
limT→∞ �δ,T = 0.
Proof. This is actually another formal description of the convergence of diversity
algorithms which has been proved in Sect. 4.2. Experimental results [4,19] have
shown that �δ,T will decrease significantly when T reaches a certain value.

Theorem 6. (Contextual Bandit Algorithm Oracle CBAO). There exists a con-

textual bandit algorithm that makes regret bounded by O

(√
Tdln3(NT ln(T )/η)

)

for T iterations with probability 1 − η.
Proof. Different contextual bandit algorithm corresponds to different regret bound.
In fact, we can use the regret bound of any contextual bandit algorithm here. The
regret bound mentioned here is the regret bound of SupLinUCB algorithm [5].
For concrete proof of this regret bound, we refer the reader to [5].

Theorem 7. For T iterations, the regret for bandit selection in diversity algo-

rithms is bounded by O
(√

Tdln3(NT ln(T )(1−�δ,T )
η−�δ,T

)
)

with probability 1 − η. Note
that limT→∞(η− �δ,T ) = η > 0.
Proof. In diversity algorithms, the calculation of the regret bound is based on the
premise that a certain δ-target has been achieved. Note that DRLO and CBAO
are independent variables in this problem setting. Given 0 < η < 1, we define

η1 =
η− �δ,T

1− �δ,T
. (3)

Then we have
1 − η = (1− �δ,T )(1 − η1). (4)

The implication of Eq. 4 is that, for T iterations, with probability 1−η, the regret
for bandit selection in diversity algorithms is bounded by

O

(√

Tdln3(NT ln(T )/η1)
)

= O

(√

Tdln3(
NT ln(T )(1− �δ,T )

η− �δ,T
)

)

. (5)

The right-hand side of Eq. 5 is exactly the regret bound we propose in Theorem 7.

5 Experiments

This section presents some experimental results about diversity algorithms.
Firstly, from an intuitive geometric perspective, we demonstrate the process
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of policy evolution in the diversity algorithm. Then we compare the three policy
selection methods mentioned in Sect. 4.1 by experiments, which illustrates the
high efficiency of bandit selection.

Fig. 1. (a) Policy evolution trajectory. We initialize three policies here, denoted by
red, yellow, and green circles on the simplex. The darker the color of the policy, the
more iterations it has gone through, and the greater the diversity distance between this
policy and other policies is. Moreover, the blue circles on the simplex denote the average
state marginal distribution of policies ρ(s). (b) Policy evolution process. We initialize
three policies here as well, denoted by red, green, and blue dots on the simplex. The
black dot denotes the average state marginal distribution of policies ρ(s). Moreover,
the contour lines in the figure correspond to the diversity metric I(s; z). (Color figure
online)

5.1 A Geometric Perspective on Policy Evolution

To visualize the policy evolution process, we use DIAYN [7] as our diver-
sity algorithm and construct a simple 3-state MDP [8] to conduct the exper-
iment. The set of feasible state marginal distributions is described by a triangle
[(1, 0, 0), (0, 1, 0), (0, 0, 1)] in R

3. And we use state occupancy measure ρπi(s) to
represent policy πi. Moreover, we project the state occupancy measure onto a
two-dimensional simplex for visualization.

Let ρ(s) be the average state marginal distribution of all policies. Figure 1(a)
shows policy evolution during training. Initially, the state occupancy measures
of different policies are similar. However, as training progresses, the policies
spread out, indicating increased diversity. Figure 1(a) highlights that diversity [8]
ensures distinct state occupancy measures among policies.

We use I(·; ·) to denote mutual information. The diversity metric in unsu-
pervised skill discovery algorithms is based on the mutual information of states
and latent variable z. Furthermore, the mutual information can be viewed as
the average divergence between each policy’s state distribution ρ(s|z) and the
average state distribution ρ(s) [8]:

I(s; z) = Ep(z)[DKL(ρ(s|z) ‖ ρ(s))]. (6)

Figure 1(b) shows the policy evolution process and the diversity metric
I(s; z). We find that the diversity metric increased gradually during the training
process, which is in line with our expectation.
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Fig. 2. Comparison of different policy selection methods. (a) Training curves for dif-
ferent numbers of policies with a fixed δ-target where δ = 0.8. (b) Training curves for
different δ-target with a fixed number of policies where N = 8.

5.2 Policy Selection Ablation

We continue to use 3-state MDP [8] as the experimental environment. Whereas,
in order to get closer to the complicated practical environment, we set specific δ-
target and increased the number of policies. Moreover, when a policy that hasn’t
met the diversity requirement is chosen to update, we will receive a reward r = 1,
otherwise, we will receive a reward r = 0. We use I(s; z) as the diversity metric
and use LinUCB [14] as our contextual bandit algorithm.

Figure 2 shows the training curves under different numbers of policies and
different δ-target over six random seeds. The results show that bandit selection
not only always reaches the convergence fastest, but also achieves the highest
overall diversity metric of the population when it converges. We now empirically
analyze the reasons for this result:

Drawbacks of Uniform Sample. In many experiments, we observe that uni-
form sample has similar final performance to bandit selection, but signifi-
cantly slower convergence. This is because after several iterations, some policies
become distinct enough to prioritize updating other policies. However, uniform
sample treats all policies equally, resulting in slow convergence.

Drawbacks of Iteration Fashion. In experiments, the iteration fashion
converges quickly but has lower final performance than the other two methods.
It’s greatly affected by initialization. Each policy update depends on the previous
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one, so poor initialization can severely impact subsequent updates, damaging the
overall training process.

Advantages of Bandit Selection. Considering historical rewards and bal-
ancing exploitation and exploration, bandit selection quickly determines if a
policy is different enough to adjust the sample’s probability distribution. Unlike
iteration fashion, all policies can be selected for an update in a single iteration,
making bandit selection not limited by policy initialization.

6 Conclusion

In this paper, we compare existing diversity algorithms, provide a unified diver-
sity reinforcement learning framework, and investigate the convergence of train-
ing diverse policies. Moreover, we propose bandit selection under our proposed
framework, and present the regret bound for it. Empirical results indicate that
bandit selection achieves the highest diversity score with the fastest conver-
gence speed compared to baseline methods. We also provide a geometric per-
spective on policy evolution through experiments. In the future, we will focus on
the comparison and theoretical analysis of different reward calculation methods.
And we will continually explore the application of diversity RL algorithms in
more real-world decision-making tasks.
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Abstract. Active deployment of Deep Reinforcement Learning (DRL)
based controllers on safety-critical embedded platforms require model
compaction. Neural pruning has been extensively studied in the context
of CNNs and computer vision, but such approaches do not guarantee the
preservation of safety in the context of DRL. A pruned network converg-
ing to high reward may not adhere to safety requirements. This paper
proposes a framework, PruVer, that performs iterative refinement on a
pruned network with verification in the loop. This results in a compressed
network that adheres to safety specifications with formal guarantees over
small time horizons. We demonstrate our method in model-free RL envi-
ronments, achieving 40–60% compaction, significant latency benefits (3
to 10 times), and bounded guarantees for safety properties.

Keywords: Neural Pruning · Reinforcement Learning · Verification

1 Introduction

Reinforcement learning (RL) policies are having a high penetration in embed-
ded safety-critical domains given their capability of learning human-like control
strategies [11,22]. These policies work over large continuous state spaces making
Deep Neural Networks (DNN) a natural choice for policy approximation. State-
of-the-art DNN architectures often contain millions of connections and neurons,
making them unsuitable for edge devices. The implementation of Deep Rein-
forcement Learning (DRL) policies in real time embedded systems with com-
putational limitations requires memory-optimized models. One of the popular
methods for network compression is neural network pruning. Pruning refers to
the selective removal of weights or connections from a pre-trained neural network
to improve efficiency while retaining performance [4]. The use of sparse networks
in computer vision has been thoroughly studied in [10,18], and in many cases,
sparse networks are found to be just as effective as dense networks. Devising
storage formats for efficient utilization of sparse neural networks is a growing
body of work [7]. Although network compression is crucial for the deployment
of DRL-based controllers in embedded platforms, there exists little research in
this domain. In computer vision research, the performance of sparse networks is
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F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 137–149, 2024.
https://doi.org/10.1007/978-981-99-7019-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7019-3_14&domain=pdf
http://orcid.org/0000-0002-6488-9326
http://orcid.org/0000-0002-2178-8154
http://orcid.org/0000-0001-9329-6389
https://doi.org/10.1007/978-981-99-7019-3_14


138 B. Gangopadhyay et al.

gauged in terms of classification accuracy. In accordance with advances in com-
puter vision, performance comparisons for sparse networks in DRL have been
made solely in terms of the maximum reward obtained [14].

One very important consideration for DRL-based controllers is safety. While
there is a growing body of literature focusing on safe RL [13], existing literature
on the effect of sparsity on safety is scarce, especially for RL. We believe that in
the context of resource-constrained DRL, safety preservation is just as important
as compaction. A compressed network achieving high rewards may have safety
violations, as the removal of weights may undo the effect of safety-based train-
ing. To address this issue, we propose an iterative algorithm to refine a pruned
network until safety specifications are guaranteed to hold.

One way to guarantee that the pruned network adheres to safety require-
ments is to prove safety properties over the network using formal verification.
However, formal verification of DRL networks is challenging as state-of-the-art
DNN verification tools [8,15–17] have scalability barriers. The scaling problem
is exacerbated in the context of DRL working with environment feedback, which
requires decision-making for sequential DNNs and, consequently, reasoning about
recurrent DNN executions where the output of one execution can influence the
input to the DNN in later invocations. In the absence of complete knowledge
about the transition function in model-free RL, which further aggravates the
verification problem, we propose a depth-bounded formal verification approach.

Fig. 1. Overview of the verification assisted pruning framework

We propose a novel pruning refinement and verification (PruVer) framework
which contains the following steps:

1. To verify a reward-preserving pruned DRL network, we present a verification
strategy that either guarantees or finds counterexamples for given safety spec-
ifications within a given bounded length k with monotonicity assumptions on
the system dynamics.

2. For counterexamples discovered during verification, we propose an iterative
refinement technique that refines the pruned DRL network while preserving
rewards and inducing safety with respect to given safety specifications.

To the best of the authors’ knowledge, this is the first attempt at safety-aware
pruning with verification in the loop for DRL networks in a model-free setting.
We implement this method on OpenAI gym environments and obtain 40–60%
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network compaction with 3–10 times speedup without compromising safety on
time horizons of up to 100–140 steps. An overview of the proposed PruVer frame-
work is presented in Fig. 1.

2 Related Work

Pruning and verification are both essential for the practical realization of DNNs
in embedded platforms. Hence, these fields are emerging areas of research. We
discuss some of the relevant literature in this section.

2.1 Pruning in Deep Reinforcement Learning

Though neural pruning has been extensively studied and applied in computer
vision tasks, it remains a neonate in the field of Deep RL. Most of the work
centers around the lottery ticket hypothesis [10]. Work done by [9,24] illustrates
that the success of sparse initialization mainly depends on choosing the appro-
priate characteristics for the input data rather than any inherent properties
of the various initialization. Recent works on DRL pruning [3,14,23] focus on
achieving high rewards from sparse networks. However, for safety-critical con-
trol tasks, it is also important for the sparse network to take safe actions. Our
work introduces verification-assisted neural pruning, where the sparse network
is iteratively revised to handle safety infractions. Other DRL pruning methods
involve methods like dense to sparse training [18,21,25] where a dense neural
network is reduced in size by gradually pruning the weights, and the sparse net-
work is retrained on the given task. This method often finds the best-performing
sparse network. However, continuous pruning and training induce considerable
computational overhead, sometimes equivalent to training the dense network.
Our method gradually incorporates the learned weights through gradient update
rather than retraining the network without additional training time overhead.
The benefits of safety-aware pruning of DRL networks were outlined in a 2-page
student abstract in [12]. However, the formal verification approach and method-
ology details are presented in this work for the first time.

2.2 DRL Network Verification

DRL verification aims to establish that learned input-to-output mapping adheres
to certain safety specifications. A comprehensive survey on different algorithms
for DRL verification can be found in [1]. In this work, we use tools Marabou [17]
and Sherlock [8], as backends that utilize search and optimization methods to
falsify assertions. For a verification problem, a pre-condition P is specified on the
network’s input, and safety specifications are given in terms of post-condition Q
on the network’s output. The goal of Marabou is to solve SMT equations derived
from DNN to find concrete inputs si such that P (si) ∧ ¬Q(si) is satisfied. si

forms the counterexample for the given safety condition. When the tool returns
UNSAT, the desired property always holds. To handle the sequential nature of
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Fig. 2. Detailed overview of the PruVer framework for verification and refinement of
sparse neural networks in DRL.

DRL networks where a previous output can influence the values of the following
state, we use Bounded Model Checking (BMC), which is also used in recent DRL
verification tools like Whirl 2.0 [1]. BMC focuses on runs with a finite length
k > 0 for safety properties. This makes the verification algorithm tractable while
ensuring any discovered counter-example is accurate. Formally the BMC query
can be written as:

∃s1, . . . , sk.P (s0) ∧ (
k−1∧

i=0

T (si, si+1)) ∧ (
k∧

i=1

¬Q(si))

Here P (s0) is the initial state with pre-conditions P and T (si, si+1) is the tran-
sition relation of the system, which is unknown in model-free RL.

3 Methodology

Figure 2 summarises the detailed workflow of the PruVer framework which com-
prises the following broad set of steps.

1. Given an unknown plant model (Fig. 2(i)) and an optimized safe DRL based
dense policy network πθ, with parameters θ, and average reward R(πθ), we
first construct a sparse network πθ′ with θ′ = m � θ, such that R(πθ′) ≥ λ
(reward greater than or equal to threshold λ). Here m = {0, 1}θ is the sparsity
mask, |m1| � |θ| (fewer parameters), and � denotes dot product. We use the
training traces of πθ with the plant in the loop as black-box, to learn an
approximate plant model Mω.

2. In the next step (Fig. 2(ii)) under certain assumptions about the unknown
plant dynamics, we verify the closed loop system Mω||πθ′ against a set of
safety properties ϕ. The safety verification problem in k-depth bounded form
is given by S0 ∈ ϕpre =⇒ Sk ∈ ϕpost. Here, ϕpre is the set of pre-conditions,
and ϕpost is the set of post-conditions. ϕpost are essential conditions for safe
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operation. S0 is any state satisfying the pre-conditions, Mω(Si, πθ′(Si)) =
Si+1, and Sk is the set of states reachable after k transitions. The states in
set Sk are observable. We wish to guarantee that every such Sk satisfies the
post-conditions. This reduces to the underlying satisfiability query given by,

∃S0, . . . , Sk(S0 ∈ ϕpre) ∧ (
k−1∧

i=0

Si+1 = Mω(Si, πθ′(Si))) ∧ (
k∧

i=1

¬(Si ∈ ϕpost))

3. The verification step either returns a satisfiable assignment of the input vari-
ables in some iteration i or returns UNSAT over all iterations. In the later
case, (S0, πθ′) |=k ϕpost. On encountering valid counterexamples, θ′ is iter-
atively refined (Fig. 2(iii)) until (S0, πθ′) |=k ϕpost (refinement success) or
θ′ = θ (refinement failure).

In the next section, we discuss the verification strategy for the pruned RL
network and outline the refinement strategy. We assume that the abstract model
of the dynamical system on which πθ′ acts is of the form: ṡ = f(s, a) where
s ∈ S ⊆ R

n and a ∈ A ⊆ R
m and f is locally Lipschitz in s and a. A flow map

of the system is given by φ(tk; t0, sk, ak) denoting a state of the system at each
time tk with state sk and action ak. The reachability problem is as follows:

Problem 1. (Reachability of continuous dynamical system) Given a state inter-
val, [s0, s̄0] ⊆ R

n, an action interval, [a0, ā0] ⊆ R
m that defines the continuous

action space, and a time interval [t0, tk] ⊆ R, identify an over-approximating
interval in R

n containing all states reachable from the states contained in the
state interval, [s0, s̄0], within [t0, tk]:

R(tk; t0, [sk, s̄k], [ak, āk]) = {φ(tk; t0, sk, ak)|sk ∈ [sk, s̄k], ak ∈ [ak, āk]}
If [s0, s̄0] ∈ ϕpre =⇒ [sk, s̄k] ∈ ϕpost then (S0, πθ′) |=k ϕpost. In the model-
free RL verification setting, at each timestep tk, both the reachable state range
[sk, s̄k] and the action interval range [ak, āk] are unknown. Therefore we use the
following approach.

First, we estimate the action ranges from πθ′ . We use the tool Sherlock [8]
to estimate the maximum and minimum values of actions produced by πθ′ for
input range [sk, s̄k] at timestep k. The estimated range is guaranteed to be tight
for a set of inputs forming a polyhedron ([8], Theorem 1.1).
Next, we aim to create a flow map for estimating the state range containing the
reachable states within time, tk. Since the system dynamics is not known, stan-
dard approaches for flow map construction cannot be used directly. Therefore,
we prepare a state estimator network, Mω, that takes 〈st−2, st−1, st, at〉 as input
and estimates st+1. Mω is prepared by training a feed-forward network using
〈s, a, s′〉 pairs observed during training of the original network πθ. Mω trains
by minimizing the Mean Square Error (MSE) loss between the predicted st+1

and the actual st+1. To guarantee that all reachable states in Problem 1 will be
contained in the inferred state boundaries using Mω we assume the dynamics
learnt by Mω is monotonic, as defined below:
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Definition 2. ( [2],Definition II.1) A dynamic control system is monotone if
the following condition holds for all t ≥ 0:

a1 � a2, s1 � s2 =⇒ φ(t, s1, a1) � φ(t, s2, a2) (1)

Algorithm 1: Verification of πθ′

Input: StateEstimator Mω, Bound k, πθ′ ,ϕ,εrange

Function Verify(Mω, k, πθ′ ,ϕ,εrange):
1 M, ξf = Marabou(Mω), []

ϕpost = [(ϕpostlower , ϕpostupper )] //from ϕ
for i = 0 . . . k do

ϕpre = [(ϕprelower , ϕpreupper )] //from ϕ
Arange = [(Alower, Aupper)] //from ϕ

2 Zrange = εrange ∪ ϕpre ∪ Arange

3 for node ∈ Mω.input do
M.setBound(node, Zlower, Zupper)

end
for node ∈ Mω.output do

M.addInequality(node, ϕpostlower , ϕpostupper )
end

4 exitCode, ξi = M.solve()
5 if exitCode == UNSAT then

Alower, Aupper = Sherlock(ϕprelower , ϕpreupper , πθ′)
6 ϕprelower , ϕpreupper = Mω(ϕprelower , Alower), Mω(ϕpreupper , Aupper)

else
7 ξf = ξf ∪ ξi

end

end
Refine Pruned Policy(πθ′ , ξf )

We will make a slightly relaxed assumption, where the system only needs to
be monotone with respect to the variables in the property we are verifying.

We now discuss the working of Algorithm 1, which is used to verify πθ′ .
We first convert the state estimator network Mω into a set of equivalent SAT
formulations using the tool Marabou (line 1). We start with an initial range on
states ϕpre, action range Arange, and post conditions ϕpost. Additionally, we are
given a permissible range for history states (εrange), which are input to Mω.

The history states are copies of s0, s1 until k = 2. Since Mω has the input
of the form 〈st−2, st−1, st, at〉 we combine (εrange, ϕpre,Arange) to obtain the
interval range for each input node (line 2) of Mω. We set the input ranges, add
inequality constraints to the SAT equations for ranges on the output nodes of
Mω, and solve the equations using the Marabou solver (lines 3–4). If the solver
returns UNSAT for a particular iteration t, then the property holds up to t. We
then propagate the interval ranges for the next time step by first calculating the
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action range (Alower,Aupper) produced by πθ′ given the current bounds on the
state (lines 5–6). The upper bound for the next state is obtained from Mω with
inputs ϕpreupper

,Aupper due to the monotonicity assumption on Mω. Similarly,
the lower bound is obtained with inputs ϕprelower

,Alower. If the solver returns
SAT in any iteration with a counterexample ξfi

, then ξfi
is stored in a set ξf

(line 7) and is used for refinement.
Since the underlying dynamic system is assumed to be monotone w.r.t ϕ,

all the values of the property variables lie within the deduced lower and upper
intervals of the states at each timestep. Hence, Algorithm 1 is sound i.e., if
Algorithm 1 returns UNSAT, then (S0, πθ′) |=k ϕpost.

3.1 Refinement of the Pruned Network πθ′

For each counterexample trajectory ξfi
∈ ξf , we calculate it’s recovery state

using πθ. A recovery state is defined as follows:

Definition 3. A recovery state sri
in a counterexample trajectory ξfi

∈ ξf is
defined as the last state si ∈ ξfi

for which there exists some safe trajectory ξ′
i,

such that the prefix trajectory of si ∈ ξfi
and the prefix trajectory of si ∈ ξ′

i are
identical, ξ′

i |= ϕ, and R(ξ′
i) ≥ λ.

We find recovery states through backtracking. It is important to note since πθ

is safe; there is at least one recovery state for each ξfi
.

Algorithm 2: Refining the pruned policy
Input: Dense Policy πθ, Pruned Policy πθ′ , Failure Trajectories ξf , recoveryset

Function Refine Pruned Policy(πθ, πθ′ , ξf , recoveryset):
aopt, as, p, safe = [], [], 5, False
while p ≤ 100 and ¬safe do

1 for each sri in recoveryset do
aopt = πθ(sri) ∪ aopti

2 as = πθ′(sri) ∪ asi

end
3 L = MSE(aopt, as)

πθ′ .backward(L)
4 rank[layer] = maxgrad(πθ′ .grad, p, layer)

for each layer ∈ πθ′ do
5 πθ′ .weight = πθ.weight[rank[layer]]

safe = check safety(πθ′ , ξf )
If safe then break

end
6 p = p + 0.02

end
return πθ′
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Once the set of recovery states is identified, we use Algorithm 2 to refine
the pruned network πθ′ . For each recovery state in sri

∈ recoveryset, the action
proposed by the optimal network πθ and the sparse network πθ′ is calculated
and added to the action batches aopt and as respectively (lines 1–2). For the
recovery state sri

we aim to shift the action asi
towards aopti so that ξfi

can
be corrected. To measure the deviation of as from aopt, we calculate the mean
square error between the action batches (line 3).

L(as, aopt) =
1
N

N∑

i=0

(asi
− aopti)

2

We calculate the first-order partial derivative for weights of each layer with
respect to the Loss function, δL

δwij
, which is the gradient of the Loss with respect

to the jth weight of the ith layer. The gradient information denotes the weight
change required to shift πθ′(sri

) towards πθ(sri
). We select the top p% of the

gradient locations from the sparsified network using the function maxgrad() and
store the locations in a matrix rank (line 4). The weights in ranks are selected
layer-wise from πθ and reinstated in πθ′ (line 5). After each reinstatement, the
refined network πθ′ is checked against all the failure traces in ξf using the func-
tion check safety(). If all the counterexamples are corrected, then the refinement
process stops. Otherwise, p is increased by a small amount, and the algorithm
continues (line 6). If no sparse network exists for the given task, then πθ′ will
gradually converge to πθ.

4 Case Studies

This section presents three case studies on the continuous cart-pole, mountain
car, and lunar lander environments from the OpenAI gym suite [5] and compar-
ative studies with two state-of-the-art pruning techniques, Sparse Evolutionary
Training (SET) [19] and Rigged Lottery (RigL) [9] which have been recently
used for RL [14]. All experiments were performed on a workstation with AMD
Ryzen 4600h six-core processor and GeForce GTX 1660 Graphics unit. We report
the results of our comparative study with SET and RigL in Table 1. The SET
and RigL networks are initialized at the same sparsity (provided in the Sparsity
column) as the final PruVer network. We observe that training SET and RigL
networks require additional hyperparameter tuning and take longer training time
as they are trained from scratch. We also report that these networks converge to
a lower reward than PruVer. Also, these methods provide no safety guarantees
as they do not have verification in the loop like PruVer. Code contributions are
available in1. The Specifics of case studies on each environment are discussed as
follows.

Cart-pole Swing-up Environment: The continuous cart-pole swing-up envi-
ronment is a benchmark problem in control systems. The goal is to balance an
1 https://github.com/britig/PruVer.

https://github.com/britig/PruVer
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Table 1. Comparison with SET and Rigl w.r.t to time and reward. We also show the
percentage of zero parameters of the network after refinement.

Environment SET RigL PruVer %Sparsity

Training Reward Training Reward Refinement Reward

Cart-pole

swing-up

34.14 m 118.82 ± 80.92 47.79 m 153.47 ± 121.87 5.61 m . 194.70 ± 156.14 49.64

MountainCar 27.89 m 46.00 ± 53.24 35.38 m 43.64 ± 53.97 4.29 m 93.8 ± 3.5 59.78

Lunar Lander 34.10 m 231.91 ± 63.96 43.28 m 268.69 ± 36.33 7.70 m 283.96 ± 17.91 39.68

Fig. 3. Improvement in CPU execution time in πθ′ , post-refinement with mean ± std.
dev. of 7 runs, 100000 loops each)

unactuated pole by applying forces to a cart. The state space is described by 〈
Cart Position (x), Cart Velocity (ẋ), Pole Angle (α), and Pole Angular Veloc-
ity (α̇) 〉. We choose a reward threshold of λ = 150. The architecture of πθ is
input×64×64×action trained using PPO. We initially prune 75% of the weights
based on λ and verify it against the following safety specification:

– The cart should not exceed positions −2.4 (extreme left) or +2.4 (extreme
right) within 125-time units, i.e., ϕpost = [staterange-(-2.4, 2.4)] and k = 125.

It is essential to note that the cart pole system is monotone w.r.t the given
property. The state-evolution model for cart-pole with M as the cart’s mass,
m, l as the mass and length of the pendulum, I as the moment of inertia, and g
as the acceleration due to gravity is as follows.

f(x, ẋ, α, α̇, a) =

⎡

⎢⎢⎢⎣

0 1 0 0
0 0 gm2l2

I(M+m)+Mml2 0
0 0 0 1
0 0 − g(M+m)

I(M+m)+mMl2 0

⎤

⎥⎥⎥⎦ ∗

⎡

⎢⎢⎣

x
ẋ
α
α̇

⎤

⎥⎥⎦ +

⎡

⎢⎢⎢⎣

0
I+ml2

I(M+m)+mMl2)

0
− ml

I(M+m)+mMl2

⎤

⎥⎥⎥⎦ ∗ a

Sign stability of Jacobian matrices of the system dynamics is a neces-
sary and sufficient condition for monotonicity ([6], Definition 1). For the cart
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pole system, δf(s,a)
δx ≥ 0, thus the system is monotonic with respect to the

position variable. However, the system dynamics is unknown for PruVer, and
monotonicity is an assumption. The starting range for each variable is x : [-
1, 1], ẋ : [0, 4.16], α : [0, 0.98], α̇ : [0, 0.19], εrange : [(-0.02.0.02), (-0.01.0.01), (-
0.2.0.2)/102, (-0.01, 0.01)] and Arange : [-1, 1] . The ranges on x, ẋ, α, α̇ together
form the input range ϕpre. The bound k for verification depends on the pre-
diction capacity of the State estimator model Mω, which for cart pole gives an
accuracy of 99.46% ± 0.51 on st+1 up to 150 forward predictions over 1000 eval-
uations. The initial pruned policy reports counterexamples, as can be seen in
Fig. 4a. The lower bound on position goes beyond the safety bound −2.4, which
is corrected post-refinement. Figure 3a shows the decrease in CPU execution
time due to achieved sparsity in πθ′ with an average speedup of 10.6. Overall we
achieve a sparsity of 49.64% for πθ′ post-refinement with all reachable system
states residing within the safety boundaries as shown in Fig. 4a.

Fig. 4. Trajectories showing the upper and lower values during verification pre and
post-refinement of πθ′ for a) Cartpole b) Mountain Car c) Lunar Lander environments

Mountain Car Environment: The environment has a car stochastically posi-
tioned at the bottom of a sinusoidal valley [20]. The objective is to carefully
increase the car’s speed to get to the top of the hill. The state information
contains 〈Position(x), V elocity(v)〉 of the car. We choose a reward threshold of
λ = 90 and start with a 70% pruned network based on λ. The architecture of
πθ is input × 400 × 300 × action trained using DDPG. We validate the following
safety specifications:

– Car position between 0.4 to 0.5 (hilltop position) within 80 units of time, i.e.,
ϕpost = [staterange-(0.4, 0.5)] and 80 ≤ k ≤ 100.

The initial ranges for the variables in ϕpre are x : [−0.6,0.25],v : [0,0.002], εrange :
[(−0.08,0.08),(−0.004,0.004)] and A : [−1,1]. Mω trained with data from πθ gives
an accuracy 99.67%±0.64 on 130 forward predictions over 1000 evaluations. The
initial pruned policy reports counterexamples for car position (Fig. 4b) where the
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lower and upper bounds do not reach the hilltop positions. Figure 4a shows the
decrease in CPU execution time with an average speedup of 3.16. Overall we
achieve a sparsity of 59.78% for πθ′ post-refinement with all reachable states
converging to the hill position (Fig. 4b).

Lunar Lander Environment: The task in this environment is to land a lunar
lander vehicle smoothly between the landing flags at coordinate (0,0). The state
space is described by 〈 Positions (x, y), Velocity (ẋ, ẏ), Angle (α), Angular Veloc-
ity (α̇) 〉 and two boolean variables for leg contact. We choose a reward threshold
of λ = 250. The architecture of πθ is input×64×64×action trained using PPO.
We initially prune 55% of the weights based on λ. The network verified against
the following safety specification:

– Lander position should not go beyond 0.4 to −0.4 till 140 units of time, i.e.,
ϕpost = [staterange-(0.4, -40.4)] and k ≤ 140.

The initial ranges for the variables in ϕpre are x : [0,0], y:[−1.5,1.5], ẋ, ẏ
: [−5,5], α : [−3.14,3.14], α̇: [−5,5] εrange : [(−0.6,0.6)/103,(−0.001,0.001),
(−0.2,0.2)/105,(−0.02,0.02), (−0.6,0.6)/102,(−0.2,0.2)/105] and A : [−1,1]*2.
Mω trained with data from πθ gives an accuracy 98.32% ± 0.57 on 150 for-
ward predictions over 1000 evaluations. The initial pruned policy reports coun-
terexamples for the lander position (Fig. 4c) with the upper value going beyond
bounds. Figure 3c shows the decrease in CPU execution time with an average
speedup of 4.84. Overall we achieve a sparsity of 39.68% for πθ′ post-refinement
with all reachable states contained within the safety bounds(Fig. 4c).

For all three environments, we observe considerable speedup with high spar-
sity and better reward for the PruVer networks. We also show that the upper
and lower values of the states respect safety boundaries keeping the system safe.

5 Conclusions

Neural pruning and verification are important directions for developing DRL
networks for embedded systems and real-time applications. In this paper, we
propose a methodology for safety-aware neural pruning through an algorithm
that iteratively refines a sparse network using weights from the original dense
network. We discuss a verification strategy that can formally guarantee the safety
of the pruned network over a finite horizon. To the best of our knowledge, this
is the first work to address safety in neural pruning for DRL. Our method shows
promising results in model-free RL environments with good speedup on verified
policies.
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Abstract. Recent multi-agent deep reinforcement learning (MADRL)
approaches have shown notable benefits in traffic signal control. However,
the spatial-temporal coupling, hysteresis, and heterogeneity of collabora-
tive agents are usually ignored. States and actions among multiple inter-
sections induce complex coupling and hysteresis in both space and time
dimensions, while the actions also present spatial-temporal heterogeneity
due to fluctuated traffic. These characteristics impose a critical impact
on the efficiency and flexibility of coordinated control. In this paper, we
propose AdaptLight, an MADRL-based model to achieve cross-space-time
collaboration. It captures the interactions among spatial-temporal traf-
fic components and exploits action repetition to adaptively adjust deci-
sion granularity for heterogeneous traffic. For the spatial-temporal cou-
pling and hysteresis issue, AdaptLight first establishes a feature extrac-
tion network based on spatial-temporal graph Transformer. To tackle
the spatial-temporal action heterogeneity problem, an action-repetition-
enabled MADRL module is designed, which can decide asynchronous-
cooperative actions spanning multiple timesteps. Experiments present
that AdaptLight shows competitive performance on different datasets.

Keywords: Multi-agent deep reinforcement learning · Traffic signal
control · Graph transformer · Action repetition

1 Introduction

Multi-agent deep reinforcement learning (MADRL) based multi-intersection
traffic signal control (M-TSC) approaches have shown superior performance over
traditional methods in improving traffic efficiency. However, there are still critical
puzzles that remain unresolved. The first issue is spatial-temporal coupling
and hysteresis among states and actions. Coupling is raised because the
combinations of action-action, state-state, and action-state trajectories interact
in different modes and result in various effects in time-space dimensions. This
requires policies to identify distinct interaction modes and generate optimal coor-
dinated behaviors accordingly. Coupling further prompts hysteresis caused by
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 150–156, 2024.
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Fig. 1. The overall network structure of the proposed AdaptLight.

water-like traffic flows being blocked by intersections and gradually spreading
to nearby regions. The second issue is spatial-temporal heterogeneity of
actions. Actions are heterogeneous in space-time dimensions because the policy
decision intervals should vary with the different frequencies of traffic flow change.
At the same timestep, different intersections observe traffic of different fluctu-
ation frequencies, requiring distinct decision intervals. At different timesteps,
the traffic at a single intersection also presents different fluctuation frequencies,
which still requires dynamic decision intervals. Existing RL-based methods usu-
ally ignore this characteristic because Dec-POMDP induces synchronous decision
intervals. Neglecting these problems can result in poor efficiency and adaptabil-
ity of cooperative signal control. Therefore, we propose an MADRL-based model
for cross-space-time M-TSC collaboration, AdaptLight as shown in Fig. 1.

– We propose a spatial-temporal graph Transformer network to extract coupling
and hysteresis features among multiple state-action combinations.

– We design an action repetition MADRL (AR-MADRL) framework to decide
spatial-temporal heterogeneous policy decision intervals for drastic traffic.

– We evaluate AdaptLight on synthetic and real-world datasets. Our method
outperforms both conventional and RL-based approaches, especially in
dynamic and complicated environments.

2 Method

We consider M-TSC as a decentralized partially-observable SMDP problem,
which is characterized by a tuple G = 〈I, S,A, U, P,R,Ω,O, n, γ〉, where I is
the finite set of n agents, s ∈ S is the state, A is the finite action set. Each agent
i only has access to a partial observation oi ∈ Ω according to the observation
function O(s, i). At each step, each agent i selects an action ai ∈ A, resulting in
a joint action a ∈ An. Conditioned on the observation oi and the next action ai,
the agent also decides the corresponding duration ua

i ∈ U of the chosen action,
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where U is the finite discrete duration set. The joint action a and joint dura-
tion u transit the current state s to next state s′ according to the transition
function P (s′ | s,a,u). Each agent shares a joint reward r. The joint policy π
induces a joint action-value function Qπ

tot(s,a) and a joint duration-value func-
tion Qπ

tot(s,u). The goal of the joint policy π is to maximize the cumulative
joint rewards r of all intersections.

2.1 Spatial-Temporal Graph Transformer Network

Input and Embedding. For each time interval t, the node features vt
i ∈ R

dn×T

of node i consist of its observation history, where dn is the dimension of concate-
nated observations, and T represents the window length. For edge from node i
to node j, its edge features et

ij ∈ R
de×T consist of four components: the action

history of the entering intersection, the action history of the exiting intersection,
the action duration transition of the entering intersection, and action duration
transition of the exiting intersection. The four components are concatenated
along the first dimension into a de × T -dimensional tensor. The node features,
edge features, and positional encodings are then passed through fully connected
layers to get dh-dimensional embedded node features v′t

i ∈ R
dh , embedded edge

features e′t
ij ∈ R

dh , and embedded Laplacian positional encodings ̂PE ∈ R
dh .

Temporal Transformer Layer. To handle temporal coupling and hysteresis,
we use temporal Transformer to capture the time dependence of node-edge fea-
ture trajectories. Temporal Transformer learns the modes of traffic state history
and intersection action history separately. For each node, the node features are
permuted as a T ×dn tensor, which is then passed through a Transformer encoder
layer, resulting in updated hidden features with temporal dependencies. We uti-
lize an MLP layer as the aggregation function to output the final embedded
features without the time dimension as v̂t

i ∈ R
dn . Similarly, the edge features

are also updated with another temporal Transformer layer as êt
ij ∈ R

de . Then,
we add positional encodings to the input node embedding: ̂ht

i = v̂t
i + ̂PE. We

omit the time symbol t in the following formula for the convenience of expression.

Spatial Transformer Layer. Based on the outputs of the temporal Trans-
former layer, we use spatial Transformer to combine temporal features with spa-
tial features to get spatial-temporal encoded features. To solve spatial coupling
and hysteresis, we specially design the attention encoding process in the spatial
graph Transformer layer to extract the complex interaction information among
combinations of decision intention and traffic states, which is defined as:

ωm,l
ij = Qm,l

h ĥl
iK

m,l
h ĥl

j + Qm,l
h ĥl

iK
k,l
e êl

ji + Qm,l
e êl

ijK
m,l
h ĥl

j + Qm,l
e êl

ijK
m,l
e êl

ji,
(1)

where Qm,l
h , Qm,l

e , Km,l
h , Km,l

e ∈ R
dm×dh are learnable parameters, m is the

number of multi-attention heads, m = 1, . . . , H. This process is aimed to extract
spatial interaction patterns among state-state, action-state, state-action, and
action-action components in the system. The attention score ωm,l

ij is then scaled
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and passed through a Softmax layer to get the final attention αm,l
ij . Further,

node features are updated through spatial graph Transformer layers following
the paradigm of vanilla graph Transformer network [1]. Edge features are also
propagated to represent pairwise attention: êl+1

ij = f l
O,e([ω

m,l
ij ]Hm=1), where f l

O,e

is a linear function that merges concatenated head.
After L sub-layers, node features obtained at the last layer ̂hL

i are treated as
the local observation oi of the followed AR-MADRL network. For providing more
comprehensive global state information, all node features are fused as the global
state encoding s, which is also utilized in the AR-MADRL network: s =

∑
i∈I ĥL

i

n .

2.2 AR-MADRL Framework for Heterogeneous Decision

AR-MADRL has a hierarchical dual-objective architecture as illustrated in Fig. 1
(right). The hierarchy consists of a higher-level policy to select asynchronous
actions. To tackle temporal action heterogeneity, a lower-level policy is designed
to choose timesteps for which the chosen actions will act.

For agent i at time t, given the observation ot
i, action policy πa outputs

an action at
i based on the Q-function: Qa

i (oi, ai) := E
[

rt + γQa
i

(

ot+1
i , at+1

i

)]

.
Conditioned on the observation ot

i and chosen action at
i, duration policy πu out-

puts a discrete duration ui based on the n-step Q-function: Qu
i (oi, ui | ai) :=

E[
∑ui−1

k=0 γkrt+k + γuiQu
i (o

t+ui
i , at+ui

i )], where ui ∈ {1, . . . , U}, U is the maxi-
mum duration steps. Then the chosen action will be executed for ui steps.

To handle spatial action heterogeneity, we use multi-agent DQN to approx-
imate both policies and coordinate agent behaviors. Policy πa and πu share a
linear layer and a GRU to share observation context o between two policies,
which is encoded as a vector δo and then mapped into action a ∈ R

da by action
policy. Next, action a is encoded into action representation δa via a linear layer.
Observation representation δo and action representation δa are concatenated as
the input of the final linear layer, which is designed to approximate πu and out-
puts the duration u ∈ R

du , where we represent u as a du-dimension one-hot
vector. To use global state features, the local Q-values Qa and Qu are then
mixed by mixing networks QMIX to estimate the global action-value Qa

tot (s,a)
and duration-value Qu

tot (s,u), respectively.
The introduction of action repetition into multi-agent systems leads to asyn-

chronous rewards since the action end time is not uniform. To solve this problem,
we introduce Mac-JERTs [2] to build replay buffers. A joint reward is collected
when any agent terminates an action, and agents share a joint cumulative reward
rc =

∑tend
t=ta

rt, where ta denotes the starting step of a joint action, and tend refers
to the timestep at which any agent ends a local action. AdaptLight is trained
end-to-end to optimize the following objective function:

L(θ) = ED[(rc + (γ max
a′

Qa

tot (s
′,a′) − Qa

tot (s,a))

+(γ max
u ′

−Qu

tot (s
′,u′) − Qa

tot (s,u)))],
(2)

where Qa

tot , Qu

tot are target networks, θ denotes the parameters of the networks.
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Table 1. Performance of different methods on 6 road networks, and action oscillations
of AdaptLight and CoLight (as the baseline method) during an episode.

Model 3 × 3-Bi 6 × 6-Uni 6 × 6-Bi Hangzhou Jinan-1 Jinan-2

Travel Time Fixedtime 105.49 210.94 210.93 718.89 882.11 814.68
MaxPressure 101.46 186.56 195.49 416.36 337.17 356.95
IntelliLight 154.77 395.34 316.88 414.97 501.73 560.19
CoLight 90.42 181.92 182.69 366.53 349.19 368.16
AdaptLight 85.46 167.42 168.00 312.00 285.57 299.48

Action Oscillations CoLight 169 178 179 177 170 172
AdaptLight 105 155 158 230 209 215

Fig. 2. Convergence curves of different methods on 6 road networks.

3 Experiments

We use CityFlow as the simulation platform. At each decision time, an agent
chooses an action from 8 signal phase combinations. For our method, in addition
to selecting an action, an agent also selects a phase duration that lasts for 10,
20, 30, or 40 steps. For compared methods, the phase duration is averaged as
a 20-step fixed duration. Following CoLight [3], we conduct experiments on 3
synthetic grid networks (3 × 3 bi-direction, 6 × 6 uni-direction, and 6 × 6 bi-
direction) and 3 real-world networks (4 × 4 in Hangzhou, 3 × 4 in Jinan, and 3 ×
4 in Jinan with more dynamic traffic flows and higher throughput). We compare
our method with conventional TSC methods (Fixedtime, and Maxpressure) and
state-of-the-art RL-based methods (IntelliLight and Colight).

As presented in Table 1, AdaptLight achieves the best performance under
different road networks and traffic flows. The cross-space-time collaboration is
more evident on real-world datasets since these datasets have more drastic traf-
fic flows, more complex network structures, and thus more complicated spatial-
temporal dependencies among multi-intersections. Our method presents better
stability. Figure 2 illustrates the convergence curves over AdaptLight and other
approaches. The convergence speed of AdaptLight outperforms all the compared
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models, which shows the training efficiency of our method. The improvement in
convergence speed is attributed to the high parallel computing efficiency of an
entire attention-based Transformer mechanism without recurrence and convo-
lutions. Meanwhile, learning to choose phase intervals as well as phase settings
also improves the speed of targeting the optimal policy patterns.

In Table 1, we compare the number of action changes (the average number
of switched phases for an intersection) required for one round of experiment
over AdaptLight and CoLight. We discover that our method achieves the best
performance with fewer actions in synthetic maps which have stable vehicle
arrival rates, while our method requires more actions in real-world maps that
have dynamic traffic. The experiments indicate that AdaptLight learns when it
is necessary to act and decides adaptive optimal action durations for distinct
flow status. This improvement can strike a balance between optimizing perfor-
mance and decreasing action oscillations in TSC environments, enhancing driver
experience and reducing potential safety threats.

We perform ablation experiments on the spatial-temporal graph Transformer
network and AR-MADRL framework. The absence of both components leads to
a loss in performance. We discover that an intersection fails to allocate proper
attention scores without graph Transformer modules, which can identify spatial-
temporal coupling and hysteresis features from state-action components.

4 Conclusion

In this paper, we have proposed a collaborative cross-space-time M-TSC method
AdaptLight to handle spatial-temporal coupling, hysteresis, and heterogeneity
issues. For the spatial-temporal coupling and hysteresis puzzle, we propose a
spatial-temporal graph Transformer model. For the spatial-temporal action het-
erogeneity problem, we are the first to extend action repetition to MADRL to
learn heterogeneous-asynchronous actions and decision intervals. Experiments
show that our approach has strong efficiency and adaptability in various envi-
ronments, especially for dynamic traffic. Experiments also give evidence that
AdaptLight balances performance and action oscillations properly.
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Abstract. With the growth of cloud computing, an increasing number
of long-running applications (LRAs) are running in the cloud, provid-
ing scalability, cost-effectiveness, and flexibility. Considering LRA inter-
actions and resource interferences, scheduling LRAs in the cloud poses
significant challenges regarding runtime performance maximization and
efficient resource utilization. However, existing schedulers are usually
constraint-based methods requiring priori knowledge and hard to bal-
ance LRA performance and efficient resource utilization. To address this
problem, we propose DeepLRA, a novel and efficient LRA scheduling
framework in the cloud. Specifically, we introduce Deep Reinforcement
Learning (DRL) in LRA scheduling, where the agent learn the scheduling
policy without human intervention. Furthermore, a multi-objective LRA
scheduling is designed with multi-agent training. Extensive simulation
experiments conducted with real-world workloads indicate that DeepLRA
outperforms the state-of-the-art in the multi-objective LRA scheduling.
DeepLRA shows 26.1% and 36.9% average improvement in throughput
and efficient resource utilization over Kubernetes, respectively.

Keywords: Scheduling · Cloud Computing · Deep Reinforcement
Learning · Long Running Applications

1 Introduction

Long-running applications (LRAs) [12] refer to applications with running times
ranging from hours to months and have become an essential component of cloud
computing infrastructure. The scheduling of LRAs in the cloud is the process
of allocating computational resources to them, ensuring smooth execution while
maximizing the overall performance and efficiency of the cloud infrastructure.
Scheduling LRAs is a unique challenge that requires sophisticated algorithms
to take into account various factors, such as LRA interactions and resource
interferences. Unlike batch job scheduling, LRA scheduling is more complex due

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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to their different characteristics such as strict Service-Level Objective (SLO)
requirements and more complex interactions [13].

Existing LRA scheduling approaches typically use constraint-based meth-
ods, considering affinity and anti-affinity to satisfy as many constraints as pos-
sible [4,9,12,15]. However, constraint-based LRA scheduling methods focus on
satisfying more constraints, which often does not result in better performance.
Emerging scheduling methods for batch jobs usually use Deep Reinforcement
Learning (DRL) methods [16], which has the benefit of setting a reward function
that allows the agent to learn the scheduling policy automatically [7,8,10,11].
However, these methods are not directly applicable to LRA scheduling, since
different scheduling goals lead to different environments and reward functions.

To address this challenge, this paper proposes DeepLRA, a novel and efficient
LRA scheduling framework in the cloud. Specifically, we introduce DRL-based
methods in LRA scheduling, where the agent can learn the scheduling policy
automatically. We design the environment, state, and reward functions in DRL,
model the agent and the performance predictor for instructing agent training.
Furthermore, the multi-agent training is designed to consider both performance
and efficient resource utilization objective. We compare the scheduling results
of DeepLRA and Kubernetes to demonstrate the effectiveness of the proposed
approach. DeepLRA shows 26.1% and 36.9% improvement in throughput and
efficient resource utilization over Kubernetes, respectively.

2 Method

2.1 Deep Reinforcement Learning Method

We consider a cluster in the cloud with a set of m nodes denoted by N =
[N1, N2, ..., Nm]. Each node provides several types of resources such as CPU,
memory, and storage unit, denoted by Res = [r1, r2, ..., rn], where n is the num-
ber of resource types. We consider a number of LRA workloads, denoted by
W = [w1, w2, ..., wk], where k is the number of LRA workloads.
State Space. The state space S consists of the system resource usage, the sys-
tem running applications, and the current scheduling request. Specifically, at
each timestamp t, the system resource usage is represented by a matrix Ures

t ,
where ui,j indicates the jth resource usage of the ith node. The system running
applications are represented by a matrix Dlra

t , where di,j represents the number
of the jth LRA running on the ith node. The current scheduling request is rep-
resented by a one-hot vector Et, where ei = 1 represents the current scheduling
request is from the ith LRA. Therefore, the state of the cluster in the cloud at
timestamp t can be defined as st = [sUt , sVt ] = [Ures

t , [Dlra
t , Et]].

Action Space. The action space refers to all possible choices of a node on which
the container in the scheduling request can be launched. Based on the action
made by the agent, the corresponding container is launched by the container
scheduler on a specific node, and the required resources are allocated. Therefore,
the action space A is defined as A = [at|at ∈ {1, 2, · · · ,m}].
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Reward Function. The reward function is used to measure the overall system
performance after a set of scheduling requests have been processed, where a
higher performance and more efficient resource utilization are rewarded with a
higher score. The agent is not rewarded until a set of scheduling requests are
processed. At timestamp t, we define the reward function as:

Rt =

{
0 otherwise
λP (Dlra

t ) + μB(Ures
t ) t = T

. (1)

P is a random forest prediction model which takes the current system state as
input and predicts the application’s performance. B is an indicator which can
be chosen as variance, covariance, or entropy, allowing flexibility in assessing the
balance of system resource utilization. To balance the contributions of P and B,
we introduce coefficients μ and λ, which range from 0 to 1.

2.2 Model Training

Dueling DQN. Dueling DQN is an extension of the popular DQN [14] algo-
rithm, using DNN to approximate the Q-values of state-action pairs. The advan-
tages over standard DQN are increased stability, faster convergence, and better
performance on tasks that require the agent to distinguish between actions with
similar values. The main idea is to separate the estimation of the state value
function and the advantage function, which allows the agent to better distin-
guish between actions that have similar value estimates. The reason for using
Dueling DQN rather than other DRL algorithms such as rainbow, PPO is that
the action space for scheduling LRA tasks is discrete.
Exploration and Experience Replay. Exploration is the process by which
the agent explores the environment to discover new information and improve
its decision-making capabilities. It is typically achieved using an epsilon-greedy
strategy, where the agent selects a random action with probability ε, and oth-
erwise selects the action with the highest predicted Q-value. The value of ε is
gradually decreased over time, allowing the agent to explore more in the early
stages of training, and exploit its learned knowledge in later stages. Experience
replay is a technique used in DRL to improve the efficiency of learning by reusing
past experiences. In this approach, the agent stores its experiences (i.e. the state,
action, reward, and resulting state) in a replay buffer, and samples a mini-batch
of experiences at each training iteration. By using experiences from the replay
buffer, the agent can break the correlation between successive experiences, and
more effectively learn from a wider range of scenarios.
The Predictor. The predictor is a component of the DeepLRA framework that
is responsible for predicting the system’s performance based on the scheduling
decisions made by the agent. Specifically, the predictor receives the system’s
running application state D, which includes the number and type of running
applications. Based on this information, the predictor uses a prediction model
to estimate the expected performance of the system under different scheduling
decisions. The predictor then provides this information to the agent, which uses
it to select the optimal scheduling decision. To build the prediction model, we use
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a supervised learning approach that involves training a random forest model on
historical system states and their corresponding performance metrics. Compared
to deep learning models, which require a large amount of data to be effective,
random forest models are more flexible and can achieve comparable performance
with less data. Therefore, it is a suitable choice for our scenario where the amount
of data may be limited.
Multi-agent Training . To optimize the learning objectives, we adopt a multi-
agent approach to training. Multi-agent learning in DRL focuses on training
multiple agents to interact and collaborate in complex environments. Each agent
makes decisions to maximize its own rewards, but its actions can also impact
the rewards of other agents, leading to a competitive or cooperative setting. We
assign each agent a specific objective, enabling them to learn different strate-
gies that can be combined to generate the final action. This approach facili-
tates exploration of a broader range of strategies and encourages collaboration
among agents. Multi-agent training is particularly useful in addressing complex,
multi-objective optimization problems. By dividing the problem into smaller
sub-problems, multi-agent training can reduce the learning difficulty and enable
agents to learn optimal strategies more consistently. To achieve this, we use
agents with identical neural network structures, but train them for different
objectives (i.e. performance and efficient resource utilization). In our proposed
framework, each agent receives the same system state as input and scores all
nodes based on its assigned objective. The combined scores are then used to
determine the action that maximizes the overall objective. This approach ensures
that the final action is generated by considering all relevant objectives.

3 Evaluation

3.1 Experimental Setup

We present the details of the experimental setup used to evaluate the perfor-
mance of the proposed approach. The experiments were conducted on three
simulated clusters with 10, 20 and 30 nodes, where each node is equipped with
16vCPUs and 64GiB memory. The cluster was used to execute 5 real-world
workloads [1–3,5,6] in containerized environments. These workloads were care-
fully selected to represent a diverse range of applications, including machine
learning, parallel computing, I/O and storage services.

The network architecture of Dueling DQN comprises two hidden layers, each
consisting of 128 neurons. The model is trained using a batch size of 64, a
learning rate of 1e−4, a discount factor γ of 0.95, and an exploration factor
ε of 0.2. The predictor employs a random forest model, wherein the number of
estimators is set to 200. To measure the overall throughput of the cluster, we used
the metric of RPS (request per second). A higher value of RPS indicates higher
throughput and better performance. Furthermore, entropy was employed as a
metric to assess the efficiency of resource allocation in the cluster. The formula
are B(X) = −∑n

i=1 P (xi) log2 P (xi), where B(X) represents the entropy of the
random variable X and P (xi) represents the probability of the event X = xi.
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3.2 Scheduling Results

Varying Container and Node. Firstly, we scheduled 20, 40, and 60 appli-
cation containers on 30 nodes. As shown in Fig. 1, as the number of containers
increases, both DeepLRA and Kubernetes exhibit an increase in both through-
put and effective resource utilization. Next, we conducted experiments with 60
application containers on 10, 20, and 30 nodes. As shown in Fig. 2, as the number
of nodes increases, the action space increases, and scheduling decisions become
more complex. Therefore, both DeepLRA and Kubernetes exhibit a decrease
in performance. However, compared to Kubernetes, DeepLRA still improves
throughput and resource utilization efficiency by an average of 26.1% and 36.9%,
respectively. One reason for DeepLRA’s superior performance is its sensitiv-
ity to the dynamic state of the system. While Kubernetes is not specifically
designed to handle LRAs, DeepLRA leverages DRL-based methods to optimize
scheduling policies based on the dynamic state of the system. This approach
allows DeepLRA to take into account the unique characteristics of LRAs and
make more informed scheduling decisions. Additionally, the use of DRL meth-
ods enables the agent to learn scheduling policies automatically from experience,
adapting to real-time feedback and improving performance over time.

Fig. 1. Scheduling different number of containers on 30 nodes.

Fig. 2. Scheduling 60 containers on different number of nodes

Multi-agent vs. Single-Agent . We evaluate the effectiveness of the DeepLRA
framework in both single-agent and multi-agent scenarios for multi-objective
LRA scheduling in the cloud. As shown in Fig. 3, the multi-agent learning app-
roach takes more time to find the optimal scheduling policy than the single-agent
approach. However, the multi-agent approach can discover a superior perfor-
mance scheduling policy. The reason behind this can be attributed to several
factors. Firstly, multi-agent training allows for a more diverse exploration of
the search space. This is because each agent has its own perspective on the
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Fig. 3. Multi-agent vs. single-agent under scheduling 60 containers on 30 nodes.

problem and can explore different parts of the solution space. Secondly, multi-
agent training can help to overcome the problem of local optima and allow for a
more comprehensive exploration of the search space. Thirdly, multi-agent train-
ing can help to achieve a more balanced trade-off between the LRA performance
and resource utilization, which are often conflicting objectives, and to identify
solutions that achieve a good balance between these two objectives.

4 Conclusion

In this paper, we presented DeepLRA, a novel and efficient framework for
scheduling LRAs in the cloud. By leveraging DRL techniques, we proposed a
multi-agent approach to learn the optimal scheduling policy for LRAs in the
cloud. Our experiments demonstrated that DeepLRA outperforms Kubernetes
in terms of throughput and effective resource utilization, achieving a significant
improvement of 26.1% and 36.9%, respectively. Future research should focus on
scaling to larger systems and redefining the model network structure to achieve
better performance.
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Abstract. Recently, reinforcement learning (RL) has made great
progress in theory and application. Whereas, challenges remain in RL,
such as low sample utilization and difficulty in designing suitable reward
functions. Therefore, this paper focuses on optimizing the structure of
the reward function and improving sample utilization. We propose a hier-
archical reinforcement learning (HRL) algorithm based on the options
framework, which incorporates a segmented reward mechanism and an
experience replay mechanism. The reward mechanism can help the agent
grasp the reward function’s internal structure. The experience replay
mechanism includes a buffer for storing typical experiences and a partic-
ular buffer for storing the special state experiences of the agent access-
ing the subtasks, which are conducive to training. We conducted single-
task and multitask tests in multiple environments. Experimental results
demonstrate that our algorithm has a better performance than baseline
algorithms.

Keywords: HRL · Reward Mechanism · Experience Replay
Mechanism

1 Introduction

To address low sample utilization and slow learning rate of RL [7] in large-
scale problems, scholars have introduced the HRL algorithm, which decomposes
intricate problems into subproblems, such as HAMs, MAXQ, and Options [5].
However, owing to the hierarchical structure, these methods may not guarantee
convergence to the optimal strategy. To overcome this limitation, researchers
leveraged the prior knowledge of the Reward Machines (RM) [4] to mitigate the
problem of converging to suboptimal solutions. The RM has received widespread
research attention, including LSRM [8], CRM [2], and HRM [2]. These works use
RM to decompose tasks and to output the combination of reward functions under
different conditions. In spite of solving some tasks in the environments, they are
still prone to issues such as slow learning speed and poor performance.
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Our Contribution. In order to improve learning speed and problem-solving
ability, this work proposes an algorithm, dubbed Hierarchy based on Options
with an Experience Replay Mechanism (HOERM). HOERM adopts an option-
based hierarchical structure, which is relevant to HRM [2]. However, we designed
a well-structured reward mechanism and included an experience replay mecha-
nism. We refined the segmented reward mechanism by using the value iteration
method to calculate the potential values of each state in the RM (See Sect. 2
for details). The difference in potential values between states can serve as inter-
mediate rewards. Therefore, the agent also receives appropriate rewards during
the transition of intermediate states in the RM. Besides, we designed an expe-
rience replay mechanism that includes two replay buffers. ReplayBuffer1 is a
typical buffer that normally stores various experiences during the learning pro-
cess. ReplayBuffer2 is a special buffer that specifically stores experiences when
the agent accesses task-specific states. We effectively utilized these experiences
to help the agent learn the strategy and complete tasks faster. Finally, we proved
the effectiveness of the proposed mechanism through experiments.

2 HOERM Through Reward Machines

This section will introduce the details of the definition of Reward Machine (RM)
and how the proposed HOERM learns strategies through RM.

2.1 Reward Machine

Reward Machine (RM) [6] is a special finite state machine that takes an abstract
description of the environment as input and outputs the combination of reward
functions under different conditions. The formal definition of RM is below:

Definition 1. (Reward Machine): Given a set of propositional symbols (P), a
set of environment states (S), and a set of feasible actions (A), an RM can be
defined as a five-tuple: RM = 〈U, u0, F, δu, δr〉, where U signifies a finite set of
states, u0 ∈ U is the initial state, and F constitutes a finite set of terminal states
such that U ∩ F = ∅. δu is the state transition function, δu : U × 2P → U ∪ F ,
and δr is the reward function outputted by the RM, δr : U → [S × A × S → R].

Fig. 1. The Minecraft environment and one RM for an example task
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Figure 1 depicts a “make-bridge” task and its associated RM in the Minecraft
environment. An RM R starts from an initial state u0 and is in a certain state
ut (ut ∈ U ∪ F ) after the agent moves some steps. Every edge in Fig. 1 (b) is
labeled as a tuple 〈ϕ, r〉, in which ϕ is a logical formula composed of propositional
symbols from P and r is the reward. When a truth assignment σ satisfies ϕ (i.e.,
σ |= ϕ), R transitions from state ut to ut+1 and gives a reward of r = δr(ut, ut+1).
The σ is a set containing propositions in P, which are true at the state ut of
RM.

To obtain the truth assignment σ, we introduced a labeling function L :
S × A × S → 2P . Given a state transition e = (s, a, s′), the labeling function
L(s, a, s′) assigns truth values to the proposition symbols in P. According to the
RM definition and L(s, a, s′), we can formally describe how to apply RMs in RL.

Definition 2. MDPRM: A Markov Decision Process with an RM (MDPRM)
can be represented by a tuple MR = 〈S,A, p, γ,P, L, U, u0, F, δu, δr〉, in which
S, A, p, and γ are the conventional definitions of an MDP; P is the set of
propositional symbols; L : S × A × S → 2P serves as the labeling function; and
U , u0, F , δu, and δr are the definitions of the RM.

In MR, the states of the environment and RM are updated after each step
of the agent’s execution. After the agent takes an action, then s is transitioned
to s′, the RM state will also transition to u′ = δu(u,L(s, a, s′)). Then, the agent
receives a reward r = δr(u,L(s, a, s′)), which is used to learn and adjust policies.

2.2 Proposed HOERM

This subsection introduces our HOERM for learning MDPRM policies. Our
HOERM learns a set of options [5] for each task, focusing on causing RM to
transition from one state to another. The high-level policy learns to select the
most suitable option, while the low-level policy is modeled using double DQN,
responsible for executing actions, and learns options to complete each subtask.

As mentioned above, our HOERM learns an option for each transition 〈u, ut〉
between RM states. The initial set of each option is defined as I〈u,ut〉 = {〈s, u〉 :
s ∈ S, u ∈ U}. Since option〈u,ut〉 can only be selected to execute when the RM
state is u, its policy can be represented as π〈u,ut〉(a|s) by the environmental
state s. The termination of an option〈u,ut〉 is defined by Eq. (1), that is, when
it transitions to a new RM state or reaches the final state of the task.

β〈u,ut〉
(
s′, u′) =

{
1 if u′ �= u or s′ is terminal
0 otherwise (1)

The goal of option strategy π〈u,ut〉 is to guide the agent to complete the
option as soon as possible. Thus, we designed an innovative reward mechanism.

r〈u,ut〉
(
s, a, s′) =

⎧
⎨

⎩

δr(u) (s, a, s′) + γΦ(ut) − Φ(u) if ut �= u and ut = δu (u, L (s, a, s′))
δr(u) (s, a, s′) + r+ if ut �= u and ut �= δu (u, L (s, a, s′))
δr(u) (s, a, s′) + r− otherwise

(2)
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In Eq. (2), δr(u) (s, a, s′) is the reward function output by RM, which outputs
1 only when it reaches the final state and 0 otherwise. Φ(u) is the potential
function used to measure the proximity of the current state to the terminal
state. In simple terms, the closer u is to the terminal state, the larger Φ(u) is.
γ is the discount factor defined in the MDP. The hyper-parameters r+ and r−

represent the auxiliary reward and punishment, respectively. If the transition
(s, a, s′) makes the RM state transition from u to ut (ut = δu(u,L(s, a, s′))),
agent will receive a reward of δr(u)(s, a, s′), as well as an additional reward of
γΦ(ut) − Φ(u), to encourage the agent for completing the RM state transition.

In addition, when the RM state transitions from u to another state u
(u /∈ {u, ut}, but u ∈ U), the agent receives a reward of δr(u)(s, a, s′) and
an additional auxiliary reward of r+. This is because even though the transition
is not the intended one, the experience is still valuable for the overall task.

For this reason, the experience replay mechanism includes a unique experi-
ence buffer, denoted as ReplayBuffer2 . It specifically stores the agent’s experi-
ences when triggering high-level events that lead to transition from u to another
state u = δu(u,L(s, a, s′)), where u /∈ {u, ut} but u ∈ U . The two main rea-
sons for this design are as follows: (1) The conventional random sampling from
the experience buffer often results in numerous irrelevant experiences, leading
to slow training. (2) No matter whether u is equal to ut, the experience gained
when the agent triggers a high-level event is valuable, which helps to expedite
the learning of policies for completing the subsequent subtask swiftly.

Finally, if the agent fails to trigger any high-level event and the RM state
remains unchanged, it will receive an auxiliary punishment (r−) in addition to
the reward (δr(s, a, s′)). This negative feedback can motivate the agent to adjust
its policy for the subtask as soon as possible.

3 Experiments

In this section, we perform algorithm performance tests on environments with
discrete (Minecraft [1]) and continuous (Water World [3]) state spaces. These
environments cover both single-task and multi-task scenarios. Three baseline
algorithms were used, which are representative, state-of-the-art approaches for
combining RMs with reinforcement learning. The first is Q-learning for RMs
(QRM), proposed by [4]. The second and third are counterfactual experiences
for RMs (CRM) and hierarchical RL for RMs (HRM), proposed by [2].

3.1 Experimental Setup

Each algorithm was run independently three times, and the average performance
was reported. The results are presented uniformly in this paper, with four algo-
rithms compared: the red line is the proposed HOERM; the green line is QRM;
the sky-blue line is CRM; and the magenta line is HRM. The X-axis corresponds
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to the number of training steps, in millions, while the Y-axis represents the aver-
age normalized reward across all tasks. Tables 1 and 2 also provide the average
and maximum reward values obtained by each algorithm.

3.2 Experiment 1: Results in Minecraft

The first experiment was conducted in the Minecraft environment with a dis-
crete state space, introduced by [1]. As shown in Fig. 1 (a), the environment grid
contains the agent and raw materials needed for the tasks, with randomly gener-
ated positions. The task set Ω = {ϕ1, ϕ2, . . . , ϕ9, ϕ10}, where ϕi ∈ Ω, i ∈ [1, 10]
is one task in Minecraft (e.g., the “make-bridge” task).

Fig. 2. Results in the Minecraft environment.

Figure 2 and Table 1 show the results obtained by each algorithm in single-
task and multitask tests. According to the experimental results, the HRM algo-
rithm has a fast initial learning speed in the two tests. In the single-task test,
HRM’s average reward is 0.6480, which is only slightly lower than our HOERM’s
0.6712. However, HRM’s maximum reward is the lowest, only 0.81. The QRM
and CRM have a slower speed of obtaining rewards than HRM but result in a
maximum reward of 1. The results are similar for the multitask test. On the
whole, our HOERM algorithm performs best in both tests. Although the initial
learning speed is slightly slower than that of HRM, it obtains the highest values
for both average and maximum rewards. The maximum rewards in two types of
tests are 1, indicating that HOERM can complete all tasks excellently.

Table 1. Rewards in the Minecraft environment.

Algorithm single task multiple tasks
maximum reward average reward maximum reward average reward

HOERM 1.0 0.6712 1.0 0.7746

QRM 1.0 0.6218 0.9642 0.7218
CRM 1.0 0.6095 0.9602 0.5803
HRM 0.81 0.6480 0.6779 0.5917
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3.3 Experiment 2: Results in Water World

The second experiment was conducted in “Water World”, which is an environ-
ment with continuous state space and consists of a 2D box containing balls
of various colors. We defined 10 tasks in this environment, including touching
different specific colored balls. More detailed information can be found in [2].

Fig. 3. Results in the Water World environment.

Figure 3 and Table 2 present the result of four algorithms in Water World. In
the single-task test, the four algorithms exhibit similar initial learning speeds,
but the HRM algorithm still achieves the lowest maximum reward of 0.666. In
multitask test, notably, HRM’s average reward is 0.6318, which is close to the
value for CRM and higher than QRM thanks to its fast initial learning speed.
However, HRM’s maximum reward of 0.7125 still remains the lowest. Both CRM
and QRM do not significantly improve their rewards compared to HRM in this
complex environment. Although HOERM has a slightly slower initial learning
speed than HRM, the effective sample utilization enhances its task completion
capability, resulting in the highest rewards than the three baseline algorithms,
demonstrating its excellent performance.

Table 2. Rewards in the Water World environment.

Algorithm single task multiple tasks
maximum reward average reward maximum reward average reward

HOERM 1.0 0.8571 0.9466 0.6918

QRM 0.9137 0.8257 0.7689 0.6038
CRM 0.9553 0.8255 0.7644 0.6391
HRM 0.6660 0.5898 0.7125 0.6318

4 Discussion

In this paper, we introduced the concept of RM and proposed an HRL algo-
rithm. The proposed algorithm effectively leverages RMs and achieves efficient
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sample utilization, leading to rapid strategy learning and impressive experimen-
tal results. In future work, we will explore the application of RMs in multi-agent
problems to tackle more complex tasks effectively by sharing RM knowledge.

Acknowledgements. This study was supported by the National Natural Science
Foundation of China (Grant Nos. 62172072).
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Abstract. Recently, contrastive learning has been extended from visual
representation to summarization tasks. Abstractive summarization aims
to generate a short description for a document while retaining signifi-
cant information. At present, the methods of contrastive learning sum-
marization focus on modeling the global semantics of source documents,
targets and candidate summaries to maximize their similarities. How-
ever, they ignore the influence of sentence semantics in the source doc-
ument. In this paper, we propose a sentence-level semantic similarity
distance-aware contrastive learning method (SSDCL), which integrates
the semantic similarity distance between summaries and sentences of
source documents into the contrastive loss in the form of soft weights.
Therefore, our model maximize the similarity between summaries and
salient information, while minimizing the similarity between summaries
and noise. We conducted extensive experiments on CNN/Daily Mail and
XSum datasets to verify our model. The experimental results show that
the proposed method achieved remarkable performance over the baseline
and many advanced methods.

Keywords: Contrastive learning · Abstractive summarization ·
Semantic similarity

1 Introduction

Automatic Text Summarization (ATS) [14,18,21] has attracted an increasing
number of attention in the field of Natural Language Processing [1,12] in virtue
of its powerful ability to handle redundant information. The purpose of ATS is
to generate a short summary for a long document while retains its core content.
Abstractive summarization [11,20,22] is a branch of ATS, which can be modeled
as sequence-to-sequence(seq2seq) [25] problems learning to generate summaries
in an autoregressive manner. With the development of pretrained language mod-
els such as BART [10], the performance of abstractive models have been signifi-
cantly improved [28,33]. Recently, the contrastive learning paradigm [3] has been
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 173–185, 2024.
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extended from unsupervised visual representation [2,29] to the text summariza-
tion [16,31,35]. It provides a new solution [15,24] to mitigate the exposure bias
for abstractive summarization. However, to our knowledge, current contrastive
learning studies in summarization are basically at the document or summary
level [15,16], and rarely contrast the source sentences with the summary.

Furthermore, previous studies paid more attention to summaries with more
co-occurrence words [32] in the source document, and less attention to the seman-
tic similarity [7,30] between predicted sentences and source sentences. This leads
to the model lacking of the ability to measure the contribution of the sentences
in input document to the summary generation during training. Recent studies
[8,9,28] also have attempted to use an extractive summarization model to guide
the abstractive model to extract salient information. However, this form of guid-
ance is not perfect: the number and distribution of salient content will vary from
document to document, but the number of sentences output by the extractive
model is fixed, and the selection process may lead to bias in the model.

Consequently, we design a contrastive learning method with sentence-level
semantic similarity for abstractive summarization, which is used to improve the
model’s ability to distinguish salient information and denoising. This method
constructs positive and negative samples according to the salience of sentences
in the source document. Through contrastive learning, the generated summary
can better surround the center of the input document in semantic space. The
rationale for proposing this method is that we found by analyzing the CNN/Daily
Mail (CNNDM) dataset [6] that some sentences of the documents largely deter-
mine the formation of summaries, and these sentences tend to be most relevant
to the targets, while certain sentences do not contribute to this. Figure 1 shows
an example of a document-summary pair in CNNDM. We calculate and rank the
semantic similarity scores between each sentence in the source document and the
target summary separately. What can be seen is that the most significant infor-
mation is mainly concentrated on the three sentences with the highest similarity
scores, while the sentences with low similarity may bring noise to the model.

Fig. 1. An example of the relationship between similarity scores and sentences salience
in CNN/Daily Mail. The sequences in green indicates coincidence with the target.
(Color figure online)
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What’s more, the number and similarity scores of salient sentences will change
according to different documents, which is related to the difficulty of distinguish-
ing positive and negative samples in the model. If the similarity scores of sen-
tences in a document are relatively low, or the difference between the positive
and negative samples is too small, it will become a hard sample. Therefore, we
further design a similarity distance-aware contrastive loss, which imposes soft
weights based on the similarity distance between positive and negative samples
and the targets, so that hard samples receive more attention or penalty. An
overview of our method is given in Fig. 2.

Fig. 2. Overview of our method.

Our experiments on two widely used public datasets validate that the method
is simple and effective. The contributions of our work are summarized as follows:

– We propose a sentence-level semantic similarity contrastive learning method
for abstractive summarization, which helps the model gain the ability to dis-
tinguish salient information from documents.

– We designed a similarity distance-aware contrastive loss to extend the similar-
ity distance between positive and negative samples and the targets perceived
by the model during training, allowing the model to pay more attention to
samples that are difficult to summarize.

– Our experimental results show that our method is effective in improving the
performance of large pretrained language models on ROUGE metrics.

2 Proposed Method

2.1 Problem Definition

Our generation model follow the standard Transformer architecture [26], which is
composed of Encoder f and Decoder g, with long text as input and corresponding
summary generated. Formally, for a source document D = {s1, s2, · · · , sm}
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with m sentences and a summary Y = {y1, y2, · · · , yN} with N tokens. Our
goal is to model the conditional probability distribution p (yj |y<j ,D) using the
Transformer architecture. We insert special tokens [CLS] and [SEP ] at the
beginning and the end of each sentence, and learn the context representation of
them with the Encoder which maps the document into a series of hidden states,
and treats the hidden states of the last layer as the document representation:

Henc = {z1, z2, · · · , zm} = f
(
D̂

)
, (1)

where zi denotes the contextual embedding representation of the i-th sentence,
and D̂ is the input document after inserting the separator.

During training, it is assumed that the first t−1 tokens have been generated
and the model is generating yt. The decoder calculates the current hidden state
hdec

t by Henc and the first t − 1 generated tokens y<t, i.e. hdec
t = g (y<t,H

enc),
and maps it to the vocabulary distribution to obtain the probability of yt:

p
(
yt

∣∣∣y<t, D̂
)
= softmax

(
W dechdec

t + b
)
, (2)

where the weight W dec and bias b are trainable parameters in the model.
We utilize the Maximum Likelihood Estimation algorithm for training, i.e.

minimize the following Negative Log-Likelihood (NLL):

LNLL = − 1
N

N∑
t=1

log p
(
yt

∣∣∣y<t, D̂
)
. (3)

2.2 Semantic Similarity Contrastive Learning

Inspired by Zhong et al. [36], we propose a Semantic Similarity Contrastive
Learning (SSCL) method, which performs semantic text matching between the
summary and each sentence in the document to quantify the intrinsic gap in the
degree of sentence-level contribution.

Computation of Semantic Similarity. In contrast to the way Wang et al. [27]
selected salient information based on the n-gram overlap between summary and
sentence, we started from the perspective of semantic similarity. Because only
using n-gram overlap to judge the similarity of sentences is at the lexical level,
sometimes it will not be able to accurately measure whether the real meanings
between sentences are consistent. And even if two sentences contain different
words, the semantic similarity can measure how similar they are.

The target summaries can be divided into single-sentence (in XSum dataset)
and multi-sentence (in CNNDM dataset). Uniformly, for an summary containing
n sentences, to calculate the semantic similarity scores, we also insert [CLS] and
[SEP ] tokens to separate each sentence in the summary, which are then fed sepa-
rately into the Encoder to get the hidden representation zY = {zY

1 , zY
2 , · · · , zY

n }.
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The cosine similarity of the i-th sentence in the source document and the n
sentences in the summary are calculated respectively, and n scores are obtained.
As shown in Fig. 3, we consider the maximum value of the scores as the semantic
similarity between the i-th source sentence and the target summary:

sim (i, Y ) = max
j∈{1,2,··· ,n}

cos
(
zi, z

Y
j

)
, (4)

where zY
j denotes the vector representation of the j-th sentence in the summary.

Sentences with higher semantic similarity scores are more salient in documents.

Construction of the Positive and Negative Samples. One of the keys to
effective contrastive learning is to construct high-quality positive and negative
sample pairs. The most common way is to use data enhancement strategies
to insert, replace or delete some fragments of the source document, but those
methods are tends to break the structure of documents. Therefore, for each
document, we select the kp sentences with the highest similarity score as positive
samples Sp = {zp

1 , zp
2 , ..., zp

kp}, and the kn sentences with the lowest similarity
score as negative samples Sn = {zn

1 , zn
2 , ..., zn

kn} (shown in Fig. 3). During the
training process, the positive and negative samples can be selected dynamically,
while kp and kn are also varied according to the number of sentences in each
document, which helps to improve the generalization ability of the model.

Contrastive Learning. Under the guidance of local semantics based on cosine
similarity, contrastive learning encourages the model to capture salient infor-
mation and distinguish potential noise in the documents during training, thus
improving the quality of the context vector, keeping the generated summaries
close to the most salient content and away from noisy information. The objective
of contrastive objective is to minimize the following loss:

LSSCL = − 1
kp

kp∑
i=1

log
esim(i,Y )/τ

∑
zj∈Sn(j) esim(j,Y )/τ + esim(i,Y )/τ

, (5)

where τ is a temperature parameter. Finally, we weight the NLL objective and
semantic similarity contrastive objective by a hyperparameter α as follows:

L = LNLL + αLSSCL. (6)

2.3 Semantic Similarity Distance-Aware Contrastive Learning

The loss LSSCL is treated the same for all documents, ignoring the relative differ-
ences between the contrastive samples of each document, which are of different
quality. This is because the highlights in some documents are not always concen-
trated in a few sentences, and they may be scattered in most sentences. Especially
for datasets with a large degree of abstraction like XSum. Even for sentences with
salience information, their semantic similarity with the target summary will be
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relatively low. This makes it difficult for the model to distinguish between pos-
itives and negatives, which brings great challenges to contrastive learning. For
such hard samples that are difficult to learn, we further propose a Semantic
Similarity Distance-aware Contrastive Learning method (SSDCL).

Formally, we provide a soft weight wi for the contrast between each positive
and negative sample to reflect there relative quality differences. In other words,
the semantic similarity distance-aware weights are determined by the differences
between positives and negatives, as well as the quality of positive samples. The
soft weight wi is expressed as:

wi = − exp (1− sim(i, Y ))
exp ( 1

kp

∑
zi∈Sp

sim(i, Y )− 1
kn

∑
zj∈Sn

sim(j, Y ) + γ)
, (7)

where γ is a margin value, we set it to 0.01. Figure 4 illustrates how to allocate
soft weights by similarity distance. For a positive sample sentence, when its sim-
ilarity score with the summary is low, the molecular term of wi is larger. For
a document example, when the similarity difference between positive and nega-
tive samples is small, the denominator term of wi is smaller. In this way, more
attention can be paid to these difficult samples by applying soft weights to the
contrastive loss. Therefore, the contrastive learning objective can be rewritten
as:

LSSDCL = − 1
kp

kp∑
i=1

log
esim(i,Y )/τ

wi

∑
zj∈Sn(j) esim(j,Y )/τ + esim(i,Y )/τ

. (8)

The potential insight is to emphasize the contrastive effect of positive samples
with low similarity scores and positive and negative samples with little difference.

Fig. 3. Calculation of semantic simi-
larity and construction of contrastive
samples.

Fig. 4. Distribution of semantic simi-
larity distance-aware soft weights.

Since our contrastive loss is sentence-level, combining it with NLL loss also
solves the problem of inconsistent objective functions and evaluation metrics.
Accordingly, the overall training objective combines contrastive and NLL loss:

L = LNLL + αLSSDCL, (9)
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where the hyperparameter α controls the importance of contrastive learning.

3 Experimental Results and Analysis

3.1 Datasets and Evaluation Metrics

CNN/Daily Mail (CNNDM) [6] come from the CNN and Daily Mail websites
and includes online news articles and relevant highlights used as target sum-
maries. XSum [19] is a highly abstracted dataset. Its articles come from the
BBC website, while the corresponding target summaries are professionally writ-
ten by human author. We follow the preprocessing steps in the work of [22] for
the CNNDM, and use the official segmentation method [19] for the XSum.

ROUGE [13] is a similarity measurement method based on recall, which has
two most common variants. ROUGE-N calculates the co-occurrence probability
of N-gram in the target and generated summaries, and ROUGE-L measures the
longest common subsequence of target and generated summary. We report the
ROUGE-1, ROUGE-2 and ROUGE-L scores between reference summaries and
generated summaries on two datasets, respectively.

3.2 Implementation Details

We use PEGASUS pre-training language model to initialize our proposed model,
which includes 16 layer encoders and 16 layer decoders, with 16 attention head-
ers, the dropout rate is 0.1, and the weight decay is set to 1e − 8. We insert
special tokens at the beginning and end of each sentence in the training data to
calculate the corresponding sentence representation. According to the document
and summary length distributions of CNNDM and XSum datasets, we truncate
the summaries to 128 and 64 tokens, respectively. In the contrastive loss, the
temperature coefficient τ = 1.0. We use Adafactor [23] to optimize the param-
eters of the model, and the learning rate is set to 1e − 4. The model is trained
for 5 epochs. The batch size of CNNDM and XSum are 8 and 16 respectively.
All our experiments are done on 2 NVIDIA GeForce RTX 3090 GPUs.

3.3 Main Results

Table 1 shows the main results of our method and the strong baseline models in
recent years on CNNDM and XSum datasets.

Firstly, we compare the proposed method with the strong baseline built on the
pre-training model, and our SSDCL shows obvious performance improvement.
SSDCL improves by 2.07/1.05 ROUGE-1/2 than PEGASUS on the CNNDM
and 0.62/0.34 on XSum, indicating that the generated summaries by our method
contained more information. This demonstrates the effectiveness of our proposed
contrastive learning method. On CNNDM, our performance is 2.46 ROUGE-
L higher than PEGASUS, which shows that our method also shows superior
performance in improving the verbal fluency of the generated summaries. SSDCL
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Table 1. Main results on CNNDM and XSum, where R stands for ROUGE.

Model CNNDM XSum
R-1 R-2 R-L R-1 R-2 R-L

Pretrain BART [10] 44.16 21.28 40.90 45.14 22.27 37.25
PEGASUS [34] 44.17 21.47 41.11 47.21 24.56 39.25

Extractive MATCHSUM [36] 44.41 20.86 40.55 - - -
Abstractive BIG BIRD [33] 43.84 21.11 40.74 47.12 24.05 38.80

CaPE [4] 44.28 21.23 40.88 45.35 22.25 37.17
RepSum [5] 44.53 21.23 41.53 44.64 21.73 36.53
PtLAAM [17] 44.17 20.63 40.97 45.48 21.80 36.84
GOLD-s [20] 44.82 22.09 41.81 45.85 22.58 37.65

Contrastive SimCLS [15] 46.67 22.15 43.54 47.76 24.57 39.44
ESACL [35] 44.24 21.06 41.20 44.64 21.61 36.73
ConSum [24] 44.53 21.54 41.57 47.34 24.46 39.40
SeqCo [31] 44.66 21.57 41.38 45.65 22.41 37.04

Ours SSCL 45.13 22.10 42.09 47.64 24.74 39.56
SSDCL 46.24 22.52 43.57 47.83 24.90 39.81

has also defeated several recent abstractive models and extractive models, and
achieved better performance. The above illustrates that our SSDCL is beneficial
to incorporate sentence-level contrastive learning into summarization models.
Afterwards, the results on XSum compared with other baselines show that our
method still shows superior performance on more abstractive dataset.

Particularly, as a contrastive learning model, our method even beats SimCLS
on ROUGE-2 and ROUGE-L, achieving the best performance. This is because
our model makes the summaries closer to positive samples, and at the same
time, it pays more attention to the samples that are difficult to summarize by
using the soft weights of the semantic similarity distance-aware of positive and
negative samples. This also validates that identifying the semantic space inside
the source document can effectively improve the quality of the summaries.

Finally, the second and last two rows in Table 1 are correspond to our ablation
experiments, which are used to explore the influence of contrastive learning and
semantic similarity distance-aware weights, where PEGASUS is the baseline.
The results show that both points proposed are useful. SSDCL with seman-
tic similarity distance-aware contrastive learning further improves SSCL with
only contrastive learning, achieving even more performance gains. Especially,
on CNNDM, SSDCL is 1.48 ROUGE-L higher than SSCL, and significantly
outperforms the PEGASUS. The results clearly demonstrate the advantage of
incorporating soft weights into the contrastive loss.
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3.4 Analysis of Sentence Salience

To determine the degree of significance of the sentences, we calculated the seman-
tic similarity scores of all sentences in the source documents with the correspond-
ing summaries. Then we count the percentage of sentence similarity scores in
each score segment for each document. Figure 5 shows the mean and standard
deviation of the percentage of each score segment on the CNNDM and XSum.
We considered the sentences with similarity scores higher than 0.6 as significant.
On CNNDM and XSum, the average number of significant sentences per docu-
ment is about 10% and 5%, respectively. The number of sentences with similarity
scores below 0.4 is much higher than the number of significant sentences, indi-
cating the necessary for us to use semantic similarity distance-aware contrastive
learning to widen the gap between positives and negatives and to improve the
model’s ability to extract important information from positive samples. At the
same time, the distribution of similarity scores provides a basis for our selection
of positive and negative samples, as analyzed in the following section.

Fig. 5. The percentage statistics of each fraction in CNNDM and XSum datasets.

Fig. 6. Performance of different positive and negative numbers in CNNDM and XSum.
The y-axis is the ROUGE delta between our SSDCL and PEGASUS. Each source
document contains m sentences, the m/i means that kp and kn take the value of m/i.
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3.5 Selection of Positive and Negative Samples

We set up an experiment to observe the influence of the selection of the number
of positive samples kp and the number of negative samples kn on our contrastive
model. Their values are related to m, the number of sentences in each document.
As shown in Fig. 6(a), when we choose the m/6 sentences with the highest simi-
larity scores as positive samples and the m/6 sentences with the lowest similarity
scores as negative samples in CNNDM, the SSDCL will be improved to the best.
This is because the salient information is mainly in the 10% of sentences with the
highest similarity scores, while the noise is distributed in the 20% of sentences
with the lowest scores. However, in XSum dataset (shown in Fig. 6(b)), SSDCL
performs best when the number of positive and negative samples is m/8, because
the documents in XSum have fewer salient sentences. Unfortunately, when more
sentences are involved, performance drops significantly. It is due to the fact
that the scores of some sentences are too close, and too many contrastive pairs
with little discrimination may be constructed during dynamic sampling, lead-
ing to overfitting of the model. Conversely, when fewer sentences are selected,
the difference between contrastive samples is too great, resulting in insufficient
knowledge learned by the model and some salient information is easily lost.

3.6 Case Study

To further demonstrate the effectiveness of our method, we randomly select an
document from CNNDM test set and input it into our model and PEGASUS
respectively to generate the corresponding summaries. The results are shown in
Fig. 7. We can observe the following findings: 1) Our SSDCL summarizes one
of the causes of “Nathan’s electrocution”, but the PEGASUS lost these details,
which suggests that our generated summary contains more salient information.
2) The summary generated by SSDCL is more linguistically coherent. 3) The
words of the summary generated by PEGASUS are basically copied from the
source document while our model generates new words without changing the
original meaning. These findings confirm the effectiveness of our method.

Fig. 7. Case study on CNNDM dataset. Light purple words represent the new words
generated by our model. (Color figure online)
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4 Conclusions

In this work, first we focus on sentence-level contrastive learning between source
document sentences and summaries, aiming to distinguish salient information
from latent noise in source documents. Additionally, we innovatively integrate
a soft weight of sentence semantic similarity distance-aware into the contrastive
loss, and further enhance the ability of the model to capture salient informa-
tion by paying more attention to the samples that are difficult to summarize.
Comprehensive experiments in the abstractive summarization task demonstrate
the performance of SSDCL in improving the baseline. In future work, we will
consider modeling the similarity between summaries and source documents from
a more fine-grained perspective, such as entity level.
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Abstract. To efficiently extract textual information from color
degraded document images is a significant research area. The prolonged
imperfect preservation of ancient documents has led to various types of
degradation, such as page staining, paper yellowing, and ink bleeding.
These types of degradation badly impact the image processing for fea-
tures extraction. This paper introduces a novelty method employing gen-
erative adversarial networks based on color channel using discrete wavelet
transform (CCDWT-GAN). The proposed method involves three stages:
image preprocessing, image enhancement, and image binarization. In the
initial step, we apply discrete wavelet transform (DWT) to retain the low-
low (LL) subband image, thereby enhancing image quality. Subsequently,
we divide the original input image into four single-channel colors (red,
green, blue, and gray) to separately train adversarial networks. For the
extraction of global and local features, we utilize the output image from
the image enhancement stage and the entire input image to train adver-
sarial networks independently, and then combine these two results as the
final output. To validate the positive impact of the image enhancement
and binarization stages on model performance, we conduct an ablation
study. This work compares the performance of the proposed method
with other state-of-the-art (SOTA) methods on DIBCO and H-DIBCO
((Handwritten) Document Image Binarization Competition) datasets.
The experimental results demonstrate that CCDWT-GAN achieves a top
two performance on multiple benchmark datasets. Notably, on DIBCO
2013 and 2016 dataset, our method achieves F-measure (FM) values of
95.24 and 91.46, respectively.

Keywords: Semantic segmentation · Discrete wavelet transform ·
Generative adversarial networks · Document image binarization

1 Intorduction

Document image binarization is a significant research topic in Computer Vision
(CV). Although the traditional image binarization methods are capable of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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extracting textual information from regular document images, they often strug-
gle to process degraded ancient document images, including text degradation
and bleed-through [16,30].

In recent years, image binarization methods based on deep learning have
shown remarkable performance in addressing the problems that traditional image
binarization methods [18,19,27] cannot solve. Several methods have been pro-
posed and achieved state-of-the-art (SOTA) performance in degraded document
image binarization, such as the conditional generative adversarial network-based
method [35], the hierarchical deep supervised network [33], and the iterative
supervised network [10], which all outperform traditional image binarization
methods and other deep learning-based methods [9,32,34].

The aforementioned image binarization methods generally have superior
results when applied to grayscale documents, particularly for restoring con-
taminated black and white scanned ancient documents. Considering that some
scanned images of ancient documents are in color, we propose generative
adversarial networks based on color channel using discrete wavelet transform
(CCDWT-GAN), which utilize the discrete wavelet transform (DWT) on RGB
(red, green, blue) split images to binarize the color degraded documents.

This paper makes the following contributions:

1) Demonstrating that applying DWT on RGB split images can improve the
efficiency of the generator and the discriminator.

2) Presenting a novel method for document image binarization that achieves
SOTA performance on multiple benchmark datasets.

The rest of this paper is organized as follows: Sect. 2 introduces the related
work of document image binarization and GANs. Section 3 provides detailed
information about the proposed method. Section 4 presents a quantitative com-
parison with SOTA methods on benchmark datasets. Finally, Sect. 5 concludes
this paper.

2 Related Work

There are two primary categories of document image binarization methods: tra-
ditional image binarization methods and deep-learning-based semantic segmen-
tation methods. The traditional image binarization method involves binarizing
the image by calculating a pixel-level local threshold [12,15]. On the other hand,
the deep learning-based semantic segmentation method utilizes U-Net [26] to
capture contextual and location information. This method utilizes an encoder-
decoder structure to transform the input image into the binarized representation
[10,14,32,33].

Recently, generative adversarial networks (GANs) [7] have shown impressive
success in generating realistic images. Zhao et al. [35] introduced a cascaded gen-
erator structure based on Pix2Pix GAN [13] for image binarization. This archi-
tecture effectively addresses the challenge of combining multi-scale information.
Bhunia et al. [3] conducted texture enhancement on datasets and utilized con-
ditional generative adversarial networks (cGAN) for image binarization. Suh et
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al. [28] employed Patch GAN [13] to propose a two-stage generative adversar-
ial networks for image binarization. De et al. [4] developed a dual-discriminator
framework that fuses local and global information. These methods all achieve
the SOTA performance for document image binarization.

Fig. 1. The structure of the proposed model for image preprocessing. The original
input image is split into multiple 224 × 224 patches. After applying DWT, the LL
subband images are retained from the RGB channels split images. These images are
subsequently resized to 224 × 224 pixels and perform normalization.

3 Proposed Method

This work aims to perform image binarization on color degraded document
images. Due to the diverse and complex nature of document degradation, our
method employs CCDWT-GAN on both RGB split images and a grayscale
image. The proposed method consists of three stages: image preprocessing, image
enhancement, and image binarization.

3.1 Image Preprocessing

In the first step, the proposed method employs four independent generators to
extract the foreground color information and eliminate the background color
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from the image. To obtain different input images for four independent gen-
erators, we first split the RGB three-channel input image into three separate
single-channel images and a grayscale image, as shown in Fig. 1. To preserve
more information in RGB channels split images, this work applies DWT to each
single-channel images to retain the LL subband images, then resizes to 224 × 224
pixels, and finally performs normalization. There are many options to process
the input image of the generator and the discriminator, such as whether to per-
form normalization. In Sect. 4.5, we conduct comparative experiments to find
the best option.

Fig. 2. The structure of the proposed model for image enhancement. The preprocessing
output images and the original ground truth images are summed (pixel-wise) as the
ground truth images of the generator.

3.2 Image Enhancement

In this stage, depicted in Fig. 2, the RGB input image with three channels is
split into three separate single-channel images and a grayscale image. Each of
these image utilizes an independent generator and shares the same discriminator
to distinguish between the generated image and its corresponding ground truth
image. The trained network is capable of eliminating background information
from the local image patches and extracting color foreground information. To
extract features, we employ U-Net++ [36] with EfficientNet [31] as the generator.

Due to the unpredictable degree of document degradation, four indepen-
dent adversarial networks are used to extract text information from various
color backgrounds, minimizing the interference caused by color during docu-
ment image binarization. Since images with different channel numbers cannot be
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directly put into the same discriminator, the input of the discriminator requires a
three-channel image, and the ground truth image is a grayscale (single-channel)
image. As shown in the right of Fig. 2, the original ground truth image and the
output image obtained from image preprocessing are summed at the pixel level
to serve as the corresponding ground truth images.

Fig. 3. The structure of the proposed model for image binarization. The input image
size for the left generator is 224 × 224 pixels, and for the right is 512 × 512 pixels.

3.3 Image Binarization

Finally, the proposed method employs a multi-scale adversarial network for gen-
erating images of both local and global binarization, enabling more accurate
differentiation between the background and text. We conduct global binariza-
tion on the original input images to offset any potential loss of spatial contextual
information in the images caused by local prediction. Since the input image for
local prediction in this stage is an 8-bit image, and the image binarization stage
employs a 24-bit three-channel image, we employ two independent discrimina-
tors in the image binarization stage, respectively. As depicted in Fig. 3, the input
image for local prediction corresponds to the output of the image enhancement,
while the input image size for global prediction is 512 × 512 pixels.

3.4 Loss Function

In order to achieve a more stable convergence of the loss function, the pro-
posed method utilizes the Wasserstein GAN [8] target loss function. The report
of Bartusiak et al. [1] demonstrates that the binary cross-entropy (BCE) loss
outperforms the L1 loss for binary classification tasks. Therefore, we utilize the
BCE loss instead of the L1 loss employed in Pix2Pix GAN [13]. The Wasserstein
GAN target loss function including the BCE loss is defined as follows:

LD = −Ex,y[D(y, x)] + Ex[D(G(x), x)] + αEx,ŷ∼Pŷ
[(‖∇ŷD(ŷ, x)‖2 − 1)2] (1)
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LG = Ex[D(G(x), x)] + λEG(x),y[y log G(x) + (1 − y) log(1 − G(x))] (2)

where the penalty coefficient is α, and the uniform sampling along a straight line
between the ground truth distribution Py and the point pairs of the generated
data distribution is Pŷ. λ is used to control the relative importance of different
loss terms. The parameter of the generator is θG and the parameter of the
discriminator is θD. In the discriminator, the generated image is distinguished
from the ground truth image by the target loss function LD in Eq. (1). In the
generator, the distance between the generated image and the ground truth image
in each color channel is minimized by the target loss function LG in Eq. (2).

4 Experiments

4.1 Datasets

This work trains the model on several public datasets and compares the per-
formance of the proposed method with other SOTA methods on benchmark
datasets. Our training sets include Document Image Binarization Competition
(DIBCO) 2009 [6], Handwritten Document Image Binarization Competition (H-
DIBCO) 2010 [20], H-DIBCO 2012 [22], Persian Heritage Image Binarization
Dataset (PHIBD) [17], Synchromedia Multispectral Ancient Document Images
Dataset (SMADI) [11], and Bickley Diary Dataset [5]. The test sets comprise
DIBCO 2011 [21], DIBCO 2013 [23], H-DIBCO 2016 [24], and DIBCO 2017 [25].

4.2 Evaluation Metric

Four evaluation metrics are employed to evaluate the proposed method and con-
duct a quantitative comparison with other SOTA methods for document image
binarization. The evaluation metrics utilized include F-measure (FM), Pseudo-
F-measure (p-FM), Peak signal-to-noise ratio (PSNR), and Distance reciprocal
distortion (DRD).

4.3 Experiment Setup

The backbone neural network of this work is EfficientNet-B6 [31]. This paper
utilizes a pre-trained model on the ImageNet dataset to reduce computational
costs. During the image preprocessing stage, we divide the input images into
224×224 pixels patches, corresponding to the image size in the ImageNet dataset.
The patches are sampled with scale factors of 0.75, 1, 1.25, and 1.5, and the
images are rotated by 90◦, 180◦, and 270◦. In total, the number of the training
image patches are 336,702.

During the global binarization, we resize the original input image to 512×512
pixels and generate 1,890 training images by applying horizontal and vertical
flips. The input images for the local binarization of the image binarization stage



192 R.-Y. Ju et al.

are obtained from the image enhancement stage, and both stages share the same
training parameters. The image binarization stage is trained for 150 epochs,
while the other stages are trained for 10 epochs each. This work utilizes the
Adam optimizer with a learning rate of 2 × 10−4. β1 of the generator and β2 of
the discriminator are 0.5 and 0.999, respectively.

Table 1. Ablation study of the proposed model on benchmark datasets.

Methods Dataset FM↑ p-FM↑ PSNR↑ DRD↓
Enhancement DIBCO 2011 80.32 93.93 16.02 5.19

Proposed DIBCO 2011 94.08 97.08 20.51 1.75

Enhancement DIBCO 2013 86.19 97.36 17.91 3.81

Proposed DIBCO 2013 95.24 97.51 22.27 1.59

Enhancement H-DIBCO 2016 81.60 95.65 16.82 5.62

Proposed H-DIBCO 2016 91.46 96.32 19.66 2.94

Enhancement DIBCO 2017 78.76 93.30 15.15 5.84

Proposed DIBCO 2017 90.95 93.79 18.57 2.94

4.4 Ablation Study

In this section, this work presents an ablation study conducted to assess the
individual contributions of each stage of the proposed method. We evaluate the
output of the image enhancement stage, as “Enhancement”, and compare it with
the final output, as “Proposed”. The evaluation and comparison of the output
results are performed on four DIBCO datasets. Table 1 demonstrates that the
output result of “Enhancement” is worse than the final output in terms of FM,
p-FM, PSNR, and DRD values.

To further demonstrate the advantages of each stage more intuitively, we
choose five images from PHIBD [17] and Bickley Diary Dataset [5] to show the
step-by-step output results of image enhancement and image binarization using
the proposed method. As shown in Fig. 4, (b) represents the result of retaining
the LL subband image after applying DWT and normalization (the result of the
image preprocessing stage), showing that the original input image is performed
noise reduction. (c) is the result of image enhancement using adversarial network,
and it has removed the background color and highlighted the text color. (d) is
the final output image obtained using the proposed method, and it can be seen
that our final output is closer to the ground truth image (e).
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Fig. 4. The output images of each stage of the proposed model: (a) the original input
image, (b) the LL subband image after applying DWT and normalization, (c) the
enhanced image using image enhancement method, (d) the binarization image using
the method combining local and global features, (e) the ground truth image.

4.5 Experimental Results

Despite mathematical theories supporting the effectiveness of applying DWT
to images for storing contour information and reducing noise, we aim to com-
prehensively explain their impact on experimental results. To achieve this, we
utilize UNet architecture [26] with EfficientNet-B5 [31] as the baseline model to
conduct comparison experiments, as presented in Table 2. We formulate three
options for the input images of the generator: direct input image, DWT to LL
subband image, and DWT to LL subband image with normalization. Corre-
sponding options are set up for the ground truth images. Notably, option 1:
directly using the original input image as input, exhibits the worst performance
on all four datasets. On DIBCO 2011 dataset, option 6: employing only DWT
without normalization as the input image and corresponding to the ground truth
image, demonstrate the best performance, achieving FM value of 91.95. The FM
value of Option 3 reaches 94.88, achieving the top performance on DIBCO 2013
dataset by directly inputting the original image and utilizing the image process-
ing output image as the corresponding ground truth image. Moreover, option
3 achieves the top two performance on DIBCO 2016 dataset. Based on this,
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Table 2. Model performance comparison of different input images and ground truth
images of the generator. Best and 2nd best performance are in red and blue colors,
respectively.

(a) DIBCO 2011

Option Input GT FM p-FM PSNR DRD

1 \ \ 86.68 89.61 19.27 4.01

2 \ DWT (LL) 88.20 90.57 19.53 3.45

3 \ DWT (LL) + Norm 87.70 90.24 19.65 3.45

4 DWT (LL) \ 87.74 89.69 18.88 3.78

5 DWT (LL) + Norm \ 89.33 91.94 19.49 3.37

6 DWT (LL) DWT (LL) 90.53 92.82 19.68 3.11

7 DWT (LL) + Norm DWT (LL) + Norm 89.06 92.25 19.59 3.31

(b) DIBCO 2013

Option Input GT FM p-FM PSNR DRD

1 \ \ 92.94 94.70 21.57 2.74

2 \ DWT (LL) 94.43 95.64 21.79 2.13

3 \ DWT (LL) + Norm 94.88 96.19 22.32 1.95

4 DWT (LL) \ 93.23 94.43 20.80 2.67

5 DWT (LL) + Norm \ 93.76 95.41 21.54 2.40

6 DWT (LL) DWT (LL) 94.39 95.34 21.91 2.26

7 DWT (LL) + Norm DWT (LL) + Norm 94.55 95.86 22.02 2.07

(c) H-DIBCO 2016

Option Input GT FM p-FM PSNR DRD

1 \ \ 90.74 94.46 19.39 3.30

2 \ DWT (LL) 91.76 95.74 19.67 2.93

3 \ DWT (LL) + Norm 91.49 96.46 19.68 2.92

4 DWT (LL) \ 91.86 94.95 19.62 2.99

5 DWT (LL) + Norm \ 91.28 96.03 19.47 3.04

6 DWT (LL) DWT (LL) 91.68 95.90 19.68 2.93

7 DWT (LL) + Norm DWT (LL) + Norm 91.95 95.87 19.75 2.84

we choose option 3 to employ UNet++ [36] with EfficientNet-B6 [31] as the
generator for network design.

Due to the lack of optical character recognition (OCR) result within dataset,
both the proposed method and other SOTA methods are evaluated using the four
evaluation metrics described in Sect. 4.2. The evaluation results on the bench-
mark datasets are presented in Table 3. Our proposed method demonstrates
superior performance across all four evaluation metrics on DIBCO 2016 dataset.
Additionally, on DIBCO 2011 and 2013 datasets, the proposed method achieves
the top two performance in each evaluation metric. Despite slightly lower FM
value of 90.05 compared to the highest value of 91.33, and p-FM value of 93.79
lower than the highest value of 94.65, the PSNR and DRD values maintain top
two performance on DIBCO 2017 dataset. By combining the comparison results
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Table 3. Quantitative comparison (FM/p-FM/PSNR/DRD) with other state-of-the-
art models for document image binarization on benchmark datasets. Best and 2nd best
performance are in red and blue colors, respectively.

(a) DIBCO 2011

Methods FM p-FM PSNR DRD

Otsu [19] 82.10 85.96 15.72 8.95

Sauvola [27] 82.35 88.63 15.75 7.86

He [10] 91.92 95.82 19.49 2.37

Vo [33] 92.58 94.67 19.16 2.38

Zhao [35] 92.62 95.38 19.58 2.55

1st Place [21] 88.74 – 17.97 5.36

Yang [34] 93.44 95.82 20.10 2.25

Suh [29] 93.44 96.18 19.97 1.93

Tensmeyer [32] 93.60 97.70 20.11 1.85

Ours 94.08 97.08 20.51 1.75

(b) DIBCO 2013

Methods FM p-FM PSNR DRD

Otsu [19] 80.04 83.43 16.63 10.98

Sauvola [27] 82.73 88.37 16.98 7.34

He [10] 93.36 96.70 20.88 2.15

Vo [33] 93.43 95.34 20.82 2.26

Zhao [35] 93.86 96.47 21.53 2.32

1st Place [23] 92.70 94.19 21.29 3.10

Yang [34] 95.19 96.37 22.58 1.78

Suh [29] 94.75 97.36 21.78 1.73

Tensmeyer [32] 93.10 96.80 20.70 2.20

Ours 95.24 97.51 22.27 1.59

(c) H-DIBCO 2016

Methods FM p-FM PSNR DRD

Otsu [19] 86.59 89.92 17.79 5.58

Sauvola [27] 84.27 89.10 17.15 6.09

He [10] 91.19 95.74 19.51 3.02

Vo [33] 90.01 93.44 18.74 3.91

Zhao [35] 89.77 94.85 18.80 3.85

1st Place [24] 88.72 91.84 18.45 3.86

Guo [9] 88.51 90.46 18.42 4.13

Bera [2] 90.43 91.66 18.94 3.51

Yang [34] 90.41 94.70 19.00 3.34

Suh [29] 91.11 95.22 19.34 3.25

Ours 91.46 96.32 19.66 2.94

(d) DIBCO 2017

Methods FM p-FM PSNR DRD

Otsu [19] 77.73 77.89 13.85 15.54

Sauvola [27] 77.11 84.10 14.25 8.85

Jia [15] 85.66 88.30 16.40 7.67

Jemni [14] 89.80 89.95 17.45 4.03

Zhao [35] 90.73 92.58 17.83 3.58

1st Place [25] 91.04 92.86 18.28 3.40

Howe [12] 90.10 90.95 18.52 5.12

Bera [2] 83.38 89.43 15.45 6.71

Yang [34] 91.33 93.84 18.34 3.24

Suh [29] 90.95 94.65 18.40 2.93

Ours 90.95 93.79 18.57 2.94

from these four datasets, it is demonstrated that the images produced by our
proposed method exhibit greater similarity to the ground truth images, and
better binarization performance.

To compare the difference between images generated by the proposed method
and other methods, two images are selected as examples. Figure 5 and Fig. 6
illustrate the results using different methods. Evidently, the proposed method
preserves greater textual content while effectively eliminating shadows and noise
compared to other methods.
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Fig. 5. Examples of document image binarization for the input image PR16 of DIBCO
2013: (a) original input images, (b) the ground truth, (c) Otsu [19], (d) Niblack [18],
(e) Sauvola [27], (f) Vo [33], (g) He [10], (h) Zhao [35], (i) Suh [29], (j) Ours.

Fig. 6. Examples of document image binarization for the input image HW5 of DIBCO
2013: (a) original input images, (b) the ground truth, (c) Otsu [19], (d) Niblack [18],
(e) Sauvola [27], (f) Vo [33], (g) He [10], (h) Zhao [35], (i) Suh [29], (j) Ours.

5 Conclusion

To perform image binarization on color degraded documents, this work splits the
RGB three-channel input image into three single-channel images, and train the
adversarial network on each single-channel image, respectively. Moreover, this
work applies DWT on 224× 224 patches of single-channel image in the image
preprocessing stage to improve the model performance. We name the proposed
generative adversarial network as CCDWT-GAN, which achieves SOTA perfor-
mance on multiple benchmark datasets.

Acknowledgment. This work is supported by National Science and Technology
Council of Taiwan, under Grant Number: NSTC 112-2221-E-032-037-MY2.

References

1. Bartusiak, E.R., et al.: Splicing detection and localization in satellite imagery using
conditional GANs. In: 2019 IEEE Conference on Multimedia Information Process-
ing and Retrieval (MIPR), pp. 91–96. IEEE (2019)



CCDWT-GAN 197

2. Bera, S.K., Ghosh, S., Bhowmik, S., Sarkar, R., Nasipuri, M.: A non-parametric
binarization method based on ensemble of clustering algorithms. Multimed. Tools
Appl. 80(5), 7653–7673 (2021)

3. Bhunia, A.K., Bhunia, A.K., Sain, A., Roy, P.P.: Improving document binarization
via adversarial noise-texture augmentation. In: 2019 IEEE International Confer-
ence on Image Processing (ICIP), pp. 2721–2725. IEEE (2019)

4. De, R., Chakraborty, A., Sarkar, R.: Document image binarization using dual dis-
criminator generative adversarial networks. IEEE Signal Process. Lett. 27, 1090–
1094 (2020)

5. Deng, F., Wu, Z., Lu, Z., Brown, M.S.: Binarizationshop: a user-assisted software
suite for converting old documents to black-and-white. In: Proceedings of the 10th
Annual Joint Conference on Digital Libraries, pp. 255–258 (2010)

6. Gatos, B., Ntirogiannis, K., Pratikakis, I.: ICDAR 2009 document image binariza-
tion contest (DIBCO 2009). In: 2009 10th International Conference on Document
Analysis and Recognition, pp. 1375–1382. IEEE (2009)

7. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11),
139–144 (2020)

8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, vol. 30 (2017)

9. Guo, J., He, C., Zhang, X.: Nonlinear edge-preserving diffusion with adaptive
source for document images binarization. Appl. Math. Comput. 351, 8–22 (2019)

10. He, S., Schomaker, L.: DeepOtsu: document enhancement and binarization using
iterative deep learning. Pattern Recogn. 91, 379–390 (2019)

11. Hedjam, R., Cheriet, M.: Historical document image restoration using multispec-
tral imaging system. Pattern Recogn. 46(8), 2297–2312 (2013)

12. Howe, N.R.: Document binarization with automatic parameter tuning. Int. J. Doc.
Anal. Recognit. (IJDAR) 16, 247–258 (2013)

13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

14. Jemni, S.K., Souibgui, M.A., Kessentini, Y., Fornés, A.: Enhance to read better:
a multi-task adversarial network for handwritten document image enhancement.
Pattern Recogn. 123, 108370 (2022)

15. Jia, F., Shi, C., He, K., Wang, C., Xiao, B.: Degraded document image binarization
using structural symmetry of strokes. Pattern Recogn. 74, 225–240 (2018)

16. Kligler, N., Katz, S., Tal, A.: Document enhancement using visibility detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2374–2382 (2018)

17. Nafchi, H.Z., Ayatollahi, S.M., Moghaddam, R.F., Cheriet, M.: An efficient ground
truthing tool for binarization of historical manuscripts. In: 2013 12th International
Conference on Document Analysis and Recognition, pp. 807–811. IEEE (2013)

18. Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing
Company, Birkeroed (1985)

19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979)

20. Pratikakis, I., Gatos, B., Ntirogiannis, K.: H-DIBCO 2010-handwritten document
image binarization competition. In: 2010 12th International Conference on Fron-
tiers in Handwriting Recognition, pp. 727–732. IEEE (2010)



198 R.-Y. Ju et al.

21. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2011 document image bina-
rization contest (DIBCO 2011). In: 2011 International Conference on Document
Analysis and Recognition, pp. 1506–1510. IEEE (2011)

22. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICFHR 2012 competition on handwrit-
ten document image binarization (H-DIBCO 2012). In: 2012 International Confer-
ence on Frontiers in Handwriting Recognition, pp. 817–822. IEEE (2012)

23. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 document image binariza-
tion contest (DIBCO 2013). In: 2013 12th International Conference on Document
Analysis and Recognition, pp. 1471–1476. IEEE (2013)

24. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICFHR 2016 handwritten doc-
ument image binarization contest (H-DIBCO 2016). In: 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 619–623. IEEE
(2016)

25. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICDAR 2017 competition on
document image binarization (DIBCO 2017). In: 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1395–
1403. IEEE (2017)

26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28
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Abstract. Generating fluent and informative responses is crucial for
dialogue systems. Most existing studies introduce documents as addi-
tional document to improve dialogue generation performance. However,
understanding complex and multi-topic documents as well as extracting
useful information related to the dialogue context from them is challeng-
ing. To solve this problem, we propose a Coarse-to-Fine Response Gen-
eration (CFRG) model with an encoder-decoder for document-grounded
conversations,where the encoder is used to aware the themes of the dia-
logue context, and the decoder parse the semantics of replies. Specifically,
the CFRG extracts coarse-grained features guided by the response from
the context and documents and then uses them as input of decoder. It
further interacts with the current sequence in the cross-attention layer
to generate fine-grained features, on which a non-linear transformation
function is trained to map to a word space. The experimental results
on datasets CMU DoG and Wizard of WikiPedia show that our model
demonstrates superior performance compared to the majority of other
models and achieves the best or comparable results.

Keywords: Coarse-to-fine features · Document-driven dialogue ·
Encoder-Decoder · Knowledge integration

1 Introduction

Dialogue systems have gained increasing attention due to their important appli-
cations in Human-bot Interaction and promising market prospects, categorized
into task-oriented dialogue systems and open-domain chatbots. Task-oriented
dialog systems, also referred to as closed-domain or goal-driven dialogue systems,
are characterized by a clearly defined service object, such as booking airline tick-
ets and ordering food. Conversely, open-domain chatbots without a certain topic,
primarily fulfill more emotional and social needs. Depending on how they gen-
erate responses, traditional dialogue systems can be categorized into two types:
retrieval-based systems and generation-based systems. The former selects the
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most suitable one from a series of candidate responses to answer the needs of
users [11], while the latter directly generates responses based on the context.

The sequence-to-sequence (seq2seq) frameworks [14] using attention mecha-
nism have been widely used for generating dialogue responses. However, previous
research tends to generate generic and universal responses, such as “That’s fine”
and “Sorry, I don’t know”, due to the lack of background knowledge. Such bland
and uninformative responses do not meet the user’s needs. To overcome this chal-
lenge, recent literatures have attempted to introduce various types of background
knowledge, such as common sense [23], unstructured documents [19], and knowl-
edge graphs [18], to improve response quality. Due to the characteristics of the
data and storage, unstructured knowledge is easier to obtain than structured
knowledge, which largely relies on expert experience. Therefore, recent studies
have used dialogue-related documents as background knowledge to enhance con-
versations and generate more fluent and informative responses. However, most
of the current work focused on semantic parsing of the replies, but ignoring the
global perception of the replies, which affects the model’s ability to generate
responses consistent with the dialogue context.

Our work focuses on generating conversations based on documents, which is
a typical task in knowledge-based dialogue. Its goal is to use favorable informa-
tion extracted from unstructured documents to constrain the scope of responses.
Taking inspiration from the achievements of the transformer framework [16],
we propose a coarse-to-fine dialogue generation model with an encoder-decoder
based on the transformer for document-grounded dialogues. To be more precise,
the encoder extracts a coarse-grained feature representation of the response by
fitting the semantics of the response and the knowledge from the dialogue con-
text and the document in training; the decoder then refines the fine-grained
feature representation of each word in the response through interaction with
the extracted coarse-grained features and the dialogue context so that it can
be mapped to the word space. When reasoning, the encoder can independently
extract knowledge about the dialogue context and the document. Our model out-
performs existing state-of-the-art methods, as demonstrated by the evaluation
on various widely-used metrics. To summarize, our work can be characterized
by the following key contributions:

– We propose a encoder-decoder model that encodes valuable information from
conversational contexts and external documents through the semantic guid-
ance of responses, and then decodes word embeddings through the interaction
of valuable information and contexts.

– Our model produces coarse- and fine-grained response features, and with the
attention mechanism, it achieves feature interaction and decomposition.

– Experimental results on two publicly used datasets show that our model
demonstrates superior performance compared to the baselines on multiple
metrics.
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2 Related Work

The construction of generative models for dialogue response generation has seen
widespread use of Seq2Seq or encoder-decoder frameworks with sequential neural
networks. These frameworks commonly use recurrent neural networks (RNNs),
long short-term memory (LSTM), and gated recurrent units (GRUs) as ker-
nel units to map one sequential structure to another. Qin et al. [13] utilized
RNNs with memory networks as decoders to get meaningful response. Vinyals
and Quoc [17] conducted research on the capabilities of LSTM networks in gen-
erating sequential multi-turn dialogues, while Zhao et al. [21] exploited GRUs
as encoder to build the representation of the word sequence. However, above
sequential frameworks suffer from time-consuming training due to exploding or
vanishing gradients. Moreover, they struggle with resolving the issue of long-
distance textual semantic dependency, which can lead to information loss.

To address the problem described above, researchers utilized attention mech-
anisms [16] in neural networks. Such mechanisms have advantages over tradi-
tional sequential models in terms of parallel computing, capturing long-term
dependencies, not requiring sequence alignment. Cai et al. [2] developed a triple-
channel encoder that utilizes an attention mechanism to learn the representation
of dialogue context, documents, and the last utterance respectively, and then
integrates them. Xing et al. [20] proposed a combined approach that integrates
a discourse-level and a word-level attention network to extract components. All
of these approaches aim to emphasize the interdependence between contexts and
extract salient information for generating high-quality responses.

A variety of external knowledge resources have been introduced in the lit-
erature to expand the alternatives of information, mainly divided into struc-
tured triplets from knowledge graphs [18,23] and unstructured text from docu-
ments [1,8,19]. There were also some works [6,15] have explored the conversion
of unstructured documents into structured formats or the integration of triplets
and texts into graph representations. For example, Li et al. [6] identified the
internal semantic relationships among sentences in documents by constructing
document semantic graphs. However, they cannot avoid the problem of incom-
plete knowledge graphs or complex text processing. Li et al. [7] introduced a
novel approach that integrates various knowledge sources to create a unified
knowledge representation for knowledge-based dialogue generation tasks, which
not only preserves the rich potential knowledge in unstructured documents but
also utilizes the information expansion ability of structured knowledge graphs.
Incorporating external knowledge is a promising approach to eliminate the gap
between humans and chatbots in background information. To this, our work
focuses on document-grounded dialogue systems, which are a type of knowledge-
based systems that use pertinent information from unstructured text.

3 Methodology

In this study, we introduce a novel model based on transformer for document-
grounded conversations. The model architecture, as illustrated in Fig. 1, follows
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the encoder-decoder framework and consists of two main components: 1) a
coarse-grained feature extraction module that learns the semantic representation
of the dialog context and document and extracts coarse-grained feature related
the to response; 2) a fine-grained feature generation module that has an overall
perception of the content of the response under the guidance of coarse-grained
features and then produces fine-grained features of the next word interacting
with the decoded sequence at every decoding time step, resulting in a response.

3.1 Task Definition

Given 1) a dialog context U presented as a sequence of utterances, 2) the corre-
sponding document D that contains the information related to the conversation,
and 3) the grounded response R, the objective of our work is to simulate the
human communication process-the intention to express is generated first, then
the complete utterance is output-to generate an appropriate response utterance
G and let the conversation continue.

For convenience, we make the assumption that the document is a sequence
of lD tokens, denoted as D = {d1, d2, · · · , dlD}. A dialog context is viewed as
a series of utterances generally, the context encoder concatenates all utterances
as U = {u1, u2, · · · , ulU }, where ui is the i-th word in the sequence. And R =
{r1, r2, · · · , rlR} is a response in this conversation, where lR is the length of the
sequence. The CFRG accepts U and D as inputs, and generates a response G.

3.2 Coarse-Grained Feature Extraction Module

The coarse-grained feature extraction module consists of four components: a
context encoder (DE) to encode U , a concatenation encoder (CE) to encode the
concatenation of U and D, a response encoder (RE) encode the real response
R, and a compression layer to learn the mapping from U and D to R. Next, we
present the details of this module specifically.

Encoder. We adopt transformer block as the fundamental block of our encoder,
the output of DE is denoted as hu ∈ RlU×d, where lU represents the length of
sequence, and d represents the dimension of hidden state,

hu = DE(U). (1)

Similarly, CE encodes the concatenation of U and D to get a contextualized
representation of knowledge:

hc = CE([U ;D]), (2)

where hc ∈ R(lU+lD)×d. The representation of grounded response is hr ∈ RlR×d,

hr = RE(R). (3)

Given that responses are generated from the dialog context of a conversation
and knowledge documents, it is commonly assumed that they inherently contain
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Fig. 1. The framework of the coarse-to-fine response generation (CFRG) model. The
left is a coarse-grained feature encoder that matches the interlocutor’s intent. The
right is a fine-grained feature decoder that produces detailed responses as a result of
the interaction between learned intent and context.

information that is relevant to the response. Consequently, the representation hc

is regarded as a significant resource of the response.

Compression Layer. In order to efficiently extract the coarse-grained feature
of the response from the dialog context and the document, we use the grounded
response to guide this extraction process during the training phase. Specifically,
we obtain a simulated response vector hs by mapping hc to the semantic space
of hr through a convolution module:

hs = CNN(hc), (4)
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where the depth of the convolution kernel is the same as lU + lD, and there are
lR convolution kernels.

Then, we utilize a self-attentive layer to produce the utterance-level repre-
sentation of the simulated response vector and grounded response,

Vs = hs · softmax(bTs tanh(Wshs)), (5)

Vr = hr · softmax(bTr tanh(Wrhr)). (6)

Here, Ws, Wr, bs and br are learnable parameters.

Coarse-grained Feature Loss. In training, the CNN learns a compression
capability that creates the same feature vector from the combined represen-
tations of conversational context and document as the dimensionality of the
response representation, so that the concatenation encoder can capture the
coarse-grained feature of the grounded response, indicating the overall semantic
information that the response wants to express. When response information is
not available, this coarse-grained feature is then used in the response generation
process.

The training phase begins with hc, hr and randomly initiates parameters of
CNN to produce the initial hs for a given context and document. In each itera-
tion, we compare the grounded response feature Vr and the simulated response
feature Vs by applying an approximation loss function:

Lapprox = MSE(Vs, Vr), (7)

where MSE(·) is the Mean Squared Error function. The coarse-grained response
feature obtained act as the input of the decoder to prompt the interaction
between the generated words and the dialogue context, so as to generate fine-
grained feature of the next word in the response.

3.3 Fine-Grained Feature Generation Module

The fine-grained feature generation module is designed to generate responses
by taking into account the dialog context and the overall representation of the
response, as exemplified in the right-hand section of Fig. 1. Inspired by the cog-
nitive processes of humans in real-world scenarios, we design a decoder that
contains a multi-head attention-based hierarchical information interaction mech-
anism that acts within the dialogue context and decoded sequence under the
prompt of the coarse-grained response feature, to produce the fine-grained fea-
ture of the next word. The decoder aims to generate more accurate and contextu-
ally relevant responses by effectively incorporating different tiers of information.

Decoder. In the architecture illustrated in Fig. 1, the decoder consists of N
identical layers, with each layer containing four sub-layers. When generating t-
th response word wt, we have generated words w<t as input, and It−1 is the
representation of them. A masked self-attention is implemented as the first sub-
layer, employed by a multi-head attention function (MultiHead).

H
(n)
1 = MultiHead(H(n−1)

0 ,H
(n−1)
0 ,H

(n−1)
0 ), (8)
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where n = 1, ..., N , H(n−1)
0 represents the output from previous layer, and H

(0)
0 =

It−1. And a multi-head context attention is used as the second sub-layer:

H
(n)
2 = MultiHead(H(n)

1 , hu, hu), (9)

and a multi-head coarse-grained feature attention is the next sub-layer:

H
(n)
3 = MultiHead(H(n)

2 , hc, hc). (10)

The last sub-layer in the decoder a fully connected feed-forward network (FFN):

H
(n)
0 = FFN(H(n)

3 ). (11)

In addition, each sub-layer has an Add & Norm operation the same as trans-
former. After N layers, the probabilities of the words is obtained through soft-
max:

P (wt) = softmax(H(N)
0 ). (12)

Fine-grained Feature Loss. We adopt Negative Log Likelihood (NLL) as
optimization function to train the model:

Lfine =
lR∑

t=1

− logP (wt|w<t, U,D). (13)

Given a context U , a document D, and the previously generated terms(w<t),
Lfine maximises the probability of the currently predicted word. During train-
ing, P (wt|w<t, U,D) is replaced with P (rt|R<t, U,D), i.e., instead of using the
model’s output from previous steps as input, we utilize the ground truth response
as input.

Training. To create the final loss function, we assume that both loss functions
have equally significant effects on the results and sum them together:

L = Lcoarse + Lfine. (14)

4 Experiment

4.1 Dataset

Our model was assessed on two publicly available English document-based
datasets: Wizard of Wikipedia [4] and CMU DoG [22].

Wizard of Wikipedia (Wiz). Wiz is a dialogue generation dataset based on
Wikipedia. It consists of Wikipedia summaries reviewed by humans and real
human conversations. The dialogue specifies a Wikipedia topic, with two peo-
ple acting as the wizard and the apprentice. The apprentice can ask any ques-
tions about the topic, and the wizard answers the question based on the pro-
vided question-related information retrieved from Wikipedia. There are 22,311
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dialogues with 201,999 dialogue turns in Wiz dataset. These turns are divided
into a training dataset and two test datasets: a seen test set that covers topics
included in the training set, and an unseen test set that includes topics that may
not appears in the training set.

CMU DoG. The present dataset consists of a collection of movie-related docu-
ments and dialogues. The documents are known to encompass pertinent details
such as movie titles, ratings, descriptions, and other related information. On
average, each document consists of 200 words. The dataset contains 4,221 con-
versations in total, each of which on average 31.79 utterances are displayed.
Specifically, for training purposes, there are 72,922 utterances, while 3,626 utter-
ances are utilized for validation, and 11,577 utterances are used for testing.

4.2 Evaluation Metrics

Following prior work [12], we choose Rouge-L [9], BLEU [10], METEOR [3]
metrics and F1 as metrics.

BLEU is a metric used to measure the similarity between two sequences of
text, commonly used in machine translation tasks. In dialogue systems, BLEU
can also be applied to assess the generated responses by measuring the n-gram
overlap between the generated response and the reference response. BLEU-n cal-
culates the precision of n-grams (contiguous sequences of n words). METEOR is
a global evaluation metric in natural language processing, which combines simple
word importance (word frequency), word order and sentence length to quantify
the difference between model-generated and reference utterances. Rouge-L cal-
culates the length of the longest common subsequence between the generated
and the reference sentences, taking into account lexical choice and word order
to measure the similarity between the two. F1 indicates the single-group overlap
between the reference and generated utterances [12].

4.3 Baselines

We compared our approach against state-of-the-art approaches: Low-Res [21],
BART [5], CoDR [12], DoHA [12], and Tri-Channel [2].

Low-Res first learns separate parameters for encoding dialog context and
documents through pre-training. Then, a decoding manager is trained to take
the distributions of dialog context, document and decoded sequence as input
to generate next token. BART is a pre-trained model that concatenates dialog
context and all documents as a single sequence, and then take it as input to
generate response. Both CoDR and DoHA are models based on BART. CoDR
incorporates contextualized documents and dialogue context as the input of
the decoder. DoHA includes an extra multi-head cross-attention mechanism for
knowledge documents. Tri-Channel learns the distributed representations of doc-
ument, dialog context, and the last utterance via a triple-channel encoder. All
baseline results are derived from the original paper.
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4.4 Implementation Details

In our experiments, we utilize the base version of BART as the foundational
architecture for our model. The encoder and decoder both contain 12 stacks,
with 16 attention heads. For the embedding and hidden state dimensions, we
set them to 1024, while the inner size of the FFN is set to 2,048. To train the
model, we use a batch size of 16. Considering the size of the data, we trained the
model for 50 epochs on the CMU DoG dataset, using a learning rate of 5e−5.
Additionally, we trained the model for 25 epochs on the Wiz dataset, with a
learning rate of 2e−5. In our evaluation, we focused on presenting the results for
the top-performing models in each specific case.

4.5 Experimental Results

The evaluation results for our model and the baselines on the CMU DoG and Wiz
datasets are presented in Table 1 and 2, respectively. Upon analysis of the results,
our model exhibits superior performance compared to all the baselines. This find
indicates that our model is much better at identifying and incorporating relevant
background information, so as to generate responses that align more closely with
human responses.

Notably, on the dataset CMU DoG, we see that our model improves by 20.9
BLEU-4 points compared to Low-Res. Although both Low-Res and our model
use the representation of document and context as the input for encoder, our
model introduces a coarse-grained feature guidance to facilitate contextual con-
sistency and semantic relevance in fine-grained responses, enabling a more coher-
ent continuation of the conversation. Compared to the recent best performing
method Tri-Channel that takes the representations of document, dialog con-
text, and the last utterance as input for decoder, our method still possesses
overwhelming advantages. This is because the contribution of the guidance of
coarse-grained feature can to some extent compensate for semantic scarcity.

Although the dialogue task on the Wiz dataset is challenging, our model
still achieves a remarkable performance in terms of BLEU and METEOR scores.
What’s more, our model’s ability to perform consistently and strongly on the Wiz
unseen test data indicates that it is not only more adaptive but also has better
generalization capabilities. On both datasets, we also see a significant improve-
ment compared to the DoHA baseline (1.3 more BLEU-4 for CMU DoG), which
proves the effectiveness of the coarse-grained feature extraction module. Under
the guidance of real replies, the encoder can build a more accurate representation
of the content in document and dialogue context that is related to responses.

Table 4 presents a case from CMU DoG, illustrating that our model’s
response not only effectively remains coherent with the context but also incorpo-
rates additional information from the document, resulting in an expanded and
comprehensive response. CoDR generates a short sentence. Although DoHA gen-
erates more fluent response, but contained less information about the topic. Our
model achieves more relevant and informative response.
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Table 1. Automatic evaluation results on CMU DoG.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor F1

Low-Res 15.00 5.70 2.50 1.20 – – 10.7

BART 23.78 19.27 17.66 16.91 19.30 12.59 21.7

CoDR 26.86 22.75 21.30 20.68 20.41 14.47 22.7

DoHA 27.33 23.05 21.55 20.90 20.44 14.55 22.8

Tri-Channel 11.24 4.27 2.54 1.80 – 5.83 –

Ours 28.59 24.26 22.76 22.11 20.56 15.12 33.3

Table 2. Automatic evaluation results on Wizard of Wikipedia.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor F1

Test Seen

Low-Res 21.80 11.50 7.50 5.50 – – 18.0

BART 23.92 14.62 10.24 7.75 21.41 15.45 31.1

CoDR 24.00 14.98 10.64 8.18 21.82 15.71 31.8

DoHA 24.14 15.08 10.68 8.18 21.76 15.89 31.8

Ours 27.36 17.45 12.36 9.25 23.99 15.50 31.5

Test Unseen

Low-Res 20.70 10.10 6.20 4.30 – – 16.5

BART 21.88 12.54 8.44 6.23 19.14 14.03 28.2

CoDR 21.84 12.74 8.60 6.35 19.50 14.22 29.0

DoHA 22.31 13.04 8.89 6.60 19.62 14.47 29.0

Ours 26.08 16.32 11.32 8.36 23.17 14.90 30.0

4.6 Ablation Study

To verify the guiding effect of coarse-grained features on response generation,
we conducted ablation experiments specifically on the CMU DoG dataset. We
remove the coarse-grained feature extraction module and only input the con-
catenation of the dialogue context and document into the decoding process, and
we also explore the impact of the decoding order of coarse-grained features.
1) CFRG-0: the coarse-grained feature is removed, which ignores the guidance
of ground response(the same as the DoHA in fact).
2) CFRG-1: the coarse-grained feature attention is exchanged with the context
attention, which means that the guidance from the coarse-grained feature on
generating responses is conducted before the interaction with the dialog context.

The results in Table 3 show that the CFRG model outperforms the CFRG-
0 model (coarse-grained features extraction module is removec) in terms of all
metrics, which indicates the guidance of coarse-grained feature used in our model
is effective. In addition, it works best on the last layer. The reason is that the
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coarse-grained features could correct some mistakes due to misguided by the dia-
logue context. As we can see in Table 4, CFRG-0 and CFRG-1 generate natural
and coherent response, but fail to utilize information from the documents. And
the response generated by CFRG is more informative.

Table 3. Ablation study on CMU DoG.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Meteor F1

CFRG-0 27.33 23.05 21.55 20.90 20.44 14.55 22.8

CFRG-1 28.45 24.14 22.64 21.99 20.53 15.01 32.97

CFRG 28.59 24.26 22.76 22.11 20.56 15.12 33.32

Table 4. Case study.

Document

... La la land is a 2016 American musical romantic comedy-drama film written and
directed by Damien Chazelle. It stars Ryan Gosling as a jazz pianist and Emma
Stone as an aspiring actress, who meet and fall in love in Los Angeles ...

context u1: hello, we’re going to talk about la la land. Have you seen the
movie?

u2: no i haven’t, what can you tell me about it?

Reference it is an American movie. It is a musical comedy with some drama,
staring ryan gosling and emma stone. They meet and fall in love in
los angeles. He is a jazz piano player and she an aspiring actress.

CoDR are you still there? it’s a musical

DoHA well, i don’t know how you feel about romantic comedies i’m usually
not a huge fan but it seemed very genuine

CFRG-1 well, it is a musical comedy with some drama, i’m usually not a
huge fan but it seemed very genuine

CFRG well, i haven’t watched it either. But it seems very interesting! ryan
gosling plays a jazz pianist and emma stone is an aspiring actress.
They meet-up and fall in love!

5 Conclusion

In this work, we introduce a new neural model for document-grounded conver-
sations. The model achieves an overall representation of the response through a
coarse-grained feature extraction module. And then the coarse-grained feature
is utilized to optimize context coherence and knowledge relevance by emulating
the cognitive processes of real-world humans. Finally, we demonstrated that our
model can produce responses that are more logical, accessible, and informative,
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which is more conducive to human-computer interaction. The model’s multiple
encoders, however, result in a higher computing and storage resource require-
ment. In the future,we will work to achieve semantic parsing of multi-source data
through an encoder to improve the generalization and scalability of the model.
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Abstract. In recent years, the Text-to-SQL task has become a research
hotspot in semantic analysis. Among them, context-dependent Text-to-
SQL task has received more and more attention as it meets the needs
of actual scenarios. The core of the problem is how to use historical
interaction information and database schema to understand the con-
text. Most existing research ignores the structure of SQL queries and
introduces low-level information such as variable names and parameters,
and the mismatch problem between intents expressed in utterance and
the implementation details in SQL still exists. In this paper, SemQL is
applied to serve as an intermediate representation between utterance and
SQL, meanwhile, the Coarse-to-Fine neural architecture is adopted to
decompose decoding process of SemQL into two stages. We validated the
performance of our model on SParC and CoSQL datasets, which outper-
forms the existing ones and achieves excellent results on both datasets.

Keywords: Semantic Parsing · Text-to-SQL · Intermediate
Representation

1 Introduction

Semantic Parsing has always been a very basic and important research area,
which aims to give computers the ability to understand natural language and
translate it into a specified programming language. Currently, since a large
amount of data is stored in structured and semi-structured knowledge bases
(such as databases), the analysis and acquisition of such data requires interaction
with the database through programming languages such as SQL. How to enable
users without programming background to perform data analysis through natu-
ral language with zero threshold, the semantic parsing problem represented by
Text-to-SQL has attracted the attention of many scholars at home and abroad.

In the early stage of research, context-independent Text-to-SQL tasks rep-
resented by datasets such as GeoQuery [1], WikiSQL [2] and Spider [3] were
proposed. The setting of such datasets is that a natural language question cor-
responds to a SQL statement [4–8]. But in the case of complex queries, it is very
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difficult for people to describe the problem clearly in one sentence. People are
more inclined to use a series of questions to interact with the database, and the
model uses contextual information to gradually complete a complex query oper-
ation. Therefore, the context-dependent Text-to-SQL task that is more suitable
for practical application scenarios has attracted more attention. For this task,
two large datasets SParC [9] and CoSQL [10] are proposed.

However, the performance of existing research on SParC and CoSQL datasets
is not satisfactory. Because SQL statements are decoded as a text sequence in
most existing studies [11,12], they all ignore the semantic structure of SQL
statements. Reference [13] convert SQL statements into graphs through a non-
nested graph generation algorithm, which captures the semantic structure of
SQL statements but introduces low-level information(such as variable names
and parameters). Reference [14] think predicting detail through skeleton can
obtain more full meaning representations and improves performance tasks.

So, in this paper, to alleviate these problems, based on the IGSQL [12], the
SemQL intermediate representation is introduced to replace the SQL query, and
a Coarse-to-Fine framework is used to divide the decoder into skeleton decoder
and detail decoder two stages generate SemQL. Based on SemQL grammar rules
and encoder input, research first generates a rough sketch of SemQL, where low-
level information(such as variable names and arguments) is glossed over. Then,
research fills in missing details by taking into account the encoder input and the
sketch itself. Compared with previous SQL statements, SemQL can better reflect
the semantic structure of SQL statements, and generating SemQL in stages
can reduce the introduction of low-level information and better modeling the
context. Finally, experimental results on datasets show that our model improves
the question match accuracy and the interaction match accuracy. We also provide
a detailed analysis to further study the contribution of each component to the
overall framework.

2 Related Work

There are many studies on context-dependent Text-to-SQL. Reference [15–17]
shows that schema linking can improve parsing performance. Moreover, related
studies [6,18,19] propose graph-based linking methods to reason over the natural
language question tokens and database schema entities, and to model complex
inputs.

Context-dependent Text-to-SQL needs to model the context in the dialogue,
and the model needs to use contextual historical information to accurately gen-
erate corresponding SQL statements. EditSQL [11] uses two independent Bi-
LSTMs to encode natural language questions and table schemas respectively, and
utilizes contextual information by editing previously predicted SQL to improve
the quality of SQL generation. In maintaining semantic consistency, especially
database semantic consistency, IGSQL [12] proposed a database schema inter-
action graph encoder, which utilizes the information of database schema items
in previous turn. Reference [13] proposed an interactive modeling mechanism to
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encode and integrate different types of texts (questions, SQL, and database),
which represents different types of texts as separate graphs, captures the inter-
action information between graphs by using heterogeneous graph aggregation,
and finally aggregates the graphs into a holistic representation.

For the decoding stage of context-dependent Text-to-SQL tasks, most exist-
ing studies [11–13] use LSTM decoders with attention mechanisms to generate
SQL queries. Among them, EditSQL proposes a method based on query editing.
When generating the current turn of SQL statements, it copies and reuses the
previous turn of SQL statements, and outputs the probability distribution.

3 Methodology

3.1 Problem Setup

In context-dependent semantic parsing tasks, the current natural language ques-
tion needs to be combined with previous interaction information and database
schema. Let I = [(Ui, Si)]

n
i=1 is n question-query pairs in a dialogue. Let U

as questions, S as SQL query. Let D = [T1, T2, . . . , Tt] denote the tables of a
database, where t is the number of tables, and each Tt contains multiple col-
umn names, which denote as T = [C1, C2, . . . , Cm], m represents the number
of column names in the table. The goal of the task is to generate the correct
SQL statement Si from the current natural language question Ui, the interaction
history I = [(Ui−1, Si−1)]

n
i=1 and database schema item D.

3.2 Intermediate Representation

Fig. 1. An example of SemQL and SQL query.

SemQL is introduced as an intermediate representation between U and S,
which can solve the mismatch problem between them. Figure 1 shows a SemQL
example for a SQL query. Among them, the red blocks represent the skeleton
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structure of SemQL, obtained by removing all nodes under each A node. Com-
pared with the original SQL statement, SemQL omits aliases, omits the ON
clause, omits the FROM clause, and retains the semantic structure of SQL.

The red dotted frame in the Fig. 1 shows the SemQL grammar rules. Based
on the grammar rules, conversion and reasoning between SQL and SemQL can
be realized. Taking the Filter node as an example, the Filter node is uniformly
used in the grammar rules to replace the WHERE and HAVING clauses in the
SQL query.

3.3 Model

The model in this paper adopts the encoder-decoder framework with attention
mechanism and uses SemQL intermediate representation instead of SQL state-
ment. Figure 2 shows the overall structure of the model, with blocks of the same
color sharing the same set of parameters. The model is divided into the fol-
lowing three parts: (1) Utterance Encoder, Database Schema Interaction Graph
Encoder, and SemQL Encoder. (2) A Co-attention module for updating the
encoder output and an interactive encoder for recording the dialogue state. (3)
A SemQL decoder applying specific grammar rules to generate a SemQL inter-
mediate representation. Finally, based on SemQL, the final SQL statement can
be deduced and generated. In addition, to improve the accuracy of the model,
the study also uses the BERT and Coarse-to-Fine neural network, each part will
be introduced in the following chapters.

Fig. 2. An overview of the neural model.
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BERT Embedding. BERT [20] is a pre-trained language representation model,
which has been applied in multiple Text-to-SQL tasks, and has been significantly
improved. It is currently the most widely used natural language processing algo-
rithm. In this model, BERT needs to be used to encode natural language ques-
tions and database schema to enhance the contextual representation of question
vectors and database schema vectors. Specifically, the research puts the special
token [CLS] at the beginning of the sequence, and uses the [SEP] token to sep-
arate the question and the database schema [21], where the database schema is
denoted by table and column names, the representation form is table.column.
Finally, the sequence is fed into the pre-trained BERT model.

Encoder. The research needs to encode three types of text information to
model context information, namely question interaction information, database
interaction information, and historical SemQL information, which correspond to
the following three encoders respectively.

Utterance Encoder. The research uses a BiLSTM to encode tokens of an question
text with BERT embedding. Since in the current turn of dialogue, the user may
omit the information mentioned in the previous turn, the research adds another
LSTM as an interactive encoder and uses hI to save the dialogue state during
the entire dialogue process. Specifically, the calculation process of the i-th round
dialogue state hi

I is as follows.

hi
I = LSTMI

(
fhi, hi−1

I

)
(1)

where fhi is obtained by concatenating the hidden state of the last time step
of the i turn utterance encoder, which contains the question information of the
current turn. The final representation of the t-th token in utterance i is denoted
as hi

t. hi
t contains the forward information and backward information of this

sentence and the dialogue information of the previous turn.

Database Schema Interaction Graph Encoder. Like utterance encoders, database
encoder also needs to leverage database information from previous dialogue turns
to maintain task context consistency. Therefore, this paper employs an Inter-
action graph encoder based on database schema graphs to model the contex-
tual consistency of databases by using historical schema representations. The
database schema interactive graph encoder consists of L1 cross-turn schema
interaction graph layer and L2 intra-turn schema graph layer (L1 and L2 are
hyperparameters). The cross-turn schema interaction graph layer updates the
schema item of the current turn by using the schema item representation of the
previous turn, and the intra-turn schema graph layer aims to further aggregate
the adjacent schema item representations in the same turn. Details here can be
found in [12]. In the i turn, the final output of the m-th database node is gi,L2

m .
SemQL Encoder. Since user inquiries are usually a series of related questions,
the SemQL generated by the current turn has a large overlap with the previous
turn. Based on this, the study optimizes the current SemQL decoding process
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by introducing the encoding information of SemQL generated in the previous
turn. The SemQL structure is shown in Fig. 1. Specifically, this paper needs to
encode the SemQL intermediate representation generated by the previous turn
of decoding in the i turn of dialogue. pis represents the encoding information of
the node s in the i turn. For any node s in SemQL, its encoding information pis
can be calculated by LSTM from the encoding information pis−1 of its previous
node and the grammar rule identification xi

s of the current node. The grammar
rules are shown in Fig. 1, and the calculation formula is as follows.

pis = LSTM
(
pis−1, x

i
s

)
(2)

Co-Attention Module. To capture the relationship among three different
encodings, we also add a co-attention module. The specific implementation pro-
cess of natural language question vector and database vector is shown in Fig. 3.
Similarly, question vectors and historical SemQL vectors, database vectors and
historical SemQL vectors can also be calculated to obtain mutual representa-
tions between pairs. The database vectors, natural language question vectors,
and historical SemQL vectors used by the final decoder are splicing of vectors
after co-attention among the three. Expressed as g̃i,L2

m , h̃i
t, p̃

i
s after BiLSTM.

Fig. 3. Co-attention module.

Decoder. Taking SemQL in Fig. 1 as an example, Fig. 4 describes the specific
process of generating SemQL by the Coarse-to-Fine neural network. The skeleton
decoder and the detail decoder are responsible for generating skeleton nodes and
leaf nodes respectively, and use the same encoder input.

This paper formalizes the probability of generating SemQL as the following
formula.

p(SemQL | U,D, S) = p(skeleton | U,D, S)p(SemQL | U,D, S, skeleton) (3)

Among them, U , D, S respectively represent the natural language ques-
tion vector, database vector, and historical SemQL vector input by the encoder.
The decomposed probability formulas correspond to the two action types
of ApplyRule[r] and GenToken[v] respectively. Among them, ApplyRule[r] is
responsible for applying the grammar rules r to the current derivation tree of
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Fig. 4. Coarse-to-Fine decoding process.

SemQL, corresponding to the skeleton nodes in SemQL. The grammar rules
are shown in the Fig. 1. GenToken[v] is responsible for selecting tables and
columns from the database schema, corresponding to the leaf nodes in SemQL.
The detailed probability calculation process is shown in the following formula,
and the training goal is to maximize the log-likelihood of the generated action
sequence.

p(skeleton | U,D, S) =
Tskeleton∏

k=1

p (ak = ApplyRule [r] | U,D, S, a<k) (4)

p(SemQL | U,D, S, skeleton)

=
Tskeleton∏

k=1

p (ak = Gentoken [v] | U,D, S, skeleton, a<k)
(5)

The following formula is the specific implementation of the skeleton decoder
based on the LSTM model.

sk = LSTM ([ek−1; s̃k−1; pk;nk] , sk−1) (6)

where [;] denotes vector concatenation. sk is the hidden layer state of the decoder
at step k. ek−1 represents the encoding of the grammar rules of the previous node,
and the study maintains a corresponding embedding vector for each grammar
rule. pk is the vector representation of the parent node, which is coded and
concatenated by its hidden layer vector and the corresponding grammar rule. nk

is the encoding of the current node type.

s̃k = tanh
(
WB

[
cutterancek ; ccolumn

k ; csemql
k ; sk

])
(7)

In order to allow the decoder to pay attention to different information in the
three input vectors during decoding, the research uses the attention mechanism
to obtain the context vector representation. cutterancek is the attention of the
previous turn of hidden state and text encoding, ccolumn

k is the attention of the
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previous turn of hidden state and database encoding, csemql
k is the attention of

the previous turn of hidden state and previous turn of SemQL.
Then, using the hidden layer state s̃k output in step k, the probability of

generating the ApplyRule[r] action can be calculated, the calculation process is
as follows.

p (ak = ApplyRule [r] | U,D, S, a<k) = softmax(eTr WC s̃k) (8)

Among them, ak is the action at step k, and a<k means a0, a1, a2, . . . , ak this
series of actions. e is the encoding of the grammar rule r. Similarly, the detail
decoder selects the encoding of database schema items and grammar rules as
input, generates column names and table names and corresponding aggregation
operations to populate the leaf nodes in the skeleton.

4 Experiments

4.1 DataSet and Metrics

The study conducts experiments on two large scale cross-domain context-
dependent SQL generation datasets, SParC and CoSQL. The statistical data
of the dataset is shown in Table 1.

Table 1. Statistics of SParC, CoSQL.

Cross-

Domain

Interaction Train Dev Test User

Ques-

tions

Databases Tables Vocab Avg Turn

SParC � 4298 3034 422 842 12726 200 1020 3794 3.0

CoSQL � 3007 2164 292 551 15598 200 1020 9585 5.2

We follow the evaluation metrics in reference [9] to measure the model, ques-
tion match accuracy and interaction match accuracy.

4.2 Baseline Models

EditSQL. EditSQL uses a query editing mechanism. When the SQL statement
of the current turn is generated, the SQL statement of the previous turn is
reused at the same time. The research also uses an interactive encoding of text,
database schema and historical information to better extract features.

IGSQL. Building on EditSQL leverages a database schema interaction graph
encoder to model the contextual consistency of interactions.
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4.3 Implementation Details

In terms of experimental settings, the model uses the Adam optimizer [22] to
optimize the cross-entropy loss function. The hidden layer dimension of LSTM
is 300 and the dimension is fixed, the dimension of action embedding is 128, the
dimension of node type embedding is 64, and the batch size is 16. For BERT
embedding, following IGSQL, the study uses the pre-trained BERT base model.
The initial learning rate of the experimental model is 0.001. If the validation
set loss of the current turn has increased compared with the validation set loss
of the previous turn, the learning rate is multiplied by 0.8 to decay. The initial
learning rate of the BERT model is 0.00001.

4.4 Experiment Results

Table 2 shows the results of model on the SParC and CoSQL datasets. Compared
to state-of-the-art model IGSQL, our model achieves substantial improvement on
question match accuracy by 0.7 points on SparC development sets and 1.3 points
on CoSQL development sets, respectively. As for interaction match accuracy,
our model improves by 0.4 points on SParC development sets and 0.7 points on
CoSQL development sets.

Table 2. Results of models in SParC and CoSQL datasets.

Model Sparc CoSQL

Question

Match

Interaction

Match

Question Match Interaction

Match

EditSQL+BERT 47.2 29.5 39.9 12.3

IGSQL+BERT 50.7 32.5 44.1 15.8

Ours+BERT 51.4 32.9 45.4 16.5

To explore the model’s ability to generate SQL queries, Fig. 5(Right) shows
the performance split by hardness levels with the frequency of examples. The
abscissa corresponds to the four difficulty levels, which are easy, medium, hard,
and extra hard. It can be seen that the accuracy of the model decreases as the
difficulty of SQL increases. But compared with the benchmark model IGSQL, the
model in this paper has the highest improvement in predicting hard SQL queries,
an increase of 1.1%, reaching a question matching accuracy of 40.1%. Moreover,
it also has a certain improvement in predicting the other three difficulty SQLs.
Similarly, Fig. 5(left) shows the performance split by turns on the dev set. The
question matching accuracy of the model in this paper is always higher than
that of the baseline model in all dialogue turns, which reflects the effectiveness
of the model in contextual dialogue.
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Fig. 5. Performance split by different turns (Left) and hardness levels (Right) on SParC
dev set.

4.5 Ablation Study

To verify the validity of various parts of experiments, the study performed several
ablation experiments: w/o Coarse-to-Fine, w/o Co-attention. The w/o represen-
tations in the experiments were removed or replaced with parts of the baseline
model. Table 3 shows the results of ablation experiments. These results show
that each component of the model is effective and indispensable.

Table 3. Ablation study on development sets.

Model Sparc CoSQL

Question
Match

Interaction
Match

Question
Match

Interaction
Match

Ours 51.4 32.9 45.4 16.5

w/o Coarse-to-Fine 50.1(−1.3) 32.3(−0.6) 43.7(−1.7) 15.4(−1.1)

w/o Co-attention 49.1(−2.3) 29.4(−3.5) 42.1(−3.3) 13.8(−2.7)

w/o Coarse-to-Fine. In this ablation experiment setting, the model does not
generate SemQL in two stages. The experimental results in Table 3 show that the
use of the Coarse-to-Fine neural network can model semantics in a fine-grained
manner without being affected by leaf nodes while learning SemQL structural
information.

w/o Co-attention. In this ablation experiment setting, the model does not
model the relationship between the three sequences. The experimental results
in Table 3 show that using co-attention can lead to better parsing performance,
which is helpful for cross-domain generalization and complex SQL generation .
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5 Conclusion

In this paper, we propose a context-dependent Text-to-SQL parser based on the
Coarse-to-Fine neural architecture and use SemQL middleware instead of SQL
statements. Good results have been obtained on the SParC and CoSQL datasets.
Experimental results show that Coarse-to-Fine can learn SemQL structural infor-
mation without being affected by leaf nodes. SemQL also can better reflect the
internal structure of SQL statements and infer the correct SQL statements. In
the future, we will continue to follow up on context modeling to improve model
performance.
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dation of China (No.61962039) and Inner Mongolia Natural Science Foundation
(No.2019MS06032).
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Abstract. This study investigates the task of Multi-span Question
Answering (MSQA). Currently, the MSQA task is primarily modeled
as a sequence tagging problem, predicting whether each word is a part of
an answer. However, this approach independently predicts words with-
out fully utilizing a comprehensive understanding of the complexities
in MSQA. In this paper, we propose a novel model, Contrastive Span
Selector. Our model utilizes a multi-head biaffine attention mechanism
to generate the span representations and employs a CNN block for span-
wise interaction. Additionally, we incorporate the question and a global
token into the encoding process, projecting all vectors into a shared repre-
sentation space. To train our model, we employ contrastive learning with
a dynamic threshold to control the similarity boundary between answer
spans and non-answer spans. Our model outperforms the tagger model
by 6.32 in F1 score for exact match on the MultiSpanQA multi-span set-
ting and 5.69 on the expand setting, establishing it as the state-of-the-art
model for MSQA. The code is available at: https://github.com/phzh24/
Contrastive-Span-Selector.

Keywords: Extractive Question Answering · Multi-span Question
Answering · Contrastive Learning

1 Introduction

Machine reading comprehension, which involves answering question based on a
given context, has made significant strides in recent years. More challenging vari-
ants of the task have been proposed, one of which has recently gained attention
is multi-span question answering (MSQA) [1,4,7]. Unlike traditional question
answering task that only allows a single span as the answer [11,12], MSQA task
requires extracting multiple spans from the context, making it more practical
and commonly encountered.

Recent research has made notable progress in addressing the challenge of
MSQA. The current state-of-the-art model [15] casts MSQA as a sequence tag-
ging task, predicting for each context word whether it is a constituent of answer-
ing spans, which is straightforward yet effective. To further enhance the perfor-
mance, multi-task module, such as answer structure predictor and span adjust-
ment module, has been introduced [7] to capture better global information. These
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 225–236, 2024.
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extensions improve the performance of the sequence tagging model and establish
it as a robust baseline for MSQA.

However, the sequence tagging framework still has limitations. Firstly, in this
framework, individual words are predicted separately, which makes it challenging
to capture the associations between words and the dependencies among answer
spans. Secondly, the sequence tagging models fall short of capturing comprehen-
sive interaction between the question and context. It exclusively relies on self-
attention mechanism in Transformer-based model [2,8], which are inadequate for
handling the complexity of MSQA. These limitations make the sequence tagging
models sub-optimal for the MSQA task.

To address these limitations, we propose Contrastive Span Selector (CSS),
which conducts span-level prediction, performs span-wise interaction and uti-
lizes contrastive learning to model the relationships between the question and
candidate spans. For one thing, we utilize multi-head biaffine attention [3,16]
to enumerate all candidate spans, allowing us to make predictions at span level
rather than word level. Meanwhile, we observe the spatial correlations of candi-
date spans and employ Convolutional Neural Network (CNN) to conduct span-
wise interaction. Furthermore, we use pre-trained language model like BERT [2]
to encode the question and a global token. We utilize contrastive learning to
pull the answer span vectors close to the question vector and push non-answer
span vectors far away. In addition, the vector of the global token is used as a
dynamic threshold [18] to control the boundary of answer and non-answer vec-
tors. Our model outperforms the current SOTA model [7] by 6.32 and 5.69 on
exact match F1 score on two public MSQA dataset settings [7], demonstrating
its effectiveness.

In summary, the main contributions of this work are as follows:

– Our proposed model, CSS, makes span-level prediction with span-wise inter-
action to improve the capture of dependencies among answer spans. This
approach is more appropriate than word-level sequence tagging models for
the MSQA task.

– We propose utilizing a contrastive learning approach to enhance span repre-
sentations and a dynamic threshold-based strategy to automatically control
the boundary of answer representations.

– The CSS significantly outperforms current methods, establishing itself as the
new state-of-the-art MSQA approach.

2 Related Work

2.1 Tagger Model in MSQA

In many tasks of natural language processing, it is often necessary to extract
a varying number of spans from an input text. This is often formulated as a
sequence tagging problem, as demonstrated in previous work [13]. The work in
[15] introduced the use of a tagger schema for MSQA and employed the widely
used BIO tagging scheme [6,14]. As shown in Fig. 1, the tags B and I denote
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Fig. 1. The comparison between span enumeration method and word tagging method.
Span enumeration method regards a span as a whole, while word tagging method
predicts each word individually.

the first word and subsequent words within the spans, while the tag O indicates
that the word is not within the span. However, the sequence tagging model
individually predicts whether each context word is part of the answers without
effectively leveraging global information.

To overcome this limitation, the work in [7] combines the tagger model with
several additional components to refine the predicted spans. Specifically, this
approach performs average pooling over the words in the predicted spans from
the tagger model to obtain fixed-length span representations. These span repre-
sentations are then concatenated with a global [CLS] token and fed into the span
encoder to produce another global vector. This global vector is used to predict
the answer structure and the number of spans to adjust, thereby refining the
predicted spans from the tagger model. This approach effectively enhances the
performance of the tagger model by incorporating global information obtained
from the initial predicted spans into the span adjustment process.

However, we argue that solely abstracting global information from the initial
span predictions and a global token may not provide a comprehensive model for
capturing the dependencies among answer spans.

2.2 Span-Based Method in Other Extractive Task

The extractive tasks like information extraction and named entity recognition
(NER) are often accomplished through span level methods. This involves the enu-
meration of all possible spans and their classification into various entity types.
The approach naturally resolves the nested-entity issue in NER tasks. [17] enu-
merates all spans by the start and end position and then use a biaffine model
to predict the probability of each entity type. [16] argues that previous span-
based NER methods ignore spatial relations in the score matrix of spans, and
proposes using Convolutional Neural Network to model these spatial relations.
In [18], the authors propose a bi-encoder framework that leverages contrastive
learning to project text spans and entity types into a common representation
space. Additionally, they introduce a novel dynamic threshold loss to effectively
discriminate entity spans from non-entity ones.
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3 Methodology

3.1 Task Definition

The MSQA task comprises a question Q = q1, q2, ..., qm, and a context C =
c1, c2, ..., cn, where m and n denote the lengths of the question and the context
respectively. The task aims to identify all answer spans s1, s2, ..., st within the
context that are non-overlapping and non-duplicated, where t denotes the total
number of answer spans contained in the context.

3.2 Model Overview

Fig. 2. The architecture of our proposed CSS model. The symbol ⊕ denotes element-
wise addition. We only drew partial words and vectors for simplicity.

Our model is inspired by the named entity recognition models in [16,18]. Our
model employs a contextual encoder to create the word representations of the
question and context. Afterward, the representations are fed into a multi-head
biaffine attention network to generate candidate span representations. Next,
we utilize a stack of CNN blocks to perform span-wise interaction. Finally, we
project the vectors of the question, candidate spans, and a dynamic threshold
into a shared space through contrastive learning. Figure 2 shows an overview of
the proposed architecture.
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Word Representation. First, we employ a pre-trained language model (PLM),
such as BERT [2] or RoBERTa [8], as the contextual encoder to obtain token
representations for the question, context, and the prepended token [CLS]. Then,
we apply max pooling to the tokens associated with each word, resulting in
word-level representations for all words:

H = TokenPooling(Encoder([CLS]Q[SEP]C[SEP])) (1)

Here, H = [h[CLS];Hq;Hc] = [h[CLS];hq1 ,hq2 , ...,hqm ;hc1 ,hc2 , ...,hcn ] repre-
sents the contextual word representation of all input words, including a global
token [CLS]. Special token [SEP] separates the question and context. The func-
tion TokenPooling(·) performs the max pooling operation over the tokenized
word embeddings to derive a fixed-size vector representation for each word in
the question and context. The vectors h[CLS],hq,hc ∈ R

d1 , where d1 represents
the hidden size of the encoder.

Span Representation. We employ two separate Feed Forward Neural Net-
works (FFNNs) to the word representations of context to create different repre-
sentation for the start and end of a span, which enable the system to learn to
identify the start and end independently [17].

xsi
= FFNNs(hci) (2)

xej
= FFNNe(hcj ) (3)

where xsi
,xej

∈ R
d2 are position embeddings containing the start, end infor-

mation of a span, i and j are indices, d2 is the dimensionality of position repre-
sentation of spans, FFNN is consist of a affine transformation and an activation
function.

The representations of candidate spans are generated by multi-head biaffine
attention [3,16].

R1(i, j) = Multihead(xsi
,xej

) + (xsi
⊕ xej

)�W + b (4)

where R1(i, j) ∈ Rd3 is the representation of the span from i-th word to j-th
word of context, d3 is the dimensionality of the span representations, ⊕ indicates
the vector concatenation, W ∈ R

2d2×d3 , b ∈ R
d3 is the bias. Multihead(·) is the

multi-head biaffine attention transformation, in detail as:

x(1)
si

,x(2)
si

, ...,x(K)
si

= Split(xsi
) (5)

x(1)
ej

,x(2)
ej

, ...,x(K)
ej

= Split(xej
) (6)

head(k) = x(k)
si

�
U(k)x(k)

ej
(7)

Multihead(xsi
,xej

) = head(1) ⊕ head(2) ⊕ ... ⊕ head(K) (8)

where Split(·) equally splits the position vectors, K is the number of heads,
U(k) ∈ R

dh×rh×dh is the k-th head 3D transformation tensor, dh ×K = d2, rh ×
K = d3, Multihead(xsi

,xej
) indicates the multi-head part of biaffine attention.
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Instead of directly obtaining the candidate span representations through the
second part of Eq. (4), we utilize biaffine attention over the position embeddings
to derive these representations. This is because biaffine attention can capu-
tre more comprehensive information [3]. We will empirically demonstrate this
advantage in Sect. 4.3. The multi-head version of biaffine attention is employed
to leverage multiple aspects of information while reducing the number of param-
eters.

Span-Wise Interaction. Equation (4) generates the representation of a span
only from the word ci to the wordcj . Although the position embeddings obtain
certain information from PLM encoding, they are weak for the complexity of the
MSQA task. We apply 2D CNN block to conduct the span-wise interaction [16]
as follows:

R2 = Conv2d(CNNBlock(R1)×N ) (9)
CNNBlock(x) := Activation(LayerNorm(x + Conv2d(x))) (10)

Here, Conv2d represents a 2D CNN, LayerNorm denotes layer normalization
performed along the feature dimension, and Activation means a non-linearity
activation function. We stack CNN block N times, the output of the former
block is the input of the next. The output of the final CNN block is sent to an
additional 2D CNN, then we derive the contextualized span representations that
capture the interactions among spans. For the input of Conv2d, we mask the
invalid spans (in which the start index is greater than the end index) with 0.

As Fig. 2, the representations of all enumerated spans after biaffine attention
array as a 2D grid. The spans, whose corresponding grid points close to each
other, may have a close relationship. For a span, the spans close to it, around
to it, or even from a long distance with it may contain critical information and
decide whether the span is one of the answers. Considering this nature, we apply
2D CNN to conduct the span-wise interaction. A CNN layer only facilitates
interaction within a small grid distance. In the case of a 3 × 3 kernel size CNN,
the central span only interacts with its surrounding spans at a distance of 1. By
stacking multiple such CNN blocks, we can conduct multi-level and long-distance
span-wise interactions. We show the effectiveness of this module empirically at
Sect. 4.3.

3.3 Contrastive Learning for MSQA

We calculate the probability of a candidate span as one of the answers by the
similarity of the span with the question. Meanwhile, we utilize the similarity of
the global [CLS] with the question as the dynamic threshold.



CSS: Contrastive Span Selector for Multi-span Question Answering 231

Final Representations. First, we get the final representations of spans by
adding the outputs of multi-head biaffine attention and span-wise interaction
module.

R = R1 + R2 (11)

where R ∈ R
n×n×b3 , and R(i, j) represents the final feature vector of the span

from ci to cj .
We utilize the representations of the question words to obtain the overall

question representation:

q = FFNNq(WordPooling(Hq)) (12)

Here, WordPooling performs the max pooling operation over the word repre-
sentations, and FFNNq refers to the feed-forward neural network with the same
structure as described in Eq. (2), except for the dimensionality. The resulting
representation q is a vector in R

d3 .
The [CLS] reads the entire input text and summarizes the contextual infor-

mation, which makes it a good choice to estimate the similarity boundary to
separate answer spans from non-answer spans. Similar to the question represen-
tation, we employ an FFNN to project the vector into the same dimension space
of spans:

vt = FFNN[CLS](h[CLS]) (13)

Contrastive Learning Objective. Given the representations of the ques-
tion, spans, and dynamic threshold discussed above, we combine two contrastive
learning objectives to train our model. The similarity is calculated using scaled
dot product: sim(q, v) = q ·v

τ , where the scaling factor τ is learnable, and v
represents the vector of spans and dynamic threshold.

In the span-based objective, our goal is to ensure the similarities of answer
spans (considered as positive samples) with the question are higher than these of
non-answer spans (considered as negative samples) and the dynamic threshold.
To achieve this, we adopt the InfoNCE loss [10] tailed for span-based objective
[18] to fit the MSQA task. The span-based objective can be defined as follow:

lspan = − 1
|P|

∑

i∈P

log
esim(spani,q)

esim(spani,q) +
∑

j∈N∪{vt} esim(spanj ,q)
(14)

Here, P represents the collection of answer spans, N represents the collection of
non-answer spans, and vt is the vector controlling the dynamic threshold.

The span-based objective does not guarantee the similarities of non-answer
spans with the question are lower than the dynamic threshold. To address this,
we employ a similar loss function to learn a appropriate dynamic threshold [18]:

lthreshold = − log
esim(vt,q)

∑
j∈N∪{vt} esim(spanj ,q)

(15)
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Combining the span-base objective and dynamic threshold objective encour-
ages the modeling dynamic threshold to discriminate answer spans and non-
answer spans properly. Our overall learning objective given by:

L = βlspan + (1 − β)lthreshold (16)

Here, β is a hyperparameter that controls the trade-off between the two objec-
tives. By optimizing this combined loss function, our model learns to generate
high similarities for answer spans while ensuring non-answer spans are assigned
lower than the dynamic threshold.

4 Experiments

4.1 Experiments Settings

Datasets. MultiSpanQA [7] dataset focuses on questions that require answer
composed of multiple spans. We evaluate our method in two different settings
of the dataset: multi-span and expand. MultiSpanQA multi-span setting
consists of over 6,000 questions with answers involving multiple spans of context.
The span count in the setting ranges from 2 to 21. Approximately 80% of the
instances have 2 or 3 spans, while only about 1% of instances contain over 9
spans. MultiSpanQA expand setting extends the multi-span setting with
both unanswerable questions and questions with single answer. It contains over
19,000 examples.

Baselines. Despite the commonality of MSQA task, there has yet to be a pub-
lished span-based method. Therefore, we evaluate our CSS Model by comparing
it with the start-of-the-art MSQA models, Taggervanilla and Taggermulti−task.
Taggervanilla [7,15] casts MSQA as a sequence tagging task, predicting for each
word whether it is a part of an answer, which is straightforward. Building on
this, Taggermulti-task [7] enhances the model with multi-task modules to cap-
ture global information. We implement the both models based on BERTbase [2]
and RoBERTabase [8] following the experimental setting of [7].

Evaluation Metrics. Following [7], we use exact match (EM) and partial
match (PM) as the evaluation metrics. EM assigns a score of 1.0 when a pre-
diction perfectly matches one of the ground-truth answers. On the other hand,
PM calculates the level of overlap between a prediction and the ground-truth
answer, with higher overlap resulting in a higher score. Both metrics rely on
micro-averaged precision (P), recall (R), and F1 score (F1). All the experimen-
tal results reported are percentages.

Hyper-parameter Settings. We utilize BERTbase and RoBERTabase as the
encoders of our proposed method. The training is performed with a batch size
of 16 for 8 epochs. We employ AdamW [9] as the optimizer with a learning rate
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of 4e-5. The learning rate undergoes warmup with a ratio of 0.1, followed by
linear decay. A dropout probability of 0.2 is applied to all layers. The number of
heads of multi-head biaffine attention is 12. The number of CNN block is 5. The
kernel size of 2D CNN is 3 × 3. β is set to 0.5. We utilize GELU activation [5].
The model is evaluated at the end of each epoch during training, and the best-
performing version is selected. The random seed is set to 2023. All experiments
are conducted using two 24 GB Nvidia RTX 4090 GPUs.

4.2 Main Results

Table 1. Performance comparison between the baselines and CSS on the blind test
datasets of two benchmark datasets. * means our implementation following the exper-
imental setting of [7]. The best performance is in bold.

Method MultiSpanQA multi-span MultiSpanQA expand

Exact Match Partial Match Exact Match Partial Match

P R F1 P R F1 P R F1 P R F1

BERTbase as encoder

Taggervanilla* 51.52 62.34 56.42 75.80 75.16 75.48 53.77 60.35 56.87 71.2 70.53 70.87

Taggermulti−task* 55.72 58.07 56.87 76.17 71.25 73.63 57.48 58.40 57.94 74.04 68.30 71.06

CSS (our work) 63.90 62.50 63.19 77.52 74.60 76.04 65.64 61.74 63.63 75.15 69.71 72.33

RoBERTabase as encoder

Taggervanilla* 60.40 69.34 64.56 78.92 82.63 80.73 62.83 64.95 63.87 77.52 74.57 76.02

Taggermulti−task* 62.88 63.62 63.25 81.04 76.85 78.89 62.15 63.75 62.94 76.75 73.71 75.20

CSS (our work) 69.76 68.27 69.01 83.03 78.37 80.63 71.07 63.94 67.32 80.37 71.73 75.81

As shown in Table 1, our proposed model achieves state-of-the-art perfor-
mance in the two dataset settings. Specifically, our model consistently achieves
better results than baselines across almost all evaluation metrics for both multi-
span setting and expand setting, as well as for both PLMs.

In the multi-span setting, where all questions have multiple answering
spans, our model outperforms the baseline models on both PLMs. When using
BERTbase as encoder, our model outperforms Taggervanilla and Taggermulti−task

by 6.77 and 6.32 on the F1 score of exact match, and by 0.56 and 2.41 on F1
score of partial match, respectively. When using RoBERTabase as encoder, our
model outperforms Taggervanilla and Taggermulti−task by 4.45 and 5.76 on the
F1 score of exact match and achieves comparable performance to Taggervanilla
on the F1 score of partial match while outperforming Taggermulti−task by 1.74.
These significant improvements demonstrate the effectiveness of our model in
solving the MSQA task. Moreover, our model outperforms the baseline mod-
els in the expand setting, showing that our model performs well not only in
multi-span questions, but also in single-span and unanswerable questions.
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4.3 Ablation Study

We conduct ablations to demonstrate the effectiveness of multi-head biaffine
attention module, the span-wise interaction module and contrastive learning
training in our model. Because the test dataset is blind, we conduct all ablation
experiments on validation dataset of the MultiSpanQA multi-span setting.

Table 2. Evaluation results of the ablations on the validation dataset of multi-span
setting. * is conducted following the setting of [7]. The best performance is in blod.

EM F1 PM F1

CSS (our work) 69.06 79.53

w/o multi-head biaffine 66.83 78.76

w/o span-wise interaction 59.95 68.83

w/o contrastive learning 64.06 75.39

Taggervanilla* 58.89 78.16

Taggermulti−task* 56.59 73.69

The ablation experiments are organized as follows:

– w/o multi-head biaffine attention. We remove the multihead part of the
Eq. (4).

– w/o span-wise interaction. We remove the span-wise interaction module and
use the outputs of multi-head biaffine attention as the final span representa-
tions.

– w/o contrastive learning loss. We remove contrastive learning training and
dynamic threshold. We follow the span-based method [16] for NER and use
linear projection to map the final span representations to logits, followed
by a sigmoid function to obtain the probability that each span is one of
the answer spans. During training, we used binary cross-entropy (BCE) loss.
In the inference phase, we defined a span as part of answers if it have a
probability greater than 0.5.

The second line of Table 2 demonstrates the effectiveness of the multi-head
biaffine attention of our model. When removing it, the performance of our model
drops by 2.23 on EM F1 and 0.77 on PM F1. This proves that multi-head
biaffine attention can caputre more abundant information than only using affine
transformation.

The third line of Table 2 shows that our model drops by 9.11 on EM F1 score
and 10.7 on PM F1 score when removing the span-wise interaction module.
This marked decline illustrates the effectiveness of the span-wise interaction
module, indicating that the dependencies among answer spans are crucial. It
also highlights the natural shortcomings of sequence tagging models in capturing
these relationships, making them suboptimal for MSQA task.
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When replacing contrastive learning with BCE loss, the performance of
our model drops by a margin of 5.00 on EM F1 score and 4.14 on PM F1
score. The considerable performance drop shows the effectiveness of contrastive
learning training. With contrastive learning and dynamic threshold, our pro-
posed model conducts comprehensive interaction between question and candi-
date spans, which is also essential to the MSQA task.

Comparing the third row of Table 2 with the last two rows, we observe that
without span-wise interaction modules: 1) our model outperforms the baseline
models on EM F1 score, which indicates our span level biaffine model is more
suitable for MSQA task than word level sequence tagging model; 2) our model
performs worse on PM F1 score, which we conjecture is due to the use of con-
trastive learning. Specifically, the exact answer spans are treated as positive sam-
ples, while the spans with partial overlap with the ground truth are treated as
negative samples. Therefore, our model is optimized for predicting exact answer
spans and could be ineffective at predicting spans with partial matches.

5 Conclusion and Future Work

In this paper, we propose CSS, a novel Contrastive Span Selector model con-
ducting span-level prediction in the MSQA task. We conduct experiments on
two dataset settings and the results demonstrate our proposed model achieves
state-of-the-art performance. However, the training process of CSS is more time-
consuming than word-level prediction models because it involves using a stack of
CNN blocks. Furthermore, while the contrastive training objective works well for
exact match, it negatively impacts the performance for partial match scenarios.
This is because it considers spans with partial overlap with the ground truth as
negatives. In the future, our focus will be on improving efficiency and optimizing
span prediction under contrastive learning.
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Abstract. This paper proposes a new image caption generative model
for Memes called GUMI-AE. Meme denotes a humorous short sentence
suitable for the given image in this paper. An Image caption generative
model usually consists of an image encoder and a sentence decoder. Fur-
thermore, most conventional models use a pre-trained neural network
model for the image encoder, e.g., ResNet152 trained using ImageNet.
However, pre-trained ResNet152 may not be effective as an encoder for
extracting features from arbitrary images. Because the training sam-
ples for the meme generative model can be obtained from the website
“Bokete” (in Japanese) which is a website that provides a system for peo-
ple to post images and humorous short sentences associated with these
images. Images posted on Bokete include a wide variety of images such as
illustrations and text-only images which may be outside of the training
images of ImageNet. This paper proposes an image caption generative
model incorporating AutoEncoder (AE) as the image encoder. AE can
be trained with the training samples obtained from Bokete without the
image annotation. This enables the proposed method to generate short
sentences with humor for memes. Finally, the proposed model is com-
pared with the conventional one, and the evaluation of the proposed
GUMI-AE will be discussed.

Keywords: Image caption generative model · Meme · Neural
Networks · AutoEncoder

1 Introduction

In recent years, due to the rapid development of a generative model, it has been
applied in various fields, and a wide variety of studies have been conducted. Some
significant studies on generative models include Generative Adversarial Network
[1], Generative Pre-trained Transformer (GPT) [2] and Meme generator using
the image caption generative model [3] is attracted in this field. A meme is one
of the cybercultures spreading and attracting attention worldwide, especially
on social networking services (SNS), for entertainment and communication in
a society where the internet has become very widespread [4]. They are images
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Fig. 1. Some meme examples generated by proposed GUMI-AE.

and videos with jokes or humorous short sentences and are meme is usually
created by pasting short sentences onto an image or video. Some meme examples
for images are shown in Fig. 1. These memes are generated by the proposed
GUMI-AE. The data flow of the image caption generative model is shown in
Fig. 2. As Fig. 2 shows, an image caption generative model usually consists of an
image encoder and a sentence decoder. In the image caption generative model,
an image is given as input to the image encoder and converted into a feature
represented by a vector. The feature is input to a sentence decoder. The sentence
decoder uses its feature vector to generate words in time series to construct
a sentence. In many research and implementation, a pre-trained model, e.g.
ResNet152 [5] or Inception-v3 [6], trained using ImageNet [7], is used as the
image encoder [3,8,9]. ImageNet is a large dataset consisting of photographs of
animals, vehicles, etc. Models pre-trained on this data are expected to have high
feature extraction capability for common images. As an approach to generate
memes by AI, English-based [8] and Japanese-based Neural Joking Machine
(NJM) [9] have been proposed. In [8], to generate memes for images, Inception-
V3 [6] which was pre-trained on ImageNet [7] is used as the image encoder for
the image caption generative model to generate memes for images. In addition,
as training data, [image,meme] pairs obtained from “Memegenerator.net” [10],
which is a website allowing users to post memes are used.

On the other hand, NJM [9] is a study on generating Japanese Memes
called “Ohgiri” by using the image caption generative model with pre-
trained ResNet152 [5] as the image encoder. The training dataset consists of
[image,Ohgiri] pairs obtained from “Bokete” [11], which is a website allowing
users to post Ohgiri for images. Although the model implemented by this research
is able to generate Memes for some images, it sometimes generates mistakes such
as memes with unsuitable words for some images. This problem is caused by the
fact that the pre-trained ResNet152 is not effective in extracting image features
as the image encoder of the image caption generative model for memes. Because
the training samples for the meme generative model obtain a wide variety of
images from the website, such as illustration and text-only images, and these
images may be outside of the images of ImageNet.
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Fig. 2. The data flow of image caption generative model.

In this study, a new image caption generative model for memes, GUMI-AE,
in which AutoEncoder (AE) [12] is used as an image encoder instead of pre-
trained models to extract features suitable for the image is proposed. The AE is
trained by the images obtained from Bokete. This means that the trained AE is
suitable for extracting image features compared with the pre-trained ResNet152.
The sentence decoder of GUMI-AE is composed of Long-Short Term Memory
(LSTM) [13], commonly used in image caption generative models [3,8,9]. As a
result, GUMI-AE increases the degree of flexibility of the model structure, which
allows models to be built according to the computational resources available.
Finally, the image caption generative model using ResNet152 used in NJM [9]
implemented, and both of the results from GUMI-AE and NJM are compared
with the proposed method. A questionnaire evaluates the sense of humor of each
output meme of both of the models.

2 GUMI-AE: Generative Model of Suitable Meme
Sentences for Images Using AutoEncoder

In this section, the proposed model of GUMI-AE is introduced.

2.1 Image Caption Generative Model

In an image caption generative model, an image encoder such as Convolutional
Neural Network (CNN) [14] transforms an input image into its feature as a vec-
tor. The feature is used as the conditions for the generation of sentences by the
sentence decoder. The structure of the image caption generative model is shown
in Fig. 3, where I and wt denote an input image and the t − th word of the
sentence, respectively. The input image of I is converted into the feature that
is typically constructed by a vector. The word wt is transformed into embed-
ding the vector and processed by Recurrent Neural Network (RNN) [15] such as
LSTM [13]. The RNN’s internal state rt at the time step t is also input and pro-
cessed considering the time series. Both outputs of the image encoder and RNN
are combined and fed into the dense layer. The number of units in this dense
layer corresponds to the vocabulary of the image caption generative model, and
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Fig. 3. The structure of the image caption generative model.

the output of this layer is converted into a probability distribution via the Soft-
max function. From the probability distribution produced by the image caption
generative model, the (t + 1) − th word of the sentence is either the word with
the maximum value or the word selected by the roulette selection, randomly
picking a word based on a probability distribution. This procedure is recursively
repeated until the token signifying the end of the sentence is selected.

2.2 AutoEncoder

AutoEncoder (AE) is proficient in feature extraction and dimensionality reduc-
tion of input data. It consists of an encoder and a decoder and is trained with
the objective of (1) reconstructing the input data.

min
pe,pd

E(X, decoder(encoder(X))), (1)

where pe, pd, and E denote the parameters of the encoder and the decoder and
an arbitrary error function such as the mean square error (MSE) respectively,
and X is the input to the AE, and encoder(X) and decoder(X) were the outputs
of the encoder and decoder, respectively. Thus, data annotations are not required
during the training of AE since the parameters are trained so that the input and
the teacher signal of AE are the same. The encoder and decoder can be defined
using arbitrary structures, such as CNN [14] for images and RNN [15] for texts.

2.3 GUMI-AE

Conventional image caption generative models generating memes for images [8,9]
typically used a pre-trained image recognition model as the images encoder.
However, if this pre-trained model failed to extract image features effectively
during the sentence decoder training, it might not generate suitable humorous
sentences for the images. One solution to this problem is to retrain the image
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encoder using the images for the memes, but this approach requires annotations
of the images, which many datasets do not have. For example, Bokete [11] images
used in the conventional model of NJM [9] have no annotations. It is difficult and
time-consuming for humans to annotate such datasets. To deal with this problem,
this research proposes a new image caption generative model as GUMI-AE that
uses the encoder of the AutoEncoder trained with the images of meme dataset
in advance as the image encoder of the image caption generative model.

The training procedure and structure of the proposed model are shown in
Fig. 4 and Algorithm 1. Steps 1 through 5 in algorithm 1 train AutoEncoder,
and this additional step is different from [8] and [9]. Steps 6 through 12 train the
image caption generative model as in [8] and [9]. In Fig. 4, the AutoEncoder (AE)
is initially trained using images from the dataset. Then, the image caption gen-
erative model uses images and sentences from the same dataset. In this process,
images are converted into features by passing them through the encoder of the
pre-trained AutoEncoder. During the image caption generative model training,
the parameters of the pre-trained encoder of AE are frozen and not retrained,
thus reducing the number of parameters used and improving training efficiency.
In contrast to conventional image caption generative models that use pre-trained
models [8,9], the image encoder in the proposed GUMI-AE is trained using the
images of the dataset.

Fig. 4. The model structure of the proposed GUMI-AE.
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Algorithm 1. Training procedure of proposed GUMI-AE
Require: images of meme dataset : I = {I1, I2, ..., IN}, sentences meme dataset :

S = {S1,S2, ...,SN}, parameters of encoder : we, parameters of decoder : wd,
parameters of LSTM : wl, parameters of dense layer : wf , AutoEncoder training
epoch : ka, image caption model training epoch : kb, loss function: E

1: for i = 1 to ka do
2: z = encoderwe,i(I)

3: Î = decoderwd,i(z)

4: update we,i,wd,i to minimize E(I, Î)
5: end for
6: for i = 1 to kb do
7: z = encoderwe(I)
8: y, ri = lstmwl,i(S, ri−1)
9: x = Concatenate(z,y)

10: p = densewf,i(x)
11: update wl,i,wf,i to minimize E(S,p)
12: end for

3 Experimental Results

This section demonstrates the result of the memes for the images generated by
GUMI-AE compared with the conventional model of NJM [9]. In addition, the
details of the training dataset required to generate the memes, the evaluation
of the reproducibility of the images by AutoEncoder, and the interestingness of
the generated memes will be discussed.

3.1 Dataset for Training

Training an image caption generative model to generate memes for images
requires a dataset in which images are paired with memes. However, no such
dataset currently exists in the available open datasets. In this study, follow-
ing the approach of [9] to create our dataset by scraping the Bokete [11] website
which collects images of Japanese memes. The collected dataset consists of 69,365
images with 552,613 Japanese memes. These images were obtained starting with
the earliest images posted on the Bokete. There are multiple memes per image.
As a preprocessing step, special characters such as “!” and “?” from datasets
were removed, and eliminated memes containing words that appear less than
five times across the entire dataset. The number of memes suitable to a given
image varied depending on the image.

3.2 Training of AutoEncoder

This section details the training process of AutoEncoder (AE) for the image
encoder of the proposed image caption generative model. The architecture of the
encoder of AE used here consists of six convolution layers and one dense layer,
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Fig. 5. The construction of AutoEncoder.

Table 1. The training result of AutoEncoder

input output input output

whose output dimension is 16,384, and the decoder consists of one dense layer
and six deconvolution layers. The detailed encoder and decoder construction
is shown in Fig. 5. The red, orange, and blue lines indicate convolution, fully
connected, and deconvolution. For each convolution and deconvolution layer,
the kernel size is 3× 3 and the stride is 2. The output of the decoder’s output
layer is input to the sigmoid function, and the outputs of all other layers are
input to the LeakyReLU function. During AE training, each pixel of images is a
normalized value ranging from 0 to 1. The MSE was set as the loss function and
Adam (η = 0.001, β1 = 0.999, β2 = 0.9) [16] as the optimizer. The mini-batch
size is 32, and the maximum training iterations is 150. Table 1 shows the training
results of the AE. The input images in Table 1 were not used during training. The
training results suggest that the implemented AE can adequately reconstruct the
input image. This indicates that the AE encoder effectively extracts the image
features.
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3.3 Training of Meme Generator

To investigate the effectiveness of the proposed method GUMI-AE, two models
are implemented to generate memes for images. The first model is the conven-
tional NJM [9], which uses ResNet152 pre-trained on ImageNet [5,7,9] as the
image encoder, and the second is the proposed GUMI-AE. In this experiment,
NJM and GUMI-AE are trained on the same dataset introduced in Subsect. 3.1.
The structures of sentence decoders in both models are 1,024 LSTM units, 2
total dense layers, 2,048 hidden layer units, and 48,480 output layer units, respec-
tively. The loss function is categorical cross-entropy, and the optimizer is Adam
(η = 0.001, β1 = 0.999, β2 = 0.9) [16]. The mini-batch size was set to 2,048 and
the maximum number of training epochs was set to 100. The input images are
standardized to a resolution of 224 pixels each in height and width because of
the input size of the pre-trained ResNet152.

The results are shown in Figs. 6 and 7 which show the training loss per epoch
and the training accuracy per epoch, respectively. In both figures, the proposed
model GUMI-AE is drawn in red and the conventional model NJM is drawn in
blue. These figures show that the proposed method has low training loss and high
training accuracy. Therefore, it is concluded that GUMI-AE has better model
performance. Since the two image caption generative models differ only in the
image encoder and have the same network structure. The proposed structure
namely, using AutoEncoder as a sentence decoder is suitable for the training
performance of the image caption generative model.
Next, four sample memes generated by GUMI-AE and NJM and their input
images are shown in Table 2. These images are not used in the training process.
Each meme word is chosen by the roulette selection, which randomly selects a
word according to a probability distribution output by an image caption gener-
ative model. This allows multiple sentences to be generated for a single image.
Table 2(a) is the result of the illustration of Japanese Kabuki input. For this
image, GUMI-AE generates the meme “Where’s Wally”. This meme is thought

Fig. 6. Train loss per epochs. Fig. 7. Train accuracy per epochs.
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Fig. 8. The questionnaire results.

to be generated because the character in the illustration is similar in color scheme
to the character in the picture book “Where’s Wally?”. It also can be seen that
the Meme generated by NJM contains words that have no possible relevance to
the image, such as “pot” and “tadpole”. Table 2(b) is the result of the illustration
of the baby wearing only the diaper input, and GUMI-AE generates the meme
“Your zipper is open” for this image. Commenting “Your zipper is open” on the
baby’s diaper can cause a kind of misunderstanding or confusion since diapers
usually do not have zippers. This creates a humorous surprise, an unexpected
reversal, and a laugh. Contrary to this, the meme generated by NJM contains the
unrelated word “sea”. These two results show that GUMI-AE is able to extract
features from illustration images more accurately than NJM. Table 2(c) is the
result of inputting the photo of the woman. NJM fails to generate a meme that
contains words that are relevant to the image, despite GUMI-AE generating
a meme containing the word “Mam” and related words. This may be due to
the fact that NJM’s feature extractor is not highly accurate. Table 2(d) is the
result of inputting the image contained in ImageNet. In response to the image
of a starfish posing on land, GUMI-AE generates the sentence “Perform one last
gag,” which is a funny meme as it shows that the starfish is no longer able to
move after being on land. NJM generated the meme “Captured jellyfish,” which
is also funny because it mistakes a starfish for a jellyfish. From these results, the
proposed model GUMI-AE can generate more suitable memes for an image than
NJM because of its higher learning accuracy, but it is considered that NJM can
also generate suitable memes for the same image that has been pre-trained.

3.4 Evaluation of Humorous

Next, evaluating the proposed and conventional methods concerning humor abil-
ity is discussed. Unfortunately, at the present stage, it is impossible to automat-
ically assess the humor ability of the generated memes. Therefore, in this study,



246 R. Yamatomi et al.

Table 2. The memes generated by GUMI-AE and NJM.

as in the conventional NJM [9] method, the humor ability of the sentences is eval-
uated by a questionnaire. The number of responding questionnaires was 509. As
the target of the questionnaire, the sentences created by humans and uploaded
in Bokete [11], and the sentences generated by the proposed method GUMI-AE,
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NJM [9], and image caption generative model which uses a pre-trained model
trained with STAIR caption dataset [17], the conventional research used [9]. As a
questionnaire environment, one input image and one meme of each method were
randomly selected and were shown on BoT which was created on one of the most
particular SNS in Japan named LINE [18]. Respondents were allowed to look
at the displayed image and meme and comment on them in four levels: “funny”,
“not bad”, “bad” and “boring”. Note that respondents only know whether the
memes relative to the images are funny or not. The results of the questionnaire
survey are shown in Fig. 8. In Fig. 8, the vertical axis is a four-level rating, and
the horizontal axis is the percentage of responses. In the graph, red indicates the
proposed method GUMI-AE, blue indicates NJM, green indicates caption AI,
and orange indicates human. In this paper, the results “funny” and “not bad” are
considered positive responses, and the items “bad” and “boring” are considered
negative responses. Figure 8 shows that the caption AI trained on the STAIR
Caption dataset receives more negative responses than the AI trained on the
dataset combining images and memes. On the other hand, the proposed method
GUMI-AE receives a 6% higher positive evaluation than the conventional method
NJM. This is likely due to the higher suitability of the image encoder of the image
caption generative model of the proposed method and the more accurate train-
ing of image captioning with the images in the training dataset. Comparing the
proposed method GUMI-AE with humans, the percentage of positive responses
to human memes is higher. One of the reasons for this result can be attributed
to the fact that the proposed method uses roulette selection to select words from
the probability distribution generated by the model, which sometimes results in
the selection of inappropriate words. Therefore, it can be concluded that the
proposed method GUMI-AE, even though it is inferior to the humor of human
memes, is more accurate than the conventional model using pre-trained mod-
els for the image encoder of image caption generative model, and can generate
memes that are appropriate for the images.

4 Conclusion

This paper proposed a new model, GUMI-AE, which uses the encoder of the
AutoEncoder as the image encoder of the image caption generative model to
generate memes appropriate for the Japanese meme “Ohgiri” for the images.
Conventionally, an image caption generative model with pre-trained models as
the image encoder has been used as an AI to generate memes for images. How-
ever, when using the pre-trained model, if there is domain divergence between
the images for pre-training and the images for image caption training, the fea-
ture of the input image is not correctly extracted, and the meme suitable for the
image cannot be created. To deal with this problem, a new model GUMI-AE,
which uses the encoder of the AutoEncoder instead of pre-trained models was
proposed in this paper. Experimental results show that the proposed model has
higher learning accuracy than the conventional model and successfully generates
memes suitable for images. In addition, since the encoder of AutoEncoder is
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used, the network structure can be freely configured, which has the advantage
of matching the computational resources.

In future research, we will implement a generator using advanced networks
such as Gated Recurrent Unit and Transformer to generate memes with higher
accuracy and investigate the impact of the questionnaire on the results by taking
into account the age and gender of the participants.
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Abstract. As machine learning technology continues to advance
rapidly, an increasing number of researchers are utilizing it in the field
of malware detection. Despite the fact that learning-based malware
detection systems (LB-MDS) outperform traditional feature-based detec-
tion methods in terms of both performance and detection speed, recent
research has shown that they are susceptible to attacks from adversar-
ial examples. However, the adversarial examples generated thus far have
only been effective against individual LB-MDS and have not been able
to simultaneously attack multiple LB-MDS.

In this paper, we propose a black-box adversarial attack framework
called Multi-Target Malware Generation (MTMG), which leverages rein-
forcement learning to simultaneously attack multiple LB-MDS. MTMG
selects the obfuscation method and its corresponding parameters from
the action space based on the observed state of the malware, and then
applies them to generate adversarial examples that deceive multiple LB-
MDS. Our results indicate that when simultaneously attacking multiple
LB-MDS, including EMBER, MalConv, and six commercial antivirus
software, MTMG significantly outperforms the state-of-the-art (SOTA)
works, achieving an impressive attack success rate over 82%, while the
SOTA works achieve a success rate of less than 6%.

Keywords: malware detection · black-box attack · reinforcement
learning

1 Introduction

With the rapid advancement of machine learning, learning-based malware detec-
tion systems (LB-MDS) has demonstrated superiority in terms of both detec-
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tion speed and accuracy compared to traditional feature-based detection meth-
ods [5,12]. Notably, even mainstream commercial antivirus solutions are now
integrating machine learning into their malware detection processes [1,14]. How-
ever, it is well-known that machine learning algorithms are susceptible to adver-
sarial attacks [4,6]. Numerous studies [9,13] have provided evidence that LB-
MDS is also vulnerable to adversarial examples. For instance, MalFox [17]
employs adversarial generative networks (GANs) to generate adversarial exam-
ples by applying packing techniques to malwares.

Fig. 1. We utilize the obfuscation techniques, Overlay Append and Section Rename, to
obfuscate malware. These two methods are employed with distinct parameters, lead-
ing to the creation of adversarial examples AE1 and AE2, respectively. Notably, AE2
possesses the ability to mislead the LB-MDS into classifying the malware as a benign
program, whereas AE1 does not achieve this feat.

However, current adversarial attacks on LB-MDS are specifically tailored to
individual systems and do not possess the capability to target multiple LB-MDS
simultaneously. Drawing parallels to the domain of image-based multi-target
adversarial example generation [7,10], crafting adversarial examples that can
compromise multiple LB-MDS carries two major implications: 1) Compared to
the adversarial efforts where a separate model needs to be trained for each target,
training a singular model that can attack multiple targets simultaneously can
save the resources required to train additional models. 2) In military scenarios,
adversarial examples need to overcome multiple adversaries to be triumphant,
necessitating the ability to simultaneously attack various LB-MDS.

Through the analysis of existing LB-MDS adversarial works [4,6,13,17], we
have identified two primary limitations. Firstly, the obfuscation methods used in
these attacks are incapable of modifying all the features of the malware. Secondly,
existing approaches primarily concentrate on selecting obfuscation methods and
neglect the significance of obfuscation method parameters. As depicted in Fig. 1,
even when applying the same obfuscation method to a malware sample, different
parameter settings can result in distinct outcomes.

In this paper, we introduce a reinforcement learning-based adversarial attack
framework named Multi-Target Malware Generation (MTMG). It selects the
action, including both the obfuscation method and its corresponding parame-
ters, based on the malware’s state. MTMG generates adversarial examples capa-
ble of simultaneously attacking multiple black-box LB-MDS. When designing
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the action space, we meticulously considered the impact of each action on the
malware’s features, as depicted in Table 1 and Table 2. We ensured that by com-
bining actions, the entire set of features of the malware can be altered. Unlike
previous approaches [4,6,17] that primarily concentrate on obfuscation methods,
MTMG distinguishes itself by considering both the obfuscation method and its
parameters when selecting actions.

We conducted a comprehensive evaluation of MTMG’s performance by tar-
geting state-of-the-art (SOTA) LB-MDS, including EMBER [5], MalConv [12],
and six commercial antivirus softwares, anonymously represented as AV1-
AV6. The experimental results demonstrate that MTMG outperforms SOTA
approaches in attacking both single LB-MDS and multiple LB-MDS systems.
When targeting a single LB-MDS, MTMG achieves an attack success rate of
over 90%. When simultaneously attacking multiple LB-MDS systems, MTMG
achieves an impressive attack success rate over 82%. This paper makes the fol-
lowing contributions:

– This paper emphasizes the importance of the parameters associated with
obfuscation methods in generating adversarial examples. It demonstrates that
different parameter settings can result in distinct outcomes, even when uti-
lizing the same obfuscation method.

– We propose MTMG, a framework that generates effective adversarial exam-
ples targeting multiple LB-MDS simultaneously by continuously selecting and
applying optimal obfuscation methods and parameters based on the mal-
ware’s state.

– We have demonstrated the effectiveness of MTMG in attacking LB-MDS.
When attacking a single LB-MDS as well as simultaneously attacking multiple
LB-MDS, MTMG achieves higher attack success rates compared to SOTA
approaches.

2 Related Work

Existing black-box attacks on LB-MDS can be broadly classified into two cate-
gories: attacks based on adversarial instructions and attacks based on obfuscation
actions.
Attacks Based on Adversarial Instructions. Attacks based on adversarial
instructions [8,16] involve the insertion of carefully crafted instructions into mal-
ware. These adversarial instructions manipulate the malware in a way that LB-
MDS misclassify the modified malware as benign. For instance, DeepMal achieves
this by strategically inserting NOP instructions into the malicious code, ensur-
ing that the malicious functionality remains intact while deceiving LB-MDS.

However, it is worth noting that this category of attacks is typically designed
to target a single LB-MDS and lacks the ability to generate adversarial examples
capable of simultaneously attacking multiple LB-MDS.
Attacks Based on Obfuscation Actions. Attacks based on obfuscation
actions aim to deceive LB-MDS by applying obfuscation techniques to malware.
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These methods, as described in the works by MAB and MalFox [13,17], dynam-
ically select appropriate obfuscation techniques based on the varying states of
malware, allowing the malware to be misidentified as benign by LB-MDS. For
instance, MalFox employs various packing and obfuscation techniques, leveraging
adversarial generative networks (GANs) to select different obfuscation methods
and their combinations for malware based on its specific state.

While these methods have demonstrated that LB-MDS can still be vulnerable
to adversarial examples, the generated adversarial examples are only effective
against a single LB-MDS and cannot simultaneously attack multiple LB-MDS.
Generating adversarial examples capable of attacking multiple LB-MDS remains
a challenging task.

3 Design and Implementation

3.1 MTMG Overview

Fig. 2. The framework of MTMG.

To empower MTMG in the selection of the most suitable action (obfuscation
method and the corresponding parameters) for malware, we employ a reinforce-
ment learning (RL) algorithm [15]. The RL algorithm learns by interacting with
the environment (LB-MDS 1 to LB-MDS N) and strives to maximize a cumula-
tive reward signal. Within the framework of MTMG, the RL Agent assumes the
role of a decision-maker, consistently monitoring the state of the malware and
making action choices according to its policy.

The framework comprises three essential components: the Agent, Binary
Rewriter, and LB-MDS, as illustrated in Fig. 2. When presented with a mal-
ware sample, the Agent chooses an action for the malware. Subsequently, the
Binary Rewriter generates a modified version of the malware by applying the
selected obfuscation method and its associated parameters. The detector con-
sists of multiple LB-MDS capable of detecting malware, and it produces a tuple
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< PLB−MDS1 , PLB−MDS2 , ..., PLB−MDSN
>, where PLB−MDSN

represents the
detection outcome of the Nth LB-MDS, indicating whether the software is clas-
sified as benign or malicious.

When designing MTMG, we primarily consider the following questions:

– Q1) How to design the action space of the MTMG to enable its actions to
modify all the features of a binary file?

– Q2) How to design the reward function of MTMG to generate adversarial
examples that can effectively counter multiple LB-MDS?

3.2 Q1’s Solution

When constructing the action space, as depicted in Table 1, MTMG incorporates
binary-level obfuscation and packing obfuscation as its utilized obfuscation meth-
ods. Each obfuscation category encompasses multiple distinct obfuscation tech-
niques, each of which comes with its own set of parameters. TakingOverlayAppend
as an example, this obfuscation method involves selecting content of a specified size
(specified by the “Overlay Size” parameter) from a specific file (specified by the
“Overlay File” parameter) and inserting it into the binary at the file offset (spec-
ified by the “Overlay Offset” parameter). The range of values for the “Overlay
File” and “Overlay Size” parameters is denoted as [1:∞] because they can select
any content from any file. However, the “Overlay Offset” parameter is limited to
values up to the size of the file, so its range is represented as [1:N].

To ensure that all features of the malware can be modified by the obfuscation
methods in our action space, we initially categorized the program features into
Hash-based features, Rule-based features, and Data Distribution, as described in
[13]. We also annotated which features are affected by each obfuscation method
in action space. If an obfuscation method om modifies the feature set S =
{s1, s2, ..., sk} of a malware sample, the impact of various obfuscation methods
on the affected features can be observed in Table 2 within our framework.

For example, consider the IS obfuscation method, which replaces instruc-
tions in binary file with semantically equivalent instructions. From Table 2, it
can be observed that this method affects the File Hash, Section Hash, and Code
Sequence features. Since IS can replace any instructions in binary file with seman-
tically equivalent instructions, this obfuscation method can completely modify
the File Hash and Code Sequence features. Its partial modification of the Section
Hash feature is due to the method’s capability of modifying only the code section,
without affecting the data section or other sections.

As depicted in Table 2, these obfuscation techniques in action space can mod-
ify all features of a binary file, enabling MTMG to modify all detection features
of LB-MDS.

3.3 Q2’s Solution

The objective of MTMG is to generate adversarial examples capable of simul-
taneously evading multiple LB-MDS systems. Given a malware x, it under-
goes t rounds of obfuscation actions to produce xt. The resulting xt is then
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subjected to detection by multiple LB-MDS, yielding a detection result of
Dt = (PLB−MDS1 , PLB−MDS2 , ..., PLB−MDSN

), where PLB−MDSN
represents

the detection result of LB − MDSN for xt, with 1 indicating benign program
and 0 indicating malicious program.

Table 1. Obfuscation methods and their corresponding parameter ranges in the
MTMG action space. The notation [1 : N ] denotes finite parameter ranges, while
[1 : ∞] represents infinite parameter ranges.

Category Name Abbr Description Parameters

Binary
Obfuscation

Overlay
Append

OA Append code or data at the end of
the code region in a binary file

Overlay File: [1:∞], [Overlay Offset,
Overlay Size]: [1:N]

Section
Padding

SP Append random bytes to the unused
space at the end of a section in a
binary file

[Random Byte Length, Random
Byte Generation Method, Section
Name]: [1:N]

Section Add SA Add new sections to a binary file [Section Name, Section Size, Section
contents]: [1:∞], [Section Flags,
Section Address]: [1:N]

Section
Rename

SR Alter the names of sections within a
binary file

New Section Name:[1:∞], Section
Index:[1:N]

Instruction
Substitution

IS Replace instructions with
semantically equivalent instructions

[Original Instruction, Equivalent
Instruction, Operand Mapping,
Compatibility Check, Performance
Considerations]:[1:N]

Packing
Obfuscation

Code
Encryption

CE Transforming code into an encrypted
form, decrypting the encrypted code
during runtime

[Encryption Algorithm, Code Offset,
Code Size, Decryption
Routine]:[1:N], [Encryption Key, Key
Length, Block Size, Iterations]:[1:∞]

Code Com-
pression

CC Reduce the size of executable code
by applying compression algorithms

[Compression Algorithm, Code
Offset, Code Size, Compression
Level, Decompression Routine]:[1:N]

Binary
Packing

BP The process of Compressing or
encrypting a binary and then
embedding it into a self-extracting
loader

Include parameters in Code
Encryption and Code
Compression, [loader]:[1:N]

Binary
Packing to
Benign

BPB Building upon Binary Packing, this
technique involves the storage of the
encrypted or compressed binary and
loader within a benign program

Include parameters in Binary
Packing, Benign program:[1:∞]

Binary
Packing and
Encryption

BPE Building upon binary packing, this
technique encrypts the loader,
resulting in a reduced size for the
loader

Include parameters in Binary
Packing, Encryption Parameters for
loader:[Encryption Algorithm,
Decryption Routine]:[1:N]

Binary
Packing and
ROP
Encryption

BPR Building upon binary packing, this
technique utilizes ROP gadgets to
achieve the functionality of the
decompression or decryption routine

Include parameters in Binary
Packing, [Gadgets Selection,
Gadget Chain Construction]:[1:N]

IAT
Hooking

Hook Redirect function calls by
manipulating the Import Address
Table (IAT)

[Hook Function, Hook Injection
Point, Hook Activation Condition,
Hook Restoration]:[1:N]

API
Obfuscation

AO Disguise the names, signatures, or
usage patterns of application
programming interfaces (APIs) in
software code

[API Renaming, API Signature
Modification, String
Encryption]:[1:∞], Dynamic API
Loading:[1:N]

Dynamic
Loading

DL The process of loading software
components or modules at runtime

[Module or Library Selection,
Loading Location, loader]:[1:N],
Loading Conditions:[1:∞]
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Table 2. The affected features by obfuscation methods are indicated by �, ��, and�, representing complete modification, partial modification, and slight modification of
the respective feature.

Hash-Based features Rule-based features Data Distribution

File

Hash

Section

Hash

Section

Count

Section

Name

Section

Padding

Debug

Info

Control

Flow
API Calls

Code

Sequence

Data

Distribution

B
in
a
ry

O
b
fu
sc
a
ti
o
n OA � �� � �

SP � �� �
SA � �� � � ��
SR � �
IS � �� �

P
a
ck

in
g
O
b
fu
sc
a
ti
o
n

CE � � �� �� �� � �� ��
CC � � �� �� �� � �� ��
BP � � � � � � � �� �� �
BPB � � � � � � � �� �� �
BPE � � � � � � � �� �� �
BPR � � � � � � � �� � �
Hook � �� �� ��
AO � �� � �� ��
DL � �� �� �� ��

The reward function of MTMG, defined by Eq. 1, comprises three compo-
nents: Rmin, Ravg, and Rnew, along with their corresponding weights Wmin,
Wavg, and Wnew. Rmin denotes the minimum value of the Dt tupple, Ravg

denotes the average value of the Dt tuple, and Rnew denotes the number of
newly deceived LB-MDS systems compared to the (t-1) round.

Rt = Rmin ∗ wmin + Ravg ∗ wavg + Rnew ∗ wnew (1)
Rmin = min(Dt) (2)

Ravg = sum(Dt)/N (3)
Rnew = sum(max(0,Dt − Dt−1)) (4)

3.4 Training Algorithm

Algorithm 1 outlines the training process of MTMG. In each training episode,
the agent makes decisions on the action and its corresponding parameters to
be taken based on the current malware input. Subsequently, the binary rewriter
modifies the malware Xt based on the action and parameters chosen by the
agent, resulting in the modified malware Xt+1. The modified software xt+1 is
then subjected to detection by multiple LB-MDS, and the reward is computed
according to Eq. 1. This process is repeated until the malware can be classified as
benign by all LB-MDS, or the maximum number of modifications, MAXTURN ,
is reached. The detailed descriptions and settings of the parameter are shown in
Table 3.
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Algorithm 1: Training Algorithm.
Input: θ: network parameter θ, EPISODES: The total number of malware to

load, MAXTURN : The maximum number of actions to use on a
sample, LB-MDS: all LB-MDS used to detect in environment.

Output: Trained RL model
1 Initialize training environment with LB-MDS;
2 Initialize agent agentMTMG with parameter θ
3 for episode = 1 to EPISODES do
4 Select a malware sample x from the training dataset Dtrain;
5 Sinit = x;
6 for t = 1 to MAXTURN do
7 Choose an obfuscation method at and its corresponding parameters P

from the action space;
8 Modify xt by obfuscation method at and its corresponding parameters

P to xt+1;
9 st+1 = xt+1;

10 To detect st+1 using LB-MDS, compute the reward rt+1 using
Equation 1;

11 Exert Adam optimizer to optimize parameter θ;
12 if Malware xt+1 can deceive all LB-MDS then
13 break;
14

4 Evaluation

Dataset. In our experiment, we collected a dataset of 35,000 malware samples
from VirusShare for the year 2022. Out of these, 30,000 samples were used as
the training set, while the remaining 5,000 samples were used as the testing set.

Comparison Targets. We compare our MTMG-Malware framework with
SOTA attack frameworks: MAB [13] and MalFox [17]. MAB is a reinforcement
learning-based black-box attack framework that uses a predefined set of actions
to manipulate PE files and generates adversarial examples by adjusting the prob-
ability of each action being selected based on the reward. On the other hand,
MalFox is a GAN-based attack framework that leverages packing obfuscation
methods to generate adversarial malware examples.

Attack Targets. For our attack targets, we have chosen the following:

– EMBER [5] is a gradient boosted decision tree model that was trained on
the EMBER dataset using LightGBM. We utilized a model provided by the
Machine Learning Security Evasion Competition (MLSEC) 2019.

– MalConv [12] is a malware detection model that directly trains on the binary
bytes of malwares. We utilized a model provided by the MLSEC 2019 [2].

– Commercial AVs. According to PC Magazine [3], we have selected six top
commercial antivirus software.
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Table 3. Implementation details of the MTMG model.

Parameter Value Description

EPISODES 30000 The total number of loaded
malware files into
environment

MAX TURNS 30 Maximum number of actions
to perform on a sample

γ 0.95 Discount factor for reward

wmin 0.8 Weights of elements of
reward

wavg 0.1 Weights of elements of
reward

wnew 0.1 Weights of elements of
reward

Learning rate 3 ∗ 10−4 The learning rate of Adam

Evaluation Metrices. Consistent with prior research [11], we utilize the attack
success rate to evaluate the effectiveness of our adversarial attack. The definition
of attack success rate is illustrated in Eq. 5, where Targets = {LB−MDS1, LB−
MDS2, ..., LB − MDSN} denotes the target LB-MDS, Nume represents the
number of adversarial examples that can simultaneously attack multiple LB-
MDS, and NumA represents the total number of adversarial examples.

ASR = NumM/NumA (5)

To facilitate future research utilizing adversarial examples produced by
MTMG, we have established a GitHub repository, available at https://github.
com/mtmg-malware/MTMG.

4.1 Attack on Single LB-MDS

This experiment evaluates the attack success rates of MalFox, MAB, and our
MTMG when targeting a single LB-MDS. As depicted in Fig. 4, the results reveal
that the success rate of utilizing raw malware against MalConv, EMBER, and
commercial antivirus software AV1-AV6 is below 20%.

After undergoing MalFox’s processing, the malware demonstrates a attack
success rate surpassing 60% in attacking commercial antivirus software AV1-
AV6. However, its attack success rate diminishes to less than 27% when tar-
geting MalConv and EMBER. In contrast, MAB achieves a attack success rate
below 47% when attacking commercial antivirus software AV1-AV6, but it sur-
passes 76% attack success rate against MalConv and EMBER. In our work,
MTMG achieves a attack success rate exceeding 90% in attacking both com-
mercial antivirus software AV1-AV6, MalConv, and EMBER. This is primarily
due to MTMG’s action space encompassing obfuscation techniques capable of

https://github.com/mtmg-malware/MTMG.
https://github.com/mtmg-malware/MTMG.
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modifying all the features of malware. As a result, MTMG gains the ability to
manipulate all the malware features, leading to a high success rate in attacking
a single LB-MDS.

Table 4. We utilize MalFox, MAB, and MTMG to launch attacks against MalConv,
EMBER, and commercial antivirus software AV1-AV6.

LB-MDS Malwares (%) MalFox (%) MAB (%) MTMG (%)

AV1 2.52 65.39 23.97 90.48

AV2 6.13 60.96 30.72 94.20

AV3 3.69 68.18 35.97 91.85

AV4 2.78 67.19 46.37 93.31

AV5 7.94 73.31 41.78 95.97

AV6 3.91 68.01 36.18 96.35

MalConv 17.35 26.47 95.63 97.24

EMBER 3.76 12.69 76.18 93.72

4.2 Attack on Multiple LB-MDS

This experiment evaluates the attack success rates of MalFox, MAB, and our
MTMG when simultaneously attacking multiple LB-MDS. As shown in Fig. 5,
it is evident that our MTMG significantly outperforms the SOTA approaches in
terms of attacking multiple LB-MDS.

Table 5. AVs refer to commercial antivirus software AV1-AV6, while MCEM represents
the combined use of MalConv and EMBER for detection. Additionally, MCEM+AVs
represents the combination of MCEM and AVs. We utilize MalFox, MAB, and MTMG
to conduct simultaneous attacks against AVs, MCEM, as well as MCEM+AVs.

LB-MDS Malwares (%) MalFox (%) MAB (%) MTMG (%)

AVs 0 51.72 5.75 84.43

MCEM 0.79 6.42 15.96 90.32

MCEM+AVs 0 5.25 1.93 82.69

The original malware exhibited an attack success rate of less than 1% when
targeting AVs, MCEM, and MCEM+AVs. MalFox achieved an attack success
rate of 51.72% against AVs, but its success rate decreased to below 7% when
targeting MCEM and MCEM+AVs. MAB’s attack success rate against AVs,
MCEM, and MCEM+AVs all remained below 16%. In contrast, our MTMG
maintained an attack success rate of over 80% against AVs, MCEM, and
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MCEM+AVs. This is primarily due to the reward function of MTMG, which
places a greater emphasis on actions that can simultaneously influence multiple
LB-MDS. This attribute of MTMG prompts it to favor obfuscation techniques
and parameters that have a higher likelihood of concurrently deceiving multiple
LB-MDS during its action selection process. Consequently, this characteristic
leads to the generation of adversarial examples by MTMG that demonstrate
superior attack performance against multiple LB-MDS.

4.3 Algorithm Efficiency Evaluation

This experiment assessed the efficiency of MTMG in attacking multiple LB-
MDS. From Fig. 3a, it can be observed that both Default and Random achieve
attack success rates below 30% against MCEM, but their success rates against
AVs exceed 50%. This difference is primarily due to the fact that AVs predomi-
nantly rely on program features, and MTMG’s obfuscation space can modify all
features of the malicious software. This enables Default and Random to achieve
higher attack success rates against AVs. However, some LB-MDS like MCEM,
which are neural network-based, rely not only on static program features but
also learn from a neural network perspective how to distinguish benign programs
from malicious ones. For example, normal programs might not exhibit excessive
encrypted data or specific API call sequences. Consequently, the attack success
rates of Default and Random against MCEM are lower.

Fig. 3. Attack success rates of adversarial examples against multiple LB-MDS. Labels
indicate: original malware rate, rate with default obfuscation parameters, rate with
random obfuscation parameters, and rate achieved by MTMG.

MTMG’s ability to achieve high attack success rates against both MCEM and
AVs is attributed to its feedback-driven decision system, which selects appropri-
ate parameters based on the current state of the malicious software. For instance,
it hides specific APIs to evade detection based on specific API call sequences. As
a result, MTMG-Malware outperforms Default and Random in terms of attack
success rates as well as the number of actions used.
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5 Conclusion

This paper introduces MTMG, a reinforcement learning-based attack framework.
MTMG selects obfuscation methods and their associated parameters based on
the current state of the malware, producing adversarial examples capable of
attacking multiple LB-MDS simultaneously. Empirical results demonstrate that
MTMG surpasses existing adversarial attack methodologies in attack success
rate, both when targeting a single LB-MDS and when concurrently attacking
multiple LB-MDS.
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Abstract. Semantic segmentation of remote sensing building images can pro-
vide important data support for urban planning and resource management. It also
plays a crucial role in assessing building density, monitoring urban expansion,
and optimizing traffic planning. In recent times, with the continuous integration of
computer vision and deep learning, Convolutional Neural Networks (CNNs) have
achieved outstanding results in semantic segmentation tasks for remote sensing
images. Although deep CNNs can significantly improve the accuracy of semantic
segmentation for remote sensing images, some networkmodels used for segmenta-
tion tasks still have limitations, such as low segmentation precision and inadequate
feature extraction. In this paper, we propose an adversarial semantic segmentation
network based on Generative Adversarial Networks (GANs). To better extract
the features and semantics of buildings in remote sensing images, we introduce
the UNet3+ network as the segmentation network of the adversarial network for
the first time and make improvements to the UNet3+ network. We add the scSE
(Spatial Channel Squeeze and Excitation) attentionmechanism to the network, the
scSE attention mechanism enhances the network’s perception of different channel
features by considering their correlations in the channel dimension, allowing it to
capture fine-grained details and coarse-grained semantics at the full scale. In this
paper, we conduct experiments on the Inria Aerial Image Labeling dataset, and
the results show that our method outperforms other network models mentioned in
the paper in terms of performance.

Keywords: Generate adversarial network · Remote sensing image · UNet3+ ·
Semantic segmentation

1 Introduction

Buildings are important components of cities, and due to their diverse forms of expres-
sion, the identification and extraction of building information are currently a hotspot
and challenge in high-resolution remote sensing image applications. There has been a
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considerable amount of research on accurately and automatically extracting buildings
from remote sensing images. Semantic segmentation of remote sensing building images
is widely applied for various purposes, including urban planning, cartography, risk and
loss assessment of natural disasters, land use, and urban modeling [1].

Semantic segmentation methods for remote sensing building images include tra-
ditional segmentation methods and methods based on convolutional neural networks
(CNNs). The traditional segmentationmethods can be categorized into the following five
types: pixel-based segmentationmethods, including thresholdingmethods and clustering
methods; edge detection-based methods; region-based methods; mathematical theory-
basedmethods, such asMarkov random fields; andmetaheuristic algorithm-basedmeth-
ods, including artificial neural networks [2] and genetic algorithms [3]. However, tra-
ditional segmentation methods often exhibit low efficiency and accuracy in extracting
building information from remote sensing images.

With the rise of neural network models and the development of deep learning, an
increasing number of researchers are applying deep neural networks to semantic seg-
mentation tasks for remote sensing images. Compared to traditional semantic segmen-
tation methods, the main difference lies in the fact that convolutional neural networks
(CNNs) can automatically learn image features and enable end-to-end learning, thereby
improving the accuracy and efficiency of semantic segmentation. In the field of seman-
tic segmentation for remote sensing building images, Xiang Li et al. [4] proposed a
segmentation method based on an enhanced multi-scale convolutional neural network.
This method primarily adopts the U-Net network and introduces cascaded dilated con-
volutions within the U-Net network to capture objects at different scales, achieving
good segmentation results. Yuting Zhu et al. [5] introduced an Edge-Detail Network
(E-D-Net) for semantic segmentation, which consists of two sub-networks: The E-Net
captures and preserves edge information from images, and the D-Net refines the results
from the E-Net to achieve predictions with higher detail quality. Yue Qiu et al. [6]
proposed an efficient network structure called MSL-Net, which focuses on multi-scale
building features and multi-level image features. The network incorporates deep separa-
ble convolutions (DSC) and atrous spatial pyramid pooling (ASPP) modules to enhance
the model’s feature extraction capabilities for irregular-shaped buildings. Renhe Zhang
et al. [7] proposed a network structure called the Shunted Dual Skip Connection UNet
(SDSC-UNet), which introduces a new dual skip connection structure in the network
and incorporates Vision Transformer (ViT) into the encoder to fully exploit semantic
information from the image.

Although the aforementioned segmentation methods have achieved good seg-
mentation results, they still have some limitations. For example, they employ convolu-
tion and pooling operations to aggregate contextual information. However, due to their
relatively limited receptive field, they face challenges in capturing the overall global
context of buildings within remote sensing images, particularly in cases of densely
distributed buildings or significant variations in sizes. Their effectiveness in capturing
building boundaries and textures in remote sensing data is compromised. On the other
hand, the convolution and pooling operations lead to the loss of spatial details, conse-
quently, relying solely on upsampling from deep semantic features can yield coarse and
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inaccurate segmentation outcomes. Therefore, in this paper, we propose an adversar-
ial network based on Generative Adversarial Networks (GANs) for the segmentation
of remote sensing building images. We utilize the U-Net3+ network as the segmenta-
tion network within the adversarial network, which is a convolutional neural network
consisting of an encoder-decoder structure. Furthermore, we add the scSE attentionmod-
ule to the encoder part of UNet3+ to further enhance the segmentation accuracy. The
scSE attention mechanism utilizes contextual information by analyzing both spatial and
channel-wise relationships within the data. By combining both spatial and channel-wise
information, the scSE mechanism effectively captures contextual cues present in the
input data, allowing the network to adaptively emphasize informative features during
various tasks such as semantic segmentation. Finally, we validate the performance of
the proposed method through experiments and compare it with the methods pro-posed
in references [4–7].

2 Related Work

In this section, we first review classical deep neural network models used for semantic
segmentation tasks and discuss their advantages and limitations. Then, we introduce the
GANmodel and its application in semantic segmentation. Finally, we review the benefits
of applying attention mechanisms to semantic segmentation tasks.

2.1 Deep Neural Network

Semantic segmentation is one of the fundamental tasks in computer vision, aiming to
assign a category to each pixel in an image. In recent years, with the development of
deep neural networks, researchers have started applying DCNNs (Deep Convolutional
Neural Networks) to the field of semantic segmentation and have designed a series of
excellent network models. Here, let’s briefly review some classic DCNNs networks,
including FCN (Fully Convolutional Network), UNet.

In 2015, Jonathan Long and Evan Shelhamer [8], among others, proposed the Fully
ConvolutionalNetwork (FCN) architecture,whichwas the first application of a fully con-
volutional neural network in the field of semantic segmentation. They trans-formed the
fully connected layers of the network into convolutional layers, reduced the size of image
features through pooling operations to decrease computational complexity, increase the
receptive field, and prevent overfitting. They also introduced upsampling through decon-
volution, enabling the network to accept inputs of arbitrary image sizes. However, FCN
has some limitations. When upsampling is performed through deconvolution, the results
can still be blurry and less sensitive to image details.

In 2015, Olaf Ronneberger and colleagues proposed the U-Net [9], a U-shaped
network architecture based on an encoder-decoder framework. The encoder, in the first
half of the network, performs downsampling for feature extraction, while the decoder, in
the second half, performs upsampling to increase the receptive field. The U-Net network
utilizes its U-shaped structure to propagate contextual information to higher-resolution
layers. U-Net has the advantage of achieving superior segmentation results with fewer
training data. However, U-Net was primarily designed for medical image segmentation.



Semantic Segmentation of Remote Sensing Architectural Images 265

Subsequently, researchers introduced variations of U-Net, such as UNet+ and UNet3+
[10], which demonstrated improved segmentation performance compared to the original
U-Net network.

Although deep learning has achieved promising results in semantic segmentation,
the aforementioned deep learning models still have some limitations when it comes to
segmenting remote sensing images of buildings. For instance, factors like occlusion,
shadows, and scale variations that may be present in remote sensing building images can
negatively impact the model’s performance. Additionally, using deep learning models
for segmentation requires a large amount of labeled data and do-main expertise, which
can be challenging in practical applications due to the difficulty of annotating remote
sensing image data. Consequently, obtaining satisfactory segmentation results with these
methods may be limited by the challenges associated with labeling remote sensing data.

2.2 Generative Adversarial Network

Since the proposal of Generative Adversarial Networks (GANs) by lan Goodfellow in
2014 [11], GANs have achieved tremendous success in the field of artificial intelli-
gence, particularly in computer vision. They have been applied in various tasks such
as face generation, object generation, and semantic segmentation [12]. GAN consists
of two competing neural networks: the generator and the discriminator. Its core idea is
to achieve the goal of generating realistic sample data through the adversarial training
between these two networks. Reference [12] first proposed the application of GANs
to the task of semantic segmentation. The core idea was to replace the generator in
the GAN with a semantic segmentation network, and during training, the segmentation
network was optimized using multi-class cross-entropy. In this paper, a similar approach
is adopted by replacing the generator with an enhanced UNet3+ network. In recent
years, numerous scholars have integrated Generative Adversarial Networks (GANs)
into semantic segmentation tasks involving remote sensing imagery. However, when it
comes to segmenting remote sensing images of buildings, certain limitations persist.
Factors such as the inherent complexity and density of remote sensing building images,
as well as significant variations in shapes, contribute to suboptimal segmentation results
achieved by these networks.

2.3 Attention Mechanism

In 2014, VMnih et al. [13] first combined recurrent neural networks (RNNs) with atten-
tion and applied them to computer vision. The basic idea of atten-tion mechanism in
computer vision is to enable themodel to concentrate and focus on important information
while disregarding unimportant information. The essence of the attention mechanism is
to learn the weight distribution using relevant feature maps and then apply the learned
weights to the original feature maps for weighted summation. In the field of computer
vision, attention mechanisms are typically categorized into three main domains for anal-
ysis: spatial domain, channel domain, and hybrid domain. The commonly used ones in
convolutional neural networks are spatial attention and channel attention. Sometimes a
hybrid attention that combines spatial and channel attention is used, with CBAM [14]
and scSE [15] being representative examples of hybrid attention modules. The scSE
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attention module combines cSE and sSE modules and introduces both spatial and chan-
nel attention. In this paper, we combine the scSEmodule withUNet3+ to further improve
the performance of semantic segmentation.

3 Research Method

3.1 Network Structure

In reference [25], the FISS GAN was introduced for semantic segmentation of foggy
images. This approach involved the design of two segmentation networks: the Edge
GAN for capturing image edges and the Semantic Segmentation GAN for full image
segmentation. In reference [26], the Spine-GAN was proposed for segmenting complex
spinal structures. A key innovation was the incorporation of a Long Short-TermMemory
(LSTM)module into the segmentationnetwork for image segmentation. In comparison to
the aforementioned segmentation networks, this study primarily combines the attention
mechanismwith theUNet3+ network as the segmentation networkwithin the adversarial
framework. The overall structure of UNet3+ -GAN is illustrated in Fig. 1.

SegmentationNetworkArchitecture In this paper, an enhanced version of theUNet3+
network is adopted for the segmentation task. This network incorporates multi-scale skip
connections and deep supervision. Themulti-scale skip connections directly amalgamate
high-level semantic and low-level semantic information from diverse scale feature maps
of remote sensing building images. Concurrently, deep supervision learns hierarchical
representations from feature maps aggregated across multiple scales. Within UNet3+,
this architecture adeptly captures both fine-grained details and coarse-grained semantic
attributes. This leads to a more effective extraction of semantic information and features
from buildings of varying sizes within remote sensing images.

Additionally, in UNet3+, we introduce the scSE (Spatial Channel Squeeze and Exci-
tation) attention module. The scSE attention module is an attention mechanism used to
enhance the performance of convolutional neural networks. It aims to adap-tively weight
the feature map based on channel and spatial information to enhance the network’s focus
on buildings in the image. It consists of two key modules: spatial attention and channel
attention. The spatial attention and channel attention com-press and excite the spatial and
channel dimensions of the feature map, respectively, adaptively learning the spatial cor-
relations and channel correlations of the feature map. Moreover, global average pooling
is used to compress the spatial and channel dimensions of the feature map, generating a
spatial and channel attention weight vector through a small fully connected layer. This
weight vector is used to weight the original feature map, highlighting important spatial
and channel locations. By combining spatial attention and channel attention, the scSE
attention module enhances the network’s focus on spatial and channel features, thereby
improving the quality of feature representation. The overall structure of the segmentation
network is shown in Fig. 2.
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Fig. 1. UNet3+ -GAN model adapt from [16]

Fig. 2. Segmentation Network

As shown in the figure, we added the scSE module in the downsampling process
of the UNet3+ network, as illustrated in Fig. 3. By incorporating the scSE module
during downsampling, the network can pay more attention to the useful channels for
building extraction tasks, thereby improving the feature expression capability. Since
downsampling may result in the loss of fine-grained details, adding this module can
enhance the selectivity for capturing subtle featureswhile preserving themain features. In
remote sensing building images, apart from buildings, there are various irrelevant objects
such as trees, roads, lakes, as well as interference like noise. The scSEmodule’s adaptive
channel-wise weighting can help reduce the interference from unrelated objects or noise,
thus improving the network’s perception of buildings. Adding the scSE attention during
downsampling enables the UNet3+ network to capture global contextual information in
remote sensing images, leading to a more comprehensive perception capability.

DiscriminatorNetworkArchitecture Weuse the network architecture shown in Fig. 4
as the discriminator network. In the network, we apply the LeakyReLU function and
BatchNorm2d to each network layer. The LeakyReLU function helps to alleviate the
problem of dead neurons, mitigates gradient vanishing, and accelerates the conver-
gence speed of the model. Additionally, the introduction of non-linearity through the
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Fig. 3. scSE Module adapted from [15].

LeakyReLU function enables the model to have stronger expressive power and better
fit the distribution of complex remote sensing building image data. We normalize each
mini-batch by introducing the BatchNorm2d function, adjusting the mean of the input
to 0 and the standard deviation to 1. This helps to reduce the data distribution discrep-
ancy between different layers, reduces the dependency on parameter initialization, and
accelerates the convergence speed of the model. Introducing noise and standardizing
each mini-batch sample also acts as a form of regularization. This helps to suppress
overfitting and improve the generalization ability of the model.

In summary, the use of LeakyReLU and BatchNorm2d in convolutional neural net-
works can accelerate the convergence speed of the model, alleviate the problem of
gradient vanishing, enhance the model’s expressive power, and enable the discriminator
network to better distinguish real images from the generated images by the generator,
thereby further improving the segmentation performance.

Fig. 4. Discriminator Network
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3.2 Loss Function

During training, it is necessary to train the generator and the discriminator networks
separately to achieve mutual adversarial training and adjustment. The cross-entropy
loss function is sensitive to errors and facilitates fast convergence of the model through
backpropagation. We use the Dice loss function to compute the segmentation loss. The
Dice loss function takes into account the spatial relationship of buildings in remote
sensing images, which promotes spatial positional accuracy in the segmentation results.
It better preserves the boundaries and detail information of the targets.

The loss function for the generator is:

LossG = λLossdice(X ,G(Y )) + (1− λ)Lossbce(1,D(G(Y ),Y )) (1)

Y represents the original image, X represents the ground truth label, G(·) represents
the generator network, D(·) represents the discriminator network, LossG represents the
generator loss, Lossdice represents the segmentation loss using theDice loss, and Lossbce
represents the discriminator loss computed using the cross-entropy loss for a batch of
samples. Here, λ represents the weight.

The Lossbce is the cross-entropy loss function, and its formula is:

Lossbce = {l1, ..., lN }, ln = −[
yn · log(σ (xn)) + (1− yn) · log(1− σ(xn))

]
(2)

σ(xn) is the sigmoid function, which maps x to the interval (0, 1).
The discriminator loss function is:

LossD = αlossbce(η,D(X ,Y )) + (1− α)lossbce(η,D(G(Y ),Y )) (3)

α represents the weight, When the discriminator takes real images and real labels as
input, the η = 1. If the input is real images and labels generated by the generator, the
η = 0.

4 Research

4.1 Dataset

The experiment in this study utilized the Inria Aerial Image Dataset [17]. The original
training set consists of 180 remote sensing images with dimensions of 5000× 5000 pix-
els. The pixels in the ground truth are labeled into two semantic classes: buildings (pixel
value 255) and non-buildings (pixel value 0). A sliding window approach was employed
with a stride of 128 to divide the original images into 256 × 256 pixel images. From
these images, 8262 were randomly selected as the training set, 3388 as the validation
set, and 1350 as the test set.
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4.2 Evaluation Metrics

In this experiment, we utilized several evaluation metrics to assess the performance,
including pixel accuracy (PA), mean pixel accuracy (MPA), intersection over union
(IoU), and mean intersection over union (mIoU). These metrics serve as quantitative
measures to evaluate the accuracy and consistency of the segmentation results.

PA refers to the proportion of correctly classified pixels among all pixels. MPA refers
to the average of pixel accuracies for each class. It is defined as:

PA = (TP+TN )
(TP+TN+FP+FN )

;MPA =
∑n

i Pi
n

(4)

In the equation, TP represents true positives, TN represents true negatives, FP rep-
resents false positives, and FN represents false negatives.n represents the number of
classes, and Pi represents the pixel accuracy for each class.

Intersection over Union (IoU) is the ratio of the intersection to the union between
the predicted results and the ground truth for a specific class. Mean Intersection over
Union (mIoU) is the average of IoU values calculated for each class. It is defined as:

IoU = TP
FN+FP+TP ;mIoU = 1

C

∑
c IoU (c) (5)

4.3 Experimental Setups

The experimentwas conducted using thePyTorch framework and trained on aTeslaV100
GPU with 32GB of memory. To train both the generator and discriminator networks,
Adam optimizer was utilized with a learning rate of 10−4 The running averages for
gradient and squared gradients were set to 0.5 and 0.999, respectively. For the value of
λ in Eq. 2, it was set to 0.9, and for the value of α in Eq. 6, it was set to 0.5.A batch size
of 4 was used, and each model was trained for 100 epochs on the Inria Aerial Image
dataset.

4.4 Experimental Results and Analysis

Four groups of experiments were conducted: UNet3+, UNet3+ -scSE, UNet3+ -GAN,
and UNet3+ -scSE-GAN. By comparing the segmentation models with and without the
introduction of a generative adversarial network (GAN) and scSE attention module, the
effectiveness of GAN and scSE attention module was determined. The results on the
Inria aerial dataset are shown in Table 1. From the table, it can be observed that the
introduction of the scSE module improved the Intersection over Union (IoU) by 2.01%.
When both the scSE attention module and GAN were introduced, the IoU improved by
3.13%. This indicates that the introduction of the scSE attention module and GAN led
to improvements in various evaluation metrics. Furthermore, a comparison was made
with references [10–13], [27], demonstrating the relative superiority of our approach.
Detailed results are shown in Figure Table 2. Partial samples of the segmentation results
are illustrated in Fig. 5.
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Table 1. Segmentation results on Inria aerial image labeling dataset.

PA/% MPA/% IoU/% mIoU/%

UNet3+ 88.75 88.50 81.40 79.20

UNet3+ -scSE 89.91 89.62 83.41 81.03

UNet3+ -GAN 89.89 89.69 80.33 78.22

UNet3+ -scSE+ -GAN 91.77 91.69 84.53 84.49

Table 2. Comparison of results on The Inria aerial image labeling dataset.

Network IoU/% Acc/%

Multi-scale [4] 74.24 96.12

E-D-Net [5] 79.78 96.66

MSL-Net [6] 81.1 96.80

SDSC-UNet [7] 83.01 -

GAN-SCA [18] 74.92 96.13

Ours 84.53 96.95

Fig. 5. Sample Result
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5 Conclusion and Future Work

IntroducingGenerativeAdversarialNetworks (GANs) and attentionmechanisms into the
semantic segmentation task of remote sensing building images guides existing semantic
segmentation models to capture binary potential function relationships between pix-
els, enhancing segmentation performance while keeping the segmentation model struc-
ture and parameter size unchanged. Compared to traditional seg-mentation methods, it
achieves higher segmentation accuracy. Additionally, it also improves segmentation pre-
cision compared to other methods. However, utilizing Generative Adversarial Networks
(GANs) for model training presents higher difficulty compared to conventional neural
networks. Furthermore, due to the challenges associated with annotating remote sens-
ing building images, we aim to incorporate semi-supervised or unsupervised learning
strategies in our subsequent work. This approach seeks to enhance model segmentation
efficiency and reduce dependency on the dataset.
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Abstract. The accurate reconstruction of global flow fields from sparse
measurements has been a longstanding challenge in which the quantity
and positioning of measurements play a critical role. To address this
issue, we propose a global flow field reconstruction method based on a
mode decomposition autoencoder, which maintains interpretability while
effectively handling arbitrary quantities and positioning of sensors, ensur-
ing high accuracy in the reconstruction of flow fields and other modal
data. An autoencoder is trained on global flow fields to capture the non-
linear modes of the flow. The backpropagation capability of the deep
network is leveraged to transform the flow field reconstruction problem
into an interpretable optimization problem, which is solved to obtain the
complete flow field. In experiments carried out on a stable ocean surface
temperature dataset and an unstable multi-cylinder airflow dataset, the
proposed method consistently achieved high accuracy across various flow
fields, surpassing the performance of current approaches.

Keywords: Neural network · Sparse measurements · Generative
model · Turbulent flow

1 Introduction

Recovering high-dimensional complex flow fields from a small number of samples
has been a challenge in scientific fields such as geophysics [18], astrophysics [15],
atmospheric science [13], and computational fluid dynamics (CFD) [12]. Linear
theory tools have traditionally been used to solve this problem because they
provide a rigorous mathematical foundation and strong interpretability. One of
the most famous methods, Gappy proper orthogonal decomposition (GPOD)
[3], is an efficient data dimension reduction technology, which can achieve low-
dimensional approximate representation and prediction of incomplete or missing
value systems by feature decomposition of data [21].

However, in complex physical situations, the nonlinear relationship between
variables often cannot be expressed by linear models [19]. The advent of deep
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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learning has popularized the use of nonlinear methods, particularly deep neural
networks (NNs), which can handle high-dimensional nonlinear data [23].

Data-driven methods are widely used in physical modeling, where super-
vised models can train with global flow fields. Fukami et al. [5] used a Voronoi
tessellation-based convolutional neural network (CNN) to recover global flow
fields, and Liu et al. [16] applied CNNs to reconstruct sparse and incomplete
heat conduction data. These methods use supervised deep CNNs to reconstruct
physical fields from limited measurable information. However, the interpretabil-
ity of neural networks is still a challenge, which few studies have addressed [1,17],
and the validity of data-driven approaches has been questioned.

To overcome this challenge, some researchers have combined reduced-order
models (ROMs) with machine learning techniques and proposed methods to
reconstruct flow fields based on modal reduction, where the POD [20] and DMD
mode [9] are common and use long short-term memory (LSTM) networks with
modal methods to reconstruct turbulent velocity fields and perform reduced-
order modeling of two-dimensional unsteady flows [7]. Giannopoulos et al. [6]
used GPOD with an NN to obtain the reduced-order mode of turbulent bound-
ary layers. However, these algorithms only use machine learning methods to
reconstruct the modal coefficients [11], without improving the mode itself and
hence do not fully exploit the end-to-end learning capabilities of deep learning
and depend too much on linear methods.

Deep neural networks have been used to enhance modal reduction in recent
years. Fresca et al. [4] extended the traditional POD method to a deep learning
reduced-order model, POD-DL-ROM, applying POD to reduce the dimension-
ality of the data and then using deep neural networks to create a low-cost and
versatile reduced-dimensionality model. Murata et al. [19] used an autoencoder
to extract the nonlinear modes of a flow field without supervision and applied
POD to each decomposed mode. This preserves the interpretability of conven-
tional POD modes. The accuracy of this method is comparable to that of the
POD method, which inspires the use of nonlinear modes as an alternative to
traditional methods. However, these methods are insufficient to reconstruct the
flow field. They need an algorithm that can use the mapping of nonlinear modes
to achieve modal sparsity. That is the goal of this study.

1.1 Contributions

We propose a method for global flow field reconstruction based on a mode decom-
position autoencoder (MD-AE), which is an unsupervised deep learning model
that can extract the nonlinear modes of the flow field from global data. MD-AE
consists of an encoder that reduces the dimensionality of the data and a decoder
that generates the flow field from the reduced data. A loss function is defined to
ensure the consistency of the reconstructed flow field at the sparse measurement
locations. This transforms the reconstruction problem into an optimization prob-
lem that can be solved efficiently using the backpropagation of deep networks
and the conjugate gradient method. Experimental results show that the proposed
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method has better accuracy than the existing deep learning-based method and
the traditional pattern-based method on different flow fields and models.

2 Problem Definition of Sparse Reconstruction

The objective of this problem is to reconstruct an N -dimensional global field
with n points, represented by the variable u ∈ Rn, from r local sensor measure-
ments s ∈ Rr at locations xi ∈ RN , i ∈ {1, ..., r} [5]. The parameter xi denotes
the positions of the measurement points on the high-resolution flow field. The
variable r is the number of local sensor measurements. To achieve greater flexibil-
ity, the method accommodates any number of sensors at any position within the
field, allowing for sensor positions or quantities to change over time. A machine
learning model is employed to reconstruct a complete flow field without the
need for retraining when sensors relocate or alter their numbers. The relation-
ship between the global flow field and sparse measurements is represented by
the measurement matrix P ∈ Rr×n, r � n [22], which defines r measurement
positions of the global flow field, with unit values at the measured positions
and zeros at unmeasured locations. P projects s onto an R-dimensional space.
The sparse sampling process can be expressed as s = Pu, and the refactoring
process as ũ = G(s), G : Rr → Rn, where G represents a mapping from the
dilution measurement s to the reconstructed global flow field ũ. In conventional
methods, such as POD or DMD mode-based methods [14], G may be linear.
The measurement matrix P approximates the reconstruction of the global flow
field u from r measurements, as shown in the equation s ≈ P

∑r
k=1 ãkψk, where

ãk is the coefficient of mode ψk. The challenge lies in achieving maximum sim-
ilarity between the reconstructed and original flow fields [24]. The optimization
function is expressed as ||G(s) − u||.

3 Framework of Model

3.1 Training Method of Mode Decomposition Autoencoder

To implement a flow field reconstruction algorithm requires the self-supervised
training of a modal coefficient extractor and a global flow field generator. In
this context, the decoder of an autoencoder can be viewed as the nonlinear
modal decomposition of the flow field [19]. This is because the decoder learns
a low-dimensional representation of the high-dimensional flow field through an
unsupervised learning process. The unsupervised training is shown in Fig. 1,
where the input to the deep autoencoder is the original complete global flow
field u. Fenc is the encoding part of the model, and is used to encode a global
vector into a latent vector, a. Then, the decoder Fdec is used to decode latent
vector a into a global flow field. This process can be expressed as

a = Fenc(u;wenc); ũ = Fdec(u;wdec). (1)
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Fig. 1. Mode decomposition autoencoder is used to reconstruct flow field, in which
losstrain is calculated as an error in global flow.

The function of Fenc is to extract the modal coefficients of the global flow
field, which are then used as input to train Fdec. Mode decomposition aims to
find the optimal weights wenc and wdec that minimize the error norm between
the input and output, given by lossrec = ||ũ − u||. If the original data u can be
restored from a, then the data are well-represented in the dimensions of a. The
Adam optimizer [10] is used in training. The initial learning rate is set to 1e-3,
and the stepLR scheduler is used to adjust the learning rate.

3.2 Refactoring Method

For the reconstruction of the flow field, only Fdec is needed, and Fenc is discarded.
A loss function lossrec is constructed for reconstruction, as shown in Fig. 2,
which measures the distance between the reconstructed flow field and the sensor
measurements at the measurement points, using the 2-norm as the metric in this
study.

Gradient descent generates a global flow field, as shown in Algorithm 1,
where an is input to Fdec to generate ũ using autoencoder modalities. Then ũ
is projected onto sparse measurement points, similar to P multiplied by ũ. The
norm between the projected flow field and measured values is used to compute
the reconstruction loss lossrec, quantifying agreement with sensor measurements.

Fig. 2. Fenc is used to obtain modal coefficients of the global flow field, which are fed
into Fdec for training. Mode decomposition tries to find optimal weights wenc and wdec

that minimize the error norm between input and output, defined as lossrec. If u can
be recovered from a, then a captures the essential features of the data.
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The gradient of lossrec with respect to an is calculated using the chain rule and
backpropagation:

∇an
lossrec =

∂lossrec

∂an
=

∂||s − P ũ||
∂ũ

× ∂ũ

∂an
(2)

Finally, an+1 updates using the nonlinear conjugate gradient method, iter-
atively enhancing accuracy. Termination occurs when lossn < ε, or the max
iterations are reached.

Gradient descent has several advantages for generating a global flow field,
such as adaptability, convergence properties, scalability, robustness, and inte-
gration with deep learning frameworks. This method can efficiently handle non-
linear relationships and different types of problems. It can converge to a local
minimum that reliably approximates the global flow field. Moreover, it can scale
up to large-scale flow field reconstructions, even when the problem size increases.
Gradient descent is widely used in deep learning and can be easily integrated
with deep learning frameworks and tools, making it more suitable for flow field
reconstruction tasks.

3.3 Mode Decomposition Autoencoder Models

We propose two models based on an automatic encoder, both suitable for the
proposed flow field reconstruction method.

The first model is an MLP network that can handle unstructured grid data
without requiring regular grids. However, it may have limitations in capturing

Algorithm 1: Reconstruction of the global flow field from sparse measure-
ments.
Input: s:sparse measurements; a0:initial value of latent vector; Fdec: trained

decoder; wdec:weights of decoder; α:size of step
Output: ũ:Reconstructed flow field

1 initialization n ← 0;
2 do
3 ũn ← Fdec(an;wdec);
4 lossn ← ||s − P ũn||;
5 gn ← ∇an lossn;
6 if n = 0 then
7 Δan+1 ← −gn ;
8 else
9 βn ← ||gn||2/||gn−1||2 ;

10 Δan+1 ← −gn + βnΔan ;
11 end
12 an+1 ← an + αΔan;
13 n ← n + 1;
14 while lossn > ε;
15 return ũn
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spatial correlations and local features. The architecture of this model is shown in
Fig. 3 (a), where n is the number of data points in the original flow field, which
depends on the dataset, and k is the number of modes in the network. The model
learns nonlinear relationships in the input data, thus improving the accuracy of
flow field reconstruction. The structural details and training parameters of this
model, as presented in Table 1, were determined through experiments detailed
in this paper. These parameters enhance the fitting performance of the model.
The second model is a CNN-based network that uses strided convolutions and
transposed convolutions as the main computational layers in the encoder and
decoder. Figure 3(b) shows the architecture of the model, where c is the number
of channels in the original data, h and w are the respective height and width
of the grid data, and k is the number of modes in the network. Strided and
transposed convolutions offer advantages over upsampling and downsampling,
especially with respect to gradient stability (Table 2).

4 Results and Discussion

4.1 Example 1: NOAA Sea Surface Temperature

We applied the proposed method to sea surface temperature data collected by the
U.S. National Oceanic and Atmospheric Administration (NOAA) from satellite
and ship-based observations [8]. The sensor positions follow a uniform distribu-
tion. A single machine learning model is trained for the entire flow field and is
used to reconstruct the flow field in all cases.

Fig. 3. Networks in this paper.

The L2 norm of the error,

ε =
||u − ũ||2

||u||2 =

√∑n
i=0(ui − ũi)2

√∑n
i=0 u2

i

(3)
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is used as a comparison criterion [5]. The L2 error norm has several advantages
in evaluating reconstruction quality, such as computational simplicity, ease of
interpretation, and sensitivity to discrepancies between the original and recon-
structed data. It is calculated as the square root of the sum of squared differences
between the corresponding elements of the original flow field u and its recon-
struction ũ.

We compared the proposed method with proper orthogonal decomposition
(POD), POD PLUS, shallow decoder [2], and Voronoi tessellation [5]. Perfor-
mance was measured using the L2 norm of the error metric, as shown in Fig. 6(a),
where the horizontal axis shows the number of random sampling points, and the
vertical axis shows the L2 error values. The reconstruction problems solved by
the POD, POD PLUS, and shallow decoder methods involve fixed sampling posi-
tions; therefore, we compare the fluctuating parts around the empirical mean in
this context. Of these methods, only Voronoi tessellation can handle flow field
reconstruction with an arbitrary number and placement of sensors, which is
consistent with the problem discussed in this study.

For each number of sensor placements, we tested the average reconstruction
error across 100 flow field reconstruction instances and calculated the L2 norm
of the error. With different sensor combinations, the proposed flow field recon-
struction method shows stability and relatively small errors. We tested network
performance with the number of modes set at 3, 8, and 32. It can be observed
that as the number of sampling points or modes increases, the error in the recon-
structed flow field decreases gradually. The results, as shown in Fig. 4, indicate
that the model captures more data points, which can improve reconstruction sta-

Table 1. Parameters in MLP network.

Parameter Value Parameter Value

Number of layers 6 Learning rate of Adam 0.001
Percentage of training data 2/3 β1 of Adam 0.9
Number of epochs 1000 β2 of Adam 0.99
Batch size 10 step size of StepLR 100
Optimizer for network Adam Multiplicative factor of learning rate 0.1

Table 2. Parameters in CNN.

Parameter Value Parameter Value

Number of layers 6 Batch size 10

Conv Kernel size 3× 3 Optimizer for network Adam

Conv Kernel stride 2× 2 Learning rate of Adam 0.001

Transposed Conv Kernel size 3× 3 β1 of Adam 0.9

Transposed Conv Kernel stride 2× 2 β2 of Adam 0.99

Percentage of training data 2/3 step size of StepLR 100

Number of epochs 1000 Multiplicative factor of learning rate 100
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bility. This confirms that the model can adapt to different sampling situations in
terms of quantity. At the same time, as the number of network modes increases,
the error in the reconstructed flow field decreases, but not significantly. This
means that the model’s dependence on modes is relatively low, and fewer modes
can yield accurate results.

Fig. 4. Sparse reconstruction results for sampling with 20, 50, and 100 points. Green
dots indicate measured positions. Each point has only one value in instantaneous flow
field. (Color figure online)

4.2 Example 2: Dimensional Multi-cylinder Wake

The unsteady flow and vortex shedding behind an infinitely long cylinder in a
uniform flow is a classic CFD problem that has been extensively studied using
OpenFOAM. A more complex problem is the flow around multiple cylinders,
which involves interactions between the wakes of different cylinders. The incom-
pressible Navier-Stokes equations,

∇ · u = 0 (4)

∂u

∂t
= −(u · ∇)u − ∇p +

1
Re

∇2u (5)

govern both problems, where u is the velocity vector, p represents the pressure
field, t is time, and Re is the Reynolds number, which in this case is set to 200.

The complexity of the flow field stems from inter-cylinder interactions, which
cause vortices to merge, split, and interfere with each other, as well as fluid
structure interactions between adjacent cylinders. These affect flow modes and
drag and lift forces on cylinders. Therefore, this multi-cylinder case can help us
to understand fluid dynamics around complex geometries, and it has important
engineering applications.
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The dataset has a spatial resolution of 512 × 256 and consists of 201 data
samples. The division ratio of these numbers of training and validation sets and
the placement of measurement points are the same as in example 1.

A widely used traditional method, GPOD, is used for comparison with k = 5
and k = 8, and it is found that the effect of the proposed method is significantly
better. Moreover, as the number of modes increases, the accuracy of the recon-
struction error decreases. The results are shown in Fig. 6(b). Visualized results
with k = 3 and k = 8 are presented in Fig. 5.

Fig. 5. Sparse reconstruction results for sampling with 20, 50, and 100 points. Green
dots indicate measured positions. Each point has only one value in instantaneous flow
field. (Color figure online)

Fig. 6. Error of multiple algorithms with different numbers of sensors in multi-cylinder
wake.
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4.3 Discussion

The results show that the nonlinear modal approach can reconstruct the flow field
with any number and location of sensors, achieving higher accuracy than other
methods. The method is stable and reliable, as the reconstruction error decreases
with more sampling points. The method can capture large-scale flow structures,
which are the main features of the input data, and reconstruct small-scale fea-
tures. The method works well with fewer modalities, indicating its effectiveness
and efficiency.

In addition, MLP networks outperform CNNs in flow field reconstruction, as
they can capture global information and correlations between adjacent points
in flow fields, which are affected by complex physical processes. MLP networks
also have shallow depths, which help avoid vanishing or exploding gradients
that affect the flow field generator and can prevent overfitting by adjusting the
network depth, while CNNs may suffer from overfitting due to insufficient data.

5 Conclusions

We presented a method based on a mode decomposition autoencoder for global
flow field reconstruction, using two autoencoder-based neural networks to recover
high-fidelity flow fields from sparse measurements with any number and location
of sensors and a limited number of modes. The method requires only one training
session and is robust to different sampling situations. We applied our method to
a NOAA sea surface temperature dataset and 2D flow around a multi-cylinder
array in OpenFOAM and compared it with POD, POD PLUS, shallow decoder,
Voronoi tessellation, and GPOD methods using the L2 norm of the error. Our
method achieved lower errors than other methods and could provide accurate
reconstructions with fewer modes. Our code is available at https://github.com/
qiujiyan/reconstruction-nonlinear.
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Abstract. Thanks to the development of Generative Adversarial Net-
works (GANs), StyleGAN2 can generate highly realistic images by
inputting a latent code and then editing them in the latent space. Disen-
tangled image editing is crucial, where the goal is to change the desired
attributes of an image while keeping the other attributes intact. As a
solution, we introduce the StyleDisentangle framework for image edit-
ing. The fundamental concept of StyleDisentangle is to define attributes
through two distinct sets of information: semantic segmentation coordi-
nates - identifying the region in the image related to the attribute, and
latent code coordinates - identifying the dimensions related to attributes
in latent code. By utilizing these two distinct sets of coordinates, we can
precisely determine the position of each attribute within the attribute
editing space, resulting in disentangled image editing. We conducted
extensive experiments to demonstrate the effectiveness of our method
on multiple datasets and additionally compared our results with state-
of-the-art methods.

Keywords: Computer Vision · Generative Adversarial Networks ·
Image Editing

1 Introduction

In recent years, the development of Generative Adversarial Networks (GANs)
has made significant progress in high-fidelity generation modeling [2,8,11]. This
progress has also driven the development of image editing. However, in current
methods, disentangling image attributes still poses challenges [12–14]. The main
purpose of disentangled image editing [1,5,6,9] is to change an image’s desired
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attributes while keeping other attributes unchanged. Achieving this goal is not
easy, especially when attributes are naturally entangled in the real world.

Some works [5,6] use an encoder-decoder architecture to manually label mul-
tiple attributes of an image for image editing. They use a loss function for specific
attributes to encourage edits to specific attributes, rather than other attributes.
These methods require extensive manual labeling [1,9] and can only manipulate
attributes in the annotated set.

Recently, the emergence of large-scale pre-trained visual language model
CLIP [17] has provided a new solution to this problem. Due to its capabil-
ity to effectively measure the semantic similarity between images and texts,
many methods have replaced human annotations by executing various opera-
tions through text commands and CLIP-based loss [7,16,18]. However, achiev-
ing disentangled image editing remains challenging. For instance, StyleCLIP [16]
introduced three methods that require human trial and error to find the appro-
priate parameters to achieve the expected results.

To solve the problem of entangled attributes, this paper proposes a new
framework - StyleDisentangle. The framework decomposes disentangled image
editing into two subtasks. The first task is to generate semantically consistent
edits in regions relevant to the given text. The second task is to constrain
attribute changes in the image that are unrelated to the text.

StyleDisentangle describes each attribute from two perspectives: semantic
segmentation coordinates - identifying the region in the image related to the
attribute, and latent code coordinates - identifying the dimensions related to
attributes in latent code. By utilizing these two distinct sets of coordinates, we
can precisely determine the position of each attribute within the attribute edit-
ing space. Within the semantic segmentation region, StyleDisentangle employs
a CLIP-based semantic consistency loss that encourages changes to the latent
code’s related dimensions to perform editing tasks. Conversely, outside the
semantic segmentation region, StyleDisentangle uses image consistency loss and
keeps the latent code’s unrelated dimensions unchanged to perform constraint
tasks. Our method can be applied to any StyleGAN2 pre-trained model. We
have verified our method’s effectiveness on several datasets and compared it
with state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 discusses related work
on Generative Adversarial Networks and latent space manipulation. Section 3
presents the framework of StyleDisentangle. Section 4 conducts ablation exper-
iments and comparison experiments with other methods, and Sect. 5 concludes
the paper.

2 Related Works

2.1 Latent Space Manipulation

Latent Space Manipulation refers to the manipulation of the latent space in
order to modify generated images or create new ones. Latent Space Manipula-
tion can be classified into two categories: supervised and unsupervised methods.
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Supervised methods require manual labeling of some attribute tags in order
to control the variation of the latent space. Some well-known methods in this
category include InterfaceGAN [19] and HiGAN [10]. InterfaceGAN maps the
given attribute tags directly to the vector representation of the latent space
through an end-to-end process, while HiGAN introduces an additional attribute
classification task during training to better learn specific attribute information.
Unsupervised methods focus on the study of the generator’s latent space vector
in the GAN model to achieve control over the generated images. Representative
methods in this category include GANSpace [9] and SeFa [20], where the former
applies Principal Component Analysis (PCA) to the randomly extracted inter-
mediate latent vectors of BigGAN and StyleGAN models and the latter directly
optimizes the intermediate weight matrix of the GAN model in a closed form.

2.2 Text-Based Image Manipulation

The goal of text-based image editing methods is to generate images that contain
visual attributes corresponding to a given text input without altering irrelevant
attributes. Among these methods, TediGAN [23] utilizes the inversion module
of StyleGAN to invert real images and learn the correspondence between visual
and language attributes. ManiGAN [15] employs a special data structure called
manifold-aligned image-language embedding (MAILE) for bidirectional mapping
between images and text. Most other methods use the joint text-image model
CLIP to accomplish text-based image manipulation. CLIP is a multimodal con-
trastive learning framework with two encoder modules aimed at mapping image
and text pairs to the same embedding space. Recent works such as StyleCLIP
[16] utilize CLIP for image manipulation.

3 Methodology

3.1 Overview

The generator network G(.) in GAN generates an image starting from a latent
code w ∈ W+, i.e., X = G(w), and the semantic editing of the image is done by
moving its latent code along a specific direction:

G(wedit) = G(w + λn) (1)

where λ controls the intensity of the change, and the latent direction n deter-
mines the semantic of the edit.

Our objective is to find an editing direction n, which can yield semantically
meaningful edits in regions of the image relevant to the given text, while also lim-
iting changes to image properties not associated with the text. To achieve this
goal, we propose StyleDisentangle, whose process is illustrated in Fig. 1. Our
model consists of two main parts: semantic segmentation coordinate calcula-
tion (green area) and latent code coordinate calculation (yellow area). Semantic
segmentation coordinates are obtained from a semantic segmentation network,



StyleDisentangle: Disentangled Image Editing Based on StyleGAN2 289

Fig. 1. Overview of StyleDisentangle Structure. Four different types of editing are
shown in the figure. Among them, hairstyle editing and hair color editing have the same
semantic segmentation coordinates, but different latent code coordinates. Mouth size
editing has the same semantic segmentation coordinates and latent code coordinates,
but different editing directions. (Color figure online)

with different target properties utilizing masks from different regions. Latent
code coordinates correspond to the latent vector dimensions of target properties
in the process of image generation. We will introduce the attribute coordinates
and attribute editing space in Sect. 3.2, and then clarify the computation process
of the loss function in Sect. 3.3.

3.2 Attribute Coordinates

Semantic Segmentation Coordinates. Semantic segmentation coordinates
refer to a set of regions on the image plane that are relevant to the edit. In
our experiment, we pre-trained a semantic segmentation network to divide the
human face into 20 parts. The expression of semantic segmentation coordinates
is as follows:

Csem = {r|r ∈ Qedit} (2)

Where Qedit is the preset segmentation label.
For example, in the process of editing the mouth, the semantic segmenta-

tion coordinates include three parts: the upper lip, the lower lip and teeth. In
our experiment, the corresponding segmentation results of these three parts are
11,12,13, that is, CMouth

sem = {11, 12, 13}.
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Fig. 2. Latent code coordinate determination experiments. For each subgraph, the
abscissa is the dimension of the latent code w, the ordinate is the difference between
the optimized latent code and the original latent code, and the dimension with the
highest peak value is the latent code coordinate of the corresponding attribute.

Latent Code Coordinates. Latent code coordinates are latent code dimen-
sions associated with target attributes. Taking StyleGAN2 as an example, the
18 dimensions of w ∈ W+ affect different resolution levels during the image
generation process. As the image is progressively generated from resolution 42

to resolution 10242, each resolution layer is influenced by both dimensions of w.
Corresponding to the coarse spatial resolution (42−82), w controls the high-level
information of the image, such as pose, hairstyle, face shape; corresponding to the
w dimension of the medium resolution (162 −322), it controls smaller scale facial
features, mouth opening/closing. Finally, the w dimension corresponding to the
resolution (642 − 10242) mainly controls the color scheme and microstructure.
For example, the semantic segmentation coordinates of hairstyle and hair color
are the same, because they are in the same region of the picture, but hairstyle
and hair color are affected by different dimensions of w differently, that is, the
coordinates of Latent code are different.

The latent code coordinate is the w dimension corresponding to the target
attribute, and its specific expression is as follows:

Clco = {l|l ∈ Kedit} (3)
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Where Kedit is the latent vector layer related to the target attribute, and
the number of latent vector layers of different generators may be different. To
determine the latent code coordinates of different attributes, we randomly gen-
erate a batch of images G(w) (64 in our experiments), and for a given text t, we
directly optimize the latent code by the following formula:

arg min
Δw∈W

DCLIP (G(w), t) (4)

Where DCLIP is the joint text-image model CLIP to measure the similarity
of text and image. By taking the average of the difference between the optimized
latent code and the original latent code, we can get the latent code coordinates
of different attributes. As shown in Fig. 2, the ninth layer of the latent vector has
the greatest impact on hair color, that is, the hair color latent code coordinate
is CHairColor

lco = 9. Similarly, according to the results, we can get CHairStyle
lco =

CMouthSize
lco = 5, CGender

lco = 7, CEyesSize
lco = 8.

3.3 Objective Function

After obtaining the semantic segmentation coordinates through the semantic
segmentation network, we can obtain the attribute target region mask, denoted
as M. In the experiments, M is the binary pixel mask. On this basis, we use the
following formula to extract the original image target region and out-of-target
region for subsequent editing.

Ioutorg = xorg � (1 − M), Ioutedit = xedit � (1 − M) (5)

where Ioutorg and Ioutedit represents the text-independent region of xorg and xedit,
and “�” refers to the element-wise multiplication operation.

Based on the obtained text irrelevant regions, we introduce non-target region
loss,

Loutside = d(Ioutorg , Ioutedit) (6)

Non-target region loss makes the target image xedit consistent with the orig-
inal image xorg outside the target region, where d represents the similarity mea-
sure of the image, which is the sum of L2 pixel difference and LPIPS. With the
help of CLIP’s ability to measure text and image similarity, we define the target
region loss as:

Linside = DCLIP (Iinedit, t) (7)

Where t is the text prompt. Additionally, we also employ the identity loss:

LID(s) = 1 − 〈R(G(w0)), R(G(wedit))〉 (8)

An identity network (e.g., ArcFace [4] in the case of face recognition) denoted
as R, and a cosine similarity computation, represented by 〈·, ·〉. The purpose of
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the identity loss is to avoid changes to irrelevant attributes. To achieve our
research objectives, we aim to solve the following optimization problem:

arg min
w∈W

λinsideLinside(w) + λoutsideLoutside(s) + λIDLID(s) (9)

Where λinside, λoutside, and λID are the loss coefficients of Linside, Loutside,
and LID, respectively. We only retain the dimension changes corresponding to
the latent code coordinates, while keeping the other dimensions consistent with
the original latent code w0, to obtain the final latent code wfinal:

wfinal =

{
[w0]i + α([wedit]i − [w0]i) if i ∈ Clco

[w0]i otherwise
(10)

Where α is the editing strength. The final image G(wfinal) can be generated
by using the generator.

4 Experiments

We conducted evaluations on the FFHQ (260,000 images) [11], LSUN Car
(260,000 images) [24], and AFHQ Dog (10,000 images) [3] datasets. We also
compared our method with state-of-the-art text-based manipulation methods,
including TediGAN [23], ManiGAN [15], and StyleCLIP [16]. Next, we discuss
our experimental setup and present results of several StyleGAN2 models.

4.1 Experimental Setup

For manipulation experiments on real images, we use the e4e [21] method to
obtain its latent code in W+ space. We set the coefficient λCLIP and λimg to
1 for all experiments, while the coefficient λid is assigned a value between 0.1
and 1, depending on whether the character’s identity is meant to change. For
manipulations where the identity is significantly altered, such as gender change,
a lower identity loss coefficient is used. A single 3090 RTX GPU is employed
for our experiments. For the comparison algorithms, we use their official public
implementation.

4.2 StyleDisentangle Manipulation Results

Our method is capable of editing in various domains. Figure 3 shows the experi-
mental results of our model on the FFHQ dataset, where the last row is the opera-
tion on real images. Our algorithm achieves good disentangled editing results. For
example, in the mouth size editing experiment, our algorithm can only change
the size of the mouth without affecting other attributes (such as eyes) in the
picture, which can be effectively distinguished from the “laugh”-driven editing
results. For attributes that are easy to interact with each other, such as hair
color and hairstyle, our method can also find out their respective precise editing
directions. Figure 4(a) shows our experimental results on the AFHQ dog dataset,
and Fig. 4(b) shows the experimental results on the LSUN car dataset.
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Fig. 3. A variety of manipulations on StyleGAN2 FFHQ model. Rows 1–4 illustrate
manipulations performed on randomly generated images, and the last row depicts
manipulations performed on real images, The text prompts used for each manipulation
are located below each column.

4.3 Comparison with Text-Guided Methods

We compare our method with the state-of-the-art text-driven manipulation
methods StyleCLIP, TediGAN, and ManiGAN. StyleCLIP provides three dif-
ferent methods, namely StyleCLIP-LO, StyleCLIP-LM and StyleCLIP-GD. For
comparison, we use a StyleGAN2 model trained on FFHQ with a different set
of text cues.

Qualitative Comparison. Figure 5 shows the qualitative comparison results.
For the “Open Mouth” prompt, our method not only opens the character’s mouth
but also ensures no change in other attributes. Meanwhile, other algorithms will
affect areas unrelated to the text prompt, such as TediGAN causing changes
in the character’s eye area. For the “Donald Trump” prompt, our method and
StyleMC generate some visual features corresponding to the text prompt, such
as golden hair, squinted eyes, and pursed lips. For the “Short Hair” and “White
Hair” prompts, our algorithm achieved independent manipulation of a specific
attribute, i.e., changing hairstyle without changing hair color and changing hair
color without changing hairstyle, whereas other algorithms did not achieve this.

Quantitative Comparison. As shown in Table 1, we used five important eval-
uation metrics to quantitatively evaluate the results of our model. These met-
rics include the Inception Score (IS) and Fréchet Inception Distance (FID) for
measuring image generation quality, the LPIPS image perception loss, and the
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Fig. 4. (a) Edits on the AFHQ Dog. (b) Edits on the LSUN Car. The input images
are located on the left-hand side, and the text prompt utilized for each manipulation
is located below each column.

authenticity, text-image consistency, and attribute preservation degree of the
generated images obtained through user evaluation. In the user study, we pro-
vided 20 workers with 10 images from each method, all of which were edited
based on the same text prompts. We asked the workers to judge the seman-
tic accuracy, authenticity, and preservation degree of other attributes unrelated
to the text in the edited images. For each evaluation metric, the workers were
asked to rate the images on a scale of 1–10, with 10 indicating the most accu-
rate/authentic/highest degree of preservation. Our algorithm achieved the best
results

Table 1. Quantitative Comparison result. We use IS, FID, LPIPS, accuracy (Acc),
realism (Real), and other attribute retention degrees (Rete). ↓ means the lower the
better while ↑ means the opposite.

Method IS↑ FID↓ LPIPS↓ Acc↑ Real↑ Rete↑
StyleCLIP-LO 7.33 40.36 0.51 7.3 7.2 7.1
StyleCLIP-LM 6.16 48.35 0.49 6.2 7.3 8.1
StyleCLIP-GD 7.67 43.56 0.48 7.5 8.3 6.9
TediGAN 5.35 36.18 0.69 7.4 7.3 5.2
ManiGAN 4.16 68.35 0.71 6.2 7.3 5.1
StyleDisentangle with Csem 5.65 46.38 0.51 6.9 7.5 7.2
StyleDisentangle with Clco 4.54 50.22 0.54 7.6 7.9 6.4
StyleDisentangle with BigGAN 8.14 33.66 0.65 8.4 8.3 8.6
StyleDisentangle with style space 8.54 31.66 0.39 9.3 9.3 9.7
Ours 8.68 30.98 0.40 9.2 9.6 9.7
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Fig. 5. Qualitative comparison results. The leftmost side of each subplot is the input
image, and the text prompt used to manipulate the image is located above.

4.4 Ablation Studies

Our model achieves disentangled editing by determining the unique position of
attributes in the editing space based on semantic segmentation coordinates and
latent code coordinates. In this section, we name the model that only uses seman-
tic segmentation coordinates as “StyleDisentangle with Csem” and the model that
only uses latent code coordinates as “StyleDisentangle with Clco”. Meanwhile,
although BigGAN does not have a built-in hierarchical control mechanism like
StyleGAN2, it has been proven that modifying the latent code of BigGAN can
produce behaviors similar to StyleGAN2 [9]. Thus, we name the model that uses
BigGAN as the backbone generator network as “StyleDisentangle with BigGAN”.
All the above ablation algorithms use StyleGAN2’s W+ latent space. A study
[22] pointed out that StyleGAN2’s style space has better disentanglement charac-
teristics than W+ latent space. We name the ablation model for editing in style
space “StyleDisentangle with style space”. In this section, we conduct ablation
experiments to verify the significance and effect of each part of StyleDisentangle.

The quantitative experimental results are shown in Table 1. Both “StyleDisen-
tangle with Clco” and “StyleDisentangle with Csem” produced poor experimen-
tal results, indicating that using only one coordinate is insufficient to achieve
effective disentanglement control. The results generated by “StyleDisentangle
with BigGAN” are also inferior to the model framework that uses StyleGAN
as its main generator network, which benefits from the hierarchical characteris-
tics of the StyleGAN generator, enabling better decoupling at the Latent code
level. “StyleDisentangle with style space” produces similar results to our pro-
posed model, with slight advantages in some indicators. But W+ space-based
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models have a more intuitive interpretation (Fig. 2), and latent code coordinates
in W+ space are easier to record and convenient for next editing.

5 Conclusion

We propose a new disentangled image editing algorithm, StyleDisentangle, which
utilizes two sets of information to describe the attributes: the first is the seman-
tic segmentation coordinates of the attribute corresponding to the region in the
source image; the second is the latent code coordinates of the attribute corre-
sponding latent code dimension. By using these two coordinates, we can locate
the unique position of each attribute in the attribute manipulation space, dis-
tinguish different attributes, and achieve attribute disentanglement. Extensive
qualitative and quantitative comparisons demonstrate that our method outper-
forms existing methods in terms of semantic accuracy, preservation of irrelevant
attributes, and image realism. Our method is affected by biases in GAN, mak-
ing it difficult to add wrinkles to a child’s face or apply makeup to a male face.
At the same time, like other image editing algorithms, our framework is also
confronted with the issue of being misused by malicious actors.
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Abstract. Video summarization has become one of the most effective
solutions for quickly understanding a large amount of video data. Video
properties such as importance, diversity, representativeness and storyness
have been widely adopted for summarization based on kinds of features of
video frames. To fully exploit these properties, in this paper we propose
a property constrained video summarization framework to output fixed-
size summaries based on the concept of regret minimization which is
popular in the database community for solving multi-criteria decision
making problems.

Keywords: Video summarization · Multiple properties · Regret
minimization

1 Introduction

With the exponential growth of video hosting platforms and social media-sharing
websites, users are often overwhelmed when facing numerous videos and increas-
ingly inclined to get information quickly through videos in fragmented watching
time. To identify the informative frames in a video, various properties are uti-
lized to generate summaries, such as importance, representativeness, diversity,
and storyness. However, it is not easy to take full advantage of all these prop-
erties [5]. The following issues still remain: (1) Enough spatial-temporal feature
information should be extracted and combined [10]. (2) Training based mod-
els are always with a high cost, and non-guaranteed performance [2]. (3) It is
impossible to find a summary satisfying every user due to the subjectivity in
evaluating a summary [11].

In this paper, we propose a property constrained video summarization frame-
work to output summaries with fixed-size keyframes. Our framework can com-
bine kinds of feature information, and then find a summary satisfying every user.
To avoid the drawbacks listed above [2,5,11] without any training, we borrow the
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idea of the regret minimization query [8] in the database community which can
return a fixed-size result set from a multidimensional dataset without knowing
user’s preference to each dimension. As to the video summarization, in most sce-
narios, the preferences for different properties of a frame are difficult to specify.
Thus, in the proposed framework, the properties of each frame are extracted to
form a multidimensional point set and carry out the regret minimization query,
which achieves great success in database area, to identify the representative sub-
set to obtain the summary of a video. Experiments verify the effectiveness and
priority of the proposed framework.

2 The Property Constrained Video Summarization
Framework via Regret Minimization

In this section, we detail our property constrained video summarization frame-
work via regret minimization.

2.1 Constructing the Candidate Frame Set

It is known that the neighboring frames are very similar. Thus it is wasteful and
unreasonable to calculate all scores for all frames since the similar frames only
need to be considered once. One common way to do this is to select the repre-
sentative frames by clustering or dictionary learning to improve the efficiency.
However, the selection of cluster centers or dictionary elements is not always
stable and effective. To solve this issue, the following preprocessing steps are
designed to construct the candidate frame set.

Removing Meaningless Frames. Before selecting the candidate frames, we
set the thresholds for the handcrafted features such as colorfulness, edge distri-
bution and contrast, etc., and the probability that a frame is a transition frame
to avoid selecting meaningless frames.

Obtaining Boundary Representative Frames. Since the shots are impor-
tant components of a video, the shot boundary frames are first identified to
represent the shots which plays an important role in improving the accuracy of
generating edited video summaries. TransNetV2 [9] is also used to predict the
probability of each frame being shot boundary or being transition. We want all of
the shot boundary frames of abrupt transitions rather than gradual transitions.

Obtaining Block Representative Frames via Block Sparsity.
The block sparsity idea from Ma et al. [7] is borrowed which is different from

the clustering method. A similar regression model in [4] is used to select the
block representative frames, which includes following features: motion informa-
tion, colorfulness, representativeness, and edge distribution. Here, the motion
information is added into the model to find the block representative frames,
because users prefer to choose a stable frame as a keyframe, and it can highly
represent the frames neighboring it.
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First, we divide the video into uniform multiple video blocks at a fixed inter-
val. After that, we focus on the selection of video frames within the blocks. To
find the best frame of a block which is stable enough, colorful, representative,
and edge clear, we use following functions to measure them: a) The stability
function S(·) to calculate the motion information. b) The colorfulness function
C(·) to compute the colorfulness. c) The similarity function L(·) to calculate the
similarity. d) The edge function E(·) to calculate the edge distribution of the
frame.

As what we want is the most stable frame, we increase the ratio of motion
information, and according to [4], we set the ratio of our weights to 8 : 2 : 2 : 1.

Generating the Candidate Frame Set. The block representative frames of
all frame blocks are merged with the boundary representative frames to obtain
the candidate frame set of the video. Meanwhile, since it is with high proba-
bility that there exist highly similar frames between candidate frames, we use
the local similarity inhibition [12] to remove redundant frames which penalizes
the simultaneous selection of neighboring similar frames by assigning a small
weight to improve the diversity of the summary results. And we calculate the
similarity between neighboring summary candidate frames based on the pHash
difference [3]. Finally, we get a sequence of summary candidate frames with low
redundancy.

2.2 Transforming to a Multi-dimensional Point Set

The frame candidate set obtained in the previous section is representative with
low redundancy by block partitioning and similarity inhibition where a stable
frame is selected from a frame block. Here, we do not consider the storyness
property since the impact of storyness on the summary is usually insignificant,
e.g., only 3% weighting for raw videos and 5% weighting for edited videos in
[6]. Thus, we only consider it after we get an elementary summary and use
it to improve the final summary quality. Besides above-mentioned properties,
the importance and diversity properties are dominant for video summarization,
especially the importance property. Therefore, in this section, we consider the
scores of the entities of the importance property like object saliency, tracks,
colorfulness, quality, and the score of the diversity property of frames. All the
scores are normalized to the interval [0, 1] and the higher value means the better.
Finally, the 5-dimensional scores of each candidate frame are obtained.

2.3 Generating Keyframes via the Regret Minimization Query

The 5-dimensional scores of each candidate frame can be considered as 5 dimen-
sions of a point in a space. Thus, the candidate frame set

can be considered as a 5-dimensional point set P. The aim of our video sum-
marization task is to find k keyframes to represent the whole video satisfying
all users’ preferences, i.e., our video summarization problem has been trans-
formed into a multi-criterion problem. In the database community, the three
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useful tools to solve the problem are the top-k query, the skyline query and
the regret minimization query [8]. Among above tools, only the top-k query
and the regret minimization query can output a fixed-size summary while the
skyline query output a summary with uncontrollable results which increases
exponentially with dimensionality. For the top-k query, we must know the users’
preferences, i.e., the preferences expressed by the weights in different dimen-
sions should be provided. However, different users may have different preferences
among the dimensions. Based on above analysis, we find the regret minimiza-
tion query is able to output fixed-size summaries with unknown preferences.
Generally, each user has her/his own preference function f which is called the
utility function for the regret minimization query, and all the utility functions
of the users compose a utility function space F . Formally, a utility function f
is expressed by f = 〈f [1], f [2], · · · , f [d]〉 for a d-dimensional point set P where
f [i] ∈ R

+ and
∑d

i=1 f [i] = 1. A multi-dimensional point p ∈ P is with the form
p = (p[1], p[2], · · · , p[d]). The preference score or the utility of p under the utility
function f is their production expressed as

f(p) =
d∑

i=1

f [i] · p[i]. (1)

Next, we define gain to capture the utility under f over a point set instead
of only a point. Assume a summary with k keyframes selected from the point set
P is denoted as S. The gain of S under f is expressed by g(S, f) = maxp∈S f(p).
Further, the regret can be defined by rP(S, f) = g(P, f)− g(S, f) and the regret
ratio is defined by

rrP(S, f) =
rP(S, f)
g(P, f)

. (2)

The definition of regret ratio is reasonable since we use a summary S to
represent the whole video denoted by P. The value expresses how a user is
unsatisfied when she/he only sees the summary expressed by S instead of the
whole video P. Obviously, the smaller value of the regret ratio, the better for
the summary can fully delegate the whole video.

At length, we provide the notion of the maximum regret ratio (mrr) as fol-
lows:

mrrP(S,F) = sup
f∈F

rrP(S, f). (3)

If the utility space F can be discretized to a finite set of utility functions,
the maximum regret ratio can be expressed by:

mrrP(S,F) = max
f∈F

rrP(S, f). (4)

The maximum regret ratio is to maximize the regret ratio over the worst case
which guarantees the happiness of all users. After introducing the notion of max-
imum regret ratio, the aim of video summarization at this stage is to identify a
point set S satisfying the size constraint, i.e., |S| ≤ k. The process in the database
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community is called the execution of a regret minimization query. It is obvious
that identifying a size-k set S from the whole point set P is an NP-hard problem
since there are Ck

n combinations needed to evaluate their maximum regret ratios
where |P| = n. Fortunately, the state-of-the-art approximate algorithm Sphere
[13] with nearly optimal mrr has been proposed to solve our problem. In our
experiments, we adopt the Sphere algorithm for the regret minimization query
to compute S effectively and efficiently.

2.4 Adding Keyframes by Storyness

The Sphere algorithm for the regret minimization query may return a point set
whose size is less than k. This is because the algorithm will not add any point to
the result set when the maximum regret ratio reaches 0. To further improve the
quality of the output summary, we exploit the storyness property which ensures
that frames in the summary are distributed uniformly over the time sequence
and form a smooth storyline where the summary content is easy to understand.
Specifically, to ensure the output summary to tell a good story, we find the
maximum time index interval in the summary frames and take the middle frame
of the interval as the keyframe and add it to the result summary.

Table 1. Comparison of the algorithms under different metrics.

Algorithm Precision(%) Recall(%) F-score(%) Redundancy(%) nk

OVP 43.21 48.41 43.10 2.81 9.70
DT 35.51 26.71 29.43 4.05 6.20
STIMO 34.73 40.03 35.75 2.70 10.00
VSUMM 47.26 42.34 43.52 1.01 7.70
SMRS 38.55 56.44 44.32 6.59 12.32
SOMP 38.51 61.41 45.44 4.28 13.90
MSR 36.94 57.61 43.39 12.03 13.36
AGDS 37.69 64.76 45.65 8.69 14.00
SBOMPc 41.40 64.27 48.46 2.78 12.58
SBOMPr 41.41 64.49 48.54 2.67 12.60
seqDPP 44.64 52.25 47.04 4.02 10.70
dppLSTM 42.67 59.40 47.91 3.17 11.80
OURS 47.51 57.99 50.59 2.62 10.84

3 Experiments

We use the dataset collected by the Open Video Project (OVP) [1]. Four quan-
titative evaluation metrics which are most commonly used in the literature,
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Precision, Recall, F-score, and Redundancy are adopted to measure our sum-
maries. We compared our method with classical and state-of-the-art methods of
video summarization listed in [7], including those based on clustering, dictionary
learning, deep learning, and others. In the comparison, the average summary
length nk was also considered as a reference. The performance of each method is
shown in Table 1. The best values of the metrics are highlighted in bold, and the
second-best ones are underlined. The method in our paper has the best F-score,
the best precision, and the second-best Redundancy among all the methods.
The method with the second-best F-score is SBOMPr, which means that it is an
efficient method of dividing frame blocks using the high similarity of temporally
adjacent frames. In terms of Redundancy, it is worth noting that the VSUMM
method, which is better than our method, has an average summary size of 7.7,
much smaller than our method’s 10.84. Hence, its summary has a low redun-
dancy at the cost of lower summary integrity, resulting in a low F-score and
unsatisfactory summary. In addition, the value of the nk metric of our method
is acceptable compared with other methods.

4 Conclusion and Future Work

In this paper, we present a new property constrained video summarization frame-
work based on the regret minimization query in the database community. The
regret minimization query is carried out to get a video summary on a multi-
dimensional dataset which is constructed from the properties of video frames.
The experimental results prove the superiority of our framework, which gets the
best performance with low redundancy. Our future work includes introducing
versatile entities of the importance property and adding more properties into
our framework to achieve better performance.
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Abstract. Keyphrase generation is a task of identifying a set of phrases that best
represent the main topics or themes of a given text. Keyphrases are dividend int
present and absent keyphrases. Recent approaches utilizing sequence-to-sequence
models show effectiveness on absent keyphrase generation. However, the perfor-
mance is still limited due to the hardness of finding absent keyphrases. In this paper,
we propose Keyphrase-Focused BART, which exploits the differences between
present and absent keyphrase generations, and performs finetuning of two sepa-
rate BART models for present and absent keyphrases. We further show effective
approaches of shuffling keyphrases and candidate keyphrase ranking. For absent
keyphrases, our Keyphrase-Focused BART achieved new state-of-the-art score on
F1@5 in two out of five keyphrase generation benchmark datasets.

Keywords: keyphrase generation · deep learning · BART Finetuning ·
generative language model

1 Introduction

Keyphrase generation is an important task that involves identifying a set of terms or
phrases that best represent themain topics or themes of a given text, having applications in
information retrieval, document classification, and summarization.Apresentkeyphrase
is such that its word sequence appears in the document with its order preserved. Present
keyphrases can be extracted from the document. An absent keyphrase is not present in
the text but relevant to the topic of the document.

Keyphrase extraction has been extensively studied [1, 6, 9]. However, extractive
methods cannot find absent keyphrases that have not appeared in the article. Recent gen-
erative methods, such as CopyRNN [5] and CatSeq [13], can directly generate candidate
present and absent keyphrases from input document representations.

BART is a pre-trained generative language model based on a denoising autoencoder
[7], which can directly perform sequence generation tasks through finetuning, which can
be applied to keyphrase generation [6].

We point out that in most of the previous work based on generative language models,
finetuning is done on present and absent keyphrases together [6]. However, we argue
that there exist considerable differences in the tasks of extracting present keyphrases
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and generating absent keyphrases, which motivates us to propose splitting the absent
and present keyphrase generation tasks into two parts, and train two different generative
models, where different hyperparameters are used for finetuning.

The main contributions of this paper are: (1) A new model Keyphrase-Focused
BART is proposed, in which two BART models are finetuned separately on present
and absent keyphrases, with different hyperparameter settings. (2) Shuffling keyphrase
lists for prompting order-independence and augmenting samples is proposed. (3) A
keyphrase ranker by a BERT cross-encoder combined with TF-IDF is introduced to
improve keyphrases generated by the BART models. (4) Our experimental evaluation
confirms effectiveness of these approaches. Our proposed Keyphrase-Focused BART
shows new state-of-the-art records on absent keyphrases, on datasets SemEval and
KP20KonF1@5.The ratio of F1@5over the previous state-of-the-art is ranging between
9 to 37%, showing a wide improvement.

2 Related Work

The following models are representative generative models, and compared against our
proposed model in our evaluations:

CatSeq [13]: An RNN-based sequence-to-sequence model with copy mechanism
trained under ONE2SEQ paradigm.

CatSeqTG-2RF1 [2]: Based on CatSeq with title encoding and cross-attention.

GANMR [10]: RL-based fine-tuning extension on CatSeq.

Fast andConstrainedAbsent KG [11]: Prompt-based keyphrase generationmethods,
with prompt created around keyword and apply mask predict decoder.

ONE2SET [12]: A sequence-to-sequence model based on transformers. ONE2SET
generates a set of keyphrases, where the keyphrase order is ignored.

ONE2SET+KPDrop-a [4]: KRDrop randomly drops present keyphrases for enhanc-
ing absent keyphrase generation.

ChatGPT [8]: The large languagemodel ChatGPT is instructed to generate keyphrases.

3 Keyphrase-Focused BART

Figure 1 shows our proposed model Keyphrase-Focused BART, which has two
generative pretrained language models finetuned separately on present and absent
keyphrases.

Language Model Separation: In the existing approaches [2, 4, 10-13] of keyphrase
generation by generative language models, just a single language model is trained
over the union of present and absent keyphrases. KPDrop [5] randomly masks present
keyphrases to be used as augmentation for absent keyphrases, where the absent predic-
tion could be enhanced when the absent and masked phrases are semantically similar.
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But keyphrases are often topically distinct each other. Also, absent phrases need to be
chosen from candidates that are vastly larger than the present phrases. The imbalanced
candidate spaces for present and absent keyphraseswill cause differences in the optimum
training processes for both types.

To resolve the above issues, we introduce an architecture in which two separated
BART models are trained independently, where one model is trained only by present
keyphrases, while the other model is trained only by absent keyphrases. Different hyper-
parameter settings are used for these BART models, to separately optimize the learning
processes for the two tasks.

Fig. 1. Model Architecture of Keyphrase-Focused BART

Shuffling and Expanding: Keyphrase lists shall be order independent. In [12], it is
mentioned that the BART model might try to generate keyphrases by considering con-
textual relationships between the keyphrases. To reduce contextualities in learning out-
put sequences, we apply shuffling on the training keyphrase lists, and add the shuffled
sequences to the training dataset.

Ranking by BERT Cross-Encoder: We formulate ranking candidate keyphrases as a
binary classification task such that the reference keyphrases are labeled as 1, otherwise 0.
The confidence score of a finetuned BERT cross-encoder [3] is is coupled with TF-IDF
score as: logScore = [

α ∗ logCross + (1 − α) ∗ log tf _idf
]
, where parameter α is set

to 0.7 in this paper. Note that TF-IDF score is not applicable for absent keyphrases.

4 Experiments

4.1 Experimental Settings

We perform experiments on the five widely-used benchmark keyphrase datasets [12]:
Inspec, Krapivin, NUS, SemEval, and KP20K. The baseline models we compared are
those listed in bold fonts in Sect. 2. Below lists variations of our model, evaluated as
ablations in the experiments:
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Basic BART: BART model finetuned on the union of present and absent key-phrases.

A-P Separate: Two BART models are finetuned on 1) present keyphrases only, with
4 training epochs, and 2) absent keyphrases only, and 8 training epochs, where more
epochs are allocated than present keyphrase model, to deal with slow convergence. The
learning rate and batch size are 1e-5 and 12, respectively, for both BART models. No
shuffling on keyphrase lists is done.

A-P Separate + Shuffle(1): A-P Separate, and shuffling phrase lists once and add new
lists into training dataset. The final dataset KP20K increased from 514,154 to 848,684.

A-P Separate+ Shuffle(2): A-P Separate, and shuffling phrase lists twice and add new
lists into training dataset. The final dataset KP20K increased from 514,154 to 1,086,979.

A-P Separate + Shuffle(1) + Rank: A-P Separate + Shuffle(1), and then ranking
by the BERT cross encoder. Its hyperparameter settings are: learning rate 5e-6, batch
size 24, and training epochs 3. Negative filtering is used which is removing correctly
predicted negatives after each epoch.

We follow [2, 4] on evaluation metrics. For present and absent keyphrases, we
use macro-average F1@5 and F1@M . F1@M takes into account all the keyphrases
generated by the model and compares them to the reference keyphrases.

The results are shown in Table 1 and Table 2. All the results of our models are
obtained by averaging four runs. The results of the baselines are from the cited papers.

4.2 Results and Analysis

Results on Present Keyphrases: From Table 1, we can see that A-P Separate that
separates the training dataset shows improves over Basic BART. By adding shuffling and
separating to A-P Separate, the F1 scores of present keyphrases are further improved
compared to using the basic BART model directly, but there is still a gap compared
to ONE2SET [12]. Then the model A-P Separate + Shuffle(1) + Rank that uses the
ranking unit by BERT cross-encoder and TF-IDF is further improving performance, and
achieving highest F1@5 result on the Inspec dataset. We find that shuffling twice is
rather falling behind of shuffling once, so we choose A-P Separate + Shuffle(1) + Rank
as our best model for present keyphrases.

Results onAbsentKeyphrases: The results on absent keyphrases are shown in Table 2.
We find that shuffling keyphrases once and expanding a dataset is showing improve-
ments of 0 – 1.0% on F1 score. The ranking unit, on the other hand, shows little or no
improvement of -0.3 to + 0.1% to the model without the ranking unit.

Overall, our Keyphrase-focused BART, with configuration of A-P Separate + Shuf-
fle (1), achieved new state-of-the-art results on SemEval and KP20K on F1@5. The
improvement of F1@5 over ONE2SET-KPDrop-a is ranging between 9 to 37%, achiev-
ing wide improvements. ChatGPT is showing highest score on Inspec, but the scores
reported in [8] are falling behind of our proposed model on the other three datasets.
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Table 1. Results on Present Keyphrases (F1-score ×100)

Inspec NUS Krapivin SemEval KP20K

Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq [13] 22.5 26.2 32.3 39.7 26.9 35.4 24.2 28.3 29.1 36.7

CatSeqTG-2RF1 [2] 25.3 30.1 37.5 43.3 30.0 36.9 28.7 32.9 32.1 38.6

GANMR [10] 25.8 29.9 34.8 41.7 28.8 36.9 - - 30.3 37.8

Fast and Constrained [11] 26.0 29.4 41.2 43.9 - - 32.9 35.6 35.1 35.5

SET-TRANS (ONE 2SET)
[12]

28.5 32.4 40.6 45.1 32.6 36.4 33.1 35.7 35.9 39.2

ONE2SET-KPDrop-a [4] 29.8 30.6 42.6 44.4 34.0 35.3 33.6 34.4 38.5 39.6

ChatGPT [8] 32.5 40.3 - 20.0 - - - 18.6 23.2 25.1

Proposed Keyphrase-Focused BART finetuned on present keyphrases

Basic BART 29.5 29.5 27.1 27.1 19.9 19.9 21.4 21.4 30.7 30.7

A-P Separate + NoShuffle 30.9 30.9 34.7 34.7 25.2 25.2 22.7 22.7 29.9 29.9

A-P Separate + Shuffle(1) 33.1 33.1 37.9 37.9 27.8 27.8 27.6 27.8 31.5 31.5

A-P Separate + Shuffle(2) 32.9 32.9 37.2 37.2 32.3 32.3 23.9 23.9 30.3 30.3

A-P Separate + Shuffle(1) +
Rank

35.8 35.8 41.2 41.2 29.0 29.0 28.3 28.3 33.7 33.7

Table 2. Results on Absent Keyphrases (F1-score ×100)

Inspec NUS Krapivin SemEval KP20K

Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq [13] 0.4 0.8 1.6 2.8 1.8 3.6 1.6 2.8 1.5 3.2

CatSeqTG-2RF1[2] 1.2 2.1 1.9 3.1 3.0 5.3 2.1 3.0 2.7 5.0

GANMR [10] 1.3 1.9 2.6 3.8 4.2 5.7 - - 3.2 4.5

Fast and Constrained [11] 1.7 2.2 3.6 4.2 - - 2.8 3.2 3.2 4.2

SET-TRANS (ONE 2SET)
[12]

2.1 3.4 4.2 6.0 4.8 7.3 2.6 3.5 3.6 5.8

ONE2SET-KPDrop-a [4] 3.2 3.2 7.4 7.4 7.2 7.2 4.6 4.7 6.5 6.6

ChatGPT [8] 4.9 5.9 - 4.2 - - - 2.1 4.4 5.6

Proposed Keyphrase-Focused BART finetuned on absent keyphrases

Basic BART 2.4 2.4 3.8 3.8 3.8 3.8 2.9 2.9 6.5 6.5

A-P Separate + NoShuffle 2.4 2.4 5.6 5.6 6.1 6.1 4.5 4.5 7.9 7.9

A-P Separate + Shuffle(1) 2.4 2.4 5.6 5.6 6.4 6.4 4.9 4.9 8.9 8.9

A-P Separate + Shuffle(1) +
Rank

2.3 2.3 5.6 5.6 6.0 6.0 5.0 5.0 8.8 8.8

5 Conclusion and Future Work

In this paper, we proposed a generative language model approach for keyphrase gen-
eration. We show that splitting the generative language model into two tasks of absent
keyphrase generation and present keyphrase extraction, and training them separately
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bring considerable performance improvements. Overall, for absent keyphrase genera-
tion, our Keyphrase-focused BART shows improvements on F1@5 by 9 and 37% on
two datasets, from the previous state-of-the-art model. In future work, we will consider
integrating prompt-based approaches for ranking candidate keyphrases.
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Abstract. Next point-of-interest (POI) recommendation is of great
importance for both location-based service providers and users. Current
state-of-the-art methods view users and POIs as unified latent represen-
tations, and model users’ transition patterns from global and local views.
However, most of them still have following limitations: 1) Ignoring user’s
dynamic behavioral intention, which is significantly influenced by current
temporal and spatial factors. 2) Insufficiently considering different activ-
ity connotations of POIs in various temporal contexts. To tackle these
challenges, we propose a novel method Dynamic-aware Heterogeneous
Graph Neural Network (DyHGN) for next POI recommendation, which
jointly learns fine-grained representations from global and local views.
In the global view, we first construct a series of dynamic-aware heteroge-
neous graphs, and design a fine-grained temporal enhanced graph neural
network to learn users’ dynamic behavioral intentions and POIs’ dynamic
activity connotations. In the local view, we propose a dynamic infor-
mation aggregation module that employs a well-designed information
enhancement layer to enhance robustness of the model. Furthermore, we
improve the attention mechanism to learn important spatio-temporal fac-
tors in users’ behavior. Extensive experimental results on two real-world
public datasets demonstrate the effectiveness of our proposed method.

Keywords: Next POI recommendation · Heterogeneous graph neural
networks · Attention mechanism

1 Introduction

In the era of information explosion, service providers are committed to devel-
oping recommender systems to alleviate information overload [1], where next
point-of-interest (POI) recommendation is one of the crucial tasks of location-
based social network (LBSN) service and has received widespread attention.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 313–326, 2024.
https://doi.org/10.1007/978-981-99-7019-3_30
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Fig. 1. A motivating example of the dynamic information in trajectories

Considering both users’ current spatio-temporal contexts and historical prefer-
ences, next POI recommendation aims to suggest the subsequent locations that
the user might be interested in [8,16].

Next POI recommendation is a challenging task since users’ present pref-
erences can be simultaneously influenced by some factors, e.g., sequential and
spatio-temporal [14]. Early studies mainly explored the impacts of sequential
and spatio-temporal factors of check-ins based on Markov chains [3] and recur-
rent neural networks (RNNs) [4]. For example, Zhao et al. [23] proposed a
RNN-based method STGCN, which designed time and distance gates to explore
spatio-temporal difference information between continuous check-ins. Recently,
with the great success of attention mechanism [18] and graph neural networks
(GNNs) [7], researchers have leveraged their natural flexible structures to model
complex relations in next POI recommendation. For instance, to confirm the
significance of non-adjacent locations and non-consecutive visits, Luo et al. [12]
proposed STAN by extending the attention mechanism with spatio-temporal
relation matrix and achieved considerable performance. Yu et al. [21] presented a
heterogeneous graph-based method NGPR, which jointly considered the impacts
of POI categories, check-in frequency, popularity and geographical distance on
modeling users’ preferences. Researchers [13] constructed homogeneous GNNs
by utilizing distance and transition relations between POIs to capture the high-
order POIs that might intrigue users.

Generally, most prior studies obtained an overall and static representation
for each user and POI separately for next POI recommendation. However, they
still have some notable limitations: 1) The dynamic behavioral intentions
of users have not been fully considered. An overall user embedding only
mirrors historical preferences, but is insufficient to reflect the dynamic behav-
ioral intentions of users in different periods. As shown in Fig. 1, Lucy tends to
study and work in the mornings, exercise in the afternoons, and socialize with
friends at leisure venues in the evenings. 2) Ignoring the dynamic activity
connotations of POIs in various temporal contexts. A static unified POI
embedding vector could not fully reflect the activity connotations in different
time slots. For instance in Fig. 1, Lucy enjoys stopping by the store in morning
to buy bread for breakfast. In this case, the store is similar to POIs such as
breakfast restaurants and coffee shops. Later in the day, after hearty exercising,
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she tends to purchase a drink in store and this time the store is close to bubble
tea shops and ice cream parlors.

To solve above problems, we propose a novel method Dynamic-aware Het-
erogeneous Graph Neural Network (DyHGN) for next POI recommendation.
Specifically, we first construct a series of heterogeneous graphs in the global
view to capture dynamic relations between user and POI at different time slots,
and utilize region and category as auxiliary information to enrich their repre-
sentations. Then we design a novel fine-grained temporal graph neural network,
which leverages flexible propagation mechanism and relation-aware graph neural
network to learn dynamic representation of each node in the graphs. In the local
view, we propose a dynamic information aggregation module which integrates
fine-grained periodic and contextual information with a well-designed robust
fusion method. Moreover, we extend the bi-attention layers by spatio-temporal
relation matrices to capture the significant temporal and spatial factors in user
behavior. Finally, we employ an attention scoring layer to score and rank the
candidate POIs.

In summary, our main contributions are as follows:

• We propose a novel DyHGN, which explicitly considers the dynamics of POI
and user representations to capture fine-grained user behavioral intentions
and different activity connotations of POIs.

• Fine-grained temporal graph neural network modeling the dynamic relations
among users, POIs, regions and categories is designed to enrich node repre-
sentations.

• We utilize a information enhancement layer to fuse periodic and contextual
fine-grained information, and improve the attention mechanism by capturing
spatio-temporal correlations in users’ trajectories.

• Extensive experiments on two public available datasets show that our pro-
posed DyHGN method achieves significant improvement over existing meth-
ods.

2 Related Work

Next POI Recommendation. Next POI recommendation aims to provide users
with a set of candidate POIs, where the POI that the users are most likely
to visit next will be highly ranked. Early study [3] has used Markov chains
to capture the sequential characteristics in user check-in records. Subsequently,
many methods based on RNN and its variants emerged to make full use of the
rich auxiliary information. Studies [11,23] attempted to model spatio-temporal
contextual information to explore the influence of time and space on user behav-
ior. Zang et al. [22] proposed CHA to explore the category hierarchy of POIs
to help learn robust location representations even when there was insufficient
data. Huang et at. [6] aimed to leverage social neighbor information to enhance
the performance of next POI recommendation. Limited to contiguous visits in
these RNN-based methods, study [12] started to extend attention mechanism by
spatio-temporal relation matrix in an explicit or implicit way.
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GNN-Based POI Recommendation. GNNs have gained attention in next POI
recommendation due to the natural ability to represent complex node relations.
To capture the spatio-temporal influences, GE [19] innovatively constructed four
bipartite graphs to jointly learn the semantics of POIs, regions, time slots and
POIs in a same low-dimensional space. STMG [13] aimed to learn POI-POI
relations from a global view by constructing edges based on the difference in
time and distance of check-ins. STP-UDGAT [10] constructed POI-POI relation
graphs by physical distance and transition frequency between global POIs. Con-
sidering the dynamic factors in item recommendation, Chen et al. [2] enhanced
the interpretability of recommendation by temporal meta-paths in Knowledge
Graphs. However, few works consider the dynamic activity connotations of POIs
and behavioral intentions of users affected by different spatio-temporal contexts
in location recommendation.

3 Problem Formulation

Let U = {u1, u2, ..., u|U|} denote a set of users, P = {p1, p2, ..., p|P|} denote POIs.
Each POI pi has a unique geographical coordinate tuple (loni, lati) as well as an
activity category label (e.g., Bar). We use GeoHash1 to partition the POIs into
regions, and let R = {r1, r2, ..., r|R|} be a set of all regions. C = {c1, c2, ..., c|C|}
be POI categories.

Definition 1: Check-in record. A check-in record lui
j = (ui, pz, rm, cn, tj) indi-

cates user ui has visited POI pz in region rm at timestamp tj , and cn is the
category of pz.

Definition 2: Trajectory. The trajectory of user ui is a sequence that consists of
all his/her check-in records sorted by timestamp. We transform each trajectory
into a fixed-length sequence and denote it as Sui = {lui

1 , lui
2 , ..., lui

L }, L represents
the maximum length. The trajectories of all users can be described as S =
{Su1 ,Su2 , ...,Su|U|}.

Problem: Next POI Recommendation. Given users’ historical check-in tra-
jectories S, our goal is to recommend top-K POIs for each user ui at next
timestamp t.

4 Method

In this section, we introduce the proposed DyHGN in detail, which is mainly
composed of two stages in Fig. 2. We first introduce the methodology of building
fine-grained temporal enhanced graph neural network and provide a detailed
explanation of the well-designed dynamic information aggregation module.

1 http://geohash.org/, we use precision 5, with each grid cell covering 4.9 km × 4.9 km.

http://geohash.org/
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4.1 Dynamic-Aware Heterogeneous Graphs Construction

Check-in behavior is simultaneously affected by numerous dynamic factors. For
this reason, we divide a week into |T | time slots and construct a set of dynamic-
aware heterogeneous graphs G = {G1,G2, ...,G|T |} in the global view (Fig. 2
stage1).

We map each record in S to its corresponding graph Gts by check-in time
slot ts and construct edges with seven types of relation: 1) User-POI. Edge
ei,z,ts means that user ui has visited POI pz at time slot ts, which can visually
reflect user preferences during ts. 2) POI-Region. Edge ez,m,ts indicates that
a user has visited POI pz (located in region rm) during ts. 3) POI-Category.
Edge ez,n,ts means that the activity type of the POI pz belongs to category cn,
which facilitates implicit capturing the type of activities that users are inter-
ested in during ts. 4) Region-Category. Edge em,n,ts connects region rm and
activity category cn if any user has left a check-in record at ts. This type of edge
can capture the primary activities provided by region rm. 5) POI-POI. Edge
ez1,z2,ts connects pz1 and pz2 if any user has visited both POIs during the same
period ts. 6) Region-Region. Edge em1,m2,ts exists when region rm1 and rm2

are physically adjacent, or visited by the same user during ts. 7) Category-
Category. Edge en1,n2,ts indicates a user has visited the POIs of both types
cn1 and cn2 during ts. Finally, we initialize embeddings for all nodes in each
graph. For example, the initialization embeddings for user node ui form the set
{e1

ui
, e2

ui
, · · · , e|T |

ui }, where etsui
∈ R

d and d represents the embedding dimension.

4.2 Fine-Grained Temporal Enhanced Graph Neural Network

Inspired by RGCN [15], we design a novel fine-grained network to learn nodes
embeddings in heterogeneous graphs. For each relation r, we construct a train-
able transition matrix W

(ts)
r ∈ R

d×d′
to capture high-dimensional features of

nodes, where d′ is the hidden vector dimension. Then, the message aggregation
function can be described as:

e(ts,l+1)
i = σ

⎛
⎜⎝W

(ts,l)
0 e(ts,l)

i +
∑
r∈R

∑

j∈N
(ts,r)
i

1
cts,ri

W (ts,l)
r e(ts,l)

j

⎞
⎟⎠ (1)

where e(ts,l)
j represents the raw message propagated by neighbor node j and

e(ts,l+1)
i denotes the representation of center node i at layer l + 1. N

(ts,r)
i rep-

resents all neighbors of node i under relation r, and cts,ri = |N (ts,r)
i | denotes

the normalization constant. σ(·) represents the sigmoid activation function. To
optimize our model in stage1, we design an unsupervised loss function based on
negative sampling:

L(i, ts) = −
⎡
⎣log σ

(
etsi

T · etsj
)

+
∑

n∈NEG(i,ts)

log σ
(
−etsi

T · etsn
)⎤
⎦ (2)
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Fig. 2. Dynamic-aware Heterogeneous Graph Neural Network

where etsi is the embedding of node i output by the last layer (l = K), j is the
neighbor nodes of i, and NEG(i, ts) is the set of negative samples of node i in
time slot ts.

4.3 Dynamic Information Aggregation Module

Information Enhancement Layer. To reduce the impacts of check-in time
fluctuations and the time slot division on node embedding representation, we
fuse periodic and contextual fine-grained information for each node in time slot
ts.

Fig. 3. Context fusion Fig. 4. Temporal periodicity of user
activity signals in the NYC dataset
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• Contextual Information Fusion. As shown in Fig. 3, each time slot consists of

two parts: i) A central section which exhibits a high tolerance to check-in time
jitter, and ii) Two easily disturbed end sections (e.g., splitting the check-ins at
19:59 and 20:01 into two time slots would result in significantly different node
embeddings). We define the following formula to fuse the contextual information:

etsi,(ctxt) =

⎧⎪⎨
⎪⎩

etsi if tL + Δ < t < tH − Δ
[1 − (tL+Δ)−t

2Δ ] · etsi + [ (tL+Δ)−t
2Δ ] · ets−1

i if tL < t < tL + Δ
[1 − t−(tH−Δ)

2Δ ] · etsi + [ t−(tH−Δ)
2Δ ] · ets+1

i if tH − Δ < t < tH
(3)

where t is the specific check-in time of the record, and t in time slot ts. Δ is
the disturbance-susceptible threshold. tH and tL represent the upper and lower
bound time points of ts. ets−1

i and ets+1
i represent the embeddings of node i

in last and next time slots. etsi,(ctxt) denotes the representation of node i after
context information fusion.
• Periodic Information Fusion. The activity patterns of users exhibit pronounced

periodic behavior as shown in Fig. 4. Accounting for this feature, we fuse the
periodic information as follows:

etsi,(peri) =
1

|WK(ts)|
∑

tn∈WK(ts)

etni (4)

where WK(ts) is the set of time slots within the week that are in the same
period as ts.

Then, the final expression of node i is etsi = μ·etsi,(ctxt)+(1−μ)·etsi,(peri), where
the parameter μ serves to balance the contextual and periodic information.
• Local Information Aggregation Output. For a check-in record lui

j =

(ui, pz, rm, cn, tj), we first project time tj to the corresponding time slot ts, and
obtain the embedding vector ts. Then, we apply the above information enhance-
ment operations to four types of nodes, yielding vectors uts

i , pts
z , rtsm and ctsn .

The final representation of lui
j is:

aui
j = FFN(Concat(uts

i ,pts
z , rtsm, ctsn , ts)) (5)

where FFN(·) is a feed-forward network and Concat(·) represents the concate-
nation operation on the corresponding embeddings. Then, the embedding of the
history trajectory sequence Sui can be represented as E(hist) = [a1,a2...,aL] ∈
R

L×d.

Spatio-Temporal Self-Attention Layer. Inspired by STAN, we improve the
attention mechanism by integrating the spatio-temporal relation information
between check-in records. We first define spatio-temporal relation matrices as
follows: {

T
(hist)
m,n = ψ(Δtm,n)

D
(hist)
m,n = ψ(Δdm,n)

(6)
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where m and n represent any two check-ins in trajectory Sui . Temporal weight
matrix T

(hist)
m,n ∈ R

L×L and Δtm,n = |tm − tn|. Spatial weight matrix D
(hist)
m,n ∈

R
L×L and Δdm,n = Haversine(lonm, latm, lonn, latn)2. Decay function ψ(x) =

1/log(e + x) is used to convert time and distance differences into weights.
Subsequently, we employ a spatio-temporal enhanced self-attention mecha-

nism to learn the representation E′
(hist) of historical trajectories:

E′
(hist) = softmax

(
E(hist)W

Q · (E(hist)W
K)T + Δ(hist)

TD√
d

)
· E(hist)W

V (7)

where WQ,WK ,WV ∈ Rd×d are used to project E(hist) into matrices that enable
the model to capture the pivotal elements of the input check-ins and allocate the
appropriate weight to them. Δ(hist)

TD = ρ·T (hist)
m,n +(1−ρ)·D(hist)

m,n , and ρ represents
a balance parameter. The trajectory embedding E′

(hist) = [a′
1,a

′
2...,a

′
L] ∈ R

L×d.

Prediction and Optimization. Considering the distance between each can-
didate POI pk and each history POI pn that ui has visited, we denote spatial
matrix as D

(cand)
k,n = ψ(Δdk,n) ∈ R

|P|×L. And we denote the temporal matrix

T
(cand)
k,n = ψ(Δtk,n) in view of the difference between the current time tk and

each historical check-in time tn. Similarly, we have the candidate spatio-temporal
matrix Δ(cand)

TD .
When ui generates a recommendation request at tk (in time slot ts),

the embedding of each candidate POI can be represented as etkpj
=

FFN(Concat(uts
i ,pts

j , rtsj , ctsj , ts)). All embeddings constitute the matrix
E(cand) = [etkp1

, etkp2
..., etkp|P| ] ∈ R

|P|×d and we calculate the score of each candidate
POI by the following formula:

ŷ = Sum

⎛
⎝softmax

⎛
⎝E(cand) · E′

(hist)
T + Δ(cand)

TD√
d

⎞
⎠

⎞
⎠ (8)

where Sum(·) denotes a weighted sum at the last dimension, ŷ = [ŷ1, ŷ2..., ŷ|P|] ∈
R

|P|.
To fully leverage user check-ins, we set up a mask matrix M ∈ R

L to gradually
train from segments to the entire sequence and consider the last visible POI lui

k

as positive sample. Stage2 is optimized by minimizing the following cross-entropy
loss:

J = −
L−1∑
m=1

⎛
⎝logσ(ŷk) +

∑
j∈NEG(k,ui)

log(1 − σ(ŷj))

⎞
⎠ (9)

where NEG(k, ui) represents a set of negative samples randomly selected from
set P.

2 https://pypi.org/project/haversine/.

https://pypi.org/project/haversine/
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5 Experiments

This section presents the evaluation of the performance of our proposed DyHGN.
We begin by describing the experimental setup, followed by a comprehensive
comparison of our results against various baseline models. Finally, we provide a
qualitative explanation of our model’s intuitive interpretations.

5.1 Datasets and Preprocessing

We conduct experiments on two real-world datasets of Foursquare3: NYC and
TKY, which were collected in New York City and Tokyo from Apr.2012 to
Feb.2013 [20]. For preprocessing the datasets, we first eliminate unpopular POIs
with less than 10 visits and sort the timestamps in chronological order, then
partition them into non-overlapping sets with the first 70% visits of each user’s
sequence for training and the rest for testing. Furthermore, we divide each user’s
check-in sequence into sessions with a maximum length of L = 30. Table 1 gives
a statistical summary for each dataset.

Table 1. Statistical information of the NYC and TKY dataset

#Users #POIs #Regions #Categories #Check-ins

NTC 1,083 5,135 113 209 147,938

TKY 2,293 7,873 74 190 447,570

5.2 Evaluation Metrics

The model generates a recommended list for each user ui, which contains the
top-K POIs that the user might be interested in, in descending order. We adopt
widely used evaluation metrics Recall@K and NDCG@K to measure the correct-
ness of the top-k recommendations and the quality of the ranked list, respec-
tively. In this paper, we report the metrics with K ∈ {1, 5, 10, 20}, each metric
is calculated 10 times and averaged.

5.3 Baseline Models

To demonstrate the effectiveness of our method, we compared our framework
with the following next POI recommendation methods.1) POP: A statistical
method which recommends the most popular POIs in train dataset to users. 2)
LSTM [5]: A type of RNN, provides a means of capturing both long- and short-
term contextual influences. 3) GRU [4]: Another variation of RNN with fewer
parameters, enabling faster computation and less risk of overfitting. 4) ST-RNN

3 http://www-public.imtbs-tsp.eu/˜zhang da/pub/dataset tsmc2014.zip.

http://www-public.imtbs-tsp.eu/~zhang_da/pub/dataset_tsmc2014.zip
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[11]: The first model to consider incorporating spatio-temporal difference infor-
mation into neural networks. 5) LSTPM [17]: A novel method based on LSTM
that captures both long-term preferences with a non-local network and short-
term preferences with a geo-dilated network. 6) STAN [12]: A novel method
based on attention mechanism, proposing the innovative idea of incorporating
non-adjacent locations and non-contiguous visits into the attention mechanism.
7) HMT-GRN [9]: A novel method based on GNNs that learns user region
matrices at multiple granularity levels to alleviate data sparsity issues.

5.4 Parameter Settings

For baselines, settings are preserved as provided in the original papers. For our
DyHGN, we pad each preprocessed data to a maximum length of L = 30 and
divide the week into |T | = 42 time slots, each lasting 4 h. Set the disturbance-
sensitive threshold Δ = 1h. The weight parameter μ (balances context and
period information) is set to 0.6, while ρ (balances the spatial-temporal weight
matrix) is set to 0.4. We use the Adam optimizer with a learning rate of 3e-3,
weight decay of 1e-4, and dropout rate of 0.1. The embedding dimension is set
to d = 50 and the batch size is set to 30.

5.5 Performance Comparisons

We present the evaluation results of our proposed DyHGN and the baselines in
Table 2, where the relative improvement is computed between our model and the
best baseline.

• Our DyHGN shows improvement over all the baselines on all the metrics
for next POI recommendation. Specifically, DyHGN improves performance
over the best baselines by 2.05%–16.74% and 2.97%–7.58% for NYC and
TKY datasets respectively. The main reason is that our DyHGN could fully
consider the dynamic behavioral intentions of users and the varying activity
connotations of POIs.

• Modeling spatio-temporal correlations is crucial. Models that leveraged
spatio-temporal correlations explicitly or implicitly such as ST-RNN and
LSTPM outperform GRU and LSTM models that only captured sequential
features. Our DyHGN captures spatio-temporal information from global and
local views, providing improved performance compared to the above local-
only models. For example, on NYC dataset, our DyHGN improves Recall@20
by 18.62% against LSTPM.

• Attention-based method STAN revealed that capturing non-adjacent check-
in relations improves recommendation performance. However, it only learns
unified, static embedding vectors for users and POIs from local view. Our
DyHGN considers the user’s dynamic behavior intention and varying activity
connotation of POIs from global view, resulting in 16.37% improvement on
Recall@10 on NYC dataset.
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Table 2. Performance comparison of next POI recommendation task on two datasets

Dataset Method Recall@K NDCG@K

K = 1 K = 5 K = 10 K = 20 K = 1 K = 5 K = 10 K = 20

NYC POP 0.0069 0.0428 0.0497 0.0656 0.0069 0.0232 0.0254 0.0294

LSTM 0.1216 0.2059 0.2405 0.2681 0.1216 0.1683 0.1796 0.1865

GRU 0.1306 0.2343 0.2613 0.2937 0.1306 0.1883 0.1968 0.2049

ST-RNN 0.1251 0.2536 0.2840 0.3027 0.1251 0.1904 0.2113 0.2160

LSTPM 0.1368 0.2668 0.3193 0.3711 0.1368 0.2001 0.2135 0.2303

STAN 0.1154 0.2578 0.3317 0.4077 0.1154 0.1880 0.2122 0.2315

HMT-GRN 0.0974 0.2670 0.3382 0.4146 0.0974 0.2014 0.2172 0.2403

DyHGN 0.1396 0.3117 0.3860 0.4402 0.1396 0.2244 0.2454 0.2617

%Improv. 2.05% 16.74% 14.13% 6.17% 2.05% 11.42% 12.98% 8.91%

TKY POP 0.0268 0.0991 0.1288 0.1581 0.0268 0.0642 0.0737 0.0811

LSTM 0.1147 0.2185 0.2602 0.3063 0.1147 0.1699 0.1835 0.1952

GRU 0.1183 0.2291 0.2701 0.3144 0.1183 0.1772 0.1906 0.2017

ST-RNN 0.1210 0.2372 0.2826 0.3208 0.1210 0.1825 0.1972 0.2069

LSTPM 0.1113 0.2467 0.3089 0.3594 0.1113 0.1834 0.2036 0.2166

STAN 0.1212 0.2625 0.3245 0.3814 0.1212 0.1959 0.2160 0.2304

HMT-GRN 0.1031 0.2516 0.3364 0.4031 0.1031 0.1801 0.2235 0.2336

DyHGN 0.1248 0.2824 0.3518 0.4153 0.1248 0.2089 0.2313 0.2448

%Improv. 2.97% 7.58% 4.58% 3.03% 2.97% 6.64% 3.49% 4.79%

• GNN-based method HMT-GRN statically modeled spatial hierarchies of dif-
ferent granularity and captured the POI-POI relation from a global view,
while our DyHGN considers the auxiliary effect of geographic factors dynam-
ically and achieves superior performance on city-level datasets.

5.6 Ablation Study

To evaluate the effectiveness of different components in our model, we create
four variants by removing selected components: 1) DyHGNw/o graphs removes
the process of constructing and training the heterogeneous graphs, and directly
initializes a random embedding vector for all nodes in each time slot. 2)
DyHGNw/o enhance is the variant that ignores the information enhance layer.

3) DyHGNw/o st−hist drops the spatio-temporal weight matrix Δ(hist)
TD gener-

ated from historical trajectories. 4) DyHGNw/o st−cand removes the candidate

spatio-temporal weight matrix Δ(cand)
TD .

The results of ablation study are shown in Fig. 5. 1) DyHGNw/o graphs only
leverages the local view to optimize the fine-grained representation of all nodes
and does not perform well. We believe that only using the sequence relation
of nodes could not fully learn the large-scale fine-grained parameters. The rich
information in heterogeneous graphs is crucial in enhancing recommendation
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performance. 2) DyHGNw/o enhance shows that capturing users’ current behav-
ior intentions is easily affected by the jitter check-in time. Our well-designed
information enhancement layer greatly improves the model’s robustness by fus-
ing the information in adjacent and periodic time slots. 3) DyHGNw/o st−hist

and DyHGNw/o st−cand show that modeling the spatio-temporal information is
also vital for next POI recommendation. In summary, our proposed DyHGN
benefits from these delicately designed components.

Fig. 5. Performance comparison for variants of DyHGN on two datasets

5.7 Hyperparameter Analysis

As shown in Fig. 6, we further investigate the influence of key parameters by
varying each parameter while keeping others constant. 1) The dimension of
node embedding d has been varied from 10 to 60 with step 10. As its shown,
our model’s recommendation performance is insensitive to hyperparameter d on
the relatively small-sized dataset NYC. In TKY dataset with richer informa-
tion, low-dimensional embedding vectors may not fully capture the similarities
and differences between nodes. Overall, as d approaches 50, DyHGN performance
gradually stabilizes. 2) A series number of negative neighbors [1, 10, 20, 30, 40, 50]
have been sampled and it has been found that the training efficiency and recom-
mendation performance are better around 10 negative samples. 3) We vary the
context-period balanced parameter μ from 0 to 1 with step 0.2 and observe that
the model performs the best when μ = 0.6. In particular, we find that periodic
information makes a greater contribution to the model’s performance. 4) Our
DyHGN performs best when spatio-temporal balanced parameter ρ = 0.4.

Fig. 6. Parameter sensitivity analysis
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6 Conclusion

In this paper, we propose a novel network DyHGN for next POI recommendation.
Through the global view, DyHGN could capture dynamic POI-POI and user-POI
relations. Then the local view fully fuses fine-grained periodic-contextual infor-
mation and explores the spatio-temporal correlations on user behavior. Experi-
mental results on two datasets demonstrate the effectiveness of our DyHGN.
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Abstract. The majority of object detectors only consider the features in
region proposals, without taking the global context or the relationships
between objects into detection. Conceivably, it would inevitably limit
the improvement of performance. To tackle the problem, we introduce a
Cross-Scale Dynamic Relation Network (CSDRN) that can explore the
relationships between specific objects in an image, and its core compo-
nents include a Cross-Scale Semantic-Aware Module (CSSAM), Dynamic
Relation Graph Reasoning (DRGR), and Semantic Attention Fusion
Module(SAFM). Through the CSSAM, the crucial information in fea-
ture maps of different scales achieve semantic interaction to obtain a
cross-scale semantic feature. We activate the category knowledge in the
image and combine the cross-scale semantic feature to create a dynamic
relationship graph. Therefore, we can get more precise relation between
objects. Guided by the relation, a semantic attention is generated to
enrich the visual features. Experimental results on the COCO dataset
show that the proposed CSDRN can effectively improve the detection
performance, reaching 54.8% box AP, which is 3.9% box AP over the
baseline. Moreover, 47.6% mask AP is achieved in instance segmenta-
tion, exceeding the baseline 3.6% mask AP.

Keywords: Object Detection · Semantic Relationship · Graph
Convolutional Network · Attention Mechanism

1 Introduction

Object detection is a challenging task. Unlike image classification, it not only
requires identifying objects in an image, but also accurately locating their posi-
tion. As the cornerstone of computer vision tasks, object detection paves the way
for many more complex vision tasks [32,33,38]. Driven by deep learning tech-
niques, object detection based on the CNN framework has achieved remarkable
progress [1,4,11,12,26–28]. Recently, thanks to the introduction of the Trans-
former [30] from Natural Language Processing into the study of image processing,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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further improved the performance of detector [2,21,24,31,39]. However, these
approaches deal with each region proposals individually without considering the
relation between objects which is crucial for object detection.

When confronted with a scene, humans tend to identify and localize objects
based on their characteristics and the relationships they share. This has moti-
vated scholars to explore the process of object recognition by the human visual
and neural systems. Consequently, some researches attempted to model the
implicit knowledge of relation learned in the human brain as a way to improve
the detection capability of algorithms [15,34,35]. Due to the remarkable abil-
ity of Graph Convolutional Network (GCN) has been demonstrated in vision
tasks, several studies have introduced GCN into object detection to explore the
relationships between objects [5,16,34,36]. For example, Chen et al. [5] created
a relation graph which used labels and co-occurrence probabilities in a dataset
to construct nodes and edges for enriching visual features. However, due to the
limited number of images and uneven distribution of classes in the dataset, the
graph built based on the dataset is slightly biased. These could lead the model to
over-learn the interdependence between common objects and ignore the uncom-
mon objects with weaker correlations. Therefore, There would be false detec-
tion or missed detection, which limit the performance improvement. Beyond the
demerit, most of the existing researches have built the relation graphs based
on region proposals [15,22,34,35] or fused the obtained relationship informa-
tion into region proposals [5,10,16,17]. While the region proposals obtained by
Region Proposal Network (RPN) [28] may not be complete or correct. It may fun-
damentally leave out or incorrectly frame some targets, especially small objects,
which prevent the network from accurately utilizing the relationship information.

Therefore, to precisely mine and efficiently exploit the relation between
objects, we propose a cross-scale dynamic relation network (CSDRN) that com-
bines multi-scale feature maps and global contextually significant information.
We generate a dynamic relationship graph for each image and obtain a specific
semantic feature, which also used for region proposals generation. As shown in
Fig. 1(a), “laptop”, “keyboard” and “mouse” are highly correlated in the static
graph derived from the dataset. It is possible to recognize the partially obscured
tiny mouse. Nevertheless, “horse” has neither a clear semantic relationship with
“cat” nor any of the three objects mentioned above. In particular, “horse” is a
small detail in the image, which is simple to disregard. Instead, we take into
account all object classes of the image and feature maps of different scales to
establish a strong connection, as illustrated in Fig. 1(b). Specifically, we present
a cross-scale semantic-aware module (CSSAM) to activate crucial information in
the feature maps of different scales and enhance the correlation between objects
to obtain a cross-scale semantic feature for an image. Then, a dynamic relation
graph reasoning (DRGR) is performed on the cross-scale semantic feature to
generate a dynamic graph, and GCN is used to yield a specific object semantic
representation. Finally, a semantic attention fusion module (SAFM) is proposed
to enhance the corresponding visual features.
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Fig. 1. An illustration of the distinction between dynamic and static graphs.

We use PVT v2 as the feature extractor and Cascade mask R-CNN as a
detector to develop our CSDRN. We capture more precise semantic information
for an image and improve performance. Our contributions are as follows: 1)
In order to perceive semantic correlation between objects of different scales,
we propose a CSSAM that allows key semantics to interact between feature
maps of various scales. 2) We construct a dynamic relation graph. The nodes are
generated by high-stage features with class information. In addition, we explicitly
build a relationship matrix which use the perceived semantic information to mine
the relationship more finely. 3) To enrich and enhance the vital information in the
visual feature, we present a SAFM to achieve a better integration of semantics
and visual features with the help of attention mechanism.

2 Method

In this section, we introduce CSDRN in detail. The overall architecture of the
model is shown in Fig. 2. Specifically, the multi-scale feature maps extraction
is implemented by PVT v2 network, in which FPN performs semantic fusion
of multi-scale feature maps. CSSAM utilizes learnable convolution to accom-
plish significant information interaction between feature maps of different scales.
DRGR performs relation reasoning to obtain the specific semantic information.
SAFM well incorporate the specific semantics into the feature maps. Under the
joint of these four components, the reasoning of object relationship is completed
to enhance visual features and improve the ability of detection.

2.1 Multi-scale Features Extraction

Objects with considerable scale differences often appear in an image, while a
single-scale feature map only contains fixed-size objects and can not fully cover
objects of all scales. Therefore, we employ PVT v2 as the backbone network to
extract the multi-scale feature maps {xs}Ss=1 ∈ R

Cs×Hs×Ws , where Hs,Ws, Cs
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Fig. 2. The overall structure of CSDRN. CSDRN consists of a Multi-Scale Feature
Extraction, a Cross-Scale Semantic-Aware Module, a Dynamic Relation Graph Rea-
soning, and a Semantic Attention Fusion Module.

represent the height, width and dimension of the feature map at s stage, respec-
tively. Generally, PVT v2 has a total of four stages (S = 4), and each stage can
generate feature maps with different height and width (i.e.different scales).

Feature Pyramid Network (FPN) [23] can fuse information in feature maps
of different scales, so that each scale feature map contains more semantics. To
facilitate the reasoning of semantic relation between feature maps, we use the

fused features processed by FPN
{

x
′
s

}S

s=1
∈ R

C×Hs×Ws , where Hs,Ws rep-
resents the height and width of the fused feature at s stage, respectively. The
dimension of feature maps are unified into 256, making C = 256. In particular,
FPN down-samples the feature map at the fourth stage independently to obtain
the compressed feature map x

′
5 ∈ R

C× H4
2 ×W4

2 , which is applicable to RPN only.

2.2 Cross-scale Semantic-Aware Module

FPN just combines the features of low-resolution and high-semantic with the
features of high-resolution and low-semantic to construct a feature pyramid sim-
ply. It fails to achieve the interaction of significant information between feature
maps of different scales and is likely to produce redundant information. There-
fore, we propose a CSSAM to enable interaction of crucial semantics in feature
maps of different scales and enhance the correlation between objects. To capture
the decisive feature maps of all scales, we first flatten all pixels of the feature
maps and map them to the same dimension. Then, we use global average pooling
operation to calculate the statistics of the whole feature map, and generate the
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vector representations {x̃s}Ss=1, x̃s ∈ R
C×1. Formally,

x̃s = ϕgap(μflatten(x
′
s)) s = 1, 2, 3, 4 (1)

where ϕgap(·) represents global average pooling operation, and μflatten(·) repre-
sents dimension flatten operation. {x̃s}Ss=1 not only discards confusing informa-
tion and reduces distraction from critical data, but also contains global context
content.

The feature map at each stages is independent. Therefore, to enhance the per-
ception ability between feature maps of different scales and realize cross-scale
information interaction, we perform the following operations on the features
{x̃s}Ss=1. Firstly, we concatenate all feature representations in channel dimen-
sions. We next utilize a 1×1 learnable convolution to explore semantic features of
various scales to produce a new cross-scale semantic-aware vector XL ∈ R

4C×1.
Finally, we reconstruct the dimension of semantic vector to derive a more com-
prehensive semantic feature X̂L ∈ R

4C×N , where N represents the number of
object categories:

X̂L = ReLu(χ(ψm(
S

concat
s=1

(x̃s)))) (2)

χ(·) represents the dimension reconstruction operation, ψm(·) represents the 1×1
convolution operation, and ReLu represents LeakyReLU activation function to
smooth the feature and prevent overfitting.

2.3 Dynamic Relation Graph Reasoning

Some existing works model the global connection between objects by mining the
knowledge of datasets. Regretfully, because of the long tail distribution of the
datasets, the graph built in this manner may incorrectly identify non-existent
objects in an image and generate noise evidence. Moreover, some uncommon
objects might go unnoticed, leading to erroneous detection and degrading the
efficacy of detection. Accordingly, to accurately explore the relationships between
objects, we use the feature maps to generate a specific semantic relation graph
for an image.

Node Construction. We deploy the feature x
′
5 for semantic reasoning, enabling

the nodes to perceive more semantics. We first utilize a learnable convolution
for activating the category information to the maximum extent and obtain the
category activation feature x̂

′
5 ∈ R

N× H4
2 ×W4

2 . Secondly, to guide more correlation
characteristics, the feature x

′
5 is dimension transformed to obtain feature x

′′
5 ∈

R
4C×H4

2 ×W4
2 . Based on the feature x̂

′
5, the feature x

′′
5 selectively generates node

representation with specific category aware V ∈ R
4C×N :

V = σ((ψc(x
′
5))

T )ψt(x
′
5) (3)

where, σ(·) represents Sigmoid activation function, ψc(·) represents classifier
that activates category feature, such as learnable convolution of 1×1, and ψt(·)
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represents dimension transform operation. We select the feature x
′
5 to generate

the nodes because x
′
5 carries richer semantic information and it is a purer feature.

Edge Construction. In GCN, the adjacency matrix of a graph would serve as
the relation knowledge. We use the cross-scale semantic feature X̂L and the node
representation V to construct a object-specific semantic feature, and then com-
press the dimension by convolution operation to generate the enhanced relation
matrix E ∈ R

N×N :
E = σ(φr(concat(X̂L, V ))) (4)

where, φr(·) represents the dimension compression operation of 1-dimensional
convolution. Consequently, we get the dynamic semantic graph G(V,E).

GCN propagates information among nodes through a adjacency matrix.
Therefore, we utilize GCN to update the node representation V based on the
matrix E, and apply the residual connection to the original nodes. The detailed
update process is as follows:

V̂ = fgcn(V,E) + V = ReLu(V EW ) + V (5)

where, V̂ ∈ R
4C×N represents the enhanced semantic object representation,

fgcn(·) represents GCN, V and E are both the input of GCN, and W represents
the learnable semantic relation weight.

2.4 Semantic Attention Fusion Module

To allow the semantic feature V̂ obtained by the previous module to participate
in the generation of region proposals, we combine it with the feature map. How-
ever, the feature V̂ is similar to textual information, which is a different modality
from the visual feature. To effectively integrate these two types of features, we
propose a semantic attention mechanism that combines semantics and visual
feature to learn prominent regions. The attention value is calculated by the sim-
ilarity of each pixel in the feature map to the specific semantic representation,
and position with higher similarity may receive more score which determine the
importance of the position.

We refer to the low-rank bilinear pooling method of the Hadamard product
in [19] to calculate attention. The feature V̂ first performs a dimension reduc-
tion operation to obtain a compact semantic feature V̂1 ∈ R

C×N . Secondly, we
reshape the features V̂1 and x

′
5 to get two new features V̂2 ∈ R

H4
2 ×W4

2 ×N×C and
ẍ

′
5 ∈ R

H4
2 ×W4

2 ×N×C , and then perform the Hadamard product on these two fea-
tures to get a semantic attention feature Q ∈ R

H4
2 ×W4

2 ×N×C . Following that, an
attention factor Qa ∈ R

C×H4
2 ×W4

2 for each pixel in a specific image is calculated
by class mapping. Formally,

Qa = ν(γ(x
′
5) � ρ(φt(V̂ ))) (6)

where, ν(·) represents the category attention function, implemented with a fully
connected network. γ(·) and ρ(·) represent the reshape feature operation, φt(·)
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represents the dimension reduction operation of 1-dimensional convolution, �
represents the Hadamard product operation. Later, we perform the Hadamard
product of the attention factor and the feature x

′
5 to activate the corresponding

semantic information, and then concatenate and encode with the original feature
x

′
5 to obtain a enhanced feature map x̄

′
5 ∈ R

H4
2 ×W4

2 ×C :

x̄
′
5 = φe(concat(Qa � x

′
5), x

′
5) (7)

where, φe(·) represents the process of 1-dimensional convolutional encode.
Finally, we input the enhanced feature map x̄

′
5 into the following detector for

classification and regression.

3 Experimental Results and Analysis

3.1 Dataset and Evaluation Metrics

We assess our approach on the MS-COCO 2017 dataset. The dataset collects 80
different kinds of images, totaling around 160K. To achieve a fair comparison
with mainstream object detection methods, we adapt standard COCO average
precision (AP) metrics to quantitatively evaluate our approach. Depending to
different IOU thresholds (IOU=0.50:0.95, 0.50, 0.75) and different object scales
(large, medium, small), AP metrics could be divided more finely.

3.2 Implementation Details

We implement experiments in the MMdetection library built on the PyTorch
deep learning framework. To demonstrate the effectiveness and generality of the
suggested method, we use two kinds of backbones for visual feature extraction:
PVT v2 pre-trained on ImageNet-22K and ResNet-101 [14] trained on ImageNet-
1K. Cascade mask R-CNN serves as our baseline model. All models are trained
for 3× scheduler (36 epochs) and the batch size is set 16 by default, except for
an additional stated. For PVT v2 as backbone, we use the AdamW optimizer
with an initial learning rate of 0.0001, the weight decay is 0.5. The learning rate
is reduced by a factor of 10 at the 28-th epoch and 34-th epoch, respectively. As
for ResNet-101 is backbone, the Stochastic Gradient Descent (SGD) is used for
training, the initial learning rate is 0.02, the weight decay is 0.0001.

3.3 Main Results

The Experimental Results with PVT v2 Backbone. We compare our
results with state-of-the-arts, as present in Table 1. Our CSDRN achieves a box
AP of 54.8%, and it is 3.9% greatly higher than the baseline model. We also
report the FPS (frames per second) of models for speed comparison, and the
FPS of our model does not drop. Compare with general methods, our CSDRN
outperforms than them on all metrics. It can be simultaneously observed that our
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results are superior to the more powerful Transformer-based backbone (MViT
v2-B [21]), which reflects the excellence of CSDRN. This is attributed to the fact
that our CSDRN captures rich semantics to optimize the performance. Relation
R-CNN [5] and VFNet+KROD [16] get relational knowledge from dataset, while
our CSDRN focuses on the specific object relation in an image to produce a more
exquisite dynamic graph, so it performs better than these methods. Moreover,
our CSDRN enables the semantic information to be used in RPN to generate
more accurate region proposals. Therefore, compared to RetinaNet+PCL [9],
HCE Cascade R-CNN [6] and GRDN [36], our CSDRN has a better detection
effect. We also report the performance of CSDRN on Mask R-CNN [13]. We can
see that CSDRN improves Mask R-CNN from 44.0% box AP to 47.6% box AP,
further illustrating the effectiveness of our method.

Table 1. Comparison with state-of-the-arts on MS-COCO 2017. Prefix ’X’ denotes the
ResNeXt network, for example X-101 denotes ResNeXt-101.

Method Backbone AP b AP b
50 AP b

75 AP b
S AP b

M AP b
L FPS

General Cascade R-CNN [1] PVT v2-B2-Li 50.9 69.5 55.2 33.6 54.6 65.4 10.4
Mask R-CNN [13] PVT v2-B2-Li 44.0 66.8 47.7 27.3 47.7 58.6 8.2
RelationNet++ [7] X-64x4d-101-DCN 50.3 69.0 55.0 32.8 55.0 65.8 -
DyHead [8] X-64x4d-101-DCN 52.3 70.7 57.2 35.1 56.2 63.4 -
Deformable DETR [39] X-101-DCN 50.1 69.7 54.6 30.6 52.8 64.7 -
YSLAO [1,18] X-101-64x4d-FPN-CFG 50.1 68.6 54.5 32.7 53.7 64.3 -
Cascade R-CNN [1,21] MViT v2-B 54.1 72.9 58.5 - - - -

Relation Relation R-CNN [5] X-101-FPN 38.9 60.5 43.3 - - - -
VFNet + KROD [16] X-101-64x4d-FPN 51.2 69.7 55.6 - - - 5.7
RetinaNet + PCL [9] X-101 44.4 61.7 44.8 28.6 45.3 54.4 -
HCE Cascade R-CNN [6] X-101-FPN 46.5 65.6 50.6 27.4 49.9 59.4 -
GRDN [36] Swin-T 52.6 71.7 56.6 36.7 55.8 67.0 -
CSDRN (mask) PVT v2-B2-Li 47.6 71.4 51.9 30.1 52.5 62.8 8.2
CSDRN PVT v2-B2-Li 54.8 74.3 59.8 36.8 59.5 69.8 10.4

The Experimental Results with ResNet-101 Backbone. In addition, we
conduct experiments based on another backbone network. Our method with
ResNet-101 backbone is called CSDRN*. The comparison results are displayed
in Table 2. Our CSDRN* achieves a 45.3% box AP with an improvement of
2.5% box AP over the baseline. Compared with general detectors that concen-
trate on region proposals only, our CSDRN* achieves better performance due to
incorporate the semantic information. Furthermore, compared with Reasoning-
RCNN [34] and RetinaNet + KROD [16] that added static knowledge graphs, our
CSDRN* has superior performance. Because our CSDRN* mines the relationship
information between specific objects. Methods such as Cascade R-CNN+CODH
[37], Cascade R-CNN+SA [3] and Cascade R-CNN+HCE [6] learn the contextual
information between region proposals. Our CSDRN* not only allows the crucial
semantics of feature maps to interact, but also uses the attention mechanism
to effectively integrate semantic information into visual features. Therefore, Our
increased performance is more than theirs. And the FPS of the model Cascade
R-NN and Mask R-CNN are not affected.
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3.4 Ablation Studies

The Effect of Different Module in CSDRN. To demonstrate that each
module in our model is an integral part, we conduct the ablation experiments, as
shown in Table 3. When we only add the CSSAM to the baseline, the performance
is greatly improved (from 50.9% to 53.7% box AP). It confirms that our CSSAM
well explores the crucial semantics of each scale feature map and accomplishes
the interaction friendly. Then, we use the DRGR to mine the relation among
specific objects, and the performance is further improved. Finally, we use the
SAFM to add semantic information into visual features, so we get the maximum
improvement of 54.8% box AP. From the results of these experiments, we can
conclude that the three modules play a vital role in our model.

Table 2. Comparison with results on MS-COCO 2017 with ResNet-101 backbone.
Prefix ’R’ denotes the ResNet network, and R-101-FPN denotes ResNet-101 with FPN.

Method Backbone AP b AP b
50 AP b

75 AP b
S AP b

M AP b
L FPS

General Cascade R-CNN [1] R-101-FPN 42.8 62.1 46.3 23.9 45.4 53.6 14.5
Mask R-CNN [13] R-101-FPN 37.3 58.2 40.1 19.7 40.6 51.5 8.2
DETR [2] R-101-FPN 43.5 63.8 46.4 21.9 48.0 61.8 20
TSP-RCNN [29] R-101-FPN 44.8 63.8 49.2 29.0 47.9 57.1 9
Conditional DETR [25] R-101-FPN 44.5 65.6 47.5 23.6 48.4 63.6 -
DN-DETR [20] R-101-FPN 45.2 65.5 48.3 24.1 49.1 65.1 -
YSLAO [1,18] R-101-FPN 44.5 63.1 48.4 26.1 48.5 57.8 -
YOLOF [4] R-101-FPN 43.7 62.7 47.4 24.3 48.3 58.9 21

Relation Reasoning RCNN [34] R-101-FPN 42.9 - - - - - 13.3
RetinaNet+KROD [16] R-101-FPN 40.5 60.7 43.5 24.2 41.4 50.1 13.0
Cascade R-CNN+SA [3] R-101-FPN 44.7 63.6 48.5 25.0 47.8 57.2 -
Cascade R-CNN+CODH [37] R-101-FPN 43.5 62.6 47.2 24.9 46.2 55.3 6.0
Cascade R-CNN+HCE [6] R-101-FPN 43.0 61.6 46.9 24.6 46.6 57.4 -
CSDRN (mask)* R-101-FPN 39.2 60.5 42.4 20.8 43.4 53.9 8.2
CSDRN* R-101-FPN 45.3 65.4 49.2 26.1 48.8 56.7 14.5

Table 3. Ablation study of different mod-
ule.

Methods CSSAM DRGR SAFM AP

Baseline 50.9

CSDRN � 53.7

CSDRN � � 54.6

CSDRN � � � 54.8

Table 4. Comparison semantics between
single-scale and multi-scale.

Method Backbone AP b mask AP

Single PVTv2-B2-Li 53.5 46.8

Multi PVTv2-B2-Li 54.8 47.6

Single ResNet-101 44.7 38.9

Multi ResNet-101 45.3 39.2

The Effect of the Semantic Interaction Between Multi-scale Features.
We use single-scale semantic information to conduct experiments, and the exper-
imental results are shown in Table 4. Compared to the Cascade R-CNN baseline
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with different backbone (PVT v2 and ResNet-101), we only use the single-scale
feature map to the semantic relation reasoning, the performance of model is
boosted. It is obvious that the relational semantic information can significantly
improve the detection performance. When we consider the semantics of multi-
scale feature maps, all metrics are further increased. It proves that the interac-
tion of multi-scale semantic feature maps is beneficial to enhance the correlation
between objects, thus improving the detection performance.

The Effect of GCN Layer. To adequately mine the dependencies between
nodes and make use of relation information, we explore the impacts of different
GCN layers. We conduct experiments on Mask R-CNN with PVTv2-B2 back-
bone and train 1× schedule (12 epochs), as shown in Fig. 3. We can see that
the best performance is achieved when the layer of GCN is one. This indicates
that one layer of GCN has sufficiently exploited the correlation between nodes.
However, increasing the number of layers of GCN causes over mining and gets
some confusing information, so as to decrease the performance.

Fig. 3. The effect of GCN layers. The layer of GCN is “0” denotes that the model does
not utilize GCN.

3.5 Qualitative Analysis

The visualization of results as shown in Fig. 4. Compared with the baseline
model, our CSDRN could detect the persons who are blurred, smaller and
blocked in Fig. 4(d). Because our CSDRN mines the contextual information (traf-
fic scene) and learns the relation between the objects (“car” and “person”). In
addition, our model is more sensitive to the tiny objects, such as “bottle” and
“clock” in Fig. 4(e), “cup” in Fig. 4(f). Our model also detects the hidden “table”
in Fig. 4(f). These detection results show that our approach effectively mines
and fully exploits semantic knowledge, enabling our method to detect blurred,
small-scale and occluded objects, and getting the better results.
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Fig. 4. The prediction results of baseline and our method. The top of images are the
results of baseline. The bottom of images are the results of our CSDRN.

4 Conclusion

In this paper, to fully explore and better exploit the correlation between objects
in images to improve the performance of object detection, we present a Cross-
Scale Dynamic Relation Network that effectively mine the relation between spe-
cific objects. First, a Cross-Scale Semantic-Aware Module is proposed to achieve
the interaction of multi-scale feature maps. Second, a Dynamic Relation Graph
Reasoning captures the specific relation in an image. Finally, a Semantic Atten-
tion Fusion Module leverages the attention mechanism to make greater integra-
tion of semantic feature and visual feature. Experimental results demonstrate
that our method can successfully contribute to the detection performance and
is superior to other methods.
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Abstract. Flood forecasting is an important task for disaster preven-
tion and mitigation. Many recent researchers intend to utilize data-driven
deep-learning models to improve their prediction accuracy. Deep-learning
technology commonly assumes that the time series data is independently
and identically distributed. However, as time goes on, environmental
changes can cause the distribution of temporal data to change. Neglecting
considerations of distribution changes can lead to a decrease in prediction
accuracy. In addition to distribution changes, the accuracy of flood fore-
casting is also influenced by the spatiotemporal relationships among the
flood factors. This paper proposes a flood forecasting model based on
Distribution-Adaptive Graph Attention Networks (DAGAT). DAGAT
can extract spatiotemporal information from flood data and capture
the spatial relative importance among flood factors. In the meantime,
it also uses the distribution adaptation mechanism of the Boosting algo-
rithm to train weight parameters, enabling the reduction of distribution
differences among different segmented periods and effectively improv-
ing the accuracy of flood forecasting. Through comparative experiments,
this method’s effectiveness and superiority of this method are validated,
demonstrating the potential application value in flood forecasting.

Keywords: Flood forecasting · Distribution adaptation · Graph
Attention Networks · Data-driven model

1 Introduction

Natural disasters are public emergencies characterized by suddenness, universal-
ity, and nonconventionality [1]. Among these, floods stand out as a significant
type of natural disaster, making accurate forecasting a critical endeavor in dis-
aster prevention and mitigation strategies. With continuous research on flood
forecasting, various flood models have emerged, which can be generally clas-
sified into two main categories: physical models and data-driven models. The
data-driven techniques use machine learning methods to capture statistical and
causal relationships among hydrological variables, such as rainfall, to improve
prediction accuracy [2].
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The data-driven flood forecasting is a type of time series prediction. Deep
learning methods often assume that the time series are independently and iden-
tically distributed. However, as time progresses, the statistical characteristics
of temporal data change, leading to changes in the distribution of multivariate
hydrological time series. This phenomenon is known as time covariate shift [3],
where the distribution P (X) changes over time while the conditional distribution
P (Y |X) remains unchanged. In flood forecasting, when the flood dataset covers
a long time period, many environmental changes may occur, resulting in changes
in flood-inducing factors such as rainfall intensity and frequency (i.e., changes
in P (X)), while the conditional distribution P (Y |X) for rainfall-induced floods
remains unchanged. The specific distribution changes are illustrated in Fig. 1.
These changes are unpredictable and can adversely affect the accuracy of flood
forecasts. Therefore, we require appropriate methods to mitigate the effects of
time covariate shifts and improve the accuracy of flood forecasting. Addition-
ally, flood forecasting also needs to consider the spatial information. For example,
rainfall in upstream areas can impact downstream flow, and rainfall measure-
ments from neighboring hydrological stations exhibit a high level of correlation.

Fig. 1. The temporal covariate shift problem in flood forecasting. In the case of the
original multivariate data, taking the example of the distribution change of rainfall
overtime at one hydrological station, the distributions are different: P (A) �= P (B) �=
P (C) �= P (Test)

We propose Distribution-Adaptive Graph Attention Networks (DAGAT) for
flood forecasting. Firstly, a hydrological spatial homogeneity graph was con-
structed based on the correlation of features. Building upon this graph, a
Spatio-Temporal Graph Attention Network (STGAT) is introduced, which uti-
lizes Graph Attention Networks (GAT) [4] to learn the importance weights of
hydrological nodes. After spatial modeling, a Gated Recurrent Unit (GRU) [5] is
employed to capture the temporal dependencies between time steps. To address
the problem of multi-dimensional hydrological sequence distribution changes,
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we characterize the data distribution by splitting the training data into K most
diverse periods with large distribution gap and employ a distribution adaptive
mechanism aiming to reduce distribution mismatch in the time series and effec-
tively improve flood forecasting accuracy.

Our main contributions can be summarized in the following manner, First
of all, we successfully establish a spatiotemporal relationship model for flood
forecasting with spatial attention. Secondly, by employing a distribution adap-
tive mechanism, we reduce the distribution differences between flood data from
different periods, thereby improving the accuracy and stability of the forecasts.
Compared to other models, the advantages of DAGAT are as follows: for the
first time, we introduce the concept of distribution shift into flood prediction
and subsequently integrate spatiotemporal relational models based on this dis-
tribution shift concept. We conducted comprehensive experiments in the Tunxi
watershed, achieving the best performance compared to baseline models. This
represents a completely new exploration in the field of flood prediction.

The remainder of this paper is structured as follows. Related works are intro-
duced in Sect. 2. The specific details of our method are introduced in Sect. 3. The
experiments used to analyze and affirm the efficacy of our method in Sect. 4.
Section 5 concludes this paper and proposes future works.

2 Related Work

2.1 Data-Driven Flood Prediction Models

In recent years, with the improvement in intelligent computing, the use of data-
driven methods for flood forecasting has become increasingly common. These
methods can be broadly categorized as follows. The first category includes the
traditional statistical methods for flood prediction, such as autoregressive moving
average models [6]. The second category comprises machine learning methods,
deep learning methods being a branch of machine learning that has gained main-
stream status in flood forecasting due to its high accuracy. Common deep learn-
ing algorithms used in this field include Multilayer Perceptron (MLP) [7], Convo-
lutional Neural Networks (CNN) [8], and Recurrent Neural Networks (RNN) [9],
which offer better applicability and accuracy compared to traditional statistical
methods. Ding et al. [10] propose an interpretable spatiotemporal attention Long
Short-Term Memory model(LSTM) that incorporates an attention mechanism.

2.2 Application of Transfer Learning in Time Series

The goal of transfer learning is to leverage knowledge from a source domain to
learn in a target domain [11]. It is often used to address the problem of different
distributions between the source and target domains. The core of transfer learn-
ing is reducing the distribution differences between two domains. Distribution
mismatch also exists within time series, and transfer learning can be employed
to extract consistent knowledge from different distributions. Du et al. [3] intro-
duces a distribution-adaptive recurrent neural network (AdaRnn) to address the
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issue of covariate shift and improve prediction accuracy. However, this model
did not consider the spatial dependencies of features, making it unsuitable for
direct application in the hydrological domain. In this paper, we propose for the
first time the integration of the distribution adaptive concept with spatial fea-
ture information for flood forecasting, thereby improving prediction accuracy
and generalization.

2.3 Graph Attention Networks

With the accumulation of spatial hydrological and meteorological data, graph
neural networks have also been applied to flood forecasting. Feng et al. [12] pro-
pose a novel data-driven method that utilizes Graph Convolutional Networks
(GCN) for hydrological prediction. However, this method did not consider the
distribution changes in rainfall data, and GCN has higher computational com-
plexity compared to GAT and lacks flexibility. GAT is a recently developed graph
neural network structure that introduces attention mechanisms. Compared to
traditional graph neural network models, GAT can more accurately capture the
relationships between nodes when learning node representations, resulting in bet-
ter expressiveness and predictive performance. In this study, we apply GAT to
flood forecasting, leveraging the graph attention mechanism to adaptively com-
pute weights for different hydrological stations, thereby more accurately extract-
ing the spatial features of flood factors.

3 Methodology

This section will provide a detailed description of the proposed architecture for
flood forecasting. It is primarily composed of four modules, as illustrated in the
Fig. 2.

Fig. 2. After data processing through the ① hydrological spatial homogeneous graph
generation module and the ② hydrological distribution characterization module, the
input is fed into our established intelligent model for further processing. This model
comprises the ③ STGAT model and the ④ distribution adaptation mechanism.
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3.1 Hydrological Spatial Homogeneous Graph Generation Module

It is necessary to construct the topological structure of hydrological stations to
investigate the spatial correlation between flood factors. From a hydrological per-
spective, hydrological stations that are geographically close are more likely to
influence each other. We propose a hydrological spatial homogeneity graph con-
struction method based on the Pearson correlation coefficient to capture the cor-
relation and spatial structure between hydrological features. Equation 1 defines
the adjacent matrix Aρ of Pearson correlation coefficients between hydrological
features. The module constructs a homogeneity graph G = (V,E), where for con-
sistency in the definition, we use nodes V = {v1, v2, v3, ..., vn} to represent hydro-
logical stations, which can be rainfall stations or flow monitoring stations. The
edges E in the graph represent the strength of relationships between stations.

Aρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ρ1,j · · · ρ1,n

ρ2,1 · · · ρ2,j · · · ρ2,n

...
...

...
ρi,1 · · · ρi,j · · · ρi,n

...
...

...
ρn,1 · · · ρn,j · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The element ρi,j in the adjacency matrix represents the final correlation
between vi and vj . If the Pearson correlation is greater than the threshold value
β, we consider this edge relationship to exist. Taking into account statistical
knowledge, we set the value of β to 0.5. Based on the adjacency matrix, we
eventually form the hydrological spatial homogeneity graph G.

3.2 Hydrological Distribution Characterization Module

This module characterizes the hydrological distributions by dividing time series
into periods with different distributions. We utilize the principle of maxi-
mum entropy [13] to learn the shared distribution information of hydrological
sequences by identifying the most dissimilar periods to each other. These peri-
ods, which are the most dissimilar, are considered the worst-case scenario for
time covariate shift. We can maximize the distance between distributions of each
period by the following optimization formula so that the distributions of each
period are as diverse as possible and the learned prediction model has better a
more generalization ability.

max
0<K≤K0

max
n1,··· ,nK

1
K

∑
1≤i�=j≤K

d(Di,Dj)

s.t.∀i, δ1 < |Di| < δ2,
∑

i

|Di| = n
(2)

Here, d represents the distance metric function. In this paper, we choose
the cosine distance as our distance metric formula. δ1 and δ2 are predefined
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parameters to avoid trivial solutions, and K0 is a hyperparameter that prevents
excessive splitting. K is the number of periods we set to partition. Di refer to
the i-th segmented periods.

Our dataset includes rainfall data from multiple rainfall stations and flow
data from one flow station, which are only monitored during the flood season
each year, with approximately equal time lengths of observations each year.
To efficiently segment the multivariate time series for input, we use a greedy
algorithm to solve Eq. 2. Firstly, we evenly divide the hydrological time series
into n periods based on the flood seasons, with each flood season representing
one period. The value of n is determined by the length of the historical dataset.
Assuming the starting point of the time series is A and the endpoint is B,
we iterate through n− 1 splitting points to find a point C that maximizes the
distribution distance d(AC,CB). Once C is determined, we use the same strategy
to select another point D.

3.3 Spatio-Temporal Graph Attention Networks Module

In this module, we propose a spatiotemporal flood forecasting model based on
GAT. For hydrological stations, the degree of correlation between different nodes
varies. By utilizing GAT, we can emphasize important hydrological features
and handle the complex relationships between hydrological stations more flex-
ibly. Assuming there are N hydrological sites in the hydrological site graph,
the input of the F-dimensional feature set of the sites can be represented as
x = �x1, �x2, . . . , �xN , �xi ∈ R

F . Petar et al. [4] propose the following method to
calculate the attention coefficients of the graph neural network:

eij = �aT (W �xi||W �xj) (3)

αk
ij =

exp (LeakyReLU(eij))∑
m∈Ni

exp (LeakyReLU(eim))
(4)

In the field of flood forecasting, xi represents the feature of i-th hydrolog-
ical site, eij represents the similarity between hydrological site node i and its
neighboring site nodes, W is a weight matrix shared by all �xi, �aT is a learned
attention weight vector. αk

ij represents the attention coefficients between xi and
xj in the k-th attention head, LeakyReLU [14] is a variant of the ReLU activa-
tion function.

After obtaining the attention coefficients, the features of the neighboring
nodes are weighted and summed, resulting in the output dimension, if we only
compute attention once, it is difficult to capture all the feature information from
the neighbors at one time. Therefore, we perform K rounds of self-attention
operations, as shown in Formula (5):

�xi
′ =

K∥∥∥
k=1

σ

⎛
⎝ ∑

j∈Ni

αk
ijW

k�xj

⎞
⎠ (5)
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After extracting spatial features, the output x = �x1
′, �x2

′, . . . , �xN
′, �xi

′ ∈ RF ′

is obtained. The GAT network treats time steps as node features and performs
spatial convolution on nodes. When using the GRU , tensors need to be trans-
posed to exchange the dimension order between nodes and time steps. Transform
the output into the following formula x = �x1

′, �x2
′, . . . , �xF ′ ′, �xi

′ ∈ RN .
Combined with the GRU formula [5], the structure of STGAT is shown in

Fig. 3. �xt
′ represents the input after passing through two layers of GAT and

adjusting the dimensions. GRU has two gating units: the reset gate (rt) and the
update gate (zt). The update gate controls whether the current input should be
updated in the hidden state, while the reset gate controls whether the previous
hidden state should be forgotten at the current time step.

Fig. 3. The Architecture of STGAT

3.4 Distribution Adaptive Module

After hydrological distribution characterization, the hydrological dataset is
divided into periods with different distributions. This module learns shared
knowledge across different periods by matching their distributions. Thus, it
exhibits better model generalization ability compared to methods that solely
learn local distributions. The loss function is formulated as follows:

L (θ, γ) = Lh−pred (θ) + λ
2

K(K − 1)

i�=j∑
i≤i�=j≤K

Lda(θ, γ;Di,Dj) (6)

Here, Lh−pred (θ) represents the average loss function for computing flood
forecasts over multiple periods. The formula is presented as follows:

Lh−pred (θ) =
1
K

K∑
j=1

1
|Dj |

|Dj |∑
i=1

l
(
yj

i ,M
(
W

(
xj

i

))
; θ

)
(7)
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The expression (xj
i , y

j
i ) represents the i-th labeled segment from the period

Dj . The module W adjusts the time step weights, and l(...) denotes a loss func-
tion such as Mean Squared Error (MSE) loss. The parameter θ represents the
weight parameters during training.

Lda(θ, γ;Di,Dj) is a function designed to reduce the divergence of distri-
bution between different periods. It introduces a weight vector γ to learn the
relative importance of hidden states in the neural network. Given a period-pair
(Di,Dj), the loss of temporal distribution matching is formulated as:

Lda(θ, γ;Di,Dj) =
V∑

t=1

γt
i,jd(ht

i, h
t
j ; θ) (8)

where γt
i,j denotes the distribution importance between the periods Di and

Dj at state t. ht
i describes the t-th hidden state variable of the GRU at Di.

We employ a boosting-based algorithm to learn the importance of weights
γ. Prior to this, we first pre-trains the network parameters θ using Lh−pred(θ).
This pre-training step aims to learn better representations of hidden states and
facilitate learning γ. We utilize an enhancement process based on [15] to learn
the importance of hidden states. We choose cross-domain distribution distance
as the enhancement criterion. If the distribution distance in the (n+1)-th round
exceeded that of the n-th round, we increased the value of γ

t,(n+1)
i,j to enhance

its effect in reducing distribution divergence. The formula (9) illustrates this
process.

γ
t,(n+1)
i,j =

{
γ

t,(n)
i,j × G

(
d

t,(n)
i,j , d

t,(n−1)
i,j

)
, d

t,(n)
i,j ≥ d

t,(n−1)
i,j

γ
t,(n)
i,j , otherwise

where,G
(
d

t,(n)
i,j , d

t,(n−1)
i,j

)
=

(
1 + σ

(
d

t,(n)
i,j − d

t,(n−1)
i,j

)) (9)

Here, d
t,(n)
i,j = D(ht

i, h
t
j ; γ

t,(n)
i,j ) is the distribution distance at time step t in

epoch n. G is an updating function, and σ denotes the sigmoid function. We
can learn the values of γ through the above formula.

4 Experiments

To validate the effectiveness of our models, we select eight models for compar-
ative analysis. In this section, we will introduce the details of the experiments,
including the dataset and evaluation metrics, implementation details, and per-
formance comparisons.

4.1 DataSet and Measurements

In our experiments, we choose the Tunxi Basin as the experimental dataset. The
dataset consists of 43,435 flood season records from the period between 1981
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and 2003. To partition the dataset into training and testing sets, we use a ratio
of 0.7 for the training set, 0.1 for the validation set, and 0.2 for the testing set.

In terms of evaluation metrics, this paper utilizes two evaluation indicators,
namely, the relative mean square error (RMSE) and mean absolute error (MAE),
to assess the prediction performance and measure the errors.

RMSE =

√∑N
m=1(ȳ

pre
m − ytest

m )2

N
(10)

MAE =
1
N

N∑
m=1

|ȳpre
m − ytest

m | (11)

In the above formulas, N represents the number of test samples, ȳpre
m rep-

resents the predicted results, and ytest
m represents the true values in the test

set. Smaller values of RMSE and MAE indicate more accurate predictions and
smaller errors.

4.2 Implementation Details

The system was implemented using the Python programming language. All
experiments were conducted on a Linux server equipped with a 2.10 GHz 8-
core Xeon CPU, 60 GB RAM, and Nvidia GeForce GTX 1080 Ti. For models,
the batch size was set to 64, the hidden layer size was set to 128, and the learning
rate was set to 0.0001. Additionally, the weight parameter for distribution diver-
gence in DAGAT was set to 0.1, and segment K was set to 2. Our models and
baselines were implemented in the PyTorch environment, utilizing error back-
propagation and parameter updates. The number of iterations was set to 200,
and to avoid excessive training time, an early stopping strategy was employed.
If the loss did not decrease for 60 consecutive rounds, the training was stopped.

4.3 Performance Comparison

This section provides a comparison of the network performance of MLP [7],
LSTM [10], GRU [4], CNN [8], Adarnn [3], ST-GCN [12], STGAT, and DAGAT.
MLP is the most classic neural network with the fastest training speed. LSTM
and GRU are recurrent neural network models that possess long-term memory
capability, effectively preserving past information. CNN processes spatial infor-
mation through convolutional layers, effectively handling spatiotemporal feature
sequences. AdaRnn combines a distribution adaptive module with recurrent neu-
ral networks to alleviate distribution differences. Additionally, to highlight the
effectiveness of the adaptive module, We introduced the STGAT model that does
not include the distribution adaptation mechanism and independently evaluated
the effectiveness of the adaptive module.

Table 1 provides a detailed comparison between our proposed DAGAT net-
work and the other networks. In this study, we adjusted the parameters to ensure
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that each model achieves good performance. The first seven models are our base-
line models, and at the bottom of the table is our model. We utilize the rainfall
and flood features from the past 12 h to predict the flood flow for the next 9 h.
As flood flow is more concerned with changes at different prediction time points,
we use T as the reference time and introduce different time points such as T+1,
T+3, T+6, and T+9, with a 3-h interval, to dynamically measure the changes
in flood flow.

Table 1. Performance of different models at Tunxi dataset

Model T+1 T+3 T+6 T+9 Average

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MLP 36.26 11.37 83.26 25.67 138.06 41.59 183.87 55.96 110.39 33.64

LSTM 59.69 19.19 82.24 26.04 120.46 37.09 175.88 52.41 109.57 33.68

GRU 44.98 12.68 75.12 21.48 119.34 33.90 177.19 50.54 104.16 29.65

CNN 76.70 26.84 94.89 32.28 135.03 42.68 187.41 57.49 123.51 39.82

AdaRnn 55.43 13.35 82.52 21.41 127.46 35.30 182.29 50.71 111.93 30.19

ST-GCN 47.84 19.95 89.20 21.44 117.24 32.61 136.73 39.2 97.75 28.30

STGAT 35.45 14.19 62.12 21.15 106.91 32.22 158.42 46.68 90.72 28.56

DAGAT 31.74 10.62 56.28 16.99 104.83 30.99 162.70 48.02 88.88 26.65

As shown in Table 1, in terms of forecasting at T+1, T+3, and T+6 time
points, our model consistently achieved the best results. This effectively demon-
strates that our model has improved the accuracy of short-term flood forecasting.

We conducted ablation experiments to investigate the impact of the proposed
distribution adaptive module on prediction performance. Compared with the
STGAT model, DAGAT showed performance improvements at different time
points. Our results indicate that the distribution adaptive module significantly
enhances prediction performance, providing valuable guidance for further model
improvements.

4.4 Performance Analysis

As shown in Fig. 4, our model demonstrates better accuracy than other models in
short-term forecasting. We found that at the T+9 time step, ST-GCN achieves
higher precision compared to our model, possibly due to its stronger long-term
memory capability. However, in terms of the average performance, ST-GCN is
less accurate than our model. When considering the time steps, the errors of all
eight models vary with the passage of time. Models perform better in shorter
prediction steps and exhibit poorer performance as the prediction time increases.

To illustrate the performance of our model in flood forecasting more intu-
itively, we compare the representative models GRU, CNN, STGAT, and DAGAT
in the T+3 and T+6 periods in terms of their actual prediction performance for
flood forecasting.
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Peak flow forecasting is a critically important aspect of flood prediction as it
enables the early warning of the highest water levels in floods and assists relevant
authorities in taking timely response measures. As shown in Fig. 5, at the T+3
time point, most models are able to fit the curve well. However, there is a slight
error in peak flow estimation for the GRU and CNN models, whereas both the
STGAT and DAGAT models demonstrate a better fit.

Fig. 4. Comparison of Models Performance at Tunxi

Fig. 5. Result at T+3

Fig. 6. Result at T+6

As shown in Fig. 6, at the T+6 time point, as the lead time increases, the
prediction errors of all models generally become larger. The GRU and CNN
models further amplify the forecast errors at the peak, while the STGAT model
also starts to exhibit errors at the peak. However, the DAGAT model predicts
more accurately. Therefore, our model demonstrates good accuracy in peak flow
prediction for flood forecasting and is suitable for river flood prediction.
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5 Conclusion

This paper proposes a distributed adaptive graph neural network flood fore-
casting method called DAGAT. It utilizes GAT to autonomously learn the spa-
tial information of each hydrological feature and uses the GRU model to learn
temporal dependencies. Introducing a distribution adaptive module to mitigate
the impact of distribution differences in multivariate hydrological time series on
flood forecasting accuracy. Compared to existing baseline methods, this approach
demonstrates better forecasting performance at different forecast time points.
For future work, We will conduct experiments in more watersheds, explore the
phenomenon that different levels of distribution change in datasets, and attempt
to apply this model to other natural disaster domains with temporal and spatial
relationships, such as water pollution.
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Abstract. In recent years, vehicle re-identification (Re-ID) has gained
increasing importance in various applications such as assisted driving sys-
tems, traffic flow management, and vehicle tracking, due to the growth of
intelligent transportation systems. However, the presence of extraneous
background information and occlusions can interfere with the learning
of discriminative features, leading to significant variations in the same
vehicle image across different scenarios. This paper proposes a method,
named graph network based on dynamic similarity adjacency matri-
ces (DSAM-GN), which incorporates a novel approach for constructing
adjacency matrices to capture spatial relationships of local features and
reduce background noise. Specifically, the proposed method divides the
extracted vehicle features into different patches as nodes within the graph
network. A spatial attention-based similarity adjacency matrix genera-
tion (SASAMG) module is employed to compute similarity matrices of
nodes, and a dynamic erasure operation is applied to disconnect nodes
with low similarity, resulting in similarity adjacency matrices. Finally,
the nodes and similarity adjacency matrices are fed into graph networks
to extract more discriminative features for vehicle Re-ID. Experimen-
tal results on public datasets VeRi-776 and VehicleID demonstrate the
effectiveness of the proposed method compared with recent works.
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1 Introduction

Vehicle re-identification (Re-ID) is a task that aims to identify a target vehi-
cle across video streams captured by different cameras. It has gained increasing
importance in applications such as assisted driving systems, traffic flow manage-
ment, and vehicle tracking within intelligent transportation systems. However,
the presence of extraneous background information and occlusions can intro-
duce interference and hinder the learning of discriminative features, resulting
in significant feature variations of the same vehicle image in different scenar-
ios. Therefore, it is crucial to remove extraneous information and minimize the
interference of background noise in vehicle Re-ID tasks.

Various methods are proposed for fine-grained feature extraction to eliminate
the interference of redundant information. These methods can be categorized into
three aspects: knowledge-based methods [4,6,23], uniform spatial division meth-
ods [15,17], and part-level detection methods [13,22]. Knowledge-based methods
utilize metadata such as orientation, color, car type, key points, viewpoint, and
spatiotemporal information to enhance the identification of vehicle details. Uni-
form spatial division methods divide the feature map horizontally or vertically
into multiple parts and extract features separately from each part. Part-level
detection methods employ image segmentation to semantically divide vehicles
into multiple regions (e.g., roof, wheels, and windows) and extract features from
these segmented regions. All the aforementioned methods facilitate a comprehen-
sive analysis of both the overall appearance and specific components of a vehicle,
thereby enabling the extraction of intricate details. However, knowledge-based
and part-level detection methods require additional annotations, the uniform
spatial division method does not necessitate annotations but it is susceptible to
partition misalignment. Additionally, the feature extraction methods employed
in these approaches ignore the relationships among part regions.

In this paper, we propose a novel graph network based on dynamic simi-
larity adjacency matrices (DSAM-GN) method for vehicle Re-ID. Our method
aims to capture spatial relationships among local features and reduce background
noise from the vicinity of vehicles. To achieve fine-grained feature extraction, the
extracted vehicle features are divided into different patches. Unlike traditional
CNN networks that overlook the correlation among local patches, we introduce
a graph network to capture the spatial relationships among these patches. One
challenge when applying graph networks to image representation is determining
how to establish edges between nodes and which nodes to connect. In response to
this challenge, we introduced a novel approach of utilizing the spatial attention
mechanism to generate adjacency matrices. To overcome the issue of redundant
background information, we employ a spatial attention-based similarity adja-
cency matrix generation (SASAMG) module to compute similarity matrices of
patches. Furthermore, the SASAMG module employs dynamic erasure operation
to disconnect nodes with low similarity, resulting in similarity adjacency matri-
ces. Finally, the patches and similarity adjacency matrices are fed into graph
networks to extract discriminative features for vehicle Re-ID.
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The main contributions of this paper are as follows:

– We propose a novel graph network based on dynamic similarity adjacency
matrices (DSAM-GN) method that combines a spatial attention mechanism
to propose a new approach for constructing adjacency matrices required for
the graph network. This method effectively captures spatial relationships
among local features and reduces background noise from the vicinity of vehi-
cles without any additional annotations.

– We design a spatial attention-based similarity adjacency matrix genera-
tion (SASAMG) module, which employs a spatial attention mechanism and
dynamic erasure operation to optimize connections between nodes and gen-
erate a similarity adjacency matrix. By erasing attention on nodes with back-
ground noise, this module establishes a fundamental basis for the learning of
discriminative features.

– Extensive experiments on public datasets VeRi-776 [8–10] and VehicleID [7]
demonstrate the effectiveness of our proposed method compared with recent
works.

2 Related Work

2.1 CNNs and Graph Networks

Deep learning techniques are widely adopted in vehicle Re-ID methods. Convolu-
tional neural networks (CNNs) emerge as the dominant approach for deep feature
extraction due to their exceptional capability to capture discriminative features.
Several works [4,17] employ CNN architectures as feature extractors, enabling
the learning of both global and local features. However, CNNs often focus only on
local information and fail to capture the relationships among different regions
with intricate local details. To address this limitation, graph networks (GNs)
are introduced as a viable solution, allowing the exploration of interconnections
among local features derived from different regions. The graph convolutional net-
work (GCN) [5] updates node representations by aggregating information from
neighboring nodes, enabling the node representation to inherit information from
nearby regions. The graph attention network (GAT) [20] utilizes attention mech-
anism to control the influence of different neighboring nodes on the target node
representation, thus reducing the impact of irrelevant nodes. GNs have been suc-
cessfully applied in various domains, including computer vision [3,11,18,21,24],
social networks [1], and recommendation systems [2].

2.2 Node and Edge Construction in GNs for Vehicle Re-ID

When applying graph networks to image representation, careful consideration
must be given to node definition and edge construction. The local graph aggre-
gation network with class balanced loss (LABNet) [18] defines spatial regions
of the feature map as nodes and establishes edges among nodes using a simple
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8-neighborhood connectivity approach. This straightforward method can intro-
duce redundant background information, which negatively impacts model per-
formance. The hierarchical spatial structural graph convolutional network (HSS-
GCN) [21] uniformly divides the global feature map into five regions: upper-left,
upper-right, middle, down-left, and down-right, and treats each of these regions
as a node in a graph. Edges are formed among these regions and a global node.
These regions still contain background noise. The structured graph attention
network (SGAT) [24] creates nodes based on 20 selected landmarks detected by
a landmark detection module, and edges among the landmarks are determined
by their Euclidean distances being smaller than a predefined threshold. This
method relies on expensive additional annotations for landmark detection. The
parsing-guided cross-part reasoning network (PCRNet) [11] employs part-level
segmentation to divide vehicles into regions, constructing a part-neighboring
graph using regional features. The part-level segmentation approach also requires
costly additional annotations. In this paper, the graph network based on dynamic
similarity adjacency matrices (DSAM-GN) divides the extracted vehicle features
into different patches as nodes. A spatial attention mechanism and dynamic era-
sure operation are applied to optimize connections between nodes.

3 Proposed Method

Fig. 1. The overall architecture of the proposed DSAM-GN model.

3.1 Overview

Figure 1 illustrates the proposed model’s architecture. The backbone network ini-
tially processes the input image to extract fundamental vehicle features, which
are divided into multiple patches before inputting into the DSAM-GN module
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for feature extraction. Within SASAMG, the input features are multiplied by
two trainable parameter matrices, Wq and Wk, to produce the query and key
matrices, respectively. The matrix product of the query and key matrices is then
computed, and the resulting values are softmax-normalized to obtain the simi-
larity matrix (SM). Then, connections between patches with low similarity are
erased to obtain a similarity adjacency matrix (SAM). Each patch is treated as
a node, and both the nodes and the SAM are fed into the graph network (GN),
which captures feature relationships among the nodes. The Feed Forward (FFD)
module consists of a multi-layer perceptron and ReLU activation function, which
are used to aggregate the features extracted from the preceding two branches.
The motivation for adopting two branches arises from the outstanding perfor-
mance of the multi-head attention mechanism in Transformer [19]. The features
are then processed through the second DSAM-GN module and undergo global
average pooling (GAP) and batch normalization (BN) to produce the final out-
put. Importantly, GAP replaces the fully connected layer, significantly reducing
the number of network parameters and preventing model overfitting.

3.2 DSAM-GN

The DSAM-GN module explores the relationships among different patches while
discarding redundant patches. The backbone network extracts features from the
image, serving as the original appearance representation. The resulting feature
is represented by a C ×H ×W tensor, where C, H, and W indicate the number
of feature channels, height, and width, respectively. The feature is reshaped into
N ×C for the subsequent similarity evaluation, with N representing the number
of patches, and N = H × W . The embedding features of the patches are formed
as shown in Eq. (1):

Xinput = [X1,X2, . . . , Xi, . . . , XN ] + Ppos (1)

Here, Xinput ∈ R
N×C represents the input to the DSAM-GN module, and

Ppos ∈ R
N×C denotes the learnable positional encoding. The input features

Xinput are split along the channel dimension into two branches and fed into the
SASAMG modules, respectively. Inside the SASAMG module, the input features
are linearly transformed into queries Q ∈ R

N×(C/2) and keys K ∈ R
N×(C/2). The

matrix product of them is applied to calculate the similarity matrix S, which
represents the similarity among the patches according to Eq. (2):

S(Q,K) = softmax
(

QKT

√
dk

)
(2)

Furthermore, to obtain a similarity adjacency matrix, a dynamic erasure
operation is applied to disconnect patches with low similarity. The similarity
adjacency matrix A is computed as shown in Eq. (3):

Ai,j =

{
Si,j Si,j > p(S, β)
0 Si,j ≤ p(S, β)

(3)
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Here, the function p calculates the percentile value of the similarity matrix
S, with the hyperparameter β ∈ [0, 100] representing the percentile index for
patches with low similarity. Specifically, we first flatten S into a one-dimensional
array B, and sort its elements in ascending order. Let n = N × N be the length
of B. For instance, if we want to calculate the 85 percentile, p(S, 85) = Bk, where
k = �85%n�.

Each patch is treated as a node, and both the nodes and the similarity adja-
cency matrix are fed into the graph network, which captures feature relationships
among the nodes. The computation of the graph network is expressed by Eq. (4):

h′
i = σ

⎛
⎝ ∑

j∈Ni

Ai,jWhj

⎞
⎠ (4)

Here, hj represents the feature vector of the i-th node’s neighbor. The weight
matrix W is a trainable parameter, and Ni denotes the set of neighboring nodes
for the i-th node, which represents the set of nodes that remain connected to the
i-th node after dynamic erasure operation. σ represents the activation function,
and in this paper, the ReLU activation function is used. Finally, the output is
the representation vectors of all nodes: h′

1,h
′
2, . . . ,h

′
i, . . . ,h

′
N .

3.3 Loss Function

As depicted in Fig. 1, we adopt a multi-task learning approach for joint training.
The output of the GAP layer (after the DSAM-GN module) is used to compute
the triplet loss (Ltriplet), while the output of the BN layer is employed to calculate
the ID loss (LID), which is a cross-entropy loss. Moreover, to address the issue of
large intra-class distance and small inter-class distance, we incorporate the triplet
loss (Lres) as an auxiliary supervision for the backbone network’s output. Three
hyperparameters (α, β, γ) correspond to the coefficients of the aforementioned
three loss functions. In order to avoid excessive fine-tuning of hyperparameters,
we set α = β = γ = 1 in the following experiments. Thus, the total loss function
of the proposed method can be formulated as shown in Eq. (5):

Ltotal = αLres + βLtriplet + γLID (5)

4 Experiments

In this section, we present the experimental results and analysis of our proposed
model for vehicle Re-ID. We evaluate the model on the VeRi-776 [8–10] and
VehicleID [7] datasets, compare its performance with state-of-the-art methods,
and conduct an ablation study to assess the effectiveness of our proposed method.
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4.1 Implementation Details

Before training, we randomly applied crop, flip, and pad operations on the images
with a certain probability. The images were then uniformly resized to 256 × 256
pixels. To construct our network, we employed a ResNet50 as the backbone
architecture. The ResNet50 was initialized with pre-trained weights from the
ImageNet dataset. The training parameters varied between the VeRi-776 and
VehicleID datasets due to differences in image quality, quantity, and perspective.
The VeRi-776 dataset was trained using one GPU with a batch size of 128 and
SGD optimization with warm-up strategy. The learning rate increased to 0.01
after 3000 iterations and gradually decreased using cosine annealing until the
60th epoch. On the other hand, the VehicleID dataset was trained using two
GPUs with a batch size of 256 and Adam optimization with warm-up strategy.
The learning rate was initially set to 0.000035 and increased to 0.0002 after 2000
iterations. Then, it was reduced by a factor of 0.1 at the 30th, 70th, and 90th
epochs, culminating in a total of 100 epochs. The model was implemented using
the PyTorch framework and trained and tested on an NVIDIA RTX 3090.

4.2 Experimental Results and Analysis

Results on VeRi-776 Dataset. We first evaluated our model on the VeRi-776
dataset and compared its performance against various state-of-the-art methods.
Table 1 presents the comparison results. Our model achieved state-of-the-art
performance compared with other methods. Specifically, our method achieved a
higher mAP score, surpassing the baseline by 1.12%. Moreover, the Rank-1 and

Table 1. Comparison with state-of-the-art results (%) on VeRi-776.The best result is
bolded.

Method Publicaiton VeRi-776
mAP Rank-1 Rank-5

HSS-GCN [21] ICPR’21 44.80 64.40 86.10
DF-CVTC [6] TETCI’22 61.06 91.36 95.77
SGAT [24] ACMMM’20 65.66 89.69 -
KPGST [4] Electronics’22 68.73 92.35 93.92
SAN [15] MST’20 72.50 93.30 97.10
VGM [23] APIN’22 73.32 92.82 95.21
PCRNet [11] ACMMM’20 78.60 95.40 98.40
PVEN [13] CVPR’20 79.50 95.60 98.40
LABNet [18] Neurocput’21 79.50 95.70 -
SOFCT [22] TITS’23 80.70 96.60 98.80
PFMN [17] CIS’22 81.20 96.80 97.60
MRF-SAPL [14] Entropy’23 81.50 94.70 98.70

baseline - 81.09 96.72 98.33
DSAM-GN (ours) - 82.22 97.38 98.75
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Rank-5 scores showed improvements of 0.42% and 0.40%, respectively, over the
baseline. These results provide strong evidence for the effectiveness of our model
on the VeRi-776 dataset.

Results on VehicleID Dataset. Next, we conducted experiments on the Vehi-
cleID dataset and compared our results against state-of-the-art methods, which
are presented in Table 2. Our model outperformed the baseline in terms of the
mAP, Rank-1, and Rank-5 metrics. Specifically, our approach achieved the best
mAP scores across all three VehicleID subsets (800, 1600, and 2400), outper-
forming other methods. This indicated that DSAM-GN was effective at identify-
ing vehicles in terms of average precision. DSAM-GN has demonstrated strong
performance in both Rank-1 and Rank-5 scores, with its performance being sur-
passed only by PCRNet. Notably, DSAM-GN achieves the best Rank-1 score on
the VehicleID-2400 subset, outperforming PCRNet. Although PCRNet achieved
excellent scores, its use of segmentation techniques required expensive annota-
tion. However, DSAM-GN’s results were still impressive, considering that it did
not rely on costly annotations.

Table 2. Comparison with state-of-the-art results (%) on VehicleID.The best result is
bolded.

Method Publicaiton VehicleID-800 VehicleID-1600 VehicleID-2400
mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

HSS-GCN [21] ICPR’21 77.30 72.70 91.80 72.40 67.90 87.80 66.10 62.40 84.30
DF-CVTC [6] TETCI’22 78.03 75.23 88.11 74.87 72.15 84.37 73.15 70.46 82.13
SGAT [24] ACMMM’20 81.49 78.12 - 77.46 73.98 - 75.35 71.87 -
SAN [15] MST’20 - 79.70 94.30 - 78.40 91.30 - 75.60 88.30
LABNet [18] Neurocput’21 87.50 81.20 - 84.20 78.00 - 80.80 73.50 -
MRF-SAPL [14] Entropy’23 - 84.30 97.70 - 79.60 94.10 - 76.30 91.60
SOFCT [22] TITS’23 89.80 84.50 96.80 86.40 80.90 95.20 84.3 78.70 93.70
PVEN [13] CVPR’20 - 84.70 97.00 - 80.60 94.50 - 77.80 92.00
PFMN [17] CIS’22 - 85.60 96.80 - 81.40 94.10 - 80.00 92.00
PCRNet [11] ACMMM’20 - 86.60 98.10 - 82.20 96.30 - 80.40 94.20
baseline - 75.89 66.33 89.38 69.20 58.72 82.55 64.41 53.77 76.83
DSAM-GN (ours) - 90.42 85.63 96.96 86.60 81.62 95.22 84.66 81.26 93.89

Visualization. To visually assess the performance of our proposed model, we
present the rank-5 retrieval results of an example query image from the VeRi-776
dataset, as illustrated in Fig. 2. The top five images retrieved by the Baseline and
DSAM-GN approaches are displayed in the first and second rows, respectively.
Correct retrieval results are indicated by red boxes, while incorrect results are
highlighted with blue boxes. It is evident that our proposed model outperforms
the baseline and exhibits superior ability in distinguishing similar vehicles.
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Fig. 2. Rank-5 visualization examples on VeRi-776. (Color figure online)

Additionally, we utilized Grad-CAM [16] to generate attention maps for chal-
lenging samples with background occlusions. Figure 3 shows the attention maps,
illustrating the model’s focus. The attention maps of the baseline model revealed
a strong emphasis on the background information, negatively impacting its per-
formance. In contrast, our proposed model exhibited a stronger focus on the
vehicles themselves, effectively recalibrating the model’s attention and reducing
extraneous focus on the background. This visualization provides qualitative evi-
dence of the superiority of our approach in handling background occlusions and
improving the model’s discriminative ability.

Fig. 3. Gradient-weighted Class Activation Mapping (Grad-CAM) visualization of
attention maps.

Furthermore, we employed t-SNE [12] to visualize scatter plots that visual-
ize the distribution of data points in the feature space before and after model
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training. Figure 4 shows these scatter plots. The scatter plot before training
exhibited a disordered distribution of distinct categories. Although the baseline
model facilitated clustering of different categories, it is evident from the vertical
axis (−4, 8) that it still had shortcomings, such as a small inter-class distance. In
contrast, our proposed model’s performance on the vertical axis (−8, 8) demon-
strated a significant improvement in inter-class distance. This observation high-
lights that our model can effectively learn discriminative features and improve
the separation of different vehicle categories.

Fig. 4. t-SNE visualization of the learned feature space.

4.3 Ablation Study

To further evaluate the effectiveness and robustness of our proposed method, we
conducted an ablation study on the VeRi-776 and VehicleID datasets.

Effectiveness of DSAM-GN. In this ablation study, we evaluated the impact
of different percentile (β) for the DSAM-GN module on the VehicleID and VeRi-
776 datasets. Table 3 presents the performance results. We can observed that the
performance consistently outperformed the baseline for different percentile val-
ues. Notably, the best performance was achieved when β was set to 95, resulting
in an improvement of mAP, Rank-1, and Rank-5 scores over the baseline. These
results demonstrate the effectiveness of the DSAM-GN module in reducing back-
ground noise.

Table 3. Evaluation of the impact (%) of percentile β for DSAM-GN on VehicleID
and VeRi-776. The best result is bolded.

Method VehicleID-800 VehicleID-1600 VehicleID-2400 VeRi-776
mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Baseline 75.89 66.33 89.38 69.20 58.72 82.55 64.41 53.77 76.83 81.09 96.72 98.33
DSAM-GN (0 percentile) 88.64 83.22 96.13 84.19 78.08 92.54 83.06 77.36 90.39 81.15 97.08 98.63
DSAM-GN (75 percentile) 88.64 83.22 96.13 84.19 78.08 92.54 83.06 77.36 90.39 81.50 97.02 98.45
DSAM-GN (85 percentile) 90.26 85.49 96.36 85.74 79.91 93.40 83.76 78.06 91.19 81.95 97.26 98.63
DSAM-GN (95 percentile) 90.42 85.63 96.96 86.60 81.62 95.22 84.66 81.26 93.89 82.22 97.38 98.75
DSAM-GN (98 percentile) 87.85 81.89 95.78 83.73 78.02 91.56 81.70 75.90 89.03 81.42 96.90 98.57
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5 Conclusion

In this paper, we propose a novel graph network based on dynamic similarity
adjacency matrices (DSAM-GN) method that combines a spatial attention mech-
anism to propose a new approach for constructing adjacency matrices required
for the graph network. This method effectively captures spatial relationships
among local features and reduces background noise without any additional anno-
tations. We design a spatial attention-based similarity adjacency matrix gener-
ation (SASAMG) module, which employs a spatial attention mechanism and
dynamic erasure operation to optimize connections between nodes and generate
a similarity adjacency matrix. By erasing attention on nodes with background
noise, this module establishes the foundation for learning discriminative local
features. Extensive experiments on the VeRi-776 and VehicleID datasets demon-
strated the effectiveness of our proposed method. Visual comparisons with the
baseline model showcased that our method is more focused on the vehicles them-
selves and demonstrated a significant improvement in inter-class distance. These
results highlight the potential of our approach for vehicle re-identification tasks.
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Abstract. Accurate traffic prediction is a crucial aspect of intelligent
transportation systems. However, existing methods typically rely on
static graphs to learn correlations between different sensor in space,
which ignores dynamic impact of latent factors on topology of the road
network. To address this issue, we propose a traffic flow prediction
method based on a dynamic spatial-temporal dual graph neural network
that extracts deeper and finer-grained features from traffic data. Firstly,
we propose a new data-driven strategy based on a dynamic spatial-
temporal-aware graph to replace the commonly used predefined static
graph in traditional graph convolutional networks. This strategy enables
us to collect edge attributes (geographical proximity) and node attributes
(spatial heterogeneity) between nodes. Secondly, we introduce the duality
principle to construct the dual hypergraph of the traffic graph, which cap-
tures the correlations between edges of the traffic graph. In the process
of dynamic graph convolutional iteration, we capture the dependencies
between dynamic edge attributes and static node attributes on the basis
of merging spatial relationships. Finally, an improved multi-head atten-
tion mechanism designed to represent dynamic spatial correlations. We
conducted experiments on two real-world traffic prediction tasks, results
demonstrate our method outperforms others.

Keywords: Spatial heterogeneity · Traffic prediction · Geographical
proximity · Dynamic graph · Spatial-temporal correlation

1 Introduction

The task of traffic prediction [1] is a typical task in time series prediction, which
has wide applications in machine learning. Traffic flow prediction has been widely
applied, such as optimizing road use [2] and planning travel routes in advance [23].

Deep learning become a popular approach for traffic prediction. A classic
approach is to use Graph Convolutional Networks (GCNs) to represent the spa-
tiotemporal correlations of time series data in road networks with non-Euclidean
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 365–376, 2024.
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spatial structures [4–6]. However, most existing GCN [5–8,12–22] methods use a
static adjacency matrix to describe spatial correlations of road networks, which
cannot reflect actual dynamics of spatial correlations within the road network.

In addition, there exist complex interactions between dynamic similar pat-
terns and random irregular patterns in time series traffic data at both short-term
and long-term time scales. At the macroscopic static level, static node attributes,
such as the proximity of two schools in different regions that are far apart but
share similar location attribute data patterns, the homogenous dynamic conges-
tion during peak hours, and the deviation of stable traffic patterns. At micro-
scopic dynamic level, traffic data exhibits dynamic and complex fluctuations.
However, most existing methods [10–12] lack attention [9] to the correlation
between dynamic edge attributes and static node attributes, which limits their
ability to capture dynamic time dependencies within road networks (Fig. 1).

Fig. 1. Multiple influences on spatial-temporal correlation (macro-static level, micro-
dynamic level).

We propose a traffic flow prediction method based on dynamic spatiotem-
poral dual graph neural network, as shown in Fig. 2. Unlike traditional GCN-
based methods that use fixed and empirical Laplacian matrices, this method is
based on a data-driven strategy using a dynamic spatiotemporal-aware graph to
replace the commonly used predefined static graph in traditional graph convolu-
tional networks. This strategy allows us to collect edge attributes (geographical
proximity) and node attributes (spatial heterogeneity). Specifically, this method
introduces a latent network to adaptively represent spatiotemporal relationships,
which is then input into GCN to form a dynamic graph convolutional network.
Paper’s main contributions:

1. We propose a new dynamic graph generation algorithm that adaptively inte-
grates adjacent nodes at different time steps and spatial heterogeneity infor-
mation to obtain an adaptive dynamic graph adjacency matrix to characterize
dynamic correlation, thereby improving prediction performance.
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2. We introduce the duality theorem on the basis of graph neural networks and
propose a new gnn method - the dynamic dual graph neural network model.
Based on modeling the dynamic characteristics of traffic network nodes, the
traffic map is transformed into a dual hypergraph, which uses the dual hyper-
graph to capture the dynamic spatiotemporal characteristics of edges to enrich
the extracted features, thereby improving the accuracy of downstream pre-
diction tasks.

3. We conducted sufficient experiments on two real datasets and it can verify
the role of our model in improving the accuracy of traffic flow prediction.

2 Preliminaries and Problem Definition

2.1 Notations and Symbols

Definition 2.1 (Flow Speed). An important indicator reflecting traffic con-
ditions is traffic speed. In this article, we first represent historical velocity data
as: Vp =

{
v1, v2, ..., vNp

}
, where [Np] is the number of road network nodes.

Definition 2.2 (Traffic Graph). The transportation network can be repre-
sented by G = (V, E , A), where road sections represent nodes, and edges repre-
sent the relationships between nodes. As shown in Fig. 3(a) and (b), V is set of
road segment with a cardinality of |V| = N , and A ∈ RN×N is an adjacency
matrix whose elements represent the weights of edges. These weights can initially
be obtained from the connectivity and distance between nodes.

Definition 2.3 (Dual Traffic Graph). To fully leverage the spatiotemporal
features of traffic data, we transform the traffic graph into its dual hypergraph,
as illustrated in Fig. 3(b). This dual transformation involves mapping nodes of
original graph to edges of target hypergraph, and the edges of the graph to
the nodes of the target. We then apply two dynamic GCNs on the resulting
sequence of graphs and hypergraphs, effectively capturing the evolving traffic
patterns. Given a graph G = (V, E , A), use Gh = (Vh, Eh,H) to represent the
dual hypergraph of G.

2.2 Problem Definition and Description

The purpose of traffic speed forecasting is to use historical vehicle speeds to
predict traffic speeds on various road sections over time in the future. In this
paper the effect of dynamic edge attributes (geographical proximity) and static
node attributes (spatial heterogeneity) are further considered. Formally, histor-
ical steps of traffic speeds and historical steps of auxiliary characteristics are
given, and our objective is to learn a model to predict future traffic speed steps.

X̂p
t+1:t+Q = f(Xp

t−P+1:t,X
a
t−P+1:t), (1)

where X̂ is expected to be close to X as much as possible.
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Fig. 2. Model’s architecture in paper.

3 Methodology

We provide an overall framework diagram of the model, as shown in Fig. 2.
From the figure, we can see that the model is mainly composed of three parts,
namely the spatiotemporal attention module, spatiotemporal convolution mod-
ule, and prediction module. The specific details of each module are also presented
in the framework diagram. The information of the spatiotemporal attention
module can be obtained from the graph. The spatiotemporal attention mod-
ule consists of two parts, namely temporal attention module and spatial atten-
tion module. Spatial attention module further adjusts spatiotemporal attention
through spatiotemporal correlation maps. The spatiotemporal convolution mod-
ule mainly consists of graph convolution layer and multi-scale GTU. Here, we
replace predefined adjacency matrix graph in traditional graph convolution with
a spatiotemporal graph (ASTAG ) with dynamic spatial correlation information.

Fig. 3. Road network graph (a), traffic flow graph (b), and dual hypergraph (c)

3.1 Dynamic Spatiotemporal Graph Construction

When modeling a real road network, the spatial dependence between nodes can-
not be solely reflected by the connectivity between nodes. If the spatial corre-
lation representation during modeling is not accurate enough, it will lead to a
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decrease in accuracy of subsequent prediction tasks. So let’s first introduce how
to obtain a more accurate representation of spatial correlation.

By analyzing the factors that affect the spatial correlation between nodes,
the first is the diffusion, and second is the similar attributes among nodes, that
is, there may be adjacent node attributes between two nodes that are far away.
Based on the above two considerations, we utilize daily and node traffic flow
data in road network to represent dynamic spatial correlation between nodes
by capturing similarity. Here, we use Wasserstein distance. We name this new
data-driven strategy spatiotemporal perceptual distance, and define this repre-
sentation obtained from spatiotemporal perceptual distance as a spatiotemporal
perceptual graph.

For example, Xf ∈ RD×dt×N represents the traffic flow, N represents the
n-th sensor node, and D represents the number of days contained in the vec-
tor information, where dt is the number of recording times per day (If data is
recorded every 5min, then dt = 288). Treating the daily traffic data of a node
as a vector, the traffic data of multiple days can be represented as a sequence of
vectors. We first calculate the vector modulus and normalize it to extract daily
traffic volume information for each record point:

mnd =
‖wnd‖2

Zn
, Zn =

D∑

d=1

‖wnd‖2, (2)

where ‖•‖2 represents Euclidean norm. We need represent difference between
each probability distribution, where use cosine distance to represent it:

cost (wn1i,wn2j) = 1 − w�
n1i · wn2j

‖wn1i‖2 × ‖wn2j‖2
, (3)

where the superscript T represents performing transpose operation. Thus, the
STAD can be expressed as:

dSTAD (n1, n2)
Δ= STAD(Xn1 ,Xn2)

= inf
γ∈Π[Pn1 ,Pn2 ]

∫
x

∫
y
γ(x, y)

(
1 − w�

n1x·wn2y√
w�

n1
wn1x×√

w�
n2ywn2y

)
dxdy,

s.t.
∫

γ(x, y)dy =
‖wn1x‖2

D∑

x=1
‖wn1x‖2

,
∫

γ(x, y)dx =
‖wn2y‖2

D∑

y=1
‖wn2y‖2

.

(4)

The matrix ASTAD ∈ RN×N that represent the correlation between nodes,
where ASTAD[i, j] = 1−dSTAD(i, j) ∈ [0, 1]. Then a learnable parameter Wm ∈
RN×N to adjust influence of ASTRG on P.

3.2 Spatial-Temporal Attention Module

In order to more accurately estimate the dependencies between nodes, we pro-
pose the definition of spatiotemporal perceptual distance. Based on this, we need
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to further refine the dynamics of the dependency relationships between nodes to
adapt to changes in real-time generated data in application scenarios. Therefore,
this paper need propose an improved spatiotemporal attention module based on
the attention mechanism, specifically capturing temporal and spatial attention
sequentially, and performing spatiotemporal fusion to obtain a strengthened spa-
tiotemporal correlation representation.
Temporal Attention. The temporal attention mechanism can help us capture
temporal dependencies. In order to effectively capture long-range correlations
in time series data, we have entered multi head attention mechanism on basis
of attention mechanism. The dynamic temporal correlation between nodes is
obtained through the multi head attention mechanism. The definition of multi
head attention is as follows (taking multi head attention mechanism of H head
as an example):

X ′(l)W(l)
q

Δ= Q(l), X ′(l)W(l)
k

Δ= K(l), X ′(l)W(l)
v

Δ= V (l), (5)

A(l) =
Q(l)K(l)

T

√
dh

+ A(l+1), (6)

where X ′(l) ∈ Rc(l−1)×M×N is reshaped from input of lth ST module X (l) ∈
RN×c(l−1)×M . We have added residual connections in the temporal attention
section of each ST Block, enhancing the connection of attention between different
layers. This residual attention mechanism makes the model to fuse both deep
and shallow dependencies, it can avoid the disappearance of gradients and fully
explore the dynamic time dependencies in the data.

Q(l),K(l), V (l) are projected H times with H different matrices, then stitched
together, this can be expressed as a formula in the following form,

O(h) = Att
(
QW(h)

q ,KW(h)
k , V W(h)

v

)
, (7)

Y = LayerNorm
(
Linear

(
Reshape[O(1), O(2), . . . , O(H) + X ′

))
, (8)

where W(h)
q,k,v ∈ Rd×dh (dh = d/H), then O ∈ Rc(l−1)×M×H×dh concatenates the

multi-head outputs from time attention module in the model.
Spatial Attention. The temporal attention mechanism can capture the depen-
dencies of the temporal dimension. Based on this, we propose a self attention
mechanism to calculate spatial dependence of output of temporal attention mod-
ule. The improved self attention mechanism of the H head can be represented
by the following formula:

P(h) = Softmax((
YEW

′(h)
k

)�
(YEW′(h)

q )√
dh

+W(h)
m � ASTRG

)

,
(9)
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where W′(h)
k ,W′(h)

q ∈ RdE×dh ,W(h)
m ∈ RN×N are learnable parameters, P ∈

RH×N×N denotes dynamic spatiotemporal attention tensor by combining out-
puts.

3.3 Spatial-Temporal Convolution Module

In previous research on transportation networks, the main focus was on the con-
nectivity and globality between nodes in the network. In this process, predefined
graphs were used for convolution, which aggregates information from neighbor-
ing nodes to obtain node features. On the basis of retaining the above ideas, we
improve the previous method to fully utilize the topological characteristics of the
transportation network. Specifically, we use Chebyshev polynomials to learn the
features of nodes. The biggest difference from previous research methods is that
we use spatiotemporal perception maps to replace the commonly used prede-
fined maps in previous studies. Dynamically adjusting each term in Chebyshev
polynomial to fully utilize dynamic topological features of road network.

Graph convolution is the process of aggregating neighboring node information
to obtain target node information. In order to aggregate the dynamic attributes
among nodes, we aggregate information from graph signal x = xt ∈ RN at each
time slice :

gθ ∗ Gx = gθ(L)x, (10)

where ∗G denotes graph convolution operation, gθ denotes the convolution ker-
nel,the learnable parameter θ ∈ RK .

4 Experiments

4.1 Datasets Used in the Experiment

The experiments were conducted on two real datasets: PEMS03 and PEMS08.
The statistical information for these datasets shown in Table 1. Additional infor-
mation of datasets are presented below.

Table 1. Information about datasets

Dataset Number of Nodes Number of Nodes Edges Timesteps Missing data (%)

PEMS03 358 547 26208 0.672
PEMS08 170 295 17856 0.696

PEMS03, PEMS08: It was collected by the Caltrans Performance Measure-
ment System, published in AST-GCN [14] and includes average speeds, traffic
volumes for SanFrancisco Bay Area. Then time range for data collection is from
April to May 2019.
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4.2 Baseline Used in the Experiment

In order to better validate performance of models, we selected several popular
baseline models for comparison experiments, and the selected baseline models
are as follows.

1. FC-LSTM [1]: The LSTM network is a RNN with fully linked LSTM hidden
units, a special type of RNN model.

2. T-GCN [15]: effective in terms of local and global temporal relationships.
3. DCRNN [11]: diffusion convolution recurrent neural network that combining

graph convolution and GRU. Combining the advantages of A and B
4. ST-GCN [16]: introduces a spatial-temporal attention mechanism into the

model. To ensure fair comparisons, we reconfigured the model to use only the
most recent part of the modelling cycle.

5. ASTGCN [3]: A model that applies spatial and temporal attention mecha-
nisms prior to spatial and temporal convolution. To be fair, we only use its
most recent component.

6. AGCRN [6]: makes use of the learnable embedding of nodes in graph convo-
lution.

7. STFGNN [17]: spatial-temporal fusion graphs are used to complement spatial
correlation.

The experimental results of our model on the PEMs03 and PEMS07 datasets,
as well as the experimental results of seven other models (FC-LSTM, T-CN,
DC-RNN, ST-GCN, etc.) on the PEMs03 and PEMS07 datasets, can be seen
in Table 2. Through these experimental results, It can be seen that our model
achieved the best results on all performance metrics for both datasets. The graph
structure composed of spatiotemporal-aware distances proposed by us can help
the model capture spatial dependencies between nodes, and the dual principle
can simultaneously integrate dependencies between edges. This indicates that
our model can be applied without spatial prior information and can fully utilize
dependencies between two different attributes.

4.3 Setup of Experiments

When conducting comparative experiments, for fairness, we processed the data of
each baseline model in the same way. For example, we divided the experimental
dataset into training (7/10), validation (2/10), and testing sets (1/10). And we
used one hour of historical data to predict future traffic speeds, and conducted
experimental tests on each predicted time step. All training and testing were
implemented on (CPU: lntel(R) Core(TM) i9-11900K, GPU: GTX 3090).

In our experiment, we selected three evaluation indicators to test the perfor-
mance of our model, which will be introduced in this section. The first evaluation
metric used to evaluate the model is root mean square error, the second evalu-
ation metric is mean absolute error (MAE), and the third evaluation metric is
MAPE. The three evaluation indicators are commonly used in machine learning,
and the specific calculations are easy to find. Due to space limitations, they will
not be elaborated on further.
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Table 2. Evaluations of Our Model and Baselines on Two Real-Word Datasets

Dataset Metrics FC-LSTM T-CN DCRNN ST-GCN ASTGCN AGCRN STFGNN Ours

PEMS03 MAE 21.33 19.31 18.18 17.47 17.69 15.98 16.77 15.75
MAPE (%) 22.33 19.86 18.91 17.15 19.40 15.21 16.69 14.86
RMSE 36.11 33.24 30.31 30.12 29.66 28.52 27.84 27.71

PEMS08 MAE 22.20 22.69 17.86 18.02 18.61 15.95 16.81 15.76
MAPE (%) 15.02 14.04 11.45 11.40 13.08 10.12 10.62 9.94
RMSE 33.06 35.79 27.83 27.38 28.16 25.22 25.97 24.77

4.4 Experimental Analysis

Fig. 4. Comparison between STGCN and our DSTGNN on PEMS07.

Comparison of Experimental Results. The experimental results of our
model on the PEMs03 and PEMS07 datasets, as well as the experimental results
of seven other models (FC-LSTM, T-CN, DC-RNN, ST-GCN, etc.) on the
PEMs03 and PEMS07 datasets, can be seen in Table 2. It can be seen that our
model achieved the best results on two datasets. The graph structure composed
of spatial-temporal perception distances proposed by us can help the model cap-
ture the spatial dependence between nodes, which indicates that our model can
be applied without spatial prior information and can well integrate node and
edge information through the dual principle (Fig. 4).

Compared to the TCN and ASTGCN models, our proposed spatiotempo-
ral attention mechanism can capture dynamic changes in the data, significantly
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improving the prediction performance. Moreover, the application of spatiotem-
poral attention mechanisms can play a good role, such as better capturing the
dynamic changes of data, which is very helpful for improving prediction perfor-
mance. We plotted the prediction accuracy at 12 different time steps, as shown
in Fig. 6.
Parameter Sensitivity Analysis. For the sensitivity analysis of the model
parameters, we did two experiments on the embedding dimension of the model,
and the experimental results are as follow (Fig. 5).

Fig. 5. Effect of embedding dimension on experimental precision

We all know that hyperparameters have an undeniable impact on the model
and must be taken into consideration. Therefore, we designed parameter exper-
iments to study each parameter that may affect the performance of the model,
which is the core parameter. Figure 5(a) and (b) show the experimental results
of parameter study. Before the embedding dimension is 512, the model perfor-
mance improves with the increase of the embedding dimension; after the embed-
ding dimension is 512, with the increase of the embedding dimension, the model
performance is gradually declining, so we can conclude that the optimal embed-
ding dimension is 512. Repeat each experiment 5 times and test on the test set
to calculate the MAE value. In each experiment, we only change one parameter.

4.5 Ablation Experiments

The impact of dynamic information on prediction accuracy is illustrated in Fig. 5,
where horizontal axis represents prediction step and vertical axis represents the
mean absolute error. Yellow curve represents the experimental results obtained
from the model without the feature fusion module, while the blue curve repre-
sents the total mean absolute error obtained by testing our model over 12 pre-
diction steps. By comparing the two curves, we can conclude that the dynamic
feature fusion module plays a crucial role to improving accuracy of prediction.
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Fig. 6. Comparison of prediction curves between STGCN and DSTGNN on PEMS03.

5 Conclusion

A new traffic flow prediction model was proposed in this article. Our model is set
up to encode both dynamic and static spatial dependencies, rather than relying
on one predefined static adjacency matrix alone. The approach is effective in
enhancing the representation of deeper dynamic association properties between
road network nodes. Our model achieves state-of-the-art performance over two
public datasets used for traffic flow prediction, compared to several existing
state-of-the-art baseline methods.
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Abstract. Contrastive learning has become a highly promising learn-
ing paradigm and demonstrated significant potential when few labels are
available. The effectiveness of contrastive learning on graphs is largely
dependent on the quality of positive and negative pairs, which can be
improved by developing data augmentation (DA). However, the major-
ity of the current DA methods rely on homogeneous graphs while less
on heterogeneous graphs. In this paper, we present a method named
MuHca, a node augmentation module for the problem of heterogeneity
in DA. Concretely, MuHca separately employs nodes embedding of two
views, namely meta-path and network schema, into a novel contrasting
generative adversarial nets structure to implement data augmentation.
By adopting the contrasting generative paradigm of GANs, MuHca can
generate and optimize effective negatives. To enhance the robustness of
MuHca, we exploit the potential information from the original data and
extend our approaches by mixing up generated negatives with original
ones. The final stage involves training a generator for edges in parallel
with the modeling of edge presence among nodes, culminating in con-
trastive learning for heterogeneous graphs. The conducted experiments
on three datasets validate the effectiveness of our proposed method, sur-
passing various state-of-the-art and even semi-supervised methods.

Keywords: Data augmentation · Heterogeneous graph · Contrastive
learning

1 Introduction

Heterogeneous Information Network (HIN) is a graph data structure for effec-
tively representing a heterogeneous graph consisting of various types of nodes
and links [15]. The majority of research on heterogeneous graphs (HGs) centers
around (semi-) supervised learning situations where models are trained using
well-marked manual labels to accomplish specific tasks such as node classifica-
tion. Although these studies have achieved success, one drawback is the high
cost associated with collecting and annotating manual labels [1], which can be
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 377–388, 2024.
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particularly challenging for research fields that involve large datasets or require
specialized knowledge [20]. Lately, to tackle the downsides of supervised or semi-
supervised learning, self-supervised learning (SSL) is a promising method that
decreases reliance on manual labels [9]. Contrastive learning, being a widely used
SSL technique, has received notable focus.

Contrastive learning [20] requires positive and negative pairs, and the objec-
tive is to place the embeddings of positive pairs in proximity and keep those
of negative pairs away from each other [19]. To enhance the effectiveness of
contrastive learning, data augmentation is naturally developed to improve more
challenging positive and negative samples by making minor modifications or gen-
erating new data from existing data [24]. However, generating numerous high-
quality positive or negative pairs for contrastive learning is quite challenging
in heterogeneous graphs [18]. Because adjacent nodes have different meanings,
compressing information can occur when synthesizing minority nodes [2]. Hence
the strategies of DA used for homogeneous graphs may not directly work for
heterogeneous graphs [8]. Furthermore, the discrete and non-Euclidean nature
of graph-structured data makes its semantics and topology closely interlinked
[23]. Consequently, performing DA directly in the input space can lead to the
generation of out-of-domain samples due to the inherent limitations of graph-
structured data.

To address the mentioned challenges, we proposed MuHca - a novel Mixup
Heterogeneous graph for contrastive learning with data augmentation. MuHca
employs the weight matrix and node degrees to measure the significance of edges
and node features, where the weight matrix is shared by the whole graph, reflect-
ing the global importance of the node. MuHca learns the embedding from het-
erogeneous graph convolutional networks through the meta-path pairs and net-
work schema instances captured from the HGs. Inspired by GANs [6], we first
enhanced contrast-GAN and implemented it on heterogeneous graphs, which
generate negatives naturally preserving schema structure in two views. Further-
more, a mixup component is built to further enhance the data, addressing the
issue of heterogeneity. The contributions of the paper are summarized as follows:

• We employ contrast-GAN for data augmentation in HGs, in order to generate
harder negatives by utilizing the two views after embedding. Both the gener-
ator and discriminator networks trained in cross-view improve the efficiency
of producing high-quality samples.

• We propose HG-Mixup, an innovative generative augmentation strategy that
utilizes interpolation to generate synthetic nodes by interpolating the existing
nodes with generated ones. Furthermore, a parallel edge generator is trained
to model the existence of edges connecting nodes. Combined with contrastive
learning, heterogeneous graph information can be adequately utilized.

• Experiments are performed on three datasets. Results demonstrate that
MuHca consistently performs better than various state-of-the-art even semi-
supervised methods.
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2 Related Work

Heterogeneous Graph Learning. Heterogeneous graphs are crucial data
structures extensively employed to represent diverse intricate interaction sys-
tems in real-life situations [21]. NSHE [22] prioritizes both maintaining the
proximity between pairs and the overall network schema. HAN [17] introduced
a hierarchical attention mechanism that is capable of capturing both semantic
and structural information. There is also a meta-path based work namely HAE
[5] to incorporate meta-paths and meta-graphs and leverages the self-attention
mechanism to explore content-based node embeddings.
Contrastive Learning. In recent times, contrastive learning has emerged as a
successful method for self-supervised graph representation learning [20]. Most
self-supervised contrastive learning help reduces the dependence on manual
labels, in which the supervision signals are acquired from the data itself auto-
matically [9]. A classic contrastive learning representative method is deep graph
infomax [16], a widely recognized approach that employs an Infomax criterion
to differentiate negative nodes, positive nodes, and global summaries. Moreover,
HeCo [18] is the pioneering work that employs contrastive learning for the het-
erogeneous graph. However, the problem of negative sample generation is not
well addressed, which can be naturally relieved by data augmentation.
Graph Data Augmentation. Graph data augmentation can significantly
improve the effectiveness of contrastive learning [20]. The DA can be tailored for
various graph-related tasks, resulting in multiple approaches: edge-level augmen-
tation like DropEdge [13], graph-level augmentation such as G-Mixup [10], and
node-level augmentation like GraphENS [12]. However, most DA strategies are
proposed for homogeneous graphs and less for heterogeneous graphs. Applying
general DA algorithms directly to heterogeneous graphs can pose challenges in
capturing essential information related to different types of nodes and edges.

3 Methodology

Considering a heterogeneous graph network G = (V,E,A,R, φ, ϕ) is composed
of a node set V and an edge set E. The function φ : V → A and ψ : E →
R represent the mapping of node types and edge types, respectively, where A
denotes the set of node types and R denotes the set of edge types. It is important
to note that |A|+ |R| > 2. The objective is to learn the node representations
Z ∈ R

|V |×d, where d represents the dimension of the node representation [15].
Formally, a network schema S = (A,R) is a directed graph, which is designed

for a meta template of a HIN. A network schema instance S refers to the smallest
sub-graph of a HIN that contains all the defined node types and edge types
according to the network schema [15]. A meta-path P is defined as a path in the

form of V1
R1−→ V2

R2−→ · · · Vt
Rt−→ Vt+1 · · · Rl−1−→ Vl, where R = R1 ◦ R2 ◦ · · · ◦ Rl−1

defines the composite relations between node types V1 and Vl [14].
In this section, we introduce our proposed framework MuHca, a novel robust

data augmentation framework based on contrast-GANs and heterogeneous graph
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Fig. 1. The overall architecture of the proposed MuHca. Obtaining node embeddings
Zmp (meta-path) and Zsc (network schema) from the encoders, MuHca applies data
augmentation containing contrast-GAN and HG-Mixup for contrastive learning to per-
form the final representation of nodes.

mixup modules. Considering the inherent and essential properties of heteroge-
neous graph, we employ both meta-path and network schema encoders to obtain
two distinct node representations for data augmentation. The DA framework
comprises two parts, as shown in Fig. 1. In the contrast-GAN module, the dis-
criminator contrasts the network schema view and generates negative samples of
the meta-path view, and vice versa to generate negative samples of the network
schema view. The HG-Mixup module are used for generating augmented nega-
tive samples by mixing up generated samples from contrast-GANs with original
negatives. In addition, a generator for edges is trained in parallel to model the
presence of connections between nodes. Those augmented data are interpolated
into the embedding graph for contrastive learning.

3.1 Graph Data Augmentation

Defining positive and negative samples is the initial step toward generating more
difficult negative samples in the data augmentation module. Specifically, we iden-
tify two nodes as positive samples if they are connected by numerous meta-paths
set as a threshold Tp, for which we denoted the positive samples as Pi. The
remaining nodes are considered negative samples, denoted as Ni. This positive
sample strategy comprehensively considering meta-paths has the benefit of accu-
rately reflecting the local structure of the target node.



MuHca 381

Contrasting Generative Adversarial Nets. After obtaining positive sam-
ples Pi and original negative samples Ni, we enhanced contrast-GAN and imple-
mented it on heterogeneous graphs for Ni. The contrast-GAN is rooted in adver-
sarial learning, where a discriminator and a generator partake in a competition.
Taking harder meta-path view generation of negatives as an example, we train
D to determine the authenticity of a given node pair, distinguishing between
real and fake samples while training G to produce negative sample node pairs
that mimic real pairs. Both discriminators D and generators G are utilized zsci
and zmp

i contrastively to improve the quality of data augmentation.
As previously stated, it is crucial to differentiate between real and fake neg-

ative samples within a given relation. With the target node i and its embedding
zsci , we can get the matrix space of the meta-path view, as shown in the upper
part of Fig. 1 with red dash line. D of zsci outputs a probability of sampling zj
from Ni:

D (zj | zsci ) =
(
exp

(−zsc�i MD
mpzi

)
+ 1

)−1
, (1)

where MD
mp ∈ R

d×d is a matrix that projects zsci into the space of meta-path view.
If a sample belongs to the Ni and is linked to zj , it should have a high probability,
while a generated sample should have a low probability. The objective function
of D under the network schema view is defined as follows:

Lsc
iD = −

(

E

zm̃p
j ∼G(zmp

i )
log

(
1 − D

(
zm̃p
j | zsci

))
+ E

j∼ni

log D
(
zmp
j | zsci

)
)

, (2)

where ni ∈ Ni, which is selected at random, and zm̃p
j are generated by the gen-

erator. This indicates that given zsci , the purpose of D is to distinguish whether
the negative sample comes from the meta-path view or the generator. Specif-
ically, using zsci as the discriminator aims to enable G to generate negatives
contrastively from a different view while retaining its own characteristics. In
a similar vein, we can deduce the objective function for the D based on the
meta-path view Lmp

iD
.

The objective of generator G is to generate fake samples to mimic the real
ones. G continuously improves its generation quality through ongoing adversarial
training with D. As shown in the upper part of Fig. 1, given a target i and its
embedding zmp

i initially, G employs an underlying Gaussian distribution centered
on i, which are linked to the meta-path view:

emp
j ∼ N (

zsc�i MG
mp, σ

2I
)
, (3)

where MG
mp ∈ R

d×d is a projected function to map zsci into meta-path space,
and σ2I ∈ R

d×d is covariance for some choices of σ. To enhance the expression
of the generated samples, we incorporate a two-layer multilayer perceptron:

zm̃p
j ∼ G (zmp

i ) = σ
(
Wemp

j + b
)
, (4)

where σ is non-linear activation. We train the G by minimizing the following
loss:

Lmp
iG

= E

zm̃p
j ∼G(zmp

i )
− log D

(
zm̃p
j | zsci

)
. (5)
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The objective function Lsc
iG

is also similar to Lmp
iG

. So, we train the discriminator
G by minimizing the following loss:

LG =
1

|V |
∑

i∈V

[λ · Lmp
iG + (1 − λ) · Lsc

iG] . (6)

where λ is a coefficient used to balance or equalize the impact of contrast views
and V denotes the batch of nodes trained in the current epoch.

Heterogeneous Graph Mixup. To fully utilize the prospective insights con-
tained within the original data, we present a Heterogeneous Graph Mixup (HG-
Mixup) approach for synthesizing the enhanced negatives by interpolating some
of the harder negatives with the original. After getting a well-trained G, we can
obtain high-quality negative samples zm̃p

j and zs̃cj . Let Ñj = {z̃1, . . . , z̃j} be the
ordered set of harder negatives. We interpolate samples by using their near-
est neighbors in the embedding space that also belong to the similar negatives.
The harder negatives are compared to the original ones by using the k-nearest
neighbor algorithm:

nn(j) = argmin
i

‖zi − z̃j‖2 , s.t. Ni = Ñj , (7)

where nn(j) refers to the nearest neighbor of j from the same class, and ‖ · ‖2 is
the �2-norm using Euclidean distance to measure. HG-mixup employs the weight
matrix and node degrees to measure the significance of node features. With the
nearest neighbor, a synthetic negative z′

k ∈ N
′
i would be given by:

z′
k = βkz̃nn(j) + (1 − βk) zi, (8)

where βk ∈ (0, 0.5) is a randomly chosen mixing variable for the harder negatives.
Note that βk < 0.5 guarantees that the generated contribution is smaller than
the one of the original negative. Let N

′
i = {z′

1 . . . , z′
k} be the set of synthetic

hardest negatives to be generated.
Nevertheless, these nodes are not connected to the original graph since they

do not have any edges. Therefore, we present an edge generator to model the
presence of connections between nodes. The generator in our model is trained
using real nodes and existing edges, and its purpose is to predict neighbor infor-
mation for synthetic nodes. In order to keep the HG-Mixup model simple and
enable easier analysis, we use a vanilla design with weighted inner production to
implement the edge generator:

Ei,k = softmax (σ (zi · S · z′
k)) , (9)

where Ei,k represents the predicted relation information between nodes zi and
z′
k, and S denotes the parameter matrix that captures the interaction among

nodes. The loss function for training the edge is given by:

Ledge = ‖E − A‖2F , (10)
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where E refers to predicted connections between nodes, and A is the initial
adjacency matrix that new nodes and edges can be added. The optimization of
the generator involves the use of edge reconstruction. Eventually, the synthetic
hardest negatives N

′
i are interpolated with the original negatives Ni to boost

contrastive learning and enhance the training.

3.2 Contrastive Loss

Given the augmented negative sample set Ni and positive sample set Pi under
the above two views, we employ a two-layer Multilayer Perceptron to perform
a linear transformation. In order to compute the contrastive loss function Lc,
we first need to calculate the loss function for each view. Taking the meta-path
view as an example, as illustrated in Fig. 1. The target embedding is from the
meta-path view (zmp

i ) and the embeddings of positive and negative samples are
from the network schema view(zscl , zsck ). Therefore, the contrastive loss function
is presented in the meta-path view as follows:

Lmp
ic = − log

∑
l∈Pi

exp (cos (zmp
i , zscl ) /τ)

∑
k∈{Pi∪Ni} exp (cos (zmp

i , zsck ) /τ)
, (11)

where cos(u, v) represents the cosine similarity, which measures the similarity
between two vectors u and v. Additionally, τ represents a temperature parame-
ter. The contrastive loss Lsc

ic is comparable to Lmp
ic , but with a distinction that

the target embedding is derived from the meta-path view. The overall objective
is given as follows:

Lc =
1

|V |
∑

i∈V

(Lmp
ic + γLsc

ic ) , (12)

where γ is the consistency balancing hyper-parameter. We can optimize the
proposed model by utilizing backpropagation and learning the embeddings of
nodes.

4 Experiments and Results

4.1 Datasets

We employ three real HG datasets to evaluate the effectiveness of graph Data
Augmentation for node classification.

• ACM comprises 3,025 papers, 5,835 authors, and 56 subjects. The paper
nodes are classified based on the conferences they are published in, serving
as the target nodes for classification.

• DBLP is a citation network dataset comprising of 14,328 paper nodes, 4,057
author nodes, and 20 conference nodes. In this dataset, the main focus is on
classifying the author nodes according to their respective research areas.

• IMDB is a movie dataset, which consists of 4,278 movie nodes, 5,257 actor
nodes, and 2,081 director nodes. The objective here is to classify the movie
nodes into three genres: comedy, action, and drama.
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4.2 Baselines

We conduct a comparative analysis between the MuHca model and other het-
erogeneous graph neural network models to assess the respective performance:

• DeepWalk [7] (Deepw.) is a classical method for graph embedding that
utilizes random-walk and skip-gram to learn network representations.

• Mp2vec [15] employs a metapath-guided random walk to generate node
sequences and applies a heterogeneous skip-gram algorithm to obtain rep-
resentations of nodes.

• HERec [14] learns meta-path embeddings to obtain the similarity between
users and utilizes classic matrix factorization framework to get recommenda-
tion.

• GAT [9] is a semi-supervised neural network that integrates the attention
mechanism for homogeneous graphs.

• HAN [17] trains node embedding using meta-path based neighbor nodes,
excluding intermediate nodes which are incorporated in meta-paths. It gen-
erates node embeddings using an attention mechanism.

• DMGI [11] utilizes unsupervised learning, and GCN embedding nodes to
capture the global structure of the entire graph.

• HeCo [18] employs self-supervised cross-view contrastive mechanism to cap-
ture both local and high-order structures, so as to learn node embeddings.

• Magnn [3] designs three main components for generating node embeddings
by applying node content transformation, intra-metapath aggregation, and
inter-metapath aggregation.

• HAE [5] utilizes meta-paths and meta-graphs and employs the self-attention
mechanism to investigate node embeddings based on content.

4.3 Experimental Settings

We utilize the implementations of baseline methods available either from their
authors or open-source libraries. Regarding other parameters, we adopt the con-
figurations followed by their original papers. For the proposed MuHca, we employ
Kaiming [4] initialization and Adam optimizer. In the DA module, we set the
variance of Gaussian distribution σ2 from 0.001 to 10. For the contrastive objec-
tive, we tune τ from 0.5 to 0.9 in intervals of 0.05. To evaluate our model more
comprehensively, we opt for 20, 40, and 60 labeled nodes per class as the label
rates for the training set. We train our model ten times with the same partition,
and evaluate its effectiveness based on Macro-F1 and Micro-F1 scores.

4.4 Node Classification Results

The classification results for the nodes are presented in Table.1. The proposed
MuHca model performs better than all other models on all datasets with all
label rates. Several conclusions can be drawn from analyzing the results. Firstly,
HAN and DMGI demonstrate inferior performance compared to the proposed
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Table 1. Node classification results (%)

Dataset Metrics Training Deepw. Mp2vec HERec GAT HAN DMGI HeCo Magnn HAE Ours

ACM Ma-F1 20 77.25 51.91 55.13 85.23 85.66 87.86 88.56 90.54 91.24 93.19

40 80.47 62.41 61.21 87.04 87.47 86.23 87.61 90.51 91.95 92.81

60 82.54 61.13 64.35 87.56 88.41 87.97 89.04 90.83 92.19 93.70

Mi-F1 20 76.29 53.13 57.47 85.94 85.11 87.60 88.13 91.14 91.56 92.86

40 79.45 64.43 62.62 88.31 87.21 86.02 87.45 90.16 91.73 92.71

60 81.11 62.72 65.15 87.67 88.10 87.82 88.71 90.97 91.74 92.67

DBLP Ma-F1 20 77.42 88.98 89.57 91.41 89.31 89.94 91.28 92.12 91.54 94.80

40 81.01 88.68 89.73 91.20 88.87 89.25 90.34 92.57 92.91 94.55

60 83.67 90.25 90.18 90.88 89.20 89.46 90.64 93.50 93.07 94.29

Mi-F1 20 79.37 89.67 90.24 90.43 90.16 90.78 91.97 92.72 91.64 94.78

40 82.43 89.14 90.15 91.16 89.47 89.92 90.76 93.63 92.40 94.86

60 85.14 91.17 91.01 91.12 90.34 90.66 91.59 93.79 93.19 94.91

IMDB Ma-F1 20 40.72 45.98 45.87 49.44 56.17 60.44 57.53 59.36 54.60 61.74

40 45.19 47.35 46.72 50.14 56.21 60.94 57.84 60.27 56.69 63.31

60 48.13 47.89 46.96 52.19 57.13 61.34 57.61 60.73 60.25 63.68

Mi-F1 20 46.38 47.13 46.31 55.57 56.36 60.84 57.57 60.51 54.79 64.03

40 47.99 48.06 47.78 55.91 57.14 60.64 58.30 61.54 56.73 63.77

60 51.21 49.83 48.21 56.47 58.39 61.55 57.67 61.89 60.25 64.83

MuHca, which indicates that utilizing contrastive learning across various views
is more efficient than single-view learning. Moreover, compared with cross-view
module HAE and HeCo, our method achieves up to 4.6% and 3.2% improve-
ment respectively. This shows that data augmentation plays a critical role in
self-supervised learning. Finally, The performance of the Magnn module, which
utilizes the label information, is nearly close to our self-supervised model. This
indicates the great potential of data augmentation on heterogeneous graphs.

4.5 Performance Comparison

In this study, we perform an ablation study by removing certain design choices
shown in Table 2. We use variants of MuHca, including MuHca - Mu which dis-
cards the heterogeneous graph mixup module, and MuHca - DA which removes
the whole graph data augmentation module including contrast-GAN loss. The
results of MuHca are consistently better than its variants across all datasets
and labeled rates, indicating that the heterogeneous graph mixup module and
contrast-GAN module are effective for improving node representation results for
classification.

Moreover, we demonstrate the loss on the results of 60 training sets in ACM
for both the generator and discriminator in contrast-GANs through their learn-
ing curves with the epochs, as shown in Fig. 2. Once the initial fluctuations in
loss values subside, the generator and discriminator enter into a min-max game,
steadily decreasing their individual losses over time. The results show that after
about 35 epochs, the loss approaches tend to converge.
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Table 2. Evaluation on ablation study

Dataset Metrices Training MuHca MuHca-Mu MuHca-DA

ACM Ma-F1 20 93.19 90.92 89.52

40 92.81 91.95 90.09

60 93.70 90.63 89.60

Mi-F1 20 92.86 91.98 89.66

40 92.71 91.80 89.44

60 92.67 91.16 89.36

DBLP Ma-F1 20 94.80 92.95 91.26

40 94.55 91.37 90.41

60 94.29 91.24 90.36

Mi-F1 20 94.78 91.05 90.07

40 94.86 91.71 89.48

60 94.91 91.31 89.90

IMDB Ma-F1 20 61.74 60.99 59.93

40 63.31 61.34 60.31

60 63.68 61.66 59.70

Mi-F1 20 64.03 61.66 59.05

40 63.77 61.57 58.40

60 64.83 61.94 60.72

4.6 Parameter Sensitivity

To assess the impact of parameters, we utilize node classification Micro-F1 as
a benchmark on three datasets. The Micro-F1 score is essentially the same as
accuracy because it gives equal importance to each observation and guarantees
that every test case is assigned to exactly one class.

Parameter λ is for the equalizing of the contrast effect in two views between
the meta-path view and the network schema view used in Eq. 6. We demonstrate
the Micro-F1 scores in the 3-Y line graph shown in Fig. 3. Using 3-Y line graph
can better reflect the degree to which the model’s results change as the parameter
vary. When the parameter is raised, the model’s effectiveness improves steadily
until it reaches its optimal performance level, and then the performance of the
model shows a drop trend. The results indicate that incorporating negative sam-
ples generated from a contrastive view is effective in GANs. A possible reason is
that when λ is too small, the model inadequately captures enough information
from the contrastive local graph. Although the effect of the generated samples
by the contrastive view is relatively larger, having too high a proportion can
interfere with the model’s performance.
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Fig. 2. Loss change Fig. 3. Impact of parameter λ

5 Conclusion

In this paper, we propose a data augmentation strategy for HGs, which con-
tributes to performance improvement in contrastive learning. Requiring adver-
sarially generating negative samples by contrasting two views, it demonstrated
that data augmentation on heterogeneous graphs is effective for the contrastive
learning module. To further enhance the samples, we fully utilized the origi-
nal data by introducing the mixup model. The conducted experiments validate
the effectiveness of MuHca in the task of heterogeneous graph representation
learning.
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Abstract. Entity alignment (EA) aims to link entities referring to the
same real-world identity from different knowledge graphs (KGs). Most
existing EA methods focus on static KGs, while practical graphs are
growing and changing over time. Although some EA methods study
dynamic settings to suit the changes, they perform suboptimal as they
are unaware of knowledge oblivion and the prohibitive model size. To
address the above issues, we propose a Parameter-Lite dynamic Entity
Alignment model (PLEA), which leverages prior knowledge to embed
entities and even represent unseen entities. We design a novel lightweight
module that only trains a small number of parameters added by the
adapter and keeps the original network fixed, so as to retain knowledge
from previous snapshots with low computational cost. As for unseen enti-
ties, we design a regularized entity mapping mechanism to inject prior
knowledge into unseen entity embeddings to improve representation abil-
ity. The experimental results on three real-world datasets demonstrate
that our proposed PLEA archives up to 4% accuracy with only 50% of
the number of parameters, compared with existing state-of-art methods.

Keywords: Entity Alignment · Knowledge Graph · Adapter Tune

1 Introduction

Knowledge graphs (KGs) accumulate and convey knowledge in the real world,
whose nodes represent entities and edges represent potentially different relations
between entities. Nowadays, KGs have been widely used in application scenarios
such as search engines [1], question answering [2], and recommendation systems
[3]. Different organizations build their own domain-specific KGs, resulting in
data silos, heterogeneous data formats, and inconsistent data quality across dif-
ferent graphs [4]. In order to solve the above problems, entity alignment (EA) is
proposed to align entities from distinct KGs and integrate knowledge by linking
entities referring to the same real-world identity in different KGs.

Most entity alignment methods (RLEA [5], Dual-AMN [6], CycTEA [7],
NeoEA [8], etc.) assume that entities and relations are fixed in KGs. However,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 389–400, 2024.
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real-world knowledge graphs are more complicated. For example, Wikidata cur-
rently contains over 100 million records, while it had only 20 million in 2021. That
is, it has grown by about 80 million in the past two years. Obviously, real-world
KGs are dynamic [9] and constantly growing at a rapid pace. In this paper, we
regard the entity never appeared previously in KGs as an unseen entity [10], and
the entity that appeared as a seen entity at a specific snapshot in dynamic KGs.
Figure 1 demonstrates some potential scenarios for entity alignment in growing
KGs. The potential alignments can be identified at each snapshot, so our goal is
to utilize previously acquired knowledge rather than learn from scratch, and the
prior knowledge includes entity embeddings, predicted alignments, and param-
eter matrix in the former model. Moreover, we can deduce that the source KG
Gs and the target KG Gt grow independently and asynchronously, from Fig. 1.
For example, entity et5 is added at snapshot 1, while its expected counterpart
es7 is added at snapshot 2. Additionally, some unseen entities (i.e. es5) in KGs
have seen neighbors, while others like es6 and et6 do not. Hence, we facilitate the
coexistence of both unseen and seen entities within a unified embedding space,
so as to efficiently harness prior knowledge. This is based on the assumption
that the closer the distance between entities in the same embedding space, the
greater the possibility of alignment.

Fig. 1. Illustration of entity alignment in growing KGs. Given two dynamic KGs of
the source KG Gs = {Gs

1, G
s
2, ..., G

s
n} and the target KG Gt = {Gt

1, G
t
1, ..., G

t
n}, both

KGs represent as a sequence of KG snapshots. We expect to find potential alignments
for each entity at a specific snapshot. Gs

n and Gt
n denote the source KG and the target

KG at snapshot n respectively.

To the best of our knowledge, the existing entity alignment methods related
to dynamic settings are limited, and the models are often overly large and heavily
parameterized, exhibiting inadequate performance in retaining prior knowledge
[11]. To address these issues, we explore dynamic entity alignment, which seeks
to identify all potential alignments in evolving KGs in this paper. A significant
challenge presented by dynamic settings is how to achieve optimal alignment
performance with fewer parameters. The asymmetric growth of KGs complicates
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the positioning of entity embeddings from different snapshots within the same
embedding space. Consequently, another challenge in dynamic entity alignment
is updating entity embeddings to accommodate emerging unseen entities. It is
essential to maintain both unseen and seen entity embeddings within the same
vector space. Otherwise, it may lead to unexpected and inaccurate alignments.

In response to these challenges, we introduce a novel and lightweight model
for dynamic entity alignment, called Parameter-Lite dynamic Entity Alignment
(PLEA). PLEA effectively adapts prior knowledge to align unseen entities by
fewer parameters, yielding better results than mere fine-tuning. In order to pre-
vent rapid disruption of prior knowledge and avoid the exponential growth of
the entity alignment model, we design an adapter tuning module to maintain the
structural consistency of feature space by embedding entity features in a shared
vector space. Specifically, we design a parameter-lite adapter and insert it into an
advanced EA model, to keep the original entity alignment model fixed with a few
parameters newly added by the adapter. We introduce a regularized entity map-
ping mechanism to boost the efficiency of the adapter, which utilizes the embed-
dings of seen neighbors as anchor points and projects unseen entities into the same
space as their seen neighbors. The main contributions are summarized as follows:

• We propose a parameter-lite entity alignment model that integrates an
adapter module to reduce the number of trainable parameters so as to achieve
competitive performance with less computational cost.

• We design a regularized entity alignment mechanism to update entity embed-
dings by emerging unseen entity embeddings, so as to maintain the structural
consistency of feature space.

• We conduct extensive experiments on the public datasets, and the experimen-
tal results show that PLEA achieves higher efficiency and accuracy than the
baselines, with up to 4% accuracy improvement with only 50% of the number
of parameters on average in the training process.

2 Related Work

2.1 Static Entity Alignment

Embedding-based static entity alignment methods assume that entities and rela-
tions in KGs are stationary, and they are generally categorized as translation-
based models and Graph Neural Network (GNN) models. Translation-based
models embed entities and relations in low-dimensional vectors, assuming that
the distance between entities in vector space should be close when two enti-
ties from different KGs are aligned. TransE [12] is the first to represent entity
and relation transformation as a simple vector operation, but it only copes with
one-to-one relationships. To handle more complicated relationships, researchers
propose enhanced TransE-based models, such as MTransE [13], IPTransE [14]
and TransEdge [15]. Even though translation-based models are straightforward
and effective, they are difficult to deal with complex graph structures. Hence,
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GNN-based EA algorithms have been suggested as an alternative, such as GCN-
Align [16], AliNet [17], RREA [25] etc. Many subsequent studies introduce other
supernumerary information combined with GNN, e.g., labels for entity [18] and
entity-type information [19]. Recently, researchers introduce Transformer [20,21]
and Reinforcement Learning (RL) [22,23] into entity alignment to improve the
accuracy and robustness of entity alignment.

2.2 Dynamic Entity Alignment

To the best of our knowledge, DINGAL [24] is the first work to study dynamic
entity alignment, and its variant DINGAL-O is an inductive method that uti-
lizes the previous parameter matrix to update the embeddings of the locally
affected entities. Thus it significantly reduces the cost of space and time without
updating the global graph, meanwhile, it cannot adjust or update the network
to learn new knowledge. ContEA [25] fine-tunes the pre-trained model to align
unseen entities, which avoids resource waste by maintaining prior knowledge.
However, simple fine-tuning causes quickly prior knowledge disruption or model
explosion. The dynamic settings bring new challenges, including model parame-
ter explosion, knowledge-forgetting issues and unseen entity fusion. In this paper,
we propose PLEA, a parameter-lite dynamic entity alignment model to satisfy
entity alignment in dynamic settings with fewer parameters and less calculation.

3 Methodology

3.1 Overview

Given that real-world KGs continuously evolve and expand, our paper proposes
a novel dynamic entity alignment model PLEA, as depicted in Fig. 2.

Fig. 2. Architecture of PLEA. The added adapter is shown by blocks with dashed
borderlines, and the modules in gray blocks are not updated from the original model.
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PLEA comprises three modules, 1) Initial Feature Generation, 2) Mapping-
based Feature Fusion, and 3) Lightweight Adapter Tuning. The latter two repre-
sent our primary contributions. We utilize an advanced GNN encoder Dual-AMN
to obtain rich underlying features since we don’t focus on feature generation.
As for mapping-based feature fusion, we design a regularized entity mapping
mechanism and assimilate the features of unseen entities into the same space
as seen entities to ensure consistency and stability of the embedding space. For
lightweight adapter tuning, we propose a parameter-lite adapter by incorpo-
rating a small adapter into the original GNN model to handle unseen entities
without modifying the original alignment model.

We leverage Dual-AMN Encoder, which contains a simplified relational atten-
tion layer and a proxy matching attention layer to capture inter-graph informa-
tion and cross-graph information respectively. hei denotes the embedding vector
of entity ei:

hei = FPML(FRAL(ei,Nei), Ep) (1)

where FPML(∗) denotes the simplified relational attention layer, FRAL(∗)
denotes the proxy matching attention layer, Nei denotes one-hop neighbor enti-
ties set of entity ei, and Ep represents the proxy node. Meanwhile, we adopt a
bidirectional search strategy to ensure bidirectional and consistent alignments,
so as to avoid incorrect alignments. An entity pair (e1, e2) is considered aligned
only if the predicted alignment of e1 is e2 and the predicted alignment of e2 is
e1. In order to reduce the hyperparameters of the model, we use a normalization
step to fix the mean and variance of the sample loss. The model alignment loss
Lalign is expressed as follows:

Lalign = log[1 +
∑

(ei,ej)∈TP

∑

(ei,e′
j)∈TN

(λ(γ + sim(ei, ej) + sim(ei, e′
j)) + τ)] (2)

where TP denotes the positive sample set and TN denotes the negative sample
set, λ is a scale factor used to regulate sampling design and provide superior
negative samples. γ and τ represent the mean and variance of the original loss
respectively. We employ L2 distance to measure the similarity between entities,
i.e., sim(ei, ej) = ||hei − hej ||22.

3.2 Mapping-Based Feature Fusion

The independent and asymmetric growth of dynamic KGs make it difficult to
locate entity embeddings from different specific snapshots in the same space,
making it inefficient to utilize pre-trained knowledge. Previous approaches
exploit the average representation of seen neighbors to represent unseen entities
with the assumption that all unseen entities are related to seen entities, whereas
many unseen entities do not have any seen neighbors in reality. Motivated by
the invariance of orthogonal transformation [26], we propose a regularized entity
mapping mechanism. The key to this mechanism is to use the embeddings of
seen entities as anchors to map unseen entities into the same embedding space,
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so as to maintain the structural consistency of the embedding space. Specifically,
we employ a simple network to learn the orthogonal mapping rules from unseen
entities that possess seen neighbors, and then apply the rules to unseen entities
without seen neighbors.

Initially, we utilize graph convolutional networks (GCNs) to learn from
unseen entities with seen neighbors. Given an unseen entity eu, we represent
it by the average representation of its seen neighbors:

h̃(l+1)
eu =

1
|Ñeu |

σ(
∑

ev∈Ñeu

h̃(l)
ev W (l)

a ) (3)

h̃eu = fm(heu) = Wmheu (4)

where h̃ is the embedding vector of entity in the target embedding space, h̃
(l)
ev

denotes the embedding vector of entity ev in the target embedding space as
the input to layer l + 1, Ñeu represents seen neighbors set of eu, and W

(l)
a is

the weight matrix in layer l. fm(∗) denotes the mapping law and Wm is the
orthogonal mapping matrix to be learned. h is the embed vector of the entity in
the random initial embedding space. To obtain the optimal mapping rules, we
learn the following orthogonal mapping matrix:

Wm = arg min
Wm∈Od

||HWmWa − H̃||2F (5)

where || ∗ ||F denotes the Frobenius norm, H denotes the input matrix to be
mapped, H̃ denotes the matrix of anchors in the target embedding space, and Od

denotes a set of d-dim orthogonal matrices. Equation (5) measures the difference
between actual and predicted feature matrices of unseen entities. The optimal
mapping matrix Wm can be obtained by minimizing the objective function using
optimization methods such as gradient descent. Finally, we apply the learned
mapping rules to unseen entities by Eq. (4), and then map them into the target
embedding space to retain the original structural information.

3.3 Parameter-Lite Adapter Tuning

Previous studies introduce fine-tuning to utilize prior knowledge for dynamic
entity alignment. However, even a simple fine-tuning of the original entity align-
ment model may cause a significant increase in model scale as KG grows, result-
ing in computational cost and performance loss. Therefore, our goal is to achieve
good performance by minimizing model parameters, making the tuning process
lightweight. Inspired by the idea of parameter-efficient fine-tuning in transfer
learning [27], we propose a parameter-lite adapter with a few trainable parame-
ters to align unseen entities, and adapt prior knowledge to align unseen entities.

More specifically, we adopt a bottleneck structure to design the adapter with
a small number of trainable parameters. Firstly, we feed unseen entities and prior
knowledge into the adapter and map unseen entities to the target embedding
space with prior knowledge. Then, we project the entity embeddings X to a
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specified low-dimensional space to reduce the dimension of entity embedding
vector, followed by an activation function σ(∗), which is ReLU(∗). Finally, we
restore the dimension of feature vector, to capture entity characteristics better,
leading to the final form X ′.

X ′ = Wupσ(WdownX) (6)

where Wup and Wdown denote the mapping weight matrix of Wdown ∈ R
(k×d)×r

and Wup ∈ R
r×d respectively. k is the number of network layers, d is the feature

dimension, and r is the specified low-dimensional space dimension.
We use L2 regularization loss to constrain the parameter norm of the adapter

layer:
Ltuning = μ1||Wup||22 + μ2||Wdown||22 (7)

where μ1 and μ2 are the regularization hyper-parameters. Ltuning is to minimize
the tuning loss function by tuning the parameters in the model.

The overall loss of PLEA is defined in Eq. (8).

L = Lalign + θLtuning (8)
where Lalign is the alignment loss, and Ltuning is the tuning loss introduced by
the adapter. The hyperparameter θ is used to balance the impact on tuning and
is 0 at snapshot 0.

4 Experiments

We conduct extensive experiments to verify the effectiveness of our proposed
PLEA.

4.1 Experimental Setup

Datasets. To comprehensively evaluate our proposed PLEA, we conduct exper-
iments on the dynamic entity alignment dataset DBP15K-dynamic (DBP(d) for
short) [25]. DBP(d) includes three cross-language datasets to be aligned, and
each dataset simulates the growth of KG by constructing 6 snapshots. They are
generated from DBP15k with 20% for training, 10% for validation and 70% for
testing. The detailed statistics of these datasets are shown in Table 1.

Compared Methods. As mentioned in Sect. 2, dynamic entity alignment
methods can be divided into three categories: Retraining methods, Inductive
methods and Fine-tuning methods. For each category, we select some entity
alignment methods as baselines, and all the methods we choose only consider
knowledge graph structure. Retraining methods only retrain the model to han-
dle dynamic entity alignment. We adopt the following typical entity alignment
methods as baselines, including GCN-Align [16], AliNet [17] and Dual-AMN [6].
Inductive methods aggregate neighborhood information to update the network,
e.g., LAN+ [28] and DINGAL-O [24]. The only fine-tuning entity alignment
method ContEA [25] uses the existing adjacent relationships to generate embed-
dings for unseen entities and only trains part of the parameters.
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Table 1. Statistic of three datasets. Sn represents snapshot n, |T | denotes the number
of triples in the current snapshot, |Eun| denotes the number of newly added entities
in the current snapshot, and P denotes the percentage of unseen entities with no seen
neighbors to all unseen entities in the current snapshot.

Snapshot DBP(d)ZH−EN DBP(d)JA−EN DBP(d)FR−EN

|TZH | |TEN | |Eun| P |TZH | |TEN | |Eun| P |TZH | |TEN | |Eun| P
S0 70,414 95,142 0 NA 77,214 93,484 0 NA 10,598 115,722 0 NA

S1 103,982 154,833 37,748 0.908 11,268 150,636 36,596 0.885 148,274 184,132 42,603 0.911

S2 137,280 213,405 34,790 0.418 147,097 207,056 33,725 0.384 191,697 251,591 38,737 0.444

S3 173,740 278,076 34,325 0.315 185,398 270,469 33,213 0.316 239,861 326,689 37,787 0.357

S4 213,814 351,659 35,096 0.286 227,852 341,432 33,728 0.276 293,376 411,528 38,237 0.329

S5 258,311 434,683 35,887 0.269 274,884 421,971 34,808 0.269 352,886 507,793 39,667 0.323

Metrics and Hyperparameters. We use precision (P ), recall (R), and F1
to evaluate the performance of PLEA. P and R are calculated by the accuracy
of top-1 and F1 = (2 ∗ P ∗ R)/(P + R), and higher values of these indicators
indicate better performance. For all datasets, we use the same hyperparameters.
The embedding dimension d is 100, the depth of GNN is 2, and the dropout rate
is 0.3 during the training. To ensure the reliability of the results, we report the
average performance over 5 independent training runs.

4.2 Main Results

The results of all approaches are shown in Table 2, Table 3, and Table 4. We never
compare the performances at snapshot 0 since the entity alignment of snapshot
0 can be regarded as static entity alignment, which is not our focus.

Table 2. Results of entity alignment on DBP(d)ZH−EN . The best results are written
in bold. Sn represents snapshot n.

Method S0 S1 S2 S3 S4 S5

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GCN-Align 0.550 0.249 0.343 0.212 0.152 0.177 0.133 0.115 0.123 0.096 0.091 0.094 0.076 0.075 0.076 0.062 0.062 0.062

AliNet 0.641 0.358 0.459 0.285 0.311 0.297 0.195 0.279 0.230 0.146 0.244 0.183 0.129 0.232 0.166 0.105 0.199 0.128

Dual-AMN 0.834 0.596 0.695 0.482 0.443 0.462 0.357 0.356 0.356 0.285 0.286 0.286 0.249 0.254 0.251 0.227 0.227 0.227

LAN+ 0.827 0.576 0.679 0.488 0.426 0.455 0.360 0.345 0.352 0.274 0.271 0.272 0.231 0.229 0.230 0.205 0.199 0.202

DINGAL-O 0.497 0.195 0.280 0.370 0.158 0.222 0.315 0.135 0.189 0.251 0.111 0.154 0.229 0.093 0.132 0.209 0.080 0.116

ContEA 0.844 0.606 0.705 0.555 0.539 0.546 0.441 0.475 0.458 0.363 0.422 0.390 0.323 0.372 0.346 0.294 0.333 0.312

PLEA 0.846 0.595 0.699 0.591 0.526 0.557 0.471 0.469 0.470 0.402 0.416 0.409 0.357 0.375 0.365 0.325 0.335 0.330

PLEA(w/oM) 0.847 0.601 0.703 0.569 0.525 0.546 0.450 0.465 0.457 0.381 0.412 0.396 0.338 0.368 0.353 0.308 0.329 0.318

PLEA(w/oA) 0.846 0.604 0.705 0.560 0.528 0.544 0.442 0.466 0.453 0.371 0.411 0.390 0.328 0.366 0.346 0.296 0.325 0.310

PLEA vs. Retraining Methods. Compared with retraining methods, PLEA
outperformers existing state-of-the-art methods on all datasets, with up to 10%
average improvement in all metrics. Although Dual-AMN outperforms the previ-
ous SOTA on the three cross-lingual datasets due to its dual attention matching
network, our PLEA still achieves superior performance, exceeding retraining
Dual-AMN by at least 10% in all metrics. The performance of all retraining
methods declines sharply over time without using prior knowledge, while PLEA
improves by utilizing prior knowledge from past snapshots.
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Table 3. Results of entity alignment on DBP(d)JA−EN . The best results are written
in bold. Sn represents snapshot n.

Method S0 S1 S2 S3 S4 S5

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GCN-Align 0.594 0.279 0.379 0.263 0.183 0.216 0.177 0.142 0.158 0.140 0.117 0.127 0.116 0.099 0.107 0.099 0.084 0.091

AliNet 0.661 0.364 0.469 0.305 0.312 0.308 0.216 0.270 0.240 0.167 0.231 0.194 0.149 0.215 0.176 0.126 0.189 0.151

Dual-AMN 0.861 0.606 0.711 0.517 0.437 0.474 .0398 0.347 0.370 0.348 0.292 0.318 0.313 0.251 0.278 0.300 0.231 0.261

LAN+ 0.845 0.575 0.684 0.528 0.424 0.470 0.410 0.333 0.368 0.335 0.265 0.296 0.296 0.226 0.257 0.274 0.200 0.231

DINGAL-O 0.540 0.227 0.320 0.391 0.174 0.241 0.328 0.137 0.194 0.271 0.113 0.159 0.249 0.092 0.134 0.231 0.078 0.116

ContEA 0.863 0.615 0.718 0.575 0.526 0.550 0.459 0.445 0.452 0.403 0.380 0.391 0.364 0.335 0.349 0.338 0.299 0.317

PLEA 0.865 0.604 0.711 0.627 0.526 0.572 0.512 0. 448 0.477 0.448 0.384 0.414 0.406 0.338 0.369 0.372 0.300 0.332

PLEA(w/oM) 0.861 0.598 0.706 0.611 0.519 0.561 .0497 0.441 0.467 0.432 0.377 0.403 0.392 0.330 0.358 0.364 0.293 0.325

PLEA(w/oA) 0.860 0.605 0.710 0.601 0.524 0.559 0.485 0.445 0.465 0.419 0.381 0.399 0.379 0.334 0.354 0.351 0.297 0.322

Table 4. Results of entity alignment on DBP(d)FR−EN . The best results are written
in bold. Sn represents snapshot n

Method S0 S1 S2 S3 S4 S5

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GCN-Align 0.561 0.262 0.357 0.233 0.161 0.190 .148 0.111 0.127 .113 0.086 0.098 0.089 0.066 0.076 0.077 0.056 0.065

AliNet 0.653 0.361 0.465 .275 0.289 0.282 0.187 0.226 0.205 0.144 0.180 0.160 0.124 0.155 0.138 0.115 0.138 0.126

Dual-AMN 0.862 0.629 0.727 0.503 0.443 0.471 .394 0.331 0.359 0.351 0.273 0.307 0.322 0.237 0.273 0.313 0.214 0.254

LAN+ 0.845 0.594 0.697 .506 0.410 0.453 .379 0.300 0.335 .304 0.227 0.260 .269 0.188 0.222 .247 0.162 0.195

DINGAL-O 0.540 0.224 0.317 0.381 0.165 0.231 0.329 0.124 0.180 0.258 0.092 0.136 0.247 0.073 0.112 0.227 0.061 0.096

ContEA 0.863 0.627 0.727 0.558 0.515 0.536 0.455 0.418 0.436 0.391 0.351 0.370 0.350 0.300 0.323 0.321 0.265 0.290

PLEA 0.869 0.628 0.729 0.597 0.518 0.555 0.484 0.420 0.450 0.426 0.349 0.384 0.394 0.300 0.340 0.371 0.263 0.308

PLEA(w/oM) 0.867 0.630 0.730 0.587 0.519 0.551 0.474 0.420 0.445 0.418 0.351 0.381 0.387 0.300 0.338 0.360 0.265 0.305

PLEA(w/oA) 0.863 0.623 0.723 0.586 0.516 0.549 0.469 0.420 0.442 0.407 0.349 0.376 0.368 0.299 0.330 0.340 0.263 0.296

PLEA vs. Inductive Methods. PLEA surpasses inductive methods in all
metrics by at least 10%. For instance, on dataset DBP(d)ZH−EN , PLEA
improves the accuracy by 30% at snapshot 1. The experimental results show
that inductive methods are inadequate in dynamic entity alignment because
they only consider local information without updating the alignment network.
While PLEA leverages prior knowledge and adapts the alignment network to
deal with dynamic changes, contributing to better performance.

PLEA vs. Fine-Tuning Methods. Compared with the fine-tuning method
ContEA, PLEA outperforms the fine-tuning baselines by an average of 4% in all
metrics. Specifically, PLEA achieves 62.7% precision on dataset DBP(d)JA−EN ,
which is 5.2% higher than the second-best method ContEA at snapshot 1. Mean-
while, PLEA also reaches an average of 4.5% precision improvement compared
to ContEA. Besides, the performance of all methods tends to decline over time,
while PLEA exhibits a slower decline. This can be attributed to the designed
adapter that keeps the original model frozen and only tunes the parameters on
the lightweight adapter, which helps to slow the speed of knowledge forgetting
and keep the model stable.

Efficiency Analysis. As shown in Fig. 3, it can be observed that PLEA outper-
forms the fine-tuning method in terms of parameter numbers and storage usage
on all three datasets. PLEA only trains with an average of 0.678% parameters
compared to ContEA, which is the second-best model in dynamic entity align-
ment. Moreover, as the knowledge graph grows, the parameters that the original
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Fig. 3. Performance of PLEA vs. tuning the original GNN model. Subgraph (a) depicts
the number of trainable parameters vs. the fine-tuning method on three datasets, and
subgraph (b) shows the memory usage of PLEA and fine-tuning method.

model required to train increase even faster, but our model avoids this problem.
Taking DBP(d)ZH−EN as an example, the number of parameters in PLEA is just
0.413% of the fine-tuning method at snapshot 5. Furthermore, with the growth
of KGs, the memory requirements of the fine-tuning method increase linearly at
snapshot 5, while our method slows down this trend, reducing the requirement
by almost 50%. These results demonstrate that our method is lightweight with
less calculation.

In summary, the efficiency of PLEA exceeds all competitors, achieving better
results by tuning fewer parameters, and its lightweight design enables real-time
dynamic entity alignnment on large-scale KGs.

4.3 Ablation Study

PLEA(w/o,M). The first variation of PLEA is PLEA(w/o,M), which removes reg-
ularized entity mapping mechanism. Most of the unseen entities shown in Table 1
do not have seen neighbors, so it is inefficient to express the unseen entity by the
average embedding of seen neighbors. The experimental results show that the
accuracy drops 1% on average when the regularized entity mapping mechanism
is removed as shown in Table 2, Table 3, and Table 4. This demonstrates the
effectiveness of our proposed regularized entity mapping mechanism. Further-
more, compared with the second-best method, PLEA(w/o,M) outperforms with
3% improvement of accuracy on DBP(d)FR−EN and DBP(d)JA−EN, as well as
2% on DBP(d)ZH−EN on average. This improvement is brought about by the
adapter designed by PLEA.
PLEA(w/o,A). The second variation of PLEA is represented as PLEA(w/o,A),
without updating the adapter. Table 2 shows that PLEA(w/o,A) achieves a pre-
cision that is 5% higher than the best baseline. Table 3 and Table 4 show that
PLEA(w/o,A) outperforms other baselines by 1.5% on precision. The improve-
ment on DBPZH−EN is small due to the gaps between Chinese and English
embedding spaces. These results demonstrate the effectiveness of the mapping
mechanism. Compared with the second-best method, PLEA(w/o,A) reaches 1.7%
precision improvement on average for each dataset, which is because of the map-
ping mechanism.
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5 Conclusion

This paper addresses the challenge of entity alignment in real-world dynamic
knowledge graphs. We propose a novel model PLEA that leverages prior knowl-
edge to align unseen entities without rerunning or retraining alignment algo-
rithms of static KGs. Our experiments demonstrate the effectiveness of PLEA
under dynamic entity alignment tasks. For future work, we plan to explore the
versatility of the adapter in our entity alignment model and develop a gen-
eral framework for inserting the adapter into various static alignment models,
enabling it to handle entity alignment of KGs with different properties.
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Abstract. The use of deep neural networks for traffic demand forecast-
ing has garnered significant attention from both academic and indus-
trial communities. Compared with the traditional traffic flow forecast-
ing task, the Origin-Destination(OD) demand prediction task is more
valuable and challenging, and several methods have been proposed
for OD demand prediction. However, most existing methods follow
a general technical route to aggregate historical information spatially
and temporally. This paper proposes an alternative approach to pre-
dict Origin-Destination demand, named Zoom-based AutoEncoder for
Origin-Destination demand prediction (ODZAE). The main objective of
our research is to enhance the integration of diverse inherent patterns
in real-world OD demand data in a more efficient manner. Besides, we
proposed a zoom operation to learn spatial relationships between traffic
nodes and 3DGCN to simultaneously model spatial and temporal depen-
dencies. We have conducted experiments on two real-world datasets from
Beijing Subway and New York Taxi, and the results demonstrate the
superiority of our model against the state-of-art approaches.

Keywords: Origin Destination Demand Prediction · Autoencoder ·
Spatio-Temporal Data Mining · Graph Neural Network · Intelligent
Transportation System

1 Introduction

Deep learning techniques have been widely applied in intelligent transportation
systems (ITS) in recent years, such as traffic controlling and autopilot. Among all
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these applications, traffic prediction has demonstrated its significance in urban
construction, traffic control, and route planning, making it the most attractive
problem.

However, most of the existing research has focused on predicting the inflow
and outflow of a region, which provides a relatively rough estimate of traffic
states. With the abundance of large-scale traffic data available, many scholars
have started to investigate forecasting Origin-Destination demand to provide
a more detailed traffic demand forecast. Although there are some attempts on
OD demand prediction, three crucial issues have rarely been discussed. First,
most previous methods for OD demand prediction based on spatio-temporal
graph neural networks predict future demand by aggregating historical infor-
mation without fully exploring the intrinsic patterns in historical OD demand
data. Second, most existing models rely on graph neural network (GNN) to learn
the spatial relationships between transportation nodes, using adjacency matrices
constructed based on geographic proximity or POI similarity relationships. How-
ever, this approach based on manual predefined rules may introduce noise. Third,
most methods model spatial and temporal patterns separately without consid-
ering their interactions, which significantly restricts the representation ability of
the models a lot.

To address the above challenges, this paper proposes a novel autoencoder-
based framework for Origin-Destination demand prediction, named Zoom-based
AutoEncoder for Origin-Destination demand prediction (ODZAE). First, we use
an encoder which consists of zoom operation and 3DGCN, to get historical hid-
den states from historical Origin-Destination demand data and use a decoder to
reconstruct the input data in pretrain. Then we use a projection function to get
future hidden states from historical hidden states and another decoder for future
Origin-Destination demand prediction. Our main contributions are as follows:

– We propose a novel framework for Origin-Destination demand prediction,
which uses an autoencoder to learn intrinsic patterns from historical Origin-
Destination demand data and predicts future Origin-Destination demand by
projected hidden states.

– We propose zoom operation to model complex spatial dependencies of traffic
nodes. By zooming and enlarging, state change of one node can affect those
nodes that are geographically neighboring or functionally similar to it.

– We proposed a 3DGCN which can perform graph convolution operations
simultaneously on both origin dimension, destination dimension, and time
dimension, allowing the model to handle spatial and temporal dependencies
at the same time.

– We conducted experiments on two real world datasets, and the results demon-
strate the advantages of our approach compared with baselines.

The remaining of this paper is organized as follows: Sect. 2 introduces related
works, and Sect. 3 describes the preliminaries and definitions. Section 4 presents
our method in detail, and the experiments are conducted in Sect. 5. Finally, we
summarize this work in Sect. 6.
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2 Related Work

2.1 Origin-Destination Demand Prediction

Origin-Destination demand prediction is a challenging task which aims to fore-
cast the demand between any two traffic nodes. Basically, there are two directions
to solve this problem. In the first direction, researchers divide an area into grids
and then use convolutional neural network (CNN) to learn the spatial depen-
dency between adjacent grids [4]. For instance, Chu et al. [3] regard localized
travel demands as image pixels and then not only multiply the input and hid-
den states with the weights but perform convolution with weights. Duan et al.
[10] use the discrete wavelet transform (DWT) and three CNN layers to learn
the spatial dependencies from OD demand in different resolutions. Liu et al. [9]
propose a model named CSTN, which consists of a CNN-based module to model
local spatial context and another CNN-based module to model global correlation
context.

The methods mentioned above divide an area into grids. However, in most
cases, the distribution of traffic nodes is uneven, making it challenging to model
the spatial relationship between traffic nodes using CNN. Researchers in the sec-
ond direction treat the area as a graph whose vertices are traffic nodes, then use
graph neural network (GNN) to model spatial dependencies of traffic nodes [15].
For instance, Wang et al. [13] design node embedding network via graph convolu-
tions among defined node neighborhoods (geographical and semantic neighbors).
Zhang et al. [16] develop a new layer named k–hop temporal node-edge attention
layer which learns the representations for both nodes and edges by adaptively
adjusting the relationships between each OD pair at different time intervals. Shi
et al. [11] conduct graph convolution on both the origin dimension and the des-
tination dimension of OD tensor, and design a dynamic graph for representing
the dynamic correlations of regions as origins or destinations calculated by the
historical OD flow data.

2.2 Autoencoder

Autoencoder is a classical method for representation learning, which was first
introduced in [1]. Some traditional machine learning methods are autoencoders,
such as PCA and k-means.

One variant of autoencoders is variational auto-encoding model, which
assumes that data are generated from underlying latent representation. Kingma
et al. [8] are pioneers in using variational inference, which assumes the prior p(z)
and the approximate posterior q(z|x) both follow Gaussian distributions. Oord
et al. [12] propose a novel and powerful variational AE model called VQ-VAE
which relies on vector quantization (VQ) to learn the posterior distribution of
discrete latent variables.

Recently, denoising autoencoders are wildly used in computer vision (CV)
and natural language processing (NLP). Bert randomly masks some of the tokens
from the input and then predicts them based on context information. He et al.
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[6] develop an asymmetric encoder-decoder architecture for visual representation
learning, with an encoder that operates only on the visible subset of patches
(without mask tokens), along with a lightweight decoder that reconstructs the
original image from the latent representation and mask tokens.

3 Problem Formulation

In this section, we will first introduce some preliminaries used throughout this
paper, and then we will define the problem of Origin-Destination demand pre-
diction.

3.1 Definitions

Definition 1 (Traffic Nodes): The goal of the Origin-Destination demand pre-
diction task is to predict the Origin-Destination demand value within a certain
period of time between any two traffic nodes. For transportation modes with fixed
stations such as buses and subways, we directly use their stations as traffic nodes.
For transportation modes such as taxis or dockless bike-sharing systems, where
the station locations are not predetermined, the divisions of the city (such as
streets or blocks) are used as traffic nodes.

Definition 2 (OD Graph): An OD Graph is denoted as G = (V,E), where
V = {v1, v2, . . . vn} is a finite set of N traffic nodes; E = {eij}N

i,j=1 indicates
whether two nodes are geographically adjacent to each other: for transportation
with fixed stations, two nodes are adjacent when they are in the same bus line
or subway line; for transportation without fixed stations, two nodes are adjacent
when the distance between them is less than a certain threshold. Then eij will be
one when vi is adjacent to vj otherwise will be zero.

Definition 3 (OD Demand Matrix): The OD demand matrix records the OD
demand in a fixed time interval between all OD pairs. Formally, the OD demand
matrix between t and t+τ is denoted as Mt ∈ R

N×N where τ is the time interval
of certain period of time. The (i, j)-entry of Mt represents how many passengers
travel from vi to vj between t and t + τ .

3.2 Problem Definition

OD Demand Prediction. For a traffic system, given OD Graph and all OD
Demand matrix {Mt}T

t=1, our goal is to predict the OD matrix of the next time
interval MT+1.

4 Methodology

This section presents the proposed Zoom-based AutoEncoder for Origin-
Destination demand prediction (ODZAE). We first present the motivation and
overview of our method, and then we will introduce the proposed method step
by step.



Zoom-Based AutoEncoder for Origin-Destination Demand Prediction 405

Fig. 1. The overall framework of ODZAE. It uses a Zoom-based AutoEncoder to mine
the spatial and temporal dependencies of historical OD demand data to obtain hidden
states, then uses a projection function to project hidden states from history to future,
and finally uses another decoder to get the prediction result from future hidden states.

4.1 Motivation and Overview

Our framework aims to learn hidden states for traffic nodes that contain
the intrinsic pattern features of original historical Origin-Destination demand
matrix, which can be projected to the future hidden states and used to recon-
struct the future OD demand matrix. The framework overview is shown in Fig. 1.
First, we design an encoder δenc based on Zoom Operation and 3DGCN to
extract the hidden states h ∈ R

3p×N2×d of historical OD Demand data as:

h = δenc(X). (1)

To account for temporal dependencies, the input variable X ∈ R
3p×N2

includes
the OD demand from the previous p time slices, as well as the OD demand from
the same time slices yesterday and last week:

X = [Mt−7Γ−p+1, . . . ,Mt−7Γ ,Mt−Γ−p+1, . . . ,Mt−Γ ,Mt−p+1, . . . ,Mt], (2)

where Γ is the number of time intervals within a day. This approach captures
both the trend and periodicity of the OD demand. Second, we used a Multi-
layer Perceptron (MLP) as recovery decoder δdecr to reconstruct the history OD
demand matrix X̂ ∈ R

3p×N2
:

X̂ = δdecr (h). (3)

The above procedure is pretrained to assure the encoder can extract essential
spatio-temporal features from original input and preserve as much information
as possible into hidden states.
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Then, after the encoder is well trained, a MLP as hidden states projection
function ψ(·) is added to project hidden states from historical to future:

ĥ = ψ(h), (4)

where ĥ ∈ R
N2×d is the hidden states corresponding to the predicted OD

demand, and h is the hidden states corresponding to the historical OD demand.
Finally, we used another MLP as predict decoder δdecp to get the prediction
result from future hidden state ĥ:

Ŷ = δdecp(ĥ). (5)

4.2 Zoom Based Encoder

To account for the spatio-temporal dependencies and topological correlations in
OD demand data, we developed a Zoom-Based Encoder to extract hidden states
with significant pattern features to facilitate historical OD demand reconstruc-
tion. Our encoder uses a zoom operation to learn various spatial dependencies
and 3DGCN to learn spatio-temporal dependencies simultaneously.

In encoder, the input X will first go through 1 × 1 convolutional layer, then
will be split into two branches: the first branch will first go through zoom for
compression, then use 3DGCN to deal with spatio-temporal dependencies, and
then use enlarge to restore; the second branch only passes through the 3DGCN
layer. After that, the results of the two branches will be concatenated together,
and the output of the encoder will be obtained after another 1 × 1 conv layer.

Zoom Operation. Existing models for predicting OD demand often rely on
graph neural networks based on adjacent matrices to capture the spatial depen-
dencies between adjacent traffic nodes. However, the spatial dependencies of OD
demand extend beyond adjacent relationships and also include functional simi-
larities. For instance, during morning rush hour, many people in the city travel
from residential to work areas. In this case, there is a spatial dependency rela-
tionship between the traffic stations located in the residential areas and those
located in the work areas. However, this type of spatial dependency relationship
is difficult to design manually.

To solve this problem, we propose the zoom operation. The core idea is to
compress the state of N traffic nodes into M cluster states and then use the
enlarge operation to restore the cluster states to the states of traffic nodes.
Formally, zoom operation is computed as:

hzoom = Zoom(hinput) = WZoom × hinput, (6)

where hinput ∈ R
3p×N2×d is output of input X after passing through 1 × 1 conv

layer, and WZoom ∈ R
N2d×M2d is the weight matrix of Zoom. Then we use
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3DGCN which will be described in detail in the next section to learn spatial and
temporal dependencies of cluster states.

hst = 3DGCN(hzoom). (7)

Finally, we will use a MLP as enlarge operation to get nodes states hout ∈
R

3p×N2×d from cluster states:

hout = Enlarge(hst) = WEnlarge × hst, (8)

where WEnlarge ∈ R
M2d×N2d is the weight matrix of Enlarge.

3DGCN. Graph convolutional network (GCN) has achieved the unprecedented
success on a series of problems. Given a graph G = (V,E,A) where V is a set
of vertices, E is a set of edges and A ∈ R

N×N is the connectivity matrix. Then,
the graph Laplacian is

L = I − D−1/2AD−1/2, (9)

where D is the degree matrix and I is an identity matrix. GCN generalizes the
convolution operation from CNN on graph based on graph Laplacian, which
generates a signal from lth layer, i.e., Hl, to (l + 1)th layer by

Hl+1 = σ(
K−1∑

k=0

αkTk(L)Hl), (10)

where Tk(·) denotes the Chebyshev polynomial of degree k. Mofnti et al. [11]
propose 2DGCN which extends GCN to 2D graph signals. Different from tradi-
tional GCN, 2DGCN operates on a matrix that both rows and columns can be
regarded on as features, i.e., the raw index is corresponding to a node as well as
the column index. Thus, the 2DGCN can be defined as

H(l+1) = σ(
N−1∑

i=0

N−1∑

j=0

Hl ×1 Ti(L1) ×2 Tj(L2) ×3 Wl
ij , (11)

where ×n means the matrix multiplication on the n th dimension of the tensor,
L is the Laplacian matrix obtained by Eq. 9, Wl

ij is the learnable weight matrix
for the l-th layer, and σ(·) is the activation function. MPGCN use 2DGCN to
conduct GCN for both origins and destinations, using the temporal features
extracted by LSTM. This method of dealing with spatial patterns and tempo-
ral patterns separately does not consider the interaction between them, which
restricts the representation ability of the model a lot. To solve this problem, we
extend 2DGCN to 3DGCN by adding time dimension:

H(l+1) = σ(
T−1∑

t=0

N−1∑

i=0

N−1∑

j=0

Hl ×1 A1 ×2 Ti(L1) ×3 Tj(L2) ×4 Wl
ijk. (12)



408 X. Ma et al.

Motivated by GraphWavenet [14], we treat the different time slices as different
time nodes and calculable time nodes relationship matrix A1 by

A1 = SoftMax(σ(E1ET
2 )), (13)

where E1 ∈ R
3p×de is the source time node embedding, and E2 ∈ R

3p×de is the
target time node embedding.

4.3 Training Strategy

To enhance the performance and precision of our model, we first use the ODZAE
to pretrain for data reconstruction on the training set. That is, the input is
historical Origin-Destination demand X, and the output is the reconstructed
historical Origin-Destination demand X̂. Then we load the parameter of the
encoder in pretrained model and combine it with the projection function and
prediction decoder δdecp for supervised learning. We do not fix the parameters
of the encoder, allowing them to be fine-tuned during training since the encoder
have the ability to learn spatio-temporal dependencies. The loss functions for
pretraining and prediction are formally defined as:

Lpretrain(X, X̂) = (X − X̂)2, (14)

Lprediction(Y, Ŷ) = (Y − Ŷ)2. (15)

5 Experiment

5.1 Datasets

We conduct experiment on two real-world traffic datasets to verify the effective-
ness of ODZAE, namely BJSubway and NYTaxi:

1. BJSubway collects all transaction data of the Beijing Subway from June 1,
2017 to July 31, 2017, using the first 42 days for train, the next 7 days for
validation and the last 7 days for test. We use subway stations as traffic nodes
and the number of subway stations is 268.

3. NYTaxi collects data on taxi transactions in the Manhattan district of New
York City from January 1, 2019 to June 30, 2019, using the first 139 days for
train, the next 21 days for validation and the last 21 days for test.1 We use
Manhattan neighborhoods as traffic nodes and the number of neighborhoods
is 63.

5.2 Baselines and Metrics

We compare our model with following methods:

1 Data is available at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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– HA (Historical Average) simply takes the average value of historical OD
demand for a given OD pair as the prediction result.

– LR (Linear Regression) uses the same input as our model, exploiting linear
correlations between the input and the target value.

– XGBoost [2] is an improved algorithm for the original Gradient Boosting
Decision Tree method.

– GEML [13] is an earlier work to study OD prediction. It uses semantic
neighbors and geographical neighbors to model spatial relations, and uses
skip LSTM to model temporal relations.

– DNEAT [16] uses dynamic node-edge attention from demand generation and
attraction perspectives.

– MPGCN [11] is a model which utilizes LSTM to extract temporal features
for each OD pair and two-dimensional graph convolutional network to learn
the spatial dependency of origins and destinations.

– CMOD [5] uses a continuous-time dynamic graph representation learning
framework for OD demand forecasting, which update traffic nodes represen-
tation when traffic transaction happens.

– ODformer [7] present a spatial-temporal transformer for OD Demand fore-
casting, using OD Attention mechanism and the 2D graph neural network to
capture spatial dependencies in multiple scenarios.

We use three metrics to measure and evaluate the performance of baseline
methods and our method, Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and Pearson’s Correlation Coefficient (PCC).

5.3 Experimental Settings

The proposed method is implemented with Pytorch 1.8.1 on a machine with
Intel Xeon Glod 6130 CPU and 4 T T4 GPUs. For both datasets, τ is set as
30 min and the number of previous time slices p is 3. The hidden dimension d
is set as 16, and the time node embedding dimension de is set as 10. Adam
Optimizer with initial learning rate 0.0001 and early stopping strategy with
patience 5 are utilized to train the proposed model. The learning rate of all deep
learning methods is chosen from [0.01, 0.001, 0.0001, 0.00001] according to the
best performance on the validation set. All deep learning methods are repeated
with different seeds for 5 times and the average value and the standard deviation
are reported.

5.4 Comparison Results

Table 1 show the comparison with baselines. It can be observed that (1) For most
methods, MAE and RMSE are smaller and PCC is higher in NYTaxi than in
BJSubway. This is because the average demand of each OD pair in BJSubway is
larger than that in NYTaxi. (2) Traditional machine learning methods perform
worse than deep learning based methods. Deep learning methods have more
expressive power which can better learn the spatial and temporal dependencies
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Table 1. Comparison Results with Baselines.

Dataset Method MAE ↓ RMSE ↓ PCC ↑
BJSubway HA 2.9003 8.1266 0

LR 1.9396 5.3547 0.7521

XGBoost 1.8048 5.7709 0.7040

GEML 1.7291 ± 0.0123 4.6018 ± 0.1138 0.8279 ± 0.0075

DNEAT 1.4706 ± 0.0099 5.7384 ± 0.0311 0.7237 ± 0.0033

MPGCN 1.4625 ± 0.0183 4.5716 ± 0.1054 0.8343 ± 0.0081

CMOD 1.4475 ± 0.0202 3.6890 ± 0.0319 0.8911 ± 0.0020

ODFormer 1.4558 ± 0.0023 3.9723 ± 0.0242 0.8523 ± 0.0073

ODZAE 1.3480±0.0076 3.4866±0.0187 0.9032±0.0011

NYTaxi HA 1.4593 2.6569 0

LR 0.6907 1.3611 0.8586

XGBoost 0.6881 1.3555 0.8599

GEML 0.6476 ± 0.0033 1.3432 ± 0.0093 0.8662 ± 0.0015

DNEAT 0.6495 ± 0.0025 1.5179 ± 0.0172 0.8252 ± 0.0040

MPGCN 0.6247 ± 0.0014 1.2471 ± 0.0094 0.8863 ± 0.0022

CMOD 0.5926 ± 0.0026 1.1795 ± 0.0023 0.8959 ± 0.0004

ODFormer 0.6068 ± 0.0057 1.3224 ± 0.0342 0.8943 ± 0.0042

ODZAE 0.5771±0.0035 1.1340±0.0056 0.9041±0.0010

in historical OD demand, thus perform better. (3) The model we propose achieves
the best performance and lowest MAE and RMSE, and has the highest PCC on
all comparison experiments, which indicates that our proposed novel framework
is effective to deal with Origin-Destination demand prediction task.

5.5 Ablation Study

To demonstrate the effectiveness of each proposed component, an ablation study
is conducted on BJSubway dataset with four variants:

– ODZAE w/o zoom removes zoom operation in the encoder.
– ODZAE w/o 3DGCN removes 3DGCN in the encoder.
– ODZAE w/o projection removes projection function, uses historical hid-

den states h as the input of prediction decoder.
– ODZAE w/o finetune fixes the parameters of the pretrained autoencoder

and won’t update them during training.

Figure 2 shows ablation results; it can be observed that (1) ODZAE per-
forms better than ODZAE w/o zoom, which demonstrates that the proposed
zoom operation can leverage spatial dependencies for better prediction; (2) the
prediction performance of ODZAE w/o 3DGCN is significantly inferior to that



Zoom-Based AutoEncoder for Origin-Destination Demand Prediction 411

(a) RMSE (b) PCC

4.0

3.8

3.6

3.4

3.2

0.91

0.90

0.89

0.88

0.87

0.86

ODZAE ODZAE w/o 3DGCN ODZAE w/o zoom
ODZAE w/o projection ODZAE w/o funetine

Fig. 2. Ablation study on BJSubway

of ODZAE. This outcome suggests that the future demand for OD is closely
dependent on the spatio-temporal patterns of past OD demand, and 3DGCN
is effective in capturing these patterns. (3) the prediction error is significantly
increased after fixing the parameters during training, which indicates that the
encoder of ODZAE can model temporal dependencies; (4) ODZAE performs
much better than ODZAE w/o projection shows that the projection function is
crucial for improving prediction accuracy.

6 Conclusion

This study proposed a novel framework for Origin-Destination demand predic-
tion problem based on autoencoder. We propose a specially designed encoder
which consists of zoom operation and 3DGCN to learn intrinsic patterns of his-
torical Origin-Destination demand data and use a projection function to get
future hidden states from historical hidden states. Finally, we use a decoder to
get the prediction result. We conduct experiments on two real-world datasets,
and ODZAE achieved the best performance, demonstrating its superiority for
OD demand prediction. Although the use of autoencoder can achieve good pre-
diction results, due to space constraints, we did not explore what information
hidden states contain. This work bonds autoencoder and OD demand prediction
for the first time, and the idea could also be further applied on more applications
such as mutli-time series forecasting.
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Abstract. Computer-assisted modeling of patient-specific 3D teeth is a clinically
important technology for the development of dental diagnosis and treatment. This
technology often relies on accurately segmenting the target tooth and its surround-
ing tissues from CBCT images. Most of the previous methods consume extensive
memory for generating bounding box proposals in a detection manner, while in
this paper, we propose a novel stagewise tooth instance segmentation framework
from localization to segmentation. Specifically, our method follows the process of
tooth centroid prediction, candidate centroid analysis, andmapping of centroids to
accurately localize the ROI of individual teeth, instead of generating bounding box
proposals for tooth positioning regression. To improve the segmentation quality,
we propose a new loss function referred to as potential energy loss, which mea-
sures the feature similarity among voxels in a neighborhood to focusmore on local
information, regulating potential energy to obtain optimal segmentation. More-
over, the proposed fine segmentation network introduces a dual-branch structure
and spectrum filter connections to enhance hierarchical features and anti-noise
capability. Experimental results demonstrate that the proposed method surpasses
state-of-the-art methods with improvements of 1.05%, 5.77%, and 16.67% on
average DSC, HD95, and ASSD, respectively.

Keyword: Tooth Instance Segmentation · Potential Energy Loss · CBCT ·
Dental Surgery · Pre-operative Planning

1 Introduction

Computer-assisted dental diagnosis and treatment have undergone rapid development
due to patient-specific modeling of 3D teeth from cone-beam computed tomography
(CBCT). These dental models are crucial for clinical diagnosis and treatment planning
as they provide quantitative information on 3D spatial and morphological features. In
addition, during routine dental surgeries such as root canal treatment and apicoectomy, a
3D teeth model-guided navigation system dynamically tracks surgical instruments such
as handpieces, enabling visualization of the difference between the predefined pathway
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and intra-operative situation. This system can improve surgical precision and minimize
wound areas. However, extracting complete teeth from dental CBCT data is challenging
due to difficulties in separating the target tooth from its surrounding alveolar bone, as
well as boundary ambiguity among adjacent teeth. Therefore, this paper focuses on
instance segmentation of all teeth from CBCT data to facilitate model-guided dental
diagnosis and treatment.

Previous studies have relied on traditional methods such as thresholding [1], level-set
[2], and clustering [3] for tooth segmentation, all of which have a common drawback
of being difficult to generalize for diverse data due to the need for parameter tuning.
Recently, new methods have emerged with the rise of deep learning. For example, Cui
et al. [4] improved 3D Mask RCNN for tooth instance segmentation, while Jang et al.
[5] detected bounding boxes in 2D panoramic images and mapped them onto 3D images
to extract the region of interest (ROI), achieving an average DSC of 94.79%. These
methods formulate the segmentation task as an object detection problem, and inevitably
introduce bounding box regression errors and a significant amount of computational
consumption. On the other hand, Ezhov et al. [6] proposed a method based on weakly
supervised, coarse-to-fine label optimization training. CHEN et al. [7] used tooth sur-
face probability and gradient maps to determine tooth boundaries, but performance is
sometimes limited by tooth occlusion or adhesion. Li et al. [8] segmented the four quad-
rants of the dental area using a graph convolutional network to eliminate the effect of
symmetrical and adjacent teeth, resulting in an average DSC of 91.13%. Moreover, Cui
et al. [9] proposed a method that extracts ROIs with two individual networks and uses an
additional network to segment the alveolar region, achieving an average DSC of 94.5%
at the cost of heavy memory consumption. However, these methods concentrate on the
positioning and boundary of each tooth but ignore the effect of adjacent teeth and sur-
rounding tissues. In CBCT images, the contrast between teeth and their surroundings
is low, which greatly affects the accuracy of segmentation, therefore, effectively using
neighborhood information is necessary in this task.

This paper proposes a fully automatic tooth instance segmentation framework, which
comprises the steps from localization to segmentation of each tooth by coarse segmenta-
tion network (CSN), ROI extractionmodule, and fine segmentation network (FSN). Both
CSN and FSN are constructed based on the encoder-decoder structure with the same
backbone, to achieve better training effect, we use the well-trained CSN network model
to initialize the isomorphic part of the FSN. The CSN performs foreground separation
and centroid prediction with a multi-task head. To generate the ROI of each individual
tooth, the results from CSN are utilized to partition centroids connected components and
mapping to foreground voxels of each tooth. Besides, a dual-branch and a spectrum filter
connection are uniquely designed for FSN to enhance and make full use of edge-feature
of teeth. And the FSN is used for segmenting each individual tooth in final. Note that
the method decouples the ROI extraction and segmentation, allowing each tooth to be
segmented independently of others. Meanwhile, we propose a new loss function based
on potential energy, i.e., PE loss, which formulates the process of finding optimal seg-
mentation as the problem of potential energy regularization, enabling models to segment
edges of targets more accurately by incorporating neighborhood information.
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Fig. 1. Overview of the proposed tooth instance segmentation workflow with three hierarchical
stages for teeth extraction and segmentation

In our study, the proposed method can detect all teeth on the CBCT images for vali-
dation and achieves an average DSC of 96.89%, outperforming state-of-the-art (SOTA)
methods in comprehensive experiments.

In summary, the main contributions of this paper are three-fold:

1. We propose a novel stagewise framework for tooth instance segmentation, which uses
the centroid prediction and analysis to extract ROIs but no proposal generation.

2. We propose the potential energy loss function, which use the neighborhood infor-
mation and the feature similarity of different voxels to optimize the segmentation,
especially on the boundary of teeth.

3. We compared FSN with the current SOTA method for semantic segmentation on the
existing dataset, the experimental results showed that we outperformed othermethods
in metrics of DSC, HD95, and ASD.

2 Methodology

The complete workflow is illustrated as Fig. 1. Firstly, the CSN coarsely segments all
teeth as foreground objects and predicts their respective centroids. In the second stage,
we design a novel ROI exaction process, which fully utilizes the mapping relationship
between foreground voxels and centroids and obtains individual tooth ROIs through con-
nected component analysis andmapping of teeth centroids. In the third stage, these ROIs
are fed into the FSN for accurate segmentation and results from FSN are concatenated
sequentially according to the position of ROIs to form the final instance segmentation.
Our ROI extraction strategy requires only one network, simplifying the calculation pro-
cess and reducing memory for inference, while performing well on tooth localization.
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And the FSN with a combination of Dice loss (DC), Cross Entropy loss (CE), and PE
loss generates superior segmentation, particularly on the roots and edges of teeth.

2.1 Coarse Segmentation and ROI Extraction Stage

The CSN utilizes a 4-layer encoder-decoder structure like U-net [10] with two output
heads: one that generate a segmentation probability map, and the other that predicts
the key points offset for target objects [11]. Subsequently, we threshold the probabil-
ity map with a higher confidence value (e.g., 0.95) to produce a binary segmentation
that coarsely retrieves all teeth as foreground without separation and labeling. Besides,
pseudo-centroids are generated by adding the offset to the obtained foreground coordi-
nates, and the mapping relationship between the pseudo-centroids and the foreground
is recorded using a hash table. As referred above, the higher confidence value ensures
the correctness of the predicted centroids. Ideally, all foreground voxel coordinates of
a tooth should map to the same point, while in practice, the prediction from the CSN
can generate multiple pseudo-centroids that are close to the actual centroid in space. To
handle this situation, we use connected component analysis to generate pseudo-centroids
clusters to identify the actual centroids. Afterward, the hash table is used to retrieve the
corresponding foreground voxels for each cluster, followed by the elimination of scat-
tered points. Finally, the ROI of each tooth can be determined by the minimum bounding
rectangle calculated from the foreground voxels.

Compared with region proposal network which widely used in segmentation tasks,
we treat the predicted centroids as anchors and directly locate ROIs from the original
image size, cleverly avoiding the introduction of bounding box regression errors. In
addition, our method does not rely on proposal generation, which can greatly reduce the
time and spatial complexity of the algorithm.

2.2 Fine Segmentation Stage

The FSN adopts two parallel branches for multi-level feature extraction, as shown in
Fig. 2.One branch consists of two dilated convolution blocks [12],while the other utilizes
an encoder-decoder structure that is identical to CSN with spectrum filter connections
on the top layers. The feature maps generated by both branches are concatenated along
the channel direction and then passed through a full convolution block for voxel-level
classification. During training, we initialized the isomorphic parts of the FSN using the
well-trained CSN model, which makes it easier for the FSN to learn semantic features
and accelerate loss convergence, reducing training time. Due to the presence of implants
or other tissues with similar intensities as teeth, some ROIs with “fake” tooth as negative
samples may be extracted. To address that, we introduce a ROI classifier with cross-
entropy loss to filter them. Specifically, we flatten the high-dimensional features output
by the encoder and used a fully connected network for binary classification to judge
whether the ROI contains tooth. During training, we only calculate the segmentation
loss exclusively for positive samples, and for inference, we discard ROIs which are
classified as negative samples.

Spectrum Filter Connection. To enhance the edge information at the top-level of the
FSN while filtering out noise and enriching the features generated by the encoder, we
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Fig. 2. As illustrated, the FSN has a dual-branch structure with spectrum filter connection, the
blue block indicates the encoder-decoder, which is isomorphic to CSN and is initialized by the
well-trained CSN model, while the others are unique to FSN. (Color figure online)

introduce a spectrum filter. This filter takes the spectrum diagram of the feature map
obtained by Fourier transform as input and performs element-wise multiplication with a
learnable weight matrix. The weight matrix is initialized as a standard Gaussian distribu-
tion in a complex form. Subsequently, the filtered feature map is obtained by performing
an inverse Fourier transform. Then, we add the output to the original feature map using a
residual connection. In general, the spectrum filter connection can preserve and enhance
local features in high levels, especially for blurred tooth boundaries, enabling effective
integration of the features from the decoder.

Dilated Convolution Branch. Due to the conical shape of most teeth, their size in axial
view differs significantly from sagittal and coronal views. Furthermore, our statistical
analysis shows that the majority of teeth have a height exceeding 24 mm, while their
cross-sections are no more than 12*12 mm2. To maintain isotropic resolution and com-
pensate for information loss caused by down sampling, we design a branch that includes
two dilated convolution blocks [12]. Each block is stacked by three convolutions of dila-
tion rates 1, 2, and 5, respectively, as recommended in [13]. The kernel size is 3*3*3,
which expands the receptive field to 24*24*24, which covers a significant portion of the
cross-section of teeth in axial view without reducing spacing.

This design enables the feature maps to effectively retain the neighborhood
information and local details of each tooth, facilitating tooth edge segmentation.

2.3 Potential Energy Loss

The category of eachvoxel in tooth segmentation is highly dependent on its adjacent ones,
especially there are blurred boundaries between teeth and surrounding tissues, therefore,
the neighborhood information plays a crucial role in accurate segmentation. Based on
the neighborhood correlation, the mask can be considered as a Markov Random Field
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(MRF) [14], thus, the process of optimizing segmentation can be described as follows:

X
∧

= argmaxX P(X |Y ) = argmaxX
P(Y |X )P(X )

P(Y )
(1)

Here, X represents the segmentation and Y represents the original image. However,
it is challenging to apply the prior probability and likelihood to training due to their
complexity. To address this problem, we directly calculate the posterior probability using
the prediction from the FSN and maximize it gradually to optimizing segmentation.
Moreover, according to the Hammersley-Clifford theorem [15], the MRF and Gibbs
distribution are equivalent, so P(X |Y ) can be expressed as:

P(X |Y ) = exp(−E(X |Y ))

Z(Y )
∝ exp(−E(X |Y )) (2)

Z(Y ) is a normalization factor related to the input image, which can be disregarded, and
E(X |Y ) is the potential energy (PE) defined on the segmentation prediction. Therefore,
Eq. (2) enables the posterior probability to be represented by the PE. Following theGibbs
distribution, the PEmeasures the stability within a neighborhood and is calculated based
on the feature similarity among voxels. Usually, the PE becomes more stable when there
is higher similarity among voxels within the same category and lower similarity among
voxels fromdifferent categories, leading to better segmentation results. Thus,we propose
the PE loss to train the FSN by stabilizing local potential energy, which leads to optimal
segmentation with accurate tooth boundaries.

Based on the properties of MRF, it is known that the category of a voxel is only
related to its surrounding ones, so the expectation of its category can be expressed as:

E(Xi) =
∑n

c=0
Lc ×

∑
j∈Ti

(
maskj � Lc

)

size(Ti)
(3)

Here,L is the label for segmentation, specifically 0 represents the background and the rest
correspond to n foreground categories respectively, Ti represents the 3D neighborhood
of voxel i and maskj is the ground truth of voxel j. To solve the problem of blurred
boundaries, more attention should be paid to the feature similarity between different
categories of voxels, therefore, we define the sensitivity of voxel to neighborhood for
binary segmentation, which can be represented as:

Sensitivity(Xi) = 1 − [maski × E(Xi) + (1 − maski) × (1 − E(Xi))] (4)

According to the above formulas, when the categories of voxels in a neighborhood
are all the same, the sensitivity of the central voxel is 0, indicating that it is not boundary.
For voxel i, we consider the segmentation prediction as the feature Fi, and define the PE
of it as:

PEi =
{
1 −

∑
j∈Ti (maski⊕maskj)×Euclidean distance(Fi,Fj)

size(Ti)×Sensitivity(Xi)
, Sensitivity(Xi) > 0

0, Sensitivity(Xi) = 0
(5)

For a voxel with the sensitivity greater than 0, we calculate the difference among the
voxels from different categories and use the sensitivity to scale it, therefore, the higher
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the PE, the closer the segmentation is to ground truth. We then define the PE loss as
follows:

LPE = exp

[

− α

N
×

∑N

i=1
(1 − PEi)

]

(6)

Here, N is the number of voxels with a sensitivity greater than 0 and α is a temperature
parameter, which is 1 in our study, and the size of neighborhood is 3*3*3.

In general, the PE loss reduce the feature similarity of voxels fromdifferent categories
via backpropagation, thereby enabling accurate segmentation of voxels at the edge of
teeth. Its working mechanism can be understood as mutual constraint and regularization
among neighboring voxels. As a complement to the Dice loss which focuses on global
information, the proposed PE loss regulates local behavior in a neighborhood, allowing
the FSN model to pay more attention to neighborhood information and making it more
conducive to edge segmentation.

3 Experiment

3.1 Data Preprocessing

Thedataset used for the quantitative study includes 148 labeledCBCT images1 with 3675
teeth, which have been de-identified for use. First, we resampled eachCBCT image using
linear interpolation and neighborhood interpolation for images and labels, respectively,
to an isotropic resolution of 0.4mm. Next, we truncated the intensity of each resampled
CBCT data to a range of 500 to 2500 and normalized it to [0, 1]. Before training the
CSN, we cropped each pre-processed CBCT image to a size of 256*256*256 that only
contains the region of teeth. Additionally, we calculated the centroid location of each
tooth from the ground truth and then subtracted the centroid coordinates from the other
foreground voxels to obtain offsets, which are used for centroid regression learning.
Before training the FSN, we extracted each tooth from the CBCT images as positive
samples with a shape of 96*96*96. Meanwhile, we selected 300 patches with similar
teeth intensities as negative samples and augmented them to 2100 samples by rotation,
translation, shear, and flip to balance the number of positive and negative samples.

3.2 Training and Results

Our quantitative evaluation includes experiments that compare our method with state-
of-the-art methods, as well as an ablation study using cross-validation. The CSN model
was trained for 100 epochs with a batch size of 1 and the FSN model was initialized
by the well-trained CSN model and trained only for 30 epochs with a batch size of
16. All experiments were optimized by Adam and the initial learning rate was set to
0.001, which was exponentially decayed with a factor of 0.97. The training process
was conducted on three NVIDIA 3090 GPUs, each with 24 GB of memory. For the
comparative experiments, we used 120 CBCT images for training and the remaining
ones for test. For the ablation study, we separated the 148 labeled CBCT images into
five groups and conducted a 5-fold validation.

1 This dataset is available in public from [9] only for research use.
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Comparative Experiment. We detected all teeth on the test data using the CSN and
the ROI extraction module, which means that the instance segmentation accuracy only
depends on the FSN. In this study, we compared our method with some state-of-the-art
methods, including CNN-based [16], Transformer-based [17], and DDPM-based [18]
networks by keeping the other parts of the pipeline unchanged. As shown in Table 1, our
method achieved the best performance among these state-of-the-artmethods, with aDSC
and ASD exceeding 0.96% and 15.38%, respectively, and a smaller HD95 compared to
the suboptimal method, i.e., nnUnet.

Table 1. Segmentation results compared between our framework and SOAT methods.

Methods Metrics

DCS HD95 (mm) ASD (mm)

TransUnet [19] 83.94 1.23 0.47

VT-Unet [20] 92.66 0.84 0.26

MedSegDiff [21] 90.85 0.77 0.24

SegDiff [22] 92.61 0.79 0.21

U-net [10] 95.42 0.66 0.15

nnUnet [23] 95.97 0.62 0.13

Ours 96.89 0.54 0.11

Ablation Experiment. To explore the individual effects of the FSN and the PE loss, we
used the U-net [10] and nnUnet [23] as baselines. It is important to note that we tested
individual teeth rather than the ROIs detected in the comparative experiments to avoid
errors introduced by the other modules of the proposed framework. As shown in Table 2,
where G1 through G5 corresponds to the different groups in the 5-fold cross validation,
our method using the FSN and the combination of all three loss functions (i.e., the DC,
CE, and PE losses) outperformed the base method by 1.13%, 9.62%, and 25.00% based
on DSC, HD95, and ASD, respectively.

QualitativeEvaluation. Wequalitatively compared the 3D teethmeshes extracted from
the segmentation results by the nnUnet and our proposed method (see Fig. 3a). Our
method closely conforms to the ground truth and generates smoother results, showing
better preservation of the root apex and the edge of teeth. On the other hand, in Fig. 3b,
we demonstrate the robustness of our method, accurately segmenting all teeth, including
wisdom teeth, and handling missing teeth, malocclusion, and metal artifacts.
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Fig. 3. Segmentation results achieved by our proposed method and nnUnet [23].

Table 2. Results of ablation experiments (the bold indicates the best performance of all the
methods, and the underline indicates the best performance of baselines)

Methods Groups

G1 G2 G3 G4 G5 Avg

DSC U-net / DC + CE 96.01 95.96 94.34 95.86 95.57 95.53

nnUnet / DC + CE 96.49 95.91 95.37 96.18 95.59 95.90

U-net / DC + CE + PE 97.04 96.48 95.75 96.85 96.56 96.53

FSN / DC + CE 97.03 96.54 95.83 96.82 96.56 96.55

FSN / DC + CE + PE 97.06 96.60 95.91 96.92 96.61 96.61

HD95(mm) U-net / DC + CE 0.53 0.48 0.61 0.47 0.49 0.52

nnUnet / DC + CE 0.50 0.48 0.54 0.48 0.49 0.50

U-net / DC + CE + PE 0.46 0.47 0.56 0.47 0.48 0.49

FSN / DC + CE 0.46 0.47 0.54 0.45 0.47 0.48

FSN / DC + CE + PE 0.45 0.47 0.52 0.45 0.46 0.47

ASD (mm) U-net / DC + CE 0.13 0.10 0.14 0.10 0.11 0.12

nnUnet / DC + CE 0.10 0.11 0.12 0.10 0.12 0.11

U-net / DC + CE + PE 0.09 0.10 0.12 0.09 0.10 0.10

FSN / DC + CE 0.09 0.10 0.12 0.08 0.10 0.10

FSN / DC + CE + PE 0.08 0.09 0.12 0.08 0.09 0.09

4 Conclusion and Discussion

This study is significant as it proposes a novel stagewise framework for tooth instance
segmentation in CBCT images. This method uses the predictions of the foreground and
centroids from the CSN to localize individual teeth, avoiding bounding box regression
errors and high computational consumption while achieving a detection rate of 100% on
the dataset. Furthermore, the proposed PE loss constrain different categories of voxels to
each other through mutually exclusive features in a neighborhood, allowing the model
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to pay more attention to local details and improving tooth edge segmentation accu-
racy. To simplify the learning of semantic features and accelerate loss convergence, the
same encoder-decoder structure was utilized on both CSN and FSN, and the well-trained
CSNmodel was used to initialize the FSNmodel during training. As a result, our method
achieves 1.05%, 5.77%, and 16.67% improvements compared to other methods on DSC,
HD95, and ASSD, respectively. In the FSN, we introduce a dilated convolution branch
together with spectrum filter connections to effectively capture and enhance neighbor-
hood information and suppress noise, resulting in an average dice score of 96.89%. Our
experimental results demonstrate the method’s robustness in solving missing teeth, mal-
occlusion, and metal artifacts, which is clinically significant for assisting doctors with
preoperative diagnosis and providing intraoperative navigation. In the future, we will
continue to improve the segmentation of the pulp cavity to better integrate with clinical
practice.
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Abstract. Deep learning techniques have found extensive applications
in utilizing magnetic resonance imaging (MRI) to support the diagno-
sis of Alzheimer’s disease (AD). However, existing research primarily
focuses on the pathological changes in brain regions affected by the dis-
ease, while overlooking the intrinsic correlations among these regions.
This disregard may lead to inaccurate disease predictions. Graph data,
represented in the form of nodes and their connecting edges, effectively
describe the relationships between nodes. However, constructing repre-
sentative brain connectivity graphs remains a notable task. To solve the
above problems, we come up a layered pooling graph convolutional clas-
sification network based on MRI to learn differential features between
samples in the MRI data for AD diagnosis. Our innovation lies in uti-
lizing two layers of classification networks, processing brain connectivity
graphs with self-attention convolutions to obtain brain feature structure
graphs at different granularities. By integrating data at different scales,
we can comprehensively and accurately capture feature information in
brain magnetic resonance images. Our method further utilizes global
pooling to aggregate learned brain structural features and generate grad-
ually evolving topic-level representations for AD diagnosis. Experimental
validation on the openly accessible ADNI dataset demonstrates the com-
petitive performance of our method in multiple AD-related classification
tasks. Compared to existing methods, our method better captures brain
structural features and exhibits stronger generalization capability.

Keywords: Alzheimer’s disease · Magnetic resonance imaging · Graph
Convolutional Neural Networks

1 Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative disorder affecting mil-
lions worldwide [17], with a projection that 300 million patients will be affected
by 2050 [5]. The main factors inducing death in elderly people with Alzheimer’s
disease [21], is characterized by early amnesia and subsequent cognitive decline.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14325, pp. 426–437, 2024.
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Despite the absence of a definitive cure, treatments can alleviate symptoms and
delay progression. Early diagnosis, particularly in initial stages like mild cogni-
tive impairment (MCI), is crucial [14], as timely detection aids in slowing disease
progression and improving patient health.

Recently, brain imaging techniques have made significant advancements in
the early diagnosis of AD [1]. Magnetic resonance imaging (MRI) is a non-
invasive technique that generates detailed 3D anatomical brain images, accu-
rately depicting changes in the brain affected by AD [3]. Over the past few years,
convolutional neural networks (CNNs) have demonstrated significant achieve-
ments in the field of computer vision, including medical image classification.
They can significantly improve the performance of AD diagnosis based on MRI
images compared to conventional methods. [11]. However, existing CNN-based
methods for AD diagnosis using MRI scans are highly complex, requiring sub-
stantial computational resources and time. To enhance diagnostic accuracy, it is
crucial to use simpler networks and efficient methods. Current methods primarily
focus on extracting brain region features associated with AD while often over-
looking positional information and potential interactions among brain regions.
Constructing a brain structural connectivity graph on MRI scan images that
adequately reflect complementary spatial correlations and possess flexible and
efficient topological information remains a formidable undertaking.

To address the above issues, We come up a layered pooling graph convolu-
tional classification method for AD diagnosis using MRI data, using two different
layers of convolutional pooling networks. This enables early, accurate, and effi-
cient auxiliary diagnosis, assisting medical professionals. The effectiveness of our
proposed method is evaluated on the publicly available dataset, and the exper-
imental results showcase its strong performance in various classification tasks
related to Alzheimer’s disease. Our research brings forth the following notewor-
thy contributions:

1. Our come up approach is a hierarchical pooling graph convolutional classifi-
cation network that addresses the AD diagnosis task as a graph classification
problem. By utilizing MRI data, it enhances the diagnostic performance of
AD and enables rapid and accurate assessment of patients’ disease conditions.

2. We innovatively construct brain connectivity graph by segmenting MRI data
from brain regions, get the subgraph by truncating SVD, enabling our model
to analyze and diagnose Alzheimer’s disease on a smaller scale.

3. We introduce a new global pooling method that combines multiple pooling
methods to overcome the limitations of a single pooling method.

2 Related Work

2.1 Graph Convolutional Neural Networks

GNN [6] are models used for handling data structured as graphs, which describe
the irregular structure of data by considering their dependencies. As one of the
most popular models, GNNs have been widely applied to handle and analyze data
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with graph structures. Among them, Graph Convolutional Networks (GCNs) is
a type of deep learning model specifically designed for performing convolution
operations on graphs, inspired by CNNs. The GCN model was initially proposed
by Kipf and Welling in 2017 [9] and incorporates spectral graph convolution
theory by utilizing Fourier transform and Taylor series expansion to improve the
filters. Assuming a graph G = (V,E, S) with N nodes, where V denotes the
node set, E denotes the edge set, and S denotes the adjacency matrix consisting
of edge weights, the GCN propagation rule can be expressed as shown in Eq.(1):

H l+1 = σ
(
ŜH lW l

)
(1)

In the above equation, Ŝ = D̃− 1
2 S̃D̃− 1

2 . H l represents the feature matrix of all
nodes at layer l , W l represents the trainable weight matrix at layer l, and σ
denotes the activation function. S̃ = S + I, I is an identity matrix, where D̃ii =
ΣjS̃ij , is used to incorporate graph convolution theory into the construction of Ŝ.
This process, D̃ii = ΣjS̃ij first transforms S̃ into the Fourier domain, performs
graph convolution using Chebyshev polynomials, and then transforms it back to
the original domain. Using the aforementioned propagation rule, for input data
H0, a two-layer GCN architecture can be represented as shown in Eq.(2):

Z = softmax
(
ŜReLU

(
ŜH0W 0

)
W 1

)
(2)

2.2 Graph Classification Tasks

Graph classification is a task that involves [19] assigning different categories or
labels to given graph data. The primary goal of this task is to utilize sophis-
ticated computational techniques , to establish the correlation between input
graphs and output categories. This enables effective classification of new unla-
beled graph data, thereby facilitating accurate categorization. In graph classifi-
cation, we treat each sample as graph-structured data and utilize graph convolu-
tional neural networks for classification. Graph classification finds wide applica-
tions in various domains, including social network analysis, bioinformatics, and
recommendation systems etc. [20].

2.3 Graph Pooling

Graph pooling preserves and integrates important structural information from
the entire graph using specific pooling methods. Existing graph pooling meth-
ods can be roughly divided into two categories: global pooling and local pool-
ing. Global pooling methods include MaxPooling, MeanPooling, and AddPooling
[13], while local pooling methods include TopKPooling, SAGPooling, and Sort-
Pooling [15]. Local pooling enhances classification performance by aggregating
information from the immediate neighborhood of the graph, capturing valuable
details and refining the results. In contrast, global pooling overlooks local context
by pooling over the entire graph, potentially missing important information.
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3 Method

In Fig. 1, we illustrate the general structure of the hierarchical pooling graph
convolutional neural network framework proposed in this study. This framework
can be divided into three key components. Firstly, based on the MRI images
of each subject, we construct the corresponding graph-structured data and per-
form sparsification of the constructed graph edges. Next, we input all the graph
data into the pooling convolutional network consisting of up and down layers.
Finally, the pooled data from the up and down layers are fused and fed into fully
connected layers to obtain scores for each subject in their respective categories,
enabling classification.

Fig. 1. Hierarchical Pooling Graph Convolutional Neural Network.

3.1 Graph Construction

To construct the graph, we first preprocess the MRI image data to obtain a brain
connectivity graph for each subject. In this graph data, each node represents
a brain region in the subject’s brain. Assuming each graph has n nodes and
each node has m features, the feature matrix is represented as X ∈ R

n×m.
For derive the adjacency matrix A ∈ R

n×n of the brain connectivity graph,
by computing the pairwise distances between each pair of nodes xi and xj ,we
create a similarity matrix that serves as the basis for constructing the adjacency
matrix. This process is described by the equation presented in Eq.(3):

Ai,j = sim (xi, xj) = exp

(
− [ρ (xi, xj)]

2

2σ2

)
(3)

where ρ(·) represents the distance function, and σ is a parameter controlling the
scale of the similarity.

The resulting adjacency matrix captures the pairwise similarities between
nodes, indicating the strength of connections in the brain connectivity graph.
Next, the similarity matrix is normalized and symmetrized. The binarization
process is shown in Eq.(4):

Ai,j =
{

1 Ai,j > γ
0 Ai,j ≤ γ

(4)
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γ in the formula is a threshold.
In graph data, the existence or absence of edges between nodes has a pro-

found impact on the representation of the overall graph structure. Therefore, it
is crucial to optimize the constructed graph structure to make it more repre-
sentative, especially for graph classification tasks. In this study, we use a simple
graph structure optimization method based on the idea of singular value decom-
position (SVD) [8]. We perform truncated SVD on the adjacency matrix A and
reconstruct a new adjacency matrix Ã. Specifically, we first perform SVD on
the adjacency matrix A as A = UΛV T , where Λ is a singular value matrix. We
perform truncated SVD on A by retaining the top q singular values, i.e., trun-
cating the rows of the matrix Λ. Then, we reconstruct the new adjacency matrix
Ã = UqΛqV

T
q using the truncated matrices. The graph structure optimization

method based on SVD has two advantages. Firstly, it emphasizes the major
components of the graph structure by differentiating the connections between
different nodes in the brain regions. Secondly, the generated new graph structure
reduces redundant edge connections compared to the original graph structure,
preserving the information of important edges in the graph, further reducing the
graph size, and decreasing computational complexity.

3.2 Graph Hierarchical Pooling

Layered Graph Convolution. Our hierarchical pooling graph convolutional
network consists of two sub-networks: the up and down layers. In the up-layer
network, we first use a single-layer GCN network(GCN1) to aggregate feature
information from the one-hop neighbors of each node, the feature matrix from
X ∈ R

n×m to Xup ∈ R
n×d, where d signifies the out channel dimensionality of

the node features. Then apply the SAGPooling method [10] to the output of the
aforementioned GCN, SAGPooling calculates scores for each node using the GCN
network and retains high-scoring nodes while removing low-scoring nodes and
their associated edges to obtain the corresponding subgraph. This SAGPooling
process transforms the feature matrix from Xup ∈ R

n×d to X ′
up ∈ R

k×d,the
adjacency matrix from Ã ∈ R

n×n to A′
up ∈ R

k×k, where k = n ∗ p , p represents
the proportion of nodes removed by SAGPooling. Next, we use a l-layer graph
convolutional network(GCN2) to transform the feature matrix from X ′

up ∈ R
k×d

to X
(l)
up ∈ R

k×e,where e represents the dimensions of the feature vector after the
l-th layer graph convolution(GCN2) operation.

The structure of SAGPooling is show in Fig. 2, and its functionality can be
expressed using Eq.(5):

y = GCN
(
Xup, Ã

)
, idx = topk(y),Xup = Xup[idx, :],

X ′
up = Xup � tanh(y), A′

up = Ã(idx, idx)
(5)

where y represents the scores for each node, idx represents the index of nodes
selected after topk selection,Xup[idx, :]indicates that the nodes corresponding
to idx are taken out to form a new matrix, that is, the mask operation, � is
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Hadamard product, and Xup�tanh(y) represents the element-wise multiplication
of node features and the scores of the corresponding nodes after applying a
nonlinear activation function. We then retain the top idx nodes to obtain X ′

up

and remove the edges connected to the removed nodes to obtain A′
up.

Fig. 2. Self-Attention Graph Pooling.

In the down-layer network, we directly employ the l-layer graph convolu-
tional network(GCN3) to transform the feature matrix from X ∈ R

n×m to
X

(l)
down ∈ R

n×e,where e represents the dimensions of the feature vector after
the l-th layer graph convolution(GCN3) operation. It is worth noting that the
number of input nodes in the up-graph convolutional network(GCN2) is smaller
than that in the down-layer graph convolutional network(GCN3). Therefore, the
input channels of the up graph convolutional network(GCN2) are smaller, but
the output channels are the same.

Graph Unpooling and ReZero. To integrate feature information from graphs
at different scales, we come up a method called graph unpooling and graph adap-
tive fusion. The concept of graph unpooling is to recover the lost nodes from the
subgraphs after pooling, thereby restoring the pooled graph to the same struc-
tural size as before pooling, enabling the fusion of graphs at different scales. In
this work, we employ a technique similar to Graph U-Net [4], where the pre-
served nodes retain their original features, the unavailable nodes are populated
with zero vectors of matching dimensions. This process is represented by Eq.(6):

Xunpooling = UnPooling
(
0,X(l)

up , ĩdx
)

(6)

where ĩdx represents the index of the node deleted in the aforementioned SAG-
Pooling, X

(l)
up denoted the result of the up-layer GCN2, and Xunpooling repre-

sents the upsampled feature matrix. The graph unpooling process effectively
supplements the missing node information, thereby achieving maximum graph
information integrity with minimal noise.

In classical hierarchical graph fusion methods, the feature information from
different levels of graphs is simply concatenated. Despite its simplicity and effi-
ciency, it fails to consider the varying contributions of graphs at different levels,
which can significantly impact the final classification results. To address this
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issue, we draw inspiration from the residual connection module in ResNet [7]
and propose to utilize ReZero [2] that enables the adaptive fusion of two graphs
by introducing a learnable parameter η. This is formulated as Eq.(7):

Xre = X
(l)
down + ηXunpooling (7)

where Xunpooling represents the upsampled feature matrix in the up-layer net-
work, and X

(l)
down represents the output feature matrix after l-layers of GCN3

in the down layer. The parameter η in Eq.(7) controls the contribution ratio of
the up-layer graph features to the down-layer graph features. While the entire
network training process, the optimal value of α is learned through backpropa-
gation. This Rezero module, compared to the original residual module, adds a
weight before the residual connection, so that the model can better accept the
gradient signal and accelerate the convergence speed.

Global Pooling. In our work, the incorporation of graph pooling and unpool-
ing enables effective feature learning from graphs across various scales. Nonethe-
less, previous research has indicated that diverse datasets may necessitate fea-
tures from graphs at distinct scales to attain improved classification performance
[12]. Unfortunately, existing single-scale graph pooling methods fail to meet this
requirement. To ensure that our method performs well on different datasets, we
propose a global pooling method to address this issue. We apply the Global
Pooling module to the up-layer output X

(l)
up and the down-layer after the ReZero

connection Xre respectively, the global pooling includes three different pooling
operations: MaxPooling, MeanPooling, and AddPooling. The outcomes of these
operations are concatenated along a specific dimension to increase the feature
dimension of the samples. Following that, a two-layer MLP network is utilized
for data feature extraction. The process of global pooling is depicted in Eq.(8):

Zi = MLP(Concat(MaxPooling(Xout),MeanPooling(Xout),AddPooling(Xout))) (8)

where, in the global pooling module of the up-layer network, Xout is X
(l)
up and

the output is Z1, in the global pooling model of the down-layer network, Xout

is Xre and the output is Z2. In this method, three different pooling methods,
namely MaxPooling, MeanPooling, and AddPooling, are simultaneously applied.
The pooling results are concatenated to obtain complementary graph feature
information, which is then input into an MLP network for further extraction of
each graph’s feature representation.

Self-attention Feature Fusion and Classification. To perform classifica-
tion, it is necessary to fuse the global pooling results from the up and down
layers using a self-attention-based feature fusion method. As shown in Fig. 3,
the global pooling feature vectors obtained from the up and down layers repre-
sent two different scales of graphs. Here, we first concatenate the global pooling
results Z1 and Z2 and input them into a bias-free fully connected layer and
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two output channels to learn weights (α, β). The attention weights (α, β) are
computed using the softmax function as specified in Eq.(9):

(α, β) = softmax
(
Wa ∗ Concat(Z1, Z2)

)
(9)

where Wa is a trainable attention weight matrix, two matrices Wa and
Concat(Z1, Z2) multiplied together. α and β are two scalars.

Then, the attention weights are multiplied element-wise with feature vectors
and concatenated to obtain the fused feature vector, as shown in Eq.(10):

Zresult = Concat(α ∗ Z1, β ∗ Z2) (10)

Finally, the Zresult is passed through a connected layer, and we use the cross-
entropy loss function to evaluate the classification performance. For the unla-
beled samples, we assign labels based on the maximum softmax

Fig. 3. Self-Attention Feature Fusion.

4 Experiments

4.1 Data Acquisition and Preprocessing

We utilized T1-weighted MRI images with a field strength of 1.5T from the ADNI
dataset, which underwent preprocessing using SPM8 and DPABI toolboxes.
Image preprocessing included non-brain tissue removal, motion and temporal
correction, registration, filtering, smoothing, and segmentation. Using the AAL
template, by segmenting the brain into 116 regions, we acquired the correspond-
ing ROIs. Our study involved 1292 samples (338 AD, 422 MCI, 532 CN(control
samples)), and classification performance was assessed on four datasets (AD vs
CN, AD vs MCI, CN vs MCI, and AD vs MCI vs CN). The number of samples
of four datasets is summarized in Table 1.

Table 1. The number of samples in the ADNI dataset.

Dataset Samples Dataset Samples

AD-CN 338:532 CN-MCI 532:422

AD-MCI 338:422 AD-MCI-CN 338:422:532



434 W. Liu et al.

4.2 Experimental Setup

Our experiment was completed on NVIDIA GeForce 3060 (12GB VRAM). The
implementation utilized the PyTorch and PyTorch Geometric frameworks. We
conducted multiple random tests on four distinct datasets and reported the aver-
age scores obtained from these tests.We adopt the method of stratified sampling
to deal with the unbalance of data sets, which ensures the balance of samples
in each category by drawing the same number of samples in each category. Our
method was compared with baseline methods evaluation of all methods was
based on three widely-used metrics: classification accuracy, recall, and F1 score.
The following is a description of the comparison methods we used:

GCN [9] uses the graph’s Laplacian matrix to integrate structural and feature
information of central and neighboring nodes, providing a structured represen-
tation for efficient and accurate classification of irregular graph-structured data.
GAT [18] is a GNN based on attention mechanisms, which aggregates neighbor-
hood features for each node through stacked network layers. It assigns differ-
ent weights to different nodes in the neighborhood without the need for costly
matrix operations or prior knowledge of the graph structure. Graph U-Net [4] is
an encoder-decoder model, influenced by the U-net model in CNNs. By utiliz-
ing TopK pooling and unpooling operations, Graph U-Net effectively ex-tracts
and recovers features from graph-structured data, suitable for graph data clas-
sification and recognition tasks. SAGPooling [10], an end-to-end graph pooling
method, employs self-attention mechanisms and graph convolutions to compute
attention scores, considering node features and graph topology. By dynamically
selecting representative nodes, it preserves structural information, enhancing
graph neural network performance and achieving excellent results in classifica-
tion and generation tasks. Dir-GNN [16] is a novel and versatile framework for
deep learning on graphs. It extends the capabilities of Message Passing Neural
Networks by incorporating edge directionality information. Dir-GNN achieves
this by performing separate aggregations of incoming and outgoing edges.

Table 2. The Classification Performance on AD vs CN and CN vs MCI Datasets.

Method AD vs CN CN vs MCI

Accuracy Recall F1-score Accuracy Recall F1-score

SVM 0.6144 0.6144 0.6145 0.5545 0.5545 0.5546

ResNet 0.6153 0.741 0.7272 0.7428 0.4285 0.5714

GAT 0.8007 0.6637 0.7133 0.6998 0.6950 0.6878

GCN 0.8295 0.7258 0.7550 0.6162 0.5855 0.5864

Graph U-Net 0.8218 0.7287 0.7556 0.7029 0.7093 0.7075

SAGPooling 0.8383 0.8407 0.8371 0.7361 0.7361 0.7340

DirGNN 0.8528 0.8300 0.8229 0.7371 0.7612 0.7489

Our 0.8606 0.7512 0.8433 0.7638 0.7638 0.7756
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Table 3. The Classification Performance on AD vs MCI and AD vs MCI vs CN
Datasets.

Method AD vs MCI AD vs MCI vs CN

Accuracy Recall F1-score Accuracy Recall F1-score

SVM 0.5625 0.5625 0.5620 0.4076 0.3333 0.5787

ResNet 0.6538 0.2500 0.4000 0.6400 0.6400 0.6186

GAT 0.6360 0.5855 0.5190 0.5517 0.5379 0.4836

GCN 0.6162 0.5855 0.5864 0.5995 0.5707 0.5621

Graph U-Net 0.6447 0.5846 0.5247 0.6098 0.5599 0.5063

SAGPooling 0.6542 0.6542 0.6514 0.6102 0.6102 0.6514

DirGNN 0.5947 0.5997 0.6427 0.6403 0.6059 0.6004

Our 0.6990 0.6990 0.6921 0.6500 0.6500 0.5839

Table 4. The Classification Performance on AD vs CN and CN vs MCI Datasets.

Ablation AD vs CN CN vs MCI AD vs MCI AD vs MCI vs CN

No GlobalPooling 0.8407 0.7361 0.6766 0.6384

No SVD 0.8383 0.7420 0.6616 0.6451

Our 0.8606 0.7638 0.6990 0.6500

4.3 Hyperparameter Settings

We optimized hyperparameters for each method based on the literature. For our
method, we set batch size to 128,epochs to 500, learning rate to 0.001, using
Adam optimizer, cross-entropy loss, GCN layers l to 2, kernel value σ to 2.5,ρ(·)
to Euclidean distance function, adjacency matrix threshold γ to 10−3. Maximum
retained singular values q were set to 10. SAGPooling ratio p was set to 0.8. In
four sets of experiments, we divided the dataset using 7:1:2.

4.4 Analysis of Experimental Results

The results are shown in Table 2 and Table 3. Our method achieves excellent
results in classifying between AD and CN, we achieved a high accuracy rate
of 0.8606, and in the most challenging task of classifying AD vs. MCI vs. CN,
our method still reached the highest accuracy of 0.65. Meanwhile, SAGPooling
exhibits relatively high performance in some experiments, such as with an accu-
racy of 0.7361 in the classification between CN and MCI. Across all experiments,
our method consistently achieves superior results in accuracy and F1-score com-
pared to other approaches. The extracted features from the model were reduced
to two dimensions using t-SNE and visualized in Fig. 4. In the figure, the indi-
vidual points represent the samples, with each class denoted by a different color.
Demonstrating the remarkable performance of our approach in enhancing the
diagnostic accuracy for Alzheimer’s disease. Removing the SVD method and
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Fig. 4. Visual presentation of model extraction features.

global pooling model from the original model had a significant impact on its
performance, as evident from the results in Table 4, highlighting their overall
beneficial contribution.

5 Conclusion

This study proposes a novel hierarchical pooling convolutional graph classifi-
cation method aimed at improving the diagnostic performance of Alzheimer’s
dis-ease based on magnetic resonance imaging (MRI). By extracting and fus-
ing features of brain region nodes, combining global pooling and multi-scale
feature fusion techniques, it ultimately achieves the diagnostic classification of
Alzheimer’s disease. The proposed model architecture exhibits outstanding clas-
sification performance on Several different datasets when compared to advanced
methods. It should be indicated that this study only utilizes MRI as the med-
ical data, which may limit the model’s representational capacity and impact
its performance. Future research will explore the classification performance of
multi-view medical data, such as PET,fMRI, and DTI.
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Abstract. Understanding user emotion is essential for Human-AI Inter-
action (HAI). Thus far, many approaches have been studied to recognize
emotion from signals of various physiological modalities such as car-
diac activity and skin conductance. However, little attention has been
paid to the fact that physiological signals are influenced by and reflect
various factors that have little or no association with emotion. While
emotion is a cross-modal factor that triggers responses across multi-
ple physiological modalities, features used in existing approaches also
reflect modality-specific factors that affect only a single modality and
have little association with emotion. To address this, we propose an app-
roach to extract features that exclusively reflect cross-modal factors from
multimodal physiological signals. Our approach introduces a multilayer
RNN with two types of layers: multiple Modality-Specific Layers (MSLs)
for modeling physiological activity in individual modalities and a single
Cross-Modal Layer (CML) for modeling the process by which emotion
affects physiological activity. By having all MSLs update their hidden
states using the CML hidden states, our RNN causes the CML to learn
cross-modal factors. Using real physiological signals, we confirmed that
the features extracted by our RNN reflected emotions to a significantly
greater extent than the features of existing approaches.

Keywords: EEG · ECG · GSR · LSTM · Multilayer RNN

1 Introduction

Understanding user emotions is extremely important for various human-AI inter-
action (HAI) scenarios including goal and non-goal oriented dialogue [6,8],
user-adapted content creation [1], and content recommendation [2]. While most
researchers collect ground truth of emotions by explicitly asking users what their
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emotions are, it is impractical to do so in real-world scenarios because doing so
interferes with users and degrades the user experience. Therefore, there has been
a great demand for recognizing user emotions from data that users generate.

Among various types of user-generated data, we focus on users’ physiologi-
cal signals such as electroencephalogram (EEG), electrocardiogram (ECG), and
galvanic skin response (GSR). Using wearable devices (e.g., watches, earphones),
these signals can be collected in a less constrained context compared to other
types of data such as texts, vocal tone, and facial expressions, which are avail-
able only when users write or say something or stay in front of a camera. In
addition, unlike these data, physiological signals provide robust signs of emotion
even when users exhibit their social masks to hide their true emotions [3].

Thus far, researchers have studied many approaches to recognize emotion
from physiological signals and have confirmed their significant utility for emo-
tion recognition [6]. However, little attention has been paid to the fact that
physiological signals are influenced not only by emotion but also by various fac-
tors that have little or no association with emotion. Among them are factors
that influence only a single physiological modality, i.e., a modality-specific fac-
tors. For example, heart muscle strength influences ECG signals, but has little
influence on modalities other than cardiac activity such as brain activity and
skin conductance. In contrast, emotion is a cross-modal factor, which triggers
responses across multiple physiological modalities, e.g., anger increases heart
rate and skin conductance level. Others are long-term factors such as body size
and gender. These factors also influence physiological activity, but they are very
different from emotion in a sense that they change very slowly or do not change,
whereas emotion changes over short periods of time, i.e., a short-term factor.

As such, while emotion is a cross-modal and short-term factor, physiological
signals are also influenced by and reflect factors that are modality-specific and/or
long-term. Although they have little utility for emotion recognition, existing
approaches extract and use features without distinguishing these factors, instead
mixing them into the features. We posit this has degraded emotion recognition.

In light of the above, we propose an approach to extract features that exclu-
sively reflect cross-modal and short-term factors. To achieve this, our approach
distinguishes factors reflected in physiological signals along two axes: long- or
short-term and modality-specific or cross-modal, and learns four types of factors
that are distinct from each other. By adopting RNN, our approach separately
models long- and short-term factors.

What is novel is that to model modality-specific and cross-modal factors,
we introduce a multilayer RNN that consists of two types of layers: multiple
Modality-Specific Layers (MSLs) that model physiological activity in individ-
ual modalities; and a single Cross-Modal Layer (CML) that learns cross-modal
factors, among which is emotion. Our RNN takes sequences of multimodal phys-
iological signals as input (e.g., ECG and GSR signals). Each MSL takes phys-
iological signals of its corresponding modality (e.g., MSL1 takes ECG signals,
MSL2 takes GSR signals) and reflects physiological states in its hidden state.
When updating the hidden state, the MSL uses not only its own hidden state
but also the CML’s hidden state. Since this is done in all the MSLs, it makes
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the CML’s hidden state affect physiological state in all the modalities the MSLs
correspond to. In effect, therefore, this enables the CML to learn factors that
affect physiological activities across multiple modalities, i.e., cross-modal factors.

To evaluate our approach, we recruited participants and measured their EEG,
ECG, and GSR signals while presenting them with musical pieces and movie
clips (i.e., stimuli). We trained our RNN by these signals and, using the CML’s
hidden states, evaluated how accurately we could recognize emotions that the
participants reported after each stimulus.

Our main contributions are as follows. 1) We propose a multilayer RNN that
separates the RNN layer to learn factors that affect physiological activities across
multiple modalities from the other layers designated to model modality-specific
physiological activities. This enables our approach to extract features that exclu-
sively reflect a cross-modal nature of emotion, which existing research has not
focused on. 2) Using real physiological data, we demonstrate our RNN extracts
features that reflect emotion to a greater extent than existing approaches.

2 Related Work

Similar to our approach, many existing approaches recognize emotion from mul-
timodal physiological signals. Subramanian et al. [11] and Miranda et al. [7]
used ECG, GSR, and EEG signals. Using feature extraction techniques that
are widely used for each modality, they extracted features from each modal-
ity (physiological features; e.g., standard deviation of heartbeat intervals from
ECG signals, mean skin conductance level from GSR signals). They then con-
catenated these physiological features and fed them into a classifier (i.e., early
fusion). However, modality-specific factors reflected in the physiological features
could not be removed by simple concatenation, thus limiting recognition accu-
racy. In addition, short- and long-term factors were not distinguished in the
features. While they also tested late fusion, in which they combined recognition
results in individual modalities to derive final results, the same issues remained
because they used the same physiological features as in the early fusion, whose
modality-specific factors hindered emotion recognition in each modality.

There are also multimodal approaches that adopt deep learning techniques.
However, they have the same issues. Liu et al. [5] and Yin et al. [12] used deep
autoencoders to learn shared representations of physiological features of multiple
modalities (e.g., EEG and Electrooculogram) and recognized emotions by feeding
the shared representations into classifiers. They trained the autoencoders so
that the physiological features of each modality could be reproduced from the
shared representations. This made the shared representations reflect not only
cross-modal factors but also modality-specific factors. In addition, the use of the
autoencoders did not help to distinguish between short- and long-term factors.

On the other hand, the approach proposed by Li et al. [4] can extract features
that exclusively reflect short-term factors. Using the dataset built in [7], they fed
time-series sequences of physiological features into LSTM, whose hidden states
were then fed into an attention network. These steps enabled them to focus on
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Fig. 1. An example of our multi-layered LSTM.

emotionally salient parts of the sequences, from which they extracted the hidden
states and fed them into a multilayer perceptron (MLP) to recognize emotions.
However, they performed these steps in each physiological modality and derived
final results by combining the results of individual modalities (i.e., late fusion).
Therefore, as in [7,11], emotion recognition in individual modalities was hindered
by modality-specific factors, which also degraded the final recognition results.

3 Proposed Approach

In contrast to the existing approaches, our RNN explicitly distinguishes the four
types of factors that influence physiological activity. Figure 1 exemplifies our
RNN (left) and shows how the four types, I−IV, are mapped to its variables
(right). Modality-specific factors, I and II, are modeled by the MSLs. Each MSL
corresponds to a single modality, e.g., MSL1 to EEG, MSL2 to ECG. It takes
sequences of 1) physiological features of the corresponding modality, which are
extracted in the same way as existing approaches (e.g., [7,11]), and 2) one-hot
vectors of user ID, by which a user representation (UR) is retrieved from the
user matrix. Since the physiological features fed to the MSL are limited to the
corresponding modality, its URs and hidden states reflect factors specific to this
modality (I and II). In addition, while the hidden states are updated sequentially,
the user matrix (set of URs) stays the same. This causes the MSL URs to reflect
long-term factors (I) and its hidden states to reflect short-term factors (II).

On the other hand, cross-modal factors, III and IV, are modeled by the CML.
As shown by link (A) in the figure, the CML sends its hidden states to the MSLs.
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Table 1. List of notations

The MSL cell uses these CML hidden states together with its input (the phys-
iological features and URs) and its previous hidden states to update its hidden
states. Because updated MSL hidden states are used to predict the physiological
features at the next timeslot, it can be regarded as representing physiological
state. Updating such MSL hidden states using the CML hidden states means
that the CML hidden states affect physiological activity of individual modal-
ities. Because all the MSLs update their hidden states in this way, the CML
learns factors that affect physiological activity across multiple modalities, i.e.,
cross-modal factors (III and IV). As in the MSL, the CML also reflect short-term
factors (III) in its hidden states and long-term factors (IV) in its URs, but the
difference being they are cross-modal.

In addition to modeling I∼IV, our RNN also models the process by which
individual physiological differences moderate the relationship between emo-
tion and physiological activity. For example, users with different heart mus-
cle strength would have different ECG signals even when their emotions are
the same. Our RNN models such moderating effect of individual differences
by updating the MSL hidden states (reflecting physiological state) using both
the CML hidden states (emotion) and the MSL URs (individual differences,
e.g., heart muscle strength). This also differentiates our RNN from the existing
approaches discussed in Section 2, all of which do not consider this moderating
effect.

The next section describes in detail the hidden state updating in our RNN
and its training process. See Table 1 for the notations and their descriptions.

3.1 Updating the Hidden States

Input to the CML and MSL are formatted as

CML : dataCa = [xC
a,1, x

C
a,2, ..., x

C
a,t, ..., x

C
a,T ] and (1)

MSL n : datana = [xn
a,1, x

n
a,2, ..., x

n
a,t, ..., x

n
a,T ], (2)

where xC
a,t = (iu , is,t) denotes user a’s t-th action (e.g., viewed t-th segment of

a movie clip M); and xn
a,t = (iu ,pn

t ) denotes his physiological features extracted
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from signals during t-th action. Once xC
a,t is input to the CML, it first retrieves

a UR and stimulus segment (SS) representation (SR) from the user and SS
matrices, i.e., eCu = WC

u iu and eCs,t = WC
s is,t , respectively. It then updates its

hidden state hC
t as follows:

hC
t = fC( hC

t−1, eCu , eCs,t ), (3)

where fC is a function implemented by LSTM. See the supplementary material
at https://osf.io/mj3nr/ for detail.

After updating the hidden state, the CML sends it to all MSLs via link (A),
which is done every time the CML updates its hidden state. When the MSL
receives hC

t , it retrieves a UR from its user matrix (enu = Wn
u iu ) and uses them

together with input physiological features (pn
t−1) to update its hidden state hn

t

as follows:
hn
t = fn( hn

t−1, hC
t , enu , pn

t−1), (4)

where fn is a function implemented by LSTM (see the supplementary material).

3.2 Model Training

Loss 
calculation

(A) (A)

Fig. 2. Loss calculation

When datan
a is fed, each MSL predicts

physiological features in each times-
lot, e.g., if the input is datan

a =
[xn

a,t, x
n
a,t+1, ..., x

n
a,T−1], the output is

[p̂n
t+1, p̂

n
t+2, ..., p̂n

T ]. The predicted phys-
iological features are compared with the
actual features to calculate the loss that
is used to learn the parameters of the
MSL and CML cells and the user and SS
matrices (Wn

u , WC
u , and WC

s ). Figure 2
shows how the prediction and loss calculation are performed. The MSL predicts
physiological features using its hidden state as follows: p̂n

t+1 = fn
MLP(hn

t+1),
where fn

MLP is an MLP with ReLu activation. Then, the MSL calculates the
residual sum of squares between actual and predicted physiological features as
the loss.

4 Experiment

We built datasets and evaluated the extent to which the CML hidden states
reflect emotion. We performed the following three steps: (1) Feature extraction
- from the physiological features stored in our datasets, we extracted another
set of features for emotion recognition (emotion features). In our RNN, the
CML hidden states were used as the emotion features; (2) feature selection -
we then performed LASSO regression to select the emotion features; and (3)
linear regression - using the selected emotion features, we built models to predict
emotions and evaluated their model fit and prediction accuracy.

https://osf.io/mj3nr/
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We performed (1)–(3) for our RNN and three approaches to compare. The
first approach, which was implemented following [7,11], did not distinguish
between the four types of factors at all when extracting the emotion features
(hereafter “baseline”). The second one distinguished between long and short-
term factors but not between cross-modal and modality-specific factors as in [4];
and the third one distinguished the four types of factors, but did not model
the moderating effect of individual physiological differences. The last two were
implemented by removing key features from our RNN (will be explained in 4.4
Ablation Study).

We built two different datasets and performed (1)-(3) for each dataset. In
addition, because combinations of physiological modalities available in real-world
scenario would be different depending on the devices users wear, we performed
(1)-(3) for all possible modality combinations available in our datasets. That is,
A) EEG+ECG+GSR, B) EEG+ECG, C) EEG+GSR, and D) ECG+GSR.

4.1 Dataset

Due to page limitations, only a brief summary of the datasets is described below.
See the supplementary material (https://osf.io/mj3nr/) for detail. Although sev-
eral datasets are publicly available today (e.g., [7,11]), we built and used our own
datasets. One reason is because the contacts of these datasets did not respond
to our requests. The other is because they used only videos as stimuli when col-
lecting physiological signals. Because music is another popular type of stimulus
that would be played more often especially while working, studying, etc., we
considered evaluation should be done for both music and video.

We built Music and Movie datasets by conducting data collection experi-
ments, in which 54 and 52 (out of 54) subjects participated, respectively. They
were presented with multiple stimuli, each of which was 60 s long, while their
EEG, ECG, and GSR signals were measured. In total, 2,336 and 2,119 trials
were performed for the music and movie datasets, respectively (one trial denotes
one subject listening to/viewing one stimulus). After listening to/viewing each
stimulus, they reported emotions according to the six dimensions whose scores
ranged 0–15, (a) sad-happy, (b) nervous-relaxed, (c) fear-relieved, (d) lethargic-
excited, (e) depressed-delighted, and (f) angry-serene. Although Russel’s cir-
cumplex model [10] has been widely used to determine emotion, we did not use
it because it is not easy for lay participants to report “arousal” and “valence”
defined in the model. We selected the six dimensions so that the participants can
easily report their emotions and the dimensions cover the Russel’s circumplex
as much as possible.

After collecting the physiological signals, we extracted the physiological fea-
tures from the raw signals by feature extraction techniques that are widely used
for each modality as in [7,11]. We extracted two types of features: window and
stimulus features, which are summarized in Table 2. For the window features,
we applied sliding window to the raw signals measured during one stimulus and
extracted features from each window. We set the window size to ten seconds and
used two different slide sizes, three and five seconds. That is, we had 17 and 11

https://osf.io/mj3nr/
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windows for each stimulus, respectively. The stimulus features were extracted
from entire signals measured during a stimulus. We stored the physiological fea-
tures in the datasets after performing z-standardization for each dimension.

Table 2. Physiological features. Bold numbers denote dimension.

4.2 Step1 - Extraction of Emotion Features

Proposed Approach. Of the two types of the physiological features, we used
the window features as the input to our RNN. That is, an input sequence to
the CML and MSL n (dataC

a and datan
a) corresponds to a trial. An element of

dataC
a (i.e., is,t) and datan

a (i.e., pn
t ) correspond to t-th window of a stimulus

and the physiological features extracted from the raw signals in t-th window of
the stimulus, respectively. The total number of input sequences was equal to the
number of trials, out of which 80% were used for training and 20% for validation.
We did not use the stimulus features because is,t corresponds to a stimulus if
we do so and thus the number of input sequences, which is equal to the number
of participants, was too small for training our RNN.

The hyper parameters were as follows: slide size of the sliding window =
[3sec, 5sec], learning rate = [5 × 10−4, 1 × 10−3], dimension of hidden layers of
the MSL’s MLP (i.e., fn

MLP) = [(16, 8), (32, 16)] (from input to output layer),
batch size = [16, 32], and dimension of UR, SR, and hidden state of the CML
and MSL = [8, 16]. For all possible combinations of the hyper parameters, we
conducted training and validation for 100 epochs and extracted the CML hidden
states of the validation samples when we observed the minimum validation loss.
We repeated this changing training and validation samples so that we could
obtain the CML hidden states for all trials. Because the prediction target is
emotion after each trial, we used the last CML hidden state of each trial as the
emotion features, i.e., if the last element of dataC

a was is,T , we used hC
T .

Baseline. Following [7,11], we first concatenated the physiological features
across modalities. This was done for both the stimulus and window features.
For example, if the modality combination was A) EEG+ECG+GSR, we built
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137 (116 + 10 + 11) dimension features from the stimulus features and 748
((29 + 7 + 8) × 17) dimension features from the window features (if there are 17
windows in a stimulus) for each trial. We then reduced their dimension by per-
forming PCA and extracted top n features in terms of their contribution ratio so
that their cumulative contribution ratio is maximum below a threshold. We used
these features as the emotion features. We set three different thresholds, 0.85,
0.90, and 0.95. In the following, S and W denote the emotion features extracted
from the stimulus and window features, respectively. Because Miranda et al. [7]
reported that recognition by unimodal features outperformed multimodal fea-
tures, we also extracted S and W for each physiological modality.

4.3 Step 2 and 3 - Feature Selection and Linear Regression

After extracting the emotion features, we performed feature selection and linear
regression. These were done for each of the six emotion dimensions.

We performed the feature selection because dimension of the emotion features
of the baseline was large relative to the sample size (i.e., the number of trials).
For fair comparison, this was done for both the baseline and our approach.
We first finetuned the LASSO parameter λ, which controls the strength of the
imposed regularization based on the number of selected features. Over a set of
λ values, we sought the value that output the most accurate prediction (i.e.,
minimum mean squared error between the actual and predicted emotion scores)
performing five-fold cross-validation multiple times. Second, we conducted the
LASSO regression again using the value of λ determined in the previous step
and selected features for which the regression coefficients were not zero.

After the feature selection, we performed two types of linear regression. One
is model fit evaluation using all samples. The other is prediction evaluation by
performing five-fold cross validation.

4.4 Ablation Study

AB1

AB2

Fig. 3. Variants for ablation study.

To determine the effectiveness of the
key features of our RNN, we eval-
uated its variants without the key
features, which are shown in Fig. 3.
One is a single layer RNN (AB1) that
takes concatenated multimodal phys-
iological features (ps,t in the figure)
as input and the other is a multilayer
RNN without the MSL URs (AB2).
We extracted their hidden states (the
CML hidden states in AB2) as the
emotion features and evaluated them
in the same way as our RNN.
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Similar to [4], while AB1 can extract emotion features that exclusively reflect
short-term factors, it cannot distinguish between modality-specific and cross-
modal factors, mixing both into the features. While the emotion features of AB2
would exclusively reflect short-term and cross-modal factors, the MSL in AB2
cannot model the moderating effect of individual physiological differences due
to lack of the MSL URs.

Table 3. Emotion recognition results. A−D represent the modality combinations (ref.
section 4). Shaded cells denote results inferior to our RNN (ours) in the same columns.
Cells with hatched lines indicate that LASSO selected no emotion feature. Black cells
denote the best results for the emotion dimensions. For the baseline, BL and U-BL,
the table shows the best results of the three PCA thresholds. U-BL uses a single
physiological modality in BL and the table shows the result of the best modality in a
corresponding combination (e.g., U-BL in column B show better of EEG and ECG).

5 Results and Discussion

Table 3 shows the results. Due to page limitations, the table shows only the
Akaike Information Criterion (AIC; model fit metric; the lower the better) and
the Root Mean Square Error (RMSE; prediction accuracy metric). See the sup-
plementary material (https://osf.io/mj3nr/) for the results of other metrics. As

https://osf.io/mj3nr/
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the table shows, the regression models of our RNN (ours) outperformed the
baseline models (BL, U-BL), AB1, and AB2 in most conditions not limited to
specific stimulus types, emotion dimensions, or modality combinations.

Compared to the baseline models, which do not distinguish between the four
types of factors at all, ours outperformed them in all conditions of both datasets
with only one exception (RMSE of (b)-C in the Movie dataset). The differ-
ences are significant according to the relative likelihood (RL) that are calculated
from their AICs; RL = exp((AIC(ours)−AIC(BL or U-BL))/2), where AIC(M)
denotes the AIC of regression model M . In all conditions, the RLs between ours
and the best baseline models are less than 0.05 (see the supplementary material),
which means that the likelihood of the best baseline models being closer to the
true model than ours is less than 0.05. This indicates that the features extracted
by our RNN reflect emotions to a significantly greater extent than the baseline.

The same is true between our RNN and its variants, AB1 and AB2. Out of
24 conditions, ours outperformed them in 23 conditions in the Music dataset and
20 conditions in the Movie dataset for both AIC and RMSE. The RLs between
ours and the better of AB1 and AB2 were less than 0.05 in all 23 conditions
in the Music dataset and 15 out of 20 conditions in the Movie dataset. These
results indicate that the following key features of our RNN, which were not
implemented in AB1 and AB2, significantly contributed to causing its emotion
features to reflect emotion. That is, the multilayer structure for distinguishing
cross-modal and modality-specific factors and the MSL URs for modeling the
moderating effect of individual physiological differences.

What is notable in our RNN is that using more modalities does not neces-
sarily make the emotion features (i.e., the CML hidden states) reflect emotion
more. As shown in the table, using all three modalities (i.e., A) performed best in
only three out of 12 cases (six emotion dimensions × two datasets). This accords
with the existing studies [7,11]. For example, in [11], ECG+GSR outperformed
EEG+ECG+GSR for recognizing arousal. The authors considered this would
be because EEG did not reflect arousal as well as the other two modalities and
would be noise for the recognition.

Although our RNN differs from them in the feature extraction, we consider
this is also true for our approach. In our RNN, the CML learns latent common
factors that affect all input physiological modalities. While this prevents the
CML from learning modality-specific factors, it would be also possible that the
CML fails to learn factors that are common to only a subset of input modal-
ities and useful for emotion recognition but do not affect the remaining input
modalities. For example, in the Music dataset, C) EEG+GSR outperformed A)
EEG+ECG+GSR to recognize c) fear-relieved. We consider using ECG as input
would have prevented the CML from learning factors that are common only to
EEG and GSR and useful for recognizing this emotion dimension.

In light of the above, as in the existing approaches, it is necessary to compare
possible modality combinations to identify the best combination in our approach.
Since the best modality combinations are different between emotion dimensions
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and stimulus types (music and movie), the comparison of modality combinations
should be done for each emotion dimension and stimulus type.

6 Conclusions, Limitations and Future Direction

In this paper, we proposed a multilayer RNN to extract features from multimodal
physiological signals for emotion recognition. Using a multilayer structure, our
RNN models the process by which emotion affects physiological activities across
multiple modalities. This enables our RNN to extract features that are cross-
modal, which is one of the characteristics of emotion but has been overlooked
in existing studies. The experiments conducted on EEG, ECG, and GSR sig-
nals showed that the features extracted by our RNN reflected the participants’
emotions to a significantly greater extent than existing approaches.

One limitation is that our RNN only models unidirectional relationship
between emotion and physiological activity, i.e., the former affects the latter.
According to Roberts et al [9], perception of internal physiological state (known
as interoception) would also affect emotion. Modeling this inverse relationship in
our RNN would make the features reflect emotion more. This possibility should
be explored. Another limitation is that we only examined physiological signals
collected while the participants stayed still. In real-world scenarios, however,
physiological signals would contain noise caused by body movements. Further
studies are warranted to investigate how our RNN performs with such signals.
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Abstract. Gene regulatory network (GRN) encodes the intricate molecular inter-
actions that govern the regulation of cell identity, thereby controlling the functions
and characteristics of cells. With the emergence of single-cell transcriptomics,
single-cell RNAsequencing has provided a powerful data foundation for the recon-
struction of GRN. Consequently, the reconstruction of GRN has garnered signifi-
cant attention. In recent years, deep learning has demonstrated remarkable perfor-
mance across various domains, leading some researchers to apply deep learning
models to the reconstruction of GRN.However, often overlooked is the correlation
that exists amongdifferent cell types at different stages, resulting in ample room for
improvement in the performance of GRN reconstruction. To address the need for
models to capture the correlation information between cells, we propose a method
called VaeSSC, which effectively captures the structural information of adjacent
cells. By fully integrating the structural information of adjacent cells’ GRN, our
method ensures that the reconstructed GRN conform more closely to objective
principles, thereby enhancing the performance of GRN reconstruction. Extensive
experiments conducted against challengingGRN reconstructionmethods from the
past have demonstrated the effectiveness of our proposed method.

Keyword: Gene regulatory network · Beta-variational autoencoder · Structure
similarity constraint

1 Introduction

Single-cell transcriptomics [15, 17] is a revolutionary technology that has sparked
widespread interest and attention in biological research. The advancements in the tech-
nique have enabled researchers to gain deeper insights into cellular heterogeneity and
transcriptomic dynamics within cell types, developmental processes, and disease mech-
anisms. Despite advances in measurement technology, a number of technical issues,
including amplification bias, library size differences [20], cell cycle effects [3], and par-
ticularly low RNA capture rates [11] cause a lot of noise in scRNA-seq experiments,
which can ruin the biological signal below and prevent analysis [6].
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To address these challenges, it is imperative tomodel them to elucidate the uncertain-
ties arising fromdownstreamanalyses.Deep learning algorithms are currently being used
to filter out noise in single-cell transcriptomic data by simulating complicated gene-gene
interactions [5]. However, deep learning-based frameworks [14] for single-cell analy-
sis have often been treated as black boxes, making it challenging to analyze the extent
of learning the structure of the gene regulatory network (GRN) or any other internal
structures of the data.

Fig. 1. The pivotal stages of human early embryonic development. Firstly, the 8-cell stage, where
the fertilized egg divides into eight cells. Next is the Morula stage, characterized by a spherical
embryo composed of 16 or more cells. Secondly, in the early blastocyst stage, the appearance
of a cavity occurs, leading to the formation of distinct cell groups. Further development leads to
the formation of a blastocyst, with the internal cavity gradually expanding. Finally, the blastocyst
hatches, forming a late-hatched blastocyst, where the internal cell mass differentiates into three
lineages: epiblast (EPI), primitive endoderm (PE), and trophoblast (TE).

Fig. 2. The lineage tree of human embryonic development. The embryonic lineage tree is a den-
drogram that encompasses a total of 11 cell types and 5 distinct stages of embryonic differentiation.
It illustrates the cellular differentiation and division relationships during human embryonic devel-
opment, where each node represents a specific cell type, and the connections between nodes
represent the differentiation relationships between cells.

Autoencoders [13], artificial neural networks, by learning efficient data compres-
sion, force autoencoders to learn only the necessary latent features, and the reconstruc-
tion process ignores unnecessary sources of change, such as random noise. Presently,
research has described the application of autoencoders in thefield ofGRNreconstruction.
For instance, Shu et al. [19] proposed the DeepSEM structural equation model, which
employs a linear model to infer causal relationships. Partial neural network architectures
can be utilized to predict the GRN by including the right mathematical restrictions. Shu
et al.’s earlier study showed that by building neural network layers, neural network archi-
tectures may accurately mirror the GRN structure. Within DeepSEM, nonlinear neural
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networks are used to solve issues with experimental noise, high-dimensional data, and
scalability in single-cell data processing. The DeepSEM model allows us to analyze
cellular structure, observing how multiple genes interact to influence individual gene
expression levels.

(a)Dimensionality reduction by PCA                          (b) Dimensionality reduction by DCA

(c) Pseudo-time analysis by PCA (d) Pseudo-time analysis by DCA        

Fig. 3. Single-cell principal component analysis and Detrended correspondence analysis. Single-
cell principal component analysis (PCA) (Fig a) is used to visualize the clustering results of single-
cell data. This is a 2D scatterplot where the horizontal axis corresponds to major component 1 and
the vertical axis corresponds to minor component 2. Each point represents a single-cell sample,
and its position is determined by the calculation of the first two principal components, indicating
its projection in the principal component space. Data points of different colors represent different
cell populations or cell types. The single-cell pseudo-time analysis after PCA dimensionality
reduction (Fig c) shows the colors of each point indicating the temporal sequence, with darker
colors representing earlier time points and lighter colors representing later time points. The single-
cell clustering results and pseudo-time plot after DCA dimensionality reduction are depicted in
Fig b and Fig d, respectively, as shown in the figure.

However, with respect to differentiating datasets, the current known methods have
neglected the intercellular correlations among distinct cell types during the process of
cellular differentiation. Taking the human early embryonic development dataset as an
example, the embryonic cells differentiate from a single cell type into three cellular
lineages, namely EPI, PE, and TE, starting from the 3rd day after fertilization of the egg
and continuing until the seventh day, as illustrated in Fig. 1 and Fig. 2. Dimensionality
reduction by PCA [1] andDCA [8] on expressionmatrix across all cell types is illustrated
in Fig. 3. As shown in the figure, the geodesic distances between cells are proportional to
the degree of dissimilarity. Thus, it can be observed that the cell types vary across each
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stage, with smaller differences between adjacent stages and larger differences between
non-adjacent stages.

Moreover, the magnitude of differences between cells in adjacent stages is smaller
compared to non-adjacent stages, and these differences are related to the gene regulatory
network [10]. Wang et al.’s [21] study highlight that the Dictys method enables the
reconstruction of dynamic GRNs using any continuous cell ordering, such as time,
pseudo-time, RNA velocity, or lineage data, unveiling the continuous rewiring of the
network. Given that GRNs undergo continuous rewiring over time or pseudo time, it can
be inferred that the degree of differences in gene regulatory networks between adjacent
cellular stages is expected to be smaller than that between non-adjacent stages. Given the
actual gene expression matrix, there will be different types of cell samples in different
periods, and there will be some objective constraints between them. If these constraints
are ignored, the accuracy of the reconstruction of the gene regulatory network may be
affected.

In order to tackle the mentioned concerns, we propose a method that effectively
incorporates the structural information of GRNs between neighboring cells. We refer to
this approach as the structural similarity constrained beta-VAE.We enhance the original
DeepSEM model’s loss function by adding a structural similarity constraint loss. This
modified loss function captures the structural information of GRNs between neighboring
cells, thereby improving the accuracy of predicted GRNs. To obtain stable predictions,
we employ an ensemble learning strategy, utilizing 11 different datasets as inputs for 11
“customized” models that incorporate cell neighborhood information. These models are
trained, resulting in 11 different adjacency matrices. The GRN prediction is obtained by
averaging 11 adjacency matrices for robustness and reliability.

In conclusion, our study makes several significant contributions:

• We propose an innovative approach that effectively integrates the structural infor-
mation of gene regulatory networks (GRNs) between neighboring cells, known as
the VaeSSC. By fully incorporating the structural information of gene regulatory
networks between adjacent cells, we can obtain more accurate results.

• To achieve stable predictions of gene regulatory networks, we adopt an ensemble
strategy. Specifically, we leverage 11 distinct datasets and train 11 different models
tailored specifically to each dataset. This approach allows us to obtain 11 adjacency
matrices, each derived from a model customized for its corresponding dataset. Sub-
sequently, we compute the average of these 11 adjacency matrices to obtain the final
adjacency matrix, which represents the gene regulatory network.

2 Method

In this section, we propose a network architecture calledVaeSSC, aimed at enhancing the
performance of GRN reconstruction. Firstly, we introduce the generalized SEM frame-
work, which utilizes linear models to infer causal relationships and leverages a partial
neural network architecture for scRNA-seq GRN prediction. Secondly, we incorporate
a structural similarity constraint (SSC) in the loss function, which effectively integrates
the GRN structure information of neighboring cells during different development stages.
Additionally, within the VaeSSC network architecture, we provide a detailed description
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of the principles of this network framework. Finally, in the ensemble strategy [2], we
integrate the predicted GRN results from all cell types using an ensemble approach to
obtain the final GRN. The adjacency matrices of the predicted GRNs for each cell type
are averaged to obtain the final adjacency matrix, thereby achieving a more accurate and
comprehensive prediction.

2.1 Generalized Structural Equation Modeling

Structural equationmodeling [22] stands as a potentmultivariate statistical framework. It
is a valuable tool for modeling relationships between observed features and hidden latent
variables, enabling analysis of causal relationships, measurement errors, and structural
relationships among stochastic variables within a multivariate statistical framework.
SEM aids in revealing conditional associations among random variables, facilitating
the anticipation of graphical arrangements in Bayesian networks and Markov random
fields. DeepSEM [19] generalizes the SEM, which represents the dependent connections
between random variables through a self-regression approach.

X = WTX + Z (1)

where the Eq. (1) can be modified as follows in its revised form:

X =
(
I − WT

)−1
Z

Z =
(
I − WT

)
X (2)

where I ∈ Rm×m represents the m × m identity matrix, X ∈ Rn×m denotes the gene
expression matrix consisting of n cells and m genes, W ∈ Rm×m denotes the adjacency
matrix of the gene regulatory network (GRN) that captures the conditional dependen-
cies among the genes, and Z ∈ Rn×m represents the noise matrix following a Gaussian
distribution. Here, we propose a modification to Eq. (2) by adopting a nonlinear version
of structural equation modeling (SEM) as initially introduced by Yu et al. [22], yielding
the following expression.

X = f1

((
I − WT

)−1
Z

)
(3)

Z =
(
I − WT

)
f2(X ) (4)

where functions f1 and f2 represent multilayer neural networks, which are employed to
capture complex relationships. Precisely, the expression in Eq. (3) can be broken down
into the subsequent form.

HZ = (I − W )−1Z

where considering the column-wise vector representation, the matrix HZ can be re-
expressed accordingly.

HZ = [h0; h1; . . . ; hm], hi ∈ Rn×1
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f1(hi) = tanh(tanh
(
tanh(hiW

T
1 )WT

2

)
WT

3 )

X = [
f1(h0); f1(h1); . . . ; f 1(hm)

]

W1 ∈ Rd×1,W2 ∈ Rd×d ,W3 ∈ R1×d (5)

where d represents the number of hidden neurons in each layer and hi signifies the
hidden latent variable for gene i, Eq. (5) possesses the interpretation of serving as a
nonlinear decoding function for the stochastic variable Z. The linear weights W1, W2,
and W3 correspond to different layers of the neural network. Notably distinct from the
traditional neural network employed in scRNA-seq modeling, f1 exclusively accepts a
single feature as input. Consequently, an encoder function with a comparable structure
is formulated as follows:

X = [x0; x1; . . . ; xm], xi ∈ Rn×1

HX = [
f2(x0); f2(x1); . . . ; f2(xm)

]

f2(xi) = tanh(tanh
(
tanh(xiW

T
4 )WT

5

)
WT

6 )

Z = Reparameter((I − WT )Hx)

W4 ∈ Rd×1,W5 ∈ Rd×d ,W6 ∈ R2×d (6)

where xi represents the gene i is expression level, while f2 corresponds to an additional
multilayer neural network employed to capture the noise in X . This network takes the
gene expression of each individual gene as an input feature. The term ‘Reparameter’
refers to the utilization of the reparameterization trick [13]. The linear weightsW4,W5,
and W6 are associated with different layers of the neural network. The layer I − WT is
denoted as the GRN layer, whereas the layer (I − WT )

−1
is referred to as the inverse

GRN layer.

2.2 Loss Function Design

The loss function comprises four components. The first section denotes the reconstruc-
tion penalty, assessing the disparity between the input information and the output data
produced by the decoder. It drives the generated simulated data toward approximating
the real input data. Secondly, within the beta-VAE [7] framework, the transformation of
X to Z is not direct. Instead of that, Z is represented as a Gaussian distribution. The mean
and variance are obtained by employing a neural network, which takes X as its input
characteristics. Furthermore, considering that gene regulatory networks exhibit sparsity,
an �1 norm is used to constrain the adjacency matrixW, ensuring that the resulting gene
regulatory network remains sparse. Lastly, as theDeepSEMmethod does not incorporate
constraints based on the similarity of cell neighborhood information, the resulting gene
regulatory network may lack proper constraints. This can lead to situations where the
gene regulatory network obtained from non-adjacent periods exhibits greater similarity
than the one obtained from adjacent time periods, which clearly deviates from objective
reality. To ensure the accuracy of the obtained gene regulatory network, we propose
a VaeSSC. The loss function utilized in the DeepSEM model, proposed by Shu et al.
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[19], is defined by incorporating an additional �1 norm into a beta-VAE model for the
regularization of the adjacency matrix W. Precisely, the loss function for DeepSEM is
formulated in a subsequent manner:

l1 = Eqφ(z|x)
[
logpθ (X |Z)

] − βDKL(qφ(Z|X )||p(Z)) + λα||W ||1 (7)

The embryonic developmental genealogy tree is shown in Fig. 2. Assuming the tree
is denoted as T , within the tree T , if an edge e(i, j) belongs to T , then the adjacency
matrices of the GRNs obtained from the datasets of these two cell types are represented
asWi andWj, respectively. By imposing structural similarity constraints on the gene reg-
ulatory networks between connected cell types. The incorporation of structural similarity
constraints capturing the neighborhood information among different cell-type samples
can be expressed as follows:

l2 = λ(1 − α)
∑
e(i,j)

||Wi − Wj||1 (8)

where i represents the current task node corresponding to a cell type, j represents the
neighboring cell type node connected to i. Wi denotes the adjacency matrix to be opti-
mized for the current time period, andWj represents the adjacencymatrix of the neighbor-
ing cell type node j, which is known prior knowledge. e(i,j) indicates the edge connecting
node i and node j in the cell lineage tree.

Taking an example, if we are to infer the GRN of cells during the E4 period, then
the variable i corresponds to the E4 node. The range of variable j includes E3, E5_EPI,
E5_PE, and E5_TE. Consequently, the l2 loss function consists of four terms, with only
the nodes that have a connectionwith node i in the treeT being considered as j. Therefore,
when inferring the GRN of each node, the loss function is not identical for all nodes.
In other words, the design of the model’s loss function is based on the position of the
nodes within the tree T.

In summary, we have employed an approach that effectively captures the GRN infor-
mation of neighboring cell types, driving the GRN of current cell types to approximate
that of adjacent cell types GRN. To achieve this, we propose the incorporation of struc-
tural similarity constraints to enhance the reconstruction performance of the GRN. Fur-
thermore, we combine this approach with the β-VAE model and apply l1 regularization
to the current cell type’s gene regulatory networkWi . Ultimately, the overall loss function
can be expressed as follows:

L = l1 + l2

L = Eqφ(z|x)
[
logpθ (X |Z)

] − βDKL(qφ(Z|X )||p(Z))

+ λα||Wi||1 + λ(1 − α)
∑
e(i,j)

||Wi − Wj||1 (9)

The expected value function E, where E stands for the expected value function, and
p and q represent the probability distributions of X and Z respectively. KL refers to
the KL-divergence function, while β represents hyperparameters. The expression e(i, j)
denotes the edge connecting cell types i and j in the cell lineage tree T, α ∈ (0, 1) and
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λ > 0 are two regularization parameters. In the context of the beta-VAE framework, the
direct transformation of X to Z is replaced by modeling Z as a Gaussian distribution.
The mean and variance of this distribution are determined by neural networks that take
X as the input features.

2.3 VaeSSC Framework

The VaeSSC model (Fig. 4), an enhancement of GRN inference with a structural
similarity-constrained beta-VAE, utilizes the beta-VAE framework to jointly infer the
GRN by incorporating both structural equation modeling (SEM) and the structural
similarity constraint (SSC).

Fig. 4. The VaeSSC network model architecture. The model comprises four key components: an
encoder, a GRN module, an inverse GRN module, and a decoder. Both the encoder and decoder
are comprised of fully connected layers, which receive a singular gene as input. The encoder and
decoder share the same set of weights across various genes. The GRN module as well as the
inverse GRNmodule depict matrices of gene interactions, effectively capturing the GRN network
and directing the flow of information within the neural network. Wi represents the currently
predicted adjacency matrix. W1 to Wj represent its neighborhood information, which serves as
prior knowledge. The labels g1-g6 correspond to gene identifiers within the gene expression
matrix, whereas the labels c1-c6 denote cell identifiers in the gene expression matrix.

The architecture comprises two distinct neural network modules, namely the GRN
module and the inverse GRN module, which serve the explicit purpose of modeling the
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GRN structure. Deviating from traditional deep learning architectures that combine gene
expressions into a common latent space, the encoder mechanism of VaeSSC exclusively
focuses on employing the expression of an individual gene as the input characteristic for
the neural network. The results produced by these separate networks are then transformed
into the posterior mean and standard deviation of a multivariate Gaussian distribution
by two more fully connected neural networks. The pivotal aspect of VaeSSC lies in the
decoupling of nonlinear operations and gene interactions, which enables the simulta-
neous attainment of more robust and interpretable hidden representations. Finally, by
imposing a constraint relationship between the adjacency matrix Wi and the contextual
information Wj, the optimized Wi is made more similar to the Wj of neighboring cell
types, enabling the model to capture the GRN structural information of contextual cells
and enhance the performance of GRN reconstruction.

2.4 Ensemble Strategy

In the task of inferring gene regulatory networks (GRNs), the key elements of each
model lie in its capacity to deduce the structure of gene regulatory networks through
probabilistic modeling of scRNA-seq data. The adjacency matrix wi(i = 1 • • • k)
represents the learned GRN for each model. To obtain stable predictions of the GRN,
we employ an ensemble strategy [2]. As shown in Fig. 5, we train k different VaeSSC
models using k distinct training approaches on datasets from k cell types. These models
are tailored specifically to each dataset. Subsequently, we compute the average of the k
adjacency matrices to obtain the final adjacency matrix, which corresponds to the final
gene regulatory network.

Fig. 5. The ensemble strategy. The input gene expression matrices of early human embryos are
divided into different gene expression matrices according to the cell sample types. model1 to
modelk are k VaeSSC models with different constraint relationships “tailored” for these different
datasets. w1 to wk are the outputs of these models, and the final adjacency matrix W is obtained
by averaging these k adjacency matrices.

3 Experiments and Results

3.1 Data Preprocessing

Our data were derived from the hESC[16] dataset, which Utilizing single-cell RNA
sequencing, a total of 1,529 cells were isolated from 88 preimplantation human embryos
spanning the developmental period from embryonic day 3 to 7. In this study, we initially
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partitioned the human embryonic cell dataset into 11 subsets based on 5 distinct periods
and 11 different cell types. Each subset represents a specific category of cell samples.
Following the data preprocessing principles provided by the BEELINE [18] framework.
For each subset, we selected all transcription factors and either 500 or 1000 highly
variable genes. Subsequently, using theNon-specificChIP-seq dataset as the ground truth
labels, we generated corresponding labels for each subset to evaluate the performance.

3.2 Experimental Result

To evaluate the efficacy of our approach, we followed the evaluation approach outlined
in the BEELINE [18] framework for assessing the predictive performance of gene reg-
ulatory network (GRN) inference methods, specifically the early precision ratio (EPR)
and AUPRC ration metric. We have a total of 11 different cell data sets during the
human embryo development process. In accordance with the suggestions by Pratapa
et al. [18], we exclusively investigated transcription factors (TFs) and the top M (M =
500 or 1000) most variable genes. We compared the VaeSSC method with four baseline
algorithms, including DeepSEM [19], GENIE3 [9], PIDC [4], and PPCOR [12]. The

Fig. 6. Results of the hESC dataset’s performance on EPR metrics. The left panel (TFs + 500
genes) illustrates the results of the dataset composed of all significantly variable transcription
factors and the top 500 genes with the highest degree of variability. The right panel (TFs +
1000 genes) displays the results of the dataset comprising all significantly variable TFs and the
top 1000 genes with the highest degree of variability. Every row depicted in the illustration
corresponds to a scRNA-seq dataset, while each column represents a method for gene regulatory
network reconstruction. Each cell in the figure displays the EPR value. The last row represents the
cumulative results of all the previous datasets, denoted as the hESC dataset. The EPR values for the
VaeSSC method corresponding to the hESC dataset were obtained through an ensemble learning
approach. For every dataset, the color within each cell corresponds to the respective value, which
is adjusted to range between 0 and 1. EPR is determined by the odds ratio of authentic positives
among the foremost K forecasted connections between the model and random predictions, with
K representing the count of edges in the actual GRN.
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VaeSSC method excelled in the BEELINE evaluation framework, with results shown in
Fig. 6 and Table 1.

Table 1. Accuracy of GRN Inference Using Challenging Approaches on the hESC Dataset

Method TFs + 500 genes TFs + 1000 genes

EPR AUPRC ration EPR AUPRC ration

PIDC 1.95 1.15 2.06 1.18

GENIE3 1.74 1.03 1.84 1.05

PPCOR 1.01 0.91 1.25 0.93

DeepSEM 2.19 1.22 2.28 1.23

DeepSEM* 2.08 1.13 2.16 1.17

VaeSSC 2.35 1.29 2.44 1.32

The method (VaeSSC) demonstrates a significant performance advantage in gene
regulatory network prediction. Across subsets of hESC datasets, the EPR and AUPRC
ration metric of the VaeSSC method outperforms other benchmark algorithms. To com-
pare the performance of using a singlemodel for all datasets versus the ensemble learning
strategy. The approach where we compute the average of adjacency matrices obtained
from the unconstrained DeepSEMmodel across all datasets, without incorporating SSC
constraints, is referred to as DeepSEM*. The methodology involving the direct input of
the entire hESC dataset into the model is denoted as DeepSEM. As shown in Table 1, in
comparison to the unconstrained single model approach using DeepSEM*, the VaeSSC
method, which integrates SSC constraints, achieves superior performance on the hESC
dataset. Meanwhile, these experimental results indicate that incorporating more highly
variable genes or considering all key variable transcription factors leads to improvedEPR
performance. However, the impact on the AUPRC ratio metric is relatively marginal,
thus further validating the findings of Pratapa et al. [18]. In summary, our approach has
demonstrated commendable performance in the metrics of both EPR and AUPRC ratios,
thereby offering novel perspectives and insights into Gene Regulatory Network (GRN)
inference.

4 Conclusion

In this paper, we primarily discuss the issue of gene regulatory network (GRN) recon-
struction based on the beta-VAE model. Shu et al. [19] suggested the DeepSEM model
based on the beta-VAE model, which utilizes neural networks to model the gene regula-
tory network. Built upon prior success inGRN reconstruction,we introduce the structural
similarity constrained beta-VAE (VaeSSC). This approach leverages neighboring cells’
GRN structural information, enhancing reconstruction performance. To obtain the final
GRN, we adopt an ensemble strategy by averaging the adjacency matrices obtained
from each cell dataset to obtain the final adjacency matrix and consequently the final
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GRN. The empirical findings illustrate that compared to the DeepSEM method without
the structural similarity constraint, the inclusion of the SSC significantly enhances the
model’s prediction of the GRN.

However, due to the fact that the structure of the GRN is modeled as a specialized
layer of a neural network, it serves as a biological constraint to limit the parameter space.
In other words, the parameter matrixW of the neural network, which represents the adja-
cency matrix, is determined by the number of input genes. A complete gene expression
matrix often consists of tens of thousands of genes. Furthermore, considering that this
study involves multiple custom models jointly determining the predictive outcomes,
there will be multiple adjacency matrices W. This will significantly increase the num-
ber of parameters in the neural network, subsequently augmenting the time complexity
and affecting computational efficiency. This also represents a limitation of the approach
proposed in this study. Following the recommendations of Shu et al. [19], the selection
of highly variable genes by users will substantially enhance the operational efficiency
of the model.

In our future research endeavors, we will be dedicated to exploring the issues related
to structural similarity constraints using different methods and strive to provide new
insights and ideas for GRN reconstruction.
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Abstract. Knowledge graphs have recently seen a wide range of appli-
cations in various domains. In many such applications data stored in
relational databases constitutes an important source for the construction
of knowledge graphs. R2RML is a mapping language that can be used to
specify mappings from relational to RDF data, and so it naturally suits
the purpose of knowledge graph construction from relational data. In this
paper, we present Fingr, a concurrent dictionary aided parallel R2RML
engine that achieves fine-grained parallelization at the database tuple
level. Our experiments show that our prototypical system parallelizes
well, and it yields better performance than existing R2RML engines.

Keywords: RDF · R2RML · Knowledge Graph Construction

1 Introduction

Knowledge graphs have seen many applications for numerous purposes such
as question-answering systems, recommender systems and information retrieval
in various domains including medicine, cyber security, finance, education and
news [11]. Its ability to integrate large volumes of information into a graph
allows for topological interpretation and analysis such as ontological reasoning
of structured knowledge. However, in recent years, as increasing volumes of data
are poured into knowledge graphs from heterogeneous data sources, the demand
for efficient construction of massive knowledge graphs from other standardized
data sources has attracted much attention.

Approaches for standardized conversion from heterogeneous data sources to
RDF1 knowledge graphs enable knowledge graph based reasoning and have
proven useful in numerous Semantic Web applications. Relevant standards
include R2RML2 and RML [5]. An R2RML mapping document specifies the
mapping from a source relational database to a target RDF graph. An R2RML
engine implements this conversion. RML extends the R2RML standard so that
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1 https://www.w3.org/TR/rdf11-concepts/.
2 https://www.w3.org/TR/r2rml/.
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other forms of input data sources can be supported, such as CSV and JSON.
R2RML and RML engines provide access to target RDF graphs mainly in
two ways, materialization and virtualization. Materialization-based approaches
straightforwardly generate the target RDF graph using the input database and
the mapping document. In contrast, virtualization-based approaches translate
queries over the RDF graph into SQL queries over the relational database accord-
ing to the mapping document, thereby avoiding the explicit storage of the target
RDF graph.

R2RML engines such as Ontop [3] and Morph-RDB [8] adopt the virtual-
ization approach and exploit several optimizations. In contrast, db2triples3 and
R2RML-F [4] are R2RML engines that adopt the materialization approach, the
latter being an extension of the former. The development of RML engines has
attracted a lot of attention as well. The W3C RML Implementation Report4

listed a few of them: RMLMapper5, SDM-RDFizer [7], Chimera [9], RocketRML
[10], CARML6, RMLStreamer [6] and Morph-KGC [2]. Among these engines,
RMLStreamer utilizes a Producer-Consumer framework to achieve data record
level parallel generation of RDF triples. However, their system could produce
duplicate triples. Morph-KGC, SDM-RDFizer, and Chimera adopt paralleliza-
tion to different extents, with Morph-KGC displaying a clear focus on improving
its performance regarding throughput via parallelization. It adopts a rule par-
titioning strategy that assigns rules into groups such that no triple could be
generated from two distinct groups, thus minimizing the amount of information
exchange between parallelly executing processes. According to their experiments
[1,2], Morph-KGC outperforms other engines on the GTFSrdb [13] benchmark
by up to an order of magnitude in terms of time, making it potentially the
fastest R2RML (RML) engine to date. However, splitting workloads on a group
basis may not be optimal as suggested later in our experiments: some groups
can be required to deal with a much larger number of triples compared with
others, resulting in imbalanced workload distribution between processes. To this
end, we propose Fingr, a prototype R2RML engine that parallelizes the pro-
cess of RDF graph construction at the level of database rows. Our experiments
show that Fingr consistently outperforms the state-of-the-art engine by a large
margin. Our system and source code can be found on github7.

2 Preliminaries

We briefly recapitulate the most relevent concepts, RDF, R2RML and RML.
RDF (Resource Description framework) is a framework that models entities

and their relationships in its core structure of a triple, comprising of a subject,
a predicate, and an object. Viewing the subjects and objects as nodes, and the

3 https://github.com/CNGL-repo/db2triples.
4 https://rml.io/implementation-report/#rml-processor.
5 https://github.com/RMLio/rmlmapper-java.
6 https://github.com/carml/carml.
7 https://github.com/ShadowNearby/R2RML.
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predicates of triples as directed edges between subjects and objects, a set of
triples form a graph. RDF graphs assume set semantics and do not allow for
duplicate triples.

Fig. 1. Example of an R2RML mapping document

R2RML is a mapping language from relational databases to RDF defined
in Turtle8, a syntax for RDF. This means that an R2RML mapping document
is itself also an RDF graph. A mapping document of R2RML contains one or
more triples maps. A triples map specifies how to translate a row in a relational
table into RDF triples. Its specification includes a logical table, a subject map,
and one or more predicate-object maps. A logical table specifies the data source
of the triples map, the source usually being a relational database table or a
query specifying a table. A subject map dictates the value of the subject of
the triples that are to be generated. A predicate-object map consists of one or
more predicate maps and one or more object maps (referencing object maps).
Predicate maps and object maps define the values of the predicates and the
objects, respectively, in a similar way as subject maps. A referencing object
map specifies a join relation between two logical tables. For each row from the
source table, each possible pair of these predicate and object maps defined in one
single predicate-object map will be used in conjunction with the subject map,
to generate corresponding RDF triples. Each of such combinations of a subject,
a predicate and an object map constitute a mapping rule. Subject, predicate
and object maps are all RDF term maps. An RDF term map maps a logical
table row to an RDF term, which can be one of the following three forms: an IRI
(Internationalized Resource Identifier), a Blank Node or a Literal. An RDF term
map is a constant-valued term map, a column-valued term map, or a template-
valued term map. A constant-valued term map generates constants regardless
of inputs. A column-valued term map uses the content of a column of a row as
its value. A template-valued term map generates strings by replacing each curly
8 https://www.w3.org/TR/turtle/.

https://www.w3.org/TR/turtle/
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brace enclosed column name in the template string with the content from the
corresponding column.

Example 1. Figure 1 shows an example of an R2RML mapping document, which
is adapted from the W3C standard for R2RML9. If the table “EMP” contains a
row (EMPNO:10001, ENAME:Bob), the mapping rule entailed by the R2RML
document derives a triple (“http://data.ex.com/emp/10001”, name, “Bob”).

RML is an extension to R2RML that allows other data sources such as CSV
and JSON. The counterpart to logical table of R2RML in RML is logical source.

3 The Fingr Engine

We begin by defining our main task: given a valid relational database connection,
an R2RML mapping document written in Turtle, we need to generate all the
triples according to the transformation specified by the document. In the remain-
der of this paper, we will refer to this task as knowledge graph construction.
Specifically, we deal with this task in three stages.

– R2RML mapping resolution stage where we parse the input R2RML mapping
document into triples maps.

– Triple generation stage where we apply mapping rules obtained from the
triples maps to rows fetched from the database to generate required triples.

– Triple storing stage where the generated triples are stored after duplicates
are removed from them.

R2RML mapping documents are generally miniscule compared to the input
databases and the output RDF graphs. As such, parallelization of the first stage
will merely yield negligible improvement to the overall performance. Therefore,
to achieve better performance through parallelization in knowledge graph con-
struction, we focus on parallelizing the second and third stages of the process.

3.1 R2RML Mapping Resolution

We transform a R2RML mapping document into an RDF graph, from which we
extract the triples maps. For cases where the referencing object map references
its own subject map, we adopt the self-join elimination technique in [2] to avoid
producing redundant join queries.

3.2 Triple Generation

Before we dive into the details of how to generate triples based on the given
database and the triples maps, we shall first outline the design of our concurrent
dictionary, which is used extensively in the remaining procedures.

9 https://www.w3.org/TR/r2rml/.
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Algorithm 1. GetID(s)
Input: string s
Output: id of s

1: if D contains an entry for s then
2: return D.stringtoid[s];
3: else
4: i = hash(s) mod D.k;
5: D.locks[i].lock();
6: if D contains an entry for s then
7: D.locks[i].unlock();
8: return D.stringtoid[s];
9: else

10: id ← D.nextids[i]; D.nextids[i] ← D.nextids[i] + 1;
11: D.stringtoid[s] ← id; D.idtostring[id] ← s;
12: D.locks[i].unlock();
13: return id;

Concurrent Dictionary. Database tuples can contain duplicate values that
are of varying length, most of which take up at least as much space in memory
as an integer. Thus, we adopt a concurrent dictionary to assign each of these
values a unique integer id, and replace each occurrence of these values with their
respective ids so that we only need to operate with ids.

Our dictionary is composed of two hash maps that convert strings to ids and
ids to strings, respectively. A dictionary of such functionality should be trivial
to design in the serial execution context. It suffices to assign a fresh id to each
newly encountered string. However, when strings are processed in parallel, more
careful treatment is required: two different threads could interfere with each
other when updating the dictionary. To tackle this, we adopt a concurrent hash
map that can handle concurrent insertions and look-ups.

However, this was insufficient to ensure correct behavior of the dictionary
since when two strings are to be allotted ids simultaneously by two different
threads, the same id can potentially be allotted to two distinct strings, and two
identical strings can acquire different ids in a similar manner.

A naive approach to addressing this problem would be to protect the current
id with a lock. However, this approach would seriously impair parallelization
since insertion of new strings into the dictionary becomes serial when every
thread is competing for the same lock. A smaller lock granularity at per string
level seems ideal for maximizing parallelization, but such a scheme requires a lot
of memory and dynamically allocating new locks, which induces another source
of workloads. Moreover, locks for each string cannot relieve us of the necessity
of protecting id with a lock. As such, we adopted a locking scheme that achieves
a reasonable trade-off between lock granularity and lock maintenance cost.

The idea is to partition the range of id into disjoint intervals so that we
can maintain multiple ids, each starting from the smallest natural number in its
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Algorithm 2. ProcessQuery(C, q, D)
Input: Database Connection C, Query q, Dictionary D
Output: Processed query result relation R′, datatype information I of R′

1: R ← C.execute(q);
2: n ← R.rowcnt();
3: m ← R.colcnt();
4: R′ ← an n x m array;
5: for i ← 0, 1, . . . , n − 1 do
6: for j ← 0, 1, . . . ,m − 1 do
7: \* The following runs in parallel *\
8: if R.content[i][j] �= null then
9: R′[i][j] = D.GetID(R.content[i][j].tostring());

10: else
11: R′[i][j] = 0;
12: \* The above runs in parallel *\
13: I ← R.getcolumntypes();
14: return 〈R′, I〉;

respective interval, and each id is protected by its own lock. The strings to be
inserted into the dictionary are in turn to be assigned, ideally evenly, to each
interval so that races for the locks are minimal. Intuitively, this is viable since we
only need to ensure that two different strings have different ids, and the order
in which they are inserted is irrelevant. Let the range of id, [1, Max], be parti-
tioned into k almost equally large intervals starting at id0, id1, . . . , and idk−1,
respectively, and let these ids be protected by lock0, lock1, . . . , and lockk−1,
respectively. For a string s to be inserted into our dictionary D, we first use a
hash function hash : String −→ N to acquire an index i to an interval:

i = hash(s) mod k. (1)

We next acquire locki, assign idi to s, increase idi by 1 and release locki. Notice
that determining when to best acquire and release the lock is not trivial either.
Since we encounter many identical strings, acquiring the lock before checking
whether the string is already in the dictionary could potentially be quite costly,
especially if these identical strings appear in batches, rendering the whole process
nearly serial. This is remedied by checking twice for the strings’ ids, once before
acquiring the lock so that locking can be avoided if unnecessary, once after
acquiring the lock to ensure that the id indeed needs to be assigned afresh.
Algorithm 1 formalizes the above ideas. stringtoid and idtostring are the two
hash maps in the dictionary D; nextids and locks are two arrays that store
id0, id1, . . . , idk−1 and lock0, lock1, . . . , lockk−1. Lines 1–2 check whether the
string is already present, and if so returns the corresponding id. Lines 4–5 acquire
the lock. Lines 6–8 check for the string’s presence in the dictionary again. Finally,
lines 9–13 allot a new id for the string.
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Algorithm 3. ApplyRules(Π, C, S, L, D)
Input: A Set of rules Π, a database connection C, a hash map S mapping logical
table names to their respective contents, a hash map L mapping logical table names
to their column type information, Dictionary D
Output: All triples T specified by Π given connection C

1: for each rule r in Π do
2: if r has a referencing object map then
3: q ← generatejoinquery(Π, r);
4: 〈R′, I〉 ← ProcessQuery(C, q, D);
5: else
6: R′ ← S[r.logicalTable];
7: I ← L[r.logicalTable];
8: n ← R′.rowcnt();
9: for i ← 0, 1, . . . , n − 1 do

10: \* The following runs in parallel *\
11: if isvalid(R′[i], r) then
12: t ← derivetriple(R′[i], r);
13: T ← T ∪ {t};
14: \* The above runs in parallel *\
15: return T ;

RDB Retrieval and Processing. From the triples maps generated in the
mapping resolution stage we extract their logical tables and send corresponding
queries to the input database. Each query result, which is an array of database
rows, is parallelly translated into a matrix of ids with the help of the dictionary,
and its type information is extracted. Algorithm 2 describes the above process.
Line 1 executes the query. Lines 2–4 initializes the matrix of ids, R′. Lines 5–12
translates the query result into R′. Finally, line 13 extracts the type information.

Rule Application. For each triples map, we combine its subject map with
each of its predicate-object maps to form the mapping rules. Each of these rules
is transformed into a template specifying the format of the resulting triples. In
each field of the template may exist column names specifying the columns whose
values will be used to supplant them in the resulting triples.

We then take one mapping rule’s template and one row from its logical table
each time and give them to a worker thread to generate the corresponding triple.
All worker threads run in parallel. In this way, parallelization is achieved at the
fine-grained level of a database row.

3.3 Triple Storage

After the triples are generated, storing them could potentially become a perfor-
mance bottleneck if parallelization is not properly supported. To this end, we
employ a concurrent hash set that can adequately shoulder the burden of storing
triples concurrently while eliminating duplicates.
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Algorithm 3 describes the process of rule application and triple storage. We
omit the trivial detail of combining the three types of maps of each triples map
to form all mapping rules and assume that the set of all mapping rules, Π,
is already given. The algorithm additionally takes as arguments S and L. We
assume that S and L have already been populated with the processed content
and type information, respectively, of all relevant logical tables. Finally, D is the
concurrent dictionary. The output T of the algorithm is a concurrent hash set
of triples. As can be seen in line 2, the two cases where the object map is or is
not a referencing object map are treated differently. A rule r with referencing
object map would need to execute a join query to fetch the results and generate
the corresponding triples, which is depicted in lines 3–4. For rules without a
referencing object map, their logical tables can be directly accessed from S and
L, as depicted in lines 6–7. Function isvalid() in line 11 checks whether any
of the columns of R′[i] referenced by the current mapping rule r has null value.
Function derivetriple() in line 12 first translates the ids in R′[i] back into strings
and replaces the corresponding part of the rule template by values from the
relevant columns; it then adds type and language information to the elements of
the triple if necessary; the new triple is then translated into a triple of ids using
the dictionary (allotting new ids if necessary). Finally, the generated triple t is
added to set T in line 13.

3.4 Overview

In all, the operating mechanism of our Fingr engine can be summarized into
Algorithm 4. The algorithm first parses the mapping file in line 1, removing
self-joins where applicable. Then, S, the hash map containing the content of the
relevant logical tables, and L, the hash map containing type information for the
logical tables, are both initialized to be empty; the dictionary D is initialized
to map string null to 0; all ids are initialized to the smallest natural number of
their corresponding intervals. The number of groups that id is partitioned into,
k, is configurable. After the initialization phase, the content of the logical tables
is retrieved and processed, and S, L, and D are modified accordingly, as shown
in lines 4–6. Subsequently, rules are applied to their respective processed RDB
tuples and triples are generated and deduplicated in line 7. Finally, the result is
returned for further operations in line 8.

4 Experiments

We implemented Fingr in C++ and evaluated it on two benchmarks against
Morph-KGC with Mysql 8.0. We chose Morph-KGC as the only baseline since it
significantly outperforms other existing systems, sometimes even by an order of
magnitude [2]. There was no available performance comparison between RML-
Streamer and Morph-KGC, but the former does not support duplicate elimi-
nation. The hash maps in Algorithms 3 and 4 are implemented with Concur-
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Algorithm 4. KGConstruction(M , C)
Input: A mapping file M , a database connection C.
Output: The set of output triples T

1: Π ← parse(M);
2: Initialize S, L, D;
3: for each logical table q appearing in Π do
4: 〈R′, I〉 ← ProcessQuery(C, q, D);
5: S[q] ← R′;
6: L[q] ← I;
7: T ← ApplyRules(Π, C, S, L, D);
8: return T

rent Hashmap from folly (Facebook Open-source Library)10. When implement-
ing RDB retrieval and processing phase, queries are rewritten to cast all values
to strings, and type information is retrieved separately.

In addition to the GTFS benchmark [13] considered in [2], we also ran
both engines on the well known BSBM’s (the Berlin SPARQL Benchmark) [12]
datasets. The mapping files used are obtained from GTFS’s11 and morph-rdb’s12

repositories, respectively. Note that the mapping file we found for GTFS is dif-
ferent from that used in [2] so that the numbers of generated triples are not
exactly the same. We additionally performed experiments over BSBM with vary-
ing thread numbers to examine the effect of parallelization for both engines.

Each engine was tasked to accept a valid database connection and a mapping
as inputs and output the triples to disks in our experiments. For correctness we
verified the outputs of the two engines and made sure they were equal. Every
experiment was run at least 3 times and the average execution time was com-
puted. We used C++ std::chrono::steady clock to record the running time of
our system and adopted the output of Morph-KGC as their running time. The
experiments were performed on a Windows 11 PC with 64 GB RAM, an Intel i9-
12900k CPU with 16 cores, and a Samsung MZVL21T0HCLR-00B00 SSD with
7000MB/s sequential read.

4.1 Evaluation over the GTFS Benchmark

The results for GTFS are displayed in Table 1. The running time in seconds of
each setup is recorded in this table. GTFS10 means the dataset is generated
with scale 10 by the GTFS benchmark. GTFS1000 caused both engines to run
out of memory and therefore was not included. As the running time of different
setups vary greatly, we compute the performance ratio as shown in the table
to illustrate the relative performance of the two as recorded in the row Perf
Ratio. As can be observed from the table, Fingr outperforms Morph-KGC by

10 https://github.com/facebook/folly.
11 https://github.com/oeg-upm/gtfs-bench.
12 https://github.com/oeg-upm/morph-rdb.
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https://github.com/oeg-upm/morph-rdb
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at least 80% in terms of speed. We observe the advantage of Fingr dwindling as
the size of dataset increases. After close examination of the running process, we
discovered that the cause of this disproportionate surge in running time is the
largest join query in terms of time cost. Specifically, the time taken for the Mysql
Connector/C++ to execute the query and the time taken to free up the memory
storing the rows dominate the query time cost. The running time of this query
can be erratic, especially in the latter stage when the memory is to be freed.
We deduce that this results from the Mysql Connnector/C++’s implementation
of mysqlx::Row. By reviewing its source code we had the impression that the
records in each row is not stored contiguously in memory. Although we parallelly
clear these Rows as we transform their records into ids, our parallel clearing of
rows collapses into an almost serial one.

Table 2 shows a dissected sample run for GTFS100. As can be seen from this
table, the time taken performing interactions with the database (querying & pre-
processing) in total comprises 62.07% of the total time cost. Conversion of the
rows from tuples of strings to tuples of ids constitutes 35.01% of the database
interaction time cost. The largest query’s conversion time as shown in the table
dominates the total conversion cost, making up 87.48% of the total conversion
time. This conversion was observed to be executed almost serially, with CPU
utilization persistently less than 10%. It is perceivable from this sample run that
RDB retrival and processing can be an outstanding bottleneck of our engine.

Table 1. GTFS Running Time(s) Results

GTFS1 GTFS10 GTFS20 GTFS50 GTFS100

Morph-KGC 7.469 27.469 50.369 118.970 235.961

Fingr 1.758 9.970 20.056 55.525 130.837

Perf Ratio 4.249 2.755 2.511 2.143 1.803

Table 2. A Dissected(s) Sample Run With GTFS100

Join Non-join Query Conversion Conv. #1 Total

Fingr 63.192 17.542 80.734 28.265 24.725 130.060

4.2 Evaluation over the Berlin SPARQL Benchmark

Comparison. As reported in Table 3, which is structured homogeneously as
Table 1, Fingr outperforms Morph-KGC by up to 6.28 times. Contrary to the
GTFS benchmark results, Fingr’s advantage becomes bigger as the size of
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datasets increases. This advantage in performance can be attributed to two
main reasons. The first is that BSBM contains large amount of comments that
are long strings. The dictionary in Fingr transforms these into ids, whereby
laborious operations on varying length long strings are replaced by generic oper-
ations on fixed size relatively small integers. The second is that the groups the
mapping rules are partitioned into by Morph-KGC are skewed in terms of work-
loads. Some groups dominate the total workloads meaning the parallelizaton
scheme of Morph-KGC to some extent collapses into a serial one. In the case of
BSBM, the mapping rules were partitioned into 10 groups by Morph-KGC so
that the workloads can be parallelly processed by at most 10 cores. Even worse,
The triples output by 2 groups accounts for 72.90% of the total workload, one
taking up 38.06%, the other 34.84%, which means that even if the ten groups
are evenly spread across 10 cores, the actual workload of each core still differs
greatly. In contrast, Fingr’s performance is more independent both from the
database instance’s data distributions and the mapping rules’ features, and our
parallelization scheme is not as seriously impaired in this case.

Table 3. BSBM Running Time (s) Results

BSBM100 BSBM1000 BSBM10000 BSBM100000

Morph-KGC 3.438 8.566 65.745 721.269

Fingr 1.141 1.777 11.370 114.860

Perf Ratio 3.013 4.820 5.782 6.280

Parallelization Showcase. We wished to know how much the deficit in per-
formance of both engines resided in parallelization level, whereby a further
experiment was conducted. Table 4 records the results of running the dataset
BSBM100000 with different number of threads and processes. Note that due to
our implementation, the stage of output to disk has n + 1 threads if n > 1.
Since in Morph-KGC each process executes its instructions serially, the number
of threads maximally active is the same as the number of processes. When run
with 64 processes Morph-KGC reported an error, whereby no valid data was
obtained. For Fingr, we observe a close to 4 times increase in terms of speed
from 1 thread to 64 threads. This is reasonable as the time consumed by inter-
acting with the database can hardly be influenced by our parallelization scheme.
For Morph-KGC, however, their parallelization scheme achieved only a 62.53%
speedup, with little further improvement beyond 2 processes. This is congruous
with our earlier workload analysis for Morph-KGC. Since two groups make up
the majority of the workloads and allowing more than two processes does not
lighten the load on the two processes tasked with these two groups, we see little
improvement in overall performance for Morph-KGC beyond two processes.
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Table 4. Results with various # of threads on BSBM100000

Thread# 64 32 16 8 4 2 1

Fingr 119.508 127.871 125.344 137.959 170.037 243.184 440.650

Morph-KGC 722.932 725.148 725.003 732.301 733.965 1174.998

5 Conclusion and Discussion

In this paper, we presented Fingr, a prototype concurrent dictionary assisted
fine-grained parallel R2RML engine and our experiments show that our engine
outperforms state-of-the-art counterparts by up to 6.28 times on well established
workbenches, attesting to effectiveness of the design and implementation of our
prototype engine. For future work, exploration of parallelization schemes that
improve RDB query efficiency can be performed. An experiment that mask the
effect of RDB query can be designed and executed. Extension of Fingr to support
RML and other R2RML variants is also possible.
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Ó.: GTFS-madrid-bench: a benchmark for virtual knowledge graph access in the
transport domain. J. Web Semant. 65, 100596 (2020)



Knowledge Graph Augmentation
with Entity Identification for Improving

Knowledge Graph Completion
Performance

Shuichi Chikatsuji(B), Kenta Yamamoto , Ryu Takeda ,
and Kazunori Komatani

The Institute of Scientific and Industrial Research (SANKEN), Osaka University,
Osaka, Japan

s-chikatsuji@ei.sanken.osaka-u.ac.jp

Abstract. A knowledge graph often lacks some existent triples. Knowl-
edge graph completion is a technique for complementing such triples
and its performance can be improved by augmenting triples from other
external databases. However, entity names often differ between the orig-
inal knowledge graph and an external database, which reduce the aug-
mentation’s efficiency. In this study, we identify the same entities that
have different names (orthographic variants) that come from different
sources, merge them into one entity, and augment the knowledge graphs.
Our proposed method exploits in the original knowledge graph and the
external database the similarity of triples, which were embedded using
BERT. Experimental evaluation on our knowledge graph completion
performance showed that our proposed method with graph information
effectively outperformed two baselines.

Keywords: Knowledge graph · Knowledge graph completion ·
Orthographic variants

1 Introduction

Many studies have investigated knowledge graphs (KGs) as databases for dia-
logue systems [14,19–21,24]. A KG is represented as a set of triples (es, r, eo)
where es is a subject entity, r is a relation, and eo is an object entity. The
relations between two entities can be flexibly represented in KGs. On the other
hand, it is basically impossible to represent every triple in the real world.

We can estimate the missing triples in KGs using knowledge graph comple-
tion (KGC) [2,8], which can be utilized to generate the response sentences of
a dialogue system [7]. However, the more missing triples that exist, the lower
is the KGC performance. To improve the KGC performance, KGs can be aug-
mented using a different external database, as exemplified in Fig. 1. Increasing
the number of relations per entity by augmenting KG will improve the KGC
performance.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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A crucial problem in this augmentation is that entity names often differ
between an existing KG and an external database. We call such different names
having identical meanings orthographic variants. For example, “chocolate cake”
is often abbreviated to “choco cake” in Japanese.

We identify entities whose meanings are identical and merge them, as shown
in the “chocolate cake” example in Fig. 1. In our study, entity identification
refers to associating two entities with the same meanings. If such entities are
successfully merged, we can augment more relations between existing entities,
which will improve the KGC performance.

Our proposed entity identification uses the similarity of feature vectors gen-
erated by BERT [5] by considering the graph information. We evaluated its
effectiveness by the KGC performance obtained after augmenting a KG with
entity identification.

Fig. 1. Augmentation of KG using different databases

2 Related Work

Although some studies have addressed KG augmentation or construction, most
did not take into account orthographic variants [1,4,9,22]. Meng et al. [10] con-
structed a KG from Chinese literature by merging orthographic variants using
the Word2vec [11] model trained from the original literature. However, the KG
and the external database considered in our study have no original literature to
train a model.

Ikeda et al. [6] and Saito et al. [13] used language models to remove Japanese
orthographic variants without KGs. Turson et al. [17] also studied a similar
method for Uighur. Unlike our study, these works assume the availability of
sufficient documents for training models.

Zhang et al. [23] and Sun et al. [15] input entity or triple information to
language models to perform NLP tasks. However, both works assume that the
original KG has enough relations between its entities.

3 Entity Identification Based on Graph Information

3.1 Augmentation with Entity Identification

Figure 2 shows the augmentation of a KG using entity identification, which is
done on entities es and eo in triples (es, r, eo) of an external database used for
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Fig. 2. Augmentation details with entity identification

augmentation. The entity identification module outputs the most similar entities,
ês and êo, in the existing KG and their similarity scores. If the similarity scores
are larger than or equal to threshold θ, es and eo in the original triple are replaced
with ês and êo. Then the triple is augmented into the KG. We did not use triples
that have unreplaced entities for augmentation because they may degrade the
KGC performance.

3.2 Feature Vectors of Entities with BERT Considering Graph
Information

Entity identification calculates the cosine similarity between the feature vectors
of the entities in the KG and the external database. An entity with the largest
cosine similarity in the KG is identified as the most similar. The feature vectors
are computed with graph information using BERT.

We use the name of each entity and the triples containing it as input to
BERT. Figure 3 shows an example. The triples are grouped by relations, and
the sentences about them are connected by [SEP] tokens. When computing the
feature vector for entity “chocolate cake,” the input is “[CLS] chocolate cake
[SEP] ingredients are egg and chocolate [SEP] superclass is dessert [SEP]” based
on the graph structure. A [CLS] token is always used at the beginning of the
BERT input.

Mean-pooling was applied to the sequence of output vectors from BERT.
The pooled vector is a feature vector of each entity. In addition, we normalized
each feature vector by subtracting the mean of all the feature vectors from it to
improve the KGC performance after augmentation.

4 Experiments and Evaluations

4.1 Settings

We used a food subgraph from Wikidata [18] as the original KG. We extracted a
portion of it and used it as test and validation data. The remaining graph after
the extraction was used as the augmentation target. The target data had 14454
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Fig. 3. Input format for BERT based on graph information

triples, the validation data had 242, and the test data had 243. They contained
8423 entities and 110 kinds of relations.

We used Rakuten Recipe from the Rakuten public data1 for the external
database. It has about 800,000 recipes. The entities to be augmented came from
the names of dishes and the ingredients in the recipes.

We used TransE [3] and RotatE [16] as KGC models. Using the validation
data, we set the embedding dimension to 300 for both models. For each triple
(es, r, eo) in the test data, we evaluated the performance of randomly predicting
either es or eo. Hits@N(N = 1, 10) and mean reciprocal rank (MRR) were used
as evaluation metrics. The BERT model was fine-tuned from a pre-trained model
for Japanese2. Its hyperparameters are based on a previous paper [12]. Threshold
θ (Fig. 2) was experimentally set to 0.4 using the validation data.

We set two baselines. One was “EditDist-based,” in which similarity scores
were computed by subtracting the normalized edit distance between the entity
names from 1. The edit distance was normalized by the length of the longer
entity name. Each entity name was treated as letters representing its Japanese
pronunciation in this baseline. Entity pairs with similarity scores over 0.9 were
regarded as identical. The other baseline was “BERT” without graphs, i.e., only
each entity name was used to compute its feature vector by BERT.

4.2 Results and Discussion

Table 1 shows the KGC performance and the number of triples of the augmented
KG for each method. Our proposed method is “BERT+graph.”

Our BERT+graph method outperformed the other methods in every metric,
especially the BERT baseline, and its number of triples decreased from the BERT
baseline. This result indicates that the graph information reduced the triples that
do not contribute to the KGC performance and positively impacted it.

Comparing the performance of each method, the increase from the BERT
baseline to our BERT+graph method exceeded that from the EditDist-based
baseline to the BERT baseline in all the metrics. This also confirms the effec-
tiveness of graph information.

1 https://rit.rakuten.com/data release ja/.
2 https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking.

https://rit.rakuten.com/data_release_ja/
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
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Table 1. KGC performance and number of triples of augmented KG for each method

Method TransE RotatE Number of triples

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

No augmentation 0.014 0.072 0.035 0.010 0.072 0.032 14454

EditDist-based 0.072 0.327 0.157 0.121 0.377 0.209 55169

BERT 0.128 0.422 0.228 0.222 0.504 0.315 290475

BERT+graph 0.191 0.531 0.302 0.383 0.724 0.497 211168

Table 2 shows some examples of similarity scores? “Target entity” is an entity
of Rakuten Recipe, and “Existing entity” is an entity of the food subgraph. We
include the Japanese entity names and the pronunciations in parentheses. Our
BERT+graph method successfully computed more appropriate similarity scores.
For example, its similarity scores were high for similar pairs, such as 酢イカ
(vinegared squid) and イカ (squid), and low for dissimilar pairs, such as 酢イ
カ (vinegared squid) andスイカ (watermelon) orかき揚げ (vegetable tempura)
and カキ (oyster). On the other hand, even for a pair indicating exactly the
same thing, such as そば(soba) and 蕎麦 (soba), the scores of another similar
pair, such as そば(soba) and かけそば (kakesoba), were higher. Kakesoba is
a kind of soba. While the KG augmentation improved KGC performance as
demonstrated in Table 1, its negative effects were mitigated by preventing the
erroneous merging of dissimilar pairs, such as 酢イカ (vinegared squid) and ス
イカ (watermelon).

Table 2. Examples of entity identification results

BERT+graph BERT EditDist-based

酢イカ[suika] スイカ[suika] 0.30 0.50 1.00

酢イカ[suika] イカ[ika] 0.66 0.70 0.60

かき揚げ[kakiage] カキ[kaki] 0.35 0.71 0.57

かき揚げ[kakiage] から揚げ[karaage] 0.59 0.52 0.71

そば[soba] かけそば[kakesoba] 0.73 0.62 0.50

そば[soba] 蕎麦[soba] 0.64 0.79 1.00

5 Conclusion

We augmented a KG with entity identification based on graph information and
evaluated its KGC performance effectiveness after augmentation. Our experi-
ment’s results indicate that our proposed method outperformed the two base-
lines. In the future, we will verify whether our proposed method remains effective
with another KG and external databases.
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Abstract. We introduce argumentation tuple relational calculus, adapt-
ing tuple relational calculus for acceptability semantics, and derive rela-
tional acceptability semantics of abstract argumentation. It serves as a
theoretical framework to link different types of acceptability semantics
relationally. It also allows for refining existing acceptability semantics.

1 Introduction

Abstract argumentation frameworks by Dung [8] capture defeasible/conflicting
information as a graph structure. Each node is an argument (information) and
each edge from an argument to another argument is an attack from the source
argument to the target argument. For the semantics of argumentation graphs,
Dung defines several acceptability semantics deciding which sets of arguments are
acceptable. Each of them can be derived from some of them via (1) set-theoretical
operations on it and possibly also (2) the count of attacked arguments. In that
sense, they are all linked in these two measures. The relationship among them
is thus easy to see. However, various types of acceptability semantics exist by
now and the two measures are no longer sufficient for linking them. For example,
multi-agent semantics, e.g. [2,3,5], assigns a subgraph of a given argumentation
graph to each agent, obtains (often) Dung acceptability semantics of each of the
subgraphs (one per agent), and aggregates them in some way. This procedure is
too involved to be emulated by the two measures alone. Can we obtain a theoret-
ical framework for recovering the linkability? We present a formal language for
the linking to address this question. Specifically, noting that much of the diffi-
culty with handling multi-agent semantics is relational, we adapt tuple relational
calculus [10] for acceptability semantics to derive argumentation tuple relational
calculus, and formulate relational acceptabilty semantics which will be shown to
extend the linkability to multi-agent semantics. It allows for easily specialising
or generalising existing acceptability semantics, too. A fuller work is in [4].

Related Work. Identification of common constraints among different acceptabil-
ity semantics is popular [1,6]. However, the constraint identification research
focuses on identifying a specific set of formal constraints, and through them, a
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specific set of acceptability semantics. Thus, even provided there is no depen-
dency among the constraints, they can identify at most 2N different acceptability
semantics with N being the number of them. By contrast, our proposal provides
a proper formal language (a fragment of predicate logic) whose semantics is not
only defined at some points but instead defined for any expression allowed in
the language. Hence, by capturing acceptability semantics in the language, it
becomes possible to overcome the discreteness limitation. Further, the language
allows the derivation of acceptability semantics through database queries which,
unlike the full predicate logic expressions, can be handled directly in SQL.

2 Technical Preliminaries

A is an uncountable set of entities, arguments. An abstract argumentation frame-
work is normally a finite graph (A,R) with A ⊆ A and R ⊆ A × A. Given
(A,R), for any a1, a2 ∈ A, we say a1 attacks a2 just when (a1, a2) ∈ R. Given
(A,R), A′ ⊆ A and a ∈ A, A′ is conflict-free iff there is no attack (edge) in
(A′, R ∩ (A′ × A′)); A′ defends a iff, for any argument a1 ∈ A, if a1 attacks a,
then some argument a′ ∈ A′ attacks a1; and A′ is admissible iff it defends every
member of A′ and is conflict-free. We obtain 4 different - but well-linked - accept-
ability semantics of (A,R). The complete semantics of (A,R) comprises every
admissible A′ ⊆ A that includes every argument it defends. Let Γ denote the
complete semantics of (A,R), then the set comprising: every set-inclusion-wise
maximal member A′ of Γ is the preferred semantics of (A,R); every member A′

of Γ such that for each a ∈ (A\A′) there is some a′ ∈ A′ that attacks a is the
stable semantics of (A,R); the minimum member of Γ is the grounded semantics
of (A,R). For each xxx ∈ {complete, preferred, stable, grounded}, every member
A′ of the xxx semantics of (A,R) is acceptable under the xxx semantics. Now, as
per [7,9], we can represent each member A′ ⊆ A of xxx semantics of (A,R) with
a labelling function. Let L denote {in, out, und} and let Λ denote the class of
all partial functions A → L as labelling functions. Any member A′ of the xxx
semantics of (A,R) corresponds to some labelling function λ ∈ Λ satisfying: (1)
domdomdom(λ) = A (domdomdom(λ) is the domain of λ); (2) λ(a) = in just when a ∈ A′; and
(3) λ(a) = out just when there is some a′ ∈ A′ attacking a. Clearly, the labelling-
based xxx semantics of (A,R) is the set of all labelling functions some member of
the xxx semantics of (A,R) corresponds to.

One typical idea of multi-agent semantics [2,3,5] is: given an (A,R), partition
A into A1, . . . , An (

⋃
1≤i≤n Ai = A), each of which represents arguments put

forward by an agent; each agent i (1 ≤ i ≤ n) knows some (Ax, Rx) such
that Ai ⊆ Ax ⊆ A and Rx = R ∩ (Ax × Ax), and derives some labelling-
based acceptability semantics Λi of (Ax, Rx). An external observer with the
gods perspective aggregates these local labelling-based acceptability semantics
Λ1, . . . ,Λn into a global labelling-based acceptability semantics Λg of (A,R)
(where each λg ∈ Λg satisfies domdomdom(λg) = A). Typically, each λg ∈ Λg is such
that, for each partition Ai, λg assigns the same labels to Ai as some λi ∈ Λi.
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Fig. 1. The tables referred to by tbl1, tbl2 and tbl3 list labelling functions (λ1(aG) = out,
λ1(aF ) = in and so on in tbl1, similary for the others).

Example 1. aG aF aE aD aC aB aA

This is an argumentation graph. The labelling-based complete semantics of
it comprises 3 labelling functions, as shown in (the table referred to by) tbl1
in Fig. 1. Let us suppose 2 agents. Suppose agent 1 (resp. agent 2) puts for-
ward aG, . . . , aE (resp. aD, . . . , aA) and knows aG, . . . , aD (resp. aE , . . . , aA) as
well as attacks among them. Suppose agent 1 (resp. agent 2) uses the labelling-
based complete semantics (resp. labelling-based stable semantics). Then, agent
1s (resp. agent 2s) local labelling-based complete (resp. stable) semantics com-
prises 3 (resp. 1) labelling functions as shown in tbl2 (resp. tbl3) in Fig. 1. Suppose
the external observer uses the labelling-based complete semantics (tbl1). Then
the multi-agent semantics is a singleton set {λ3}, since λ3 is the only labelling
function among {λ1, λ2, λ3} that can be matched by one of λ4, λ5, λ6 for the
labels of aG, aF and aE and by λ7 for the labels of aD, aC , aB and aA. ♣

3 Argumentation Tuple Relational Calculus
and Relational Acceptability Semantics

We now formally develop argumentation tuple relational calculus which is a tuple
relational calculus for manipulating labelling functions and formulate relational
acceptability semantics.

Definition 1 (Arg-labelling table). An arg-labelling table is a tuple (A,Λ1)
with (1) A ⊆fin A, called header of (A,Λ1), and Λ1 ⊆ Λ (body of (A,Λ1)) with
any of its member λ satisfying dom(λ) = A. ♠

There is no duplicate in the body of an arg-labelling table.

Definition 2 (Relational arg-labelling database). Let T be a set of table
names, let tbl denote its member, and let TBL denote its subset. A relational arg-
labelling database schema is a tuple (L,TBL, header) with header : TBL → 2A

associating a set of arguments to each table name. We denote the set of all
relational arg-labelling database schemata by SCHM, and refer to its member
by schm. A relational arg-labelling database for schm ≡ (L,TBL, header) is db :
TBL → 2Λ satisfying the following condition: for every tbl ∈ TBL and every
λ ∈ db(tbl), it holds that dom(λ) = header(tbl). ♠

Example 2 (Relational arg-labelling database). Observe in Fig. 1 that there are
3 arg-labelling tables in total. The arg-labelling database holding them is
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expressed with the following relational arg-labelling database schema and rela-
tional arg-labelling database with respect to it. Assume A1 = {aG, . . . , aA}, A2 =
{aG, . . . , aD}, A3 = {aE , . . . , aA}, Λ1 = {λ1, λ2, λ3}, Λ2 = {λ4, λ5, λ6}, and
Λ3 = {λ7}. Then: schm is (L, {tbl1, tbl2, tbl3}, header ≡ {tbl1 
→ A1, . . . , tbl3 
→
A3}); and db is {tbl1 
→ Λ1, . . . , tbl3 
→ Λ3}. It holds that dom(λ1) = A1 =
header(tbl1), and similarly for all the others. ♣

Syntax and Semantics of Formal Query Language. The syntax of the query
language is defined almost as tuple relational calculus [10], save we introduce
a dyadic function count to count the number of a certain label assigned to
the header arguments. This additional function helps keep formal expressions
concise.

Definition 3 (Query formulas). V is an uncountable set of variables. An
atomic query formula with respect to schm ≡ (L,TBL, header) is any below. (1)
v1.a1

.= v2.a2 for v1, v2 ∈ V and a1, a2 ∈ A. (2) v1.a1
.= l for v1 ∈ V , a1 ∈ A

and l ∈ L. (3) tbl[v1] for v1 ∈ V and tbl ∈ TBL. (4) count(v1, l1) ≤̇ count(v2, l2)
for v1, v2 ∈ V and l1, l2 ∈ L. (5) count(v1, l1) ≤̇ n for v1 ∈ V , l1 ∈ L and n ∈ N.
(6) n ≤̇ count(v1, l1) for v1 ∈ V , l1 ∈ L and n ∈ N. Then, any below is a query
formula with respect to schm. We may refer to a query formula by FFF . (1) an
atomic query formula with respect to schm. (2) ¬FFF 1 if FFF 1 is a query formula.
(3) FFF 1 ∧FFF 2 if FFF 1 and FFF 2 are query formulas. (4) FFF 1 ∨FFF 2 if FFF 1 and FFF 2 are query
formulas. (5) ∃v : A[FFF 1] if v is in V , A is a set of arguments and FFF 1 is a query
formula. (6) ∀v : A[FFF 1] if v is in V , A is a set of arguments and FFF 1 is a query
formula. ♠

The following semantics of the language is fairly standard to the database theory.

Definition 4 (Semantics). Let eval : V → Λ be an interpretation function
such that eval(v) ∈ Λ, and let a ‘semantic structure’ be a tuple (schm, db, eval)
for schm and db for schm. We inductively define (schm, db, eval) |= FFF for any
(schm, db, eval) and any FFF as follows.

– (schm, db, eval) |= v1.a1
.
= v2.a2 iff a1 ∈ dom(eval(v1)) and a2 ∈ dom(eval(v2)) and

eval(v1)(a1) = eval(v2)(a2).
– (schm, db, eval) |= v1.a1

.
= l iff a1 ∈ dom(eval(v1)) and eval(v1)(a1) = l.

– (schm, db, eval) |= tbl[v1] iff eval(v1) ∈ db(tbl).
– (schm, db, eval) |= count(v1, l1) ≤̇ count(v2, l2) iff |{a ∈ dom(eval(v1)) |

eval(v1)(a) = l1}| ≤ |{a ∈ dom(eval(v2)) | eval(v2)(a) = l2}|
– (schm, db, eval) |= count(v1, l1) ≤̇ n iff |{a ∈ dom(eval(v1)) | eval(v1)(a) = l1}| ≤ n.
– (schm, db, eval) |= n ≤̇ count(v1, l1) iff n ≤ |{a ∈ dom(eval(v1)) | eval(v1)(a) = l1}|.
– (schm, db, eval) |= ∃v : A[FFF ] iff there is some λ such that dom(λ) = A and

that (schm, db, eval′) |= FFF where eval′ is almost exactly eval except eval′(v) = λ.
– (schm, db, eval) |= ∀v : A[FFF ] iff, for every λ, if dom(λ) = A, then

(schm, db, eval′) |= FFF where eval′ is almost exactly eval except eval′(v) = λ.

Due to space, we omit the cases of ¬FFF , FFF 1 ∧ FFF 2 and FFF 1 ∨ FFF 2 which are
standard. We say that (schm, db, eval) models FFF iff (schm, db, eval) |= FFF . ♠
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For atomic formulas, v1.a1
.= v2.a2 tests whether the label of a1 assigned by λx ≡

eval(v1) and that of a2 assigned by λy ≡ eval(v2) matches. The first two attached
conditions force a1 ∈ dom(λx) and a2 ∈ dom(λy). v1.a2

.= l tests whether the
label of a1 assigned by λx ≡ eval(v1) is l. tbl[v1] tests whether λx ≡ eval(v1) is in
the body of the arg-labelling table db(tbl). count(v1, l1) ≤̇ count(v2, l2) compares
the number of arguments assigned l1 by λ1 ≡ eval(v1) and that of arguments
assigned l2 by λ2 ≡ eval(v2). Similarly for the other two atomic formulas.

Definition 5 (Relational acceptability semantics). An arg-labelling query
is an expression {v : A | FFF}, whereby the only free variable in FFF is v. The
semantics of a query {v : A | FFF} with respect to some schm and db is the set of
all λ satisfying (schm, db, eval) |= FFF with eval(v) = λ. Let ‖{v : A | FFF}‖ denote
the set. A relational acceptability semantics with respect to schm and db is some
‖{v : A | FFF}‖ with respect to schm and db. ♠

Basic database queries such as selecting rows of a table, selecting columns of a
table, and joining two tables, produce certain effects on arg-labelling database
with associated arg-labelling tables.

Example 3 (Selecting columns). In Fig. 1, tbl2 (or the arg-labelling table referred
to by tbl2) is the result of selecting 4 columns aG, aF , aE and aD of tbl1. The cor-
responding relational acceptability semantics is ‖{v : {aG, aF , aE , aD} | tbl1[v]}‖
with respect to the same schm and db in Example 2. To see to it, we firstly
enumerate all λ with (schm, db, eval) |= tbl1[v] for eval(v) = λ, which are λ1, λ2

and λ3; for each of them, we force the domain to {aG, . . . , aD}, to obtain λ4, λ5

and λ6. We saw in Sect. 2 that multi-agent semantics has the step of restricting
attention to a subset of arguments. This process is explainable as column selec-
tion operations. The time complexity of this query is O(n) for the number of
rows n. ♣

Example 4 (Selecting rows). The labelling-based complete/preferred/stable/
grounded semantics is explained through row selection on the labelling-based
complete semantics. With tbl1, ‖{v : {aG, . . . , aA} | tbl1[v] ∧ ¬1≤̇count(v, und)}‖
with respect to the same schm and db is the labelling-based stable semantics.
The time complexity of this query is O(n) for the number of rows n. ♣

The process of aggregation of local labelling-based acceptability semantics
into a multi-agent semantics is explainable with condition join. We let∧

i∈{G,...,A} v.ai
.= v1.ai abbreviate v.aG

.= v1.aG ∧ . . . ∧ v.aA
.= v1.aA. Simi-

larly for others.

Example 5 (Condition join). Let us join tbl2 and tbl3 in such a way that for any λ
in the body of tbl1, λ is in the resulting table’s body iff there is some λx ∈ db(tbl2)
and some λy ∈ db(tbl3) such that λx(ai) = λ(ai) and λy(aj) = λ(aj) hold for
every ai ∈ {aG, aF , aE} and every aj ∈ {aD, . . . , aA}. The relational acceptabil-
ity semantics of this operation is ‖{v : {aG, . . . , aA}| tbl1[v] ∧ ∃v1 : {aG, . . . , aD}
[tbl2[v1]∧(

∧
i∈{G,...,E} v.ai

.= v1.ai)∧∃v2 : {aE , . . . , aA}[tbl3[v2]∧
∧

i∈{D,...,A} v.ai
.= v2.ai]]}‖ with respect to the same schm and db. This, incidentally, forms the
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multi-agent semantics we saw in Example 1. With the sequential two joins, the
time complexity of this query is capped by O(n2) for the largest number of rows
n in the 3 tables. ♣

To unify multi-agent semantics and the traditional labelling-based semantics as
a relational acceptability semantics with respect to some schm and db, it suffices
to let them cover the labelling-based complete semantics of (A,R) as well as
(Ai, R ∩ (Ai × Ai)) (1 ≤ i ≤ n) where Ai is the arguments agent i knows.

Theorem 1. Given (A,R) and n partitions of A into A1, . . . , An (repre-
senting the arguments each of the agents expressed), suppose for every 1 ≤
i ≤ n that there is some A′

i (representing the arguments each of the agents
knows) such that Ai ⊆ A′

i ⊆ A. Let TBL denote {tblad, tbl1ad, . . . , tblnad}
and let Λad,Λ1ad, . . . ,Λnad be the labelling-based complete semantics of: (A,R),
(A′

1, R ∩ (A′
1 × A′

1)), . . . , (A
′
n, R ∩ (A′

n × A′
n)). Now, let schm ≡ (L,TBL, header)

and db be such that header(tblad) = A, header(tbliad) = A′
i(1 ≤ i ≤ n),

db(tblad) = Λad and db(tbliad) = Λiad (1 ≤ i ≤ n). Then, the labelling-based
complete/preferred/stable/ grounded semantics of (A,R) and the multi-agent
semantics of (A,R) are a relational acceptability semantics with respect to schm
and db.

This shows that the argumentation tuple relational calculus makes the
acceptability semantics linkable in the single relational perspective. The rela-
tional perspective helps fine-tune existing acceptability semantics, too. As we
saw, multi-agent semantics derives a local view (or local views) covering a part
of an argumentation graph in order to compute an output. We can see it as a spe-
cialisation of the following partial semantics. In Fig. 1, tbl2 is a partial semantics
of tbl1.

Proposition 1 (Partial semantics). Given (A,R), assume some labelling-
based acceptability semantics of it Λsem such that each λ ∈ Λsem satisfies
domdomdom(λ) = A. For an Λ1 ⊆ Λ, we say Λ1 is a partial semantics of Λsem iff
there is some A1 ⊆ A such that all the following conditions hold. (1) For every
λx ∈ Λ1, domdomdom(λx) = A1 holds. (2) For every λx ∈ Λ1 and for every a1 ∈ A1,
there is some λ ∈ Λsem such that λx(a1) = λ(a1). (3) For every λ ∈ Λsem and
for every a1 ∈ A1, there is some λx ∈ Λ1 such that λx(a1) = λ(a1). Assume TBL
is some set of table names, then every partial semantics of Λsem is a relational
acceptability semantics with respect to schm ≡ (L, {tblsem} ∪ TBL, header) and
db where tblsem and db satisfy the following conditions: header(tblsem) = A and
db(tblsem) = Λsem. Given the schm and db, it is polynomial-time computable.

4 Conclusions

Given a plethora of acceptability semantics being proposed in various ways, there
was always a question of how they may link in what way. As we showed, it is
reasonable to let a formal language take care of the linking. We formulated the
relational acceptability semantics by formulating argumentation tuple relational
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calculus. We also showed how it assists find more general acceptability semantics
from an existing one, which should complement the recent endeavour [1,6] to try
to find reasonable formal constraints for characterising acceptability semantics
for specialised abstract argumentations. A fuller work is in [4].
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