
Chapter 5 
Evaluation and Performance 
Measurement 

Thomas Bartz-Beielstein 

Abstract This chapter discusses aspects to be considered when evaluating Online 
Machine Learning (OML) algorithms, especially when comparing them to Batch 
Machine Learning (BML) algorithms. The following considerations play an impor-
tant role: 

1. How are training and test data selected? 
2. How can performance be measured? 
3. What procedures are available for generating benchmark data sets? 

Section 5.1 describes the selection of training and test data. Section 5.2 presents an 
implementation in Python for selecting training and test data. Section 5.3 describes 
the calculation of performance. Section 5.4 introduces the generation of benchmark 
data sets in the field of OML. 

5.1 Data Selection Methods 

When determining the data selection method and calculating the performance, there 
is the greatest difference between BML and OML. Among other things, in OML the 
resources (memory and time, but not the data) are severely limited. In addition, Cross 
Validation (CV) is not possible. It is very important to determine which instances 
are used for training and for testing (and possibly also for validation). 

For each of the selection approaches presented in the following, a metric must be 
selected, e.g., accuracy or Mean Absolute Error (MAE). 

T. Bartz-Beielstein (B) 
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany 
e-mail: thomas.bartz-beielstein@th-koeln.de 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning, 
Machine Learning: Foundations, Methodologies, and Applications, 
https://doi.org/10.1007/978-981-99-7007-0_5 

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_5&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538 a 854 56538
a
 
mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5


48 T. Bartz-Beielstein

5.1.1 Holdout Selection 

In the holdout evaluation method, the performance of the model is evaluated against 
a test data set, which consists of examples that have not yet been sighted. These 
examples are used only for evaluation purposes and not for the training of the model. 

Definition 5.1 (Holdout) In the holdout evaluation method, the performance is eval-
uated after each batch, i.e., after a certain number of examples or observations. For 
this purpose, two parameters must be defined: 

1. Size of the (holdout-) window and 
2. frequency of testing. 

The holdout evaluation is best when current and representative holdout data are used. 
Why are holdout data not always used for OML? It is not always easy or even 

possible to obtain these data. In addition, the holdout data set must be representative, 
which cannot be guaranteed with streaming data due to possible changes. The holdout 
data of today can already be outdated tomorrow. If the period in which the holdout 
data are collected is too short, these data may contain essential relationships. 

5.1.2 Progressive Validation: Interleaved Test-Then-Train 

In statistics, progressive validation is generally understood to be the validation over a 
longer period of time, e.g., by using control charts. In the streaming data context, the 
term is used for approaches in which the individual instances are first used for testing 
(determining the quality of the model, the model calculates a prediction) and then 
for learning (training the model). Each individual instance is analyzed according 
to its arrival order. In addition to simple progressive validation, we also consider 
prequential validation and delayed progressive validation. 

5.1.2.1 Progresssive Validation 

Definition 5.2 (Progressive Validation) Each observation can be denoted as.(Xt , yt ), 
where.Xt is a set of features,. yt is a label (or a prediction value), and. t denotes the time 
(or simply the index). Before updating the model with the pair .(Xt , yt ), the model 
calculates a prediction for .Xt , so that .ŷt is calculated. Using the ground truth .yt and 
the predicted value .ŷt from the model, the online metric is then updated. Common 
metrics such as accuracy, MAE, Mean Squared Error (MSE), and Area Under The 
Curve, Receiver Operating Characteristics (ROC, AUC) are all sum values and can 
therefore be updated online. 

This procedure can also be used for time series: If there are . t observations 
.(x1, x2, . . . , xt ), then the values .(xt−k, xt−k+1, . . . , xt−1) can be used as .Xt and the
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value .xt as . yt . Alternatively, additional features can be calculated from the values 
.(xt−k, xt−k+1, . . . , xt−1), which are then used as .Xt . Typical features are the infor-
mation about the day of the week or the season. 

5.1.2.2 Prequential Validation 

Definition 5.3 (Prequential Validation) Prequential validation works like progres-
sive validation (interleaved test-then-train). However, the new instances are more 
important than the old ones. This is implemented by a sliding window or a decay 
factor. 

5.1.2.3 Delayed Progressive Validation 

Typically, an OML model calculates a prediction. ŷt and then learns. This was referred 
to as “progressive validation” in Sect. 5.1.2. The prediction and the observed value 
can be compared to measure the correctness of the model. This approach is often used 
to evaluate OML models. In some cases, this approach is not appropriate, because 
the prediction and the ground truth are not available at the same time. In this case, 
it makes sense to delay the process until the ground truth is available. This is called 
delayed progressive validation. 

Delayed Progressive Validation 

While evaluating a machine learning model, the goal is to simulate production con-
ditions to get a trustworthy assessment of the model’s performance. For example, 
consider the number of bicycles needed for a bike rental for the next week. Once 7 
days have passed, the actual demand is known, and we can update the model. What 
we really want is to evaluate the model by, for example, forecasting seven days in 
advance and only updating the model when the ground truth is available (Grzenda 
et al., 2020). 

The delayed progressive validation is of great importance for practice: Instead of 
updating the model immediately after it has made a prediction, it is only updated 
when the ground truth is known. In this way, the model more accurately reflects the 
real process.
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Fig. 5.1 Batch method with 
a prediction horizon. The 
training data set.Dtrain is 
used once. The model. Mbml
trained on.Dtrain is tested on 
the individual partitions of 
the test data set.Dtest one 
after the other. The lower 
figure shows (as a special 
case) the data sets when a 
classical holdout approach is 
used. In this case, the size of 
the test data set is equal to 
the size of the horizon 

5.1.3 Machine Learning in Batch Mode with a Prediction 
Horizon 

The method eval_bml_horizon implements the “classical” BML approach: The 
classical BML algorithm is trained once on the training data set, resulting in a model, 
say .M (1)

bml, which is not changed: .M
(1)
bml = Mbml. 

The model.Mbml is evaluated on the test data, where the horizon, say.h ∈ [1, stest], 
comes into play: . h specifies the size of the partitions into which .Dtest is divided. 
If .h = stest, then the standard procedure of Machine Learning (ML) (“train-test”) is 
implemented. If .h = 1, a pure OML-setting is simulated. The OML procedure is 
only simulated in this case, since the model .Mbml is not updated or retrained. The 
BML approach is shown in Fig. 5.1. 

If the entire test data set is used for the prediction horizon in the batch method, 
i.e., .stest = h, then we obtain the classical holdout approach (see Sect. 5.1.1). 

5.1.4 Landmark Batch Machine Learning with a Prediction 
Horizon 

The method eval_bml_landmark implements a landmark approach. The first 
step is similar to the first step of the BML approach and .M (1)

bml is available. The 
following steps are different: After a prediction with .M (1)

bml for the batch of data 
instances from the interval .[strain, strain + h] has been calculated, the algorithm is 
retrained on the interval.[1, strain + h] and an updated model.M (2)

bml is available. In the 
third step of the landmark BML, .M (2)

bml calculates predictions for . [strain + h, train +
2 × h] and a new model.M (2)

bml is trained on.[1, train + 2 × h]. The landmark approach 
is shown in Fig. 5.2.
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Fig. 5.2 Landmark batch 
method with an prediction 
horizon 

Fig. 5.3 Window-batch 
method with a prediction 
horizon. This division of the 
training and test data set 
ensures that the size of the 
training data set. strain
remains unchanged and that 
a prediction horizon. h of the 
same size is always used 

5.1.5 Window-Batch Method with Prediction Horizon 

The method eval_bml_window implements a window approach. Here, too, the 
first step is similar to the first step of the BML approach and .M (1)

bml is available. The 
following steps are similar to the landmark approach, with one important exception: 
The algorithm is not trained on the complete set of seen data. Instead, it is trained on 
a sliding window of size .strain. The window batch approach is shown in Fig. 5.3. 

5.1.6 Online-Machine Learning with a Prediction Horizon 

The method eval_oml_horizon implements an OML approach. This approach 
differs fundamentally from the batch approaches of ML, since each individual 
instance is used for prediction and training. If .h = 1, a “pure” OML algorithm is 
implemented. If .h > 1, the OML calculations are performed . h times.
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Fig. 5.4 Iterative OML 
method. If the window size. h
is one, then an example is 
used for testing and then for 
training (updating) the OML 
algorithm. If .h > 1, then the 
calculations are performed. h
times and the average of 
these. h results is calculated 

5.1.7 Online-Maschine Learning 

The method eval_oml_iter_progressive is based on the method 
progressive_val_score from the package River. 1 The iterative procedure 
is shown in Fig. 5.4. 

Table 5.1 provides a comparative overview of the selection methods. 

5.2 Determining the Training and Test Data Set 
in the Package spotRiver 

5.2.1 Methods for BML und OML 

The BML algorithms require a training data set .Dtrain of size .strain to adapt the 
model. The test data set .Dtest of size .stest is used to evaluate the model on new 
(unseen) data. For the comparative evaluation of BML and OML algorithms, the 
package Sequential Parameter Optimization Toolbox for River (spotRiver) provides 
five different methods. 

The four evaluation functions shown in Table 5.2 accept two data frames as argu-
ments: a training and a test data set. In the pure OML environment, the fifth evalua-
tion function eval_oml_iter_progressive is used. This uses only one (test) 
data set, as it implements the progressive validation. The parameters are shown in 
Table 5.3.

1 See https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/. 
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Table 5.1 Selection methods. The batches are represented by intervals, e.g., .[a, b]. In the  OML  
approaches, each instance from the interval is passed to the online algorithm separately for prediction 
and updating (training) 

Name Step Training inter-
val/instances 

Training batch 
size 

Model Prediction 
interval 

BML horizon 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain] 0 .M (1) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML 
landmark 

1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

.strain + (n −
1) × h

.M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML window 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1 + (n −
1) ×
h, strain +
(n − 1) × h]

.strain .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML horizon 1 .[1, strain] 1 .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

1 .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML iter 1 .[1, 1] 1 .M (1) . [2, 2]
n .[n, n] 1 .M (n) . [n + 1, n + 1]

Table 5.2 Evaluation functions for BML und OML 

Evaluation function Description 

eval_bml_horizon Section 5.1.3 

eval_bml_landmark Section 5.1.4 

eval_bml_window Section 5.1.5 

eval_oml_horizon Section 5.1.6
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Table 5.3 Parameter for configuring the methods eval_bml_horizon, 
eval_bml_landmark, eval_bml_window and eval_oml_horizon from the pack-
age spotRiver. A tuple of two data frames is returned. The first contains the evaluation metrics 
for each batch of size horizon. The second contains the true and predicted values for each 
observation in the test data set 

Parameter Description 

model Model. Regression- oder Classification, e.g., a 
model from sklearn 

train Initial training data set 

test Test data set. Will be split into mini-batches of 
size ‘horizon’ 

target_column Column name of the target variable 

horizon Prediction horizon 

metric Metric, e.g., from sklearn 

oml_grace_period Only used for eval_oml_horizon. (Short) 
period, in which the OML-model is trained, but 
not evaluated. Startup phase 

Example for the Method eval_oml_horizon 

from river import linear_model, datasets, preprocessing 
from spotRiver.evaluation.eval_bml import eval_oml_horizon 
from spotRiver.utils.data_conversion import convert_to_df 
from sklearn.metrics import mean_absolute_error 
metric = mean_absolute_error 
model = (preprocessing.StandardScaler() | 

linear_model.LinearRegression()) 
dataset = datasets.TrumpApproval() 
target_column = "Approve" 
df = convert_to_df(dataset, target_column) 
train = df[:500] 
test = df[500:] 
horizon = 10 
df_eval, df_preds = eval_oml_horizon( 

model, train, test, target_column, 
horizon, metric=metric) 

The method plot_bml_oml_horizon_metrics visualizes (1) the error 
(e.g., MAE), (2) the memory consumption (MB), and (3) the calculation time (s) for 
different models of ML on a given data set. The function takes a list of Pandas data 
frames as input, each containing the metrics for one model. The parameters of the 
method plot_bml_oml_horizon_metrics are shown in Table 5.4. Figure 5.5 
shows the output of the metrics and Fig. 5.6 shows the residuals, i.e., the difference 
between the current (actual) and the predicted values.
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from spotRiver.evaluation.eval_bml import ( 
plot_bml_oml_horizon_metrics, 
plot_bml_oml_horizon_predictions) 

df_labels = ["OML Linear"] 
plot_bml_oml_horizon_metrics( 

df_eval, 
df_labels, 
metric=metric) 

plot_bml_oml_horizon_predictions(df_preds, 
df_labels, 
target_column=target_column) 

Table 5.4 Parameters for configuring the method plot_bml_oml_horizon_metrics 

Parameter Description 

df_eval A list of pandas data frames containing the metrics for each model. Each 
data frame should contain an index column with the name of the data set 
and three columns with the names of the metrics: “MAE”, “Memory 
(MB)”, “CompTime (s)” 

df_labels A list of strings containing the labels for each model. The length of this 
list should match the length of df_eval. If  None, numerical indices are 
used as labels. Default is None 

log_x A flag indicating whether to use a logarithmic scale for the x-axis 

log_y A flag indicating whether to use a logarithmic scale for the y-axis 

cumulative A flag indicating whether to plot the cumulative average error, as done in 
plot_oml_iter_progressive() and in River’s 
evaluate.iter_progressive_val_score() method. Time is 
shown as cumulative sum (not averaged). Since memory is calculated 
differently than in River’s 
evaluate.iter_progressive_val_score(), the peak memory 
value _ , peak = tracemalloc.get_traced_memory() is 
not aggregated. Default is True 

5.2.2 Methods for OML River 

The methods presented so far (in Sect. 5.2.1) are equally suitable for evaluating BML 
and OML models for three different data splits (1. horizon, 2. landmark and 3. win-
dow). In this section, the method eval-oml-iter-progressive is presented, 
which is specifically designed for the evaluation of OML models on a streaming data 
set. This is based on a method used in the River package. This makes it possible to 
compare the results with those of River. However, it cannot be used to evaluate BML 
models. 

The method eval-oml-iter-progressive evaluates one or more OML 
models on a streaming data set. The evaluation is done iteratively, and the models 
are tested in each “step” of the iteration. The results are returned in the form of
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Fig. 5.5 Results of the method plot_bml_oml_horizon_metrics. Performance (here: 
MAE, computation time and memory consumption) of an OML linear model 

Fig. 5.6 Results of the method plot_bml_oml_horizon_predictions: Representation of 
the values predicted by the model and the ground truth (“Actual”). It becomes clear how the OML 
model approaches the ground truth over time and learns the underlying relationship 

a dictionary with metrics and their values. Table 5.5 shows the parameters of the 
method eval_oml-iter-progressive. 

The method plot_oml_iter_progressive visualizes the results based on 
the dictionary of evaluation results returned byeval_oml_iter_progressive. 
The visualization is based on the visualization in River. 2 Figure 5.7 shows the output.

2 See (Incremental decision trees in River: the Hoeffding Tree case) [https://riverml.xyz/0.15.0/ 
recipes/on-hoeffding-trees/]. 

https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
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Table 5.5 Parameter for the configuration of the method eval_oml-iter-progressive 
from the package spotRiver. A dict (dictionary) with the evaluation results is returned. The keys 
are the names of the models and the values are dictionaries with the following keys: step: A list  
of iteration numbers at which the model was evaluated, error: A list of weighted errors for each 
iteration, r_time: A list of weighted runtimes for each iteration, memory: A list of weighted 
memory consumption for each iteration and metric_name: The name of the metric used for 
evaluation 

Parameter Description 

data set A list of River.Stream objects containing the 
streaming data to be evaluated. If a single 
River.Stream object is specified, it is 
automatically converted to a list 

metric The metric to be used for evaluation 

models A dictionary of the OML models to be 
evaluated. The keys are the names of the 
models and the values are the model objects 

step The number of iterations at which results 
should be obtained. Only the predictions are 
considered, not the training steps. The default 
value is 100 

weight_coeff The results are multiplied by 
(step/n_steps)**weight_coeff, 
where n_steps is the total number of 
iterations. Results from the beginning have less 
weight than results from the end when 
weight_coeff > 1. If  weight_coeff 
= 0, then the results are multiplied by 1 and 
each result has the same weight. The default 
value is 0 

log_level The logging level to use. 0 = no logging, 50 = 
output only important information. Default 
value is 50 

from river import datasets 
from spotRiver.evaluation.eval_oml import ( 

eval_oml_iter_progressive, plot_oml_iter_progressive) 
from river import metrics as river_metrics 
from river import tree as river_tree 
from river import preprocessing as river_preprocessing 
dataset = datasets.TrumpApproval() 
model = (river_preprocessing.StandardScaler() | 

river_tree.HoeffdingAdaptiveTreeRegressor(seed=1)) 
res_num = eval_oml_iter_progressive( 

dataset = list(dataset), 
step = 1, 
metric = river_metrics.MAE(), 
models = {"HATR": model} 

plot_oml_iter_progressive(res_num)
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Fig. 5.7 Results of the method plot_oml_iter_progressive. The memory management 
of the HATR model is clearly visible 

Notebook: Progressive Validation 
An example of progressive validation can be found in the GitHub repos-
itory https://github.com/sn-code-inside/online-machine-learning shows how 
the delayed progressive validation can be applied using the moment and delay 
parameters in the method progressive_val_score. It is exploited that 
each observation in the data stream is shown to the model twice: once, to make 
a prediction and once to update the model when the true value is revealed. 

The moment parameter determines which variable to use as a timestamp, 
while the delay parameter controls the waiting time before the true values 
are revealed to the model. 

Tip 
Further information on progressive validation can be found in the River pack-
age: 
• river: Multi-class classification 
• river: Bike-sharing forecasting 

In addition, Grzenda et al. (2020) is worth mentioning, which deals with 
delayed, progressive validation.

https://github.com/sn-code-inside/online-machine-learning
 1882 26461 a 1882 26461 a
 
https://github.com/sn-code-inside/online-machine-learning/
river: Multi-class classification
 -675 44807 a -675 44807 a
 
https://riverml.xyz/0.15.0/introduction/getting-started/multiclass-classification/
river: Bike-sharing forecasting
 -675 45895 a -675 45895 a
 
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/


5 Evaluation and Performance Measurement 59

5.3 Algorithm (Model) Performance 

After the training and test data selection has been performed, the performance of 
the algorithm (or model) can be estimated. For this purpose, numerous metrics are 
available. Table 5.6 presents a selection of the metrics available in the package River. 
The selection of a suitable metric is crucial for the analysis of OML algorithms. For 
classification tasks, for example, accuracy is only a suitable metric if balanced classes 
are present. Kappa statistics (see Sect. A.4) are better suited for OML. Thomas and 
Uminsky (2022) give hints for the selection of suitable metrics. 

The computation of the memory consumption is only simple at first glance. Pro-
gramming languages such as Python or R perform memory management routines 
independently, which cannot be controlled by the user. For example, the garbage col-
lector is not executed immediately after a call, since the program uses its own memory 
optimization routines, and it is sometimes more advantageous from its point of view 
not to delete the data. There are also many dependencies between individual objects, 
so they cannot simply be deleted even if this is desirable from the user’s point of 
view. These remarks apply equally to BML and OML methods. According to our 
research (exchange with R experts), the estimation of the memory consumption in 
the programming language R is more difficult than in Python. This was one of the 
reasons why the studies presented in Chaps. 9 and 10 were carried out with Python. 
The module tracemalloc, introduced in Python 3.4, was used. 

5.4 Data Stream and Drift Generators 

Most software packages provide functions for generating synthetic data streams 
(“data-stream generators”). As an example, we have listed the generators available 
in the package scikit-multiflow in Sect. 5.4. We also describe the SEA syn-
thetic dataset (SEA) and Friedman-Drift generators, which are used in many OML 
publications that examine drift. 

5.4.1 Data Stream Generators in Sklearn 

For example, the packagescikit-multiflow provides the following data stream 
generators: 

• Sine generator and anomaly sine generator 
• Mixed data stream generator 
• Random Radial Basis Function stream generator and Random Radial Basis Func-
tion stream generator with concept drift 

• Waveform stream generator 
• Regression generator.

tracemalloc
 3548 26429 a 3548 26429 a
 
https://docs.python.org/3/library/tracemalloc.html
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Table 5.6 Metrics in the package River 
river Class Metric Short Description 

accuracy Accuracy Percentage of correct results 

balanced_- accuracy Balanced accuracy Average of the recall obtained for 
each class, i.e., the average of the true 
positive rates for each class. It is used 
for unbalanced data sets 

CohenKappa Cohen’s Kappa score Computes the proportion of 
observations for which both 
classifiers predicted the same 
category and the probabilities that 
occur with a random prediction. See 
also Sect. A.4 

cross_entropy Cross Entropy Multi-class generalization of the 
logarithmic loss 

f1 F1 Binary F1 score 

fbeta Binary F-Beta score A weighted harmonic mean between 
precision and recall 

fowlkes_mallows Fowlkes-Mallows Index External evaluation method for 
determining the similarity between 
two clusters 

geometric_mean Geometric mean Indicator of the performance of a 
classifier in the presence of class 
imbalance 

log_loss Binary logarithmic loss Indicates how close the prediction 
probability is to the corresponding 
actual value. Also known as cross 
entropy 

mae Mean absolute error Mean absolute error 

mcc Matthews correlation coefficient Takes into account true and false 
positive and negative results. Also 
suitable for unbalanced classes 

mse Mean squared error Mean squared error 

mutual_info Mutual Information between two 
clusterings 

Measure of similarity between two 
labels of the same data 

precision Binary precision score Measure of the classifier’s ability to 
identify a sample as positive if it is 
actually positive 

r2 Coefficient of determination (.R2) 
score 

Ratio of explained variance to total 
variance 

rand Rand Index Measure of similarity between two 
data clusters 

recall Binary recall score Indicates how many of the actual 
positive cases were correctly 
identified as positive by the model 

roc_auc Receiving Operating Characteristic 
Area Under the Curve. 

Approximation to the true ROC AUC 

silhouette Silhouette coefficient Indicates how well an object fits to its 
own cluster 

smape Symmetric mean absolute percentage 
error 

Accuracy measure based on relative 
errors 

WeightedF1 Weighted-average F1 score Computes the F1 score per class and 
then computes a global weighted 
average by using the support of each 
class
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Tip 
By sorting the observations, concept drift can be simulated (Bifet & Gavaldà, 
2009). 

5.4.2 SEA-Drift Generator 

The SEA is a frequently cited data set. Its generator implements the data stream with 
abrupt drift as described in Street and Kim (2001). Each observation consists of three 
features. Only the first two features are relevant. The target variable is binary and 
positive (true) if the sum of the features exceeds a certain threshold. There are four 
threshold values to choose from. Concept drift can be introduced at any time during 
the stream by switching the threshold. 

In detail, the SEA data set is generated as follows: First, .n = 60,000 random 
points are generated in a three-dimensional feature space. The features have values 
between 0 and 10, with only the first two features (. f1 and . f2) being relevant. The 
. n points are then divided into four blocks of 15,000 points each. In each block, the 
class membership of a point is determined by means of a threshold value . τi , where 
. i indicates the respective block. The threshold values .τ1 = 8, .τ2 = 9, .τ3 = 7 and 
.τ4 = 9.5 are chosen. In addition, the data is noisy (“We inserted about 10% class 
noise into each block of data.”) by swapping 10% of the class memberships. Finally, 
a test set (.nt = 10,000) is determined, consisting of 2,500 data points from each 
block. 

The Python package River provides the function SEA to generate the data. 
Figure 5.8 shows an instantiation of the SEA drift data. 

Fig. 5.8 SEA-Data with drift. Concept changes occur after.250, 000 steps
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5.4.3 Friedman-Drift Generator 

The Friedman-Drift generator introduced in Definition 1.8 is another generator that is 
frequently cited in the literature (Ikonomovska, 2012). It generates a data stream that 
simulates the characteristics of streaming data that occur in practice. The generator 
is implemented in River as FriedmanDrift and is used in Sect. 9.2. 

5.5 Summary 

The interleaved test-then-train (or prequential evaluation) is a general method for 
evaluating learning algorithms in streaming scenarios. Interleaved test-then-train 
opens up interesting possibilities: The system is able to monitor the development of 
the learning process itself and to diagnose its development itself. The delayed pro-
gressive evaluation is the subject of current research and enables a realistic analysis 
of complex changes in online data streams. In addition to quality, however, other 
criteria/metrics must be taken into account, which are imposed by data stream prop-
erties. The available memory is one of the most important constraints. Another aspect 
is time, because algorithms must process the examples as quickly as (if not faster 
than) they arrive. 

Note 
The experimental studies in Chap. 9 use the following three properties for the 
comparison of BML and OML methods: 
1. performance, 
2. memory consumption and 
3. time consumption. 
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