
Machine Learning: Foundations, Methodologies,
and Applications

Eva Bartz
Thomas Bartz-Beielstein Editors

Online
Machine
Learning
A Practical Guide with Examples in
Python

Machine Learning: Foundations, Methodologies,
and Applications

Series Editors

Kay Chen Tan, Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China

Dacheng Tao, University of Technology, Sydney, Australia

Books published in this series focus on the theory and computational foundations,
advanced methodologies and practical applications of machine learning, ideally
combining mathematically rigorous treatments of a contemporary topics in machine
learning with specific illustrations in relevant algorithm designs and demonstrations
in real-world applications. The intended readership includes research students and
researchers in computer science, computer engineering, electrical engineering, data
science, and related areas seeking a convenient medium to track the progresses made
in the foundations, methodologies, and applications of machine learning.

Topics considered include all areas of machine learning, including but not limited
to:

. Decision tree

. Artificial neural networks

. Kernel learning

. Bayesian learning

. Ensemble methods

. Dimension reduction and metric learning

. Reinforcement learning

. Meta learning and learning to learn

. Imitation learning

. Computational learning theory

. Probabilistic graphical models

. Transfer learning

. Multi-view and multi-task learning

. Graph neural networks

. Generative adversarial networks

. Federated learning

This series includes monographs, introductory and advanced textbooks, and state-
of-the-art collections. Furthermore, it supports Open Access publication mode.

Eva Bartz · Thomas Bartz-Beielstein
Editors

Online Machine Learning
A Practical Guide with Examples in Python

Editors
Eva Bartz
Bartz & Bartz GmbH
Gummersbach, Germany

Thomas Bartz-Beielstein
Institute for Data Science, Engineering,
and Analytics
TH Köln
Gummersbach, Germany

ISSN 2730-9908 ISSN 2730-9916 (electronic)
Machine Learning: Foundations, Methodologies, and Applications
ISBN 978-981-99-7006-3 ISBN 978-981-99-7007-0 (eBook)
https://doi.org/10.1007/978-981-99-7007-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-7007-0

Foreword

Do you hear the rumble of the drums? That’s the world of data analytics moving
towards real time. A lot of effort is being poured into turning batch data warehouses
into real-time data warehouses. It seems inevitable that more advanced use cases,
such as machine learning, will also move towards real time. And yet, the field of
online machine learning has already existed for decades. In fact, a lot of modern
deep learning is powered by online learning methods. However, online machine
learning is yet to be fully appreciated. The fact a model operates online is only
scratching the surface. Doing online machine learning can reap great benefits if done
comprehensively and properly. But it also requires a different mental model to what
most practitioners are used to.

I’ve been working on online machine learning for over 5 years. Admittedly, I have
not observed a great shift towards online machine learning. In spite of that, I’ve never
been more convinced online machine learning has enormous merits that are yet to
be uncovered and held in high regard. I believe there are several ways for online
machine learning to grow in popularity. For of all, although it’s quite clear Big Tech
companies are running online models in production, there are not enough public
details of how they do it. Practitioners have to be convinced by real and concrete
examples. Secondly, there are not enough tools and libraries that make it easy to do
online machine learning, akin to what scikit-learn did for batch machine learning.
This is something I tried to resolve by creating River, although there are other great
tools out there, such as Vowpal Wabbit. Thirdly, there is a lack of educational material
that explains how to do online machine learning.

This book is a wonderful attempt to address the third point. It covers all the standard
topics of machine learning, but with an online twist. It’s a great introduction to online
machine learning. I hope it will inspire more people to do online machine learning, to
appreciate the value of processing data online, and to do so properly. Once you have
understood the concepts in this book, you will be able to view the world of machine
learning through a different lens. You will be able to see the world as a stream of
data, and you will be able to process it as such. You will be able to build models that
learn from data as it arrives. You will be able to build models that adapt to change.
You will be able to build models that are always up-to-date. You will be able to build

v

vi Foreword

models that are always learning. You will be able to build models that are evaluated
in real time. Trust me, it’s worth it.

Paris, France
July 2023

Max Halford
Head of Data at Carbonfact

and Co-creator of River

Preface

This book deals with the exciting, seminal topic of Online Machine Learning (OML).
It is divided into three parts: First, we look in detail at the theoretical foundations of
OML. We describe what OML is and ask how it can be compared to Batch Machine
Learning (BML) and what criteria one should develop for a meaningful comparison.
In the second part, we provide practical considerations, and in the third part, we
substantiate them with concrete practical applications.

Why OML? Among other things, it is about the decisive time advantage. This
can be months, weeks, days, hours, or even just seconds. This time advantage can
arise if Artificial Intelligence (AI) can evaluate data continuously, i.e., online. It
does not have to wait until a complete set of data is available, but can already use a
single observation to update the model. Does OML have other advantages besides
the obvious time advantage? If so, what are they? We ask, are there limitations of
BML that OML overcomes? It needs to be carefully examined at what price one gets
these advantages from OML. How high is the memory requirement compared to
conventional methods? Memory requirements also mean financial costs, e.g., due to
higher energy requirements. Is OML possibly energy-saving and thus more sustain-
able, i.e., Green IT? Is it possible to obtain comparably good results? Does the quality
(performance) suffer, do the results become less accurate? In order to answer these
questions reliably, we first give an understandable introduction to OML in the theo-
retical part, which is suitable for beginners as well as for advanced users. Then we
justify the criteria we found for the comparability of OML and BML, namely a well-
comprehensible representation of quality, time, and memory requirements. In the
second part, we address the question of exactly how OML can be used in practice.
We are joined by experts from the field who report on their practical experiences,
e.g., requirements for official statistics. We give reasons for recommendations for
the practical use of OML.

We comprehensively present the software packages currently available for OML,
especially “River”,1 and offer Sequential Parameter Optimization Toolbox for River
(spotRiver), a software we developed specifically for OML. We deal in detail with

1 https://riverml.xyz/.

vii

https://riverml.xyz/

viii Preface

special problems that can occur with data streams. The central problem for data
streams is drift. We deal with the explainability of AI models, interpretability, and
reproducibility as required in upcoming regulations for AI systems. These aspects
can contribute to higher acceptance of AI.

In the application section, we present two detailed studies, one of which uses a
large dataset with one million data. We provide evidence of when OML performs
better than BML. Of particular interest is the study on hyperparameter tuning of
OML. Here we show how OML can perform significantly better by optimizing
hyperparameters.

Notebook
Supplementary program code for the applications and examples from this book
can be found in so-called “Jupyter Notebooks” in the GitHub repository https://
github.com/sn-code-inside/online-machine-learning/. The notebooks are orga-
nized by chapter.

The consulting firm Bartz & Bartz GmbH2 laid the foundation for this book when
it was awarded a contract from a tender of the Federal Statistical Office of Germany
in 2023.3 The Federal Statistical Office of Germany wanted to know whether it makes
sense to use OML now for the treasure trove of data and the evaluation on behalf
of the public sector (see the comments in Chap. 7). The slightly sobering result of
our expertise was: interesting perspectives for the future are opening up, but at the
moment there is no immediate prospect of using it. In some cases, there are technical
and organizational hurdles to adapting processes in such a way that the advantages of
OML can really come into play. In some cases, OML processes and implementations
are not yet mature enough.

The topic fascinated us so much that we decided to pursue it further. Prof. Dr.
Thomas Bartz-Beielstein took the question of the practical relevance of OML with
him to the TH Köln, where he continued his research in the field, which had been
ongoing for years. Under his guidance, the research group at the Institute for Data
Science, Engineering, and Analytics (IDE+A)4 was able to develop software to the
point where we believe we have advanced its suitability quite a bit. Thus, we have
combined the expertise of Bartz & Bartz GmbH with the research at the TH Köln,
which resulted in this book.

Overall, the book is equally suitable as a reference manual for experts dealing
with OML, as a textbook for beginners who want to deal with OML, and as a scien-
tific publication for scientists dealing with OML, since it reflects the latest state of
research. But it can also serve as quasi-OML consulting, as decision-makers and

2 https://bartzundbartz.de.
3 https://destatis.de.
4 https://www.th-koeln.de/idea.

https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://bartzundbartz.de
https://destatis.de
https://www.th-koeln.de/idea

Preface ix

practitioners can use our explanations to tailor OML to their needs and use it for
their application, and ask whether the benefits of OML might outweigh the costs.

To name just a few examples from military and civilian practice:

. You use state-of-the-art sensor systems to predict floods. Here, faster prediction
can save lives.

. You need to fend off terrorist attacks and use underwater sensors to do so. Here,
it can be crucial that the AI “recognizes” more quickly whether harmless water
sportsmen are involved.

. You are responsible for observing the airspace. Reconnaissance drones, for
example, can be used more efficiently if they can be programmed and trained
with very recent AI data evaluations.

. You must be very expeditious in adjusting the production of critical infrastructure
goods, such as vaccines, protective clothing, or medical equipment. Here, it can
be useful to keep the entire production process, including the raw materials to be
used, as up-to-date as possible. This can be achieved by real-time evaluation and
translation into requirements based on hospital bed occupancy or sick notes.

. You are a payment service provider and you need to detect fraud attempts virtually
in real time.

In conclusion, we note: OML will soon become practical, it is worthwhile to get
involved with it now. This book already presents some tools that will facilitate the
practice of OML in the future. A promising breakthrough is to be expected, because
practice shows that due to the large amounts of data that accumulate, the previous
BML is no longer sufficient. OML is the solution to evaluate and process data streams
in real time and to deliver results that are relevant for practice. Specifically, the book
covers the following topics:

Chapter 1 describes the motivation for this book and the objective. It describes
the drawbacks and limitations of BML and the need for OML. Chapter 2 gives an
overview and evaluation of methods and algorithms with special focus on supervised
learning (classification and regression). Chapter 3 describes procedures for drift
detection. Updateability of OML procedures is discussed in Chap. 4. Chapter 5
explains procedures for the evaluation of OML methods. Chapter 6 deals with special
requirements for OML. Possible OML applications are presented in Chap. 7 and
evaluated by experts in official statistics. The availability of the algorithms in software
packages, especially for R and Python, is presented in Chap. 8.

The computational effort required for updating the OML models, also in compar-
ison to an algorithmically similar offline procedure (BML), is examined experimen-
tally in Chap. 9. There, it is also discussed to what extent the model quality could be
affected, especially in comparison to similar offline methods. Chapter 10 describes
hyperparameter tuning for OML. Chapter 11 presents a summary and gives important
recommendations for practitioners.

Gummersbach, Germany
July 2023

Eva Bartz

Contents

1 Introduction: From Batch to Online Machine Learning 1
Thomas Bartz-Beielstein

2 Supervised Learning: Classification and Regression 13
Thomas Bartz-Beielstein

3 Drift Detection and Handling . 23
Thomas Bartz-Beielstein and Lukas Hans

4 Initial Selection and Subsequent Updating of OML Models 41
Thomas Bartz-Beielstein

5 Evaluation and Performance Measurement . 47
Thomas Bartz-Beielstein

6 Special Requirements for Online Machine Learning Methods 63
Thomas Bartz-Beielstein

7 Practical Applications of Online Machine Learning 71
Steffen Moritz, Florian Dumpert, Christian Jung,
Thomas Bartz-Beielstein, and Eva Bartz

8 Open-Source Software for Online Machine Learning 97
Thomas Bartz-Beielstein

9 An Experimental Comparison of Batch and Online Machine
Learning Algorithms . 105
Thomas Bartz-Beielstein and Lukas Hans

10 Hyperparameter Tuning . 125
Thomas Bartz-Beielstein

11 Summary and Outlook . 141
Thomas Bartz-Beielstein and Eva Bartz

xi

xii Contents

Appendix A: Definitions and Explanations . 145

Appendix B: Supplementary Materials . 149

Glossary . 151

Index . 153

Contributors

Eva Bartz Bartz & Bartz GmbH, Gummersbach, Germany

Thomas Bartz-Beielstein Institute for Data Science, Engineering, and Analytics,
TH Köln, Gummersbach, Germany

Florian Dumpert Federal Statistical Office of Germany, Wiesbaden, Germany

Lukas Hans Institute for Data Science, Engineering, and Analytics, TH Köln,
Gummersbach, Germany

Christian Jung SMS Group GmbH, Siegen, Germany

Steffen Moritz Federal Statistical Office of Germany, Wiesbaden, Germany

xiii

Chapter 1
Introduction: From Batch to Online
Machine Learning

Thomas Bartz-Beielstein

Abstract Batch Machine Learning (BML), which is also referred to as “offline
machine learning”, reaches its limits when dealing with very large amounts of data.
This is especially true for available memory, handling drift in data streams, and
processing new, unknown data. Online Machine Learning (OML) is an alternative
to BML that overcomes the limitations of BML. In this chapter, the basic terms and
concepts of OML are introduced and the differences to BML are shown.

1.1 Streaming Data

The volume of data generated from various sources has increased tremendously
in recent years. Technological advances have enabled the continuous collection of
data. The “three Vs” (volume, velocity, and variety) were initially used as criteria to
describe big data 1: Volume here refers to the large amount of data, velocity refers to
the high speed at which the data is generated, and variety refers to the large variety
of data.

The data streams (streaming data) considered in this book pose an even greater
challenge to Machine Learning (ML) algorithms than big data. In addition to the
three big data Vs, there are other challenges that arise, in particular, from volatility
and the possibility that abrupt changes (“drift”) can occur.

Definition 1.1 (Streaming-Data) Streaming data is data that is generated in a con-
tinuous data stream. It is loosely structured, volatile, always “flowing”, and contains
unpredictable, sometimes abrupt, changes. Streaming data is a subset of big data
with the following characteristics:

. Volume: Streaming data is generated in very large quantities.

1The three Vs were expanded over time by adding veracity and value to the “five Vs”.

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_1&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 55731 a 854 55731 a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1
https://doi.org/10.1007/978-981-99-7007-0_1

2 T. Bartz-Beielstein

. Velocity: Streaming data is generated at a very high rate.

. Variety: Streaming data is available in very different formats. We refer to this
property as “vertical variety”.

. Variability: Streaming data is structureless and varies over time. For example, drift
can occur gradually or abruptly. We refer to this property as “horizontal variety”.

. Volatility: Streaming data is available only once.

Example: Streaming-Data

A great deal of data is generated during various daily transactions, such as online
shopping, online banking, or online stock trading. In addition, there is sensor data,
social media data, data from operational monitoring and data from the Internet of
Things, to name just a few examples.

Streaming data requires real-time or near real-time analysis. Since the data stream
is constantly being produced and never ends, it is not possible to store these enormous
volumes of data.

Definition 1.2 (Static Data) By static data we mean data that have been collected
at a certain point in time and are no longer changed. They are used in the field of
classical ML and have the following properties:

. Volume: Static data usually have a manageable volume.

. Persistence: Static data can be retrieved as often as required. They do not change
their structure.

. Structure: Static data are usually structured and are available in tabular form.

The idea for this book is based on a study conducted for the German Federal
Statistical Office. The algorithms described here may also become relevant for official
statistics. One of the main objectives of the Federal Statistical Office is to publish
statistics at regular intervals. New data is continuously being accumulated, which has
to be evaluated. The publication intervals and data volumes are still manageable, but
the current trend goes towards new digital data and shorter publication cycles. The
large data volumes and analysis requirements that will then exist could necessitate
novel ML algorithms. This issue is explored in Sect. 7.1.

1.2 Disadvantages of Batch Learning

In this book, we distinguish between algorithms and models: Models are built using
algorithms and data. Most ML algorithms use static data in three steps to build
models:

1 Introduction: From Batch to Online Machine Learning 3

1. After loading the data, the data is preprocessed.
2. Then, a model is fitted to the data. This step is also called training. During training,

the data can be used multiple times.
3. Finally, the performance of the model is calculated on test data that was not used

during training.

Definition 1.3 (Batch Machine Learning) Machine learning that (classically) uses
the entire data set or large subsets of the data set (training data) to build the model
is called “batch machine learning” (BML). Instances can be used multiple times.
Relatively large amounts of time and memory are available. BML is also referred to
as offline machine learning.

The BML reaches its limits when data streams are processed. In this case, volatile
data is present that cannot be used multiple times. In addition, batch models may
become outdated due to concept drift (i.e., the data distribution changes over time).
This book presents approaches to solving the following problems that cannot be
solved with classical batch models:

1. Large memory requirements
2. Drift
3. Unknown data
4. Accessibility of data.

These problems are described in detail in Sects. 1.2.1–1.2.4.

1.2.1 Memory Requirements

BML problems occur when the size of the data set exceeds the size of the available
amount of Random Access Memory (RAM). Possible solutions are

. optimization of the data types (“sparse representations”),

. use of a partial data set (“out-of-core learning”),
i.e., dividing the data into blocks or mini-batches, see Spark MLlib 2 or Dask, 3 and

. use of highly simplified models.

In these solutions, the data is fitted to the model rather than the model to the data.
Therefore, the full potential of online data is not used.

1.2.2 Drift

In general, structural changes (“drift”) in the data cause problems for ML algorithms. 4

For example, in energy consumption forecasting, previously known consumption

2 https://spark.apache.org/mllib/.
3 https://examples.dask.org/machine-learning.html.
4 This section describes the different types of drift. The OML algorithms for drift detection and
handling are described in Chap. 3.

https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html
https://examples.dask.org/machine-learning.html

4 T. Bartz-Beielstein

levels are only one element needed for modeling. In practice, future demand is
driven by a number of non-stationary forces such as climate variability, population
growth, or by the introduction of disruptive clean energy technologies. These may
require both gradual and sudden domain adjustments.

Drift causes problems for ML models because models can become outdated—
they become unreliable over time because the relationships they capture are no longer
valid. This leads to a decrease in the performance of these models. Therefore, pre-
diction, classification, regression, or anomaly detection approaches should be able
to detect and respond to concept deviations in a timely manner so that the model can
be updated as soon as possible.

In time series applications, in many fields such as finance, e-commerce, eco-
nomics, and healthcare, the statistical properties of the time series may change,
rendering forecasting models useless. Although the concept of the drift problem has
been well studied in the literature, surprisingly little effort has been made to solve it.
We can distinguish three types of drift: feature, label, and concept drift.

In the following,.(X, y) denotes a sample, where. X is a set of features and. y is the
target variable. Features can be derived from attributes. Attributes are also referred
to as independent variables, and target variables correspondingly as dependent vari-
ables. In classification problems, the target variable is a class label, in regression
problems the predicted value. Often . y is not only determined by .X but also by a set
of unknown underlying conditions. This leads to the definition of the concept:

Definition 1.4 (Concept) A concept is a relationship between .X and . y given a set
of unknown constraints (a context . K).

Definition 1.5 (Feature Drift) Feature drift describes a change in the independent
variable . X .

A regulatory intervention is an example of feature drift: New laws can change
consumer behavior (Auffarth, 2021; Castle et al., 2021).

Definition 1.6 (Label Drift) Label drift is a change in the target . y.

The increase in the average value of goods at retail is given here as an example
of label drift.

Definition 1.7 (Concept Drift) Concept drift is a change in the concept, i.e., the
relationship between the independent variables .X and the target variable . y.

ML models can not observe the underlying conditions that determine a concept
and therefore have to make an assumption about which relationship applies to each
sample. This is difficult when conditions change, leading to a change in the concept,
which is called concept drift. The synthetically generated Friedman-Drift data set
provides a vivid example of concept drift.

Definition 1.8 (The Friedman-Drift Data Set) Each observation in the Friedman-
Drift data set consists of ten features. Each feature value is drawn equally distributed
from the interval.[0, 1]. Only the first six features,.x0 to. x5, are relevant. The dependent
variable is defined by two functions that depend on whether drift is present:

1 Introduction: From Batch to Online Machine Learning 5

. f (x) =
[
10 sin(πx0x1) + 20(x2 − 0.5)2 + 10x3 + 5x4, if drift occurs
10 sin(πx3x5) + 20(x1 − 0.5)2 + 10x0 + 5x1, otherwise.

Note the change in active variables, e.g., from .x0 to . x3, which implements the
change in concept.

The synthetically generated Friedman-Drift data set is used in Sect. 9.2.

Concept Drift in Practice

An example of concept drift may be the prediction of ozone levels (. y) at a particular
location based on sensor data (. X). We may be able to predict. y based on. X , where the
relationship may depend on the wind direction (the context. K), which is not detected
by the sensors.

A Simple Example of Concept Drift

The example shown in Fig. 1.1 illustrates how a simple concept drift occurs by
combining three data sets. 5

Abrupt and Gradual Concept Drift

The changes in data streams or concept drift patterns can be either gradual or abrupt.
Abrupt changes in data streams or abrupt concept drift mean a sudden change in the
properties of the data. For example, a change in mean, a change in variance, etc. It
is important to recognize these changes because they have practical implications for
applications in quality control, system monitoring, fault detection, and other areas.

If the changes in the distributions of the data in the data streams occur slowly
but over a long period of time, then this is drawn as gradual concept drift. Gradual
concept drift is relatively difficult to detect. Figure 1.2 shows the difference between
gradual and abrupt drift.

In recurrent concept drift, certain features of older data streams reappear after
some time.

5 The example is based on the “Concept Drift” section in the River documentation, see https://
riverml.xyz/dev/introduction/getting-started/concept-drift-detection/.

https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/
https://riverml.xyz/dev/introduction/getting-started/concept-drift-detection/

6 T. Bartz-Beielstein

Fig. 1.1 Synthetically generated drift created by combining 1,000 data each from three different
distributions. For the first thousand data, a normal distribution with mean .μ1 = 0.8 and standard
deviation.σ = 0.05 was used. The second thousand data use .μ1 = 0.4 and.σ1 = 0.02 and the last
thousand data use.μ3 = 0.6 and.σ3 = 0.1. The left figure shows the data over time and histograms
of the three data sets are shown on the right

Fig. 1.2 Gradual and abrupt concept drift. The data were generated synthetically. The SEA synthetic
data set (SEA) drift generator described in Sect. 5.4.2 was used for this purpose. Concept changes
occurring after 25,000, 50,000, and 75,000 steps are indicated by red vertical lines

Drift and Non-stationarity
Please note that the term drift is often used in a broader sense for non-stationary
behavior. Non-stationary behavior occurs, among other things, when new prod-
ucts are introduced, during hacker attacks, due to vacation periods, when
weather conditions change, when the economic conditions change, or when
sensors are poorly calibrated or new sensors are installed.

In BML, drift handling can be on-demand or periodic: Models for ML can be
retrained regularly, i.e., at specified times (weekly) or according to specified crite-

1 Introduction: From Batch to Online Machine Learning 7

ria (event-based, e.g., when new data arrives) to avoid performance degradation. 6

Alternatively, training can be triggered on an as-needed basis, i.e., either based on
performance monitoring of the models or based on change-detection methods.

1.2.3 New, Unknown Data

Another problem for BML is that it cannot easily learn from new data that contains
unknown attributes. When unknown attributes appear in the data, the model must
learn from scratch with a new data set composed of the old data and the new data.
This is especially difficult in a situation where data with new attributes may occur
every week, day, hour, minute, or even every time a measurement is taken.

Recommender Systems

For example, if a recommender system is to be created for an e-commerce app, then
the model probably needs to be trained from scratch every week. With the popularity
of the recommender service, the data set with which the model is trained grows. This
leads to longer training times and may require additional hardware.

1.2.4 Accessibility and Availability of the Data

Features are generated from the attributes of the data when models are trained. Feature
generation can improve ML performance by generating new features that correlate
better with the target variable and are therefore easier to learn.

Definition 1.9 (Feature Generation) Feature generation describes the process of
creating new features from one or more attributes of the data set.

Feature Generation

Feature generation can be accomplished by transforming an attribute into a new
feature using a mathematical function such as the logarithmic transformation. A new
feature can also be formed by calculating the distances between multiple attributes.

In practical applications, some attributes are no longer available after some time,
e.g., because they have been overwritten or simply have been deleted. Thus, features

6 This approach is implemented in the context of “mini batch machine learning”, cf. Definition 1.11.

8 T. Bartz-Beielstein

Table 1.1 Problems and solutions for BML for streaming data

Problem BML solution Disadvantages of solution

Memory requirements Optimization of data types,
mini-batch learning, simplified
models

Performance degradation,
lower accuracy

Drift Re-training High effort

New, unknown data Re-training High effort

Accessibility, availability of
data

No general solution available

that were available recently may no longer be available at the current time. In general,
the provision of all data at the same time and in the same place is not always possible
(Auffarth, 2021). Table 1.1 summarizes the problems and solutions for BML.

1.2.5 Other Problems

Furthermore, the common ML assumption that data is independent and uniformly
distributed (IID) (stationarity) is false for most streaming data, since attributes and
labels are often correlated. For example, for systems that detect attacks directed
against a computer system or computer network, called intrusion detection systems,
only the label “no-intrusion” occurs over a long period of time.

Furthermore, most assumptions made in the field of time series analysis do not
apply to streaming data. This refers in particular to temporal correlations used to
decompose time series (trend, seasonality, and residual component). Decomposition
cannot be applied to streaming data because they have little structure and abrupt
changes may occur.

1.3 Incremental Learning, Online Learning, and Stream
Learning

The challenges of processing data streams described in Sect. 1.2 led to the devel-
opment of a class of methods known as incremental or online learning methods,
the development of which has been heavily promoted in recent years (Bifet, 2018;
Losing et al., 2018). In particular, the development of the River 7 framework has
helped incremental learning gain popularity in recent years (Montiel et al., 2021).

7 https://riverml.xyz/.

https://riverml.xyz/
https://riverml.xyz/
https://riverml.xyz/

1 Introduction: From Batch to Online Machine Learning 9

The purpose of incremental learning is to fit an ML model into a stream of data.
In this process, the data are not fully available, but observations are provided one at
a time.

Since the term “online learning” is often used in the context of educational
research, we use the term “online machine learning”, or OML for short, in the follow-
ing. Also in common use are the terms “incremental learning” and “stream learning”.
For the conventional ML approach, the term “batch machine learning” introduced in
Definition 1.3 is used.

Definition 1.10 (Online Machine Learning (OML)) Online machine learning is ML
that uses single instances to create and update the model. Instances can only be used
once. There is relatively little time (real-time capability) and relatively little memory
available.

While writing this book, it became clear that defining another class would be
useful:

Definition 1.11 (Mini-Batch Machine Learning) Mini-batch machine learning is
ML that uses subsets, so-called mini-batches, of the entire data set (training data)
to repeatedly build the model. Mini-batches are usually used only once. There is
relatively little time and relatively little memory available.

From the requirements described in this section, the axioms for stream learning
can be derived.

Definition 1.12 (Axioms for Stream Learning) In the literature, e.g., Bifet (2018),
the following five axioms are used:

1. Each instance can be used only once.
2. Processing time is severely limited.
3. Memory is limited.
4. The algorithm must be able to return a result at any time (“anytime property”).
5. Data streams are assumed to change over time, i.e., data sources are not stationary.

Korstanje (2022) also distinguishes between “incremental learning” and “adap-
tive learning”. Incremental learning uses models that can be updated with a single
observation at a time. Adaptive learning is defined as follows:

Definition 1.13 (Adaptive Learning) Adaptive methods adjust the model to new
situations. New trends that occur in the underlying data are taken into account.

We use the term OML for incremental and adaptive learning methods that provide
methods for dealing with the axioms for stream learning presented in Definition 1.12.

10 T. Bartz-Beielstein

1.4 Transitioning Batch to Online Machine Learning

An incremental learning algorithm can be approximated by using a batch learner
with a sliding window. In this case, the model is re-trained each time a new window
(of data points) arrives. Any batch learner, such as linear regression, can be applied
to a data stream with a sliding window to approximate an incremental learning algo-
rithm. Examples include the mini-batch gradient descent method and the Stochastic
Gradient Descent (SGD) method.

Stochastic Gradient Descent

The gradient descent method 8 is a popular batch method to find the minimum of a
function (the so-called cost or also objective function). For large data sets, a single
update of the parameters takes a long time because the entire training data set is used
for this purpose.

The SGD method is an iterative optimization method and can be considered as
a stochastic approximation of the gradient descent method. The gradient, which is
calculated from the entire data set in the gradient descent method, is replaced by
an estimate that uses only a randomly selected subset of the data set. The SGD
algorithm is an example of an OML algorithm that updates the model parameters at
each training observation.

Notebook Example: Stochastic Gradient Descent
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning/ explains the difference between classical and
stochastic gradient descent.

References

Auffarth, D. (2021). Machine learning for time-series with Python: Forecast, predict, and detect.
Packt.

Bifet, A., et al. (2018). Machine learning for data streams with practical examples in MOA. MIT
Press.

Castle, S., Schwarzenberg, R., & Pourvali, M. (2021). Detecting covariate drift with explana-
tions. Natural Language Processing and Chinese Computing: 10th CCF International Confer-
ence, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part II (pp. 317–322).
Springer.

8 See Definition A.1 in the Appendix.

https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/

1 Introduction: From Batch to Online Machine Learning 11

Korstanje, J. (2022). Machine learning for streaming data with Python. Packt.
Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review and com-
parison of state of the art algorithms. Neurocomputing, 275, 1261–1274.

Montiel, J., et al. (2021). River: Machine learning for streaming data in Python. Journal of Machine
Learning Research, 22(1), 4945–4952. ISSN: 1532-4435.

Chapter 2
Supervised Learning: Classification
and Regression

Thomas Bartz-Beielstein

Abstract This chapter provides an overview and evaluation of Online Machine
Learning (OML) methods and algorithms, with a special focus on supervised
learning. First, methods from the areas of classification (Sect. 2.1) and regression
(Sect. 2.2) are presented. Then, ensemble methods are described in Sect. 2.3. Clus-
tering methods are briefly mentioned in Sect. 2.4. An overview is given in Sect. 2.5.

2.1 Classification

2.1.1 Baseline Algorithms

In the area of OML classification, there are so-called “baseline algorithms” that are
briefly presented here, as they serve as building blocks for more complex OML
methods.

The Majority-Class classifier counts the occurrences of the individual classes
and selects the class with the highest frequency for new instances. The No-Change
classifier selects the last class from the data stream. The Lazy Classifier is a classifier
that stores some already observed instances and their classes. A new instance is
classified into the class of the nearest already observed instance.

Example: k-NN Classifier

Examples for lazy classifiers are .k-nearest neighbor algorithms (.k-NN algorithms).
In.k-NN, the class membership is determined based on a majority decision: The class
that occurs most frequently in the neighborhood of the data point to be classified is
chosen. .k-NN is a “lazy classifier” because no training process is run. Only the
training data set is stored. Learning only takes place when a classification is made.

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_2&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538 a 854 56538 a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2
https://doi.org/10.1007/978-981-99-7007-0_2

14 T. Bartz-Beielstein

2.1.2 The Naive-Bayes Classifier

The Naive-Bayes classifier is based on the Bayes theorem (see Theorem A.1 in
the appendix). It calculates the probabilities of the individual classes based on the
attributes and then selects the class with the highest probability. Since the Naive-
Bayes classifier is a simple and inexpensive incremental method, it is briefly presented
here. In addition, its elements play an important role in the creation of Hoeffding
trees, which are presented in Sect. 2.1.3.1.

Naive-Bayes Classifier
We assume that there are . k discrete attributes .x1, x2, . . . , xk and .nc different
classes. In the following, .v j denotes the value of an attribute and . c the class
to which an observation belongs. The information from the training data is
summarized in a table that stores a counter .ni, j,c for each triple .(xi , v j , c).

For example, if the observations shown in Table 2.1 are available and a new
observation . B with the values

. (x1 = 1, x2 = 1, x3 = 1, x4 = 0)

arrives, whose class membership is to be determined, then the two probabilities

. P(Y = 0|B) P(Y = 0)P(B|Y = 0)

P(Y = 1|B) P(Y = 1)P(B|Y = 1)

are calculated using Bayes’ theorem. For the two classes “0” and “1”, we obtain
Table 2.2, the table of absolute frequencies. The Laplace correction is applied
to calculate the frequencies for the classes that do not occur in the training data.
The Laplace correction results from.ni, j,c + 1, i.e., the frequency for each class
. c is increased by 1.

After applying the Laplace correction, we obtain the values shown in
Table 2.3, with which we can calculate the probabilities for .P(B|Y = 0) or
.P(B|Y = 1). It holds:

Table 2.1 Labeled
observations used as training
data

y .x1 .x2 .x3 . x4

1 0 1 0 1

0 1 0 0 0

1 1 1 1 1

0 1 0 0 1

2 Supervised Learning: Classification and Regression 15

.P(B|Y = 0) = P(x1 = 1, x2 = 1, x3 = 1, x4 = 0|Y = 0)

= 1/2 × 1/4 × 1/4 × 1/2 = 1/64

and thus .P(Y = 0|B) = 1/2 × 1/64 = 1/128. In comparison,

.P(B|Y = 1) = P(x1 = 1, x2 = 1, x3 = 1, x4 = 0|Y = 1)

= 1/2 × 3/4 × 1/2 × 1/4 = 3/64

and thus .P(Y = 1|B) = 1/2 × 3/64 = 3/128. Since .P(Y = 1|B) > P(Y =
0|B), the Naive-Bayes classifier selects the class “1” for the new observation
.B.

The table entries shown in Table2.2 play an important role as statistics in trees,
see Definition 2.1. They can be represented as triples .(xi , v j , c) with values .ni, j,c.
For the first entry .(xi = 1, v j = 0, c = 0) in Table2.2b, we obtain .n1,0,0 = 1. For
the last entry .(xi = 4, v j = 1, c = 1) in Table2.2b we obtain .n4,1,1 = 2.

Prominent in the area of OML classification are tree-based methods (so-called
“trees”), such as Hoeffding Trees (HTs) and Hoeffding Adaptive Trees (HATs). In
addition to the tree-based methods presented in Sect. 2.1.3, we also present more
specific methods such as Support Vector Machine (SVMs) and Passive-Aggressive
(PA) in Sect. 2.1.4.

Table 2.2 Absolutely frequencies without Laplace correction

(a) Frequencies for Y = 0 (b) Frequencies for Y = 1

y x1 x2 x3 x4
0 1 2 2 1

1 1 0 0 1

y x1 x2 x3 x4
0 1 0 1 0

1 1 2 1 2

Table 2.3 Absolute frequencies after Laplace correction

(a) Frequencies for Y = 0 (b) Frequencies for Y = 1

y x1 x2 x3 x4
0 2 3 3 2

1 2 1 1 2

y x1 x2 x3 x4
0 2 1 2 1

1 2 3 2 3

16 T. Bartz-Beielstein

x_1

x_0

 4.5455

x_0

> 4.5455

x_0

 6.415

Class True:
P(False) = 0.1
P(True) = 0.9

samples: 1120

> 6.415

Class False:
P(False) = 1.0
P(True) = 0.0

samples: 1265

 4.0803

x_1

> 4.0803

Class False:
P(False) = 0.9
P(True) = 0.1
samples: 212

 2.4845

Class True:
P(False) = 0.2
P(True) = 0.8
samples: 188

> 2.4845

x_1

 2.7189

Class True:
P(False) = 0.0
P(True) = 1.0

samples: 2664

> 2.7189

Class False:
P(False) = 0.8
P(True) = 0.2
samples: 453

 7.027

Class True:
P(False) = 0.0
P(True) = 1.0
samples: 520

> 7.027

Fig. 2.1 Tree. Classification of SEA data set. The root of the tree is a node where the first test of
the attributes .x1 takes place. It is tested whether .x1 is greater or less than 4.5455. The branches
represent the results of the test. They lead to more nodes until the final nodes or leaves are reached.
The leaves are the predictions for the classes .Y = 0 and .Y = 1. The color scale symbolizes the
relative class frequencies in the nodes: from dark blue for high probability “false” to light blue and
light orange to dark orange for high probability “true”

2.1.3 Tree-Based Methods

A challenge in processing data streams is the high memory requirement. It is impos-
sible to store all data. Since trees allow a compact representation, they are popular
methods in the area of OML. Figure 2.1 shows an example tree for the classification
of the SEA synthetic data set (SEA).

Trees have the following elements:

1. Node: Testing an attribute
2. Branch: Result of the test
3. Leaf or terminal node: Prediction (of a class in classification).

We introduce two important representatives for tree-based OML methods in this
section: HTs, also known as Very Fast Decision Trees (VFDTs), in Sect. 2.1.3.1 and
Extremely Fast Decision Tree Classifier in Sect. 2.1.3.2.

2 Supervised Learning: Classification and Regression 17

2.1.3.1 Hoeffding-Trees

A Batch Machine Learning (BML) tree uses instances multiple times to calculate
the best split attributes (“splits”). Therefore, the use of BML decision tree methods
such as Classification And Regression Tree (CART) (Breiman, 1984) is not possible
in a streaming-data context. Hoeffding trees are the OML counterpart to the BML
trees (Domingos & Hulten, 2000). However, they do not use the instances multiple
times, but work directly on the incoming instances. They thus fulfill the first axiom
for stream learning (Definition 1.12).

Hoeffding trees are better suited for OML as incremental decision tree learners.
They are based on the idea that a small sample is often sufficient to select an optimal
split attribute. This idea is supported by the statistical result known as the Hoeffding
bound, see Theorem A.2 in the appendix. This result can be simplified as shown in
Example 2.1.3.1:

Example: Urn Model

An urn contains a very large number of red and black balls. We want to answer the
question of whether the urn contains more black or more red balls. To do this, we
draw a ball from the urn and observe its color, where the process can be repeated as
often as desired.

After the process has been carried out ten times, we have obtained 4 red and 6
black balls, after one hundred attempts 47 red and 53 black balls, after one thousand
attempts 501 red and 499 black balls. We can now (with a small uncertainty) say that
the urn contains the same number of black and red balls, without having to draw all
the balls. The probability that we are wrong is very low.

The Hoeffding bound depends on the number of observations and the permitted
uncertainty. This uncertainty can be determined at the beginning using a confidence
bound . s.

Definition 2.1 (Hoeffding Tree (HT)) The Hoeffding tree stores the statistics . S in
each node to perform a split. For discrete attributes, this is the same information that
is also used by the Naive-Bayes predictor: For each triple .(xi , v j , c), a table with
the counter .ni, j,c of the instances with .xi = v j and for the count values .C = c is
managed.

The HT uses two input parameters, the data stream.D with labeled examples and
a confidence bound . s. The following code shows an algorithmic description of the
HT algorithm according to Bifet (2018):

HoeffdingTree(D, s)
1 let HT be a tree with a single leaf (root)
2 init counts .ni, j,c at root
3 for each example .(x, y) in . D
4 do HTGrow .((x, y), HT , s)

18 T. Bartz-Beielstein

HTGrow((x, y), HT , s)
1 sort .(x, y) to leaf . l using HT
2 update counts .ni, j,c at leaf . l
3 if examples seen so far at . l are not all of the same class
4 then
5 compute split gain .G for each attribute
6 if . G(best attribute) - . G(second best). >

R2 ln(1/s)/(2n)

7 then
8 split leaf at best attribute
9 for each branch
10 do start new leaf and initialize counts

Hoeffding trees use the Hoeffding bound (Theorem A.2). The Hoeffding tree
converges to a tree created by a BML algorithm (Bifet, 2018). However, streaming
data can be very noisy. This can affect the performance (in terms of prediction
accuracy or prediction error). In addition, very large trees can be generated. Hoeffding
trees are also known as VFDT (Domingos & Hulten, 2000).

2.1.3.2 Extremely Fast Decision Tree Classifier

The Hoeffding Anytime Tree works similarly to a HT. The difference lies in the way
a node is split. The HT delays the split of a node until the best split is identified. This
decision is not re-evaluated. In contrast, the Hoeffding Anytime Tree splits at a node
as soon as a useful split is available. It checks the decision for the availability of a
better split. An instantiation of the Hoeffding Anytime Tree is the Extremely Fast
Decision Tree (EFDT) (Manapragada et al., 2018).

2.1.4 Other Classification Methods

Logistic regression is one of the standard OML classification methods. It updates
the model incrementally by taking a step towards the minimum of the cost function
every time new data arrives.

From the field of SVM methods, the Approximative Large-Margin-Algorithms
(ALMA) classifier is worth mentioning. This is an incremental implementation of
SVMs. A detailed description can be found in Gentile (2022). The ALMA classifier
is a regular SVM for (binary) classification. In Sect. 6.3.2, we will present an SVM,
the so-called One-Class SVM, for anomaly detection.

The PA classifier is another well-known OML model. The term “passive-
aggressive” is based on the consideration that an algorithm that learns too quickly
from each new data point is considered too aggressive (Crammer et al., 2006). There-
fore, PA remains passive when correctly classifying and only updates the model if a
misclassification occurs (Ezukwoke & Zareian, 2021).

2 Supervised Learning: Classification and Regression 19

Notebook: Online SVM (ALMA)
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning shows how an online SVM model is imple-
mented in Python and how the running error can be calculated incrementally.

2.2 Regression

2.2.1 Online Linear Regression

Batch-based regression models can be adapted for the online case. To implement a
linear online regression model, the Stochastic Gradient Descent (SGD) is used to
update the coefficients, see Sect. 1.4, since not all data is available at once. SGD is
also commonly used to train neural networks.

Notebook: Online Linear Regression
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning shows how an online linear regression model
is implemented in Python and how the running error can be calculated incre-
mentally.

2.2.2 Hoeffding Tree Regressor

Further, tree-based methods are also popular for OML regression. The Hoeffding
Tree Regressor (HTR) is similar to the Hoeffding Tree Classifier (HTC). It uses the
Hoeffding bound to make split decisions. The HTR uses the reduction of variance in
the target space to decide on the split candidates. It calculates predictions by fitting
a linear perceptron model or calculating the sample average (Bifet, 2018).

2.3 Ensemble Methods for OML

Ensemble learning combines multiple models to improve the prediction accuracy
for out-of-sample data. Typically (although not guaranteed), an ensemble learner
performs better than the stand-alone base methods. Ensemble learning is a very

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning

20 T. Bartz-Beielstein

popular Machine Learning (ML) technique for both regression and classification
purposes. Some well-known ensemble learning techniques in the BML context are
bagging, boosting, and stacking:

• “Bagging” (bootstrap aggregating) is, in simplified terms, a method that inde-
pendently trains homogeneous weak learners in parallel and combines them in a
deterministic averaging process.

• “Boosting” describes methods for the deterministic combination of homogeneous
weak learners that are adaptively trained sequentially.

• “Stacking” describes methods that train heterogeneous weak learners in parallel
and combine them into a meta-model.

These ensemble methods are also frequently used in OML. In the area of bagging,
Oza Bag and Oza Bag Adwin are worth mentioning (Oza & Stuart, 2001). Random
Forest methods, which can be understood as a modification of the bagging methods,
are also available, e.g., Adaptive Random Forest. In the area of “boosting”, OzaBoost
is worth mentioning. Stacking is also used in OML. In addition, there are many
other ensemble methods such as Streaming Random Patches, Voting Classifier, PA
Classifier, and KNN Classifier. In Sect. 8.2, an overview and description of available
software packages and their scope is presented.

2.4 Clustering

For the use case “clustering”, a variety of methods are available for OML. The
packageriverprovides six different clustering methods: DBSTREAM, CluStream,
StreamKM++, ClusTree, DenStream, and CobWeb. A detailed description can be
found on the package’s website. 1

2.5 Overview: OML Methods

Table 2.4 provides an overview of the OML methods covered in this book in the area
of classification and regression. In Sect. 8.2, an overview and description of available
software packages and their scope is presented.

1 https://riverml.xyz/dev/api/cluster.

https://riverml.xyz/dev/api/cluster
https://riverml.xyz/dev/api/cluster
https://riverml.xyz/dev/api/cluster
https://riverml.xyz/dev/api/cluster
https://riverml.xyz/dev/api/cluster
https://riverml.xyz/dev/api/cluster

2 Supervised Learning: Classification and Regression 21

Table 2.4 Overview OML methods

Method Akronym Task Comments

Majority-class Classification Baseline algorithms

No-change Classification Baseline algorithms

Lazy classifier Classification Baseline algorithms,
example:.k-NN

Naive Bayes NB Classification Baseline algorithms

Hoeffding tree
classification/very fast
decision tree

HT, HTC/VFDT Classification

Extremely fast
decision tree classifier

EFDT Classification Instance of the
Hoeffding anytime
tree

Approximative large-
margin-algorithms

ALMA Classification Online-SVM

Passiv-aggressive PA Classification

Logistic regression Classification

Online linear
regression

Regression

Hoeffding tree
regressor

HTR Regression Pendant von HTC für
die Regression

Hoeffding adaptive
tree regressor

HATR Regression Extension of HTR by
drift detection using
ADWIN (Sect. 3.3.3)

Adaptive random
forest classifier

ARF, ARFC Classification Enable training of
background trees that
start training when a
warning is detected
and replace the active
tree, when the warning
becomes a deviation

Adaptive random
forest regression

ARFR Regression Counterpart of ARF
for regression

References

Bifet, A. (2018). Machine learning for data streams with practical examples in MOA. MIT Press.
Breiman, L. (1984). Classification and regression trees. Wadsworth.
Crammer, K., et al. (2006). Online passive-aggressive algorithms. Journal of Machine Learning
Research, 7(19), 551–585.

Domingos, P. M., & Hulten, G. (2000). Mining high-speed data streams. In R. Ramakrishnan
et al. (Eds.), Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Boston, MA, USA, August 20–23 (pp. 71–80). ACM.

Ezukwoke, K. I., & Zareian, S. J. (2021). Online learning and active learning: A comparative study of
passive-aggressive algorithm with support vector machine (SVM). Journal of Higher Education
Theory and Practice, 21(3), 105–110.

22 T. Bartz-Beielstein

Gentile, C. (2002). A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research, 2, 213–242.

Manapragada, C., Webb, G. I., & Salehi, M. (2018). Extremely fast decision tree. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’18, New York, NY, USA (pp. 1953–1962). Association for Computing Machinery.

Oza, N. C., & Russell, S. (2001). Online bagging and boosting. In T. Jaakola & T. Richardson
(Eds.), 8th International Workshop on Artificial Intelligence and Statistics (pp. 105–112).

Chapter 3
Drift Detection and Handling

Thomas Bartz-Beielstein and Lukas Hans

Abstract Structural changes (“drift”) in the data cause problems for many algo-
rithms. Based on the drift definitions given in Chap. 1, methods for drift detection
and handling are discussed. For the algorithms presented in Chap. 2, it is clarified
to what extent concept drift is reacted to. In turn, the extent to which catastrophic
forgetting is an issue is described in Sect. 4.3. Section 3.1 describes three architec-
tures for implementing drift detection algorithms. Basic properties of window-based
approaches are presented in Sect. 3.2. Section 3.4 presents commonly used drift detec-
tion techniques. Section 3.4 describes how the drift detection techniques introduced
in Sect. 3.3 are used in Online Machine Learning (OML) algorithms and summa-
rizes the tree-based OML techniques implemented in the River package. Section 3.5
introduces scaling methods for handling drift.

3.1 Architectures for Drift Detection Methods

Bifet et al. (2018) distinguished three architectures for drift detection methods: adap-
tive estimators, change detectors, and ensemble-based approaches.

3.1.1 Adaptive Estimators

Adaptive estimators are based on the idea that many algorithms internally com-
pute statistics from the data stream and then build the model from their combina-
tion. These statistics can be absolute or relative values, probabilities, correlations
between attributes, or frequencies of certain patterns. An important example is the

T. Bartz-Beielstein (B) · L. Hans
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

L. Hans
e-mail: lukas.hans@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_3&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 53672 a 854 53672 a

mailto:thomas.bartz-beielstein@th-koeln.de
lukas.hans@th-koeln.de
 854 56550 a 854 56550 a

mailto:lukas.hans@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3
https://doi.org/10.1007/978-981-99-7007-0_3

24 T. Bartz-Beielstein and L. Hans

Fig. 3.1 Methods for drift
detection: adaptive
estimators (Bifet et al.,
2018). The input data.D are
used by the algorithm.m that
builds the model and by the
estimators. S1, S2, . . . , Sn
used. The estimators
compute internal statistics
that are used to build the
model. The outputs of the
model are denoted by. D'

Naive-Bayes classifier described in Sect. 2.1.2, which counts the occurrence of
attribute values. The perceptron algorithm, which updates the internal weights, pre-
dicting the correspondence between attributes and the expected result, also belongs
to this category. Figure 3.1 illustrates this approach.

3.1.2 Change Detectors

Change detectors use one or more change detection algorithms in addition to and
in parallel with the actual algorithm. They trigger a modification of the algorithm
settings if a significant change in the data stream or a drop in the quality of the
algorithm is observed. The modifications depend on whether an abrupt change has
occurred (such that a new model must be built, for example) or a gradual change has
been observed (such that the model must be recalibrated). Figure 3.2 illustrates the
corresponding architecture.

3.1.3 Ensemble-Based Approaches

Ensemble-based approaches are also used for drift detection. For example, Oliveira
et al. (2017) train multiple models simultaneously to enable drift detection. When

Fig. 3.2 Drift detection
methods: in addition to the
algorithm.m that builds the
model, an external change
detector. c is used (Bifet
et al., 2018)

3 Drift Detection and Handling 25

Fig. 3.3 Drift detection
methods: ensemble-based
approaches train multiple
models...... M1, M2, . . . , Mn
simultaneously (Bifet et al.,
2018). An ensemble
manager.E coordinates the
different models

the models diverge beyond a certain confidence interval, retraining of the models is
triggered. This approach uses complete models that can, in principle, exist indepen-
dently. An architecture for ensemble-based approaches to drift detection is shown in
Fig. 3.3. In the tree-based methods described below (see Sect. 3.4.1), only incomplete
submodels are built. These are activated or archived in a clever way, but cannot exist
independently of the overall model.

3.2 Basic Considerations for Windowing Techniques

Window-based techniques are important not only for drift detection and handling
but also for the evaluation techniques described in Chap. 5. Therefore, we present
the basic properties of window-based techniques in this section.

Window-based methods are incremental methods that divide the data into temporal
segments. They use a window.W of size .w that stores the data. The window can be
defined as a snapshot of the data. This can be either observation count-based or time-
based. A Batch Machine Learning (BML) method can be converted to an incremental
method by using a window technique. Well-known windowing techniques include
the sliding window model, the damped window model, and the landmark window
model.

Definition 3.1 (Landmark Window Model) The landmark window model does not
discard older data points. All data points are accumulated in the window. The window
size increases as more data points arrive. This windowing technique requires large
memory resources, especially when dealing with large data streams.

Definition 3.2 (Sliding Window Model) The sliding window model is a popular
method for discarding older data points and considering only the newer data points
for analysis.

Definition 3.3 (Damped Window Model) Data points are weighted in the damped
window model. Current data points are given higher weight. An exponential fading
strategy is used to discard old data. An aging function is used.

The current data points are given greater importance in the sliding and damped
window models, and older data points are periodically discarded. The window size

26 T. Bartz-Beielstein and L. Hans

.w is an important parameter. The performance of the testing procedure depends on
the window size (Bifet et al., 2018):

• If . w is too large, predictions become more accurate when there are no changes. If
changes occur, they are detected too late.

• If .w is too small, patterns needed by the model (learner) are not detected. In
addition, the model must be trained too often. However, small .w values allow a
fast reaction to changes.

3.3 Popular Drift Detection Methods

The drift detection techniques described in this section are not specific to OML. They
are also used in the BML environment. Specific implementations for OML algorithms
are presented in Sect. 3.4. Drift detection methods are divided into two categories:
explicit and implicit methods (Sethi & Kantardzic, 2017). The explicit procedures
are also referred to as supervised procedures since they are based on labeled data. The
implicit procedures are also referred to as unsupervised procedures since they do not
require labeled data. For now, we limit our discussion to explicit procedures, since
they are the most commonly used. Implicit procedures are described in Sect. 3.3.4.

Definition 3.4 (Explicit Drift Detection Methods) Explicit drift detection methods
rely on labeled data to calculate performance metrics such as accuracy, which they can
monitor online over time. They detect a drop in performance and therefore efficiently
signal changes.

3.3.1 Statistical Tests for Drift and Change Detection

Statistical tests use two data sources to detect a change. They are based on the hypoth-
esis .H0: “The data from both data sources have the same distribution”. Hypothesis
tests can be implemented in different ways, e.g. using a reference window.W0, which
is not changed, and a sliding window,.W1, which is moved by one unit per time step.
If a change is detected, then.W1 becomes.W0 and a new sliding window.W1 is created
using the following elements.

3.3.2 Control Charts

Control charts (Montgomery, 2008), which implement statistical tests to detect
changes, are also used for drift detection. As an example, consider the Drift Detection
Method (DDM) (Gama et al., 2004). The DDM method monitors the error rate of

3 Drift Detection and Handling 27

the algorithm and can be applied with BML and OML algorithms. In the following,
we consider a classification task. Control charts can also be used for regression tasks
(Montgomery, 2008).

In a sample of . n examples, the number of errors of the algorithm is a random
variable from Bernoulli trials. The binomial distribution is used to model the number
of errors in . n examples. At time . j , the error rate is calculated by .p j with a standard
deviation ofσ = √

p j (1 − p j)/j . The DDM method recordspmin andσmin while
training the learning algorithm. Ifp j + σ j ≥ pmin + 2σmin, a warning is reported. If
even......p j + σ j ≥ pmin + 3σmin, a change in the data stream is reported. As can already
be seen from this brief description, control chart-based approaches usually require
many parameters (Bifet & Gavaldà, 2009).

Control Charts
More information on control charts can be found on the pages of the National
Institute of Standards and Technology:
• NIST Engineering Statistics Handbook, Univariate and Multivariate Control
Charts, see https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.
htm.

3.3.3 Adaptive Windowing (ADWIN)

Adaptive Windowing (ADWIN) manages a variable-length window W in which
recently observed data points are stored (Bifet et al., 2018). The mean of these
data points in window .W is monitored. The size of the window is not fixed, but is
dynamically calculated based on the observed rate of change from the data in the
window. A window containing the most recent data points in a data stream is kept,
and the older data points are continuously discarded if there is sufficient evidence
that the mean of the new data points is different from that of the current reference
window. The ADWIN algorithm increases the window size. w if it detects no change
in the data stream, and decreases the window size if it detects a change in the data
stream. The data points within the window receive the updated statistics of the data
stream, detect concept deviations, and update the model. Figure 3.4 shows the result
of drift detection using ADWIN. A data set with clearly detectable abrupt drift was
used.

False alarms may occur, if the drift is not abrupt but slow. This can be seen in
Fig. 3.5. Here, the ADWIN drift detector was applied to the data set from Sect.
1.2.2. The drift here is not abrupt. A (short) time window is used where data is
generated from the old and new concepts. The ADWIN drift detector detects these
concept changes, but additionally provides false alarms. The false alarm rate can be
influenced by the choice of window size and by other parameters used by ADWIN.

NIST Engineering Statistics Handbook, Univariate and Multivariate Control Charts
 -675
19289 a -675 19289 a

https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc3.htm

28 T. Bartz-Beielstein and L. Hans

Fig. 3.4 ADWIN drift detection visualized using the data introduced in Sect. 1.2.2. The ADWIN
drift detector reports concept changes after 1,055 and 2,079 steps. These are marked by the vertical
green lines

Fig. 3.5 ADWIN drift detection visualized using SEA synthetic data set (SEA). The concept
changes reported by ADWIN are marked by the vertical green lines. In addition to the three changes
(marked in red), changes in five other places are reported, which are false alarms, e.g., after 8,199
steps. This apparent change is due to noise in the data

In general, it is recommended to use adaptive windows (windows with variable
size). The idea is to keep data points or observations as long as possible, since the
intervals of change are usually unknown. Further guidance can be found in Bifet and
Gavaldà (2007) and Bifet and Gavaldà (2009).

Table 3.1 compiles explicit (supervised) drift detection methods.

3.3.4 Implicit Drift Detection Algorithms

In addition to drift detection methods that use metrics, there are also methods that
operate unsupervised (Sethi & Kantardzic, 2017).

3 Drift Detection and Handling 29

Table 3.1 Explicit drift detection methods

Explicit drift detection
(supervised)

Method References

Sequential analysis CUSUM Page (1954)

PHT Page (1954)

LFR Wang and Abraham (2015)

Statistical process control DDM Gama et al. (2004)

EDDM Baena-Garcıa et al. (2006)

STEPD Nishida and Yamauchi (2007)

EWMA Ross et al. (2012)

Window based distribution ADWIN Bifet and Gavaldà (2007)

DoD Sobhani and Beigy (2011)

Resampling Harel et al. (2014)

Table 3.2 Implicit drift detection methods

Implicit drift detection
(unsupervised)

Method Literature

Novelty detection/clustering
methods

OLINDDA Spinosa et al. (2007)

MINAS Faria et al. (2013)

Woo Ryu et al. (2012)

DETECTNOD Hayat and Hashemi (2010)

ECSMiner Masud et al. (2011)

GC3 Sethi et al. (2016)

Multivariate distribution
monitoring

CoC Lee and Magoules (2012)

HDDDM Ditzler and Polikar (2011)

PCA-detect Kuncheva and Faithfull (2014)

Model dependent monitoring A-distance Dredze et al. (2010)

CDBD Lindstrom et al. (2013)

Margin Dries and Ulrich (2009)

Definition 3.5 (Implicit Drift Detection Algorithms) Implicit (unsupervised) drift
detectors rely on properties of the feature values of unlabeled data to signal deviations.
They are susceptible to false alarms, but their ability to function without a label makes
them useful in applications where labeling is expensive, time-consuming, or is simply
not available.

Implicit procedures can be found in Table 3.1. Tables 3.1 and 3.2 are based on the
overview prepared by Sethi and Kantardzic (2017).

After this classification of drift detection methods, we take a look at the corre-
sponding implementations for OML algorithms in the following sections.

30 T. Bartz-Beielstein and L. Hans

3.4 OML Algorithms with Drift Detection:
Hoeffding-Window Trees

Hoeffding trees that use sliding windows are generally referred to as “Hoeffding-
Window Trees” by Bifet and Gavaldà (2009). This includes the Concept-adapting
Very Fast Decision Tree (CVFDT) algorithms, see Sect. 3.4.1, and the Hoeffding
Adaptive Tree (HAT), see Sect. 3.4.2.

Definition 3.6 (Hoeffding-Window Tree) Hoeffding-Window Trees require

1. change detectors (e.g., control charts, see Sect. 3.3.2, or ADWIN, see Sect. 3.3.3)
in each node,

2. procedures to create and manage (delete) alternate subtrees, and
3. estimators of statistic . S (see Definition 2.1) in the nodes.

3.4.1 Concept-Adapting Very Fast Decision Trees (CVFDT)

The CVFDT method is suitable for data streams with concept drift. The key idea
is that each time a change is detected on a subtree, a candidate subtree grows and
eventually either the current subtree or the candidate subtree is deleted. CVFDTs
update statistics . S (see Definition 2.1) in the nodes and leaves by incrementing the
counters when a new sample arrives and decrementing the counters of the oldest
sample. This simulates forgetting. If the process is stationary, forgetting will have
no effect. However, if the process has changed (concept drift), attributes other than
the previous ones become important.

Definition 3.7 (Concept-adapting Very Fast Decision Trees (CVFDT)) Concept-
adapting Very Fast Decision Trees implement the following steps:

1. An alternative subtree is generated if the previous one is questionable. I.e.,
attributes other than the previous ones are important. The new best attribute is
chosen as the root node of the new (“alternative”) tree.

2. The old subtree is replaced by the new one if the new one is better.

To allow these subtrees to be computed and evaluated, CVFDT stores the statistic
. S (see Definition 2.1) in each node, not just in the leaves. The nodes contain a
unique identifier (sorted in ascending order) to determine age and manage forgetting.
The window size .w is changed for CVFDTs. It is reduced when many nodes are
simultaneously no longer marked as reliable.

Hulten et al. (2001) have shown that CVFDTs learn a model that is as good as a
Very Fast Decision Tree (VFDT) trained using a sliding window of size .w in terms
of accuracy. CVFDTs require three parameters:

1. Number of examples after which it is checked whether the splits are still correct. If
there are better splits, then a subtree is calculated from the corresponding (better)
node. The default value is defined by Hulten et al. (2001) .T0 = 10,000 is given.

3 Drift Detection and Handling 31

2. Number of examples used to generate the alternative tree. Default value: . T1 =
9,000.

3. Number of examples (after . T1) that compute the quality of the new subtree.

Based on the default values, it can be concluded that changes can be expected after
10,000 instances. This is certainly not the case in every situation, so these default
values are of limited use. Further details on CVFDT can be found in Hulten et al.
(2001).

3.4.2 Hoeffding Adaptive Trees (HAT)

Section 3.3.3 introduced the ADWIN drift detection method using a sliding window
.W of dynamic size. The window size .w is calculated dynamically, i.e., based on
the rate of change observed from the data in the window. The ADWIN algorithm
increases the window size when it detects no change in the data stream and decreases
the window size when it detects a change in the data stream.

The HAT uses the ADWIN method and is a modified version of the Hoeffding tree.
An alternate decision tree is generated at those nodes where the split no longer reflects
the current situation. The old tree is then replaced by a new one that is more accurate.
The HAT is a modification of the CVFDT described in Sect. 3.4.1. ADWIN monitors
the error of each subtree and alternate trees. The HAT method uses the ADWIN
estimates to make decisions about the leaves and growth of new trees or alternative
trees. It provides a solution to handle the trade-off between windows chosen too
small (and the resulting lack of robustness) and windows chosen too large (and the
resulting slow detection of changes). However, ADWIN requires more computation
time to do this than the CVFDT method. According to Bifet et al. (2018), a HAT is
at least as good as a CVFDT.

3.4.3 Overview: Hoeffding-Window Trees

Table 3.3 summarizes key properties of the Hoeffding Window Trees discussed in
this section.

Notebook: ADWIN
More details and an ADWIN sample implementation can be found in the
GitHub repository https://github.com/sn-code-inside/online-machine-learning.

https://github.com/sn-code-inside/online-machine-learning
 7443 51353 a 7443 51353 a

https://github.com/sn-code-inside/online-machine-learning/

32 T. Bartz-Beielstein and L. Hans

Table 3.3 Drift detection: tree-based OML-algorithms

Name Akronym Drift detection Remarks

Hoeffding tree, very
fast decision tree

HT, VFDT No Base algorithm

Concept-adapting very
fast decision trees

CVFDT Window size is
changed based on
specified parameters.
Updates are performed
according to
previously specified
time steps

Require many
parameters to be set by
the user. In terms of
accuracy as good as a
HT with fixed-size
sliding window. No
further theoretical
guarantees on the
achieved quality

Hoeffding adaptive
tree

HAT Adaptive windowing
(ADWIN)

Adaptive extension of
the principle
implemented in
CVFDT. Flexible, but
increased
computational
overhead. Theoretical
performance guarantee

3.4.4 Overview: HT in River

In the Python package River, 1 several Hoeffding Tree (HT) implementations already
exist, see Table 3.4.

3.5 Drift Scaling in Online Machine Learning

As previously discussed in Sect. 1.2.2, the occurrence of drift is a phenomenon
commonly observed in real-world data. Concept drift can manifest in diverse forms,
encompassing both long-term and short-term variations. A long-term drift could be a
changing consumer behavior guided by external influences, while a short-term drift
could be represented by voltage interruptions in the power grid. Despite their distinct
origins, both types of drift are treated similarly within the classical BML paradigm.
The treatment entails two steps: drift detection followed by the initialization of a
new model. In contrast, the OML approach bypasses this process by automatically
incorporating each new data point into the model. However, OML models encounter
challenges when faced with certain types of concept drift, particularly in cases involv-
ing structural disruptions. In such instances, the value range of input variables can

1 https://riverml.xyz/.

https://riverml.xyz/
https://riverml.xyz/
https://riverml.xyz/

3 Drift Detection and Handling 33

Table 3.4 Hoeffding tree implementations in the River package. The “non-stationary” column
indicates whether the algorithm implements methods for handling non-stationary data streams
(e.g., drift). The acronym ADWIN stands for “Adaptive Windowing” and is explained in Sect. 3.3.3

Name Acronym Task Non-stationary? Remarks

Hoeffding tree
classifier

HTC Classification Base-algorithm
for OML-
classification
tasks

Hoeffding
adaptive tree
classifier

HATC Classification . Modified HTC by
adding an
instance of
ADWIN to each
node to detect
and react to drift

Extremely fast
decision tree
classifier

EFDT Classification Implements splits
as quickly as
possible. Reviews
decisions
regularly and
repeats them as
needed

Hoeffding tree
regressor

HTR Regression Base-Hoeffding-
Tree for
regression tasks.
Adaptation of the
HTC algorithm
for regression

Hoeffding
adaptive tree
regressor

HATR Regression . Modifies HTR by
adding an
instance of
ADWIN to each
node to detect
and react to drift

incremental
structured-output
prediction tree
regressor

iSOUPT Multi-target
regression

Multi-target
version of the
HTR

Label
combination
Hoeffding tree
classifier

LCHTC Multi-label
classification

Creates a numeric
code for each
combination of
binary labels and
uses HTC to learn
from this coded
representation.
Decodes at
prediction time
the modified
representation to
get the original
labels

34 T. Bartz-Beielstein and L. Hans

rapidly and significantly change, thereby elongating the adaptation phases of OML
models.

Normalization of data is a customary step in BML to prevent the dominance
of numerically larger values over numerically smaller ones. Nevertheless, normal-
ization alone does not ensure parity of significance among different parameters, as
one feature may inherently carry greater weight than another. The study conducted
by Singh and Singh (2020) explored the impact of various treatment techniques on
model performance when compared to untreated data. Interestingly, their findings
indicated that normalization of input variables occasionally led to a deterioration in
algorithmic performance (Singh & Singh, 2020). Nonetheless, we adopt the under-
lying assumption shared by normalization methods in OML, namely that scaling the
data can yield improved results. In Sect. 9.3, we conduct a detailed case study and
scrutinize this hypothesis.

Broadly, scaling methods can be categorized into two primary classes: mean-
standard deviation-based procedures and minimum-maximum-based procedures.
Additionally, alternative categories include median-based procedures (Jain et al.,
2005), hyperbolic tangent-based procedures (Hampel et al., 2005), and sigmoidal-
based procedures (Priddy & Keller, 2005). Furthermore, it is important to note
that normalization in deep learning is referred to as “batch normalization”, which
specifically pertains to scaling the weights of different layers. Batch normalization
ensures stability in the distribution of layer inputs, consequently enhancing perfor-
mance (Santurkar et al., 2019).

In the context of OML, where data points are received sequentially, this sequen-
tial nature influences statistical measures such as mean, variance, maximum, and
minimum values. Consequently, the estimation of these measures must also be con-
ducted sequentially. The sub-chapter follows a well-organized structure, commenc-
ing with the adaptation of statistical measures in a streaming fashion. Once the foun-
dational concepts are established, we delve into various scaling techniques. These
include mean-standard deviation-based methods, encompassing z-score normaliza-
tion, mean-centering, and Pareto scaling. Subsequently, we explore the minimum-
maximum normalization and the max-abs normalization methods.

3.5.1 Statistical Measures in a Sequential Manner

Let. m represent the number of observations, denoted by. xi , where. i ranges from 1 to
. m. Upon acquiring new observations denoted by . xi , where . i ranges from .m + 1 to
.m + n, with . n being equal to one in the OML setting and any value larger than one
indicating a mini-batch approach, the following equations can be formulated:

.μ = 1

m + n

m+n∑

i=1

xi , (3.1)

3 Drift Detection and Handling 35

.μ = 1

m

m∑

i=1

xi , (3.2)

and

.μ = 1

n

m+n∑

i=m+1

xi . (3.3)

Equation 3.1 represents the recalculated mean value, obtained by summing all
the observations. Equation 3.2 captures the present empirical mean, while Eq. 3.3
denotes the mean of the newly acquired data point. Equation 3.1 can be simplified as
follows:

. μ = m

m + n
μm + n

m + n
μn.

By employing this notation, the mean undergoes iterative updates upon the incor-
poration of successive data points, thereby circumventing the need to retain the
entirety of individual data points. Once the mean has been transformed into its
sequential representation, the subsequent task involves extending this approach to
the calculation of the variance. To this end, we introduce the following equations:

.σ 2 = 1

m + n

m+n∑

i=1

(xi − μ)2 (3.4)

.σ 2
m = 1

m

m∑

i=1

(xi − μm)2 (3.5)

.σ 2
n = 1

n

m+n∑

i=m+1

(xi − μn)
2. (3.6)

In this context, Eq. 3.4 denotes the revised variance, Eq. 3.5 represents the existing
variance, and Eq. 3.6 signifies the variance associated with the newly introduced data
portion. Furthermore, we observe that

.σ 2 = 1

m + n

m+n∑

i=1

x2
i − μ2 (3.7)

.
1

m

m∑

i=1

x2
i = σ 2

m + μ2
m (3.8)

.
1

n

m+n∑

i=m+1

x2
i = σ 2

n + μ2
n . (3.9)

36 T. Bartz-Beielstein and L. Hans

With the help of Eqs. 3.4–3.9, we can formulate the variance in a sequential manner
given by the following equation:

.

σ 2 = m

m + n
(σ 2

m + μ2
m) + n

m + n
(σ 2

n + μ2n) − μ2

= m

m + n
σ 2

m + n

m + n
σ 2

n + mn

(m + n)2
(μm − μn)

2.

The update operation entails a linear combination of the observed variances, sup-
plemented by an adjustment incorporating the means. Notably, at the initial stage,
setting.m = μm = σ 2

m = 0 allows the formulas to remain valid and produce accurate
results. Having established the procedures for adjusting the mean and variance, we
can now transition to the estimators.

3.5.2 Adapted Scaling Techniques

The z-score normalization employs both the mean and standard deviation to scale
the values. The resulting scaled data exhibit a mean of zero and a variance of one
(Kappal, 2019). The k-th feature of the l-th data point is denoted by .xk,l .

Each data point.xk,l can be transformed into the normalized data point.x∗
k,l accord-

ing to the following equation:

. x∗
k,l = xk,l − μk

σk
,

where.μk and.σk represent the mean and standard deviation, respectively, of the k-th
feature.

In mean centering, the mean of each data point is subtracted. We define this process
as follows:

. x∗
k,l = xk,l − μk .

Pareto scaling follows a similar rationale to z-score normalization, but in this case,
the division is performed by the square root of the standard deviation (Noda, 2008).
Consequently, we have

. x∗
k,l = xk,l − μk√

σk
.

By utilizing Pareto scaling instead of z-score normalization, it is possible to overcome
limitations that may arise due to unit variance (van den Berg et al., 2006).

The various methods based on mean and standard deviation help minimize the
impact of outliers in the data. However, all these methods face a common challenge;
they do not bring individual features to the same numerical range, as the values may
change over time (Pan et al., 2016).

3 Drift Detection and Handling 37

To apply minimum-maximum-based methods, adjustments to the batch process
are necessary. In BML, the maximum and minimum values are determined once
for all data points. In OML, this process is adapted such that the minimum and
maximum values are continuously updated. If the current data point exceeds the
historical maximum or falls below the historical minimum, they are replaced with
the current value.

The min-max method scales the data linearly to a defined upper and lower bound
(Han et al., 2012). These bounds are typically set between zero and one or between
minus one and one. The transformation is carried out using the following equation:

. x∗
k,l = xk,l − min(xk)

max(xk) − min(xk)
,

where.min and.max represent the minimum and maximum values of the k-th feature.
This particular formula scales the data to the range of zero to one. To define a different
range, a simple linear transformation can be applied to the data.

In the case of max-abs normalization, it is a variant of min-max normalization.
Here, each feature is scaled to the range of .−1 to 1 (Li & Liu, 2011). The scaling is
performed using the following equation:

. x∗
k,l = xk,l

max(|xk |) .

By employing these scaling methods, the relationships of the original data are
preserved in comparison to mean and standard deviation-based methods. However,
these techniques are susceptible to the influence of outliers due to the reliance on
maximum and minimum values (Dougherty, 2011).

As previously mentioned, the application of scaling methods is expected to
enhance performance, particularly in the case of drift events. We delve into this
hypothesis in Sect. 9.3, where case studies are conducted to address this issue.

References

Baena-Garcıa, M., et al. (2006). Early drift detection method. In Fourth International Workshop on
Knowledge Discovery from Data Streams (Vol. 6, pp. 77–86).

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In
Proceedings of the 2007 SIAM International Conference on Data Mining (SDM) (pp. 443–448).
SIAM.

Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Proceedings
of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data
Analysis VIII. IDA’09 (pp. 249–260). Springer.

Bifet, A., Gavalda, R., et al. (2018). Machine learning for data streams with practical examples in
MOA. MIT Press.

38 T. Bartz-Beielstein and L. Hans

Ditzler, G., & Polikar, R. (2011). Hellinger distance based drift detection for nonstationary envi-
ronments. In 2011 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain
Environments (CIDUE) (pp. 41–48). IEEE.

Dougherty, G. (2012). Pattern recognition and classification: An introduction, 1st Ed. (pp. XI, 196).
Springer. ISBN: 978-1-4614-5322-2. https://doi.org/10.1007/978-1-4614-5323-9

Dredze, M., Oates, T., & Piatko, C. (2010). We’re not in kansas anymore: Detecting domain changes
in streams. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing (pp. 585–595).

Dries, A., & Rückert, U. (2009). Adaptive concept drift detection. Statistical Analysis and Data
Mining, 2(5–6), 311–327.

Faria, E. R., Gama, J., & Carvalho, A. C. P. L. F. (2013). Novelty detection algorithm for data
streams multi-class problems. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing (pp. 795–800).

Gama, J., et al. (2004). Learning with drift detection. In A. L. C. Bazzan & S. Labidi (Eds.), Advances
in artificial intelligence, SBIA 2004 (pp. 286–295). Springer.

Hampel, F. R., et al. (2005). Robust statistics: The approach based on influence functions.
Wiley Series in probability and statistics. First published: 22 March 2005. Online ISBN:
9781118186435. Copyright–1986. John Wiley & Sons, Inc. All rights reserved. Wiley. ISBN:
9780471735779. https://doi.org/10.1002/9781118186435

Han, J., Kamber, M., & Pei, J. (2012). 3-Data preprocessing. In J. Han, M. Kamber, & J. Pei (Eds.),
Data mining, 3rd Ed (pp. 83–124). The Morgan Kaufmann Series in data management systems.
Morgan Kaufmann. ISBN: 978-0-12-381479-1. https://doi.org/10.1016/B978-0-12-381479-1.
00003-4. https://www.sciencedirect.com/science/article/pii/B9780123814791000034

Harel, M., et al. (2014). Concept drift detection through resampling. In International Conference
on Machine Learning, PMLR (pp. 1009–1017).

Hayat, M. Z., & Hashemi, M. R. (2010). A DCT based approach for detecting novelty and concept
drift in data streams. In 2010 International Conference of Soft Computing and Pattern Recognition
(pp. 373–378). IEEE.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In Proceed-
ings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD’01, New York, NY, USA (pp. 97–106). Association for Computing Machinery.

Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems.
Pattern Recognition, 38(12), 2270–2285. ISSN: 0031-3203. https://doi.org/10.1016/j.patcog.
2005.01.012. https://www.sciencedirect.com/science/article/pii/S0031320305000592.

Kappal, S. (2019). Data normalization using median median absolute deviation (MMAD) based Z-
score for robust predictions vs. min-max normalization. London Journal of Research in Science:
Natural and Formal, 19(4), 39–44.

Kuncheva, L. I., & Faithfull, W. J. (2014). PCA feature extraction for change detection in multidi-
mensional unlabeled data. IEEE Transactions on Neural Networks and Learning Systems, 25(1),
69–80.

Lee, J., & Magoules, F. (2012). Detection of concept drift for learning from stream data. In 2012
IEEE 14th International Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and Systems (pp. 241–245).
IEEE.

Li, W., & Liu, Z. (2011). A method of SVM with normalization in intrusion detection. Procedia
Environmental Sciences, 11. In 2011 2nd International Conference on Challenges in Environ-
mental Science and Computer Engineering (CESCE 2011) (pp. 256–262). ISSN: 1878-0296.
https://doi.org/10.1016/j.proenv.2011.12.040

Lindstrom, P., Namee, B. M., & Delany, S. J. (2013). Drift detection using uncertainty distribution
divergence. Evolving Systems, 4(1), 13–25.

Masud, M., et al. (2011). Classification and novel class detection in concept drifting data streams
under time constraints. IEEE Transactions on Knowledge and Data Engineering, 23(6), 859–874.

Montgomery, D. C. (2008). Statistical quality control. Wiley.

https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1007/978-1-4614-5323-9
https://doi.org/10.1002/9781118186435
https://doi.org/10.1002/9781118186435
https://doi.org/10.1002/9781118186435
https://doi.org/10.1002/9781118186435
https://doi.org/10.1002/9781118186435
https://doi.org/10.1002/9781118186435
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://doi.org/10.1016/B978-0-12-381479-1.00003-4
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://www.sciencedirect.com/science/article/pii/B9780123814791000034
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://doi.org/10.1016/j.patcog.2005.01.012
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://www.sciencedirect.com/science/article/pii/S0031320305000592
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040
https://doi.org/10.1016/j.proenv.2011.12.040

3 Drift Detection and Handling 39

Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. In International
Conference on Discovery Science (pp. 264–269). Springer.

Noda, I. (2008). Scaling techniques to enhance two-dimensional correlation spectra. Journal
of Molecular Structure, 883–884. In Progress in two-dimensional correlation spectroscopy
(pp. 216–227). ISSN: 0022-2860. https://doi.org/10.1016/j.molstruc.2007.12.026. https://www.
sciencedirect.com/science/article/pii/S0022286007008411

Oliveira, G., et al. (2017). Time series forecasting in the presence of concept drift: A PSO-based
approach. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence
(ICTAI) (pp. 239–246).

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1–2), 100–115.
Pan, J., Zhuang, Y., & Fong, S. (2016). The impact of data normalization on stock market prediction:
Using SVM and technical indicators. In M. W. Berry, A. H. Mohamed, & B. W. Yap (Eds.), Soft
computing in data science (pp. 72–88). Springer. ISBN: 978-981-10-2777-2.

Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: An introduction (Vol. TT68). SPIE
Press. ISBN: 9780819459879.

Ross, G. J., et al. (2012). Exponentially weighted moving average charts for detecting concept drift.
Pattern Recognition Letters, 33(2), 191–198.

Ryu, J. W., et al. (2012). An efficient method of building an ensemble of classifiers in streaming
data. In International Conference on Big Data Analytics (pp. 122–133). Springer.

Santurkar, S., et al. (2019). How does batch normalization help optimization? arXiv: 1805.11604
[stat.ML].

Sethi, T. S., & Kantardzic, M. (2017). On the reliable detection of concept drift from streaming
unlabeled data. arXiv:1704.00023

Sethi, T. S., Kantardzic, M., & Hu, H. (2016). A grid density based framework for classifying
streaming data in the presence of concept drift. Journal of Intelligent Information Systems, 46(1),
179–211.

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification
performance. Applied Soft Computing, 97, 105524. ISSN: 1568-4946. https://doi.org/10.1016/j.
asoc.2019.105524

Sobhani, P., & Beigy, H. (2011). New drift detection method for data streams. In International
Conference on Adaptive and Intelligent Systems. Springer.

Spinosa, E. J., de Leon F. de Carvalho, A. P., & Gama, J. (2007). Olindda: A cluster-based approach
for detecting novelty and concept drift in data streams. In Proceedings of the 2007 ACM Sympo-
sium on Applied Computing (pp. 448–452).

van den Berg, R. A., et al. (2006). Centering, scaling, and transformations: Improving the biological
information content of metabolomics data. BMC Genomics, 7,. https://doi.org/10.1186/1471-
2164-7-142. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.
1186md5=30f58f90a22f5cb8c3643ee664385e30

Wang, H., & Abraham, Z. (2015). Concept drift detection for streaming data. In International Joint
Conference on Neural Networks (IJCNN) (pp. 1–9).

https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://doi.org/10.1016/j.molstruc.2007.12.026
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
https://www.sciencedirect.com/science/article/pii/S0022286007008411
arXiv: 1805.11604
 27685 20451 a 27685
20451 a

http://arxiv.org/abs/1805.11604
arXiv:1704.00023
 4746 23772 a 4746 23772 a

http://arxiv.org/abs/1704.00023
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747019547&doi=10.1186md5=30f58f90a22f5cb8c3643ee664385e30

Chapter 4
Initial Selection and Subsequent
Updating of OML Models

Thomas Bartz-Beielstein

Abstract In Sect. 4.1, we describe a current best practice methodology for the initial
model selection of Online Machine Learning (OML) models, taking into account that
the model is continuously updated. In Sect. 4.2, we discuss possibilities for removing
or changing observations/instances that have already been added to the model. We
describe how completely new features can be added to the model afterwards. In
addition, we show how it is ensured that the model quality is still adequate after
a model update. Catastrophic forgetting (catastrophic interference) is considered in
Sect. 4.3 in the OML context: The continuous updating of the OML models carries
the risk that this learning is not successful if correctly learned older relationships are
falsely forgotten (“de-learned”).

4.1 Initial Model Selection

Based on the results of the studies described in Chap. 9, recommendations for the
initial model selection are only possible to a very limited extent. This is due to the
fact that currently no OML method is “out-of-the-box” ready for use. In addition to
the data preprocessing, which is also required in the Batch Machine Learning (BML)
environment, the determination of suitable hyperparameters is a major challenge for
OML algorithms.

In an experimental environment, the use of OML methods is probably possible.
Such an environment is more likely to be found in the academic field and not in
productive use, such as at the Federal Statistical Office, where reliable results play a
major role. The special requirements for machine learning in statistical institutions
are discussed in Sect. 7.1.4.

In Chap. 8, the current development is described in detail. In particular, the com-
bination of OML methods with methods for hyperparameter tuning (Bartz et al.,
2022) opens up promising perspectives.

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_4&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538
a 854 56538 a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4
https://doi.org/10.1007/978-981-99-7007-0_4

42 T. Bartz-Beielstein

Recommendations for Initial Model Selection
Based on the current state, the following recommendations can be given:
1. In the run-up to the model selection, data preprocessing adapted to the OML

situation (in particular the axioms for stream learning, see Definition 1.12)
must be taken into account.

2. In addition, an adequate quality measure should be selected. It is crucial
which data is used for training and which for testing (see the discussion in
Chap. 5). If possible, several quality measures should be considered at the
same time.

3. Besides the quality measures, computing time and memory consumption
should also be observed.

4. After the first three points have been clarified, if possible, a simple BML
method should be trained. This provides comparison values for assessing
the quality.

5. During the initial selection of an OML method, simple methods should be
used. Linear models or Hoeffding Adaptive Tree Regressor (HATR) for
regression and logistic regression or Hoeffding Adaptive Tree Classifier
(HATC) for classification are particularly suitable here.

6. The hyperparameters of these algorithms should be adjusted; otherwise, too
large trees with very long computing times and high memory requirements
are generated. For example, the value max_depth that sets the maximum
tree depth can be adjusted. The default setting specifies that the trees can
be infinitely large.

7. Are sufficient memory and time available and the quality is not satisfactory,
ensemble methods can be used. Here, for example, “Adaptive Random
Forest regressor” or “Adaptive Random Forest classifier” can be mentioned
(Gomes et al., 2017).

4.2 Updating and Changing the Model

4.2.1 Adding New Features

One strength of OML methods is that they can handle new attributes and classes that
appear in the data stream. The Python package River uses so-called “dictionaries”
to manage the data. A dictionary can be empty at the beginning, e.g., if it is not yet
known which features with which values are present in the data stream. The model
is built without having seen any data. During training, the features are learned by the
model. This gives OML methods a big advantage over BML methods. Many BML
methods, e.g., the tree-based standard algorithms from the scikit-learn: Machine
Learning in Python (sklearn) package, cannot handle the occurrence of new levels of

4 Initial Selection and Subsequent Updating of OML Models 43

a feature or even completely new features. Here, the BML model has to be retrained
from scratch.

Notebook: Adding New Features
An example of how attributes can be added to a model afterwards can be found
in the GitHub repository https://github.com/sn-code-inside/online-machine-
learning.

4.2.2 Manual Model Changes in Response to Drift

If drift has been detected, the OML model attributes can be mutated. If the perfor-
mance of the model deteriorates significantly, the model can be reset to the default
settings by cloning.

Mutation and Cloning in River

The method mutate() changes attributes of a model, e.g., the learning rate of the
optimization algorithm of the OML linear regression. The method clone() creates
a deep copy of the model. The cloned model does not have any information about
the data.

Tip: Mutation and Cloning
Further information can be found on the River project page:
river: recipes/cloning-and-mutating/.

4.2.3 Ensuring Model Quality After a Model Update

The Hoeffding-Window trees presented in Sect. 3.4 use internal procedures to ensure
model quality after a model update. It is also interesting to consider performing the
model update only when it is ensured that it achieves an improvement in model
quality. This is taken into account by the Concept-adapting Very Fast Decision Tree
(CVFDT) and Hoeffding Adaptive Tree (HAT) algorithms. An alternative subtree
is created if the previous one is questionable. For example, attributes other than the

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
river: recipes/cloning-and-mutating/
 -675 40184 a -675 40184 a

https://riverml.xyz/0.13.0/recipes/cloning-and-mutating/

44 T. Bartz-Beielstein

previous ones are more important. The new best attribute is chosen as the root node
of the new (“alternative”) tree. The old subtree is only replaced by the new subtree
if the new one is better. In addition, previously trained models can be archived and
used if the new model shows a drop in performance.

In addition to the internal guarantee of model quality by the algorithm itself,
the quality can also be ensured by combining several algorithms. In “bandit-based
model selection”, each model is assigned an arm. Each time the algorithm is called,
a decision is made which arm/model should be pulled (Busa-Fekete et al., 2014).

4.3 Catastrophic Forgetting

Catastrophic forgetting, also known as catastrophic interference, describes the (unde-
sirable) behavior of Machine Learning (ML) models to forget learned things when
new updates are made. Correctly learned older tendencies are falsely forgotten or
“de-learned” when new tendencies are learned from new data.

Catastrophic forgetting was originally defined as a problem that occurs in (deep)
Neural Networks (NNs) (Chen et al., 2018; McCloskey & Cohen, 1989). The com-
plexity of NNs makes them sensitive to the problem of catastrophic forgetting. The
way a NN learns is to perform many update passes on the parameters (coefficients,
weights). At each update, the model should fit the data a little better. Even for a
simple NN, many coefficients have to be trained, especially compared to so-called
“shallow ML” methods such as logistic regression. Catastrophic forgetting is relevant
for OML: If models are updated with every new data point, it is to be expected that
the coefficients will change over time.

The term “drift” is used to refer to drift either in the variables (data drift) or in the
relationships between independent variables and dependent variables (concept drift)
(see Definition 1.7). Since catastrophic forgetting is a problem of the trained model
coefficients within the model, it makes sense to consider catastrophic forgetting
independently of the phenomenon of drift. The explainability and interpretability
of the ML algorithms and models (see Sect. 6.6) are directly related to the topic of
catastrophic forgetting.

Notebook: Catastrophic Forgetting in the Context of OML
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning shows an example of how catastrophic forget-
ting can occur.

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning

4 Initial Selection and Subsequent Updating of OML Models 45

4.3.1 Strategies for Dealing with Catastrophic Forgetting

Three methods against catastrophic forgetting (model monitoring, drift detection,
and explainability) are described below.

4.3.1.1 Model Monitoring (Performance and Error Rates)

Even if, in the step-by-step evaluation of the model, the individual error at each data
point does not become particularly large, at the end of the process or after a certain
period of time the model may have forgotten (“de-learned”) the properties of the
first data points. Re-evaluation of past instances can be used to observe catastrophic
forgetting in practice.

If the performance of the model and the distribution of the data as well as other
Key Performance Indicators (KPIs) and descriptive statistics are closely monitored,
catastrophic forgetting should be detected and countermeasures taken in time.

4.3.1.2 Drift Detection

A second solution is the application of the drift detection methods described in Chap.
3.

4.3.1.3 Explainability

As a third tool for dealing with catastrophic forgetting, methods for explaining mod-
els can be used. ML models, including OML models, are often understood and used
as black box models: The results of learning are the only thing that matters and
are analyzed (see Chap. 5), but relatively little time is spent on examining the inner
mechanisms of the models. This becomes a problem when incorrectly learned pat-
terns occur. Therefore, the use of tools for explaining models as described in Sect.
6.6 is recommended.

The performance monitoring described in Sect. 4.3.1.1 is mainly a black box
approach. It is interesting that we can also extract elements such as trees (den-
drograms), coefficients, variable importance, and the like to see what has actually
changed in the model. However, there is no simple, general method to examine and
explain the inner workings of the models. Each ML model category implements its
own specific method of adapting to the data. The approaches described in Sect. 6.6
for interpreting and explaining models are relevant.

46 T. Bartz-Beielstein

References

Bartz, E., et al. (2022). Hyperparameter tuning for machine and deep learning with R—A practical
guide. Springer. https://doi.org/10.1007/978-981-19-5170-1.

Busa-Fekete, R., & Hüllermeier, E., et al. (2014). A survey of preference-based online learning with
bandit algorithms. In P. Auer (Ed.), Algorithmic learning theory (pp. 18–39). Springer.

Chen, Z., et al. (2018). Lifelong machine learning, 2nd ed. Morgan and Claypool Publishers.
Gomes, H. M., et al. (2017). Adaptive random forests for evolving data stream classification.
Machine Learning, 106(9), 1469–1495.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation - Advances in Research and
Theory, 24(C), 109–165.

https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1

Chapter 5
Evaluation and Performance
Measurement

Thomas Bartz-Beielstein

Abstract This chapter discusses aspects to be considered when evaluating Online
Machine Learning (OML) algorithms, especially when comparing them to Batch
Machine Learning (BML) algorithms. The following considerations play an impor-
tant role:

1. How are training and test data selected?
2. How can performance be measured?
3. What procedures are available for generating benchmark data sets?

Section 5.1 describes the selection of training and test data. Section 5.2 presents an
implementation in Python for selecting training and test data. Section 5.3 describes
the calculation of performance. Section 5.4 introduces the generation of benchmark
data sets in the field of OML.

5.1 Data Selection Methods

When determining the data selection method and calculating the performance, there
is the greatest difference between BML and OML. Among other things, in OML the
resources (memory and time, but not the data) are severely limited. In addition, Cross
Validation (CV) is not possible. It is very important to determine which instances
are used for training and for testing (and possibly also for validation).

For each of the selection approaches presented in the following, a metric must be
selected, e.g., accuracy or Mean Absolute Error (MAE).

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_5&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538 a 854 56538
a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5
https://doi.org/10.1007/978-981-99-7007-0_5

48 T. Bartz-Beielstein

5.1.1 Holdout Selection

In the holdout evaluation method, the performance of the model is evaluated against
a test data set, which consists of examples that have not yet been sighted. These
examples are used only for evaluation purposes and not for the training of the model.

Definition 5.1 (Holdout) In the holdout evaluation method, the performance is eval-
uated after each batch, i.e., after a certain number of examples or observations. For
this purpose, two parameters must be defined:

1. Size of the (holdout-) window and
2. frequency of testing.

The holdout evaluation is best when current and representative holdout data are used.
Why are holdout data not always used for OML? It is not always easy or even

possible to obtain these data. In addition, the holdout data set must be representative,
which cannot be guaranteed with streaming data due to possible changes. The holdout
data of today can already be outdated tomorrow. If the period in which the holdout
data are collected is too short, these data may contain essential relationships.

5.1.2 Progressive Validation: Interleaved Test-Then-Train

In statistics, progressive validation is generally understood to be the validation over a
longer period of time, e.g., by using control charts. In the streaming data context, the
term is used for approaches in which the individual instances are first used for testing
(determining the quality of the model, the model calculates a prediction) and then
for learning (training the model). Each individual instance is analyzed according
to its arrival order. In addition to simple progressive validation, we also consider
prequential validation and delayed progressive validation.

5.1.2.1 Progresssive Validation

Definition 5.2 (Progressive Validation) Each observation can be denoted as.(Xt , yt),
where.Xt is a set of features,. yt is a label (or a prediction value), and. t denotes the time
(or simply the index). Before updating the model with the pair .(Xt , yt), the model
calculates a prediction for .Xt , so that .ŷt is calculated. Using the ground truth .yt and
the predicted value .ŷt from the model, the online metric is then updated. Common
metrics such as accuracy, MAE, Mean Squared Error (MSE), and Area Under The
Curve, Receiver Operating Characteristics (ROC, AUC) are all sum values and can
therefore be updated online.

This procedure can also be used for time series: If there are . t observations
.(x1, x2, . . . , xt), then the values .(xt−k, xt−k+1, . . . , xt−1) can be used as .Xt and the

5 Evaluation and Performance Measurement 49

value .xt as . yt . Alternatively, additional features can be calculated from the values
.(xt−k, xt−k+1, . . . , xt−1), which are then used as .Xt . Typical features are the infor-
mation about the day of the week or the season.

5.1.2.2 Prequential Validation

Definition 5.3 (Prequential Validation) Prequential validation works like progres-
sive validation (interleaved test-then-train). However, the new instances are more
important than the old ones. This is implemented by a sliding window or a decay
factor.

5.1.2.3 Delayed Progressive Validation

Typically, an OML model calculates a prediction. ŷt and then learns. This was referred
to as “progressive validation” in Sect. 5.1.2. The prediction and the observed value
can be compared to measure the correctness of the model. This approach is often used
to evaluate OML models. In some cases, this approach is not appropriate, because
the prediction and the ground truth are not available at the same time. In this case,
it makes sense to delay the process until the ground truth is available. This is called
delayed progressive validation.

Delayed Progressive Validation

While evaluating a machine learning model, the goal is to simulate production con-
ditions to get a trustworthy assessment of the model’s performance. For example,
consider the number of bicycles needed for a bike rental for the next week. Once 7
days have passed, the actual demand is known, and we can update the model. What
we really want is to evaluate the model by, for example, forecasting seven days in
advance and only updating the model when the ground truth is available (Grzenda
et al., 2020).

The delayed progressive validation is of great importance for practice: Instead of
updating the model immediately after it has made a prediction, it is only updated
when the ground truth is known. In this way, the model more accurately reflects the
real process.

50 T. Bartz-Beielstein

Fig. 5.1 Batch method with
a prediction horizon. The
training data set.Dtrain is
used once. The model. Mbml
trained on.Dtrain is tested on
the individual partitions of
the test data set.Dtest one
after the other. The lower
figure shows (as a special
case) the data sets when a
classical holdout approach is
used. In this case, the size of
the test data set is equal to
the size of the horizon

5.1.3 Machine Learning in Batch Mode with a Prediction
Horizon

The method eval_bml_horizon implements the “classical” BML approach: The
classical BML algorithm is trained once on the training data set, resulting in a model,
say .M (1)

bml, which is not changed: .M
(1)
bml = Mbml.

The model.Mbml is evaluated on the test data, where the horizon, say.h ∈ [1, stest],
comes into play: . h specifies the size of the partitions into which .Dtest is divided.
If .h = stest, then the standard procedure of Machine Learning (ML) (“train-test”) is
implemented. If .h = 1, a pure OML-setting is simulated. The OML procedure is
only simulated in this case, since the model .Mbml is not updated or retrained. The
BML approach is shown in Fig. 5.1.

If the entire test data set is used for the prediction horizon in the batch method,
i.e., .stest = h, then we obtain the classical holdout approach (see Sect. 5.1.1).

5.1.4 Landmark Batch Machine Learning with a Prediction
Horizon

The method eval_bml_landmark implements a landmark approach. The first
step is similar to the first step of the BML approach and .M (1)

bml is available. The
following steps are different: After a prediction with .M (1)

bml for the batch of data
instances from the interval .[strain, strain + h] has been calculated, the algorithm is
retrained on the interval.[1, strain + h] and an updated model.M (2)

bml is available. In the
third step of the landmark BML, .M (2)

bml calculates predictions for . [strain + h, train +
2 × h] and a new model.M (2)

bml is trained on.[1, train + 2 × h]. The landmark approach
is shown in Fig. 5.2.

5 Evaluation and Performance Measurement 51

Fig. 5.2 Landmark batch
method with an prediction
horizon

Fig. 5.3 Window-batch
method with a prediction
horizon. This division of the
training and test data set
ensures that the size of the
training data set. strain
remains unchanged and that
a prediction horizon. h of the
same size is always used

5.1.5 Window-Batch Method with Prediction Horizon

The method eval_bml_window implements a window approach. Here, too, the
first step is similar to the first step of the BML approach and .M (1)

bml is available. The
following steps are similar to the landmark approach, with one important exception:
The algorithm is not trained on the complete set of seen data. Instead, it is trained on
a sliding window of size .strain. The window batch approach is shown in Fig. 5.3.

5.1.6 Online-Machine Learning with a Prediction Horizon

The method eval_oml_horizon implements an OML approach. This approach
differs fundamentally from the batch approaches of ML, since each individual
instance is used for prediction and training. If .h = 1, a “pure” OML algorithm is
implemented. If .h > 1, the OML calculations are performed . h times.

52 T. Bartz-Beielstein

Fig. 5.4 Iterative OML
method. If the window size. h
is one, then an example is
used for testing and then for
training (updating) the OML
algorithm. If .h > 1, then the
calculations are performed. h
times and the average of
these. h results is calculated

5.1.7 Online-Maschine Learning

The method eval_oml_iter_progressive is based on the method
progressive_val_score from the package River. 1 The iterative procedure
is shown in Fig. 5.4.

Table 5.1 provides a comparative overview of the selection methods.

5.2 Determining the Training and Test Data Set
in the Package spotRiver

5.2.1 Methods for BML und OML

The BML algorithms require a training data set .Dtrain of size .strain to adapt the
model. The test data set .Dtest of size .stest is used to evaluate the model on new
(unseen) data. For the comparative evaluation of BML and OML algorithms, the
package Sequential Parameter Optimization Toolbox for River (spotRiver) provides
five different methods.

The four evaluation functions shown in Table 5.2 accept two data frames as argu-
ments: a training and a test data set. In the pure OML environment, the fifth evalua-
tion function eval_oml_iter_progressive is used. This uses only one (test)
data set, as it implements the progressive validation. The parameters are shown in
Table 5.3.

1 See https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/.

https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/
https://riverml.xyz/0.15.0/api/evaluate/progressive-val-score/

5 Evaluation and Performance Measurement 53

Table 5.1 Selection methods. The batches are represented by intervals, e.g., .[a, b]. In the OML
approaches, each instance from the interval is passed to the online algorithm separately for prediction
and updating (training)

Name Step Training inter-
val/instances

Training batch
size

Model Prediction
interval

BML horizon 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain] 0 .M (1) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML
landmark

1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

.strain + (n −
1) × h

.M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

BML window 1 .[1, strain] .strain .M (1) . [strain +
1, strain + h]

n .[1 + (n −
1) ×
h, strain +
(n − 1) × h]

.strain .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML horizon 1 .[1, strain] 1 .M (1) . [strain +
1, strain + h]

n .[1, strain +
(n − 1) × h]

1 .M (n) . [strain + (n −
1) × h +
1, strain + n ×
h]

OML iter 1 .[1, 1] 1 .M (1) . [2, 2]
n .[n, n] 1 .M (n) . [n + 1, n + 1]

Table 5.2 Evaluation functions for BML und OML

Evaluation function Description

eval_bml_horizon Section 5.1.3

eval_bml_landmark Section 5.1.4

eval_bml_window Section 5.1.5

eval_oml_horizon Section 5.1.6

54 T. Bartz-Beielstein

Table 5.3 Parameter for configuring the methods eval_bml_horizon,
eval_bml_landmark, eval_bml_window and eval_oml_horizon from the pack-
age spotRiver. A tuple of two data frames is returned. The first contains the evaluation metrics
for each batch of size horizon. The second contains the true and predicted values for each
observation in the test data set

Parameter Description

model Model. Regression- oder Classification, e.g., a
model from sklearn

train Initial training data set

test Test data set. Will be split into mini-batches of
size ‘horizon’

target_column Column name of the target variable

horizon Prediction horizon

metric Metric, e.g., from sklearn

oml_grace_period Only used for eval_oml_horizon. (Short)
period, in which the OML-model is trained, but
not evaluated. Startup phase

Example for the Method eval_oml_horizon

from river import linear_model, datasets, preprocessing
from spotRiver.evaluation.eval_bml import eval_oml_horizon
from spotRiver.utils.data_conversion import convert_to_df
from sklearn.metrics import mean_absolute_error
metric = mean_absolute_error
model = (preprocessing.StandardScaler() |

linear_model.LinearRegression())
dataset = datasets.TrumpApproval()
target_column = "Approve"
df = convert_to_df(dataset, target_column)
train = df[:500]
test = df[500:]
horizon = 10
df_eval, df_preds = eval_oml_horizon(

model, train, test, target_column,
horizon, metric=metric)

The method plot_bml_oml_horizon_metrics visualizes (1) the error
(e.g., MAE), (2) the memory consumption (MB), and (3) the calculation time (s) for
different models of ML on a given data set. The function takes a list of Pandas data
frames as input, each containing the metrics for one model. The parameters of the
method plot_bml_oml_horizon_metrics are shown in Table 5.4. Figure 5.5
shows the output of the metrics and Fig. 5.6 shows the residuals, i.e., the difference
between the current (actual) and the predicted values.

5 Evaluation and Performance Measurement 55

from spotRiver.evaluation.eval_bml import (
plot_bml_oml_horizon_metrics,
plot_bml_oml_horizon_predictions)

df_labels = ["OML Linear"]
plot_bml_oml_horizon_metrics(

df_eval,
df_labels,
metric=metric)

plot_bml_oml_horizon_predictions(df_preds,
df_labels,
target_column=target_column)

Table 5.4 Parameters for configuring the method plot_bml_oml_horizon_metrics

Parameter Description

df_eval A list of pandas data frames containing the metrics for each model. Each
data frame should contain an index column with the name of the data set
and three columns with the names of the metrics: “MAE”, “Memory
(MB)”, “CompTime (s)”

df_labels A list of strings containing the labels for each model. The length of this
list should match the length of df_eval. If None, numerical indices are
used as labels. Default is None

log_x A flag indicating whether to use a logarithmic scale for the x-axis

log_y A flag indicating whether to use a logarithmic scale for the y-axis

cumulative A flag indicating whether to plot the cumulative average error, as done in
plot_oml_iter_progressive() and in River’s
evaluate.iter_progressive_val_score() method. Time is
shown as cumulative sum (not averaged). Since memory is calculated
differently than in River’s
evaluate.iter_progressive_val_score(), the peak memory
value _ , peak = tracemalloc.get_traced_memory() is
not aggregated. Default is True

5.2.2 Methods for OML River

The methods presented so far (in Sect. 5.2.1) are equally suitable for evaluating BML
and OML models for three different data splits (1. horizon, 2. landmark and 3. win-
dow). In this section, the method eval-oml-iter-progressive is presented,
which is specifically designed for the evaluation of OML models on a streaming data
set. This is based on a method used in the River package. This makes it possible to
compare the results with those of River. However, it cannot be used to evaluate BML
models.

The method eval-oml-iter-progressive evaluates one or more OML
models on a streaming data set. The evaluation is done iteratively, and the models
are tested in each “step” of the iteration. The results are returned in the form of

56 T. Bartz-Beielstein

Fig. 5.5 Results of the method plot_bml_oml_horizon_metrics. Performance (here:
MAE, computation time and memory consumption) of an OML linear model

Fig. 5.6 Results of the method plot_bml_oml_horizon_predictions: Representation of
the values predicted by the model and the ground truth (“Actual”). It becomes clear how the OML
model approaches the ground truth over time and learns the underlying relationship

a dictionary with metrics and their values. Table 5.5 shows the parameters of the
method eval_oml-iter-progressive.

The method plot_oml_iter_progressive visualizes the results based on
the dictionary of evaluation results returned byeval_oml_iter_progressive.
The visualization is based on the visualization in River. 2 Figure 5.7 shows the output.

2 See (Incremental decision trees in River: the Hoeffding Tree case) [https://riverml.xyz/0.15.0/
recipes/on-hoeffding-trees/].

https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/
https://riverml.xyz/0.15.0/recipes/on-hoeffding-trees/

5 Evaluation and Performance Measurement 57

Table 5.5 Parameter for the configuration of the method eval_oml-iter-progressive
from the package spotRiver. A dict (dictionary) with the evaluation results is returned. The keys
are the names of the models and the values are dictionaries with the following keys: step: A list
of iteration numbers at which the model was evaluated, error: A list of weighted errors for each
iteration, r_time: A list of weighted runtimes for each iteration, memory: A list of weighted
memory consumption for each iteration and metric_name: The name of the metric used for
evaluation

Parameter Description

data set A list of River.Stream objects containing the
streaming data to be evaluated. If a single
River.Stream object is specified, it is
automatically converted to a list

metric The metric to be used for evaluation

models A dictionary of the OML models to be
evaluated. The keys are the names of the
models and the values are the model objects

step The number of iterations at which results
should be obtained. Only the predictions are
considered, not the training steps. The default
value is 100

weight_coeff The results are multiplied by
(step/n_steps)**weight_coeff,
where n_steps is the total number of
iterations. Results from the beginning have less
weight than results from the end when
weight_coeff > 1. If weight_coeff
= 0, then the results are multiplied by 1 and
each result has the same weight. The default
value is 0

log_level The logging level to use. 0 = no logging, 50 =
output only important information. Default
value is 50

from river import datasets
from spotRiver.evaluation.eval_oml import (

eval_oml_iter_progressive, plot_oml_iter_progressive)
from river import metrics as river_metrics
from river import tree as river_tree
from river import preprocessing as river_preprocessing
dataset = datasets.TrumpApproval()
model = (river_preprocessing.StandardScaler() |

river_tree.HoeffdingAdaptiveTreeRegressor(seed=1))
res_num = eval_oml_iter_progressive(

dataset = list(dataset),
step = 1,
metric = river_metrics.MAE(),
models = {"HATR": model}

plot_oml_iter_progressive(res_num)

58 T. Bartz-Beielstein

Fig. 5.7 Results of the method plot_oml_iter_progressive. The memory management
of the HATR model is clearly visible

Notebook: Progressive Validation
An example of progressive validation can be found in the GitHub repos-
itory https://github.com/sn-code-inside/online-machine-learning shows how
the delayed progressive validation can be applied using the moment and delay
parameters in the method progressive_val_score. It is exploited that
each observation in the data stream is shown to the model twice: once, to make
a prediction and once to update the model when the true value is revealed.

The moment parameter determines which variable to use as a timestamp,
while the delay parameter controls the waiting time before the true values
are revealed to the model.

Tip
Further information on progressive validation can be found in the River pack-
age:
• river: Multi-class classification
• river: Bike-sharing forecasting

In addition, Grzenda et al. (2020) is worth mentioning, which deals with
delayed, progressive validation.

https://github.com/sn-code-inside/online-machine-learning
 1882 26461 a 1882 26461 a

https://github.com/sn-code-inside/online-machine-learning/
river: Multi-class classification
 -675 44807 a -675 44807 a

https://riverml.xyz/0.15.0/introduction/getting-started/multiclass-classification/
river: Bike-sharing forecasting
 -675 45895 a -675 45895 a

https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/

5 Evaluation and Performance Measurement 59

5.3 Algorithm (Model) Performance

After the training and test data selection has been performed, the performance of
the algorithm (or model) can be estimated. For this purpose, numerous metrics are
available. Table 5.6 presents a selection of the metrics available in the package River.
The selection of a suitable metric is crucial for the analysis of OML algorithms. For
classification tasks, for example, accuracy is only a suitable metric if balanced classes
are present. Kappa statistics (see Sect. A.4) are better suited for OML. Thomas and
Uminsky (2022) give hints for the selection of suitable metrics.

The computation of the memory consumption is only simple at first glance. Pro-
gramming languages such as Python or R perform memory management routines
independently, which cannot be controlled by the user. For example, the garbage col-
lector is not executed immediately after a call, since the program uses its own memory
optimization routines, and it is sometimes more advantageous from its point of view
not to delete the data. There are also many dependencies between individual objects,
so they cannot simply be deleted even if this is desirable from the user’s point of
view. These remarks apply equally to BML and OML methods. According to our
research (exchange with R experts), the estimation of the memory consumption in
the programming language R is more difficult than in Python. This was one of the
reasons why the studies presented in Chaps. 9 and 10 were carried out with Python.
The module tracemalloc, introduced in Python 3.4, was used.

5.4 Data Stream and Drift Generators

Most software packages provide functions for generating synthetic data streams
(“data-stream generators”). As an example, we have listed the generators available
in the package scikit-multiflow in Sect. 5.4. We also describe the SEA syn-
thetic dataset (SEA) and Friedman-Drift generators, which are used in many OML
publications that examine drift.

5.4.1 Data Stream Generators in Sklearn

For example, the packagescikit-multiflow provides the following data stream
generators:

• Sine generator and anomaly sine generator
• Mixed data stream generator
• Random Radial Basis Function stream generator and Random Radial Basis Func-
tion stream generator with concept drift

• Waveform stream generator
• Regression generator.

tracemalloc
 3548 26429 a 3548 26429 a

https://docs.python.org/3/library/tracemalloc.html

60 T. Bartz-Beielstein

Table 5.6 Metrics in the package River
river Class Metric Short Description

accuracy Accuracy Percentage of correct results

balanced_- accuracy Balanced accuracy Average of the recall obtained for
each class, i.e., the average of the true
positive rates for each class. It is used
for unbalanced data sets

CohenKappa Cohen’s Kappa score Computes the proportion of
observations for which both
classifiers predicted the same
category and the probabilities that
occur with a random prediction. See
also Sect. A.4

cross_entropy Cross Entropy Multi-class generalization of the
logarithmic loss

f1 F1 Binary F1 score

fbeta Binary F-Beta score A weighted harmonic mean between
precision and recall

fowlkes_mallows Fowlkes-Mallows Index External evaluation method for
determining the similarity between
two clusters

geometric_mean Geometric mean Indicator of the performance of a
classifier in the presence of class
imbalance

log_loss Binary logarithmic loss Indicates how close the prediction
probability is to the corresponding
actual value. Also known as cross
entropy

mae Mean absolute error Mean absolute error

mcc Matthews correlation coefficient Takes into account true and false
positive and negative results. Also
suitable for unbalanced classes

mse Mean squared error Mean squared error

mutual_info Mutual Information between two
clusterings

Measure of similarity between two
labels of the same data

precision Binary precision score Measure of the classifier’s ability to
identify a sample as positive if it is
actually positive

r2 Coefficient of determination (.R2)
score

Ratio of explained variance to total
variance

rand Rand Index Measure of similarity between two
data clusters

recall Binary recall score Indicates how many of the actual
positive cases were correctly
identified as positive by the model

roc_auc Receiving Operating Characteristic
Area Under the Curve.

Approximation to the true ROC AUC

silhouette Silhouette coefficient Indicates how well an object fits to its
own cluster

smape Symmetric mean absolute percentage
error

Accuracy measure based on relative
errors

WeightedF1 Weighted-average F1 score Computes the F1 score per class and
then computes a global weighted
average by using the support of each
class

5 Evaluation and Performance Measurement 61

Tip
By sorting the observations, concept drift can be simulated (Bifet & Gavaldà,
2009).

5.4.2 SEA-Drift Generator

The SEA is a frequently cited data set. Its generator implements the data stream with
abrupt drift as described in Street and Kim (2001). Each observation consists of three
features. Only the first two features are relevant. The target variable is binary and
positive (true) if the sum of the features exceeds a certain threshold. There are four
threshold values to choose from. Concept drift can be introduced at any time during
the stream by switching the threshold.

In detail, the SEA data set is generated as follows: First, .n = 60,000 random
points are generated in a three-dimensional feature space. The features have values
between 0 and 10, with only the first two features (. f1 and . f2) being relevant. The
. n points are then divided into four blocks of 15,000 points each. In each block, the
class membership of a point is determined by means of a threshold value . τi , where
. i indicates the respective block. The threshold values .τ1 = 8, .τ2 = 9, .τ3 = 7 and
.τ4 = 9.5 are chosen. In addition, the data is noisy (“We inserted about 10% class
noise into each block of data.”) by swapping 10% of the class memberships. Finally,
a test set (.nt = 10,000) is determined, consisting of 2,500 data points from each
block.

The Python package River provides the function SEA to generate the data.
Figure 5.8 shows an instantiation of the SEA drift data.

Fig. 5.8 SEA-Data with drift. Concept changes occur after.250, 000 steps

62 T. Bartz-Beielstein

5.4.3 Friedman-Drift Generator

The Friedman-Drift generator introduced in Definition 1.8 is another generator that is
frequently cited in the literature (Ikonomovska, 2012). It generates a data stream that
simulates the characteristics of streaming data that occur in practice. The generator
is implemented in River as FriedmanDrift and is used in Sect. 9.2.

5.5 Summary

The interleaved test-then-train (or prequential evaluation) is a general method for
evaluating learning algorithms in streaming scenarios. Interleaved test-then-train
opens up interesting possibilities: The system is able to monitor the development of
the learning process itself and to diagnose its development itself. The delayed pro-
gressive evaluation is the subject of current research and enables a realistic analysis
of complex changes in online data streams. In addition to quality, however, other
criteria/metrics must be taken into account, which are imposed by data stream prop-
erties. The available memory is one of the most important constraints. Another aspect
is time, because algorithms must process the examples as quickly as (if not faster
than) they arrive.

Note
The experimental studies in Chap. 9 use the following three properties for the
comparison of BML and OML methods:
1. performance,
2. memory consumption and
3. time consumption.

References

Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Proceedings
of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data
Analysis VIII, IDA’09 (pp. 249–260). Springer.

Grzenda, M., Gomes, H. M., & Bifet, A. (2020). Delayed labelling evaluation for data streams.
Data Mining and Knowledge Discovery, 34(5), 1237–1266.

Ikonomovska, E. (2012). Algorithms for learning regression trees and ensembles on evolving data
streams. Ph.D. Thesis, Jozef Stefan International Postgraduate School.

Street, W. N., & Kim, Y. S. (2001). A streaming ensemble algorithm (SEA) for large-scale classi-
fication. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’01 (pp. 377–382). Association for Computing Machinery.

Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for AI.
Patterns, 3(5), 1–8.

Chapter 6
Special Requirements for Online
Machine Learning Methods

Thomas Bartz-Beielstein

Abstract This chapter investigates whether Online Machine Learning (OML) algo-
rithms require special steps and considerations compared to batch learning with
respect to typical practice challenges such as missing data (Sect. 6.1), categorical
attributes (Sect. 6.2), outliers (Sect. 6.3), imbalanced data (Sect. 6.4), or an extremely
large number of variables (Sect. 6.5). Section 6.6 describes important aspects such as
fairness (Fair Machine Learning (ML)) or interpretability (Interpretable ML) in the
context of OML algorithms.

6.1 Missing Data, Imputation

Missing values in a data stream can often only be replaced (or “imputed”) using
very simple strategies such as replacing missing values with zero, mean, median, or
mode in existing OML frameworks. River provides the StatImputer method for
this purpose. StatImputer replaces missing values with a statistic, e.g., the mean
of the data already observed. During a call to learn_one, the StatImputer
updates a statistic for each feature whenever a numerical feature is observed. When
transform_one is called, each feature with a None value is replaced by the current
value of the corresponding statistic.

Tip: Pipelines in River
Starting from version 0.19.0 calling learn_one in a pipeline will update each
part of the pipeline in turn. Details can be found on https://riverml.xyz/0.21.0/
releases/0.19.0/. The application of the methods learn_one and transform_one
in pipelines is described in Sect. 8.1.4.

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_6

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_6&domain=pdf
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
thomas.bartz-beielstein@th-koeln.de
 854 56538
a 854 56538 a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6
https://doi.org/10.1007/978-981-99-7007-0_6

64 T. Bartz-Beielstein

Adequate imputations can be defined by providing a tuple for each feature to
be imputed so that the statistics are conditioned on a specific feature. For example,
a missing temperature value can be replaced by the average temperature of a spe-
cific weather condition (e.g., sun, rain, and snowfall). This allows data sets to be
completed in which information on temperature, but not on weather conditions, is
missing. Overall, however, it must be accepted that a much less mature methodology
is available for imputation on data streams so far.

Further investigation is required into the different sensitivity to missing features
in the data stream for OML and Batch Machine Learning (BML) methods: While
the quality of BML methods usually deteriorates when a feature is removed, this
does not lead to a significant deterioration in the tree-based OML method Hoeffding
Tree Regressor (HTR). It is also interesting to note that the quality converges almost
independently of the removed feature to a value. This value is comparable to the
quality achieved by the BML method on the complete data set (Bifet et al., 2018).

Standard Data Preprocessing Methods
Similar to BML, OML provides various methods for data preprocessing, in
particular for scaling (mean zero and standard deviation one) and normalization
(range from...... a to b, typically between zero and one or minus one and one).

6.2 Categorical Attributes

In order to process categorical variables in a data stream, the procedures known from
the classical BML context such as one-hot encoding are available. It is interesting for
OML methods that new features or levels can be added during the process without
having to retrain the model from scratch.

6.3 Outlier and Anomaly Detection

Standard OML methods for anomaly detection are the same as those known from
BML methods. Simple thresholding methods such as constant thresholds or quantile
thresholds are available.

Constant and Quantil Thresholds

If a constant threshold is used, but the model does not detect any values above
this constant value, no observations of the anomaly class would be assigned at all.

6 Special Requirements for Online Machine Learning Methods 65

In contrast, a percentile threshold would always classify values as anomalies: A
percentile threshold of 95% will always classify 5% of the observations as anomalies.

These standard anomaly detection procedures do not require any information
about the type or characteristics of the outliers. The anomaly detection algorithm
only needs to learn what is normal in order to detect deviations (which can be larger
or smaller than the normal values). Important: The model does not need to have seen
a single anomaly in order to detect one.

6.3.1 Additional Anomaly Detection Methods for Time-Series
Data

Besides these simple thresholding methods, there are a variety of other anomaly
detection algorithms. Aggarwal (2017) describes subtle differences between the
offline and online (streaming) settings, since in the former case the entire history
of the stream is available for analysis, whereas in the latter case, only the stream
up to the current time is available. In the offline environment, the retrospective view
allows the discovery of outliers with more sophisticated models. Labels describing
whether an anomaly is present may be available to monitor the anomaly detection
process in both the time series and multidimensional outlier detection settings. In
general, supervised methods almost always outperform unsupervised methods due to
their ability to discover application-specific anomalies. The general recommendation
is therefore to use supervised methods when they are available.

Time series can be interpreted as continuous data or discrete sequences. The con-
cept of temporal continuity is defined differently for discrete data than for continuous
data. For discrete data, a lack of ordering of the data values significantly affects the
types of methods used for outlier analysis. For a more in-depth discussion, we refer
to Aggarwal (2017).

6.3.2 One-Class SVM for Anomaly Detection

The one-class Support Vector Machine (SVM) is an unsupervised, binary classifier
that learns a decision function for novelty detection: Classifying new data as similar
to or different from the training set. The algorithm is based on the classification
algorithm of the SVM. SVMs are able to generate a non-linear classification. The
one-class SVM is an adaptation of the regular SVM: While in classical, supervised
SVMs the classes (target variables) must be specified, the one-class SVM algorithm
does not require this information. It acts as if all data were in a single class, which

66 T. Bartz-Beielstein

represents the normal state. Anomaly detection algorithms only have to learn one
class. Everything that does not fit into this class is classified as an outlier.

6.3.3 Algorithms for Anomaly Detection in river

river provides two OML algorithms for anomaly detection: An online version
of One-Class SVM (OneClassSVM) and an online version of Isolation Forests
(HalfSpaceTrees).

6.4 Imbalanced Data

There are a number of standard approaches to dealing with imbalanced data
(Korstanje, 2022). As an example, the “Synthetic Minority Oversampling Technique
(SMOTE)” method can be mentioned here. SMOTE creates synthetic (or “fake”)
data points that are very similar to the data points in the positive class.

Notebook: Imbalanced Data
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning demonstrates how imbalanced data can be
handled using
. Importance Weighting
. Focal Loss
. Undersampling of the majority class
. Oversampling of the minority class
. Sampling with a desired sample size
. Hybrid methods.

6.5 Large Number of Features (Attributes)

The method SelectKBest from the River package removes all but the k best
features from a data set by calculating a similarity measure on the features. A “leader-
board” stores the similarities of the features. Another method is
PoissonInclusion (McMahan et al., 2013). This method decides randomly
whether a new feature is added. A new feature is selected with probability p. The
frequency with which a feature must be seen before it is added to the model fol-
lows a geometric distribution with expectation1/p. This feature selection method

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning

6 Special Requirements for Online Machine Learning Methods 67

should be used when there is a very large number of features, of which only a
few are meaningful, i.e., in situations with so-called “sparse features”. Finally, the
VarianceThreshold method can be mentioned, which removes features with
low variance.

Notebook: Large Number of Features
The Jupyter Notebook in the GitHub repository https://github.com/sn-code-
inside/online-machine-learning demonstrates the use of the method
SelectKBest on a simulated data stream, the use of the method
PoissonInclusion on the TrumpApproval data set, and the use of
the method VarianceThreshold on a simulated data set.

6.6 FAIR, Interpretability, and Explainability

Chen et al. (2022) present a current overview of interpretability in ML. Zhang et al.
(2021) describe the first online version of Random Forests with fairness constraints.
This includes a mechanism to change the trade-off between accuracy and fairness so
that it can be adapted to specific applications.

Halstead et al. (2021) describe the advantage of OML over BML with respect
to explainability when concept drift occurs: In BML, adaptation to concept drift is
achieved by deleting the current model and incrementally rebuilding it. Many OML
algorithms additionally store previously created models and reuse them to adapt more
efficiently when drift causes a previously known state to be assumed again (recurrent
drift). Reuse provides improved classification performance over rebuilding a model
and provides an indicator of the hidden state (the context...... K , as described in Definition
1.7) of the generative process. Changes in the context......K cannot generally be observed
while reusing a model is easy to observe. By linking context changes to an observable
event, they become more transparent. Halstead et al. (2021) define the co-occurrence
of models and contexts as the “transparency” of a system. The patterns of model reuse
captured by a transparent system can be used for further performance and explanation
benefits. Transparency can be used to improve performance and explainability at the
same time.

Borchani et al. (2015) represent the context in terms of latent variables to generate
explanations. They show that the changes in the latent variables are related to the
changes in the real data. Real data could be economic factors such as unemployment.
This approach could be used to explain the adjustments made by a system by referring
to a change in the real world or to identify real factors that are important for the
classification task, i.e., the factors that cause drift.

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning

68 T. Bartz-Beielstein

y_mean_by_hour

y_mean_by_hour

 0.1512

humidity

> 0.1512

humidity

 -0.903

Mean: 0.120205 | Var: 0.007615
samples: 3848

> -0.903

y_mean_by_hour

 1.729

Mean: 0.013655 | Var: 0.000344
samples: 601

> 1.729

Mean: 0.012531 | Var: 0.000181
samples: 972

 -1.3175

Mean: 0.035865 | Var: 0.001229
samples: 2322

> -1.3175

month

 0.8195

Mean: 0.160676 | Var: 0.016088
samples: 1573

> 0.8195

Mean: 0.286271 | Var: 0.017861
samples: 4003

 1.2101

Mean: 0.160971 | Var: 0.007855
samples: 1081

> 1.2101

Fig. 6.1 Regression tree. The tree models the bike-sharing problem presented in Chap. 9. The
hyperparameter y_mean_by_hour used in the root node has the greatest effect. This result
suggests that the differences in the course of a day are greater than the differences between individual
days of the week or the changes caused by weather conditions

Regression models have the great advantage that in many cases it is possible to
explain the relationships on the basis of the model coefficients. However, if complex
effects occur, such as higher-order interactions, this is no longer possible.

Trees have the advantage that they can be explained by the decision rules used
to split the nodes. Thus, the entire tree can be viewed as a graph (dendrogram)
by simply traversing the tree. The trees themselves provide an explanation of the
model. Figure 6.1 shows a regression tree created during a hyperparameter tuning
using the Sequential Parameter Optimization Toolbox (SPOT). A complete tuning
process using additional tools for explainability is described in Chap. 10.

The hyperparameter tuning performed with Hyperparameter Tuning (HPT) tools
such as SPOT facilitates explainability, since the complexity of the trees is usually
also reduced. For complex models such as forests, it is often too difficult to look at
all dendrograms. Estimates of “Variable Importance” are a suitable complement or
even a possible replacement.

References

Aggarwal, C. C. (2017). Outlier analysis. Springer.
Bifet, A., et al. (2018). Machine learning for data streams with practical examples in MOA. MIT
Press.

Borchani, H., et al. (2015). Modeling concept drift: A probabilistic graphical model based approach.
In E. Fromont, T. De Bie, & M. van Leeuwen (Eds.), Advances in intelligent data analysis XIV.
Lecture notes in computer science (Vol. 9385, pp. 72–83). Springer.

Chen, V., et al. (2022). Interpretable machine learning: Moving from Mythos to Diagnostics. Queue,
19(6), 28–56.

6 Special Requirements for Online Machine Learning Methods 69

Halstead, B., et al. (2021). Recurring concept memory management in data streams: Exploiting data
stream concept evolution to improve performance and transparency. Data Mining and Knowledge
Discovery, 35(3), 796–836.

Korstanje, J. (2022). Machine learning for streaming data with Python. Packt.
McMahan, H. B., et al. (2013). Ad click prediction: A view from the trenches. In Proceedings of

the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’13, New York, NY, USA (pp. 1222–1230). Association for Computing Machinery.

Zhang, W., et al. (2021). FARF: A fair and adaptive random forests classifier. In Advances in
Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual
Event, May 11–14, 2021, Proceedings, Part II (pp. 245–256). Springer.

Chapter 7
Practical Applications of Online Machine
Learning

Steffen Moritz, Florian Dumpert, Christian Jung, Thomas Bartz-Beielstein,
and Eva Bartz

Abstract This chapter addresses prerequisites, challenges, and potentials of apply-
ing Online Machine Learning (OML) methods in practice. These aspects are illus-
trated by means of domain-specific examples from different application fields. One of
these surveyed application fields is official statistics (Sect. 7.1). Section 7.1.1 shows,
that OML offers forward-looking potential for official statistics, but presently also
comes with a lot of challenges. Especially compliance with quality assurance pro-
cedures (Sect. 7.1.2) and integration into existing process architectures (Sect. 7.1.3)
prove to be major challenges. A survey about Machine Learning (ML) usage in Ger-
man and other international statistical institutions shows that OML is currently still
rather a niche topic in official statistics (Sect. 7.1.4). However, there are also domains,
closely linked to official statistics, that either already feature OML applications or
show promising potential for OML usage (Sect. 7.1.5). The second surveyed appli-
cation field is the process of hot rolling in the steel industry (Sect. 7.2). In general, the
process quality of hot rolling (Sect. 7.2.1) benefits from ML predictions (Sect. 7.2.2).
However, because of being susceptible to drift, the complex hot rolling process cannot
be adequately described without models that are continuously updated (Sect. 7.2.3).
These characteristics make industrial hot rolling a suitable use case for the appli-
cation of OML (Sect. 7.2.4). General aspects important for using OML in practice

S. Moritz (B) · F. Dumpert
Federal Statistical Office of Germany, Wiesbaden, Germany
e-mail: steffen.moritz@destatis.de

F. Dumpert
e-mail: florian.dumpert@destatis.de

C. Jung
SMS Group GmbH, Siegen, Germany
e-mail: christian.jung@sms-group.com

T. Bartz-Beielstein
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

E. Bartz
Bartz & Bartz GmbH, Gummersbach, Germany
e-mail: eva.bartz@bartzundbartz.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_7

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_7&domain=pdf
steffen.moritz@destatis.de
 854
41717 a 854 41717 a

mailto:steffen.moritz@destatis.de
florian.dumpert@destatis.de
 854 44595 a 854 44595 a

mailto:florian.dumpert@destatis.de
christian.jung@sms-group.com
 854 48580 a 854 48580
a

mailto:christian.jung@sms-group.com
thomas.bartz-beielstein@th-koeln.de
 854 52565
a 854 52565 a

mailto:thomas.bartz-beielstein@th-koeln.de
eva.bartz@bartzundbartz.de
 854 56550 a 854 56550 a

mailto:eva.bartz@bartzundbartz.de
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7
https://doi.org/10.1007/978-981-99-7007-0_7

72 S. Moritz et al.

are briefly summarized in Sect. 7.3. These include reflections about model deploy-
ment (Sect. 7.3.1) and considerations regarding differences in required labor hours
in comparison to Batch Machine Learning (BML) (Sect. 7.3.2).

7.1 Applications and Application Perspectives in Official
Statistics

Official statistics are statistics compiled by official institutions on various topics, for
example, demography, economy, environment, or health. The constitutive element
for the production of these statistics is a statutory regulation. In Germany, entities
such as the Federal Statistical Office, the statistical offices of the federal states,
and other significant institutions, including the Deutsche Bundesbank, the German
Environment Agency, and the Robert Koch Institute, are primarily responsible for
the creation of official statistics.

Progressive digitization has greatly expanded the possibilities of official statistics
in recent years. ML, in particular, plays a pivotal role in extracting additional insights
and facilitating more rapid and efficient data processing. This efficiency augmenta-
tion is partially crucial to enable the utilization of emerging data sources, such as
those associated with Big Data, within the purview of official statistics. However,
akin to non-statistical sectors like industry, the integration of novel methods and
technologies necessitates a progressive and gradual adaptation process.

This adaptation encompasses the assimilation of new methodologies into mature,
established processes, the evaluation of potential impacts on facets such as data qual-
ity, and the revision of associated guidelines and procedures. Official statistics are
presently undergoing this transformative phase of institutionalization and standard-
ization. The discussion on quality aspects of this transformation can be found in the
study by Yung et al. (2022). Consequently, ML solutions are increasingly becoming
part of the repertoire at national statistical institutes, as evidenced by the work of
Beck et al. (2018a).

As a special sub-field of ML, OML, yet again, offers new and extended possi-
bilities, albeit with a corresponding increase in challenges. Detailed in Sect. 7.1.1,
these extended possibilities seem the most promising in use cases that require the
swift processing of extensive data sets. However, the sophistication and advancement
of OML processes within the realm of official statistics cannot be equated with the
foundation established for conventional batch-based ML.

Highlighted in Sect. 7.1.3, especially the “online aspect”, i.e., the continual model
updating, creates challenges when integrating OML into existing structures. Even in
the context of traditional ML, it is necessary (and is currently being done) to determine
the prerequisites for fulfilling the quality criteria of official statistics. OML introduces
yet another layer of questions that necessitate resolution, as elucidated in Sect. 7.1.2.

This complexity partly explains why OML has been sparingly implemented in
statistical institutions thus far. However, as discussed in Sect. 7.1.4, once these hurdles

7 Practical Applications of Online Machine Learning 73

are effectively overcome, there is a multitude of intriguing potential applications that
may be realized.

7.1.1 Potentials and Challenges

To ascertain the potential of OML for official statistics, it is pertinent to address the
following queries:

1. What are the relevant aspects (possibilities, obstacles) for the use of OML from
a practical perspective?

2. How can official statistics benefit from these new possibilities?
3. Which specific problems and obstacles arise in the context of official statistics?

A key aspect to consider here is the added value and extended possibilities that
OML presents in comparison to the more established method of BML.

7.1.1.1 Relevant Aspects for Practical Utilization

As described in the previous book chapters, OML allows replacing a resource-
intensive, computation-heavy batch run at the end of the data acquisition phase with
a continuous model update that can already start during the acquisition phase. This
capability facilitates model construction in scenarios where complete data set train-
ing would otherwise be unattainable (out-of-core). Moreover, OML is also useful in
situations where it is necessary to adapt dynamically to slight shifts in the statistical
properties of the data over time (concept drift). Furthermore, the sequential updating
of the model during data acquisition allows the model’s predictive capabilities to be
already employed during the data collection process itself.

In summary, the following advantages hold practical relevance:

1. Balanced computational load (extremely long and intensive runs at the very end
can be avoided).

2. Feasibility of processing extensive data sets (data that cannot be accommodated
in the working memory in its entirety can be managed).

3. Dynamic adaptation to concept drift (manual model adjustments could become
redundant).

4. Early usability of the model (predictions can be made well before the completion
of data collection and processing).

However, it is evident that not every problem thus far addressed with traditional
ML necessarily lends itself to an OML solution. Based on the experiments conducted
in Chap. 9, a compromise in prediction quality is anticipated with OML as compared
to BML. Furthermore, in terms of implementation and deployment (refer to Sect. 7.3),
conventional BML methods typically involve less complexity and thus require less

74 S. Moritz et al.

manual effort. Given that predictions can be generated while the data is being received
continuously, it is crucial to ensure the model’s quality at this stage. Unlike the BML
approach, which mandates a single quality check towards the end, OML requires
ongoing quality monitoring. Consequently, the design of the quality control process
must be adapted accordingly.

In summary, the following disadvantages are relevant for practice:

1. Reduced prediction quality (when compared to BML).
2. Increased implementation efforts (more intricate implementation and mainte-

nance).
3. Complex monitoring (continuous quality control is necessary).

Moreover, there exist scenarios where the online paradigm is fundamentally non-
applicable. For instance, data may not always become sequentially available. In these
circumstances, the deployment of OML is only reasonable for out-of-core issues,
wherein the available hardware (memory) is inadequate for data processing.

Note: Practical Application
OML should be employed in applications where its strengths and additional
capabilities over BML can be harnessed effectively. Implementing a tradi-
tional BML problem using an OML algorithm does not inherently confer any
benefits.

7.1.1.2 Potentials of OML in Official Statistics

The significant potential offered by ML and Big Data has already been discussed
elsewhere—for instance Schweinfest and Jansen (2021) or Radermacher (2018)—
and both are integral to the future evolution of official statistics. However, the same
is not yet true for OML. Therefore, our goal here is to assess the potential that OML
could present for official statistics, beyond the basic capabilities of BML.

At first glance, the processes and data associated with official statistics surprisingly
align well with OML. Firstly, statistics are published repeatedly at regular intervals,
clearly a continuous process that could justify the efforts of adapting an OML model.
Additionally, the data has very obviously a temporal nature: fresh data is generated
prior to each subsequent statistics release. Concept drift can also be an issue, e.g.,
due to inflation or other developments between publication periods.

Yet, on closer inspection, it becomes evident that this is not the quintessential
OML example of a constant influx of new data, possibly every second. Data is often
published annually; for some statistics, it is also published quarterly or monthly.
The single data points required for the statistics are often gathered individually, but
are typically processed collectively afterwards (including overarching plausibility
checks). During the steps in which OML would be relevant, data seldom arrives as

7 Practical Applications of Online Machine Learning 75

a data stream, but rather as a comprehensive delivery or in the form of large partial
deliveries.

Nevertheless, there exists potential for OML within official statistics:

Models for out-of-core data: This undisputed OML advantage may also be rel-
evant for official statistics. New data sources in the big data domain, such as
satellite data, but also existing collections of individual case statistical data, such
as in tax statistics, can become too large for working memory. OML makes it pos-
sible to build models with the complete data, which can then be used to automate
processing or to make predictions.

Time saving in single process steps: The statistical preparation process usually
consists of several sub-steps. ML methods can be used in these sub-steps (for
example, for automatic plausibility checks). An evaluation run over the entire data
set can sometimes take several days, depending on the amount of data. If OML
models are trained with subsets that are already available, the runtime required at
the end can be reduced, thus also accelerating statistics production overall.

Continuous process steps: Currently, the statistics production process often neces-
sitates that individual process steps are completed before the commencement of
the next. In many cases, this is essential, for instance, all data must first be gath-
ered to train a BML model. OML and online algorithms in general could allow
individual data points to advance in the preparation process without waiting for
all other data points to arrive and complete the current production step.

Continuous pre-releases and nowcasting: Nowcasting is a forecasting methodol-
ogy that generates predictions for the present or recent past. Using already avail-
able observations, an unavailable variable is inferred. For example, the Gross
Domestic Product (GDP) might not yet be finalized, but data correlated with it
is already available as the underlying time period has elapsed. OML can be used
here to create frequently updated nowcasts. This could help provide information
quicker, enabling (policy) decisions to be made based on the most recent data.

In summary, OML offers considerable potential for official statistics, enabling
statistical authorities to process larger volumes of data more rapidly and efficiently.
OML is interesting both for process automation and for predictive methods in the
form of nowcasts.

Nowcasting

Nowcasting is a method that generates predictions for the present or the recent past
that have not yet been documented (Andreini et al., 2023). It stands apart from tradi-
tional forecasting techniques. Unlike classical forecasting, nowcasting does seldom
project into the future, but instead focuses on estimates up to the edge of the present.
In some instances, nowcasting projections do extend into the immediate future in the
form of short-term forecasts.

In the field of economics, there are predictive models for real-time economic
analyses that, for example, estimate the German GDP using nowcasting, even prior
to the publication of actual quarterly results for the current quarter. This predictive

76 S. Moritz et al.

model is employed by entities such as the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) and plays a crucial role in short-term economic
analyses. It bridges time gaps resulting from the fact that crucial indicators such as
GDP can only be provided with a significant delay. Typically, GDP figures for a
quarter are not available until several weeks after the end of the quarter. Nowcasting
estimates the GDP of the present in near real time.

7.1.1.3 Challenges of OML in Official Statistics

When implementing OML in official statistics, both general and specific problems
can arise. A generic difficulty is that an OML model often does not deliver the same
prediction accuracy as a BML model. It is also more challenging to integrate OML
into the existing IT infrastructure, and there are fewer software solutions available,
which are also less mature compared to their BML counterparts. However, there exist
also challenges that are, at least in their manifestation, specifically relevant to official
statistics.

These are the specific problems when trying to use OML in official statistics:

Compatibility with quality criteria: In order to foster comparability and preserve
trust in official statistics, stringent methodological principles and criteria are
employed. There are agreed-upon quality principles between the statistical pro-
ducers, e.g., between the statistical offices of the German federal states, between
EU member states, and also, to some extent, on an international level. As discussed
in Sect. 7.1.2, OML complicates the fulfillment of some of these criteria.

Integration into existing processes: Maintaining consistently high quality necessi-
tates defined and formalized processes. For official statistics, there already exists
an official, time-tested framework that delineates individual process steps. As
outlined in Sect. 7.1.3, OML, with its continuous online approach, partly follows
a paradigm that is not readily compatible with existing processes described in the
existing framework.

On the one hand, these challenges are characteristic for official statistics; on the
other hand, there are other practical users who have these problems in a similar
form. In industry, for example, a similarly conservative approach is often taken in
the production of safety-critical components, and effects on defined quality principles
are extensively evaluated.

7.1.2 Compatibility with Quality Criteria

Official statistics form an integral part of a society’s information system and pro-
vide essential data to parliament, government and administration, the judiciary, the
economy, and the public that later serve as the foundation for decision-making. To

7 Practical Applications of Online Machine Learning 77

maintain trust in official statistics, extreme emphasis is put on the quality of publica-
tions. To ensure comparability and standardization, this is done in conjunction with
national and international partners. As part of this standardization, quality frame-
works have been defined at the EU level, which are further developed at the national
level in the form of quality manuals (Quality Assurance Framework of the European
Statistical System, 2019; Qualitätshandbuch der Statistischen Ämter des Bundes und
der Länder, 2021).

This is a comprehensive catalog that defines, among other things, quality prin-
ciples for processes and products. It also defines guidelines for quality control and
organization.

ML itself is not explicitly mentioned in the quality manuals; for this, there are
separate documents, coordinated in work groups and committees, that have derived
requirements for ML solutions from the overarching quality requirements.

For example, in Yung et al. (2022), a document resulting from the UNECE High-
-Level Group for the Modernisation of Official Statistics (HLG-MOS), the require-
ments for ML algorithms are defined as follows:

Explainability: Explainability is defined as the ability to understand the logic
underlying the algorithm used in prediction or analysis, as well as the result-
ing outcomes. Explainability is greatly facilitated by illustrating the relationship
between input and output variables and providing necessary information about
the methodology underpinning the algorithm.

Accuracy: The accuracy of statistical information refers to the extent to which it
accurately describes the phenomena it is intended to measure. That is, it represents
the proximity of computations or estimates to the exact or true values that the
statistics are supposed to measure.

Reproducibility: At a fundamental level, reproducibility is defined as the ability to
replicate results using the same data and the original algorithm. This is referred to
as “method reproducibility”. At a higher level, it is defined as achieving consistent
results from new studies using the same experimental methods (“reproducibility
of results”) or similar results using different study designs, experimental methods,
or analytical decisions (“inferential reproducibility”).

Timeliness and punctuality: Timeliness is defined here as the time required to cre-
ate a result, from conceptualization to the creation of the algorithm, processing,
and production. A distinction should be made between the timeliness of develop-
ment and production, with the former generally taking longer than the latter.

Cost-effectiveness: Cost-effectiveness is defined as the degree of effectiveness of
the results relative to their costs. It should be noted that the total costs for carrying
out the work, including fixed costs such as infrastructure and staff training, and
running costs such as production costs, should be taken into account.

Saidani et al. (2023) add robustness as another dimension.
One positive point that can surely be attributed to OML is its timeliness. OML

can potentially deliver results more promptly than BML procedures.
The point of cost-effectiveness can fall both in favor of and against OML. By

dividing the computational steps over a longer period of time, it might become pos-

UNECE High-Level Group for the Modernisation of Official Statistics (HLG-MOS)
 28286
16688 a 28286 16688 a

https://statswiki.unece.org/display/hlgbas

78 S. Moritz et al.

sible to work with hardware with lower maximum computational capacity. However,
the sum of the required computational time over the entire process (for a compara-
ble model class) is higher. In terms of personnel, arguments can be made in both
directions. On the one hand, OML models are more complex to operate and test.
On the other hand, they may need to be adjusted less frequently due to their ability
to react to concept drift. Monitoring the models requires more effort for OML, as
they must be continuously monitored, whereas for BML only the final run needs to
be checked. There are certainly other cost factors, but in general, the costs are very
problem-specific and can hardly be generalized.

Explainability is worse in OML than in conventional BML. This is partly because
the fundamental process (for the same model class) is more complex to understand.
It is also due to the fact that there is not as much tooling available for OML as there
is for BML and there is a lack of evaluation packages.

Accuracy must also be compromised. Looking only at predictions for a consol-
idated final data set alone, the expected accuracy in OML is likely to be lower.
However, this should always be checked on a case-by-case basis.

Reproducibility is another issue—in order to be able to reproduce the results of
the OML algorithm again, not only the original data but also the order in which they
entered the OML algorithm would have to be stored.

Many of the problems can be addressed with measures or could be significantly
mitigated with better available supplementary software for OML (for instance, in
terms of reproducibility and explainability). However, it also shows that the software
and package ecosystem around OML is not yet as extensive.

Essentially, no hard exclusion criterion has been found that would make OML
incompatible with the quality guidelines of official statistics. OML has, in principle,
similar (albeit sometimes more pronounced) challenges regarding compliance with
quality guidelines as BML. When testing the criteria, it is important to consider the
individual case, i.e., to check each new BML or OML application separately.

Summing up across all ML quality dimensions relevant to official statistics, OML
performs slightly worse overall than pure BML. This underscores our finding from the
beginning of the chapter that OML is by no means a standard BML substitute. OML
should be considered for applications where it can provide its specific advantages,
such as nowcasting.

7.1.3 Embedding in the Statistics Production Process

In order to achieve consistent quality and produce comparable results, defined and
formalized processes are required. The statistical production process at the Federal
Statistical Office of Germany is oriented on the Generic Statistical Business Process
Model (2019), a standard framework developed by the United Nations Economic
Commission for Europe (UNECE). The GSBPM describes statistical production in
a process-oriented manner. It describes the complete statistical production process,
from concept design to evaluation.

7 Practical Applications of Online Machine Learning 79

In a similar way to the quality frameworks, it provides the framework within the
European Statistical System and is adapted by the National Statistical Institutes to
their needs. For Germany, the GSBPM is concretized in the more detailed GMAS—
Geschäftsprozessmodell Amtliche Statistik (Blumöhr et al., 2017).

In a survey conducted in 2017/2018 that investigated the use of ML methods
across several statistical institutions, Beck et al. (2018a) identified the primary sub-
processes of the GSBPM where ML solutions are extensively employed. As antici-
pated, these are predominantly the Collect, Process, and Analysis processes, wherein
data processing that can be partially automated occurs. In general, the overall pro-
cess is mostly designed in such a way that one sub-process has to be completed
before the next sub-process can start. This has clear advantages in terms of quality
control because it is possible to check step-by-step whether the outputs of the sub-
process meet the specific quality criteria. However, it is a challenge to integrate OML
processes into this evolved framework (Fig. 7.1).

When data primarily progresses in batches from one sub-process to another, OML
cannot maximize its potential, apart from instances of out-of-core computing.

Advocating for a seamless transition between sub-processes, wherein data points
from the same statistical survey can be in different sub-processes at a given point in

Fig. 7.1 Use of ML algorithms in sub-processes of GSBPM (grayed out red means no ML use
in that sub-process). Source Beck et al. (2018a). Based on Generic Statistical Business Process
Model (2019). This work is licensed under the Creative Commons Attribution 4.0 International
License. Attributed to: United Nations Economic Commission for Europe (UNECE), on behalf of
the international statistical community

80 S. Moritz et al.

time, would help to leverage the benefits of OML. However, this would also require a
considerable paradigm shift in many entrenched statistical procedures. Which means
some of the current quality control processes would have to be completely redesigned.

A transition in the processes, geared towards a more OML-friendly application,
does not appear imminent at this time. Given the challenges mentioned in integrating
OML within the existing standardized process frameworks, OML is set to persist as
a specialist instrument for the near future. At present, OML can truly demonstrate
its potential only in a limited number of areas where individual sub-processes permit
a fluid transition to subsequent phases. Additionally, OML might prove advanta-
geous in applications operating outside the constraints of formalized procedures, for
instance, in the realm of experimental statistics and digital data products.

7.1.4 (Online) Machine Learning Applications in Statistical
Institutions

The two documents by Dumpert and Beck (2017) and by Beck et al. (2018b) were
used as a starting point for the research. These contain an inventory of the use of ML
procedures in the Federal Statistical Office of Germany and in national and selected
international statistical institutions in 2017.

The documents reveal an extensive implementation of batch learning procedures
across the surveyed institutions. Nevertheless, it is noteworthy that none of the
projects incorporated online learning procedures. A subsequent internet investigation
did not disclose any signs on the websites of the surveyed institutions that suggest
any shift in this practice.

A literature review also failed to produce any evidence concerning the application
of online learning procedures in relation to the participants of the 2017 study.

Table 7.1 incorporates all the institutions that implemented BML in at least five
projects (at different stages from conceptualization to production at the time of the
survey). These statistical institutions could thus be characterized as “early adopters”
of ML methodologies. If a subsequent survey were to be conducted, the aforemen-
tioned institutions should be the primary contacts.

In summary, we are not aware of any example from official statistics so far in
which OML is used in the classical statistics production process.

As described in Sect. 7.1.5, there are some applications that are at least related
to official statistics and, depending on the task definition, could certainly also be
performed by a National Statistical Institute.

As expounded upon in Sect. 7.1.3, incorporating OML into the traditional sta-
tistical production process is not a straightforward task. Particularly in the field of
nowcasting, OML holds considerable potential, offering the ability to continuously
integrate new data into the model and to make predictions at any given point in time
based on the current state of training. OML could also provide added value in less
formalized processes involving new digital data or real-time indicators. In this con-

7 Practical Applications of Online Machine Learning 81

Table 7.1 Institutions with at least five BML projects in 2017

Country Institution Number of BML projects 2017

Canada Statistics Canada 36

Germany Federal Statistical Office of
Germany

31

Germany GESIS 16

USA U.S. Bureau of Labor Statistics 11

New Zeeland Stats NZ 9

Germany IAB 8

USA U.S. Department of
Agriculture NAA

7

Switzerland Swiss Federal Statistical Office 6

Australia Australian Bureau of Statistics 6

Germany Deutsche Bundesbank 5

France INSEE 5

text, OML could expedite processing, provided that the constraint of data primarily
transitioning between sub-processes in batch form can be eliminated.

Conclusion: OML Applications in Official Statistics
OML does have potential in the area of official statistics, but this is severely
limited by the fact that current processes in statistics production are based on
batch processing, for understandable reasons. Thus, the two main challenges
are: 1. integration into existing processes, and 2. compatibility with quality
criteria.

So far, we are not aware of any examples from official statistics where OML
is used in the classical statistics production process. In our opinion, the greatest
short-term application potential for OML is hidden in the marginal areas of
classical official statistics. Conceivable applications are real-time indicators,
nowcasting and novel applications with experimental digital data.

7.1.5 Other Applications with Reference to Official Statistics

In a literature search on applications of online-learning methods related to official
statistics, the studies summarized in this section were found. While not all of these
use cases have been implemented with classical OML methods, they are basically
problems for which OML would be very well suited.

82 S. Moritz et al.

Alvarez et al. (2022) describe a tree-based incremental learning model to estimate
house prices using publicly available information on geography, city characteristics,
transportation, and properties for sale. Previous ML models capture the marginal
impact of property characteristics and location on prices by using large data sets for
training. In contrast, this scenario is limited to small data sets that become available
on a daily basis. Therefore, the OML model learns from daily city data and uses
incremental learning to provide accurate price estimates every day. The results show
that house prices are strongly influenced by the characteristics of the city and its
infrastructure, and that incremental models efficiently adapt to the nature of the
house price estimation task.

Pandemic forecasting is another application area where OML techniques can be
used. Especially during the COVID-19 pandemic, predictions were important to
derive political decisions and policies. Suárez-Cetrulo et al. (2021) compare algo-
rithms for BML, such as Long Short-Term Memory (LSTM), with online incremental
ML algorithms to adapt to daily changes in disease spread and predict future COVID-
19 cases. The study conducted three experiments, where the first two used a static
hold-out approach and the third used a prior evaluation. The results showed that
incremental methods are a promising approach to adapt to changes in disease over
time, as they are always up-to-date and have a much lower computational cost than
other techniques, such as LSTMs. Kimura et al. (2022) introduce EpiCast, a data
mining and forecasting method based on nonlinear differential equations. EpiCast is
effective, adaptive, and scalable, working with large epidemiologic data streams to
capture global trends and site-specific patterns. The method incrementally monitors
current dynamic patterns and identifies abrupt changes in data streams. In experi-
ments on real data sets, EpiCast outperformed existing state-of-the-art methods in
accuracy and execution speed.

Incremental learning methods can be applied to sentiment prediction for elections.
Chatterjee and Gupta (2021) developed a scalable, real-time, REST API-based sys-
tem that uses bilingual, emoji-based, multi-class sentiment classification. The system
includes an incremental learning framework to facilitate phased learning when sys-
tem accuracy decreases.

In crisis situations, quickly available information about economic development is
crucial for decision-making. Senftleben and Strohsal (2019) describe nowcasting as
a real-time indicator for business cycle analysis, with the BMWK’s nowcast model
producing daily technical forecasts for the current quarter. Andreini et al. (2023)
develop a nowcasting model for the German economy that outperforms alternatives
and produces forecasts for GDP and other key variables. Steinberg et al. (2021) note
that many relevant economic data are published with a lag, so higher-frequency indi-
cators are evaluated to assess current developments. These include monthly statistics
on production or the order situation, as well as survey-based sentiment indicators.
Other tools for timely evaluation are econometric nowcasting models or flash esti-
mates, which automatically evaluate current indicators and can use them to calculate
a purely technical forecast of economic development in the current quarter.

Advances in Artificial Intelligence (AI) and digitization have led to new opportu-
nities for macroeconomic analysis, with the German Federal Ministry for Economic

7 Practical Applications of Online Machine Learning 83

Affairs and Climate Action (BMWK) exploring the potential of statistical methods
for observing and projecting economic development in Germany. For example, spe-
cial statistical methods can be used to extract valuable new information from large,
initially often unstructured data sources (Big Data). Aparicio and Bertolotto (2020)
introduce online price indexes to forecast the consumer price index, significantly
outperforming Bloomberg surveys and benchmark statistical forecasts. Online price
indexes can anticipate changes in official inflation trends more than one month in
advance. The authors’ baseline forecasts specification also outperforms benchmark
statistical forecasts for Australia, Canada, France, Germany, Greece, Ireland, Italy,
the Netherlands, the United Kingdom, and the United States (U.S.). Similarly, the
quarterly forecast for the U.S. inflation rate calculated in Aparicio and Bertolotto
(2020) consistently outperforms the Survey of Professional Forecasters (SPF).

7.1.6 Summary: OML in Official Statistics

In general, OML has been relatively underexplored in the realm of official statistics
production organizations. As illustrated in Sect. 7.1.5, there exist a few promising
applications in domains closely related to official statistics. Yet, it is clear that OML
provides notable advantages such as accelerated model updating or simplified han-
dling of substantial volumes of incoming data. However, the use case must also be
appropriate for an OML application. As delineated in this chapter, only a subset of
problems that until now have been resolved with ML are genuinely suitable for an
OML implementation. Moreover, beyond the apparent predictive quality trade-off,
practitioners are faced with numerous other challenges.

OML is not just a new, alternative ML algorithm that simply replaces previous
algorithms. Rather, it is a paradigm shift—from batch processing to data stream
processing—a shift that offers new possibilities, but also requires a corresponding
realignment of processes. This introduces a range of difficulties and is likely the
reason why we observe so few example applications in productive use.

Making changes to a mature, established process structure, which is mostly based
on step-by-step processing of complete batches, is not easily possible and rather
a long-term effort. Furthermore, OML is difficult to integrate into the existing IT
landscapes. Currently available standard software is often not designed for online
processes and furthermore, the required OML algorithms are often just not available.

These are difficulties that basically all official statistics institutions have to over-
come. For existing applications, a changeover is therefore difficult and costly. OML
applications will likely emerge in newly conceived applications, provided the appli-
cation scenario is appropriate. Nevertheless, we believe that OML will increasingly
be considered among the possible solutions to evaluate in future processes. We par-
ticularly see the potential for OML applications in official statistics for applications
with high-frequency, new digital data, real-time indicators, and nowcasting.

84 S. Moritz et al.

7.2 Industrial Application of OML in the Context of Hot
Rolling

7.2.1 Hot Rolling

Hot rolling refers to a process where heated material is plastically deformed between
two or more rolls in order to produce a thinner product. Today’s rolling mills require
a huge variety of different materials and geometries to be processed within close
tolerances. An overview of different plant layouts and a detailed process explanation
are given in Ginzburg and Ballas (2000), Hinkfoth (2003), Hensel and Spittel (1978),
and Weber (1973). The process is shown in Fig. 7.2.

In order to reach these tolerances, the prediction of the process behavior and
control of process parameters should be as accurate as possible. Process prediction
is done with various physical-based software models that are interconnected. These
models have the task of predicting important process parameters. The term “models”
hereby refers to software that describes the physical process as accurately as possible.
This software is normally developed by implementing the physics behind the process.
Some assumptions made in the software are simplifications, the result of Finite
Element Method (FEM) studies, or data-driven approaches.

All of those simplifications are made because, even with the power of today’s
CPUs, the calculation would take too long. The calculations for a single product may
change depending on the current status of the product and the available information.

Fig. 7.2 Hot rolling steel. Attribution: Erik Charlton from Menlo Park, USA, CC BY 2.0 https://
creativecommons.org/licenses/by/2.0, via Wikimedia Commons

https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0

7 Practical Applications of Online Machine Learning 85

The accuracy of the physical models that describe the rolling process is of major
importance. According to their predictions, the mill will be operated. Minimizing
any residual error therefore is the main task for the online models.

During the production process, several measurements are collected, and the pre-
dictions of the models are updated. Typical sources of these measurements are pres-
sure transducers, drive measurements, optical measurements, or even isotopic mea-
surements. Some of these predictions will directly influence the further processing
of the same product.

A typical example is a width measurement, which takes place at multiple process
steps. The measurement is used by the process models to incrementally update the
prediction. This new prediction will then be used within the production process.
Therefore, the update should be done as quickly as possible. A typical requirement
would be to have the updated prediction available within one second or even less.

Other predictions, like, e.g., geometry or temperature measurements on the final
product, are used to update the prediction for the next products. Here, the requirement
would be to have an updated prediction available whenever the new prediction can
be used for the next product. This depends on the plant configuration and may range
from a few seconds up to a few minutes.

7.2.2 Machine Learning in Hot Rolling

Since the accuracy of the prediction is directly correlated to the quality of the prod-
uct, it is important to use every measurement that is available and which may help
to reduce any prediction error. As mentioned in Sect. 1.2, the BML has multiple
disadvantages. Especially important in the hot rolling process are drift, memory
limitations, and the occurrence of new data.

All material grades that are rolled are described by their corresponding chemical
elements. Nowadays, hundreds of different material grades are known. The physical
models are using databases for the description of material properties like resistance,
density, heat transfer, or heat conductivity. This is done separately for each material
grade. Since the prediction of the material is a key element for the process, most
residual errors of the process models show a dependency on the rolled material
grade. A gentle introduction to the material model and its task is given in Jung
(2019). New material grades are continuously developed and may be introduced at
any time. Although the initial prediction of those materials might be wrong, it should
automatically improve over time. A typical solution for this problem is to use online
learning models separately for each material grade.

86 S. Moritz et al.

Fig. 7.3 Example of the occurrence of drift caused by bad maintenance within hot rolling. Sensor
offset plotted over time. The sensor offset shows some dynamic behavior and starts increasing
continuously after a certain period

7.2.3 Drift in Hot Rolling

Dynamic changes occur inherently in real-world applications. Changes can affect
the distribution over time of the dependent variables, the output variable, or both.
The drift may occur from various sources, like sensor drift, wrong calibration, or
bad maintenance. New and unknown materials might be introduced to the process
without any prior knowledge. Therefore, the process models are currently using OML
wherever possible to reduce the residual errors.

Figures 7.3 and 7.4 show typical examples of drift that may occur in the hot rolling
process:

. In Fig. 7.3 a temperature measurement done with an optical camera system is
compared to the contact temperature measurement after rolling in the context of
aluminum rolling. The difference between both measurement systems is shown
as a boxplot over some production weeks. It can be seen that over several weeks,
the deviation starts to increase. After the maintenance was done, the deviation
immediately decreased to a normal range (not shown in the plot).

7 Practical Applications of Online Machine Learning 87

Fig. 7.4 Example for the occurrence of event-based drift within hot rolling. Target value (roll
diameter) plotted over time. The roll diameter was measured incorrectly. This resulted in a prediction
offset at the time when this roll was mounted in the mill

. Figure 7.4 shows another common problem that was observed in a so-called rough-
ing mill. The plot shows the deviation of the measured width and the target width.
At sample 40,000 an abrupt drift can be observed. This could, e.g., be caused by
a wrongly measured roll diameter that is used in the automation system, or also
due to maintenance or other reasons.

While the first example can be classified as regular label drift, the second example
manifests as concept drift, see Sect. 1.2.2. The spread of the rolling process is strongly
dependent on the width reduction and on the occurrence of drift; the same width
reduction will result in a different spread because of the error within the roll diameter
or calibration.

7.2.4 Application of OML in Hot Rolling

The complex hot-rolling process cannot be adequately described without models
that are continuously updated. There are various process models available for the

88 S. Moritz et al.

Fig. 7.5 Performance of a typical online algorithm that is used for compensation of drift. For each
material grade in the data set a sliding average is used. Shown is the MAE over the whole data set.
The first 4,000 data points were used to initialize the algorithm and are not used for the determination
of prediction performance

description of the process. Only a subset of them typically learn incrementally. The
most important prediction parameters are the following:

1. Roll Force
2. Roll Torque
3. Temperature
4. Width
5. Thickness

As shown in Fig. 7.3, the temperature sensor may be affected by drift. Figure 7.5
shows the raw data of the sensor, and Fig. 7.6 shows the performance of a simple
online algorithm that compensates this drift. Together with the raw sensor drift, two
categorical variables and three numerical variables are used by the online algorithm.
The raw sensor data was limited to values between . −50 and 50 and the drift starts
approximately at sample number 6,000.

The first 4,000 data points were used for training and are therefore neglected in
the determination of the Mean Absolute Error (MAE). It can be seen that the online
algorithm is compensating this drift quite well, i.e., the performance in terms of
MAE is stable. If the raw sensor data had not been limited to a maximum of 50 K
then the drift would be more clearly visible and even higher. Additionally, an even
better online correction of the drift would be expected.

Figure 7.7 shows the difference between the measured and the target width and
represents a subset of the data shown in Fig. 7.4. This prediction error, together
with multiple objective variables, is used to reduce the residual error. In Fig. 7.8 the
performance in terms of MAE of a similar algorithm that was used within the real-

7 Practical Applications of Online Machine Learning 89

Fig. 7.6 Performance of a typical online algorithm which is used for compensation of drift. For
each material grade in the data set a sliding average is used. Shown is the MAE over the whole
data set. The first 4,000 data points were used to initialize the algorithm and are not used for the
determination of prediction performance

Fig. 7.7 Width prediction error over time. The data represents a subset of the data shown in Fig. 7.4.
They are used to train a simple online algorithm, which should reduce the residual errors

world process is shown. The algorithm was initialized using the first 7,000 samples,
and the corresponding MAE was set to 0 until sample number 7,001.

The drift that can be seen at approximately sample number 8,000 was compensated
quite well, and the performance almost remained constant within some limits. This is
important for the real process since the plant is still able to produce sellable products.

90 S. Moritz et al.

Fig. 7.8 The performance of the online algorithm, which was initialized with the first 7,000 samples,
is shown in terms of MAE

7.2.5 Summary: OML in Hot Rolling

Several problems may arise within the hot rolling process that require adjustments
to prediction algorithms. Therefore, online algorithms are playing an important role.
Batch learning may be possible for some scenarios, but due to the fast update require-
ment, iterative learning, i.e., OML, should be used and is already established.

Most often, ML algorithms in hot rolling have to deal with categorical and contin-
uous variables. A common approach is to use a separate model for each categorical
variable or a dummy coding strategy for those variables. Other strategies for handling
categorical variables are described in Jung (2019).

Currently, only simple algorithms like linear regression or support vector regres-
sion are used. The reason for this is the requirement for having a fast and robust
prediction available as soon as possible. If more complex algorithms are developed
and can be used for OML, it would be interesting to see their performance in com-
parison to the traditional algorithms.

7.3 Summary: Aspects of OML Implementation in Practice

Insights into the practical deployment of OML processes remain scarce, rendering the
juxtaposition with BML methods a challenging endeavor. This challenge is further
amplified due to the unique nature of each application, which can vary significantly
across different companies or application scenarios. Despite these complexities, this
comparison is of substantial interest. Moving forward, we delve into various aspects

7 Practical Applications of Online Machine Learning 91

of implementing OML methods in practice, taking into account the distinctive char-
acteristics of each application.

7.3.1 Recommendations for the Implementation Process

When considering the OML implementation process, the problems described in Sect.
1.2 that arise when using BML procedures on online data provide a good starting
point.

First, it is important to determine whether OML procedures should be considered
at all. Is there a need because of one or more of the following problems?

1. Memory requirements
2. Drift
3. Unknown data
4. Accessibility of the data.

If this need exists, consideration should then be given to how the OML process
can be implemented and whether a successful outcome is realistic. To do this, the
following points should be considered:

1. Requirements for the outcome
2. Estimation of resources
3. Properties of the data
4. Properties of the algorithms (hyperparameters).

These four points are explained in the following: Regarding the accuracy of the
results, it should be noted that OML methods achieve approximate results. If the
data is completely available and can be processed in its entirety, BML methods pro-
vide better results. Even if OML methods theoretically need fewer resources (mem-
ory, runtime) than BML methods, this advantage is not easy to achieve in practice,
because, e.g., the trees can become arbitrarily large. Thus, a clever choice of hyper-
parameters is crucial for the use of OML methods. Moreover, in many cases, with
online data, data quality is of even greater importance for the algorithms than with
offline data. Appropriate data preprocessing is essential. For a true online deploy-
ment, data pre-processing must, of course, happen online, which brings additional
challenges. Currently, there are also only a few freely available OML software pack-
ages (e.g., the River package is very promising, but as of December 2023 it is still
only in version 0.21.0). Also, continuous evaluation of the model’s performance and
monitoring system behavior are crucial in an online learning setup.

92 S. Moritz et al.

Considerations for the Implementation Process

. Clarification: Are OML procedures really necessary?

. How do BML procedures perform?

. How are the OML hyperparameters set?

. Can testing be initially conducted on small data sets?

. What does an experimental design look like?

. How should quality be monitored during ongoing operations?

7.3.2 Expenditure for Implementation and Maintenance

Considering the diverse spectrum of use cases, each characterized by its unique
challenges and parameters, the absence of precise data in the academic literature
comparing the resource and time demands associated with model updating in the
context of OML and BML is not surprising.

Typically, the implementation of OML methods demands a relatively high level of
effort. This is because, in contrast to their BML counterparts, OML models seldom
offer an “out-of-the-box” solution and often require customization to suit specific
problems. In addition to these implementation costs, it is crucial to factor in the
ongoing expenses for maintenance and regular oversight of the models when per-
forming a profitability analysis of OML methods. Although certain OML models
exhibit the capacity to respond to concept drift to some degree, the quality of pre-
dictions should be routinely scrutinized, and the models should be adjusted if the
deviations become excessively large. Broadly, the necessity for fundamental adjust-
ments to models in practical applications is frequently underestimated. For example,
it is not rare to observe evolution in the data foundation over time, with variables
undergoing addition, modification, or complete removal.

7.3.3 Application and Diffusion in Practice

The implementation of OML in practical use cases ultimately hinges on whether the
benefits of its use outweigh the potential downsides, and if it generates sufficient
overall added value.

In the two use cases examined in this chapter, the situation was quite different:

. In the domain of official statistics, it emerged that there are still several legacy
challenges to overcome, which is why there were hardly any applications found

7 Practical Applications of Online Machine Learning 93

within the core area of official statistics. However, in closely related fields, some
applications do exist, as they do not encounter these challenges to the same extent.

. The situation is entirely different in the hot rolling use case, where, due to specific
requirements such as, e.g., adaptation to drift, a shift towards OML solutions
appears to be inevitable.

This is also somehow in accordance with our overall findings, which suggest
that the implementation of OML is only sensible where its advantages can be fully
leveraged. OML is currently predominantly used in areas, where this is the case.
Consequently, these are typically applications where large data streams are generated,
and swift evaluations of these data are required. Typical examples that can be found
online of such use cases include sensor data, real-time applications, warning systems,
and systems within the realm of the Internet of Things (IoT). Specific examples would
be, e.g., production lines in industry (Soto et al., 2019), real-time occupancy detection
in smart buildings (Elkhoukhi et al., 2022), real-time cyber-power event and intrusion
classification (Adhikari et al., 2018), smart traffic management (Nallaperuma et al.,
2019), or sentiment analysis on Twitter (Rezaei & Jalali, 2017).

However, caution should be exercised when interpreting these reports from the
academic world. The extent to which these methods are actually being utilized pro-
ductively in regular companies and institutions is not necessarily apparent from these
rather academic reports. Overall, despite the documented use cases in the aforemen-
tioned fields, OML does not seem to have been extensively adopted or achieved
significant breakthroughs in other areas, as can also be inferred from the fact that the
OML software landscape is clearly still underdeveloped.

7.3.4 Overall Conclusions

The practical implementation of OML involves numerous challenges and entails a
multitude of considerations. One such crucial contemplation is discerning whether
its application is indeed beneficial or advantageous within a given context. OML
demonstrates significant potential in scenarios favoring its unique characteristics–
specifically, those featuring massive data streams or necessitating real-time evalua-
tions.

As demonstrated in Sect. 7.2, in scenarios that are perfectly suited for it, the
application of OML seems almost intuitive. This is because OML offers effective
solutions to requirements such as adapting to drift and managing massive volumes
of incoming data.

Although some applications in official statistics seem well-suited for OML, our
exploration revealed that other factors, not directly related to performance, signif-
icantly influence its implementation. Integrating OML into existing processes can
indeed present a formidable challenge. Additionally, quality aspects such as reduced
accuracy or complicated reproducibility and interpretability pose significant hurdles.
The current state-of-the-art in OML, which is still evolving, often cannot yet provide

94 S. Moritz et al.

comprehensive solutions to these multifaceted problems, thereby raising pertinent
questions about its readiness for widespread adoption.

Interestingly, the decision to implement OML instead of BML involves con-
sidering more nuanced factors. These factors include the availability of hardware
resources, existing expertise, and the compatibility of OML software products with
the current IT infrastructure. For instance, if an organization has ample computa-
tional resources, it might be more feasible to attempt running everything as BML,
even if it is resource-intensive.

It is also worth noting that the trade-off between classification performance and
speed is not a simple binary choice between BML and OML. Even within batch
processing, various degrees of subtlety exist based on factors such as the training
window size, the number of considered training data, the number of considered
variables and observations, and the type of model used. There is always an option to
adjust some of these parameters to achieve faster batch processing, albeit at the cost
of classification performance. For instance, one could opt for a faster BML model
instead of a slower one, say, Support Vector Machine (SVM).

This is also a trend frequently observed in OML application publications available
online, where comparisons among various methods and models are often presented.
Furthermore, it is not unlikely that in many scenarios, even though they are well-
suited for OML, the decision ultimately leans towards BML.

In general, based on the literature, it can be asserted that OML applications are
predominantly found in domains where the unique strengths of OML perfectly align
with the requirements of the problem. In these instances, the implementation of
OML emerges as a beneficial choice, underscoring its significant potential within a
carefully chosen set of application scenarios.

The ongoing proliferation and adoption of OML are likely to be influenced by the
continuing trend of increasing data volumes. Larger and more frequent data streams
can strain the capacity of existing infrastructure. Nevertheless, this trend is mitigated
by the simultaneous advent of decreasing computational costs, expanded storage
availability, and continuous optimization of BML methodologies.

Therefore, the usage of OML, at this stage, can be seen as a carefully considered
choice rather than an automatic selection, one that involves a detailed assessment of
both the problem at hand and the available resources and expertise. Deploying OML
should ideally be a strategic decision, enacted only when truly necessary. As OML
continues to evolve and mature, its practical applications are likely to expand, but
its role in practice will remain tightly bound to the unique needs and constraints of
each individual use case.

7 Practical Applications of Online Machine Learning 95

References

Adhikari, U., Morris, T. H., & Pan, S. (2018). Applying Hoeffding adaptive trees for real-time
cyber-power event and intrusion classification. IEEE Transactions on Smart Grid, 9(5), 4049–
4060. https://doi.org/10.1109/TSG.2017.2647778

Alvarez, F., Roman-Rangel, E., & Montiel, L. V. (2022). Incremental learning for property price
estimation using location-based services and open data. Engineering Applications of Artificial
Intelligence, 107, 104513.

Andreini, P., et al. (2023). Nowcasting German GDP: Foreign factors, financial markets, and model
averaging. International Journal of Forecasting, 39(1), 298–313. ISSN: 0169-2070. https://doi.
org/10.1016/jijforecast.2021.11.009

Aparicio, D., & Bertolotto, M. I. (2020). Forecasting inflation with online prices. International
Journal of Forecasting, 36(2), 232–247.

Beck, M., Dumpert, F., & Feuerhake, J. (2018a). Machine learning in official statistics.
arXiv:1812.10422

Beck, M., Dumpert, F., & Feuerhake, J. (2018). Proof of concept machine learning - Abschluss-
bericht. Technical Report, Statistisches Bundesamt (Destatis), Wiesbaden.

Blumöhr, T., Teichmann, C., & Noack, A. (2017). Standardisierung der Prozesse: 14 Jahre AG
SteP. WISTA -Wirtschaft und Statistik, 5, 58–75. https://www.destatis.de/DE/Methoden/WISTA-
Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html

Chatterjee, S., & Gupta, S. (2021). Incremental real-time learning framework for sentiment classi-
fication: Indian general election 2019, a case study. In 2021 IEEE 6th International Conference
on Big Data Analytics, ICBDA 2021 (pp. 198–203). https://doi.org/10.1109/ICBDA51983.2021.
9402992

Dumpert, F., & Beck, M. (2017). Einsatz von Machine-Learning-Verfahren in amtlichen
Unternehmensstatistiken. AStA Wirtschafts- und Sozialstatistisches Archiv, 11(2), 83–106.

Elkhoukhi, H., et al. (2022). Using stream data processing for real-time occupancy detection in
smart buildings. Sensors, 22(6). ISSN: 1424-8220. https://doi.org/10.3390/s22062371. https://
www.mdpi.com/1424-8220/22/6/2371

Generic Statistical Business Process Model - GSBPM (2019). https://www.statswiki.unece.org/
display/GSBPM/GSBPM+v5.1

Ginzburg, V., & Ballas, R. (2000). Flat rolling fundamentals. In Manufacturing engineering and
materials processing. Taylor & Francis.

Hensel, A., & Spittel, T. (1978). Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Verlag
Grundstoffindustrie.

Hinkfoth, R. (2003). Massivumformung. Wissenschaftsverlag.
Jung, C. (2019). Data-driven optimization of hot rolling processess. https://katalog.ub.tu-dortmund.
de/id/ir01388a:ubd.lobid:990365227020206441

Kimura, T., et al. (2022). Fast mining and forecasting of co-evolving epidemiological data streams.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD’22, New York, NY, USA (pp. 3157–3167). Association for Computing Machinery.

Nallaperuma, D., et al. (2019). Online incremental machine learning platform for big data-driven
smart traffic management. IEEE Transactions on Intelligent Transportation Systems, 20(12),
4679–4690. https://doi.org/10.1109/TITS.2019.2924883

Qualitätshandbuch der Statistischen Ämter des Bundes und der Länder. (2021). 1(21). https://www.
destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf

Quality Assurance Framework of the European Statistical System. (2019). 2.0. https://ec.europa.
eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf

Radermacher, W. J. (2018). Official statistics in the era of big data opportunities and threats. Inter-
national Journal of Data Science and Analytics, 6(3), 225–231. https://doi.org/10.1007/s41060-
018-0124-z

https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
https://doi.org/10.1016/jijforecast.2021.11.009
arXiv:1812.10422
 -1185 15581 a -1185 15581 a

http://arxiv.org/abs/1812.10422
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://www.destatis.de/DE/Methoden/WISTA-Wirtschaft-und-Statistik/2017/05/standardisierung-prozesse-052017.html
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.1109/ICBDA51983.2021.9402992
https://doi.org/10.3390/s22062371
https://doi.org/10.3390/s22062371
https://doi.org/10.3390/s22062371
https://doi.org/10.3390/s22062371
https://doi.org/10.3390/s22062371
https://doi.org/10.3390/s22062371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.mdpi.com/1424-8220/22/6/2371
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://www.statswiki.unece.org/display/GSBPM/GSBPM+v5.1
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://katalog.ub.tu-dortmund.de/id/ir01388a:ubd.lobid:990365227020206441
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://ec.europa.eu/eurostat/documents/64157/4392716/ESSQAF-V2.0-final.pdf
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z
https://doi.org/10.1007/s41060-018-0124-z

96 S. Moritz et al.

Rezaei, Z., & Jalali, M. (2017). Sentiment analysis on Twitter using McDiarmid tree algorithm.
In 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) (pp.
33–36). https://doi.org/10.1109/ICCKE.2017.8167924

Saidani, Y., et al. (2023). Qualitätsdimensionen Maschinellen Lernens in der Amtlichen Statistik.
AStA Wirtschafts- und Sozialstatistisches Archiv, 17, 253–303. https://doi.org/10.1007/s11943-
023-00329-7

Schweinfest, S., & Jansen, R. (2021) Data science and official statistics: Toward a new data culture.
Harvard Data Science Review, 3(4). https://doi.org/10.1162/99608f92.c1237762. https://hdsr.
mitpress.mit.edu/pub/1g514ljw/release/4

Senftleben, C., & Strohsal, T. (2019). Nowcasting: Ein Echtzeit- Indikator für die Konjunktur-
analyse. Schlaglichter der Wirtschaftspolitik, 7, 12–14. https://www.bmwk.de/Redaktion/DE/
Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit-indikator-
fuer-die-konjunkturanalyse.html

Soto, J. A. C., Tavakolizadeh, F., & Gyulai, D. (2019). An online machine learning framework for
early detection of product failures in an Industry 4.0 context. International Journal of Computer
Integrated Manufacturing, 32(4–5), 452–465. https://doi.org/10.1080/0951192X.2019.1571238

Steinberg, P., Börnsen, N., & Neumann, D. (2021). Digitale Ordnungspolitik -Wirtschaftspolitik
daten- und evidenzbasiert weiterentwickeln. Wirtschaftsdienst, 101(9), 706–712.

Suárez-Cetrulo, A. L., Kumar, A., & Miralles-Pechun, L. (2021). Modelling the COVID-19 virus
evolution with incremental machine learning. arXiv:2104.09325

Weber, K. (1973). Grundlagen des Bandwalzens. VEB Deutscher Verlag fuer Grundstoffindustrie.
Yung, W., et al. (2022). A quality framework for statistical algorithms. Statistical Journal of the
IAOS, 38(1). 291–308 (IOS Press). https://doi.org/10.3233/SJI-210875. https://content.iospress.
com/articles/statistical-journal-of-the-iaos/sji210875

https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1109/ICCKE.2017.8167924
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1007/ s11943-023-00329-7
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://doi.org/10.1162/99608f92.c1237762
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://hdsr.mitpress.mit.edu/pub/1g514ljw/release/4
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://www.bmwk.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/07/kapitel-1-3-nowcasting-einechtzeit- indikator-fuer-die-konjunkturanalyse.html
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
https://doi.org/10.1080/0951192X.2019.1571238
arXiv:2104.09325
 16125 20451 a 16125
20451 a

http://arxiv.org/abs/2104.09325
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://doi.org/10.3233/SJI-210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875
https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210875

Chapter 8
Open-Source Software for Online
Machine Learning

Thomas Bartz-Beielstein

Abstract In contrast to Batch Machine Learning (BML), there are only a few
open-source software packages for Online Machine Learning (OML). This chapter
describes the availability of open-source software packages (especially in R/Python)
that provide OML methods and algorithms to solve tasks such as regression, classifi-
cation, clustering, or outlier detection. Section 8.1 gives an overview of the software,
followed by a description of the corresponding packages. Then, Sect. 8.2 provides a
comparative overview of the scope of the individual software packages. The chapter
concludes with a comparison of the most important programming languages in the
field of Machine Learning (ML) (Sect. 8.3).

8.1 Overview and Description of Software Packages
for Online Machine Learning

Table 8.1 provides an overview of the software packages. The selection of packages
consists of two R, one Python and one Java package. The Java package is included
for two reasons: first, it is one of the oldest and most popular open-source software
packages for data stream mining, and second, both R packages depend on it. The
following section briefly describes the individual packages.

8.1.1 MOA

MOA (Bifet & Holmes, 2010) is one of the oldest and most popular open-source
software packages for data stream mining. It contains a collection of streaming data
algorithms for supervised (classification, regression, etc.) and unsupervised learning
(clustering, etc.) in Java. MOA is developed by the University of Waikato. It provides
a graphical user interface, but can also be used via the command line in the terminal

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_8

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_8&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56550 a 854 56550
a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8
https://doi.org/10.1007/978-981-99-7007-0_8

98 T. Bartz-Beielstein

Table 8.1 OML open-source software

Software Language Last update Remarks References

MOA Java 2021 Established,
optional GUI

Bifet et al. (2018)

RMOA R 2022 Focus on
classification

Wijffels (2014)

Stream R 2022 Focus on
clustering

Hahsler et al.
(2017b)

River Python 2022 Current, active
development,
deep learning

Montiel et al.
(2021)

or the Java programming interface (API). MOA received several releases per year
until 2021. The last release is from April 2023.

8.1.2 RMOA

RMOA (Wijffels, 2014) provides an interface between the programming language
R and the software package MOA. The package is developed by a single person at
irregular intervals. The last update was released in July 2022. However, it must be
taken into account that RMOA is an interface to the MOA version 2014.04. This
is an outdated MOA version from 2014, which can no longer be found in the release
history of the MOA GitHub page. RMOA focuses mainly on classification models,
but also includes some regression models.

8.1.3 Stream

The R package stream (Hahsler et al., 2017a) provides, in addition to the data stream
mining algorithms, the possibility of simulating and modeling data streams. The
focus is on clustering algorithms. Like the package RMOA, it is maintained by a
main developer and has had at least one new release per year in the last 3 years. As
an extension package, streamMOA exists. This extension, like RMOA, provides an
interface to MOA to make the clustering algorithms from MOA available in R. The
MOA release 18.06.0 (June 2018) is used for this purpose.

8.1.4 River

Recently, there has been a rapid development of OML algorithms for Python. In
particular, the package River is worth mentioning, which will be discussed in more
detail below.

8 Open-Source Software for Online Machine Learning 99

River is a relatively new Python package for OML. It is the result of the fusion of
the packages Creme and Scikit-Multiflow. The scikit-multiflow framework builds on
other well-known open-source frameworks such as scikit-learn, MOA, and MEKA.
Therefore, River is already a well-developed package, even though it is very new
under this name. Several main developers are actively working on the package. In
2022 alone, there were six releases. River supports various ML tasks, including
regression, classification, and clustering. River can also be used for ad hoc tasks,
such as computing online metrics and detecting concept drift. In a Python environ-
ment, River is the most user-friendly OML package, as it works well with Python
dictionaries. Therefore, it can be easily used in the context of web applications where
JSON data is abundant.

Pipelines in the River package use a special approach adapted to OML, which is
fundamentally different from the approach used for BML algorithms. This enables
efficient and flexible data preprocessing.

Tip
The following description is valid for River version <= 0.18.0. The new
behaviour is described by the River developers as follows:

Starting with version 0.19.0, calling “learn_one in a pipeline will update
each part of the pipeline in turn. Before the unsupervised parts of the pipeline
were updated during predict_one. This is more intuitive for new users.
The old behavior, which yields better results, can be restored by calling
learn_one with the new compose.learn_during_predict context
manager.” Details can be found on the River webpage: https://riverml.xyz/
0.21.0/releases/0.19.0/ and in the Jupyter Notebooks from this book that are
provided in the GitHub repository https://github.com/sn-code-inside/online-
machine-learning.

The learn_one method only updates the model (the supervised part
of the OML pipeline), but not the estimators (the unsupervised part of the
pipeline). The unsupervised part, the so-called transformers, is updated when
predict_one is called. In OML, the unsupervised parts of the processing
pipeline can be updated when an observation arrives. We do not have to wait for
the ground truth (the Y value) to arrive to update the unsupervised estimators,
which depend only on the X values. In other words, learn_one updates the
supervised parts, while predict_one updates the statistics of the unsuper-
vised parts of the pipeline. When transform_one is called for a pipeline
whose last step is not a transformer, the output of the last transformer (which
is thus the penultimate step) is returned. This allows the data preprocessing to
be observed without training the model. Table 8.2 summarizes these steps.

https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://riverml.xyz/0.21.0/releases/0.19.0/
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning

100 T. Bartz-Beielstein

Table 8.2 Supervised and unsupervised steps and the related methods in River pipelines explained
by the example of the classes StandardScaler and LinearRegression (valid for River
version <= 0.18.0)

Class, method Step type Remark

StandardScaler

.preprocessing Unsupervised Transformer: processes the
features (X), not the target (Y).
During a call to
predict_one(), the
statistics (e.g., the mean) are
updated for each numerical
feature

LinearRegression

.linear_model Supervised Updates the model with the
information of the features (X)
and the target (Y) when
learn_one() is called

Notebook: Introduction to River
The Jupyter Notebook in the GitHub repository https://github.com/
sn-code-inside/online-machine-learning/ provides an introduction to River.
It shows the use of River using an example and introduces the most important
methods.

8.2 Scope of the Software Packages

Table 8.3 provides an overview of the scope of the individual software packages. Since
the documentation of the packages is not always kept up to date, it is possible that
individual packages have included more up-to-date methods over time. In addition,
we have limited the categories of the listed methods to the application areas that we
consider to be the most relevant for OML. Therefore, the table only contains methods
from the areas of classification, clustering, and regression. Table 8.3 is certainly not
complete, but it can provide a good orientation.

MOA provides methods for each category, while RMOA makes methods for
classification and regression accessible to R in particular. Stream is a rather small
package that brings some own implementations of clustering methods. The extension

https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/

8 Open-Source Software for Online Machine Learning 101

of stream, streamMOA, also provides the clustering methods implemented in MOA
for R. 1 River is the most comprehensive and contains the most important methods
from each area. It also contains many additional and more up-to-date methods that
are not available in the R packages.

8.3 Programming Languages: A Brief Comparison

When comparing Python, R, and Julia, the leading languages for data science and
ML, it becomes apparent that the R community consists of experienced statisticians.
On the other hand, Python has caught up with R in statistics and scientific computing
with libraries such as NumPy, SciPy, and Pandas and has partly overtaken R in terms
of user-friendliness. Python stands out in terms of libraries for machine learning.
The following libraries are written entirely or primarily in Python:

. NumPy is a library for scientific computing in Python (Harris et al., 2020). It
provides an efficient implementation of multidimensional arrays and many math-
ematical functions.

. Scikit-learn is written in Python and Cython 2 (Pedregosa et al., 2011). It provides
implementations of a very large number of algorithms for training and evaluating
models for machine learning.

. Statsmodels provides statistical tests and models such as the generalized linear
model (GLM), ARMA, and many more (Seabold et al., 2010).

. Keras is used to interact with TensorFlow and other deep learning libraries (Chollet
et al., 2015; Abadi et al., 2016).

The most popular frameworks for ML are also mainly written in Python or provide
interfaces for Python. In addition, Python is ideal as a general-purpose programming
language.

Tip
. R is ideal for statistical special questions and graphics (shiny).
. Python is the “Swiss Army Knife” in the field of data science.
. A combination of the two languages makes sense.
. The influence of Julia is only marginal compared to the two market leaders.

1 However, this is not taken into account in the table.
2 A Python dialect similar to the programming language C.

102 T. Bartz-Beielstein

Table 8.3 Scope of the software packages
Category Method MOA RMOA Stream River

Classification

Trees AdaHoeffdingOptionTree . .
ASHoeffdingTree . .
DecisionStump . .
HoeffdingAdaptiveTree . . .
HoeffdingOptionTree . .
HoeffdingTree . . .
LimAttHoeffdingTree . .
RandomHoeffdingTree . .
ExtremelyFastDecsionTree .
LabelCombinationHoeffdingTree .

Regression LogisticRegression .
Bayesian Naive Bayes . . .

Naive-Bayes Multinomial . . .
Bernoulli .
Complement .

SVM ALMAClassifier .
PAClassifier .

Active
learning

ActiveClassifier . .

Bagging LeveragingBag . . .
OzaBag . . .
OzaBagAdwin . . .
OzaBagASHT . .

Boosting OCBoost . .
OzaBoost . . .
OzaBoostAdwin . .

Stacking LimAttClassifier . . .
Other AccuracyUpdatedEnsemble . .

AccuracyWeightedEnsemble . .
ADACC . .
DACC . .
OnlineAccuracyUpdatedEnsemble . .
TemporallyAugmentedClassifier . .
WeightedMajorityAlgorithm . .
AdaptiveRandomForest .
StreamingRandomPatches . .
VotingClassifier .
FFMClassifier .
FMClassifier .
FwFMClassifier .
HOFMClassifier .
KNNClassifier .
StochasticGradientDescent .

(continued)

8 Open-Source Software for Online Machine Learning 103

Table 8.1 (continued)
Category Method MOA RMOA Stream River

Clustering

BICO .
BIRCH .
DBSTREAM . .
DStream . .
evoStream .
CluStream . .
StreamKM++ . .
ClusTree . .
DenStream . .
CobWeb .

Regression

TargetMean . .
Perceptron . . .
FIMTDD . .
ORTO . .
LinearRegression .
AdaptiveRandomForest . .
BaggingRegressor .
EWARegressor .
StreamingRandomPatches .
FFMRegressor .
FMRegressor .
FwFMRegressor .
HOFMRegressor .
BayesianLinearRegression .
PARegressor .
SoftmaxRegression .
KNNRegressor .
MultiLayerPerceptron .
HoeffdingAdaptiveTree .
HoeffdingTree .
iSOUPTree .

References

Abadi, M., et al. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed
systems. arXiv:1603.04467

Bifet, A., Gavalda, R., et al. (2018). Machine learning for data streams with practical examples in
MOA. MIT Press.

Bifet, A., Holmes, G., et al. (2010). MOA: Massive online analysis. Journal of Machine Learning
Research, 11, 1601–1604.

Chollet, F., et al. (2015). Keras. https://keras.io

arXiv:1603.04467
 2265 50247 a 2265 50247 a

http://arxiv.org/abs/1603.04467
https://keras.io
https://keras.io
https://keras.io

104 T. Bartz-Beielstein

Hahsler, M., Bolaños, M., & Forrest, J. (2017a). Introduction to stream: An extensible framework
for data stream clustering research with R. Journal of Statistical Software, 76(14), 1–50.

Hahsler, M., Bolaños, M., & Forrest, J. (2017b). Stream: Infrastructure for data stream mining.
Harris, C. R., et al. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
Montiel, J., et al. (2021). River: Machine learning for streaming data in Python. Journal of Machine
Learning Research, 22(1), 4945–4952. ISSN: 1532-4435.

Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with Python.
In 9th Python in Science Conference.

Wijffels, J. (2014). RMOA: Connect R with MOA to perform streaming classifications.

Chapter 9
An Experimental Comparison of Batch
and Online Machine Learning
Algorithms

Thomas Bartz-Beielstein and Lukas Hans

Abstract This chapter presents the results of the experimental analyses. The first
study (Sect. 9.1) examines the use of Batch Machine Learning (BML) and Online
Machine Learning (OML) models for predicting the demand for bicycles at a bike-
sharing station. The second study (Sect. 9.2) investigates the use of BML and OML
models for prediction when very large data sets are available and drift is present. The
synthetic Friedman-drift data set (see Definition 1.8) is used for this purpose. All
data sets were standardized using the StandardScaler method so that the models were
trained on data with mean zero and standard deviation one. In Sect. 9.3, we conducted
a comprehensive investigation to evaluate the efficacy of scaling techniques in the
context of drifting events. Our primary hypothesis centered on the potential benefits
of scaling in handling dynamic data streams. Through rigorous experimentation and
analysis, we compared various scaling methods to determine if one specific approach
outperforms others in adapting to evolving data distributions.

9.1 Study: Bike Sharing

Titled “Time-related feature engineering”, scikit-learn 1 presents an example analyz-
ing strategies for using time-related features for a bike-sharing demand regression
task. In this study, bike-sharing demand data is loaded from the OpenML repository.
On the OpenMl site, 2 the data are described as follows:

1https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.
html.
. 2 https://www.openml.org/search?type=data&sort=runs&id=42713&status=active.

T. Bartz-Beielstein (B) · L. Hans
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

L. Hans
e-mail: lukas.hans@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_9

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_9&domain=pdf
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
https://www.openml.org/search?type=data&sort=runs&id=42713&status=active
thomas.bartz-beielstein@th-koeln.de
 854 53660 a 854 53660 a

mailto:thomas.bartz-beielstein@th-koeln.de
lukas.hans@th-koeln.de
 854 56538 a 854 56538 a

mailto:lukas.hans@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9
https://doi.org/10.1007/978-981-99-7007-0_9

106 T. Bartz-Beielstein and L. Hans

Table 9.1 Attributes of the Bike-Sharing data set

Attribute Description

Season Season (1: Spring, 2: Summer, 3: Fall, 4:
Winter)

Yr Year (0: 2011, 1: 2012)

Mnth Month (1–12)

Hr Hour (0–23)

Holiday Holiday. 1

Weekday Weekday

Workingday Working day (neither weekend nor holiday)

Weathersit.2 Weather situation (1: Clear, few clouds, partly
cloudy 2: Mist + cloudy, mist + broken clouds,
Mist + few clouds, mist 3: Light snow, light
rain + thunderstorm + Scattered clouds, light
rain + scattered clouds 4: Heavy rain + hail +
Thunderstorm + fog, snow + fog)

Temp Temperature in Celsius

Atemp Feeling temperature in Celsius

Hum Humidity

Windspeed Wind speed

Casual Number of casual users

Registered Number of registered users

Count Target variable: Number of total rental bikes,
including casual users and registered users

. 1Taken from http://dchr.dc.gov/page/holiday-schedule.

. 2Since there are only three “heavy_rain” events, we simplify the presentation by combining them
with the entries in the “rain” category.

“Bike sharing systems are new generation of traditional bike rentals where whole process
from membership, rental and return back has become automatic. Through these systems,
user is able to easily rent a bike from a particular position and return back at another posi-
tion. Currently, there are about over 500 bike-sharing programs around the world which is
composed of over 500 thousands bicycles. Today, there exists great interest in these systems
due to their important role in traffic, environmental and health issues. [...]

Bike-sharing rental process is highly correlated to the environmental and seasonal settings.
For instance, weather conditions, precipitation, day of week, season, hour of the day, etc.
can affect the rental behaviors”.

The data were aggregated by Fanaee-T et al. (2014) and supplemented with the
appropriate weather and seasonal information. 3 The total data set includes 17,379
observations. The size count is selected as the target variable. The data are described
in Table 9.1.

3 http://www.freemeteo.com.

http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://dchr.dc.gov/page/holiday-schedule
http://www.freemeteo.com
http://www.freemeteo.com
http://www.freemeteo.com
http://www.freemeteo.com

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 107

Fig. 9.1 Average number of bicycle rentals in the course of a week

Fig. 9.2 Bike-share correlations. There are no unusual patterns to be identified. Highly positively
correlated features are colored in red, highly negatively correlated features are colored in blue.
Obviously, the feeling temperature is highly correlated with the temperature. Count is the target
variable

Figure 9.1 depicts the average demand during a week. We can clearly distinguish
between morning and evening commuting on work days and recreational use of
bicycles on weekends, when peak demand occurs around noon.

Figure 9.2 shows the correlations of the features with the target variable. The
target of the prediction problem is the absolute number of hourly bicycle rentals for
the subsequent 7 days, which is referred to as count. We scale the target variable to
predict relative demand so that the mean absolute error can be more easily interpreted
as a fraction of the maximum demand.

We split the data into 60% for training and 40% for testing. Thus, 10,427 training
and 6,952 testing data sets are available. The data retain their original order.

108 T. Bartz-Beielstein and L. Hans

Table 9.2 Model types, implementations, and references

Model Implementation Reference

Linear regression Sklearn: RidgeCV Pedregosa et al. (2011)

Gradient boosting Sklearn:
HistGradientBoostingRegressor

Pedregosa et al. (2011)

Linear regression River: LinearRegression Montiel et al. (2021)

Hoeffding tree River: HoeffdingTreeRegressor Montiel et al. (2021)

Hoeffding adaptive
tree

River:
HoeffdingAdaptiveTreeRegressor

Bifet et al. (2009),
Montiel et al. (2021)

Note: MAE and MSE
The fit of the models minimizes the mean squared error (MSE) to estimate
the conditional mean. The mean absolute error (MAE) would fit an estimator
identical to the estimator of the conditional median. When we report results
in the discussion, we focus instead on the MAE, which is more intuitive than
the MSE. It should be noted, however, that in this study the best models for
the one metric are also the best for the other.

9.1.1 Overview: Models

The BML and OML models shown in Table 9.2 were used in this study:
Regarding the selection of the models it was taken into account that for each

Machine Learning (ML)-algorithm category (BML or OML) one simple and one
more complex model is used. For the OML models, it was also considered that the
influence of a drift detection method (here: Adaptive Windowing (ADWIN)) can be
analyzed.

9.1.2 Linear Regression

As the simplest model, we use linear regression, which is generally accepted and
well understood as a standard procedure in classical statistics.

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 109

Tip
For the experiments performed with River the software package Sequential
Parameter Optimization Toolbox for River (spotRiver) was developed. The
experiments can be found as Jupyter Notebooks on GitHub https://github.
com/sn-code-inside/online-machine-learning/.

9.1.2.1 BML Linear Regression

For consistency, we scale the numerical features to the interval from zero to one
using sklearn.preprocessing. However, in this case this does not have much
impact on the results because they are already on comparable scales. We use scik-
it-learn: Machine Learning in Python (sklearn)’s Ridge regression with built-in Cross
Validation (RidgeCV). Here (and in all other BML examples) we adopt the methods
described on sklearn. 4

categorical_columns = [
"weather",
"season",
"holiday",
"workingday",

]
categories = [

["clear", "misty", "rain"],
["spring", "summer", "fall", "winter"],
["False", "True"],
["False", "True"],

]
one_hot_encoder = OneHotEncoder(handle_unknown="ignore",

sparse_output=False)
alphas = np.logspace(-6, 6, 25)
linear_pipeline = make_pipeline(

ColumnTransformer(
transformers=[

("categorical",
one_hot_encoder,
categorical_columns),

],
remainder=MinMaxScaler(),

),
RidgeCV(alphas=alphas),

)

4 https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.
html.

https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html

110 T. Bartz-Beielstein and L. Hans

9.1.2.2 OML-Linear Regression

The modeling of the OML linear regression model follows the example “Bike-sharing
forecasting” from the package River. 5 In this example, the demand for bicycles is
forecast at five bike stations in the city of Toulouse. The data set contains 182,470
observations.

We choose the sklearn data set for two reasons: first, the examples used by sklearn
are widely available, and second, a new method (in this case, River) should be able
to compare itself against the established methods (sklearn), using the standards of
the established methods as a benchmark.

oml_linear_model = compose.Select(
’humidity’,
’temp’,
’feel_temp’,
’windspeed’)

oml_linear_model += (
feature_extraction.TargetAgg(

by=[’hour’],
how=stats.Mean())

)
oml_linear_model |= preprocessing.StandardScaler()
oml_linear_model |= linear_model.LinearRegression()

Tip: Debugging River
We can use the debug_one method to see what happens to a particular
instance. We train the model with the first 1,000 observations and then call
debug_one with the next one. The debug_one method shows what hap-
pens to an input set of features step by step. An example is shown below:

Input

feel_temp: 22.72500 (float)
holiday: False (str)
hour: 8 (int)
humidity: 0.82000 (float)
month: 4 (int)
season: summer (str)
temp: 18.86000 (float)

5 https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/.

https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/
https://riverml.xyz/0.15.0/examples/bike-sharing-forecasting/

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 111

weather: rain (str)
weekday: 4 (int)
windspeed: 12.99800 (float)
workingday: True (str)
year: 1 (int)

LinearRegression

Name Value Weight Contribution

Intercept 1.00000 0.24210 0.24210
y_mean_by_hour 1.23551 0.17709 0.21880

windspeed -0.14590 -0.01982 0.00289
temp -0.16870 0.00672 -0.00113

feel_temp -0.11330 0.01813 -0.00205
humidity 1.08461 -0.01596 -0.01731

Prediction: 0.44329

9.1.2.3 Comparison of BML- and OML-Linear Models
on the Bike-Sharing Data set

The experimental design compares models from two different categories, BML and
OML, for each of which reference implementations are used. Therefore, standards
are compared, each using a different data preparation (feature generation).

For the evaluation, the eval_bml_horizon, eval_bml_landmark, and
eval_bml_window methods described in Chap. 5 are used, which allow a com-
parison of BML and OML algorithms. The Mean Absolute Error (MAE) is cho-
sen as the error measure. The OML linear model is evaluated using the func-
tion eval_oml_horizon, which was also described in Chap. 5. The values
for the error, the time and the memory requirements are available. The results
of the comparison experiments can be summarized and visualized with the func-
tionsplot_bml_oml_horizon_metrics and plot_bml_oml_horizon_
predictions.

The results can be seen in Fig. 9.3. The experiments show that the OML-linear
model (represented by the red lines in Fig. 9.3) performs better than the BML-linear
model for all metrics (error, time, and memory requirements).

Figure 9.4 compares the values predicted by the models with the actual values.
This provides a microscopic view on a section of the data, revealing the strengths
and weaknesses of each model in detail.

112 T. Bartz-Beielstein and L. Hans

9.1.3 Gradient Boosting

In addition to the comparison of BML and OML linear models, a gradient boosting
model (Friedman & Jerome, 2001) is included in the comparison. Gradient boosting
is currently one of the most successful models in BML, but requires more computa-
tional time and memory compared to linear models. The “histogram-based” Gradient
Boosting Regression Tree (gbrt) algorithm by sklearn 6 is used, which is faster than
sklearn’s GradientBoostingRegressor for large data sets. The gbrt imple-
mentation is inspired by LightGBM (Ke et al., 2017). For data preprocessing, similar
to linear models, the state-of-the-art implementation is used, which is described on
sklearn as follows 7:

Gradient Boosting Regression with decision trees is often flexible enough to efficiently
handle heterogeneous tabular data with a mix of categorical and numerical features as long
as the number of samples is large enough.

Here, we do minimal ordinal encoding for the categorical variables and then let the model
know that it should treat those as categorical variables by using a dedicated tree splitting
rule

ordinal_encoder = OrdinalEncoder(categories=categories)
gbrt_pipeline = make_pipeline(

ColumnTransformer(

Fig. 9.3 Bike sharing. Comparison of error (MAE), time, and memory requirements of the four
linear regression models. The BML-linear model is evaluated using the horizon, landmark, and
window metrics. The OML-linear model is evaluated using the OML-horizon metric

6 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoosting
Regressor.html.
7 https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.
html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 113

Fig. 9.4 Bike-sharing data. Actual versus predicted values. Comparison of the four linear regression
models. The residuals are computed on an interval of size 100, which lies in the middle of the test
data period

transformers=[
("categorical",
ordinal_encoder,
categorical_columns),

],
remainder="passthrough",
verbose_feature_names_out=False,

),
HistGradientBoostingRegressor(

categorical_features=categorical_columns,
),

).set_output(transform="pandas")

9.1.3.1 Evaluation Metrics

The comparison of performance, time and memory requirements for gbrt is per-
formed using the three evaluation functions eval_bml_horizon, eval_bml_
landmark, and eval_bml_window, as was done for the BML-linear models in
Sect. 9.1.2.

We compare the performance of gbrt with the performance of the best linear
model, the OML-linear model from Sect. 9.1.2, which was evaluated using the
eval_oml_horizon function.

114 T. Bartz-Beielstein and L. Hans

Fig. 9.5 Bike-Sharing Metrics. Three different selection methods (horizon, landmark, and window,
cf. Sect. 5.1) of the BML-gradient boosting method gbrt compared with the OML-linear model from
Sect. 9.1.2. Gradient boosting provides the best results in terms of the error measure, but requires
more memory and time

9.1.3.2 Comparison of BML-Gradient Boosting with OML-Linear
Model

Figure 9.5 compares the performance of the BML method gbrt with the performance
of a simple OML-linear model. Differences can be seen within the three gbrt models:
The landmark- and window-based gbrt models perform best. These reduce the MAE
by about 50% compared to the OML-linear model. The landmark-based gbrt model
achieves a worse MAE, which is still better than that of the OML-linear model. The
time and memory requirements are higher for the landmark-based and window-based
gbrt models than for the horizon-based gbrt and the OML-linear model.

These results indicate that there is a clear trade-off between modeling performance
and resource requirements. The two best gbrt models require more resources than
the OML-linear model, but produce better results. The worst gbrt model produces
better results than the OML-linear regression model.

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 115

Fig. 9.6 Bike-sharing data. Actual versus predicted values on a section of the data. The black line
(“actual”) shows the ground truth. Shown are the predictions of the three gbrt variants (horizon,
landmark, and window) of the gbrt model and, in addition, for comparison, the predictions of the
OML-linear model

Warning
The memory required by the “best” BML gbrt models is not constant and is
significantly higher than that required by the OML-linear models. By using
a window-based model, constant time and memory requirements can also be
achieved for the GBRT methods, which are comparable to the resource require-
ments of the OML model. However, this comes at the expense of modeling
quality.

Figure 9.6 shows the corresponding residuals. The landmark-based gbrt model
(shown in orange), which has the historical and the current (and thus the most data)
available, achieves the best result, but also requires the most resources. The OML-
linear model (shown in red) sometimes overshoots the mark. In contrast, the horizon-
based gbrt model (shown in blue) behaves relatively conservatively. Overall, it can
be observed that all models are able to fit a good model. The residuals are generally
small, and the predictions are usually quite accurate.

9.1.4 Hoeffding Regression Trees

After comparing the simple OML methods with a complex BML method, we now
investigate the performance of a complex OML method. For this purpose, we use
the OML Hoeffding regression trees introduced in Sect. 2.1.3.1. For the Hoeffding
trees, we selected Hoeffding Tree Regressor (HTR) and Hoeffding Adaptive Tree
Regressor (HATR), i.e., two different OML methods (without and with the drift
detection ADWIN).

116 T. Bartz-Beielstein and L. Hans

Fig. 9.7 Bike-sharing metrics. Evaluation of the OML-Hoeffding regression trees in comparison
with the linear regression model

First, we compare the OML methods with each other, i.e., we compare the Hoeffd-
ing trees with the linear model from Sect. 9.1.2.2. Figure 9.7 compares the perfor-
mance and resource requirements of the OML methods HTR, HATR, and the linear
model.

It is noticeable that the linear model has the lowest resource requirement and
provides the best results. At this point, no trade-off between modeling quality and
resource requirements is observed. The HATR is the “loser” in this comparison:
due to the use of ADWIN, the HATR is significantly slower than the linear model
(and also compared to HTR) and delivers worse results. This result illustrates that it
does not always make sense to choose an algorithm with extra features if the data
situation does not require it. Already with the simple linear model a good result could
be achieved.

A comparison of the actual and predicted values does not show any serious dif-
ferences. The corresponding figure can be found in the notebook belonging to this
chapter.

9.1.5 Final Comparison of the Bike-Sharing Experiments

Figure 9.8 compares the best methods from each of the ML categories considered
in this chapter. The gradient boosting regressors with the window-based and the
landmark-based approaches achieve the lowest MAE. The two OML methods (the
linear model as well as the HTR) perform the worst. The gbrt with horizon is in the
middle range.

These results indicate that retraining the gbrt takes a relatively large amount of
resources. This can be done more efficiently by the OML methods. Looking at the

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 117

Fig. 9.8 Bike-sharing metrics. Final comparison (MAE, time and memory requirements) of the
best BML and OML models. Compared are the three gbrt implementations (gbrt_horizon,
gbrt_landmark, and gbrt_window) and two OML methods: the linear model oml_lm and
the HTR htr

Fig. 9.9 Bike-sharing data. Actual versus predicted values. Final comparison of the best BML and
OML models

residuals (Fig. 9.9), it is noticeable that all models provide a good fit. The gbrt horizon-
based model behaves conservatively, while the two OML models react quickly to
changes and sometimes overshoot the target.

118 T. Bartz-Beielstein and L. Hans

9.1.6 Summary: Bike-Sharing Experiments

Table 9.3 shows a highly simplified summary of the results of the bike-share experi-
ments conducted in this chapter. The least error occurs with the gbrt implementations.
However, this good performance is not achieved without additional costs. OML meth-
ods do not achieve the performance of the best BML method, but they perform best
in terms of resources.

It should be noted that this study used a relatively small data set with the bike-
sharing data set, so the OML methods did not show their full strengths. In the fol-
lowing study, a very large data set is used to examine the resource requirements of
the BML methods in particular.

Furthermore, it should be noted that no statistical tests or other advanced statis-
tical methods were used. The results are therefore to be understood as qualitative
statements only.

9.2 Study: Very Large Data Sets With Drift

Whether the very good performance of the BML methods observed in Sect. 9.1 is also
achieved for very large online data sets with drift will be analyzed in the following
study.

9.2.1 The Friedman-Drift Data Set

The synthetic Friedman data set with concept drift introduced in Definition 1.8 is
used. As implementation of the drift a so-called Global Recurring Abrupt (GRA) drift
is used: There are two points at which the concept (. K , see Definition 1.7) changes.
In this study,ntotal = 1,000,000 data sets are used. The first concept change (drift)

Table 9.3 Bike-sharing experiments. Highly simplified summary of the results of the bike-share
experiments

Model Category Error Time Memory

Linear regression BML – – –

Gradient boosting BML .++ – –

Linear regression OML o – –

Hoeffding tree BML – .+ . +
Hoeffding
adaptive tree

BML – – –

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 119

Table 9.4 Models, implementations, and references

Model Implementation References

Linear regression Sklearn: RidgeCV Pedregosa et al. (2011)

Regression tree Sklearn:
DecisonTreeRegressor

Pedregosa et al. (2011)

Linear regression River: LinearRegression Montiel et al. (2021)

Hoeffding tree River:
HoeffdingTreeRegressor

Montiel et al. (2021)

Hoeffding adaptive tree River: HoeffdingAdaptive-

TreeRegressor Bifet et al. (2009), Montiel
et al. (2021)

occurs after 250,000 samples. After 500,000 steps, the original concept is adopted
again.

It is assumed that the data arrive every hour. As in the bike-sharing study (Sect.
9.1), a prediction horizon of7 × 24 = 168 time steps is used.

9.2.2 Algorithms

Two BML and three OML algorithms are evaluated against each other, which are
shown in Table 9.4. It was taken into account that one simple and one complex model
from each category (BML or OML) is used. The gradient boosting procedure from
the bike-sharing study is not used here because it leads to longer run times for very
large data sets. Instead, a BML regression tree is used. A preprocessing pipeline is
created for all algorithms so that data scaled with the method StandardScale
is used by the algorithms. All methods are used with the default hyperparameter
settings. The BML and OML models shown in Table 9.4 were used in this study.

9.2.2.1 The Evaluation Function

The BML models are trained on a training data set of size.ntrain = 1,000. The resulting
model is then used to predict on approximately 6,000 (more precisely,.[(ntotal/168]))
mini-batches of size 168. The comparison of performance, time and memory require-
ments for gbrt is performed using the evaluation function eval_bml_horizon
for the BML methods and the evaluation function eval_oml_horizon for the
OML methods (see Sect. 5.1).

120 T. Bartz-Beielstein and L. Hans

Fig. 9.10 Friedman-drift data. Metrics versus mini-batches. The one million observations were
divided into batches of size 168 (7 days by 24 hours), resulting in 5,952 data points, which are
plotted on the horizontal axis. The concept change after 250,000 and 500,000 instances can be
clearly seen (in the figure approximately at the locations........1,500 and........3,000)

9.2.3 Results

Figure 9.10 compares the individual algorithms. Not surprisingly, the error of the
BML algorithms increases when drift occurs. The prediction performance of the
OML algorithms is only slightly (HTR) or not at all (HATR) affected by drift. The
HTR algorithm has the lowest MAE overall.

Additional resources are needed to achieve this good result: Both Hoeffding tree
methods show a continuously increasing time overhead and require the most memory.
As expected, the BMLs require constant memory and time to compute the predictions.
The linear regression models have the lowest memory requirements. Figure 9.11
shows the actual and the predicted values for which no anomalies can be detected.

9.3 Study: Drift Scaling in Online Machine Learning

In Sect. 3.5, as mentioned previously, we investigate the hypothesis that combining
OML approaches with data scaling can effectively address drift events. To test this
hypothesis, the first step involves acquiring data exhibiting drift. In this regard, we
utilize the same data introduced in Figs. 7.5 and 7.7. Figure 7.5 demonstrates a label
drift, while Fig. 7.7 represents the classical concept drift. For both data sets, baseline
models were trained, as well as models using the data treated with scaling methods.
The baseline models consist of three different models.

The first model is a static decision tree, the second model is a dynamic decision
tree, and the third model is a Hoeffding Tree (HT) trained on unscaled data. The

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 121

Fig. 9.11 Friedman-drift data. Actual versus predicted values. The OML-linear model adapts
relatively quickly, but sometimes overshoots the target

static decision tree is trained solely on the first 2,000 data points and then used to
make predictions for the remaining data points. In contrast, the dynamic decision tree
differs in that it is retrained on every 2,000 data points based on the observed data up
to that point. In theory, this approach should yield better results since it incorporates
the data after the drift into the training process, allowing the model to recalibrate.
For both models, the data is normalized using the sklearn standard scaler, which
corresponds to a z-score normalization. For all OML approaches, both the unscaled
and scaled Hoeffding trees, the first 2,000 data points are used for training only
before making the first predictions. This is done for two reasons: first, to facilitate
a direct comparison between OML approaches and BML approaches, and second,
to account for the warm-up phase of many OML methods in which they perform
relatively poorly. The success of the different methods is evaluated using MAE and
presented in Fig. 9.12.

Figure 9.12 illustrates the performance of the different model approaches as the
number of observed data points increases for the label drift problem. From Fig. 9.12,
it is evident that the static BML approach is particularly affected by the label drift and
experiences a significant decline in accuracy towards the end. Surprisingly, both the
unscaled and mean-centered scaled Hoeffding trees underperform the dynamically
trained decision tree towards the end, resulting in poorer predictions. The remaining
OML approaches perform significantly better than the BML approaches, with the
z-scaled approach standing out, experiencing almost no change in MAE due to label
drift. In the second case, a similar procedure is followed, except that all models are
trained on the first 6,000 data points. The dynamic model is still updated every 2,000
data points. The results of the different approaches are summarized in Fig. 9.13.

From Fig. 9.13, it can be observed that towards the end of the data sequence, all
OML approaches outperform their BML counterparts. In this problem, the min-max
transformation and the max-abs transformation emerge as clear winners. Moreover,
Fig. 9.13 demonstrates a pronounced peak at the initial phase for both the min-max

122 T. Bartz-Beielstein and L. Hans

Fig. 9.12 Performance of the different model approaches as the number of observed data points
increases for the label drift problem. MAE plotted against number of predictions

Fig. 9.13 Performance of the different model approaches when tackled with concept drift. Error
plotted against the number of observed data points

and max-abs transformations. This phenomenon can be attributed to the inherent
nature of these scaling methods, which tends to yield more conservative estimates,
consequently resulting in elevated MAE values when encountering outliers in the
data set.

9 An Experimental Comparison of Batch and Online Machine Learning Algorithms 123

9.4 Summary

To conclude this chapter, the examples in Sect. 9.3 reinforce the significance of
effective data scaling in an online setting, showcasing its potential to yield enhanced
results. Nevertheless, it becomes apparent that there is no universally optimal scaling
method. Rather, the key lies in the comparison of diverse approaches to identify the
most suitable one for a particular scenario. By carefully considering the context and
requirements, data practitioners can make informed decisions to leverage the power
of scaling techniques effectively.

The No-Free Lunch Theorem (Wolpert et al., 1997) also applies to OML algo-
rithms (Haftka & Raphael, 2016). Two trade-offs could be observed:

1. For manageable data sets (e.g., 10,000 observations), BML algorithms are better
but require more resources.

2. For larger data sets (e.g., 1,000,000 observations), OML algorithms are better
and are not affected by drift, but require additional resources (time and memory
requirements).

Figure 9.14 compares, in a highly simplified manner, the performance (error, time,
and memory requirements) of the BML and OML algorithms, using flexibility as
the basis. Flexibility in this context is defined as the ability of an algorithm to adapt
to the data. For example, it can be interpreted as “the number of coefficients (or
hyperparameters) in a model”.

Thus, the model f2(x) = b0 + b1x + b2x2 is more flexible than the model given
by........ f1(x) = b0 + b1x . This definition is not exact, but it is sufficient for the purposes
of this study. It is based on the considerations of James et al. (2021).

In our context, linear regression models are on the left of the “flexibility axis”,
while simple regression trees are in the middle. This is followed by sophisticated
methods such as gradient boosting, gbrt, or even more complex methods such as
HATR which require many hyperparameters.

Figure 9.14a schematically compares the error 8 of BML and OML methods as
a function of flexibility: simple BML methods are inferior to OML methods in our
scenarios, as shown in Fig. 9.3. From Fig. 9.8 it became clear that the more complex
BML methods like gradient boosting perform better than the OML methods.

Figure 9.14b compares the time required. Here, the simple OML methods are
initially superior to the BML methods. However, the situation reverses when more
complex algorithms are compared. In particular, the HATRs require more time than
the BML methods, which only need to be trained once at the beginning. The OML
procedures require more time because they need to be retrained for each new data
point.

Figure 9.14 compares the algorithms in terms of memory requirements. Here, the
simple OML procedures are significantly better than the BML procedures and similar
to the time requirement, the situation reverses when more complex algorithms are

8 The error is considered on the test data, so overfitting is visible. On the training data, the error
would continuously decrease with the increase of flexibility.

124 T. Bartz-Beielstein and L. Hans

Fig. 9.14 Flexibility versus performance. Algorithms with few hyperparameters such as a simple
linear regression model are less flexible than a complex algorithm such as HATR. The figures
schematically compare error a, time requirements b, and memory requirements c for BML and
OML methods with different flexibilities (in each case, smaller values are better). The comparison
is based on considerations in James et al. (2021)

compared. The HATRs require more memory than the BML methods, although the
difference is not as great as in the case of time requirements.

From these observations, the question arises whether the OML trees can be opti-
mized by Hyperparameter Tuning (HPT). This will be investigated in Chap. 10.

References

Bifet, A., & Ricard, G. (2009). Adaptive Learning from Evolving Data Streams. In Proceedings
of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data
Analysis VIII. IDA ’09 (pp. 249–260). Berlin: Springer.

Fanaee-T, H., & Joao, G. (2014). Event labeling combining ensemble detectors and background
knowledge. In Progress in Artificial Intelligence 2.2 (pp. 113–127).

Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. InThe Annals
of Statistics 29.5 (pp. 1189–1232).

Haftka, R.T. (2016). Requirements for papers focusing on new or improved global optimization
algorithms. In Structural and Multidisciplinary Optimization 54.1 (p. 1).

James, G., et al. (2021). An introduction to statistical learning with applications in R. (2nd ed.).
Springer.

Ke, G., et al. (2017). LightGBM: A highly efficient gradient boosting decision tree. In I. Guyon
et al (Eds.), Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc.

Montiel, J., et al. (2021). River: Machine learning for streaming data in python. In J. Mach. Learn.
Res. 22(1), 4945–4952. Issn: 1532-4435.

Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in python. In Journal of Machine Learn-
ing Research, 12, 2825–2830.

Wolpert, D.H., & William, G.M. (1997). No free lunch theorems for optimization. In IEEE Trans-
actions on Evolutionary Computation 1.1 (pp. 67–82).

Chapter 10
Hyperparameter Tuning

Thomas Bartz-Beielstein

Abstract The Online Machine Learning (OML) methods presented in the previous
chapters require the specification of many hyperparameters. For example, a variety of
“splitters” are available for Hoeffding trees to generate subtrees. There are different
methods for limiting the tree size in order to keep the time and memory require-
ments within reasonable limits. In addition, there are many other parameters, so
that a manual search for the optimal hyperparameter setting is very time-consuming
and doomed to fail due to the complexity of the possible combinations. Therefore,
this chapter explains how an automatic optimization (or “tuning”) of the hyperpa-
rameters can be performed. In addition to the optimization of the OML procedure,
Hyperparameter Tuning (HPT) performed with the Sequential Parameter Optimiza-
tion Toolbox (SPOT) is also important for the explainability and interpretability of
OML procedures and can lead to a more efficient and thus resource-saving algorithm
(“Green IT”).

10.1 Hyperparameter Tuning: An Introduction

Optimizing the hyperparameters is an important but usually difficult and computa-
tionally intensive task. The goal of HPT is to optimize the hyperparameters in a way
that improves the performance of the Machine Learning (ML) model. The simplest
approach, but also the most computationally expensive, uses manual search (or trial-
and-error) Meignan et al. (2015). Commonly encountered is simple Random Search
(RS), i.e., random and repeated selection of hyperparameters for evaluation, and grid
search. In addition, methods that perform directed search and other model-free algo-
rithms, i.e., algorithms that do not explicitly rely on a model, e.g., evolution strategies
Bartz-Beielstein et al. (2014) or pattern search Lewis et al. (2000) play an important
role. Also, “hyperband”, i.e., a multi-armed bandit strategy that dynamically allocates
resources to a set of random configurations and uses successive bisections to stop

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_10

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_10&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 56538 a 854 56538 a

mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10
https://doi.org/10.1007/978-981-99-7007-0_10

126 T. Bartz-Beielstein

configurations with poor performance Li et al. (2016), is very common in the HPT
domain. The most sophisticated and efficient approaches are Bayesian Optimization
(BO) and Surrogate Model Based Optimization (SMBO) methods, which are based
on the optimization of cost functions obtained through simulations or experiments.

In the following, we consider an HPT approach based on SPOT (Bartz-Beielstein
et al., 2005), which is suitable for situations in which only limited resources are
available. This may be due to limited availability and the cost of hardware, or due to
the fact that confidential data may only be processed locally, e.g., because of legal
requirements. Furthermore, in our approach, the understanding of algorithms is seen
as a key tool for transparency and explainability. This can be enabled, for exam-
ple, by quantifying the contribution of ML and Deep Learning (DL) components
(nodes, layers, split decisions, activation functions, etc.). As discussed in Sect. 6.6,
understanding the meaning of hyperparameters and the interactions between mul-
tiple hyperparameters plays a major role in the interpretability and explainability
of ML models. SPOT provides statistical tools for understanding hyperparameters
and their interactions. Last but not least, it should be noted that the SPOT software
code is available in the open-source Sequential Parameter Optimization Toolbox
for Python (spotPython) and Sequential Parameter Optimization Toolbox for River
(spotRiver) packages on GitHub, 1 allowing replicability of the results. SPOT is an
established open-source software that has been maintained for more than 15 years
(Bartz-Beielstein et al., 2005; Bartz et al., 2022).

10.2 The Hyperparameter-Tuning-Software SPOT

SMBO methods are common approaches in simulation and optimization. SPOT was
developed because there is a great need for sound statistical analysis of simulation
and optimization algorithms. SPOT includes methods for tuning based on classical
regression and analysis of variance techniques, it provides tree-based models such as
Classification And Regression Tree (CART) and Random Forest (RF) as well as BO
(Gaussian Process Models, also known as Kriging) and combinations of different
meta-modeling approaches. SPOT is implemented in Python and each model from
the Python package scikit-learn: Machine Learning in Python (sklearn) can be used
as a meta-model. SPOT is available in the open source packages spotPython and
spotRiver on GitHub. SPOT implements key techniques such as exploratory fitness
landscape analysis and sensitivity analysis. SPOT can be used to understand algo-
rithm performance and gain insight into algorithm behavior. In addition, SPOT can
be used as an optimizer and for automatic and interactive tuning. Details on SPOT
and its application in practice are given by Bartz-Beielstein et al. (2021). A typical
HPT process with SPOT consists of the following steps:

1 https://github.com/sequential-parameter-optimization.

6.6
 33143 14031
a 33143 14031 a

http://dx.doi.org/10.1007/978-981-99-7007-0_6
https://github.com/sequential-parameter-optimization
https://github.com/sequential-parameter-optimization
https://github.com/sequential-parameter-optimization
https://github.com/sequential-parameter-optimization
https://github.com/sequential-parameter-optimization
https://github.com/sequential-parameter-optimization

10 Hyperparameter Tuning 127

1. Loading the data (training and test data sets), see Sect. 10.3.1.
2. Specification of the preprocessing model, see Sect. 10.3.2. This model is called

.prep_model (“preparation” or preprocessing). The information required for the
HPT is stored in the dictionary.fun_control. Thus, the information needed to
execute the HPT is available in a readable form.

3. Selection of the algorithm, see Sect. 10.3.3. This is called the.core_model. Once
the.core_model is defined, then the associated hyperparameters can be stored in
the .fun_control dictionary. First, the hyperparameters of the . core_model
are initialized with the default values of the .core_model. As default values,
we use the default values contained in the spotRiver package for the algorithms
of the River package, which are in JSON format.

4. For modification of the default values for the hyperparameters used in the
.core_model, see Sect. 10.3.4. This step is optional. Numeric parameters are
modified by changing the limits (“bounds”), whereas categorical parameters are
modified by changing the categories (“levels”).

5. Selection of the target function (loss function), see Sect. 10.3.5.
6. Calling SPOT with the corresponding parameters, see Sect. 10.3.6. The results

are stored in a dictionary and are available for further evaluation.
7. Presentation, visualization and interpretation of the results, see Sect. 10.3.8.

10.3 Study: Hyperparameter Tuning of the HATR
Algorithm on the Friedman-Drift Data

In this study, the hyperparameters of the Hoeffding Adaptive Tree Regressor (HATR)
algorithm are tuned for predictions using the Friedman-Drift data.

Notebook: Experiments
The Jupyter Notebook in the GitHub repository
inside/online-machine-learning/ documents how the experiments were per-
formed.

https://github.com/sn-code-

10.3.1 Loading the Data

At the beginning of an HPT study, an empty dictionary named .fun_control is
created. This is filled with the parameters needed to run the HPT in the next steps. It
contains information about the data set, the preprocessing model, the algorithm to be
tuned, the hyperparameters of the algorithm, the target function, and the weights for
the target function. Thefun_control dictionary is passed to the SPOT constructor.

https://github.com/sn-code-inside/online-machine-learning/
https://github.com/sn-code-inside/online-machine-learning/

128 T. Bartz-Beielstein

This dictionary is used to store the information required for the HPT in a readable
form.

We use the Friedman-Drift data set from the River 2 package. This data set was
introduced in Definition 1.8 and described earlier in Sect. 9.2.1. We will consider a
stream of 1,000,000 examples, each with ten features and a numerical target. Each
feature value is sampled uniformly in .[0, 1]. Only the first five features are relevant.
The target is defined by different functions depending on the type of the drift. Global
recurring abrupt drift will be used, i.e., the concept drift appears over the whole
instance space. There are two points of concept drift. At the second point of drift,
the old concept reoccurs. The following parameters are used to generate and handle
the data set:

• horizon: The prediction horizon in hours.
• n. _samples: The number of samples in the data set.
• .p1: The position of the first concept drift.
• .p2: The position of the second concept drift.
• position: The position of the concept drifts.
• n. _train: The number of samples used for training.

We will use spotRiver’s.convert_to_df function to convert the River data set
to a pandas data frame.

10.3.2 Specification of the Preprocessing Model

The next step is the creation of the preprocessing model (“.prep_model”). First,
the model components that do not use hyperparameters are created. This includes in
particular all components with which the data preprocessing is carried out, e.g., the
scaler or the selection function for the variables. This model is called.prep_model.
We use the StandardScaler from River to standardize the data set, i.e., it has
zero mean and unit variance.

10.3.3 Selection of the Algorithm to be Tuned
and the Default Hyperparameters

The next step is to select the algorithm whose hyperparameters are to be tuned. This
is called the core_model. The spotPython hyperparameter tuning approach uses
two components: a model (class) and an associated hyperparameter dictionary. Here,
the River model class HoeffdingAdaptiveTreeRegressor is selected. The
corresponding hyperparameters are loaded from the associated dictionary, which is

2 https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/.

1.8
 8908 3404 a 8908 3404 a

http://dx.doi.org/10.1007/978-981-99-7007-0_1
9.2.1
 23741 3404 a 23741 3404 a

http://dx.doi.org/10.1007/978-981-99-7007-0_9
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/
https://riverml.xyz/0.15.0/api/datasets/synth/FriedmanDrift/

10 Hyperparameter Tuning 129

Table 10.1 Hyperparameters of the HTR Algorithm

Parameter Description

.grace_period Number of instances a leaf should observe between splitting
trials

.max_depth Maximum depth a tree can reach

delta Significance level for calculating the Hoeffding bound. The
significance level is given by 1–delta. Values closer to zero
imply longer delays in the split decision

tau Threshold below which splitting is forced to break ties
(“equality”)

.leaf_prediction Prediction mechanism used with leaves. mean: average,
model: uses the model defined in.leaf_model, and
adaptive: dynamically chooses between mean and
model

.leaf_model Regression model used to provide answers when
. leaf_prediction = model

.model_selector_decay Exponential decay factor applied to the squared errors of
the learning models monitored when
.leaf_prediction=’adaptive’. It must be between
0 and 1. The closer it is to 1, the more importance is given
to past observations. On the other hand, if the value
approaches 0, the most recently observed errors have a
greater influence on the final decision.

splitter The splitter or attribute observer is used to monitor class
statistics of numerical features and perform splits

.min_samples_split The minimum number of samples for performing a split

.binary_split If True, only binary splits will be performed

.max_size The maximum size of the tree, in megabytes (MB)

stored as a JSON file. 3 The JSON file contains hyperparameter type information,
names, and bounds. The method add_core_model_to_fun_control adds
the model and the hyperparameter dictionary to the fun_control dictionary.

Since the HATR is implemented as an extension of the Hoeffding Tree Regressor
(HTR), the default values of the hyperparameters of the HTR are presented first. The
corresponding hyperparameters are listed in Table 10.1.

The hyperparameters used by the HATR in addition to the hyperparameters of the
HTR, which provide further functionalities for adaptive drift detection, are shown in
Table 10.2.

The .prep_model is combined with the .core_model model: The tuner cre-
ates the full model by combining the .prep_model with the .core_model in a
pipeline. Thus, the hyperparameters can be passed to the model at runtime (dur-
ing tuning). Finally, the model is assembled in spotRiver. Afterwards, the default

3 https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/
river_hyper_dict.json.

https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json
https://github.com/sequential-parameter-optimization/spotRiver/blob/main/src/spotRiver/data/river_hyper_dict.json

130 T. Bartz-Beielstein

Table 10.2 Hyperparameters of the HATR algorithm, which are used in addition to the hyperpa-
rameters of the HTR algorithm from Table 10.1

Parameter Description

.bootstrap_sampling If True, bootstrap sampling is performed in
the leaf nodes

.drift_window_threshold Minimum number of examples that an
alternative tree must observe before it can be
considered as a potential replacement for the
current tree

.switch_significance Significance level to assess whether the
alternative subtrees are significantly better than
their main sub-tree counterparts

.memory_estimate_period Interval (number of instances processed)
between memory usage checks

.merit_preprune If True, merit-based prepruning is enabled.
Removes parts of the tree that do not contribute
to the classification

.stop_mem_management If True, stops growth, once the memory limit
is reached

.remove_poor_attrs If True, “bad” attributes will be are disabled
to reduce memory consumption

values for the hyperparameters are chosen according to the selected algorithm. For
the algorithm HATR, the corresponding hyperparameters 4 are determined (including
type information, names and bounds). Here we use the default values contained in
the package spotRiver for the algorithms of the package River. The value ranges of
the hyperparameters are shown in Table 10.4.

10.3.4 Modification of the Default Values
for the Hyperparameters

The hyperparameters used in the core_model can be modified. This step is
optional.

1. Numeric parameters are modified by changing the limits (“bounds”). This also
includes Boolean parameters whose levels are coded as 0 for False and 1 for True.

2. Categorical parameters are modified by changing the categories (“levels”).

If identical values are specified for the limits, the value is interpreted as a constant
parameter. This parameter is no longer considered in the tuning process.

4 https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/.

https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/
https://riverml.xyz/0.15.0/api/tree/HoeffdingAdaptiveTreeRegressor/

10 Hyperparameter Tuning 131

10.3.5 Selection of the Target Function (Loss Function)

The HPT simultaneously considers the error (Mean Absolute Error (MAE), .. y1),
the time (seconds, . y2) and the memory requirement (MB, . y3). The three values are
combined in a weighted manner, whereby the weights are specified via the parameter
weights in the fun_control dictionary:

. y =
3∑

i=1

wi × yi .

In our example, the weights ..w1 = 1 and ..w2 = w3 = 1/1000 are chosen, since the
error reduction is in the foreground. This weighting is called “vertical weighting”.

Tip
In a pre-experiment, reasonable orders of magnitude for the weights can be
determined.

The parameter .weight_coeff allows a weighting along the time axis, which
is described as “horizontal weighting”. Current values can be given a greater weight
than older values. If the value zero is chosen for .weight_coeff, all values are
weighted equally. If a value greater than zero is chosen, the values are weighted
exponentially.

10.3.6 Calling the Hyperparameter Tuner SPOT

An instance of the class Spot is created. Finally, the run method is called, which
starts the hypertuning process.

10.3.7 Visualization with TensorBoard

Now we can start TensorBoard in the background with the following command,
where ‘./runs’ is the default directory for the TensorBoard log files:

tensorboard --logdir="./runs" --port=6006 &

The TensorBoard web server can be accessed with the following URL: https://
localhost:6006/. The TensorBoard visualization of the hyperparameter tuning process
is shown in Fig. 10.1.

https://localhost:6006/
https://localhost:6006/
https://localhost:6006/

132 T. Bartz-Beielstein

Fig. 10.1 TensorBoard visualization of the hyperparameter tuning process. A detailed descrip-
tion of the TensorBoard visualization is given in Bartz-Beielstein (2023). Updates of the hyper-
parameter tuning cookbook are available at https://sequential-parameter-optimization.github.io/
Hyperparameter-Tuning-Cookbook/

10.3.8 HATR Tuning Results

Figure 10.2 shows the progress of the hyperparameter tuning. 5 The HPT algorithm
was given a budget of 60 minutes. About 40 hyperparameter configurations were
calculated. The values generated for the initial design of SPOT are shown as black
dots. The black line represents the value of the best hyperparameter configuration
found during the initial design. The first surrogate model is created using the points
evaluated during the initial design. Only after the initial design has been evaluated
does the tuning (optimization) start. The points generated during the HPT are shown
in red.

The best hyperparameter configuration can be displayed using the print_
results method. A more detailed output, which allows a direct comparison of
the default settings with the optimized settings and also takes into account the rel-
ative importance, can be generated using the gen_design_table method. The
output is shown in Table 10.4.

5 The tuning was performed on a MacBookPro (Apple M2 Max Chip, 12-Core CPU, 38-Core GPU,
96 GB memory).

https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/
https://sequential-parameter-optimization.github.io/Hyperparameter-Tuning-Cookbook/

10 Hyperparameter Tuning 133

Fig. 10.2 Progress of the hyperparameter optimization with SPOT. The values of the target function
are shown on the..y-axis, the..x-axis shows the number of evaluated hyperparameter configurations.
Black is used for the evaluations of the initial design, red for the surrogate evaluations

Fig. 10.3 Comparison of error, time, and memory requirement. Default (blue) versus SPOT
(orange). The tuning reduced the error as well as the time and memory requirement so that an
overall more efficient setting was found. This figure shows the results for 100,000 observations.
The predictions for one week (7 times 24 hours) are shown, so that about 600 evaluations are
available

Tip
In most experiments, a good value for the target variable was already deter-
mined during the initial design phase. The improvements achieved in the fur-
ther course of the HPT are relatively small. However, in practical use, they can
provide the decisive advantage.

Since the tuning was performed on the reduced data set with one hundred thousand
observations, we first consider the results for this data set. The comparison of the
performance (error, i.e., MAE, time and memory requirement) is shown in Fig. 10.3.

134 T. Bartz-Beielstein

Fig. 10.4 Comparison of the residuals. The actual observations are shown by a black line. Com-
pared to the HATR algorithm with default hyperparameters (shown in blue), the tuned algorithm
(orange) reacts more flexibly to changes in the data stream due to the optimized hyperparameters

The MAE was reduced by SPOT compared to the default setting from about 2.5
to values that are consistently smaller than 2.0. An improvement was achieved here.
Similar results are also obtained for the time and memory requirements. While the
evaluation time of the HATR model with default settings after 100,000 observations
takes about 150 seconds, the algorithm optimized with SPOT only needs 50 seconds.
The memory requirement for the default algorithm is about 1 MB, while the algorithm
optimized with SPOT needs less than half. It should be noted that the HATR algorithm
uses internal memory management algorithms, which can lead to fluctuations in the
memory requirements. The fluctuations are clearly visible in the figures.

A comparison of the actual and the predicted values is shown in Fig. 10.4. They
illustrate that the settings found with SPOT improve the flexibility of the HATR
algorithm: While the default settings lead to a conservative, mean-approximating
behavior, the optimized algorithm is more risk-taking and better reflects jumps in the
data stream.

The improvement of the HATR algorithm with SPOT can also be seen while
comparing the residuals. Fig. 10.5 shows the residuals of the HATR algorithm with
default hyperparameters, whereas Fig. 10.6 shows the residuals of the tuned algo-
rithm. The residuals of the tuned algorithm are smaller than the residuals of the
default algorithm.

It is very interesting to answer the question of whether the results found with
a reduced data set can be transferred to a larger data set. The evaluation of the
HATR algorithm with default and SPOT-optimized hyperparameters for one million
observations is shown in Fig. 10.7. In general, a similar picture emerges as with the
reduced data set: The hyperparameter tuning was able to visibly reduce errors, time,
and memory requirements.

However, the visualization of the memory requirement of the optimized HATR
algorithm in the interval between 5,000 and 6,000 observations, i.e., towards the

10 Hyperparameter Tuning 135

Fig. 10.5 Residuals of the HATR-algorithm with default hyperparameters

Fig. 10.6 Residuals of the HATR-algorithm with tuned hyperparameters. A comparison with Fig.
10.5 shows that the residuals of the tuned algorithm are smaller than the residuals of the default
algorithm

end of the observation period, shows an anomaly. A single peak occurs, indicating a
memory requirement of about 60 MB. In further investigations, it has to be clarified
whether this is a single case caused by the operating system and not by the HATR
algorithm, or whether it is a bug in the HATR algorithm.

The analysis of the residuals for one million observations showed no differences
from the already discussed analysis of the reduced data set (see Fig. 10.4). Therefore,
the corresponding figure is not shown. Details of the analyses can be found in the
notebooks belonging to this chapter.

136 T. Bartz-Beielstein

Fig. 10.7 Comparison of error, time, and memory requirement for 1 million observations. Default
(blue) versus SPOT (orange). The figure illustrates the transferability of the results found on a
reduced data set (see Fig. 10.3) to a larger data set. An anomaly in the memory requirement is
noticeable towards the end of the observation period

Tip
The transferability of the results found on a reduced data set to a larger data
set was investigated. The results show that the settings found with SPOT can
also be transferred to a larger data set.

10.3.9 Explainability and Understanding

To calculate the importance or effect of individual hyperparameters, SPOT provides
a method that uses the “Activity” or “Width” of the parameters of the surrogate
model (Forrester et al., 2008; Bartz et al., 2022). The symbol .. θ is often used in the
literature for these parameters (Forrester et al., 2008). The relative importance of a
hyperparameter is calculated as a relation to the importance of the most important
hyperparameter. Accordingly, the most important parameter has a relative importance
of 100%. The relative importance of individual hyperparameters can be displayed by
calling the method.spot_hatr.print_importance. These values are visual-
ized in Fig. 10.8 and are also shown in Table 10.4.

In our study, the parameters .leaf_prediction and .leaf_model have the
greatest effect. These are followed by delta and.bootstrap_sampling, whose
effects were only drawn in for comparison.

10 Hyperparameter Tuning 137

Fig. 10.8 Relative
importance of the
hyperparameters.
leaf_prediction and
leaf_model are by far the
most important parameters

Table 10.3 Coding of categorical hyperparameters

Name Level 0 Level 1 Level 2

.leaf_prediction mean model adaptive

.leaf_model LinearRegression PARegressor Perceptron

splitter EBSTSplitter TEBSTSplitter QOSplitter

SPOT uses a numerical coding for the levels of the categorical hyperparameters.
The categorical values are coded as shown in Table 10.3. The setting
.leaf_prediction with the value mean corresponds to the numerical value 0,
the setting model corresponds to the numerical value 1 and the setting adaptive
corresponds to the numerical value 2. Table 10.4 shows the hyperparameter values
of the HATR algorithm.

It is also interesting to examine the structure of the internal Hoeffding tree models.
Table 10.5 compares the attributes of the regression trees of the default and the
HATR model optimized with spotPython. The values shown represent a snapshot of
the activities in the individual elements (nodes and branches of the HATR). They
indicate that the tuning reduces the complexity of the trees. However, this question
still needs further investigation. For example, the representation of the course of the
number of active and inactive leaves is an interesting analysis, which has not yet
been fully carried out.

Figure 10.9 visualizes the interaction of the two most important hyperparam-
eters, .leaf_prediction and .leaf_model of the surrogate model used to
optimize the hyperparameters. Since both hyperparameters take categorical val-
ues (with three levels each), a step-like fitness landscape (or “response surface”)
is generated. The hyperparameter configuration .leaf_prediction = 1 and
.leaf_model = 2 leads to poor results. Therefore, SPOT recommends the setting
.leaf_prediction = 1 (model) and .leaf_model = 0 (Linear
Regression). These results are in accordance with the results already discussed.

138 T. Bartz-Beielstein

Table 10.4 Hyperparameter of the HATR algorithm, see Table 10.1. The relative importance is
shown using the symbols: “***” very important, “**” important, “*” less important, “.”
slightly important. For the hyperparameter max_depth a..2x transformation is performed, so that,
e.g., the value 10 corresponds to the depth 1024. The hyperparameters .leaf_prediction,
.leaf_model and splitter are categorical hyperparameters. The levels are coded in Table
10.3

Hyperparameter Typ Default Lower Upper Tuned Importance Stars

grace. _period int 200 10 1000 758 0.00

max. _depth int 20 2 20 19 0.00

delta float 1e–07 1e–10 1e–06 1e–06 0.00

tau float 0.05 0.01 0.1 0.1 0.00

leaf. _prediction factor 0 0 2 1 100.00 ***

leaf. _model factor 0 0 2 0 91.75 **

model. _selector. _decay float 0.95 0.9 0.99 0.9 0.00

splitter factor 0 0 2 1 0.00

min. _samples. _split int 5 2 10 8 0.00

bootstrap. _sampling factor 0 0 1 0 0.02

drift. _window. _threshold int 300 100 500 101 0.00

switch. _significance float 0.05 0.01 0.1 0.1 0.00

binary. _split factor 0 0 1 0 0.00

max. _size float 500.0 100.0 1000.0 789.80 0.00

memory. _estimate. _period int 1e6 1e6 1e6 938,558 0.00

stop. _mem. _management factor 0 0 1 1 0.00

remove. _poor. _attrs factor 0 0 1 0 0.00

merit. _preprune factor 0 0 0 0

Table 10.5 Comparison of the parameters of the default and the HATR model optimized with
SPOT

Parameter Default Spot

.n_nodes 151 149

.n_branches 75 74

.n_leaves 76 75

.n_active_leaves 210 58

.n_inactive_leaves 0 0

.height 12 12

.total_observed_weight 1e5 1e5

.n_alternate_trees 33 34

.n_pruned_alternate_trees 8 29

.n_switch_alternate_trees 1 3

10 Hyperparameter Tuning 139

Fig. 10.9 Surrogate model. The figure on the left shows the influence of the hyperparameters
.leaf_prediction and.leaf_model on the performance of the HATR algorithm. The figure
on the right shows the same relationship as a 3D plot. Bad settings are shown in dark red

SPOT plots the interactions of the most important hyperparameters by default.
All interactions can also be visualized. For this purpose, we refer again to the accom-
panying material to this chapter in the notebooks.

10.4 Summary

In this chapter, the HATR algorithm was analyzed and optimized using the HPT
software SPOT. The HPT provides important insights into the importance of the
individual hyperparameters. These analyses provide elementary building blocks for
the understanding of complex algorithms in the field of OML and are therefore
relevant for the explainability of OML algorithms.

It has been shown that results found on a reduced data set (or limited data stream)
can be transferred to a larger data stream. This is an important aspect, since the
optimization of the hyperparameters usually has to be performed on a reduced data
set in order to reduce the computation time and memory requirements. For the tuning
of the 17 hyperparameters of the HATR algorithm, 60 minutes were available on a
standard notebook. At this time, about 40 configurations could be evaluated using
the reduced data set (one tenth of the total volume). The error as well as the time
and memory requirement could be reduced. However, when presenting the results,
it should be noted that only individual runs were compared. In future analyses, a
comparison of the results of several runs should therefore be performed.

The greatest improvement is achieved by selecting the best hyperparameter con-
figuration of the initial design. A further improvement is possible with the help of
the surrogate model. Here, the relatively large number of different hyperparameters
and the small number of evaluations must be taken into account, so that the HPT is
more similar to a screening than to an optimization. Nevertheless, important hints
for the selection of suitable hyperparameter settings can be obtained. In particular,
unfavorable settings can be detected.

140 T. Bartz-Beielstein

Besides the algorithmic advantages of OML, there are additional ecological and
economic advantages: By reducing the memory requirements and the computing
time, the costs for providing OML algorithms can be reduced. This is of particular
interest for Small and Medium-sized enterprises (SMEs), which often have only
limited resources. By reducing the computing time, the algorithms can also be used
in real time. An important, positive ecological effect results directly from the lower
memory and time requirements, so that an improved ecological footprint can be
achieved and the label “Green IT” can be used with a clear conscience.

References

Bartz, E., et al. (2022). Hyperparameter tuning for machine and deep learning with R—A practical
guide. Springer. https://doi.org/10.1007/978-981-19-5170-1

Bartz-Beielstein, T. (2023). Hyperparameter tuning cookbook: A guide for scikit-learn, PyTorch,
river, and spotPython. In arXiv e-prints arXiv:2307.10262. https://doi.org/10.48550/arXiv.2307.
10262. [cs.LG].

Bartz-Beielstein, T., & Jürgen, B., et al. (2014). Evolutionary algorithms. In Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 4.3 (pp. 178–195).

Bartz-Beielstein, T., Lasarczyk, C., Preuss, M., et al. (2005). Sequential parameter optimization.
In B. McKay (Ed.), Proceedings 2005 Congress on Evolutionary Computation (CEC-05), Edin-
burgh, Scotland (pp. 773–780). Piscataway NJ: IEEE Press.

Bartz-Beielstein, T., Martin, Z., & Frederik, R. (2021). In a nutshell—The sequential parameter
optimization toolbox. In arXiv e-prints arXiv:1712.04076.

Forrester, A., Sóbester, A., & Keane, A. (2008). Engineering design via surrogate modelling. Wiley.
Lewis, R.M., Virginia, T., & Michael, W.T. (2000). Direct search methods: Then and now. In Journal
of Computational and Applied Mathematics 124.1–2 (pp. 191–207).

Li, L., et al. (2016). Hyperband: A novel bandit-based approach to hyperparameter optimization.
In arXiv e-prints arXiv:1603.06560.

Meignan, D., et al. (2015). A review and taxonomy of interactive optimization methods in operations
research. In ACM Transactions on Interactive Intelligent Systems.

https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
arXiv:2307.10262
 13647 19787 a 13647
19787 a

http://arxiv.org/abs/2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
https://doi.org/10.48550/arXiv.2307.10262
arXiv:1712.04076
 13667 28643 a 13667 28643 a

http://arxiv.org/abs/1712.04076
arXiv:1603.06560
 5328 34178 a 5328 34178
a

http://arxiv.org/abs/1603.06560

Chapter 11
Summary and Outlook

Thomas Bartz-Beielstein and Eva Bartz

Abstract This chapter presents an assessment of the potential of Online Machine
Learning (OML) for practitioners. The results of the studies are summarized and
discussed and concrete recommendations for OML practice are given. The impor-
tance of a suitable comparison methodology for Batch Machine Learning (BML)
and OML methods is highlighted to avoid “comparing apples to oranges”. We also
point out the great potential of OML that is available through the development of the
open-source software River.

11.1 Necessity for OML Methods

The necessity for the use of OML methods is undisputed, since BML is no longer
sufficient in many areas. However, the application of OML methods is not trivial. The
advantages of OML must be reproducible, transparent, and reliably demonstrable.
“How can BML and OML be compared?” is a central question that has been answered
in this book.

For the comparison of BML and OML, novel, problem-adapted and promising
methods have been developed and applied. Currently, there are only a few publi-
cations that compare BML, mini-batch, and OML methods. Therefore, this book
is a pioneering work. For the first time, quality (performance), time, and memory
requirements are compared for these three classes of algorithms and experimentally
analyzed.

The consideration on how to select training and test data is central, since the
procedure for BML and OML differs fundamentally. In this book, open-source soft-
ware tools for the evaluation of batch, mini-batch, and online learning methods were

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering, and Analytics, TH Köln, Gummersbach, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

E. Bartz
Bartz & Bartz GmbH, Gummersbach, Germany
e-mail: eva.bartz@bartzundbartz.de

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0_11

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7007-0_11&domain=pdf
thomas.bartz-beielstein@th-koeln.de
 854 52553 a 854 52553
a

mailto:thomas.bartz-beielstein@th-koeln.de
eva.bartz@bartzundbartz.de
 854 56538 a 854 56538 a

mailto:eva.bartz@bartzundbartz.de
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11
https://doi.org/10.1007/978-981-99-7007-0_11

142 T. Bartz-Beielstein and E. Bartz

described and applied, with which BML and OML algorithms for regression and
classification in the context of batch learning, mini-batch learning, and online learn-
ing can be compared. For this purpose, the visualization of the following three criteria
for the entire data stream is central:

• quality (in particular accuracy and Mean Absolute Error (MAE)),
• time and
• memory requirements.

The package Sequential Parameter Optimization Toolbox for River (spotRiver)
provides tools to experimentally analyze arbitrary BML and OML methods with
suitable quality criteria on different data sets.

After a basic introduction to OML, state-of-the-art methods for batch, mini-batch,
and online learning were introduced. The focus lies on practical applicability. There-
fore, the methods in this book were presented and discussed using real-world exam-
ples. Two studies and a hyperparameter tuning were carried out using publicly and
freely available data sets. The quality, runtime, and memory requirements were cal-
culated as comparison metrics for the individual BML and OML models.

11.2 Recommendations for Using OML in Practice

Based on the studies and experiments presented in this book, the following recom-
mendations for OML practice can be derived:

• Start simple: In the case of classification, the simplest logistic regression model
should be used first, and in the case of regression, the simplest linear regression
model. This approach allows an assessment of whether OML algorithms are suit-
able. The influence of data preprocessing (“preprocessing”) should not be under-
estimated. Good feature generation can significantly improve the quality of the
OML methods.

• Consider hyperparameters: The influence of the hyperparameters should be inves-
tigated. In particular, the adaptive methods developed for drift treatment should
be considered for the tree-based OML methods.

• Question comparisons: The results of the BML and OML algorithms are only
partially directly comparable, even if the same quality measures are used, since
the comparisons use different data sets. The selection of suitable data and the
selection of quality measures are therefore two important steps that were described
in Chap. 5.

• Consider OML peculiarities in comparisons: The poor performance of the OML
methods compared to the BML method may need to be reconsidered, depending
on the task. It can reflect a desired effect of the OML methods: They are able to
adapt to the current data situation. This can be the case if the OML method is
trained on the current data, but the entire data set is used to evaluate it. If drift
occurs in this case, the quality of the OML learner on the entire data set can be

11 Summary and Outlook 143

worse than the quality of the BML method, which has the entire data set available
for learning (or at least a relatively large training data set). On the other hand, if
only the current period is used to evaluate the OML method, the quality of the
OML method can be much better. Therefore, in the further course of the study, in
addition to the comparisons of the batch and online methods, we also included the
comparison of the mini-batch methods, see also Definition 1.11.

• Estimate memory and time requirements: Hoeffding trees become relatively large
and therefore require a lot of memory. Thus, a detailed investigation of the methods
for limiting the tree size is required. The preparation of an experimental plan (using
Design of Experiments (DOE) or Design and Analysis of Computer Experiments
(DACE)) is recommended to avoid excessively long run times for the experi-
ments (Montgomery, 2017; Santner et al., 2003). Hyperparameter tuning is also a
useful approach here.

• Expect surprises: In some cases, unexpected events occurred only after a long
period of time. The importance and effects are difficult to estimate for practical
use, since the software used is also still in a developmental stage. Therefore, it is
not clear whether incorrect results or non-ending program runs and crashes were
caused by the algorithm or by a faulty implementation.

• Observe software development: It is becoming apparent that the River package as
state-of-the-art software will replace the previous OML software packages. River
has great potential, since the package is actively developed further. It is currently
available in version 0.21.0. In particular, an interface to hyperparameter tuning
methods such as Sequential Parameter Optimization Toolbox (SPOT) is useful
(Bartz et al., 2022). In parallel with the further development of River, the spotRiver,
and Sequential Parameter Optimization Toolbox for Python (spotPython) packages
are being developed, which enable or simplify hyperparameter tuning for OML .

Note: OML Software
• Right now, there is no current OML software available that can be taken
“off the shelf” and used immediately.

• In the foreseeable future, the field of OML could provide interesting solu-
tions, especially for updating very large Machine Learning (ML) models.

References

Bartz, E., et al. (2022). Hyperparameter tuning for machine and deep learning with R—A practical
guide. Springer. https://doi.org/10.1007/978-981-19-5170-1.

Montgomery, D. C. (2017). Design and analysis of experiments, 9th ed. Wiley.
Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The design and analysis of computer experiments.
Springer.

https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1
https://doi.org/10.1007/978-981-19-5170-1

Appendix A
Definitions and Explanations

A.1 Gradient Descent

Definition A.1 Gradient descent. The gradient descent algorithm performs the fol-
lowing steps, where δ is the step size, λ is the learning rate,xt are the old,xt+1 the
new parameters, and∇ is the gradient:

1. Initialization of the parametersxt with random values.
2. Calculation of the gradient∇ of the objective function f .
3. Calculation of the step size: δ =.......λ · ∇.
4. Calculation of the new parameters:xt+1 = xt − δ.
5. Repeat steps 2–4 until the gradient is close to zero.

The learning rate is a hyperparameter that directly affects the convergence of the
algorithm. With a very small learning rate, it takes a long time for the gradient
descent algorithm to converge. A very large value of the learning rate causes the
algorithm to choose large steps, so that it may miss the optimum.

A.2 Bayes’ Theorem

Let.......P(A) denote the (a-priori) probability of event....... A and.......P(A | B) the (conditional)
probability of event A under the condition that eventB has occurred. IfP(B) > 0,
then

. P(A | B) = P(B | A) · P(A)

P(B)
.

Thus, the probability of A under the condition that....... B has occurred can be calculated
by the probability ofB under the condition thatA has occurred. This statement
provides the basis for Bayes’ theorem.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0

145

https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0

146 Appendix A: Definitions and Explanations

Theorem A.1 Bayes’ theorem. For a finite number of events, the following applies:
IfAi , i = 1, . . . , N is a partition (decomposition) of the result set into disjoint
events, the a posteriori probabilityP(Ai | B) is

. P(Ai | B) = P(B | Ai) · P(Ai)

P(B)
= P (B | Ai) · P(Ai)

∑N
j=1 P

(
B | A j

) · P(A j)
.

A.3 Hoeffding Bound

Theorem A.2 Hoeffding bound. For allϵ ∈ (0, 1), it holds that

. P(|X − E(X)| > ϵ) < 2 exp(−2ϵ2n).

As a confidence interval for estimating the entropy in a node, it was proposed to use

. ϵ =
/

R2 ln(1/δ)

2n
,

where

• R is the range of values of the variable,
• δ is the desired probability that the estimated valueX is not within theϵ-
neighborhood of the expected valueE(X) and

• n is the number of samples in the nodes.

If the information gain is chosen as the splitting criterion using the entropy, the
range of values....... R of the entropy is between.......[0, . . . , log(nc)], if the classnc can take
different values.

A.4 Kappa Statistics

Definition A.2 Kappa statistic. Letp0 be the prequential accuracy of the classifier
andpc (“c” = chance) the probability that a “chance” classifier, which randomly
assigns instances to the classes, using the same percentages as the actual classifier,
makes a correct prediction. Then theκ-statistic is defined as follows:

. κ = p0 − pc

1 − pc
.

If the classifier is always correct, then.......κ = 1, if it is as “bad” as the chance classifier,
thenκ = 0.

Appendix A: Definitions and Explanations 147

Definition A.3 Kappa-M-Statistic. The Kappa-M-Statistic is defined as follows:

. κm = p0 − pm

1 − pm
,

wherepm is the probability that a majority classifier makes a correct prediction.

The majority classifier yields better values than the classifier if the class distribution
of the predicted class differs strongly from the current class distribution.

Definition A.4 Kappa-Temporal-Statistic. The Kappa-Temporal-Statistic is defined
as follows:

. κper = p0 − p'
e

1 − p'
e

,

wherep'
e is the probability that a “no-change” classifier makes a correct prediction.

The Kappa-M and the Kappa-Temporal-Statistic are orthogonal measures:κper can
detect sequences of equal data (“bursts”) well (i.e., no changes), whileκm detects
changes.

Appendix B
Supplementary Materials

B.1 Notebooks

In addition to this book, interactive Jupyter Notebooks are provided in the GitHub
repository https://github.com/sn-code-inside/online-machine-learning. These note-
books are organized by chapter. Table B.1 provides an overview. The repository is
continuously maintained, so the notebooks may change over time.

Table B.1 Notebooks

Chapter Notebook Content

Chapter 1 ch01.ipynb Introduction: From Batch to
Online Machine Learning

Chapter 2 ch02.ipynb Supervised Learning:
Classification and
Regression

Chapter 3 ch03.ipynb Drift Detection and
Handling

Chapter 4 ch04.ipynb Initial Selection and
Subsequent Update of OML
Models

Chapter 5 ch05.ipynb Evaluation and Performance
Measurement

Chapter 6 ch06.ipynb Special Requirements for
OML Methods

Chapter 8 ch08.ipynb Short introduction to River

Chapter 9 .ch09_bike.ipynb Bike-Sharing

Chapter 9 .ch09_friedman.ipynb Friedman Drift

Chapter 10 .ch10_friedman-hpt.ipynb Hyperparameter Tuning
(HPT)

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0

149

https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://github.com/sn-code-inside/online-machine-learning
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0

150 Appendix B: Supplementary Materials

B.2 Software

• The source code for the open-source software package spotPython can be found
on GitHub: https://github.com/sequential-parameter-optimization/spotPython.

• The source code for the open-source software package spotRiver can be found
on GitHub: https://github.com/sequential-parameter-optimization/spotRiver.

https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotPython
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver
https://github.com/sequential-parameter-optimization/spotRiver

Glossary

ADWIN Adaptive Windowing
AI Artificial Intelligence
ALMA Approximative Large-Margin-Algorithms
BML Batch Machine Learning
BMWK German Federal Ministry for Economic Affairs and Climate Action
BO Bayesian Optimization
CART Classification And Regression Tree
CV Cross Validation
CVFDT Concept-adapting Very Fast Decision Tree
DACE Design and Analysis of Computer Experiments
DDM Drift Detection Method
DL Deep Learning
DOE Design of Experiments
EFDT Extremely Fast Decision Tree
FEM Finite Element Method
gbrt Gradient Boosting Regression Tree
GDP Gross Domestic Product
GRA Global Recurring Abrupt
HAT Hoeffding Adaptive Tree
HATC Hoeffding Adaptive Tree Classifier
HATR Hoeffding Adaptive Tree Regressor
HPT Hyperparameter Tuning
HT Hoeffding Tree
HTC Hoeffding Tree Classifier
HTR Hoeffding Tree Regressor
IoT Internet of Things
KPI Key Performance Indicator
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MOA Massive Online Analysis
MSE Mean Squared Error

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0

151

https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0

152 Glossary

NN Neural Network
OML Online Machine Learning
PA Passive-Aggressive
RAM Random Access Memory
RF Random Forest
River
RMOA Massive Online Analysis in R
ROC, AUC Area Under The Curve, Receiver Operating Characteristics
RS Random Search
SEA SEA synthetic dataset
SGD Stochastic Gradient Descent
sklearn scikit-learn: Machine Learning in Python
SMBO Surrogate Model Based Optimization
SME Small and Medium-sized enterprise
SMOTE Synthetic Minority Oversampling Technique
SPF Survey of Professional Forecasters
SPOT Sequential Parameter Optimization Toolbox
spotPython Sequential Parameter Optimization Toolbox for Python
spotRiver Sequential Parameter Optimization Toolbox for River
SVM Support Vector Machine
U.S. United States
VFDT Very Fast Decision Tree

Index

A
Accuracy, 77, 78
Anomaly detection, 64
supervised, 65
time series, 65
unsupervised, 65

Approximative Large-Margin Algorithm
(ALMA), 19

Artificial intelligence, 140

B
Bagging, 20
Bandit-based model selection, 44
Baseline algorithms, 13
Batch Machine Learning (BML)
definition, 3
problems, 3

Batch-mode with prediction horizon, 50
Bayesian optimization, 125
Bayes’ theorem, 14
Big data
three Vs, 1
variety, 1
velocity, 1
volume, 1

Boosting, 20
Bootstrap aggregating, 20
Branch, 16

C
Catastrophic forgetting, 44
Categorical attributes
one-hot encoding, 64

Classification, 13
Classifier
lazy, 13
majority-class, 13
no-change, 13

Clustering, 20
Concept, 4
Concept-adapting Very Fast Decision Trees

(CVFDT), 30
Concept drift, 73, 74, 87
example, 5

Control charts, 26
Cost-effectiveness, 77

D
Damped window model, 25
Data-selection methods, 47
Data streams, 1
Delayed progressive validation, 49
Drift, 1, 3
abrupt, 5
concept drift, 4
explicit detection methods, 26
feature drift, 4
gradual, 5
hot rolling, 86
implicit detection methods, 29
label drift, 4, 87
supervised detection methods, 26
temperature sensor, 88
unsupervised detection methods, 29

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
E. Bartz and T. Bartz-Beielstein (eds.), Online Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-99-7007-0

153

https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0
https://doi.org/10.1007/978-981-99-7007-0

154 Index

E
Ecological footprint, 140
Ensemble learning, 19
Evolution strategies, 125
Explainability, 77, 78
concept drift, 67
hyperparameter tuning, 68
latent variables, 67
regression, 68
tree-based models, 68
variable importance, 68

Extremely Fast Decision Tree (EFDT), 18
Extremely Fast Decision Tree Classifier, 33

F
Feature, 4
Feature generation, 7
Friedman-drift data set
definition, 4

G
Gradient boosting, 112
Green IT, 140
Grid search, 125

H
Hoeffding Adaptive Tree Regressor (HATR)
hyperparameter, 129

Hoeffding Anytime Tree, 18
Hoeffding Tree (HT), 16
definition, 17
implementations, 33

Hoeffding Tree Regressor, 19
Hoeffding-Window Tree, 30
Holdout, 48
Holdout evaluation, 48
Hot rolling, 84
House price estimation, 82
Hyperband, 125

I
Incremental Structured-Output Prediction

Tree Regressor, 32
Inflation forecasting, 83
Interpretability, 67

J
Java, 97
JSON, 99

K
Key Performance Indicator (KPI), 45

L
Label, 4
Label Combination Hoeffding Tree Classi-

fier, 32
Landmark batch method with prediction

horizon, 50
Landmark window model, 25
Laplace correction, 14
Leaf, 16
Learning
adaptive, 9

Learn-one
river, 99

Learning rate, 145

M
Manual search, 125
Massive Online Analysis (MOA), 97
Massive Online Analysis in R (RMOA), 98
Mini batch machine learning
definition, 9

Missing data
imputation, 63, 64

Model
fit, 3
training, 3

N
Naive-Bayes classifier, 14
Node, 16
Normalization, 64
Nowcasting, 75, 81, 82
example, 75

O
Official statistics, 72
Offline machine learning, 3
Online Machine Learning (OML)
definition, 9

Online method
iterative, 52

Online method with prediction horizon, 51
Outlier detection, 64
time series, 65

Out-of-core learning, 3

Index 155

P
Pandemic forecasting, 82
Pattern search, 125
Predict-one
river, 99

Prequential validation, 49
Progressive validation, 48
Punctuality, 77
Python, 97
frameworks, 101
libraries, 101

PyTorch, 101

R
R, 97
libraries, 101

Random search, 125
Real-time analysis, 2
Recommender systems, 7
Reproducibility, 77, 78
River, 98, 99, 108
Python framework, 8

Robustness, 77

S
Scaling, 64
Scikit-learn, 108
Sentiment prediction, 82
Sequential Parameter Optimization Toolbox

(SPOT), 68, 126
Sklearn, 101, 108
Sliding window model, 25
Split, 17
Split attribute, 17
spotRiver, 109, 142

Stacking, 20
Standardization, 64
Static data, 2
Statistisches Bundesamt, 41
Stochastic Gradient Descent (SGD), 19
Stream, 98
software, 98

Streaming data, 1
definition, 1
example, 2

Support Vector Machines (SVMs), 18
Surrogate model-based optimization, 126

T
Target variable, 4
TensorFlow, 101
Terminal node, 16
Timeliness, 77
Transform-one
river, 99

Tree, 16

V
Very Fast Decision Tree (VFDT), 16

W
Weighting
horizontal, 131

Window-batch method with prediction hori-
zon, 51

X
XGBoost, 101

	Foreword
	Preface
	Contents
	Contributors
	1 Introduction: From Batch to Online Machine Learning
	1.1 Streaming Data
	1.2 Disadvantages of Batch Learning
	1.2.1 Memory Requirements
	1.2.2 Drift
	1.2.3 New, Unknown Data
	1.2.4 Accessibility and Availability of the Data
	1.2.5 Other Problems

	1.3 Incremental Learning, Online Learning, and Stream Learning
	1.4 Transitioning Batch to Online Machine Learning
	References

	2 Supervised Learning: Classification and Regression
	2.1 Classification
	2.1.1 Baseline Algorithms
	2.1.2 The Naive-Bayes Classifier
	2.1.3 Tree-Based Methods
	2.1.4 Other Classification Methods

	2.2 Regression
	2.2.1 Online Linear Regression
	2.2.2 Hoeffding Tree Regressor

	2.3 Ensemble Methods for OML
	2.4 Clustering
	2.5 Overview: OML Methods
	References

	3 Drift Detection and Handling
	3.1 Architectures for Drift Detection Methods
	3.1.1 Adaptive Estimators
	3.1.2 Change Detectors
	3.1.3 Ensemble-Based Approaches

	3.2 Basic Considerations for Windowing Techniques
	3.3 Popular Drift Detection Methods
	3.3.1 Statistical Tests for Drift and Change Detection
	3.3.2 Control Charts
	3.3.3 Adaptive Windowing (ADWIN)
	3.3.4 Implicit Drift Detection Algorithms

	3.4 OML Algorithms with Drift Detection: Hoeffding-Window Trees
	3.4.1 Concept-Adapting Very Fast Decision Trees (CVFDT)
	3.4.2 Hoeffding Adaptive Trees (HAT)
	3.4.3 Overview: Hoeffding-Window Trees
	3.4.4 Overview: HT in River

	3.5 Drift Scaling in Online Machine Learning
	3.5.1 Statistical Measures in a Sequential Manner
	3.5.2 Adapted Scaling Techniques

	References

	4 Initial Selection and Subsequent Updating of OML Models
	4.1 Initial Model Selection
	4.2 Updating and Changing the Model
	4.2.1 Adding New Features
	4.2.2 Manual Model Changes in Response to Drift
	4.2.3 Ensuring Model Quality After a Model Update

	4.3 Catastrophic Forgetting
	4.3.1 Strategies for Dealing with Catastrophic Forgetting

	References

	5 Evaluation and Performance Measurement
	5.1 Data Selection Methods
	5.1.1 Holdout Selection
	5.1.2 Progressive Validation: Interleaved Test-Then-Train
	5.1.3 Machine Learning in Batch Mode with a Prediction Horizon
	5.1.4 Landmark Batch Machine Learning with a Prediction Horizon
	5.1.5 Window-Batch Method with Prediction Horizon
	5.1.6 Online-Machine Learning with a Prediction Horizon
	5.1.7 Online-Maschine Learning

	5.2 Determining the Training and Test Data Set in the Package spotRiver
	5.2.1 Methods for BML und OML
	5.2.2 Methods for OML River

	5.3 Algorithm (Model) Performance
	5.4 Data Stream and Drift Generators
	5.4.1 Data Stream Generators in Sklearn
	5.4.2 SEA-Drift Generator
	5.4.3 Friedman-Drift Generator

	5.5 Summary
	References

	6 Special Requirements for Online Machine Learning Methods
	6.1 Missing Data, Imputation
	6.2 Categorical Attributes
	6.3 Outlier and Anomaly Detection
	6.3.1 Additional Anomaly Detection Methods for Time-Series Data
	6.3.2 One-Class SVM for Anomaly Detection
	6.3.3 Algorithms for Anomaly Detection in river

	6.4 Imbalanced Data
	6.5 Large Number of Features (Attributes)
	6.6 FAIR, Interpretability, and Explainability
	References

	7 Practical Applications of Online Machine Learning
	7.1 Applications and Application Perspectives in Official Statistics
	7.1.1 Potentials and Challenges
	7.1.2 Compatibility with Quality Criteria
	7.1.3 Embedding in the Statistics Production Process
	7.1.4 (Online) Machine Learning Applications in Statistical Institutions
	7.1.5 Other Applications with Reference to Official Statistics
	7.1.6 Summary: OML in Official Statistics

	7.2 Industrial Application of OML in the Context of Hot Rolling
	7.2.1 Hot Rolling
	7.2.2 Machine Learning in Hot Rolling
	7.2.3 Drift in Hot Rolling
	7.2.4 Application of OML in Hot Rolling
	7.2.5 Summary: OML in Hot Rolling

	7.3 Summary: Aspects of OML Implementation in Practice
	7.3.1 Recommendations for the Implementation Process
	7.3.2 Expenditure for Implementation and Maintenance
	7.3.3 Application and Diffusion in Practice
	7.3.4 Overall Conclusions

	References

	8 Open-Source Software for Online Machine Learning
	8.1 Overview and Description of Software Packages for Online Machine Learning
	8.1.1 MOA
	8.1.2 RMOA
	8.1.3 Stream
	8.1.4 River

	8.2 Scope of the Software Packages
	8.3 Programming Languages: A Brief Comparison
	References

	9 An Experimental Comparison of Batch and Online Machine Learning Algorithms
	9.1 Study: Bike Sharing
	9.1.1 Overview: Models
	9.1.2 Linear Regression
	9.1.3 Gradient Boosting
	9.1.4 Hoeffding Regression Trees
	9.1.5 Final Comparison of the Bike-Sharing Experiments
	9.1.6 Summary: Bike-Sharing Experiments

	9.2 Study: Very Large Data Sets With Drift
	9.2.1 The Friedman-Drift Data Set
	9.2.2 Algorithms
	9.2.3 Results

	9.3 Study: Drift Scaling in Online Machine Learning
	9.4 Summary
	References

	10 Hyperparameter Tuning
	10.1 Hyperparameter Tuning: An Introduction
	10.2 The Hyperparameter-Tuning-Software SPOT
	10.3 Study: Hyperparameter Tuning of the HATR Algorithm on the Friedman-Drift Data
	10.3.1 Loading the Data
	10.3.2 Specification of the Preprocessing Model
	10.3.3 Selection of the Algorithm to be Tuned and the Default Hyperparameters
	10.3.4 Modification of the Default Values for the Hyperparameters
	10.3.5 Selection of the Target Function (Loss Function)
	10.3.6 Calling the Hyperparameter Tuner SPOT
	10.3.7 Visualization with TensorBoard
	10.3.8 hatr Tuning Results
	10.3.9 Explainability and Understanding

	10.4 Summary
	References

	11 Summary and Outlook
	11.1 Necessity for OML Methods
	11.2 Recommendations for Using OML in Practice
	References

	Appendix A Definitions and Explanations
	A.1 Gradient Descent
	A.2 Bayes' Theorem
	A.3 Hoeffding Bound
	A.4 Kappa Statistics
	Appendix B Supplementary Materials
	B.1 Notebooks
	B.2 Software
	Appendix Glossary
	Index

