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Abstract This study investigates the effectiveness of machine learning models in 
predicting fetal death and identifying significant predictive factors. The study utilized 
a dataset from the Programa Mãe Coruja Pernambucana (PMCP) that includes socio-
demographic, prenatal, maternal, and family health history data. The data underwent 
pre-processing and was explored using four tree-based machine learning models, 
each of which was evaluated based on their performance and feature importance. The 
attributes that significantly impacted the learning process were the first prenatal week, 
maternal age, and months between pregnancies. The application of predictive models 
for fetal deaths in this context can enhance the ability to detect such occurrences 
thus representing a pivotal support tool for the PMCP to identify mothers with high 
risk of adverse outcomes and promote targeted interventions of monitoring during 
pregnancy, and ultimately increase the likelihood of positive outcomes for mothers 
and babies. 
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1 Introduction 

Fetal death is a significant public health issue that affects millions of parents and fam-
ilies worldwide. Primary care for prenatal and neonatal health has a significant impact 
on the lives and health of mothers and developing babies. Increased investment in 
the provision of routine and emergency prenatal and neonatal care, basic sanitation, 
immunizations, and access to skilled health care has reduced the likelihood of neona-
tal and maternal death. Notwithstanding this, over two million pregnancies resulted 
in stillbirths in 2020; over 40% of which occurred during childbirth [ 1]. In the same 
year, a further 2.4 million children died in the first 28 d of life representing 47% of 
deaths of children under 5 years old [ 2]. 

Fetal and early neonatal mortality share the same etiology and conditions that 
result in the death of the fetus or newborn in the first hours of life. According to the 
World Health Organization (WHO), fetal death includes babies who die after the 22nd 
week of gestation, before expulsion or complete extraction from the mother’s body 
[ 2, 3]. They can be classified as early or late (after the 28th week). The United Nations 
2030 Agenda for Sustainable Development has specific targets for reducing global 
maternal mortality [ 4], and ending preventable deaths of newborns and children 
under 5 years of age [ 5]. Fetal Mortality Rate (FMR) is one of the indicators that 
assess the quality of health care provided to pregnant women during pregnancy and 
childbirth. This index expresses the number of fetal deaths with fetuses weighing at 
least 500 g or 25 cm in height per total births in the population of a given area [ 3]. The 
Sustainable Development Goals (SDGs) aim to reduce the global neonatal mortality 
rate to at least as low as 12 deaths per 1000 live births by 2030, however it does not 
specifically address to fetal mortality rate. 

Fetal deaths are considered potentially preventable but it is important to identify 
the determinants of fetal deaths. Highly cited risk factors associated with moth-
ers include obesity, alcohol and tobacco use, HIV seropositivity, Specific Hyper-
tensive Disorders of Pregnancy (HDP), gestational diabetes mellitus, and placental 
and amniotic complications, which can directly influence congenital malformation, 
growth restriction and fetal death [ 6– 8]. Recent studies indicate that pregnant women 
infected with SARS-CoV-2 may increase the risk of premature delivery and fetal 
death [ 9, 10]. Additionally, social factors such as maternal age, low income, inad-
equate schooling, and prenatal care also contribute to higher risk fetal death [ 11]. 
Notwithstanding these factors, significant and preventable factors that contribute to 
high rates of fetal and early neonatal mortality relate to poor quality prenatal care 
service, late diagnosis of complications during pregnancy, difficulty accessing care 
for pregnant women, and inadequate obstetric management [ 12]. The risks asso-
ciated with these factors are exacerbated where there in multi-fetal gestation. Such 
instances are associated with additional prenatal risks including higher risk of preterm 
labor, preterm premature rupture of the membranes, intrauterine growth restriction, 
intrauterine fetal demise, gestational diabetes, and pre-eclampsia [ 13]. In such cases, 
planning prenatal care is crucial to estimate benefits and minimize adverse outcomes 
including fetal or multi-fetal death [ 14].
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Fig. 1 Fetal death rate per 1000 live births in Brazil, Northeast Region, and state of Pernambuco. 
Data is available on the DATASUS website provided by the Brazilian Ministry of Health 

In 2010, the Ministry of Health (MoH) mandated fetal and infant death moni-
toring and investigation as part of the Brazilian unified health system, the Sistema 
Único de Saúde (SUS). The data generated from this strategy enables researchers 
and policymakers to accurately gauge the scale of fatalities and categorize their root 
causes and contextual circumstances. This, in turn, facilitates the development of 
effective recommendations for targeted interventions aimed at preventing avoidable 
deaths [ 15, 16]. In 2010, the FMR for Brazil was estimated at 10.81 fetal deaths per 
1000 live births; this decreased to 10.62 in 2020. Figure 1 depicts the evolution of the 
fetal death rate per 1000 live births in Brazil, in the Northeast region, and in the state 
of Pernambuco from 2010 to 2020. As can be seen from 1, in 2020, the Northeast 
region presented the second highest FMR in the country with 12.50 deaths per 1000 
live births; the index for the state of Pernambuco was 11.08 [ 17]. 

In Pernambuco, one of the initiatives to reduce prenatal and neonatal still child-
birth is the Programa Mãe Coruja Pernambucano (PMCP). Launched in 2007, the 
PMCP aims to provide comprehensive care to pregnant women and children up to 
5 years of age. The PMCP is active in more than 105 municipalities in Pernambuco, 
mainly in vulnerable areas. Through the creation of a support network, the program 
ensures that mothers and their children receive the necessary care, including health 
services, education, social assistance, and family support. As a result, the program 
has significantly contributed to the reduction of maternal and infant mortality rates 
as well as improving social indicators and the quality of life of many families in 
Pernambuco [ 2, 18]. 

Despite the availability of the increased data and the PMCP, Fig. 1 suggests that 
challenges remain in the detection and prediction of adverse outcomes during preg-
nancy. Against this backdrop, machine learning models, due to their high predictive 
potential, have been widely proposed as solutions to support early diagnosis and 
monitoring during pregnancy and postpartum [ 19]. Extant research has used machine 
learning models to predict preterm birth, birth weight, mortality, hypertensive disor-
ders, and postpartum depression, among other factors [ 20, 21]. Machine learning has
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also been used to predict vaginal births after cesareans, understanding the character-
istics of past and current pregnancies, and consequently assisting in the mode and 
management of labor [ 19]. Also, recent studies point to the use of machine learning 
to identify risks of fetal death and perinatal mortality [ 20, 22]. 

Developing predictive models and identifying factors associated with fetal death 
can aid in reducing its occurrence and improving healthcare services for affected 
parents and families. The primary aim of this study is to assess the effectiveness of 
predictive machine learning models based on data obtained from pregnant women 
who are receiving care at the PMCP. These initial findings represent a segment of an 
ongoing research project that seeks to establish decision support tools for healthcare 
professionals using predictive machine learning models in collaboration with the 
PMCP. In this work, we present the most significant clinical and socio-demographic 
attributes that contribute to the learning process of these models, thus enabling the 
selection of the most relevant features for further analysis. This study forms the 
foundation for future investigations aimed at developing practical tools to improve 
maternal health outcomes. 

2 Related Works 

Extant literature suggests that machine learning has significant potential for pre-
dicting fetal, neonatal, perinatal, and infant mortality [ 23]. In their review of the 
literature, Silva et al. [ 23] reviewed 18a publications from 2012 to 2021, however 
two publications by Shukla et al. [ 24] and Malacova et al. [ 22] focused on predicting 
fetal deaths. 

Based on data from the NICHD Global Network for Women’s and Children’s 
Health Research Maternal and Newborn Health Registry, Shukla et al. [24] performed 
an analysis with data from women in the period of pregnancy up to the third day 
of delivery. The objective of the study was to predict the risk of fetal and neonatal 
mortality. For this, six machine learning models (Logistic Regression, Support Vector 
Machine, Logistic Elastic Net, Artificial Neural Networks (ANN), Gradient Boosted, 
and Random Forest) were used in two different scenarios for the prediction of fetal 
death, i.e., prenatal care variables up to the first prenatal visit (scenario 1) and prenatal 
care variables up to just before delivery (scenario 2). The dataset used was composed 
of 472,004 records labeled live and 15,322 records labeled stillborn records for 
scenario 1, and 485,966 records labeled live and 1360 records labeled stillborn for 
scenario 2. The results for the prediction of fetal death identified the Random Forest as 
the best model with an Area Under the Curve (AUC) of 63% for scenario 1 and a 71% 
AUC for the gradient boosted model in scenario 2. It was also possible to identify the 
most important attributes in the analysis, i.e., gestational age, hypertension, severe 
pre-eclampsia or eclampsia, and maternal age. 

Malacova et al. [ 22] identified the factors that contribute to the prediction of 
fetal death and evaluated the performance of different machine learning models. 
Using data sourced from the Data Linkage Branch of the Western Australia Depart-
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ment of Health, the dataset comprised 952,813 pregnancy records from 1980 to 
2015. 947,025 of the records were labeled live and 5788 were labeled stillbirth. The 
grid search technique was used with the k-fold cross-validation technique (k-fold 
= 10) to configure five models—Regularized Logistic Regression, Decision Trees, 
Random Forest, Extreme Gradient Boosting (XGBoost), and a Multilayer Percep-
tron Neural Network (MLP). The AUC results of the models varied between 0.59 
(CI95%; 058; 0.60) and 0.84 (CI95%; 083; 0.85). XGBoost and MLP exhibited the 
best performance. The most influential attributes in the prediction were pregnancy 
complications, congenital anomalies, maternal characteristics, and medical history. 

The work by Ko et al.  [  14] performed a statistical analysis trends of multiple birth 
rates and fetal/neonatal/infant mortalities based on the number of gestations in Korea. 
The dataset used in the study comprised 41,214 fetal death records from the Korean 
Statistical Information Service. Logistic regression was used to identify the impact 
of gestational age on mortality in single or multiple pregnancies. Results showed 
higher fetal mortality rates for multiple pregnancies compared to single pregnancies 
and identified a higher risk of fetal death during the third trimester of a multiple 
pregnancy. 

Koivu and Sairanen [ 20] proposed risk models to predict early and late term fetal 
deaths, as well as premature births, using two large United States (US) pregnancy 
databases sourced from the National Center of Health Statistics via their National 
Vital Statistics System (CDC) and the New York City Department of Health and 
Mental Hygiene (NYC). The CDC dataset comprised 11,901,611 records labeled 
normal pregnancies, 946,301 records labeled premature births, 7924 records labeled 
early stillbirths, and 8310 records labeled late stillbirths. The NYC dataset com-
prised 266,419 records labeled normal pregnancies, 19,203 records labeled pre-
mature births, 139 records labeled early stillbirths, and 110 records labeled late 
stillbirths. Classification models were developed using four different algorithms— 
logistic regression, gradient boosting decision trees, and two ANNs—a leaky-ReLU-
based deep two-layer feed-forward neural network and deep feed-forward self-
normalizing neural network based on the Scaled Exponential Linear Units (SELU) 
activation function. AUC was used to assess the effectiveness of the models. Perfor-
mance ranged from 0.54 to 0.76; the SELU-based exhibited the best performance 
in predicting early stillbirth with an AUC of 0.76, while the leaky-ReLU-based 
ANN performed better for predicting late stillbirth with 0.63 AUC. The models were 
trained using various attributes, including social information, health, family history, 
and maternal habits. The results showed that the developed risk models were more 
effective in predicting early fetal deaths than late fetal deaths or premature births. 

Our work contributes to the existing literature by examining data from the PMCP 
social project, which serves multiple cities across the State of Pernambuco. This 
approach offers a novel empirical context and perspective on the prediction of 
fetal death using machine learning. Therefore, investigating the clinical and socio-
demographic data of Pernambuco is essential to mitigate this social problem in the 
future and contributing to Brazil’s commitment to the SDGs. Our results provide 
insights into using machine learning with the PMCP dataset and evaluate the signif-
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icance of the attributes used and identify the tree-based models that would be most 
effective in this scenario. 

3 Background 

3.1 Machine Learning Models 

Machine learning is an area of artificial intelligence that encompasses methods that 
allow machines to train and learn from provided datasets. In this learning process, 
the model is allowed to learn to make decisions autonomously using sets of input and 
output data [ 25– 27]. In this work, four tree-based machine learning models are used. 
The models evaluated for the prediction of fetal death are Decision Trees, Random 
Forest, AdaBoost, and XG Boost. 

A decision tree model is a supervised machine learning algorithm that supports 
decision-making that can be used as a classification tree (to predict classes) or a 
regression tree (to predict numerical values). The structure of a decision tree is very 
similar to that of a flowchart, with steps that are easy to visualize and thus understand 
the conditions and probabilities that lead to results. The decision tree model consists 
of a root node (the most important node), internal nodes (nodes that are related to 
each other by a hierarchy), and leaf nodes (end results). The internal nodes split the 
dataset into smaller subsets based on the values of the selected feature. The internal 
nodes split the dataset into smaller subsets and each leaf node represents a numerical 
value for a regression problem [ 28, 29]. 

Random Forest is an ensemble model that combines multiple decision trees to 
improve prediction performance. It works by creating a set of decision trees using 
different subsets of the training data, and then averaging their predictions to make 
a final prediction. The random selection of features reduces the correlation between 
trees and results in a diverse set of trees with a lower probability of overfitting the 
data [ 30]. 

AdaBoost is a model that repeats the learning process and generates a final clas-
sifier that weighs the weak combinations of the model. This model is particularly 
effective at boosting the performance of weak classifiers and has the advantage of 
being able to be used on large datasets with many attributes [ 30]. 

The XGBoost model is a tree-based machine learning model that works by creating 
a set of decision trees iteratively, where each tree tries to correct the errors made by 
the previous trees. This technique has been effective in various machine learning 
tasks such as regression and classification [ 31].
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3.2 Evaluation Metrics 

For the evaluation of the model learning for predicting fetal death, quantitative metrics 
based on a confusion matrix were used. The confusion matrix presents the number of 
records classified correctly and incorrectly and is comprised of True Positive, False 
Positive, True Negative, and False Negative values [ 32]. 

Accuracy is widely used in extant research as a general measure of model per-
formance [ 33]. This metric is based on the total ratio of samples correctly predicted 
by the classifier with the test data. In this scenario, the metric seeks to present the 
generalization capacity of the model. Accuracy is calculated by the equation: 

.accuracy = TP+ TN

TP+ TN+ FP+ FN
. (1) 

Precision measures how many cases are classified by the model as positive and are 
truly positive in relation to all positive cases [ 34]. It is calculated using the following 
equation: 

.precision = TP

TP+ FP
. (2) 

Recall (also referred to as sensitivity) is the ratio of positive cases that were 
correctly classified by the model [ 35] and is defined as 

.recall = TP

TP+ FN
. (3) 

Specificity seeks to determine the proportion of actual negatives that were cor-
rectly predicted [ 35]. It is calculated using the following equation: 

.specificity = TN

TN+ FP
. (4) 

The f1-score is a metric that calculates the harmonic mean of two metrics (recall 
and precision) to calculate the total hit rate of the positive and negative classes 
performed by the model [ 36]. It is calculated as 

.f1− score = 2× precision× recall

precision+ recall
. (5) 

3.3 Hyper-parameter Optimization and Data Balancing 

To improve the performance of the models, the grid search technique is used which 
seeks to define the best combination of hyper-parameters of a given model around
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an analyzed problem based on a grid of initial parameters. Hyper-parameters are 
parameters used to configure the models such as the learning rate or the minimum 
number of samples that must exist in each leaf of a tree model. The execution of the 
technique results in a model that directly impacts its performance in data analysis 
[ 37]. 

Data imbalance is one of the obstacles that hinder learning in classification algo-
rithms as it can lead to a learning bias. Where there is learning bias, the model will 
learn more about the majority class than the minority resulting in low-performance 
models due to the imbalance between classes [ 38, 39]. One of the ways to resolve 
this problem is to use the random undersampling technique, a heuristic method that 
randomly eliminates instances of the majority class until the quantity is reduced to 
the same quantity or the next minority class [ 40]. 

4 Materials and Methods 

4.1 Dataset 

This study utilized a dataset provided by the PMCP, covering the period from 2012 
to 2022. Initially, the dataset contained 231,505 records and 71 attributes. It pro-
vides extensive information on various aspects of pregnant women’s health including 
maternal history, comorbidities, socio-demographic factors, prenatal and postpartum 
care, residential and healthcare unit data, personal informative dates, and newborn 
information. These information was collected by a health specialist at the time of 
care for the pregnant woman. The dataset’s multifaceted variables provide a compre-
hensive view of the health status and background of pregnant women receiving care 
from the PMCP thus providing a valuable resource for developing predictive models 
aimed at enhancing prenatal, postpartum, and maternal health outcomes. 

To better understand the dataset, a dictionary 1 was created to describe the attributes 
based on the information provided by PMCP. The STILLBIRTH attribute was chosen 
as the target class and named TARGET; it is described with a value of 1 for fetal 
death and a value of 0 for survival. 

4.2 Data Pre-processing 

To enable the machine learning models to utilize the dataset provided by the PMCP, it 
is essential to undertake a set of pre-processing steps to clean and prepare the data for 
model training and testing. By performing these pre-processing steps, we can ensure 
that the dataset is suitable for use in training accurate and robust predictive models

1 Available at: https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-
MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn. 

https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
https://www.dropbox.com/scl/fi/33utcbk29kcc11log4332/Dictionary-dataset-full-MorteFetal.docx?dl=0&rlkey=gbpuo7a4dgtrl0r0tjqbsjxvn
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Fig. 2 Pre-processing steps performed on PMCP dataset 

and consequently leading to better decision support for healthcare professionals. 
Figure 2 illustrates the steps involved in generating the pre-processed dataset used in 
this work. 

During the attribute removal and selection stage, we began by excluding attributes 
related to residential data, service units, geographic environment codes, and other 
complementary information deemed irrelevant to the study. This step allowed us to 
streamline the dataset and remove extraneous variables that could potentially interfere 
with the accuracy and efficacy of the predictive models. 

Subsequently, we removed attributes that contained more than 35% of missing 
values as well as those with low information content regarding the pregnant woman 
and the puerperium. This step allowed us to further refine the dataset by eliminating 
variables that could potentially introduce bias or noise into the predictive models. 

Following these pre-processing steps, the resulting dataset was further reduced to 
17 attributes containing information solely about the mother, current pregnancy, and 
family health history, as summarized in Table 1. 

The next step in our analysis involved the assessment of the selected attributes 
for completeness and the treatment of outliers. We observed that the PREVI-
OUS_WEIGHT attribute contained several typing errors. This prompted us to define 
a maximum weight of 120 kg; any records that exceeded this value were marked as 
missing, to be treated in the subsequent pre-processing step. Similarly, we noted that 
the FIRST_PRENATAL attribute exhibited exceptionally high weekly values that 
did not accurately reflect the timing of the first prenatal care. Upon closer exami-
nation, we discovered that this attribute depended on the dates of pregnancy onset 
and first prenatal care thus inaccuracies in either date could affect the value in weeks 
of the first prenatal care. To address this issue, we established a maximum value of 
35 weeks for the first prenatal care which corresponds to the eighth month of preg-
nancy. Any records found to be older than 35 weeks were also marked as missing 
and were designated to be handled in the subsequent step of pre-processing. 

In the missing data handling step, we examined the 17 selected attributes 
and identified five attributes with missing data: PREVIOUS_WEIGHT, GESTA-
TIONAL_RISK, SCHOOLING, AGE, and FIRST_PRENATAL. Of these, PREVI-
OUS_WEIGHT had the highest proportion of missing data (34.78%) which was 
close to the previously established threshold. AGE was the second most affected 
attribute (14.61% missing values) followed by GESTATIONAL_RISK (9.23%). The 
SCHOOLING attribute had the lowest proportion of missing data at 2.51%. To han-
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Table 1 Dataset attributes 

Attribute Type Description 

PREVIOUS_WEIGHT Numeric Weight of the pregnant 
woman before 
pregnancy 

GESTATIONAL_RISK Numeric High-risk pregnancy 

SCHOOLING Numeric Pregnant woman’s 
school level 

HAS_HYPERTENSION Categorical Pregnant woman with 
hypertension 

HAS_DIABETES Categorical Pregnant woman with 
diabetes 

HAS_PELVIC_SURGERY Categorical Pregnant woman with 
pelvic surgery 

HAS_URINARY_INFECTION Categorical Pregnant woman has 
urinary tract infection 

HAS_CONGENITAL_MALFORMATION Categorical Family history of 
congenital 
malformation 

HAS_FAMILY_TWINSHIP Categorical Family history of twins 

AMOUNT_GESTATION Numeric Total number of 
pregnancies 

AMOUNT_ABORTION Numeric Total number of 
abortions 

AMOUNT_DELIVERIES Numeric Total number of 
deliveries 

AMOUNT_CESAREAN Numeric Total number of 
cesarean deliveries 

TARGET Numeric Birth or fetal death 

AGE Numeric Pregnant’s age 

FIRST_PRENATAL Numeric First prenatal week  

TIME_BETWEEN_PREGNANCIES Numeric Time in months 
between pregnancies 

dle the missing data, we adopted the median imputation technique which involves 
replacing missing values with the median value of the corresponding attribute [ 23]. 
By using this method, we were able to preserve the distribution and statistical proper-
ties of the data and ensure that the imputed values were consistent with the available 
data. 

After completing the pre-processing steps, a new dataset was generated compris-
ing 17 attributes and 231,505 records. Of these records, 224,076 related to live births 
and 7429 related to fetal deaths. The pre-processed dataset was then used to train 
and test the machine learning models for predicting pregnancy outcomes.
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4.3 Experiment Design 

Figure 3 outlines the methodology used to conduct our experiments. All tests were 
conducted using the Google Colab tool. As previously mentioned, the initial step was 
aimed at addressing the issue of data imbalance related to the target attribute. To solve 
this problem, we utilized the random undersampling approach to randomly select 
data from the majority class (live birth) and balance the dataset. After balancing the 
dataset, there were 7429 records for both live births and fetal deaths, 14,858 records 
in total. 

Following the creation of the balanced dataset, we partitioned the dataset into two 
disjoint subsets: 70% of the data was allocated to the training set and the remaining 
30% allocated to the test set. The test set was reserved exclusively for evaluating the 
performance of the models in the final stage, while the training set was used to train 
the models. 

The grid search technique with 10-k-fold and accuracy as score was employed to 
determine the optimal hyper-parameters for each of the models. 

The hyper-parameters of the four models used in this work (Decision Tree, Ran-
dom Forest, AdaBoost, and XGBoost) in the grid search can be viewed in Table 2. 

After executing the grid search, we obtain the optimal hyper-parameters for each 
model. We then proceeded to the model evaluation phase, where the test data that 
was set aside previously was utilized. To quantitatively evaluate the models, we used 
the evaluation metrics mentioned earlier in Sect. 3: accuracy, precision, sensitivity, 

Fig. 3 Experiment design methodology
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Table 2 Hyper-parameters used in the grid search 

Model Hyper-parameters Values 

Decision Tree criterion 
splitter 
max_depth 
min_samples_leaf 
min_samples_split 

[’gini’, ’entropy’] 
[’best’, ’random’] 
[None, 1, 3, 5]  
[1, 3, 5, 7, 9, 11]  
[2, 5, 8]  

Random Forest n_estimators 
criterion 
max_depth 
min_samples_leaf 
min_samples_split 
bootstrap 

[100, 500, 700, 900] 
[’entropy’, ’gini’] 
[None, 1, 3, 5]  
[1, 3, 5, 7, 9, 11]  
[2, 5, 8]  
[True, False] 

AdaBoost n_estimators 
learning_rate 

[50, 100, 200] 
[0.1, 1, 1.1] 

XGBoost max_depth 
learning_rate 
n_estimators 
gamma 

[None, 1, 3, 5]  
[0.1, 1, 1.1] 
[50, 100, 200] 
[0, 0.2, 0.4, 0.8] 

specificity, and f1-score. In addition, an analysis was performed to determine the 
attributes that have the most impact on the learning process of the tree models. This 
contributes to better understanding the importance of each attribute in the overall 
model performance. 

5 Results and Discussions 

5.1 Models’ Performance 

Table 3 displays the hyper-parameters selected by grid search as the optimal hyper-
parameters for the models. Accuracy was utilized as the metric to evaluate the per-
formance and models demonstrated accuracy ranging from 59.55 to 61.95%. 

After applying the results chosen by the grid search, all models presented rela-
tively close results as presented in Table 4. Similarly, all models presented similar 
performance in testing. The XGBoost presented the highest precision when com-
pared to other models (64.02%) while the Decision Tree at 61.93% presented the 
lowest precision in this experiment. 

Regarding sensitivity and specificity, Random Forest demonstrated disparity in 
these metrics. The model exhibited a sensitivity of 67.86% indicating that it can 
accurately predict the probable fetal death, the target class of this experiment. How-
ever, there was a slight decrease in specificity (59.62%). This suggests a possible 
challenge in predicting live births and may result in an increase in false positives.
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Table 3 Grid search results of the models 

Model Best hyper-parameters Accuracy (%) 

Decision Tree criterion: ’gini’, 
splitter: ’best’, 
max_depth: 5, 
min_samples_leaf: 11, 
min_samples_split: 2 

59.55 

Random Forest n_estimators: 900, 
criterion: ’entropy’, 
max_depth: None, 
min_samples_leaf: 11, 
min_samples_split: 2 
Bootstrap: True 

61.43% 

AdaBoost n_estimators: 50, 
learning_rate: 1 

61.72 

XGBoost max_depth: 5 
learning_rate: 0.1 
n_estimators: 50, 
gamma: 0.8 

61.95 

Table 4 Model performance results 

Model Precision (%) Sensitivity 
(%) 

Specificity 
(%) 

Accuracy (%) f1-score (%) 

Decision Tree 61.93 62.55 61.30 61.93 61.93 

Random 
Forest 

63.84 67.86 59.62 63.80 63.72 

AdaBoost 62.74 62.55 62.94 62.74 62.74 

XGBoost 64.02 66.05 61.94 64.02 64.00 

Despite this disparity, the Random Forest model remained consistent with an overall 
accuracy of 63% and other evaluation metrics. 

Of all the models used in this experiment, XGBoost stood out as with the best 
performance metrics when compared to the other models. This model achieved the 
best results in precision (64.02%), accuracy (64.02%), and f1-score (64%). It also 
ranked second best in sensitivity (66.05%) and specificity (61.94%) metrics. Among 
the models tested, Decision Tree had the lowest overall performance. Given that the 
other tested models are improved versions of trees, this most likely explains why the 
Decision Tree exhibited slightly lower metrics than the other tree-based models. As 
presented previously, Random Forest exhibited superior sensitivity compared to the 
other models, while XGBoost achieved the highest f1-score. In general, all models 
displayed consistent performance with similar performance. 

Figure 4 presents a comparison of the metrics among all models. The shape of the 
radar graph can provide insights into the performance of different models. A model 
with consistently high performance across all metrics creates a regular, symmetrical
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Fig. 4 Comparison in percentage between model metrics 

shape, while a model with significant variations in performance creates an irregular, 
non-symmetrical shape. Patterns in the shape can also suggest features of strength 
or weakness for a model, such as a model that performs well in certain metrics but 
poorly in others. 

5.2 Attributes’ Importance 

In this study, we also identified the attributes that most influenced the learning process 
of the models. The importance of attributes lies in their ability to capture relevant 
information about the data that is useful for prediction. Choosing the right attributes 
for a particular problem is critical to achieving good performance. Identifying the 
most relevant attributes often involves a combination of domain expertise and exper-
imentation with different attribute subsets. Figure 5 presents the eight attributes that 
were most important in this process. These attributes are primarily related to the 
pregnant woman’s socio-demographic information and medical history. 

Specifically, data from the first prenatal visit, age, time between pregnancies, and 
pre-pregnancy weight had a significant influence on all models. On the other hand, 
the education level and number of abortions had a relatively lesser impact on all 
the models. Interestingly, the attributes of hypertension and gestational risk had no 
impact in the Decision Tree model but were found to be influential in the Random 
Forest, XGBoost, and AdaBoost models. These findings are consistent with a recent 
Systemic Literature Review (SLR) conducted by Silva Rocha et al. [ 23] which sug-
gests attributes such as maternal age, mother’s education, prenatal care, number of 
pregnancies, and number of cesarean deliveries were used in studies predicting fetal
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Fig. 5 Most important attributes in the model learning process 

death. In Muin et al. [ 41], maternal demographic and obstetric characteristics were 
the ones that best explained prediction of women at risk for stillbirth. 

To analyze the data distribution between live births and fetal deaths, we focused 
on the three most important attributes in the models’ learning. Figure 6 shows the 
data from the start of prenatal care, ranging from gestational week 1 to week 35. 
Notably, most of the records were concentrated in week 10, which is attributed to 
the use of median imputation to fill in the missing data. Our findings indicate that in 
cases where prenatal care began in weeks 5 to 9, the incidence of fetal deaths was 
considerably higher. 

It is extremely critical that mothers have adequate and appropriate prenatal care to 
optimize the likelihood of a positive outcome in pregnancy. Studies associate inade-
quate prenatal care with an increased rate of fetal deaths [ 42, 43]. The lack of prenatal 
visits or visits without proper monitoring can increase fetal deaths. Conditions such 
as premature rupture of membranes, fetal growth restriction, and bleeding that can be 
detected with proper monitoring can prevent negative outcomes [ 43]. A systematic 
review conducted by Townsend et al. [ 44] revealed a total of 69 studies reporting on 
64 different variables that were relevant to the development of stillbirth prediction 
models. Among these variables, the most frequently cited ones included maternal 
age, Body Mass Index (BMI), and previous history of stillbirth and diabetes. These 
results can provide important insights for healthcare providers in identifying high-
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Fig. 6 Distribution of prenatal data between live births and fetal deaths 

Fig. 7 Distribution of maternal age data between live births and fetal deaths 

risk pregnancies and implementing targeted interventions to reduce the occurrence 
of fetal deaths. 

Figure 7 displays the distribution of data relating to fetal deaths and live births 
based on maternal age. The highest concentration of records is observed at 23 years of 
age, again potentially attributed to the technique of imputing missing values through 
median substitution. Notably, from the age of 28, the frequency of fetal death data 
exceeds that of live births. A correlation is observed between maternal age and the 
disparity between the number of live birth and fetal death records, with an increasing 
maternal age demonstrating a wider discrepancy. 

The risk of fetal death has been shown to increase with advancing maternal age 
(AMA), which may be attributed to the higher incidence of chronic diseases such as 
diabetes and hypertension in this population [ 45]. Several studies have reported that 
advanced maternal age, typically defined as 32 years or older, is a significant risk
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Fig. 8 Distribution of data by time (months) between pregnancies for live births and fetal deaths 

factor for fetal death, with ectopic pregnancy being one of the primary contributors 
to this association. In this age group, the chances of spontaneous abortion are also 
elevated [ 46]. AMA has been found to be a significant predictive factor in several 
studies, including those using Decision Tree models, for predicting fetal death and 
prematurity [ 47– 49]. Our study also identified AMA as an important attribute in 
predicting fetal death. 

Despite the increased risk of fetal loss associated with advanced maternal age, 
the use of assisted reproductive technology (ART) has enabled older women to con-
ceive. To ensure the best possible outcome, it is crucial for women to have accurate 
information about the potential risks and make informed decisions about their health 
and pregnancy. Studies suggest that appropriate prenatal monitoring and adoption of 
a healthy lifestyle can improve the health outcomes of older pregnant women [ 50]. 

Another important factor for predicting fetal death is the interval between preg-
nancies (Fig. 8). The distribution of this data ranges from.−1 (records that we were 
unable to identify the time between pregnancies) up to 12 months (where the time 
between pregnancies is at least 12 months). The records classified at 0 months are 
those that had no interval between one pregnancy and another. 

A significant difference was identified between the number of live births and fetal 
deaths classified as .−1. Unfortunately, it was not possible to determine the duration 
of the pregnancy for these records. Additionally, we observed a high number of live 
births within a 0-month interval indicating that some women were able to carry the 
pregnancy to full term and achieve a positive outcome despite a short time between 
pregnancies. Between month 4 and month 11 the proportion of fetal deaths exceeded 
the proportion of live births. According to WHO, the recommended time for having 
a new pregnancy safely is 24 months. A shorter time than this period increases the 
risk of fetal, perinatal, and infant death [ 51]. 

The Interpregnancy Interval (IPI) is a measure of time between a woman’s previous 
delivery and the next conception. IPI is calculated by subtracting the date of the
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previous delivery from the mother’s last menstrual period. Studies have shown that 
an IPI of less than 6 months is associated with an increased risk of adverse outcomes 
such as premature birth, low birth weight, and fetal death [ 52]. Further, short IPIs 
may be associated with women who had a pregnancy loss in the previous gestation. 
With a short time period between a previous pregnancy and a new one, the woman’s 
body is more likely to enter a reproductive cycle poor in nutrients during the pre-
conception period, a factor associated with fetal growth restriction and congenital 
anomalies [ 53]. 

6 Conclusion and Next Steps 

In several states in Brazil, social programs have been initiated to focus on maternal, 
fetal, and child care, providing not only clinical health support for mothers and 
babies but also psychological support and a network of assistance. These initiatives 
aim to prevent fetal deaths and improve the well-being of mothers and their babies. 
The Programa Mãe Coruja Pernambucana is a crucial initiative that reaches out to 
hundreds of families across more than a hundred cities in the state of Pernambuco. By 
conducting studies on fetal death, we can further assist and strengthen such programs 
to combat this social problem and minimize adverse outcomes in the lives of pregnant 
women and babies. 

In the present work, machine learning models were used to predict fetal death 
and can be considered a promising tool in monitoring the maternal health and sup-
porting clinical decision-making. Specifically, we utilized four tree-based models 
in our analysis—Decision Tree, Random Forest, AdaBoost, and XGBoost. Of these 
models, XGBoost demonstrated the best performance in terms of evaluative metrics, 
consistently achieving values between 61 and 66%, while exhibiting good sensitivity. 

We also evaluated the importance of the attributes used in the models’ learning 
process. In our study, socio-demographic information about the mother and health 
history were essential in the learning process. Data such as the start of prenatal 
care, maternal age, and time between pregnancies were important factors in this 
study. Laboratory data was not used in this study. Instead, all information used in 
the models was based on the pregnant woman and her family’s inherent information. 
This decision was made with the aim of simplifying the data and avoiding the need 
for costly laboratory tests during the learning process. The approach used in this 
study is therefore considered to be of low cost and practical. 

We emphasize that this study presented some preliminary results using the PMCP 
database. The identification of fetal deaths in regions with lower levels of socioe-
conomic development, such as the Brazilian Northeast, is of paramount importance 
due to the likelihood of under-reporting of these events, limited access to quality 
healthcare services, and elevated maternal and infant morbidity and mortality rates 
linked to social determinants [ 54]. 

The usage of machine-learning-based systems for diagnostic, prognostic, and 
health assessment may allow a better performance of professionals to take their
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decisions. Our work aims to assist health professionals in predicting fetal death; we 
do not aim to diagnose but to use the predictive model as an auxiliary decision support 
tool. Despite the limitations posed by incomplete data and limited information in the 
database, we were able to achieve promising results in terms of evaluation metrics. 

As part of our future work, we plan to refine our methodology by improving the 
selection of attributes and exploring different techniques for handling missing data. 
Another critical aspect that can be considered is the impact of social and behavioral 
variables. For instance, situations where women experience domestic violence, stress, 
unemployment, and deprivation can significantly affect their health and well-being, 
and could be taken into account within a population-based conceptual framework 
[ 41]. We recognize that there is still much room for improvement and future studies 
could benefit from a more comprehensive datasets. Nonetheless, our current findings 
provide an encouraging starting point for further research into the detection of fetal 
death using predictive modeling. 

Integrating machine learning solutions into clinical practice can be particularly 
beneficial in supporting obstetric counseling and prenatal care, especially in countries 
that face economic vulnerability and social fragility, improving maternal and fetal 
health outcomes. By leveraging advanced analytical tools and combining them with 
clinical expertise, we plan to develop more accurate and effective predictive models 
that can aid in the prediction and prevention of fetal death. 
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