
Chapter 11 
Industrial Area Power Load Forecasting 
Based on Seasonal Kalman Filter 

Jinjin Li, Fanghua Mo, Qiuhua Chen, and Jun Chen 

Abstract The stable and economic operation of the power system depends on accu-
rate regional electricity load forecasting. This article proposes a seasonal Kalman 
filter prediction model based on Fourier transform spectrum maximization period 
analysis, which solves the problem of electricity load prediction in regions with 
different data distributions. The results indicate that the seasonal Kalman filter model 
has good predictive ability, low volatility, and stable error. 

11.1 Introduction 

Economic development has led to an increasing demand for electricity, and at the 
same time a rising demand for power quality. This leads to the rapid development 
of intelligent power systems. One of the decisive factors for the stable economic 
operation of the power system is the prediction of power demand [1]. Due to the 
influence of many random factors, such as society, society, economy, and natural 
conditions, the power load variation curve has a very complex nonlinear form. How 
to use historical data to make reasonable power demand forecasts has become one of 
the keys to intelligent power grid research. Zhou Xie made a detailed analysis of the 
main external factors affecting the load characteristic index of the power grid, studied 
the impact of climate factors, economic factors, holiday factors, and other factors on 
the power grid load, and sorted out the internal relationship of the load characteristic 
index. The research shows that the influence of various factors on power load has a
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certain randomness [2]. By studying the current situation at home and abroad, Wang 
Huizhong et al. briefly described the characteristics of short-term load forecasting and 
various factors affecting the forecasting accuracy, expounded the intelligent methods 
of short-term load forecasting for power systems, and analyzed and compared the 
advantages and disadvantages of various methods [3]. 

Due to the randomness of relying on external data for power load forecasting, 
and the power load of the same industry always being a certain periodicity, it is 
predictable. Therefore, many researchers tend to use the information of the power 
load curve directly to predict electricity consumption behavior. For example, Wang 
Jianjun et al., based on the historical data of China’s electricity consumption from 
1973 to 2004, fitted a similar exponential regression curve according to its trend chart, 
and then analyzed and identified its residual series using time series [4]. Kalman 
filter is a linear model based on minimized covariance estimation error, which has 
the advantages of simple calculation and a solid theoretical foundation. Yu Jingwen 
et al. briefly introduced the power quality problem and its analysis and detection 
methods. Then, the basic principles of three Kalman filters, namely conventional 
Kalman filter, extended Kalman filter, and untraced Kalman filter, are summarized 
systematically and their applications in power quality analysis are compared and 
analyzed [5]. Huang Z discusses the feasibility of applying Kalman filtering tech-
niques, including estimating state models in dynamic variables. In the large and small 
interference tests of a multi-machine system, the Kalman filtering of the dynamic 
model is proposed, and the sensitivity analysis of the sampling rate and noise level 
shows that the dynamic state estimation performance is good [6]. Considering the 
characteristics of the power system itself, Ma Jingbo et al. built a load system model, 
observation model, and system parameter model with a time-varying coefficient 
based on the historical electricity consumption data at the same time on different 
dates. The time-varying noise statistical estimator is used to perform adaptive esti-
mation of noise covariance, and the predictive equation is used to predict the load of 
the next day. The research shows that the predictive ability of the predictive equation 
of the adaptive time-varying noise estimator considering historical data is stronger 
than the general Kalman prediction model [7]. However, the study is based on the 
assumption that the electricity load is a stationary series at the same time every 
day. When generalized to the forecast of the total load of the whole day, the orig-
inal assumption may not be valid, that is, the total load of the whole day does not 
necessarily constitute a stationary series with the load of the same period of the 
previous week or month. In the real production environment, the cycle rule is more 
complicated. Even for individual manufacturers in the same industry, the cycle of 
the electricity load is not the same. 

Therefore, an adaptive Kalman filter prediction model (FFT-KF) combined with 
fast Fourier algorithm is proposed in this paper. Based on the fast Fourier model, the 
period of the power load time series curve is identified, the periodic shock factor is 
established, and the daily power load of various industries in each station area in the 
region is adaptively predicted, and then the daily power load in the whole region is 
obtained through linear combination. In order to analyze the adaptability of the FFT-
KF model in theory and practice, this paper will compare the generalization ability
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of the FFT-KF model and classical Kalman filter in terms of prediction ability, in 
order to estimate the gap between the FFT-KF model and classical Kalman filter. 
Considering the influence of industry factors, this paper studies the generalization 
ability of the FFT-KF model under the influence of industry factors by analyzing the 
residual distribution and cumulative error of the FFT-KF model in power estimation 
of different industries. 

11.2 Classic Kalman Filter Load Forecasting Model 

The core idea of the classical Kalman filter is that according to the measured value at 
this moment and the predicted value and error at the previous moment, the weighted 
average is obtained at this moment, and the value of the next moment is predicted [8]. 
The errors are prediction errors and measurement errors, which exist independently 
and are not affected by measurement data. The predicted value of the previous time 
and the measured value of the current time are normal distributions, and the fusion of 
the two normal distributions can obtain the desired value more accurately. Kalman 
filtering first constructs a hidden Markov model for the system. Generally, the state of 
hidden Markov model cannot be directly observed, which needs to be divided into a 
state transition equation and observation equation, and then implemented by Bayes’ 
theorem. First, estimate a prior probability based on previous experience, that is, 
Kalman’s posterior estimate, and then add new information, that is, the measurement 
value, so that with the new information, the prediction of the value is more accurate 
[9, 10]. 

The Kalman filter model believes that the world is full of noise, and even the signal 
from the sensor will have various biases due to electromagnetic interference. In the 
power system, because the power load is composed of a certain sampling point, the 
sampling point itself is also affected by the accuracy of the power instrument. Based 
on the principle of minimum estimated mean square error, the Kalman filter model 
uses a recursive method to solve the linear filtering problem of discrete data [11]. 

The Kalman filter consists of a system state equation and a measurement equation, 
and follows the linear unbiased minimum mean square error estimation criterion to 
achieve recursive prediction using prediction and correction [12]. 

For a linear constant system state equation xk and measurement equation yk, 

xk = ok|k−1xk−1 + ωk−1 (11.1) 

yk = Hk xk + vk (11.2) 

Among them, xk and xk−1 are the electricity load values at time k and k−1, o

k|k−1 is the correlation coefficient between k-1 and the electricity load at time k, and 
for stationary loads o k|k−1 is the identity matrix I, ωk−1 is the normal distribution 
process noise with the mean value of 0; yk is the measured value of the electricity
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load at time k, and Hk is the measurement matrix, ν k−1 is the measurement noise of 
normal distribution with mean value of 0. 

Because ωk−1, νk−1 is the normal distribution white Gaussian noise with the mean 
of 0, there is 
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where Kk is the gain matrix that minimizes the mean square deviation Pk of (xk−x
/

k), 
i.e. 
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Among them, Rk is the measurement noise variance, and Qk−1 is the process 
noise variance. 

Equations (11.3)–(11.7) constitute the recursive equation system of the Kalman 
filter prediction model. The classic Kalman filter load prediction model is aimed at 
predicting the electricity load in a stationary time series, but has poor performance 
for periodic fluctuations in load [13]. 

11.3 Seasonal Kalman Filter Electricity Load Forecasting 
Model 

The classic Kalman filter load forecasting method is based on a stationary time 
series of daily load values at the same time, and the predicted duration is usually 
daily or weekly [14]. However, for non-stationary data, this algorithm is not suitable. 
In fact, in the medium to long term, the load has cyclical fluctuations, especially in 
the industry’s electricity load, which fluctuates greatly with seasonal changes. For 
individual manufacturers in the same industry, the cycle of their electricity load is
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different. It is necessary to identify the period of historical electricity load data and 
add a period factor to the Kalman filter prediction [15]. 

The data collection of power load in the production process of power enterprises 
is carried out, and the power load curve in the industrial manufacturing process 
of power enterprises is collected and recorded, and the collected power load curve 
is self-adaptive cycle identification. Perform a fast Fourier transform on the power 
load identification data to obtain the spectrum sequence s j . Take the subscript of the 
sequence with the largest spectrum as the period T , and T is equal to j corresponding 
to the maximum value of the spectrum sequence s j . Then 

s j = 
n−1E

k=0 

e− 2π 
n j

k 
hk (11.8) 

Among them, hk ∈ (h0, h2, h3, . . . ,  hn−1) is the true value sequence of power 
load, k = 1, 2, 3, . . .  ,  n, j = 0, 1, 2, . . .  ,  n − 1. 

In order to incorporate periodic factors and introduce a prediction model with two 
parameters, the state equation and measurement equation are as follows: 

xk = ok|k−1xk−1 + Yk|k−1uk + ωk−1 (11.9) 

yk = Hxk + vk (11.10) 

where uk = xk−T , that is, the power load data at T before k is taken as the cycle 
factor, andYk is the correlation coefficient of the load at k and k − T . Since the cycle 
is T , Yk is taken as the identity matrix I . 

Let Ak|k−1 = [ok|k−1 Yk|k−1], Xk−1 = [xk−1 uk]T , then there is 

x
k 
= Ak|k−1 Xk−1 + ωk−1 (11.11) 

Similarly, a recursive formula can be obtained by minimizing the minimum mean 
square error. 

Prediction estimation equation: 

x
/

k = Ak|k−1 Xk−1 + Kk

|
yk − Hk Ak|k−1 Xk−1

|
(11.12) 

Prediction gain equation: 

Kk = Pk H T k (Hk Pk H 
T 
k + Rk)

−1 (11.13) 

Prediction covariance equation: 

Pk = Ak|k−1 Pk−1 A
T 
k|k−1 + Qk−1 (11.14)



128 J. Li et al.

In practice, it is difficult to accurately grasp the initial states x0 and P0. However, 
due to the continuous use of new information in the recursive process of Kalman 
filtering to correct the state, when the filtering time is sufficiently long, the influ-
ence of the initial state value x0 on xk will decay to zero, and the influence of the 
initial covariance P0 on the filtering estimation covariance matrix Pk will also decay 
to nearly zero. Therefore, the initial conditions for filtering can be approximately 
determined. In this model, both the state value and the measured value are power 
load values, so the measurement matrix Hk is taken as the identity matrix I [9, 10]. 

The Kalman filtering model quantifies the common periodic phenomena in real 
production by adding periodic factors, thereby enhancing the predictive ability of 
classical Kalman filtering methods. 

11.4 Case Study 

This article selects the load data of representative electricity consumption units in the 
non-ferrous metal smelting and rolling processing industry, chemical raw material 
and chemical product manufacturing industry, and cement manufacturing industry 
in Guangxi region from 2014 to 2015 as examples. The classic Kalman filter and 
seasonal Kalman filter are used to estimate the electricity load day by day, and 
the advantages and disadvantages of the Kalman model with seasonal factors are 
analyzed, and the degree to which industry factors affect seasonal Kalman filtering. 

Taking the non-ferrous metal smelting and rolling processing industry as an 
example, taking the data of the industry in 2014 as training data, and bringing it into 
Eq. (11.8), the spectral period of the industry’s data in 2014 is 106 days, equivalent 
to about 3 and a half months. 

H is initialized to [0.5, 0.5]; initialize process noise variance Q1 to 4, measure 
noise variance R1 to 4, and calculate the predicted value for 2015. 

Figure 11.1 is a comparative diagram of using classical Kalman filtering and 
seasonal Kalman filtering to predict the smelting and rolling industries of non-ferrous 
metals, respectively.

The randomness of the classical Kalman filter in Fig. 11.1 is strong. For example, at 
points with a number of days equal to 52,100,110,190, there is a significant difference 
between the predicted results of the classical Kalman filter and the actual measured 
values. This indicates that the classical Kalman filter is susceptible to noise interfer-
ence, resulting in significant errors in the predicted results. The Kalman filter incor-
porating seasonal factors avoids the situation of excessive prediction error, allowing 
the prediction error to converge to a smaller range. Figure 11.2 shows the cumulative 
probability distribution of classical Kalman filtering and seasonal Kalman filtering.

The image on the left of Fig. 11.2 represents the cumulative error distribution 
of classical Kalman filtering, while the image on the right represents the cumula-
tive distribution of seasonal Kalman filtering. From the graph, it can be observed that
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Fig. 11.1 Comparison of 
classical Kalman filter and 
seasonal Kalman filter 
predictions

Fig. 11.2 Cumulative probability distribution of classical Kalman filter and seasonal Kalman filter

compared to classical Kalman filtering, seasonal Kalman filtering has a steeper cumu-
lative distribution curve and converges at a lower upper bound. This fully demon-
strates that seasonal Kalman filtering has stronger predictive ability than classical 
Kalman filtering. 

The magnitude and patterns of electricity consumption vary among different 
industries. Therefore, it is necessary to consider whether the algorithm can maintain 
good predictive ability after incorporating industry factors. Using the non-ferrous 
metal smelting and rolling processing industry, chemical raw material and chemical
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Fig. 11.3 Time series diagram of industry’s electricity load to be predicted 

product manufacturing industry, and cement manufacturing industry as control vari-
ables, analyze the generalization ability of seasonal Kalman filter models. Figure 11.3 
is a time series comparison chart of the predicted electricity load for three industries. 

From Fig. 11.3, it can be observed that the fluctuation of the power load curve 
shows weak periodicity, and the data fluctuation range is relatively large. The power 
load range of different industries is completely different, with a value of cement > 
non-ferrous metals > chemical engineering, and a variance of cement > non-ferrous 
metals > chemical engineering. Figure 11.4 shows the frequency distribution of 
generalization error of seasonal Kalman model for three industries.

From Fig. 11.4, it can be observed that the probability distribution of errors is 
basically similar, with a nearly bell-shaped distribution centered around 0. From the 
graph, it can be analyzed that the Kalman filter prediction model still has good predic-
tive ability. However, for different industries, the generalization ability of seasonal 
Kalman filter prediction models varies significantly. The degree of concentration 
serves as the dividing line for distinguishing the generalization ability of the model, 
and its generalization ability is ranked as Nonferrous Metals > Chemical Industry > 
Cement Manufacturing. Research has shown that seasonal Kalman has good gener-
alization ability for predicting electricity load, but industry factors have a certain 
influence on the stability of the model.
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Fig. 11.4 Multiple industry prediction error frequency pairs

11.5 Conclusion 

Regional electricity load forecasting is a key factor in determining the stable and 
economic operation of the power system. Based on the periodic characteristics of 
industry electricity load data, this article improves the common time-varying Kalman 
filter by incorporating seasonal factors. Taking the non-ferrous metal smelting and 
rolling processing industry, chemical raw material and chemical product manufac-
turing industry, and cement manufacturing industry as examples, the generalization 
ability of classic time-varying Kalman filtering and seasonal Kalman filtering was 
compared and analyzed. Research shows. 

(1) In terms of model stability, seasonal Kalman filtering is superior to classical 
Kalman filtering models, and its upper bound of error is narrower than classical 
Kalman filtering. 

(2) The error distribution of seasonal Kalman filtering is a bell-shaped curve 
centered around 0, and industry factors have a certain impact on the predictive 
ability of seasonal Kalman filtering. 

The seasonal Kalman filtering method studied in this paper can use the recurrence 
method to continuously revise the state estimation according to the new information. 
When the time series is long enough, the influence of the state value of the initial 
state and the covariance matrix on the estimation will decay to zero. Therefore, the 
Kalman filter model can update the state information continuously and obtain more 
accurate estimates. This method can be used not only for short-term load forecasting, 
but also for ultra-short-term load forecasting.
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