
Chapter 5
Evaluation and Performance
Measurement

Thomas Bartz-Beielstein

Abstract This chapter discusses aspects to be considered when evaluating Online
Machine Learning (OML) algorithms, especially when comparing them to Batch
Machine Learning (BML) algorithms. The following considerations play an impor-
tant role:

1. How are training and test data selected?
2. How can performance be measured?
3. What procedures are available for generating benchmark data sets?

Section 5.1 describes the selection of training and test data. Section 5.2 presents an
implementation in Python for selecting training and test data. Section 5.3 describes
the calculation of performance. Section 5.4 introduces the generation of benchmark
data sets in the field of OML.

5.1 Data Selection Methods

When determining the data selection method and calculating the performance, there
is the greatest difference between BML and OML. Among other things, in OML the
resources (memory and time, but not the data) are severely limited. In addition, Cross
Validation (CV) is not possible. It is very important to determine which instances
are used for training and for testing (and possibly also for validation).

For each of the selection approaches presented in the following, a metric must be
selected, e.g., accuracy or Mean Absolute Error (MAE).

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_5&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538 a 854 56538
a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5

48 T. Bartz-Beielstein

5.1.1 Holdout Selection

In the holdout evaluation method, the performance of the model is evaluated against
a test data set, which consists of examples that have not yet been sighted. These
examples are used only for evaluation purposes and not for the training of the model.

Definition 5.1 (Holdout) In the holdout evaluation method, the performance is eval-
uated after each batch, i.e., after a certain number of examples or observations. For
this purpose, two parameters must be defined:

1. Size of the (holdout-) window and
2. frequency of testing.

The holdout evaluation is best when current and representative holdout data are used.
Why are holdout data not always used for OML? It is not always easy or even

possible to obtain these data. In addition, the holdout data set must be representative,
which cannot be guaranteed with streaming data due to possible changes. The holdout
data of today can already be outdated tomorrow. If the period in which the holdout
data are collected is too short, these data may contain essential relationships.

5.1.2 Progressive Validation: Interleaved Test-Then-Train

In statistics, progressive validation is generally understood to be the validation over a
longer period of time, e.g., by using control charts. In the streaming data context, the
term is used for approaches in which the individual instances are first used for testing
(determining the quality of the model, the model calculates a prediction) and then
for learning (training the model). Each individual instance is analyzed according
to its arrival order. In addition to simple progressive validation, we also consider
prequential validation and delayed progressive validation.

5.1.2.1 Progresssive Validation

Definition 5.2 (Progressive Validation) Each observation can be denoted as.(Xt , yt),
where.Xt is a set of features,. yt is a label (or a prediction value), and. t denotes the time
(or simply the index). Before updating the model with the pair .(Xt , yt), the model
calculates a prediction for .Xt , so that .ŷt is calculated. Using the ground truth .yt and
the predicted value .ŷt from the model, the online metric is then updated. Common
metrics such as accuracy, MAE, Mean Squared Error (MSE), and Area Under The
Curve, Receiver Operating Characteristics (ROC, AUC) are all sum values and can
therefore be updated online.

This procedure can also be used for time series: If there are . t observations
.(x1, x2, . . . , xt), then the values .(xt−k, xt−k+1, . . . , xt−1) can be used as .Xt and the

5 Evaluation and Performance Measurement 49

value .xt as . yt . Alternatively, additional features can be calculated from the values
.(xt−k, xt−k+1, . . . , xt−1), which are then used as .Xt . Typical features are the infor-
mation about the day of the week or the season.

5.1.2.2 Prequential Validation

Definition 5.3 (Prequential Validation) Prequential validation works like progres-
sive validation (interleaved test-then-train). However, the new instances are more
important than the old ones. This is implemented by a sliding window or a decay
factor.

5.1.2.3 Delayed Progressive Validation

Typically, an OML model calculates a prediction. ŷt and then learns. This was referred
to as “progressive validation” in Sect. 5.1.2. The prediction and the observed value
can be compared to measure the correctness of the model. This approach is often used
to evaluate OML models. In some cases, this approach is not appropriate, because
the prediction and the ground truth are not available at the same time. In this case,
it makes sense to delay the process until the ground truth is available. This is called
delayed progressive validation.

Delayed Progressive Validation

While evaluating a machine learning model, the goal is to simulate production con-
ditions to get a trustworthy assessment of the model’s performance. For example,
consider the number of bicycles needed for a bike rental for the next week. Once 7
days have passed, the actual demand is known, and we can update the model. What
we really want is to evaluate the model by, for example, forecasting seven days in
advance and only updating the model when the ground truth is available (Grzenda
et al., 2020).

The delayed progressive validation is of great importance for practice: Instead of
updating the model immediately after it has made a prediction, it is only updated
when the ground truth is known. In this way, the model more accurately reflects the
real process.

50 T. Bartz-Beielstein

Fig. 5.1 Batch method with
a prediction horizon. The
training data set.Dtrain is
used once. The model. Mbml
trained on.Dtrain is tested on
the individual partitions of
the test data set.Dtest one
after the other. The lower
figure shows (as a special
case) the data sets when a
classical holdout approach is
used. In this case, the size of
the test data set is equal to
the size of the horizon

5.1.3 Machine Learning in Batch Mode with a Prediction
Horizon

The method eval_bml_horizon implements the “classical” BML approach: The
classical BML algorithm is trained once on the training data set, resulting in a model,
say .M (1)

bml, which is not changed: .M
(1)
bml = Mbml.

The model.Mbml is evaluated on the test data, where the horizon, say.h ∈ [1, stest],
comes into play: . h specifies the size of the partitions into which .Dtest is divided.
If .h = stest, then the standard procedure of Machine Learning (ML) (“train-test”) is
implemented. If .h = 1, a pure OML-setting is simulated. The OML procedure is
only simulated in this case, since the model .Mbml is not updated or retrained. The
BML approach is shown in Fig. 5.1.

If the entire test data set is used for the prediction horizon in the batch method,
i.e., .stest = h, then we obtain the classical holdout approach (see Sect. 5.1.1).

5.1.4 Landmark Batch Machine Learning with a Prediction
Horizon

The method eval_bml_landmark implements a landmark approach. The first
step is similar to the first step of the BML approach and .M (1)

bml is available. The
following steps are different: After a prediction with .M (1)

bml for the batch of data
instances from the interval .[strain, strain + h] has been calculated, the algorithm is
retrained on the interval.[1, strain + h] and an updated model.M (2)

bml is available. In the
third step of the landmark BML, .M (2)

bml calculates predictions for . [strain + h, train +
2 × h] and a new model.M (2)

bml is trained on.[1, train + 2 × h]. The landmark approach
is shown in Fig. 5.2.

5 Evaluation and Performance Measurement 51

Fig. 5.2 Landmark batch
method with an prediction
horizon

Fig. 5.3 Window-batch
method with a prediction
horizon. This division of the
training and test data set
ensures that the size of the
training data set. strain
remains unchanged and that
a prediction horizon. h of the
same size is always used

5.1.5 Window-Batch Method with Prediction Horizon

The method eval_bml_window implements a window approach. Here, too, the
first step is similar to the first step of the BML approach and .M (1)

bml is available. The
following steps are similar to the landmark approach, with one important exception:
The algorithm is not trained on the complete set of seen data. Instead, it is trained on
a sliding window of size .strain. The window batch approach is shown in Fig. 5.3.

5.1.6 Online-Machine Learning with a Prediction Horizon

The method eval_oml_horizon implements an OML approach. This approach
differs fundamentally from the batch approaches of ML, since each individual
instance is used for prediction and training. If .h = 1, a “pure” OML algorithm is
implemented. If .h > 1, the OML calculations are performed . h times.

52 T. Bartz-Beielstein

Fig. 5.4 Iterative OML
method. If the window size. h
is one, then an example is
used for testing and then for
training (updating) the OML
algorithm. If .h > 1, then the
calculations are performed. h
times and the average of
these. h results is calculated

5.1.7 Online-Maschine Learning

The method eval_oml_iter_progressive is based on the method
progressive_val_score from the package River. 1 The iterative procedure
is shown in Fig. 5.4.

Table 5.1 provides a comparative overview of the selection methods.

5.2 Determining the Training and Test Data Set
in the Package spotRiver

5.2.1 Methods for BML und OML

The BML algorithms require a training data set .Dtrain of size .strain to adapt the
model. The test data set .Dtest of size .stest is used to evaluate the model on new
(unseen) data. For the comparative evaluation of BML and OML algorithms, the
package Sequential Parameter Optimization Toolbox for River (spotRiver) provides
five different methods.

The four evaluation functions shown in Table 5.2 accept two data frames as argu-
ments: a training and a test data set. In the pure OML environment, the fifth evalua-
tion function eval_oml_iter_progressive is used. This uses only one (test)
data set, as it implements the progressive validation. The parameters are shown in
Table 5.3.

1 See https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/.

https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/

5 Evaluation and Performance Measurement 53

Table 5.1 Selection methods. The batches are represented by intervals, e.g., .[a, b]. In the OML
approaches, each instance from the interval is passed to the online algorithm separately for prediction
and updating (training)

Name Step Training inter-
val/instances

Training batch
size

Model Prediction
interval

BML horizon 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain] 0 .M (1) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML
landmark

1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

.strain + (n −
1) × h

.M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML window 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1 + (n −
1) ×
h, strain +
(n − 1) × h]

.strain .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML horizon 1 .[1, strain] 1 .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

1 .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML iter 1 .[1, 1] 1 .M (1) . [2, 2]
n .[n, n] 1 .M (n) . [n + 1, n + 1]

Table 5.2 Evaluation functions for BML und OML

Evaluation function Description

eval_bml_horizon Section 5.1.3

eval_bml_landmark Section 5.1.4

eval_bml_window Section 5.1.5

eval_oml_horizon Section 5.1.6

54 T. Bartz-Beielstein

Table 5.3 Parameter for configuring the methods eval_bml_horizon,
eval_bml_landmark, eval_bml_window and eval_oml_horizon from the pack-
age spotRiver. A tuple of two data frames is returned. The first contains the evaluation metrics
for each batch of size horizon. The second contains the true and predicted values for each
observation in the test data set

Parameter Description

model Model. Regression- oder Classification, e.g., a
model from sklearn

train Initial training data set

test Test data set. Will be split into mini-batches of
size ‘horizon’

target_column Column name of the target variable

horizon Prediction horizon

metric Metric, e.g., from sklearn

oml_grace_period Only used for eval_oml_horizon. (Short)
period, in which the OML-model is trained, but
not evaluated. Startup phase

Example for the Method eval_oml_horizon

from river import linear_model, datasets, preprocessing
from spotRiver.evaluation.eval_bml import eval_oml_horizon
from spotRiver.utils.data_conversion import convert_to_df
from sklearn.metrics import mean_absolute_error
metric = mean_absolute_error
model = (preprocessing.StandardScaler() |

linear_model.LinearRegression())
dataset = datasets.TrumpApproval()
target_column = "Approve"
df = convert_to_df(dataset, target_column)
train = df[:500]
test = df[500:]
horizon = 10
df_eval, df_preds = eval_oml_horizon(

model, train, test, target_column,
horizon, metric=metric)

The method plot_bml_oml_horizon_metrics visualizes (1) the error
(e.g., MAE), (2) the memory consumption (MB), and (3) the calculation time (s) for
different models of ML on a given data set. The function takes a list of Pandas data
frames as input, each containing the metrics for one model. The parameters of the
method plot_bml_oml_horizon_metrics are shown in Table 5.4. Figure 5.5
shows the output of the metrics and Fig. 5.6 shows the residuals, i.e., the difference
between the current (actual) and the predicted values.

5 Evaluation and Performance Measurement 55

from spotRiver.evaluation.eval_bml import (
plot_bml_oml_horizon_metrics,
plot_bml_oml_horizon_predictions)

df_labels = ["OML Linear"]
plot_bml_oml_horizon_metrics(

df_eval,
df_labels,
metric=metric)

plot_bml_oml_horizon_predictions(df_preds,
df_labels,
target_column=target_column)

Table 5.4 Parameters for configuring the method plot_bml_oml_horizon_metrics

Parameter Description

df_eval A list of pandas data frames containing the metrics for each model. Each
data frame should contain an index column with the name of the data set
and three columns with the names of the metrics: “MAE”, “Memory
(MB)”, “CompTime (s)”

df_labels A list of strings containing the labels for each model. The length of this
list should match the length of df_eval. If None, numerical indices are
used as labels. Default is None

log_x A flag indicating whether to use a logarithmic scale for the x-axis

log_y A flag indicating whether to use a logarithmic scale for the y-axis

cumulative A flag indicating whether to plot the cumulative average error, as done in
plot_oml_iter_progressive() and in River’s
evaluate.iter_progressive_val_score() method. Time is
shown as cumulative sum (not averaged). Since memory is calculated
differently than in River’s
evaluate.iter_progressive_val_score(), the peak memory
value _ , peak = tracemalloc.get_traced_memory() is
not aggregated. Default is True

5.2.2 Methods for OML River

The methods presented so far (in Sect. 5.2.1) are equally suitable for evaluating BML
and OML models for three different data splits (1. horizon, 2. landmark and 3. win-
dow). In this section, the method eval-oml-iter-progressive is presented,
which is specifically designed for the evaluation of OML models on a streaming data
set. This is based on a method used in the River package. This makes it possible to
compare the results with those of River. However, it cannot be used to evaluate BML
models.

The method eval-oml-iter-progressive evaluates one or more OML
models on a streaming data set. The evaluation is done iteratively, and the models
are tested in each “step” of the iteration. The results are returned in the form of

56 T. Bartz-Beielstein

Fig. 5.5 Results of the method plot_bml_oml_horizon_metrics. Performance (here:
MAE, computation time and memory consumption) of an OML linear model

Fig. 5.6 Results of the method plot_bml_oml_horizon_predictions: Representation of
the values predicted by the model and the ground truth (“Actual”). It becomes clear how the OML
model approaches the ground truth over time and learns the underlying relationship

a dictionary with metrics and their values. Table 5.5 shows the parameters of the
method eval_oml-iter-progressive.

The method plot_oml_iter_progressive visualizes the results based on
the dictionary of evaluation results returned byeval_oml_iter_progressive.
The visualization is based on the visualization in River. 2 Figure 5.7 shows the output.

2 See (Incremental decision trees in River: the Hoeffding Tree case) [https://riverml.xyz/0.15.0/
recipes/on-hoeffding-trees/].

https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/

5 Evaluation and Performance Measurement 57

Table 5.5 Parameter for the configuration of the method eval_oml-iter-progressive
from the package spotRiver. A dict (dictionary) with the evaluation results is returned. The keys
are the names of the models and the values are dictionaries with the following keys: step: A list
of iteration numbers at which the model was evaluated, error: A list of weighted errors for each
iteration, r_time: A list of weighted runtimes for each iteration, memory: A list of weighted
memory consumption for each iteration and metric_name: The name of the metric used for
evaluation

Parameter Description

data set A list of River.Stream objects containing the
streaming data to be evaluated. If a single
River.Stream object is specified, it is
automatically converted to a list

metric The metric to be used for evaluation

models A dictionary of the OML models to be
evaluated. The keys are the names of the
models and the values are the model objects

step The number of iterations at which results
should be obtained. Only the predictions are
considered, not the training steps. The default
value is 100

weight_coeff The results are multiplied by
(step/n_steps)**weight_coeff,
where n_steps is the total number of
iterations. Results from the beginning have less
weight than results from the end when
weight_coeff > 1. If weight_coeff
= 0, then the results are multiplied by 1 and
each result has the same weight. The default
value is 0

log_level The logging level to use. 0 = no logging, 50 =
output only important information. Default
value is 50

from river import datasets
from spotRiver.evaluation.eval_oml import (

eval_oml_iter_progressive, plot_oml_iter_progressive)
from river import metrics as river_metrics
from river import tree as river_tree
from river import preprocessing as river_preprocessing
dataset = datasets.TrumpApproval()
model = (river_preprocessing.StandardScaler() |

river_tree.HoeffdingAdaptiveTreeRegressor(seed=1))
res_num = eval_oml_iter_progressive(

dataset = list(dataset),
step = 1,
metric = river_metrics.MAE(),
models = {"HATR": model}

plot_oml_iter_progressive(res_num)

58 T. Bartz-Beielstein

Fig. 5.7 Results of the method plot_oml_iter_progressive. The memory management
of the HATR model is clearly visible

Notebook: Progressive Validation
An example of progressive validation can be found in the GitHub repos-
itory https://github.com/sn-code-inside/online-machine-learning shows how
the delayed progressive validation can be applied using the moment and delay
parameters in the method progressive_val_score. It is exploited that
each observation in the data stream is shown to the model twice: once, to make
a prediction and once to update the model when the true value is revealed.

The moment parameter determines which variable to use as a timestamp,
while the delay parameter controls the waiting time before the true values
are revealed to the model.

Tip
Further information on progressive validation can be found in the River pack-
age:
• river: Multi-class classification
• river: Bike-sharing forecasting

In addition, Grzenda et al. (2020) is worth mentioning, which deals with
delayed, progressive validation.

https://github.com/sn-code-inside/online-machine-learning
 1882 26461 a 1882 26461 a

https://github.com/sn-code-inside/online-machine-learning/
river: Multi-class classification
 -675 44807 a -675 44807 a

https://riverml.xyz/0.15.0/introduction/getting-started/multiclass-classification/
river: Bike-sharing forecasting
 -675 45895 a -675 45895 a

https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/

5 Evaluation and Performance Measurement 59

5.3 Algorithm (Model) Performance

After the training and test data selection has been performed, the performance of
the algorithm (or model) can be estimated. For this purpose, numerous metrics are
available. Table 5.6 presents a selection of the metrics available in the package River.
The selection of a suitable metric is crucial for the analysis of OML algorithms. For
classification tasks, for example, accuracy is only a suitable metric if balanced classes
are present. Kappa statistics (see Sect. A.4) are better suited for OML. Thomas and
Uminsky (2022) give hints for the selection of suitable metrics.

The computation of the memory consumption is only simple at first glance. Pro-
gramming languages such as Python or R perform memory management routines
independently, which cannot be controlled by the user. For example, the garbage col-
lector is not executed immediately after a call, since the program uses its own memory
optimization routines, and it is sometimes more advantageous from its point of view
not to delete the data. There are also many dependencies between individual objects,
so they cannot simply be deleted even if this is desirable from the user’s point of
view. These remarks apply equally to BML and OML methods. According to our
research (exchange with R experts), the estimation of the memory consumption in
the programming language R is more difficult than in Python. This was one of the
reasons why the studies presented in Chaps. 9 and 10 were carried out with Python.
The module tracemalloc, introduced in Python 3.4, was used.

5.4 Data Stream and Drift Generators

Most software packages provide functions for generating synthetic data streams
(“data-stream generators”). As an example, we have listed the generators available
in the package scikit-multiflow in Sect. 5.4. We also describe the SEA syn-
thetic dataset (SEA) and Friedman-Drift generators, which are used in many OML
publications that examine drift.

5.4.1 Data Stream Generators in Sklearn

For example, the packagescikit-multiflow provides the following data stream
generators:

• Sine generator and anomaly sine generator
• Mixed data stream generator
• Random Radial Basis Function stream generator and Random Radial Basis Func-
tion stream generator with concept drift

• Waveform stream generator
• Regression generator.

tracemalloc
 3548 26429 a 3548 26429 a

https://docs.python.org/3/library/tracemalloc.html

60 T. Bartz-Beielstein

Table 5.6 Metrics in the package River
river Class Metric Short Description

accuracy Accuracy Percentage of correct results

balanced_- accuracy Balanced accuracy Average of the recall obtained for
each class, i.e., the average of the true
positive rates for each class. It is used
for unbalanced data sets

CohenKappa Cohen’s Kappa score Computes the proportion of
observations for which both
classifiers predicted the same
category and the probabilities that
occur with a random prediction. See
also Sect. A.4

cross_entropy Cross Entropy Multi-class generalization of the
logarithmic loss

f1 F1 Binary F1 score

fbeta Binary F-Beta score A weighted harmonic mean between
precision and recall

fowlkes_mallows Fowlkes-Mallows Index External evaluation method for
determining the similarity between
two clusters

geometric_mean Geometric mean Indicator of the performance of a
classifier in the presence of class
imbalance

log_loss Binary logarithmic loss Indicates how close the prediction
probability is to the corresponding
actual value. Also known as cross
entropy

mae Mean absolute error Mean absolute error

mcc Matthews correlation coefficient Takes into account true and false
positive and negative results. Also
suitable for unbalanced classes

mse Mean squared error Mean squared error

mutual_info Mutual Information between two
clusterings

Measure of similarity between two
labels of the same data

precision Binary precision score Measure of the classifier’s ability to
identify a sample as positive if it is
actually positive

r2 Coefficient of determination (.R2)
score

Ratio of explained variance to total
variance

rand Rand Index Measure of similarity between two
data clusters

recall Binary recall score Indicates how many of the actual
positive cases were correctly
identified as positive by the model

roc_auc Receiving Operating Characteristic
Area Under the Curve.

Approximation to the true ROC AUC

silhouette Silhouette coefficient Indicates how well an object fits to its
own cluster

smape Symmetric mean absolute percentage
error

Accuracy measure based on relative
errors

WeightedF1 Weighted-average F1 score Computes the F1 score per class and
then computes a global weighted
average by using the support of each
class

5 Evaluation and Performance Measurement 61

Tip
By sorting the observations, concept drift can be simulated (Bifet & Gavaldà,
2009).

5.4.2 SEA-Drift Generator

The SEA is a frequently cited data set. Its generator implements the data stream with
abrupt drift as described in Street and Kim (2001). Each observation consists of three
features. Only the first two features are relevant. The target variable is binary and
positive (true) if the sum of the features exceeds a certain threshold. There are four
threshold values to choose from. Concept drift can be introduced at any time during
the stream by switching the threshold.

In detail, the SEA data set is generated as follows: First, .n = 60,000 random
points are generated in a three-dimensional feature space. The features have values
between 0 and 10, with only the first two features (. f1 and . f2) being relevant. The
. n points are then divided into four blocks of 15,000 points each. In each block, the
class membership of a point is determined by means of a threshold value . τi , where
. i indicates the respective block. The threshold values .τ1 = 8, .τ2 = 9, .τ3 = 7 and
.τ4 = 9.5 are chosen. In addition, the data is noisy (“We inserted about 10% class
noise into each block of data.”) by swapping 10% of the class memberships. Finally,
a test set (.nt = 10,000) is determined, consisting of 2,500 data points from each
block.

The Python package River provides the function SEA to generate the data.
Figure 5.8 shows an instantiation of the SEA drift data.

Fig. 5.8 SEA-Data with drift. Concept changes occur after.250, 000 steps

62 T. Bartz-Beielstein

5.4.3 Friedman-Drift Generator

The Friedman-Drift generator introduced in Definition 1.8 is another generator that is
frequently cited in the literature (Ikonomovska, 2012). It generates a data stream that
simulates the characteristics of streaming data that occur in practice. The generator
is implemented in River as FriedmanDrift and is used in Sect. 9.2.

5.5 Summary

The interleaved test-then-train (or prequential evaluation) is a general method for
evaluating learning algorithms in streaming scenarios. Interleaved test-then-train
opens up interesting possibilities: The system is able to monitor the development of
the learning process itself and to diagnose its development itself. The delayed pro-
gressive evaluation is the subject of current research and enables a realistic analysis
of complex changes in online data streams. In addition to quality, however, other
criteria/metrics must be taken into account, which are imposed by data stream prop-
erties. The available memory is one of the most important constraints. Another aspect
is time, because algorithms must process the examples as quickly as (if not faster
than) they arrive.

Note
The experimental studies in Chap. 9 use the following three properties for the
comparison of BML and OML methods:
1. performance,
2. memory consumption and
3. time consumption.

References

Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Proceedings
of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data
Analysis VIII, IDA’09 (pp. 249–260). Springer.

Grzenda, M., Gomes, H. M., & Bifet, A. (2020). Delayed labelling evaluation for data streams.
Data Mining and Knowledge Discovery, 34(5), 1237–1266.

Ikonomovska, E. (2012). Algorithms for learning regression trees and ensembles on evolving data
streams. Ph.D. Thesis, Jozef Stefan International Postgraduate School.

Street, W. N., & Kim, Y. S. (2001). A streaming ensemble algorithm (SEA) for large-scale classi-
fication. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’01 (pp. 377–382). Association for Computing Machinery.

Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for AI.
Patterns, 3(5), 1–8.

	5 Evaluation and Performance Measurement
	5.1 Data Selection Methods
	5.1.1 Holdout Selection
	5.1.2 Progressive Validation: Interleaved Test-Then-Train
	5.1.3 Machine Learning in Batch Mode with a Prediction Horizon
	5.1.4 Landmark Batch Machine Learning with a Prediction Horizon
	5.1.5 Window-Batch Method with Prediction Horizon
	5.1.6 Online-Machine Learning with a Prediction Horizon
	5.1.7 Online-Maschine Learning

	5.2 Determining the Training and Test Data Set in the Package spotRiver
	5.2.1 Methods for BML und OML
	5.2.2 Methods for OML River

	5.3 Algorithm (Model) Performance
	5.4 Data Stream and Drift Generators
	5.4.1 Data Stream Generators in Sklearn
	5.4.2 SEA-Drift Generator
	5.4.3 Friedman-Drift Generator

	5.5 Summary
	References

