
Chapter 9 
Cartilage Regeneration 

Yuankun Dai and Changyou Gao 

Abstract The treatment of damage to cartilage represents one of the most challeng-
ing clinical tasks due to the limited spontaneous healing and regenerative capability 
of cartilage. Clinically applied protocols for cartilage regeneration are still faced with 
various obstacles. The cartilage tissue engineering combines scaffolds, cells, and 
bioactive molecules, achieving cartilage engineering in vitro and cartilage regener-
ation in vivo. More recently, the controversy and difficulty in regulatory application 
of various cells and bioactive molecules gradually push forward the emergence of in 
situ inductive cartilage regeneration by recruiting endogenous regenerative cells. 
With these perspectives, we aim to present an overview of existing cartilage regen-
eration technologies with emphasis of recent progresses, development, and major 
steps taken toward the structure and functional regeneration of cartilage. In this 
chapter, essential elements of various protocols and their advantages and disadvan-
tages and challenges and future perspectives of cartilage regeneration are discussed. 

Keywords Tissue engineering · Cartilage regeneration · Scaffolds · Chondrocytes · 
Stem cells · In situ inductivity 

9.1 Introduction 

Articular cartilage is a highly developed connective tissue for weight-bearing and 
friction-reducing. Chondrocyte is the only type of cells in mature articular cartilage, 
occupying 1–10% of the tissue volume. Seventy to 80% of weight of articular 
cartilage is water. Collagen, proteoglycans, matrix glycoproteins, and small amount
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of elastin and phospholipids contribute the other 20–30% of the weight 
[1, 2]. Figure 9.1a shows the composition and structure of articular cartilage 
[3]. Cells and extracellular matrix (ECM) in cartilage distribute laterally in the 
superficial, randomly in the middle, and vertically in the deep layers of cartilage, 
respectively.
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The avascular structure in the articular cartilage determines that the chondrocytes 
can only get nutrients from the synovial fluid [4]. After maturation of cartilage, 
chondrocytes have low ability to migrate and proliferate. Hence, articular cartilage 
has low possibility of self-healing when lesion occurs. The intrinsic migration of 
bone marrow mesenchymal stem cells (BMSCs) into cartilage defect always leads to 
the formation of fibrocartilage [4]. 

Articular cartilage defects caused by arthritis and trauma severely affect the 
healthy life of human being. In order to treat cartilage defects, different protocols 
such as autologous chondrocyte implantation (ACI), mosaicplasty, microfracture, 
autologous matrix-induced chondrogenesis (AMIC), and cartilage tissue engineering 
have been developed, as shown in Fig. 9.1b [5]. 

ACI utilizes autologous chondrocytes grown in culture, which are reimplanted in 
a second-stage procedure to repair large chondral defects [6]. Mosaicplasty is 
indicated for the treatment of smaller defects, less than 2–4 cm2 in size, primarily 
on the femoral condyles. The treatment of larger lesions is limited by donor site 
morbidity, and the use in the patellofemoral joint is controversial [7]. To overcome 
these challenges, cartilage tissue engineering has been developed to realize the 
structural and functional regeneration of damaged cartilage [8]. As shown in 
Fig. 9.2a, the cells, scaffolds, and bioactive molecules are defined as three essential 
elements for the traditional cartilage tissue engineering [9, 10]. Various 
chondrogenetic cell sources are available for the cartilage tissue engineering. The 
chondrogenesis capability of these cells can be induced or enhanced with many 
biochemical or biomechanical stimulation in vitro. After culture in vitro, scaffold-
based or scaffold-free engineered cartilage could be obtained and implanted for 
cartilage regeneration in vivo. Hence, cartilage tissue engineering involves direct 
intra-articular delivery of progenitor cells, progenitor cell delivery on scaffolds, or 
cell-free scaffolds coated with biological factors to recruit endogenous cells for 
articular cartilage defect repair [10]. The implantation of biomaterials or cartilage 
constructs is always accompanied by injury through the surgical procedures. 

Inflammatory response takes a pivotal role in tissue repair and regeneration, since 
injury to the tissue always initiates an inflammatory response to the biomaterials. 
Moreover, the implantation of engineered cell–material hybrids elicits an adaptive 
immune reaction toward the cellular component, which in turn influences the host 
response to the material component [11]. When degradable biomaterials are applied, 
the immune response is additionally affected by the degradation products and 
surface changes of the biomaterials. Chronic inflammation in osteoarthritis develops 
as inflammatory stimuli persist at the implant site with macrophages, representing 
the driving force in perpetuating immune responses. Monocytes arriving at the 
implantation site undergo a phenotypic change to differentiate into macrophages. 
Their activation leads to further dissemination of chemo-attractants. Macrophages
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attached to the biomaterials can foster invasion of additional inflammatory cells by 
secreting chemokines [12]. Taking these concerns into consideration, challenges of 
articular cartilage tissue engineering are shown in Fig. 9.2b. In summary, difficulty 
in the regulation and maintenance of cell chondrogenetic phenotype, poor integra-
tion between the implanted and the host tissues, and immunoregulation of the 
implanted biomaterials are the main issues that impede the development of cartilage 
tissue engineering [10].
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Fig. 9.2 (a) Articular cartilage tissue engineering involving the formation of three-dimensional 
tissues in vitro by seeding cells into scaffolds or through scaffold-free approaches in the presence of 
biochemical and biomechanical stimuli. (b) Challenges in cartilage tissue engineering. (Reprinted 
from [10] with permission) 

9.2 Traditional Cell-Loaded Constructs for Cartilage 
Regeneration 

9.2.1 Biomaterials for Cartilage Regeneration 

An ideal cartilage tissue engineering scaffold should preserve the following charac-
teristics: biocompatible, biodegradable, highly porous, suitable for cell attachment, 
proliferation and differentiation, osteoconductive, noncytotoxic, flexible and elastic, 
and nonantigenic. Generally, biomaterials used for cartilage tissue engineering can 
be divided into two categories: natural polymers and synthetic polymers. Each kind 
of these materials has their own advantages and shortcomings [13]. The natural 
materials are hydrophilic and bioactive, which enhance the cell–material interactions 
and facilitate the cells’ chondrogenesis to the same extent. Collagen [14–21], fibrin 
[22–27], silk fibrin [28–32], hyaluronic acid (HA) [33–46], alginate [47–51], gelatin 
[40, 52–57], chitosan [58–64], etc. have been broadly invested in tissue engineering. 
The scaffolds based on these natural polymers are usually in a format of hydrogels, 
either with single or multicomponents. Examples of cartilage tissue engineering 
scaffolds based on native materials are shown in Fig. 9.3.
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Fig. 9.3 Examples of cartilage tissue engineering scaffolds based on native materials. (a) Collagen 
porous scaffold. (b) BMSCs-loaded fibrin glue. (c) Silk fibroin scaffold. (d) Acellular cartilage 
matrix. (Reprinted from [29, 65–67] with permission) 

9.2.1.1 Natural Materials 

Collagen, which constitutes the major part of the extracellular matrix (ECM) and is 
the essential component and mechanical building block of various physiological 
systems including cartilage, is highly recommended in cartilage tissue engineering. 
Collagen has many advantages including favorable biocompatibility and high den-
sity of the RGD sequences and other sequences facilitating cell adhesion and cell 
differentiation [19]. Macroporous scaffolds of collagen can be fabricated conve-
niently by freeze-drying and chemical cross-linking (Fig. 9.3a)  [67]. Vickers et al. 
prepared a chemically cross-linked collagen type II and glycosaminoglycan (GAG) 
scaffold with a low cross-linking density. Culture of bone marrow stem cells in the 
scaffold for 4 weeks in vitro found cell-mediated contraction, increased cell number 
density, and a greater degree of chondrogenesis [68]. Levingstone et al. fabricated a 
multilayer scaffold consisting of a bone layer composed of collagen type I and 
hydroxyapatite, an intermediate layer composed of collagen type I and type II and 
hydroxyapatite, and a superficial layer composed of collagen type I and HA 
[69]. The scaffolds were implanted into osteochondral defects created in the medial 
femoral condyle of the knee joint of New Zealand white rabbits, resulting in tissue 
regeneration with a zonal organization, repair of the subchondral bone, formation of 
an overlying cartilaginous layer, and evidence of an intermediate tidemark. 

Fibrin gel has several features including biocompatibility and biodegradability. 
The fibronectin-rich fibrin glue is an essential protein in cartilage matrix for 
chondrocytes-ECM interaction [26]. Fibrin gel could serve as a delivery system 
for chondrogenetic cells and/or bioactive molecules to facilitate cartilage regenera-
tion (Fig. 9.3b)  [65]. Fibrin gel loaded with human bone marrow-derived



mesenchymal stem cells (hMSCs) and growth factor could realize full regeneration 
of cartilage defects in rabbits [65]. Park et al. fabricated a hybrid hydrogel composed 
of fibrin and HA, into which chondrocytes were implanted for culture in vivo 
[23]. Cartilage-like tissues were formed in the hybrid hydrogel, showing higher 
amounts of the ECM components, GAG, and collagen. 
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Hyaluronic acid (HA) is one of the most extensively studied natural materials for 
cartilage tissue engineering. HA is a linear polysaccharide found natively in adult 
articular cartilage that is involved in many cellular processes, including proliferation, 
morphogenesis, inflammation, and wound repair. Furthermore, HA is also important 
to cartilage formation and is differentially regulated during limb bud formation and 
mesenchymal cell condensation. HA hydrogels support chondrocyte matrix deposi-
tion and chondrogenic differentiation of mesenchymal stem cells (MSCs) [70]. HA 
is widely used to functionalize hydrogels or scaffolds for regeneration of cartilage 
defects. Sheu et al. fabricated a hydrogel based on oxidized HA and resveratrol, into 
which chondrocytes were implanted for culture in vitro, resulting in upregulated 
expression of collagen type II, aggrecan, and Sox9 genes and downregulated 
inflammatory factors [39]. 

Alginate is a natural anionic and hydrophilic polymer obtained primarily from 
brown seaweed and bacteria. It is composed of β-D-mannuronate and α-L-guluronate 
residues [71] and has been widely applied in many biomedical fields due to its 
excellent biocompatibility, low toxicity, and the mild gelation condition required to 
form a cross-linked structure [49]. Alginate can be easily modified through chemical 
and physical reactions to obtain derivatives and can be processed into three-
dimensional scaffolds such as hydrogels, microspheres, microcapsules, sponges, 
foams, and fibers. Studies prove that the alginates would support the chondrogenesis 
[72, 73]. The cells-alginate constructs are widely used for the regeneration of 
articular cartilage defects, and some of the researches demonstrate quite positive 
results. Igarashi et al. delivered BMSCs in an ultra-purified alginate gel into articular 
cartilage defects in rabbit knees, resulting in complete regeneration of the 
defects [74]. 

Gelatin is a denatured collagen, but has relatively low antigenicity compared with 
collagen. Recently, gelatin-based biomaterials have been widely studied in tissue 
engineering. However, it is difficult to use pure gelatin scaffold for hard-tissue 
regeneration such as bone and cartilage due to its weaker mechanical strength. 
Hence, many studies focus on preparing pure gelatin scaffolds by using proper 
cross-linking methods [75] or hybrid scaffolds based on gelatin [40, 54, 55, 
76]. Some natural materials such as HA, fibrin, chitosan, and synthetic materials 
have been extensively incorporated to obtain hybrid scaffolds, which not only 
preserve higher mechanical property but also retain the bioactivity of natural 
materials. 

Chitosan is obtained by deacetylation of chitin which is an abundant natural 
material. The positive charge in the molecular chain may protect GAGs from 
hydrolysis [61]. However, the positive charge may also limit the proliferation of 
chondrocytes. Meanwhile, weaker mechanical property of wet chitosan also limits 
its application in cartilage tissue engineering [62]. Therefore, the hybrids of one or



more materials are always adopted for the application of chitosan in tissue 
engineering. 
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Silk fibroin extracted from silkworm cocoons is composed of fibrous protein 
(fibroin), containing amino acids and glue-like protein (sericin). Silk fibroin is 
widely used natural material for tissue regeneration taking into consideration of 
their excellence in biocompatibility, degradability, and mechanical properties 
[77, 78]. Scaffolds based on silk fibroin for cartilage regeneration can be fabricated 
through a template/solution-casting method as reported (Fig. 9.3c)  [29]. Biphasic 
scaffolds with a cartilage phase constituting of bovine cartilage matrix 
biofunctionalized fibroin and differentiated autologous prechondrocytes, and a 
bone phase (decellularized bovine bone) has been fabricated to promote cartilage 
regeneration in a model of joint damage in pigs [79]. Cao et al. developed a 
multifunctional silk-based hydrogel incorporated with metal-organic framework 
nanozymes, which showed enhanced cell viability as well as antioxidant and 
antibacterial properties. In the full-thickness osteochondral defect model of rabbit, 
the hydrogel displayed successful regeneration of osteochondral defect [80]. 

ECM materials have become more popular because the matrices retain the 
structure of native cartilage, which preserve mechanical and chemical signals that 
can induce cell differentiation and recruitment without additional biologic additives. 
Cartilage ECM can be obtained from either cell-derived matrices secreted during 
culture in vitro or from native cartilage (Fig. 9.3d)  [66]. Decellularization is an 
effective way to fully remove all cellular components and nucleic acids or to kill the 
remnant cells within the matrix [79–84]. The scaffolds based on the decellularized 
cartilage ECM regenerate hyaline cartilage when combined with rabbit MSCs after 
transplantation into weight-bearing area of patellar grooves in rabbits for 12 weeks 
[85]. Dai et al. prepared an acellular bone matrix scaffold using iliac bone of pigs 
[86]. The scaffold implantation combined with microfracture was used to treat full-
thickness articular defects (9 mm in diameter) without destroying the subchondral 
bone of pigs. 24 weeks after surgery, the defects were repaired with hyaline-like 
neocartilage which has the similar mechanical properties to the normal cartilage. 
Ayariga et al. developed a decellularized ECM scaffolds from avian articular 
cartilage [87]. The obtained scaffolds registered an interconnected and porous 
architecture, as well as stiffness comparable to the native cartilage tissues. Mean-
while, human chondrocytes survived, proliferated, and interacted with the scaffolds, 
showing that the decellularized scaffolds are suitable for cartilage regeneration. Das 
et al. prepared a cartilaginous ECM-derived biomaterial from goat ears [88]. MSCs 
showed obvious chondrogenic differentiation with increasing amount collagen and 
GAGs in the decellularized scaffolds. Upon implantation of the IGF-1-loaded cell-
free scaffolds in rabbits’ osteochondral defects for 3 months, the histological and 
micro-CT evaluation revealed significant enhancement and regeneration of 
neocartilage and subchondral bone. Oh et al. prepared full-thickness porcine 
cartilage-derived ECM, and then fabricated mechanically reinforced ECM scaffolds 
by combining salt-leaching and crosslinking methods [89]. Chondrocytes showed 
higher levels of cartilage-specific markers in the scaffolds compared to that in the 
ECM scaffolds prepared by simple freeze-drying [90]. Antler decellularized



cartilage-derived matrix (AdCDM) rich in collagen and GAGs was prepared by 
combining freezing-thawing and enzymatic degradation. Treatment of 
osteochondral defects with the AdCDM showed a flat and smooth surface of the 
neocartilage at the surgery site. Meanwhile, compared to porcine decellularized 
cartilage-derived matrix, AdCDM could lead to better osteochondral regeneration 
with higher international cartilage repair society scores (ICRS). Decellularized ECM 
bioinks, derived from specific native tissues or organs, have been used to fabricate 
3D-printed tissues and organs. Zhang et al. developed a crosslinker-free bioink with 
silk fibroin and decellularized articular cartilage extracellular matrix of goat 
[91]. The silk fibroin and decellularized ECM interconnect with each other through 
physical crosslinking and entanglement, which bypass the toxicity inherent in the 
chemical crosslinking process of most bioinks. In vitro test proved that BMSCs 
highly expressed chondrogenesis-specific genes in the 3D-printed scaffold using this 
bioink. 
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9.2.1.2 Synthetic Materials 

Synthetic polymers are also widely applied in cartilage tissue engineering, but the 
relatively low cell adhesive ability limits their applications. The widely used syn-
thetic materials include poly(lactide-co-glycolide) acid (PLGA) [40, 57, 92–94], 
polycaprolactone (PCL) [95–99], poly(ethylene glycol) (PEG) [34, 100–108], etc. 
The scaffolds composted of solely synthetic materials can hardly realize good tissue 
regeneration. Therefore, the natural materials such as collagen, gelatin, fibrin, HA, 
and acellular ECMs, as mentioned before, can be compounded or incorporated into 
the synthetic polymeric scaffolds. Examples of cartilage tissue engineering scaffolds 
based on synthetic materials are shown in Fig. 9.4. 

PCL is a semicrystalline polymer. It belongs to a family of poly α-hydroxyl esters 
and is one of the most widely used biodegradable polyesters for medical applications 
because of its biocompatibility, biodegradability, and flexibility [111]. It is widely 
used to prepare scaffolds for cartilage tissue engineering as well [40, 46, 47, 92, 112– 
114]. For example, Kim et al. prepared a PCL scaffold constructed with layers of 
electrospun and salt-leaching PCL membrane, into which chondrocytes were seeded 
by using an injectable heparin-based hydrogel (Fig. 9.4a). In vivo transplantation of 
the construct into partial-cartilage defects demonstrates significant cartilage forma-
tion with good integration to the surrounding cartilage [95]. Lebourg et al. modified 
PCL scaffolds with cross-linked HA to grant PCL more hydrophilic and biomimetic 
microenvironment. Complete regeneration of chondral defects in rabbits in vivo was 
confirmed by implanting the scaffolds for 24 weeks [38]. 

PLAG is usually synthesized via ring-opening copolymerization of lactide and 
glycolide, which has prominent advantages such as adjustable molecular weight and 
degradation rates, good mechanical properties especially toughness, and excellent 
processability [115]. It has been widely used to prepare scaffolds to engineer tissues 
including cartilage, bone, nerve, etc. [116–121]. Chang et al. seeded endothelial 
progenitor cells into a highly porous PLGA scaffold and implanted into the



osteochondral defect in the medial femoral condyle of rabbits. After 12 weeks, the 
defects were regenerated with hyaline cartilage, showing a normal columnar chon-
drocyte arrangement, higher Sox9 expression, and greater contents of GAG and 
collagen type II [122]. In order to enhance the bioactivity of PLGA scaffolds, 
bioactive materials such as HA, gelatin, collagen, and fibrinogen can be usually 
incorporated. PLGA/fibrin gel-based constructs combined with MSCs and TGF-β1 
chondrogenic genes could facilitate the in vivo regeneration of full-thickness carti-
lage defects in a rabbit model (Fig. 9.4b)  [109, 123, 124]. The PLGA scaffold is 
fabricated by a gelatin porogen leaching method, into which fibrinogen containing 
cells and plasmid TGF-β1 gene complexes is infiltrated and then gelated. The 
chondrocytes cultured in vitro distribute evenly and maintain a round morphology 
in the hybrid scaffold as that in the normal cartilage [125]. The implantation of 
PLGA/fibrin gel/N,N,N-trimethyl chitosan chloride (TMC)/pDNA-TGF-β1 con-
struct into osteochondral defects for 12 weeks in vivo results in regenerated cartilage 
with smooth surface and well integration with its surrounding tissue and subchondral 
bone [109]. 
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Fig. 9.4 Examples of cartilage tissue engineering scaffolds based on synthetic materials. (a) PLCL 
scaffold. (b) PLGA scaffold. (c) PEG hydrogel. (Reprinted from [95, 109, 110] with permission) 

PEG hydrogel has received wide attention due to its injectability, noncell-
adhesive property, cell compatibility, and low immunogenicity. Meanwhile, PEG 
hydrogel could be prepared for cartilage regeneration (Fig. 9.4c)  [110]. The 
nondegradability of PEG in physiological environment limits its application in tissue



engineering, although the PEG molecules of lower molecular weight, like PEG-400, 
have been proved to metabolize via renal or intestine pathways [126]. Biodegradable 
segments such as oligo(lactic acid), oligo(ε-caprolactone), oligo(trimethylene car-
bonate), and phosphate groups have been introduced into the PEG-based macromers. 
Fan et al. developed a microcavitary hydrogel via photopolymerization of biode-
gradable oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene 
carbonate) diacrylate macromers [106]. The cavitary structure in the hydrogel 
would accelerate degradation of the hydrogel. Compared with noncavitary hydrogel, 
the cell density and total contents of collagen and GAG are significantly higher. The 
hydrolytically biodegradable PEG hydrogels offer a promising platform for chon-
drocyte encapsulation and for tuning degradation of cartilage tissue engineering 
scaffolds. Skaalure et al. prepared a semi-interpenetrating network of bioactive HA 
and oligo(lactic acid)-PEG hydrogel, into which chondrocytes were encapsulated 
and cultured for 4 weeks. In this way, the contents of collagen and GAG are 
significantly increased [34]. 
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9.2.2 Cells for Cartilage Regeneration 

Chondrocytes in the cartilage produce cartilage ECMs and therefore have been the 
first choice for cartilage tissue engineering [127]. They are isolated from various 
sources such as articular cartilage, nasal septum, ribs, and ear cartilage and are 
extensively used for the study of cartilage regeneration in vitro and in vivo. How-
ever, one of the major limitations of chondrocytes is their instability in the culture 
in vitro, leading to the loss of expression of cartilage matrices such as collagen type 
II and aggrecan. Recently, multipotent MSCs have been gained increasing interest in 
cartilage tissue engineering as an alternative to autologous chondrocytes due to their 
ease in isolation and high expansion capacity in vitro. MSCs exhibit the potential to 
differentiate into chondrocytes [128], tenocytes [129], ligament cells [130], neuronal 
cells [131, 132], cardiomyocyte [133, 134], osteoblasts [135], and other cell types 
[136]. In particular, bone marrow-derived stem cells (BMSCs), adipose-derived 
stem cells (ADSCs), and embryonic stem cells (ESCs) are most widely applied in 
cartilage tissue engineering. 

9.2.2.1 Chondrocytes 

Chondrocytes are metabolically active cells that synthesize a large spectrum of ECM 
components such as collagen, glycoproteins, proteoglycans, and HA [127]. Since the 
chondrocytes are the only type of cells in articular cartilage, they are used for the 
regeneration of cartilage defects in priority both in vitro and in vivo [127, 137– 
144]. It is believed that the use of chondrocytes would lead to the formation of 
neotissue with exactly the same ECMs with the native cartilage [145]. The activity of 
chondrocytes is altered by many factors present within their chemical and



mechanical environment. However, the use of chondrocytes for cartilage repair 
suffers from chondrocyte dedifferentiation. A proper culture and delivery of 
chondrocytes, including the use of chondrogenetic culture medium, growth factors, 
and mesenchymal stem cells, need to be well adjusted in order to keep the phenotype 
of chondrocytes [140]. Three-dimensional scaffolds can better mimic the native 
microenvironment of chondrocytes in cartilage tissue, promoting cell–cell and 
cell–matrix interactions and enforcing round chondrogenetic cell morphology and 
thereby maintaining their phenotype. Xu et al. encapsulated chondrocytes in alginate 
gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth 
medium and then subcutaneously implanted the cells-loaded beads to evaluate the 
ectopic chondrogenesis [142]. The results prove high deposition of glycosamino-
glycan and expression of cartilage-specific genes. Lohan et al. precultured 
chondrocytes in polyglycolide (PGA) scaffolds for 3 weeks, which were then 
implanted into critical-sized osteochondral defect of rabbit knee femoropatellar 
groove [138, 141]. Twelve weeks after implantation, neocartilage was formed 
in vivo in the PGA constructs seeded with chondrocytes. The results are significantly 
better than those of the cell-free PGA scaffolds and empty defects. 
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9.2.2.2 Bone Marrow-Derived Stem Cells (BMSCs) 

BMSCs have been extensively used for chondrogenesis in a three-dimensional 
culture in vitro with addition of chondrogenetic factors and regeneration of cartilage 
defects in animal models in vivo [33, 146–149]. BMSCs can be isolated via plastic 
adhesion or negative selection from bone marrow aspirate that includes a highly 
heterogeneous cell population such as hematopoietic cells, endothelial cells, and 
adipocytes [150]. However, there are some limitations of BMSCs. The relative 
number of BMSCs in the marrow blood is rather small, and their differentiation 
ability decreases significantly with age [151]. Meanwhile, the constructs of cartilage 
containing BMSCs can raise many problems such as fibrosis, vascularization, the 
“hollow” phenomenon, and shrinkage likely due to the incomplete differentiation of 
BMSCs, deterring the clinical translation of tissue-engineered cartilage 
[149]. Hence, chondrogenetic bioactive factors are always applied to promote 
chondrogenesis differentiation of BMSCs. Li et al. fabricated a bilayered poly 
(vinyl alcohol)/gelatin/vanillin (PVA/Gel/V) and nanohydroxyapatite/polyamide-6 
(n-HA/PA6) scaffold, into which BMSCs were implanted. The obtained constructs 
were used for the regeneration of cartilage and subchondral bone defects in rabbits 
in vivo [152]. With BMSCs loading, the two different layers of the composite 
biomimetic scaffolds provide a suitable microenvironment for cells to form respec-
tive tissues.
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9.2.2.3 Adipose-Derived Stem Cells (ADSCs) 

ADSCs are becoming more and more attractive because they can be easily isolated 
from adipose tissues and cultured in vitro for an extended period of time with stable 
expansion and low levels of senescence [153]. Adipose tissue contains a large 
proportion of MSCs and is easily accessible in all individuals. Compared with 
BMSCs, the ADSCs are relatively abundant and can be easily available. In vitro 
and in vivo studies confirm the chondrogenetic ability of ADSCs and the ability of 
cartilage regeneration [154–160]. In the presence of platelet-rich plasma (PRP) and 
cartilage-specific extracellular molecules, the expression of collagen type II and 
aggrecan can be significantly upregulated [159, 160]. Wang et al. proved different 
chondrogenic degrees of ADSCs being cultured in hydrogels composed of chon-
droitin sulfate, HA, and heparin sulfate, respectively [157]. This chondrogenetic 
potential of ADSCs makes them a promising candidate for restoration of cartilage 
defects in vivo. Wang et al. implanted ADSCs into acellular cartilage matrices and 
used the cell-loading constructs to restore the articular cartilage defects of rabbits 
[158]. After 12 weeks of implantation, the defects are filled with neotissues, showing 
a smooth surface, highly expressed collagen type II and GAG, and chondrocyte-like 
cells in the recesses. TEM analysis confirms plenty of secretary matrix particles in 
the neotissue. 

9.2.2.4 Embryonic Stem Cells (ESCs) 

Recently, several studies have demonstrated the regeneration of cartilage defects 
in vivo by using ESC progenitor cells [161–164]. ESCs can be obtained from the 
blastocyst and are able to self-renew for a prolonged period of time without 
differentiation and, most importantly, can be differentiated into a large variety of 
tissues derived from all three germ layers. Although the application of ESCs would 
bring problems such as immunologic incompatibility, possible development of 
teratomas, and ethical issues in human, the in-depth study of ESCs would promote 
their applications in healing human diseases. For the cartilage regeneration, ESCs 
are also a promising choice [161, 163, 165–167]. Pilichi et al. demonstrated a 
positive result of application of nondifferentiated ESCs in vivo for osteochondral 
regeneration without tumorigenic and teratoma formation [164]. They treated 
osteochondral defects in a sheep model with ESCs for 24 weeks, proving the 
regeneration of articular cartilage defects with hyaline cartilage, without signs of 
immune rejection or teratoma. Toh et al. used TGF-β1 to induce chondrogenic 
differentiation of ESCs, explored the potential of these ESC-derived chondrogenic 
cells to produce an ECM-enriched cartilaginous tissue construct when cultured in 
HA hydrogel, and further investigated the cartilage regenerative ability in an 
osteochondral defects in a rat model [162]. Twelve weeks after implantation, a 
hyaline-like neocartilage layer is formed, showing good surface regularity and 
complete integration with the adjacent host cartilage and a regenerated 
subchondral bone.
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9.2.2.5 Induced Pluripotent Stem Cells (iPSCs) 

iPSCs may be generated from somatic cells through reprogramming, enabling them 
to possess embryonic-like properties. Shinya Yamanaka’s group initially derived the 
iPSCs in 2006 by reprogramming mouse fibroblasts, and human fibroblasts in the 
following year [168, 169]. iPSC may differentiate into other cell linages and be 
maintained in a nondifferentiated state for an extended period of time to cultivate 
cells, known as the self-renewal process. The iPSCs are similar to ESCs but less of 
an ethical dilemma [170]. Nam et al. obtained human iPSCs from cord blood 
mononuclear cells using the Sendai virus [171]. The iPSCs were differentiated into 
chondrogenic lineage with pellet culture and maintained for 30 days. The generated 
pellets showed high expression of chondrogenic gene and deposition of cartilage 
extracellular matrix proteins. Yamashita et al. reported that differentiation of iPSCs 
into hyaline cartilaginous particles and implantation of the particles into joint surface 
defects realized the repair of cartilage defects, and neither tumor nor ectopic tissue 
formation was observed [172]. Kotaka et al. labeled iPSCs magnetically with 
nanoscale iron particles, and delivered the cells specifically into cartilage defects 
in nude rats using a magnetic field [173]. The histological grading proved useful and 
safe for cartilage repair using the mentioned iPSCs. Liu et al. fabricated a 
polycaprolactone/gelatin scaffold using two separate electrospinning processes 
[174]. After seeded with mouse iPSCs derived from mouse dermal fibroblasts, the 
iPSCs-scaffolds were implanted into osteochondral defects of rabbits, resulting in an 
enhanced gross appearance and histological improvement, higher cartilage-specific 
gene expression and protein levels as well as subchondral bone regeneration. 

9.2.2.6 Dental Pulp Stem Cells (DPSCs) 

DPSCs are a type of self-renewal MSCs residing within the perivascular niche of the 
dental pulp [175]. DPSCs are a promising source of stem cells for tissue-engineering 
therapies because of their low cost and easy accessibility. DPSCs can differentiate 
into several different cell types, including neurons, odontoblasts, osteoblasts, adipo-
cytes and chondrocytes [176]. Mata et al. cultured DPSCs in 3% alginate hydrogel, 
and implanted the hydrogel in a rabbit model of cartilage damage [177]. Three 
months post surgery, the cartilage defects were well regenerated. Yanasse et al. 
reported a successful regeneration of full-thickness articular cartilage defects in 
rabbits using DPSCs-loaded platelet-rich plasma scaffolds [178]. 

9.2.2.7 Umbilical Cord Mesenchymal Stem Cells (UCMSCs) 

Human UCMSCs can be derived from various parts of human umbilical cord, 
including Wharton’s jelly, cord lining, and the perivascular region [179]. hUCMSCs 
are advantageous because of their high expansion capacity, noninvasive harvesting,



and hypoimmunogenicity. hUCMSCs possess the same potential of chondrogenic 
differentiation regardless of the portion of the umbilical cord from which they are 
isolated [180]. According to the research of Fong et al., the chondrogenic potential of 
hUCMSCs is thrice that of BMSCs in producing collagen [181]. Zheng et al. 
fabricated polycaprolactone/hydroxyapatite (PCL-HA) scaffolds using fused depo-
sition modeling 3D-printing technology [182]. Furthermore, rabbit UCMSCs and 
chondrocytes with a ratio of 3:1 were seeded on the prepared PCL/HA scaffolds. 
After 8 weeks of implantation into rabbits’ femoral trochlear defects, the ICRS 
scores of the repaired defects for the UCMSCs and chondrocyte-seeded PCL-HA 
scaffolds were significantly higher than the unseeded PCL/HA scaffolds. 
125 patients were included in a clinical study to evaluate cartilage regeneration by 
implanting allogenic hUCMSCs with concomitant high tibial osteotomy (HTO) 
[183]. Second-look arthroscopy and ICRS grade evaluation proved the effectiveness 
of this treatment for patients with medial compartment osteoarthritis and various 
deformities. Another clinical research including 176 patients also confirmed that 
implantation of allogenic hUCMSCs with concomitant HTO could provide clinical 
outcomes in terms of pain relief, functional scores, and quality of life [184]. 

392 Y. Dai and C. Gao

9.2.2.8 Other Cells 

Besides BMSCs, ADSCs, ESCs, iPSCs, DPSCs, UCMSCs, other types of stem cells 
from muscle, synovium, and periosteum can also be used for the cartilage regener-
ation [185–188]. 

Several works report that synovium-derived MSCs (SMSCs) show a higher 
colony-forming efficiency than BMSCs. Because the SMSCs display a great poten-
tial to differentiate into chondrocytes, they are one of the best candidates for the 
repair of cartilage defects [189]. SMSCs have the potential for both cartilage tissue 
engineering in vitro and cartilage regeneration in vivo. With appropriate stimulation, 
SMSCs are capable of migrating into articular cartilage defects and differentiating to 
chondrocytes [189–194]. Fan et al. explored therapeutic chondrogenesis of rabbit 
SMSCs encapsulated in photopolymerized hydrogels with the treatment of TGF-β1, 
resulting in positive SMSC chondrogenesis. Meanwhile, SMSCs may be a type of 
tissue-specific stem cells, because they can respond to signaling in the joint and 
promote cartilage defect regeneration [195]. Pei et al. isolated SMSCs from synovial 
tissue of rabbit knee joints and mixed SMSCs with fibrin glue, followed by seeding 
into a nonwoven PGA mesh. After the constructs were prematured for 1 month 
in vitro, they were implanted into rabbit knees to repair osteochondral defects. Six 
months later, the cartilage defects were full of smooth hyaline-like cartilage with 
high expressions of collagen type II and GAG and were well integrated with the 
surrounding native cartilage. No detectable collagen type I and macrophages were 
found [196].
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9.2.3 Bioactive Signals for Cartilage Regeneration 

The cell growth factors are typical bioactive molecules, which can stimulate or 
inhibit cellular proliferation, differentiation, migration, and gene expression 
[198]. There are a number of essential growth factors that have regulatory effects 
on chondrocytes or stem cells in terms of chondrocyte maturation and cartilage 
formation. The candidate growth factors include transforming growth factor β 
(TGF-β), insulin-like growth factor-1 (IGF-1), bone morphogenic proteins 
(BMPs), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), 
etc. [199]. Each growth factor plays a different role in the migration, proliferation, 
and differentiation of cells as summarized in Fig. 9.5. However, it is difficult to 
precisely define the function of each growth factor due to the functional overlaps in 
temporal scale [197]. 

9.2.3.1 TGF-β 

So far four types of TGF-β superfamily, namely, TGF-β1, TGF-β2, TGF-β3, and 
BMP, have been found in cartilage [198]. Activated TGF-β not only increases the 
synthesis of proteoglycan but also prevents degradation of cartilage ECM by 
inhibiting matrix metalloproteinase (MMP). These TGF-β isomers play an important 
role in the late stage of chondrocyte differentiation and may participate in bone 
formation as well. TGF-β1 induces early stage of chondrogenesis and increases

Fig. 9.5 Schematic overview of the role of growth factors at different stages of chondrogenesis. 
(Reprinted from [197] with permission)



the production of aggrecan and collagen type II [200]. TGF-β3 plays a role in the 
maturation of chondrocytes [201]. The TGF-β has been extensively used for the 
regeneration of cartilage defects in vitro and in vivo [122, 202–211]. For example, 
Yin et al. fabricated a TGF-β1-immobilized scaffold by incorporating TGF-β1-
loaded gelatin microspheres into PLGA framework and evaluated the ADSC differ-
entiation in the scaffold in vitro and regenerative ability of cartilage defect in vivo. 
The cell proliferation and GAG deposition in the TGF-β1-immobilized scaffold are 
significantly increased, and the cartilage regeneration is promoted in the defective 
articular cartilage in vivo [211]. Lu et al. engineered ADSCs with a baculovirus 
system that confers prolonged and robust TGF-β3/BMP-6 expression. Culture for 
2 weeks in vitro in a porous scaffold leads to the formation of cartilaginous 
constructs with improved maturity and mechanical properties. After implantation 
into full-thickness articular cartilage defects in rabbits, these engineered constructs 
regenerate neocartilages that resemble native hyaline cartilage in terms of cell 
morphology, matrix composition, and mechanical properties. The neocartilages 
also have cartilage-specific zonal structures without signs of hypertrophy and degen-
eration and integrate well with the native cartilages [187].
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9.2.3.2 IGFs 

IGFs have a polypeptide sequence similar to proinsulin that allows cells to commu-
nicate with their physiologic environment. IGF-1 is well known to promote cell 
proliferation and inhibit apoptosis. IGF-1 is expressed in developing cartilage, 
mature cartilage, and synovial fluid of the joint. Both of in vitro and in vivo studies 
confirm that IGF-1 can induce chondrocyte differentiation and proliferation of MSCs 
and enhance proteoglycan and collagen type II synthesis [212–219]. Spiller et al. 
encapsulated IGF-1 in degradable PLGA microparticles and embedded the particles 
in PVA hydrogel. The PGA fiber scaffolds with chondrocytes were wrapped around 
the hydrogels and were implanted subcutaneously in athymic mice. Histology 
analysis proves enhanced cartilage formation in the layers surrounding the hydrogel 
with increased content of ECMs, mechanical properties, and integration between the 
cartilage layers and the hydrogels [218]. The regeneration of cartilage and 
subchondral bone in vivo was confirmed by injecting IGF-1 suspended HA solution 
to the temporomandibular in a rabbit model. Twelve and twenty-four weeks after the 
injection, the defects were well repaired, and nearly normal microarchitectural 
properties of the subchondral cancellous bone were found in the defects [217]. 

9.2.3.3 BMPs 

BMPs are able to induce the formation of the cartilage and bone, which are required 
for the formation of prechondrogenic condensation and differentiation into 
chondrocytes. Meanwhile, they can increase the expression of the specific chondro-
cyte markers such as type X collagen [139, 205, 220–227]. BMP-2, a potent



regulator of chondrogenic expression, has received considerable attention in carti-
lage and osteochondral tissue engineering. Jeong et al. investigated the influence of 
BMP-2 on the production of cartilage matrix and subsequent bone matrix by using 
primary chondrocytes seeded on designed three-dimensional PCL scaffolds with 
chemically conjugated BMP-2. The chemically conjugated BMP-2/PCL scaffolds 
can significantly promote better cartilage regeneration without particularly acceler-
ating endochondral ossification both in vitro and in vivo compared with those 
non-BMP-2-treated scaffolds [139]. 
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9.2.3.4 FGF-2 

FGF-2 is known as a chondrocyte mitogen found in normal cartilage and has great 
potential for clinical applications. It can stimulate chondrocytes to synthesize carti-
laginous matrix [228–233]. Maehara et al. impregnated a porous hydroxyapatite/ 
collagen scaffold with FGF-2 and used the scaffolds to repair large osteochondral 
defects in a rabbit model. With the addition of FGF-2, the neotissue in the defects 
displays not only the most abundant bone regeneration but also cartilage regenera-
tion with hyaline-like appearance [232]. 

9.2.3.5 PDGF 

PDGF is a glycolytic protein released by platelets and other cells, which stimulates 
the growth of cells of mesenchymal origin, for example, the cartilage [234– 
237]. Meanwhile, the released PDGF-AA from hydrogel being filled in the full-
thickness cartilage defects greatly promotes BMSC recruitment into the hydrogel. 
This confirms the ability of PDGF to recruit BMSCs besides promotion of cell 
proliferation [237]. 

9.2.3.6 Exosomes (Exos) 

Exos are extracellular vesicles with 30–150 nm in diameter that are produced by 
cells through the paracrine pathway, which contain various types of nucleic acids 
and proteins [238]. Recently, Exos have been regarded as important carriers for 
transmitting biological signals between cells instead of waste products of cells. Exos 
derived from stem cells are considered as ideal substitutes for stem cells in “cell-
free” cartilage regeneration [239]. Jiang et.al. combined Exos derived from human 
Wharton’s jelly-derived MSCs with scaffold of acellular porcine articular cartilage 
[240]. 6 months’ experiment in vivo proved that the Exos can promote osteochondral 
regeneration in a “cell-free” condition. Shao et. al. revealed that Exos derived from 
infrapatellar fat pad MSCs can significantly promote the proliferation as well as the 
expression of Sox-9, Aggrecan, and Collagen II relative genes of chondrocytes 
in vitro [241]. Furthermore, Shao et.al. created a rabbit articular cartilage defect



with 4 mm in diameter and 1.5 mm in depth, and then treated with the Exos 
suspension. 12 weeks after the treatment, the defected cartilage was effectively 
regenerated with a hyaline morphology. In spite of these positive results using 
Exos to facilitate the regeneration of articular cartilage defect, the underlying 
mechanism of action remains unknown. Additionally, the low yield of Exos leads 
to a higher cost of Exos therapy than stem cell therapy, which might be the potential 
limitation to move the Exos therapy forward from bench to bedside [242]. 
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9.2.3.7 Platelet-Rich Plasma (PRP) 

PRP is a kind of autologous derivative of the whole blood, which is rich in growth 
factors. PRP could stimulate the migration and chondrogenic differentiation of 
human subchondral progenitor cells [243]. Meanwhile, PRP would counteract 
effects of an inflammatory environment on genes regulating matrix degradation 
and formation in human chondrocytes [244, 245]. Recently, PRP has commonly 
been utilized in the repair and regeneration of damaged articular cartilage. Lu et al. 
prepared an injectable hydrogel with hyaluronic acid (HA), fucoidan (FD) and 
gelatin (GLT), which was further cross-linked with genipin (GP) [246]. The 
PRP-loaded injectable hydrogel was prepared by adding PRP in the hydrogel before 
gelation. It could facilitate the sustained release of PRP growth factors, and promote 
cartilage regeneration in rabbits. Singh et al. developed a hybrid scaffold by embed-
ding PRP/alginate-based hydrogel in porous 3D scaffold of chitosan/chondroitin 
sulfate/silk fibroin [247]. The hybrid construct could provide PRP-based cocktails of 
growth factors, which facilitates chondrogenic ECM deposition and enhanced 
expression of cartilage tissue-specific collagen type II and aggrecan. Autologous 
chondrocytes-loaded hybrid scaffolds possess the superior potential to regenerate 
hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with 
surrounding tissue at the defect site. 

9.2.4 Methods for Cartilage Tissue Engineering 

9.2.4.1 Preculture In Vitro for Cartilage Tissue Engineering 

Functional repair of focal cartilage defects requires filling the space with neotissue 
that has compressive properties comparable to native tissue and integration with 
adjacent host cartilage. One of the main issues in cartilage tissue engineering is 
represented by the ideal maturation of the construct before implantation in vivo, in 
order to optimize matrix quality and integration [248]. Considerable progress has 
been made toward the in vitro tissue engineering of neocartilage with compressive 
properties approaching native levels [249–253]. In 1997, Cao et al. reported a human 
ear-shaped tissue-engineered construct by using bovine articular chondrocytes and a 
nonwoven PGA scaffold [254]. Deponti et al. studied the difference of cartilage



maturation with or without preculture. Articular chondrocytes were embedded in 
fibrin glue with preculture in vitro for 1 week and implanted subcutaneously in rat, 
proving better tissue maturation compared with the constructs without preculture 
[249]. Pei et al. mixed synovium-derived stem cells with fibrin glue, which were then 
seeded into nonwoven PGA mesh. After 1-month incubation with growth factors, 
the premature construct was used to repair osteochondral defects in a rabbit model. 
Six months later, the defects were full of smooth hyaline-like cartilage with high 
expression of collagen type II and GAG, which integrated well with the surrounding 
tissue too [196]. 
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Culture of constructs in a dynamic environment involving fluid flow or agitation 
is beneficial for cartilage synthesis compared to the static culture conditions 
[255]. Therefore, various bioreactors have been applied for cartilage tissue engi-
neering, offering advantages such as better control over culture conditions, reduced 
diffusional limitations for delivery of nutrients and metabolites, enhanced oxygen 
transfer, and exertion of mechanical and hydrodynamic forces influencing cell and 
tissue development [256]. Shahin et al. precultured chondrocytes in PGA scaffold 
for 5 weeks within a bioreactor, confirming improved GAG retention in the 
scaffolds [257]. 

9.2.4.2 Regeneration of Cartilage Defects In Situ 

With the deep acknowledge of cell behavior regulation and bioactive molecule 
functions, the in situ regeneration of cartilage defects with direct implantation of 
cartilage tissue engineering constructs based on biomaterials, cells, and bioactive 
growth factors has been extensively studied. The scaffolds based on native and/or 
synthetic materials play a role in supporting the viability of cells and deposition of 
neo-ECMs, while the bioactive growth factors regulate cell differentiation and 
physiological activity. Numerous studies give positive regenerative results by 
using the bioactive constructs in repair of articular cartilage defects. As described 
early, cells (chondrocytes, BMSCs, ADSCs, ESCs, etc.) and bioactive growth 
factors (TGF-β, IGF-1, BMPs, FGF, PDGF, etc.) are loaded into scaffolds 
(hydrogels, porous scaffolds, etc.), which are then implanted into the cartilage 
defects without prematuring. Li et al. implanted a PLGA scaffold filled with fibrin 
gel, mesenchymal stem cells (MSCs), and poly(ethylene oxide)-b-poly(L-lysine) 
(PEO-b-PLL)/pDNA-TGF-β1 complexes into osteochondral defects, resulting in 
full in situ regeneration of the defect [123]. However, the application of constructs 
containing cells and bioactive molecules is still faced with obstacles like source, 
amount, and phenotype maintenance of MSCs during culture, immune reaction 
against foreign cells, as well as feasibility of clinical translation considering the 
ratio of performance to price [258]. 

Injectable hydrogels have a greater potential to promote articular cartilage regen-
eration considering their tailorable structural and mechanical capabilities. Impor-
tantly, the free-flowing property makes it convenient for the loading of drugs, growth 
factors and cells into the injectable hydrogel by simple dissolution procedures



[38]. Zheng et.al. fabricated an injectable hydrogel based on silk fibroin, chitosan 
and thermal-sensitive glycerophosphate [259]. With the incorporation of TGF-β1 
and BMSCs, the prepared injectable hydrogel could promote the regeneration of 
partial-thickness cartilage defect on knees of SD rats. Dong et.al. developed a 
physiochemical dual crosslinking injectable hydrogel using catechol-modified gel-
atin, dopamine-modified oxidized hyaluronic acid, and dendritic mesoporous 
organic silica nanoparticles with Fe3+ layers for the encapsulation of dexamethasone 
[260]. The obtained hydrogel was injected into osteochondral defects of 3.5 mm in 
diameter and 5 mm in thickness of SD rats. Post implantation for 8 weeks revealed 
the efficacy of the treatment on cartilage defects by the effective removal of the ROS 
and the inhibition of TNF-α and IL-6. Dong et.al. fabricated an injectable chitosan/ 
silk fibroin hydrogel containing SDF-1 and PLGA microspheres loaded with 
Kartogenin [261]. The SDF-1 released from the hydrogel facilitated the recruitment 
of BMSCs in vivo, and the slowly released Kartogenin promoted the chondrogenesis 
of MSCs. After the hydrogel was injected into the cartilage defects (4 mm in 
diameter and 1.5 mm in depth) of rabbits combined with microfracture for 
12 weeks, the subchondral bones and superficial cartilage were reconstructed, 
which were similar to the natural tissues. 

398 Y. Dai and C. Gao

9.3 Cell-Free Constructs for Cartilage Regeneration In Situ 

Based upon the principles of tissue engineering, the stem cells and chondrocytes are 
usually used for cartilage regeneration. However, the controversy of using cells in 
tissue engineering still exists because of the uncertainty of dose, time point, as well 
as side effects [262]. In fact, stem cells are abundant in bone marrow and adult 
organs such as the brain, peripheral blood, skin, teeth, etc. Once tissues get damaged, 
endogenous stem/progenitor cells will migrate to the injured site through peripheral 
blood by responding to the immune cell-secreted biochemical signals 
[263, 264]. Therefore, homing of endogenous cells for tissue regeneration in situ 
would be a promising new therapeutic option to bypass the controversial of cell 
usage. Compared to that of the traditional cartilage tissue engineering, the recruit-
ment of cells into cartilage defect to realize the regeneration in situ still remains rare 
[265]. Nonetheless, the cell-free scaffolds combined with anti-inflammatory mole-
cules and BMSC-attractive chemokines would have positive influence on the regen-
erative outcome of cartilage defects. For example, Park et al. studied the in situ 
recruitment of BMSCs into cartilage defects by transplantation of 
polylactide/β-tricalcium phosphate (PLA/β-TCP) scaffolds containing IL-8 or 
MIP-3α [8]. Compared to those scaffolds without chemokines, the scaffolds with 
IL-8 or MIP-3α can highly facilitate the restoration of cartilage with a smoother 
surface and higher deposition of collagen. Wang et al. fabricated an anti-
inflammatory scaffold composed of resveratrol-grafted polyacrylic acid and 
atelocollagen [266]. The scaffolds were transplanted into osteochondral defects 
without the employment of cells. After implantation for 12 weeks, the



proinflammation genes such as IL-1, MMP13, and COX-2 were downregulated, 
while the cartilage-related genes were upregulated, leading to efficient regeneration 
of cartilage defects. For the sake of easier application clinically, a widely accepted 
biomaterial instead of a brand-new one would be the best choice for fabricating the 
scaffold. Dai et al. fabricated a macroporous fibrin scaffold with high Fg content and 
mechanical strength through a porogen leaching method by using PCL microspheres 
as the porogen. Together with the excellent bioactivity of Fg, the cell-free fibrin 
scaffold could efficiently regenerate full-thickness cartilage defects in rabbit knees, 
resulting in neocartilage with a smooth surface, well integrity with surrounding 
tissue, highly deposited GAGs and collagen type II, and higher expression of 
cartilage-related genes and proteins, which ensure the great potential for clinical 
application of Fg scaffold to achieve in situ inductive cartilage regeneration [267]. A 
PLGA scaffold with oriented pores in its radial direction was implanted into rabbit 
articular osteochondral defect for 12 weeks, confirming obvious tide mark forma-
tion, and abundant chondrocytes distributing regularly with obvious lacunas in the 
cartilage layer [268]. A scaffold with oriented pores in radial direction can be 
prepared by using methacrylated hyaluronic acid via controlled directional cooling, 
and followed with structure-stabilization via post photocrosslinking, and further 
infiltrated with PLGA to enhance the mechanical strength [269]. In vivo test proved 
that the composite without loading cells can facilitate simultaneous regeneration of 
both cartilage and subchondral bone. Meanwhile, the cell-free scaffolds can facilitate 
cartilage regeneration in clinic too. Roessler et al. implanted a cell-free collagen type 
I matrix for the treatment of large cartilage defects (mean defect size 
3.71 ± 1.93 cm2 , range 1.20–9.00) of the knee and conducted a short-term follow-
up after the implantation. Significant pain reduction was achieved after implantation 
for 6 weeks, while the activity of patients was highly improved and nearly reached to 
preoperative value after 12 months [270]. 
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9.4 Simultaneous Regeneration of Cartilage 
and Subchondral Bone 

Articular cartilage defects can be divided into two forms, full-thickness cartilage 
defects without subchondral bone damage and osteochondral defects involving both 
the cartilage and the underlying subchondral bone [271]. Subchondral bone plays a 
pivotal role in supporting cartilage and will suffer from deterioration once cartilage is 
damaged. When damage of subchondral bone occurs, the neocartilage has poor 
integration with the subchondral bone, leading to negative regeneration of the 
articular cartilage defects [272]. Hence, the regeneration of structure and functions 
of the articular cartilage defects can be realized only if both cartilage and 
subchondral bone are simultaneously regenerated with good interface binding 
[273]. There are several problems that should be overcome for the regeneration of 
osteochondral defects, including the construction of different layers of scaffolds,



well integration of the neoformed tissues with native tissues, and the effective 
binding of neoformed cartilage and subchondral bone [274]. Schematic design of 
multilayered scaffolds for osteochondral defect regeneration and typical multilay-
ered collagen scaffolds is shown in Fig. 9.6 [69]. Osteochondral tissues encompass 
cartilage layer, calcified cartilage, and subchondral bone layers in the spatial scale 
(Fig. 9.6a). The scaffolds with a biphasic structure based on different materials and 
different chemical or mechanical properties are designed for the regeneration of 
cartilage and subchondral bone, respectively (Fig. 9.6b) [275–279]. The evaluation 
of the regenerative ability of the scaffolds in vivo has found some positive results 
[280–283]. For example, the biphasic PEG/hydroxyapatite scaffold with cartilage-
and subchondral bone-like hierarchical nanoroughness, microstructure, and spatio-
temporal bioactive cues can be prepared by the 3D-printing technology. In vitro 
culture proves osteochondral differentiation of BMSCs in the scaffold [284]. The 
bilayered scaffold composed of PLCL, PLGA, and β-tricalcium phosphate (β-TCP) 
has been prepared by a sintering method and a gel pressing method. The 
PLGA/β-TCP layer has osteoconduction activity for bone regeneration, while the 
elastic PLCL scaffold has mechanoactive properties for cartilage regeneration 
[285]. The biphasic scaffold composed of aragonite-hyaluronic acid (Ar-HA) layers 
shows full regenerative ability of osteochondral defects with a critical size of 6 mm 
in diameter and 10 mm in depth in the load-bearing femoral condyle of goats [286]. 
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Fig. 9.6 (a) Schematic design of multilayered scaffolds for osteochondral defect regeneration. (b) 
Three-layered collagen scaffolds. (Reprinted from [69] with permission) 

Recently, 3D-printing technology has emerged as a promising strategy to fabri-
cate scaffolds for osteochondral defects. 3D-printing provides many advantages, 
including well-controlled architecture (size, shape, interconnectivity, and orienta-
tion). The 3D-printed scaffold would provide structural and mechanical support, and 
sufficient nutrient supply, leading to regeneration of functional cartilage akin to 
native tissue. Depending on the biomaterials, 3D-printed scaffolds for cartilage 
regeneration can be classified as natural, synthetic, and inorganic scaffolds.
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Fig. 9.7 3D-printed scaffolds of (a) cell-laden collagen, (b) modified PEG and gelatin, (c) modified 
PEG and gelatin incorporating with graphene, (d) polycaprolactone and modified gelatin, (e) short 
electrospinning gelatin/PLGA fibers and cartilage decellularized matrix, (f) gellan gum with Li-Mg-
Si bioceramics, (g) polycaprolactone and hydroxyapatite, (h) bone layer (polycaprolactone / 
hydroxyapatite) and cartilage layer (chitosan/silk firoin), (i) Zn/Co-MOF-β-TCP, (j) Mo-doped 
bioactive glass ceramic. (Reprinted from [287, 291, 296, 299, 295, 303, 182, 302, 316, 317] with 
permission) 

The natural 3D-printed scaffold is mainly designed in a form of hydrogel, by 
using proteins (collagen (Fig. 9.7a)  [287–289], gelatin (Fig. 9.7b)  [290–301], fibrin 
[292], and silk fibroin [298, 302]), polysaccharides (gellan gum [303], cellulose 
[303], chitosan [302], hyaluronic acid [294, 304, 305], alginate [290, 297, 303, 306– 
309], chondroitin sulfate [291]), and acellular matrix [295, 310, 311]. Compared 
with the traditional hydrogel with submicro- or nano-sized gel network, the 
3D-printed hydrogel could be granted with macropores which facilitate the supply 
of oxygen and nutrients and the proliferation and differentiation of encapsulated 
cells. Li et al. fabricated a macroporous hydrogel with silk fibroin and tyramine-
substituted gelatin by extrusion-based low temperature 3D printing [292]. The 
internal structure of the hydrogel could be well designed to improve the retention 
of stem cell aggregates and promote the articular cartilage repair. A bilayered 
hydrogel was fabricated using gellan gum, cellulose and sodium alginate 
[303]. Bioceramic particles were incorporated into the lower part of the hydrogel 
to mimic the subchondral bone. The hydrogel loaded with stem cells in the lower 
part, and with chondrocytes in the upper part could facilitate simultaneous regener-
ation of both cartilage and subchondral bone. Hydrogel with interpenetrating poly-
mer network could be fabricated by 3D-printed technology using polyethylene



glycol diacrylate, gelatin methacryloyl, and chondroitin sulfate methacrylate through 
photocrosslinking [291]. The designed hydrogel possessed not only adequate 
mechanical strength but also maintained a suitable 3D microenvironment for differ-
entiation, proliferation and extracellular matrix production of stem cells. 
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Compared with natural biomaterials, synthetic biomaterials are favored by 
researchers because of their strong controllability and mechanical properties. Up to 
now, several biodegradable synthetic polymers, including polyethylene glycol 
(PEG) (Fig. 9.7c) [291, 296], polyvinyl alcohol (PVA) [312], polyurethane 
[304, 311, 313], poly (lactic-co-glycolic acid) (PLGA) (Fig. 9.7e) [295], and 
polycaprolactone (PCL) (Fig. 9.7d)  [182, 299, 302, 308, 309, 314, 315], have 
been used in 3D-printed scaffolds for cartilage regeneration. For instance, Zhou 
et al. developed a graphene oxide-doped, gelatin methacrylate and poly (ethylene 
glycol) diacrylate (PEGDA)-based 3D-printing ink, in which the PEGDA could 
greatly improve the printability performance of the ink [296]. Because of the strong 
hydrogen bonding interaction in the PEGDA solution, there exists severe extrusion 
swelling of the pure PEGDA solution during the most common nozzle printing 
process, which greatly restricts the development of 3D printing of PEGDA hydrogel. 
Meng et al. improved the printing accuracy of PEGDA solution by adding graphene 
oxide and hydroxyapatite, and realized the 3D printing of a PEGDA-based hydrogel 
with a biomimetic pore size gradient [312]. Inspired by the architecture of collagen 
fibers in native cartilage tissue, Cao et al. fabricated a tri-layered scaffold with pore 
size gradient based on polycaprolactone and methacrylated alginate hydrogel encap-
sulating stem cells [308]. The stem cells-loaded gradient 3D-printed scaffolds 
showed excellent cell survival, proliferation and morphology, collagen II deposition, 
and hopeful chondrogenic differentiation. 

Moreover, the scaffolds for osteochondral repair based on bioresorbable ceramic, 
including hydroxyapatite (Fig. 9.7g, h)  [182, 288, 297, 301, 302, 307], β-tricalcium 
phosphate(β-TCP) [316], and bioactive glass ceramic (Fig. 9.7f)  [303, 317] can be 
fabricated by 3D-printing technology. Hydroxyapatite is one of the essential inor-
ganic components from bones and teeth, which is widely applied in biomedical 
engineering due to their excellent biocompatibility, bioactivity, osteointegrity, and 
osteoconductive properties [318]. Hsieh et al. prepared a biomimetic scaffold 
consisting of hydroxyapatite/polycaprolactone and glycidyl-methacrylate-
hyaluronic acid for healing osteochondral defects [319]. The scaffolds were 
implanted in the knees of a miniature pig for a period of 12 months, and realized 
the regeneration of hyaline cartilage. β-TCP is a typical bioresorbable ceramic for 
bone tissue regeneration [320]. Shu et al. prepared a 3D-printed β-TCP scaffold, 
which was further functionalized with zinc-cobalt bimetallic organic framework 
(Zn/Co-MOF) (Fig. 9.7i)  [316]. The hybrid scaffolds preserve excellent 
antioxidative and anti-inflammatory properties to protect cells from reactive oxygen 
species invasion, and induce the osteogenic and chondrogenic differentiation simul-
taneously in vitro. Moreover, in vivo studies prove that the Zn/Co-MOF-TCP scaf-
folds could accelerate the integrated regeneration of cartilage and subchondral bone 
in severe osteochondral defects induced by osteoarthritis. Dang et al. prepared a 
series of molybdenum-doped bioactive glass ceramic through combining a sol-gel



method with 3D-printing technology (Fig. 9.7j) [317]. The scaffold not only signif-
icantly stimulated the proliferation and differentiation of both chondrocytes and stem 
cells in vitro, but also showed bi-lineage bioactivities for regeneration of articular 
cartilage and subchondral bone tissues in vivo. 
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9.5 Histological Grading of Cartilage 

Histological quality of repaired cartilage is one of the most important evaluations of 
success in cartilage regeneration. Up to present, various histological scoring systems 
are used to evaluate the quality of cartilage tissues. Basically, a scoring system 
should be comprehensive but also applicable to researchers with limited knowledge 
of cartilage histology. In summary, the systems are divided into three categories to 
describe the osteoarthritic, in vivo repaired, and in vitro engineered cartilage, 
respectively [321]. 

Scoring systems for osteoarthritic cartilage focus on the degenerative features of 
healthy or diseased cartilage. Histological-Histochemical Grading System (HHGS) 
is the first system for the evaluation of osteoarthritic cartilage [322]. It evaluates the 
cartilage structure, cell distribution, Safranin-O staining, and tidemark integrity to 
classify the level of cartilage damage. HHGS is applied in the grading of both human 
and animal cartilages [323, 324]. Although widely used, HHGS is not efficient to 
evaluate the specific extent of cartilage deterioration [325]. Osteoarthritis Research 
Society International (OARSI) developed an Osteoarthritis Cartilage Histopathology 
Assessment System for better evaluation of the severity and the extent of cartilage 
surface damage during the arthritic process [326]. The OARSI system is more 
adequate for the assessment of mild osteoarthritis and could be more conveniently 
used by less experienced observers [325]. 

Many scoring systems are developed to evaluate the regeneration of cartilage 
defect in vivo. O’Driscoll score, Pineda scale, Wakitani score, OsScore, Knutsen 
score, and International Cartilage Repair Society (ICRS) score are widely used 
[321]. O’Driscoll is the first scoring system to assess the repaired cartilage in vivo 
and is frequently used for cartilage analysis in animal studies [327]. However, many 
different subitems make it a bit lengthy and complicated to use. Pineda scale is 
developed to simplify the assessment and is applied to evaluate the self-healing 
ability of cartilage defect in rabbit at the first beginning [328]. After that, Wakitani 
introduced a modified scoring system based on Pineda scale, which is extensively 
applied to evaluate animal cartilage repair in vivo [329]. O’Driscoll, Pineda scale, 
and Wakitani score are mainly used to evaluate cartilage repair in animal models. In 
contrast to the animal studies, the study of cartilage repair in human is hard to 
evaluate due to the infeasible harvest of large biopsy. Considering that, Robert et al. 
proposed a scoring system for small biopsy of repaired human cartilage, which is 
named as OsScore [330]. Moreover, ICRS introduced ICRS I and ICRS II scoring 
systems for more easy and reliable histological evaluation of repaired cartilage 
[331, 332]. ICRS scoring systems are based on a catalogue of repaired cartilage as



a reference for scoring. Distinguished from other systems, ICRS scoring enables 
discrimination of each subitem, instead of summarizing all the subitems to create a 
total score. Compared with the ICRS I, the ICRS II contains additional categories, 
making it more comprehensive. Especially when a scaffold is used in cartilage 
repair, a category of inflammation can be included to the ICRS II [333]. 
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Scoring system for engineered cartilage should focus on the quality of newly 
generated cartilage after engineering in vitro. Few histological scoring systems are 
available for the evaluation of engineered cartilage. O’Driscoll introduced a simple 
scoring system to evaluate the density of GAGs in the engineered cartilage 
[334]. This system is not sufficient since many other characteristics, for example, 
cell morphology, are not included. Another grading system, Bern score, was vali-
dated for the evaluation of engineered cartilage [335]. In contrast to O’Driscoll 
score, Bern score has a broader score range, which gives more information about the 
characteristics of tissue [336]. 

9.6 Challenges and Perspectives 

Although the cartilage tissue engineering has been investigated for over two 
decades, rather limited success is achieved to develop clinically relevant outcomes. 
Nonetheless, significant strides have been made to select optimal cell sources; to 
identify suitable chemistry, morphology, and compliance of scaffold materials; and 
to optimize culture conditions and dose and delivery of soluble factors, which are of 
great importance to develop models of cartilage development in vitro and regener-
ation of cartilage defects in vivo. Meanwhile, many efforts have been made to 
overcome the limitations in cell harvesting and to establish culture and implantation 
techniques in vitro. Novel methods of manufacture such as 3D printing have opened 
new horizons for constructing personalized constructs for cartilage regeneration. A 
thorough understanding of the biological processes at both cellular and molecular 
levels will ensure the safety and effectiveness of these innovations. With the deep 
understanding of pathological and healing principles under cartilage defects, cell 
homing and in situ inductive regeneration of both cartilage and subchondral bone are 
also full of prospects. All these developments, taken together, may in the future lead 
to the successful and cost-effective translation from the bench top to the bedside by 
using novel cell/biomaterial constructs in cartilage regeneration. 
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