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Abstract This inquiry zeroes in on the assembly of a medical English corpus and the 
formulation of an auto-annotation algorithm, intent on enhancing the precision and 
effectiveness of medical text scrutiny. By harnessing deep learning methodologies, 
encompassing word embedding, recurrent neural network (RNN), long short-term 
memory network (LSTM), and Transformer design, we executed the processing and 
evaluation of a substantial portion of medical document data. The data is prepro-
cessed and cleaned, and then entity annotation is performed with a deep learning 
model. We design an automatic labeling algorithm and train it with an optimizer, 
while employing several evaluation metrics to verify its performance. The results 
show that our model performs well on medical entity recognition and labeling tasks. 
The innovation of this study lies in the application of deep learning technology to 
the construction and annotation of medical corpus, which provides an efficient and 
accurate method for medical information processing. 

5.1 Introduction 

Medical text data are valuable resources for medical research and clinical practice. 
Accurate and efficient processing and analysis of these data is critical to improving 
the quality of medical services, disease diagnosis and treatment. However, due to the 
complexity and specialization of medical terminology, processing medical text data 
faces many challenges.
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Over recent years, deep learning has emerged as a paradigm-shifting force within 
the domain of natural language processing (NLP), yielding extraordinary outcomes in 
areas like voice recognition, machine-enabled translation, and sentiment dissection. 
Concurrently, deep learning has found successful integration in the medical sphere, 
particularly demonstrating potent efficacy in the analysis of medical imagery and the 
handling of electronic health records [1]. 

The assembly of a medical English corpus and the inception of an auto-annotation 
algorithm grounded in deep learning form the pivotal themes of this manuscript. Our 
focus gravitates towards the integration of deep learning within medical natural 
language processing and delving into the mechanics of corpus construction. The 
establishment of a superior quality corpus underpins medical natural language 
processing endeavors, and auto-labeling algorithms can markedly elevate the efficacy 
and precision of data labeling [2]. 

5.2 Introduction to Medical English Corpus 

Medical English corpus is a collection containing a large amount of medical text data, 
which is an important basis for researching and analyzing information in the medical 
field. Due to the ever-changing knowledge in the medical field, the construction and 
maintenance of medical corpora becomes an ongoing process [4]. 

In this study, we collected 1000 simulated medical text data, including medical 
papers, clinical reports, case studies, and drug instructions, etc. These data cover 
multiple subfields such as internal medicine, surgery, radiology, and biomedicine. 
Our goal is to create a high-quality medical English corpus through deep learning 
technology, and develop automatic annotation algorithms to improve the efficiency 
and accuracy of data annotation [5]. 

The establishment of a medical English corpus not only needs to collect data, but 
also needs to clean, label and verify the data. In this study, we performed detailed data 
preprocessing, including noise removal, text normalization, and word segmentation. 
Subsequently, we automatically annotate medical terms and concepts using a deep 
learning model, and design an evaluation mechanism to verify the annotation quality. 

Our medical English corpus not only provides valuable resources for academic 
research, but also can be used to develop and improve medical natural language 
processing applications, such as intelligent diagnosis systems, clinical decision 
support and patient health information management, etc. 

Through this article, we will discuss in depth the construction process of the 
medical English corpus, the application of deep learning technology, and the design 
and implementation of automatic labeling algorithms, aiming to provide a powerful 
and scalable tool for the medical field [6].
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5.3 Application of Deep Learning Technology in Natural 
Language Processing 

5.3.1 Natural Language Processing Process Based on Deep 
Learning 

Word Embedding 

Word embedding is a technique for representing vocabulary by converting each word 
into a vector in a high-dimensional space. With word embeddings, similar words are 
placed closer together in the vector space. This technique captures the semantic and 
grammatical relationships between words. 

Common word embedding methods include Word2Vec and GloVe. 
There are two main variants of Word2Vec: Skip-gram and CBOW (Continuous 

Bag of Words). Skip-gram predicts the context of a given word, while CBOW predicts 
the target word generated from its context. 

The objective function of Skip-gram is: 

L =
∑

i 

logp(context(wi )|wi ) (5.1) 

In this expression, L is the likelihood function and (wi ) represents the context of 
word wi . 

Recurrent Neural Network (RNN) 

RNN is a type of neural network that performs well on sequence data. The key prop-
erty of RNN is its internal recurrent connections, which give it a memory function. 
However, it is difficult for RNNs to learn long-term dependencies. 

The basic formula of RNN is: 

ht = tanh(Whh ∗ h{t−1} + Wx h ∗ xt ) (5.2) 

where ht is the hidden state at time step t, Whh and Wx h are weight matrices, and xt 
is the input at time step t . 

Long Short-Term Memory Network 

LSTM is a variant of RNN that is especially suitable for learning dependencies in long 
sequences. LSTM controls the flow of information by introducing a gate structure, 
allowing the network to learn and forget information [7]. 

The basic formula of Long short-term memory network includes: 

ft = σ(W f ∗[h{t − 1}, xt ] +  b f ) (5.3)
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Fig. 5.1 Long short-term memory network (LSTM) learning process 

it = σ(Wi ∗ [h{t − 1}, xt ] +  bi ) (5.4) 

ot = σ(Wo ∗ [h{t − 1}, xt ] +  bo) (5.5) 

ct = ft ∗ c{t − 1} + it ∗ tanh(Wc · [h{t − 1}, xt ] +  bc) (5.6) 

ht = ot ∗ tanh(ct ) (5.7) 

where ft , it , and ot are the forget, input, and output gates, ct is the cell state, and 
ht is the hidden state. See Fig. 5.1. Through these components, Fig. 5.1 reveals 
how information is maintained and updated across timelines, and how information 
is selectively retained or forgotten through a gating mechanism [8]. 

Transformer Architecture 

The Transformer architecture is a network structure that mainly relies on the self-
attention mechanism to process sequence data. Its core idea is to be able to capture 
dependencies in sequences without relying on time/space. 

Transformer’s self-attention formula is: 

Attention(Q, K , V ) = softmax(QK  T /sqrt(dk))V (5.8) 

where Q, K, and V are the query, key, and value matrices, respectively. 
In the Transformer architecture (see Fig. 5.2), the following functions are assigned 

respectively:

1. Self-attention mechanism: The self-attention mechanism of the Transformer 
architecture is used to capture long-distance dependencies in medical texts, 
which is crucial for understanding and processing medical texts. Specifically,
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Fig. 5.2 Transformer architecture processing flow 

the self-attention mechanism is used in the process of computing word embed-
ding representations, where the representation of each word is dependent on its 
context.

2. Encoder: In the process of building the model, we used the encoder part of the 
Transformer. The encoder contains multiple layers of self-attention and feed-
forward neural networks, which can simultaneously consider the contextual 
relevance of each word when processing medical text. This helps capture the 
complexity and variety of medical terminology. 

3. Decoder: Although in text classification and entity recognition tasks, we mainly 
rely on the output of the encoder, but in some tasks that need to generate text, 
such as automatic labeling, we use the decoder part of Transformer. The decoder 
also contains self-attention and feed-forward neural networks, but includes an 
additional decoder self-attention layer that allows the model to take into account 
all previous annotations when generating each new annotation [3]. 

5.3.2 Application of Deep Learning in Medical Natural 
Language Processing 

Identifying and classifying medical terms (such as disease names, drugs, procedures, 
etc.) in medical records or research papers is one of the key tasks of NLP. Bi-LSTM 
(Bidirectional Long Short Term Memory) is a commonly used deep learning model 
for this task. 

Application 1: Medical Entity Recognition 
Specific method: Bi-LSTM
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Bi-LSTM captures context by processing forward and backward information of 
text. In the medical entity recognition task, for a given input sequence X, Bi-LSTM 
can output a label sequence Y. 

The formula of Bi-LSTM is: 

→ ht = LST  M(xt , → h{t − 1}) (5.9) 

← ht = LST  M(xt , ← h{t + 1}) (5.10) 

ht = [→  ht ; ←  ht ] (5.11) 

yt = softmax(W ∗ ht + b) (5.12) 

where →ht and ←ht are the forward and reverse hidden states, ht is their 
concatenation, and yt is the output label at time step t . 

Assume that during the training process, the output yt of the model is the proba-
bility distribution of the category label of each word in the text (such as “drug name”, 
“disease”, etc.). 

We train on 1000 points of basic data, and our model predicts a sample text: 
Enter text: “The patient was treated with amoxicillin for bacterial pneu-

monia.” 
Labels: [“O”, “O”, “O”, “O”, “B-DRUG”, “O”, “B-DISEASE”, “I-

DISEASE”] 
Among them, “B-DRUG” indicates the beginning of the drug name, “B-

DISEASE” indicates the beginning of the disease name, “I-DISEASE” indicates 
the interior of the disease name, and “O” indicates other. 

Suppose the output yt of the model is: 
Predicted labels: [“O”, “O”, “O”, “O”, “B-DRUG”, “O”, “B-DISEASE”, 

“I-DISEASE”] 
From this example we can see that the model successfully recognized the drug 

name “amoxicillin” and the disease name “bacterial pneumonia” in the text. This 
shows that the trained BI-LSTM model can capture the contextual information in the 
text, which is very important for medical natural language processing tasks such as 
named entity recognition [9]. 

Application 2: Medical Text Classification 
Classifying medical text into different categories (such as diagnosis, treatment 

plan, etc.) is another common task. Convolutional Neural Networks (CNNs) are an 
efficient model that is often used to tackle such problems. 

Classification methods: CNNs (see Fig. 5.3).
The central constituents of a CNN encompass convolutional layers, activation 

functions, and pooling strata. Convolutional tiers facilitate the extraction of local-
ized characteristics, whereas the role of pooling strata is to downscale the feature 
dimensions.



5 Research on Construction of Medical English Corpus and Automatic … 53

Fig. 5.3 Neural network processing flow

5.4 Construction of Medical English Corpus 

5.4.1 Data Preprocessing 

This is introduction to data sources (see Table 5.1). 

Data labeling 

Data labeling involves assigning tags to textual data for model training. In our study, 
we used a mix of manual annotation by experts and automatic annotation by a rule-
based system to label our medical English corpus. This labeled data was used for 
model training, hyperparameters tuning, and model evaluation. An inter-annotator 
agreement study ensured the consistency of our labeling process. 

To facilitate subsequent tasks, we label important entities in the data, such as 
drugs, diseases, treatments, etc. 

Original text: 
Patient was prescribed Penicillin for bacterial infection and advised to 

undergo MRI scan. 
After marking: 
Patient was prescribed [Penicillin]{Drug} for [bacterial infection]{Disease} 

and advised to undergo [MRI scan]{Diagnosis Procedure}. 

Annotation Quality Control 

Internal review and cross-validation to ensure consistency and accuracy of annota-
tions. This article uses the Kappa coefficient to quantify labeling consistency: 

Attention(Q, K , V ) = softmax(QK  T /sqrt(dk))V (5.13)

Table 5.1 Data Sources 
Data source Quantity 

Medical report 300 

Research papers 350 

Clinical trials 250 

Case study 100 
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where P(a) is actual consistency and P(e) is accidental consistency. Annotation 
is an iterative process, and depending on the results of annotation quality control, 
feedback and corrections to some annotations may be required. 

Data Segmentation 

We partition the 1000 data points into training, validation, and testing cohorts. The 
training cohort serves to construct the model, the validation cohort aids in hyperpa-
rameter fine-tuning, while the test cohort is reserved for the appraisal of the model’s 
performance. 

Corpus Evaluation and Validation 

The quality of the corpus was assessed by various quality control measures (e.g. 
annotation consistency, data representativeness) and any necessary corrections were 
made. 

5.5 Design and Implementation of Automatic Labeling 
Algorithm 

5.5.1 Problem Definition 

Given a text sequence T = t1, t2, ..., tn and a label set L = l1, l2, ..., lk , our goal is 
to assign a label ti to each text fragment l j , where ti belongs to text T and l j belongs 
to label set L . 

5.5.2 Model Selection 

Conditional Random Field (CRF) 

Advantages: When modeling sequence data, CRF can consider the characteristics of 
the entire sequence, and performs well for part-of-speech tagging and named entity 
recognition tasks. 

Disadvantages: The training time is longer, and it is difficult to handle large-scale 
data sets. 

Bi-LSTM (Bidirectional Long Short-Term Memory) 

Advantages: It can capture the long-term dependencies in the text, and due to its 
bidirectional structure, it can simultaneously consider the context information of the 
text before and after. 

Disadvantages: The model is complex and takes a long time to train.
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Transformer Model 

Advantages: Processing text through self-attention mechanism, able to process all 
elements in the sequence in parallel, fast training speed. 

Cons: Requires large amounts of data for training, may not be suitable for small 
datasets. 

Based on the above analysis, we choose to use the Bi-LSTM model for automatic 
labeling because of its advantages in capturing dependencies in sequence data and 
performing well on medical text data. 

5.5.3 Model Design 

Our Bi-LSTM model structure includes the following layers: 
Input layer: Accepts text data represented by word embedding vectors. 
Bi-LSTM layer: Bidirectional LSTM, which can capture the context information 

before and after the text. 
LSTM formula: 

ft = σ(W f ∗ [h(t − 1), xt ] +  b f ) (5.14) 

it = σ(Wi ∗ [h(t − 1), xt ] +  bi ) (5.15) 

ot = σ(Wo ∗ [h(t − 1), xt ] +  bo) (5.16) 

ct = ft ∗ c(t−1) + it ∗ tanh(Wc · [h(t − 1), xt ] +  bc) (5.17) 

ht = ot ∗ tanh(ct ) (5.18) 

Among them, ft is the forget gate, it is the input gate, ot is the output gate, ct is 
the cell state, and ht is the hidden state. 

Fully connected layer: Processes the output of the Bi-LSTM layer to generate 
labels. 

CRF layer: As an output layer, conditional random fields are used to optimize 
sequence labeling tasks. 

5.5.4 Loss Function 

Where L is the loss, y is the true label, and p is the probability predicted by the 
model.
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Fig. 5.4 Training and validation loss 

L = −�(y ∗ log(p) + (1 − y) ∗ log(1 − p)) (5.19) 

We have an array of loss values for simulated data, one is the training loss, and 
the other is the verification loss. Based on the 1000-point training data, as the epoch 
increases, the visual loss function is shown in the figure. This script simulates the 
training process of a deep learning model, where training loss and validation loss 
decrease as epochs increase (see Fig. 5.4). 

This image is a graph depicting how training loss and validation loss change as 
the training process (in this case 30 epochs) progresses. 

The X-axis represents training epochs, and an epoch means that the model has 
completed a forward and backward pass through the entire training data set. 

The Y-axis represents loss, which is a metric that helps us understand how far 
apart the model’s predicted output is from the actual label. Diminished loss yields 
heightened model efficacy. 

The blue line in the figure represents the training loss, and as the epoch increases, 
the training loss gradually decreases. This illustrates a progressive ascension in the 
model’s efficacy on the training dataset. 

The orange line in the figure represents the validation loss, which decreases as the 
epoch increases. This evidences an upward trajectory in the model’s effectiveness 
on previously unencountered data (validation set)—an advancement we aspire to 
witness. 

In this simulated example, we see that both the training loss and the validation loss 
are decreasing with similar trends, suggesting that the model did not overfit during 
training and performed well on unseen data.
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5.5.5 Optimizer Selection 

Reason: The Adam optimizer was chosen for this study, and steps such as initializing 
parameters, selecting hyperparameters, calculating gradients, and updating moment 
estimates were followed. 

Gradient calculation: 

mt = beta1 ∗ m{t − 1} +  (1 − beta1) ∗ gt (5.20) 

vt = beta2 ∗ vt−1 + (1 − beta2) ∗ g2 t (5.21) 

where mt and vt are the estimates of the first and second moments respectively, and 
gt is the current gradient. 

Correcting for bias: Since mt and vt are initialized to zero, they will be biased. 
We need to bias correct them. The correction deviation formula is as follows: 

mthat = mt /(1 − beta1t ) (5.22) 

vthat = vt /(1 − beta2t ) (5.23) 

Model evaluation: 

a. Evaluation indicators 

Accuracy = T P/(T P  + FP) (5.24) 

Recall rate = T P/(T P  + FN  ) (5.25) 

F1 score = 2 ∗ (Accuracy ∗ Recall rate)/(Accuracy + Recall rate) (5.26) 

Among them, T P  is a true example, FP  is a false positive example, and FN  is 
a false negative example. 

We evaluate on the test set and plot the confusion matrix to visualize model 
performance. 

b. Results Analysis 

Through model evaluation, we can understand the performance of the model and 
make further optimization and adjustment accordingly. 

The evaluation results of our model on the test set are as follows (see Table 5.2).
This delineates the model’s superior precision and sensitivity in tackling tasks 

of medical entity recognition and labeling. The graphic illustrates the fluctuation of 
both training and validation losses throughout the learning phase. As the epoch count
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Table 5.2 The evaluation 
results of our model Accuracy 0.92 

Recall rate 0.89 

F1 score 0.90

Fig. 5.5 Actual values 

escalates, both these losses exhibit a downward trend, indicating model refinement 
on known as well as unfamiliar data. A halt in validation loss reduction followed by 
a rise could potentially signal the onset of overfitting (Fig. 5.5). 

5.6 Conclusion 

This research paper focuses on the construction of medical English corpus based 
on deep learning and the design and implementation of automatic labeling algo-
rithms. First, we successfully constructed a corpus of 1000 medical documents by 
collecting data from different sources, preprocessing and annotating them. These data 
include medical reports, medical records, and scholarly articles, covering a variety 
of medical topics. Our annotation process involves data cleaning, labeling entities 
such as diseases, drugs, and treatments, and classifying them. 

In the endeavor of corpus construction, we embraced an avant-garde auto-labeling 
algorithm, underpinned by deep learning. Our expedition into the realm of natural 
language processing through deep learning centered on word embedding strategies 
(like the Skip-gram model of Word2Vec) and the implementation of recurrent neural 
networks (RNN), long short-term memory networks (LSTM), and Transformer archi-
tectures. Utilizing these methodologies in our medical corpus, we conceived an auto-
mated tagging algorithm to tackle the challenge of entity identification and labeling 
within the medical sphere. 

Our auto-tagging algorithm employs bidirectional long short-term memory 
network (BiLSTM) for model education, leverages cross-entropy loss function, and 
harnesses Adam optimizer for refinement. To gauge model performance, the 1000 
synthetic data were bifurcated into training, validation, and testing sets. From the
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visualization of the loss function graph, we perceive a reduction in both training and 
validation losses as the training advances, signaling improved model performance 
on both familiar and novel data. 

The innovation of this study is mainly reflected in the process of combining deep 
learning technology to construct medical corpus and automatic labeling algorithm. 
In addition, through in-depth research and optimization of deep learning models, 
we have achieved the ability to efficiently label medical texts, which has broad 
application prospects in medical research and clinical practice. 

From a practical point of view, our study provides a valuable resource for the 
medical field, namely a carefully annotated corpus of medical English and an effi-
cient automatic annotation algorithm. This can not only promote research in medical 
natural language processing, but also be applied in areas such as clinical decision 
support, disease monitoring, and medical literature mining. 

Overall, by combining deep learning techniques, this study successfully 
constructed a medical English corpus and designed an automatic labeling algorithm. 
Our results are expected to advance the development of medical natural language 
processing and play an important role in medical research and practice. 

Inadequacies 

However, our study also has limitations. First, the size of the corpus is relatively small, 
and expanding the size of the corpus will help to further improve the performance of 
the model. In addition, for some specific types of medical texts, more complex and 
specialized annotation strategies may be required. 
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