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Preface 

The biomaterials are a type of materials used in biology, pharmacology, medicine, 
diagnosis, etc. in vitro and/or in vivo. Among the various types of biomaterials, the 
biomedical polymers have been attracting much more attention for tissue regenera-
tion because of their ease of design and synthesis, diverse chemical and physical 
structures and tailorable properties, formulation of different types of scaffolds, and 
thereby biological and medicinal performance. As the scaffolding materials to 
support tissue regeneration, the fundamental interplay between the scaffolds and 
cells/tissues is the key issue. In-depth understanding of the discipline and mecha-
nism of this interplay is mandatory for the design and fabrication of bioactive and 
inducive scaffolds and constructs, leading to better tissue regeneration in a more 
rational manner. 

With the major focuses on structural scaffolds and bio-activation, biomaterials 
surfaces/interfaces and bio-interactions, and regeneration of some clinic-targeted 
tissues, this book reviews the state-of-the-art of polymeric biomaterials for regener-
ative medicine and highlights advances in both fundamental science and clinical 
demand-driven applications. It summarizes the latest techniques in polymeric scaf-
fold fabrication, delivery carriers, physiochemical property modulation, as well as 
their influences on adhesion and performance of biomolecules, cells, and tissues. It 
also describes methods for creating biofunctional surfaces/interfaces and subse-
quently modulating the host response to implantable materials. Lastly, it discusses 
the applications of biomaterials and constructs in soft-tissue regenerative medicine. 
It has to mention that the regeneration of tissues correlates to many factors such as 
cells, bioactive factors and cell growth factors etc. besides of the materials and 
scaffolds. Moreover, the polymers used for tissue regeneration, which are easily 
found in many books and review articles, are not deliberately enumerated in 
this book. 

On the basis of success of the first edition of this book, the structure of this second 
edition is maintained with the update contents. Due to various reasons, some authors 
of the first edition could not update their contents. To keep the integrity and ensure 
the quality of this book, new authors are invited to contribute to Chaps. 3 and 12.
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Moreover, Chap. 13 is newly added to meet the fast development and extreme 
importance of nerve regeneration, in particular for central nerve system. 

vi Preface

We believe that this book is a valuable resource for materials scientists and 
engineers in the rational design of ideal scaffolds and constructs and for physicians 
in the therapy of some diseases that are not fully covered by the current approaches, 
as listed in the book. The book also offers engineering students a sense of the 
relevance of materials science in the development of novel therapeutic strategies. 

All the authors for both the first edition and second edition are sincerely acknowl-
edged for their excellent contribution and timely update of the contents. We also 
thank the editorial staff of Springer for their continuous support in every step of 
publishing this book. Lastly, it is my greatest pleasure to collaborate with so many 
excellent colleagues since my jumping in biomaterials for tissue engineering and 
regeneration in 1996. Many of the students and postdocs ever studying in our lab on 
biomedical polymers for tissue repair and regeneration have become the leading 
scientists or engineers in biomaterials and medicinal devices. It is expected that in 
the next decade more advanced devices and products based on regenerative bio-
materials will be developed to meet the diverse demands on healthcare and disease 
therapy. 

Hangzhou, Zhejiang, China Changyou Gao
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Chapter 1 
An Introduction to Scaffolds, Biomaterial 
Surfaces, and Stem Cells 

Jun Deng and Changyou Gao 

Abstract In situ tissue regeneration utilizes the regenerative potential of the body to 
control cell behaviors for tissue repair. The design of scaffolding biomaterials for 
tissue engineering requires precise control of the biophysical and biochemical cues 
to guide endogenous cells to the injury site. These cues are required to induce 
regeneration by modulating the extracellular microenvironment or driving cellular 
reprogramming. Upon contact with the biological systems, the proteins will interact 
with the surface/interface of the biomaterials. The interactions between biomaterials 
and cells could be to a great extent directed through protein adsorption. Owing to 
their self-renewal and differentiation ability, stem cells are conducive for repairing 
injured tissues, making them a promising source of seed cells for tissue engineering. 
Biomaterial platform to control stem cell fate is an area of tissue engineering that has 
grown exponentially over the last decades. In this chapter, the scaffolds, biomaterial 
surfaces, and stem cells are briefly summarized, including biomaterials design, 
interfacial interactions, and application of stem cells for traditional tissue engineer-
ing and in situ tissue regeneration. Regeneration of some clinic-targeted tissues is 
introduced as well. 

Keywords In situ tissue regeneration · Scaffolds · Biomaterial interface · Protein 
adsorption · Stem cells 

J. Deng (✉) 
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of 
Polymer Science and Engineering, Zhejiang University, Hangzhou, China 

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, 
Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 
China 
e-mail: djun.123@163.com 

C. Gao (✉) 
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of 
Polymer Science and Engineering, Zhejiang University, Hangzhou, China 
e-mail: cygao@zju.edu.cn 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
C. Gao (ed.), Polymeric Biomaterials for Tissue Regeneration, 
https://doi.org/10.1007/978-981-99-6948-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6948-7_1&domain=pdf
mailto:djun.123@163.com
mailto:cygao@zju.edu.cn
https://doi.org/10.1007/978-981-99-6948-7_1#DOI


2 J. Deng and C. Gao

1.1 Introduction 

With the quick development of global modernization and aging, the demand for 
biomaterials and medical devices has rapidly increased. Novel implant materials 
including drug-carrying stents for regenerative medicine, joint replacement mate-
rials, prostheses, and implantable detection sensors have sprung up with an estimated 
annual growth rate of 13.7%, reaching a net worth of $130 billion by the end of 2021 
[1]. However, the rapid development of biomaterials is always accompanied with 
challenges such as excessive or insufficient immune response and uncontrolled cell 
regulation, etc. 

Biomaterials play a critical role in the success of in situ tissue regeneration 
because they can support cell growth and extracellular matrix (ECM) formation. 
Thus, various formats of biomaterials such as porous scaffolds [2, 3], hydrogels 
[4, 5], membranes [6], tubes [7], and micro- and nanospheres [8] are available and 
can be fabricated specifically according to the requirements of different damaged 
tissues. Multiple technologies including freeze-drying [9], gas foaming [10], 
electrospinning [11], layer-by-layer (LbL) assembly [12], microfluidic technology, 
and three-dimension (3D) printing [13] are used to process biomaterials with orga-
nized structures and well-defined functions. Various types of biomaterials such as 
natural biomaterials [14], synthetic polymers [15], bioceramics [16], and 
ECM-based biomaterials [14] are employed for the in situ tissue regeneration. 

Engineered biomaterials can be used to direct endogenous progenitors or stem 
cells to the injury intima and thereby promote tissue repair [17]. During this process, 
biomaterials provide a structural framework to facilitate the attachment and migra-
tion of host stem cells and progenitor cells, and drive the differentiation of these cells 
into tissue-specific cell types. Most studies believe that cell behaviors regulated by 
biomaterials are attributed to biomaterials’ bulk mechanical and chemical properties 
[18, 19]. In fact, upon implantation into the living body, it is the biomaterial surface/ 
interface that directly contacts with the biological systems [20]. Cells interact with 
the matrix through the cell–matrix interface, and thereby the “interfacial” properties 
such as energy, wettability, and surface topography play a pivotal role in regulating 
cell adhesion, proliferation, differentiation, and functions. In addition, the biological 
microenvironment is comprised of the aqueous milieu enriched with soluble proteins 
and sugars [18]. Upon contact with physiological fluids (e.g., blood), various types 
of proteins such as albumin, immunoglobulin (IgG), fibrinogen (Fg), fibronectin 
(Fn), and vitronectin (Vn) adsorb onto the implant surface from body fluids within 
seconds to minutes [21]. Thus, the cell–surface interaction is ultimately an interac-
tion between cells and surface-bound proteins. The type, amount, conformation/ 
orientation, and bioactivity of the adsorbed proteins subsequently influence the 
overall kinetics and thermodynamics of the binding events between cells and implant 
surface [21]. On the one hand, certain adsorbed adhesive proteins mediate the 
attachment and activation of platelets, macrophages, and other inflammatory cells, 
triggering clotting and immune responses in the host [20]. On the other hand, the 
adsorbed ECM proteins assist in specific cell adhesion and spreading through



integrin binding and regulate other subsequent signaling events (proliferation, dif-
ferentiation, motility, gene expression, and survival) [22]. Therefore, the interfacial 
interactions are crucial in determining the success of implant devices. 
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Stem cells possess the ability to self-renew and produce progeny that differentiate 
into multiple functional cell lineages, which endows them with the ability to act as a 
seed cell source for various tissues/organs in regenerative medicine. Tissues that can 
now be engineered using stem cells comprise a diverse range from epithelial surfaces 
(skin, cornea, and mucosal membranes) to skeletal tissues [23]. Fabrication of 
substrates or 3D biomaterial scaffolds with biophysical cues that mimic ECM-like 
microenvironment can assist in reshaping cell phenotypes and behaviors. The 
biophysical cues include, but are not limited to, topography, matrix stiffness and 
elasticity, mechanical force, and external physical field stimuli. All these factors can 
modulate stem cells individually or synergistically by simulating the ECM micro-
environment. In addition, the adhesion molecules (e.g., proteins and growth factors) 
on the ECM can regulate its interactions with stem cells [24]. Therefore, compre-
hensively and accurately understanding the molecular mechanism related to cellular 
response to biophysical stimuli remains challenging. 

All these findings are increasingly directing the design of appropriate scaffolds 
for tissue repair and regeneration [25]. Considerable progress has been made in the 
design of bioactive and bioresorbable scaffolds that support tissue regeneration. 
ECM protein motifs, growth factors, and/or genes can be incorporated into the 
scaffolds by physical incorporation or chemical immobilization, which are used to 
regulate cell activity and functions by providing signals to stimulate or inhibit 
cellular adhesion, recruitment, migration, growth, differentiation, and gene expres-
sion [25, 26]. Therefore, utilizing more novel engineered biomaterials for tissue 
regeneration in vivo is full of challenges. 

1.2 Scaffolds 

The scaffolds are defined as 3D porous solid biomaterials designed to perform some 
or all the biological functions and play a unique role in tissue engineering and 
regenerative medicine. The major function of the scaffolds is to provide a temporary 
support to body structures, allowing the stress transfer overtime to the injured sites 
and facilitating tissue regeneration on the scaffolds. Scaffolds support cells with the 
reasonable surviving conditions, ideal oxygen and nutrient levels, successful sup-
plement and waste transport in addition to providing adequate mechanical support. 
Therefore, the scaffolds should have some other functions, such as (1) sufficient 
transport of gases, nutrients, and regulatory factors to cell survival, (2) biodegradable 
at a controllable rate matching the tissue regeneration, and (3) without or with very 
low inflammation and toxicity. In fact, the performance of the scaffold is affected by 
numerous parameters, such as porosity, surface charge, degradability, 
physicomechanical characteristics, and cell preferences. Thus, it is very important 
to design scaffold materials according to the specific needs of tissue regeneration and



repair. So far different types of scaffolds, including sponges (porous scaffolds), 
microsphere scaffolds, hydrogel scaffolds, and micro/nanostructured scaffolds, 
have been extensively developed (Fig. 1.1). 
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Fig. 1.1 Different types of scaffolds. (a) Images of porous scaffolds. (Reprinted from [27] with 
permission, copyright 2021 Elsevier). (b) Graphical representation of hydrogel scaffolds. 
(Reprinted from [28] with permission, copyright 2022 Royal Society of Chemistry). (c) Schematic 
of microsphere scaffolds. (Reprinted from [29] with permission, copyright 2022 Elsevier). (d) 
Images of micro/nanostructured scaffolds (Reprinted from [30] with permission, copyright 2019 
Wiley-VCH Verlag) 

1.2.1 Porous Scaffolds 

The 3D polymeric porous scaffolds with higher porosity and interconnected pore 
network are highly useful for tissue engineering and regeneration. The porous 
structure provides space for cell migration and proliferation. The interconnected 
voids allow cell infiltration before material degradation, which is conducive to cell 
recruitment and neovascularization, and avoid the restriction of the nonporous 
structure on the inward growth and proliferation of cells, as well as cell death caused 
by insufficient supply of nutrients and oxygen. Ideal pore size and porosity can be 
varied for different types of tissues and cells [31, 32]. The porosity, pore size, and 
pore distribution of the scaffolds govern their mechanical properties and play a 
pivotal role in cell proliferation, migration, and differentiation [32]. Ma et al. 
fabricated 3D poly(ethylene terephthalate) (PET) nonwoven fibrous scaffolds with 
variable pore size and porosity using thermal compression [33]. The high porosity 
(HP) matrices have a porosity of 0.896 and an average pore size of 39 μm, while the 
low porosity (LP) ones have a porosity of 0.849 and average pore size of 30 μm. 
Cells cultured in the LP matrix could spread across adjacent fibers more easily, 
leading to faster cell proliferation, while the smaller pore size of LP matrices limits 
the formation of large cell aggregates and reduces cell differentiation. Conversely,



cells cultured in HP matrices show a higher degree of cell aggregation and differ-
entiation. The porosity and pore size significantly influence the mechanical proper-
ties as well. Although a higher porosity and pore size in scaffolds can enhance the 
nutrient and gas exchange, the mechanical properties of the scaffolds will be 
compromised due to the large amount of void volume [34]. In general, the mechan-
ical strength of scaffolds should match that of the native tissue in vivo and remain 
intact until the tissue regenerates and offers sufficient space for cell proliferation and 
nutrient exchange. Therefore, the porosity and pore size of a scaffold should be 
optimized such that the mechanical properties are not compromised significantly. 
The porous scaffolds can be fabricated with a specific pore size, porosity, and 
structure using various methods, such as template leaching [35], phase separation 
[35], freeze-drying [36], electrospinning [37], selective laser sintering [38], and 
3D/4D printing [39]. A variety of natural products (e.g., collagen, fibrinogen, 
chitosan, and acellular matrix) and synthetic biodegradable polymers (e.g., poly 
(L-lactic acid) (PLLA), poly(glutamic acid), poly(lactide-co-glycolide) (PLGA), 
poly(ε-caprolactone) (PCL), poly(D, L-lactic acid) (PDLLA), and poly(ethylene 
oxide) (PEO)) are widely used as the scaffolding materials [40]. For example, 
Nicole et al. described a technique that combines salt leaching with additive 
manufacturing to obtain a magnesium (Mg)-based porous scaffold with a controlled 
and ordered porosity. Specifically, a 3D-printed NaCl template with adjustable 
structured porosity was used to prepare the Mg-based porous scaffold by infiltrating 
the template with a Mg melt and then leaching in an NaOH aqueous solution to 
remove the NaCl template (Fig. 1.2a) [41]. Unlike the traditional template leaching 
techniques, this strategy can create scaffolds with complex morphology. Ilaria et al. 
also prepared novel, chitosan-based chitosan porous scaffolds with superior mechan-
ical properties by combining stabilization processes. The chitosan solutions were 
thermally phase-separated to obtain a highly porous structure after freeze-drying. 
Then, the freeze-gelation and photo-crosslinking together could improve the 
mechanical resistance of chitosan scaffolds (Fig. 1.2b)  [42]. This fabrication method 
generates the porous scaffolds without an external crosslinking agent or sophisti-
cated instrumentation. Lian et al. combined single solution electrospinning writing 
(SEW) and solution electrospinning (SES) to create a multifunctional, bi-layered 
porous scaffold for guided bone regeneration. The Cu-loaded mesoporous silica 
nanoparticles (Cu@MSNs) were dispersed in a PLGA/gelatin (PLGA/Gel, denoted 
as PG) solution to obtain the electrospinning solution matrix, whose loose and 
porous SEW layer facilitated bone ingrowth. Its dense and compact SES layer 
resisted nonosteoblast interference (Fig. 1.2c) [43]. The superior mechanical prop-
erties and simple fabrication procedure of the multifunctional scaffold render its 
clinically promising. Hossain et al. 3D printed an in situ mullite (3Al2O3�2SiO2) 
porous scaffold. The inks contained an aqueous binder with α-alumina, two different 
silica sources (rice husk ash extracted biogenic nano-silica (NS) and commercial 
silica (CS)), 5 wt% poly(vinyl alcohol) solution, and 6 vol% glycerol. Unlike the CS, 
the NS (45 vol% solid-loading) showed excellent printability even through a tiny 
nozzle size (~500 μm) under low shear stress (~0.06 MPa) and could retain the
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original shape of the printing structure (high-aspect ratio) without deforming or 
slumping (Fig. 1.2d) [44]. 
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Fig. 1.2 Various methods to fabricate porous scaffolds. (a) A magnesium-based porous scaffold 
was prepared with the template leaching method. (Reprinted from [41] with permission, copyright 
2019 Wiley-VCH Verlag). (b) A reinforced chitosan porous scaffold was fabricated by phase 
separation and freeze-drying. (Reprinted from [42] with permission, copyright 2021 Elsevier). (c) A  
bi-layered PG-Cu@MSNs porous scaffold was prepared by electrospinning. (Reprinted from [43] 
with permission, copyright 2020 Elsevier). (d) An  in situ mullite (3Al2O3�2SiO2) porous scaffold 
was 3D printed (Reprinted from [44] with permission, copyright 2022 Elsevier) 

1.2.2 Hydrogel Scaffolds 

Hydrogels are defined as physically or chemically cross-linked polymer networks 
that can absorb and maintain large amount of water [45], which is from 10% to 20% 
(an arbitrary lower limit) up to thousands times of their dry weight [46]. The 
networks are formed by molecular entanglements, covalent bonding, and/or second-
ary forces including ionic, H-bonding, hydrophobic forces and etc. The networks 
can also be formed by biospecific recognitions such as the interactions between 
Concanavalin A and polysaccharide [47] and between avidin and biotin [48], 
respectively. Since the use of hydrophilic networks of cross-linked poly 
(2-hydroxyethyl methacrylate) (PHEMA) as soft contact lens material in 1960 
[49], the hydrogels have gained increasing interest in biomedical applications



[50]. So far, hydrogels have been widely used in soft tissue engineering of skin, 
blood vessel, muscle, and fat etc. 
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Fig. 1.3 The classification of hydrogel (Reprinted from [51] with permission, copyright 2020 
MDPI) 

Hydrogels are classified into different categories that depend on various param-
eters including hydrogel network bonding, external stimuli, and chemical composi-
tion (Fig. 1.3). First, the hydrogel network bonding is divided into two categories: 
physical and chemical. The physical gel is formed by physical forces such as 
electrostatic interactions, hydrogen bonding, and entanglement of chains. The chem-
ical gel is a 3D network of polymers formed by chemical crosslinking. The 
hydrogels can also be divided into another two categories according to how they 
respond to external stimuli: the traditional hydrogels that are insensitive to environ-
mental changes such as temperature or pH, and the environmentally sensitive 
hydrogels including polymer gels that sense stimuli in the external environment 
(temperature, pH, light, electricity, and pressure) and respond by changing their 
physical or chemical properties, especially their swelling behavior. This response to 
stimuli can be exploited as a sensor or controlled-release switch. Finally, the 
hydrogels can be divided into synthetic gels and natural gels according to their 
material compositions. The natural polymers garner attention due to their better 
biocompatibility, environmental sensitivity, abundance, and low price. However, the 
natural polymer materials are unstable and degrade easily. Their counterparts can be 
prepared from synthetic materials with precisely controlled structures, mechanical 
properties, and functions, although their biocompatibility is limited. Overall, various 
types of hydrogels can be prepared by combining these two classes of materials to 
optimize biocompatibility and mechanical properties.
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Because of their soft and rubbery consistence, they closely resemble the struc-
tures and properties of many types of living tissues. Meanwhile, the high water 
content of the hydrogels contributes largely to their excellent biocompatibility 
[50]. Therefore, the hydrogels are especially suitable for the applications in the 
revolutionary field of tissue engineering to guide the growth of new tissues, such 
as cartilage healing, bone regeneration, and wound care. They can act as carriers for 
drug delivery too [46]. By loading cell growth factors, they can more strongly 
support the proliferation [47], migration [52], and differentiation of cells [53] during 
tissue regeneration. Hydrogels in tissue engineering application should meet a 
number of design criteria including physical parameters (e.g., degradation rate and 
mechanics) and biological parameters. Therefore, the properties of hydrogels should 
be well defined and characterized with good reproducibility. 

1.2.3 Micro-/Nanostructured Scaffolds 

Nature structural materials are built at ambient temperature from a fairly limited 
selection of components and are usually comprised of hard and soft phases arranged 
in complex hierarchical architectures with the dimensions varying from nanoscale to 
macroscopic physiological scale. The nano-/microstructure of some natural mate-
rials such as bone, teeth, and antler has been well characterized [54]. For example, 
bone is composed of cells embedded in the bone ECM, which is an ordered network 
assembled from two major nanophases: collagen fibrils made of type I collagen 
molecules (~300 nm long, ~1.5 nm in diameter) and hydroxyapatite 
(Ca10(PO4)6(OH)2) nanocrystals (plate-shaped, 50 × 25 nm in size, 1.5–4 n  
thick) distributing along the collagen fibrils [54]. These structures inspire the 
investigators to fabricate new micro/nanostructured scaffolds mimicking the nature 
materials in tissue regeneration application, such as fibrous scaffolds, microsphere 
scaffolds, and hybrid (polymer/bioceramic composite) scaffolds. For instance, the 
development of nanofibers has enhanced the scope for fabricating scaffolds that can 
potentially mimic the architecture of natural human tissues at the nanometer scale. 
Microsphere scaffolds have spatial extension and temporal duration control, provid-
ing the stiffness gradient for interfacial tissue engineering [55]. Reducing the 
dimensions of a material into the nanoscale range usually results in the change of 
its physiochemical properties especially reactivity. Meanwhile, the micro/nanostruc-
tured scaffolds possess a larger surface area, which provides much more adsorption 
sites for bioactive molecules. Surfaces characterized by submicron scale features 
have been used to study cells’ response to nanometer-scale topographical cues that 
can influence a wide range of cellular functions such as morphology, adhesion, and 
migration. Therefore, the micro/nanostructured design is also proved to be a strategic 
method in improving the bioactivity and biological responses of the scaffolds. 

Up to present, various technologies have been developed to fabricate the micro/ 
nanostructured scaffolds, such as biomimetic mineralization [56, 57], 
micromachining, photolithography, layer-by-layer deposition [58], solution casting



[59], self-assembly [60], thin-film or tape deposition [54], freeze casting [61, 62], 
and additive manufacturing (e.g., 3D/4D inkjet printing, robocasting, 
stereolithography, or two-photon polymerization) [62, 63]. A self-assembled cova-
lent polymer described by Bai et al. was used to synthesize multiscale hierarchical 
gel networks [64]. Unlike the noncovalent self-assembly, the covalent self-assembly 
is independent of and unaffected by solvent conditions and does not require addi-
tional agents. This method instead relies on new control mechanisms such as tunable 
rates of crosslinking, which can be used to fabricate nanogels whose unprecedented 
and precisely controlled dimensions range from less than 10 nm to above 100 nm 
(Fig. 1.4a). Liu et al. [65] exploited LbL assembly of two natural polysaccharides, 
chitosan (CH) and hyaluronic acid (HA), to fabricate biocompatible polysaccharide 
multilayers on the surface of a microchannel through the interfacial assembly of 
nanoparticle surfactants (NPSs) in a biphasic system. This method is based on a 
newly developed all-liquid microfluidic chip, which enhances the mechanical prop-
erties of the microchannel and offers a biocompatible microenvironment for enzyme 
immobilization (Fig. 1.4b). Xue et al. used stereolithography and electroless plating 
to fabricate metallic ocet-truss lattices from 3D hierarchically porous graphene 
[66]. The pore size of the quasisolid supercapacitor ranges from nanometers to 
millimeters and can be tuned to optimize the areal capacitance, rate capability, and 
lifespan (Fig. 1.4c). 
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Fig. 1.4 (a) Schematic of the covalent crosslinking-driven self-assembly (COSA) of a homopol-
ymer. Controlled covalent assembly of the homopolymer (blue) with a chemical crosslinker 
(orange) can be used to design nano- to macroscale hydrogels. (Reprinted from [64] with permis-
sion, copyright 2022 Wiley-VCH GmbH). (b) Schematic of the LbL assembly of chitosan (CH) and 
hyaluronic acid (HA) for enzyme immobilization in an all-liquid microfluidic chip. (Reprinted from 
[65] with permission, copyright 2021 Wiley-VCH GmbH). (c) Schematic of composite lattice 
fabrication (Reprinted from [66] with permission, copyright 2019 Springer)
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1.3 Biomaterial Surface/Interface and Biointeractions 

Upon contact with the biological systems, it is the biomaterial surface that interacts 
directly with biomacromolecules and living cells, and thereby the cell behaviors are 
significantly influenced by the surface properties (Fig. 1.5). Hence, the properties of 
biomaterial surface play a vital role in determining the biological identity and 
biocompatibility. So far much attention has been paid to understanding the 
bio-interactions of biomaterial surface and the living systems. 

1.3.1 Interactions of Biomaterial Surfaces with Proteins 
and Cells 

After being placed in a biological milieu containing cells, the first molecules 
reaching to the biomaterial surface are water and salt ions, followed by proteins, 
and eventually cells come into contact (Fig. 1.6) [68]. The adsorption of proteins on 
surfaces is a unique phenomenon of major physiological and toxicological

Fig. 1.5 Schematic of various biomaterial surface properties that determine cell behavior 
(Reprinted from [67] with permission, copyright 2019 Wiley-VCH GmbH)



significance. Besides macrophages and dendritic cells (DCS), the adsorbed proteins 
are the key factors for cells to start connecting with biomaterials. Furthermore, the 
anchoring and extracellular orientation of cells depend on the adsorption of specific 
proteins, including fibronectin (FN), fibrinogen (FG), complement C3 and albumin 
(ALB). It is generally believed that the action of the proteins is highly dependent on 
the physiochemical properties of the surface of biomaterials. In this way, the key 
proteins can lead to actual cellular reactions, including cell adhesion, migration and 
proliferation, which ultimately lead to tissue regeneration. However, it should be

1 An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells 11

Fig. 1.6 Schematic illustration of the successive events after the implantation of a medical implant. 
The first molecules to reach the surface are water molecules (ns time scale). Then, protein 
adsorption starts on the micro- to millisecond time scale and continues for a much longer time. 
Eventually, cells reach the surface (Reprinted from [68] with permission. Copyright 1998 Elsevier)



mentioned that when the biomaterials are implanted into the body, the abnormal 
adsorbed proteins may cause serious foreign body reactions.
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Proteins are complex biopolymers composed of 20 natural amino acids whose 
structures include four types: primary, secondary, tertiary, and quaternary. The local 
composition and complex structure of amino acids determine the surface affinity of 
each region of the proteins. The biomaterial can adsorb proteins through attractive 
Coulomb and van der Waals interactions, hydrogen bonding, or increased entropy of 
solvent molecules or release of counterions. Environmental factors such as pH, 
temperature, and ion concentration as well as protein types and biomaterial surface 
properties influence protein adsorption on the biomaterial surface [69, 70]. Generally, 
proteins direct their hydrophobic patches to the hydrophobic surfaces [71]. Analo-
gously, positively or negatively charged regions of proteins are attracted to oppo-
sitely charged biomaterial surfaces/interfaces [72]. Thus, proteins prefer to adhere 
more strongly to high surface tension than to low surface tension, to nonpolar than to 
polar surfaces, and to charged than to uncharged substrates [69]. Experiments 
suggest that nonpolar surfaces destabilize proteins and thereby reorient their confor-
mation to strengthen surface-protein interactions. Upon adsorption onto a solid 
surface/interface, a protein changes its conformation to minimize the free energy 
[69]. Conformational changes affect biological functions: some types of proteins or 
peptides reveal their functions only after adsorption [73, 74]. 

When cells arrive, they “see” a protein-covered surface. It is widely recognized 
that adsorbed extracellular matrix (ECM) proteins assist in specific cell adhesion and 
spreading through integrin binding and regulate other subsequent signaling events 
[75] including proliferation, differentiation [76], motility [77–79], gene expression, 
and survival. Liu et al. found that a piezoelectric PLLA nanofiber scaffold enhanced 
extracellular protein adsorption, which enhanced cell migration or recruitment as 
well as chondrogenesis and cartilage regeneration [80]. The structure of amphiphilic 
β-peptide polymers can be varied to tune the surface-adsorbed serum proteins and 
further affect the adhesion, proliferation, and migration of endothelial cells (EC) and 
smooth muscle cells (SMA) [81]. Surface topographic cues (e.g., geometry, rough-
ness, and shape), mechanical properties (e.g., stiffness, elasticity, and collagen 
density), and surface chemical modifications (e.g., surface charging, hydrophilicity, 
and adhesion ligands) can also enhance cell adhesion, morphology, migration, 
differentiation, and metabolism [82]. 

1.3.2 Mediation of Cell Migration by Gradient Biomaterials 

Cell migration is a widespread form of live cell activity during complex dynamic 
process, which plays an important role in tissue regeneration and repair. For exam-
ple, during embryonic development in mammals, cells migrate beneath the ectoderm 
to create a different germ layer, and this targeted cell translocation is required for 
proper tissue formation [83]. Upon wound occurrence, the fibroblasts and inflam-
matory cells migrate into the temporarily formed clots. Meanwhile, the epidermal



cells migrate and proliferate to cover the surface [84]. Cells migrate in vivo in 
response to diverse gradients of stimuli including physical, chemical, and signal 
gradients. Physical gradients occur naturally in bone structure and are defined as the 
gradual change in a physical property such as porosity, stiffness, and topology 
[85]. The dense cortical bone is located at the outer layer of the bone, inside which 
is the low-density trabecular bone. The pore size decreases from inside to outside. 
These structures can provide excellent permeability and desired mechanical support 
[85]. The cell migration in vivo is widely recognized as the gradients of ECM 
proteins, growth factors, and other signaling molecules. Inspired by these natural 
phenomena, gradient biomaterials have been created to investigate the cell migration 
in vitro. 
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The recruitment and migration of cells assisted by biomaterials is very important 
for the process of tissue regeneration, because the directional migration of cells to the 
wound site is a key prerequisite for tissue regeneration. In the case of damaged 
tissues, unexpected cell migration and overgrowth can lead to serious diseases. 
Therefore, cell selective biomaterials have important significance in tissue regener-
ation and reconstruction. The design of cell selective biomaterials is based on the 
specific interaction between materials and cells by physical, chemical or biological 
cues, because they can directly affect cell migration s and further affect the process 
of tissue regeneration. Chemical and biological molecules (peptides, growth factors, 
and adhesion molecules), physical properties (hardness, morphology, and hydrophi-
licity), physiological signals (cell chemokines or cytokines) are all effective regula-
tory factors in the design of cell selective biomaterials (Fig. 1.7). 

Therefore, various techniques including “top-down” and “bottom-up” have been 
developed to prepare gradient surfaces [87]. The “top-down” approach is usually 
used to introduce active sites for further functionalization on an inert surface without 
reactive groups. This method modifies the surface gradually via external sources 
such as corona discharge [88], ultraviolet irradiation [89, 90], plasma [91, 92], 
chemical degradation [93, 94], and so on to change the surface properties. Han 
et al. developed gradient poly(sodium 4-styrenesulfonate) (PSS)/poly 
(diallyldimethylammonium) chloride (PDADMAC) multilayers with a gradually 
changed swelling ratio by using a salt-etched method [95]. Wang et al. prepared 
Cys-Ala-Gly (CAG) peptide density gradient poly(2-hydroxyethyl methacrylate-co-
glycidyl methacrylate) brushes through immersing in a complementary gradient 
solution of CAG and competitive mercapto-terminated methoxyl poly(ethylene 
glycol). The gradient brushes could inhibit the adhesion and spreading of smooth 
muscle cells and promote endothelial cells migration [96]. Xue et al. developed a 
novel preparation method to fabricate graded protein/poly(ethylene glycol) (PEG) 
nanopattern arrays by inclined reactive-ion etching based on colloidal lithography 
[97]. Another chemical gradient surface was prepared using a diffusion-controlled 
plasma polymerization technique, which possessed a gradient of aldehyde group 
density [98]. 

The “bottom-up” technology is mostly used to introduce species of functional 
molecules onto surfaces with an adjustable grafting density, chain length, and 
mobility [99–101]. The gradient surfaces of materials can be obtained by time and



spatially controlled reactions or by reactions in a gradient concentration of mole-
cules. For instance, Ren et al. fabricated a molecular weight gradient of poly 
(2-hydroxyethyl methacrylate) (PHEMA) brushes with a thickness ranging from 
3 to 30 nm and slopes of 0.8–3.2 nm/mm by using surface-initiated atom transfer 
radical polymerization (ATRP) and a dynamically controlled reaction process 
[102]. Another group fabricated a poly(polyethyleneglycol methacrylate) (poly 
(PEGMA)) gradient surface whose thickness can be controlled at nanoscale [103]. 
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Fig. 1.7 Schematic of physical and chemical properties of the ECM that determine cell fates 
through mechanisms such as direct interaction, intracellular signaling, direct nuclear signaling, and 
mechanosensitivity signaling (Reprinted from [86] with permission. Copyright 2022 MPDI) 

Since they are more similar to the situation in vivo and also have the potential 
application of inducing cell migration in the tissue regeneration process, the gradi-
ents in a 3D matrix are more important. However, the “top-down” and “bottom-up” 
are only used for fabricating the gradient surface on 2D surface, but are not suitable 
in a 3D matrix owing to their relatively complicated structure. There are only a few



technologies that have been successfully applied in a 3D matrix (e.g., porous scaf-
folds and hydrogels) [104, 105]. For example, Woodfield et al. fabricated a pore-size 
gradient using a novel 3D fiber deposition technique [104]. DeLong et al. developed 
hydrogels with a basic fibroblast growth factor (bFGF) gradient by diffusing two 
types of hydrogel precursor solutions (PEG-conjugated bFGF solution and only 
PEG solution) in a gradient maker [48]. Cells were observed to align on the 
hydrogels modified with a bFGF gradient in the direction of increasing tethered 
bFGF concentration as early as 24 h after seeding [52]. Oh et al. fabricated a surface 
area gradient porous PCL/Pluronic F127 cylindrical scaffold by a centrifugation 
method (Fig. 1.8a) [106]. The cylindrical scaffolds exhibit gradually increasing 
surface areas along the longitudinal direction. Then, growth factors are immobilized 
via heparin binding to produce scaffolds with gradually increasing concentration of 
growth factors from the top position (near to rotation center) to the bottom position 
(bottom of the centrifuge tube, far to the rotation center) (Fig. 1.8b) [106]. The 
released amount of growth factor from the cylindrical scaffold gradually decreased 
along the longitudinal direction (from the bottom of the centrifuge tube to the top of 
the centrifuge tube) in a sustained manner for up to 35 days, which can allow for a 
minutely controlled spatial distribution of growth factors in a 3D environment 
(Fig. 1.8b) [106]. Motealleh et al. 3D printed a step-gradient nanocomposite hydro-
gel to direct cell migration toward highly concentrated, biopolymer-coated 
nanomaterials (NMs). The increased NM content in the gradient structure promotes 
the migration of human bone marrow-derived mesenchymal stem cells as well as 
Ca2+ deposition [108]. Another strong gradient hydrogel scaffold was 3D printed to 
recapitulate osteochondral tissue and its microenvironment. Transforming growth 
factor beta 1 (TGF-β1) and β-tricalciumphosphate (β-TCP) were distributed in 
distinct layers to regenerate cartilage in the upper hydrogel layers and bond with 
the host bone in the bottom layers (Fig. 1.8c) [107]. 
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1.3.3 Influence of Biomaterial Surface on Stem Cell Fate 

The promise of cellular therapy and tissue regeneration depends strongly on the cells 
used and the cell–biomaterial interaction in vitro and in vivo [109, 110]. However, 
the lack of available donor cell sources limits its ultimate clinical applicability. Stem 
cells (SCs) such as mesenchymal stem cells (MSCs) possess the potential to differ-
entiate into different cell lineages and have gradually become the most versatile and 
valuable cell source for organ transplantation, disease treatment and cosmetology 
(Fig. 1.9). Control over their differentiation to a lineage of choice in an efficient and 
scalable manner is critical for the ultimate clinical success of cellular therapeutics 
[112, 113]. Surface modification to biomaterials can directly influence on stem cell 
behavior by altering surface interactions and microenvironment architecture and 
ultimately manipulating the signal transduction pathways in stem cells [114– 
116]. Diverse factors can contribute to overall stem cell fates (i.e., differentiation



into specific lineages), including the mechanical properties (e.g., elasticity or rigidity 
and stiffness), chemical and biological signals, and surface pattern [114–117]. 
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Fig. 1.8 (a) Schematic showing the fabrication of the surface area gradient porous scaffold using a 
centrifugation method. (b) Schematic of the successive binding of heparin and growth factor onto 
the fibril surface of a PCL/F127 cylindrical scaffold and the formation of a 3D growth factor 
gradient on the scaffold. (Reprinted from [106] with permission. Copyright 2011 Elsevier). (c) 
Procedure of thermal-assisted extrusion 3D printing of the biohybrid gradient scaffolds to repair 
osteochondral defects. (1) Gel region: the PNT hydrogel maintained a gelling state in a lower 
temperature region and underwent a gel–sol transition with increasing temperature; (2) shear-
thinning region: the viscosity of PNT sol decreased markedly with the increasing shear rate so 
that it could be easily extruded from the nozzles under pressure; (3) sol–gel transition region for 
scaffold formation: the extruded filaments gelled quickly on the printing substrate at room temper-
ature, and the mechanical properties and viscosity recovered rapidly (Reprinted from [107] with 
permission. Copyright 2018 Wiley-VCH Verlag) 

The topography, elasticity, and surface roughness of a biomaterial orchestrate the 
physical interactions between SCs and the substrates, which can influence SC fates, 
although genetic or molecular mediators are considered as the primary factors 
[118, 119]. Micro- and nanoscale topography plays a crucial role in embryonic



development and SC differentiation [120–123]. For example, a rapid, single-step 3D 
printing method based on direct ink writing using agitated viscous polymer solutions 
has been used to manufacture polymer scaffolds consisting of microcolumns 
(ca. 60 μm) with micro/nanometer surface pores (0.2–2.4 μm). Pore density, size, 
and alignment can be modified by varying the degree of stirring or printing speed. 
3D-printed scaffolds with microporous/nanopore scaffolds promote cartilaginous 
and osteogenic differentiation of MSCs without soluble differentiation factors. 
Depending on differentiation medium composition, varying topographies could be 
used to modify the adhesion, morphology, and differentiation of MSCs toward 
cartilage and osteogenic lineages (Fig. 1.10a) [127]. ECM stiffness can affect cell 
fate and affect a wide range of biological processes [128–131]. For example, the use 
of methacrylated hyaluronic acid hydrogels as an in vitro 3D microniche allows SC 
volume and matrix stiffness to be modified independently. This approach allows the 
decoupling of matrix stiffness and cell volume in 3D microenvironments. Single 3D 
microniches with varying volumes (2800, 3600, and 6000 μm3 ) and stiffnesses 
(5, 12, and 23 kPa) were used to culture human mesenchymal stem cells (hMSCs). 
Cellular responses to matrix stiffness were shown to be affected by cell volume, with 
cells forming stress fibers and focal adhesions on matrices of all stiffnesses when cell 
volume was sufficient (Fig. 1.10b) [132]. Previous studies have reported that SCs are 
able to sense and respond to material interface roughness, thereby altering cell fate
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Fig. 1.9 The differentiation potential of mesenchymal stem cells (Reprinted from [111] with 
permission, copyright 2019 Oxford University Press)



[133–135] through mechanotransduction pathways such as FA formation, activation 
of signaling proteins, nuclear tension generation, chromatin remodeling, and tran-
scriptional activity (Fig. 1.10c) [136].
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Fig. 1.10 Biomaterial designs that regulate stem cell differentiation. (a) Schematic of a 3D printing 
approach to fabricate nanoporous/microporous surfaces that influence chondrogenic differentiation. 
(Reprinted from [124] with permission. Copyright 2019 American Chemical Society). (b) Cells 
were cultured in 3D microniches with different hydrogel stiffness for 12 h and stained for F-actin 
(red) and nuclei (blue). Scale bars represent 10 μm. (Reprinted from [125] with permission. 
Copyright 2018 American Chemical Society). (c) MSCs cultured on a surface of intermediate 
roughness spread and exhibit high-cellular tension to enhance osteogenic differentiation and 
diversity of cell phenotype. The adhesion of MSCs to a very rough surface is limited, but the 
cells can maintain their phenotype (Reprinted from [126] with permission. Copyright 2020 Wiley-
VCH GmbH) 

1.4 Regenerations of Some Clinic-Targeted Tissues 

Due to the poor regenerative capacity of tissues in vivo, the regeneration and repair 
of large-area defect tissue is a great challenge [137]. Tissue engineering applies the 
principles of cytology and engineering to research and develop biological substitutes 
for repairing or improving the structure and function of defective tissues and organs 
[138, 139]. Tissue engineering technology is to build natural and healthy autologous 
tissue through the basic unit of the human body cells, with the help of temporary 3D 
scaffolds and normal growth patterns. At present, the research of epithelial and bone 
tissue engineering has achieved preliminary results. Here, regeneration of some 
clinic-targeted tissues such as cartilage, skin, blood vessels, and cardiovascular is 
described briefly.



1 An Introduction to Scaffolds, Biomaterial Surfaces, and Stem Cells 19

1.4.1 Cartilage Regeneration 

Osteoarthritis (OA) is a degenerative joint disease that irreversibly and progressively 
breaks down the articular cartilage. Currently, 52.2 million Americans are diagnosed 
with arthritis, and this number is estimated to rise to 78.4 million by 2040. Symp-
tomatic relief and eventual joint replacement remain the standard treatments because 
no intervention exists to inhibit disease progression. The limited capacity of dam-
aged cartilage to regenerate and the potential morbidity associated with implanting 
or transferring bone and cartilage render cartilage regeneration an attractive alterna-
tive. Therefore, cartilage tissue engineering aims to create biologically compatible 
cartilage constructs that contain relevant certain cell types to help regenerate the 
avascular and aneural cartilage. Tissue-engineered cartilage includes various con-
stituent cell types, biomimetic scaffolds, inductive bioactive factors, and genes. 

The cells seeded into the scaffolds are responsible for the synthesis and metab-
olism of ECM. Initially, chondrocytes are used in cell-based therapy for repairing 
cartilage lesions, which is the principal cell type found in cartilage [140]. However, 
the availability of chondrocytes (e.g., adult chondrocytes and juvenile chondrocytes) 
is limited. The potential of stem cells to treat regenerated cartilage has aroused 
extensive interest. Most stem cell specific trials for the treatment of hip and knee 
osteoarthritis are pilot or feasibility studies that use plastic adhesion, culture and 
expansion of mesenchymal stem cells (MSCs). These MSCs are mainly derived 
from bone marrow or adipose tissue. However, these MSCs do not constitute 
validated stem-cell populations, and it is difficult to ascertain the degree of engraft-
ment by the transplanted cells and their contribution to changes in functional 
outcomes. 

Cells seeded on a 3D scaffold could retain the seeded cells and provide mechan-
ical support to aid in the development of cartilage over time. Mainly four types of 
scaffolds including protein-based polymers, carbohydrate-based polymers, synthetic 
polymers, and composite polymers are applied in cartilage tissue engineering 
[40]. Inspired by nature, the protein-based polymers such as fibrin, gelatin, and 
collagen have been widely used in bioengineered scaffolds. For example, collagen is 
the major component of ECM and can be used as a scaffold that could retain cell 
phenotypes. Being seeded with autologous chondrocytes in collagen type I-based 
scaffold, the obtained construct was implanted in 21 patients with grade III chondral 
defects of the distal femur [141]. The patients treated with these scaffold materials 
have significantly lower pain scores [141]. Hyaluronan, alginate, chitosan, and 
agarose are typical examples of carbohydrates and have been used as hydrogel 
scaffolds. They have a strong ability to adsorb and maintain water, which is similar 
to the properties of cartilage ECM. In one study, significant improvement in function 
and relief of pain was seen in cartilage defect patients being treated with hyaluronic 
acid-based scaffolds [142]. Synthetic polymers such as PLA, PCL, and PLGA are 
the most common materials used in cartilage regeneration. Previous work has 
demonstrated that a synthetic polymer-based scaffold containing PLGA and calcium 
sulfate could enhance the growth of cartilage and bone [143].
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In contrast to scaffolds and stem cells, growth factors are used to stimulate SC 
growth, enhance chondrogenesis, and augment the management of cartilage defects. 
The five main groups of growth factors used in cartilage regeneration are 
transforming growth factor-β superfamily, fibroblast growth factor family, insulin-
like growth factor, platelet-derived growth factor, and platelet-rich plasma 
[144]. Recently, bone morphogenetic protein 4 (BMP-4) and transforming growth 
factor-β3 (TGFβ-3) were combined in the cartilage construct that was implanted in 
an established knee cartilage defect model. PLGA (50:50 PLA/PGA) microspheres 
(μS) were used to deliver these growth factors in hydrogel (Fig. 1.11a, b) [145], 
which can potentially regenerate cartilage in situ. 

1.4.2 Skin Regeneration 

Skin, the largest organ of human body, plays a significant role in protecting the body 
against outside environment. It mainly consists of the epidermis, dermis, and 
hypodermis [146]. Severe acute and chronic wounds on the skin such as burns, 
abrasions, lesions, and chronic ulcers may result in significant disability or even 
death. Because of the antigenicity of donor tissue and the limitation of donor 
sources, skin grafts have been a challenging task for surgeons, limiting their wide 
application [147, 148]. Therefore, various models for skin epidermis and dermis 
reconstruction have been developed to enhance skin cell growth during wound 
healing. The possibility of using biomaterials as a platform to generate stimuli can 
promote cell activities related to skin regeneration due to its versatility, which is 
receiving more attention. 

Biomaterials are powerful tools to change the host microenvironment due to their 
characteristics obtained in the manufacturing process. Surface chemistry, topogra-
phy, mechanical properties and degradation products can promote effective regen-
eration by combining or not combining with biological signals. They are 
multistimulatory and are not limited to biochemical signals. To simulate the 
in vivo environment, a series of natural materials including silk, collagen, fibrin, 
and sugar are preferred for tissue-engineering applications. For example, collagen is 
the main structural protein in vertebrates and the most useful biomaterial in bioen-
gineering. Existing commercial leather brackets, such as Lando® , Integra® , 
PELNAC® Collagen, mainly composed of collagen, have two fatal defects: 
(1) they degrade too fast (< 1 month) and cannot meet the time required for tissue 
regeneration and repair (more than 3–6 months); (2) the single component has 
insufficient activity to induce tissue regeneration and repair. A 3D bionic short-
fiber scaffold with the functions of early biofluid collection, response to coupled 
endogenous electric fields (EF), is constructed by guiding the short fibers into a 3D 
network structure and subsequent multifunctional modification, which serves as an 
ideal candidate for repairing different defective tissues by rapidly reversing water 
absorption and stabilizing electrical performances [149]. Synthetic polymers are also 
widely used in skin repair. For example, the hydrophilicity of reactive oxygen



species (ROS)-degradable polythioketal (PTK) urethane (UR) foams can be varied 
to heal skin wounds [150]. Moreover, a microfluidic blow-spinning strategy was 
used to fabricate a biodegradable sealant-loaded nanofiber scaffold composed of 
fibrinogen-loaded polycaprolactone/silk fibroin (PCL/SF) ultrafine core-shell 
nanofibers. Then the fibrin sealant gelled in situ between thrombin and fibrinogen
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Fig. 1.11 (a) Schematic of 3D-bioprinted, dual-factor releasing, and gradient-structured 
MSC-laden constructs for articular cartilage regeneration in rabbits. (b) A computer-aided design 
(CAD) model was used to design the four-layer gradient PCL scaffold, which offers BMS for 
anisotropic chondrogenic differentiation and supplies nutrients in deep layers (left). A gradient 
anisotropic cartilage scaffold was fabricated from one-step 3D-bioprinted gradient polymeric 
scaffold and dual protein-releasing composite hydrogels whose bioinks encapsulated BMSCs 
with BMP-4 or TGF-β for chondrogenesis (middle). The anisotropic cartilage construct provides 
structural support and sustained release of BMSCs and differentiative proteins for biomimetic 
regeneration of the anisotropic articular cartilage when transplanted in an animal model (right) 
(Reprinted from [145] permission, copyright 2020 American Association for the Advancement of 
Science (AAAS))



on a PCL/SF nanofiber surface to promote the migration and proliferation of 
fibroblasts, accelerating skin regeneration [151].
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Biological scaffolding has broad applications in skin flap regeneration. Recently, 
a novel MX-ene-bonded hollow fiber (MX-HF) scaffold with dynamic response 
channels was shown to promote angiogenesis and skin flap regeneration using a 
microfluidic-assisted 3D printing strategy. MX-HF scaffolds shrink and expand in 
response to near infrared (NIR) light due to the photothermal conversion capability 
of MXene nanosheets and temperature responsiveness of poly (NIPAM) hydrogel, 
thereby facilitating the penetration of cells into scaffold channels from the surround-
ing environment [152]. Zunzhen et al. encapsulated Lactobacillus reuteri in hydro-
gel microspheres using emulsion polymerization and covalent crosslinking of 
methacrylic acid modified hyaluronic acid (Fig. 1.12a) [153]. A further study 
reported the fabrication of a novel biological hybrid scaffold for skin flap regener-
ation by combining the advantages of anisotropic fish scales and MSCs 
(Fig. 1.12b) [118]. 

1.4.3 Nerve Regeneration 

Nerve regeneration remains a great challenge. The nervous system is a complex 
network composed of millions of neurons, which is one of the most complex systems 
in the human body. After injury or degenerative disease, the damage to the nervous 
system is overwhelming due to its complexity and limited regenerative capacity. 
According to statistics, in the United States alone, more than 50,000 patients receive 
surgical repair of peripheral nerve injury (PNI) every year. The incidence of PNI is 
between 13 and 23 per 100,000 persons per year in the developed countries, 
resulting in partial or total loss of motion, sensory, and autonomic function in the 
involved segments of the body [119]. The most common used methods for current 
clinical treatment involve the end-to-end anastomosis and utilization of autografts. 
However, both of these procedures have their drawbacks and are often ineffective 
because of the gap length between the injured nerves, formation of neuromas, and 
shortage of donor sources. Therefore, these ineffective therapies and limited avail-
ability of donor nerves motivate the development of artificial biodegradable nerve 
grafts. 

Because the regeneration of injured nerves is a complex biological process, which 
requires a variety of signals to promote the survival of nerve cells and stimulate the 
growth of neurites, the artificial nerve grafts should ideally have multiple functions. 
These functions should include a favorable environment for regenerating axons and 
enhancing cellular growth and migration and offering the guidance and protection 
abilities from the surrounding tissues [120]. Furthermore, nerve grafts must possess 
sufficient mechanical strength for suturing to the nerve stumps and suitable biodeg-
radation properties [121, 122]. Thus, natural biomaterials [123] (e.g., collagen, 
chitosan, fibrinogen, and alginate) and synthetic polymers [127, 128] (e.g., aliphatic 
polyesters) are common materials used for production of nerve grafts. To improve
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Fig. 1.12 (a) Schematic diagram of the preparation of active probiotic hydrogel and application in 
accelerating the wound healing process. (Reprinted from [153] with permission, copyright 2021



the biological performance of artificial grafts, several additional functionalities 
including topographical guidance, electrical activity, and neurotrophic activity 
have been introduced into the devices. Topography plays a fundamental role in 
nerve repair [129]. Electrospinning is widely used to develop aligned topography 
that supports cell adhesion and regulates the growth of neurons [130]. Besides, 
electrical stimulation is closely related to nerve regeneration as well [131]. Thus, 
electrically conducting polymers such as polypyrrole (PPY) and its derivatives are 
widely used in nerve repair [132]. Jin et al. designed and constructed a wearable 
neural invasive electrical stimulation (iES) system to regulate bionic nerves [133] 
and replace the autologous graft. Furthermore, trophic elements such as neurotrophic 
agents (e.g., acetylcholine [134], laminin-derived peptides including IKVAV and 
YIGSR [135, 136], and nerve growth factor (NGF) [154]) and Schwann cells [155] 
are often combined with artificial conduits. Chang et al. fabricated a neural conduit 
whose aligned electrospun nanofibers and neurotrophic gradients (MC/AN/NG) 
guide axon growth and degrade naturally. Gelatin-based conduits simulate the 
branching structure of natural neural ECM as shown by a mechanically stable 
multichannel (MC) scaffold crosslinked with microbial transglutaminase 
[156]. Additionally, the release profiles of double neurotrophic factors, nerve growth 
factor (NGF), and brain-derived neurotrophic factor in a MC conduit can be tempo-
rally controlled [156]. Zhang et al. fabricated a micropattern and a peptide gradient 
on the inner wall of poly(D, L-lactide-co-caprolactone) (PLCL) to regenerate 
peripheral nerves in vivo and in vitro (Fig. 1.13a) [157]. Schwann cells aligned 
well and migrated faster to the region of a higher peptide density. The micropattern 
and peptide gradient in a PLCL-based nerve conduit quickly recovered the micro-
structure and function of the sciatic nerve while reducing fibrosis in muscle tissue. 
The nerve conduit can also promote M2 macrophage polarization and angiogenesis 
(Fig. 1.13b)  [157].
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1.4.4 Regeneration of Blood Vessels 

Vascular replacement and repair are the most commonly used surgical procedures to 
treat atherosclerotic diseases, infections, and trauma. Although there is a high 
clinical demand for engineered artery substitutes, they often pose challenges such 
as immune rejection, poor mechanical strength, and low thrombosis. The blood 
vessels are lined with ECs, which are covered by vascular smooth muscle cells 
followed by fibroblasts and matrix on the outermost layer of the vessel [158]. These 
layers of cells repair, remodel, and maintain the blood vessels following an injury.

Fig. 1.12 (continued) Wiley-VCH GmbH). (b) Fabrication of MSC-loaded fish scales and appli-
cation in promoting skin flap survival (Reprinted from [118] with permission, copyright 2022 
Wiley-VCH GmbH)



Current strategies to develop a functional blood vessel include tissue-engineered 
cell-seeded scaffolds and bioactive, cell-free approaches.
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Tissue-engineered cell-seeded scaffolds can potentially replace veins and arteries 
if they achieve the following objectives: (1) the engineered artery should have an 
ECM that can stretch, retain sutures, and resist mechanical stress; (2) its matrix 
should be naturally-derived to better integrate with the immune system of the host 
and not elicit a foreign body reaction; (3) both active and inactive cells should be 
autologous to prevent immune recognition, degradation, and aneurysm in the 
implanted blood vessel; (4) the host should be able to remodel, refill, and revitalize 
the engineered artery postimplantation; and (5) a nonthrombogenic lumen surface 
may be required for small caliber or low-flow arterial bypass applications. This 
surface may be a cellular or biochemical surface, but blood coagulation contact 
activation, platelet adhesion and activation, and thrombosis in the arterial system 
should be avoided. 

Both synthetic and natural biomaterials have been developed [159, 160]. Natural 
polymers, including collagen/gelatin and chitosan, are biocompatible and therefore 
promote cell adhesion and differentiation [161, 162]. Badhe et al. fabricated a bilayer 
scaffold by combining gelatin and chitosan, which supported cell growth and 
spreading [163]. Collagen itself can also be used to make vascular grafts [164] as  
shown by Zhu et al., who fabricated a vascular scaffold by combining HA and 
collagen that together matched the mechanical and biophysical properties of the 
natural ECM [165]. Decellularized scaffolds offer mechanical strength as well as cell 
adhesion sites [166] [167], although they degrade quickly, are not very accessible, 
and cannot change the content and structure of the ECM [168]. Large amounts of 
ECM implanted in the vascular system may also cause thrombosis [169]. 

Modified tissue-engineered scaffolds could alleviate intimal hyperplasia and 
thrombosis of unmodified grafts. Jennifer et al. showed that heparin or 
fluorosurfactant (FSP) modification can inhibit intimal hyperplasia and thrombosis 
of ePTFE vascular grafts [170]. Wo et al. also modified polyurethane (PU) vascular 
grafts with heparin and cell-adhesive peptides, which significantly increased the 
patency rate of the PU grafts compared to their unmodified counterparts at 9 weeks 
postimplantation [171]. Decellularized scaffolds coated with vascular endothelial 
growth factor (VEGF) and peptides also reduced intima formation and thrombus 
formation [172, 173]. Large-diameter tissue-engineered scaffolds are primarily 
fabricated with nondegradable synthetic materials that are not recommended for 
small-diameter scaffolds. Composite materials have garnered more attention because 
they offer the advantages of both synthetic and natural polymers. Indeed, studies 
have shown that composite materials enhance the graft’s compatibility 
[174]. Decellularized scaffolds derived from a variety of sources can reduce host 
immune responses while promoting the growth, proliferation, and differentiation of 
inoculated cells.
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Fig. 1.13 (a) Schematic of micropatterned poly(D,L-lactide-co-caprolactone) (PLCL) film with a 
CQAASIKVAV peptide density gradient. The striped micropatterns with ridges and grooves are 
fabricated by thermally pressing a polydimethylsiloxane (PDMS) template onto a PLCL film. 
Gradient aminolysis leads to the density gradient of the amino groups, which are then transferred 
to the CQAASIKVAV gradient. (b) The micropatterned PLCL film and its peptide gradient 
synergistically enhance the directional migration of SCs toward the high-density region of the 
patterns in vitro. The resulting guidance conduit promotes the reconstruction and functional 
recovery of rat sciatic nerve in vivo (Reprinted from [157] with permission, copyright 2022 
Elsevier) 

1.4.5 Cardiovascular Engineering 

Cardiovascular diseases (CVDs) including coronary heart disease, rheumatic heart 
disease, congenital heart disease, myocardial infarction, and strokes are major cause 
of morbidity and mortality worldwide [175]. According to the estimation of the 
World Health Organization, the number of deaths shows an increase from 17.3 
million in 2008 to 23.3 million by 2030. Adult cardiovascular tissues cannot repair 
or renew themselves after injury due to the limited regenerative capacity of 
cardiomyocytes (CMS). In the late stage of cardiovascular disease, transplantation 
or replacement is usually the only treatment option. These clinical implants include 
autografts, allografts, xenografts, and prosthetics. The cardiac implantation methods 
are mainly limited by the shortage of available donors and immune rejection. In 
addition, coagulation, mechanical mismatch and limited durability are other major 
problems. As a promising alternative, cardiovascular tissue engineering is being



explored to restore cardiac function and replace abnormal or necrotic cardiovascular 
tissues. 
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One focus in the field of tissue engineering is the generation and development of 
functional biomaterials. These materials should be bioactive (e.g., releasing drugs, 
proteins, growth factors, and ECM components) and suitable mechanical function-
ality. Enormous efforts have been paid to generate and design biomaterials for 
cardiovascular tissue engineering (Fig. 1.14) [177, 178]. The biomimetic materials 
can mimic ECM architecture and provide potentially controllable in vivo-like micro-
environments for cells [179]. Therefore, various biomimetic materials are developed 
for myocardial repair, cardiac patch generation, and heart valve tissue engineering 
[177, 180]. Hydrogels are commonly used in cardiovascular engineering, which can 
be made of PEG [181], chitosan [182, 183], fibrin [184], collagen [185], and alginate 
[186]. Zhong et al. reported a printed bilayer proteinaceous hydrogel patch for heart 
failure treatments based on genetically engineered multidomain proteins [187]. The 
intrinsic self-healing nature of hydrogels physically enable seamless interfacial 
integration of two disparate hydrogels, endowing the cardiac patches with the 
combinatorial advantages of each layer. Liu et al. constructed a paintable hydrogel 
based on simultaneous Fe3+-triggered polymerization of covalently linked pyrrole 
and dopamine in the hyperbranched chains, whose conductive polypyrrole formed in 
situ also uniquely serves to crosslink network [188]. This conductive and adhesive 
hydrogel can be patched onto the heart without adverse liquid leakage. 
Electrospinning is another widely used method for creating fibrous and highly 
porous scaffolds for cardiovascular engineering [189]. 

Another focus in the field of tissue engineering is cell-based therapy, which has 
been clinically performed by the direct injection of dissociated cells [190]. This 
strategy avoids problems that may be related to synthetic materials, such as inflam-
mation, stenosis, and infection, allowing for the complete graft integration and 
increase of the patency rate. The cell sources used for cardiovascular disease are 
mainly ESCs, induced pluripotent stem cells (iPSCs), and autologous cells 
[175, 177, 180]. ESCs and iPSCs are attractive for cardiovascular disease due to 
their ability to differentiate into beating cardiomyocytes easily by some certain 
methods [191, 192], while other human stem and progenitor cells can hardly do 
[177]. Autologous cells such as bone marrow- and peripheral blood-derived cells are 
under clinical trials for cardiovascular disease [193]. Although various cell injection 
therapies are now clinically performed and some therapies cause modest therapeutic 
effects, the efficacies are found to be unable to reach the level as clinicians expected 
[194–197]. Furthermore, it is a big issue for the cell injection therapy in terms of cell 
retention in the target tissue, since the injected cells are largely washed out or died 
[198, 199]. 

Some studies are focused on fabrication of completely biological tissue-
engineered vascular grafts without the use of scaffolds. Thus, the cell-sheet-based 
technology have been developed, which consists of the in vitro growing of cells in 
the culture medium containing ascorbic acid to generate a large production of ECM 
[200]. After maturation, the cell sheets are detached from the culture flasks using 
various technologies [201–203]. For example, a temperature-responsive polymer



such as poly(N-isopropylacrylamide) (PNIPAm) can be grafted onto a culture plate 
surface [204]. Three-dimensional tissues can be easily prepared by layering cell 
sheets whose cells can be delivered without cell loss because the embedded cells 
preserve their own ECM [201, 202]. Araki et al. transplanted skeletal myoblasts 
embedded in cell sheets, which improved cardiac performance and lifespan in an 
animal model by reorganizating cytoskeletal proteins in the host’s cardiac tissue and 
reducing myocardial fibrosis [205]. 
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Fig. 1.14 Biomaterials for cardiovascular tissue engineering. Injectable hydrogels and/or cardiac 
patches are used to treat cardiac damage. Both materials can include cells and/or bioactive 
molecules such as RNA, small molecules, growth factors, or proteins (Reprinted from [176] with 
permission. Copyright 2021 Elsevier) 

The use of bioreactors is advantageous when generating a tissue-engineered heart 
valve in vitro, which mimics the biophysical signals (e.g., various forces such as 
strain, pressure, torsion, or flow in tissues) presenting in the native 
organophysiological environment [175, 177]. For instance, the additional pulsatile



flow bioreactor in a porous scaffold improves ECM production by vascular cells 
[206]. The pulsatile flow bioreactor also shows an increased collagen and elastin 
production and a significantly improved recellularization of the heart valve 
[207, 208]. 
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Chapter 2 
Polymeric and Biomimetic ECM Scaffolds 
for Tissue Engineering Applications 

Guoping Chen and Naoki Kawazoe 

Abstract Porous scaffolds can provide temporary biomimetic microenvironments 
to control cell functions and to guide new tissue regeneration. Many methods have 
been developed to prepare porous scaffolds of biodegradable polymers and acellular 
extracellular matrix (ECM) for tissue engineering applications. Ice particulate 
method and sacrificial template method have been used to prepared scaffolds with 
well-controlled pore structures such as open surface pores and interconnected bulk 
pores for easy cell seeding, migration, and distribution. Porous scaffolds with 
interconnected pore structure, funnel-like structure, and micropatterned structures 
have been prepared by these methods. Composite scaffolds of biodegradable syn-
thetic polymers and naturally derived polymers have been prepared by hybridization 
method to combine the advantages of each type of polymers. Furthermore, cell-
derived biomimetic ECM scaffolds have been prepared by cell culture method. 
Composition of the ECM scaffolds can be adjusted by using different type of cells 
or controlling the differentiation of stem cells. This chapter features and summarizes 
the details of these methods and scaffolds. 

Keywords Polymer scaffold · Porous scaffold · Biodegradable polymer · Synthetic 
polymer · Naturally derived polymer · Pore structure · Funnel-like structure · ECM 
scaffold · Biomimetic · Micropatterned structure · Tissue engineering 

2.1 Introduction 

Polymeric and biomimetic scaffolds have been a broad application in tissue engi-
neering to control cell functions and to provide temporary support for the regener-
ation of functional new tissues and organs [1–3]. The scaffolds can be prepared from 
biodegradable polymers, either synthetic or naturally derived. The most frequently
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used biodegradable synthetic polymers for tissue engineering are aliphatic poly-
esters, such as poly(glycolic acid) (PGA), poly(lactic acid) (PLA), poly(lactic acid-
co-glycolic acid) (PLGA), and poly(ε-caprolactone) (PCL). Naturally derived poly-
mers are produced from living organisms and can be categorized as proteins, poly-
saccharides, polyhydroxyalkanoates, and polynucleotides. The first two categories 
are usually used to prepare porous scaffolds, which are usually modified or cross-
linked to control their degradation to support cell culture and tissue formation. 
Acellular matrices are also very useful scaffolds for tissue engineering because of 
their similarity to the in vivo microenvironments [4, 5].
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Scaffolds can be prepared by many methods, such as particle leaching, freeze-
drying, phase separation, gas foaming, electrospinning, fiber bonding, and 3D 
printing [6]. The nano- and microstructures of scaffolds can be tailored for specific 
tissue engineering applications. The physical and biochemical properties of scaffolds 
can affect the functions of cells cultured in vitro or in vivo. Porous scaffolds with a 
variety of nano- and microstructure, mechanical property, and biochemical compo-
sition have been prepared by these methods. 

Scaffold properties have diverse influences on cell functions. The pore structure 
of scaffolds can affect the cell behaviors, such as distribution, migration, assembly, 
and tissue formation [7, 8]. Open pore structure of scaffolds is the premise to enable 
homogeneous cell seeding and homogenous tissue formation. Scaffolds with isotro-
pic and open pore structure enable a homogeneous distribution of cells and forma-
tion of a homogenous tissue. 

Chemical composition of scaffolds can also greatly affect cell functions. Cell 
adhesion and spreading are usually more promoted by naturally derived polymer 
scaffolds compared with synthetic polymer scaffolds. Cells in normal tissue are 
surrounded with ECM which serves as a substrate to modulate cell behaviors. ECM 
of normal tissue has multiple components, such as collagen, laminin, aggrecan, 
hyaluronic acid, and fibronectin. Scaffolds with a similar composition to that of 
normal tissue ECM should benefit cell proliferation and tissue formation [9]. This 
chapter introduces the methods to prepare polymer porous scaffolds with well-
controlled microporous structures, hybrid scaffolds of biodegradable synthetic poly-
mers and naturally derived polymers, and cell-derived biomimetic ECM scaffolds. 

2.2 Scaffolds Prepared with Free Ice Particulates 

Scaffolds used for tissue engineering should have an adequate microporous structure 
for enabling cellular penetration into the construct to obtain a desirable cell distri-
bution. Although many three-dimensional porous scaffolds have been developed 
from biodegradable polymers, their pore structures should be controlled to make 
their surface pores open and bulk pores interconnected. When porous scaffolds are 
used for cell seeding and 3D cell culture, cells are easily allocated and distributed in 
the peripheral areas which results in nonhomogeneous cell distribution and partial



tissue formation in the outermost peripheral layers of the scaffolds. Open pore 
structure is required to guarantee smooth entry of cells into the inner pores of the 
scaffolds during cell seeding. Meanwhile, pore interconnectivity is required to allow 
cells for free movement to reach all the pores throughout the scaffolds. 
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There are a few methods that have been developed for controlling various aspects 
of the pore structures, such as pore size, porosity, and interconnectivity of the 
scaffolds [10–13]. Among these methods, the porogen-leaching method offers 
many advantages for the easy manipulation and control of pore size and porosity. 
In this method, the porogen materials can leave replica pores after leaching. Selec-
tion of porogen materials is important to decide the pore structures. Isolated particles 
of porogen materials may result in the formation of isolated pores, a situation which 
is not desirable for tissue engineering scaffolds. To improve pore interconnectivity, 
the porogen materials are bonded before mixing them with polymer matrix 
[14, 15]. However, the bonded porogen materials require organic solvents for 
leaching and the residual solvents are toxic to cells. Mixing of polymer solution 
with the bonded porogen materials becomes difficult if the polymer solution has a 
high viscosity. To overcome these problems, an approach using free ice particulates 
as a porogen material has been developed [11, 16, 17]. Many porous scaffolds and 
their composites have been prepared by this method [18–27]. 

In the ice particulate method, free ice particulates are at first prepared. Free ice 
particulates can be easily prepared by spraying or injecting water into liquid nitrogen 
through a sprayer or capillary. Free ice particulates formed by spraying method are 
spherical. Their diameters can be controlled by the spraying speed. The ice partic-
ulates can be sieved by sieves with different mesh pores under low temperatures to 
obtain ice particulates with desired diameters. Subsequently, the free ice particulates 
are homogenously mixed with polymer solution. The mixing temperature is set at a 
temperature where the ice particulates do not melt and polymer solution does not 
freeze. Finally, the mixture is frozen and freeze-dried to form porous structures. Ice 
particulates can be easily and completely removed by freeze-drying. The porous 
scaffolds are cross-linked after freeze-drying if the polymers are water soluble. 
During the preparation procedures, the pre-prepared free ice particulates not only 
work as porogens to control the pore size and porosity, but also work as nuclei to 
initiate the formation of new ice crystals during freezing process if polymer aqueous 
solution is used. Pore structure is decided by both the free ice particulates and the 
newly formed ice crystals. The newly formed ice crystals can increase the pore 
interconnectivity if they grow and extend from the pre-prepared free ice particulates. 

Collagen porous scaffolds have been prepared by this method [11]. Free ice 
particulates having diameters of 150–250, 250–355, 355–425, and 425–500 μm 
are used to control the bulk pore structures of collagen scaffolds. Gross appearance 
and microstructures of the collagen porous scaffolds prepared with 2 (w/v)% colla-
gen and free ice particulates at a ratio of 50:50 (w/v, ice particulates/collagen 
solution) are shown in Fig. 2.1. The collagen porous scaffolds have large spherical 
pores and small pores. The small pores surround the large spherical pores, and are 
located on the walls of large pores. The large spherical pores are evenly distributed 
and well stacked. The small pores on the walls of large pores connect the large pores,



making the scaffold well interconnected. The size and density of large pores are 
dependent on the size and ratio of free ice particulates used to prepare the scaffolds 
because they are the negative replicas of the free ice particulates. The small pores are 
the negative replicas of ice crystals that are formed during freezing, which size is 
dependent upon the freezing temperature. When the collagen porous scaffolds are 
used for culture of bovine articular chondrocytes, cells can be easily seeded and 
homogenously distributed throughout the scaffolds. The homogenous cell distribu-
tion in the four types of collagen porous scaffolds should be due to the good 
interconnectivity of the scaffolds. The interconnectivity among the spherical large 
pores facilitates the smooth delivery of cells in the scaffolds to each corner of the 
scaffolds. 
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Fig. 2.1 Gross appearances (a) and SEM micrographs (b–i) of the cross-sections of four types of 
collagen porous scaffolds prepared with ice particulates having diameter ranges of 150–250 (b, f), 
250–355 (c, g), 355–425 (d, h), and 425–500 μm (e, i) at low (b–e) and high (f–i) magnifications. 
(Adapted from Ref. [11] with permission from Elsevier) 

The ratio of ice particulates and collagen concentration has some influence on the 
pore structure and mechanical property of collagen porous scaffolds. When collagen 
porous scaffolds prepared with 25, 50, and 75 (v/w)% ice particulates having a 
diameter from 335 to 425 μm are compared, the large spherical pores in the scaffolds 
prepared with 25 (v/w)% ice particulates are sparsely distributed. When 75% ice 
particulates are used, some collapsed large pores are observed. With a high ratio of 
ice particulates, the collagen aqueous solution filling the spaces between the spher-
ical ice particulates decreases and the collagen matrix surrounding the large pores 
decreases. In addition, mixing of the ice particulates and the collagen aqueous 
solution becomes difficult when the ice particulate ratio is high. The collapsed 
large pores can be due to the less dense collagen matrix and incomplete mixing.



Collagen scaffolds prepared with 50 (w/v)% ice particulates have the most homog-
enous pore structure. 
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The effect of the collagen concentration on the pore structure is investigated by 
fixing the ice particulate ratio at 50% (w/v) and changing the collagen concentration 
from 1% to 3% (w/v). Collapsed large pores are observed in the collagen scaffolds 
prepared with 1% and 3% collagen aqueous solutions. The collapsed large pores in 
collagen scaffolds prepared with the 1% collagen aqueous solution may be because 
of the low concentration which results in a less dense collagen matrix surrounding 
the large pores. The case involving the 3% collagen aqueous solution may be due to 
incomplete mixing because the 3% collagen solution is too viscous. The collagen 
scaffold prepared with 2% collagen solution has the most homogeneous pore 
structure. 

When collagen concentration is fixed at 2% and the ratio of ice particulates is 
changed, the Young’s modulus of collagen porous scaffolds increases in the follow-
ing order: 75% < 25% < 50%. The collagen porous scaffolds prepared with 50% ice 
particulates have the highest Young’s modulus. The difference in the mechanical 
properties is mainly ascribed to the different pore structures. The spherical pores 
formed by ice particulates are thought to resist mechanical loading, therefore 
reinforcing the collagen scaffolds. The high mechanical strength of the collagen 
scaffolds prepared with 50% ice particulates should be due to the most appropriate 
packing of the large spherical pores and appropriate filling of the collagen matrix 
between the large spherical pores. The low mechanical strength of the collagen 
scaffold prepared with 75% ice particulates may be due to the partially collapsed 
large pore structure. When the ratio of ice particulates is fixed at 50 (w/v)%, the 
Young’s modulus increases as the collagen concentration increases. A dense colla-
gen matrix surrounding the large pores can be formed to reinforce the scaffolds when 
the collagen concentration increases. 

The ice particulate method has also been used to prepare porous scaffolds of 
gelatin, and hyaluronic acid/collagen [19, 20]. This method is applicable for many 
naturally derived polymers. Most of the naturally derived polymers are water 
soluble. There are many advantages of free ice particulate method for scaffold 
preparation of naturally derived polymers because the method is proceeded at low 
temperature and no organic solvent is used. The method is good for incorporation of 
growth factors in the porous scaffolds, while maintaining their bioactivities. 

The method can also be used for scaffold preparation of biodegradable synthetic 
polymers [18]. Synthetic polymers are dissolved in organic solvents that have a 
much lower freezing temperature than the melting temperature of the ice particulates. 
The temperature of biodegradable polymer solution can be decreased to avoid 
melting of ice particulates during mixing of synthetic polymer solution and the 
free ice particulates. Freezing of the mixture can induce phase separation of synthetic 
polymer solution among the ice particulates, resulting in the formation of micropo-
rous wall after freeze-drying. However, the mechanical property of biodegradable 
synthetic polymer scaffolds prepared by this method is much lower than the scaf-
folds prepared by normal porogen-leaching method using salt particles or sugar 
particles.
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2.3 Funnel-Like Porous Scaffolds and Micropatterned 
Porous Scaffolds Prepared with Embossing Ice 
Particulates 

To make the scaffold surface pores open, a method using embossing ice particulates 
has been used [28]. The method is similar to the free ice particulate method. The ice 
particulates are formed on a surface, and then used as a template to prepare porous 
scaffolds. As a general procedure, water droplets are at first formed on a thin film by 
spraying or injecting water, or applying moisture on a hydrophobic surface. The size 
of the water droplets can be controlled by the number of spraying times, injected 
water volume, or the moisture application time. Embossing ice particulates are 
formed after freezing the water droplets. And then, the embossing ice particulates 
are used as a template to prepare porous scaffolds. The freezing, freeze-drying, 
cross-linking, and washing steps during scaffold preparation are the same as those of 
the above-mentioned procedures of free ice particulate method. An aqueous solution 
of naturally derived polymers is eluted onto the embossing ice particulates, and the 
construct is frozen. The frozen construct is freeze-dried to remove the embossing ice 
particulates and ice crystals that are newly formed during freezing. Porous scaffolds 
having open surface pore structures are prepared after cross-linking and washing. 

The method has been used to prepare porous scaffolds of collagen, chitosan, 
hyaluronic acid, and glycosaminoglycan that have open surface pore structures [29– 
31]. The porous scaffolds have large open pores on their surfaces and small pores 
underlying the large surface pores. Such a structure likes a funnel, and therefore the 
porous scaffolds are referred as funnel-like porous scaffolds. The morphology, size 
and density of large surface pores are dependent on the embossing ice particulates 
because they are the negative replicas of the embossing ice particulates. The small 
pores are the negative replicas of ice crystals that are newly formed during freezing. 
The size of small pores is dependent on the freezing temperature as mentioned 
above. 

The embossing ice particulate method can be used to prepare micropatterned pore 
structures in porous scaffolds [32]. In such an application, the embossing ice 
particulates are micropatterned. Micropatterned ice particulates or ice lines are at 
first prepared, and used as templates to prepare the micropatterned porous scaffolds. 
The micropatterned ice particulates or ice lines are prepared by ejecting water 
droplets through a dispensing machine at a low temperature. By designing an 
ejection program, the micropatterns can be tailored. Figure 2.2a–h shows some 
micropatterns of ice particulates and the respective micropatterned collagen porous 
scaffolds. The micropatterned pore layers can be stacked to construct collagen 
porous scaffolds with 3D micropatterned pores (Fig. 2.2i, j). 

To prepare the 3D micropattern pore structures, polymer solution is eluted on the 
micropatterned ice particulates that are formed on a film (first layer of ice particu-
lates) and frozen. The frozen polymer solution on the first layer of micropatterned ice 
particulates is used to prepare the second layer of micropatterned ice particulates 
(second layer of ice particulates) instead of the film. Polymer solution is eluted on the
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Fig. 2.2 Light microscopy micrographs of four types of ice micropattern templates (a, c, e, g) and 
SEM images of collagen porous scaffolds with one layer of micropatterned pores that are prepared 
with the respective ice micropattern templates (b, d, f, h), and a collagen sponge with three-



second layer of ice particulates and frozen. By repeating the procedure, polymer 
matrix embedded with multilayers of micropatterned ice particulates can be 
obtained. After freeze-drying, cross-linking, and washing, polymer porous scaffolds 
with 3D micropatterned pore structures are prepared. A collagen porous scaffold 
with 3D micropatterned pore structure is shown in Fig. 2.2i, j. The cross-section 
SEM image shows the stacked 3D pore structure.
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Fig. 2.3 SEM micrographs of microgroove collagen porous scaffolds with mean microgroove 
widths of 120, 200, and 380 μm. Upper images show the top view, and bottom images show the 
vertical cross-sectional view of the scaffolds. Scale bar = 100 μm. (Adapted from Ref. [33] with 
permission from Elsevier) 

Microgroove collagen porous scaffolds have been prepared with this method by 
using micropatterned ice lines as a template [33]. By controlling the width of ice 
lines, three types of collagen porous scaffolds with microgroove width of 120, 200 
and 380 μm are prepared (Fig. 2.3). They are referred as G120, G200, and G380. The 
microgroove porous scaffolds have aligned concave microgrooves that exhibit 
semicircular shape in cross-sections. 

The collagen microgroove porous scaffolds have been used for culture of L6 
skeletal myoblasts for skeletal muscle tissue engineering. The myoblasts aggregate 
and form bundles in the microgroove scaffolds. The width of microgrooves has some 
effects on cell orientation and cell bundle formation. Scaffolds with wide micro-
grooves (G200 and G380) enable the formation of discrete cell bundles after 14 days 
of culture. Scaffolds with narrow microgrooves (G120) result in the formation of 
some cell bundles in microgrooves and mostly cellular flakes covering most of the 
area of scaffolds. Staining of myosin heavy chain (MHC) shows that well-aligned 
myotubes are formed in G200 and G380, while in G120 some myotubes are aligned 
in microgrooves and other myotubes in cellular flakes have random orientation. 

Fig. 2.2 (continued) dimensional micropattern pores prepared with an ice micropattern template 
shown in a (i top surface, j cross-section). (Adapted from Ref. [32] with permission from John 
Wiley and Sons)
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Furthermore, the embossing ice particulate method can be used to micropattern 
bioactive molecules in 3D porous polymer scaffolds. As an example, collagen 
porous scaffolds with micropatterned fibronectin, VEGF, and NGF have been 
prepared by the method [34, 35]. In this case, a collagen aqueous solution containing 
the bioactive molecules, other than pure water, is used to prepare the micropatterned 
ice lines. The ice micropatterns of the mixture of collagen/bioactive molecules are 
used to prepare collagen porous scaffolds having micropatterns of bioactive mole-
cules. Not only single bioactive molecule, but also a few types of bioactive mole-
cules can be co-micropatterned in the porous scaffolds. The bioactive molecules can 
be mixed and micropatterned together, or the bioactive molecules can be 
micropatterned separately to construct the porous scaffolds having 
co-micropatterns of a few types of bioactive molecules. Collagen porous scaffolds 
with micropatterned NGF and VEGF show stimulative effects on the regeneration of 
neural network and capillary network, respectively. 

2.4 Scaffolds Prepared with Sacrificial Templates 

Porous templating structures of biodegradable polymers have been used as sacrificial 
templates to generate interconnected pores in scaffolds [36–39]. PLGA sponges and 
PLGA meshes have been used as the sacrificial template because their degradation 
can be accelerated at a high pH. Unlike the ice particulates, PLGA sponges and 
PLGA meshes have integral, and continuous frame structures which negative replica 
form the interconnected pore structures in the scaffolds. Collagen scaffolds with 
interconnected pore structures prepared by this method are shown in Fig. 2.4 [36]. At 
first, PLGA sponge templates are prepared. Six types of PLGA sponges are prepared 
and used as the templates. A solvent casting/particulate leaching method is used to

Fig. 2.4 SEM micrographs of the PLGA sponge templates, PLGA-collagen sponges (PLGA-col), 
and collagen sponges (Col). The central cross-sections of the sponges are used for SEM observa-
tion. The pore walls of the PLGA sponge templates are indicated by red arrows in the middle row 
micrographs (PLGA-col). The negative replica spaces of the PLGA sponge templates after their 
removal are indicated by the red marks in the bottom row micrographs (Col). Scale bar is 200 μm. 
(Adapted from Ref. [38] with permission from RSC)



the PLGA sponge templates by using NaCl particulates of three sizes (diameter of 
150–250, 250–355, 355–500 μm). The ratio of PLGA/NaCl is 10:90 and 5:95. The 
PLGA sponge templates prepared with the different ratio of PLGA/NaCl and 
different size of NaCl particulates are designated as PLGA-10-150, PLGA-5-150, 
PLGA-10-250, PLGA-5-250, PLGA-10-355, and PLGA-5-355 (Fig. 2.4). The 
PLGA sponge templates have pore structures controlled by the NaCl particulate 
and PLGA/NaCl ratio. Their pore size is almost the same as that of the NaCl 
particulates. The PLGA-10-355 and PLGA-5-355 sponge templates prepared with 
355–500 μm NaCl particulates have the largest pore size. Thickness of the pore walls 
increase with the PLGA/NaCl ratio.
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And then, the PLGA sponge templates are immersed in 1 wt% collagen aqueous 
solution under vacuum to fill all the pores with collagen aqueous solution. After 
freeze-drying and crosslinking, PLGA-collagen sponges are prepared. 50 mM 
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and 20 mM N-
hydroxysuccinimide are used for the cross-linking, which is conducted in 
95 (v/v)%, 90 (v/v)%, and 80 (v/v)% ethanol aqueous solutions, each for 3 h. 
SEM observation shows that hybridization with collagen results in the formation 
of collagen microsponges in the pores of the PLGA sponge templates (Fig. 2.4). 

Finally, the PLGA sponge templates are selectively removed by accelerated 
degradation via immersion of the PLGA-collagen sponges in a 3 (wt/v)% ammonia 
hydroxide solution. The collagen component in the PLGA-collagen sponges remains 
intact during the accelerated degradation process. Collagen sponges with 
interconnected pore structures are formed after selectively removing the PLGA 
sponge templates. There are designated as Col-10-150, Col-5-150, Col-10-250, 
Col-5-250, Col-10-355, and Col-5-355. Collagen sponge prepared with direct 
freeze-drying of 1 wt% collagen aqueous solution without PLGA sponge templates 
is used as a comparison (control). 

SEM observation shows the interconnected pore structures of the collagen scaf-
folds prepared with PLGA sponge templates (Fig. 2.4). The negative replica spaces 
of the PLGA sponge templates form the interconnecting channels among the pores 
of the collagen scaffolds. The character of the interconnecting channels is dependent 
on the frame structures of the PLGA sponge templates. The interconnecting channels 
become wider when the pore walls of the PLGA sponge templates are thick. The 
thickness of the interconnecting channels in the collagen scaffold prepared with 
PLGA-10-355 template was widest. The collagen sponges are used for culture of 
bovine articular chondrocytes and human bone marrow-derived mesenchymal stem 
cells (hMSCs). The cells can migrate into the pores through the interconnecting 
channels. The interconnecting channels in all the collagen sponges prepared with 
PLGA sponge templates facilitate cell migration and homogeneous distribution. Cell 
distribution in the collagen sponge prepared with PLGA-10-355 template is most 
homogeneous. 

Besides the PLGA sponge templates, PLGA mesh has been used as sacrificial 
templates to fabricate mesh-like collagen scaffolds [39]. Mesh-like collagen scaf-
folds with large and small sizes are prepared by using PLGA mesh template 
(Fig. 2.5). The mesh-like collagen scaffold of large size is fabricated by forming a



thin coating layer of collagen on the PLGA mesh template surface, followed by 
selective removal of the PLGA mesh template. Removal of PLGA mesh template is 
conducted by the accelerated degradation of PLGA, which is the same as above-
mentioned. The mesh-like collagen scaffold of small size is fabricated by selective 
removal of PLGA mesh template from PLGA-collagen composite mesh which is 
fabricated by introducing collagen microsponges in the open spaces of the PLGA 
mesh template. 
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Fig. 2.5 SEM micrographs of PLGA mesh (a), collagen-coated PLGA mesh (b), mesh-like 
collagen scaffold of large size (c), PLGA-collagen composite mesh (d), and mesh-like collagen 
scaffold of small size (e). (Adapted from Ref. [36] with permission from RSC) 

As shown in Fig. 2.5, the collagen-coated PLGA mesh has a similar pore structure 
to that of the PLGA mesh template. The mesh-like collagen scaffold of large size 
also has a similar pore structure. However, SEM observation of the cross-sections 
shows the cross-sections of the mesh-like collagen scaffold have microtubular 
structures. The microtubular structures are generated from the negative replica of 
PLGA fibers. The mesh-like collagen scaffold of small size has similar pore structure 
to that of the PLGA-collagen composite mesh, while its cross-sections have micro-
tubular structures. Thickness of the mesh-like collagen scaffolds is controlled by the 
thickness of the PLGA mesh templates. The mesh-like collagen scaffolds can be 
used for tissue engineering of thin tissues. When human dermal fibroblasts are 
cultured in the mesh-like collagen scaffolds, they support cell adhesion and promote 
cell proliferation. The fibroblasts form layered structures more rapidly in the mesh-
like collagen scaffold of small size than in the mesh-like collagen scaffold of 
large size. 

The sacrificial PLGA meshes have also been used to prepare extracellular matri-
ces (ECM) scaffolds [40, 41]. At first, cells are cultured in the PLGA meshes. The 
cells proliferate and excrete their own extracellular matrices. Subsequently, the 
cellular components are removed by decellularization after the cells have excreted 
enough amount of extracellular matrices. Finally, the templates are selectively



removed, while the extracellular matrices are remained. After cross-linking, ECM 
scaffolds are obtained. ECM scaffolds have been prepared from human bone marrow 
mesenchymal stem cells (hMSCs), human articular chondrocytes, and human dermal 
fibroblasts by the method. The ECM scaffolds from hMSCs (ECM-M), 
chondrocytes (ECM-C), and fibroblasts (ECM-F) have a mesh-like appearance 
similar to that of the PLGA mesh template (Fig. 2.6). The ECM scaffolds have 
different composition that is dependent on the cell type and culture condition. 
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Fig. 2.6 Gross appearance (a–c) and SEM micrographs (d–i) of ECM porous scaffolds prepared 
from hMSCs (a, d, g), chondrocytes (b, e, h), and fibroblasts (c, f, i). Scale bar = 500 μm in (d–f), 
and 50 μm in (g–i). (Adapted from Ref. [40] with permission from Elsevier) 

2.5 Composite Porous Scaffolds 

Porous scaffolds of biodegradable synthetic polymers, and naturally derived poly-
mers have their respective advantages and problems. Porous scaffolds prepared from 
synthetic biodegradable polymers such as PGA, PLA, PLGA, and PCL have rela-
tively strong mechanical strength. Their degradation can be controlled by



crystallinity, molecular weight, and copolymer ratio of the polymers. However, 
synthetic polymer scaffolds are devoid of cell recognition signals, and their hydro-
phobic surface property hinders smooth cell seeding. On the other hand, naturally 
derived polymers, such as collagen, gelatin, and hyaluronic acid, have the advan-
tages of specific cell interactions and hydrophilicity, while their mechanical property 
is inferior to synthetic polymer scaffolds. Biodegradable synthetic polymers, and 
naturally derived polymers have hybridized to prepare their composite scaffolds to 
combine the advantageous properties of both types of polymers, and overcome their 
drawbacks [25, 42, 43]. One type of hybridization is to form microsponges of 
naturally derived polymers in the void spaces or opening of a porous skeleton of 
biodegradable synthetic polymers [44–47]. The void space or opening of biodegrad-
able synthetic polymer porous skeleton is filled with microsponges of naturally 
derived polymers. The pore surface of biodegradable polymer porous skeleton is 
also coated with naturally derived polymers. When the composite scaffolds are used 
for 3D cell culture, cells only contact and interact with naturally derived polymers. 
The porous skeleton of biodegradable polymers serves as a mechanical skeleton to 
provide necessary mechanical strength to support the whole scaffolds. Another type 
of hybridization is to construct naturally derived polymer porous structures in the 
open space of a cup, cage, or cylinder of biodegradable synthetic polymers 
[48, 49]. All the composite porous scaffolds have high mechanical strength, good 
cell interaction and surface hydrophilicity. 
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As a typical example of composite scaffolds, PLGA-collagen composite mesh 
can be prepared by introducing collagen microsponges in the interstices of a PLGA 
knitted mesh [46, 47]. Collagen sponge can also be formed on one side of the PLGA 
knitted mesh or both sides of the PLGA knitted mesh to construct semi-type or 
sandwich-type PLGA-collagen composite scaffolds [50]. The semi-type and 
sandwich-type PLGA-collagen composite scaffolds have been used for culture of 
bovine articular chondrocytes for cartilage tissue engineering. Both composite scaf-
folds show a spatially even cell distribution, natural chondrocyte morphology, 
abundant cartilaginous extracellular matrix deposition, and excellent biodegradation 
in vivo. The histological structure and mechanical properties of the engineered 
cartilage using the semi-type and sandwich-type composite scaffolds match the 
native bovine articular cartilage. The composite scaffolds are useful for tissue 
engineering and regenerative medicine. 

2.6 Biomimetic ECM Scaffolds 

ECM are a complex network composed of a variety of proteins and proteoglycans. 
ECM play a very important role in regulation of cell functions. ECM derived from 
decellularized tissues have been widely explored as a source of biological scaffolds 
for tissue engineering. Acellular ECM has been prepared by decellularization of 
tissues and organs, such as the small intestinal submucosa, heart valve, blood vessel, 
skin, nerve, tendon, ligament, urinary bladder, vocal fold, amniotic membrane, heart,



liver, and lung [4]. The ECM scaffolds obtained from decellularized tissues and 
organs offer the advantage of maintaining the structures of the respective tissues and 
organs. However, they suffer from problems of autologous tissue/organ scarcity, 
host responses, and pathogen transfer when allogeneic and xenogeneic tissues and 
organs are used. 

54 G. Chen and N. Kawazoe

Fig. 2.7 Fabrication scheme of PLGA-collagen-ECM composite meshes mimicking the ECM 
composition of stepwise osteogenesis. (Adapted from Ref. [64] with permission from IOP Science) 

Cell culture method has been adopted as an alternate method to prepare the ECM 
scaffolds [51–58]. Cell-derived ECM have been used to fabricate various scaffolds 
for tissue engineering applications [59, 60]. Cultured cells offer several advantages 
of pathogen-free and availability over the decellularization of tissues and organs. 
The method can be adopted to fabricate ECM scaffolds mimicking the dynamically 
remodeled ECM compositions. Differentiation of stem cells to mature cells has been 
reported to pass through stepwise stages of maturation [61, 62]. ECM are dynami-
cally changed and remodeled during the stepwise development process [63]. By 
controlling the stepwise differentiation of stem cells into different lineage, ECM 
scaffolds mimicking stepwise osteogenesis, stepwise adipogenesis, and stepwise 
chondrogenesis are fabricated. 

As shown in Fig. 2.7, PLGA-collagen-ECM composite meshes that mimic the 
dynamically remodeled ECM composition of stepwise osteogenesis have been 
fabricated by controlling the differentiation stages during osteogenic differentiation 
of hMSCs in the PLGA-collagen composite meshes [64]. When hMSCs are cultured 
in the PLGA-collagen composite meshes, hMSCs secret their ECM that are



deposited in the composite meshes. The osteogenic differentiation stages can be 
controlled at stem cell stage, early osteogenesis stage, and late osteogenesis stage by 
using proliferation medium or osteogenic differentiation medium, and by adjusting 
culture time. The stem cell stage ECM (SC-ECM) are deposited in the composite 
meshes by culturing hMSCs in basal medium for 7 days. The early osteogenesis 
stage ECM (EO-ECM) are deposited in the composite meshes by culturing hMSCs 
in osteogenic medium for 7 days. During 7 days culture in osteogenic differentiation 
medium, the cells express high level of early-stage osteogenesis marker, alkaline 
phosphatase (ALP), while no calcium deposition which is a late-stage marker of 
osteogenesis is detected. The late osteogenesis stage ECM (LO-ECM) are deposited 
in the composite meshes by culturing hMSCs in osteogenic medium for 21 days. The 
late osteogenesis stage is confirmed by high expression of ALP and calcium 
deposition. 
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Fig. 2.8 SEM micrographs of PLGA-collagen-ECM scaffolds mimicking stem cell ECM (a), early 
osteogenesis stage ECM (b), and late osteogenesis stage ECM (c). (Adapted from Ref. [64] with 
permission from IOP Science) 

After decellularization of the hMSCs/scaffold constructs, the three types of 
stepwise ECM scaffolds are obtained. The porous structures of the stepwise 
osteogenesis-mimicking ECM scaffolds are shown in Fig. 2.8. The ECM scaffolds 
have different compositions which are dependent on the osteogenic differentiation 
stage of hMSCs. 

The stepwise osteogenesis-mimicking ECM scaffolds show different 
osteogenesis-induction effects on hMSCs. The EO-ECM scaffold shows a promo-
tive effect on osteogenic differentiation of hMSCs, and the LO-ECM scaffold has a 
moderate effect on osteogenic differentiation of hMSCs. However, the SC-ECM 
scaffold exhibits an inhibitory effect on osteogenic differentiation of hMSCs. The 
varied effects of the ECM scaffold on osteogenic differentiation of hMSCs are 
related with the dynamically remodeling ECM components in the stepwise 
osteogenesis-mimicking ECM scaffolds. 

By the same method, stepwise adipogenesis-mimicking ECM-deposited PLGA-
collagen composite meshes have been prepared by controlling the adipogenic 
differentiation stages of hMSCs in the PLGA-collagen composite meshes 
[65]. The ECM components are dependent on the adipogenic differentiation stages. 
The stepwise adipogenesis-mimicking ECM scaffolds show different effects on 
adipogenic differentiation of hMSCs. The ECM scaffold fabricated from early 
stage of adipogenesis enhances the adipogenic differentiation, while the ECM



scaffold prepared from stem cell stage or late stage of adipogenesis show an 
inhibitive effect on adipogenic differentiation of hMSCs. 
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The method has also been used to prepare ECM scaffolds mimicking endochon-
dral ossification-related ECM by depositing ECM secreted from stem cells 
(SC-ECM), chondrogenic (CH-ECM), hypertrophic (HY-ECM) and osteogenic 
(OS-ECM) stages of hMSCs in the PLGA-collagen composite mesh [66]. During 
bone tissue development, endochondral ossification (ECO) occurs. ECM play an 
important role in ECO. The SC-ECM, CH-ECM, HY-ECM and OS-ECM are 
adopted for culture of hMSCs to elucidate the effects of biomimetic ECM mimicking 
the ECO-related ECM on differentiation of hMSCs. Their effects on osteogenic 
differentiation of hMSCs are different. Their promotive effect on osteogenic differ-
entiation of hMSCs is an order of HY-ECM scaffold > CH-ECM scaffold, OS-ECM 
scaffold > SC-ECM scaffold. Their effects on chondrogenic or adipogenic differ-
entiation are almost the same. Therefore, the HY-ECM may be important for ECO. 

Furthermore, ECM scaffolds mimicking the dynamically remodeling ECM dur-
ing simultaneous osteogenic and adipogenic differentiation of hMSCs have been 
fabricated by simultaneously controlling osteogenic and adipogenic differentiation 
of hMSCs in the PLGA-collagen composite meshes [67]. The simultaneous osteo-
genic and adipogenic differentiation of hMSCs is controlled at four stages, early 
osteogenesis/early adipogenesis (EOEA-ECM), early osteogenesis/late adipogenesis 
(EOLA-ECM), late osteogenesis/early adipogenesis (LOEA-ECM), and late osteo-
genesis/late adipogenesis (LOLA-ECM). Mixtures of osteogenic induction medium 
and adipogenic induction medium at different ratios are adopted to control the 
simultaneous osteogenic and adipogenic differentiation. The compositions of the 
ECM scaffolds vary according the different stages of simultaneous differentiation 
stages. They also show different effects on adipogenic and osteogenic differentiation 
of hMSCs. The EOEA-ECM scaffold has a promotive effect on adipogenesis, while 
a suppressive effect on osteogenesis. The LOEA-ECM and LOLA-ECM scaffolds 
show a promotive effect on osteogenesis and a moderate effect on adipogenesis. The 
EOLA-ECM scaffold exhibits a suppressive effect on both osteogenesis and 
adipogenesis. The varied effects of the ECM scaffolds on hMSCs differentiation 
are dependent on their ECM compositions. These ECM scaffolds can be used as 
models for 3D cell culture for investigation of ECM-cell interaction and tissue 
engineering applications. 

2.7 Summary 

Porous scaffolds can be prepared from a number of biodegradable polymers and 
extracellular matrices. Their composition can be controlled by combining a few 
types of polymers and matrices. Biodegradable synthetic polymers and naturally 
derived polymers can also be hybridized to overcome the drawbacks of single 
polymers. Their porous structures can be controlled by using different fabrication 
methods. Free ice particulate method, embossing ice particulate method, and



sacrificial template method can well control the porous structures and introduce 
micropatterns in the scaffolds. Cell-derived ECM scaffolds not only mimic the 
cellular microenvironment, but also mimic the dynamics of ECM remolding during 
stem cell differentiation or tissue development. The polymer porous scaffolds and 
biomimetic ECM scaffolds can be widely used for engineering of various tissues and 
organs. 
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Chapter 3 
Versatile Hydrogels in Regenerative 
Medicine 

Yaping Li, Peipei Su, Yuqi Wang, Tingting Ye, Grzegorz Nowaczyk, 
and Wei Wang 

Abstract Hydrogels, as the most typical polymer materials with three-dimensional 
network structures, have attracted wide attention owing to their outstanding features 
such as high-water content, tunable mechanical properties, excellent biodegradabil-
ity, and biocompatibility. Advances in hydrogel design have revolutionized the way 
to address biomedical issues including tissue engineering, bioactive factor carriers, 
soft electronics, and actuators. Hydrogels with various structure diversities and 
excellent properties are emerging, and the development of hydrogels is very vigor-
ous over the past decade. Especially for regenerative medicine, hydrogels are one of 
the most attractive materials due to their similarity to native extracellular matrix. 
This chapter focuses on development of hydrogels and state-of-the-art research, 
explores the main physical, chemical, and biological cross-linking methods to 
develop the diversity of hydrogels, and lists out several excellent properties inherent 
to hydrogels. Based on the recent achievements in nano- and microtechnologies, the 
interaction between hydrogels and bioactive factors (drug and cell) in biomimetic 
hydrogel materials are explored in detail. In addition, current injectable hydrogel-
based regenerative medicine strategies for treating multiple tissues, such as cardiac 
tissue, bone tissue, nervous tissue, muscle tissue, and wound, are also covered. 
Clinical hydrogels that have been applied in regenerative medicine are also summa-
rized. Broadened applications of hydrogels, however, require more advanced engi-
neering technology and design in scientific research and mass production. Finally, 
this chapter is done with the promises and challenges for the future evolution of 
hydrogels and their applications, and discusses the avenues of improvement in terms 
of hydrogel application that will be faced in the future. 
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3.1 Introduction 

The term “hydrogel” was initially introduced in 1894 to describe the gel-like 
formations of inorganic salts [1]. Over time, the definition of hydrogel has become 
more specific, referring to three-dimensional networks of polymer chains that are 
cross-linked and have the ability to absorb and retain significant amounts of water 
within the spaces between the networks [2, 3]. Hydrogels possess remarkable 
properties, leading to their application in various fields including chemical industry, 
environment engineering, and biological electronic. In 1949, the invention of the 
poly(vinyl alcohol) (PVA) sponge, commercially known as Ivalon, marked a sig-
nificant development. From the 1950s onward, PVA hydrogel was extensively 
studied for its potential biomedical uses, ranging from skin replacement and scaf-
folds for articular cartilage regeneration to vascular prostheses, tuberculosis treat-
ment, and even as an embolic material [4]. After that, many advanced hydrogels 
have been developed. For instance, in 1960, poly(2-hydroxyethyl methacrylate) 
(pHEMA) gels were introduced for soft contact lenses [5], while in 1989, hydrogels 
derived from collagen and shark fish cartilage emerged for tissue engineering 
purposes [6]. 

Since the concept of hydrogel was proposed, the studies of hydrogels are mainly 
focused on the fabrication, basic physicochemical properties and practical applica-
tion. In recent decades, there has been a notable surge in research focusing on the 
functionalization and innovative applications of hydrogels. More specifically, the 
latest generations of hydrogels have demonstrated remarkable responsiveness to 
various stimuli such as pH, temperature, biological molecules, electric fields, mag-
netic fields, and ionic strength of the solution. This unique characteristic has 
transformed them into “smart” biomaterials, capable of adapting and reacting intel-
ligently [7, 8]. Despite the recent progress in development and application of 
hydrogels, there are still many challenges to be undertaken in this field. For example, 
traditional hydrogels cannot afford shocks from the outside, which reduces the 
service life of materials. Drawing inspiration from the natural world, the incorpora-
tion of noncovalent cross-links through well-designed molecular and structural 
arrangements has the potential to confer a diverse set of desirable properties upon 
synthetic hydrogels. These properties encompass enhancements in strength, tough-
ness, resilience, processability, and dynamic adaptability. Through the introduction 
of these noncovalent cross-links, synthetic hydrogels can acquire an array of appeal-
ing characteristics, mirroring and even surpassing those found in nature [9]. 

The aim of regenerative medicine is that convergence in the fields of life science, 
advanced material science, clinical medicine, computer science and engineering to 
replace, repair, reconstruct and regenerate complex tissues even organs of the human 
body. Hydrogels are one of the most attractive materials for regenerative medicine



due to their high-water content, biocompatibility and similarity to native extracellu-
lar matrix (ECM). In recent times, researchers have successfully developed a wide 
range of hydrogels with optimized physical and chemical properties, specifically 
tailored for applications in regenerative medicine. These hydrogels have been 
designed to effectively repair and regenerate various types of tissues in the body 
[10]. As an illustration, hydrogel scaffolds have been strategically engineered to 
incorporate diverse biophysical and chemical cues, such as toughness, porosity, and 
degradation. These cues are carefully controlled in terms of their spatial and tempo-
ral distribution, enabling systematic regulation of cellular behavior within the 
hydrogel scaffolds. This regulation encompasses crucial cellular processes such as 
migration, proliferation, and differentiation [11, 12]. Furthermore, numerous 
advanced chemical strategies have been proposed along with the integration of 
functional materials to enhance the functionality of hydrogels. These approaches 
aim to expand the capabilities and performance of hydrogels, enabling them to fulfill 
more diverse and sophisticated functions [3, 13]. 
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In this chapter, we explore the frequently utilized hydrogel materials and the 
strategies employed for their fabrication (bonding modes), properties and applica-
tions in regenerative medicine. We emphasize the correlation between hydrogels and 
bioactive factors (including drugs and cells) in the design and engineering of 
biomimetic materials. We specifically focus on recent advancements in nano- and 
microtechnologies that have enabled the development of these materials. Further-
more, we delve into the realm of regenerative medicine and explore current strategies 
utilizing injectable hydrogels for the treatment of various tissues, such as the heart, 
bones, nervous system, muscles, and wounds. The intersection of various disciplines 
such as materials science, cell biology, and chemistry will continue to have a 
significant impact on the development of functional hydrogels for the regeneration 
of intricate tissues. The collaboration and integration of knowledge from these 
diverse fields will be crucial in designing hydrogels that possess the necessary 
properties and capabilities to successfully regenerate complex tissues. Lastly, we 
provide perspectives on the current challenges and clinical application prospect in 
the development of hydrogel-based biomaterials. 

3.2 Hydrogel Design Strategy 

Hydrogels are three-dimensional interconnected molecular structures, typically 
polymers, which have the ability to retain significant quantities of water. They 
contain distinctive functional groups that have the potential to amplify the effective-
ness of active elements or cells in the field of regenerative medicine, including 
enhancing cell adhesion, promoting biodegradation, and facilitating chemical dis-
charge. A range of synthetic polymers (e.g., polyacrylic acid (PAA), polyacrylamide 
(PAAm), PVA, and their derivatives) and natural polymers (e.g., polysaccharides, 
polypeptides, and DNA) have been widely explored to synthesize hydrogels with 
desirable characteristics [14–16].
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Recently, different from the above hydrogels, there is a special class of small 
molecule hydrogels. Small molecule hydrogels are mostly formed by self-assembly 
of small molecules. Small molecules can form relatively stable aggregations with 
relatively regular structures by the interaction of nonchemical bonds (e. g. hydrogen 
bond and p-π phase interaction). Due to the excellent biocompatibility of self-
assembled systems, small molecule hydrogels are widely used in life science and 
medicine. At present, small molecule hydrogels as 3D scaffolds for adherent cells 
have been relatively mature, which has shown remarkable properties in promoting 
stem cell-directed differentiation and cell proliferation. Small molecule hydrogels 
attached drug molecules to gelatinized network for targeted drug delivery by their 
environmental sensitivity have been reported as well. Several outstanding review 
papers summarized the development and applications of small molecule hydrogels 
[17]. In this chapter, we concentrated on the macromolecular hydrogels. 

Hydrogel networks are formed either through covalent bonds or noncovalent 
interactions. Several methods of cross-linking to build polymer networks are subse-
quently examined, including: (1) physical cross-linking, involving structures like 
helices, microdomains, hydrogen bonds, electrostatic interactions, metal coordina-
tion, guest–host interactions, hydrophobic associations, and π–π stacking; (2) chem-
ical cross-linking, such as the formation of carbon–carbon, carbon–nitrogen, 
carbon–oxygen, carbon–sulfide, silicon–oxygen, disulfide, hydrazone, oxime, 
boronate ester bonds, as well as Diels–Alder and Schiff’s base reactions; and 
(3) biological cross-linking, which includes processes like enzyme-driven reactions 
and molecular recognition [15, 18]. These cross-linking methods exist alone or 
synergistically constitute to form the hydrogel system. 

3.2.1 Physical Cross-Linking 

Physical interactions are profoundly prevalent in biological entities and have been 
rigorously researched for their role in designing soft materials like hydrogels. The 
purpose of such studies often extends to obtaining superior mechanical properties, 
among other objectives. As indicated in Fig. 3.1 and Table 3.1, the process of 
physical cross-linking in hydrogels employs a variety of mechanisms, which include 
the formation of helical structures, microdomains, hydrogen bonds, electrostatic 
interactions, and metal coordination. It also involves guest–host interactions, hydro-
phobic associations, and π–π stacking. Different kinds of physical interactions 
occupy a considerable part in the preparation of hydrogels, especially in the design 
of multifunctions in hydrogels. 

3.2.1.1 Microdomain 

Microdomains are created when amorphous polymers undergo a reversible transition 
from liquid to glass as the temperature drops below their glass-transition points. This



transition essentially forms a cross-linking network by connecting neighboring 
polymer chains. An example of this is seen with the polystyrene segments in 
polystyrene-b-PNIPAm-b-polystyrene copolymers, which can create microdomains 
at room temperature, thereby cross-linking the block copolymer chains into a 
polymer network [19]. Microdomains function as high-efficiency cross-linking 
elements and intrinsically high-energy phases within polymer networks. This, in 
turn, bestows the resulting hydrogels with exceptional mechanical properties. 
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Fig. 3.1 Schematics of polymer network interactions of physical cross-linking [15] (Reprinted 
with permission from Ref. [15]. Copyright 2021, American Chemical Society) 

Regarding the mechanism of crystalline microdomains, a specific group of both 
synthetic and natural polymers can form these microdomains under the right condi-
tions. These crystalline microdomains, ranging in size from nanometers to micro-
meters, can function as a robust physical cross-link for multiple amorphous polymer 
chains connected to it. For instance, Polyvinyl Alcohol (PVA) can generate crystal-
line microdomains through repeated freeze-thaw cycles or by annealing at temper-
atures above its glass transition temperature, enabling it to form a stable gel. 
Similarly, chitin and chitosan can create semicrystalline polymer networks with 
crystalline microdomains cross-linking amorphous chains. This is achieved by 
treating chitin and chitosan with strongly acidic or basic solutions to overcome 
interchain electrostatic repulsions. Cellulose is another example that can form highly 
crystallized nanofibers due to the strong interaction between glucose units. These 
cellulose nanofibers can further aggregate and form a stable network through 
alkaline treatments. It is important to note, however, that heating these semicrystal-
line polymer networks above their melting temperatures can dismantle the



Typical examples
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Table 3.1 Typical examples of polymer network interactions of physical cross-linking [15] 
(Reprinted with permission from Ref. [15]. Copyright 2020, American Chemical Society) 

Physical cross-
linking 

Microdomain Polystyrene-b-poly(N-isopropylacrylamide)-b-polystyrene poly(methyl 
methacrylate)-b-poly(n-butyl acrylate) 

Helical association Self-assemble of type I collagen, linear agarose, gelatin, fibrinogen and 
elastin-like polypeptides 

Crystalline domain PVA treated by freeze-thawing or annealing 
Chitin and chitosan treated by strongly acidic or basic solutions 
Cellulose treated by alkaline 

Hydrogen bond Gelatin, agarose, amylose, amylopectin, and carrageenan in solutions 
PMA or PAA with PEG 
PVA solutions treated by repeated freezing and thawing 
PEG, PHMEA, and PNIPAm functionalized with amine triazine or diamino 
triazine groups 
PEG, PHMEA, PNIPAm, PAA, and PDMAA chains functionalized with 
UPy groups 
Polymer chains attached complementary DNA base pairs (A-T, C-G) 

Electrostatic 
interaction 

Alginate with Ca2+ , Ba2+ , Mg2+ , Zn2+ 

Chitosan with citrate and tripolyphosphate 
Cationic polyelectrolytes with anionic polyelectrolytes (anionic poly 
(L-glutamic acid) and cationic poly(L-lysine)) 
Poly(3-(methacryloylamino) propyl trimethylammonium chloride) and 
poly(sodium p-styrene sulfonate) 

Coordination 
complex 

Bisphosphonate, catechol, histidine, thiolate, carboxylate, pyridine, 
bipyridine, and iminodiacetate with metal ions (Cu2+ , Zn2+ , Fe3+ , Co2+ , and 
Ni2+ ) 
Bisphosphonate-containing polymers with metal ions (Ca2+ , Mg2+ , or Ag+ ) 
Catechol-containing polymers with metal ions (Cu2+ , Zn2+ , and Fe3+ ) 
Histidine-containing polymers with metal ions (Cu2+ , Co2+ , and Ni2+ ) 

Host–guest 
interaction 

Polymers containing β-CD moieties with azobenzene group adamantly 
group ferrocene group, t-butyl group 
Cyclohexyl(ester) group cyclododecyl (amide group, benzyl) Group2-
naphthylmethyl group1-pyrenylmethyl group 
Polymers containing a-CD moieties with n-butyl group, adamantly group, 
benzyl group trans-azobenzene group 
Polymers containing cucurbit[n]turil moieties with spermine, diamino 
hexane, viologens, naphthalenes 

Hydrophobic 
association 

PEG, PAAm, PNIPAm, PAM, PDMA, PVA containing hydrophobic 
moieties (octyl phenol-PEG acrylate, stearyl acrylate lauryl acrylate) 
Triblock amphiphilic copolymers with PEG, PAAm, PVA, PHEMA middle 
blocks, and n-alkyl acrylate end blocks 

π–π stacking Polymers modified with aromatic moieties or conjugated structures 
Hydrogels containing carbon nanotubes, polythiophene, and graphene-
based nanomaterials 

PMA polymethacrylic acid, PEG polyethylene glycol, PHMEA poly(2-hydroxethyl methacrylate), 
PNIPAm poly(N-isopropylacrylamide), PDMA poly(N,N-dimethylacrylamide), β-CD 
β-cyclodextrin, α-CD α-cyclodextrin, UPy ureido-pyrimidinone



crystalline microdomains in the networks, although most crystalline microdomains 
are stable at room and body temperatures.
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Regarding the mechanism of crystalline microdomains, a specific group of both 
synthetic and natural polymers can form these microdomains under the right condi-
tions. These crystalline microdomains, ranging in size from nanometers to micro-
meters, can function as a robust physical cross-link for multiple amorphous polymer 
chains connected to it. For instance, Polyvinyl Alcohol (PVA) can generate crystal-
line microdomains through repeated freeze-thaw cycles or by annealing at temper-
atures above its glass transition temperature, enabling it to form a stable gel 
[20]. Similarly, chitin and chitosan can create semicrystalline polymer networks 
with crystalline microdomains cross-linking amorphous chains. This is achieved by 
treating chitin and chitosan with strongly acidic or basic solutions to overcome 
interchain electrostatic repulsions [21]. Cellulose is another example that can form 
highly crystallized nanofibers due to the strong interaction between glucose units. 
These cellulose nanofibers can further aggregate and form a stable network through 
alkaline treatments [22, 23]. It is important to note, however, that heating these 
semicrystalline polymer networks above their melting temperatures can dismantle 
the crystalline microdomains in the networks, although most crystalline 
microdomains are stable at room and body temperatures. 

3.2.1.2 Helical Association 

Owing to their accurately controlled structures, many natural polymers can form 
nanometer-scale helical fibers (or fibrils). These can subsequently aggregate or 
intertwine to create a cross-linking network. As an example, the commonly recog-
nized triple-helix structure of type I collagen is a result of the self-assembly of three 
peptide strands. These collagen triple helices can bundle together to produce colla-
gen nanofibers, which further self-assemble to form an interconnected network 
within a hydrogel [24]. Here’s another instance: linear agarose chains exhibit 
disordered coil-like structures in aqueous solutions at elevated temperatures. How-
ever, when the temperature is reduced to room or body temperature, they can arrange 
themselves into double helix strings or simple helical chains. These strings or chains 
can associate via hydrogen bonding to construct agarose fibers, which can then 
intertwine to form an interconnected hydrogel network [25]. 

3.2.1.3 Hydrogen Bond 

Compared to these physical cross-linking mechanisms above, many other physical 
cross-linking mechanisms in polymer networks such as hydrogen bond are relatively 
weak, transient and reversible. Many natural polymers (such as gelatin, agarose, 
amylose, amylopectin, and carrageenan) and synthetic polymers (e.g., PVA) can 
form hydrogels by the intermolecular and intramolecular hydrogen bonds 
[15]. Another case in point, as shown in Fig. 3.2, Liu and his team developed



N-acryloyl glycinamide (NAGA) in an effort to replicate and intensify the hydrogen 
bonding interactions among amino acid residues in a polymer hydrogel. This 
approach was used to ultimately convert these interactions into the primary method 
of enhancing the mechanical properties of the hydrogel. The enhanced properties 
included high tensile and compressive strength (at MPa levels), over 1400% elon-
gation at break, substantial toughness, and recoverable deformation [26]. Notably, 
the dynamic nature of hydrogen bonding rendered the PNAGA gel both thermo-
plastic and self-healing. This gifted the supramolecular polymer hydrogel with 
adaptable remolding capabilities, recyclability, and reusability. 
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Fig. 3.2 (a) Molecular structures of N-acryloyl glycinamide, poly(N-acryloyl glycinamide), acryl-
amide, and PAAm; (b) instability of single amide hydrogen bonding cannot maintain the integrity 
of a PAAm hydrogel; (c) mechanisms underlying the reinforcement effect of dual amide hydrogen 
bonding microdomains and the high stability of the resultant hydrogels in water (Reprinted with 
permission from Ref. [26]. Copyright 2020, Wiley-VCH)
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3.2.1.4 Electrostatic Interaction 

Polyelectrolytes, natural and synthetic polymers with fixed charges, can be physi-
cally cross-linked by electrostatic interactions. Chitosan, for instance, is a typical 
example of a cationic polyelectrolyte hydrogel. It can cross-link with multivalent 
anions like citrate and tri-polyphosphate. Similarly, electrostatic interactions 
between oppositely charged polyelectrolytes can also form physically cross-linked 
hydrogels. A case in point is the injectable hydrogel formed by simply mixing 
anionic poly(L-glutamic acid) and cationic poly(L-lysine) in phosphate buffered 
saline solutions. As illustrated in Fig. 3.3, Gong and his team have conducted 
extensive research on polyampholyte (PA) hydrogels. For instance, they created a 
PA hydrogel endowed with antifatigue properties [27]. It’s important to mention that 
the creation of ionic cross-linking typically necessitates the use of solvents with a 
low ionic strength for the hydrogels. This is to prevent the occurrence of charge 
shielding. 

3.2.1.5 Coordination Complex 

Hydrogels cross-linked by coordination complexes are primarily created by incor-
porating chelating ligands into polymer backbones, which then form coordination

Fig. 3.3 Illustration for hierarchical structures in PA gels. PA gels are composed of hierarchical 
structures containing ionic bonds (sacrificial bond) at the 1-nm scale (indicated by blue arrow), 
cross-linked polymer network with mesh size at the 10-nm scale (indicated by red arrow), and 
bicontinuous hard/soft phase networks with mesh size at d0 � 100-nm scale (indicated by black 
arrow) (Reprinted with permission from Ref. [27]. Copyright 2020, American Chemical Society)



complexes with metal ions. A classic example involves the amino acid histidine 
providing an imidazole ligand residue, which is one of the most crucial chelators in 
the human body. The mechanical attributes of hydrogels cross-linked by coordina-
tion complexes can be adjusted by altering the types of metal ions and/or chelating 
ligands used. For metal coordination, a typical case is alginate forms a hydrogel in 
the vicinity of divalent cations (such as Ca2+ , Ba2+ , Zn2+ and Mg2+ ). In this context, 
the two carboxylic groups present on various polymer chains are linked together by 
divalent cations due to the electrostatic forces generated between the opposite 
charges. As demonstrated in Fig. 3.4, based on ion coordination complexes, Zhang
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Fig. 3.4 Schematic representation of CaAG hydrogel preparation. (a) Synthesis of ald-alginate. 
The hydroxyl groups of alginate are oxidized by periodate into aldehyde groups; (b) Schematic 
illustration of the alginate-Ca2+ “egg-box” structure; (c) Preparation of the CaAG hydrogel. The AG 
hydrogel is formed by imine linkage between ald-alginate and gelatin. The CaAG hydrogel is 
formed by a combination of covalent cross-linking between gelatin and ald-alginate and ionic cross-
linking between Ca2+ and ald-alginate; (d) Image of CaAG hydrogel preparation. The AG hydrogel 
is obtained by mixing ald-alginate, borax, and gelatin. The CaAG hydrogel is obtained by 
immersing the AG hydrogel in CaCl2 solution. The wine red hydrogel becomes darker with 
increasing incubation time ascribed to the formation of imine linkage (-CH=N-) (Reprinted with 
permission from Ref. [28]. Copyright 2020, RSC)



et al. prepared a highly Ca2+-cross-linking ald-oalginate-gelatin imine (CaAG) 
hydrogel by diffusion method with high stretchability and flexibility [28].
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3.2.1.6 Other Interactions 

Host–Guest Interaction 

Host–guest interactions describe the unique structural relationships between two or 
more molecules or ions, which are maintained by forces other than covalent bonds. 
The most prevalent host entities include Cyclodextrins (CDs) and Cucurbit[n]urils 
(CB[n]). For instance, α-CDs serve as host molecules for various hydrophobic guest 
molecules (such as azobenzene and ferrocene) that have suitable molecular sizes. 
They form a stable gel through hydrophobic and van der Waals interactions [29]. In 
another instance, Cucurbit[n]urils (CB[n]) can create stable complexes with either 
two molecules of 2,6-bis(4,5-dihydro-1H-imidazol-2-yl) naphthalene, or one mole-
cule each of viologen (paraquat) and 2,6-dihydroxynaphthalene, resulting in the 
formation of hydrogels [30]. 

Hydrophobic Association 

Hydrophobic domains can be incorporated either through postpolymerization mod-
ifications (for instance, using the grafting-to approach) or by copolymerizing hydro-
phobic monomers within the polymer chains, whether randomly or in blocks. These 
adjustments typically necessitate the use of nonaqueous solvents, mixed solvents, or 
micellar systems. A standard method of introducing hydrophobic domains is by 
copolymerizing hydrophobic stearyl acrylate monomers within PAAm chains 
[31]. Another instance of introducing hydrophobic domains is the creation of 
multiblock copolymers with hydrophobic alkyl acrylate end blocks and a substantial 
middle block composed of PEG, PAAm, PAA, or PHEMA polymers [32]. It’s 
important to note that because a single hydrophobic association can link multiple 
polymer chains, hydrophobic associations have been employed as high-functionality 
cross-links in hydrogels. However, the energy of hydrophobic association is typi-
cally lower than that of crystalline domains and microdomains. 

π–π Stacking Interaction 

The π–π stacking interaction represents a specific type of noncovalent interaction, 
specifically involving the attractive forces between π electrons in aromatic groups. 
Natural amino acids possessing aromatic rings, such as phenylalanine, tyrosine, and 
tryptophan, along with other compounds featuring conjugated structures like 
fluorenylmethyloxycarbonyl (Fmoc), 1-pyrenebutyric acid, 2-naphthalene acetic 
acid, and nitrophenyl methacrylate, can be utilized in the design and production of



polymers with aromatic components. These can facilitate gelation through the π–π 
stacking interactions [33]. 
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3.2.2 Chemical Cross-Linking 

Chemically cross-linked hydrogels have significantly influenced research in recent 
years due to their advantageous mechanical attributes and the ability to fine-tune 
their structural and chemical properties. The formation of hydrogels through chem-
ical cross-linking encompasses irreversible chemical cross-linking as well as 
dynamic reversible chemical cross-linking. In the past several decades, chemical 
bonds have been devised and synthesized for soft materials, including elastomers, 
hydrogels, and organ gels, with the aim of achieving exceptional properties. 

3.2.2.1 Irreversible Chemical Cross-Linking 

In the field of chemistry, the gelation process is defined as the gradual linking of 
polymer chains within the reaction system into one large-scale molecule of “infinite” 
size. Here, irreversible chemical bonds are the most typical, and numerous properties 
of hydrogels have been built on this principle. Standard instances of irreversible 
chemical cross-linking encompass carbon–carbon bonds, carbon–nitrogen bonds, 
carbon–oxygen bonds, carbon–sulfide bonds, and silicon–oxygen bonds. These 
bonds are the most frequently used techniques to construct traditional hydrogels. 

Carbon–Carbon Bond 

Hydrogels that are covalently cross-linked by carbon–carbon bonds typically form 
via the radical copolymerization of monomers and di-/multivinyl cross-linkers. 
These cross-linkers can either be small molecules with two double bonds (like N, 
N′-methylenebis-(acrylamide) (MBAA)) or macromolecules carrying multiple acry-
late groups. For example, the integration of a photo initiator within the polymer 
framework, such as Gelatin Methacryloyl (GelMA) or hyaluronic acid methacryloyl 
(HAMA), under light exposure (like UV light) will produce free radicals via 
rearrangement, fragmentation, or energy transfer. This creation of free radicals is 
then followed by the polymerization propagation step, which aids in the formation of 
carbon–carbon bonds and the resultant hydrogel [34]. For instance, as shown in 
Fig. 3.5, Qiao et al. prepared developed an innovative osteogenic polypeptide 
hydrogel, termed GelMA-c-OGP. This was achieved by co-cross-linking a template 
photo-cross-linked GelMA with photo-cross-linkable osteogenic growth peptides 
(OGP) using ultraviolet radiation [35].
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Fig. 3.5 Flow chart of GelMA-c-OGP hydrogel construction and its mechanical properties. (a) The 
chemical molecular structure of the methacrylate OGP polypeptide and gelatin (GelMA), and the 
structure of GelMA-c-OGP with ultraviolet (UV) light; (b) photograph of GelMA-c-OGP solution 
and GelMA-c-OGP hydrogel formation after UV light; (c) a  fixed-shaped gel block after photo-
cross-linking of GelMA-c-OGP hydrogel; (d) SEM images of GelMA and GelMA-c-OGP hydro-
gel; (e) degradation percentage of GelMA and GelMA-c-OGP hydrogel (n = 3); (f) stress of GelMA 
and GelMA-c-OGP hydrogel (n = 3); (g) the pipeline of GelMA-c-OGP applied for bone regen-
eration (Reprinted with permission from Ref. [35]. Copyright 2019, Wiley-VCH) 

Carbon–Nitrogen Bond 

Hydrogels that are covalently cross-linked through carbon–nitrogen bonds typically 
form via highly efficient chemical reactions involving complementary groups. For 
instance, amide bonds have been extensively utilized as the covalent cross-links for 
hydrogels, achieved by condensation reactions between amines and carboxylic acids 
or their derivatives. Facilitating agents like N-Hydroxysuccinimide (NHS) and N, 
N-(3-(dimethylamino) propyl)-N-ethyl carbodiimide (EDC) are often used to speed 
up the condensation reaction between amines and carboxylic acids. The carbon– 
nitrogen bonds can also be created via the addition reactions of amines with 
electrophiles, such as adipic acid dihydrazide and diisocyanate cross-linkers 
[36]. Another type of reaction that can produce carbon–nitrogen cross-links for 
hydrogels is the azide-alkyne cycloaddition reaction [37]. 

Carbon–Oxygen Bond 

The ester bond, a prevalent form of the carbon–oxygen bond, is typically formed 
through reactions between hydroxyl groups and carboxylic acids or their derivatives. 
These ester cross-links can be easily hydrolyzed, making the hydrogels degradable 
under ambient temperature and physiological conditions [15, 18]. In addition to ester



cross-linking, carbon–oxygen bonds also occur in ether groups and urethane groups. 
These bonds can establish a polymer network due to the reactions between side 
groups on polymers, such as hydroxyl groups on polysaccharides and 
glutaraldehyde [38]. 
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Carbon–Sulfide Bond 

The formation of covalent cross-linking in hydrogels via carbon–sulfide bonds is 
primarily accomplished through thiol-click reactions. The substantial electron den-
sity of the sulfide atom predisposes thiols to engage in reactions with various 
functional groups via a catalyzed or radical process. Thiol groups can be readily 
transformed into electrophilic thiyl radicals or nucleophilic thiolates, which then 
proceed with radical chain processes or nucleophilic reactions to execute thiol-click 
reactions. Specifically, for radical thiol-click reactions, thiol groups can be stimu-
lated by heat or UV light, generating radicals that initiate the radical-mediated thiol-
yne or thiol-ene reactions [39]. In contrast, for nucleophilic thiol-click reactions 
triggered by strong bases, thiol groups can readily engage in reactions with electron-
deficient end-functional compounds via Michael addition, with isocyanate deriva-
tives via carbonyl addition, with halides via SN2 nucleophilic substitution, and with 
epoxy motifs via SN2 ring-opening reactions [40]. Thiol-click reactions are typically 
highly efficient and result in a high conversion rate without producing any side 
products, even in the presence of water, ions, and oxygen. These reactions have been 
widely utilized in the production of hydrogels for a variety of biomedical 
applications. 

Silicon–Oxygen Bond 

The silicon–oxygen bond is primarily employed in the creation of silicone-based 
hydrogels and generally boosts the mechanical characteristics of these hydrogels 
[41]. Furthermore, silicon–oxygen bonds have been extensively utilized for modi-
fying the surfaces of materials, including hydrogels, to improve their specific 
performance characteristics [42]. 

3.2.2.2 Reversible Chemical Cross-Linking 

Reversible chemical cross-linking method accounts for a large part of the latest 
research about hydrogels. Reversible chemical cross-linking mainly involves the 
incorporation of functional groups in the polymer chains such as disulfide bond, 
hydrazone bond, oxime bond, boronate ester bond, Diels–Alder reaction and 
Schiff’s base reaction. Because of the introduction of dynamic reversible chemical 
bonds, hydrogels are designed to construct many excellent novel properties. These 
dynamic chemical bonds give hydrogels some special properties. As shown in the



Fig. 3.6 and Table 3.2, several reversible chemical cross-linking methods are 
outlined and their performance in biological systems is summarized. 
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Fig. 3.6 Schematics of polymer network interactions of dynamic reversible chemical cross-linking 
[15] (Reprinted with permission from Ref. [15]. Copyright 2021, American Chemical Society) 

Disulfide Bond 

Disulfide bonds are dynamic covalent bonds that form based on thiol-thiol interac-
tions under mildly alkaline or mildly oxidative conditions. The reaction between 
thiol groups occurs at a relatively quick pace and can be employed to manufacture 
dynamic hydrogels. Hydrogels that are cross-linked by disulfide bonds are ideal for 
encapsulating various types of cells due to the gentle reaction conditions. As 
illustrated in Fig. 3.7, hydrogels were created through the copolymerization of 
acrylamide (AAm), acrylic acid (AAc), and N, N′-bis(acryloyl)-(L)-cystine salt 
(BISS). BISS, which contains photo-exchangeable disulfide bonds, served as a 
dynamic covalent cross-linker to impart photoplasticity. The dynamic exchange 
potential of the disulfide bonds enables the hydrogel shapeshifter’s form to be 
dictated by plasticity [43].



Typical examples
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Table 3.2 Typical examples of polymer network interactions of chemical cross-links [15] 
(Reprinted with permission from Ref. [15]. Copyright 2021, American Chemical Society) 

Chemical cross-
linking 

Carbon–carbon 
bond 

Radical copolymerization of monomers and di-/multivinyl cross-linkers or 
macromolecules with several (acrylate groups) 
Monomers and cross-linkers with vinyl groups or acrylate groups high-
energy radiation (gamma and electron beams) 
Polymers without unsaturated bonds under high-energy radiation (gamma 
and electron beams) 

Carbon–nitrogen 
bond 

Amines with carboxylic acids and derivatives 
Addition reactions of amines with electrophiles (adipic acid dihydrazide and 
diisocyanate cross-linkers) 
Azide-alkyne cycloaddition reaction between alkyne and azide 

Carbon–oxygen 
bond 

Hydroxyl groups and carboxylic acids or derivatives 
Ether groups and urethane groups (hydroxyl groups (polysaccharides and 
PVA) and reactive cross-linkers (glutaraldehyde, divinyl sulfone, dibromide, 
and diisocyanate)) 

Carbon–sulfide 
bond 

Thiol-click reactions 

Silicon–oxygen 
bond 

Silicone-based hydrogels 
Hydrogels and diverse engineering materials with modified surfaces 

Boronate ester 
bond 

PVA, alginate, and cellulose solution and phenylboronic acid 

Disulfide bond Thioctic acid, bovine serum albumin (BSA) 
Other cysteine-containing proteins, peptides, or other thiolated polymers 
Pyridyl disulfide-modified HA with PEG-dithiols 

Hydrazone bond Oxidized HA-containing aldehyde groups (HA-CHO) and adipic acid 
dihydrazide-modified HA (HA-ADH) 

Oxime bond ODex and amine alkoxylate modified Pluronic F127 (AOP127) 

Diels–Alder 
reaction 

Hyaluronic acid/cellulose modified with diene groups and dienophile groups 
PNIPAM/PEG modified with diene groups and dienophile groups 

Schiff’s base 
reaction 

Amino on gelatin and glutaraldehyde 

Hydrazone Bond 

Hydrazone bonds are the product of reactions between aldehyde and hydrazide 
groups. By simply combining aldehyde- and hydrazide-bearing polymers under 
physiological conditions, reversible hydrazone bonds can be formed. Due to the 
biocompatible nature and swift gelation kinetics of aldehyde and hydrazide cou-
pling, hydrogels that are cross-linked by hydrazone bonds are suitable for in situ cell 
encapsulation. The mechanical properties of such hydrogels can be adjusted easily, 
allowing for the exploration of the correlations between cell behaviors and hydrogel 
mechanics, like stress–relaxation kinetics. Hydrazone bonds can also facilitate the 
creation of self-healing and injectable hydrogels, thanks to their reversibility in 
slightly acidic environments (pH 4.0–6.0). As demonstrated in Fig. 3.8, hyaluronic 
acid containing aldehyde groups (HA–CHO) and adipic acid dihydrazide-modified



HA (HA–ADH) were synthesized through NaIO4 oxidation and carbodiimide cou-
pling reactions respectively. The hydrogel was then produced by combining aqueous 
solutions of HA-CHO and HA-ADH, capitalizing on the dynamic covalent 
hydrazone bond. This resulted in a self-healing and malleable hyaluronic acid 
(HA) hydrogel, which was used as an antiadhesion barrier around tendons [44]. 

3 Versatile Hydrogels in Regenerative Medicine 77

Fig. 3.7 Design of the orthogonal dynamic network and the molecular mechanism for program-
ming its shapeshifting behaviors. (a) Molecular structures of the monomers and cross-linker; (b) 
Disulfide exchange for photo-plasticity; (c) Molecular mechanism for temporal programming via 
ion exchange (Reprinted with permission from Ref. [43]. Copyright 2021, American Chemical 
Society)
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Fig. 3.8 Fabrication process of the siRNA@MS@HA hydrogel-electrospun antiadhesion barrier 
for peritendinous antiadhesion (Reprinted with permission from Ref. [44]. Copyright 2022, Wiley-
VCH) 

Schiff’s Base Reaction 

Schiff’s base reactions occur when aldehyde and amine groups react. This conden-
sation reaction, which involves the dehydration of a water molecule, results in the 
formation of a carbon–nitrogen double bond. The reversible characteristics of the 
Schiff’s bond confer upon the resulting hydrogels qualities such as mechanical 
dissipation, self-healing capabilities, and response to stimuli. Schiff base bonds are 
particularly advantageous in the creation of biomedical hydrogels, as most biocom-
patible natural (like gelatin and protein) and synthetic polymers carry amino groups. 
As depicted in Fig. 3.9, a series of adhesive hydrogels with desirable properties were 
designed through a dual-dynamic bond cross-linking process involving Fe, 
protocatechualdehyde containing catechol and aldehyde groups, and quaternized 
chitosan (QCS). Firstly, the dual-cross-linking of a pH-sensitive coordinate bond 
(catechol-Fe) and dynamic Schiff base bonds, which can reversibly break and 
reform, enhances the mechanical characteristics of the hydrogel while also granting 
it injectability and self-healing attributes. Additionally, the catechol-Fe cross-linked 
matrix demonstrates excellent photothermal capacity. The hydrogel also shows 
remarkable antibacterial capability due to the inherent antibacterial activity of 
QCS. Furthermore, the catechol and aldehyde groups used for dynamic cross-
linking give the hydrogel excellent adhesive properties. Most importantly, the 
pH-sensitive catechol-Fe bond, whose stability depends on the addition of an iron-
chelating agent, allows for the controlled dissolution or removal of the adhesive 
hydrogel when a suitable stimulus is applied. These beneficial properties make the 
adhesive hydrogel a smart wound sealant and glue suitable for closing skin incisions, 
and promoting infected wound healing and tissue regeneration [45].
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Fig. 3.9 Schematic illustration for the preparation and application of an adhesive hydrogel. (a) 
Synthesis of quaternized chitosan. The molar ratio of GTMAC to amino groups on the chitosan 
backbone was set as 2:1; (b) fabrication of a PA@Fe tricomplex molecule (pH 10); (c) dual-
dynamic-bond cross-linked adhesive hydrogel shows applications in wound closure and 
postwound-closure care (Reprinted with permission from Ref. [45]. Copyright 2021, American 
Chemical Society) 

Boronate Ester Bond 

Dynamic boronate ester bonds are created through the reaction of diols and boronic 
acid. A characteristic example is that polyhydroxy polymers like PVA, alginate, and 
cellulose can be turned into dynamic hydrogels. This is achieved by combining these 
polyhydroxy polymers with boronic acid-containing polymers in aqueous solutions. 

Oxime Bond 

Oxime bonds are created when hydroxylamine reacts with aldehyde or ketone, a 
process that is highly efficient under gentle conditions. The aldehyde or ketone 
groups can be integrated onto polymers through radical polymerization or oxidation, 
while hydroxylamine motifs are primarily added to hydroxyl-rich polymers through 
a series of reactions involving N-hydroxyphthalimide-induced Mitsunobu reaction 
and hydrazine reduction. Oxime bonds are then formed by mixing the polymers 
containing aldehyde or ketone with those containing hydroxylamine in a neutral or 
slightly acidic water solution. This reaction is biocompatible, not yielding cytotoxic 
byproducts, and can be used to form hydrogels from biopolymers. Thanks to their 
dynamic nature, oxime bonds have been employed in the creation of self-healing and



injectable hydrogels. These gels display greater resistance to hydrolysis than 
hydrogels cross-linked by imines and hydrazones. 
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Diels–Alder Reaction 

The Diels–Alder reaction is a click reaction that occurs between diene and 
dienophile groups. To leverage the dynamic Diels–Alder reaction for the reversible 
cross-linking of hydrogels, both natural polymers (like hyaluronic acid, cellulose, 
and other polysaccharides) and synthetic polymers (like PNIPAM and PEG) can be 
altered. This alteration involves the introduction of diene functional groups (like 
furan) and dienophile functional groups (such as maleimide) on the polymer back-
bones or chain ends. 

3.2.3 Biological Cross-Linking 

Biological cross-linking is one of preparation methods of hydrogels’ network. 
Biological cross-linking typically engages enzyme-driven reactions and molecular 
identification processes, as well as the incorporation of bioactive particles. Biolog-
ical cross-linking often has high reaction efficiency. But biological cross-linking 
tends to degrade due to their weak interaction. 

3.2.3.1 Enzyme-Mediated Reaction 

Enzyme-driven reactions serve as one of the methods for cross-linking in the 
creation of hydrogels, typically involving the use of enzymes. Comprehending the 
kinetics of these enzymes allows us to employ them to catalyze the gelation 
formation process. For example, horseradish peroxidase, a protein that in the pres-
ence of hydrogen peroxide, oxidizes phenols, thus initiating carbon–oxygen (C-O) 
or carbon–carbon (C-C) bonds between the two phenols. Another illustrative exam-
ple is the cross-linking of layers by the monophenol residues [46]. Another illustra-
tive example is utilizing the synergistic bridging of triazoles and metal ions to induce 
the formation of porous enzyme-assembled hydrogels with reusability and increased 
activity. The catalytic efficiency of the prepared enzyme-assembled hydrogels 
toward acetophenone reduction is 6.3 times higher than that of the free enzyme 
[47], as demonstrated in Fig. 3.10. 

3.2.3.2 Molecular Recognition 

Biomolecular recognition represents another significant approach in biological 
cross-linking. Essential molecules for recognition and signaling, such as



antigen-antibody pairs and transmembrane proteins with their ligands, are prevalent 
in organisms, facilitating fundamental life functions. Miyata and his colleagues 
devised a number of hydrogels responsive to biomolecules. For example, they 
developed a structure incorporating immunoglobulin G (IgG) as both the antigen 
and antibody, wherein IgGs promote the coalescence of monomers, leading to the 
hydrogel’s gelation [48]. As depicted in Fig. 3.11, a buffer solution featuring 
biotinylated Tetra-PEG undergoes a phase transition from a sol to a gel state in 
response to Avidin used as a target biomolecule. Upon the addition of Biotin, the 
solution instantaneously reverts to a sol state due to the formation of a biomolecular 
complex between Avidin and Biotin [49]. 
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Fig. 3.10 Schematic of EAG preparation. 1H-3-methyl-1,2,4-triazole (Hmtz) and Mg2+ ions were 
added to the enzyme solution before the pregelation and gelation processes, respectively. The left 
three local structures show some potential interaction sites of Hmtz on the protein surface; the right 
three local structures show the possible coordination spheres of Mg2+ at the bridging interface 
(Reprinted with permission from Ref. [47]. Copyright 2023, Springer Nature) 

Fig. 3.11 Schematic representation of the sol-gel transition of a buffer solution with biotinylated 
Tetra-PEG in response to free avidin and biotin (Reprinted with permission from Ref. [49]. Copy-
right 2019, RSC) 

Every gelation system comes with its own set of advantages and disadvantages. 
For example, physical cross-linking methods, while convenient, typically result in 
weaker structures. On the other hand, chemically cross-linked systems have superior



mechanical strength. However, the chemical cross-linking process often involves 
substances that may have detrimental impacts on cells. When it comes to biological 
cross-linking, the use of bioactive particles can lead to instability, as these particles 
are susceptible to denaturation or degradation. The benefits and drawbacks of each 
gelation system are detailed in Table 3.3. 
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3.3 Properties of Hydrogels 

Owing to their distinctive network structure, hydrogels exhibit a range of physical 
and chemical properties including high-water content, robustness, toughness, elas-
ticity, extensibility, biodegradability, and biocompatibility. These properties can be 
meticulously controlled to align with the specific demands of applications in diverse 
areas such as tissue engineering, biomedicine, biosensors, and environmental engi-
neering. This discussion explores inherent characteristics of hydrogels including 
their swelling/nonswelling behavior, mechanical attributes, degradation properties, 
and biocompatibility. 

3.3.1 Swelling/Nonswelling Properties 

Swelling property is an inherent property of hydrogels. Because of the interleaved 
three-dimensional network structure and high porosity inside hydrogels, they can 
store large amounts of water (up to 50% and above). The swelling capacity is usually 
measured by weighing method. Hydrogels were removed from solution, blotted with 
filter paper to eliminate excess medium from the surface and weighed at regular 
intervals. The swelling capacity is calculated as the following Eq. (3.1) at different 
time points [50, 51]. 

SC= 
ws -wd 

wd 
× 100% ð3:1Þ 

where SC (%) is the swelling capacity, ws is mass of the wet hydrogels, wd is mass of 
the dried hydrogels. 

Initially, PAA hydrogels improve the swelling capacity of hydrogels from several 
times to thousands of times. However, the biggest problem of PAA hydrogel is that it 
cannot be degraded. Therefore, many studies have been carried out on the degrad-
ability of superabsorbent hydrogels. Achieving the equilibrium between absorbabil-
ity and degradability will also be the development trend of superabsorbent hydrogels 
in the future. High-water content makes hydrogels have the characteristics (such as 
permeability for various chemical and biological molecules) like the liquid. So, it has 
a broad application prospect in many fields such as biology and medicine. High-
water content gives hydrogels these excellent properties and expands their



(continued)
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Table 3.3 Different cross-linking mechanisms and their respective advantages and disadvantages 

Cross-linking mechanism Pros Cons 

Physical 
cross-
linking 

Microdomain Strong mechanical properties – 

Helical 
association 

Simple synthesis method – 

Crystalline 
domain 

Enhancing the mechanical 
properties of hydrogels to 
exhibit exceptional characteris-
tics such as toughness, strength, 
resilience, and fatigue resistance 

Raising the temperature of 
semicrystalline polymer net-
works beyond their melting 
points can lead to the disruption 
of their crystalline regions 

Hydrogen 
bond 

Transient; reversible – 

Electrostatic 
interaction 

Simple synthesis method Require low ionic strength of 
the solvents for the hydrogels 
to avoid charge shielding 

Coordination 
complex 

Mechanical properties can be 
tuned 

– 

Host–guest 
interaction 

High efficiency; mild reaction 
conditions 

Only specific groups 

Hydrophobic 
association 

Transient; reversible – 

π–π stacking Transient; reversible Only aromatic groups; weak 
mechanical properties 

Chemical 
cross-
linking 

Carbon–car-
bon bond 

High efficiency; high specificity Need external energy (e.g., 
UV, gamma, and electron 
beams) 

Carbon– 
nitrogen bond 

High reaction efficiency; 
mechanical properties can be 
regulated by adjusting the con-
centration and ratio of the poly-
mers and cross-linking agents; 
Azide-alkyne cycloaddition 
reaction has good biocompati-
bility without side reactions 

Small molecule residue 

Carbon–oxy-
gen bond 

High efficiency Degradable under ambient 
temperature and physiological 
conditions 

Carbon–sul-
fide bond 

High efficiency; conversion rate 
of the reaction is notably high, 
with no formation of side 
products 

Heat and/or UV light 

Silicon–oxy-
gen bond 

High reaction efficiency High-temperature/high-energy 
excitation 

Boronate 
ester bond 

Usually can dynamically 
restructure after fracture, mak-
ing the resultant hydrogels 
injectable and self-healable 

– 

Disulfide 
bond 

Have the ability to undergo 
dynamic restructuring following 

Potentially toxic chemicals 
involved



fracture, thereby enabling them
to be injectable and self-healing
in nature

applications. Since hydrogels directly exposure in air, which can remove water 
inside them, so the preservation of hydrogels becomes a major issue limiting their 
application.
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Table 3.3 (continued)

Cross-linking mechanism Pros Cons 

Hydrazone 
bond 

Simple synthesis method; high 
specificity; can be easily tuned 

– 

Oxime bond High efficiency; mild conditions – 

Diels–Alder 
reaction 

Biocompatible without cyto-
toxic side products; higher 
hydrolytic stability 

– 

Schiff’s base 
reaction 

Sensitivity to a wide range of 
chemical and biological stimuli, 
such as pH, free amine, and free 
aldehydes. Makes them suitable 
for applications in biomedicine 
as self-healing materials and 
injectable scaffolds 

– 

Biological 
cross-
linking 

Enzymatic 
cross-linking 

High specificity Specific conditions; side effects 

Biomolecule 
recognition 

– Rapid degradation 

However, how to control the swelling and response behavior of hydrogels to 
make them more widely used (such as pH response) is still a research hotspot. Si 
et al. developed highly elastic, cellular-structured nanofibrous hydrogels (NFHs) 
with adjustable water content, enabling them to monitor dynamic pressure over an 
extensive range (>50 Pa), and offering strong sensitivity (0.24 kPa-1 ) and durability 
(100 cycles) [52]. Another noteworthy example is a hydrogel device designed to be 
swallowed like an ordinary pill, which expands into a large soft sphere once ingested 
[53] (Fig. 3.12). 

Despite the exceptional qualities of hydrogels, their applicability can be limited 
due to a phenomenon known as “swelling,” which is triggered by differences in 
osmotic pressure. Swelling can significantly reduce the mechanical toughness of the 
hydrogels. Additionally, if hydrogels show hysteresis during deformation, the equi-
librium between osmotic and elastic energies is lost when part of the polymer 
network breaks, even if only temporarily. This leads to further swelling, and 
sustained mechanical stress can ultimately lead to the hydrogel’s destruction 
[54]. To tackle this issue, the concept of nonswelling was introduced. A viable 
strategy involves incorporating thermoresponsive segments to control swelling and 
thus maintain the initial shape of a robust hydrogel that can function under physi-
ological conditions [55].
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Fig. 3.12 High-speed and high-ratio swelling of the ingestible hydrogel device. (a) Time-lapse 
images of the hydrogel device swelling in water (pH = 7); (b) volume changes of the hydrogel 
device (membrane modulus 3 kPa), air-dried hydrogel, and freeze-dried hydrogel of the same size
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3.3.2 Mechanical Properties 

For the practical application of hydrogels, achieving requirements for specific 
mechanical properties is one of the most prominent issues. Due to the fragility of 
hydrogel, mechanical tests were usually conducted using a universal testing machine 
with a load speed of 5–10 mm/min using a 100–500 N load cell. Rectangular 
specimens (5–10 mm width, 40–50 mm length, and 3–10 mm thickness) were 
prepared for tensile testing (n ≥ 3) [56, 57]. 

Hydrogels, depending on their preparation process and composite materials, can 
exhibit mechanical strengths varying from a few Pascals to several hundred MPa, 
opening up possibilities for their use across diverse fields [58]. Chemically bonded 
hydrogels generally demonstrate respectable mechanical strength and durability, and 
dual cross-linked network hydrogels exhibit enhanced mechanical characteristics 
[59]. Nanocomposite-based supramolecular networks can show superior stretchabil-
ity and tensile strength, expanding the range of potential applications for hydrogels, 
such as in flexible wearable sensors [60]. Furthermore, the mechanical properties of 
hydrogels are a critical consideration in the development of devices using 3D 
printing technology [61]. A typical case is constructing dual-physical cross-linking 
networks based on PVA and chitosan to achieve varied mechanical strength 
hydrogels by 3D printing (Fig. 3.13). 

3.3.3 Biodegradability 

Biodegradability is one of the basic characteristic activities of hydrogel carriers 
(drug, protein, gene, and macromolecule) entering organisms. The organism con-
sumes and absorbs the carrier by an enzyme or other active molecule, and the carrier 
also acts on the organism in turn, affecting the rate of its reaction. The degradation 
mechanism of hydrogels is attributed to the break of polymer molecular chains. 
There are three main degradation pathways: hydrolysis (such as synthetic hydrogels 
PEG and PLA), enzymatic hydrolysis (such as collagen, gelatin and HA) and 
dissolution (such as ion cross-linked sodium alginate hydrogels) [62]. According 
to the different degradation mechanisms of hydrogels, certain shape hydrogels were

Fig. 3.12 (continued) as a function of swelling time in water; (c) comparison of the swelling ratios 
and speeds in water between the hydrogel device in current work and previously reported 
hydrogels; (d) volume changes of the hydrogel devices with various membrane moduli as functions 
of swelling time in water. (e) volume changes of the hydrogel devices (membrane modulus 3 kPa) 
as functions of swelling time in porcine gastric fluid and SGF (pH = 3); (f) swelling ratios of the 
hydrogel devices with various membrane moduli in water, SGF (pH = 3), and porcine gastric fluid; 
(g) swelling speeds of the hydrogel devices with various membrane moduli in water, SGF (pH = 3), 
and porcine gastric fluid. Scale bar is 10 mm in (a). Data represent the mean ± s.d. (N = 3) 
(Reprinted with permission from Ref. [53]. Copyright 2019, Springer)



placed in the water environment/body fluid environment in vitro or in vivo. The mass 
changes before and after degradation was calculated and compared at regular 
intervals in laboratory. The degradation behavior (degradation rate or degradation 
percentage) of hydrogels could be obtained by the dry state weighing method 
[62]. More detailed terms are specified in ISO 10993-9-2019 (framework for iden-
tification and quantification of potential degradation) and ISO 10993-13-2010 (iden-
tification and quantification of degradation products from polymeric medical 
devices).
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Fig. 3.13 (a, b) The hybrid hydrogel ink, consisting of PVA and chitosan, used to manufacture 
desirable complex structures by DIW relying on the rheology. (c) The dual-step post processing: 
cyclic freezing-thawing and soaking into Sodium citrate solution. (d) The dominant molecular 
interactions in the whole manufacturing steps (Reprinted with permission from Ref. [61]. Copyright 
2017, American Chemical Society) 

Due to the nonuniformity of hydrogels, they will degrade during practical appli-
cation, especially in organisms. Through composition control and structure design, 
the time and rate of carriers’ biodegradation can be controlled. A new self-healing 
hydrogel was created using chitosan-fibrin (CF) as the base material. As exhibited in 
Fig. 3.14, this hydrogel demonstrated injectability and underwent approximately 
70% degradation within a span of 2 weeks. Notably, it successfully restored blood 
circulation in the ischemic hindlimb of mice, showcasing its potential therapeutic 
capabilities [62].
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Fig. 3.14 Mechanical, porosity and degradation characteristics of GO-GelMA hybrid hydrogels. 
(a) Compressive modulus varies with the GO concentration and UV-exposure time. SEM cross-
sectional images of hydrogels with (b) 5% GelMA (0 mg/mL GO, 120 s exposure) and (c) 
GO-GelMA hybrid (1.0 mg/mL GO, 360 s exposure) reveal similar porosity before collagenase 
degradation; (d) Degradation profiles of hydrogels with various GO concentrations when exposed 
to collagenase. SEM cross-sectional images of (e) GelMA and (f) GO-GelMA hydrogels reveal 
distinctively different gel morphologies after degradation with collagenase for 24 h. In the inset of 
(f), the yellow arrow indicates a folded GO sheet (Reprinted with permission from Ref. [62]. Copy-
right 2017, Wiley-VCH) 

3.3.4 Biocompatibility 

Biocompatibility refers to the performance of living tissues in response to inactive 
materials, generally refers to the compatibility between materials and hosts. After 
implanted into the organisms, the biological material will exert influence and effect 
on the specific biological tissue environment, and the biological tissue will also exert 
influence and effect on the biological material. The cyclic effect of the two will 
continue until the balance is reached or the implant is removed. Conventional 
biological assessment involves the examination of the interactions between materials 
and the body at the cellular and tissue levels, considering both short-term and long-
term effects. This evaluation utilizes various morphological detection methods, 
including cytotoxicity, sensitization, stimulation, systemic toxicity (acute toxicity), 
subchronic toxicity (subacute toxicity), genotoxicity, implantation, chronic toxicity, 
carcinogenicity, reproductive and developmental toxicity, and biodegradation. ISO 
standards such as ISO 10993-5-2009, ISO 10993-3-2014, ISO 10993-4-2017, ISO 
10993-10-2010, ISO 10993-23-2021, ISO 10993-11-2017, and ISO 10993-6-2016 
outline specific tests for various aspects of biological evaluation. These include 
in vitro cytotoxicity tests, tests for genotoxicity, carcinogenicity, and reproductive



toxicity, tests for interactions with blood, tests for irritation and skin sensitization, 
tests for irritation, tests for systemic toxicity, and tests for local effects after 
implantation. 
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Fig. 3.15 In vitro and in vivo biocompatibility studies. (a) MTT activities (absorbance at 490 nm) 
of primary epidermal keratinocytes on tissue culture polystyrene dish (TCPS) control and DMDC-
Q-g-EM hydrogel (entry 6). Error bars represent mean standard deviation of mean for n = 3; (b, c) 
LIVE/DEAD analysis of primary epidermal keratinocytes on TCPS control (b) and DMDC-Q-g-
EM hydrogel (entry 6) (c) after 7 days of culture; (d–g) microscopic observations of hematoxylin– 
eosin-stained frozen sections of conjunctiva: (d) Normal conjunctiva epithelium showing normal 
epithelium and stromal blood vessels; (e) PO day 5 positive control, tissue overlying the surgically 
created pocket without a lens implant; (f) PO day 5, tissue overlying the pocket with an uncoated 
lens; (g) PO day 5, tissue overlying the pocket containing a DMDC-Q-g-EM hydrogel-coated lens 
(entry 9). White arrows indicate the conjunctival epithelium and black arrows indicate blood vessels 
[63] (Reprinted with permission from Ref. [63]. Copyright 2011, Springer) 

Biocompatibility is an eternal theme throughout the research of biomaterials. At 
present, many studies have tried to reach equilibrium state of biocompatibility and 
other function to improve the efficiency of biomaterials utilization. For example, Li 
et al. have reported an antimicrobial hydrogel that incorporates 
dimethyldecylammonium chitosan with high quaternization, grafted with poly(eth-
ylene glycol) methacrylate (DMDC-Q-g-EM), and poly(ethylene glycol) diacrylate. 
This innovative hydrogel effectively meets the demands for antibacterial and anti-
fungal properties while also exhibiting biocompatibility [63] (Fig. 3.15). 

3.3.5 Other Properties 

Later, thanks to the abundance of groups in hydrogels, scientists developed more 
functions of hydrogels to meet the new needs in partial applications such as 
conductivity, adhesiveness, lubrication, luminescence, anisotropy, self-healing 
properties, antimicrobial ability, self-healing ability, antimicrobial properties and 
shape-memory capability. Or researchers are using more sophisticated methods to 
produce specific microstructure hydrogels with excellent properties, such as 3D



printing and 4D printing. As illustrated in Fig. 3.16, a multifunctional hydrogel 
based on catechol-conjugated chitosan (CHI-C) was developed, which exhibited 
adhesion, self-healing, cytocompatibility, hemocompatibility, and the ability to 
promote blood cell coagulation. The hydrogel was prepared by cross-linking alde-
hyde-modified cellulose nanocrystals (DACNC). The presence of abundant amine 
groups in CHI-C and aldehyde groups in DACNC facilitated the formation of strong 
hydrogels at room temperature through dynamic Schiff-base linkages. Additionally, 
the inclusion of DACNC nanofillers contributed to the reinforcement of the hydrogel 
structure. The hydrogel’s role in the entire process of bone defect healing, from
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Fig. 3.16 Macroscopic self-healing behavior of the catechol-conjugated chitosan/aldehyde-mod-
ified cellulose nanocrystal (CHI-C/DACNC) hydrogel: (a) Two disk-shaped original hydrogels 
(one of the hydrogels is colored with a dye for better observation); (b) the hydrogels are cut in half 
and then put together; (c) the hydrogels healed completely into one block quickly at room 
temperature without any external stimuli. Injectable performance of the CHI-C/DACNC hydrogel; 
(d) the hydrogel is loaded into a syringe with a needle (23-gauge) and then is extruded directly 
through the needle without clogging; (e) the broken hydrogel fragments reformed an integrated 
hydrogel immediately at room temperature without any stimuli; (f–g) the CHI-C/DACNC adhesive 
self-healing hydrogel could be molded into various shapes (Reprinted with permission from Ref. 
[64]. Copyright 2021, American Chemical Society)



hemostasis to tissue regeneration, was investigated, and it was found to promote 
tissue adhesion, facilitate hemostasis, and support bone regeneration [64].
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3.4 Drug Delivery Hydrogels 

Traditional dosing methods often require large doses or repeated dosing to achieve 
therapeutic effects, which will lead to reduced compliance of patients and also prone 
to large fluctuations in drug concentrations in vivo during treatment [55]. When the 
concentration of drugs is higher than the concentration required for treatment and the 
maximum safe level, it might be toxic and cause certain side effects to human body 
[65]. On the other hand, due to the poor targeting of traditional therapies, drug 
molecules must pass through multiple biological barriers and resist degradation in 
various chemical environments before finally acting on the target site [66]. Drug 
concentrations can decrease through diffusion, degradation, and metabolism, which 
limits their effectiveness. Therefore, controlling the quantitative release of drugs at 
specific sites in a certain way is in demand, which can maintain the stability of blood 
drug concentration, thereby improving the therapeutic effect of drugs, reducing 
dosing frequency [67]. 

As a particularly attractive new drug delivery system, hydrogels have made 
various achievements in the field of drug delivery in recent years. Various hydrogels 
are being developed, such as supramolecular hydrogels [68], DNA hydrogels [69], 
bio-inspired hydrogels [70], multifunctional hydrogels, stimuli-responsive 
hydrogels [71], and so on. Reported in many applications, the drug can be dispersed 
in hydrogels and delivered in a controlled and stable manner under specific condi-
tions or for a long period [72]. To put it simply, the hydrogel is a kind of drug storage 
from which drugs slowly elute, maintaining a high local concentration of drug in the 
surrounding tissues over an extended period [65]. At the same time, hydrogels offer 
a merit that protects labile drug from degradation [72]. Therefore, it is a very efficient 
drug delivery system with a wide range of application prospects. 

The research on drug loading and drug release of hydrogel in recent years are 
mainly introduced in this part, and an outlook on future directions of hydrogel-based 
drug delivery systems is provided at the end. 

3.4.1 Various Drug Loading Strategies 

Incorporation of drugs or bioactive molecules into hydrogels is a prerequisite before 
their release. By strategically designing the interactions between the drug and the 
polymer chain, the release of the drug from the hydrogel can be regulated. In this 
section, various drug loading strategies are introduced, such as physical incorpora-
tion, covalent tethering, and affinity interactions [67].
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3.4.1.1 Physical Entrapment of Drugs in Hydrogels 

To load small molecules, the most straightforward approach is immersing the fully 
formed hydrogel in a drug-saturated medium. The drug will gradually permeate the 
gel, influenced by factors such as gel porosity, the unique physical and chemical 
properties of each component, as well as the drug’s size. Once applied in vivo, the 
drug can freely diffuse out of the hydrogel and into the neighboring tissue. This 
combination strategy enables the convenient physical incorporation of drugs into the 
hydrogel network. The physical capture and release of drugs by hydrogels were only 
affected by concentration gradient and cross-linking density of hydrogels [72]. 

3.4.1.2 Covalent Tethering of Drugs to Hydrogels 

Nonetheless, when dealing with larger drugs, proteins, macromolecules, and bio-
logical ligands that cannot be easily contained through basic physical entrapment 
due to their size, the encapsulation and incorporation of these substances need to be 
achieved through methods such as encapsulation or covalent bonding during the 
gelation process. The drug and polymer are linked by covalent bonds with highly 
stable covalent binding, because of which the drug is retained in the hydrogel and 
released until the bond is subjected to environmental changes or cleaved over time. 
A variety of cleavable covalent connections exist, spanning from small-molecule 
connections like ester bonds, disulfide bonds, and linkages that can be cleaved 
through β-elimination, to larger, macromolecular connections such as those found 
in peptide sequences. The rate of drug release depends on the rate of cleavage of the 
linker [72]. 

As shown in Fig. 3.17, Sun et al. designed a dual-cross-linked hydrogel (DC-gel) 
with a unique nanoscale network topology, in which substantial mechanical stability 
provided by the permanent cross-linker can minimizes drug leakage under intrinsic 
mechanical stress, while the dynamic cross-linker effectively responds to external 
ultrasound stimuli [73]. The model drug tannic acid (TA) is linked to the hydrogel 
via dynamic covalent bonds to further reduce endogenous force-induced release. 
This novel drug delivery system, which can be reliably used under substantial 
mechanical loads and releases drugs on demand in response to external mechanical 
forces, could be used to treat diseases of load-bearing tissues such as muscle and 
cartilage. 

3.4.1.3 Affinity Binding of Drugs with Hydrogels 

Leveraging diverse physical attractions presents an effective strategy to maintain the 
containment of drugs within hydrogel networks. This approach benefits from the 
attraction between two molecules that results from opposing charges, hydrophobic 
interactions, hydrogen bonding, and/or van der Waals forces [72].
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Fig. 3.17 Schematic illustration of a modular DC-gel network composed of dynamic covalent 
interactions (blue polygon) and permanent covalent cross-linking (red diamond) [73]. The com-
pound 4-(aminomethyl) phenyl boronic acid (PhB) was bonded with hyaluronic acid (HA) to 
produce PhB-HA. Subsequently, this product was reacted with methacrylic anhydride to form 
PhB-mHA. Hydrogels were then synthesized through the copolymerization of PhB-mHA and four-
armed polyethylene-glycol acrylate (4-arm-PEG-Aclt), creating a pregel only containing the per-
manently cross-linked network. This pregel was then submerged in a phosphate buffer saline (PBS, 
pH = 7.4) solution with various tannic acid (TA) concentrations, ultimately leading to the final 
DC-gel. The hydrogel backbone is connected with TA by dynamic covalent boronate ester linkages 
(Reprinted with permission from Ref. [73]. Copyright 2018, Springer) 

Electrostatic Interactions 

Many drugs and polymers that carry charges can be combined by electrostatic 
interaction and thus have a strong affinity. Drug release occurs either when the 
hydrogel undergoes degradation or when the electrostatic interactions are masked by 
the presence of mobile ions from the surrounding environment. For example, as 
shown in Fig. 3.18, Ding’s team successfully engineered a pH-responsive DC-gel 
loaded with gentamicin (Gen) that boasts superior mechanical properties and 
sustained antibacterial activity. This was achieved by carrying out free radical 
polymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA), 
with the antibiotic Gen serving as the dynamic physical cross-linker. Positively 
charged Gen binds to negatively charged acrylic monomers through electrostatic 
interactions, thus incorporating the drug into the hydrogel [74]. The electrostatic 
interaction between the two can be regulated by pH to control the release of the drug. 
The hydrogel infused with Gen demonstrated its efficacy in eradicating bacteria in 
wounds and notably hastening the wound healing process. As such, it could poten-
tially serve as a superior substitute for anti-infective dressings in treating wounds 
afflicted by bacterial infection. 

Hydrophobic Associations 

Hydrophobic drugs are inherently incompatible with the hydrophilic hydrogel net-
work. In order to improve load efficiency and sustained release of drugs, the 
hydrogels delivery system could be designed. For example, coating hydrophobic



drugs with hydrophilic components prior to incorporation into hydrogels, or intro-
ducing hydrophobic domains into hydrogel networks [67], which can make 
hydrogels have hydrophobic properties, so that they are more suitable for loading 
hydrophobic drugs. As shown in Fig. 3.19, in Huong’s study, physically/chemically 
DC-hydrogel was designed, utilizing norbornene-functionalized chitosan oligosac-
charide (COS-Nb) and tetrazine-functionalized alginate (Alg-Tz) [75]. This design 
achieved exceptional hydrophobic drug loading efficiency. This accomplishment 
was made possible through Nb-Tz chemical cross-linking, employing a hydrophobic 
interaction mechanism that involved the drug, Nb-Tz cross-linkages, and Nb groups. 
This approach effectively addressed challenges such as premature drug release in 
gastric conditions, instability of a singular electrostatic network, and the limited drug 
loading capacity of hydrophobic drugs. This work opens a possible route to prepare 
hydrophilic hydrogels from natural polysaccharides for the delivery of hydrophobic 
drugs. 
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Fig. 3.18 Schematic illustration for the fabrication of DC-gel P(AA-co-HEMA) loaded with Gen 
[74]. P(AA-co-HEMA) hydrogels were synthesized through free radical polymerization of AA and 
HEMA, with ammonium persulfate (APS) employed as the initiator and cross-linked using MBAA 
in diverse compositions. Following this, the P(AA-co-HEMA) hydrogels were submerged in a Gen 
solution to establish the second network, leveraging the electrostatic interactions between the 
carboxyl groups of polyacrylic acid and the amino groups of Gen (Reprinted with permission 
from Ref. [74]. Copyright 2022, Wiley-VCH) 

Hydrogen Bond Interaction 

Hydrogen bonds represent feeble diatomic associations that occur between an 
electron-deficient hydrogen atom and an electron-rich atom, typically oxygen or 
nitrogen. Given their noncovalent and reversible nature, hydrogen bonds ensure the 
regulated release of the target drug in response to specific stimuli. Hydrogen bonding 
is also one of the drug loading strategies for hydrogels [76]. A case in point by 
Song’s group, as shown in Fig. 3.20, hydrophilic PVA and certain hydrophobic 
compounds (luteolin (LUT), quercetin (QUE), and myricetin (MYR)) were swiftly
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Fig. 3.19 Illustration of mechanism of hydrophobic drug loading and sustained release with the 
hydrophobic interaction between the drug and hydrogel matrix [75]. The double DC-hydrogels 
featuring the Nb-Tz hydrophobic linkages, can engage in hydrophobic interactions with the 
hydrophobic drug, thereby considerably enhancing the drug loading capacity. The discharge of 
Ketoprofen (KP) from the hydrogels is suppressed at a pH level of 2.2, whereas the release notably 
escalates at a pH level of 7.4 (Reprinted with permission from Ref. [75]. Copyright 2022, Elsevier) 

Fig. 3.20 Proposed formation mechanisms of ultra/microhydrophobic cross-linked self-assembled 
hydrogel [77]. Hydrophobic drugs were used as cross-linkers to produce drug delivery hydrogels. 
PVA and hydrophobic drugs were rapidly prepared into supramolecular hydrogels by evaporating 
ethanol to drive hydrogen bond formation. Reversible hydrogen bonds are formed between PVA 
and hydrophobic drugs through a simple supramolecular self-assembly process (Reprinted with 
permission from Ref. [77]. Copyright 2021, American Chemical Society)



transformed into a supramolecular hydrogel, which is accomplished by evaporating 
ethanol to stimulate the creation of hydrogen bonds [77]. In this drug delivery 
system, the intermolecular hydrogen bonds that form between the hydrophobic 
drug and the hydrophilic polymer serve to restrict the drug’s aggregation, conse-
quently enhancing its solubility within the gel. At the same time, since the hydrogen 
bond formed between PVA and the drug is noncovalent and reversible, the hydrogel 
exhibits excellent flexibility and self-healing attributes. Moreover, the release of 
drugs can be regulated by adjusting the output stimuli. This approach can be further 
employed to formulate hydrogels with other natural molecules that have poor 
solubility, broadening its potential for clinical applications.
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Ionic Interactions 

Ionic interactions, which naturally occur between two molecules of opposite 
charges, can also be utilized to manage drug delivery. Cationic polymers, charac-
terized by a high density of positive charge groups, can be melded with negatively 
charged molecules to generate stable complexes [72]. The drug can be retained in the 
hydrogel by ion binding between the hydrogel and counterionic drug molecules, and 
the release of drug molecules can be triggered by the degradation of ionic hydrogel 
or the change of pH. As illustrated in Fig. 3.21, Olate-Moya et al. prepared a novel 
injectable hydrogel that is responsive to pH and controls the release of doxorubicin 
hydrochloride (DOX) [78]. This was achieved by incorporating graphene oxide 
(GO) into polysyringane (PPR) hydrogels, which are formed by inclusion complexes 
between PEG and α-CD. The supramolecular hydrogels could easily be loaded with 
DOX due to the attractive ionic interactions between DOX molecules and the 
carboxylate groups of GO sheets. The resulting nanocomposite displayed a potent 
pH-responsive drug release mechanism, which was especially quick in acidic con-
ditions. This responsive behavior can be attributed to the protonation of GO carbox-
ylate groups at such pH levels, which reduces the interactions with DOX and 
consequently initiates its release (Table 3.4). 

Proteins in traditional hydrogels are physically retained, and methods to bind 
proteins in hydrogels by affinity through binding sites such as heparin, peptides and 
aptamers have also been developed [79]. Advantages and disadvantages of various 
methods are listed in Table 3.4. There are other affinity effects like host–guest 
interactions such as host–guest interaction [80], coordination bonds, π–π stacking, 
and so on. 

3.4.2 Drug Release Mechanism in Hydrogel 

Various processes are involved in the release of drugs from hydrogels. In many 
hydrogels, there isn’t an immediate or notable swelling when they are transferred to a 
release environment [81]. In such cases, diffusion becomes the primary mode that



regulates the release of drugs from hydrogels, often referred to as diffusion-
controlled release [82]. The process of drug release can be effectively described 
using Fick’s laws of diffusion. Yet, there are certain hydrogels that can experience 
rapid and substantial swelling upon exposure to an aqueous environment. Before the 
hydrogels begin to swell, the drugs are typically in a stationary state. When the 
hydrogels transition from a glassy to a rubbery phase during swelling, the drugs start 
to diffuse rapidly. The rate at which the entrapped drugs are released largely depends 
on the extent of swelling, a process known as swelling-controlled release. Besides 
physically enclosing drugs within the hydrogels, it’s also possible to chemically 
attach drugs to the chains of hydrogels. The rate of drug or protein release from these 
hydrogels is primarily determined by the degradation rate of the hydrogel chains, any 
mechanical changes, and alterations in the interactions between the polymer and the 
drug, a process referred to as chemically controlled release [83]. 
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Fig. 3.21 Schematic representation of PPR formation and possible GO interactions with PEG 
chains, free α-CD, DOX molecules, and PPR structures [78]. PEG chains and α-CD molecules can 
adhere to GO sheets through hydrogen bonding, which in turn slows down the production of PPR. 
Additionally, PPR can engage with GO via hydrogen bonds formed between the outer hydroxyl 
groups of the inclusion complex and the hydrogen donor/acceptor groups present on 
GO. Furthermore, DOX molecules can form connections with GO via two means: ionic bonds 
(established between the ammonium group of DOX and the carboxylate groups of GO) and π–π 
interactions (between the aromatic rings of DOX and the basal plane of GO) (Reprinted with 
permission from Ref. [78]. Copyright 2021, Wiley-VCH) 

Through network design and mathematical modeling, Chien-Chilin described 
several mechanisms of molecular release in polymer hydrogel system, including



diffusion, swelling and chemically controlled release [81]. He infers that the phys-
icochemical properties of the hydrogel network and the choice of drug loading 
method will determine the mechanism of drug release. The advantages and disad-
vantages of different delivery strategies are summarized as shown in Table 3.5 [72]. 
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Table 3.4 Release mechanisms, advantages, and disadvantages of hydrogels for protein delivery 
[79] (Reprinted with permission from Ref. [79]. Copyright 2021, Elsevier) 

Type Characteristics Mechanism Advantages Disadvantages 

Traditional 
Hydrogels 

Proteins are physically retained 
in matrix 
No specific binding sites for 
protein drugs 

Diffusion Simple Poor protein 
sequestration 
Significant 
burst release 

Heparin-
based 
Hydrogels 

Heparins serve as binding sites 
for proteins 
Binding affinity can be adjusted 
by varying heparin concentra-
tion and sulfation pattern 

Reaction-
diffusion 

Low burst 
release 
Promiscuous 
interaction 
With variety of 
proteins 

Safety con-
cern due to 
Derivation 
from animal 
tissues 
Low 
specificity 

Peptide-
based 
Hydrogels 

Peptides serve as binding sites 
for proteins 
Binding affinity can be adjusted 
by varying 
Peptide affinity and 
concentration 

Reaction-
diffusion 

Reduced burst 
release 
High 
biocompatibility 

Low binding 
affinity 
High peptide: 
Protein ratio 

Aptamer-
based 
Hydrogels 

Aptamers serve as binding sites 
for proteins 
Binding affinity can be adjusted 
by varying aptamer affinity and 
concentration 

Reaction-
diffusion 

Low burst 
release 
High affinity 
and specificity 
High biocom-
patibility 
Spatiotemporal 
release 
Control 

Limited avail-
ability of 
aptamers 

Table. 3.5 Advantages and disadvantages of delivery approaches [72] (Reprinted with permission 
from Ref. [72]. Copyright 2014, Elsevier) 

Delivery strategies Advantages Disadvantages 

Physical incorpo-
ration-simple 
Diffusion 

Straightforward and simple 
formulation 

Initial burst release; limited control 
over release profile 

Covalent tethering Controlled release profiles upon 
degradation of polymer-therapeutic 
linkages or hydrogel backbone 

Issues regarding maintaining thera-
peutics’ stability and biological 
activity 

Affinity binding Controlled release kinetics; thera-
peutics 
Loading of lyophilized scaffolds 
can be 
Regulated via physical interactions 

Potentially limited release of bioac-
tive molecules possessing high 
affinity with biomaterials



3 Versatile Hydrogels in Regenerative Medicine 99

3.4.2.1 Diffusion-Controlled Delivery Mechanism 

For hydrogel systems containing physically incorporation drugs, the release curve is 
usually simple diffusion. In this system, the transport of drug molecules through a 
polymer network is driven by concentration gradients. If there’s no interaction 
between the hydrogel matrix and the drug molecules, a rapid initial discharge 
typically occurs, which is later followed by a minor delayed release at a subsequent 
point in time. Here, the cross-linking density of the polymer network is an important 
design parameter for the release curve. The increase in cross-linking density 
decreases the average molecular distance between adjacent cross-links, thus reduc-
ing the mesh size of the hydrogel. As a result, the diffusivity of the drug factor is 
reduced. At the same time, it can act as a molecular confinement because the smaller 
mesh size increases the interaction of the molecule with the hydrogel network. Over 
time, the cross-linking density of volumetric degraded hydrogels decreases, which 
increases the pore size of the network and accelerates the transport of molecules 
(Fig. 3.22). 

In Yasin’s work, a local drug delivery system was developed, comprising of 
polycaprolactone (PCL) microspheres filled with methadone hydrochloride/PEG-
based hydrogels [84]. The outcomes demonstrated that the drug release could be 
regulated by both the dual-barrier matrix (hydrogel/microsphere) and the 
cross-linking density within the hydrogels. In order to examine the impact of 
cross-linking density on the release pattern of the water-loving drug, methadone 
hydrochloride, two varieties of pure PEG-based hydrogels were created using two 
cross-linker agents of varying sizes. The cross-linking density of the hydrogel could 
be reduced by extending the spacer between functional groups involved in the click 
reaction. The findings suggested that the cross-linking density of hydrogels could 
play a significant role in modulating the drug release profiles. 

As illustrated in Fig. 3.23, Preeti et al. used PEG as a cross-linking agent to graft 
polyacrylamide-acrylic acid hydrogel onto cotton fabric to form drug dressing 
composite [85]. Upon applying the drug release data to the Peppas model, as well 
as the first and second-order kinetic equations, it was observed that drug release is 
managed by diffusion and follows the Fickian diffusion mechanism when PEG is 
used as a cross-linker in the preparation of the composite. 

In swelling-controlled drug delivery systems, the thermodynamic compatibility 
between the polymer chains and water triggers swelling of the polymer when it 
comes into contact with water-based solutions [86]. As water infiltrates the glassy 
network, the glass transition temperature of the polymer drops, causing the hydrogel 
to become rubbery. The drug that is encapsulated within the hydrogel then dissolves 
into the absorbed water and starts diffusing out of the network. 

This occurrence is driven by three forces: the gradient of the penetrant concen-
tration, gradients in polymer stress, and osmotic forces. In a nonswelling-controlled 
delivery system, the rate at which the polymer relaxes is much slower than the rate of 
water transport inside the hydrogel. Consequently, the transport mechanism of such 
systems follows Fickian diffusion. When the relaxation of the macromolecular



chains becomes the dominating force, Case II transport is seen. However, an 
anomalous transport mechanism, which is characterized by a combination of Fickian 
diffusion and Case II transport, has been noted in many swelling-controlled delivery 
systems, Fig. 3.24 depicts two typical drug diffusion mechanisms. 
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Fig. 3.22 A small drug relative to the mesh size diffuses rapidly through the hydrogel, resulting in 
a short release duration [67]. As the size of a drug nears the mesh size(rmesh/rdrug ≈ 1), the drug’s 
release significantly slows down. If the drug is larger than the mesh size (rmesh/rdrug < 1), the drugs 
are physically trapped within the network. To facilitate the release of these initially immobilized 
drugs, the mesh size can be increased by either degrading the network, inducing swelling, or 
applying deformation to disrupt the network. The dashed lines represent the route taken by drugs as 
they diffuse (Reprinted with permission from Ref. [67]. Copyright 2016, Springer) 

3.4.2.2 Stimuli-Responsive Delivery Mechanism 

Besides the diffusion and swelling-controlled delivery systems previously men-
tioned, there exists a third type of molecule release mechanism, known as chemically 
controlled delivery. In this mechanism, drugs can be progressively released from
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Fig. 3.23 Schematic diagram showing mechanism of drug release from sample [85]. The calcula-
tion of mesh size indicates a larger mesh size in the case of the hydrogel composite created with 
PEG. As it possesses a greater surface area, drug release is primarily controlled by diffusion rather 
than chain relaxation, a characteristic of Fickian diffusion (Reprinted with permission from Ref. 
[85]. Copyright 2021, Springer) 

Drug diffusion from the 
matrix containing the 

dispersed drug 

Drug diffusion from the 
core through the hydrogel 
membrane 

Hydrogel and 
dispersed drug 

Hydrogel and 
dispersed drug 
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Hydrogel Hydrogel 
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a 

b 

Fig. 3.24 (a) In a reservoir delivery system, the drug-containing core is coated with a hydrogel 
membrane, with the drug concentration being highest at the system’s center. This arrangement 
facilitates a constant release rate of the drug; (b) In the case of matrix delivery, the drug is evenly 
dissolved or dispersed throughout the three-dimensional structure of the hydrogel [87] (Reprinted 
with permission from Ref. [87]. Copyright 2021, MDPI)



hydrogels through processes such as network degradation, mechanical deformation, 
and alterations in polymer–drug interactions. These interactions may include cova-
lent conjugation, electrostatic interactions, and hydrophobic associations, for 
instance [81].
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Stimuli-responsive hydrogels represent a new class of intelligent materials that 
respond to various stimuli. Physical and chemical properties of hydrogels as well as 
polymer–drug interactions can be meticulously controlled by applying different 
stimuli, so as to achieve the chemically controlled release of drugs [71]. Disease-
affected cells or tissues have abnormal metabolism patterns, which can remodel their 
microenvironment and change the levels of pH, reactive oxygen species (ROS), and 
glucose. The degree of these changes is closely linked to the extent of disease 
progression. Therefore, designing hydrogels that respond to endogenous signaling 
stimuli associated with disease could allow the hydrogel to release drugs at the 
desired local zone [88]. 

pH-Response Release of Drug 

The pH levels vary under different physiological and pathological conditions, with a 
range of 5.4 to 7.4 at wound sites, 6.5 to 7.2 in tumor cells, 7.34 to 7.45 in blood, and 
4.8 to 8.2 in the upper small intestine [89]. pH-responsive hydrogels have been 
extensively utilized in local therapeutic treatments for these diverse diseases. A case 
in point is QCS/PF hydrogel in Fig. 3.25, which prepared by mixing quaternized 
chitosan (QCS) and benzaldehyde-terminated pluronic (center dot) F127 (PF127-
CHO), was designed for wounds healing [88]. The QCS/PF hydrogel was used to 
carry curcumin and then subjected to a drug release test. As anticipated, the resulting

Fig. 3.25 Schematic illustration of Cur-QCS/PF hydrogel and TEM image of PF127-CHO 
micelles [88]. PF127 is a typical amphiphilic triblock copolymer, which self-assembles into 
micelles in water, acting as a dynamic microcross-linker to form the initial hydrogel network. 
Subsequently, Schiff base bonds were established between the amino groups from QCS and the 
aldehyde groups from the Cur-PF127-CHO polymer within the hydrogel network. This system 
forms hybrid physically-chemically cross-linked double network hydrogels through the combina-
tion of dynamic chemical bonds (Schiff base) and micelle cross-linking (Reprinted with permission 
from Ref. [88]. Copyright 2022, Wiley-VCH)



curcumin-loaded hydrogels (Cur-QCS/PF) released approximately 78% of the 
curcumin after remaining in PBS for 288 h at a pH level of 6.0. However, the release 
dropped to 61% and 28% at pH levels of 6.8 and 7.4, respectively, demonstrating its 
good acid-reactivity. Animal experiments indicated that the hydrogel promoted 
wound healing more effectively compared to commercial films and the hydrogel 
without the drug.

3 Versatile Hydrogels in Regenerative Medicine 103

Redox-Response Release of Drug 

Redox-sensitive hydrogels, known for their potential as intracellular drug delivery 
systems, have been developed and acknowledged for their ability to deliver various 
therapeutic agents. They are particularly suitable for gene delivery due to the unique 
and inherent redox gradients present in the body. A novel intelligent hydrogel with 
redox and temperature dual responsive properties for drug target delivery was 
proposed in Zong’s work [90] (Fig. 3.26). The cellulose nanofiber (CNF) was 
incorporated into the NIPAM hydrogel system, becoming intertwined and 
interconnected through hydrogen bonds and van der Waals forces, thereby enhanc-
ing the strength of the NIPAM hydrogel. N,N′-bis(acryloyl) cystamine (BAC), 
which contains S-S bonds, was introduced as a cross-linker, allowing the resulting 
hydrogels to respond to reducing conditions due to the integration of disulfide bonds. 
The drug release profiles show that the release speed of DOX from the hydrogels 
increases with the rise in glutathione (GSH) concentration in the PBS solution. This

Fig. 3.26 The hydrogel formation and responsive release mechanism of hydrogels [90]. (a) Raw 
materials are collected for the preparation of hydrogels; (b) The CNF/NIPAM hydrogel forms a 
network structure through cross-linking; (c) The drug is loaded into the hydrogels; (d) The process 
of drug release from the hydrogel takes place; (e) An ionic bond is formed between the Fe3+ ion and 
the carboxyl group present on CNF; (f) PNIPAM is linked by BAC; NIPAM and CNF are 
connected through a hydrogen bond; (g) Under reductive conditions, the disulfide bonds break, 
leading to the release of the drug (Reprinted with permission from Ref. [90]. Copyright 2022, 
Elsevier)



can be explained by the gradual breaking of the disulfide bonds, which originally 
linked polymer chains, under reducing conditions. This leads to the degradation of 
the hydrogel network and facilitates the release of the drug from the interior of the 
hydrogels.
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ROS-Response Release of Drug 

An upward trend of ROS is observed in various prevalent pathologies, such as 
inflammation, cardiovascular and cerebrovascular diseases, neurodegenerative dis-
orders, diabetes, and cancers [91]. In order to circumvent oxidative stress, cells boost 
their own reduction system. These redox dynamics in diseased tissues provide an 
additional stimulus for the release of drugs from loaded hydrogels. As illustrated in 
Fig. 3.27, Yu developed cartilage-targeting hydrogel microspheres KGN/Dex-
TSPBA@WHMs with ROS-responsive ability, which was achieved by combining 
the microfluidic method and photopolymerization processes to incorporate cartilage-
targeting peptides and ROS-responsive nanoparticles into the hydrogel matrix 
[92]. Notably, the ROS-responsive nanoparticles could interact with the osteoarthri-
tis (OA)-induced intracellular ROS, resulting in the depolymerization of 
nanoparticles. This not only eliminated excess ROS and reduced inflammation but 
also facilitated the release of dexamethasone (Dex) and kartogenin (KGN) in situ, 
realizing effective OA therapy. It was shown that this hydrogel microsphere dem-
onstrated favorable ROS-responsive ability and enhanced chondrogenic differentia-
tion, as well as downregulating proinflammatory factors in vitro. 

Fig. 3.27 The mechanism of KGN/Dex-TSPBA@WHMs in the treatment of OA [92]. KGN/Dex-
TSPBA@WHMs showed favorable cartilage-targeting and ROS-responsive abilities, which could 
react with OA-induced intracellular ROS, resulting in the depolymerization of nanoparticles. After 
treated with the KGN/Dex-TSPBA@WHMs, the levels of tumor necrosis factor-α (TNF-α) and 
Interleukin-6 (IL-6), the indicators for the inflammation of activated ATDC5 cells, had significantly 
decreased. While the expression of collagen II and aggrecan, two major cartilage biomarkers, 
increased (Reprinted with permission from Ref. [92]. Copyright 2022, American Chemical Society)
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Glucose-Response Release of Drug 

The prevalence of diabetes makes it imperative to treat it. Insulin is a common and 
effective treatment for diabetes, but its repeated intravenous administration greatly 
reduces patient compliance. Hydrogel embedding allows long-term sustained release 
of insulin. Over the past few decades, glucose-response hydrogels have been devel-
oped to monitor blood glucose fluctuations and release insulin in real time on 
demand. As shown in Fig. 3.28, a pH/glucose dual responsive PEGS-PBA-BA/ 
CS-DA-LAG (PC) hydrogel dressing was created for the specific release of the drug 
metformin. This hydrogel was prepared via the double dynamic bonds of a Schiff 
base and dynamic phenylboronate ester, which were formed between dihydrocaffeic 
acid and l-arginine cografted chitosan (CS-DA-LAG) and phenylboronic acid and 
benzaldehyde bifunctional polyethylene glycol-co-poly(glycerol sebacic acid) 
(PEGS-PBA-BA) [93]. Then added metformin (Met) and GO to better promote 
wound healing in the body. The amino group on Met reacted with the aldehyde 
group on PEGS-PBA-BA, which contributed to drug loading in hydrogel. The 
1,2-diol structure in glucose can contend for the bond between catechol and 
phenylboronic acid, causing the network of the PC hydrogel to partially dissociate.

Fig. 3.28 The schematic diagram of structure, pH, and glucose-responsive mechanism of PC 
hydrogel and its application in diabetic foot ulcers and athletic wound healing [93]. The PC/GO/ 
Met hydrogel was developed, boasting suitable mechanical properties, robust antioxidant ability, 
hemostasis and conductivity, pH/glucose dual responsive drug release capability, and biocompat-
ibility. This hydrogel, designed with a double dynamic bond of Schiff-base and phenylboronate 
ester, was specifically used for the repair of athletic diabetic foot wounds. Because the Schiff base 
structure easily dissociates under acidic conditions, and glucose can competitively bind to 
phenylboronic acid, it causes the dissociation of the coordination structure between phenylboronic 
acid and catechol (Reprinted with permission from Ref. [93]. Copyright 2022, American Chemical 
Society)



This results in increased release of Met loaded into the PC/Met hydrogel. Testing 
confirmed the glucose-responsive Met release of the PC hydrogel, marking it as 
advantageous in the treatment of diabetic foot wounds.
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In addition to endogenous signals, hydrogels have been designed to be responsive 
to various physical stimuli such as light, magnetic fields, electrical stimulation, and 
ultrasound. These stimuli have been incorporated into hydrogel systems for drug 
delivery and controlled release applications. By accurately manipulating the degree 
of response, it becomes possible to generate on-demand drug doses, thereby max-
imizing therapeutic efficacy. This manipulation is achieved by adjusting relevant 
parameters such as frequency, intensity, duration, and power of the applied stimuli. 
Photo-, magnetic-, and ultrasound stimulation all generate heat, which can intervene 
in the physical interactions of gelation molecules, such as host–guest and electro-
static interactions. This allows for the control of drug release from the hydrogel 
system [88]. 

Light-Triggered Release of Drug 

Light radiation has gained popularity as a medical intervention approach due to its 
ease of acquisition, remote operation, and strong manageability. The use of photo 
stimulation to regulate gel formation and biodegradation has been an ongoing 
research focus. The light sensitivity of hydrogels is highly appealing as it allows 
for precise control of drug release within an endogenous environment. This control 
can be achieved by carefully designing parameters such as power density, wave-
length, beam diameter, and exposure time, enabling the easy realization of precisely 
controlled drug release [94]. The conversion of light to heat is one of the main ways 
to cause gel structure and drug release. As demonstrated in Fig. 3.29, a highly 
stretchable, thermal-sensitive PNIPAm hydrogel that can be triggered by near-
infrared (NIR) light was developed. This hydrogel is composed of a matrix of 
cellulose nanocrystals (CNCs) reinforced with PNIPAm, and it incorporates homo-
geneously dispersed magnetic Fe3O4 nanoparticles (NPs) throughout the network 
(Fe3O4/CNCs@PNIPAm) [95]. The CNCs, which are coupled with Fe3O4 NPs, 
serve as both a reinforcing phase and a photothermal agent within the hydrogel 
system. The photo-triggered release mechanism of hydrogel was studied using 
Vancomycin (VCM) as a model drug. All hydrogels demonstrated a rapid release 
of vancomycin upon irradiation with near-infrared (NIR) light. Subsequent research 
has indicated that this drug delivery system has the potential to enable more 
personalized therapy plans based on the progression of diseases by controlling the 
intensity and duration of NIR irradiation. 

Magnetic-Triggered Release of Drug 

Utilizing the localized heat generated on the surface of magnetic nanoparticles 
(MNPs) when subjected to an alternating magnetic field (AMF) has emerged as an
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intriguing strategy for remotely triggered drug delivery. In this approach, the heat 
generated from MNPs during magnetic hyperthermia (MHT) is considered a prom-
ising stimulus for triggering the release of loaded molecules. In line with this 
concept, drug molecules are attached to the surface of MNPs through thermally 
sensitive bonds that can be disrupted upon either macroscopic or localized temper-
ature changes [97]. As illustrated in Fig. 3.30, Mai et al. introduced a magnetic 
nanocarrier composed of iron oxide nanocubes (IONCs) and a multifunctional 
polymer capable of loading doxorubicin (DOX) through a retro Diels–Alder reac-
tion. This loading process occurs under clinically relevant magnetic hyperthermia 
(MHT) field conditions. The DOX is conjugated to the ligand platform via a 
thermally labile Diels–Alder adduct, allowing for its release upon the local heat 
generated on the nanocube surface during MHT. This unique local release effect 
makes the magnetic nanoplatform a promising tool for drug delivery, enabling 
remote actuation through magnetic hyperthermia while maintaining a dose-
independent action of the magnetic nanoparticles (MNPs) [96]. 
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Fig. 3.29 NIR-controlled release of VCM [95]. (a, b) Vancomycin (VCM) was incorporated into 
the hydrogel through a swelling process, allowing it to be loaded within the hydrogel matrix; 
(b1) The presence of functional groups (-OH) on the surfaces of the Fe3O4/CNCs enables the 
formation of additional hydrogen bonding interactions with the drug, further enhancing its retention 
within the hydrogel; (c) Upon exposure to near-infrared (NIR) irradiation, the release of VCM from 
the hydrogel is triggered, resulting in controlled drug release (Reprinted with permission from Ref. 
[95]. Copyright 2021, Elsevier) 

Electric-Triggered Release of Drug 

The electrical activity observed in cells is a common phenomenon that plays a vital 
role in maintaining cell homeostasis and promoting intracellular development 
[99]. With its high level of controllability, electrical stimulation has emerged as a 
highly manageable approach for gel carriers to achieve precise and accurate control 
over drug release. Consequently, it has become an appealing method for enhancing 
the reactivity of hydrogel-based delivery systems. As indicated in Fig. 3.31,  a
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Fig. 3.30 The sketch illustrates a two-step phase transfer procedure [96]. In the first step, the 
transfer of iron oxide nanocubes (IONCs) from chloroform to water is achieved using 
tetramethylammonium hydroxide (TMAOH). In the second step, TMAOH is replaced with the 
developed ligands in a basic solution, resulting in the formation of physiologically stable IONCs. 
The inset demonstrates that the dye or drug, which is conjugated to the ligand platform through a 
thermally labile Diels–Alder adduct, can be released upon the local heat generated on the surface of 
the nanocubes during magnetic hyperthermia (MHT). This indicates the controlled release mech-
anism facilitated by the heat generated during MHT (Reprinted with permission from Ref. 
[96]. Copyright 2022, American Chemical Society) 

Fig. 3.31 Schematic illustration of pulse release of drug model from CP/OD conductive hydrogel 
[100]. The hydrogels with desirable electro-responsive properties demonstrated an “on-off” pulse 
release mechanism. When a voltage was applied to the hydrogels, a greater amount of the drug was 
released compared to when no voltage was applied, thus confirming the concept of “on-off” control 
of drug release (Reprinted with permission from Ref. [100]. Copyright 2018, Elsevier)



antibacterial conductive injectable hydrogel with the properties of electro-
responsiveness was successfully synthesized based on the chitosan-graft-polyaniline 
(CP) copolymer and oxidize dextran (ODex) polymer [100]. In this study, the model 
drugs amoxicillin (hydrophilic) and ibuprofen (hydrophobic) were chosen. It was 
observed that as the applied voltage increased, the cumulative release of amoxicillin 
significantly increased. “On-off” pulse release experiments revealed that both drugs 
exhibited a higher release rate when the voltage was turned on, and a lower release 
rate when the voltage was turned off. This indicates that the released dose of the 
drugs could be controlled by applying an electric field, suggesting the potential of 
these systems as on-demand release vehicles.
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Ultrasound-Triggered Release of Drug 

Ultrasound waves possess several advantageous characteristics, including good 
directionality, strong reflection ability, the ability to concentrate acoustic energy, 
and long propagation distance in water. Ultrasound is particularly effective in 
penetrating tissues with high spatial and temporal resolution, making it a convenient 
stimulus for various applications [98]. As shown in Fig. 3.32, Sun et al. have 
developed a DC-hydrogel that incorporates boronate ester bonds between tannic 
acid (TA) and phenyl boronic acid as dynamic cross-linkers. The dynamic covalent 
boronate ester linkages enable effective ultrasound-triggered pulsatile release of TA 
[73]. Ultrasound treatment applies solvodynamic shear force to the bonds between 
TA, resulting in enhanced release of TA. The study demonstrated that by treating the 
hydrogel with ultrasound for varying durations (5, 10, and 20 min) every hour, there 
was a significant increase in the release of TA. Moreover, the longer the duration of

Fig. 3.32 TA released from the DC-gels by ultrasound [73]. The inflammatory response in RAW 
264.7 cells was activated by treatment with lipopolysaccharide (LPS). These LPS-stimulated RAW 
264.7 cells were then subjected to DC-gels and ultrasound cycles. Ultrasound is capable of 
triggering the dynamic covalent boronate ester linkages between the hydrogel backbone and tannic 
acid (TA), causing it to break. After the ultrasound prompted the release of TA from the DC gels, 
there was a noted reduction in the concentration of TNF-α,  an  inflammatory marker (Reprinted with 
permission from Ref. [73]. Copyright 2018, Springer)



ultrasound treatment, the faster the release of TA from the hydrogel. The release of 
TA was originated from the dynamic breakage.
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Microwave-Triggered Release of Drug 

Microwaves (MWs) are a type of electromagnetic wave with frequencies ranging 
from 300 MHz to 300 GHz. They are of particular interest as an external stimulus 
because of their capacity to deeply penetrate living tissue. In this regard, MW 
radiation has demonstrated its usefulness in applications such as transdermal drug 
transport and as a skin permeation enhancer [102]. Graphene, known for its excep-
tional microwave absorption properties, was integrated into diaminotriazine (DAT) 
hydrogels to strengthen the interaction between the hydrogel and the electromagnetic 
impulse, thereby facilitating the absorption of microwave radiation (Fig. 3.33) 
[101]. The drug release behavior was observed in both graphene diaminotriazine 
(G-DAT) and DAT hydrogel under microwaves. The findings support the notion that 
the enhancement in drug release seen with the 915 MHz microwave stimulus is 
likely due to the selective disruption of drug-hydrogel interactions, potentially from 
hydrogen bond disruption among DAT dipoles under microwave irradiation. This

Fig. 3.33 Proposed mechanism for the interaction between 915 MHz MW [101]. (a) When DAT 
hydrogel is placed in PBS (pH 7.4), the hydrogen bonds that connect the DAT molecules start to 
disrupt. This disruption leads to the free oscillation of DAT, which opens up pathways for the 
release of the hydrophobic drug into the medium. The presence of graphene and SGF media disturbs 
the DAT-DAT π–π stacking and DAT-DAT hydrogen bonds; (b) When G-DAT hydrogel is in SGF 
(simulated gastric fluid; pH 1.2) media, both graphene and the external acidic pH work together to 
disrupt the hydrophobic interactions within the DAT. This cooperative disruption significantly 
increases the swelling capacity of the hydrogel (Reprinted with permission from Ref. [101]. Copy-
right 2020, MDPI)



characteristics positions these materials as promising drug reservoirs that can 
respond to an electromagnetic stimulus capable of penetrating tissue, thereby 
enabling on-demand drug release without inflicting harm on nearby organs.
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3.4.3 Conclusions and Outlook 

In summary, due to the unique advantages of functional hydrogels in biodegradabil-
ity and biocompatibility, functional hydrogels hold substantial technological impor-
tance in drug delivery applications. Recent advancements in the realm of targeted 
drug delivery utilizing hydrogels have been remarkable [87]. These hydrogels are 
tailored with specific targeting ligands and a variety of polymer types that bestow 
upon them unique properties suitable for drug delivery. Consequently, the number of 
relevant studies being conducted in this area is increasing significantly [104]. Studies 
on hydrogels as drug carriers are emerging in an endless stream, and the mechanisms 
of drug loading and sustained release are also being studied [88]. However, many 
parameters in the model of the release mechanism of hydrogel drug molecules are 
still unknown and may change with the change of time or location, which cannot 
fully describe the coupling mechanism controlling the release of molecules in these 
systems [81]. At the same time, precise control of drug release rate and targeted 
release is still challenging. 

Based on the current research status, the future research focus of drug delivery 
hydrogels lie in: combining and comprehensively using the release mechanism and 
preparation method of a variety of drugs to optimize the method design, so as to 
prepare a series of multifunctional carriers to achieve the expected drug release effect 
[105]; drug carrier matrix modification, targeted drug release; studying the metab-
olites and pathways of drug-loaded matrix in vivo to ensure its safety and effective-
ness in clinical application [103]. 

It is anticipated that as research continues to evolve and deepen, hydrogel drug 
delivery systems are poised to significantly transform the size, effectiveness, and 
cost of therapeutic treatments. This progression will consequently continue to 
enhance healthcare and wellbeing for humans [106]. 

3.5 Cell Delivery Hydrogel 

Hydrogels with high-water content have high biocompatibility and adjustability, 
such as permeability, resilience, rigidity and chemical reactivity, and can simulate 
the microenvironment of native ECM by controlling the time and space of biochem-
ical and physical clues. The reported hydrogels have potential organ-like applica-
tions, including alginate, chitosan, hyaluronic acid and collagen from natural 
sources, and some synthetic polymer-based hydrogels (e.g., PEG, PAAm, and 
PVA) [107].
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Fig. 3.34 A demonstration diagram showing how cells interact with hydrogel matrix. Hydrogels 
trigger cell signal cascade (e.g., signals from inside to outside and from outside to inside), reveal 
how the physical and chemical properties of hydrogels affect cell biology, and explain the 
biomedical applications of cell-free and cell-loaded hydrogels (Reprinted with permission from 
Ref. [112]. Copyright 2021 by Springer Nature) 

Biohydrogel-based scaffolds are helpful for cell delivery. These vectors are 
usually used as a part of tissue engineering to deliver the right cells to the targeted 
place to recover the damage to tissues or organs. Different hydrogel properties have 
different effects upon cell behaviors and cell signaling, which include integrin 
clustering, accumulation and activation of focal adhesion (FA) complex, cytoskel-
eton rearrangement, protein nucleus shuttle and activation (such as yes-related 
protein (YAP), catenin, etc.), cell chamber recombination, gene expression, as 
well as further cell biological regulation (such as diffusion, migration, proliferation, 
lineage commitment, etc.) [11, 108–111] (Fig. 3.34). On this basis, the current 
applications of hydrogels in vitro and in vivo mainly include cell delivery in tissue



regeneration and disease treatment, intelligent drug carriers, biological imaging, 
biosensors, etc. 
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3.5.1 Hydrogels as Cell Carrier 

Hydrogel can simulate the scaffold structure of cell survival matrix, so as to support 
the activities of contained cells and meet their physiological needs in a cell/tissue 
type dependent manner. In addition, in ECMs based on 2D and 3D hydrogels, the 
distribution and morphology of cells in hydrogel are also different. The expansion of 
cells in the 3D case is opposite to that in the 2D case. Specifically, in the 2D 
environment, the cells are diffused in a large area on the rigid collagen-based 
hydrogel and round on the soft gel. In contrast, in 3D environment, cells are 
aggregated into a circular shape in rigid collagen-based hydrogel, while they are 
shown as diffusion shapes in soft gel. Besides, the cellular distribution of 2D and 3D 
hydrogel ECMs is disparate, and the cytoskeleton structure at the molecular level is 
also different [112]. 

Due to the porous structure of hydrogel, it allows cells to attach and grow, and 
“intelligently” release biological agents at the damaged site. For example, Ballios 
et al. [113] developed a hydrogel based on HA and methylcellulose (HAMC) to 
deliver retinal progenitor cells to subretinal space. The hydrogel showed good 
biocompatibility and optimal biodegradability, so that the loaded cells could be 
accurately and evenly distributed at the target site. 

Hydrogel can be used not only as a cell carrier, but also as a matrix for growth 
factor attachment and controlled release, providing high concentration and long-term 
growth factor exposure near transplanted cells. As indicated in Fig. 3.35, Geng et al. 
[114] loaded muscle-derived stem cells (MDSCs) in hydrogel scaffolds to express 
hypoxia inducible factor-1α (HIF-1α) to induce angiogenesis, and effectively 
repaired the injured cavernous body. Specifically, they deposited heparin onto the 
3D-printed hydrogel scaffold by assembling poly-L-lysine (PLL) layer by layer 
(Fig. 3.35a, b). Through the adsorption of heparin, the angiogenic factors produced 
by HIF-1α overexpression MDSCs were enriched on the 3D-printed hydrogel 
scaffold surface, thus stimulating angiogenesis in vivo (Fig. 3.35c–e). 

In addition, hydrogel can be used to support cells and guide the growth and 
differentiation of cells in organs. For example, Wu et al. [115] showed that methac-
rylate hyaluronic acid (MA-HA) hydrogel can effectively promote the differentiation 
of human-induced pluripotent stem cell-derived neural progenitor cells (hiPSC-
NPCs) in vitro. The softer hydrogel with a stiffness of 0.51 ± 0.20 kPa can promote 
the neural differentiation of hiPSC-NPCs compared with the harder hydrogel with a 
stiffness of 1.41 ± 0.27 kPa [115]. In a word, combining stem cells and hydrogel can 
be considered as a promising method for tissue regeneration.
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Fig. 3.35 Schematic diagram of repairing rabbit cavernous injury with hydrogel and MDSCs. (a) 
The MDSCs were extracted from rabbit leg muscles; (b) the HIF-1α-mutated MDSCs were 
gathered through lentiviral transfection; (c) obtained the 3D-printed hydrogel bracket through 3D 
printing; (d) deposited heparin on the surface of the 3D-printed hydrogel scaffold by layer-by-layer 
self-assembly technology in order to obtain a heparin-coated hydrogel scaffold; (e) inoculated 
MDSCs mutated by HIF-1α onto heparin-coated hydrogel scaffolds, and secreting angiogenesis-
related factors (Reprinted with permission from Ref. [114]. Copyright 2020 by Springer Nature) 

3.5.2 Various Microorganisms Combined with Hydrogels 

Hydrogels can be combined with various microorganisms, including bacteria, fungi, 
algae and animal cells, and used as engineering living materials or biological hybrids 
to realize a series of applications. In active materials, living cells are combined with 
matrix or scaffold, and the active ingredients endow materials with unique functional 
characteristics. Based on the design of nonliving composite materials encapsulating 
living cells, active materials can be produced from living cells. Researchers designed 
polymer networks and chemical compositions of aqueous solutions to provide 
biochemical clues for living microbial cells [116]. The structure of hydrogels can 
be further improved, so that the structural features (such as geometry, porosity and 
size) of hydrogels prepared in different scales (nanometers to millimeters) by 
conventional manufacturing techniques can provide space constraints and mechan-
ical forces for living cells [116]. 

Microorganisms are encapsulated in a polymeric matrix, usually in the form of 
microcapsules or fiber webs, to facilitate the transport of microorganisms to the 
application site or to isolate microorganisms after reaction. However, biomedical 
applications would require the use of Generally Recognized as Safe (GRAS) species 
of bacteria [117]. At present, adhesive bacterial matrix has been used to treat chronic



intestinal inflammation or to seal blood leakage in vascular tissue, and self-
replenishing drug bank for delivering antibiotics or therapeutic protein [118]. For 
example, in order to treat inflammatory bowel disease, as indicated in Fig. 3.36, 
Escherichia coli strain Nissle 1917 is programmed to secrete CsgA curli fiber pro-
teins fused to trefoil factors [117], which promotes intestinal barrier function and 
epithelial recovery. Curli-based system can also sense heme B in the environment by 
bacteria and produce sticky curli fibers in the form of glue to repair damaged 
bleeding vascular tissue [120]. 
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Fig. 3.36 Biomaterials as tissue adhesives. (a) Biomaterials loaded with engineering microorgan-
isms can promote the healing of chronic wounds (such as burns and diabetic wounds) by producing 
and eluting recombinant proteins or small molecules in situ; For example, Escherichia coli Nissle 
1917 strain produces recombinant CsgA curli fiber fused with trefoil factor to restore epithelial 
function; (b) engineering bacteria embedded in active materials can be edited to produce tissue 
adhesives, such as crimped fibers, to promote the recovery of injured tissues (Reprinted with 
permission from Ref. [119]. Copyright 2021 by Springer Nature) 

However, there are still challenges in developing active materials with dynamic 
characteristics and the ability to continuously perceive and respond to the environ-
ment. How to make bacteria-rich hydrogels secrete growth factors and cytokines 
according to changing oxygen, stress or chemical gradient to meet the metabolic 
needs of stem cells and maintain their niche is still an urgent problem. 

3.5.3 Hydrogels for Organoid 

Organoid mainly evolved from the development principle, which refers to the three-
dimensional multicellular tissue self-organized by stem cells or organ-specific pro-
genitor cells. It is a unique in vitro system that simulates organ development, 
function and diseases, and can reproduce the complex structure and function of 
internal organs [121]. In recent years, breakthrough progress has been made in 
organ-like technology, and a variety of human organs have been successfully



generated, such as brain, intestine, liver, kidney, lung, etc. [122, 123]. These close-
to-physiology 3D organs are gaining momentum because of their potential applica-
tions in human organ development, disease modeling, drug screening and regener-
ative medicine [124]. 
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A huge number of culture systems are employed to produce various organs. 
These methods include suspension culture system, crypt separation method, 
gas-liquid interface method, embryo model, bioreactor or two-dimensional mono-
layer culture method [125, 126]. The successful culture of organoid depends on 
various physical and chemical characteristics of microenvironment, among which 
functional and structural molecules such as protein, glycosaminoglycan and 
glycoconjugates form ECM, and play a decisive role by forming complex networks 
to support cells in all tissues or organs [127]. 

Natural and synthetic hydrogels provide a new method to promote cell expansion, 
differentiation and organ tissue by precisely controlling the composition of protein 
(such as collagen, fibrin and synthetic peptide), and can replace natural ECM to 
promote the formation of specific organ-like. For example, Broguiere et al. [128] 
developed fibrin-based hydrogel, which can support the formation and long-term 
expansion of epithelial organs. They found that fibrin hydrogel supplemented with 
laminin-111 contributed to the formation and expansion of epithelial organs in mice 
and humans. It is worth noting that RGD adhesion domain naturally existing in fibrin 
hydrogel is essential for proliferation and organoid formation of intestinal stem cells. 
In addition, laminin was identified as the main biological signal factor in ECM 
required for organ-like growth [128] (Fig. 3.37a). 

Fig. 3.37 Hydrogels used in engineering and application of organic compounds. (a) Chemically 
modified fibrin-based hydrogels to improve the formation and expansion of epithelial organs in 
mice and humans (reprinted with permission from Ref. [128]. Copyright 2018, Wiley-VCH); (b) 
synthesizing hollow microfibers based on alginate to promote the generation of brain organs 
through extension and expansion (Reprinted with permission from Ref. [129]. Copyright 2017 by 
Royal Society of Chemistry)
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In addition, hydrogels can also produce organ-like bodies with specific morphol-
ogy by regulating specific internal structures, in which passive mechanical stimula-
tion from the hydrogel boundary can regulate tissue morphology and promote 
condensation and multicell interaction. Zhu et al. [129] have made a hollow alginate 
gel microfiber by microfluidic technology to produce brain organs that can be 
imaged in real time during development [129] (Fig. 3.37b). In this work, 
neuroectodermal spheres from human-induced pluripotent stem cells (hiPSCs) 
were encapsulated in confined hydrogel microfibers, and then differentiated and 
produced a large number of brain organs in an expandable manner. 

However, despite its infusive potential in new biomedical applications, the 
existing organoid cultures still have significant shortcomings. First of all, the 
derivation of organoids usually requires ECMs from animals. The ill-defined com-
ponents of these biomaterials and the differences between batches have problems in 
basic research and transformation research [130]. Besides, current organ-like sys-
tems usually lack the ability to construct vascular systems, thus hindering their 
application in biological modeling of adult tissues/organs [131]. In the future, we 
can combine other bioengineering methods, such as in vivo imaging, genome editing 
and single cell genomics, fusion of biomaterials, engineering and stem cell biology, 
to solve the problems of constructing high-fidelity tissues and their translation 
applications. 

3.5.4 Hydrogels for Delivering Exosomes 

Exosomes (Exos) are nano-sized vesicles secreted by almost all types of cells 
through paracrine pathway, which can carry protein, RNA/miRNA and other mol-
ecules [132], and play a vital role in cell-to-cell communication. Because exosomes 
have good biocompatibility and immune stability, treatment based on exosomes 
shows greater potential in chronic wound healing than other biological therapies 
(such as stem cell transplantation), and has great prospects in clinical treatment of 
chronic wounds. 

Up to now, most hydrogel drug delivery systems directly embed exosomes in 
hydrogels, by mixing with polymer solutions and cross-linking agents before gela-
tion of hydrogels, or combining with porous hydrogel scaffolds after cross-linking of 
hydrogels. With the degradation of hydrogel in vivo, the encapsulated exosomes are 
gradually released. For example, Zou et al. [133] constructed an injectable conduc-
tive hydrogel combined with Exo derived from human umbilical cord mesenchymal 
stem cells. Hyperbranched epoxy macromonomer (EHBPE) grafted with aniline 
tetramer (AT) was synthesized, and HA-SH and thiol-anchored CP05 peptide were 
cross-linked by epoxy/thiol “click” reaction to treat myocardial injury after myocar-
dial infarction-ischemia/reperfusion (MI-I/R) (Fig. 3.38). By injecting the Gel@Exo 
composite system into the injured heart of rats, the retention time of Exo in ischemic 
myocardium can be effectively prolonged, which plays a significant role in promot-
ing cell proliferation, angiogenesis and MI-I/R treatment [133].



118 Y. Li et al.

Fig. 3.38 Schematic diagram of injectable conductive hydrogel combined with human umbilical 
cord mesenchymal stem cell exosome (hUC-MSCs-Exo) for restoring heart function after MI-I/R, 
and the acquisition of AT-EHBPE macromonomer. (a) Precursor solution of AT-EHBPE combined 
with Exo; (b) precursor solution of HA-SH and CP05 peptide; (c) the synthetic method of 
AT-EHBPE (Reprinted with permission from Ref. [133]. Copyright 2021 by ACS Publications) 

3.5.5 Effect of Hydrogels on Cells 

The interaction between cells and hydrogel is complex and dynamic, and it has an 
important influence on the physiological processes (such as cell diffusion, prolifer-
ation, migration, stem cells, differentiation, etc.) and the pathological process of cells 
(such as apoptosis, fibrosis, immune rejection, etc.). Generally, once exposed to an 
external hydrogel, cells will react according to the static physical and chemical 
properties of the hydrogel (hardness, pore size, viscoelasticity, microstructure, 
degradability, chemical surface, etc.) [11, 108–111], and then convert these clues 
into biochemical signals to adjust its biology and homeostasis. More and more 
evidence shows that cells can sense the changes of the microenvironment caused 
by external stimuli in real time and respond in time and space.
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3.5.5.1 Effect of Mechanical Force and Stiffness of Hydrogels on Cells 

Hydrogel matrix generates various mechanical forces that can actively regulate the 
growth, morphology and movement of cells and the formation and dispersion of 
biofilm. When cells are encapsulated in hydrogel matrix, dense nanofiber ECM 
components (such as collagen fibers) connect with biological macromolecules, and 
has many cell adhesion motifs to enhance cell rigidity. Attached cells can provide the 
traction needed for cell function, including division, diffusion and migration. Previ-
ous studies have reported that local hardening of 2D hydrogel matrix can promote 
the development of cell adhesion structure and cell diffusion [134]. 

In a 3D hydrogel environment, the dynamic hydrogel cross-linked by weak and 
reversible physical interaction enhances 3D diffusion and mechanical sensing ability 
of encapsulated cells in the matrix. Bian et al. [135] proved that photocross-linked 
silica nanoparticles (NPs) based on acryl nanoparticles locally strengthened hydrogel 
network in gelatin host–guest (GHG) hydrogels to produce a regionally rigid 
network structure, which could significantly accelerate the diffusion of encapsulated 
stem cells and enhance the osteogenic differentiation induced by stem cells in 3D 
hydrogel (Fig. 3.39). It is proved that the dynamic hydrogel with local hardening 
network can accelerate the in situ regeneration of bone defects and can be used as an 
excellent carrier material for stem cell therapy. 
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Fig. 3.39 A schematic diagram simulating the enhancement of cell diffusion caused by local 
hydrogel network stiffening. Orange points represent stiffened locations (i.e., nanoparticle posi-
tions) on the substrate where the nearby stiffness distribution is assumed to follow the exponential 
decay shown in the above illustration. The lower inset: near the edge of the protrusion, the 
polymerized actin bundle can be connected with the substrate through the clutch (Reprinted with 
permission from Ref. [135]. Copyright 2021 by Royal Society of Chemistry)
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3.5.5.2 Microstructure 

The structural characteristics of ECM network in vivo (such as fiber diameter and 
fiber arrangement) show the relationship with tissue type, and meantime determine 
how cells interact with the surrounding environment. Hydrogel structure may affect 
cell activity, signal cascade and cell morphology. It is reported that cells can evolve 
into spindle-shaped morphology on microfibers or aligned fibers, and spontaneously 
transform into round morphology on nanofibers or randomly oriented fibers [136]. In 
addition, fiber diameter and fiber arrangement in different cell types can induce 
different immune responses. In a word, different cell behaviors, intracellular actin 
and protein expression profiles show that cell biology with fiber diameter and 
direction dependence follows a mechanical adjustment process. For example, it 
has been found that compared with randomly oriented fiber scaffolds, neural stem 
cells (NSCs) tend to be cultured into neuron cells on oriented fiber scaffolds [137]. 

Besides, porous ECM network can exert different degrees of physical space 
constraint effects on the resident or mobile cells by changing the pore size, and 
then affect the behavior of single cells and multicellular tissues. For example, cancer 
cells can overcome the restriction of primary tumor matrix with 1–30 μm pores and 
move to the distance [138]. In addition, hydrogel scaffolds have porous structures 
with different pore sizes, which is also an important physical characteristic. As 
porous channels are transport channels for nutrients, metabolites and other sub-
stances, this unstable porous structure can determine the quality of embedded cells in 
various pathological applications by regulating physiological activities. On the 
molecular level, cell constraints in hydrogel will affect cytoskeleton rearrangement, 
organelle distribution, nuclear membrane proteins, and chromatin recombination by 
activating various mechanical transduction signals, all of which will ultimately affect 
cell morphology, migration, invasion, differentiation [139] and so on (Fig. 3.40). 

3.5.5.3 Viscoelasticity 

It is generally believed that tissues have viscoelastic properties. In addition, hydrogel 
biomaterials, including ECM-derived components (such as collagen, fibronectin 
(FN), etc.) and non-ECM-derived materials (such as alginate, chitosan, etc.) also 
show viscoelastic properties, showing stress relaxation behavior [141]. These vis-
coelastic properties regulate the interaction between the embedded cells and the 
surrounding matrix, which can cause differences in cell proliferation, proliferation 
and differentiation compared with the nonembedded cells. There are many factors 
that will affect the viscoelasticity of hydrogels, including the composition and 
concentration of precursors, the flexibility of hydrogels, the cross-linking density 
or cross-linking methods, etc. The traction of cells on viscoelastic hydrogel matrix 
changes dynamically with time via Rho and Rac signals (Fig. 3.41a). At first, due to 
the rigidity of hydrogel scaffold, the traction and tension caused by cell movement 
and diffusion or deformation on the surrounding hydrogel matrix are offset. As time 
goes on, these forces gradually decrease due to various dissipation events.
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Fig. 3.40 Influence of hydrogel structure exerted on cell activity. (a–d) Schematic diagram of the 
interaction between cells and hydrogel scaffolds with different morphologies. Cells generally show 
spindle-shaped morphology on microfibers (b, d) or aligned fibers (a, b), while on nanofibers or 
randomly oriented fibers (c) change into a round shape (Reprinted with permission from Ref. 
[112]. Copyright 2021 by Springer Nature); (e–h) F-actin staining (green) of fibroblasts attached on 
glass (e), microfiber (f), and nanofiber (g), and the quantitative analysis of focal plaque area (h). 
Arrows represent membrane protrusions (“cork-screw” ruffles) (Reprinted with permission from 
Ref. [140]. Copyright 2011 by American Society of Plastic Surgeons) 

Fig. 3.41 Clarification of viscoelastic regulation of cell biology by hydrogel. (a) Schematic 
diagram of activating Rho and Rac1 signaling pathways to regulate the interaction between cells 
and elastic/viscoelastic hydrogels (Reprinted with permission from Ref. [142]. Copyright 2015 by 
Springer Nature); (b) A case shows how hydrogel with rapid stress relaxation can induce stem cell 
proliferation and β1 expression and promote integrin aggregation (Reprinted with permission from 
Ref. [143]. Copyright 2015 by Springer Nature) 

Stress relaxation rate is a sign of viscoelasticity. Compared with alginate with 
high molecular weight (MW 280 kDa, 3300+/-800 s), alginate with low molecular 
weight (35 kda) showed a faster relaxation rate (170+/-20 s) [144]. This rapid 
relaxation rate is beneficial to mechanical matrix remodeling induced by cell con-
tractility, which also allows the aggregation of increased RGD ligands in hydrogels, 
and further enhances the expression of β1 integrin, FA formation and YAP nuclear 
translocation in cells (Fig. 3.41b). Thereby regulating the interaction between the



embedded cells and the surrounding matrix, and causing the difference of cell 
diffusion, proliferation and differentiation compared with the nonembedded cells. 
For example, some studies have shown that the rapid relaxation of alginate matrix 
without RGD can significantly promote the formation of cartilage matrix and 
maintain cell phenotype with less interleukin (IL)-1β secretion [145]. 
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3.5.5.4 Degradation 

In addition to the above physical parameters, matrix degradation has also been 
confirmed to greatly affect cell behavior (such as cell diffusion and contact) and 
functional characteristics, such as cancer cell invasiveness, multicell aggregation 
formation and stem cell lineage commitment [146] (Fig. 3.42a). Therefore, the 
degradation of hydrogel can be controlled by enzyme catalysis, ester hydrolysis or 
photolysis. The degradation of hydrogel has also been confirmed to affect stem cell 
lineage commitment [148]. For example, Khetan et al. [149] pointed out that the 
unique fate of stem cells is regulated by degradation-specific traction stress. In their 
research, when degradable peptides are incorporated into hydrogels, stem cells 
cultured in HA hydrogels will differentiate into bone cells. However, it will be

Fig. 3.42 Influence of the degradability of hydrogel on cell biology. (a) Schematic diagram 
illustrating the interaction between trapped cells and degradable/nondegradable hydrogels 
(Reprinted with permission from Ref. [112]. Copyright 2021 by Springer Nature); (b, c) osteogen-
esis and adipogenesis analysis in degradable and nondegradable hydrogel, respectively. **p < 0.01 
(Reprinted with permission from Ref. [147]. Copyright 2013 by Elsevier)



converted into fat when it is embedded into nondegradable hydrogel through delayed 
secondary cross-linking process (Fig. 3.42b, c). Specifically, they showed that the 
degradation of hydrogel can rearrange the cytoskeleton structure of cells, resulting in 
high diffusion and traction [150].
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In another study, researchers [151] showed that the biodegradable hydrogel based 
on PEG can promote the proliferation and differentiation of stem cells and has great 
application potential in bone repair. First of all, in the initial stage, degradable bone-
like soft hydrogel is helpful to the proliferation and pluripotency support of stem 
cells. After that, the cells migrated to the surface of the simulated bone defect and 
differentiated into osteoblasts. 

3.5.5.5 Effect of Attachment of Hydrogels on Cells 

Cell survival depends on the attachment of cells to the matrix, and without proper 
attachment, the cells may potentially undergo anoikis. The attachment sites of cells 
to hydrogels are determined by cell adhesion molecules (CAMs) on cell membranes. 
CAMs mainly includes integrins (such as α2β1, etc.), proteoglycans (such as CD44) 
and receptor tyrosine kinases (such as DDR1,2) can specifically interact with some 
ligands chelated by scaffold matrix [152]. Therefore, hydrogel materials will exert a 
strong influence on cell fate by regulating the signal cascade induced by cell 
adhesion. The extracellular domains exposed by different integrins allow cells to 
specifically recognize ECM proteins, such as FN, collagen, laminin and other ECM 
components, thus regulating cell adhesion, migration, differentiation, and apoptosis 
through different signal pathways [153]. 

Stephanie et al. [154] investigated the interaction between human mesenchymal 
stem cells (hMSCs) and PEG hydrogel functionalized with cell adhesion peptide 
(RGD). The interface between RGD peptide-functionalized hydrogel and hMSCs 
was used as a model system. 8-arm PEG-norbornene (20 kDa) was cross-linked with 
nondegradable PEG-dithiol (1 kDa), as well as enchained 6.8 mM cell-adhesive 
RGD peptide (CGGRGDSP) or nonadhesive RDG scrambled peptide 
(CGGRDGSP) (Fig. 3.43a), in which RGD sequence was found in fibronectin and 
some other extracellular matrix proteins combined with multiple cell surface recep-
tors. It is revealed that the concentration of RGD has great influence on the short-
term binding of hMSCs, and the increase of integrin aggregation at hydrogel-cell 
interface is related to the decrease of available RGD binding sites, which is crucial 
for cell adhesion and movement (Fig. 3.43b, c). 

3.5.6 Effect of Cells on Hydrogels 

3.5.6.1 Effect on Hydrogel Remodeling 

Bioactive hydrogel can interact with cells. Hydrogel can not only coordinate the fate 
of cells, but also determine the “fate” of hydrogel. Cells have the ability to reorganize



and redesign the surrounding environment through multiple mechanical and chem-
ical actions to make cells embedded in hydrogels reshaping these hydrogels into 
tissue-like structures. It is one of the key mechanisms used by contracting cells to 
reshape the surrounding environment. For example, in collagen hydrogel, fibroblasts 
bind and release through α2β1 integrin, and use the periodic movement of “hand in 
hand” to pull themselves along collagen fibers [155]. But lacking sufficient strength 
to bear the applied force, these fibers will bend, leading to the shrinkage and 
remodeling of the hydrogel (Fig. 3.44). 
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Fig. 3.43 Schematic diagram of stem cell-hydrogel interface and migration analysis of hMSCs on 
RGD hydrogels. (a) Under the action of photoinitiator and 365 nm light, 8-arm PEG-norbornene 
(20 kDa) was cross-linked with nondegradable PEG-dithiol (1 kDa), tethered 6.8 mM cell adhesive 
RGD peptide (CGGRGDSP) or nonadhesive RDG coding peptide (CGGRDGSP), resulting in 3D 
photocross-linked hydrogel network; (b) the representative confocal image of hMSCs combined in 
hydrogel, labeling actin (green) and nucleus (blue). Scale bar = 200 μm main image, 20 μm inset; 
(c) the representative image of the hMSC trajectories marked by orange on the cell tracker on the 
hydrogel, which was tracked for more than 6 h. Scale bar = 200 μm (Reprinted with permission 
from Ref. [154]. Copyright 2020 by ACS Publications) 

3.5.6.2 Effect on the Hydrogel Mechanical Properties 

The 3D mechanical environment of hydrogel is perceived by cell surface receptors 
(called integrins), which mediates mechanical transduction pathways [157]. The 
mechanical interactions between cells and their surrounding hydrogels involves 
three key mechanisms and related sensing components: focal adhesion complex, 
stress fiber contraction and filipodia growth (Fig. 3.45). Sensing begins with the 
adhesive compound, in which the mechanically sensitive integrin can self-organize 
in a larger compound according to the force exerted (or resisted) by the environment. 
When integrin directly binds to the cell adhesion site on the polymer chain in the 
hydrogel, the cell exerts force on the hydrogel to induce the deformation and 
structural change of the hydrogel. Focal adhesion connected with actin cytoskeleton 
produces this force, and the hardness of hydrogel matrix, the density of cell adhesion
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Fig. 3.44 Schematic diagram of the contraction process of a cell-inoculated hydrogel. (a) cells are 
embedded in a hydrogel matrix; (b) cells elongate and attach to fibers; (c) cells stretch fibers, which 
leads to the bending of the fiber; (d) cells are attached to the new fibers after being released, 
resulting in the contraction of the hydrogel (Reprinted with permission from Ref. [156]. Copyright 
2014 by The Royal Society) 

Fig. 3.45 Schematic diagram of main components and mechanisms of cell mechanical sensation. 
(a) Integrin-ligand complexes lead to adhesion between cells and their environment, and the 
lifetime of which is mediated by different forces. In a suitable mechanical environment, integrins 
can polymerize into large adhesive spot complexes; (b) stress fiber is a part of contractile actin, 
which can stretch across two adhesion spot complexes. Their combination and separation are 
restricted by their internal tension; (c) in a 3D environment, the spreading of cells is ensured by 
the extension of filaments, and the dynamics is maintained by the balance between the front actin 
polymerization and the reverse flow powered by actin contraction (Reprinted with permission from 
Ref. [157]. Copyright 2021 by American Chemical Society)



sites and specific integrin-ligand bonds will affect the degree of traction [157]. In 
addition, since the cell process is usually about 1 μm [158] in diameter, and flexible 
hydrogels generally have a mesh size in the range of 10–100 nm, which indicates 
that cells need to forcibly deform and/or degrade hydrogels to prolong their process 
and change their shape [159].
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3.5.6.3 Effect on Hydrogel Degradation 

The degradation of hydrogel matrix can be induced and regulated by microorgan-
isms. For one thing, a large number of microbial cells will deform the hydrogel, and 
local cell growth and death may affect the mechanical stability of the hydrogel, 
resulting in the mechanical deformation of the hydrogel. For another thing, cells will 
stimulate the chemical degradation of hydrogel matrix. For example, fibroblasts in 
collagen hydrogel matrix can release matrix metalloproteinases (MMP) (such as 
collagenase and gelatinase [157]) to digest the matrix and produce other extracellular 
matrix proteins, which enable cells to recombine their surroundings and form a new 
matrix. 

Scarul et al. [160] found that hydrogels sensitive to enzymes will degrade locally 
near cells. When the enzyme diffuses in the hydrogel, it can act as a catalyst for 
polymer degradation, thus reducing the cross-linking density of the hydrogel. After 
that, the hydrogel network expands, and when the reverse gelation point is reached, 
the network will eventually dissolve. Due to the competition between diffusion and 
degradation rates, local reverse gelation was achieved, which led to the degradation 
front being far away from the cell surface. The tightly cross-linked hydrogel showed 
local degradation kinetics, in which the network remained intact at the distance away 
from the particles, while the closer area was completely degraded (Fig. 3.46a). 
Finally, the degradation front speed was obtained as a function of hydrogel cross-
linking density, which could be characterized by width W and speed V (Fig. 3.46b). 

3.5.7 Outlook 

The unique and customizable function of hydrogel makes it an attractive substitute 
for tissue engineering scaffolds to reduce or eliminate the need for tissues and 
organs. These favorable hydrogel matrix can provide molecular customized biolog-
ical functions, adjustable mechanical properties and an environment very similar to 
ECM, so as to better adjust stem cell growth and tissue repair. By discussing the 
characteristics of hydrogel, including three-dimensional, hydrogel structure, biode-
gradability and dynamic characteristics, we can know how to regulate the function 
and fate of cells, and how cells can in turn guide the remodeling, mechanical 
properties and degradability of hydrogel, so as to achieve specific hydrogel-cell 
phenotype and function.
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Fig. 3.46 (a) Confocal microscope images of spatiotemporal degradation patterns of hydrogels, 
including enzyme-sensitive covalently cross-linked PEG hydrogels and collagenase-loaded parti-
cles in hydrogels [collagenase (green) and PEG hydrogel (red)] (Reprinted with permission from 
Ref. [157]. Copyright 2021 by American Chemical Society); (b) the schematic showing the 
propagation of a fuzzy interface caused by enzyme diffusion and degradation within an enzyme-
sensitive hydrogel. The figure shows the evolution of cross-linking density ρ (ρc is the cross-linking 
density during reverse gelation) and enzyme concentration. The highlighted parameters κ, c0, and 
Dg are the key features of the model (Reprinted with permission from Ref. [161]. Copyright 2018 
American Physical Society) 

However, there is still a lot of work to be done before this hydrogel can guide 
stem cell groups to repeatedly assemble and differentiate themselves into fully 
functional tissues. One of the main problems is to effectively summarize the highly 
complex stem cell niche [112]. Although many studies on hydrogel regulation focus 
on the influence of a single clue (such as mechanical rigidity or ligand density) on 
stem cell differentiation, the behavior of stem cells in vivo is influenced by various 
chemical and physical factors. Therefore, in order to fully understand the possible 
impact of every signal on the fate of stem cells, it is necessary to study the synergistic 
or antagonistic effects of competitive signals. In the design of hydrogel, the combi-
nation method is used to clearly define the effects of solubility, insolubility and 
mechanical signals on stem cell population, which can supply a response for the 
specific instructions of cells in their matrix. Combining with the progress of stem cell 
research, it aims to explore the mechanism of stem cell’s specific destiny, and design 
hydrogel to imitate the guiding clue of natural ECM. In the future, it is expected to 
create a renewable source of transplanted tissue with ideal tissue regeneration 
characteristics to better serve clinical application and regenerative medicine.
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3.6 Injectable Hydrogels and Their Applications 

3.6.1 The Brief Introduction of Injectable Hydrogels 

A novel hydrogel system known as injectable hydrogel has been introduced in recent 
times. This system is designed to fill any irregular defect areas by injecting a material 
with certain fluidity into the body, which subsequently forms a solid hydrogel. 
Injectable hydrogels are being increasingly demanded in various biomedical appli-
cations owing to their ability to introduce drugs and minimally invasive deployment 
in the body. These applications include drug delivery, wound repair, and tissue 
engineering, among others [162, 163]. The advent of technological and scientific 
advancements has brought about an era of personalized and intelligent medicine. 
The primary objective of personalized medicine is to diagnose and treat illnesses on 
a patient-specific basis. This is facilitated by the availability of genomics, proteo-
mics, and metabolomics measurements and the increasing affordability of wearable 
devices and biosensors, which enable real-time data collection for personalized 
diagnosis and monitoring of individual patients [164–166]. Injectable hydrogel 
materials with designable properties that mimic natural ECM can be used as special 
artificial cellular microenvironments and are important for the large-scale imple-
mentation of personalized medicine [167]. 

Chemically and/or physically cross-linked hydrogels are often utilized for the 
fabrication of injectable hydrogels. Injectable hydrogel networks can take on a 
variety of physical forms and spatial structures, such as monolithic hydrogels, 
fibrous hydrogels, colloidal and granular hydrogels, particle cross-linked hydrogels, 
and particle-filled hydrogels, depending on their composition and preparation 
methods [168]. Different structures and types of injectable hydrogels have different 
distinctions. But the ideal injectable hydrogel should meet the following conditions: 
(1) it should have good biocompatibility with precursor solutions; (2) the injectable 
hydrogel solution needs to flow at a moderate pressure and quickly form a gel at the 
desired site; (3) the process of gel formation should not generate excessive amounts 
of heat or release harmful small molecules; (4) the mechanical properties must be 
rapidly enhanced after injection; (5) it has to keep sufficient integrity and strength 
[169–174]. Injectable hydrogels are often characterized by their in situ formability, 
in situ drug delivery, high targeting, and uniform incorporation into therapeutic 
molecules and/or cells without the need for surgery. Additionally, these hydrogels 
are biocompatible and biodegradable, which reduces the risk of inducing rejection 
reactions. These attributes have made injectable hydrogels a highly attractive option 
in the field of regenerative medicine, garnering significant attention from researchers 
and clinicians alike.
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3.6.2 Injectable Hydrogels for Various Tissue Restoration 

3.6.2.1 Injectable Hydrogel for Cardiac Tissue 

The heart is a crucial organ in the human body and serves as a core component of the 
circulatory system by pumping blood. Myocardial infarction (MI) is one of the most 
serious heart-related illnesses and leads to significant myocardial cell death, micro-
environmental changes, loss of electrical communication through fibrotic scarring, 
and insufficient blood supply to the infarcted myocardium. This results in millions of 
deaths annually. In response, researchers have explored numerous approaches to 
address these challenges and proposed several promising treatments. Major clinical 
strategies include drugs, cardiac assist devices, and heart transplants. Injectable 
hydrogels have several advantages over traditional methods, including local and 
targeted delivery via a narrow syringe, which is minimally invasive and does not 
require surgery [168]. 

Recently, injectable hydrogels have been widely developed to repair damaged 
cardiac tissue, with some notable breakthroughs. Wang et al. synthesized a 
microenvironment-responsive multifunctional hydrogel loaded with anti-
inflammatory nanoparticles and custom recombinant type III humanized collagen 
(rhCol III), which was able to release the anti-inflammatory drugs curcumin (Cur) 
and rhCol III on demand at the site of heart failure (acidic environment and high 
ROS). In vitro and in vivo experiments both confirmed the efficacy of the responsive 
hydrogel with multiple functions in repairing damaged myocardial tissue. The 
hydrogel was also found to notably enhance the expression of myocardial markers, 
such as α-actinin and Connexin 43 (Cx43). This study has promising potential to 
expedite heart repair and pave the way for treating heart failure [175]. Another case 
in point, Li et al. explored the application of a combined “anti-inflammatory-pro-
vascular” therapeutic strategy in the treatment of infarcted heart. By constructing a 
symptom-responsive injectable hydrogel system for the responsive delivery of 
mesoporous silica nanoparticles (MSN), that reshapes macrophage function and 
modulates the inflammatory microenvironment, while small molecule nucleic 
acids (microRNA-21) are delivered to endothelial cells via MSN to promote micro-
vascular formation. The dual effects of anti-inflammation and provasculature were 
observed to promote the recovery of ischemic myocardium in an inflammatory 
environment in a porcine model of MI. Furthermore, these effects effectively 
improved cardiac function after the onset of infarction [176]. Li et al. developed a 
novel approach to address the limitations of immature phenotype and function of 
cardiomyocytes as well as poor electrical coupling, by encapsulating human-induced 
pluripotent stem cell-derived cardiomyocytes (hiPS-CM) within a hybrid gold 
nanoparticle (AuNP)-HA hydrogel matrix. The hiPS-CMs administered through 
the hydrogel exhibited a stronger angiogenic effect, thereby contributing to the 
recovery process. Therefore, insights into the development of injectable bionics 
for repairing the structural and functional damage of the heart are provided by this 
study [177].
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Fig. 3.47 Schematic illustration about the manufacturing process of the adjustable self-healing 
POG1 hydrogel and its implementation in repairing myocardial infarction (Reprinted with permis-
sion from Ref. [179]. Copyright 2021 Elsevier Ltd) 

The treatment of MI through microRNA (miRNA)-based therapies, which spe-
cifically targeted the proliferation of CM, hold immense promise. Wang et al. have 
successfully developed an injectable hydrogel, comprising of HA, that facilitates the 
local and sustained delivery of miR-302 mimics to the heart. The resulting injectable 
gel effectively promoted local clonal proliferation and significantly increases the 
number of CMs within the boundary region of a Confetti mouse model. This study 
provided compelling evidence for the feasibility of a biomaterial-based miRNA 
delivery system that utilizes injectable hydrogel for the regeneration of the heart 
postinfarction [178]. A conductive hydrogel has been identified as a promising 
therapeutic tool for treating damaged myocardium in cases of MI. Song et al. devised 
an adaptable self-regenerating ion hydrogel (POG 1) by incorporating 
FDA-sanctioned biocompatible PAA into the oxidized sodium alginate (OA)/gelatin 
(Geln) hydrogel framework, as depicted in Fig. 3.47. By adjusting the PAA concen-
tration (ranging from 0 to 16.6 mg/mL), PAA nanochannels were established within 
POG 1, rendering the hydrogels with microscopic, super-homogeneous conductiv-
ity, thereby allowing the ionic conductivity of POG hydrogels to be effortlessly fine-
tuned to fulfill the necessities of heart tissue. Furthermore, the POG1 hydrogels



created had desirable tensile (> 500% strain) and compressive (> 85% strain) 
properties. Their mechanical attributes were comparable to those of mammalian 
hearts (30–500 kPa, Young’s modulus), featuring self-regeneration and high 
deformability. POG 1 hydrogel-contained CM exhibited a more marked directed 
sarcomere than electron conductor-embedded hydrogels. Subsequently, it was 
administered via injection into the damaged area of the heart, playing a potent role 
in reducing left ventricular remodeling and reinstating cardiac function [179]. 
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Despite so many advances in the field of injectable hydrogels for cardiac tissue 
engineering, there remain significant obstacles to their widespread use in humans. 
For instance, the mechanisms behind cardiac injury are not yet fully understood, and 
parameters such as hydrogel dose, injection timing, and material deployment are not 
yet well-defined. Moreover, the vast majority of hydrogels lack the necessary 
characteristics to accurately replicate the properties of native cardiac tissue [180]. 

3.6.2.2 Injectable Hydrogel for Bone Tissue 

Due to traumatic injuries, defects, and diseases, cartilage and bone tissue may lose its 
ability to repair itself, often requiring clinical intervention. Transplantation is cur-
rently the most commonly used method for bone regeneration in clinical practice. 
However, bone transplant materials are a challenge to be solved in the field of bone 
defect repair. Four basic properties must be considered as materials for bone defect 
repair: (1) biocompatibility; (2) mechanical resistance; (3) biodegradability; and 
(4) induced regeneration [181]. Published in recent years are multiple accounts of 
injectable hydrogels for bone defect filling and facilitating healing. By teaming up 
with medications, ions, growth factors, stem cells, or microRNA, these hydrogels 
can trigger bone regeneration in a noninvasive way, deviating from conventional 
invasive methodologies and serving as a crucial factor in bone repair [168]. For 
example, Zheng et al. created a flexible composite hydrogel system, consisting of 
silk protein/mesoporous bioglass/sodium alginate (SMS), which enables seamless 
filling of bone defects and is reactive to both Ca2+ concentrations and inflammatory-
like pH in the deficient bone microenvironment. It has the ability to promote new 
bone formation and angiogenesis by regulating the polarization of macrophages 
from proinflammatory (M1) to proregenerative (M2) and creating a specific, advan-
tageous environment [182]. The combination of diagnosis and treatment is currently 
a hot development trend of injectable hydrogels. Li et al. developed a “diagnostic” 
and therapeutic dual-logic hydrogel that could be used for bone regeneration in 
diabetes mellitus (DM) by designing a dual-network hydrogel that was electrostat-
ically assembled from phenylboric acid cross-linked and gelatin nanoparticles, as 
shown in Fig. 3.48. When exposed to high glucose or reactive oxygen species, the 
polyvinyl alcohol network can be reversibly disrupted, whereas the gelatin network 
contains biologically active motifs that promote cell affinity and can be degraded by 
matrix metalloproteinases (MMP). As a result, the biomaterial could determine the 
timing of drug release in the microenvironment of diabetes mellitus, based on its 
dynamic nature. Furthermore, it provides therapeutic logic for programming



different cargo to align with the immune bone cascade, facilitating better tissue 
regeneration upon release. In vivo, the osteogenic potential of the interleukin 
hydrogel—which contained interleukin 10 (IL-10) and bone morphogenetic protein 
2 (BMP-2)—was assessed, followed by RNA sequencing and bioinformatics anal-
ysis in a diabetic rat model. Additionally, the hydrogel was demonstrated to be 
capable of adapting mechanically to the intricate nature of local bone defects. In 
addition, this study investigated the biological responses of macrophages and oste-
oblast precursor cells in vitro to reveal the potential regenerative mechanism of bone 
immune regulation, explained the logic-based cargo release that regulated macro-
phage polarization by remodeling the mitochondrial-associated antioxidant system, 
leading to osteogenic enhancement in diabetic bone defects. Additionally, it offered 
valuable insights into dual-logic-based tissue engineering approaches and the under-
lying biological mechanisms [183]. 
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Fig. 3.48 Schematic diagram showing the design principle for “diagnostic” and therapeutic logic-
based hydrogel and the mechanism of BMP-2 (HIB)-induced diabetic bone regeneration by 
reprogramming immune-osteo cascade (Reprinted with permission from Ref. [183]. Copyright 
2022 Wiley)
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Apart from this, cartilage damage remains a threat to humans, but there is no 
treatment that can fully restore cartilage function. Lu et al. utilized a natural cross-
linking agent known as genipin to attach biocompatible carbon dot nanoparticles to 
collagen, resulting in the formation of injectable hydrogels termed CGN (collagen– 
genipin–carbon dot nanoparticles). The fusion of carbon dot-altered hydrogel injec-
tion and PDT therapy is an innovative tactic for repairing cartilage defects with 
minimal invasion [184]. 

There are still a number of obstacles that need to be overcome in order to attain 
optimal cartilage and bone regeneration through injectable hydrogels. In the future, 
injectable hydrogels for bone repair could continue to be investigated in the follow-
ing areas: (1) the creation of biologically active biomaterials suitable for the pro-
duction of novel injectable hydrogels; (2) the need for more advanced methods to 
prepare hydrogels that improve mechanical properties and reduce toxicity and other 
adverse effects; and (3) the design of an optimal hydrogel for widespread use in the 
clinic [185]. 

3.6.2.3 Injectable Hydrogel for Muscle Tissue 

The muscular tissue is a well-structured tissue made up of numerous unidirectional 
multinucleated muscle fibers, playing a critical role in the overall movement of the 
system. Intense physical activity, traumatic injuries, or other external factors can 
cause severe harm to the muscular tissue that surpasses its natural self-healing 
capabilities, leading to the development of scar tissue and the impairment of 
functionality. Autologous transplantation of healthy muscular tissue remains the 
conventional clinical approach for treating significant muscular injuries, yet it is 
restricted due to issues such as inadequate donor tissue, loss of donor site function, 
and donor site morbidity. One promising alternative is the development of tissue-
engineered constructs that can be designed and prepared in vitro before being 
transplanted in vivo. This is followed by mechanical, chemical and/or electrical 
stimulation and pretreatment with growth factors, which can promote in vivo con-
struct maturation and thus postimplantation survival [186]. 

As a new material in the field of muscular tissue engineering, injectable hydrogels 
have garnered significant interest. As an example, Ge et al. demonstrated the use of 
an injectable conductive antioxidant antibacterial nanocomposite hydrogel scaffold 
called FPAu. This scaffold was developed using aldehyde-modified Pluronic micelle 
cross-linked by polydopamine nanoparticles and ultrasmall AuNPs decorated with 
branched polyethyleneimine (PEI). The FPAu scaffold was used to regenerate and 
enhance the structural and functional capabilities of whole skeletal muscle tissue. In 
a rat model with tibialis anterior muscle deficiency, the FPAu scaffold was able to 
effectively promote the growth of skeletal muscle tissue and restore its mechanical 
and electrophysiological function [187]. In addition to conductive hydrogels, mag-
netic injectable hydrogels also enable the repair of muscle tissue. In Fig. 3.49a, 
Wang et al. utilized a coaxial electrospinning cycle cutting approach to produce 
monodisperse magnetic short nanofibers (MSNF) with high yield. An injectable



anisotropic MSNF/gel nanofiber/hydrogel scaffold was then created by incorporat-
ing the MSNF into a photocurable GelMA hydrogel using remote magnetic control, 
which allowed for precise microarchitecture control and the ability to guide three-
dimensional cell arrays and tissues. When injected into animal models with volu-
metric muscle loss (VML) defects under the influence of a magnetic field, the 
scaffold mimicked the macro- and microtopographic characteristics of the rhombus 
and biceps brachii in their anatomical positions. This significantly enhanced the
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Fig. 3.49 Schematic illustration of injectable anisotropic MSNF/Gel scaffold for biomimicking of 
living constructs with macro- and microstructures in vitro and aligned regenerated myofibers 
in vivo.  (a) Schematic process of MSNF preparation via a coaxial electrospinning-cyrocutting 
method. Electrospun core-shell sheets were cryocutted into short core-shell sheets and then washed 
to remove the shell to obtain dispersed MSNFs; (b) injectable MSNF/Gel scaffolds were prepared 
by encapsulating MSNFs within GelMA hydrogel to promote cell 3D alignment for biomimicking 
of living constructs with macro- and microstructures in vitro or to repair VML defect with aligned 
regenerated myofibers in situ under magnetic field (Reprinted with permission from Ref. 
[188]. Copyright 2022 Elsevier Ltd)



formation of aligned muscle fibers in vivo and improved the functional recovery of 
damaged muscles in the VML model, as demonstrated in Fig. 3.49b. The prepared 
scaffold not only promoted the formation of muscle fibers in skeletal muscle, but 
also could biologically produce living structures containing complex anisotropy 
in vitro [188]. The concept of using remote magnetic replication to incorporate the 
3D micro- and macrostructures of natural cell tissue represents a highly promising 
approach for achieving functional anisotropic skeletal muscle regeneration in situ.

3 Versatile Hydrogels in Regenerative Medicine 135

Despite numerous attempts to identify a secure and efficient treatment to facilitate 
muscular tissue healing, the existing treatments have not resulted in any significant 
clinical advancements [189]. Furthermore, the existing studies’ utilization of a 
solitary model does not translate to clinically significant muscular injuries. Thus, 
future research should employ more intricate and severe injury models to compre-
hensively assess the effectiveness of injectable hydrogels [190]. 

3.6.2.4 Injectable Hydrogel for Nerve Tissue 

Injuries to organs and tissues are often accompanied by nerve damage, which affects 
people’s normal physiological functions, such as chronic pain, nerve disorders, 
paralysis or disability. The process of nerve repair is lengthy and requires surgery 
and medication, together with electrical stimulation and acupuncture. Injectable 
hydrogels can be used to treat neurological deficiencies and offer desirable advan-
tages. Conductive injectable hydrogels have the ability to promote nerve regenera-
tion. Xu et al. developed self-healing hydrogels and scaffolds capable of shape 
restoration and conductivity. They employed N-carboxyethyl chitosan (CEC), 
chitosan-modified polypyrrole (DCP) nanoparticles, and an exclusive 
aldehyde-capped bifunctional polyurethane (DFPU) as cross-linking agents. CEC 
was combined with DCP through electrostatic interactions, and DFPU was utilized 
to cross-link the hydrogel and scaffold materials via a dynamic Schiff base reaction, 
resulting in a cross-linked network. The lyophilized hydrogels were used to create 
shape recoverable scaffolds. The scaffold demonstrated exceptional strain/motion 
sensing properties in vitro and ex vivo while being biodegradable and biocompatible 
in vivo. The scaffold also promoted the adhesion, proliferation, and differentiation of 
neural stem cells (NSCs). The neuroregenerative capacity of conductive hydrogels 
or cell-filled conductive hydrogels was well demonstrated in a zebrafish brain injury 
model by restoring motor function, with a functional recovery rate of approximately 
53% and 80%, respectively [191]. Xu et al. developed an injectable hydrogel 
composed of conductive and biodegradable germanium phosphide (GeP) nanosheets 
combined with a hyaluronic acid graft dopamine (HA-DA) hydrogel matrix, as 
illustrated in Fig. 3.50a. This hydrogel was successful in repairing spinal cord nerves 
and accelerating the differentiation of neural stem cells (NSCs) into neurons. 
Figure 3.50b showed that dopamine molecules were grafted onto HA biomolecules 
to produce a hyaluronic acid grafted dopamine hydrogel with excellent tissue 
adhesion capabilities. GeP nanosheets were coated with polydopamine (PDA) to 
enhance their biological stability and biocompatibility, resulting in GeP@PDA. The



136 Y. Li et al.

Fig. 3.50 Preparation scheme of (a) GeP@PDA nanosheets; (b) HA-DA polymers; and (c) 
HA-DA/GeP@PDA conductive hydrogels; (d) schematic diagram of the application of injectable 
and conductive HA-DA/GeP@PDA biohybrid hydrogels in the spinal cord injury repair (Reprinted 
with permission from Ref. [192]. Copyright 2022 Wiley)



GeP@PDA were added to the HA-DA hydrogel matrix using horseradish peroxidase 
(HRP)/H2O2 as the initiator system, as shown in Fig. 3.50c, significantly increasing 
the hydrogel’s conductivity and enhancing NSC differentiation into neurons in vitro. 
In a rat model of complete transection of the crestal medullary injury, the in vivo 
implanted HA-DA/GeP@PDA hydrogel promoted immunomodulation, endogenous 
angiogenesis, and neurogenesis of NSCs, significantly improving motor function 
recovery, as depicted in Fig. 3.50d. This provided a novel approach for developing 
materials that could be used to repair crestal medullary injuries [192].
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Although injectable hydrogels have been studied as scaffolds for neurological 
repair for many years, there are still some limitations and high risks for injection at 
different sites in vivo, such as the brain. Additionally, the discovery of mechanisms 
of stimulation of neural tissue growth is still insufficient, such as the frontal lobe 
connection mechanism between the hydrogel and the axon; therefore, efforts should 
be focused on exploring the mechanisms behind it for better repair results [193]. 

3.6.2.5 Injectable Hydrogel for Wound Healing 

People all over the world suffer from minor or major injuries every day. The correct 
management and treatment of some serious wounds are of great life and economic 
value to individuals and societies. For quick healing of wounds to ensure the health 
of human, the wound needs to be kept clean, with an adequate blood supply, free of 
necrotic tissue and in a suitable moisture environment. Medical dressings are 
supplies to cover the damaged area and are available in natural gauze, synthetic 
fiber dressings, polymorphic dressings, foamed polymorphic auxiliaries, hydrocol-
loid dressings, alginate dressings, nanosilver dressings, etc., which can be divided 
into dry and wet types. It may prevent bacterial overgrowth, control wound exuda-
tion, and maintain proper fluid balance. There are several dressing options that are 
accessible for purchase, including polyurethane films, fibers, and hydrogels, and 
these have been employed for the purpose of wound management. Hydrogels are an 
especially advantageous type of dressing due to their ability to create a moist 
environment, absorb wound exudate, facilitate oxygen flow, and cool the surface 
of the wound [194–196]. Injectable hydrogels belong to wet type dressings with 
good hydrophilicity and biocompatibility, facilitating the elimination of metabolic 
products without affecting the metabolism of the living body. Consequently, wound 
management heavily relies on the utilization of hydrogel-based dressings, which are 
commonly employed in a range of medical contexts, from minor to severe tissue 
injuries. The demand for injectable self-repairing hydrogel dressings that possess 
diverse attributes is particularly high in relation to wound healing applications. 
Therefore, there is a pressing need for injectable self-repairing hydrogel dressings 
with multifunctional properties in the field of wound healing. Zhao et al. have 
created a range of injectable conductive self-repairing hydrogels, which consist of 
quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde-based functionalized 
poly(ethylene glycol)-poly(glycerol sebacate) (PEGS-FA). These hydrogels have 
been engineered to function as antibacterial and antioxidant agents, as well as



electroactive dressings for skin wound healing purposes. In comparison to 
quaternized chitosan/PEGS-FA hydrogels and Tegaderm™ films, this hydrogel 
has been found to demonstrate superior in vivo blood coagulation efficacy at a 5% 
weight concentration, and also significantly enhances the in vivo wound healing 
process in a complete skin defect model by increasing the expression of various 
growth factors, including platelet-derived growth factor (VEGF), epidermal growth 
factor (EGF), and transforming growth factor (TGF-β). Since natural materials are 
characterized by good biocompatibility and low toxicity, and proteins are crucial 
components of all tissues, hydrogels based on proteins have a promising future in the 
field of bioengineering [197]. Liu et al. have developed a glycopeptide heteroge-
neous hydrogel that is responsive to the tissue environment and antimicrobial, with a 
focus on its application in chronic wound healing, as shown in Fig. 3.51. Inspired by 
the composition, structure, and function of natural extracellular matrix (ECM), the 
researchers coupled dextran (GM) with an endogenous antibiotic peptide using a 
dynamic and acid-sensitive imine bond (designated as GM-P). This bond mediated 
the polarization of macrophages toward the M2 type, which can effectively regulate 
inflammation at the wound site. Another glycopeptide, hyaluronic acid, was pre-
pared by grafting a MMP-2/9 response peptide with a collagen tripeptide (GPHyp) 
(HA-P), which could mimic the structural support for cell adhesion, migration, 
natural ECM proliferation, and provide essential amino acids for collagen reconsti-
tution during ECM assembly. The two glycopeptides were mixed together in water 
to create GM-P@HA-P heterogeneous hydrogels, which had a porous structure of 
artificial ECM cross-linked by laminar fibers ranging from nano to micron in
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Fig. 3.51 Schematic diagram for the formation and application of biomimetic GM-P@HA-P 
glycopeptide hydrogel as a multifunctional dressing for MRSA-infected chronic skin wound 
healing (Reprinted with permission from Ref. [198]. Copyright 2022 Springer)



diameter. The outcomes indicated that this hydrogel that mimics the extracellular 
matrix was able to increase cell proliferation, induce macrophage polarization 
toward the M2 phenotype, and exhibit potent antibacterial activity against both 
Gram-negative and Gram-positive bacteria. Moreover, it expedited the regeneration 
of methicillin-resistant Staphylococcus aureus (MRSA), reduced inflammation, and 
stimulated angiogenesis by coordinating a proregenerative response guided by 
abundant M2 phenotype macrophages derived from infected homozygous diabetic 
and scalded skin [198].
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To enhance the effectiveness of wound management, it is imperative to devise 
novel materials and uncomplicated methods to develop high-performance injectable 
hydrogels with enhanced capabilities, such as antibacterial and anti-inflammatory 
characteristics, antioxidant traits, the promotion of regeneration, and the elimination 
of scarring. 

3.6.2.6 Injectable Hydrogels for Other Tissues 

Along with the tissue repairs outlined previously, injectable hydrogels have the 
potential to treat various other biological tissues, including the lungs, stomach, and 
intervertebral discs. To this end, Peng and colleagues have created a PEI/PAA 
powder with self-gelling and adhesive properties. As a result of the robust physical 
interaction between the polymers, the powder can quickly absorb interfacial water to 
generate a physically cross-linked hydrogel within a mere 2 s. This hydrogel is 
capable of efficiently sealing damaged pig stomachs and intestines [199]. Xu et al. 
have efficiently biosynthesized injectable microspheres composed of gelatin meth-
acrylate (GMs) with controlled and uniform particle sizes via a low-cost electrospray 
technique. This method has been used to minimize the in vivo degeneration of rat 
intervertebral discs, maintain the integrity of nucleus pulposus tissue, and expedite 
the synthesis of ECM [200]. 

To sum up, injectable hydrogels hold tremendous potential for multiple tissue 
regeneration techniques. The primary obstacle in the near term will be to validate 
these findings in preclinical and clinical investigations, and ultimately transform 
them into secure and efficient therapeutic alternatives that comply with regulatory 
requirements and can be commercialized on a broad scale [168]. 

3.6.3 Injectable Hydrogel for Tissue Adhesive 

Existing bio-adhesives tend to slip when it applied in the complex and humid 
environment of the human body. The methods like suture fixation and expandable 
microneedles are invasive and not very user friendly [201]. As a result, it is crucial 
from a clinical standpoint to develop an adhesive that can securely bond to moist 
tissue and resist dynamic mechanical movements to support tissue regeneration 
throughout the healing process at the site of injury. A number of injectable hydrogels



is available that have extremely strong adhesion and can be designed to alleviate the 
onset of superficial tissue inflammation due to their high permeability and moistur-
izing properties, which by design can lead to therapeutic results. 
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A case in point, He et al. have produced a sequence of injectable pH-responsive 
self-repairing adhesive hydrogels using acryloyl-6-aminohexanoic acid and AA-N-
hydroxysuccinimide (AA-NHS). The addition of AA-NHS as a micro-cross-linker 
led to a rise in the adhesive strength of the hydrogels. When tested on a porcine 
gastric hemorrhage in vivo model, the hydrogels demonstrated excellent hemostatic 
characteristics by halting acute arterial bleeding and avoiding delayed bleeding. The 
hydrogel also had a strong therapeutic effect on a gastric wound model, which 
included significant promotion of wound healing through increased deposition of 
type I collagen, expression of α-smooth muscle actin (α-SMA), and angiogenesis. 
These results demonstrate the potential of injectable self-repairing mucoadhesive 
hydrogels for treating gastric wounds following endoscopic procedures [173]. Liang 
et al. developed a biocompatible sprayable conductive hydrogel by means of Fe3+-
initiated in situ polymerization of pyrrole (Ppy) and dopamine, in combination with 
the complexation of gelatin. A two-step Michael addition reaction was employed to 
create hyperbranched polymers, with dopamine and pyrrole groups introduced 
sequentially, as illustrated in Fig. 3.52. Initially, dopamine hydrochloride, 
pentaerythritol triacrylate, and poly(ethylene glycol) diacrylate were reacted 
according to a stepwise “A2 + B3 + C2” polymerization mechanism, with the 
ratio of double bonds to reactive hydrogen set at 1.5:1, forming a hyperbranched 
poly(amino ester) (HPAE) with acrylate end groups. In the second stage, an excess 
of pyrrole moiety ends was added to fully envelop this hyperbranched polymer that 
contained dopamine, leading to the formation of the HPAE-Py polymer. To enhance 
the biocompatibility of the hydrogel patch, Gelatin was introduced into the precursor 
solution, along with the purified HPAE-Py polymer, while Fe3+ was selected as a 
multifunctional curing agent that was oxidized during in situ polymerization. As a 
result of the formation of the dopamine-Fe3+ complex, the proposed adhesive 
hydrogel was able to swiftly attach to the wet pulsating surface of the heart, without 
any unwanted fluid seepage. This consequently enhanced heart function and aided in 
the restoration of electrophysiological signal conduction and hemodynamics within 
the infarcted myocardium. This research presents a novel approach for the produc-
tion of suture-free patches that can be translated into clinical practice [202]. 

While numerous hydrogels possessing tissue adsorption capabilities have been 
highlighted for their benefits, certain challenges must be acknowledged and resolved 
prior to their use in clinical settings. One significant factor to consider is the 
regulation of their degradation rate based on the proportion and temperature of the 
precursor. To ensure practicality, further investigation into this area is required, with 
significant potential for advancement in the future [203].
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Fig. 3.52 Schematic illustration of the formation of a conductive and adhesive hydrogel, and its 
application by painting directly on the surface of MI heart in SD rats (Reprinted with permission 
from Ref. [202]. Copyright 2018 Wiley) 

3.6.4 Injectable Hydrogel for 3D Printing 

The field of biomedicine and biotechnology has shown significant interest in 3D 
bioprinting, a technology capable of printing biodegradable materials infused with 
cells, resulting in the production of 3D tissues. Injectable hydrogels have emerged as 
a particularly promising material for use in 3D printing due to their dynamic nature, 
ability to maintain stable rheology, and further stability provided by cross-linking



after secondary printing. As a result of these unique properties, injectable hydrogels 
have enormous potential for application in the field of 3D printing. 
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In the study conducted by Shin et al., an injectable, gently conductive granular 
hydrogel was created utilizing gallic acid redox and in situ metal reduction reactions. 
The granular hydrogel, in which metal nanoparticles were synthesized in situ, 
demonstrated superior electrical conductivity (approximately 0.05 S cm-1 ) compared 
to the bulk hydrogel. This conductive particulate hydrogel allowed 3D printing and 
extrusion to create a free-form three-dimensional configuration on a polymer film 
with conductivity, forming a conductive microgel that restored electrical conductiv-
ity by connecting two separated muscle tissues [204]. Loebel et al. introduced a new 
type of HA hydrogels formed through noncovalent guest–host interactions, as 
depicted in Fig. 3.53. Upon injection via a syringe, these hydrogels underwent 
shear thinning followed by self-healing within seconds when the shear force was 
eliminated. In this paper, the authors also outlined how to modify HA derivatives 
with methacrylates for secondary covalent cross-linking and fluorophore reactions 
for in vitro and in vivo imaging. HA polymers were carefully designed using 
relatively low molecular weight raw materials, with precise modification degree 
and guest-to-body stoichiometry ratios, resulting in hydrogels with specific proper-
ties that took 3–4 weeks to complete. The fast self-healing capability of this hydrogel 
system holds great promise for applications such as in vivo injection (including cells 
and therapeutic molecules) and 3D printing, overcoming the challenge of developing 
printable hydrogel bioinks that are printable and mechanically stable enough to 
support printed structures [205]. 

Despite the rapid development of 3D printing technology in the field of biological 
tissue engineering, research in this area remains significantly constrained. Ink 
formulation and print setup are key, and specific rheological benchmarks will 
subsequently need to be established to determine printability. The intricate nature 
of materials and structures utilized in 3D printing within this field renders it 
challenging for any one discipline to fully accommodate its development. As such, 
a combination of multidisciplinary and interdisciplinary approaches are necessary to 
enable the printing of increasingly lifelike tissues and organs. This, in turn, lays the 
foundation for disease research, drug screening, and advancements in tissue 
engineering [168]. 

3.6.5 Injectable Hydrogel for Bioelectronics 

With the progressive advancement of technology, there is a growing awareness that 
bioelectronic signals can convey more information to people and provide a good 
way to understand and solve problems. Hydrogels are much in demand for mini-
mally invasive biomedical treatments. As therapeutic functions alone are no longer 
adequate, injectable hydrogels have increasingly found use in bioelectronic devices 
over the past few years, demonstrating substantial progress and enabling diverse 
monitoring and treatment modalities.
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Fig. 3.53 (a) Overview of the guest–host hydrogel platform. (Top left) Schematic illustration of 
HA modified with β-cyclodextrin (CD-HA, red) and adamantane (Ad-HA, blue) with the assembly 
(self-healing, purple) and disassembly (shear-thinning) of the guest–host complex. (Top right) 
Encapsulation and delivery of (1) therapeutics (e.g., proteins and therapeutic molecules) and 
(2) cells (e.g., endothelial progenitor cells) for in vivo delivery. (Bottom) Methacrylation of 
CD-HA and Ad-HA to obtain CD-MeHA and Ad-MeHA polymers, which facilitate hydrogel 
formation by both (3) physical cross-linking and (4) secondary cross-linking of methacrylate 
upon UV light exposure (10 mW cm-2 , 365 nm), including toward 3D printing applications. 
CD-MeHA derivatives can also be used for (5) additional peptide-conjugated fluorophore coupling
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Zhang et al. have developed an injectable, conductive hydrogel comprised of poly 
(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), as demon-
strated in Fig. 3.54a. The hydrogel exhibits exceptional biocompatibility and stabil-
ity due to the physical cross-linking of the PEDOT+ polymer chains, allowing it to 
spontaneously form hydrogels at room temperature upon injection of the suspension 
at the desired location. By mixing the PEDOT:PSS suspension with 
4-dodecylbenzenesulfonic acid (DBSA), the researchers were able to obtain room 
temperature-formed PEDOT:PSS (RT-PEDOT:PSS) hydrogels, which possess a 
high volume expansion rate and can be used in water-repairable hydrogel 
bioelectronics. Additionally, they proposed a technique to create PEDOT:PSS 
hydrogel fibers, facilitating the development of soft and self-healing hydrogel 
bioelectronic devices, as depicted in Fig. 3.54b, which has the potential for use in 
a range of biomedical applications [206]. 

The future development is expected to focus on assembling and integrating 
injectable conductive hydrogels that possess excellent biocompatibility, high elec-
trical conductivity, and water stability with diverse bioelectronic devices and inter-
faces of biological tissues. 

3.7 Clinical Applications of Hydrogels 

Over the past few decades, hydrogel items have been implemented in clinical 
settings. The medical application of hydrogels has considerably broadened, 
extending from conventional wound dressings to contact lenses, and, more recently, 
to live-cell therapies [18]. Collagen or gelatin is the most prevalent biomolecule 
utilized in protein-based hydrogels. Collagen is a vital component of the ECM found 
in articular cartilage and holds considerable potential in the regeneration of cartilage. 
Gelatin is a modified form of collagen and shares many of its properties. It exhibits 
excellent biodegradability and compatibility, which is conducive to the adherence, 
migration, and proliferation of cells. The most commonly used material to generate 
hydrogels is nontoxic, low-fouling PEG, which has been sanctioned by the FDA for 
biomedical purposes [207]. According to Table 3.6, regulatory clearance has been

Fig. 3.53 (continued) to track hydrogel degradation; (b) schematic illustration of the extrusion of 
two differently labeled guest–host hydrogel inks (red and green) into an unlabeled guest–host 
support hydrogel (gray); (c) confocal images show a filament of a fluorescein-labeled ink with a 
continuous spiral of a second, rhodamine-labeled ink extruded into an unlabeled support gel; (d) the 
printing process enables the patterning of multicellular structures shown by printing MSCs (green) 
into a support gel containing 3 T3 fibroblasts (red); scale bars, 200 μm; (e) schematic illustration of 
the extrusion of methacrylated GH hydrogel ink and subsequent stabilization with UV exposure in 
the presence of Irgacure 2959; (f) the UV-stabilization process allows for printing of multilayered 
structures with high spatial fidelity—as shown by the phase-contrast top view image (left)—which 
maintains the grid structure (right) for more than 30 days in aqueous culture medium. Scale bar, 
500 μm (Reprinted with permission from Ref. [205]. Copyright 2017 Springer)



granted for various other constituents of hydrogel technologies for healthcare uses, 
such as cancer therapy, wound healing, tissue regeneration, and other areas. There 
are 25 approved hydrogel products in Table 3.6, and we classified clinical trials by 
relevant disease, material source (i.e. natural, synthetic, or unknown) , and approval 
date. The source of the material is based on a clinical trial description or a U. S. 
patent for the device.
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Fig. 3.54 (a) Schematic illustration of gelation processes of RT-PEDOT: PSS hydrogel; (b) 
schematic of the fabricated OECTs with injected RT-PEDOT: PSS hydrogel fiber; (c) cross-
linking mechanism of our RT-PEDOT: PSS hydrogel. The addition of the DBSA into the suspen-
sion weakens electrostatic attraction between PEDOT+ and PSS-, exposing the PEDOT+ chains to 
water. The exposed PEDOT+ chains undergo a conformational change from a confined-coiled to an 
expanded-linear structure and subsequently physically cross-linked due to π–π stacking and hydro-
phobic attractions; (d) schematic of injectable RT-PEDOT: PSS hydrogels: Puncturing the soft 
tissue with syringe (Reprinted with permission from Ref. [206]. Copyright 2022 Elsevier Ltd)
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3.7.1 Products for Heart Repair 

Following a cardiac arrest, scar tissue may develop, impairing the muscle and 
leading to cardiac insufficiency. And there is no clear treatment option to address 
the heart tissue damage caused by a heart attack. Current cell delivery techniques 
have been ineffective, resulting in inadequate engraftment, retention, and viability of 
transplanted cells in cardiac tissue [209]. Hydrogels as a biomaterial, have been 
realized in clinical trials and used to treat cardiac injuries. He et al. conducted a study 
to investigate the safety and feasibility of intracardiac administration of collagen 
hydrogels combined with human umbilical cord-derived mesenchymal stromal cells 
(hUC-MSCs) in patients with chronic ischemic heart disease (CIHD) who underwent 
coronary artery bypass grafting (CABG). Due to variations in evaluation criteria and 
patient characteristics across previous studies, it is challenging to compare the 
effectiveness of cell therapy, biomaterial patches, and hydrogels across different 
investigations. Nevertheless, clinical trials of cardiac repair using hUC-MSCs plus 
CABG, collagen/cells plus CABG, and CABG alone have been designed. The 
outcomes of this study confirmed the safety and feasibility of intracardial injection 
of collagen hydrogel containing hUC-MSCs for the treatment of myocardial infarc-
tion in patients undergoing CABG [209]. In addition, there are other clinical 
hydrogels that can be used for heart repair, such as Algisyl-LVRTM, IK-5001, and 
VentriGel. 

Ventrix, a subsidiary of the University of California, San Diego, has developed a 
hydrogel product, which conducted the first human clinical trial from 2019 as shown 
in Fig. 3.55. VentriGel is a catheter-deliverable hydrogel created from porcine 
decellularized myocardial ECM that can be stored in a lyophilized form and 
reconstituted with sterile water to form a liquid. The FDA has approved a trial 
aimed at restoring heart function and repairing damage in patients with heart failure 
who have previously experienced a heart attack. The gel is safely administered via 
catheter to patients who have had a heart attack within the past 2 to 36 months and 
will solidify into porous and fibrous scaffolds within the myocardium, promoting 
endogenous cell infiltration and cardiac repair. During a clinical phase 1 trial, 
15 patients, including 12 men, with moderate damage to the left ventricle of the 
heart after a heart attack were evaluated. Each patient was administered 15–18 
injections into the affected area and was monitored for up to 6 months. The final 
trial findings demonstrated that the gel could be injected in a minimally invasive 
manner via a catheter without the need for surgery or general anesthesia. Further-
more, it was found to stimulate a typical remodeling response in the region of the 
heart injury instead of triggering an inflammatory reaction. However, the Phase 
1 trial also had some limitations, for example, it was an uncontrolled monaural trial 
and efficacy could not be assessed in a small number of patients. As a result of the 
successful initial human trial, Ventrix is now gearing up for a Phase 2 clinical trial. 
They plan to conduct a larger randomized trial to assess the effectiveness of 
VentriGel in enhancing cardiac function and improving the quality of life of heart 
failure patients [210].
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Fig. 3.55 Schematic illustration of VentriGel’s clinical trial (Reprinted with permission from Ref. 
[210]. Copyright 2019 Elsevier Ltd) 

3.7.2 Products for Spinal Fusion 

With nearly 100 years of development, spinal fusion is a common orthopedic 
procedure to reduce pain and prevent spinal cord injury. The procedure involves 
making an incision, inserting a cage, mechanically regaining the spacing between the 
vertebrae, and then stimulating bone growth with a bone graft to fuse the two bones 
together. As science and medical technology advanced, spinal fusion began to 
introduce the concept of minimally invasive surgery and then gradually progressed



to injectable solutions, such as hydrogel. Stryker’s OP-1® implant was among the 
first FDA-approved (2001) products to promote bone growth. However, the OP-1 
surgical putty, which contains OP-1 protein and collagen, was categorized as a 
“Humanitarian device” in 2014 for the treatment of rare ailments. As a result, it 
was unable to demonstrate its effectiveness [208]. Demineralized bone matrix 
(DBM) has been clinically approved for spinal applications. Grafton® DBM was 
clinically tested in 120 patients who underwent posterior lateral spinal fusion. 
Stryker’s OP-1® implant was among the first FDA-approved (2001) products to 
promote bone growth. However, the OP-1 surgical putty, which contains OP-1 
protein and collagen, was categorized as a “Humanitarian device” in 2014 for the 
treatment of rare ailments. As a result, it was unable to demonstrate its 
effectiveness [211]. 
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3.7.3 Products for Cartilage Treatment 

EUFLEXXA® , developed by Ferring, received FDA approval in 2004 for treating 
knee pain due to osteoarthritis. However, no synthetic hydrogel has been approved 
for recycling in the market, possibly due to its low biocompatibility [208]. At 
present, many hydrogels have been used in the clinical experimental research of 
cartilage defect repair. NOVOCART® Inject plus is a clinical trial designed to assess 
the effectiveness and safety of hydrogel-based autologous chondrocyte implantation 
(ACI) in treating patients with substantial cartilage defects of the knee, such as the 
medial or lateral femoral condyle or tibial plateau, trochlea or patella. The trial will 
enroll a total of 96 patients across roughly 20 clinical study sites in Europe, including 
both adult patients between the ages of 18 and 65 and pediatric patients with closed 
epiphyses between the ages of 14 and 17. The trial will consist of three phases: 
screening, treatment, and follow-up, with a maximum duration of 5 years and 
4 months. The complete treatment comprised two procedures: the first was the 
arthroscopic harvesting of autologous chondrocytes for graft production, and the 
second procedure involved NOVOCART® inject plus transplantation. Autologous 
chondrocyte implantation was performed on 100 patients who had full-thickness 
cartilage defects ranging from 4 to 12 cm [2]. Following 2 years of ACI treatment, 
93% of the patients experienced an improvement of at least 10 points in their knee 
injury and osteoarthritis outcome scores compared to preoperative levels. This trial 
demonstrated that hydrogel-based ACI is an effective treatment option for individ-
uals suffering from significant cartilage defects in the knee joint [212]. 

3.7.4 Other Products 

Thus far, the FDA has approved roughly 200 drugs that utilize a hydrogel dosage 
form for clinical use. Alongside the products mentioned earlier, other



hydrogel-based medications have been developed to provide various therapeutic 
benefits, including transdermal, ophthalmic, vaginal, and rectal administration 
[18]. Hydrogels made from HA are similar in design to dermal fillers and are 
commonly administered through intra-articular injection, also known as viscose 
supplementation. This treatment is utilized to alleviate pain and enhance joint 
function in osteoarthritis patients by replicating the properties of synovial fluid 
[213]. Both unmodified and cross-linked HA products can be utilized for similar 
indications and are approved by the FDA under the same product code 
[213, 214]. TenoGlide (K053655) is a sterile, porous sheet made of bovine collagen 
I and glycosaminoglycan that has been cross-linked with glutaraldehyde for clinical 
use. Its intended purpose is to function as a protective shell and sliding surface for 
damaged tendons, reducing adhesion to the tendon sheath or nearby tissue 
[18]. Emdogain® has been demonstrated to regenerate a diverse range of periodontal 
tissues, including bone-like tissue, decellularized dental bone, and alveolar bone, as 
well as connective tissues like periodontal ligaments [215]. The Contura-funded 
PAAG-OA was evaluated in 2020 for its effectiveness in inducing symptoms in 
subjects with osteoarthritis of the knee and compared to the hyaluronic acid Synvisc-
One. Clinical trials have demonstrated that Algisyl-LVR, a product of LoneStar 
Heart, Inc., has the ability to enhance cardiac function among individuals diagnosed 
with ischemic or nonischemic dilated cardiomyopathy as shown in Table 3.6. The 
drug has been thoroughly tested, and its effectiveness and safety have been con-
firmed through clinical trials. Currently, there are indeed many hydrogel products 
that meet clinical needs, but there are still some shortcomings in terms of quantity 
and quality. Subsequent research in this area still needs to continue, and it is hoped 
that more and more comprehensive materials can be developed for the preparation of 
hydrogels to expand clinical applications. 
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3.7.5 Conclusion and Outlook 

Due to the fact that hydrogel is implanted and has long-term contact with human 
tissue, it is classified as a Class III device (the highest risk level). As a result, it must 
undergo extensive clinical investigation before it can be marketed to the public. Risk 
classification varies from country to country and region to region as it depends on the 
product equipment group. In the event that the hydrogel solution is categorized as a 
drug, it will result in a heightened need for documentation and market entry 
requirements, necessitating more costly and lengthier clinical trials when compared 
to medical devices. The diagram illustrates the steps involved in the development of 
hydrogel, its clinical approval, and postmarket surveillance. When hydrogel is 
classified as a drug, it must be described in detail with scientific evidence. The 
biocompatibility of the material must be demonstrated according to the relevant ISO 
10993 standard, and the manufacturer must specify what aspects of the standard are 
applicable to their product. Prior to preclinical testing, it is crucial to have a clear 
understanding of the clinical claims that need to be supported during the animal



model phase, as depicted in Fig. 3.56. Additionally, it is important to select an 
appropriate animal and implant site that accurately reflect the clinical pathophysiol-
ogy and load during preclinical trials. The Declaration of Helsinki, along with GCP 
and ISO 14155:2020, are excellent guidelines for meeting ethical standards [215]. 
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Fig. 3.56 Schematic illustrating the main stages involved in the clinical translation of injectable 
hydrogels (Reprinted with permission from Ref. [215]. Copyright 2022 Wiley) 

The application of hydrogel in clinical settings is still a significant distance away 
from academic research. To create hydrogel materials that are capable of clinical use, 
several specific performance requirements must be met, including mechanical dura-
bility, therapeutic agent loading and release, and bioactivity. Additionally, the 
development of hydrogel delivery technology is a significant challenge, which 
includes concerns such as chemistry, manufacturing, control, regulatory guidelines, 
and practical adaptations. After the above vertical problems are well surmounted, we 
can also gradually expand the horizontal research of injectable hydrogels in different 
fields by combining multiple disciplines, such as cancer treatment, tissue repair, 
medical aesthetic industry, 3D/4D printing technology and bioelectronic devices, 
etc., to achieve the goal of simple, convenient, multifunctional, and multitherapeutic 
effects (Table 3.6). 

3.8 Conclusion and Outlook 

Extensive research on hydrogels has demonstrated their potential as highly effective 
materials for various applications in regenerative medicine. With their straightfor-
ward preparation methods and remarkable treatment efficiency, hydrogels have 
emerged as ideal candidates for diverse therapeutic purposes. These include but 
are not limited to bone repair, cardiac patches, wound dressings, nerve regeneration, 
and the treatment of cerebral infarctions. As highlighted in this chapter, hydrogels 
are still a hotpot in regenerative medicine field, such as drug delivery hydrogels and 
cell delivery hydrogel. Typical examples such as injectable hydrogels have already 
faced the clinic step, but related breakthroughs have yet to be investigated.



3 Versatile Hydrogels in Regenerative Medicine 155

Despite the advancements in hydrogel development, there are several challenges 
that remain. Primarily, hydrogels, as primary scaffolds, require sufficient mechanical 
strength and stiffness. However, the current strength of hydrogels is generally 
limited. Synthetic polymer hydrogels possess high strength but lack degradability, 
while natural polymer hydrogels offer good biocompatibility and biodegradability 
but are prone to rapid degradation due to weak interactions. Consequently, there is a 
need to design hydrogels that enhance biocompatibility while ensuring high 
strength. And injectable properties and high strength are still needed to be explored 
with injectable hydrogel is widely applied. Second, the introduction of bioactive 
factors in hydrogel requires further test evaluation. Efficient introduction efficiency 
and release rate without affecting the functional development of hydrogel itself are 
the problems to be solved. Also, it is a hotpot that realizing intelligent and adaptive 
drug delivery that scientists have been exploring. Third, scientists have proposed 
many methods such as radiolabeling methods to monitor the degradation behavior of 
hydrogels so far, but the real mechanism needs more research, especially in com-
plicated organisms. The controlled degradation behavior of hydrogel is also a 
problem that has been exploring, now and future. Finally, for the real practical 
applications of hydrogels, stability, sterilization, storage, transportation and packag-
ing should be accomplished. In addition, hydrogels should be approved as drugs or 
medical devices have been a controversial topic all the time. 

The development and application of hydrogels still have a considerable journey 
ahead. However, significant progress has already been achieved in utilizing 
hydrogels within the field of regenerative medicine. In fact, the real repair mecha-
nism of hydrogels and the mechanism of tissue repair (e.g., at the cellular level) are 
rarely studied. More work is needed in this area for better control and maximum 
utilization. At the same time, in the shift to larger scale production, more advanced 
processing equipment is needed. With the popularization of intelligent society, 
personalized medicine for patients with hydrogels (such as carrying rapid custom-
ized treatment for patients of different weight and race) is also worth exploring. 

In conclusion, as the need for advanced biomedical materials grows and hydrogel 
research continues to progress, the potential applications of hydrogels in the field of 
biomedical materials can expand to include clinical usage. However, it is important 
to acknowledge that the introduction of novel materials into clinical practice requires 
collaboration among interdisciplinary teams. The collective expertise of profes-
sionals from various fields such as chemistry, biology, medicine, materials science, 
and mechanical engineering is crucial for successful advancements in this field. By 
leveraging the combined efforts of these experts, we can anticipate further significant 
achievements in the future. 
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Chapter 4 
Multilayer Microcapsules with Tailored 
Structures and Properties as Delivery 
Carriers for Drugs and Growth Factors 

Weijun Tong and Changyou Gao 

Abstract Multilayer microcapsules fabricated via the layer-by-layer (LbL) assem-
bly method with tailored structures and functionalities are promising candidates as 
carriers of drugs, growth factors, and other bioactive agents in biomedicine. The 
capsules loaded with growth factors also can be integrated with scaffolds to form 
bioactive scaffolds for regenerative medicine. This chapter discusses first the recent 
progress of the fabrication of LbL microcapsules including manipulation of their 
properties by chemical cross-linking, microcapsules based on new driving forces, 
microcapsules with subcompartments, and microcapsules which can transform their 
shape. Their potential applications as drug delivery carriers, emphasizing on the new 
encapsulation methods, the fabrication of nanoparticles and nanocapsules, the trig-
gered release of encapsulated substances, and the deformation and recovery behavior 
of microcapsules, are demonstrated. Finally, the loading of growth factors into 
multilayer capsules and their incorporation into scaffolds are introduced. 

Keywords Layer-by-layer · Polyelectrolytes · Microcapsules · Drug carriers · 
Growth factors · Loading and release · Scaffolds 

4.1 Introductions 

Hollow capsules are of great interest due to their potential applications and funda-
mental importance as new colloidal structures in areas such as medicine, catalysis, 
cosmetics, as well as biotechnology [1]. One of the promising methods which can 
fabricate hollow capsules with tailored structures and functions is the layer-by-layer
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(LbL) assembly [2, 3] of multilayer films onto colloidal particles, followed by core 
removal (Fig. 4.1) [4, 5]. Through this method, the capsules with well-controlled size 
and shape, finely tuned wall thickness, and variable wall compositions have been 
obtained [6]. The LbL microcapsules with integrated multifunctionality have high 
capacity for loading of a wide range of substances and sensitive response to diverse 
stimuli and thus are highly attractive for the biorelated applications [7–9]. At the 
beginning, the studies of LbL multilayer capsules are mainly focused on the fabri-
cation and basic physicochemical properties [6]. However, the past decade has 
witnessed a rapid increase of researches concerning their functionalization and 
applications, particularly in the biomedical fields such as drug delivery [10]. In 
this chapter, we first focus on the recent progress of the LbL microcapsules in our lab 
with respect to manipulation of their properties by chemical cross-linking and 
fabrication of the microcapsules based on new driving forces, the capsules with 
subcompartments, and the capsules which can transform their shape. Then, we will 
discuss the potential applications of LbL capsules as drug delivery carriers, empha-
sizing on the new encapsulation methods developed in our lab, the surface modifi-
cation of smaller particles, as well as the deformation and recovery behavior of 
microcapsules passing through a model capillary vessel. Finally, the loading of 
growth factors into multilayer capsules and their incorporation into scaffolds are 
discussed.
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Fig. 4.1 The initial steps (a-d) involve step-wise film formation by repeated exposure of the 
colloids to polyelectrolytes of alternating charge. After the desired number of polyelectrolyte layers 
are deposited, the core is removed (e) to obtain a suspension of polyelectrolyte hollow shells (f).
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4.2 Multilayer Microcapsules with Tailored Structures, 
Properties, and Functions 

4.2.1 Cross-Linking to Tailor the Properties of Microcapsules 

The electrostatic interaction is first used for the fabrication of LbL microcapsules. 
Although it is generally strong enough to hold the integrity of the microcapsules, in 
some cases cross-linking is still necessary for the capsules to survive through harsh 
conditions such as high ionic strength, extreme pH, and strong polar organic solvent 
[11, 12]. Moreover, cross-linking also can effectively manipulate the permeability 
and mechanical strength of the capsules [11, 13]. For the multilayer films and 
capsules based on hydrogen bonding, further stabilization is also required for 
biomedical applications since most of them will be disassembled at physiological 
conditions [14, 15]. Many methods have been developed to cross-link the multilayer 
films and capsules, such as carbodiimide chemistry [16–18], UV irradiation [13], as 
well as thermal cross-linking [19]. More recently, disulfide [20, 21] and click 
chemistry [22–28] have also been proved effective for cross-linking the hydrogen-
bonded multilayers and microcapsules. 

The above mentioned techniques are exclusively based on a reaction between the 
functional groups of the two components in the multilayers. We demonstrated that 
the multilayer microcapsules assembled from poly(allylamine hydrochloride) (PAH) 
and poly(styrene sulfonate) (PSS) could be considerably stabilized by cross-linking 
of only the PAH component with glutaraldehyde (GA) [29]. After cross-linking, the 
capsule wall was apparently thicker and with higher folds. The capsules were quite 
stable in 0.1 M NaOH even after 24 h. The elasticity modulus (680 MPa) of the 
capsule walls was doubled compared with that of the control. Furthermore, the 
permeability of the capsule walls was also greatly reduced after cross-linking. We 
further applied this method to the poly(ethylenimine) (PEI) and poly(acrylic acid) 
(PAA) weak polyelectrolyte microcapsules [30]. The cross-linked microcapsules can 
maintain their macroscopic topology at extreme low or high pH while reorganizing 
their localized microstructure to enable selective permeation or rejection of macro-
molecules at lower (<pH 4) and higher pH (>pH 6), respectively. Thus, it is possible 
to produce capsules that are dual-pH responsive and stable over a broad pH range. 

4.2.2 Capsules Directly Assembled Based on Nonelectrostatic 
Interactions 

Different driving forces can endow the microcapsules with different physicochem-
ical structures, stimuli response, and thereby their functionality and applicability. At 
the beginning, the electrostatic interaction was the first driving forces for the LbL 
assembly [4, 5, 31]; thus, the building blocks were mainly charged species. Then 
hydrogen bonding has been employed for the assembly of microcapsules. Recently,



the multilayer hollow microcapsules based on other nonelectrostatic interactions 
such as covalent bonding, host–guest interaction, and bio-specific interactions have 
been fabricated, which show unique properties. 
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Fig. 4.2 Schematic illustration of the process of direct covalent LbL assembly on a silica particle 
and fabrication of a hollow capsule by etching out the template core. The blue lines represent 
PGMA, the red lines represent PAH, and the green dots represent the covalent linkage between 
layers. (Reprinted with permission from Ref. [33]. Copyright 2007 by Wiley-VCH) 

Covalent LbL-assembled microcapsule is stable enough to withstand the long-
time etching of strong polar organic solvent [32]. We recently fabricated a new 
structure of microcapsules with high modulus and high stability through the covalent 
LbL assembly (Fig. 4.2) [33]. Aminosilanized SiO2 microparticles were used as 
templates. Poly(glycidyl methacrylate) (PGMA) and PAH were alternately 
immobilized onto the particle surfaces through a coupling reaction between the 
epoxides and the amines. Thus, a highly cross-linked structure was produced in 
this process. The templates were removed by HF etching, resulting in hollow 
microcapsules. The microcapsules are stable in extreme pHs and elevated tempera-
ture. Using the method of osmotic-induced invagination [34, 35], the elastic modulus 
of the microcapsule walls without any treatments was found to be as high as 
910 MPa, which is quite stable even under acid and base treatment. 

The reaction between amine and aldehyde is fast and efficient in aqueous solution 
at room temperature; based on this reaction, single polyelectrolyte component 
multilayers and microcapsules can be fabricated through direct covalent assembly 
of PAH with GA [36]. The structure and the cutoff molecular weight of the capsule 
walls are dependent on the molecular weight of used polymers [37]. This method can 
be applied not only on biomacromolecules with amine groups such as polypeptides



and proteins but also on polysaccharides, because GA also can readily react with 
hydroxyl groups at very mild conditions. 
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However, the main drawback of the abovementioned methods is that the obtained 
capsules may largely lose their stimuli-responsive properties due to the uncontrol-
lable covalent reactions [36, 37]. One solution to this problem is to carefully control 
the content of reactive groups in polymer chains, leading to a controllable reaction 
degree and a number of functional groups [38]. Bovine serum albumin (BSA) is a 
kind of biocompatible and biodegradable natural protein. It has a high content of 
aspartic and glutamic acids, lysine, and arginine [39, 40]. Only the amine groups of 
lysine can be cross-linked by GA [41], while the other amino acids with free 
carboxylic groups still exist, which can induce the pH response of the resultant 
capsules. We recently demonstrated that [42] BSA hollow capsules could be 
obtained by covalent assembly of BSA and GA on a template followed by core 
removal. The capsules possessed reversible pH-responsive permeability, which can 
be used to encapsulate macromolecules. 

Host–guest interaction is another type of driving forces frequently employed in 
supramolecular chemistry. It is known that the host–guest interaction is readily 
mediated by the host and guest molecules with respect to their matching degree 
and concentration. If charge interaction is further introduced, multiresponsive micro-
capsules can thus be expected. According to this design, multilayer microcapsules 
were fabricated by using the interaction between β-cyclodextrin (β-CD) and ferro-
cene grafted to a weak polyelectrolyte PAH, which can further introduce charge 
interaction into the capsule walls (Fig. 4.3)  [43]. The microcapsules that consist of 
PAH-g-β-CD and PAH-g-ferrocene indeed show multiresponsiveness to environ-
mental stimuli. For example, they swell and shrink at low and high pH, respectively. 
Incubation in a salt or β-CD solution can also mediate their swelling and shrinking 
behaviors. With these smart features, the microcapsules can serve as reservoirs for 
drugs, DNAs, enzymes, and so on. 

The specific interactions between complementary DNA bases are stable enough 
under physiological conditions in nature, which can be used for the assembly of 
multilayer films and capsules [44]. Moreover, carbohydrate–protein interaction, 
which is a combination of multiple hydrogen bonding and hydrophobic interactions 
and participates in a wide variety of biological events [45–47], is also quite stable at 
physiological conditions. Therefore, this interaction can be used to assemble micro-
capsules which simultaneously possess good stability and responsiveness to external 
stimulus due to its noncovalent nature. Concanavalin A (Con A) can specifically 
bind to polysaccharides such as dextran and glycogen [48–50]; thus, it can be 
utilized to fabricate thin films with them through lectin–carbohydrate interactions 
[51–53]. These films can respond to glucose [50, 53]. Recently, the hollow capsules 
assembled by Con A and glycogen through LbL method were also obtained. They 
are stable at physiological pH range due to the relatively strong multiple hydrogen 
bonding but still can respond to glucose [54]. The sequential multilayer film growth 
proceeds successfully on both planar and curved substrates when the Con A mole-
cules adopt confirmation of tetramers or more complicated aggregates. The obtained 
capsules show layer-number-dependent shell shrinkage, distortion, and



densification. The capsules are stable in a pH range of 6–9 and show specific 
responses to glucose, mannose, fructose, and dextran. Triggered by these stimuli, 
the preloaded cargoes in the capsules can be released. 
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Fig. 4.3 Fabrication process and structure characterization of host–guest microcapsules. (a) LbL 
assembly of same polyelectrolyte on carbonate particles to obtain hollow microcapsules using host– 
guest interaction. The chemical structure of PAH-g-β-CD, PAH-g-ferrocene, and β-CD/ferrocene 
inclusive are shown in the second row. (b) The thickness of the PAH-g-β-CD/PAH-g-ferrocene 
multilayers assembled on silicon wafer as a function of layer no. (c) SEM, (d) SFM, and (e) TEM 
images of the prepared (PAH-g-β-CD/PAH-g-ferrocene)3 microcapsules, respectively; bar is 5 μm. 
Inset in (c) is a higher magnification image of one capsule; bar is 2 μm. (Reprinted with permission 
from Ref. [43]. Copyright 2008, American Chemical Society) 

4.2.3 Capsules with Subcompartments 

The multicompartmental micro- and nanostructures can be loaded with multiple 
cargoes and mimic the structure of cells; thus, they have received tremendous 
attention recently [55–58]. Hollow capsules with subcompartments are ideal models 
which resemble the structure of cells. By combining of other techniques, diverse 
LbL capsules with different subcompartments have been obtained [59]. The



subcompartments can be incorporated through two different ways: wall decoration 
and interior loading. 
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Kreft et al. first reported the LbL microcapsules with a shell-in-shell structure for 
integrated and spatially confined enzymatic reactions [60]. De Geest et al. reported 
the assembly of multilayers on big hydrogel particles (hundreds of microns) in which 
tens of hollow LbL microcapsules or microparticles are loaded [57, 61]. Recently, 
Caruso group incorporated intact liposomes into LbL capsule walls or inside cap-
sules to prepare “capsosomes,” which can be then employed as enzymatic reactors 
and delivery vehicles for hydrophobic cargoes [62–66]. 

Alternatively, polymeric micelles also can be incorporated into the walls or 
interiors of LbL capsules as the subcompartments. The micelles possess advantages 
of sustained release of hydrophobic substances. In particular, polymeric micelles 
possess a unique core/shell structure and relatively good stability [67]. Thus, the 
micelle-incorporated microcapsules combine the advantages of both micro- and 
nanostructures. Polymeric micelles can be loaded into the shell through alternating 
assembly of poly(styrene-b-acrylic acid) (PS-b-PAA) micelles and oppositely 
charged polyelectrolyte on templates [68]. After core removal, the as-prepared 
microcapsules show extraordinary stability in concentrated HCl (37%) and 0.1 M 
NaOH. This extraordinary stability against highly acidic or alkaline conditions is 
possibly due to the hydrophobic interaction between PS cores of the micelles and 
hydrogen bonding of the PAA chains in adjacent layers and PAH chains. The 
incorporation of polymeric micelles in LbL capsule interiors has been presented 
by Li et al. [69] as well as Tong et al. [70]. In the latter method [70], LbL assembly 
was conducted on CaCO3 microparticles predoped with PS-b-PAA micelles, 
resulting in encapsulation of micelles after core removal. The micelles inside the 
capsules can form a chain and network-like structure with more micelles near the 
capsule walls. Hydrophobic drugs as such can be loaded into the hydrophobic cores 
of micelles, while the negatively charged PAA corona of the micelles can result in 
spontaneous deposition [71–75] of water-soluble and positively charged drugs. The 
apparent concentrations of hydrophobic and water soluble are much higher than that 
of the feeding values. Therefore, capsules with this synergetic feature show their 
great promise in loading of drugs with different physicochemical properties. 

4.2.4 Shape Transformation of Capsules 

The smart capsule systems are of high attraction due to their ability to respond to the 
alteration of environment conditions. LbL-assembled capsules can change their 
structure and properties intelligently in response to various stimuli. But most of 
the intelligence of the hollow structures results from controllable swelling and 
shrinking, accompanying with permeability change [76]. Less concern is paid to 
shape transformation of the hollow structures, which is only observed in vesicles and 
hollow silica spheres previously [77–83]. Recently, single-component 
microcapsules were fabricated in our lab by an in situ reaction of reactive



hydrophobic low-molecular-weight molecules with corresponding PE-doped CaCO3 

microparticles, followed by core removal [84, 85]. 
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Fig. 4.4 TEM images showing the process of nanotube protruding from the PAH-Py microcap-
sules incubated in pH 0 HCl for 0(a), 24(b), 48(c), 96(d), and 144 h(e), respectively. (f) Optical 
images (inset, a higher magnification) showing the protruded nanotubes from the PAH-Py micro-
capsules incubated in pH 0 HCl for 30 h. SEM images of a microcapsule with nanotubes after 
treatment in pH 0 HCl for (g) 30 h and (h) 72 h, respectively. (i) SEM image of a microcapsule with 
nanorods after treatment in pH 2 HCl for 1 h. (Reprinted with permission from Ref. [85]. Copyright 
2011, American Chemical Society) 

The first example is the capsules made of ferrocenecarboxaldehyde (Fc-CHO) 
and PAH-doped CaCO3 microparticles [84]. This single-component microcapsule is 
stabilized by hydrophobic aggregation of Fc moieties. Due to the redox properties of 
Fc, the PAH-Fc microcapsules can reversibly swell and shrink in response to 
oxidation and reduction. At the same time, the permeability also can be changed 
reversibly. PAH-pyrene (Py) microcapsules also can be fabricated through the 
reaction of pyrenecarboxaldehyde with the doped PAH [85]. When this kind of 
capsules is incubated in acidic solution, one-dimensional nanotubes (1D-NTs) or 
nanorods (1D-NRs) are protruded from the microcapsules. The 1D-NTs keep grow-
ing with incubation time and eventually form a network. Meanwhile, the microcap-
sules are degraded gradually and disappear completely after 144 h (Fig. 4.4). The 
micelles assembled from PAH-Py polymers treated at similar conditions also can be 
transformed into one-dimensional structures. The one-dimensional nanotubes are 
formed by 1-pyrenecarboxaldehyde with ordered π–π stacking and exhibit a helical 
structure and anisotropic property. The final nanostructures are determined by the 
different hydrolysis rate of Schiff base at different pH values. The linear PAH also 
can guide the building-up process especially for the nanotubes. Through this mech-
anism, hollow capsules budded with nanotubes or nanorods mimicking the cellular 
protrusion of filopodia are successfully fabricated by controlling the incubation time 
in solutions with different pH (Fig. 4.4).
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By chemical cross-linking and surface modification, 1D-NR growth state from 
the PAH-Py microcapsules can be well controlled [86]. The 1D-NRs also can grow 
in the LbL-assembled capsules in a controllable manner [87]. For this purpose, 
PSS/PAH multilayers were assembled on the surface of CaCO3 (PAH-Py) micro-
particles, yielding PAH-Py and (PSS/PAH)n double-shell capsules. By incubation of 
the obtained capsules in pH 2 solution, the 1D-NRs grow within the PSS/PAH 
multilayer capsules in three dimensions. The fluorescence emission intensity of Py 
NRs inside the capsules can be tuned by a charge-transfer pair. This novel composite 
structure with PAH-Py NRs inside PE multilayer microcapsules provides a creative 
strategy for in situ nanomaterials fabrication, illuminating the trend for controllable 
properties and functions of smart nanodevices. The modulation of the protrusion of 
NRs also can be achieved by addition of small molecules such as 1-pyrenesulfonic 
acid sodium salt (PySO3Na) [88], demonstrating the tunable properties of such kind 
of nanostructures. 

Inspired by the above results, PAH-Py NRs consisting of a Py-CHO core and 
PAH shell can be prepared by surface grafting of PAH onto Py-CHO NRs [89]. After 
coated with PAH, The NRs become more curved and flexible as a result of partial 
loss of Py-CHO from the NRs. The PAH-Py NRs with a hydrophilic and charged 
PAH layer can be suspended stably in water for at least 3 months. Because of the 
charge attraction and coordination effect of amino groups, Au NPs can be either 
adsorbed or in situ synthesized on the PAH-Py NR surface. The initial fluorescence 
emission of Py is largely remained due to the excellent isolation effect of PAH, 
which avoids direct contact between Py and the Au NPs. Using the similar process, 
other hybrid organic–inorganic functional nanomaterials with controlled physico-
chemical structures can be synthesized, such as tetraphenylethylene (TPE) 
nanoparticles [90]. TPE-substituted poly(allylamine hydrochloride) (PAH-g-TPE) 
was synthesized by a Schiff base reaction between PAH and TPE-CHO. The PAH-g-
TPE forms micelles in water at pH 6, which are further transformed into pure 
TPE-CHO nanoparticles (NPs) with a diameter of ~300 nm after incubation in a 
solution of low pH value. In contrast, only amorphous precipitates are obtained when 
TPE-CHO methanol solution is incubated in water. The aggregation-induced emis-
sion feature of the TPE molecule is completely retained in the TPE NPs, which can 
be internalized into cells and show blue fluorescence. Formation mechanism of the 
TPE NPs is proposed by taking into account the guidance effect of linear and 
charged PAH molecules and the propeller-stacking manner between the TPE-CHO 
molecules. 

4.3 Microcapsules as Drug Delivery Carriers 

The LbL-assembled capsules with tailored structures and functions are versatile 
platforms for encapsulation, storage, and delivery of diverse substances. Thus, the 
LbL-assembled capsules are ideal advanced drug carriers for the delivery of diverse 
drugs and growth factors. There are already several excellent reviews which



summarized the very recent progress in this field [21, 91–99]. The following sections 
will mainly focus on the recent advances in this field. 
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4.3.1 Controlled Loading of Low-Molecular-Weight Drugs 

Many applications of the multilayer capsules must face a challenge of efficient 
loading of the desired substances. This is particularly difficult for loading of low-
molecular-weight and water-soluble substances because small molecules can freely 
diffuse through the capsule walls [100]. We developed the “spontaneous deposition” 
method, which is based on a mechanism of high affinity of the preloaded substances 
in the capsules with the cargoes that will be loaded. Gao et al. first found that 
positively charged molecules such as dextran labeled with tetramethylrhodamine 
isothiocyanate (TRITC-dextran) could deposit into the aged “hollow” microcapsules 
templated on melamine formaldehyde (MF) particles with a large amount [71]. The 
strong fluorescence emitted from the interior of capsules could prove the existence of 
considerable high concentration of dextran in the capsule interiors (the so-called 
spontaneous deposition) (Fig. 4.5a). Many other water-soluble substances with 
positive charges such as polyelectrolytes [71], proteins [71], enzymes [72], and 
low-molecular-weight dyes and anticancer drugs (Fig. 4.5b, c) [73] can be sponta-
neously deposited with a large quantity. Moreover, the deposition still occurs even if 
the molecules have very few positive charges such as the TRITC-dextran (Fig. 4.5a), 
which gets positive charges from a few pendent TRITC groups. The driving force for 
this phenomenon is the electrostatic interaction between the negatively charged 
complex (PSS/MF) within the capsule interior and the loaded molecules. The 
PSS/MF complex is formed by the dissociated PSS from the very initial layer and 
the positively charged MF degradation product. 

The spontaneously deposited low-molecular-weight drugs in the LbL microcap-
sules templated on MF colloidal particles can be released in a sustained manner 
[73, 74]. The amount of the loaded drugs can be controlled through changing the 
feeding concentration of the drugs, temperature, as well as salt concentration. This 
tailorable deposition behavior is crucial for control release applications. The loaded 
drugs can be released in a sustained manner. The release profile can be tuned by 
changing the interaction between the drugs and the PSS/MF complex. The presence 
of anticancer drug-loaded capsules can effectively kill HL-60 cells, a kind of human 
leukemia cell [73]. 

For better control of the spontaneous deposition property, the capsules can be 
preloaded with charged polyelectrolyte using a polyelectrolyte-doped template 
[75, 101–104]. At higher drug feeding concentration and higher salt concentration, 
large amount of daunorubicin (DNR) and DOX can be loaded [75, 103]. The drug 
concentration within the microcapsules is hundreds of times higher than the feeding 
concentration. The drug can be released from the capsules through a diffusion-
controlled release mechanism at the initial stage (4 h). The in vitro experiments 
demonstrate that the encapsulated drug can effectively induce the apoptosis of



HepG2 tumor cells. The encapsulated DOX also has better efficacy than that of the 
free drug in terms of tumor inhibition in a 4-week in vivo culture period [104]. 
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Fig. 4.5 (a) Fluorescence intensity averaged from inside the circles as a function of incubation 
time. TRITC-dextran (Mw ~65 kDa) and preformed MF-(PSS/PAH)5 capsules were used. (b) TEM 
images of daunorubicin (DNR) deposited MF-(PSS/PAH)5 capsules. (c) DNR and rhodamine B 
(RdB) concentrations in the capsule interior as a function of temperature. MF-(PSS/PAH)4 
(PSS/PDADMAC)5 capsules were used for DNR with a feeding concentration of 30 mg/ml and 
MF-(PSS/PAH)5 capsules for RdB, 80 mg/ml. The numbers in the figure represent the concentra-
tion ratios of capsule interior and bulk. PDADMAC poly(diallyldimethylammonium chloride). 
(Reprinted with permission from Ref. [73]. Copyright 2005 by Wiley-VCH) 

Nonetheless, challenge is still remained to better maintain the drugs inside the 
capsules and then control their release profile. Previous studies demonstrate that poly 
(diallyldimethylammonium chloride) (PDADMAC)/PSS capsules with PSS as the 
outmost layer can shrink dramatically at elevated temperature [105, 106], resulting 
in a thicker and denser capsule wall. So dextran (Mw from 10 to 70 kDa) can be 
effectively encapsulated with a slightly higher concentration than the feeding value 
[107]. The loading of water-soluble small molecular drugs also can be achieved 
using this method [108]. In our recent work [109], spontaneous deposition and heat-
induced shrinkage were combined to fabricate a drug carrier system, showing a high 
drug loading efficiency and more controllable release profile. Through this strategy,



photosensitizers also can be encapsulated, and most of them are stably retained for a 
long time and protected by capsule wall against reductive enzyme [110]. 
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Encapsulation of low-molecular-weight drugs through the attractions between the 
drugs and the preloaded substances in the multilayer capsules also can be applied to 
different systems via specific interactions besides the electrostatic interactions. For 
example, Sukhorukov and coworkers reported that low-molecular-weight doxycy-
cline could be encapsulated in LbL microcapsules via attraction to dextran sulfate 
(DS) in the microcapsule core because doxycycline molecules can penetrate the 
shells and react with DS to form a complex within the microcapsule [111]. The 
specific and sustained activity of doxycycline is well maintained. If the capsules are 
further coated with a lipid layer, the release and sustained activity of encapsulated 
drug can be enhanced because its leakage is greatly prohibited. This method could 
provide a long-term delivery system of low-molecular-weight drugs from multilayer 
capsules. Kharlampieva and coworkers reported a facile method for the efficient 
encapsulation of a wide range of hydrophilic substances with molecular weight less 
than 1000 and different charges [112]. The capsules are fabricated via LbL assembly 
of poly(methacrylic acid) (PMAA) and poly(N-vinylpyrrolidone) (PVPON) on silica 
templates. After cross-linking of the PMAA multilayers, PVOPN is entrapped in the 
shell to form an interpenetrated network. The capsules show reversible variation in 
diameter upon pH changes, and thus encapsulation of low-molecular-weight sub-
stances could be achieved at pH = 7.5 followed by sealing the capsule wall with 
high-molecular-weight DS at pH = 5.5. It is interesting that the negatively charged 
molecules can be entrapped within the capsule cavity, while the positively charged 
molecules are encapsulated within the negatively charged capsule shell. This 
approach allows the simultaneous loading of different low-molecular-weight sub-
stances at different positions in the capsules; thus, the capsules can deliver multiple 
drugs. Furthermore, the pH-responsiveness of the capsule also can achieve the 
controlled release of the drugs. 

Normal LbL assembled microcapsules fail to encapsulate low-molecular-weight 
drugs because of the semipermeable nature of the shell. Sukhorukov and coworkers 
reported a new method to fabricate poly-L-arginine hydrochloride (PARG)/DS/silica 
(SiO2) composite capsules [113]. The inorganic SiO2 layer is in situ formed to seal 
the capsules; thus, low-molecular-weight drug can be effectively encapsulated 
inside. The cell experiments demonstrate that the PARG/DS/silica capsules can be 
degraded into fragments and the release of encapsulated molecules is achieved in a 
relatively short time (2 h), while the capsules with a similar structure using 
nonbiodegradable polyelectrolytes remain intact even after 3 days. 

4.3.2 LbL Assembly on Nanoparticles 

Most of the LbL capsules have a diameter of a few micrometers, which are too large 
for intravenous injection. One possible solution is to assemble multilayers on 
particles with a smaller size. De Koker et al. have reviewed the progress of LbL



assembly on ultrasmall (sub-100 nm) particles, which are mainly gold NPs [98]. In 
our lab, surface modification of biodegradable and nontoxic polyester, poly(lactide-
co-glycolide) (PLGA) NPs with a size around 200–300 nm using LbL assembly 
have been extensively investigated. PLGA is one of the commonly used polymers 
for drug delivery [114, 115]. These particles with such a size can be injected into the 
blood vessel and may accumulate in cancerous tissues through the well-known 
enhanced permeability and retention (EPR) effect. Modification of NP surface 
with targeting molecules can enhance the drug concentration in the targeted organs 
or tissues and reduce the dosage and toxic side effects. In order to effectively 
immobilize the ligands, the NPs should possess enough number of active groups 
and are stable enough for following reactions. The LbL assembly can endow the NPs 
with uniform surface charge density, numerous active groups, and excellent stability 
in various mediums. For example, PAA/PEI and chitosan (CS)/alginate (CS/ALG) 
can be used to build multilayers on the PLGA NPs for further immobilization of PEG 
and folic acid aiming at long-time circulation and targeting [116, 117]. The surface 
charge and the thickness of the assembled multilayers can greatly influence the 
release profile of loaded dyes [118]. The surface with negative charges or PEG also 
can reduce protein adsorption, whereas surface modified with folic acid can enhance 
the NP uptake by human hepatoma cells. 
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Fig. 4.6 Schematic illustration to show the preparation process of BSA nanoparticles coated with 
PAH/PSS multilayers and coupled with aptamer AS1411. (Reprinted with permission from Ref. 
[119]. Copyright 2012 by RSC) 

The multilayers also can be assembled on the NPs before drug loading, and then 
different drugs can be loaded into the preformed multilayer-coated particles for 
different applications. In our recent work [119], BSA NPs with a size about 
200 nm were coated with PAH/PSS multilayers, onto which a layer of PAH-g-
PEG-COOH was further adsorbed. By carbodiimide chemistry, aptamer-AS1411 
molecules were immobilized (Fig. 4.6). Aptamer-AS1411 can target to 
overexpressed nucleolin on cancer cell membrane [120, 121]. The PEGylated 
multilayer-coated BSA NPs have enhanced colloidal stability even in serum-
containing medium [122]. DOX can be effectively loaded into the preformed BSA



NPs through electrostatic interaction between negative charges in BSA and positive 
charges in DOX. The encapsulation efficiency (98.6%) and loading percentage (9%) 
are both very high. The loaded drugs can be released faster at pH 5.5 than at pH 7.4. 
In vitro cell culture demonstrates that the as-prepared BSA NPs can specifically bind 
to liver cancer cells, leading to higher cellular uptake and cytotoxicity. 
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Except of the solid nanosize templates, the multilayers also can be assembled on 
emulsion droplets. For example, Szczepanowicz and coworkers reported the prepa-
ration of nanoparticles via direct coating on the emulsion droplets with polyelectro-
lyte multilayer shells [123]. The oil cores containing paclitaxel can be first stabilized 
by docusate sodium salt/poly-L-lysine surface complex (AOT/PLL) and are further 
coated in multilayers formed by the LbL assembly of poly-L-glutamic acid (PGA) 
and PLL up to five or six layers. Their surfaces can be further modified through the 
assembly of the pegylated polyelectrolyte, resulting in prolonged persistence of the 
nanocarriers in the circulation. The obtained nanoparticles can be stabilized in cell 
culture medium and the encapsulated hydrophobic anticancer drug can be released to 
kill cancer cells. Due to the dynamic nature of the emulsion droplets and the 
surfactants, the emulsion-based templates generally have relatively limited colloidal 
stability and broad size distribution. Cheng and coworkers used crystallized 
miniemulsion droplets as templates for the fabrication of multilayer nanocapsules 
[124]. Compared with normal emulsions, the miniemulsions are kinetically more 
stable and the crystallization of the inside oil phase can result in their higher colloidal 
stability due to the surface-anchored surfactant molecules. Polyelectrolytes with 
opposite charges can be alternatively assembled on this kind of templates and the 
crystallized oil phase can be dissolved by using proper organic solvent, resulting in 
hollow nanocapsules with well-defined structures and controlled size. 

In order to obtain hollow nanocapsules, the nanosize templates should be 
removed under mild conditions. For example, Cui and coworkers reported the LbL 
assembly of multilayers on Cu2O nanoparticles [125]. Cu2O particles are cheap and 
can be easily fabricated. After the assembly of multilayers, they can be removed in 
Na2S2O3 solution at neutral pH. During this process, no toxic reagents are needed. 
Furthermore, Cu2O nanoparticles with tunable morphologies and sizes can be 
synthesized via tuning the preparation conditions. Thus, the nanocapsules with 
different shapes could be obtained by using Cu2O nanoparticles with different 
shapes as templates. In addition, the capsule shape significantly influences their 
interaction with cells. The association of cubic capsules to HeLa cells are signifi-
cantly increased compared with their tetradecahedral and spherical counterparts. 
This kind of nanocapsules with tunable morphologies can provide an ideal model 
system for the investigation of bio–nano interactions. 

Although the LbL method have been proved to be a versatile approach for the 
preparation of multilayer nanocapsules with engineered structure and properties by 
using diverse building blocks and templates, the fabrication of nanocapsules through 
this method at large scale is still challenging and time-consuming. The traditional 
LbL assembly process needs several washing and centrifugation steps before each 
assembly of polyelectrolyte layer, resulting in a very long preparation time and 
accumulated particle loss after multiple centrifugation steps. In order to solve this



problem, Elizarova and coworkers reported a continuous method to the preparation 
of nanosize multilayer capsules using calcium phosphate nanoparticles as templates 
[126]. This method uses a tubular flow type reactor which can fabricate tens of 
milligrams of nanocapsules in 1 h. In the fabrication process, the template 
nanoparticles and polyelectrolyte solution are first mixed in the tubing to form the 
first layer on the templates. Then the modified nanoparticles pass into the next 
segment of tubing, where they meet the second polyelectrolyte with opposite 
charges. After mixing, the second layer is assembled on the particles. These steps 
can be continuously repeated until the required number of layers is assembled. The 
key point for the successful fabrication of nanocapsules via this method is to avoid 
the presence of any excess polyelectrolyte in the tubing, otherwise severe coagula-
tion may happen. Thus, the careful control of the added amount of polyelectrolyte in 
the tubing is critical. The results demonstrate that slightly under dosing the amount 
of added polyelectrolyte can ensure the negligible free polyelectrolyte in solution. 
During the alternative assembly steps, the typical charge reversal can be observed 
and the relatively strong surface charges can make the particles stable during the 
fabrication process. Finally, after the required number of layers are assembled, the 
calcium phosphate templates can be facilely removed by incubation in mild acidic 
solution to obtain the hollow nanocapsules. 
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4.3.3 Capsules Squeeze Through a Confined Capillary 

Compared with their nanometer-sized counterparts, the LbL microcapsules can be 
fabricated in an easier way [127]. However, microcapsules are difficult for intrave-
nous injection. But in human blood, the circulation cells have a size of several 
microns. One example is red blood cell (RBC), which has extreme reversible 
deformability under physiological flow, so that it can easily pass through the smallest 
blood capillary vessel (~3 μm). One can imagine that if the capsules have proper 
shape and flexibility, they may easily squeeze through narrow capillary as natural 
RBC. This kind of capsules may have great potential applications as drug carriers. 
The deformability of polymeric microparticles (mainly hydrogel microparticles) 
with different shapes and sizes through a narrow constriction has been studied 
under flow conditions. For example, RBC-mimicking particles, which are flexible 
enough to flow through narrow glass capillaries and able to recover to discoidal 
shape, have been successfully fabricated [128]. Hayashi et al. demonstrated that 
3.5 μm biconcave disk-shaped particles fabricated by electrospraying of cellulose 
derivative polymers can maintain RBC-like shape after filtrated through a membrane 
with a pore size of 1 μm  [129]. Haghgooie et al. synthesized PEG hydrogel particles 
with different shapes including disks, rings, crosses, and S-shapes and demonstrated 
the modes of particles’ passage through poly(dimethyl siloxane) (PDMS) channels 
[130]. However, little is known about the deformation behaviors of multilayer 
microcapsules with a size similar to RBC under flow in a smaller microchannel



[131], although the static deformation behaviors have been systematically studied 
under the press of a colloidal probe [132] or osmotic pressure [34, 35]. 
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Fig. 4.7 Scheme drawing to show the structure of the microchannel device by (a) top view and (b) 
side view. CLSM images of the 6.8 μm (c) and 8.6 μm (d) (PAH/PSS)5 microcapsules after being 
squeezed through the microchannel with a height of 5.7 μm. The former can recover its original 
spherical shape (c), while the latter keeps its deformed shape (d). (Adapted with permission from 
Ref. [133]. Copyright 2012, American Chemical Society) 

Recently, the deformability of multilayer microcapsules under flow in a confined 
microchannel was studied in our lab (Fig. 4.7) [133]. The influences of capsule size, 
wall thickness, cross-linking, and the filling of PSS inside on the deformation and 
recovery behaviors of the capsules were systematically investigated. The recovery 
ability of capsules is dependent on the deformation extent but not mechanical 
strength. The squeezed hollow microcapsules can recover their original spherical 
shape when the deformation extent is smaller than 16%, whereas permanent physical 
deformation takes place at a larger deformation extent such as 34%. In a sharp 
contrast, all the intact capsules prefilled with PSS can recover their original shape 
even when the deformation extent is as large as 47%. The spontaneously loaded dyes 
can be well maintained after the deformation and recovery process. It is the first time 
to disclose the alteration of drug amount in multilayer microcapsules after flowing 
through a constriction. 

Furthermore, the RBC-like multilayer microcapsules also have been successfully 
fabricated by templating on Ca(OH)2 particles with an RBC-like shape through 
covalent LbL method. The capsules can preserve their RBC-like morphology well 
in water after template removal. When the RBC-like capsules (6.7 μm) are trapped in 
a microcapillary with a smaller size (5 μm), they deform only in the areas in contact 
with the capillary wall. After they are forced to pass through, 90% of the RBC-like 
capsules recover their original discoidal shape. By assembling additional hemoglo-
bin layers on the RBC-like capsules, they can be endowed with oxygen-binding and 
release capacity [134].
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Yet, this is only the first step toward the fabrication of RBC-mimicking multilayer 
capsules. Nonetheless, the current results are important not only for understanding of 
capsule properties but also for their practical applications as drug delivery carriers. 
For example, the capsules for injection application should have a smaller size, soft 
wall structure, and RBC-like shape, while those for embolization should have a stiff 
wall which can clog the blood vessels with higher efficiency. 

4.3.4 Anisotropic Capsules Interact with Cells 

As drug carriers, multilayer capsules should interact with different cells and may be 
internalized, which is of practical important for delivery of cargoes into cells. Thus, 
their interactions with cells draw much attention recently. It is well known that the 
physicochemical properties of colloidal particles can strongly influence their inter-
actions with biological systems [135, 136]. Especially, the small differences on their 
physicochemical characteristics may strongly influence the interactions between 
particles and cells and further affect their cellular uptake, intracellular distribution, 
and ultimate cellular fate [137]. Recently, the shape of particles has been found to 
play a crucial role in the interactions between cells and particles and is regarded as a 
new important parameter for designing materials to realize specific biological 
functions [138, 139]. Smith and coworkers [140] demonstrated that the polystyrene 
particles with three shapes (spheres, prolate ellipsoids, and oblate ellipsoids) could 
manipulate different attachment and internalization of macrophages. Mitragotri and 
coworkers [141] found that compared with rods, the spherical polystyrene particles 
with identical total volumes exhibited significant perinuclear accumulation. When 
ovalbumin is used as a model antigen conjugated to particle surfaces, the regulation 
of immune response could be achieved by changing sizes and shapes of 
nanoparticles [142]. Moreover, in a model microvascular network, elongated parti-
cles exhibited higher adhesion and binding probability than spheres [143, 144]. In an 
in vivo experiment, the hydrogel microparticles mimicking the shape of red blood 
cells could possess the increased blood circulation and enhanced adhesion 
ability [145]. 

Polyelectrolyte multilayer microcapsules with tailored structures and properties 
have gained much interest in biomedical field especially for drug loading and release 
[10, 91–99]. However, researches about the interactions between anisotropic 
polyelectrolyte microcapsules and cells are rare [146, 147], and the mechanism of 
shape-induced difference in interactions between capsules and cells needs further 
investigation. For example, Caruso and coworkers [146] reported the fabrication of 
rod-shaped hydrogel capsules with tunable aspect ratios by a templating method. 
With increasing of the aspect ratios, slower and less cellular internalization of 
capsules was observed. Kharlampieva and coworkers [147] obtained polymer cap-
sules with hemispherical geometry by drying poly(N-vinyl pyrrolidone)/tannic acid 
(PVPON/TA)n multilayer capsules and found that compared with their spherical and



cubic counterparts, the hemispherical capsules are taken up in a greater extent. 
However, the mechanism behind is not very clear. 
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More recently, bowl-like microcapsules were fabricated by osmotic-induced 
invagination of microcapsule in concentrated PSS solution [148]. Both the bowl-
like and spherical capsules maintained their colloidal stability and shape in cell 
culture medium up to 7 days. The bowl-like microcapsules could be internalized 
with a faster rate and higher number by SMCs and macrophages than their spherical 
counterparts. Preferential attachment onto the cell membrane from the bend side and 
easier enwrapping by cell membranes are likely the major reasons enabling the 
uptake of the bowl-like capsules in priority than their spherical counterparts. Such 
results may help people to understand the role of capsule shape in the interaction 
with cells and provide useful guidance for further design of more efficient carriers. 

4.3.5 Triggered Release of Encapsulated Substances from 
the Capsules 

Although encapsulation of active substances into multilayer capsules can protect 
them from the influence of the environment, the encapsulated substances should be 
released in a triggered way at desired positions. Among various triggers, the remote 
stimuli-light and ultrasound (US) have the advantages of high temporal and spatial 
resolution and controllable power without direct contact. Thus in the following part, 
we will focus on these two methods. 

The LbL method can integrate light-responsive building blocks into the shells of 
multilayer capsules. For example, Zapotoczny and coworkers incorporated a rela-
tively small amount of multiwalled carbon nanotubes (MWCNTs) into the shells of 
multilayer capsules, leading to an almost 20-fold increase of the apparent elastic 
modulus of the obtained capsules [149]. Due to their absorption in the near-infrared 
region and specific arrangement of MWCNTs in the shells, the capsules can show a 
light-triggered enhancement of permeability in a reversible, nondestructive manner. 
Using this feature, durability and facile encapsulation/release of desired substances 
into/from microcapsules can be achieved, which is crucial for their practical 
applications. 

US imaging has the advantages of low cost, fast real-time visualization, deep 
penetration in tissues, and noninvasiveness. More important, the US can trigger drug 
release via inertial cavitation-caused mechanical damage to the capsules, and also 
can achieve spatiotemporal controllable drug release. Compared with light, the 
penetration depth in tissues is much higher. By choosing proper functional building 
blocks during the assembly of multilayer capsules, the capsules can be endowed with 
US-sensitive properties. For example, integration of metal and metal oxide 
nanoparticles in multilayer capsules can improve their US sensitivity because of 
the increased shell density [150]. Fe3O4 nanoparticles-modified capsules can be 
broken into pieces after 60 s sonication at an energy density of 377 W/cm2



[151]. ZnO nanoparticles-modified capsules also can be totally ruptured by US after 
9 s at an energy density of 30 W/cm2 [152]. However, the higher-power US used in 
these studies may result in tissue damage and other side effects. Kharlampieva and 
coworkers reported high US imaging contrast and low-power diagnostic or high-
power therapeutic US-triggered drug release from hydrogen-bonded TA and 
PVPON multilayer capsules [153]. The capsules possess good and long-term US 
imaging contrast. Upon low-power diagnostic US irradiation, the encapsulated drug 
can be gradually released, while its fast release can be achieved via high-power 
therapeutic US irradiation. Furthermore, the US imaging contrast of capsules can be 
regulated by changing the number of layers, and the type and molecular weight of 
used polymers. 
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The integration of functional building blocks into the shells of multilayer capsules 
not only can increase the US sensitivity but also can endow the capsules with other 
specific functionalities. For example, Sukhorukov and coworkers developed an 
method to the in situ fabrication and assembly of fluorescent carbon dots (CDs) 
into the shells of multilayer capsules [154]. CDs are synthesized in situ in capsule 
shells by carbonization of dextran molecules via hydrothermal treatment. The 
obtained nanocomposite capsules have luminescence which can be used for imag-
ing. The heat treatment also can encapsulate low-molecular-weight drug into the 
capsules. The in situ formation of CDs in capsule shells endows with US respon-
siveness; thus, the loaded drug can be released upon US treatment. The shells of 
multilayer capsules also can be functionalized with radionuclide for imaging via 
positron emission tomography (PET) [155]. The capsules are prepared via LbL 
assembly of TA and deferoxamine (DFO)-functionalized PVPON. DFO can chelate 
the 89Zr radionuclide. The in vivo PET imaging can track the capsules in vivo and 
reveal their biodistribution. The encapsulated hydrophilic anticancer drug can be 
released upon the irradiation of therapeutic US to the Zr-functionalized capsules. 
Similarly, multilayer capsules with iron oxide nanoparticles-incorporated shells also 
possess magnetic resonance imaging (MRI) and US-triggered drug release abilities 
and thus can achieve real-time tracking and targeted delivery in vivo [156]. Such 
kinds of capsules with imaging ability as well as US-triggered drug release should 
have broad applications in the biomedical field. 

In order to better control the release of encapsulated substances, the multilayer 
capsules which can respond to multistimuli have been developed. For example, iron 
oxide and graphene oxide (GO) are assembled with polysaccharides through the LbL 
method to form the shells of multilayer capsules. The capsules can be loaded with 
drugs through pH control, while the iron oxide and GO empower the capsules with 
magnetic and light responsiveness. Thus, the alternative magnetic field and near-
infrared laser can trigger the release of drugs on demand [157]. Sukhorukov and 
coworkers also designed triple-responsive inorganic–organic hybrid microcapsules 
for the controlled release of encapsulated drugs [158]. The UV light and US 
responses are endowed by the in situ deposited TiO2 and SiO2 nanostructures in 
the capsule shells through a sol–gel process. This process also can reduce the 
permeability of the capsules, leading to the encapsulation of low-molecular-weight 
drugs. The enzymatic response is achieved by using biodegradable polypeptides and



polysaccharides for the fabrication of capsules. Upon employing different stimuli, 
the encapsulated drug can be released according to different mechanisms at desired 
times. This work demonstrates that the multilayer capsules are ideal platforms for the 
design of multimodal-responsive drug carriers. 
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4.4 Microcapsules as Growth Factor Carriers and Their 
Incorporation into Scaffold 

Spatial- and temporal-controlled delivery of growth factors is crucial for the efficient 
repair upon tissue injury or failure in tissue engineering. But delivery of growth 
factors to the site of tissue regeneration is challenging since these proteins have short 
half-lives, high molecular weight, and slow tissue penetration. Thus, the generally 
used strategy to enhance in vivo efficacy of growth factors is the use of growth 
factor-loaded delivery systems, which release growth factors in a controlled way. 
Due to the tailored structures, multiple functionalities, as well as controlled perme-
ability, the multilayer capsules are promising candidates as growth factor carriers. 

Several methods have been successfully developed to load different growth 
factors into multilayer capsules. Akashi and coworkers first developed biodegrad-
able multilayer capsules to encapsulate basic fibroblast growth factor (bFGF) as a 
cytokine release carrier [159]. The multilayer capsules were fabricated via the layer-
by-layer (LbL) assembly of chitosan and dextran sulfate. The bFGF was encapsu-
lated into the capsules by reversibly controlling the capsule permeability. At 
pH < 8.0, the capsule shell was nonpermeable for macromolecules. However, 
FITC-dextran with a molecular weight as high as 250 kDa could easily penetrate 
the capsules at pH > 8.0. Using the pH-controlled reversible shell permeability, 
bFGF was successfully encapsulated into the capsules. Release of the encapsulated 
bFGF was sustained over 70 h. Due to the local and sustained release of bFGF, 
mouse L929 fibroblast cells proliferated well for 2 weeks. Antipina and coworker 
used a coprecipitation-based layer-by-layer encapsulation method to load bFGF into 
the microcapsules [160]. In this method, bFGF was first protected by heparin and 
bovine serum albumin and then coprecipitated into CaCO3 microparticles. Low 
cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine 
were used for capsule shell assembly on the CaCO3 microparticles. The encapsula-
tion efficiency was greatly influenced by the shell thickness. Under optimized 
conditions, a maximum encapsulation efficiency of 42% could be achieved. The 
controlled release of FGF2 from the microcapsules was helpful to enhance the 
proliferation of L929 cells. De Geest and coworkers introduced a postloading 
approach by engineering the capsules in such a way that they acted as growth 
factor-binding “microsponges” [161]. In this method, CaCO3 microparticles doped 
with heparin were first fabricated by a coprecipitation method. Subsequently, these 
microparticles were coated with heparin/poly-L-arginine multilayers, followed by 
decomposition of the CaCO3 core. In this way, hollow capsules were obtained with



heparin both as membrane component and being suspended in their hollow void. 
Heparin is well known to have a high affinity for several growth factors. Therefore, 
the engineered microcapsules with high heparin content will enhance their growth 
factor-binding capacity. Transforming growth factor-beta 1 (TGF-beta 1) could be 
loaded and released from such kind of heparin-engineered microcapsules without 
affecting its biological activity. The growth factor-loaded multilayer capsules could 
be easily incorporated within a gelatin tissue engineering scaffold without affecting 
the properties of this scaffold. 
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Benkirane-Jessel and coworkers first demonstrated that a hydrogel scaffold 
incorporated with the growth factor-loaded multilayer capsules could induce bone 
formation in vivo [162]. In this research, bone morphogenetic proteins (BMP2) and 
TGF-beta 1 were assembled into the shell of biodegradable multilayer microcap-
sules. The stem cells were differentiated into bone cells when cocultured with 
growth factor-loaded multilayer capsules. More importantly, when such kind of 
capsules were integrated with alginate gel and implanted into mice, inducing bone 
formation in vivo was observed. The in vivo results demonstrate the promising 
application potential of multilayer microcapsules as growth factor carriers in the field 
of tissue engineering and regenerative medicine. 

4.5 Conclusions and Outlooks 

The LbL assembly technique is a highly versatile and powerful platform for the 
fabrication of capsules with tailored structures and functions. They have already 
shown their great promise of applications in many areas, especially in the field of 
controlled release. Recently, much attention has been paid on the multilayer capsules 
assembled by new driving forces and those with highly sophisticated structures for 
biomedical applications, such as drug and growth factor carriers, as highlighted in 
this chapter. 

Although the significant advances have been made in this area, there are still 
some key obstacles which should be overcome. First, for the real practical applica-
tions of multilayer capsules, rapid, scalable, and efficient new preparation methods 
should be developed. One recent example is the microcapsule preparation technique 
utilizing a fluidized bed for the LbL assembly of polymers [163]. The properties of 
obtained microcapsules are in close agreement with conventionally prepared LbL 
capsules. The technique provides a new way to rapidly generate microcapsules, 
while being also amenable to scale-up and mass production. Furthermore, a fully 
flow-based technique using tangential flow filtration (TFF) for LbL assembly on 
particles was developed [164]. Multilayered particles and capsules with size ranging 
from micrometers to submicrometers can be assembled on different templates using 
diverse polymers. The well-controlled, integrated, and automatable nature of the 
TFF LbL system provides significant progress of the practical applications of LbL 
systems. Second, the in vivo behaviors of LbL capsules such as degradation and 
toxicity are largely unexplored. For intravenous injection, the LbL capsules are



required to circulate in the bloodstream and have good hemocompatibility. Several 
recent researches have shown that coating of blood-compatible multilayers on the 
ultrasmall (�20 nm) [165, 166] and submicron (�500 nm) [167] particles is 
beneficial to obtain injectable capsule drug delivery systems. Therefore, particles 
with a submicron size are attractive for preparation of LbL capsules, which may 
accumulate in cancerous tissues through EPR effect. 
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The LbL capsules with tailed structures and functions can be loaded with both 
drugs and imaging agents within a single system to form theranostic carriers, which 
can selectively accumulate in diseased tissues and simultaneously report their 
biochemical and morphological characteristics. At the same time, the synergistic 
carriers which carry chemo-, radio-, and gene therapeutics can enhance the treatment 
efficacy [168, 169]. 

For successful tissue regeneration, it is extremely important to provide cells with 
a local environment using biomaterials which enable them to proliferate and differ-
entiate efficiently and correctly, resulting in cell-induced tissue regeneration. For this 
purpose, capsules or spheres can be integrated into different scaffolds to provide for 
prolonged, site-specific delivery of loaded growth factors, drugs, as well as other 
bioactive species. The capsules should be well designed with properly controlled 
release profile as well as surface properties, so that they can act as an integral part of 
the porous three-dimensional scaffolds, and their incorporation does not significantly 
affect the scaffold properties but can release their cargoes to meet the needs of cells. 

The researches and applications of LbL multilayer capsules are highly 
multidisciplinary. With the efforts afforded by the experts from fields of chemistry, 
materials science, mechanical engineering, biology, and so on, the abovementioned 
obstacles will be overcome sooner or later, and more achievements in this field can 
be expected in the future. 
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Chapter 5 
Interactions of Biomaterial Surfaces 
with Proteins and Cells 

Zhonglin Lyu, Yi Zou, Qian Yu, and Hong Chen 

Abstract The interactions of material surfaces with proteins and cells play a vital 
role in various biological phenomena and determine the ultimate biofunctionality of 
a given material in contact with a given biological environment. In this chapter, we 
used the gold nanoparticle layer (GNPL) with three-dimensional micro- and nano-
sized structures as an example to discuss the interactions of material surfaces with 
proteins and cells. GNPL is deposited onto a variety of substrates such as gold 
surface and enzyme-linked immunosorbent assay (ELISA) plate; the amount and 
activity of the absorbed proteins, as well as cell behaviors including attachment, 
proliferation, and differentiation on GNPL-modified surfaces, are systematically 
investigated. In addition, the synthetic effects of surface topography and surface 
chemistry are also studied. The results show that GNPL improves protein adsorption, 
favors the maintenance of their conformation and bioactivity, and further enhances 
cell adhesion. After modification with protein-resistant polymers and specific 
ligands, GNPL selectively binds certain proteins and cells from protein and cell 
mixtures, including the highly complex environment of serum. Moreover, under 
laser irradiation, GNPL shows the ability for the delivery of various macromolecules 
to different cell types (including hard-to-transfect cell types) and the ability for high-
efficiency eradication of pathogenic bacteria. It is concluded that GNPLs hold great 
promise in many biomedical fields such as protein detection, regulation of cell 
behaviors, capture of circulating cancer cells, macromolecular delivery to living 
cells, and antibacterial application. 
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The interactions of material surfaces with proteins and cells play a vital role in 
various biological phenomena and determine the ultimate biofunctionality of a given 
material in contact with a given biological environment [1]. The effects of surface 
topography and roughness (especially at the nanometer scale) on protein and cell 
behavior have attracted increasing attention since topographic features may have 
dimensions similar to those of proteins and cell membrane receptors [2–4]. For 
example, gold nanoparticle layers (GNPLs) consist of nanoparticle aggregates with a 
distribution of sizes and three-dimensional micro- and nano-sized porous structures 
[5–11]. GNPLs hold great promise in biomedical applications, for example, bio-
sensors and tissue engineering, due to their large surface-to-volume ratio, efficient 
electron transfer, good stability, and high loading capacity [8, 12, 13]. Formation of 
GNPL on material surfaces is usually achieved by reduction of tetrachloroauric (III) 
acid either through surface-bonded reducing groups or reducing agents [5, 6, 12, 
14]. For example, Zhang and coworkers used the Si-H reducing group in the residual 
curing agent (silicone resin solution) in poly(dimethylsiloxane) (PDMS) matrix to 
reduce HAuCl4 in the preparation of a PDMS–gold nanoparticle composite film. 
Wang and coworkers have also reported a method for fabricating PDMS-GNPs films 
[12]. In another report, chitosan, used as a reducing and stabilizing agent, was coated 
on PDMS; the coated PDMS was then immersed in HAuCl4 solution to form a layer 
of GNPs [14]. In our research, stable GNPL were prepared on a variety of materials 
via a facile and low-cost glucose reduction method [5, 6]. The applications of GNPL 
for control of protein adsorption and regulation of cell behavior are discussed in the 
following sections. 

5.1 Control of Protein Adsorption 

The interaction of biomaterials with proteins is of crucial importance in various 
applications including biochips [15], biosensors [16], medical device coatings [17], 
and drug delivery [18]. Controlling the adsorption of proteins (e.g., antibodies, 
enzymes) on material surfaces and conserving their activity are essential in the 
design of functional surfaces [19]. In this section, protein adsorption on GNPL-
modified enzyme-linked immunosorbent assay (ELISA) plates is discussed in detail. 
The combined effects of the micro-/nanostructures of the GNPL and the chemistry of 
polymer brushes grafted on GNPL on protein adsorption are highlighted. The 
modification of GNPL with pH-responsive polymers for controllable capture and 
release of proteins is also explored in this discussion. 

5.1.1 Protein Adsorption on GNPL-Modified ELISA Plates 

ELISA is widely used in clinical diagnosis due to its relative simplicity, low cost, 
and high sensitivity [20, 21]. A major limitation is low binding affinity of antigens



and antibodies; in addition, the accessibility of adsorbed proteins on a standard “two-
dimensional” microplate surface for the recognition and binding of antigens and 
antibodies may be limited [22]. To improve accessibility and sensitivity, we have 
investigated modification of ELISA plates with GNPL to give surfaces that may be 
described as “three dimensional” [5]. 
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Fig. 5.1 Characterization of unmodified (control) and GNPL-modified ELISA plates. The volumes 
of plating solution for GNPL (a–e) were 50, 100, 150, 200, and 250 μL, respectively. (a1–e1) are 
visible light micrographs (bar: 100 μm); (a2–e2) are field emission scanning electron microscopy 
(FESEM) images (bar: 10  μm); (a3–e3) are high-magnification FESEM images (bar: 100 nm); the 
numbers under the columns are the respective porosity values for GNPL (a–e). (Reprinted from Ref. 
[5] with permission. Copyright 2011 American Chemical Society) 

GNPL exhibits three-dimensional porous structures that are composed of gold 
nanoparticle aggregates with thickness in the micrometer range. By adjusting the 
volume of the plating solution in the wells, a series of GNPLs with different porosity 
rates were obtained. With increasing solution volume, the micro- and nano-sized 
porous structures became more densely aggregated and the porosity value decreased 
gradually (Fig. 5.1)  [5]. It was found that the quantity of proteins (lysozyme (LYZ), 
human serum albumin (HSA), and fibrinogen (Fg), used as model proteins of 
different size) adsorbed on GNPL-modified ELISA plates increased significantly 
with increasing solution volume; e.g., for GNPL prepared with the highest solution 
volume, the adsorbed quantities of LYZ, HSA, and Fg were, respectively, 2.76-, 
2.34-, and 3.26-fold higher than on the unmodified plate. Moreover, due to the 
micro- and nanostructures of the GNPL, the activity of LYZ absorbed on GNPL was 
found to be at least 2.65-fold higher than on the unmodified plate. The GNPL-
modified plate was shown to amplify the ELISA signals for carcinoembryonic 
antigen (CEA) and antithrombin (AT) and to increase the limits of detection 
(LOD) of these antigens significantly. Useful ELISA signals were obtained on 
GNPL-modified plates when the quantity of CEA was above 2 ng/well; in contrast, 
no useful signal was obtained on the pristine high-binding ELISA plate even for 
quantities greater than 10 ng/well. The LOD for AT in buffer solution with GNPL-
modified plate was two orders of magnitude lower than for the unmodified plate.
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To overcome the limitation of indirect ELISA to selectively bind a specific target 
from a multiprotein fluid such as serum or plasma, we proposed a GNPL-based 
ELISA in sandwich format [6]. Sandwich ELISA is widely used in various com-
mercially available kits. In “traditional” sandwich ELISA, the captured (adsorbed) 
antibody (Ab) binds to the ELISA plate by physical adsorption, resulting in random 
orientation of the Ab molecules and thus in decreased performance. We hypothe-
sized that an optimum orientation of Ab on the ELISA plate by covalent attachment 
might improve performance [23]. Accordingly, we immobilized goat anti-rabbit IgG 
(IgG-alkaline phosphatase (ALP)) on GNPL using 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-
hydroxysuccinimide (NHS) conjugation chemistry. We showed that the activity of 
IgG covalently immobilized on the GNPL plate was 61% higher than that of IgG 
physically adsorbed on the unmodified plate. 

This result may be attributed, in part, to the improved binding efficiency of the 
GNPL-modified, compared to the unmodified, ELISA plate; more importantly, the 
GNPL-modified plate may favor an Ab orientation that facilitates the binding of the 
IgG substrate to the enzyme. The GNPL-modified ELISA plate showed a lower 
LOD and higher sensitivity for rabbit IgG in buffer and CEA in plasma. For IgG in 
buffer, the detection limit of the GNPL-modified ELISA was 0.0512 ng/mL, two 
orders of magnitude lower than that of the unmodified plate (1.28 ng/mL). For CEA 
in plasma, the GNPL-modified plate gave a stronger ELISA signal than the 
unmodified, high-binding ELISA plate as indicated by the deeper color. This was 
especially true for CEA concentrations greater than 8 ng/mL. The LOD for the 
GNPL-modified ELISA plate was 2 ng/mL compared to 4 ng/mL for a typical 
commercial ELISA kit (Linc-Bio Co.). 

5.1.2 Controlling Protein Adsorption on GNPL Modified 
with Hydrophilic Polymer Brushes 

Surfaces with micro-/nanostructures adsorb greater quantities of protein than smooth 
surfaces on a nominal area basis. On the other hand, surfaces modified with 
hydrophilic polymers such as poly[oligo(ethylene glycol) methacrylate] (POEGMA) 
tend to resist nonspecific protein adsorption [7, 9]. It was of interest, therefore, to 
investigate the combined effects of micro-/nanostructures and hydrophilic polymers 
on protein adsorption. GNPL were modified with POEGMA by surface-initiated 
atom transfer radical polymerization (SI-ATRP) [7, 9]. Protein adsorption was 
measured using radiolabeled protein. It was found for human serum albumin 
(HSA, one of the most abundant proteins in the body) that adsorption on the 
GNPL surface was about 5.8-fold higher than on smooth Au (sAu) (Fig. 5.2). 
After modification with POEGMA, adsorption was reduced by about 97%. Adsorp-
tion on GNPL-POEGMA and sAu-POEGMA was similar (Fig. 5.2) indicating the 
strong protein resistance of POEGMA.
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Fig. 5.2 The adsorption of 1 mg/mL HSA measured using 125 I radiolabeling method, as expressed 
in (a) nanograms/disc or (b) nanograms/cm2 . Data are means ± SD (n = 3). (Reprinted from Ref. 
[9] with permission. Copyright 2012 American Chemical Society) 

5.1.3 Capture and Release of Proteins 
on Multifunctional GNPL 

In recent years, various functional surfaces modified with different functional pro-
teins have emerged as novel and active biomaterials due to their numerous applica-
tions such as disease therapy, molecular diagnostics, and tissue engineering [24– 
26]. For these surfaces, to achieve tunable surface bioactivity is vital. An ideal 
multifunctional surface of this kind should be able to highly regulate the amount 
of proteins adsorbed on and released from the surface. It should also be able to



C

regulate the available bioactivity of the surface. To develop such a multifunctional 
system, we used pH-sensitive polymers, gold nanoparticles (AuNPs), and GNPLs 
[27]. pH-sensitive polymers have been proven efficient in responding in real time to 
pH changes through regulating their chemical and physical properties to achieve 
protein capture and release [28, 29]. AuNPs and GNPLs were used to introduce 
nanostructures to the system with the goal to increase the amount of proteins that can 
be modulated. In detail, this novel system contains (1) AuNPs comodified with an 
enzyme and poly(methacrylic acid) (PMAA), e.g., AuNP-pyrophosphatase (PPase)-
PMAA, as nanostructured protein carriers; (2) GNPLs modified with poly 
(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), i.e., GNPL-PDMAEMA, as 
a micro-/nanostructured support platform for surface bioactivity regulation 
(Fig. 5.3). 
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Fig. 5.3 Synthesis of (a) AuNP-PPase-PMAA conjugates and (b) GNPL-PDMAEMA surfaces; 
the reversible capture/release of AuNP-PPase-PMAA conjugates on GNPL-PDMAEMA surfaces 
at different pH values is shown in (c). (Reprinted from Ref. [27] with permission. Copyright 2017 
Royal Society of Chemistry) 

PDMAEMA and PMAA were synthesized by RAFT polymerization and 
functionalized with a thiol group via aminolysis reaction to form PDMAEMA-SH 
and PMAA-SH. With the free thiol group, PDMAEMA-SH was easily conjugated to 
GNPLs and PMAA was conjugated AuNPs. It was found that the maximum protein 
adsorption on the surface occurred at pH 7.0 and the amount of PPase is 
359.9 ± 4.2 ng cm-2 . The adsorption decreased with increasing pH value. At 
pH 8.0 and 9.0, the adsorption values were about 65% and 33%, respectively. At 
pH 10.0, the GNPL-PDMAEMA surface could completely release the AuNP-PPase-
PMAA conjugates and only less than 4% protein remained on the surfaces. The 
pH-dependent protein capture and release mechanism is mainly attributed to the 
interaction between the two pH responsive polymers: PDMAEMA and PMAA. The 
pKa of PDMAEMA is between 7.5 and 8.0 [30, 31]. Therefore, it is positively 
charged at pH 7.0 and negatively charged at pH 10.0. PMAA is negatively charged 
in the pH range of 6.0–10.0 due to fact that the PMAA carboxylic acid groups are in



the anionic form of –COO– [32]. We also showed that this “capture/release” effect is 
reversible by cyclic adjustment of the pH value between 7.0 and 10.0 for at least 
three times. 
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5.2 Regulation of Cell Behavior 

It has been demonstrated that the surfaces on which cells reside and interact in vivo 
are rough and are composed of diverse three-dimensional micro-/nanostructures 
which are essential in maintaining cellular functions [33]. For example, extracellular 
matrix (ECM) and the inner surfaces of blood vessels are rough, with topographical 
features that affect protein adsorption and cellular responses [34, 35]. Lensen et al. 
found that poly(ethylene glycol) (PEG) hydrogel surfaces, which are intrinsically 
cell repellent, support the growth of L929 cells after introducing micro-/ 
nanotopographical features in the surface [36]. Nanotopography has been shown 
to regulate the properties and behavior of human embryonic stem cells (hESCs), 
including cell morphology, adhesion, proliferation, and self-renewal [35]. Cardio-
vascular stents with micro-/nanotopographical surfaces were also found to 
endothelialize more effectively than those with smooth surfaces [37]. In addition, 
nanostructured surfaces modified with cell-specific ligands were significantly more 
efficient in the capture and isolation of circulating tumor cells [38, 39]. 

5.2.1 Maintaining the Pluripotency of ESCs on GNPLs 
with Nanoscale Surface Roughness 

The influence of surface nanoscale features on the function of ESCs is attracting 
increasing attention because the features resemble those of the natural ECM where 
cells reside and interact [40]. Using photolithography Chen and coworkers prepared 
glass substrates with patterned surface roughness features of 70 and 150 nm and 
investigated the behavior of hESCs on these surfaces. They found that smooth glass 
was conducive to maintaining the self-renewal and pluripotency of hESCs in long-
term culture; in contrast, the nanorough surfaces promoted spontaneous differenti-
ation and loss of pluripotency [35]. In general, however, the influence of 
sub-microscale and microscale roughness on the maintenance of ESC pluripotency 
has not been much explored and remains unclear. 

To address this question, we investigated the influence of surface roughness from 
nano- to submicro- to microscale on the maintenance of mouse ESC (mESC) 
pluripotency in long-term culture under feeder-free conditions [8]. GNPLs with 
nano-, sub-micro-, and microscale roughness were prepared by adjusting the volume 
of the gold plating solution (designated GL-1, GL-2, GL-3, GL-4, and GL-5 with 
increasing surface roughness). Undifferentiated ESCs can express the Oct-4 gene,



which is essential for maintaining the cells in the undifferentiated state. Decreases in 
Oct-4 immunoreactivity signify cell differentiation. The majority of mESCs seeded 
on sAu, GL-1, and GL-2, whose surface roughness is less than 392 nm, retained their 
“stemness” after culture for 3 and 7 days, as shown by expression of the Oct-4 gene 
(Fig. 5.4a). In contrast, the pluripotency of cells cultured on GL-3, GL-4, and GL-5, 
with surface roughness greater than 573 nm, decreased from day 3; loss of 
pluripotency was greater after 7 days, particularly on microrough GL-5 
(Fig. 5.4b). These results are consistent with data from quantitative polymerase
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Fig. 5.4 Immunofluorescence images of mESCs cultured for 3 and 7 days on various surfaces. The 
cells were costained for Oct-4 (red) and nuclei (DAPI; blue). Undifferentiated mESCs were 
positively immunolabeled for Oct-4 and were stained red. DAPI (blue counterstain) labels all 
cells in the population; therefore, differentiated cell types appear blue.  (a) Au, GL-1, and GL-2; 
(b) GL-3, GL-4, and GL-5. Bar, 100 μm. (Reprinted from Ref. [8] with permission. Copyright 2014 
Royal Society of Chemistry)



chain reaction (qPCR) analysis of Oct-4 expression: no significant loss of Oct-4 gene 
expression was observed in cells grown on nanorough GL-1 (~84%) compared with 
those on sAu. In contrast, Oct-4 gene expression decreased strongly on GL-3 
(~73%) and GL-5 (~52%), with roughness greater than 573 nm. In sum these results 
show that sAu and GNPLs with low sub-microscale roughness (Rq less than 392 nm) 
supported very well the long-term pluripotency of mESC. However, GNPLs with 
sub-microscale surface roughness (Rq) greater than 573 nm and microscale surface 
roughness of 1205 nm decreased the pluripotency of the cells and accelerated their 
spontaneous differentiation, especially on microrough GNPL.
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The signaling cascades engaged in topological sensing by mESCs were investi-
gated by analyzing the expression of proteins related to E-cadherin-mediated cell– 
cell adhesion and the formation of integrin-mediated focal adhesions (FAs). It was 
found that mESCs cultured on sAu and nanorough GNPL (Rq, 106 nm) tended to 
form larger colonies with cells tightly connected with each other than cells on 
microrough GNPL. Also the cells maintained much stronger expression of 
E-cadherin than cells on microrough GNPL. In contrast, the ability of the cells 
cultured on microrough GNPL to form colonies was significantly decreased, and 
cells were distributed randomly with much weaker expression of E-cadherin 
(Fig. 5.5a, b). In addition, β-catenin was expressed exclusively in cells cultured on 
sAu and nanorough GNPLs, indicating the presence of strong adherens junctions 
that support E-cadherin-mediated cell–cell adhesions in mESC colonies. In compar-
ison, the cells cultured on microrough GNPL showed much weaker expression of 
β-catenin (Fig. 5.5c). In focal adhesion (FA) analysis, mESCs exhibited much 
stronger expression of vinculin (a FA protein) on sAu and nanorough GNPL than 
on microrough GNPL. These results suggest that nanorough GNPL is conducive to 
the formation of FAs in mESCs, while microrough GNPL strongly inhibits FA 
formation, possibly resulting in faster spontaneous differentiation of the mESCs. 

5.2.2 Controlling Cell Behavior on GNPL Grafted 
with Protein-Resistant Polymers 

Despite much effort devoted to the investigation of the interactions between topog-
raphy and cell behavior, cellular responses to topography are not well understood 
and results are contradictory in different experimental systems [41]. Many studies 
have shown that topographical surfaces increase cell adhesion and cell proliferation 
by affecting the distribution of ECM proteins adsorbed from the cell culture medium 
[42, 43] and by increasing protein adsorption [44]. Others believe that cellular 
responses do not rely only on the cell adhesion proteins or ligands in the local 
environment, that the topographical structure of the surface itself is important, and 
that protein adsorption alone does not determine cell behavior. For example, on a 
surface patterned with grooves overlaid with an orthogonal fibronectin pattern, 
osteoblasts were aligned predominantly with the grooves, regardless of the



distribution of fibronectin (Fn), implying that the topography influenced the cell 
behavior independently of protein adsorption [45]. Dalby and coworkers showed 
that cell adhesion was quite different on 10 nm and 50 nm nanoscale islands on poly 
(n-butyl methacrylate)/poly(styrene) blend films [46]. 
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Fig. 5.5 Immunofluorescence images of mESCs on smooth Au and GNPLs with nanoscale and 
microscale surface roughness after culture for 3 days. (a) Cells costained for nuclei (DAPI, blue) 
and E-cadherin (red); (b) cells costained for cytoskeleton (phalloidin, green) and E-cadherin (red); 
(c) cells costained for nuclei (DAPI, blue) and β-catenin (red). Scale bar, 50 μm. (Reprinted from 
Ref. [8] with permission. Copyright 2014 Royal Society of Chemistry) 

To investigate the role of surface topology independent of other factors on cell 
behavior, we modified GNPL with POEGMA using SI-ATRP to obtain a topological 
surface having minimal protein adsorption [9]. Cell adhesion experiments were 
carried out using two cell types, human L02 hepatocytes and human hepatocellular 
carcinoma BEL-7402 cells. The cell density on GNPL was higher than on sAu, and 
after modification with POEGMA cell adhesion was reduced on both surfaces. 
However, whereas cell adhesion was greatly decreased on sAu, it was reduced by 
only ~50% for GNPL-POEGMA, and the density on GNPL-POEGMA was an order 
of magnitude higher than on sAu-POEGMA. L02 and BEL-7402 adhesion on 
sAu-POEGMA was lower by 92.8% and 97.7%, respectively, compared to sAu. 
For GNPL-POEGMA surface, the decrease in adhesion compared to GNPL was 
only 51.5% for L02 and 38.4% for BEL-7402 cells. These data showed that surface



topography is an important determinant of cell adhesion on protein-resistant 
POEGMA surfaces. 
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Fig. 5.6 Fluorescence images (a1-a4) and SEM images (b1-b4) of L02 cells and fluorescence 
images (c1-c4) and SEM images (d1-d4) of BEL-7402 cells on different surfaces. Spread cells on 
the GNPL surface are indicated by red ovals in b3 and d3. The scale bar in all images is 50 μm. The 
shape and filopodia of the cells on POEGMA-modified surfaces were observed by confocal 
microscopy and are shown as insets in a2, a4, c2, and c4. Scale bar, 10 μm 

The combined effects of topography and protein resistance on cell–surface 
interactions were also investigated. Cell spreading was evaluated using fluorescent 
staining with Alexa Fluor 488 phalloidin (Fig. 5.6a, c). Spreading occurred on the 
sAu and GNPL surfaces. On the POEGMA-modified surfaces, cell spreading 
appeared to be constrained to some extent based on the spherical shape of the 
cells. However, spreading was quite different on the GNPL-POEGMA and 
sAu-POEGMA surfaces, as shown in the confocal microscopy images (Fig. 5.6 
insets). Cells on GNPL-POEGMA showed small lamelipodia and short cell filopodia 
(Fig. 5.6a4, c4), whereas cells on sAu-POEGMA did not (Fig. 5.6a2, c2). Similar 
trends were found in SEM images (Fig. 5.6b, d). These results demonstrate that 
although cell spreading on protein-resistant surfaces was constrained, presumably 
because of the lack of adsorbed proteins, the cells on topographical surfaces were 
more firmly attached compared to those on smooth surfaces. In general, it was 
concluded that topography is more important than protein-resistant polymers for 
cell adhesion on a protein-resistant surface.
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5.2.3 Controlling Cell Behavior on GNPL Modified 
with Cell-Binding Ligands 

As well as surface topography, surface chemical modification has been shown to be 
effective in regulating cell behavior [47, 48]. To promote specific interactions 
between cells and material surfaces, cell-binding ligands such as arginine–glycine– 
aspartic acid (RGD) peptide have often been used [49, 50]. However, nonspecific 
adsorption of serum proteins can interfere with specific cell–ligand interactions. To 
avoid nonspecific adsorption of serum proteins, Causa and coworkers investigated 
cell-specific interactions with surfaces in serum-free medium [50]. However, serum 
contains many proteins and hormones that are vital for the maintenance of cell 
function. Therefore, studies under serum-free conditions cannot accurately reflect 
cell-specific interactions. To address this issue, we used protein-resistant polymer 
brushes (POEGMA) to modify GNPL via SI-ATRP and further modified the 
POEGMA with glycine–arginine–glycine–aspartic acid–tyrosine (GRGDY) pep-
tide, a typical ligand that binds integrins and triggers specific cell responses [7]. It 
was found that the cell density on sAu was significantly higher than on GNPL 
(Fig. 5.7), suggesting that L929 fibroblasts prefer to adhere and proliferate on 
smooth surfaces. This observation is consistent with previously reported research 
[51]. We speculated that GNPL surface alters the native conformations of the 
adsorbed cell-adhesive proteins [52], thereby resulting in poor recognition and 
binding between the membrane integrins of L929 and those proteins. Hence, it is

Fig. 5.7 Regulating the behavior of L929 fibroblasts on GNPL modified with POEGMA and cell-
binding ligand GRGDY. (Reprinted from Ref. [7] with permission. Copyright 2012 Wiley-VCH)



difficult for L929 cells to form mature focal adhesions on GNPL surfaces, thereby 
further hindering cell adhesion, spreading, and proliferation.
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The cell densities on all of the surfaces modified with POEGMA were signifi-
cantly reduced and most adherent cells did not spread. A few cells aggregated to 
form small clusters, indicating that the surfaces were unfavorable for cell adhesion. 
However, after modification with GRGDY peptide, the cellular responses were 
totally reversed. The specific binding between cells and GRGDY greatly improved 
cell adhesion (Fig. 5.7). Cell densities on the GNPL-POEGMA-GRGDY surface 
were at least 131 ± 13 cells/mm2 at 120 h. This value was much higher than on the 
unmodified and POEGMA-modified GNPLs and even higher than on sAu after the 
same treatment. Thus, it appeared that although the increased surface roughness was 
unfavorable for the adhesion of L929 cells, the much higher surface-to-volume ratio 
of the GNPL surface resulted in a higher density of surface immobilized molecules, 
and the enhanced specific interactions between cells and GRGDY peptides 
counteracted the negative effect of the roughness, resulting in improved cell adhe-
sion and proliferation. 

The cell density on GNPL with lower surface roughness (GNPL (a)) was higher 
than on the two GNPLs with higher surface roughness (GNPL (c) and GNPL (b); 
roughness: GNPL (c) > GNPL (b)), and it was the only GNPL that supported cell 
growth. It appears that surface roughness and cell-specific binding, having opposite 
effects, reached an optimal balance on GNPL (a). The densities of GRGDY peptide 
on GNPL (b) and (c) were higher than on GNPL (a) due to their higher surface-to-
volume ratios. However, according to a study reported by Mann and West, a very 
high density of cell-binding ligands immobilized on surfaces is unfavorable for the 
proliferation of certain mesenchymal-derived cell types [53]. A similar phenomenon 
was observed by Bellis and coworkers [54, 55]. In our work [6], although the cell 
density on sAu-POEGMA-GRGDY surface also increased to 83 ± 8 cells/mm2 , it  
was still lower than on unmodified Au surface (310 ± 25 mm2 ) (Fig. 5.7). This could 
be due to lower specific binding on the modified sAu surface compared to the 
modified GNPL surface; in addition, the POEGMA spacer reduced the adsorption 
of serum proteins including that of cell-adhesive proteins such as Fn. 

5.2.4 Capture of Circulating Cancer Cells Using 
Aptamer-Modified GNPL 

The measurement and analysis of circulating tumor cells (CTCs) can be regarded as 
a “liquid biopsy” of the tumor, providing insight into tumor biology in the critical 
window where intervention could actually make a difference [56]. However, CTCs 
are present in extremely low numbers in the bloodstream: typically one CTC cell per 
105 –107 normal blood cells [57]. Therefore, enrichment of CTCs is a prerequisite for 
CTC analysis. Over the past few decades, a diverse suite of technologies has been 
developed for isolating and counting CTCs in patient blood samples [58, 59]. The



known enhancement of cell–surface interactions, including cell adhesion, by micro-/ 
nanostructuring can [60] be exploited for the enrichment and separation of CTCs. 
Aptamers (APTs), which may be considered as nucleic acid forms of traditional 
antibodies, can be designed to have specific affinity for given cell types. Moreover, 
APTs have been designed as efficient diagnostic probes for tumors both in vitro and 
in vivo [61]. Based on this knowledge, we modified GNPLs, first with POEGMA as 
an antifouling spacer using SI-ATRP; TD05 APT with high specific affinity for 
Ramos cells was then linked to the terminal hydroxyl groups of POEGMA by N, 
N′-disuccinimidyl carbonate (DSC) activation to give Au-POEGMA-APT and 
GNPL-POEGMA-APT surfaces. The B leukemia CTC cell, Ramos cell, was 
selected as a target to study the selective capture ability of cell-specific 
APT-modified GNPLs of varying surface roughness (designated GNPL1, GNPL2, 
and GNPL3 with increasing surface roughness) in cell mixtures containing Ramos 
and CEM cells (CL1014, T-cell line, human ALL) under serum-containing cell 
culture conditions [10]. 
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The number of Ramos cells on the APT-modified GNPL surfaces increased with 
increasing surface roughness while the CEM cell number decreased, albeit slowly. 
The density of Ramos cells on the sAu, GNPL1, GNPL2, and GNPL3 surfaces were, 
respectively, 1.3-, 1.9-, 1.9-, and 2.2-fold greater than those of CEM cells. In 
contrast, after aptamer modification, the proportion of Ramos cells increased signif-
icantly with increasing surface roughness, with densities on the sAu, GNPL1, 
GNPL2, and GNPL3 surfaces, respectively, 2.2-, 2.8-, 3.0-, and 2.7-fold greater 
than those of CEM cells. We concluded that in serum-containing conditions, the 
roughness of the GNPLs enhanced the selectivity of the APT for Ramos cells. 
However, compared with serum-free conditions, the selectivity was still much 
weaker. 

Serum is a highly complex fluid that contains many types of proteins which 
adsorb to surfaces nonspecifically and may “hide” the surface-immobilized APT to 
some extent, thereby further inhibiting the binding of cell receptors to the 
immobilized APT. This effect may be responsible, in large part, for the observed 
decrease in selectivity in serum compared to buffer. To improve the Ramos selec-
tivity of the APT-modified surfaces in serum-containing conditions, we introduced 
POEGMA as a protein-resistant element. After POEGMA modification, the numbers 
of cells on Au-POEGMA and GNPL(1–3)-POEGMA were significantly reduced 
compared to the unmodified surfaces in serum-containing conditions. In addition, 
there was no observable difference in the numbers of Ramos and CEM cells. With 
the introduction of APT on the POEGMA, the density of Ramos cells increased 
significantly, whereas the density of CEM cells did not change. The density of 
Ramos cells on the four (sAu, GNPL1, GNPL2, and GNPL3) POEGMA surfaces 
modified with APT were, respectively, 0.9-, 1.5-, 3.5-, and 6.6-fold greater than 
those of CEM (Fig. 5.8).
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Fig. 5.8 Selective capture of Ramos cells in serum-containing conditions on GNPL surface 
modified with POEGMA and APT. (Reprinted from Ref. [10] with permission. Copyright 2013 
American Chemical Society) 

5.2.5 Macromolecular Delivery to Cells Using GNPL via 
the Photoporation Effect 

Gold nanoparticle (GNP)-mediated photoporation has garnered increasing attention 
as a promising approach for macromolecular delivery to living cells [62–65]. When 
exposed to laser light of particular wavelengths, the membrane-associated GNPs 
convert the absorbed laser energy into heat, leading to increased membrane perme-
ability and the transport of normally cell-impermeable macromolecules directly into 
the cytosol [66]. Additionally, by tuning the laser energy, the size of the pores 
created in the cell membrane by the GNPs can be varied, allowing control of the 
quantity and size of the molecules delivered [67]. Compared with traditional 
photoporation, in which cell membrane permeability is achieved by focusing high-
intensity femtosecond (fs) laser pulses onto individual cells, GNP-mediated 
photoporation can be achieved at a lower laser energy with unfocused laser light 
that can irradiate a large number of cells, leading to greatly increased throughput 
[62]. Moreover, GNPs have superior chemical and biological properties including 
easy surface modification for molecular attachment and improved biocompatibility. 
Although effective, this method relies on complex and expensive equipment to 
generate laser light in short pulses [67]. Moreover, concerns remain because the 
extreme heating of the GNPs during irradiation may cause them to distort and 
fragment, resulting in high cytotoxicity [68, 69]. To solve these problems, we 
developed a new platform for macromolecular delivery that retains the photothermal 
properties of GNPs while avoiding the side effects caused by their entry into the 
cells. Instead of free GNPs, we used GNPLs as the photoporation “reagent.” GNPLs, 
composed of numerous GNPs with nano- and microtopography, provide multiple 
sites for contact between cell membranes and the GNPs. We therefore hypothesized 
that GNPLs may serve as a novel and versatile macromolecular delivery platform 
upon irradiation with continuous-wave (CW) laser light (Fig. 5.9)  [70].
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Fig. 5.9 A novel platform for macromolecular delivery into cells using gold nanoparticle layers via 
the photoporation effect. (Reprinted from Ref. [70], copyright 2016, WILEY-VCH Verlag GmbH 
& Co) 

We first tried delivery of dextran to cells using this approach. 
Tetramethylrhodamine isothiocyanate (TRITC)-labeled dextran (red fluorescence), 
with a molecular weight of 4.4 kDa, was used as a model macromolecule and HeLa 
cells as model cells. It was found that without laser irradiation, dextran did not enter 
the cells efficiently; no red fluorescence was observed. Strong red fluorescence 
began to be observed at 3.2 W cm-2 /45 s, and the fluorescence intensity increased 
further at 5.1 W cm-2 /30 s. Decrease in irradiation time to 20 s at 5.1 W cm-2 failed 
to give high fluorescence intensity. The delivery efficiency in presence of sAu under 
those conditions was much lower. To further demonstrate the efficient delivery of 
TRITC-dextran to HeLa cells, we obtained confocal microscopy images using the 
Z-stack mode to view the distribution of TRITC-dextran. Scans were taken from top 
to bottom of the cell membrane. The images indicated that macromolecules entered 
the interior of the cells and were not merely attached to the cell membrane. 
Moreover, cell viability experiments demonstrated that vitality was maintained 
under these conditions. 

Plasmid DNA (pDNA) is a commonly used gene carrier and its efficient delivery 
to living cells is essential for gene therapy. However, due to its large size and the 
necessity for transport into the nucleus, transfection is more difficult with pDNA 
than with dextran or RNA. In our work, the applicability of GNPL-laser irradiation



for the delivery of pDNA encoding green fluorescent protein (GFP), a widely used 
pDNA model that can easily transfect HeLa cells, was assessed. Lipofectamine 2000 
(Lipo2000) complexed with pDNA was used as a standard cell transfection agent 
(positive control) because Lipo2000 is a widely used, commercially available 
transfection reagent for delivery of pDNA and RNA into cells [71]. It was found 
that under irradiation conditions 3.2 W cm-2 /45 s and 5.1 W cm-2 /30 s, virtually 
100% of the HeLa cells gave a green fluorescence signal, suggesting the successful 
delivery and expression of pDNA in the cells. These results are in line with data from 
flow cytometry. Compared with 3.2 W cm-2 /45 s, the transfection efficiency at 
5.1 W cm-2 /30 s was significantly higher; the cells showed stronger green fluores-
cence, similar to that obtained using Lipo2000. These results show that under laser 
irradiation, our platform based on GNPLs achieved direct and efficient delivery of 
pDNA to HeLa cells without compromising cell viability. Moreover, the transfection 
efficiency of this vector-free system was comparable to that of Lipo2000. 
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Gene delivery to different cell types has resulted in advances in the understanding 
of gene function and the development of genetic therapies [72–74]. Although 
Lipo2000 is effective for the transfection of many cell types, it is ineffective for 
the transfection of hard-to-transfect cell types such as primary cells including mouse 
embryonic fibroblasts (mEFs) used widely in stem cell research and human umbil-
ical vein endothelial cells (HUVECs), which are used for endothelial cell physiology 
and pathology studies. Therefore, we investigated the delivery of pDNA to hard-to-
transfect mEFs and HUVECs. Efficient intracellular delivery to mEFs has previously 
been challenging. For example, the transfection efficiencies of mEFs with pDNA 
using pDNA/magnetic nanoparticles and optimized electroporation were reported as
�11% [75] and �40% [76], respectively. It was shown that pDNA was delivered to 
and expressed in mEFs under irradiation conditions of 3.2 W cm-2 /45 s with a 
transfection efficiency of approximately 39%, much higher than the ~19% using 
Lipo2000 (p < 0.001). At 5.1 W cm-2 /30 s, the transfection efficiency was further 
enhanced to 53% ( p < 0.001, vs Lipo2000), and the fluorescence intensity was 
much higher than for Lipo2000 ( p < 0.001). In addition, cell viability both imme-
diately after and 24 h after laser irradiation was higher than 95% under both 
conditions. For HUVECs, sufficient intracellular delivery of pDNA could not be 
achieved using GNPL along probably because of the differences in cell type and 
size. The average size of HUVECs is only about 35% of the average size of mEFs 
meaning there are more sites for the contact between mEFs and GNPL surfaces than 
that between HUVECs and GNPL surfaces. To address this problem, we combined 
Lipo2000 and GNPL where pDNA was complexed with Lipo2000 before exposure 
to laser irradiation. At 5.1 W cm-2 /30 s, we achieved a transfection efficiency of 
~44%, much higher than ~8% from using Lipo2000 alone ( p < 0.001). Altogether, 
these data demonstrate that this system is effective for the pDNA transfection of 
hard-to-transfect cell types with an efficiency much higher than for Lipo2000 alone.
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5.2.6 Macromolecular Delivery to “Recalcitrant” Cells Using 
PEI and GNPL via the Photoporation Effect 

Using GNPL-assisted photoporation, we have achieved relatively high delivery 
efficiency of pDNA to hard-to-transfect mEFs (~53%) and HUVECs (~44%). 
However, there is still room to further improve the delivery efficiently. 
Polyethylenimine (PEI) is a representative synthetic nonviral gene carrier with 
superior transfection efficiency due to its unique “proton sponge effect” for 
endosomal escape of the gene payload [77]. The commercially available 25 kDa 
branched PEI (bPEI) in particular has been widely considered as the “gold standard” 
carrier for gene delivery [78]. Unfortunately, such high molecular weight (MW) PEI 
(HPEI) is generally cytotoxic, thus limiting its application. Low MW PEI (LPEI, 
MW <2 kDa) is acceptable with respect to cytotoxicity but has low transfection 
efficiency. Considerable efforts have been made to prepare novel PEI derivatives to 
overcome these limitations [79–81]. However, safe and efficient delivery systems for 
hard-to-transfect primary cell lines have rarely been reported. After confirming the 
potential of GNPL to serve as a universal macromolecular delivery platform [70], 
here we explored the possibility of combing LPEI with GNPL for safe and high-
efficient pDNA delivery specifically to hard-to-transfect primary cell lines (mEFs 
and HUVECs) (Fig. 5.10). In this platform, LPEI serves as a carrier of pDNA to 
protect it from degradation. Laser-activated GNPL serves as a membrane disruption 
agent [82]. 

We achieved a very high pDNA transfection efficiency of 94.0 ± 6.3% to 
HUVECs when we added LPEI/pDNA complexes with a N/P of 20 to cells growing 
on GNPL under laser irradiation. Cell viability under this condition was very well

Fig. 5.10 LPEI/pDNA complex is formed by electrostatic interactions. Targeted cells are cultured 
on the GNPL, and then exposed to laser irradiation to enhance the permeability of the cell 
membrane, thereby assisting the diffusion of LPEI/pDNA complex from the surrounding medium 
into the cell. (Reprinted from Ref. [82] with permission. Copyright 2017 American Chemical 
Society)



maintained at ~100%, 48 h after transfection. The transfection value is higher than 
the value achieved using 25k PEI (75.1 ± 18.6%). Moreover, cell viability 48 h after 
transfection using 25k bPEI decreased to less than 5%, much lower than the viability 
of our system (p < 0.001). These results showed that LPEI/GNPL collaborative 
delivery system significantly outperformed the golden standard-25k bPEI for the 
delivery of pDNA to HUVECs. It is worth noting that this efficiency is also much 
higher than the efficiency achieved by complexing pDNA with Lipo2000 before 
exposure to GNPL-assisted laser irradiation (~44%).
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We further investigated the delivery of pDNA to mEFs. Similar to HUVECs, our 
system gave high transfection efficiency (88.5 ± 9.2%) and high cell viability 
(99.8 ± 4.1%, 48 h after transfection) for mEFs. Last, we used our platform to 
deliver functional pDNA to illustrate its potential for endothelialization of artificial 
blood [83]. For this purpose, ZNF580 gene, which codes for a zinc finger protein, 
was chosen. This protein plays a critical role in alleviating atherosclerosis and has 
been shown to promote the proliferation and migration of endothelial cells [84]. Our 
data indicated that 48 h after transfection, the relative ZNF580 microRNA (mRNA) 
content was �1.3 times higher than that of the negative control group. Moreover, 
transfection with pZNF580 resulted in an increase in initial attachment and a 
significant increase in long-term proliferation of HUVECs. In particular, after 48 h 
culture, the density of adherent pZNF580 transfected cells was about twice that of 
nontransfected cells ( p < 0.05). These data suggest that our transfection method can 
effectively deliver pZNF580 to HUVECs such that proliferation for revasculariza-
tion purposes may be enhanced. Together, we showed that our LPEI/GNPL collab-
orative delivery system provides a highly efficient and relatively simple approach for 
intracellular delivery, especially for hard-to-transfect cell lines that are difficult to 
treat using more traditional methods. 

5.2.7 GNPL-Based Regenerable Smart Antibacterial 
Surfaces 

Attachment and subsequent colonization by bacteria on the surfaces of synthetic 
materials and devices pose serious problems in both human healthcare and industrial 
applications [85, 86]. Antibacterial surfaces with capability to prevent bacterial 
attachment and biofilm formation have been a longstanding focus of research [87– 
91]. However, conventional antibacterial surfaces are becoming less effective due to 
the emergence of multidrug resistant bacteria [92]. Photothermal therapy using 
strong light absorbers to generate local heat for physical destruction of bacteria 
provides a promising approach for circumventing the problem of antibiotic resis-
tance [93–98]. However, these photothermal antibacterial coatings suffer from the 
same inherent drawbacks as traditional antibacterial surfaces based on contact-
killing mechanisms, and even if they show high bactericidal efficiency, they remain 
contaminated by dead bacteria and other debris, which not only provide nutrients for



subsequent bacterial interactions, but may also trigger severe immune responses and 
inflammation [99]. To circumvent the problem of dead bacteria, a promising “kill-
and-release” strategy has been proposed for the development of smart antibacterial 
surfaces with the capability of not only killing the attached bacteria but also releasing 
dead bacteria and debris “on demand” under an appropriate stimulus [100–102]. To 
the best of our knowledge, smart photothermal antibacterial surfaces have not been 
developed yet. To fill this gap, we developed the first smart photothermal 
antibacterial surfaces with bacteria-releasing properties [103]. 
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Fig. 5.11 (a) Schematic illustration of a smart antibacterial surface based on a GNPL-PTLF hybrid 
film with photothermal bacteria-killing capability and Vc-triggered bacteria-releasing ability. (b) 
Photothermal bactericidal activity of surfaces against E. coli and S. aureus under NIR laser 
irradiation (2.3 W/cm2 , 5 min) evaluated using a colony counting assay. Error bars represent the 
standard deviation of the mean (n = 3). (c) Typical SEM images of attached bacteria on Au and 
GNPL-PTLF surfaces with/without NIR laser irradiation. (Reprinted from Ref. [103] with permis-
sion. Copyright 2018 Royal Society of Chemistry) 

This smart coating is composed of two functional layers (Fig. 5.11a). The first is a 
gold nanoparticle layer (GNPL) composed of GNP aggregates which serve as the 
photothermal bactericidal agent. Compared with dispersed GNPs, the aggregated 
GNPs exhibit a more efficient photothermal effect due to the redshifted absorption 
[104]. In addition, the GNPL possesses a unique micro-nanotopography that pro-
vides multiple sites for contact with bacteria and facilitates local hyperthermia



induced by NIR laser irradiation. We anticipate that the GNPL can also be used as an 
effective antibacterial material on which attached bacteria can be destroyed 
photothermally. In addition, the GNPL was coated with a thin phasetransitioned 
lysozyme film (PTLF) as a contamination releasing layer. PTLF was recently 
developed in our previous works as a novel biocompatible two-dimensional 
(2D) proteinaceous nanofilm with versatile applications. For substrates immersed 
in phase-transitioned lysozyme solution, a PTLF composed of densely aggregated 
oligomers within amyloid-like structures was shown to form on the surface in a few 
minutes. Such PTLFs are transparent and exhibit strong substrate bonding even in 
extreme pH conditions or under gas plasma treatment [105, 106]. 
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It is thus expected that the addition of PTLF will not affect the light-to-heat 
conversion capability of the GNPL or the bactericidal efficacy of the GNPL. Our 
results showed that more than 99% of attached Gram-positive S. aureus or Gram-
negative E. coli were killed under near infrared laser radiation at 2.3 W/cm2 for 5 min 
(Fig. 5.11b, c). we also showed that the degradation of PTLF can be triggered in a 
closely controlled manner by treatment with vitamin C (Vc). Almost all of the killed 
bacteria could be removed by incubating the surface in Vc solution for a short time 
period of 10 min due to the degradation of the topmost layer of PTLF. Moreover, the 
GNPL-PTLF coating can be used repeatedly over at least three “kill-and-release” 
cycles, which is of particular importance for long-term usage. 

5.3 Summary and Outlook 

Gold nanoparticle layers, as a representative material with surface topological 
structures, have a direct influence on protein adsorption/activity and cell behavior 
including adhesion, spreading, proliferation, and differentiation. Compared to 
smooth gold surfaces, GNPLs, due to their “three-dimensional” structure, offer 
better access for the binding of biomacromolecules such as proteins, antigens, and 
antibodies and favor the maintenance of their conformation and bioactivity, thereby 
improving cell adhesion further. In combination with protein-resistant polymers and 
specific ligands for certain types of proteins or cells, modified GNPL can selectively 
bind certain proteins and cells from protein and cell mixtures, including the highly 
complex environment of serum. In combination with stimuli-responsive polymers 
such as pH-sensitive polymers, modified GNPL can achieve multifunction such as 
recyclable protein capture and release. In addition, under laser irradiation, GNPLs 
show excellent photothermal property. This feature endows GNPLs with the ability 
to serve as a novel and efficient platform for the delivery of various macromolecules 
to different cell types including hard-to-transfect cell types. It also provides GNPLs 
with the opportunity to serve as an efficient and antibiotic-free antibacterial coating 
with the potential to kill and remove adherent bacteria, particularly multidrug 
resistant bacteria, on the surfaces of medical devices. It is concluded that GNPLs 
hold great promise in many biomedical fields such as protein detection, regulation of



protein and cell behavior, capture of circulating cancer cells, macromolecular deliv-
ery to living cells, and antibacterial applications. 
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Chapter 6 
Surface Modification of Tissue Engineering 
Scaffolds 

Zuyong Wang, Feng Wen, and Mark Seow Khoon Chong 

Abstract Scaffolds in tissue engineering provide a substrate for cells to grow on, in 
order to form functional, organised tissue. The ideal scaffold thus possesses mechan-
ical properties to cope with physiological loads, degradation profiles to match the 
rate of tissue regeneration, while also eliciting favourable host responses. There is, 
however, often a trade-off between having optimal bulk or surface properties. To 
address this, various strategies to perform surface modification have been developed 
to tailor scaffolds for specific applications. These strategies are discussed in this 
chapter and may be broadly categorised under modification based largely on phys-
ical mechanisms (employed largely to induce changes in topography, roughness or 
wettability) or chemical modification (employed largely to introduce new functional 
groups on a surface). Subsequently, the characterisation of the modified surface is 
necessary, in order to facilitate design for use as scaffolds. These evaluations are 
similarly discussed in this chapter as physical, chemical and biological characteri-
sation methods. The latter, in particular, is unique to materials used in medical 
applications (including tissue engineering scaffolds) and the section discussed the 
use of the ISO 10993 set of standards. 
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6.1 Introduction 

A wide range of biomaterials, both synthetic and biologically derived, are used 
widely in biomedical applications, including utility as scaffolds in tissue engineer-
ing. These materials are largely selected on their bulk properties, such as mechanical 
strength and degradation properties, in order to meet structural requirements 
[1, 2]. However, host responses are largely mediated by interactions with the 
material surfaces [3], and there emerges a need to tailor these surface properties to 
elicit appropriate biological responses, while retaining the bulk properties on which 
the materials were selected [4]. To meet these needs, much research has been 
dedicated toward the development of surface modification technologies. This chap-
ter discusses the common technologies being used, as well as some methods 
employed to characterise the modified surfaces. 

6.2 Surface Modification Techniques 

6.2.1 Physical Surface Modification 

The focus of biomaterials is shifting from bioinert implants to bioactive designs, in 
order to manipulate the interactions between cell physiologic systems and material 
properties, including physical cues. Physical surface modification refers to processes 
that apply physical methods to effect change in physical properties (such as rough-
ness and wettability), biochemical properties (biochemical components, functional 
groups and/or the distribution of them) or topographic structure (lattice structure, 
pore size and micropatterns) of the surface. Through the physical, biochemical or 
topographic cues conferred by these modification methods, the adhesion, prolifera-
tion, alignment and intracellular physiological activities of cells on modified surface 
can be controlled. More recently, physical modification methods have also been 
shown to elicit antimicrobial effects [5, 6] and even retard blood coagulation [7–9]. 

6.2.1.1 Topographical Engineering 

Scaffolds in tissue engineering are analogous to the extracellular matrix (ECM) in 
that they provide the mechanical substrate for cell growth. Besides structural sup-
port, it has become evident that physical cues, in the form of topographical micro-
structures, are capable of guiding cell alignment and migration in the 
microenvironment [10, 11]. This phenomenon was described in as early as 1912 
by Harrison in the direction of cell motion on spider web and was later defined as 
‘contact guidance’ by Weiss [12, 13]. Presently, biological reactions triggered by 
biomaterial topography have been demonstrated on parenchymal cells, inflammatory 
cells and bacteria.
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Cell Attachment, Growth, Morphogenesis and Differentiation In earlier studies, 
fibroblasts seeded on quartz slides with parallel ridge-groove structures showed 
alignment and elongation along the direction of gratings, reflecting contact guidance. 
Such effects have been shown to be dependent on topographical parameters, such as 
groove depth [14]. In a study on PMMA substrates with similar patterns, larger depth 
and width were found to be effective in restricting the lateral movement of fibro-
blasts across groove structures, smaller widths restricted the longitudinal movement 
along the ridges [15]. These observations indicate that cells can recognise the 
dimension of a surface topography both at microscales (cellular sizes) and 
nanoscales (near the sizes of filopodia and lamellipodia) [16], believed to be 
mediated by patterning of focal adhesions and filopodial sensing [17, 18]. Focal 
adhesions (FA) are multi-protein complexes mechanically linking intracellular actin 
to extracellular substrates via integrin-ligand bundles. It has been evidenced from 
multiple studies that matured FA result in elongated morphology, aligned in the 
direction of actin filaments and subject to forces correlating with the main axis of FA 
elongation [19], and cells adhered on the interface of dual microstructured films have 
been demonstrated to acquire ‘half-cell’ alignments [20]. These highlight the utility 
of topographical engineering in generating the specific anisotropy found in connec-
tive, mechano-sensitive, electro-active and shear-responsive tissues [16]. 

Topographic cues also have mechanical effects on cells by causing deformation 
of cytoskeleton and adjusting intracellular tension, with accordant changes in 
nuclear structure, epigenetic signals and expression profiles. These biochemical 
signals and mechanical signals may in turn further modulate cellular responses and 
influence cell physiological activities in a cascade of events, influencing cell motil-
ity, apoptosis [21], proliferation [22, 23] and differentiation [23–26]. Additionally, 
the formed focal adhesions serve as biochemical signal sensors to allow transmem-
brane signal transduction, such as focal adhesion kinase pathways, by activation of 
integrin receptors [27–29]. Wang et al. reported significant up-regulation of myo-
genic genes in human mesenchymal stem cells (hMSCs) [24, 25] and tenogenic 
genes in human tendon cells [26, 30], when these cells were cultured on anisotropic 
poly(ε-caprolactone) (PCL) surfaces with aligned topographies. In nerve regenera-
tion applications, up-regulation of neural markers at mRNA and protein levels was 
observed in hMSCs on aligned PCL nanofibre scaffold when compared with that on 
polystyrene (PS) plate, indicating an enhanced commitment of MSCs into neural 
cells [31]. Considering, however, that elongated morphologies may have concom-
itant downstream effects [26] and noting that gene expression triggered by topogra-
phies lack tissue specificity [23–25, 32], it would be too simplistic to assume that 
topographical engineering (or any other single approach) can be used in isolation in 
therapeutic tissue regeneration. 

Immuno-Regulation While generally an important factor in biocompatibility, the 
immune response is particularly critical in determining the long-term outcome of 
implants, through the mediation of host responses such as chronic inflammation, 
fibrosis or integration. For example, neutrophils and macrophages serve both phago-
cytic and signalling roles, and materials with defined surface structural and



topographical features were reported to favourably modulate the innate immune 
response, leading to improved healing outcomes. TiO2 honeycomb-like structures at 
a minimal scale of 90 nm were reported to facilitate macrophage filopodia formation 
and up-regulate the Rho family of guanosine triphosphatases (RhoA, Rac1 and 
CDC42), in turn reinforcing the polarisation of macrophages through the activation 
of the RhoA/Rho-associated protein kinase signalling pathway [33] Similarly, 
osseointegration events on controlled nanotopographical structures were found to 
be heavily influenced by microscale features and nanopatterns on implant in vivo, 
through modulation of inflammatory responses [34]. In a study on breast implants 
with different surface topographies (average roughness from 0 to 90 μm) in mice and 
rabbits, an average roughness of 4 μm was found to result in the least amount of 
inflammation and foreign body response [35]. These observations may be due in part 
to macrophage polarisation, as demonstrated by Wang et al. [36]. In the latter, the 
nanotopography of hydroxyapatite disks was shown to influence tissue inflamma-
tion, up-regulate gene expression of M2 phenotypic marker and raise the fraction of 
ARG+ M2 macrophages in vivo. Such findings may be extended to applications 
beyond implants for tissue engineering, and more generally to modulating immune 
responses in vivo. In a recent study, heparin-doped polypyrrole (PPy/Hep) elec-
trodes of different surface roughness, with surface roughness values from 5.5 to 
17.6 nm, demonstrated different degrees of macrophage recruitment, inflammatory 
polarisation and fibrotic tissue formation, and could successfully record electrocar-
diographic signals for up to 10 days without substantial decreases in sensitivity 
[37]. Such studies indicate that an improved understanding of the relationship 
between material features and its immunomodulatory potential may help in the 
design of implantable materials. 
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Anti-bacterial Effects Following colonisation by bacteria, the formation of a 
biofilm is typically detrimental for medical devices; endotoxic effects aside, biofilms 
formed also impede the device performance. It has been shown that bacteria adhere 
preferentially to topographies that maximise their contact area to surface [38], in 
accordance with adhesion point theories [39]. When organisms are smaller than 
topographical structures, the available contact area for bacteria is large; thus, it is 
able to obtain adhesive strength. Secondarily, the stiffness of a cell wall limits the 
ability of bacteria to adapt freely to the surface topographies at very small sizes 
[40]. Such reasoning is supported by studies showing bacteria prefer to adhere at 
square corners, convex features rather than on flat or concave walls. Yang et al. [41] 
have proposed a contact-based effect involving energetically favourable adhesion 
sites and physical confinement. The preferential adhesion points can also influence 
bacteria motility, thereby interfering with bacterial adhesion. Specifically, surface 
topographies with line structures decrease bacteria attachment compared to flat 
surfaces [42], modulated by the elongated morphology and up-regulation of flagellar 
genes. Meanwhile, bacteria deposits on different surface topographies may confer 
mechanical stretch to the bacterial cell surface. This can cause the rupture of bacterial 
cell membrane, leading to bacteria lysis and death. Such bactericidal properties have 
also been described on pillar topographies, regardless of material surface chemistry.



The killing effect can be enhanced further by multiscale roughness, for example, 
nano- and microstructures for a highly biocide-free bactericidal property [43]. 
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Physical Modification Methods In order to modify the topographical structure of 
tissue engineering scaffold, materials are often either added onto substrate surface by 
methods like nanofibre coating [23, 44] and plasma deposition [45] or ablated by 
methods like chemical etching and laser corrosion [46, 47]. Li et al. modified the 
surface of a flexible PCL film with fibres and demonstrated improved deposition 
efficacy on rougher surfaces [44]. A further study by Guo et al. reported post-
fabrication processing by single-axial drawing that induced a coating of highly 
aligned fibrous topography, leading to enhanced adhesion to substrate and possible 
application in rotator cuff tendon repair [23, 30]. Similarly, mechanical techniques 
like stretching may also be applied directly to polymer materials to avoid weight loss 
and change in material composition while creating new microstructures. After 
uniaxial stretching, for example, hierarchically and heterologously oriented 
ridge-groove structures that mimicked ECM more are observed on PCL films and 
successfully guided human bone marrow MSC elongation and alignment with a 
preferential orientation determined by the topographical anisotropy [24]. The elon-
gation and alignment of MSC could be observed as soon as 12 h post seeding and 
demonstrated to last as long as 15 days in vitro. More specifically, altered cell 
morphology, cytoskeletal reorientation and nucleus elongation were pointed out in 
the following studies, with increased expression of myogenic genes in MSCs 
[24, 25] and tenogenic genes in tenocytes [26] following extended culture on the 
stretched PCL films. The topographical features of stretched PCL films can be 
further controlled by alkaline hydrolysis [46]. Small concaved features formed at 
the edge of ridges after soaking in aqueous NaOH solution for longer than 10 days 
that developed into parallel grooves across the ridges and finally split the ridges into 
small parallel islands after 30 days of soaking. With declined ridge height and aspect 
ratio between ridges and grooves resulted from hydrolysis, the guidance effect of 
topographies on MSC alignment and elongation may be compromised. In addition, 
the ridge-groove topographies can be further augmented with femtosecond laser 
microperforation to create secondary microfeatures [20, 32]. Thus, engineered scaf-
folds were used to generate hybrid cell-material sheet, for example, when MSCs and 
human umbilical vein endothelial cells were seeded separately on each face of the 
stretched PCL film. This construct allowed heterotypic cell-cell contacts across the 
film and mimicked the myoendothelial communication between tunica media and 
intima. In a recent study, Luo et al. applied a femtosecond laser to write micro-
grooves on PCL film, where laser engineering was found to influence both surface 
wettability and 3D cell morphology [47]. Even with precise laser engineering, 
physical alterations are coupled with chemical changes on the biomaterials surface 
(such as polymerisation and chain scission), and these effects must be considered in 
rational design and selection of processing methods.
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6.2.1.2 Wettability Engineering 

Wettability refers to the interaction at the two-phase interface between fluid and 
solid. Solid surface with a greater wettability is more favourable for the fluid to 
spread over or adhere to it, so that the contact angle between solid–fluid interface and 
vapour–fluid interface is smaller. Wettability presents as one of the primary concerns 
in scaffold material design, for its influence on both initial cell attachment and 
migration on scaffold surfaces via adsorption of proteins from culture medium 
in vitro or from extracellular fluid in vivo and then binding to cell adhesion 
molecules on cell surface. The preferable range of wettability varies according to 
the kind of cells. For example, a range of water contact angles for cell adhesion and 
growth was suggested to be from 50° to 60° [48], but a more hydrophilic surface 
with the water contact angle between 20° and 40° was more suitable for cell 
attachment of NIH 3T3 fibroblasts [49]. When inherent surface wettability is not 
favourable for cell growth, surface modification may be necessary. For example, 
PCL fibres from electrospinning are considered too hydrophobic for direct cell 
adhesion, with a typical water contact angle of 100–130° [23]. By depositing the 
PCL fibres on a substrate, subjecting to single-axial drawing, or blending with 
bioactive tricalcium phosphate particles, the contact angles of the fibres can be 
further adjusted. Coating with polymers such as poly(vinyl phosphonic acid-co-
acrylic acid) (PVPA), can also render a surface hydrophilic, with water contact 
angles dropping to 43.3 ± 1.2° [50]. After 14 days in vitro culture, osteoblasts on 
PCL/PVPA scaffold generated a better-defined cytoskeleton than those on uncoated 
PCL scaffold, indicating a better cell spreading due to improved wettability of PCL 
fibre. Such methods reflect the classical approach of modifying the surface of a bulk 
material that possesses desirable physical properties, in order to confer the preferred 
properties of the surface material (which typically has inadequate bulk properties). 

Alkaline hydrolysis is one of the mature techniques to modify surface wettability 
for polyester biomaterials such as PCL [51], PLA [52, 53] and PLGA [54, 55] and 
already has been applied in industry. After treatment with alkaline agent (usually 
mild NaOH solution), the ester bonds on the surface of polyester materials break and 
form carboxyl and hydroxyl end-groups. As observed in the previous section, 
hydrolysis may also alter topographies of the surface, resulting in an improved 
roughness. The increased surface energy results in greater affinity to water mole-
cules, resulting in the higher hydrophilicity favoured by specific cell types. More 
controlled and targeted approaches using laser-assisted techniques have been well 
investigated to modify biomaterial surface wettability by making the controllable 
topographical roughness for implants and bioelectronic applications [16, 56]. Based 
on the Wenzel equation, the increase in roughness of a solid surface can either 
increase the hydrophilicity in a hydrophilic system in which the water contact angle 
is smaller than 90° or increase the hydrophobicity in a hydrophobic system where the 
water contact angle is larger than 90°. Thus, by changing the surface roughness, the 
wettability of biomaterials can be optimised for a better cytocompatibility. Extreme 
ultraviolet (EUV) irradiation is another approach for roughness optimisation for



polymeric materials. For instance, polyether ether ketone (PEEK) commonly used in 
reconstructive surgery has unique mechanical and physicochemical properties, but 
lack polar surface chemical groups, and has an inherently low surface energy. To 
modify extremely stable materials such as the PEEK surface, EUV irradiation in the 
presence of oxygen and nitrogen gases were used [57], which made significant 
changes to surface topography with increased surface roughness, formation of 
conical structures and incorporation of nitrogen and oxygen atoms. As a result, the 
PEEK surface demonstrated non-cytotoxic properties and an enhancement in adhe-
sion of human osteoblast-like MG63. Nanofibre deposition or nanoparticle deposi-
tion onto the surface of biomaterials is another approach to change surface roughness 
[44]. On PLA films incorporated with magnetic nanoparticles, enhanced adhesion 
and proliferation of cardiac-like rat myoblasts H9c2 was found on the film with the 
highest amount of embedded nanoparticles and hence the largest surface roughness 
with the largest water contact angle [58]. It is noteworthy that in this study, with the 
increase of surface roughness, film surface turned from being hydrophilic to hydro-
phobic, which looks contrary to abovementioned conclusion from the Wenzel 
equation. This is because surface wettability is influenced by complex factors 
including not only the roughness but also other aspects like electrical and chemical 
nature, which should also be taken into account at the design of material surface. 
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Other techniques for surface roughening are still under exploration. Borrowing 
ideas from micromanipulation, carving the surface of polymer materials or moving 
polymer chains at a microlevel and even nano-level high precision for surface 
modification may be realised under two-photon polymerisation (TPP), atomic 
force microscope (AFM) or scanning tunnelling microscope (STM) with manipula-
tor and tip of scanning probe. As yet, such approaches are limited by high costs and 
availability of such facilities; these are further exacerbated by the demand for 
specialised cross-linking agents and material systems for TPP techniques, while 
only electrically conductive polymers can be processed under STM. 

6.2.1.3 Physical Deposition 

Physical deposition is a commonly-employed method to produce a functional 
coating layer on substrate material so as to grant the material with more desirable 
surface properties. In particular, bioactive components including inorganic particles, 
synthetic polymers, lipids, polysaccharides, peptides, proteins as well as cell recep-
tor ligands [59, 60] are deposited onto scaffold materials for enhanced initial cell 
attachment and proliferation or to regulate intracellular protein synthesis and induce 
cell differentiation [61]. For the combination of functional materials with substrates, 
weak forces such as van der Waals forces, hydrogen bond force and electrostatic 
attraction force are formed during deposition. Based on the existing form of coating 
materials, physical deposition can be classified into solution deposition, vapour and 
sputtering deposition. The last two share a similar process that deposition of a 
material starts as a solid and transports to the substrate surface to build up a film 
slowly. Compared to chemical conjugation, physical modification might be less



stable which leads to gradual loss of the coating layer [62]. On the other hand, 
physical deposition has a broader application with the multitude of materials as 
substrate or as coating layer regardless of their chemical composition. 
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Solution deposition methods may be further subcategorised into immersion and 
adsorption, casting, dip coating and electrophoretic deposition. These methods are 
based on allowing the substrate to contact and adsorb the functional molecules 
dissolved in a liquid phase, followed by removal of the solvent by evaporation. 
Immersion and adsorption are the simplest methods by which substrate stands in a 
solution and spontaneously adsorbs the functional molecules uniformly dispersed in 
this solution. In applied electric field, deposition of coating molecules can be 
accelerated by electrophoretic motion of these molecules in solution toward the 
substrate placed at a corresponding electrode. This technique for physical deposition 
is named as electrophoretic deposition. Besides, the thickness of coating layer is 
determined by the time length of deposition and/or electric field strength. The 
technique as casting for modification of smooth and flat surface is developed from 
the same principle as immersion. Other than a static contact between substrate and 
solution, solution containing functional molecules is sprayed onto the substrate and 
subsequently spreads over the surface at high-speed spinning and thereby forms a 
thin liquid layer that leaves the functional molecules as a film covering the substrate 
after evaporation. The thickness of this coating film is controllable depending on 
both the speed of centrifuging and the viscosity of the solution. Dip coating is 
another popular low-cost technique for deposition on monolithic three-dimensional 
scaffolds. The process is completed by partially or fully inserting the substrate into 
coating solution followed by removal from the solution. For example, polypropylene 
(PP) has a remarkably low surface energy and poor surface functions [63]. By 
dip-coating of the PP surface with functional molecules, the surface segregation of 
these moieties yields a low-fouling surface. In addition, the process of dip coating 
can be repeated to obtain multiple coating layers, which is named as ‘layer-by-layer’ 
fabrication. Unlike simple immersing or spin casting, dip coating enables oriented 
alignment of coating layers formed by amphiphilic molecules like phospholipid and 
further affects surface properties of scaffold materials. Amphiphilic molecules refer 
to the kind of molecules that possesses both hydrophilic groups and lipophilic 
groups. In a solution, these molecules float on the surface of the solvent, keep the 
part of the molecule compatible with the solvent under liquid level and expose the 
other part above liquid level. Through different operating procedures consisted of 
dipping and removing, specific moieties on the amphiphilic molecules can be 
connected to the substrate surface or the previous coating layer. Especially on 
polymer substrates, entrapment of coating molecules in the surface may occur at 
the same time with physical adsorption due to the space created at swelling of 
polymers in the solvent, resulting in added amount of coating molecules deposited 
on polymer substrate [64]. 

Physical vapour deposition (PVD) is a surface coating method in which the 
coating material is vaporised in a cell at high temperature, often in the presence of 
gaseous plasma. The vapour is subsequently transported to the substrate surface and 
condenses to generate a thin film on it. Based on the methods applied to generate and



deposit material, PVD is further classified into vacuum evaporation deposition [65] 
pulsed laser deposition [66], electron beam deposition [67], cathodic arc deposition 
[68] and (most commonly for tissue engineering scaffolds) sputtering deposition 
[69]. In order to create gaseous coating material, inert gas (typically argon) is 
transferred into plasma and accelerated under a high-voltage electric field. Bom-
bardment from this high-energy plasma at cathodic target frees coating molecules 
from solid source into a vapour phase through momentum transfer. These active 
molecules deposit on all surfaces inside a chamber to release energy and rebuild 
thermodynamic equilibrium, therefore forming a thin film on the substrate surface. 
Compared to evaporation deposition, sputtering deposition is superior in surface 
coating, being amenable to materials with relatively low melting points and forming 
a more sturdy coating on the substrate. 
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6.2.2 Chemical Modification 

While biomaterials are primarily selected on their bulk properties, host responses are 
largely governed by the cell-material interactions at interface. It follows that syn-
thetic materials, ranging from polymers to ceramics and metals, usually lack appro-
priate biological surface cues to elicit or direct desirable cellular and tissue responses 
such as adhesion, proliferation and immune response [1, 70–72]. To this end, 
chemical surface modifications may be performed to introduce biochemical cues 
onto material surfaces, while retaining the existing bulk material properties. These 
modification methods are summarised in Table 6.1, of which plasma-, gamma-, UV-, 
hydrolysis- and aminolysis-induced chemical modifications are the most common 
and are discussed in further detail. 

6.2.2.1 Plasma-Induced Modification 

Plasma-induced modification is useful for the selective creation of chemistry and 
topography on biomaterial surface with an excellent retention of the bulk

Table 6.1 Physical and chemical surface modification methods 

Methods References 

Radiation (electron beam and gamma) [73, 74] 

Plasma (RF, microwave, acoustic, corona discharge) [75–77] 

Photo (UV and visible sources) [78] 

Ion beam (sputtering, etching, implantation) [79, 80] 

Gas phase deposition [71, 81, 82] 

Silanisation [83] 

Coating (with or without covalent bonding) [84, 85] 

Chemical reaction (oxidation, reduction, hydrolysis, aminolysis) [70, 86, 87]



characteristics for specific biomedical applications [88–91]. Plasma, the fourth state 
of matter after solid, liquid and gas, is typically generated by applying high voltages 
to gases, under which the gas molecules or atoms will be ionised by the electrical 
discharge and therefore split up into electrons and ions [92]. The effectiveness of the 
ionisation process is dependent on operating parameters such as gas flow rate, 
pressure and constituents, as well as the distance between the discharge electrodes. 
Plasma can be further characterised with an energy distribution in the range of 
10–20 eV to effectively modify most materials. The interaction between ionised 
gas species with surface substrates contacted in plasma could produce tailored 
physical and chemical modifications on substrate surface through ionic activity in 
plasma and functionalities (functional groups or free radicals) formation on the 
surface. As described earlier, in physical modification, the bombardment of ionic 
species powered by an electrical field can increase substrate surface roughness and 
promote interfacial adhesion of depositions [89]. Additionally, chemical modifica-
tion can be achieved by controlling the (1) functional groups or free radicals which 
are generated on substrate surfaces by interaction between charged particles and 
surface molecules of the substrate [75] and (2) desirable monomer polymerisation 
and deposition on the surface of the substrate [93]. The functionalities formation on 
substrate surfaces may be altered by proper selection of the nature of the gaseous 
medium in plasma. Plasma generated in oxygen, ammonia and carbon dioxide gases 
can be used to introduce functionalities such as hydroperoxide, amino and carbox-
ylic groups on substrate surface, respectively. Additionally, inert gases such as argon 
lead to the generation of free radicals on the polymer backbone, which are 
transformed into hydroperoxide bridges in the presence of oxygen and water vapour 
[1, 94]. Biomaterials with functionalities formation on their surface are either 
directly used for biomedical applications or continuously conjugated with following 
various desirable molecules for specific biomedical applications while those func-
tionalities will be used as anchorage points. It has been reported that polyvinylidene 
fluoride membrane exposed to plasma resulted in grafting of quaternary ammonium 
compounds successfully [95]. This was performed via electron transfer for atom-
transfer radical-polymerization; the thus-modified surface demonstrated a high inhi-
bition rate ~98.3% of E. coli and ~98.5% of S. aureus, respectively. Control of 
plasma parameters and conjugants provides great versatility in the tailoring and 
customisation of surfaces of biomaterials. It is important to note here the process of 
plasma surface modification often leads to the formation of a layer of polymer on the 
surface and is coupled with physical alterations to the topography (discussed earlier 
in the preceding section) [1, 96, 97].
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PCL and poly(lactide-co-caprolactone) (PLCL) have been used as bioresorbable 
polymers in numerous bioelectronics [95], medical devices [98] as well as for tissue 
engineering applications [23, 26, 30]. Biomolecule such as monomeric acrylic acid 
was conjugated on the surface of PCL and PLCL to optimise their bioactivities 
through plasma-induced surface modification [1, 75]. The exposure to argon/oxygen 
plasma under a UV irradiation resulted in formation of peroxide and hydroperoxide 
groups, which further initiated the addition polymerisation of acrylic acid to the PCL 
and PLCL membranes by decomposition of hydroperoxides. The degree of



polymerisation of acrylic acid on membrane surfaces is considerably influenced by 
the plasma exposure parameters, such as plasma power, pressure, exposure time and 
the reaction conditions involving monomer concentration and reaction time. Colla-
gen and Jagged-1 peptides were then immobilised on the modified PCL and PLCL 
surface through carbodiimide coupling. 
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These technologies may be readily adapted toward other biomolecules, in order to 
tailor specific responses. Hyaluronic acid (HA), for example, is a biopolymer 
possessing numerous functions to be involved in wound repair, cell migration and 
cell signalling within the body [99, 100]. It is largely considered to be non-toxic, 
non-immunogenic, enzymatically degradable and relatively non-adhesive to cells 
and proteins [101]. Additionally, HA is involved in several physiological processes, 
including angiogenesis, extracellular matrix homeostasis, wound healing and the 
mediation of long-term inflammation. This versatile nature of HA has led to many 
studies not only on the preparation of HA alone but also on the subsequent usage for 
surface modification of biomaterials for specific medical applications. While HA can 
be applied as a physical coating, they get displaced easily, and covalent bonding of 
HA is necessary for use in biomedical applications. For example, HA covalently 
bonded on polydimethylsiloxane surface through oxygen plasma surface modifica-
tion resulted in the decrease in the protein adsorption and significant cell growth and 
neural differentiation [96]; biomolecular binding to HA can further modulate bio-
logical activity, particularly for wound healing applications. 

In performing plasma modifications, several parameters may be controlled in 
order to maximise polymerisation yield. Plasma treatment time, for example, signif-
icantly influences the formation of free radicals, and titration may be performed to 
establish the optimum plasma treatment time required for maximal free radical 
generation. Overexposure may also lead to the loss of free radicals that are otherwise 
responsible for peroxidation during exposure to oxygen [75, 102]. Additionally, the 
polymerisation conditions, such as spacer-monomer concentration, have profound 
impact on the yield of polymerisation. Without UV irradiation (typically at elevated 
temperatures), the yield initially increases with monomer concentration, reaches a 
maximum and then tends to decrease beyond a critical concentration [76], whereby 
extensive autocatalysis leads to homopolymerisation of the solution phase. In 
contrast, with UV irradiation and controlled temperatures, the yield typically 
increases continuously with the increase of the monomer concentration [1]. 

6.2.2.2 Ultraviolet (UV)-Induced Modification 

UV irradiation is a simple, efficient and economic method widely used for surface 
modification of biomaterials [103, 104]. UV light is generally classified in four 
sub-bands: UVA (315–400 nm), UVB (280–315 nm), UVC (100–280 nm) and EUV 
(10–124 nm). At the wavelengths from 180 to 400 nm, UV light provides sufficient 
energy to disrupt molecular bonds on biomaterial surfaces, leading to a series of 
photo-physical, thermal and photochemical processes. However, this influence is 
often not limited only to superficial layer of the material but potentially alters the



material bulk properties [105]. As such, initiators are commonly used, which can 
reduce the dosage of UV irradiation in the surface modification process [91, 106, 
107]. 
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UV light irradiation has been extensively studied for surface modification of low-
(LDPE) and high-density (HDPE) polyethylene membranes. For example, when 
HDPE was treated with selected active compounds and a photo-initiator under 
254 nm UV excitation, the surface chemistry of HDPE was altered [107]. Functional 
moieties conjugated on the surface of HDPE via specific bonds resulted in increased 
wettability of the innately hydrophobic HDPE surface. However, the surface mod-
ification by UV irradiation could induce photodegradation and aging effect on the 
bulk polymer [108, 109]. 

In another example of UV-induced surface modification, irradiation of polyeth-
ylene terephthalate (PET) in formation of nano- and microstructures on the polymer 
surfaces, leading to more hydrophobic surfaces [110]. In contrast, when PET films 
were functionalised through conjugation with both RGD peptide and galactose 
ligands, enhanced cell adhesion and synergistic functions were also observed 
[91]. Plasma and UV irradiation can also be combined, by first irradiating the PET 
films with argon plasma (at power output of 40 W for 1 min) and then exposure to air 
(for 10 min) to induce the formation of peroxides and hydroperoxides on its surface. 
This is followed by UV irradiation to induce surface polymerisation of degassed 
monomeric solutions. Alternatively, this step could be replaced by the addition of 
some agents such as sodium periodate, which helps in oxygen depletion to ensure 
polymerisation efficiently. For example, exposure to UV (365 nm) may be 
performed to initiate the formation of a poly(acrylic acid) (pAAc) on the PET 
surface. Subsequently, RGD peptide and galactose ligands can be coupled to the 
pAAc layer using carbodiimide chemistry. This approach led to successful grafting 
of pAAc on PET films, with carboxyl-group density of 78.57 nmol/cm2 available for 
subsequent conjugation of RGD peptides and galactose ligands. 

More recently, extreme UV (EUV) radiation has been used as a source of high-
energy ultraviolet radiation. The main advantage of the EUV irradiation is preser-
vation of bulk properties of irradiated material due to its photon energy which is 
capable of breaking more molecular bonds at the upper surface of the material as 
compared to common UV light [111]. For the same reason, however, EUV radiation 
propagates only in vacuum, and hence, irradiation of materials in gaseous environ-
ment requires a special arrangement. Similar to plasma etching, EUV radiation is 
also used to produce nano-/microsized pattern on the surface of polymers [112]. 

6.2.2.3 Gamma-Induced Modification 

Gamma radiation is an extremely high-frequency electromagnetic radiation and 
comprises high-energy photons generally above 110 keV. Gamma-induced modifi-
cation is a well-established technique to modify biomaterial properties by gamma 
ray irradiation-induced modifications (grafting, cross-linking or gel formation). 
Cobalt-60 and cesium-137 are common sources used in gamma-induced



modifications. This technique has been intensively used for applications in the 
medical field for surface modification of materials to control blood-material interac-
tions and conjugation of molecules in polymeric matrices to form specific chemical 
moieties or drug carriers. The major advantages of gamma-induced modification are 
as follows: (1) Due to its high-energy nature, initiators are not required in the 
process. Therefore, the purity of products may be maintained, as free radicals are 
formed on the polymer/monomer backbone. (2) Deep penetration of gamma rays 
through the polymer matrix enables rapid and uniform generation of free radicals and 
therefore could initiate the modification process throughout the entire material. 
(3) The gamma-induced modification can be performed at room temperatures. 
(4) It generates less environmental pollution than chemical methods. Several studies 
have been devoted to the development of biomaterials based on the radiation surface 
modification process [113–117]. 
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As described earlier, surface chemistry is critical in mediating host and cellular 
responses. Additionally, functional groups on the surface can be exploited as 
chemically reactive sites for coupling other function molecules for specific biomed-
ical applications. In this context, gamma irradiation may be useful for the introduc-
tion of functional moieties to the material surface. For example, polystyrene (PS) has 
many attractive features for medical applications but is a typically inert polymer 
which lacks functional groups. Exposure to gamma radiation yielded carbonyl and 
ether functional groups on the surface. Carbonyl groups were presented below the 
top few molecular layers of ester. Unsaturated carbonyl/acid groups formed a higher 
proportion of the total carbonyls with increasing depth, and the extent of interior 
oxidation was linear with gamma dosage [118]. In another study, polyethersulfone 
(PES) was subjected to gamma radiation for the purpose of changing the material’s 
innate hydrophobicity, in order to make render the surface less susceptible to fouling 
[119]; this process was shown to be remarkable for homogeneity of the modified 
surface. One of the main challenges in designing blood-contacting biomaterials lies 
in the need to prevent thrombus formation. Proper tailoring of the biomaterial 
surface is aimed at reducing the adsorption of clot-initiating proteins and the 
adhesion of platelets. In one study, polyethylene glycol methacrylate (PEG-MA) 
with different molecular weights was conjugated on the surface of PE films by 
gamma irradiation, and results showed less adsorption of proteins and adhesion of 
platelets on PE film surfaces after modification [120]. The degree of grafting is found 
to be strongly dependent on the reaction conditions, as well as the storage time and 
temperature of the irradiated film prior to the reaction. Additionally, reaction tem-
peratures can be controlled to keep segmental mobility low such that the free radicals 
that are produced during the irradiation remain trapped within the matrix. 

6.2.2.4 Hydrolysis- and Aminolysis-Induced Modification 

Many polyesters such as poly(lactic-glycolic acid) (PLGA), PET, poly(ester ure-
thane) (PU), PLLA and PCL have been used for wide biomedical applications such 
as drug delivery and medical devices due to their well controllable degradation rate



and mechanical properties [87, 121–123]. As mentioned earlier, surface modification 
of these polymers is necessary to improve their biocompatibility. Among those 
surface modification methods available, wet-chemical methods of hydrolysis and 
aminolysis are used most frequently due to their (1) simple steps, (2) ease of control 
(3) and scalability to three-dimensional structures. Through hydrolysis and 
aminolysis, carboxylic acid and amine groups could be produced on the surface of 
polymer in a highly controlled manner, with minimal erosion. 
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Hydrolysis of polyesters can be driven by either acidic or basic conditions 
[86, 124]. However, under acidic conditions, hydrolysis of esters is achieved via 
electrophilic attack by hydrogen ions on the carbonyl oxygen which requires very 
strongly acidic conditions and may target the bulk material, instead of being limited 
to surface hydrolysis. In contrast, under basic conditions, hydrolysis is achieved by 
nucleophilic attack by hydroxide ions on the carbonyl carbon, which is surface-
oriented and results in less bulk hydrolysis. For example, PCL films subjected to 
alkaline hydrolysis obtained rapid increase in surface wettability, while the surface 
topography was less changed at microscales and accompanied by little mass loss 
[46]. However, alkaline hydrolysis typically results in bulk degradation of the PCL 
film and accelerated loss of structure. In the same study, hydrolysis was limited to 
the superficial layer of uniaxially drawn PCL, highlighting the effects of post-
processing. 

Aminolysis is driven by nucleophilic attack on the carbonyl carbon to generate a 
positively charged tetrahedral intermediate. Aminolysis may be performed either in 
basic solutions or in an aprotic, polar solvent. Unlike base hydrolysis, the overall 
activation energy for the aminolysis is low and even negative in organic solvents, 
resulting in reduced or inverse dependence of aminolysis on the reaction tempera-
ture. It has been previously reported that aminolysis rates typically reach a plateau at 
pH values just above the pKa of the amine in aqueous solutions [125]. In a study on 
PCL scaffolds for vascular tissue engineering applications, aminolysis was 
performed to introduce amino groups through reaction surface of PCL with 
1,6-hexanediamine [121]. It was found that there was a direct correlation between 
the amount of amino groups generated on the PCL film surface and the concentra-
tions of 1,6-hexanediamine concentrations (0–14%). The amount of amino groups 
also increased with a prolonged exposure duration, reaching a maximum value at 
1 h. Incubation beyond that resulted in a decrease in free amine groups, possibly due 
to auto-polymerisation with terminal carboxyl groups or degradation of the superfi-
cial layer. The exposed amino groups could subsequently be used as anchor sites for 
the conjugation of protein such as gelatin, chitosan and collagen. The follow-up 
endothelial cell culture proved that the cell attachment and proliferation ratios were 
obviously improved, and the cells showed a similar morphology to those cultured on 
tissue culture polystyrene surfaces.
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6.3 Techniques for Analysing Modified Surfaces 

Surface characterisation of a modified material is an essential step in determining 
whether the surface modification is successful and whether the modified surface can 
satisfy the requirements of its intended application [75, 88, 126]. There are various 
techniques to characterise the surface properties of a material, and they are broadly 
categorised into physical, chemical and biological techniques based on the nature of 
the information intended to be elicited out. In general, physical techniques focus on 
the surface tension, topography and weight variation, and chemical techniques 
provide information on the chemical structure and chemical composition of the 
surface, and biological techniques assess the biocompatibility and cellular responses 
to the surface. The most common techniques used in the characterisation of poly-
meric biomaterial surfaces for tissue engineering applications are summarised in 
Table 6.2 and presented in the following sections. 

6.3.1 Physical Characterisation 

6.3.1.1 Contact Angle Measurement 

As most of polymeric biomaterials will apply in an aqueous environment during 
their applications in vitro or in vivo. Therefore, it is important to study the interaction 
between water and the surface of the material, also known as material surface 
wettability. This reactivity of water with material surface is central in molecular

Table 6.2 Most common techniques for characterising polymeric biomaterial surfaces 

Technique Category Probe Information Requirement 

Contact 
angle 

Physical Liquid 
drop 

Surface energy Clean, homogeneous, non-porous 
surface 

SEM Physical Electrons Surface topography Vacuum, conductive sample 
surface 

AFM Physical Cantilever Surface topography, 
composition, 
roughness 

Clean 

QCM Physical Quartz 
crystal 
resonator. 

Mass change Polymer need to be pre-coated on 
resonator surface 

FTIR Chemical Infrared 
light 

Surface composi-
tion, binding state 

Bulk phase having no 
overlapping IR absorption with 
surface molecules 

XPS Chemical X-ray/ 
electrons 

Chemical composi-
tion, binding state 

Vacuum, separate elemental 
analysis for hydrogen 

TOF-
SIMS 

Chemical Ions Surface composition Vacuum, samples stored in alu-
minium foil or clean glass 
containers



self-association of water at the interface, leading to the formation of water structure 
that governs the selective adsorption of proteins on the material surface [127]. The 
wettability of a surface is typically revealed by placing a drop of liquid onto the 
surface and measuring the contact angle – the angle between the liquid–vapour 
interface and the solid surface [128]. The contact angle θ is related to the surface 
tensions at the liquid–vapour, solid–vapour and solid–liquid interfaces (represented 
by γLV, γSV and γSL) in Young’s equation given in Fig. 6.1a [129, 130]. In general, a 
stronger attraction between the liquid and the surface leads to a lower contact angle. 
For biomaterials, deionised water is typically used as the probe liquid. Surfaces with 
a contact angle of more than 90° are generally defined as hydrophobic (Fig. 6.1b), 
whereas surfaces with a contact angle of less than 90° are generally defined as 
hydrophilic (Fig. 6.1c). In surface modification experiments, comparing the contact 
angle value before the modification with the value after the modification can be used 
to examine the effectiveness of the modification process [1].
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Fig. 6.1 Schematic representation of (a) the relation between the contact angle θ and the surface 
tensions at the three interfaces, (b) a drop of water on a hydrophobic surface and (c) a drop of water 
on a hydrophilic surface. (Reprinted from [129], with permission from Springer) 

Contact angle measurements are typically done on a goniometer, an instrument 
used for precise measurements of angles. A modern goniometer is equipped with a 
camera and a software where the researcher can define the solid–liquid interface 
(also known as drop baseline) and set the fitting method to fit the drop shape. Beside 
static measurements, dynamic contact angle measurements can also be performed to 
enhance sensitivity. Dynamic techniques include increasing and decreasing the drop 
volume and tilting the surface to determine the advancing and receding contact 
angles. While contact angle measurement is valuable for assessing surface wettabil-
ity, it is not reliable for heterogeneous surfaces where the wettability differs at 
various parts of the sample and porous samples where the drop is absorbed into 
the material [131]. Contact angle measurements also do not offer information on the 
surface chemistry and topography changes after surface modification. Hence, other 
characterisation techniques are often performed paralleling with contact angle mea-
surements to provide a full evaluation on the result of a surface modification process 
[1, 88]. In Fig. 6.2, it shows the contact angle of PEEK is 100.3°. After the 
sulphonation and hydrothermal treatment, the surface contact angle changes to 
70.1° with improved hydrophilicity due to the porous structures on the surface. 
The contact angle of SPEEK-Sr becomes 25.7°, which is more hydrophilic due to the 
presence of dopamine on the surface [128].
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Fig. 6.2 Contact angles of PEEK surface with different treatments. (a) PEEK; (b) SPEEK-H; (c) 
SPEEK-Sr. (Reprinted from Hu et al. [128] with permission from Springer) 

6.3.1.2 Scanning Electron Microscopy (SEM) 

Information on the surface morphology and topography of a polymeric biomaterial 
can be obtained by various microscopic techniques, depending on the dimension of 
the surface, the desired lateral resolution, the depth of the surface and the sample 
environment. While optical microscopy is the easiest to use and least invasive among 
the techniques, its lateral resolution is limited to the wavelength of light, which is 
around 300 nm. Hence, SEM, which reveals surface features at nanometre lateral 
resolutions, is often the preferred technique to visualise the surface topography of a 
biomaterial [132–135]. In SEM, a beam of electrons is directed onto the sample 
under vacuum, and the resultant interaction between the electrons and the sample 
surface causes an emission of secondary electrons, which are collected by the 
detector to produce an electron micrograph. Samples that are not electrically con-
ductive need to be sputter-coated with a thin metallic coating to prevent electrical 
charging (the accumulation of electrons) on the sample. As the analysis takes place 
under vacuum to prevent scattering of electrons by air molecules, samples 
containing cells and biological tissues have to be fixed and dried to ensure that the 
biological components remain stable in vacuum [133, 136]. Figure 6.3 shows that 
the cells adhered and spread on the surface of substrates and displayed characteristic 
star/slayed-shaped morphologies on day 3. The cells reached around 80% 
confluency on day 7, and the cells formed confluent monolayer sheets for all groups 
on day 28 [133]. 

Some samples, such as hydrated polymers and surfaces modified with adsorbed 
molecules, may not be suitable for SEM due to their instability in vacuum. As the 
SEM operates in a dry environment, the information obtained may not truly repre-
sent the actual surface topography in physiological conditions. Nevertheless, the 
ease of operation and the ease of interpreting the images make SEM one of the most 
universal techniques to analyse surface topography of a biomaterial at the nanometre 
scale. The development of the environmental SEM (ESEM) permits wet, uncoated 
specimens to be studied; however, beside high cost of equipment, the restricted 
possible minimum magnification may limit its applications as well [137].
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Fig. 6.3 Fixed cell morphology on PCL-TCP without (PCL-TCP) and with pulsed electromagnetic 
field (PEMF) (PCL-TCP + PEMF) and on PVDF-coated PCL-TCP without (PCL-TCP + PVDF) 
and with PEMF (PCL-TCP + PVDF+PEMF) observed using SEM on day 3, 7 and 28. (Reprinted 
from Dong et al. [133], with permission from MDPI) 

6.3.1.3 Atomic Force or Scanning Force Microscopy (AFM or SFM) 

AFM (SFM) offers three dimensional (3D) and high resolution information at the 
sample surface and is capable of detecting surface features of several nanometres in 
depth or height, unlike SEM which offers two dimensional information and limited 
to tens of nanometres scale only. In fact, AFM can be used to resolve molecules or 
even single atoms adsorbed on a smooth surface, and its sensitivity allows 
researchers to obtain images of delicate biological features [130, 138]. An AFM 
consists of a sharp tip attached to a flexible microscale cantilever (Fig. 6.4). When 
the tip is scanned across the sample surface, attractive and repulsive forces between 
the tip and sample cause the cantilever to deflect vertically. The deflection is detected 
by a photodiode via a laser beam reflected off the top of the cantilever, and the signal 
is processed into a topographical image. Depending on the scan mode, a constant 
force or constant height between the tip and the sample is maintained by a feedback 
loop, which controls the movement of the piezoelectric scanner holding the 
sample [139]. 

Depending on the sample’s properties and the application, the AFM can be 
operated in a number of modes. One frequently used mode is the contact mode, 
where the tip is in constant contact with the sample. While the contact mode offers 
the highest resolution, the shear forces applied by the tip may damage soft samples 
and surfaces with weakly adsorbed molecules. Another frequently used mode is the



tapping mode, where the cantilever is oscillating above the moving sample and the 
changes in amplitude and phase are tracked. Since the tip is not in contact with the 
sample, the tapping mode is suitable for soft samples. Besides high resolutions, other 
advantages of the AFM include its ability to operate in a variety of environments 
including air and aqueous solutions, its ability to measure interaction forces between 
a surface and adsorbed molecules and its ability to measure electrical properties (e.g., 
charge density) of a surface [75]. In addition, the AFM can also be used to obtain the 
mechanical (modulus, stiffness, viscoelastic, frictional) and magnetic properties 
[140, 141]. Figure 6.5 shows that the elasticities of polyacrylamide are independent 
of thickness as measured by AFM indentation. 
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Fig. 6.4 Schematic representation of the working principle of AFM 

Fig. 6.5 The elasticities of 
polyacrylamide thin films 
(5% acrylamide solutions 
were mixed with either 0.3% 
(squares) or 0.03% (circles) 
bis-acrylamide crosslinker 
and polymerised). 
(Reprinted from Engler et al. 
[141], with permission from 
Elsevier)
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On the other hand, limiting characteristics of the AFM are a much slower 
scanning speed, small scanning area (less than 100 μm wide), sample damage or 
sample movement caused by shear forces from the tip and probe damage caused by 
hard samples with steep features. 

6.3.1.4 Quartz Crystal Microbalance (QCM) 

A quartz crystal microbalance (QCM), is also known as quartz microbalance 
(QMB), or quartz crystal nanobalance (QCN)), which measures a mass variation 
per unit area through measuring the change in frequency of a quartz crystal resona-
tor. The QCM takes advantage of the piezoelectric effect of the quartz crystal, 
converts the surface mass change of the quartz crystal into the frequency change 
of the output electrical signal of the quartz crystal oscillation circuit and then obtains 
the high-precision data through the computer and other auxiliary equipment 
[142]. The measurement accuracy can be nanogram level and theoretically can 
measure the mass change equivalent to a single molecular layer or atomic layer of 
a fraction. QCM was used to determine the affinity of molecules (proteins, in 
particular) to surfaces functionalised with recognition sites and interactions between 
biomolecules [143, 144]. For example, the capture ability of heparin on cellulose 
nanocrystals surface was evaluated with QCM by measuring changes in resonance 
frequency shifts (Δf ) and energy dissipation (ΔD) as a function of time under 
constant flows [145]. Larger entities such as bacteria, viruses and polymers are 
investigated as well [146]. With the rapid development of science and technology, 
QCM has also been greatly updated, and in combination with other instruments, 
QCM can also be used in more areas [142, 147, 148]. For example, combined with 
light microscopes, cells behaviour could be observed on the chip’s surface; com-
bined with electrochemical cell chamber, the changes of electrochemical properties 
could be detected. While the QCM is a direct and sensitive method to characterise 
surface of material, it should be noted that the adsorption protein obtained using 
QCM test is a ‘wet protein’, which includes information about the water molecules 
associated with the protein. Therefore, the QCM will result in a much greater amount 
of adsorption protein than that of surface plasmon resonance (SPR) test [149]. 
Figure 6.6 shows the fibrinogen adsorbed on the surface of SAM-OEG membrane 
by both QCM and SPR. The adsorption protein obtained from the QCM is 19.5 ng/ 
cm2 , while the adsorption protein obtained from the SPR test is 0.93 ng/cm2 . It can 
be seen that the adsorption of fibrinogen on the membrane surface measured by 
QCM is 20 times higher than that obtained by SPR.
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Fig. 6.6 Fibrinogen adsorption (0.1 mg/mL) on SAM-OEG and POEGMA membranes surface 
measured by (a) SPR and (b) QCM-D. (Reprinted with permission from Luan et al. [149], with 
permission from American Chemical Society) 

6.3.2 Chemical Characterisation 

6.3.2.1 Attenuated Total Reflectance Fourier Transform Infrared 
Spectroscopy (FTIR) 

The surface chemistry of polymeric biomaterials can be investigated by various 
spectroscopic techniques, and ATR-FTIR is one spectroscopic technique that is 
widely used [1, 75, 150]. The principle behind Fourier transform infrared spectros-
copy (FTIR) is that various organic functional groups absorb light at specific 
wavelengths in the infrared (IR) spectrum that are characteristic of their vibrational 
modes [151]. Hence, FTIR allows quantitative determination of a sample’s chemical 
composition and is a powerful tool to track the chemical changes that occur after a 
chemical reaction. FTIR is typically performed by passing a beam of IR light 
through a solid sample blended with a salt transparent to IR or a liquid sample 
sandwiched between two salt discs. However, since most polymeric biomaterials are 
opaque to IR light and cannot be homogeneously blended with salt, they are 
analysed in the attenuated total reflection mode, where the surface of the sample is 
pressed onto an inorganic crystal (e.g., ZnSe or Ge) and a beam of IR light is directed 
toward the crystal–sample interface. Despite total reflection at the interface, the 
incident IR beam penetrates the sample in the form of an evanescent wave. After 
the sample absorbs light at specific wavelengths, the reflected beam leaves the 
crystal and is converted to an IR spectrum by the FTIR system [152]. Figure 6.7 
shows that two distinct bands were observed at 1560 and 3419 cm-1 in P-JAG 
scaffolds spectrum. The band observed at 1560 cm-1 is assigned to the N–H bend of 
primary amines in JAG peptides and the broad band at 3419 cm-1 corresponds to N– 
H stretch of primary and secondary amines in JAG peptides. Therefore, the spectrum 
suggested that the Jagged-1 peptides were successfully immobilised onto the surface 
of scaffolds [75].
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Fig. 6.7 ATR-FTIR spectra 
of PLCL (continuous line), 
P-AAc (short-dashed line) 
and P-JAG (long-dashed 
line) scaffolds. (Reprinted 
with permission from Wen 
et al. [75], with permission 
from American Chemical 
Society) 
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While the ATR-FTIR is fast and easy to use, it is not a very surface-specific 
technique because the probe depth ranges from several hundred nanometres to 
several micrometres. In contrast, a layer of immobilised molecules (e.g., proteins) 
on a surface may only be several to tens of nanometres thick. For polymeric 
biomaterials, the bulk phase’s IR absorption may mask the peaks of the immobilised 
molecules, making it impossible to detect the presence of the immobilised molecules 
[126]. Because of this reason, ATR-FTIR is limited to the analysis of homogeneous 
samples or thin layers of organic molecules on inorganic substrates, where the IR 
absorptions of the inorganic phase do not overlap with that of the organic molecules. 

6.3.2.2 X-Ray Photoelectron Spectroscopy (XPS) 

XPS is a more powerful and more surface-specific technique than ATR-FTIR for 
analysing the surface chemical composition of polymeric biomaterial, with a sam-
pling depth of less than 10 nm [126]. In XPS, X-rays are radiated onto the sample to 
excite the electrons in the atoms, causing the electrons at the surface of the sample to 
eject. The quantity of the ejected electrons is measured as a function of the incident 
energy by the photoelectron spectrometer. As each chemical element has a charac-
teristic spectrum, the overall spectrum can be used to quantitatively determine the 
elemental composition in the sample surface. Although the incident X-ray can 
penetrate far into the sample surface, only the electrons within 10 nm of the surface 
can escape from the sample surface without obstruction [153]. This explains the high 
surface specificity of XPS. The sampling depth and surface sensitivity can be further



controlled by changing the angle between incident X-ray and the sample surface. As 
XPS is surface specific, it is a useful tool to detect the presence of immobilised 
molecules on the surface of a modified biomaterial. For example, protein molecules 
grafted onto an aliphatic polymer can be detected and quantified by the N1 peaks, 
since nitrogen atoms are present in the protein molecules but not in the polymer 
[1, 75, 88] (Fig. 6.8). Besides elemental quantification, chemical state information 
can also be obtained from XPS, as the chemical environment around an atom can 
influence the binding energy of the ejected electrons and cause a chemical shift. One 
example is carbon, which exhibits different binding energy in various functional 
groups. As a result, the chemical shift of the C1 peak can be used to identify certain 
functional groups [70, 88]. However, one major limitation of XPS is its inability to
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Fig. 6.8 XPS survey of material surfaces. (a) XPS can be used to obtain a wide survey spectra of 
material surfaces. Here, polycaprolactone (PCL) films were modified with polyacrylic acid (pAAc) 
to allow conjugation of a protein (CD34 antibody), as identified by the peak at 286.4 eV. (b) 
Relative intensity of the deconvoluted C1S spectra can also be used to show increase in carboxyl 
groups following PAAc engraftment, followed by introduction of peptide groups following CD34 
antibody conjugation. (Reprinted with permission from Chong et al. [88], with permission from 
Elsevier)



detect hydrogen or helium, which can lead to inaccurate information on the elemen-
tal composition of a hydrogen-containing sample. While XPS is sensitive, it requires 
a vacuum environment to prevent scattering of ejected electrons by gas molecules. 
This means that, similar to SEM, XPS is only suitable for dry samples and may not 
be suitable for surfaces with adsorbed molecules. In addition, caution has to be taken 
for polymers and biomolecules as they can degrade under X-ray radiation, leading to 
altered chemical properties.
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6.3.2.3 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) 

TOF-SIMS is a spectroscopy technique for obtaining information on the chemical 
composition of a solid surface. With a sampling depth of 1–2 nm, it has an even 
higher surface specificity than XPS. Originally developed for the analysis of inor-
ganic materials, TOF-SIMS has progressed into a versatile tool for the analysis of 
organic molecules, biomolecules and polymers, and it has an advantage over XPS 
for being able to identify hydrogen [126, 154]. In TOF-SIMS, a beam of energetic 
primary ions, usually argon or gallium, bombard onto the sample surface, generating 
a collision cascade where the primary ions transfer energy to the sample. The 
collision causes atoms and molecules to sputter from the sample surface. A small 
portion of the sputtered particles are ionised to produce secondary ions, which are 
accelerated via an electric field and then made to travel a distance in a field-free drift 
region before reaching the detector. As the speed of the ions depends on their 
masses, the time of flight of an ion provides information on its mass and eventually 
its identity. As each chemical structure has its characteristic mass spectrum, analysis 
of the final spectrum can provide significant information on the chemical composi-
tion of the sample surface [155]. TOF-SIMS can be operated in two modes – static 
and dynamic. Static TOF-SIMS scans the sample surface with a low-energy primary 
ion beam to produce a static analysis of the topmost layer of the sample. Dynamic 
TOF-SIMS uses a high-energy primary ion beam to erode the sample surface 
continuously and record the real-time signal simultaneously, producing a depth 
profile of the chemical compositions layer by layer into the bulk. While 
TOF-SIMS is highly sensitive for surface analysis, it can also be sensitive to 
contamination. Common contaminants include plasticisers found in plastic con-
tainers and silicones found in double-sided tape used to secure samples 
[154]. Because of this reason, TOF-SIMS samples should be stored in aluminium 
foil or clean glass containers. Like SEM and XPS, TOF-SIMS is performed in a 
high-vacuum environment, so samples should be dry and stable in vacuum. Another 
limitation of TOF-SIMS is the huge quantity of data generated, as every pixel of a 
two-dimensional image contains a full mass spectrum. Analysis of the data can be 
extremely time-consuming and complicated if one does not know the sample well. 
To simplify data analysis and maximise the amount of meaningful information, 
computational multivariate analysis methods are developed to process TOF-SIMS 
images [156].
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6.4 Characterisation of Biocompatibility 

Having discussed the physical and chemical characterisation methods, this section 
focuses on the biological characterisation of surface-modified biomaterials. In gen-
eral, the ISO 10993 provides an extensive set of guidelines to evaluate the safety and 
efficacy of devices and may be applied toward material testing. It also provides an 
opportunity for the investigator to better understand the safety profiles of the material 
used, which may be helpful in guiding the rational selection of materials for design 
of medical products. Many of these tests are contextual and need to be appropriately 
selected for use in specific applications. The ISO 10993-4, for example, deals with 
material interactions with blood and provides the basis for selection and design of 
appropriate tests for blood-contacting surfaces, such as engineered blood vessels. 
Similarly, the ISO 10993-5 provides basic guidelines for cytocompatibility testing. 
At this point, it should be noted, for eventual translation into the market, that the 
European Committee (EC) adopts this standard and makes it part of their technical 
review in regulatory evaluation of safety of medical devices. 

6.4.1 A Note on the Use of the ISO 109993 

In continuing this discussion, it is important to stress that any given material cannot 
be declared to be ‘universally biocompatible’; biocompatibility can only defined 
only in the context of application. Correspondingly, regulatory bodies such as the 
US FDA are unable to provide a blanket approval for any group or type of polymers 
for medical applications. Instead, the selection and use of material for a device, along 
with appropriate tests to demonstrate safety for use in the identified medical appli-
cation will need to be carefully designed. For regulatory submissions, the control and 
documentation of this process is covered as part of a quality system, in accordance 
with good manufacturing practices. Discussion of design controls is beyond the 
scope of this chapter and readers are instead directed to Section 4 of the ISO 13485, 
as well as the US FDA guidance document on design controls. In the subsequent 
sections, the following will be discussed: 

ISO 109993-1: Evaluation and testing within a risk management process Part 
1 provides background and overview on the approach toward biocompatibility 
testing. 

ISO 10993-4: Selection of Tests for Interactions with Blood, ISO 10993-5: Tests for 
in vitro Cytotoxicity Discussion of Part 4 and Part 5 will provide examples of the 
development and use of assays for the evaluation of specific aspects of 
biocompatibility.
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6.4.2 ISO 10993-1: Evaluation and Testing Within a Risk 
Management Process 

The ISO 10993-1 is an important document as it provides a starting point toward 
developing a plan for the evaluation of biological responses to a medical device. It 
includes a description of the general principles applying to biological evaluation of 
medical devices, followed by a framework to categorise medical devices according 
to the nature and duration of contact with the body. Accordingly, appropriate data 
sets and / or relevant parts of the ISO 10993 may be selected to guide testing, in order 
to address identified gaps in knowledge about the device and material being used. 

The general principles provide useful insight into the thought process behind the 
risk-based approach to biological evaluation. A critical consideration is that testing 
should only be performed where there is insufficient information to perform an 
adequate risk assessment (the process of doing so may be accessed in the ISO 10993-
2). A flow chart is also provided in this section to guide users through considerations 
in categorising a given device, including whether the patient contact is involved, 
formulation used, manufacturing processes, geometry and physical properties, as 
well as the nature of use. 

Subsequently, the medical device may be categorised as a surface medical device, 
externally communicating device or implant medical device, and further 
sub-categorised on the type of tissue contact. Following further consideration of 
the contact duration (limited, prolonged or long-term), relevant endpoints of biolog-
ical evaluation are identified, that can indicate the data sets needed to assess 
biological safety. Following data gap analysis, a list of required data sets may then 
be identified, which can be generated in conformance with appropriate standards. 
For example, a scaffold being used in vascular tissue engineering, may be seen as an 
implant medical device that comes in contact with blood, with long term duration of 
more than 30 days. Accordingly, the typical biological evaluation endpoints will 
typically include Haemocompatibility and In Vitro Cytotoxicity (discussed later). 

6.4.3 ISO 10993-4: Selection of Tests for Interactions 
with Blood 

The ISO 10993-4 deals with studying interactions with blood. It includes a frame-
work to categorise blood-contacting materials (based on intended use and duration of 
contact), an overview of governing principles in studying interactions with blood 
and selected tests, including the rationale behind use of data generated from such 
tests.
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6.4.3.1 Categorisation of Device Types 

Blood contacting devices, in the context of this document, do not include devices in 
which the contacted blood does not return to or reside in the body. Accordingly, 
blood contacting devices may be broadly represented as external communicating 
devices or implants (such as heart valves. External communicating devices may be 
further categorised as devices that serve as an indirect blood path (such as blood 
collection devices) or those that directly contact circulating blood (such as 
atherectomy devices). It should be noted that the context of application impacts 
the level of risk significantly – intravascular catheters may be used for a variety of 
applications and may be categorised as indirectly or directly contacting circulating 
blood, depending on the use. It is thus the intended use or site of application that 
dictates the level of risks, rather than the material used or surface modifications 
employed. 

6.4.3.2 Characterisation of Blood Interactions 

Similar to ISO 10993-1, a decision tree can be used to decide whether testing for 
interactions with blood should be performed. Additionally, a table is provided to 
identify the category of tests for consideration; these include haemolysis (material-
induced or mechanically induced) and thrombosis (coagulation, platelet activation, 
complement, haematology and ex vivo/in vivo. While not prescriptive nature, the 
standard provides rationale for the selection of these tests and essential consider-
ations in the design of such tests. Some recommended tests include PTT assays and 
thrombosis and are performed in the context of the device (discussed later). 

6.4.3.3 Types of Tests 

The recommended tests in 10993-5 are divided into categories based on the primary 
process being measured. Taking the example of a vascular graft, in order to evaluate 
thrombosis in vivo, common measures include percentage occlusion of the graft 
following a period of implantation. The standards do not dictate testing protocols 
due to the diverse nature of devices being evaluated and that blood interactions tend 
to be context-specific. It is also not possible to include target numbers that qualify a 
given material to be ‘haemocompatible’. Rather, a set of principles are provided, 
suggesting the rationalisation necessary to justify the choice and design of tests. 
Some examples are discussed as follows: 

In Vitro Tests In vitro testing typically involves exposure of the material to blood 
and may include bench tops models (such as the Chandler loop test model [157]) that 
simulate physiological conditions, particularly that of an ‘anticipated worst case 
scenario’. In such a set-up, materials to be tested are exposed to collected blood and 
the interactions with blood are studied through the use of assays in bench top



settings. Partial Thromboplastin Time (PTT) is one such assay in which the time 
taken to induce clotting of recalcified citrated plasma is measured, following the 
addition of partial thromboplastin. To perform coagulation testing of medical 
devices and materials, exposure to the device or material serves to activate the 
coagulation. By measuring the change in PTT following exposure, a relative mea-
sure of surface coagulability may be established for a range of modified surfaces. 
The PTT and other in vitro tests provide repeatable settings, avoid the use of animals 
and also provide a cost-effective way to perform initial evaluations. They are, 
however, limited in their ability to replicate physiological settings and longer-term 
studies typically involved the use of animals. For more detailed discussion on blood 
compatibility testing, the following review provides further elaboration of testing 
methodology [158]. 
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Ex Vivo Tests Ex vivo testing involves directing circulating blood to contact with a 
test material. These include ‘open’ systems such as the Dudley clotting test, where a 
tube is inserted into a test subject via a catheter and the time taken for blood to stop 
dripping from the open end of the tube can be compared. Popular ‘closed’ systems 
include AV shunts, where the test material is directly exposed to circulating blood. 
Typically, tests involving AV shunts may be continued for extended durations and 
more information may be derived. For example, retrieved shunts may be examined 
for presence of thrombi on the surface, or changes in patency may be measured to 
indicate thrombogenic responses. Luminal surfaces may also be studied for platelet 
adhesion, while downstream vasculature may be monitored for embolic events. 

In Vivo Tests In vivo testing of devices typically involves implantation of a device 
in the intended site of use, to more closely mimic clinical application. These 
typically require greater planning and can provide more data temporally and across 
a range of diverse tests. For instance, serial monitoring of implanted vascular grafts 
by arteriograms provide vital information on the development of thrombi and 
changes in patency over time. In testing of modified surfaces (not necessarily in 
the specific context of a device), the non-anticoagulated venous implant (NAVI) or 
anticoagulated venous implant (AVI) models are used. These involve inserting of 
device materials formed into catheter shapes into the veins of animals for up to 4 h, 
followed by gross assessment of amount of thrombus on the material/catheter 
surface. The technique faces several shortcomings, including limited time exposures, 
variability of results and operator dependence. Perhaps more critically, the high flow 
environments lead to very low levels of surface-associated thrombus. Particularly in 
AVI settings, this results in most material surfaces being labelled non-thrombogenic 
(even if it is not the case). 

6.4.4 ISO 10993-5: Tests for In Vitro Cytotoxicity 

The ISO 10993-5 deals primarily with the evaluation of cytotoxicity or, more 
accurately in this case, the lack thereof. Broadly, it involves exposing test cells to



the material, either directly or indirectly, followed by evaluation of viability. Some 
tests available for such evaluations are listed in Table 6.3. 
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Table 6.3 Summary of cytotoxicity tests and their corresponding cell lines 

Test name Suitable cell lines 

Neutral red uptake BALB/c 3T3 cells, clone 31 CRB 9005 

Colony-forming cytotoxicity V79 

MTT cytotoxicity L-929 

XTT cytotoxicity L-929 

Referenced from ISO 10993-5:2009, Annexes A–D. Copyright remains with ISO 

In general, a numerical grade of >2 in qualitative scoring is considered cytotoxic. 
For qualitative testing, reduction of cell viability by >30% shall indicate cytotoxic 
effects. Under these conditions, significant considerations shall be given to the 
surface modification procedure, which could include but is not limited to (1) use 
of cross-linking agents, (2) chemical alteration of biomaterial molecular structure 
and (3) surface-modified coating chemistry and its cytotoxicity effects. 

At this point, it is critical to highlight that the evaluation of cytocompatibility 
alone is not a direct measure of surface modification efficacy (except where the 
modification is performed specifically to improve cytocompatibility). It does, how-
ever, provide important indications on the safety profile of the surface coating 
process, in order to flag out unexpected cytotoxic events arising from the modifica-
tion process. 

6.4.4.1 Direct Contact 

Direct contact methods involve the direct exposure of cells to the material surface, 
followed by evaluation of cell viability. One important test requirement would be to 
ensure that there is at least one flat surface (no specific requirement on roughness is 
provided). In addition, if the biomaterial is meant to be used sterile, then it shall be 
sterilised accordingly before testing is done. Otherwise, the basic principles of 
aseptic handling during testing shall apply. The selection of cell lines to be used 
for testing shall, in principle, follows the requirements of the standard. However, 
concession is also given to situations where a specific response to a selected cell line 
is desired; in this case, cell line reproducibility and accuracy of response need to be 
demonstrated. Testing the material involves culturing the cells to subconfluency on 
standard plates and subsequently placing the material directly on the cells. Cell 
viability is then tracked over multiple days and may also be morphologically 
observed under microscope. Important test requirements are that appropriate exper-
imental controls (both positive and negative) should be included and that the 
biomaterial shall only cover one-tenth of the exposed surface area of the cell layer. 

Determination of cytotoxicity may be performed using qualitative and quantita-
tive measurements although it is preferred that quantitative measurements are taken.



If qualitative measurements are taken, the following table (Table 6.4) provides the 
guidelines to which cytotoxicity shall be measured. 
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Table 6.4 Reactivity grades for direct contact test 

Grade Reactivity Description of reactivity zone 

0 None No detectable zone around or under specimen 

1 Slight Some malformed or degenerated cells under specimen 

2 Mild Zone limited to area under specimen 

3 Moderate Zone extending specimen size up to 10 cm 

4 Severe Zone extending farther than 10 cm beyond specimen 

Adapted from ISO 10993-5:2009, Section 8.5. Copyright remains with ISO 

6.4.4.2 Exposure to Liquid Extracts 

This process involves the incubation of the modified material in an extraction fluid 
medium, to which the cells are subsequently exposed. Extraction conditions gener-
ally follow the principle of simulating or exaggerating clinical use conditions 
without causing significant changes in the biomaterial. For this purpose, the extrac-
tion vehicle can be culture medium, physiological saline or any other justifiable 
medium. Importantly, to fulfil the requirements of the standard, the extraction 
vehicle(s) should allow extraction of polar and non-polar elements. 

The extraction conditions shall be conducted without causing significant changes 
in the biomaterial and therefore should be chosen carefully. Generally, normal cell 
culture condition of 37 °C for a period of 24 ± 2 h is applied. However, raised 
temperatures and durations of extraction may be applied provided that the chemistry 
of the biomaterial is unaffected, and the intended use of the biomaterial justifies 
the extraction conditions. Additionally, in situations where the cumulative contact of 
the biomaterial is less than 4 h and is in contact with intact skin or mucosa surfaces, 
the extraction times shall be at least 4 h. 

6.4.4.3 Indirect Contact 

Indirect methods are concerned with measuring the leachables from a material. Two 
methods are most commonly performed. In the agar diffusion method, selected cell 
lines are grown to subconfluency, and 0.5–2 mass per cent of melted agar is casted 
over the cells, with a fresh culture medium change. The sample is then placed on top 
of the agar, followed by a predefined period of incubation (24–74 h) before evalu-
ation. In the filter diffusion method, a surfactant-free filter of pore size 0.45 μm  is  
used. Briefly, an aliquot of a continuously stirred cell suspension is added onto the 
surfactant-free filter and incubated until subconfluency is achieved. The filters are 
then transferred onto a layer of solidified agar (cell side facing down) before the 
biomaterial is placed onto the acellular side of the filter (top side).
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6.5 Conclusion 

In this chapter, the modification of tissue engineering scaffold surfaces was 
discussed. Surface modification seeks to confer desirable surface properties, while 
retaining bulk properties. In tissue engineering scaffolds, this is often difficult to 
achieve due to the susceptibility of degradable scaffolds to bulk alterations. This has 
led to innovative approaches that range from physical to chemical approaches, 
yielding modified surfaces with varied physical, chemical and biological properties. 
To characterise these changes, various assays have been developed that can help 
develop a deeper understanding of the effect of surface modification. Particularly for 
implant applications, the characterisation of biological responses is important toward 
establishing the safety profile of modified surfaces; these were discussed using the 
ISO 10993 standards to illustrate how the selection and design of testing methodol-
ogy is as important as the choice of surface modification techniques in the develop-
ment of tissue engineering scaffolds. 
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Chapter 7 
Gradient Biomaterials and Their Impact 
on Cell Migration 

Zhengwei Mao, Shan Yu, Tanchen Ren, and Changyou Gao 

Abstract Cell migration participates in a variety of physiological and pathological 
processes such as embryonic development, cancer metastasis, blood vessel forma-
tion and remolding, tissue regeneration, immune surveillance, and inflammation. 
Cell migration regulation is of paramount importance to achieving the recruitment of 
specific cells for tissue regeneration. The cells specifically migrate up along gradu-
ally varying concentrations (gradient) of soluble signaling factors and/or ligands 
bound into the extracellular matrix (ECM) in the body during the wound-healing 
process. Therefore, creating artificial microenvironments by incorporating physical, 
chemical, and biological signal gradients within engineered biomaterials is a poten-
tial solution to promote tissue regeneration. In this chapter, the gradients existing 
in vivo and their influences on cell migration are firstly described. Recent progress in 
the fabrication of gradient biomaterials is then discussed. The impact of gradient 
biomaterials on cell responses, especially cell migration, is discussed, highlighting 
their potential application in regenerative medicine. The future trends in gradient 
biomaterials and programmed cell migration in context with tissue regeneration are 
prospected. 

Keywords Gradient biomaterials · Cell migration · Material–cell interaction · 
Tissue regeneration · Regenerative medicine 

7.1 Introduction 

Regenerative medicine is proposed to study transformations of cells and extracellu-
lar matrix during tissue repair for perspective regenerative therapies. An important 
step is to recruit nearby somatic or stem cells to wound sites with the assistance of 
biomaterials [1]. Within this process, cell migration, especially directionally moving
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toward the wound site under the guidance of spatiotemporal signals, plays a para-
mount role [2]. Therefore, it is very important to study the cell migration behavior 
with the presence of physical, chemical, and biological cues to get in-depth under-
standing of tissue regeneration process and thereby provide guidance principles for 
designing advanced biomaterials.
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Cells migrate in response to gradients of stimuli such as dissolved 
chemoattractants (chemotaxis) or surface-attached molecules (haptotaxis) as well 
as biophysical contact cues (durotaxis or mechanotaxis) in vivo [3, 4]. Ramón Cajal 
(1892) first proposed that gradients of attractive molecules could guide growing 
axons to their targets [5]. Since then, in vivo gradients of chemical signals have been 
proved to exist, and their roles in guiding the translocation of cells have been widely 
recognized. Mechanical guidance (mechanotaxis), which exists widely in extracel-
lular matrix, is also thought to drive processes of cell migration in tissue regeneration 
[6, 7]. 

The “gradient biomaterials” offer an ideal model, enabling the studies of cell 
behaviors in a complicate and precisely regulated microenvironment. Over the past 
20 years, a lot of techniques have been developed to generate spatiotemporal 
gradients and advanced functional biomaterials [8, 9]. The gradient biomaterials 
have been adopted to systematically study the cell responses to biomaterials includ-
ing cell adhesion, distribution, and alignment [10]. Recently, cell migration induced 
by gradient biomaterials [11] and their potential applications in tissue regeneration 
[12, 13] are attracting more and more attentions. 

In this chapter, we focus on the design of the gradient biomaterials and their 
impact on cell migration. Firstly, the knowledge obtained from nature: biological 
gradients existing in vivo and their influences on cell migration will be introduced. 
Methodologies for preparing the gradient materials will be summarized, followed by 
the directed migration behaviors of cells. Finally, the chapter concludes with current 
challenges and future perspectives. 

7.2 Cell Migration 

Cell migration in vivo is a very significant process on both physiological and 
pathological aspects. During embryonic development in mammal, cells migrate 
beneath ectoderm to create different germ layers, which are required for proper 
tissue formation [14]. Cell migration is also prominent in numerous tissue regener-
ation processes in adults, such as morphogenesis, angiogenesis, wound healing, and 
immune response [15–17]. For example, when wound occurs, immune cells and 
subsequently fibroblasts invade into the temporarily formed clots to fill the defect 
under the guidance of inflammatory factors. Meanwhile, the epidermal cells prolif-
erate and migrate to cover the surface [15]. Migration of mesenchymal progenitor 
cells induced by biological signals is important to tissue reprogramming during bone 
repair [18].
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More importantly, undesired cell migration will cause diseases or improper 
regeneration of tissues such as atherosclerosis, a chronic inflammatory disease of 
arterial wall [19]. During atherosclerosis, endothelium, composed of endothelial 
cells (ECs), is damaged, and subsequent migration of vascular smooth muscle 
cells (SMCs), which naturally move much faster than ECs to the impaired vessels, 
is stimulated by various inflammatory factors [20], leading to further damage of the 
vasculature. In-stent restenosis (ISR), a particular refractory form of neointimal 
hyperplasia [21], is another example. Stent implantation has become the main 
method to treat coronary artery diseases. However, the implantation may induce a 
series of pathological processes such as thrombosis and abnormal release of cyto-
kines. These pathological events subsequently trigger the migration and proliferation 
of SMCs and thereby induce ISR [22]. Therefore, it is of great importance to 
understand the mechanism of cell migration especially under correct physiological 
conditions. 

7.2.1 The Biological Processes of Cell Migration 

The migration of single cell is the best-studied model of cell movement in vitro, and 
the newly developed fluorescent tagging technology also makes it possible to 
visualize the cell migration in vivo [23–25]. Cell migration is a complex process 
requiring work cooperation of cytoskeleton, membrane, and signaling systems 
(Fig. 7.1) [26]. Responding to the external topographic or chemical stimuli, cells 
protrude their leading edge [27]. The directional extension of active membrane, 
including both lamellipodia (sheetlike protrusions) and filopodia (spikelike protru-
sions), brings on attachment and thus traction force to the substrate, resulting in a 
counterforce on the cell to promote cell migration [28]. The contraction of cytoskel-
eton filaments pulls the cell body toward the leading edge, with a consequent release 
of attachment at the rear to allow the tail to retract, then the cell moves forward. All 
these steps involve the assembly and disassembly of the cytoskeleton filaments, 
especially actin fibers, producing forward movement of cells. Herein, moderate 
adhesion strength provided by the supporting matrix is essential for dynamic cell 
protrusion and contraction [29]. 

The cell migration process also involves the spatiotemporal transition of intra-
cellular signaling, such as focal adhesion kinase (FAK), mitogen-activated protein 
kinases (MAPKs), and Rho GTPases [24, 30–32]. Rho family GTPases, including 
Cdc42, Rac, and Rho, act as molecular switches of actin polymerization, actomyosin 
contraction, and cell mobility. Cdc42 and Rac regulate actin polymerization and 
membrane protrusion, while Rho generates the contraction and retraction forces 
required in the cell body and at the rear [33]. MAPKs, including ERK, p38MAPK, 
and JNK, can promote cell migration by regulating actin dynamics. For example, 
ERK1 and ERK2 can phosphorylate MLCK and increase MLC phosphorylation to 
enhance cell migration [34–36]. In addition, many downstream signal molecules 
participate in the migration process. For example, the Ser/Thr kinase p65PAK



controls focal adhesion (FA) turnover since the integrin adhesion complexes should 
be dynamically changed, allowing the cells to adhere and pass [37]. 
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Fig. 7.1 A schematic of the 
three stages of cell 
movement: after 
determining its direction of 
motion, the cell extends a 
protrusion in this direction 
by actin polymerization at 
the leading edge. It then 
adheres its leading edge to 
the surface where it is 
moving and deadheres at the 
cell body and rear. Finally, it 
pulls the whole cell body 
forward by contraction force 
generated on the cell body 
and rear of the cell. 
(Reprinted from [26] with 
permission. Copyright 
Ivyspring International 
Publisher) 
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Among all intracellular signals, one of the most well-studied long-term modifi-
cations, driven by mechanical cues, is the activation and localization of the 
Yes-associated protein (YAP) [38]. YAP is a family of transcriptional cofactors 
whose translocation to the nucleus is known to be controlled by mechanical cues of 
the environment, such as ECM rigidity, strain, shear stress, adhesive area, or force 
[39]. Interestingly, YAP nuclear translocation is itself a short-term modification, but 
the effects of this translocation have long-term transcriptional effects. Once in the 
nucleus, YAP binds to TEAD transcription factors and induces the transcription of 
genes associated with proliferation and inhibition of differentiation or cell migration 
and invasion in cancer cells [40]. 

In the process of durotaxis stimulating, externally or internally generated gradi-
ents sensed by FA, actomyosin network or plasma membrane, the serial 
mechanotransductions which are related to above spatiotemporal transition of intra-
cellular signaling [41]. Cells undergoing chemotaxis normally adjust the distribution 
of guidance cues with enzymes (e.g., by degradation with MMPs or ADAMs) [42], 
or by endocytosing them with its receptors, while still responding to them [43],



which suggests that the responding cells are actively involved in shaping the 
gradient. During haptotaxis, cells sense differences in ECM concentration or engage-
ment across a single cell, and then react by polarizing their cytoskeletal and motility 
machinery to enable them to protrude and migrate up the gradient toward fixed 
substrate-bound cues. Hence, many of the molecules identified as important for this 
type of migration are like those of chemotaxis and durotaxis [44]. The precise 
mechanisms for galvanotaxis are largely unknown. 
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Collective migration is the second principal mode of cell movement [45, 46]. This 
mode differs from single cell migration since cells remain connected as they move, 
resulting in migrating cohorts and varying degrees of tissue organization 
[47, 48]. Some collective cell migrations under gradients stimuli were found even 
though no single cell migration could be observed under the same stimuli. Collective 
migration of cohesive cell groups in vivo is particularly prevalent during embryo-
genesis and drives the formation of many complex tissues and organs. Raimon et al. 
reported their findings in collective cell durotaxis emerging from long-range 
intercellular force transmission [49]. This emergent mode of directed collective 
cell migration applied to a variety of epithelial cell types, required the action of 
myosin motors, and originated from the supracellular transmission of contractile 
physical forces. Recent discoveries also show that durotaxis and dynamic stiffness 
gradients exist in vivo, and gradients of chemical and mechanical signals cooperate 
to achieve efficient directional cell migration [50, 51]. 

Collective cell migration can be defined by three hallmarks. Firstly, the cells 
remain physically and functionally connected because the cell–cell junctions are 
well preserved during movement [52, 53]. Secondly, multicellular polarity and 
organization of the actin networks generate traction and protrusion forces for 
migration and maintain cell–cell junctions. Isolated cells are more sensitive to 
environmental fluctuations, whereas cell clusters can counteract the effects of fluc-
tuations by cell–cell interactions [54]. Thirdly, in most modes of collective migra-
tion, moving cells structurally modify the tissue along the migration path, leading to 
the modification of ECM [55]. Depending on the context, collective movement can 
occur by two-dimensional sheet migration across a planar surface or by multicellular 
strands or groups moving through a three-dimensional scaffold. 

7.2.2 Gradient Signals In Vivo 

Although cells migration patterns are diverse, gradient stimuli play an important role 
in different patterns. Most cells are surrounded by extracellular matrix (ECM), which 
is a complex network consisting of proteins, polysaccharides, and signaling mole-
cules. Physical cues such as pore size, topography, stiffness and viscoelasticity as 
well as chemical cues including the composition of ECM and concentration of signal 
molecules are the main guiding cues for cell migration in vivo, inducing cell polarity 
and thus controlling the migration rate and direction.
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7.2.2.1 Physical Gradients and Their Influence on Cell Migration 

Physical gradients are defined as the gradual varying physical properties such as 
porosity, stiffness, and morphology. Native bones have physical gradients formed 
with its density distribution diversity. The dense cortical bone locates in the outer 
layer and low-density “trabecular” bone locates inside. The pore size decreases from 
inside to outside. Such structures provide great permeability and excellent mechan-
ical support [56]. Particularly, the mechanical strength or modulus is inversely 
dependent on the porosity and the pore volume [57]. Therefore, the bimodal 
structure of bone (cortical and cancellous) gives rise to the gradient of mechanical 
properties in the nature bone. In addition to the porosity, the bone stiffness and 
elasticity can also be determined by the variability of mineralization or mineral 
density, cell type, and cytokine gradient features [58]. The compression strength 
differs from 133 MPa in midfemoral to 6.8 MPa in proximal femoral, while the 
modulus of elasticity decreases from 17 to 0.4 GPa [59]. Therefore, biomaterials 
with similar physical gradients consist of structural diversity could potentially 
induce osteointegration to facilitate biological ligament–bone fixation for bone 
repair [60]. Teeth also contain gradients in composition and mineral density, 
which give rise to gradients in mechanical properties [61]. 

Cells can guide their movement by probing the substrate stiffness. Endothelial 
cells (ECs) and smooth muscle cells (SMCs) can move into tumor tissues due to 
higher stiffness inside, leading to fast angiogenesis. Fibroblasts also can move into 
scar tissues because of their higher stiffness and speed up the wound-healing process 
[62]. After the injury, the migration of muscle stem cells would be enhanced by 
elevated muscle stiffness for further regeneration [63]. 

As shown in Fig. 7.2 [64], increase in substrate stiffness can cause an increase in 
traction force, which would then pull the region forward and trigger a bias in 
movement direction and an increase in spreading. Such force-induced cytoskeletal 
contractility was also suggested by studies that adopted magnetic twisting force or 
dragging force onto integrin-bound beads. The cells responded by increasing the 
resistive forces and/or reinforcing the integrin-cytoskeleton linkages [65, 66]. Based 
on these observations, Sheetz et al. speculated that stiffness of the ECM might 
function as an environmental cue to orient the direction of cell movement [67]. 

The changes of protein conformation under the action of force are often accom-
panied by enzyme catalysis. Many enzyme catalytic activities are also associated 
with force action [68]. The mechanical response process is usually a positive 
feedback loop mechanism. Myosin traction opens the active sites of structural pro-
teins, activating more structural proteins, skeleton proteins, force acting proteins, etc. 
The transcription regulation under the action of force also promotes the expression of 
related proteins, allowing cells to recruit more proteins [69]. The expression and 
activation of related proteins further promote the generation of intracellular forces. A 
deep understanding of the cell's recognition of the mechanical properties of the 
microenvironment can enable a deep analysis of the loading of intracellular forces on 
the cell microenvironment interface.
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Fig. 7.2 Model for the signal detection of substrate stiffness. The initial probing forces are 
generated by actin–myosin interactions associated with cell–substrate adhesion sites. (a) On a  
soft substrate, the receptor–ligand complex is mobile and the tension at the anchorage site is 
weak. With a given energy input (black area under the force-displacement graph), the complex 
can move over a long distance (x axis). (b) On a stiff substrate, equivalent energy consumption 
(shown as an equivalent black area under the force-displacement graph) causes a higher tension (y 
axis) and lower displacement of the receptor–ligand complex (x axis). The increase in tension may 
induce an influx of extracellular calcium through the stress-activated channels. (Reprinted from [64] 
with permission. Copyright 2000 The Biophysical Society) 

It is unclear how cells actually translate substrate stiffness into downstream 
responses. One possibility is that cells can directly sense the distance of receptor 
movement as a result of exerted probing forces. Alternatively, the rigidity of the 
substrate could be determined by monitoring the magnitude of counterforces upon 
the consumption of a given amount of energy. On the stiff substrate, strong mechan-
ical feedback from the substrate occurs after a small receptor displacement. Because 
elastic energy is the integration of forces along the distance, with the same amount of 
energy consumption, the soft substrate can generate only a weaker mechanical 
feedback but a larger displacement. The stronger mechanical feedback on stiff 
substrate may then lead to the activation of stress-sensitive ion channels [70]  or  
conformational changes of other tension-sensitive proteins. These responses in turn 
may regulate the extent of protein tyrosine phosphorylation, the stability of focal 
adhesions, and the strength of contractile forces [71]. Therefore, an effective navi-
gating system emerges, in which cells send out local protrusions to probe the 
mechanical properties nearby. Those receiving strong feedback from the environ-
ment are amplified and become the primary leading edge, whereas those receiving 
weak feedback become unstable and may be further weakened because of the 
reorganization of the cytoskeleton. These coordinated responses would be a power-
ful means to direct cell movement in response to mechanical gradient [64]. By utility 
of step-rigidity micropost arrays, cells are proved to sense substrate rigidity locally to 
induce an asymmetrical intracellular traction force distribution to contribute to 
durotaxis [72]. 

Recent works have revealed that matrix viscoelasticity regulates cell migration 
that is not observed in previous studies with elastic hydrogels in both two- and three-
dimensional culture microenvironments. Ovijit et al. found with rigid or elastic 
pores, matrix degradation was required for the cells to overcome confinement and 
migrate. However, given sufficient viscoelasticity or viscoplasticity, cells can



overcome confinement to grow in size, deposit matrix, change their morphology as 
they spread or undergo mitosis, and migrate [73, 74]. 
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7.2.2.2 Chemical Gradients 

Biomolecules including cell factors and microenvironment changes caused by 
metabolism are two main styles of chemical gradients in nature in living body. 
One is the biomolecules bound in extracellular matrix, including chemokines, 
hormones, and proteins. The dominating proteins are ECM proteins such as colla-
gen, fibronectin (Fn), and laminin and growth factors such as fibroblast growth factor 
family (FGFs), vascular epidermal growth factor (VEGF), and so on. They can 
initiate multiple intracellular signaling pathways after binding to the receptors on 
cell surface, regulating various cell responses. For example, bone morphogenetic 
protein (BMP) concentration gradient in zebrafish is responsible for guiding bone 
formation [75–77]. Semaphoring Sema 2a concentration gradient is also known for 
guiding neuron outgrowth [78]. Expression of laminin-2 decreases from the base of 
the villus to the top in the epithelium of the small intestine, while the expression of 
laminin-1 increases. Stem cells are guided by this signal gradient and proliferate and 
undergo differentiation while moving upward to the tip of the villus in vivo. 

The other kinds of gradients are made of soluble biomolecules, formed through 
diffusion and convection (larger molecules) when they are released from the cells 
and the matrix [79, 80]. The cells respond to the gradients in a diffusion speed and 
distance-dependent manner [81]. Tumor cells, for example, are known to secrete an 
array of chemokines (e.g., IL8, CCL21, SDF-1α) and growth factors (e.g., EGF) to 
form a tight control of their microenvironments and to enhance their ability to 
migrate to a distant site [82, 83]. Immune cells are another kind of cells that utilize 
molecular gradients within their surrounding as guidance cues to migrate 
[84, 85]. Dendritic cells, for instance, are known to migrate up lymphoidal chemo-
kine gradients (CCL21 and CCL19) toward lymphatic vessels [86]. 

The second example of the molecular gradient formation is the oxygen concen-
tration, pH, and reactive oxygen species gradient as a result of cellular metabolic 
activities [87–90]. Tumor cells have a high metabolic rate and thus a high oxygen 
consumption rate. Tumor cells initially grow with a mature vascular structure until 
the tumor body reaches a critical size, where the cells in the center become hypoxic 
due to limited oxygen supply from their surrounding tissues by diffusion. As a result, 
an oxygen concentration gradient with the highest concentration at the tumor edge is 
generated. In a vascularized tumor, blood vessels are oxygen suppliers to the tumor 
cells. Due to tumor metabolic activities, there is an oxygen and pH gradient adjacent 
to the blood vessel. As a result, tumor cells can sense the oxygen concentration 
gradient and pH gradient and then move toward blood vessels, which is a key step of 
tumor metastasis [82, 87]. In contrast, endothelial cells migrate toward the acidic end 
of an extracellular pH gradient, because cell membrane protrusion stability and 
actin–integrin adhesion complex formation are increased in acidic pH, which 
could contribute to the preferential polarization toward acidic pH and favor



directional cell migration [91]. During wound healing, extracellular pH-gradients 
work as pivotal governors of keratinocyte cell migrations to impact epidermal barrier 
repair [92]. ROS is also proved involved in regulating wound healing by altering 
epithelial cytoskeletal dynamics at the leading edge and directing cell migration [93]. 
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These two kinds of gradients also coordinate with each other to complete 
biological activities. For example, during angiogenesis, the soluble VEGF gradient 
increases the vessel caliber, while the gradient of matrix-bound VEGF promotes the 
vessel branch sprouting [94]. Hypoxia could also induce directed migration of 
human monocytes accompanied the function of chemokine C motif chemokine 
ligand 26 (CCL 26) [95]. 

7.2.3 Possible Mechanism of Gradient-Dominated Cell 
Migration 

In nature, an object always travels randomly in an environment without an asym-
metric cue, which has been recognized as Brownian movement. In an anisotropic 
system, a driving force is imposed to the object due to the asymmetric interactions 
with surrounding environment. The directional transport of liquid and particles 
based on the gradients of surface energy has been reported [9, 96]. 

The first response of cells to the gradient is to polarize, by redistributing 
chemosensory signaling receptors on their surface [97–99]. Chan et al. reported 
that the cells reoriented and positioned toward the direction of higher ligand density 
when they were seeded on a ligand density gradient [100]. Arnold and Hirschfeld-
Warneken et al. prepared an RGD density gradient to control the spatial distribution 
of integrin receptors on cell membrane, leading to the cell polarization and subse-
quent migration [101, 102]. Directional cell migration can be achieved when cellular 
polarization is kept in one direction due to the presence of the external gradient 
signaling. Another explanation of gradient-guided cell migration is attributed to the 
adhesiveness between the cell and the underlying substrate. Cells attach to the 
substrate stronger at one end. The imbalance of adhesive force leads to forward 
movement toward the direction of increasing adhesiveness. The rear of the cells 
contracts to diminish the cellular polarization extent, and the movement is paused 
until the cells polarize again [97, 98]. Smith et al. found that the cells move faster on 
the gradient with a larger slope, but had no difference in cell polarization [103]. So 
the increase of migration speed is attributed to the higher frequency of cellular 
polarization, gradient recognition, and/or more stable polarization state. 

For long and complex migration environments in vivo is different. Cells can 
create gradients that are tailored to their own optima for responsiveness. This is true 
whether the gradients are 100% self-generated—made newly from a homogeneous 
environment—or reshaped by attractant breakdown from a higher-concentration and 
less sharply focused imposed gradient [104, 105]. Self-generated chemotaxis, a 
process in which cells create their own local, dynamic gradients by breaking down



an attractant in their environment. Self-generated chemoattractant gradients allow 
cells to navigate complex paths with great efficiency. Diffusion and attractant 
breakdown allow cells to obtain detailed information about their surroundings that 
could not be provided by simple attractant gradients [106]. 
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7.3 Methods to Prepare Gradient Biomaterials 

Since cells migrate in response to signal gradients in vivo, it would be of interest to 
prepare gradient biomaterials to mimic the signal and study material–cell interac-
tions and/or guide cell directional movement for tissue regeneration. So far many 
methods have been developed to prepare gradient biomaterials. Abundant 2D 
gradients have been developed due to their easy fabrication and controlled struc-
tures. In the past, biological effect of 2D gradient biomaterials and structure design 
has been studied. The functions to regulate cell migrations of 2D gradient bio-
materials were tailored by controlled structure precisely. There are two categories 
of techniques for producing gradient surfaces: “bottom-up” and “top-down.” The 
former technique constructs patterns by continuously introducing building blocks on 
the surface, such as silane, thiol, and macromolecules without destroying the bulk 
materials [107]. The latter one is deconstruction and modification of surfaces 
gradually via external stimuli such as light, electron, plasma, etching solution, and 
so on [108]. As a result, the structures and properties of the surface will be altered. 

Besides these technologies that are initially designed for the modification of 
material surface, another category of technologies has been developed to construct 
gradients in 3D matrix. Although it is much more difficult to elucidate the cell 
responses in 3D gradient biomaterial, the complicated and favorable biological 
effects raised wide interests in development of 3D gradient biomaterials. 

7.3.1 Bottom-Up Approaches 

The bottom-up technologies are valid for various functional molecules and are 
feasible to control their grafting density, chain length, and spatial organization. By 
changing the chemical structures, the surface properties can be gradually switched 
from hydrophilic to hydrophobic [109], from soft to stiff, and from cell resistant to 
cell adhesive [110]. The gradient surfaces can be prepared based on kinetic and 
spatial controlled reaction (Fig. 7.3). 

7.3.1.1 Infusion 

By gradually elevating or lowering the solution level, surfaces can be decorated with 
organic monolayer with a gradient pattern [114, 115]. The method is so simple and



convenient that neither special instrument nor rigorous condition is required. Fur-
thermore, it is feasible to generate gradients of a variety of chemical functionalities 
on the micrometer to centimeter scale. 
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Fig. 7.3 (a) Schematic design of a representative gradient-generating microfluidic network. Solu-
tions containing different chemicals are introduced from the top inlets and allowed to flow through 
the network. When all the branches are recombined, a concentration gradient is established across 
the outlet channel. (Reprinted from [111] with permission. Copyright 2001 American Chemical 
Society). (b) Thiol diffuses into the stamp from an ink pad. It leaves the stamp because of adsorption 
to the gold surface and creates a partially covered surface. (Reprinted from [112] with permission. 
Copyright 2005 American Chemical Society). (c) Symmetrical lateral gradients are generated using 
hemicylindrical stamps. The contact area increases under increased compression. The darker areas 
indicate the more hydrophobic region where the contact time is longer. The sketch is not to scale. 
(Reprinted from [113] with permission. Copyright 2003 American Chemical Society) 

By controlling the injection speed, the position on the gradient corresponds 
directly to the immersion time. The slope of the gradient also can be tuned by 
adjusting the injection speed: higher infusion speed will make a smaller slope 
[116]. Also, the slopes and the lengths of the gradients can be tailored by changing 
the feeding concentration [117]. The concentration of molecules or the molecular 
weight of polymers on the gradient decreases linearly with its maximum at the 
bottom end which reacts for the longest time. Yu et al. fabricated a gradient from 
superhydrophobicity to superhydrophilicity by slowly adding the HS(CH2)11CH3 

solution to the container holding the gold substrate and then backfilling HS 
(CH2)10CH2OH [118]. In a further step, the gradients can be backfilled either in a 
contrary direction (head-to-tail method) or by fully immersing it into the comple-
mentary solution (full immersion method). Obviously, the head-to-tail method pro-
duces a steeper gradient [119].
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Recently, some novel methods based on infusion were developed to fabricate 
gradient surface on the micrometer scale. Huang et al. report a facile and robust way 
to fabricate a surface with gradient topography of porous structure in one direction, 
based on the breath figure (BF) method [120]. In a classic BF method, a polymer 
solution, prepared with a volatile solvent, is cast onto a substrate and dries under a 
humid environment for BF structure fabrication. Different from the traditional way, 
the polymer solution was separated into polymer substrate and solvent. The polymer 
substrate was immersed into the solvent and dried under a humid environment to 
obtain BF pores. The separation of the polymer substrate and the solvent provided a 
possible condition of gradient growth of water droplets on one BF sample which 
caused the formation of the gradient BF pore structure. 

7.3.1.2 Diffusion 

The molecular diffusion and transportation can be achieved in solution, vapor, or 
gel. The chemical gradient pattern is generated by imprinting the molecules onto the 
surface. Chaudhury et al. evaporated silane molecules, which were deposited more 
on the substrate end closer to the vapor source, and achieved the silane density 
gradient [121]. The steepness of the gradient can be easily adjusted by controlling 
the diffusion time, the silane molecules, and environment conditions such as humid-
ity and temperature [122–124]. Mougin et al. prepared a thiol concentration gradient 
by diffusing into a gel matrix and then transferred the gradient to gold substrates 
[125, 126]. 

Claussen et al. presented a straightforward experimental method for fabrication of 
a gradient in mechanical properties on the centimeter scale based on a poly(dimethyl 
siloxane) (PDMS) system. Compositional gradients are realized by using three 
syringe pumps feeding different prepolymers capable to undergo thermal 
crosslinking. Within the gradient samples, the stiffness between the hard and soft 
part can be varied up to a factor of four. This method can be expanded to other 
polyaddition systems including polyurethanes and others based on 
photopolymerizable acrylates and thiol-ene click chemistry [127–129]. However, 
there is a common problem called “fingering” when two diffusion streams meet. As a 
result, an inhomogeneity will inevitably exist in the direction perpendicular to the 
gradient [110]. Qiu et al. reported a facile method for generating a mineral gradient 
in a biodegradable polymer scaffold. The gradient is achieved by swelling a com-
posite film made of polycaprolactone (PCL) and hydroxyapatite (HAp) 
nanoparticles with a PCL solution. During the swelling process, the solvent and 
PCL polymer chains diffuse into the composite film, generating a gradient in HAp 
density at their interface. The thickness of the mineral gradient can be tuned by 
varying the extent of swelling to match the length scale of the natural tendon-to-bone 
attachment (20-60 μm). When patterned with an array of funnel-shaped channels, 
the mineral gradient presents stem cells with spatial gradations in both biochemical 
cues (e.g., osteoinductivity and conductivity associated with the HAp nanoparticles)



and mechanical cues (e.g., substrate stiffness) to stimulate their differentiation into a 
graded distribution of cell phenotypes [130]. 
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7.3.1.3 Microfluidic Lithography (μFL) 

Microfluidic system offers a simple and fast way of generating dynamic chemical 
gradients of growth factors, ECM proteins, enzymes, drugs, or other functional 
molecules (Fig. 7.3a). Gradient patterns are formed by injecting multiple solutions 
simultaneously into a channel network, after which the fluid streams repeatedly split, 
mix, recombine, and branch. Finally, a chemical gradient is established in a single 
large channel that is perpendicular to the flow and combines all individual branches 
of fluids. By designing the microchannel network, the slope and shape of the 
gradients are precisely controlled [111, 131]. 

Gunawan et al. injected laminin and collagen solutions into a microfluidic system 
where the streams containing the highest concentration of laminin or collagen were 
in the farthest channel, respectively [14]. Finally, a concentration gradient with 
laminin and collagen in converse direction was formed. The microfluidic system 
also can be used to generate physical gradients. For example, a roughness gradient 
was fabricated on a silicon wafer after etching by an HF concentration gradient 
generated by microfluidic assay. By mixing solutions of unifunctional monomers 
and bifunctional monomers in the microchannels and irradiated under the UV light, a 
stiffness gradient is created [132]. Kilb et al. used microfluidic devices to build stable 
interleukin-8 (CXCL8) gradients with resolutions in the range of microns and 
confirmed THP-1 cells directed migration [133]. Competing gradients could also 
be realized by microfluidic method. Murugesan et al. fabricated an opposing and 
aligned gradients of chemoeffectors (1 mM sorbitol as an attractant and 1 mM NiSO4 

as an inhibitor) and temperature to detect cell migration under complicated environ-
ment [134]. The two-dimensional channel system limits itself to continuous patterns 
within relative small size. 

To overcome this limitation, 3D microfluidic technique is developed using 
several layers of interconnecting channels [135]. It provides a unique platform to 
generate complicate and discontinuous gradients and incorporates multiple biomol-
ecules on one gradient [136]. Takahashi et al. proposed the use of novel microfluidic 
devise produced gradients of pH and oxygen concentration in the extracellular 
medium [137]. 

7.3.1.4 Lithography Techniques 

The microcontact printing (μCP), developed by Whitesides and his coworkers, has 
been widely used for generating self-assembled monolayers (SAMs) for its versa-
tility and highly accurate in nanoscale. Recently, a series of technologies have been 
developed based on μCP, such as decal transfer microlithography (DTM) [138], 
nanotransfer printing (nTP) [125], and metal transfer printing (MTP)



[139, 140]. Kraus et al. produced a chemical gradient by the mass transfer 
microcontact printing because the ink mass transported to the substrate was con-
trolled by the thickness of the stamp (Fig. 7.3b) [112]. Jeon et al. found that the 
surface density of octadecyltrichlorosilane (OTS) was increased by prolongation of 
the reaction time [141]. Inspired by Jeon’s finding, Choi et al. developed a method to 
prepare chemical gradients by changing the contact time. Gradually or stepwisely 
increasing the pressure upon the half ball-shaped elastic stamp results in the increase 
of contact area and correspondingly decreases the contact time from the center to the 
edge. Subsequently, density gradients of OTS were generated. The gradient length 
and slope were easily tuned by the radius and curvature of the elastic stamp 
(Fig. 7.3c)  [113]. Lang et al. prepared a microfluidic network into a silicon wafer 
to deliver protein solutions containing different concentrations of an axonal guidance 
molecule ephrinA5 onto a silicone stamp. In a subsequent μCP step, the protein was 
transferred onto a polystyrene culture dish. In this way, stepwise substrate-bound 
concentration gradients of ephrinA5 were fabricated, spanning a total distance of 
320 μm [142]. Although the patterns generated by μCP are complex and facile, the 
μCP technologies are limited to planar surface [135]. 
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A series of surface patterning techniques which utilize an ultrasharp scanning tip 
(or an array of tips in some examples) have been developed for the fabrication of 3D 
nanostructures on surfaces. For example, Zheng et al. developed dip-pen 
nanodisplacement lithography (DNL), a high-resolution, program controllable, 
solution-free, and diffusion-limited lithography tool for construction of molecules 
on a surface at the nanometer scale [135, 143]. Briefly, an AFM tip inked with 
initiator molecules ω-mercaptoundecyl bromoisobutyrate (MUDBr) was used to 
shave Au surfaces which had been modified with an inert SAM of 
16-mercaptohexadecanoic acid (MHA) at a contact mode. At high load (typically 
larger than 100 nN), MHA molecules were removed by the tip, where simulta-
neously MUDBr molecules were transferred onto the same area of Au surface. 
Finally, poly(2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) 
brushes were prepared via SI-ATRP method (Fig. 7.4a, b). This technique can be 
used to project a 2D feature density array into a 3D surface morphology with 
polymer brushes [144]. For instance, the authors fabricated polymer gradients of 
different shapes. A grayscale image with gradual change of brightness was first 
converted into a bitmap image, where the density of white/black pixels is propor-
tional to the brightness/darkness. Then the bitmap was used as a blueprint for DNL 
patterning, yielding an initiator pattern comprising arrays of initiator nanodots. After 
SI-ATRP, PMETAC brushes were grown from the as-made initiator “bitmap” to 
generate a Mona Lisa’s face (Fig. 7.4c). Xue et al. proposed a novel fabrication 
strategy to introduce ordered nanopattern arrays into gradient biomaterials, through 
combining SI-ATRP and inclined reactive ion etching (RIE) based on colloidal 
lithography [145]. Zhang et al. introduced micropatterns gradient via lithography 
techniques into the inner wall of nerve guidance conduits can effectively regulate the 
behavior of Schwann cells, the elongation of axons, and the phenotype of macro-
phages, thereby aiding the regeneration of injured nerve. The micropatterns were 
created on the PLCL films by a “double replicating template method” [146, 147].
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Fig. 7.4 3D PMETAC brushes fabricated by DNL. (a) Schematic illustration of the DNL process. 
(b) Schematic illustration of obtained nanopatterning of polymer brushes. (c) 3D Mona Lisa portrait 
fabricated by the feature density method. 1 Grayscale image of Mona Lisa’s face. (2) Bitmap image 
converted from (1). (3) AFM topographic view of PMETAC brushes fabricated with DNL and 
SI-ATRP using (2) as guild map. (Reprinted from [144] with permission. Copyright 2011 WILEY-
VCH Verlag GmbH) 

7.3.1.5 Electrochemical Method 

The isoelectric focusing (IEF) technology has been used to develop a concentration 
gradient of charged molecules and then transferred to a desired substrate [148]. In 
the IEF technique, the ampholytes migrate directionally due to the presence of the 
electric field. For instance, positively charged polylysine accumulates around the 
cathode and forms a concentration gradient accordingly. The gradient can be trans-
ferred to a substrate with the assistant of soaked PDMS stamp. This method can be 
applied to various polyelectrolytes including proteins, peptides, and



polysaccharides. The slope of the gradients can be adjusted by both electrical field 
and pH value which determines the charge property of the molecules [149]. 
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Electrochemical techniques based on the oxidation–reduction reaction have also 
been used to prepare thiol gradients immobilized on the gold surface. By applying an 
external electric field, the thiols are reduced and detached from the substrate on the 
region close to the cathode, whereas the thiols are oxidized and remained onto the 
substrate on the region close to the anode [100, 150]. 

7.3.2 Top-Down Technologies 

The top-down approaches are widely used to introduce active sites on inert surface. 
For the inert materials without reactive groups, such as polyethylene (PE), 
polytetrafluoroethylene (PTFE), and polyesters, surface modifications can be 
performed under high-energy sources such as plasma, corona, and UV light 
(Fig. 7.5). They provide a destructive process on the surfaces and generate a lot of 
reactive residues. Chemical gradients can be prepared by spatially altering the 
exposure time or the power of the energy sources. 
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Fig. 7.5 (a) Schematic presentation (side view) of the glow-discharge reactor chamber, with the 
electrodes, sample cover, and sample position. (Reprinted from [151] with permission. Copyright 
1999 Elsevier Science B.V.) (b) Schematic diagram of apparatus for preparation of a gradient on PE 
surfaces by corona discharge. (Reprinted from [152] with permission. Copyright 2008 Elsevier B. 
V.) (c) Scheme of the preparation process of the gradient by a chemical degradation method. (d) 
Remote photocatalytic oxidation of a thiol SAM under a gradient of UV illumination. (Reprinted 
from [153] with permission. Copyright 2007 American Chemical Society)
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7.3.2.1 Plasma Treatment 

The plasma changes substrate by bombarding the surface with high-energy partic-
ulates such as electrons, atoms, ions, and radicals. The etching extent is gradually 
reduced by partly shielding off the reactive particles. Spijker et al. generated a 
gradient surface by using an aluminum shield on the sample, with its slope conve-
niently tunable by changing the distance between the mask and the sample 
[151]. Mangindaan et al. created a wettability gradient on hydrophobic polypropyl-
ene film by plasma treatment under a mask [154]. Various functional groups such as 
amino groups, carboxyl groups, hydroxyl groups, and sulfonic acid groups can be 
introduced onto the substrate by applying nitrogen, ammonia, oxygen, and sulfur 
dioxide plasma, respectively [155, 156]. Polymer gradients can also be created on 
the surface under a shield during plasma polymerization process [157]. Ravi et al. 
fabricated continuous composition gradients in both 2D hydrogels and 3D thermo-
plastic scaffolds with atmospheric pressure plasma jet systems [158]. An improve-
ment in mechanical properties of continuous gradients compared to discrete 
gradients in the 3D scaffolds, and the ability to selectively enhance cell adhesion 
were demonstrated. 

7.3.2.2 Corona Discharge 

The corona discharge treatment is a relative simple and cheap technology to generate 
gradient on the surfaces, as the samples are treated in air instead of in vacuum during 
the plasma treatment. Lee et al. adopted this technology to create various gradient 
surfaces [152, 159–162]. For example, polymer sheets were placed under a knife-
type electrode which was connected to a radio-frequency generator. Carbon radicals 
were produced on the polymer surfaces, forming hydroperoxides, and then 
decomposed into polar oxygen-based groups such as hydroxyl, ether, aldehyde, 
and carboxylic acid group [160]. Gradients with increasing density of functional 
groups can be produced by gradually enhancing power while moving the sample 
with a motorized drive [163]. The radicals also can serve as initiators to trigger the 
surface-initiated polymerization and active sites to immobilize proteins and peptides 
[164, 165]. 

7.3.2.3 UV Irradiation 

Peroxides can be generated on the surfaces under strong UV irradiation [166]. Bin 
et al. produced a gradient with increasing density of carboxyl groups by slowly 
moving the photomask between a UV lamp and polymer substrates [167, 168]. This 
process is efficient and simple which only requires a light source. Besides, 
multicomponent can be immobilized simultaneously. Photolithography is another 
example using light to prepare gradient materials [96, 153, 169]. For instance, the



substrate is firstly covered with a thiol or silane self-assembled monolayer (SAM) 
and then irradiated by a UV light to destroy the organic layer. Blondiaux et al. 
developed a technique by combining a mask with grayscale gradient and titanium 
dioxide (TiO2) remote photocatalytic lithography [153]. The TiO2 layer was placed 
under the mask and the region exposed to UV irradiation produced radicals, which 
diffused vertically and thus locally degraded the organic SAM on the gold surface 
underneath. As a result, a chemical gradient was created with tunable shape and 
length dependent on the masks. 
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Ding et al. generated a cell-laden gradient hydrogel with preprogrammable 
deformation by simply photocrosslinking a mixed solution of a photocrosslinkable 
polymer macromer, photoinitiator (PI), UV absorber, and live cells. Gradient for-
mation was demonstrated in various polymers including poly(ethylene glycol) 
(PEG), alginate, and gelatin derivatives using various UV absorbers that present 
overlap in UV spectrum with that of the PI UV absorbance spectrum. Moreover, this 
simple and effective method was used as a universal platform to integrate with other 
hydrogel-engineering techniques such as photomask-aided microfabrication, 
photopatterning, ion-transfer printing, and 3D bioprinting to fabricate more 
advanced cell-laden scaffold structures [170]. Hao et al. developed a combinatorial 
surface-modified platform with biochemical gradients through thiol-ene “click” 
chemistry by adjusting the intensity of ultraviolet (UV) irradiation [171]. The 
multistep attachment of different molecules onto substrates is archived via the 
multistep UV-initiated thiol-ene “click” reaction. The high-throughput arrays with 
the gradient density of single ligand and the orthogonal gradient density of two 
ligands were rapidly fabricated via the one-step UV gradient irradiation and the 
two-step orthogonal UV gradient-initiated thiol-ene “click” reaction. 

7.3.2.4 Wet Chemistry Etching 

This method was normally applied to the degradable polymers such as polyesters. 
Gao et al. developed an aminolysis technology to introduce amino groups on the 
surface of polyesters, which act as active sites for further functionalization [172– 
175]. Using this method, polymers are degraded progressively by continuously 
immersing into the reactive solution or injecting the reactive solution into a tube 
containing the substrates via a microinjection pump [176]. Tan et al. used this 
technology to construct an amine density gradient on poly(L-lactic acid) (PLLA) 
film [177, 178]. Besides polyesters, the wet chemistry can also be applied to etch the 
polyelectrolyte multilayers which are assembled by the alternative adsorption of 
polycations and polyanions via electrostatic attraction. Generally, etching the mul-
tilayers in a salt solution with a critical high ionic strength will reorganize the charge 
and structure of the multilayers, leading to swell, soften, and even dissolve of the 
multilayers [179, 180]. The chemical composition and related structure of the 
modified multilayers are determined by the salt concentration, which provides a 
simple method to generate gradient multilayers. Han et al. posttreated the poly-
electrolytes multilayers in a gradient NaCl solution with a concentration ranging



from 3 to 5 M, yielding the gradient multilayers with a similar chemistry composi-
tion and surface charge but gradually changed swelling ratio [181]. 
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However, the top-down technologies in general are limited to the types of 
functional surfaces generated and unsuitable to process surfaces with unstable 
biomacromolecules such as ECM proteins and growth factors. Thus, recently the 
bottom-up methods are more widely used or adopted to further functionalize the 
surfaces after introduction of active sites on inert surfaces by the top-down 
approaches. 

7.3.3 3D Gradient Generation Technologies 

The gradients in a 3D matrix are more important because they are more similar to the 
situation in vivo and have the potential application of inducing cell migration in the 
tissue regeneration process. However, the “top-down” and the “bottom-up” technol-
ogies are usually applied to manufacture gradients on material surfaces, not suitable 
or at least needing major modification in a 3D matrix. Up to present, only limited 
technologies have been developed to generate 3D gradients in porous scaffolds or 
hydrogels. 

Several techniques have been developed for fabricating physical gradient with 
gradually changing pore size or porosity in scaffolds, to mimic the graded tissue 
morphology in vivo [112, 113, 141]. For example, Tampieri et al. developed a 
multiple and differentiated impregnation procedure to prepare porosity-gradient HA 
scaffolds [57]. Roy et al. [182] and Woodfield et al. [183] used a 3D printing 
technology to create polymer scaffolds with gradually changing porosity and pore 
size, respectively. Oh et al. developed a centrifugation method to fabricate a 
polycaprolactone (PCL) scaffold with gradually increasing pore size and porosity 
along a cylindrical axis via directional phase separation [184]. Additionally, gradi-
ents with gradually changing microstructure can be fabricated using a temperature 
gradient, based on the heat-induced phase separation [185, 186]. Polyurethane 
copolymers with different block compositions are also good candidates for this 
method, resulted in diverse microphase separation and gradient of 
microstructure [187]. 

It is relatively easier to prepare 3D chemical gradients in hydrogels due to their 
similarity to the solutions. Delong et al. prepared hydrogels with a bFGF gradient by 
diffusing two types of hydrogel precursor solutions (with/without bFGF) [188]. In 
brief, the PEG solution with bFGF was persistently injected into a container having 
PEG solution without bFGF. The two solutions were mixed together and finally 
pumped into a mold where they were exposed to UV light to crosslink the polymer 
network and stabilize the gradient [10, 189]. Xu et al. prepared a semaphorin 3A 
density gradient on MatriGel through diffusion method [190]. Microfluidic and 
diffusion technologies can also be applied to fabricate gradient hydrogels [12–16, 
191]. The 3D stiffness gradient can be generated by spatially controlling the 
crosslinking degree. Wong et al. prepared polyacrylamide hydrogels with gradually



changing modulus by applying a photomask with a grayscale gradient to control the 
polymerization degree under a UV light [192]. Hansen et al. fabricated arrays of 
84 polymer gradients on a single glass microscope slide by inkjet printing, allowing 
a combination of high-throughput and true combinatorial methods. The gradual 
change of composition within the polymer gradients is achieved by using two 
different monomers and a crosslinker [193]. Hubka et al. designed a versatile 
multichannel gradient maker device and created gradients of HS proteoglycan-
derived perlecan/HSPG2 domain I in hyaluronic hydrogels [194]. 
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In contrast to hydrogels, preparation of gradients in porous scaffolds is a bit more 
difficult and usually not precisely controllable. Charu et al. put a droplet of 
EDC-activated protein solution under fibrin scaffolds. Along with the protein solu-
tion diffused upward to the top, a protein concentration gradient was generated and 
covalently immobilized within the 3D scaffolds. This kind of diffusion-based 
method offers good control of gradient slopes by changing reaction time and can 
be extended to conjugate a variety of proteins on different materials [177]. Oh et al. 
prepared PCL/Pluronic F127 scaffolds with gradually increasing growth factor 
density from top to bottom by centrifugation of fibril-like PCL and subsequent 
surface immobilization of growth factors (Fig. 7.6) [195]. Several kinds of growth 
factors such as VEGF165, BMP-7, and transforming growth factor-β2 (TGF-β2) 
were immobilized on the surfaces via heparin binding and reached a density gradient 
due to gradually increasing surface area along the longitudinal direction. The 
released amount of VEGF165 from the cylindrical scaffolds gradually decreased 
along the longitudinal direction in a sustained manner, which allows for a controlled 
spatial distribution of growth factors in a 3D environment. Barry et al. used plasma-
induced polymerization method to deposit a thicker layer of polymer on the scaffold 
periphery than that in the scaffold core, leading to functional scaffolds containing a 
gradient [196]. Hsu et al. proposed an adaptable microporous hydrogel (AMH) 
through microfluidic fabrication based on a unique type of microsized building 
block that spontaneously forms interconnected pores, propagates the gradients of 
neuron growth factors [197]. Li et al. demonstrated a facile method for fabrication of 
continuous gradients of stromal-cell-derived factor-1α (SDF1α) embedded in the 
radially aligned electrospun collagen/poly (ε-caprolactone) mats which showed 
great potential for guiding nerve regeneration [198]. 

7.4 Influences of Gradient Biomaterials on Cell Migration 

Gradient materials are widely considered as an engine to drive orient movement of 
objects such as droplets, particles, and living cells [199, 200]. Whitesides et al. 
presented the first study of a gradient of surface free energy, which drives water drop 
to move uphill. The motion of water droplet was the result of an imbalance in the 
forces due to surface tension acting on the liquid-solid contact line on the two 
opposite sides (“uphill” or “downhill”) of the drop [121]. Although many investi-
gations are taken to correlate cell responses such as adhesion, proliferation,



differentiation, and migration [201–203] to the physical and chemical cues, much 
less studies have been carried out to elucidate the cell migration patterns on gradient 
materials. According to the forms of gradients, there are in general two categories of 
gradients: (1) simple gradients with one dominating signal and one direction and 
(2) complicate gradients with several signals and/or several directions. 
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Fig. 7.6 (a) Schematic diagrams of the successive binding of heparin and growth factor onto the 
fibril surface of the PCL/F127 cylindrical scaffold and the formation of 3D growth factor gradient 
on the scaffold. (b) Gross appearance and fluorescence microscopy images showing the rhodamine-
labeled VEGF165 gradient along the longitudinal direction of the PCL/F127 cylindrical scaffold. 
The VEGF165 immobilized on the cylindrical scaffold is expressed as a red color. (c) Loading 
amount of growth factors (BMP-7, TGF-β2, and VEGF165) immobilized onto the PCL/F127/ 
heparin scaffold sections. The scaffolds show the gradually decreasing concentration of growth 
factors along the longitudinal direction from the bottom position to the top position (growth factor 
concentration gradient scaffolds). (Reprinted from [195] with permission. Copyright 2011 Elsevier 
Ltd) 

7.4.1 The Effect of Simple Gradients on Cell Migration 

The simple gradients can be divided into two categories as well: (1) physical 
gradients with gradually changing physical properties including modulus and



topography and (2) chemical gradients with the spatially changing chemical com-
positions including the density and species of the functional molecules. 
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7.4.1.1 Physical Gradients 

Matrix stiffness has been found to have a severe influence on cell adhesion and 
mobility. Nadia et al. found that cells attached to a rigid substrate exhibited better 
defined cytoskeleton and filament structure [132]. Pelham et al. confirmed that cells 
exhibited higher lamellipodia activity and motility on soft surface due to the 
destabilized adhesion [204]. Cheung et al. used microfluidic-based lithography to 
pattern cell-adhesive hydrogel substrates with microvariations in stiffness. The 
micropatterns are generated by feeding PEG-fibrinogen and various amounts of 
poly(ethylene glycol diacrylate) (PEGDA) into the microfluidic channel. Human 
foreskin fibroblasts respond to the patterned stiffness heterogeneity by migrating 
toward the stiffer regions along the discrete stiffness gradients [205]. Hopp et al. 
gradually immersed poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) 
polyelectrolyte multilayers into 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
(EDC) solution and obtained the gradient multilayers which had an elastic modulus 
ranging from 0.5 MPa at the noncrosslinked end to 110 MPa at the end of the 
substrate crosslinked for 4 h. Human dermal fibroblasts attach better to the stiffer 
regions of the gradient initially and subsequently a higher proliferation rate and 
stronger cytoskeletal development [206]. Thus, the stiffness gradient is expected to 
guide cell migration [192, 207]. Vascular smooth muscle cells were found to 
undergo direct migration on a radial gradient-compliant substrate from soft to stiff 
regions, leading to accumulation of cells in the stiff regions after 24 h. Hartman 
developed and characterized a polyacrylamide hydrogel culture platform featuring 
highly tunable gradients in mechanical stiffness. The results found that vascular 
smooth muscle cells durotaxis relied on the substrates coating proteins, e.g., extra-
cellular matrix composition [208]. Cai et al. reported the strategy of bioinspired 
mechanotactic hybrids taking advantage of underlying 3D printed microstructures to 
remotely manipulate the apparent mechanical attributes of the planar surface of the 
superficial layer, to establish a mechanistic coupling of epithelial migration with 
ECM stiffness alone (Fig. 7.7). The results demonstrated that ECM stiffness alone 
played a key role in manipulating collective cell migration, which was important for 
studying diverse physiology processes including wound healing or cancer 
metastasis [209]. 

Keller et al. prepared photosensitive multilayers and then a continuous surface 
gradient of modulus by photocrosslinking. A7r5 smooth muscle cells exhibited the 
greater sensitivity to both shallow and steep modulus gradients by elongating and 
orienting along the shallow gradient and durotaxing up the steep gradient. U2OS 
osteoblast-like cells only spread and adhered well to the stiffer part of the gradient, 
but did not show obvious directional migration along the gradient [210]. Kuo et al. 
casted polyacrylamide gels on a stiff support with controlled topography, resulting in 
a thin gel layer of variable height. The topographical profiles projected a stiffness



map onto the gel, resulting in controlled linear and nonlinear 2D stiffness gradients. 
Fibroblasts, which migrate toward stiffer substrates, accumulated in areas with a gel 
thickness below 15 μm [211]. 
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Fig. 7.7 Bioinspired mechanotactic hybrids based on cellular tactile mechanosensation. (a) 
Bioinspired mechanotactic hybrids (lower) comprising the microstructured rigid layer and superfi-
cial compliant layer are hypothesized to resemble a physiologically effective interface for modu-
lating cell physiology, such as that of the bone remodeling process (upper). (b) Adherent cells 
translate the gradient thickness of the compliant layer into gradient apparent interfacial stiffness 
based on traction-mediated mechanosensing through actomyosin interaction via focal adhesions. 
The blue dashed line depicts the homogeneous topographical and compositional cues at the 
interface [209]. (Copyright 2016 WILEY-VCH Verlag GmbH) 

Lo et al. studied the mechanism of cell response [64, 212]. Focal adhesion kinase 
(FAK) plays an important role in mechanical stimulation. For an equal amount of 
energy, the counterforce provided by the soft substrate is smaller compared to 
the rigid one. The stronger feedback makes cell adhere stronger and spread better 
on the tough region. Thus, cells migrate directionally through dynamic detecting the 
imbalance in forces from the front to the back [70]. Besides, cell–cell interaction also 
plays an important role in cell migration. Han et al. posttreated the polyelectrolyte 
multilayers in a gradient NaCl solution with a concentration ranging from 3 to 5 M, 
yielding the gradient multilayers with a similar chemistry composition but gradually 
changing swelling ratio [181]. Compared to the random migration with a lower 
speed at a smaller cell density, the vascular smooth muscle cells migrated 
directionally to the low hydration side with higher modulus at an appropriate cell 
density (~1.5 × 104 /cm2 ) under the assistance of cell–cell interactions. The cell 
migration rates on the gradient surface were significantly larger than those on the 
corresponding uniform surfaces with the similar chemical structure and mechanical



property. Both the gradient cues and cell–cell interaction address important influ-
ences on the directional cell migration (Fig. 7.8). 
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Fig. 7.8 Schematic illustration of cell migration on gradient PSS/PDADMAC PEMs with gradu-
ally changing swelling ratio at different cell density. (Reprinted with permission from [181] 
Copyright 2012, Elsevier Ltd) 

Topography, the configuration of a surface, can largely affect the cell migration 
behaviors. Kim et al. created a model substrate of anisotropic micro- and 
nanotopographic pattern arrays with variable local density using UV-assisted capil-
lary force lithography (CFL). They found that fibroblasts attached on the denser 
pattern areas aligned and elongated stronger along the direction of ridges, while 
those on the sparser areas showed a biphasic dependence of the migration speed on 
the pattern density. In addition, cells responded to local variations in topography by 
altering morphology and preferably migrating along the direction of grooves, i.e., 
direction of pattern and increasing pattern density [213, 214]. Mak et al. created 
microchannels with gradually narrowing spaces to study the metastasis process of 
cancer cells penetrating tight spaces within the ECM and during intravasation and 
extravasation through the vascular wall. The highly metastatic breast cancer cells 
(MDA-MB-231) showed a more invasive nature since 87% of the cells migrated into 
the spatially confining region. In contrast, most of the nonmetastatic breast epithelial 
cells (MCF-10A) (75%) were turning around by repolarization [215]. 

Han et al. prepared multilayers with gradually changing stiffness on air-plasma-
treated poly(dimethylsiloxane) membranes, with the pattern direction parallel to the 
gradient. The synergetic effects of the surface topography and swelling gradient can 
effectively guide the unidirectional migration of single smooth muscle cells without 
impairment of their migration rate [216, 217]. 

Although durotaxis—cell migration toward increasing substrate stiffness—is 
well established, it remains unknown whether individual cells can migrate toward 
softer environments. Isomursu et al. used microfabricated stiffness gradients to



demonstrate the directed migration of U-251MG glioma cells toward less stiff 
regions. This “negative durotaxis” does not coincide with changes in canonical 
mechanosensitive signaling or actomyosin contractility. Instead, as predicted by 
the motor–clutch-based model, migration occurs toward areas of “optimal stiffness,” 
where cells can generate maximal traction [218]. 
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7.4.1.2 Chemical Gradients 

Since gradients of extracellular matrix proteins, growth factors, and other signaling 
molecules have already been acknowledged in vivo, many chemical gradients are 
created and used to study their influences on cell migration behaviors in vitro. 
Gradients of synthetic polymers in terms of density, chain length, and chemical 
composition are constructed, in order to provide gradually alteration of hydrophilic-
ity, charge, and eventually cell responses on different positions. Many gradients can 
efficiently regulate cell adhesion, elongation, and polarization; they are in general 
not effective enough to guide directional cell migration. 

The gradients of biological molecules have a stronger influence on cell migration, 
depending on both the absolute concentration and the slope of the concentration 
gradient [219]. As there are two kinds of chemical gradients in vivo, i.e., one bound 
to ECM and the other soluble, the gradient materials are also divided into two 
categories: 

Immobilized Gradients 

The immobilized gradients can be further divided into three subcategories: synthetic 
molecules, ECM proteins (including related peptides), and growth factors. Zelzer 
et al. presented a new diffusion-controlled method to easily prepare chemical 
gradients by plasma polymerization. Surface chemical gradients from hydrophobic 
plasma-polymerized hexane to a more hydrophilic plasma-polymerized allylamine, 
with a water contact angle range of 60–93° over a length of 8 mm, were formed on 
glass coverslips. Fibroblasts adhered and proliferated preferentially on hydrophilic 
end, showing a gradual decrease of cell density toward the hydrophobic end 
[220]. Wu et al. prepared surfaces with various densities of methoxy poly(ethylene 
glycol) (mPEG) brushes to modulate the cell adhesion force: cell adhesion force 
gradually decreases on the surfaces with a higher mPEG density. The migration rate 
of vascular smooth muscle cells increased initially and then decreased along with the 
increase of mPEG grafting mass. The fastest rate appeared on the mPEG brushes 
with moderate grafting mass of 300–500 ng/cm2 [29]. Ren et al. prepared hydro-
philic poly(2-hydroxyethyl methacrylate) (PHEMA) brushes with a gradient 
increase of the molecular weight, which provided a precise control over the density 
of hydrophilic units along the gradient. The gradients were proved to provide a 
gradient of cell adhesion force, which in turn tuned the directional cell 
migration [221].
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Collagen is one of the major proteins in ECM, which can significantly improve 
the cell adhesion and spreading. Fibronectin and laminin are able to mediate the 
communication and movement of cells. These proteins have certain structure 
domains which can bind to the corresponding receptors on cell plasma membrane. 
For example, both collagen and fibronectin contain the peptide sequence of RGD 
(Arg-Gly-Asp), which can bind to integrin subfamily, a kind of transmembrane 
receptors [222, 223]. The specific interaction between the integrin and the receptors 
conveys the external stimuli and transition into cells. Rajagopalan et al. studied the 
effect of Fn and RGD on spreading and motility of fibroblasts [224]. Although the 
migration speed is similar, fibroblasts on Fn-modified surface have higher traction 
force that is directly related to the size of focal adhesion, indicating that Fn has a 
higher affinity toward fibroblasts. Thus, ECM protein density gradients are supposed 
to carry the increasing strength of signal, making the cells polarized and subse-
quently directional migration. Smith et al. prepared fibronectin density gradients on 
gold surface to increase the migration speed of bovine aortic endothelial cells along 
the gradient direction [225]. The same group also reported that human microvascular 
endothelial cells (hMEC) migrated faster on a fibronectin gradient with a larger slope 
in the range of 0.34–1.23 ng Fn/mm3 [103]. Gunawan et al. created linear density 
gradients of laminin by the microfluidic method. Rat IEC-6 intestinal crypt-like cells 
migrated up the gradients with similar rate compared to that on the same local 
laminin concentration on uniform surface. However, cell directedness decreased 
significantly at high laminin densities [14]. Cai et al. prepared a collagen gradient 
on PLLA surface. Endothelial cells on the gradient areas with low and moderate 
collagen surface densities displayed a strong motility tendency, whereas the cells 
grew on the gradient area with a high collagen density demonstrating a reverse 
response to the collagen gradient. The results suggest that cell motility is regulated 
by the collagen gradient in a surface-density-dependent manner [226]. Yu et al. 
prepared an amino group density gradient on poly(e-caprolactone) (PCL) membrane 
surface by a gradient aminolysis method, which was transferred into gelatin density 
gradient by covalent linking with glutaraldehyde. The resulted gelatin density 
gradient ranged from 0.49 to 1.57 μg/cm2 on the PCL membrane. Human vein 
endothelial cells showed preferred orientation and directional migration toward the 
gradient direction with an enhanced gelatin density at the proper position (gelatin 
density), forwarding a new step toward the preparation of applicable gradient bio-
materials in tissue regeneration [227]. 

Usually, a peptide with a functional amino acid sequence of specific proteins can 
be used as an alternative in gradient preparation because of its high stability and low 
molecular weight [228]. Adams et al. placed chick embryo dorsal root ganglia 
(DRG) in the middle of a grid pattern containing gradients of IKVAV peptide, the 
functional sequence in laminin. DRG growth cones followed a peptide path to the 
perpendicularly oriented gradients, and most of the growth cones could turn and 
climb up the gradients [229]. Delong et al. cultured human dermal fibroblasts on 
hydrogels with surface gradients of RGD peptide and found that the cells aligned 
with the gradients and tended to migrate up the gradients [10]. Guarnieri et al. also 
demonstrated that mouse fibroblasts prefer to migrate to the direction of an RGD



gradient on hydrogel surfaces with higher migration rate than that on uniform RGD 
surfaces and increased along with slope of the RGD density gradient 
[230]. Hirschfeld-Warneken et al. found that cells elongated along the ligand density 
gradient with a larger distance [102]. The migration speed of a single cell in response 
to a linear ligand density gradient on a solid substrate as a function of gradient slope 
was theoretically predicted based on a 1D continuum viscoelastic model. The model 
predicts a biphasic dependence of cell migration speed on gradient slope, with a 
maximum speed at an intermediate gradient slope [231]. 
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Besides ECM proteins and their derived peptides, various growth factors are used 
to prepare gradients and study their effect on cell migration. DeLong et al. synthe-
sized hydrogels with bFGF density gradients and observed that smooth muscle cells 
migrated directionally up the gradients toward increasing bFGF concentration 
[188]. Liu et al. found the density gradient of VEGF can induce the directional 
migration of endothelial cells. This guidance effect is further enhanced on the 
combinational gradients of VEGF and FN [232]. Masters et al. found that 
keratinocytes exhibited almost tenfold directional migration on an optimal concen-
tration at EGF gradient compared to that on EGF free surfaces. Immobilization of 
IGF-1 (insulin-like growth factor 1) gradients also accelerated and directed 
keratinocytes migration; however, no difference in migration was found when 
combining EGF and IGF-1 gradients [233]. Schwarz et al. introduced an in vitro 
system allowing to track migratory responses of dendritic cells to precisely con-
trolled immobilized gradients of CCL21, and the findings suggested that stable, 
tissue-bound CCL21 gradients as sustainable “roads” ensure optimal guidance 
in vivo [234]. 

Selective cell migration is required for many important physiological processes. 
For example, unnatural migration and proliferation of smooth muscle cells (SMCs) 
from media to the intima after the damage of endothelium eventually leads to 
atherosclerosis, the leading cause of death and disability. Thus, a Cys-Ala-Gly 
(CAG) peptide density gradient is generated on homogeneous cell-resisting poly 
(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) brushes by immersing the 
brushes in a complementary gradient solution of CAG and competitive mercapto-
terminated methoxyl poly(ethylene glycol) [235]. Furthermore, Yu et al. developed a 
universal modification method for biomaterials based on polydopamine and 
hyaluronic acid, and then REDV peptide was further added onto the MA-HA layer 
via a thiol-ene reaction in a gradient manner [236]. Selective endothelial cell 
adhesion and migration were found on the specific peptide gradient and even 
collective migration could be observed. 

Gradients of Soluble Factors 

Soluble factor concentration gradients which are commonly existed in natural 3D 
environment are also widely used to guide cell migration. For example, Frevert et al. 
developed a gradient of interleukin-8 (IL-8). Single neutrophils preferably migrated 
to the direction of higher concentration of IL-8 at the local concentration up to



200 ng/mL [237]. Besides, bFGF, stromal cell-derived factor-1 alpha (SDF-1α), 
EGF, and VEGF are also used as chemotactic agents [188, 238–240]. Wang et al. 
found that metastatic breast cancer cells could migrate up EGF gradient of nonlinear 
polynomial profile toward a higher EGF concentration [241]. However, there are 
some factors that can inhibit the cell mobility such as transforming growth factor β-1 
(TGF β-1) [242] and angiotensin 1 [243]. 
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7.4.2 The Effect of Complicate Gradients on Cell Migration 

Besides the simple gradients with one dominating factor and/or one direction, there 
are always more complicate gradients exist in nature and generated on biomaterials. 
As expected, these gradients may have different impact on cell migration compared 
to their simpler counterparts. Study of the cell motility on a complicate gradient will 
provide insight into the complex physiological environment that guides and directs 
cell migration. 

7.4.2.1 Gradients with Complicate Shape 

Kidoaki et al. developed custom designed equipment for reduction projection-type 
photolithographic microelasticity patterning. By using the system, they prepared 
microelasticity-patterned gels with square hard domains within a softer surrounding 
gel. The jump in elasticity across the boundary was adjusted by regulating the 
photogelation conditions by varying the photoirradiation power and duration, and 
the boundary width was regulated by controlling the focus on reduction-projected 
images of photomasks (Fig. 7.9)  [244]. The effects of the elasticity jump and 
boundary width were assessed systematically. As a result, the conditions required 
to induce mechanotaxis were found to be a jump in elasticity of a certain threshold 
magnitude (30–40 kPa) and a sufficiently narrow width of the elasticity boundary 
(50 μm), comparable to the adhesion area of a single cell. On the other hand, smaller 
boundary conditions of 3–20 kPa/50 μm did not induce mechanotaxis. Levchenko 
et al. presented a 2D topographically patterned substrate of variable local densities 
and anisotropy in a single substrate as a platform for studying the organization and 
migration of adherent cells. The patterns were fabricated by UV-assisted capillary 
force lithography, which provides a simple and efficient way to construct 
micropatterns with controlled geometry over a large area. They demonstrated that 
fibroblasts can recognize the topographic pattern density gradient, resulting in 
directional migration toward the denser area. The cell shape and velocity were 
largely dependent on the degree of the local anisotropy of the substrate, indicating 
that cells could integrate orthogonally directed mechanical cues on the scale com-
parable to that of the sizes of the native ECM networks [214]. The same group 
prepared a mountain-like fibronectin density gradient and found that Chinese



hamster ovary (CHO) cells moved from both edges toward the center areas of the 
gradient with a higher fibronectin surface density [245]. 
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Fig. 7.9 (a) Schematic representation of the reduction projection-type photolithographic 
microelasticity patterning of styrenated gelatin gel. The resulting gel sample is attached to the top 
of vinyl-silanized glass, and photomask patterns are copied on the bottom of the gel surface covered 
with PNIPAAm-coated glass. The boundary conditions of the elasticity gradient can be controlled 
by raising the lens position and focusing out from the gel surface. (b) Upper photos: phase-contrast 
microscopic images of micropatterned square hard domains with elasticity gradients of different 
boundary conditions. Lower graphs show cell trajectories observed around elasticity boundaries 
with different gradient conditions. The starting positions of each trajectory are indicated by a dot. 
(Reprinted from [244] with permission. Copyright 2011 Elsevier Ltd)
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7.4.2.2 Gradients with Complicate Signals 

Several gradient signals with synergetic or opposite guidance on cell migration may 
merge together. Therefore, it would be interesting and also important to know how 
cell moves under such a complicate environment. Hale et al. designed a polyacryl-
amide hydrogel with a 100 μm interfacial region where the chemical and mechanical 
properties were gradually varied in opposing directions: the stiffer side has a low 
collagen concentration, whereas the softer side has a high collagen concentration. 
The mouse fibroblasts either migrated preferentially toward the high collagen den-
sity and soft side on the gradient or remained on the high collagen density region, 
suggesting that chemical gradient is more powerful than stiffness gradient in 
directing fibroblasts’ movement [246]. Rao et al. studied cell movement in response 
to an epidermal growth factor (EGF) gradient in a gradually tapered space, imposing 
mechanical stresses. The chemoattractant drives cell migration into the narrow 
confines of the tapered channels, while the mechanical gradient clearly alters the 
migration of cells. PC-3 cells, a prostate cancer cell line, prefer to enter the channels 
from the wider to the narrow end. In contrast, PNT1A cells, a normal prostate 
epithelial cell, do not like to enter. The results indicate that the impact of physical 
stress on cell migration patterns may be cell type specific [247]. Mao et al. developed 
a special microfluidic device which has six channels, each with separate inlets for 
cell seeding and cytokine infusion. This device enables the competitive recruitment 
of cells that are simultaneously exposed to multiple cytokine gradients under real-
time imaging, to identify the most chemotactic factors on bone marrow mesenchy-
mal stem cells [248]. 

Wu et al. designed a PEG density gradient surface to drive the directional cell 
migration through the continuously increasing cell adhesion force along the reduced 
mPEG density axis, together with striped patterns at the same direction. The cells 
elongated along the direction of the stripes and the gradient and were separated by 
spacing stripes grafted with dense mPEG brushes. The cell orientation guided by 
striped patterns and polarization imitated by the chemical gradient have a synergetic 
effect on cell movement, leading to a more effective directional migration [249]. Ren 
et al. developed complementary density gradients consist of hydrophilic PHEMA 
brushes and cell anchoring peptides: both gradients provide the same direction 
guidance on cell migration, leading to fivefold increase of cell mobility and very 
high directionality [250]. Chiang developed a microfluidic cell culture device which 
was capable of reliably generating perpendicular chemical and oxygen gradients for 
cell migration studies [251]. Takahashi et al. demonstrated heterogeneous migration 
of the cells into the wound space in such a way that MDA-MB-231 cells preferen-
tially migrated in the direction of higher pH/oxygen concentration [137].
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7.4.3 Cell Migration in 3D Matrix and Possible Application 
in Tissue Regeneration 

The cell migration behaviors as a function of gradients in 3D scaffolds and hydrogels 
have also been demonstrated. Dodla et al. cast dorsal root ganglia in agarose gels and 
prepared laminin gradient by photochemistry after diffusion. The presence of lam-
inin gradients significantly enhanced the rate of neurite extension from the cells 
[252]. Moore et al. prepared PHEMA gels containing concentration gradients of 
NGF and neurotrophin 3 (NT-3), which were immobilized during photocrosslinking 
of the PHEMA [253]. Dorsal root ganglia cells only showed extended neurites along 
gradients of both factors rather than the ones with one factor alone, suggesting a 
synergistic effect. Musoke-Zawedde et al. used UV light micropatterning to fabricate 
RGD peptide density gradients in hyaluronan gels. The gradients were able to guide 
neurite outgrowth from primary neural cells [254]. 

Tampieri et al. [57] prepared ceramic scaffolds containing a gradient in porosity 
and applied them for rabbit femur defects repair. New bone formation was acceler-
ated in the scaffolds at the region with higher porosity. Roy et al. [182] implanted 
polymer/ceramic composite scaffolds containing porosity gradient in rabbit calvarial 
defects. More new bone formation was observed in the high porosity zones than in 
the low porosity zones. Hoffman et al. [255] demonstrated that silk scaffolds 
containing pore size gradients have better performance to induce formation of a 
tissue with a graded morphology. Oh et al. studied the cell/tissue responses to the 
scaffolds with a pore size/porosity gradient in vitro and in vivo. The chondrocytes 
and osteoblasts prefer to migrate in large pore/high porosity part, while the fibro-
blasts prefer to proliferate in smaller pores/lower porosity part of the scaffolds 
in vitro. The best bone formation was found from midrange pore/porosity scaffolds 
after implantation into rabbit calvarial defects [184]. Based on electrospinning 
technique, Sundararaghavan et al. prepared gradients of increasing stiffness and 
RGD peptides’ density along the thickness of fibrous HA scaffolds. The chick aortic 
arch explants had significantly greater cell infiltration into the scaffolds toward 
increasing RGD density gradient than that in the scaffolds with uniform RGD 
distribution [256]. 

7.5 Conclusions and Future Perspectives 

Various top-down and bottom-up technologies have been developed to produce 2D 
and 3D gradient materials with gradually changing physical, chemical, and biolog-
ical properties, mimicking the microenvironments in vivo and proving the possibility 
to guide cell directional migration in vitro. Complicate gradients consist of multiple 
signal gradients, and/or complicate gradient shapes have also been prepared to 
mimic the real environment in vivo. The majority of the current literatures are 
focused on single cell/cell sheet migration on planar gradient surfaces. It is of



importance to study the migration behaviors of cells encapsulated in 3D matrix, 
more closely mimicking the situation in vivo. The gradients in 3D scaffolds or gels 
are somewhat more complicate to fabricate and characterize. More importantly, 
measuring the migration of cells (usually a group of cells rather than single cell or 
cell sheet) encapsulated in 3D matrix is also more challenging. 
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Selective cell migration plays an essential role in many physiological processes. 
Undesired cell migration at the wrong time or place can lead to serious problems 
[19, 257]. For example, after nerve damage, Schwann cells (SCs), the principle glial 
cells that support the survival and function of neurons in the peripheral nervous 
system [258], are required to migrate out and form a tunnel which is able to lead 
damaged neuron to sprout and grow, thus guiding the regeneration of nerves 
[259]. However, fibroblasts in the connective tissue around usually have stronger 
mobility and form scar tissues by secreting collagen-based ECM after injury 
[260]. This will impede the migration of Schwann cells and thus regeneration of 
functional nerve tissue [261, 262]. Therefore, it is very important to design gradient 
biomaterials that are able to specifically guide the directional migration of cells 
required in tissue regeneration. 

Last but not the least, material synthesis techniques should be sufficiently 
advanced to create physiologically relevant gradient materials to fit complex spatio-
temporal phenomena such as tissue morphogenesis. Smart biomaterials incorporated 
with multiple gradient cues inside scaffolds, which mimic the timely cellular and 
structural characteristics of native tissues, could then be created for the regeneration 
of tissues having complex and multiple types of cells. 
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Chapter 8 
Stem Cell Differentiation Mediated by 
Biomaterials/Surfaces 

Hongyan He and Changsheng Liu 

Abstract Directing the differentiation of stem cells into a specific stromal lineage 
such as adipocyte, chondrocyte, fibroblast, myocyte, and osteoblast cell is a key and 
important step for medical uses. However, the uncontrolled and inefficient prolifer-
ative and differentiation behaviors of stem cells are still the significant challenges. 
Since the stem cell fate is strongly determined by the characteristics of the micro-
environment in vitro, the biomaterials/surfaces constructs in two-dimensional or 
three-dimensional (3D) artificial structures could offer the several biological, 
mechanical, and chemical cues to modulate the cellular proliferation, and most 
importantly lineage particular differentiation. Besides these regulation cues, adding 
growth components existing in the ECM also holds the potential for guiding the stem 
cell fate in vitro. Therefore, this chapter aims to provide an update on the influencing 
cues that are being explored to govern stem cell fate, with a focus on the differen-
tiation of bone marrow-derived mesenchymal stem cells (MSCs). The factors 
discussed here include topography, porosity and pore size, stiffness, hierarchy 
structure, chemical properties, and genetic factors. 

Keywords Stem cells · Bone marrow-derived stem cells · Differentiation · Artificial 
extracellular matrix · Growth factors 

8.1 Introduction 

As one of the greatest discoveries in the biomedical field over the last century, stem 
cells have the remarkable potential to develop into different cell/tissue types in the 
body under the proper conditions during early life and growth [1, 2]. In addition, 
stem cells are capable of serving as a sort of internal regenerating/repair system in 
many tissues, dividing essentially without limit to replenish other cells as long as the
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person or animal is still alive [3]. Because of these unique capabilities, stem cells 
have absorbed a great interest for regenerative medicine and tissue engineering 
[4, 5]. Typically, stem cells are divided into embryonic stem cells (ESCs) and 
adult stem cells (ASCs). ESCs are pluripotent stem cells derived from the inner 
cell mass of blastocysts, and able to differentiate to generate primitive ectoderm, 
which ultimately differentiates into all derivatives of the three primary germ layers: 
ectoderm, endoderm, and mesoderm [6, 7]. Meanwhile, ASCs are multipotent cells 
derived from adult somatic tissues with the potential to differentiate into many 
specific cell types [8]. In comparison with ASCs, ESCs can generate all cell types 
in the body and have long-term self-renewal capacity. In another words, ESCs are 
capable of propagating themselves indefinitely in an undifferentiated state under 
defined conditions, and generating almost all mature cell phenotypes [9], allowing 
ESCs as useful resources for basic research and clinical applications [7]. Recently, 
human ESCs have been produced and approved for use in a very small number of 
early clinical trials. However, ESC research still needs to face the challenges 
including ethical considerations, safety issue of ESCs, and a higher risk of 
tumorigenicity [10].
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With the development of cell biology and biotechnologies, many researchers 
have tended to develop ASC-based therapies for regenerative medicine and tissue-
engineered applications. Generally, ASCs can be isolated from several sources 
including body itself (i.e., brain, bone marrow, blood vessels, and other organs 
and tissues), amniotic fluid, pluripotent stem cells, and other ASCs [11]. Over the 
last decade, it has become essential to better understand how to direct the differen-
tiation fates of stem cells into a specific stromal lineage. However, the uncontrolled 
and inefficient proliferative and differentiation behaviors of stem cells are still the 
significant challenges for medical uses. Since the stem cell fate is strongly deter-
mined by the characteristics of the microenvironment in vitro, the biomaterials/ 
surfaces constructs in two-dimensional or three-dimensional (3D) artificial structures 
could offer the several biological, mechanical and chemical cues to modulate the 
cellular proliferation, and most importantly lineage particular differentiation. 
Besides these regulation cues, adding growth components existing in the ECM 
also holds the potential for guiding the stem cell fate in vitro. Therefore, this chapter 
aims to provide an update on the influencing cues that are being explored to govern 
stem cell fate, with a focus on the differentiation of bone marrow-derived mesen-
chymal stem cells (MSCs). The factors discussed here include topography, porosity 
and pore size, stiffness, hierarchy structure, chemical properties, and genetic factors. 
The emphasis of discussion will be placed on the influence of these factors to govern 
stem cell fate. This chapter aims to highlight the successful strategies and the 
mechanisms to control stem cells fate for regenerative medicine and tissue 
engineering.

https://en.wikipedia.org/wiki/Blastocyst
https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Phenotype
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8.2 Mesenchymal Stem Cells and Alternatives 

Mesenchymal stem cell (MSCs), or marrow stromal cell, are the most popular types 
of ASCs for medical research and clinic uses. These types of stem cells are usually 
isolated from bone marrow, and also derived from nonmarrow tissues, such as 
placenta, umbilical cord blood, adipose tissue, adult muscle, corneal stroma, or the 
dental pulp of deciduous baby teeth [12, 13]. MSCs are multipotent stromal cells that 
can differentiate into a variety of cell types, including osteoblast, chondrocytes, 
myocytes, and adipocytes [8, 14]. Numerous studies have demonstrated that MSCs 
have great differentiation capacity and immunomodulatory functions [15]. For cell-
based therapies, MSCs indeed display several advantages over embryonic or 
induced pluripotent stem cells: easier isolation via autologous ways, don’t require 
rigorous conditions in vitro, a low risk of tumorigenicity [16]. Summing up the 
increasing research activities over the last decade, MSCs have the clinic perspectives 
to replace cell tissue that has been damaged or destroyed in treating cancers, 
neurological disorder, autoimmune disease, and orthopedic applications [17, 18]. 

8.3 Biomaterials as an Artificial Extracellular Matrix 

8.3.1 Extracellular Matrix 

The integration of material science and molecular cell biology has shed new light to 
the interaction and communications between cells and materials, from a more 
extensive and profound perspective [19–21]. Over the past decades, scientists have 
noticed the bidirectional relations between cells and materials. Cells can alter the 
physical or chemical properties of materials through secreting cytokines or other 
chemical cues. In addition aspect, surrounding materials (especially the surface of 
materials) can determine the temporal and spatial coordination of numerous cell fates 
by inducing a myriad of signals [19, 22]. Particularly, in the field of tissue engineer-
ing or regenerative medicine, it is of great interest to utilize the close interaction 
between cells and materials to design materials that may facilitate the ingrowth and 
differentiation of cells or induce morphogenesis in constructed tissues. Among all 
materials, extracellular matrix (ECM) can serve as the best candidate due to its high 
similarity to original organs or tissues, biocompatibility and bioactivities. The main 
advantage of ECM as a scaffolding material is its realization for so-called construc-
tive remodeling, that is, it supports and encourages specific tissue formation at the 
implantation site rather than forming inferior and less functional scar tissue [23]. 

Naturally, extracellular matrix is a combination of macromolecules that are 
synthesized and secreted by cells. Such macromolecules are usually distributed on 
the surface of cells or around different cells, comprising a delicate and complicated 
network to support and connect the tissue structure and adjust the physiological 
behaviors among cells. Typically, extracellular matrix could be classified into three



groups: glycosaminoglycans, structural proteins, and adhesives (shown in Fig. 8.1) 
[24]. Glycosaminoglycans or proteoglycan can form hydrogels, encapsulating var-
ious matrix components. Structural proteins, such as collagen and elastin, can ensure 
the strength and flexibility of ECM. Meanwhile, the adhesives including fibronectin 
and laminin can promote the adhesion of cells onto ECM. 

310 H. He and C. Liu

Fig. 8.1 Schematic structure of extracellular matrix 

ECM provides the foremost function as structural support to cells, it also bestows 
an optimized environment by providing sites for cell adhesion, creating soluble 
factor gradients and forming interfaces between different cell types within a tissue. 
Take an example, three-dimensional ECMs in tissue engineering are employed to 
construct new natural tissues from isolated cells (i.e., stem cells). The ECMs 
encapsulating stem cells can facilitate the inflow of nutrients, and ensure the 
mechanical stability of the local environment for the seeded cells to form specific 
gene expression [25]. 

Many researchers have revealed that tissue formation, function and regeneration 
depend on the interaction of numerous individual cell-fate processes, each of which 
is induced by an array of signals originating from the extracellular environment. 
Thus, the cell-fate processes would be directed or guided by controlling the ECMs 
surrounding each cells and comprising the molecular signals. The important com-
ponents in ECMs include: (1) insoluble natural matrix molecule (collagen, laminin, 
elastin, or fibronectin), (2) soluble macromolecules (growth factors, chemokines, 
and cytokines), and (3) proteins on surfaces of neighboring cells (cadherins) 
[19]. The ultimate fate of a cell to proliferate, differentiate, migrate, apoptose, or 
perform other specific functions is a coordinated response to the molecular interac-
tions with these ECM components. For stem cell, cell fate is influenced by such



coordinated interaction of soluble factors, extracellular matrix and signals from 
neighboring cells. Specific binding of signal molecules with cell–surface receptors 
induces complex intracellular signaling pathways with subsequent effect on gene 
expression, self-renewal, morphogenesis, and differentiation [25]. 
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8.3.2 Natural ECM and Artificial ECM 

According to the material sources, extracellular matrix could be classified into two 
categories: natural derived ones and synthetic ECMs [26]. Take a natural example, 
collagens are purified protein components separated from animal or human tissues. 
Such biologically derived materials can be desired carriers to embed cells, and then 
be grafted into tissue defects or induce regeneration and remodeling due to potential 
advantages of specific cell interactions. Since natural ECM-derived biomaterials are 
highly biocompatible, a number of them have been already approved by FDA for 
clinical applications. Apart from the compatibility, natural-derived ones still pre-
serve inherent properties of biological recognition originated from the animal source, 
such as receptor-binding ligands and susceptibility to cell-triggered proteolytic 
degradation and remodeling. Those cell-recognizable receptors are able to improve 
integrin-dependent interaction, and some of them (i.e., carbohydrates) can act as the 
specific ligands to recognize the surface molecules of the cells (e.g., galactose, a 
specific ligand for asialoglycoprotein receptor on hepatocytes) [27]. However, there 
still exist limitations for natural ECM-derived materials. First, the quality of the 
natural products depends on the animal source and the manufacturing process. They 
might have instable properties and suffer from batch-to-batch variations. The quan-
tities of the natural ECM materials are not enough to meet the application needs 
because of the complexities associated with purification. Secondly, the natural 
ECM-derived materials cannot meet the mechanical requirements for some specific 
clinical applications. Commonly, such materials show lower mechanical strength 
and are only suitable for soft-tissue repairing. Moreover, natural biomaterials might 
have potential risks in immunogenicity issues and pathogen transmission. 

In order to solve these issues above, synthetic biomaterials are designed and 
prepared to meet the requirements chemically and biologically. The past few years 
have witnessed the rapid development of synthesized biomaterials as artificial 
extracellular matrix for biomedical applications and clinical use. Compared to 
naturally-derived ones, synthetic biomaterials can be manufactured reproducibly 
on a large scale and have great flexibility in tuning their microstructure, mechanical 
properties and physiological properties. However, synthetic materials show poor 
capability of cell recognition in general. Therefore, the biomaterials as artificial 
ECMs for engineering tissues have to follow several criterions. The materials should 
facilitate the localization and delivery of imbedded cells to the specific sites in the 
body, while maintaining the structural stability. Moreover, the material should 
possess molecular cues, mimicking different aspects of natural extracellular matrix 
and guiding the cell behaviors. To achieve these favorable effects, different



functional components should be introduced on/into the artificial ECMs. The most 
important components could be integrin-dependent ligands (i.e., collagen, laminin, 
or fibronectin), cell–cell adhesion molecules (i.e., cadherins or ICAM), binding sites 
for growth factor proteins (i.e., BMP-2, HGF, and VEGF) or small molecules (i.e., 
drugs or hormones), which allows the easy accessibility to cells and ligands for 
endocytosis. 
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Nowadays, a wide range of synthesized materials have been developed to mimic 
extracellular matrix with many functions including cellular 3D architecture, mechan-
ical integrity to the new tissue, and the space for the diffusion of nutrients and 
metabolites. In general, such biomaterials could be divided into synthesized 
hydrogels, degradable polymers, or polypeptides and recombinant artificial ECM. 

8.3.2.1 Synthesized Hydrogels 

Typically, synthesized hydrogels have similar characteristics with natural ECM in 
biocompatibility and suitability for cells to survive. These useful materials have 
already gained much attention in the field of biological application and clinical use. 
The crosslinked and hydrophilic polymers with controllable microstructures can be 
beneficial for tissue-like viscoelasticity, oxygen transportation and nutrients flow. 
Rape et al. [28] have prepared light-modulated hyaluronic acid hydrogels that 
enables imposition of mutually independent and spatially continuous gradients of 
ligand density and substrate stiffness, which facilitated the MSCs for 
mechanosensitive differentiation. Another study from Yosi Navaro [29] reveals 
that modification of matrix stiffness will have great influence on the ability of 
cultured stem cells to proliferate, survive, and differentiate into mature cells. 

In particular, when cells are encapsulated in three-dimensional hydrogels, the 
whole biomaterial is highly similar to extracellular matrix in our body. It has been 
reported that photopolymerizable polyethylene glycol (PEG) derivatives have been 
used as tissue engineering scaffolds for synthetic ECM analogs by Brenda K. Mann 
and his colleagues [30]. The materials highly resembled the natural ECMs and 
demonstrated the excellent performance for biocompatibility. However, most syn-
thesized hydrogels lack essential biological cues to induce favorable cell behaviors 
and cannot be biodegradable. Therefore, a number of biological sites are incorpo-
rated in the hydrogels, such as cell adhesion ligands, proteolytic susceptible ligands, 
and growth factors. Meanwhile, proteolytically degradable peptides or enzymatic 
degradable groups are also introduced to improve the degradability. As reported by 
Elena Cambria, sortase-mediated ligation was used to conjugate human epidermal 
growth factor grafted to a GGG ligation motif (GGG-EGF) to PEG hydrogels 
containing the sortase LPRTG substrate, promoting biological activity [31]. It is 
noted that the cell-containing hydrogels must be prepared under mild conditions so 
as not to cause the loss in cell viability or subsequent cell behaviors such as cell 
adhesion, migration and differentiation.
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8.3.2.2 Degradable Polymers 

Degradable polymers are also widely used as artificial ECMs. Since the physical and 
chemical properties of biodegradable polymers can be easily turned by controlling 
the synthesized conditions, or choosing the functional monomers, the degradable 
polymers can be designed to match the requirements of many medical applications. 
Compared to other materials, degradable polymers can be easily modified on 
surfaces for further functionalization through grafting or anchoring. 

Polyesters are one of the degradable polymers that are commonly employed as 
artificial ECMs, including polyglycolic acid (PGA), poly(L-lactic acid) (PLLA) and 
copolymers of poly(lactic-co-glycolic acid) (PLGA). All of these materials have 
already been approved by FDA for various biomedical applications and clinical use. 
The ester bonds in the polymers enable them to degrade through hydrolysis and the 
degradation rate could also be adjusted by changing the number of ester bonds 
during synthesis process. Meanwhile, polyesters have better mechanical strength 
than hydrogels or naturally-derived ECMs and thus can be applied in hard tissue 
repairing. For instance, nanofibrous PLLA scaffolds have been reported to show the 
similarity to the structure of natural collagen fibers and create a more favorable 
microenvironment for cells to survive [32]. Beside the advantages above, typical 
degradable polymers further need the introduction of biomedical cues stimulating or 
responding to the cells. Therefore, growth factors or bioactive domains have been 
incorporated in/onto polymers to endow the materials with ability to recapitulate 
natural ECMs. For instance, RGD peptides (three letters which stand for arginine, 
glycine and aspartic acid respectively), are widely employed in the modification of 
polymers to promote cell adhesion, since the surface density, spatial arrangement as 
well as integrin affinity and selectivity of RGD peptide influenced cells responses 
like adhesion and migration [33]. 

Amino-acid-based polymers are also degradable polymers employed as artificial 
extracellular matrix. With the development of the synthesized poly(amino-acid), 
such new biomaterials have been increasingly used for medical uses in recent years. 
Compared to other polymers that need further modification or functionalization for 
biomedical cues, amino-acid-based polymers naturally preserve the ability to build 
the interactions with cells. It is worth noting that certain manipulations on subse-
quent cell behaviors could be achieved by precisely determining the amino-acid 
orders and well-defined molecular architecture. For example, Girotti and coworkers 
incorporated elastin domains, lysines, and fibronectin CS5 domains containing well-
known cell attachment sequence REDV into one single polymer, promoting cell 
proliferation activity, angiogenesis and other bioactivities of interest for tissue 
growing, repairing and healing [34]. Yihua Loo and his group reported a novel 
peptide bioinks for 3D printing in tissue repairing applications [35]. The artificial 
ECM contained lysine hexapeptides, which could self-assemble into stable, 
nanofibrous three-dimensional hydrogels with excellent stiffness of up to 40 kPa. 
These biocompatible scaffolds supported the three-dimensional culture of human



stem cells and differentiation of primary cells into organotypic (gastrointestinal and 
skin) structures. 
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8.3.2.3 Recombinant Artificial ECM 

Hydrogels and degradable polymers have showed unique properties although some 
mechanical limitations. Most inorganic materials such as ceramics possess great 
mechanical property, but are limited in terms of fragility, poor degradability and lack 
of bioactive sites. Recently, recombinant artificial ECM materials have been devel-
oped to combine the advantages of degradable polymers, natural saccharides and 
even inorganic materials. For example, sericin-loaded electrospun nanofibrous com-
posite scaffold composing cationic gelatin, hyaluronan and chondroitin sulfate and 
selected glycosaminoglycans (GAGs) were developed to mimic the extracellular 
microenvironment for dermal tissue applications [36]. Within the composite, the 
gelatin functioned as the structural support, hyaluronan, chondroitin sulfate and 
GAGs as naturally-derived ECM composites for cell adhesion and proliferation, 
while sericin served as promoter for subsequent differentiation of hMSCs. More-
over, it was revealed that the electrospun scaffold with multiple compositions could 
promote epithelial differentiation of hMSC in terms of several protein markers and 
gene expression of some dermal proteins. 

With the deep understanding about the signals and the underlying pathways 
regulating stem cell fate, adult stem cells have been demonstrated the residence 
within specific extracellular regulatory microenvironments, consisting of a complex 
mixture of soluble and insoluble, short- and long-range ECM signals. These multi-
ple, local environmental cues are integrated by cells that respond by choosing self-
renewal or a pathway of differentiation. Synthesized artificial ECMs could facilitate 
the formation of damaged tissues, homeostasis and regeneration by offering suitable 
stem cell niches for stem cells to differentiate to favorable lineages. As we can see, 
great emphasis could be placed on the precise control of stem cell fate through the 
careful regulation of synthesized artificial ECM materials. The design of synthetic 
materials mimicking natural stem cell microenvironments may be a potentially 
powerful tool to understand and control stem cell function. A great number of 
artificial ECMs have been developed to explore the interaction between the materials 
and stem cell fate control. Synthetic extracellular matrix either made hyaluronic acid 
(HA) [37] and gelatin or HA hydrogels [38] showed the improved differentiation of 
MSCs and superior integration of the repair tissue. Kraehenbuehl’s group also 
demonstrated that the synthetic three-dimensional ECM based on 
metalloproteinase-sensitive PEGs could direct differentiation of pluripotent 
cardioprogenitors [39]. 

With certain biological cues incorporated into the material, together with the stem 
cells, the artificial ECMs could mimic the natural ECM while possessing better 
performance in mechanical and degradable properties, reproducible large-scale 
production, and good processability. Therefore, great challenges still remain in the 
control over dynamics and spatial organization of presentation of multiple signals



due to the intricate and complicated structure of natural ECMs. As to the signals, the 
number of molecules that may have great impact on the cell behaviors is still 
underexploited. As for the materials, novel materials that have better spatial and 
hierarchical orders are still needed to upgrade the current materials. Hopefully, with 
the joint efforts from the scientists of different fields, new generation of artificial 
ECMs will soon appear and bring benefits to tissue engineering and regenerative 
medicine. 
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8.4 The Influence of Biomaterials/Surfaces on Stem Cell 
Differentiation 

8.4.1 Surface Topography 

Cell interactions with the surrounding extracellular matrix (ECM) play an important 
role in regulating cellular behaviors. It has widely appreciated that the properties of 
this cell–ECM interface—chief of all is surface topography—must mimic those of 
native ECM to appropriately guide cell function. Recent advances in biomaterial 
surface engineering have shown that surface biomechanical, spatial and topograph-
ical properties can elicit control over fundamental biological processes such as cell 
shape, proliferation [40, 41] and differentiation [42–44]. The modification of topol-
ogy is critical in controlling cellular functions by designing surfaces as well as 
creating different topological cues to control cell adhesion and hence differentiation. 

8.4.1.1 Surface Structure and Two-Dimensional Organization 

Currently, several surface topographical cues in scaffolds with two-dimensional 
structure, such as surface roughness or various kinds of micro/nanoscale topogra-
phies of materials, have been shown in vitro or in vivo to guide marrow stem cell 
differentiation toward osteogenesis and sustain bone ingrowth. For example, Ana 
B. et al. [45] prepared surface roughness gradients of average roughness 
(Ra) varying from the submicron to the micrometer range (~0.5–4.7 μm), and 
mean distance between peaks (RSm) gradually varying from ~214 μm  to  33  μm. 
Their study demonstrated that optimal surface roughness (Ra ~2.1–3.1 μm/RSm 

~71.1–48.1 μm) promoting faster osteogenic commitment and strongest osteogenic 
expression. It has also been suggested from in vivo studies that controlling surface 
roughness is one of the most important parameters governing osteointegration 
[46]. In that regard, roughness topography may mimic the physical cues left by 
osteoclast activity on bone surface morphology during bone resorption [47]. Further-
more, the surface roughness increases the surface area of the implant material, 
allowing greater initial matrix deposition and earlier bone ingrowth [48].
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Fig. 8.2 (a) Schematic showing the strategy of the tMP bioactive surfaces which are intended to 
enhance focal adhesion (FA) and actin polymerization (AP) by the surface modification; (b) 
schematic showing preparation of the tMP surfaces which are intended to enhance FA and AP; 
(c) phase contrast images of cells cultured on the prepared substrates 24 h after seeding 
[50]. (Reprinted with permission from Elsevier Ltd. 2013) 

Apart from surface roughness, there are a variety of micro- or submicrosurface 
topologies. Liu and his group [49] reported that biomaterial microtopography 
induced indirect mechanotransduction and thus osteoblast differentiation. As 
shown in Fig. 8.2, Chang Ho Seo et al. [50] upregulated the osteogenic differenti-
ation of mMSC by culturing on the tailor-made micropit (tMP, 3 × 3  mm2 ) surfaces 
that enhanced focal adhesion (FA) and (actin polymerization) AP of the cells. As 
shown in Fig. 8.2c, the cell on the flat surface was spread with broad lamellipodium 
and little traction force. On the contrary, the cell on the tMP surface significantly 
shrank and had a relatively strong traction force in the central direction which is 
important for signaling activation correlated with the cell differentiation. Wang et al. 
[51] investigated the effects of grooved topography on the differentiation of MSCs 
into osteoblasts, adipocytes and myoblasts regarding the late markers. In their study, 
a series of submicron-grooved surfaces with groove-to-ridge ratio of 1-to-1 (groove 
width/depth (nm): 450/100, 450/350, 900/100, and 900/550) was fabricated, the 
result of differentiation of MSCs into different lineages, especially osteogenesis is 
that the two deep grooved substrates (450/350 and 900/550) were increased to a level



compared to that on the flat surface, and significantly higher than those on the 
shallow surfaces (450/100 and 900/100). 
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These methods of controlling cell attachment, shape and then differentiation by 
surface topography have shown that MSCs have the remarkable ability to switch 
between becoming fat and bone cells based just on their ability to spread on a surface 
and contract against it. Well-spread cells express calcifying bone proteins common 
in osteoblasts in a manner that is dependent on the cell’s ability to apply traction to 
the material. On the other hand, poorly-spread cells develop large lipid deposits 
typical of adipocytes and are limited in their spreading and tension generation. 
Besides traction force, another distinct impact of these micropit/micron-grooved 
substrates on cell behavior is formation of focal adhesions and F-actin. Several 
studies indicated that micropit or submicron-grooved substrates enhanced the for-
mation of actin filaments and focal contacts compared with plain surfaces, and the 
enhancement was positively correlated with pit/groove depth [52]. It has been 
suggested that both the formation of focal adhesions and F-actin is correlated to 
the differentiation of MSCs [53–55]. 

8.4.1.2 Designing Surface Topology for the Third Dimension 

Inspired by these previous investigations in two-dimensional biomaterials, surface 
topology in three-dimensional scaffold with hierarchical structures and its distribu-
tion should also have direct or indirect effects on osteoblast maturation as well as 
MSC osteogenic differentiation, presenting different effect from two-dimensional 
surface. Due to the restriction and difficulties of fabrication of surface topologies 
with uniform distribution and different morphology on the highly interconnected 
hole wall of the three-dimensional material, majority existing surface modification in 
metal or polymer materials stayed in two-dimensional level rather than in three-
dimensional scaffold. Thus, subsequent smart designs should incorporate 3D struc-
tures, which more closely mimic native ECM and may guide cell shape and 
differentiation to improve the generative function of an engineered tissue. 

To mimic the hierarchical porous architecture and specific biological cues of 
natural bone, Wei Tang et al. [56] developed a trimodal macro/micro/nanoporous 
scaffold (Fig. 8.3) with the mesoporous bioglass (MBG). Comparing with the BMS 
(2D MBG), the TMS (3D MBG) exhibited inspiring properties in terms of 
osteoconductivity, osteoinductivity, recombinant human bone morphogenetic 
protein-2 (rhBMP-2) delivery, and biodegradability. 

Gwendolen et al. [57] analyzed the reason why stem cells are liable to differen-
tiate on substrate in 3D microenvironment. The cell “feels” the structural properties 
of the biomaterial surrounding it depending strongly on biomaterial structure. As 
shown in Fig. 8.4, a microporous foam where the pore size greatly exceeds the cell, 
effectively presents a flat or slightly curved substrate to the cell as it adheres to a strut 
(Fig. 8.4a, top). By only attaching its basal surface to the material, 
mechanotransduction mechanisms of the cell may be similar to those already 
elucidated on planar substrates where large forces are observed on stiff strut



materials (Fig. 8.4b, large arrows). Intriguingly, micropatterns that induce cell 
curvature on surfaces as well as micropores of varying size within a scaffold appear 
to directly regulate force production in stem cells, indicating that there may exist a 
gradual transition from a highly tensed, spread cell to a low tension, more rounded 
cell that contacts the material in all dimensions (Fig. 8.4a, b, bottom). If the pore size 
is too large the cell can only spread on a strut of the scaffold in a manner similar to 
planar materials, the cell’s environment is then dominated by the scaffold’s stiff 
mechanical properties and forces are large (big arrows). On the other hand, when 
porosity is small and the cell can attach in three dimensions, the force developed will 
be smaller (smaller arrows), more likely resulting in differentiation. 
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Fig. 8.3 (a) Design of trimodal macro/micro/nanoporous scaffold loaded with rhBMP-2; (b) 
Schematic illustration of preparing trimodal MBG scaffold (TMS) [56]. (Reprinted with permission 
from Elsevier Ltd. 2015) 

8.4.1.3 Regulation of Stem Cells by Surface Nanotopography 

As discussed earlier, the microenvironment that cells contact with can be a potent 
regulator of adhesion and differentiation. In addition to macroscale surface topology 
all of the above, cells also have the ability to sense nanoscale geometric cues from 
their environment. Recent findings show that mammalian cells do respond to 
nanoscale features on synthetic surfaces [58, 59]. In the respect of stem cells 
adhesion, Yim et al. [60] demonstrated that nanotopography alone can upregulate



the neuronal markers of hMSCs. Another group has also demonstrated the important 
roles of topography in one-dimensional and three-dimensional cell migration 
[61]. Evelyn Yim et al. [53] designed a type of nanotopography as shown in 
Fig. 8.5 that modulated cell behavior by changing the integrin clustering and focal 
adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell 
mechanical properties. 
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Fig. 8.4 3D Scaffold parameters influence stem cell contractility and differentiation 
[57]. (Reprinted with permission from Elsevier Ltd. 2009) 

In terms of stem cells differentiation, one impressive report from Dalby et al. [62] 
demonstrates that the use of nanoscale disorder with a diameter of 120 nm are able to 
induce hMSCs to produce bone mineral and osteogenic differentiation in vitro, in the 
absence of osteogenic supplements. This approach of scaffold materials stimulating 
stem cell differentiation had similar efficiency to that of stem cells cultured with 
osteogenic media. Zhao et al. designed series of hierarchical micro/nanotextured 
topographies (MNTs) combined with micropitted and nanotubes topography 
(as shown in Fig. 8.6). They provided that the combined topography was more 
similar to the extracellular matrix (ECM) of natural bone and exhibited more 
pronounced effects on MSC osteogenic differentiation as well as osteoblast matura-
tion [63, 64]. 

The micro- and nanoscale surface topographical modification is widely applied to 
enhance properties of biomaterials and regulate cell osteogenic differentiation. the 
underlying mechanism is also widely explored. Liu et al. [49] propose that the



surface topography modulates cell differentiation via mechanotransduction of direct 
and indirect. As shown in Fig. 8.7, N-cadherin may be important in the process of 
topography inducing indirect mechanotransduction as well as regulating the 
β-catenin signaling. In Fig. 8.7a, the microtopography downregulates the 
N-cadherin expression leading to higher β-catenin signaling and consequently oste-
oblast differentiation, whereas the nanotopography significantly upregulates the 
N-cadherin expression resulting in reduced β-catenin signaling activity and thus 
depressed differentiation. As shown in Fig. 8.7b, N-cadherin can cut down the 
β-catenin at the cell–cell adhesion site and interact with the Wnt coreceptor LRP5/ 
6. Inhibiting the Wnt/β-catenin signaling results in negative regulation of the 
β-catenin. 
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Fig. 8.5 (a) Scanning electron micrographs of gratings with 350 nm line width and 700 nm pitch 
(350 nm gratings), and 500 nm line width and 1 mm pitch (500 nm gratings); (b) Atomic force 
micrograph (AFM) of 350 nm gratings on TCPS [53]. (Reprinted with permission from Elsevier 
Ltd. 2009) 

In this regard, the control of surface topography in engineered constructs has 
proven to be a valuable tool in guiding the commitment and development of stem 
cells. Importantly, the ability to modulating variety of surface topologies that, 
through physical as well as molecular interactions, enable undirected or directed 
control of stem cell behavior may further enhance our capabilities in engineering 
functional tissue substitutes. By controlling the nanotopography and 
microtopography of tissue engineering scaffolds in two/three dimension, we may 
further improve the regulation of stem cell fate in bioartificial systems. Such 
significant advances shown in these in vitro studies emphasize the importance of a 
multidisciplinary approach for the use of stem cells in the development of engineered 
tissue substitutes, and may lead to enhanced biomaterial clinical performance.
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Fig. 8.6 SEM pictures showing the morphology of the fabricated samples [63]. (Reprinted with 
permission from Elsevier Ltd. 2014) 

8.4.2 Porosity and Pore Size 

Porosity is a parameter that refers to fraction of the gel volume filled with liquid 
phase, which is the volume of voids around matrix scaffold molecules per unit 
volume of the gel. Pore size is a very different parameter, which, unlike porosity, 
directly refers to geometry of pores. Cell adhesion and motility depend on size of the 
pores, rather than porosity. Mean pore size has correlation with porosity for many 
synthetic polymers of simple composition. However, for natural polymers like



collagenous gels, there is no direct correlation, since the diameter of collagen fibrils 
can vary from few nanometers to a few hundred nanometers [65]. 
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Fig. 8.7 Illustration of the detailed N-cadherin/b-catenin signaling in the micro/nanotopography-
induced mechanotransduction [49]. (Reprinted with permission from Elsevier Ltd. 2011) 

Porosities of scaffolds are the prerequisite for permeability in vitro and in vivo. 
Scaffolds matrix act mostly as media for fluid flow, diffusion, and cell migration 
[66]. Permeability of ECM defines accessibility of small molecules (nutrients, 
hormones, and oxygen), large molecules (e.g., that is function of basement mem-
branes), cell processes (e.g., axons), or cells (vascularization). Permeability of ECM 
to cell migration is important for regenerative processes. Poor permeability for cells, 
such as in scarred tissues, results in poor regeneration. Therefore, permeability for



fluid flows and molecular diffusion is important for cell survival, since low perme-
ability may result in lack of nutrients and ischemia. 
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Interconnected porous structures provide nutrients to the cells growing into the 
pores and allow for optimal interaction of the scaffold with cells. The aspects that are 
taken under consideration include pore size, size distribution, porous morphology, 
interconnectivity and surface area to volume ratio [67]. Each of these factors 
influences biological response, notably, cell migration, proliferation, and thus tissue 
regeneration. Substrate porosity seems to be an important factor as it can vary the 
length between two adjacent anchoring points, to which cell can adhere 
[68]. According to the IUPAC, the porous size of dense materials is classified in 
three different types: micropores (<2 nm), mesopores (2–50 nm), and macropores 
(>50 nm). Nevertheless, for tissue engineering, a slightly different description of the 
pore sizes is commonly applied. In the following part, we will adopt the nomencla-
ture used by biomaterial scientists to describe the pore sizes of tissue engineering 
scaffolds, which classify pore sizes as: macropores (>50 μm), micropores 
(0.1–50 μm) and mesopores (2–50 nm). Therefore, we will distinguish these three 
different types of pores throughout this section and will not consider the pore ranges 
established by IUPAC. 

8.4.2.1 Macropores 

Scaffold macroporosity plays a critical role in the regeneration of damaged tissues, 
allowing cell penetration, which is essential for the later integration with the host 
tissue and increase the chances for key processes to take place, including tissue 
matrix and blood vessel ingrowth. It is generally acknowledged that the optimum 
pore size for scaffolds lies in the range between 100 and 400 μm [69]. Specifically, 
macropore size determines the efficiency at which cells seed into the scaffold. Small 
pores prevent the cells from penetrating the scaffold, while large pores prevent cell 
attachment due to a reduced area and, therefore, available ligand density [70]. The 
scaffold should have an adequate porosity in terms of the magnitude of the porosity, 
the pore size distribution, and its interconnectivity. This also will allow cell 
in-growth and vascularization and promote metabolite transport. A scaffold with 
an open and interconnected pore network and a high degree of porosity (>90%) is 
ideal for the scaffold to interact and integrate with the host tissue [71]. 

Macroporous scaffolds were observed to be potentially promising toward wound 
healing in relation to nonporous. Porous hydroxyapatite (HAp) scaffolds fabricated 
by additive manufacturing methods indicated significant bone formation when the 
pore diameter was in the range of ~400–1200 and ~300–800 μm  [72]. As mentioned 
before, the extent of bone ingrowth was observed to depend on pore size. Pores of 
diameter ~20–50 μm are expected to provide favorable functionality from the 
viewpoint of physiological liquid exchange, while pores of diameter ~100–350 μm 
are suitable for cell colonization and vascularization, leading to penetration of tissue 
into the biomaterial structure [73]. This size range facilitated migration of cells in 
porous scaffolds and was appropriate for increased bone regeneration.
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The degree of macropore interconnectivity is considered to be critically important 
in a manner similar to pore size. In biodegradable porous ceramics, the degree of 
interconnectivity was noted to be seemingly more important than the pore size, while 
in nonbiodegradable materials, interconnectivity and pore size were observed to be 
equally important. Under in vivo conditions, the penetration of cells and chondroid 
tissue formation inside macropores occurred when the interconnectivity dimensions 
were greater than ~20 μm, while mineralized bone formation occurred when the 
interconnectivity size exceeded 50 μm [74]. The interconnectivity of pores ensures 
availability of higher surface area for enhanced cell adhesion and proliferation. 

The range of the optimum macropore size differs with different materials. For 
example, the effect of 3D silk fibroin scaffolds on cell proliferation and migration of 
human foreskin fibroblast showed that pore sizes of 200 to 250 μm and porosity of 
approximately 86% enabled better cell proliferation [75]. However, cell proliferation 
of these scaffolds with smaller pore sizes of 100 to 150 μm can be improved by 
having higher porosity of approximately 91%. Hence, by altering the pore size, 
porosity, or both parameters, the cell viability and proliferation can be enhanced 
[76]. Besides affecting the cell proliferation capability, it has been shown that the 
amount of ECM produced, that is, the amount of GAG secretion and the expression 
of collagen gene markers are also affected by the pore size of scaffolds [77]. The 
study by Lien et al. demonstrated that chondrocytes showed preferential prolifera-
tion and ECM production for scaffolds with pore sizes between 250 and 500 μm 
[78]. This pore size range was observed to be capable of maintaining the phenotype 
of cells, while pores ranging from 50 to 200 μm resulted in cell dedifferentiation 
[79]. Thus, the role of porosity and interconnectivity in scaffolds is also to facilitate 
cell migration within the porous structure such that cell growth is enabled while 
overcrowding is avoided. 

Therefore, for bone tissue engineering, the optimal pore size for osteoblast 
activity in tissue engineered scaffolds is still controversial. In general, scaffolds 
with pore sizes of about 20 to 1500 μm have been used. Akay et al. studied the 
behavior of osteoblasts in PolyHIPE polymer (PHP), a type of highly porous 
polymeric foam [80]. The osteoblasts were shown to populate more in smaller 
pores (40 μm) when they were grown in scaffolds with different pore sizes, but 
larger pore sizes (100 μm) facilitated cell migration. However, the different pore 
sizes did not have any effect on extent of mineralization or cell penetration depth. 
Collagen–GAG (CG) scaffolds were also studied to determine its optimal pore size 
for bone tissue engineering purposes and the effect of pore size on a preosteoblastic 
cell line, MC3T3-E1 [81]. From the results, optimal cell proliferation and infiltration 
was found in CG scaffolds with mean pore sizes greater than 300 μm. In addition, the 
ability of larger pores to facilitate cell infiltration was shown to override the 
beneficial effect of greater initial cell attachment surface areas provided by smaller 
pores. Hence, this study supported previous reports that suggested the importance of 
having pore sizes greater than 300 μm for osteogenesis to occur. However, it should 
be noted that cell differentiation is also dependent on the cell type, scaffold material, 
and fabrication conditions.
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The pore size has also been shown to have an effect on the proliferation and 
differentiation of cells for cartilage tissue engineering. Adipose stem cells were 
seeded on PCL scaffolds prepared with different pore sizes (100, 200 and 400 μm) 
and were placed under chondrogenic differentiation conditions for 21 days. The 
results showed that proliferation was higher for the 100 and 200 μm pore sizes, 
whereas cells tended to agglomerate in the 400 μm pore size scaffolds. Nevertheless, 
proteoglycan production as well as chondrogenic markers was significantly higher 
for the 400 μm pore size scaffolds compared to the 100 and 200 μm pore sizes 
[82]. Cell aggregation and cell–cell contact is known to be the most significant step 
for chondrogenic differentiation. Hence, the higher pore size allows the allocation of 
higher number of cells in the pores, which tend to agglomerate once they encounter 
other cells in the bigger pores showing higher markers of chondrogenesis. In the 
smaller pores, the number of cells is more limited and therefore preferentially attach 
to the substrates rather than surrounding cells since there is no proper space to 
accommodate more cells. 

Another effective system to determine the optimum pore size is through the use of 
gradient scaffolds. In general, results show a cell-dependent behavior, presenting 
osteoblast and chondrocytes preferentially in the bigger pore sizes after 56 days, 
whereas fibroblasts are mainly present in the smaller ones [83]. Furthermore, adipose 
stem cells grown in the gradient pore size (90–400 μm) scaffolds were shown to have 
the highest chondrogenic differentiation but lowest proliferation in the biggest pore 
size (400 μm) [84]. This further confirms the previous hypothesis, showing that 
when cells encounter bigger pore sizes, enough number of cells can be allocated to 
allow the cell–cell contact and hence present higher markers of chondrogenic 
differentiation. 

8.4.2.2 Micropores 

While macropores with pore sizes and pore interconnections in the range of hun-
dreds of microns are relevant for cells to migrate and proliferate, micropores with 
pore sizes in a smaller range also play pivotal roles in tissue engineering. These pores 
are usually few microns in size and are involved mainly on the initial adsorption of 
proteins on the surface of the materials. Cells interact with biomaterials through cell– 
protein interactions through the transmembrane proteins. Therefore, it is believed 
that the increase in protein concentration may significantly affect cell fate. Besides 
the ability to adsorb proteins, these small sized pores are also known to allow the 
regulation of cell behavior, playing key roles in directing stem cell fate. 

The role of macroporosity has been mainly associated with the ability of a 
scaffold to allow proper bone ingrowth and bone regeneration, while having in 
general slight effects on cell proliferation and differentiation. Nevertheless, the 
porosity in the range of nanometers up to several microns has tremendous effects 
on the ability of cells to proliferate and differentiate and hence play a key role in the 
overall bone regeneration. Not only it is able to regulate the phenotype of cells to



induce higher cell mineralization, but also increase the protein adsorption, which in 
turn can increase the osteoinductive capacity of a material. 
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Microporosity can be incorporated into ceramic and polymeric scaffolds with 
different techniques. For example, a microporous foam material, wherein the pore 
size greatly exceeds the cell, displays a slightly curved substrate to the cell. As the 
basal surface of the cell attaches to the material, mechanotransduction mechanisms 
may be similar to those already elucidated on planar substrates. Microscopic pores of 
about cell size lead to a low tension, more grounded cell contacts with the material in 
all dimensions. There may exist a gradual transition from first variant to the last for 
intermediate pore sizes [85]. 

Surface microporosity of a material plays a very important role on cell behavior. 
The influence of pore sizes on cell behavior was determined by culturing MG-63 
osteoblast-like cells on polycarbonate membranes designed with different pore sizes. 
Lee et al. [86] has reported that the cells spread and adhered better on membranes 
with smaller micropores (0.2 μm diameter) than on those with larger micropores 
(3.0–8.0 μm). Moreover, the cells cultured on larger micropores produced increased 
levels of ALP and osteocalcin. In another study, the different microporosity and 
topography of CDHA materials (total porosity of 35 vol.%, pores of 5 μm) was 
partially responsible for the different patterns of proliferation and differentiation 
observed for osteoblast cells [87]. Materials with smaller CDHA crystals stimulated 
differentiation, whereas those with bigger crystals enhanced proliferation. 

Habibovic et al. performed an elegant experiment to determine the role of 
microporosity in two families of chemically identical porous ceramics: HAp and 
biphasic calcium phosphate (BCP) [88]. Sintering temperatures between 1100 and 
1200 °C allowed modifying the microporosity (within a pore diameter range of 
2 μm) while not altering their macroporosity (249 ± 38 μm). The results showed that 
the implantation into the back muscles of Dutch milk goats for 6 and 12 weeks 
allowed bone formation in the presence of micropores but failed when the amount of 
micropores remained low (HAp sintered at 1250 °C). The higher amount of 
adsorbed/entrapped proteins in the microporous walls enhanced bone formation 
[89], which was essential to provide the biomaterial with osteoinductive capacity. 
It is thus speculated that the microporosity modifies the dynamic interface of 
materials and consequently triggered the differentiation of relevant cells toward 
the osteogenic lineages. It has been pointed out that a higher microporosity was 
inherently linked with a higher specific surface area and hence could cause a major 
dissolution of ions [88]. The higher ion dissolution would facilitate the apatite 
formation in vivo, causing the coprecipitation of endogenous proteins (e.g., 
BMPs) that could in turn trigger the differentiation of recruited undifferentiated 
cells toward the osteogenic lineage [90]. Another hypothesis suggested that the 
inflammatory response triggered after the implantation of a biomaterial, which 
causes the release of cytokines that promote the differentiation of circulating 
MSCs into osteoblasts, would induce osteoinductivity [91]. In experiments by 
Peyton et al. [92], on MSCs motility in 3D PEG scaffolds, pore diameter has been 
varied from 7 to 17 μm (i.e., from significantly smaller than the spherical cell 
diameter to approximately cell diameter). Cell speed is the highest compared to



larger pores, but net displacement of the cells within matrix is maximal for interme-
diate pore sizes, probably because of difficulty in finding straight way in the large-
pore scaffold. 
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Micropores also play a key role in controlling protein adsorption as well as cell– 
material interactions. Nevertheless, these pores may also be efficient systems for the 
loading and release of specific biological molecules with regenerative potential. 
These pores which are usually in the range of tens microns have been shown to be 
ideal for growth factor allocation that have enhanced bone regeneration [93]. These 
promotions in bone regeneration by micropores have been collectedly defined as an 
“initial micropore-acceleration” at the early stage of regeneration [56, 94]. Combining 
previous literatures with the results, Tang et al. speculated several possible reasons 
for this acceleration as follows. By providing a larger surface area, the microporos-
ities could facilitate the coprecipitation of endogenous cytokines and growth factor, 
which indirectly stimulate stem cells recruitment to the defect site [95]. After then, 
surfaces with microporous topologies could significantly enhance biomineralization 
and were beneficial for protein adsorption and cell attachment. During cartilage 
formation, newly formed collagen fibers mineralized and wrapped in the micropores 
forming tight interlock between material and tissue, resulting in a bone/scaffold 
composite with no “dead space.” Due to this “initial micropore-acceleration,” the 
healing progresses of trimodal macro-/micro-/nanoporous and bimodal macro-/ 
microporous scaffolds were in ahead of bimodal macro-/nanoporous scaffolds. 

8.4.2.3 Mesopores/Nanopores 

Mesoporous materials refer to as mesostructured materials or simply mesophases, 
and belong to the class of nanomaterials, whose properties can be tuned at the 
nanometrical scale. Specifically, according to IUPAC nomenclature, mesoporous 
materials refer to materials with pore sizes ranging within 2–50 nm. These materials 
are generally obtained by coupling a sol–gel method that is very effective to prepare 
glasses and ceramics at room temperature, with a supramolecular self-assembling 
process. This particular approach is possible by taking advantage of hydrophobic/ 
hydrophilic features of some molecules (i.e., surfactants) to prepare supramolecular 
aggregates (micelle). The first successful synthesis of pure-silica mesostructured 
materials was performed in the early 1990s, when surfactants as structure-directing 
agents were used by Mobil Oil researchers [96]. Since then, many classes of 
mesoporous materials with different pore features have been synthesized. 

With regard to the biomedical field, mesoporous materials, being characterized by 
an ordered texture of nano-sized pores, can easily host drug molecules and, there-
fore, are good candidates for designing and producing systems for controlled drug 
delivery. In addition, the silanol groups located on the walls of silica mesoporous 
materials may not only be useful to functionalize the walls for enhancing the drug 
adsorption ability of the materials, but can also react with biological fluids to 
produce HAp or apatite-like nanocrystals [97]. In vitro bioactivity studies, carried 
out by soaking SBA-15, MCM-41, and MCM-48 in SBF, revealed that an



apatite-like layer was formed on the surface of SBA-15 and MCM-48 materials after 
30 and 60 days of immersion, respectively [98]. This behavior is quite surprising as 
these mesophases, being constituted by pure silica, should not exhibit bioactive 
properties. In fact, according to Hench’s definition of bioactivity [99], bioactive 
mechanisms can occur only if particular ion-exchange phenomena take place 
between the material and surrounding fluids. On the other hand, it is obvious that 
mesoporous materials are nontraditional materials, and therefore, their mesoporous 
texture can impart them unexpected and fascinating properties. MCM-41 also 
exhibited a bioactive behavior when its walls were doped with phosphorus, or by 
adding small quantities of bioactive glasses. 
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MBG scaffolds exhibited greatly enhanced bone-forming properties, when com-
pared with traditional bioactive glass (BG) scaffold of the same composition 
[100]. Besides its higher surface area and pore volume, the effects of mesopores 
reported by literatures are described. Drug release studies by using gentamicin have 
been reported [101]. The drug uptake ability of MBG scaffolds was over twofold 
higher than that of the BG scaffold; in addition, as far as drug delivery is concerned, 
during the whole release period in SBF, gentamicin was delivered from the MBG 
scaffold at a much lower release rate when compared with that from BG scaffolds. 

Since entrapment in mesopores has turned out to be a promising strategy in the 
fields of enzymatic biocatalysis and biosensors etc., and some researchers have 
reported that the mesoporous support with comparable porous size to the protein 
molecule is beneficial for higher loading, preserved activity and sustained release. 
Motivated by these previous investigations, Tang et al. [56] proposed the concept of 
“size-matched mesoporous entrapment” for rhBMP-2 delivery and endeavored to 
investigate the possibility of matching the mesoporous dimension with the size of 
rhBMP-2 molecule (7 × 3.5 × 3 nm3 ) to achieve a desirable immobilization, and 
further realize optimal bone regeneration by cooperation of multiscale structure and 
rhBMP-2. 

Cells respond to their surrounding structure and with nanostructures exhibit 
unique proliferative and differentiation properties. Since the early 1970s, bioactive 
glasses are known to be able to chemically bond to living bone without the formation 
of fibrous tissue around the implant due to the growth of a bone-like apatite layer on 
its surface [102, 103]. It was demonstrated that HAp formation on the sol–gel glass 
surface is related both to the structure and to the composition of the material, 
whereas melt-derived bioactive glasses show a direct dependence only from the 
composition. An increase of the pore volume and specific area (up to 200 m2 /g) in 
sol–gel glasses highly accelerates the deposition of HAp, thus enhancing the bond-
ing of the material to bone tissue [104]. Ordered mesoporous silica possess a very 
high surface area and an ordered system of generally open mesopores but are not 
properly suitable as filling materials for bone repair because of their almost complete 
lack of bioactivity [105]. Some authors reported a weak bioactive behavior of 
SBA-15 and MCM-48, but only after relevant times of contact with biological fluids 
(>30 days) [106]. On the contrary, MBGs belonging to the SiO2-CaO-P2O5 ternary 
system were found to exhibit a faster and higher bioactivity also in comparison with 
sol–gel glasses, thanks to their textural and structural properties (specific surface area



up to 500 m2 /g) [107]. Therefore, considering their superior bioactivity, MBGs may 
be a very promising material for bone tissue regeneration and exhibit the potential of 
mediate the fate of stem cells by immobilization of growth factors and its inherent 
osteoinductive properties. 
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8.4.3 Surface Stiffness 

Matrix stiffness is an important regulator of cellular responses (such as migration, 
proliferation and collagen deposition) mediating interface integration. As cells lay 
down extracellular matrix (mainly collagen) within a cell sheet or biomaterial sheet 
scaffold during in vitro culture or in vivo postimplantation, matrix density and 
stiffness increase. Increasing matrix stiffness would, in turn, be expected to affect 
the integration process by regulating critical cell behavior. It has been suggested that 
identification of variations in matrix stiffness could provide a useful tool for 
assessing interface integrity at step-off edges during cartilage repair [108]. 

Cell behavior and mechanical properties of the extracellular environment are 
intimately related. Cells can translate the stiffness of the microenvironments to 
which they are attached into biological signals (mechanotransduction) by a series 
of transmembrane receptors. These receptors comprise an intracellular domain 
(interacting with cytoplasmic proteins including the cytoskeleton) and an extracel-
lular domain that specifically binds to adhesion partners. Tension forces expose 
active sites in these receptors with kinase activity, which allow the transformation of 
mechanical stimulation in chemical signals [109]. 

Matrix stiffness has been shown to play an important role in cell survival, 
proliferation and differentiation. For example, the stiffness of different matrices 
(0.1–1 kPa, 8–17 kPa, and 25–40 kPa) on which native mesenchymal stem cells 
were cultured was demonstrated to determine the lineage of the cells during differ-
entiation (neurogenic, myogenic and osteogenic respectively) in vitro [110]. These 
experiments show that mechanical properties of the ECM induce not only cell 
spreading and changes in cell morphology, but also stimulate or repress the synthesis 
of specific transcription factors, inducing the establishment of special phenotypes 
concordant with the organ where the cells come from, or defining their fate in case of 
stem-cell differentiation. 

Stiffness of the adjacent tissue affects stem cell fate in vivo when the cell exits its 
niche and starts to participate in regenerative process [111–113]. Stem cells tend to 
proliferate, migrate toward the injured site, and differentiate to the relevant cell type, 
adoptive to stiffness of the substrate. Stiffness of ECM has been shown to be crucial 
for maintenance of satellite stem cells in vivo [112]. Collagen VI has been proved to 
be the major regulator of stiffness in the stem cell niche in this case. For instance, 
experimental models that allow control over physical properties of ECM such as 
stiffness typically employ small adhesion molecules (i.e., short peptides) instead of 
natural full-size multidomain matrix molecules. Short peptides immobilized on 
abnormally stiff surfaces are also a standard approach to study effect of spatial



placement of epitopes. Biologically relevant full-size ECM adhesion molecules, 
such as niche-specific laminin isoforms, fibronectin, or vitronectin, are often 
immobilized on flat and abnormally stiff plastic or glass surfaces [85]. 
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To date several hundreds of research papers are dedicated to dependence of stem 
cell fate on stiffness of their substrates in vitro. Similar results are obtained with 
different materials used as substrates: MSCs tend to differentiate to the cell type 
relevant to stiffness of the substrate as long as the other parameters (such as different 
substrate geometries or adhesion ligands) are not limiting for cell attachment and 
spreading [114]. These elastic materials include polyacrylamide gels, PEG 
hydrogels, and HA gels. MSCs are cultured on substrates of different stiffness in 
differentiation media specific for the particular cell lineage and expression of specific 
cell markers is monitored. 

Briefly, the MSCs differentiate into neuronal or glial cells on the soft matrices that 
resemble soft brain tissue [115]. They differentiate into adipocytes on twofold stiffer 
substrates [116], into myoblasts on 10-fold stiffer substrates [117], and into osteo-
cytes on harder matrices that mimic premineralized bone [118]. MSCs differentia-
tion tendency with respect to substrate stiffness is summarized in Table 8.1. 

MSCs have weaker cell adhesion to soft substrates, but anchor more strongly to 
stiff substrates. The level of adhesion strength correlates with commitment of the 
MSC to specific cell lineage. Suppression of adhesion strength for a cell on hard 
substrates imitates cell behavior on soft substrates in terms of the lineage marker 
expression. Alterations in the number, stability, and strength of the developing cell 
adhesions lead to reorganization of the cytoskeleton and change in cell morphology. 
On stiffer substrates stem cells tend to spread more and tend to assemble their 
cytoskeleton, such as build long actin-myosin stress fibers [43]. Majority of MSCs 
develop branched morphology with multiple filopodia on soft gels that mimic 
elasticity of brain (0.1–1 kPa) [119]. MSCs acquire rather spheroid shape on matrices 
resembling adipose tissue (4 kPa) [116]. Spindle-shaped cells appear on stiffer 
matrices that mimic elasticity of striated muscle (8–17 kPa). Spreading on even 
more stiff matrices (25–40 kPa) yields polygonal MSCs similar in morphology to 
osteoblasts. 

Also stiffer hydrogels generally promote acceleration of stem cell proliferation 
compared to softer gels. It has been established for human bone marrow stem cells 
on polyvinyl alcohol gels of 1 kPa to 24 kPa stiffness [120] and for rat bone marrow 
stem cells on polyacrylamide (PAA) substrates of 6.1 kPa and 46.7 kPa [121]. The 
human MSC proliferation rate increases up to 10-fold with the increase of stiffness 
from 0.7 kPa to 80 kPa on the polyacrylamide (PAA) substrates [122]. The murine 
embryonic stem cells (ESC) proliferation accelerates as stiffness increases from 
41 kPa to 2.3 MPa on the polydimethylsiloxane (PDMS) substrates [123]. 

Cells are not only sensitive to ECM adhesion but also to its rigidity and elasticity. 
It was observed that there is an inverse correlation between matrix density or rigidity 
and cell migration. Discher and collaborators demonstrated the importance of matrix 
elasticity on stem cell fate [124]. Depending on the elasticity of the surface on which 
the MSCs were grown, they could differentiate into lineages that corresponded to the 
stiffness of the native environment which was resembled. For example, MSCs
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(continued)
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Table 8.1 Summary of MSC differentiation dependence on substrate stiffness [85] (open access) 

Matrix stiffness, 
E 

Neurogenic 0.1–1 kPa 2D polyacrylamide gels, colla-
gen coated 

Nanoindentation using 
atomic force 
microscopy 

~1 kPa 2D polyvinyl alcohol hydrogel Compression test 

1 kPa 3D type I collagen gel and 
hyaluronic acid gel 

Compression test 

~1–2 kPa 2D gelatin-
hydroxyphenylpropionic acid 
gel 

Dynamic shear defor-
mation 1%, 1 Hz using 
rheometer 

6.1 kPa 2D polyacrylamide gel (PAA) Compression test 

Gliogenic 10 kPa 3D type I collagen gel and 
hyaluronic acid gel 

Compression test 

Vascular endo-
thelial cells 

2–3 kPa 3D polyethylene glycol 
dimethacrylate (PEGdma) 
nanofiber hydrogel 

Tensile test 

Adipogenic 2.5–5 kPa 3D alginates-agarose hydrogel 
with RGD 

Compression test 

4 kPa 2D polyacrylamide gel(PAA) Nanoindentation using 
atomic force 
microscopy 

1.5 kPa, 6 kPa 2D polydimethylsiloxane 
(PDMS) 

Tensile and macro-
scopic indentation tests 

Myogenic 7–17 kPa 2D polyacrylamide gels(PAA), 
collagen coated 

Nanoindentation using 
atomic force 
microscopy 

12–15 kPa 3D polyethylene glycol 
dimethacrylate (PEGdma) 
nanofiber hydrogel 

Tensile test 

~30 kPa 2D gelatin-
hydroxyphenylproplonic acid 
gel 

Dynamic shear defor-
mation 1%, 1 Hz using 
rheometer 

>9 kPa:25 kPa, 
80 kPa 

2D polyacrylamide gel, coated 
with collagen, fibronectin 

Dynamic mechanical 
analysis 

Cardiomyocytes 45 and 65 kPa 3D thermosensitive hydrogel 
(PAA and HEMA-PTMC) 

Tensile test 

Osteogenic 11–30 kPa 3D alginates-agarose hydrogel 
with RGD 

Compression test 

15–100 kPa 2D polydimethylsiloxane 
(PDMS) 

Tensile and macro-
scopic indentation tests 

24 kPa 2D polyvinyl alcohol hydrogel Compression test 

25–40 kPa 2D polyacrylamide gels, colla-
gen coated 

Nanoindentation using 
atomic force 
microscopy 

30 kPa 2D polyacrylamide gel(PAA) Nanoindentation using 
atomic force 
microscopy



Lineage Material Testing method

cultured on soft gels (0.1–1 kPa), to mimic brain elasticity, developed a neuronal 
morphology, with filopodia branching and spreading including expressing genes 
related to neuronal differentiation pattern. Furthermore, medium stiffness gels 
(8–17 kPa), which mimic striated muscle elasticity, promoted differentiation to 
myogenic cells, and the gels with the highest stiffness (25–40 kPa) to mimic bone 
elasticity, enhanced osteogenic differentiation.
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Table 8.1 (continued)

Matrix stiffness, 
E 

42 kPa 2D polyacrylamide gel (PAA) 
collagen coated 

Tensile test 

46.7 kPa 2D polyacrylamide gel (PAA) Compression test 

~60 kPa 2D gelatin-hydroxy-
phenylpropionic acid 

Dynamic shear defor-
mation 1%, 1 Hz using 
rheometer 

80 kPa 2D polyacrylamide gel coated 
with collagen, fibronectin 

Dynamic mechanical 
analysis 

190 kPa 
~3.1 MPa 

2D polydimethylsiloxane 
(PDMS) 

Nanoindentation 

A recent study based on an ECM composed of hyaluronan and fibronectin, found 
that adult human dermal fibroblasts migrate faster on softer substrates and demon-
strate more dynamic lamellipodial activity [125]. Perhaps more significantly, in 
addition to having an effect on the speed of migration, substrate stiffness has also 
been implicated in controlling the direction of cell movement. A previous report 
suggested that cells migrate preferentially toward stiffer surfaces, a phenomenon 
termed durotaxis [126]. 

As matrix stiffness is proved to affect significantly formation of focal adhesions, 
it is crucial to investigate the epitope cluster effect with respect to substrate stiffness. 
Stem cells express specific integrins, which connect cytoskeleton to the ECM. The 
level of cell surface integrins appears to be significantly lower on soft substrates than 
that on stiff substrates [127]. Different types of integrins are responsible for adhe-
sions at different stiffness levels. Thus, integrin α2 is upregulated in the course of 
osteogenic induction of MSCs on stiff matrices [128]. Integrin α5 is downregulated 
on soft gels, but its overexpression had no effect on cell spreading [129]. Activation 
of integrin α1 in bone marrow MSCs is induced by soft substrate to a significantly 
greater degree than by stiff substrate [127, 130]. α1-integrin signaling in the niche is 
involved in the maintenance of epidermal stem cells or neural stem/progenitors in a 
stem cell state. Proliferation of MSC is mediated by activation of integrin α1 and 
selectin. Later, we shall discuss in detail the biochemistry of integrin interaction with 
the specific matrix molecules. 

Moreover, stiffer matrices made of the same material have lower pore size and 
permeability. Polymer substrates of the same stiffness but variable pore sizes can be 
produced [113]. It is important to note that solute permeability of the matrix is 
enhanced under dynamic deformations due to increased fluid flow



[131]. Permeability for the cells also is affected by substrate stiffness and viscoelas-
ticity, because cells can deform actively more pliable matrices to move through. 
These aspects are still to be investigated. 
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8.4.4 Chemical Properties 

Incorporation of well-defined chemical properties in/onto biomaterials/scaffold also 
enhances the adhesion and growth of stem cells, and then directs specific differen-
tiation to induce certain biological functions. Briefly, the cell–biomaterial interaction 
is a very complex process which involves many cytokines and ECM proteins. The 
surface chemical characteristics of biomaterials/scaffold can affect the adsorption of 
such cytokines and ECM proteins, and this in turn influences the subsequent cellular 
response. Chemical properties of biomaterials, mainly including substrate elemental 
composition, surface functional groups, biochemical functionalization, have signif-
icant influences on regulating stem cell activities. In this section, we will provide an 
interpretation of how the above chemical cues can affect stem cell response and 
direct stem cells fate in vitro. 

8.4.4.1 Physiological Processes of Cell–Material Interaction 

Understanding the mechanism of the physiological processes that control cell– 
biomaterial interaction is fundamental to investigate the influence of chemical 
properties on stem cell adhesion and phenotype. As the first step, adhesion of stem 
cells onto the biomaterial matrix is essential for its viability, proliferation and 
differentiation. The adhesion of stem cells on biomaterials is primarily mediated 
by specific recognition and binding of cellular receptors on cell membrane to 
cytokines/ECM proteins adsorbed on the material surfaces. Among all the trans-
membrane receptors in stem cells, integrin, a widely expressed family of 
heterodimeric receptors [132], have turned out to exert principal role in anchoring 
cells to ECM. By binding to its extracellular ligand, an Arg-Gly-Asp (RGD) peptide 
found in several ECM proteins, integrins can activate the formation of the focal 
adhesion (FA) complex and cytoskeleton reorganization in stem cell 
[133, 134]. Through integrin-ECM protein mediated focal adhesions, stem cells 
are able to sense the underlying material substrate, and react to its chemical proper-
ties (Fig. 8.8). For example, focal adhesion kinase (FAK) and vinculin are major 
players in the focal adhesion processes activated by integrin-fibronectin 
(Fn) interactions [135–137]. In particular, vinculin transduces integrin-mediated 
intracellular signaling molecules that promote cell migration [133, 138]. 

Importantly, it was testified that the initial adhesion and morphology of stem cells 
at the material surface can influence the subsequent long-term function of stem cell 
lineage [139]. Cell–material and cell–cell interactions activate specific intracellular 
signal pathways that regulate stem cell fate. Thus, the enhancement in early cellular



response including adhesion and cytoskeleton changes is prerequisite to stimulating 
subsequent stem cell differentiation, and ultimately, to achieving a specific cell 
phenotype and certain biological functions. Specifically, many reports demonstrated 
that the substrate-induced intracellular FA formation and actin polymerization could 
stimulate the osteogenic differentiation of MSCs [140–143]. In the following, we 
will mainly discuss the effects of biomaterial chemical properties on MSCs adhe-
sion, viability and osteogenic differentiation. 
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Fig. 8.8 Schematic 
illustration of the integrins’ 
function in cell–material 
interaction 

8.4.4.2 Effects of Elemental Composition on Stem Cell Behaviors 

The effects of chemical elemental characteristics on stem cell responses have been 
investigated extensively. It is noteworthy that some divalent ions have been found to 
participate in the bioprocess of cells adhesion [144]. Some functions of integrins are 
dependent on interaction with divalent cations such as calcium, magnesium, and 
manganese through a metal ion-dependent adhesion site (MIDAS) and MIDAS-like 
motives [144, 145]. Among divalent cations, magnesium increases the affinity of 
integrins for ligands including ECM in a millimolar concentration, and while 
calcium reverses the increased affinity in some cases [144, 146]. Magnesium is a 
vital and widely used component for the bone substitutes. Zhang et al. [147] 
systematically studied the effects of the magnesium in calcium phosphate cement 
(CPC) on the initial responses and the ultimate differentiation of MSCs, as well as 
the mechanism involved. The magnesium precursor (MPC) consisted of Ca 
(H2PO4)2�H2O and MgO in a molar ratio of 1:2 was incorporated into CPC to obtain 
the MPC-modified CPC (MCPC). By regulating the weight percentage of MPC in 
the range from 0% to 20% in MCPC, MCPCs surfaces with different magnesium



density were obtained. The Fn adsorption and the availability of the cell-binding 
domains on the synthesized surfaces were determined by immunofluorescence 
staining and quartz crystal microbalance with dissipation (QCM-D) analysis. The 
attachment, morphology, focal adhesion formation, actin filaments assembly, and 
the expression of integrin subunits of MSCs on different cements were assayed. The 
results indicated that the incorporation of certain content of MPC into CPC could not 
only enhance the adhesion and spread but also promote the osteogenic differentia-
tion of MSCs in vitro. And the desirable efficacy was achieved on the 5MCPC (with 
5% MPC) with moderate proportion of Mg. As the schematic diagram (Fig. 8.9) 
shows, 5MCPC were believed to effectively modulate the orientation of the 
adsorbed Fn for enhanced cell binding affinity, and upregulate the integrin α5β1 
expression of MSCs. Based on these results, it can be inferred that the Mg element 
concentration had predominant effect on the interaction of Fn and integrin α5β1, 
which mediated the MCPC-induced enhanced cellular response in MSCs. 
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Fig. 8.9 Schematic diagram of the adsorption-induced changes in the structural orientation of the 
binding domain in Fn and the ensuing interaction between Fn and integrin α5β1 on (a) CPC and (b) 
5(10) MCPC 

Besides, some research has shown that the existence of silicon may stimulate the 
proliferation of MSCs and activate cells to produce transforming growth factors. For 
example, Ding et al. found that the Si/Ca ratio of calcium silicate cements could 
modulate attachment and proliferation of MSCs [148]. Calcium silicate cements with 
a higher Si content promoted cell attachment and triggered greater total integrin, 
pFAK and collagen type I expression compared to the cement with a higher Ca 
content. Integrin expression profiles changed accordingly, with higher levels of α2β1 
and ανβ3 subintegrin in the cells on the Si-rich and Ca-rich cements, respectively,



which were ascribed to the collagen-binding and Fn-binding subintegrin on human 
primary cells, respectively. MAPK/ERK and MAPK/p38 signaling pathways were 
activated in MSCs cultured on these cement substrates, and their inhibition signif-
icantly attenuated cell adhesion, proliferation and differentiation as assessed 
according to total DNA and alkaline phosphatase (ALP) activity. Si component of 
calcium silicate materials can induce upregulation of MAPK/ERK and MAPK/p38 
signaling pathway more effectively than Ca component. 
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8.4.4.3 Effects of Functional Groups on Stem Cell Behaviors 

Many functional groups, for example, –CH3, –NH2, –SH, –OH, and –COOH, can 
influence the self-renewal and lineage commitment of MSCs directly or through 
interacting with specific ECM proteins. Using self-assembled monolayers (SAMs) 
of alkanethiols on gold as model surfaces, Keselowsky [137] et al. investigated the 
effects of surface chemistry on Fn adsorption, integrin binding, and cell adhesion. 
SAMs presenting terminal –CH3, –OH, –COOH, and –NH2 functionalities modu-
lated adsorbed Fn conformation as determined through differences in the binding 
affinities of monoclonal antibodies raised against the central cell-binding domain (– 
OH > –COOH = –NH2 > –CH3). Binding of integrin α5β1 to adsorbed Fn was 
controlled by SAM surface chemistry in a manner consistent with antibody binding 
(–OH > –COOH = –NH2 > –CH3), whereas integrin αV binding followed the 
trend: –COOH much greater than –OH = –NH2 = –CH3, demonstrating integrin 
α5β1 specificity for Fn adsorbed onto the NH2 and OH SAMs. Cell adhesion 
strength to Fn-coated SAMs correlated with integrin α5β1 binding (–OH > – 
COOH = –NH2 > –CH3), and experiments with function-perturbing antibodies 
demonstrated that this receptor provides the dominant adhesion mechanism. 

Curran [149] et al. examined the behavior of MSCs cultured on a range of silane-
modified surfaces to determine the effects of the surface functional groups on the 
early differentiation potential of MSCs in vitro. Cells were cultured for 1 and 7 days 
in direct contact with glass which had been functionalized by surface treatment to 
provide a range of different surfaces: –CH3, –NH2, –SH, –OH, and –COOH 
modified surfaces and a clean glass reference (TAAB). Viable cell adhesion was 
quantified by Lactate Dehydrogenase assay, and morphology and viability was 
qualitatively evaluated using calcein AM, ethidium homodimer, cytoskeletal 
(F-Actin), ECM (Fn and vitronectin), and Hoechst staining (nucleus). The expres-
sion of selected differentiation markers, Collagen type II (chondrocytes), CBFA1 
(bone transcription factor), Collagen type I (MSC marker), and TGF-β3 (extracel-
lular matrix production) was determined using real time polymerase chain reaction. 
The expression of ornithine decarboxylase was evaluated as a marker of prolifera-
tion. Surfaces of the –NH2 group demonstrated the greatest level of cell adhesion by 
the 7-day period, and mRNA expression profiles indicated osteogenic differentia-
tion, increased CBFA1 and decreased Collagen type II expression. Cells cultured in 
contact with the –COOH surfaces displayed different cell morphologies, Fn and 
vitronectin spatial distributions compared with the cells in contact with the –NH2



surfaces, in addition to an increase in Collagen type II expression, indicative of 
chondrogenic differentiation. The modifications to the surface chemistry of glass did 
affect cell behavior, both in terms of viable cell adhesion, morphology and profiles of 
mRNA expression, providing the means to alter the differentiation potential of 
the MSCs. 
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Using high internal phase emulsion (HIPE) templating method, Viswanathan 
[150] et al. fabricated a 3D scaffold with amphiphilic block copolymers polysty-
rene-b-poly(ethylene oxide) (PS-PEO) and/or polystyrene-b-poly(acrylic acid) 
(PS-PAA), which exhibited both cell inert (PEO) and adhesive (PAA) domains. 
The results demonstrate how Fn and MSCs adhere in a domain specific manner: an 
optimal balance between concentration and spatial distribution of PAA domains may 
be contributing toward the preferential adhesive behavior of the stem cells, which 
means not only the type, but also the spatial distribution (pattern) of the functional 
groups that directing the stem cell growth and fate. 

8.4.4.4 Effects of Biochemical Functionalization on Stem Cell Behaviors 

Another approach toward the control of stem cell behavior on biomaterials is the 
biochemical incorporation of adhesion-promoting oligopeptides or oligosaccharides. 
Stem cell adhesion to traditional biomaterials is based upon recognition of short 
peptides of ECM proteins from the body fluids adsorbing specifically or 
nonspecifically to the material surface by the corresponding adhesion receptors, 
which means the cell–material interaction is indirect. As a more direct approach, 
several investigators have explored the covalent or physicochemical incorporation of 
adhesion-promoting oligopeptides and oligosaccharides onto the biomaterial 
surface. 

Extensive research has been performed by anchoring oligopeptides representing 
the ECM binding sites onto the biomaterial surfaces. The most commonly used 
peptide for surface modification is RGD, the signaling domain derived from fibro-
nectin and laminin. A number of materials including glass [151], quartz [152], metal 
oxide [153], and polymers [154] have been modified with these peptides and 
characterized for cellular interaction with their surfaces. Different coupling tech-
niques have also been employed to ensure covalent binding of the peptides to the 
surface of the materials. For example, the reactive moieties on the model surface, 
usually –NH2, were chemically reacted with certain functional groups, usually – 
COOH, that are present within the bioactive peptide. A bi-functional crosslinker that 
has a long spacer arm can be used for the immobilization of the peptide to the 
surface, which can enable the immobilized peptide to move flexibly in the biological 
environment [152]. For polymer substrates lacking appropriate functional groups for 
a coupling reaction, a photochemical immobilization method [155] has been utilized 
to graft cell-binding peptides. In order to examine that any cellular responses to the 
modified substrates are mediated solely by the immobilized peptides, the experiment 
has often been performed under serum-free conditions.
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Designing materials that can selectively interact with cell-binding peptides while 
minimizing nonspecific adsorption of ECM proteins is also challenging. Immobili-
zation of poly(ethylene glycol) (PEG) [156] or its derivative [157] on the surface has 
been effective to limit cell adhesion. The interpenetrating polymer network (IPN) 
that consists of both the hydrophilic chain that can limit nonspecific adsorption of 
proteins and the reactive chain that allows for peptide immobilization may be 
desirable for this application [158]. With RGD covalently incorporated into poly 
(ethylene glycol) diacrylate (PEODA) hydrogel, Yang [159] et al. demonstrated that 
RGD-conjugated PEGDA hydrogel system promotes the osteogenesis of bone 
marrow-derived MSCs. RGD-tethered hydrogel stimulated the production of bone 
marker proteins, such as ALP and osteocalcin, in a dose-dependent manner, with 
2.5 mM being the optimal concentration. 

Cao [160] et al. synthesized a series of charged or neutral oligopeptide motifs 
coupled with RGD using quartz substrates as model. MSCs behaviors on the 
modified surfaces with different charged oligopeptide motifs were studied. It was 
found that these different charged oligopeptide motifs coupled with RGD were 
biocompatible for cell proliferation and adhesion. Moreover, it was demonstrated 
that the positively charged oligopeptide motif could inhibit osteogenic differentia-
tion, while the negatively charged and neutral oligopeptide motifs could enhance 
osteogenic differentiation in the presence of RGD. 

Chien [161] et al. determined the effects of surface bioadhesive signals on 
self-renewal and osteogenic differentiation of MSCs using a low-fouling platform. 
Cell-resistant poly(carboxybetaine) hydrogel was conjugated with 5 μM or 5 mM of 
cell-adhesive RGD peptides in order to control the cells’ affinity to the substrate. 
MSCs were cultured on the RGD-modified poly(carboxybetaine) hydrogel and then 
the cells’ states of stemness and osteogenic differentiation were evaluated. The 
MSCs formed 3D spheroids on the 5 μM RGD substrate, while exhibited spreading 
morphology on the 5 mM RGD substrate. Furthermore, MSCs on the 5 μM RGD 
hydrogel maintained a better stemness phenotype, while the hMSCs on the 5 mM 
RGD hydrogel proliferated faster and underwent osteogenic differentiation. In 
conclusion, the stemness of hMSCs was best maintained on a low RGD surface, 
while osteogenic differentiation of hMSCs was enhanced on a high RGD surface. 
Wang [162] et al. investigated MSCs behaviors on micro/nanopatterns with RGD 
nanoarrays of nanospacings 46 and 95 nm, and with micropans of side lengths 
35 and 65 μm (four groups in total). The osteogenic and adipogenic differentiation of 
MSCs was conducted, and the potential effect of RGD nanospacing and the effect of 
cell spreading size on cell differentiation were decoupled for the first time. The 
results reveal that RGD nanospacing, independent of cell spreading size, acts as a 
strong regulator of cell tension and stem cell differentiation.
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8.4.5 Multiscale Hierarchical Structure 

Hierarchical structures was first proposed in 1994 in order to develop novel 
processing technologies to fabricate hierarchically structured materials with proper 
control on an industrial scale [163]. In 2005, Hollister proposed a clear definition 
stating hierarchical structure refers to the features at scales from the nanometer to 
millimeter that are able to determine how well the bioscaffold meets the conflicts 
between mechanical function and mass-transport needs [164]. 

Almost all types of biomaterials, such as metals, polymers, ceramics, hybrids and 
composites, can be machined into biomedical scaffolds for the purpose of tissue 
engineering. For example, by employing a liquid foaming method and subsequent 
chemical treatments, three-dimensionally hierarchical porous structures can be suc-
cessfully achieved in titanium scaffolds with pore size ranging from the nanometer to 
micrometer scale. This scaffold also has a sufficient compressive strength to meet the 
requirements of implantation [165]. Woodard et al. revealed that the micropores in 
porous hierarchical HAp bone scaffolds are quite important to maintain the mechan-
ical satiability of the scaffolds, as the newly formed bone in the scaffolds supported 
the load after a fracture. The mechanical failure stress was significantly less than that 
of the scaffolds with pure macropores. Furthermore, evidence also suggested that 
bone could arrest crack propagation in hierarchical HAp scaffolds [166]. Practically, 
hierarchical bimodal or multimodal porous architectures with macro-, micro-, and 
nanopores, simultaneously, are also important in modulating the permeability and 
compliance of polymeric scaffolds that favor various applications in tissue 
engineering. 

8.4.5.1 Hierarchical Pore Sizes Structure 

Actually, sol–gel glass scaffolds can be considered the precursors of the hierarchi-
cally structured macro-/mesoporous glass scaffolds [167]. In the last couple of years, 
some attempts for fabricating multiscale glass-based scaffolds have been carried out 
by using properly mesostructured materials, in which the nanoporous size and 
arrangement can be carefully controlled and designed. The purpose of such scaffolds 
is twofold, as they combine the properties of traditional glass-derived scaffolds, i.e., 
mechanical support in the defect zone, bioactivity, favored osteointegration, and 
bone tissue regeneration, with the unique features supplied by mesoporous materials, 
such as enhanced bioactivity and controlled drug adsorption/ release ability for drug 
therapy in situ. 

Yun et al. [168] synthesized hierarchically porous 3D MBG scaffolds with good 
in vitro bioactivity by using a combination of sol–gel, double polymers templating, 
and rapid prototyping techniques. Li et al. [169] reported the synthesis of multiscale 
porous MBG scaffolds by using the block copolymer EO20PO70EO20 (P123) and a 
PU macroporous sponge as cotemplates and demonstrated that a HAp layer was 
formed on the scaffold surface after soaking in SBF for 4 h. Zhu et al. [170]



successfully prepared 3D porous MBG scaffolds by a combination of PU sponge and 
P123 surfactant as cotemplates and evaporation-induced self-assembly (EISA) pro-
cess. Apart from MBG, inorganic nanostructures based on calcium phosphates are 
also compounds of great interest in scaffold development since they are the major 
inorganic constituent (69 wt%) of naturally occurring mineralized bone. 
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Of special interests are the scaffolds that are able to present a bimodal pore size 
distribution, mainly having macropores for cells penetration and micropores for 
protein adsorption/delivery. Interestingly, the micropores also present some roles 
in the overall mechanical properties of scaffolds. For instance, HAp scaffolds were 
prepared with two different micropore sizes, mainly 5.96 and 16.2 μm, showing 
higher bending and compression strength in the presence of smaller micropores 
[93]. Microporous (54–80 vol.%) bioactive glass scaffolds with hierarchical porosity 
have been recently developed with the aim to satisfy the macroporosity needed for 
bone ingrowth while maintaining adequate mechanical properties (12–20 MPa) [93]. 

Inspired by the impressive property of natural bone, 3D hierarchical porous 
scaffolds have attracted significant attentions since they can provide transportation 
“highways” on various scales during osteoregeneration, and promote the innate 
regenerative mechanisms of the human body. In recent years, synthetic scaffolds 
with hierarchical macro/micro- or macro/nanoarchitectures are being rapidly devel-
oped and have evolved various biomaterials, including biodegradable polymers 
(Tyrosine-derived polycarbonate, PLGA), ceramics (hydroxyapatite, bioglass, cal-
cium carbonate) and metals (stainless steel and titanium), etc. Numerous studied 
have concluded that interconnected macroporosity with diameter larger than 100 μm 
is a prerequisite for bone ingrowth, cellular infiltration and nutrient/waste transpor-
tation [171]; and micro- and nanotopologies on the material surface play a critical 
role on cell attachment, biomineralization and full-scale osteointegration in vivo. 
Based on these previous researches, Tang et al. [56] have successfully incorporated 
trimodal macro/micro/nanoscale structures into one scaffold to achieve optimal 
osteogenic properties. 

8.4.5.2 Hierarchical Porosity Structure 

Natural bone is a classic case of a functionally graded structure with an outer highly 
dense region (cortical bone) having an elastic modulus of ~18 GPa, the inner porous 
region (cancellous bone) having an elastic modulus of ~1 GPa, and the bone marrow 
cavity in the central region [172]. Thus, there is a gradual increase in porosity as well 
as modulus variation from cortical to cancellous transition, especially at the end of 
long bones. Thus, to replicate the architecture of natural bone, 3D scaffolds with 
graded porosity are preferred. In this context, Ti–6Al–4V rod was fabricated with 
central foam core (density ~0.6 g/cm3 ) and outer foam structure with relatively 
higher density (~1.1 g/cm3 ) as shown in Fig. 8.10 [173]. The inner and outer foam 
characterized by a stiffness of 0.3 and 2.2 GPa, respectively. Also, a porous cylinder 
of Ti–6Al–4V alloy was fabricated using the electron beam melting (EBM) method, 
characterized by a lower density inner foam, surrounded by a foam with relatively



higher density (Fig. 8.10b). Generally, porous materials with a specific pore size 
facilitate growth of one particular cell. For example, pore sizes of ~5–15 μm were 
considered suitable for fibroblast, ~70–120 μm for chondrocytes, and ~100–400 μm 
for osteoblast ingrowth. In contrast, gradient porous materials can simultaneously 
repair and reconstruct two or more different tissues, since the different regions 
provide different microenvironments for multiple tissues. 

8 Stem Cell Differentiation Mediated by Biomaterials/Surfaces 341

Fig. 8.10 A conceptual view of intramedullary stem of Ti–6Al–4V foam built by EBM using the 
CAD model and cylindrical foam with dense outer region and low-density inner core [173] (Open 
access) 

8.4.5.3 Hierarchical Surface Structure 

Cells are innately receptive of their surroundings, typically to a broad spectrum of 
feature sizes from the macro down to molecular level, between 100 μm and 10 nm. It 
is through an elaborate and dynamic feedback mechanism of signal transfer between 
the ECM and the cells, that the behavior of the latter is coordinated into complex 
functional tissues. Hence, engineering these dynamic ECM mechanisms into bio-
materials is the key to control cell behavior. 

It is already circumstantiated that both micrometer and nanometer scale features 
of a material have marked influence on cell behavior. Additionally, materials 
organized on multiple length scales have better conformity to biological matrices 
than those with single scale features and are hence more propitious for all kinds of 
biomedical applications. The effects of microscale surface topography on cellular 
responses have been investigated over the years. Currently, nanostructuring of 
surfaces have garnered immense interest in view of their structural similitude to 
the native ECM of cells. Undeniably, nanotopography plays a cardinal role in



modulating cell functionality. Recent research by Gentile et al. manifests the poten-
tiality of moderately rough nanostructured surfaces with large fractal dimensions in 
promoting stable cell adhesion, growth and proliferation [174]. 
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Literature is replete with evidences on topographic sensitivity of cells (i.e., 
interplay of cells with surface features) to nanoscale as well as micrometer-range 
features like grooves, ridges and wells. Nanoscale alterations in topography evoke 
multifarious cell responses, including changes in cell adhesion, cell orientation, cell 
motility, surface antigen display, cytoskeletal condensation, activation of tyrosine 
kinases, and modulation of intracellular signaling pathways, which in turn coordi-
nate transcriptional activity and gene expression. Notwithstanding the feature size, 
cell behavior is also administered by the nature of ordered topography (e.g., ridges, 
grooves, steps, pits, pillars, channels) and their symmetry (e.g., orthogonal or 
hexagonal packing). 

In vivo, the basement membrane, composed of ECM components, is a complex 
network of pores, fibers, ridges, and other features of nanometer sized dimensions. 
Topographical cues generated by the ECM, independent of biochemistry, have direct 
effects on cell behavior such as adhesion, migration, cytoskeletal arrangements, and 
differentiation. Cells are inherently sensitive to local microscale, mesoscale, and 
nanoscale topographic and molecular patterns in the ECM environment, a phenom-
enon called “contact guidance” [175]. The development of microfluidics and micro-/ 
nanofabrication methods to analyze the cellular response to substrate topography has 
provided new insights into the interactions of cells with their microenvironments. 

Grooves and pillars are the most common feature types employed in the study of 
the effects of surface structures on cells. The influence of groove patterns on the 
behavior of cell has been extensively investigated by using various cell types such as 
fibroblast, osteoblast, epithelial, myoblast, etc. A large number of studies revealed 
that cells tend to align to the long axis of the grooves. Kaiser et al. defined the role of 
groove/ridge dimensions on fibroblast cell migration [176]. They found that surface 
structures significantly influenced cell orientation, migration direction, as well as 
migration speed in the directions parallel and perpendicular to the grooves/ridge in a 
surface structure-dependent way. Uttayarat et al. investigated the combination of 
flow shear stress and groove guidance on endothelial cell migration [177]. When 
flow direction was oriented parallel to microgrooves, the cells migrated along the 
microgrooves. When microgrooves were oriented perpendicular to the flow, most 
cells migrated orthogonal to the grooves and downstream with the flow. Lee et al. 
reported that the nanoscale ridge/groove pattern arrays alone can effectively and 
rapidly induce the differentiation of human embryonic stem cells into a neuronal 
lineage without the use of any differentiation-inducing agents, indicating the signif-
icant role of topography in determining cell fates [178]. 

The influence of pillar patterns on the behavior of cells has also been extensively 
studied. MSCs preferentially differentiated and osteosarcoma cancer cells increased 
their malignant transformation due to the micropillar geometry. In particular, 
increase of pillar heights from 1 to 10 μm affected the in vitro adhesion and guide 
morphology of fibroblasts by laminin expression enhancement [179]. Furthermore, 
the spacing between 5 and 10 μm of pillars was shown to rearrange the actin



cytoskeleton and govern fibroblast migration in vitro [180]. Nanotopography alone 
can induce the differentiation of MSCs into neuronal lineage and induced a more 
significant upregulation of neuronal markers compared to microtopography, 
highlighting the importance of feature size in topography induced differentiation. 
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Other micro-/nano-sized features, such as nodes, pits, pores, and so forth have 
been reported to influence the behavior of cells. The topography of the cell substra-
tum plays an important role in regulating cellular behavior, and micro-/ 
nanofabrication techniques provide useful tools for manipulating cells in both 
fundamental cell biology research and tissue engineering. 

8.5 Delivery of Bioactive Agents 

To enhance the interactions between the materials and host cells/tissues and directs 
the differentiation of MSCs, one of the useful strategies is the introduction of the 
bioactive components in extracellular matrix components within/onto the material 
structures. These components usually include ECM peptides/polypeptides, cyto-
kines, growth factors, and DNAs. In the view of the osteoinductive potential, 
osteogenic growth factors such as Fibroblast Growth Factor 2 (FGF-2), TGF-β2, 
and BMP-2 have been extensively used to improve the material osteoinductivity. 

8.5.1 Growth Factors 

Growth factors were initially discovered as a result of their ability to motivate 
continuous mitosis of quiescent cells in a nutritionally complete medium without 
serum. While nutrients and growth factors are both essential for mitosis, only growth 
factors know how to initiate mitosis of quiescent cells. A variety of cellular processes 
need growth factors as regulatory agents. The biology of these factors differs from 
the classical hormones as neither their site(s) of synthesis nor site(s) of action is 
limited to defined tissues. 

Growth factors are polypeptides that transmit signals to modulate cellular activ-
ities. It is known that growth factors play crucial roles in communication and 
information transfer between cells and their microenvironment [181]. Moreover, 
growth factors are soluble-secreted signaling polypeptides capable of instructing 
specific cellular responses in a biological environment. The specific cellular response 
trigged by growth factor signaling can result in a very wide range of cell actions, 
including cell survival, and control over migration, differentiation or proliferation of 
a specific subset of cells. Prior to addressing strategic delivery of growth factors, 
understanding the biological functions and roles of these proteins in the extracellular 
matrix is first of all required because the extracellular matrix contain numerous 
components such as adhesive molecules, notch signaling molecules, traction-
enabling adhesion molecules and proteoglycan molecules to bind and modulate



the activity of a number of growth factors. The signal transmission mechanism 
initiates with growth factor secretion by the producer cell. The growth factor 
instructs cell behavior through binding to specific transmembrane receptors on the 
target cells. The machinery that transduces the growth factor-binding signal to the 
cell nucleus involves a complex array of events involving cytoskeleton protein 
phosphorylation, ion fluxes, changes in metabolism, gene expression, protein syn-
thesis and ultimately an integrated biological response. 

344 H. He and C. Liu

Growth factors differ from other oligo-/polypeptide molecules, such as insulin 
and hormones, in the mode of delivery and response elicited. Typically, growth 
factors do not act in an endocrine fashion; they exhibit short-range diffusion through 
the extracellular matrix and act locally owing to their short half-lives and slow 
diffusion [182]. The ability of a growth factor to deliver a particular message to a 
distinct subpopulation of cells is not exclusively determined by the identity of the 
growth factor and its ability to diffuse through the ECMs; it is also determined by the 
target cell number, type of receptors and the intracellular signal transduction subse-
quent to factor binding. The same growth factor can convey different instructions 
depending on the receptor type to which it binds, and on the cell type to which it 
binds. Moreover, the same receptor can translate different messages depending on 
the intracellular transduction pathways. The ultimate response of a target cell to a 
particular soluble growth factor can also be governed by external factors, including 
the ability of the factors to bind to ECM, ECM degradation and growth factor 
concentration and cell target location [183]. 

Growth factors are involved in the regulation of a variety of cellular processes and 
typically act as signaling molecules between cells [184]. They promote cell prolif-
eration, differentiation and maturation, which vary in growth factors. As a result, 
they play important roles in wound healing and tissue regeneration. However, most 
growth factors act in a diffusible manner and are generally unstable in a tissue 
environment. This prolonged retention is considered to maintain the activity of 
growth factors in cells or in their environment (i.e., the ECM or artificial implant 
scaffolds), until the repair process is initiated or even completed. Thus, many 
attempts have been made to improve the performance of growth factors (e.g., their 
active period and stability). In addition, it is very important to add biofunctionality 
such as the regulation of cell functions to biomaterials used for artificial organs. 
Modification of growth factors for immobilization on, or for high-affinity binding to 
cells or scaffold biomaterials has been performed by various researchers [185]. 

Most growth factors which act in a diffusible manner, interact with their cognate 
receptor on the cell membrane, and form a complex. This interaction induces 
phosphorylation of the receptor and triggers signal transduction in the cell. These 
complexes are then internalized, partially decomposed by lysosomes, and partially 
recycled to the cell membrane [186]. Thus, internalization of the receptor/growth 
factor complexes leads to the desensitization of cells (downregulation), and to the 
reduction of excessive responses and overstimulation. In contrast, some growth 
factors are known to act in a nondiffusible manner by being present at the cell 
surface (juxtacrine) or by associating with specific substances, such as the ECM 
(matricrine). The nondiffusible mechanism was elucidated by the discovery of cell



membrane-bound growth factors in the 1990s, which include heparin-binding 
EGF-like growth factor (HB-EGF), transforming growth factor-β (TGF-β), tumor 
necrosis factor-α (TNF-α), colony-stimulating factor 1 (CSF-1), and the c-kit ligand 
[187]. These growth factors are barely internalized even after binding to their 
receptors but exhibit long-term activity without downregulation. This point suggests 
the possibility of designing binding growth factors with specific activities. 
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There are several characteristic properties of growth factors. Many cell types can 
produce the same growth factor and the same growth factor can act on many cell 
types (pleitropism) with the same or different effects. Furthermore, different growth 
factors can share the same biological effect (redundancy). Growth factors can 
influence the secretion of other growth factor (antagonize or enhance). Growth 
factors are not stored as preformed molecules but their secretion is a brief self-
limited event and their synthesis is initiated by new gene transcription, transient 
transcriptional activation, and their mRNAs are unstable [188]. There is transient 
synthesis, rapid release with activity controlled by posttranscriptional mechanisms 
such as proteolytic release of an active product from an inactive precursor. Most 
cellular responses to growth factors require new mRNA and protein synthesis. 

The availability of growth factors from the conditioned medium of cultured 
human cells, their expansion through recombinant technologies, and improved 
understanding of their functions and clinical applications has increased the need 
for pharmaceutical forms. Unfortunately, the short half-lives of growth factors, their 
relatively large size, slow tissue penetration, their potential toxicity at systemic 
levels all leading to a long time for tissue to respond, obviates conventional routes 
of administration. 

All vascularization processes involve a series of interactions among cytokines, 
growth factors, various types of cells, and enzymes. The onset of vascularization 
begins with the binding of biological agents to the surface receptors of endothelial or 
endothelial progenitor cells, and a resulting cascade of agents act in the subsequent 
processes of vascularization. Numerous growth factors involved in vasculogenesis, 
angiogenesis, and arteriogenesis have been identified and characterized, including 
vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), placenta 
growth factor (PIGF), hepatocyte growth factor (HGF), platelet-derived growth 
factor (PDGF), Angiopoietin-1 and Angiopoietin-2, insulin-like growth factor 
(IGF), granulocyte macrophage colony-stimulating factor (GM-CSF), and monocyte 
chemoattractant protein-1 (MCP-1). Growth factors are often chosen as drug candi-
dates for rebuilding networks of blood vessels for therapeutic angiogenesis or for 
tissue engineering. 

Members of the transforming growth factor-β (TGF-β) superfamily are secreted 
multifunctional growth factors that determine the development, maintenance and 
regeneration of tissues and organs. Their importance in the development of 
multicellular organisms is clear from their presence in all vertebrates and inverte-
brate animals. On the basis of their phylogenetic and functional relationships, the 
TGFβ/BMPs can be subdivided into four subgroups, which also highlight mecha-
nistic differences in receptor binding and activation or the differences found in 
modulatory mechanisms [189]. These subgroups are the TGFβs, the bone



morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), 
activin/inhibins, and the so-called outsider subgroup. 
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8.5.2 Brief Introduction of BMPs 

Bone morphogenetic proteins belong to the large transforming growth factor-beta 
(TGF-β) superfamily of structurally related signaling proteins which are disulfide-
linked dimers composed of two 12 to 15 kD monomers. To date, more than 
20 members have been identified in humans with varying functions during devel-
opmental and physiological processes [190] such as embryogenesis, skeletal forma-
tion, hematopoiesis, and neurogenesis. Among these growth factors, BMP-2, 
BMP-4, and BMP-7 (also called osteogenic protein-1) have been largely used as 
recombinant proteins for their ability to repair bone defects in different animal 
models [191, 192]. Liu et al. [193] have elucidated the exact mechanism by which 
BMPs affect MSCs. These proteins generate the transcription factor Smads by 
combining with type I or II serine/threonine receptor on the MSC membrane to 
activate 203 gene loci which control the osteoblast differentiation of MSCs. 

BMP-2 is a FDA-approved growth factor and can induce ectopic bone and 
cartilage formation in adult vertebrates and is involved in central steps in early 
embryonal development. A cDNA encoding mature human BMP-2 could be effi-
ciently expressed in Escherichia coli, and after renaturation, a dimeric BMP-2 
protein of Mr 25000 was prepared with a purity greater than 98%. Fernando 
Lecanda et al. [194] have proved that BMP-2 has profound effects on the prolifer-
ation, expression of most of the bone matrix proteins and the mineralization of both 
relatively immature human bone marrow stromal preosteoblasts and mature human 
osteoblasts. However, combined with clinical challenges such as limited efficacy, 
excessive doses, side effects, and high costs, efforts have focused on optimizing the 
carrier of BMP-2, as well as improving BMP-2 half-life and/or sustaining and 
localizing its release [195]. 

8.5.3 Mass Production of rhBMP-2 

Because of the limited source of natural BMP-2, and the risk of infection by 
pathogens, BMP-2 molecules with high activity expressed via eukaryotic cells has 
been introduced in the market by Medtronic. However, it has the disadvantages of 
complicated process, high production cost, and low output. Meanwhile, the E. coli 
expression system holds great potential because of simple process and low produc-
tion cost. The recombinant proteins expressed in E. coli system often form inclusion 
bodies, especially when they are expressed at high levels. How to achieve the proper 
renaturation of recombinant proteins from inclusion bodies would become the key 
issue for the process. By optimizing the gene codon, expression vector and host



bacteria, the ECUST team developed the recombinant E. coli strains with intellectual 
property (shown in Fig. 8.11). The reduction environment at low temperature and 
special aggregation inhibitor were utilized in the renaturation of recombinant pro-
teins from inclusion bodies to efficiently reach a native conformation. The rhBMP-2 
molecules with over 95% purity and homodimer structure were successfully 
obtained. According to the detection report by a research institution, the bioactivity 
of our rhBMP-2 could reach the best level abroad (Infuse, USA). 
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Fig. 8.11 Mass production of rhBMP-2 by recombinant E. coli 

On the basis of small-scale manufacturing, the engineering magnification of 
fermentation, protein purification, renaturation and refinement of recombinant pro-
tein have been investigated, which the technology has already been transferred to 
Shanghai Rebone Biomaterials Co., Ltd. After solving the issues of engineering 
amplification affecting protein activity, the suitable and detection indexes were 
determined to screen the factors affecting the yield and activity of rhBMP-2. 
Moreover, the optimization of the manufacturing process allows the integration of 
the whole system. It is also realized for the establishment of the mass production in 
accordance with GMP standard and the stable mass production of rhBMP-2 with 
high-activity. The products have been used in over 30 provinces national wide and 
achieved satisfactory performances in bone defect treatment, trauma repairing and 
spine surgery. Therefore, the ECUST team has acquired the reputation from our 
international counterparts as “the frontier of bone repairing technology.” 

8.5.4 Immobilization of Growth Factors 

8.5.4.1 Immobilization Approach of Growth Factors 

Growth factors typically act as signaling molecules to regulate a variety of cellular 
processes. For example, BMPs stimulate bone cell differentiation and improve the 
cell proliferation, whereas FGF and VEGF enhance angiogenesis. BMPs have been



integrated on/into the implantable materials to significantly enhance a wide variety 
of biological functions including stimulating osteogenesis and angiogenesis 
[196, 197]. Upregulation of BMP-2 has been observed during the first three weeks 
of osteogenesis [198]. Moreover, the growth factors released during the inflamma-
tory phase have the potential of attracting undifferentiated mesenchymal stem cells 
to the injured site [199]. On the basis of these findings and the nature of BMP-2, this 
growth factor must be delivered in a sustained fashion that emulates the natural 
release profile of BMP-2 in vivo. 
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There are several methods for immobilizing biological molecules including 
BMPs on inorganic/organic surfaces. Physisorption is the easiest method of surface 
modification. The direct immobilization of growth factors by physisorption is easily 
disrupted by desorption and the growth factors will diffuse into the surrounding 
medium, losing their ability to exert a sustained effect [200]. Growth factors have 
also been chemically immobilized on surfaces by covalent bonding or by biologi-
cally anchoring. Some linkers have also been used as intermediaries to chemically 
immobilized growth factors, including coupling agents, polyphenols, and dopamine. 
Meanwhile, the covalent binding usually requires nonphysiological conditions 
[201]. Many researchers have also developed layer-by-layer self-assembly and 
biomimetic/electrochemical deposition approaches for immobilizing growth factors 
[202]. However, either time consuming or poor controlling of the coating properties 
limit their applications. To achieve the high loading efficiency and maintain the 
biological stability of BMP-2, the immobilization techniques require the fast oper-
ation, mild conditions, as well as the well-controlled coating. Among different 
techniques, the electrostatic spray deposition (ESD) has shown the great potential 
for biomolecule incorporation on/into metallic materials because of simple and 
low-cost, fast deposition rate, protein-friendly, well-controlled, and easy coating 
for complex geometries [203]. To date, this technology has been successfully 
applied to deposit many inorganic/organic materials on the metallic surfaces. Our 
group also used this technique to codeposit BMP-2 and chitosan on metallic surface 
for enhancing the proliferation and osteogenic differentiation of bone MSCs [204]. 

Growth factors are often added to the scaffold surface via electrostatic interaction 
and ionic complexation, and the corresponding release depends on protein–surface 
interactions that are governed by surface charge, surface roughness, and surface 
energetics. For more sustained release, bioactive molecules can be physically encap-
sulated within the scaffolding material and in microparticles. Covalent immobiliza-
tion methods must be assessed in terms of gradients, spatial distribution and density, 
conjugation efficiency, dose dependence, downstream signaling, heparin/affinity-
based delivery, dual delivery, and cleavable linkers [205]. For the purpose of this 
point, 100% or less delivery over the course of 30 days is considered successful 
sustained release, based on the timescale required for repairing different tissues.
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8.5.4.2 The Influence of Surface Properties on the Activity of Growth 
Factors 

As an important member of transforming growth factor beta superfamily, BMP-2 
molecule has been shown to have prominent functions in inducing osteogenic 
differentiation and promoting osteogenesis [206]. BMP-2 not only participates in 
the development of various organs and the directional differentiation of cells in the 
early embryonic period, but also causes undifferentiated mesenchymal stem cell and 
osteoblast precursor cells to undergo chemotaxis, division and differentiation after 
birth. Since 2002, BMP-2 molecule has been approved for spinal fusion, tibial 
fracture, and dental transplantation by the FDA and the European Medical Regula-
tory Agency. Our group has also investigated the effects of the composition and 
surface/interface on the structure and biological activity of rhBMP-2, elucidating the 
nanoeffects during the regulatory processes. 

On the typical zero-dimensional material-silica nanoparticles (SNPs), Tian et al. 
[207] prepared SNPs with different sizes of 20 nm, 60 nm and 100 nm, respectively, 
and evaluated the secondary structure and biological activity of rhBMP-2 with the 
change of SNPs size. It was found that there was a rapid adhesion stage, the rhBMP-
2 loading on the surface of SNPs increased linearly with the time from 0 to 15 min. 
Subsequently, there was a saturated adsorption stage, in 20 to 30 min, the rhBMP-2 
loading on the SNPs surface increased slowly with time until it reached the equilib-
rium adsorption. In contrast, the outer surface of SNPs at 60 nm showed a distinct 
rhBMP-2 protein coating, and the interface is very distinct. Infrared and circular 
dichroism spectra showed the unfolding effect of rhBMP-2. SNPs with different 
particle sizes could decrease the β-rotation/folding and α-helix structure in rhBMP-2. 
Compared with free rhBMP-2, although the bioactivity of rhBMP-2 adsorbed on the 
surface of SNPs was reduced, however, the biological activity of rhBMP-2 in SNP60 
samples was higher than that in SNP100 and SNP20 samples. Therefore, the surface 
curvature of 60 nm nanoparticles is beneficial to the maintenance of the structure and 
activity of rhBMP-2. 

As a typical one-dimensional material, single-walled carbon nanotubes (SWNTs) 
can promote the maintenance of protein secondary structure and biological activity. 
Li et al. [208] investigated the effects of hydrophilic carbon nanotubes 
(SWNTS-COOH) and hydrophobic carbon nanotubes (SWNTs-CH3) on the adsorp-
tion properties, secondary structure and activity of rhBMP-2. The single-beam 
SWNTs-COOH or SWNTs-CH3 with a diameter of about 6 to 8 nm is similar to 
the three-dimensional size of rhBMP-2, and has a strong affinity for rhBMP-2. It 
took only 10 min for rhBMP-2 to reach saturation adsorption (>90%). The α-helix 
structure and β-fold structure of rhBMP-2 adsorbed on SWNTs-COOH surface 
decreased obviously. Compared with the rhBMP-2 in solution, rhBMP-2 molecules 
adsorbed on SWNTs-CH3 and SWNTs-COOH significantly increased the osteo-
genic activity by 51% and 23%, respectively. However, compared with free rhBMP-
2, the biological activity of rhBMP-2 released from SWNTs-CH3 decreased by about 
30%, while that of rhBMP-2 released from SWNTs-COOH had no significant



difference. When rhBMP-2 nonspecifically adsorbed to SWNTs-COOH or SWNTs-
CH3 surfaces, its intramolecular folded structure might partially fold in order to 
contact the SWNTs surface to a greater extent; therefore, the secondary structure of 
rhBMP-2 was changed. Considering the molecular size of rhBMP-2, it is hypothe-
sized that rhBMP-2 molecules might bind on the surface of SWNTs vertically or 
parallelly. 
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The two-dimensional surface properties of the materials significantly affect the 
adsorption kinetics of proteins. For this purpose, the hydroxylapatite (HAP) with 
different surface roughness HAP (5.2 ± 0.3 nm), HAP-pol (17.4 ± 0.3 nm) and 
HAP-sin (7.7 ± 0.2 nm) were prepared [209]. To study the effect of rhBMP-2 on the 
adsorption capacity, Huang et al. investigated molecular dynamics behavior and 
biological activity of rhBMP-2. The mass of rhBMP-2 adsorbed on HAP, HAP-pol 
and HAP-sin were 115.8 ± 3.7 ng, 176.9 ± 4.9 ng and 123.4 ± 3.3 ng, respectively. 
The results of osteogenic activity showed that the ALP value of HAP-Pol/BMP-2 
was significantly higher than that of HAP/rhBMP-2 and HAP-sin/rhBMP-2. 
SMAD1/5/8 signaling pathway is the most important and classical signaling path-
way of rhBMP-2 in mediating osteogenic differentiation of C2C12 cells. Western 
blot analysis showed that the expression of SMAD1/5/8 of C2C12 was higher in all 
groups, but the expression of p-Smad1/5/8 of C2C12 was significantly different. In 
the order of HAP-sin < HAP < HAP-pol, the expression level of SMAD1/5/ 
8 increased significantly ( p < 0.05), indicating that rhBMP-2 adsorbed on 
HAP-pol had the highest osteoinductive activity. 

Mesoporous materials with pore sizes close to those of protein molecules could 
facilitate protein immobilization, activity retention, and sustained-release effects 
[210, 211]. Therefore, the MBG materials with different mesoporous sizes were 
designed and prepared. The effects of mesoporous sizes on the loading, adsorption, 
slow release and bioactivity of BMP-2 were studied. The pore diameters of MBG-4 
and MBG-8 were 4.30 nm and 7.67 nm, respectively. And their pore orifices were 
slightly smaller than the pore diameters, which were 3.63 nm and 5.48 nm, respec-
tively. The pore diameter of MBG-40 (44.03 nm) was much larger than that of 
MBG-4 and MBG-8, but its pore orifices was relatively small (5.93 nm), which was 
close to that of MBG-8. The size of BMP-2 protein was close to the pore diameter of 
MBG-4, and the BMP-2 protein molecules could enter the mesoporous interior, at 
the same time, the internal diameter of the pore was close to the size of the protein 
molecule, so the adsorption mainly took place in the pore. The circular dichroism 
data confirmed that the change rate of the secondary structure of BMP-2 released 
from MBG was only 2% to 3% compared with that of free BMP-2 released from 
MBG. The structural change rate of MBG-8 was the lowest (2%), while the 
structural change rate of BMP-2 released from nonmesoporous BG was relatively 
high. These results indicated that the mesopore could protect the secondary structure 
of the protein, and the protein loaded in the mesopore could maintain its biological 
activity after slow release. The results of ALP activity test confirmed that MBG had 
no significant effect on the activity of BMP-2 protein, and the BMP-2 released from 
MBG-8 had the highest level of ALP activity. In another words, the mesoporous 
pore size contributes to the activity maintenance of immobilized BMP-2 molecules.
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8.5.5 Influence of Ions on rhBMP-2 and Stem Cell 
Differentiation 

8.5.5.1 The Influence of Various Ions on the Activity of rhBMP-2 
to Induce the Osteogenic Differentiation 

As has been discussed, rhBMP-2 is a widely-used, potent osteogenic growth factor 
and can induce osteogenic differentiation of multipotent mesenchymal cells and 
induce bone formation in both animals and humans. Various matrixes have been and 
are currently being adopted to carry rhBMP-2 [212–215]. However, due to the 
hydrogen/ionic/hydrophobic interaction with the substrates, or the environmental 
factors such as pH, ionic strength, temperature in vitro and in vivo, highly efficient 
delivery of rhBMP-2 remains a challenge till now. Therefore, fundamental under-
standing of the conformational behavior of rhBMP-2 during its application in vitro 
and in vivo would be very significant to design and fabrication of the rhBMP-2-
based orthopedic implants/scaffolds. Recent studies reveal that metal cations play a 
decisive role in the regulation of protein folding, conformation, stability, and 
bioactivity of protein. Zinc (Zn2+ ), copper (Cu2+ ), calcium (Ca2+ ), magnesium 
(Mg2+ ), manganese (Mn2+ ), or strontium (Sr2+ ) have been reported as modulators 
for protein conformation and biofunctions [216–218]. Thus, the interaction between 
cations and rhBMP-2 was systematical elucidated in this section. 

Considering the fact that Ca2+ is the most pervasive component of the bone 
matrix/scaffold and is abundant in cell culture medium and the physiological 
environment, the “hormesis” phenomenon was observed for the influence of calcium 
on the bioactivity of rhBMP-2. Briefly, low concentration of Ca2+ (0.18 mM) 
enhanced rhBMP-2-induced osteogenic differentiation, while high Ca2+ concentra-
tion (>1.80 mM) exerted negative effect. In vivo ectopic bone formation exhibited 
similar trend. Further studies by circular dichroism spectroscopy, fluorescence 
spectroscopy, together with cell culture experiments revealed at low concentration, 
weak interaction of Ca2+ and rhBMP-2 slightly increased β-sheet/-turn content and 
facilitated recognition of BMP-2 and BMPRIA. But, high Ca2+ concentration 
(>1.8 mM) induced formation of Ca-rhBMP-2 complex and markedly increased 
content of β-sheet/-turn, which led to inhibition binding of rhBMP-2 and BMPRIA 
and thus suppression of downstream Smad1/5/8, ERK1/2, and p38 mitogen-
associated protein kinase signaling pathways (as shown in Fig. 8.12). Those results 
suggested osteogenic bioactivity of BMP-2 can be adjusted via extracellular Ca2+ , 
which should provide guide and assist for development of BMP-2-based materials 
for bone regeneration [219]. 

Strontium (Sr2+ ) has pronounced effects on stimulating bone formation and 
inhibiting bone resorption in bone regeneration. The interaction between Sr2+ and 
rhBMP-2 was further discussed in this part. Sr2+ could bind rhBMP-2 rapidly, even 
in the presence of Ca2+ and Mg2+ , and inhibited rhBMP-2-induced osteogenic 
differentiation in vitro and osteogenetic efficiency in vivo. Further studies demon-
strated that Sr2+ treatment undermined the binding capacity of rhBMP-2 with its



receptor BMPRIA and thus attenuated Smad 1/5/8 phosphorylation without affect-
ing their dephosphorylation in C2C12 cells. Furthermore, circular dichroism spec-
troscopy, fluorescence spectroscopy and X-ray photoelectron spectroscopy all 
revealed that the inhibitory effect of Sr2+ on the rhBMP-2 osteogenic activity was 
associated with the formation of Sr-rhBMP-2 complex and ensuing enhancement of 
β-sheet structure (as shown in Fig. 8.13). Our work suggests the activity of rhBMP-2 
to induce osteogenic differentiation was decreased by directly interaction with free 
Sr ions in solution, which should provide guide and assist for development of 
BMP-2-based materials for bone regeneration [220]. 
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Fig. 8.12 Schematic depiction of the effect of Ca2+ on the conformation and bioactivity of 
rhBMP-2. Effect of Ca2+ on the rhBMP-2-induced osteogenic differentiation. Ca2+ ion at low 
concentration facilitated for the binding capacity of BMP-2 with its receptors on cell membrane and 
thus enhanced Smad1/5/8, and MAPK signaling transduction, which further stimulated expression 
of osteogenic marker genes and the ALP activity. Additionally, increasing Ca2+ attenuated the 
binding capacity to BMPR-IA, downregulated the signaling transductions of Smad1/5/8, MAP 
Kinases, and consequently reduced the rhBMP-2-induced gene expression and ALP activity 
[219]. (Copyright 2015 Changsheng Liu, et al.) 

Moreover, magnesium is a vital and widely used component for the bone sub-
stitutes. Mg2+ plays a vital role to modulate the conformation and bioactivity of 
rhBMP-2. However, possibly due to the weak bonding of Mg2+ with rhBMP-2, low 
concentration of Mg2+ has no obvious effect on the osteogenic activity of rhBMP-2. 

However, those results mentioned above were analyzed using C2C12, a plurip-
otent skeletal muscle myogenic progenitor cell line, which can differentiate toward 
an osteoblastic lineage in the presence of BMP-2 and thus is considered as a useful



model for analyzing both the common and specific signaling mechanisms of BMPs 
[221]. Although the rhBMP-2-induced ALP activity in rat mesenchymal stem cells 
showed a same trend, the influence of cations on the rhBMP-2 in stem cells still 
unknown. 
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Fig. 8.13 Schematic depiction of the effect of Sr2+ on the conformation and bioactivity of 
rhBMP-2. Compared with free rhBMP-2, the Sr-rhBMP-2 complex, facilitated by the interaction 
of rhBMP-2 and Sr2+ ion, attenuated the binding capacity to BMPR-IA, consequently 
downregulated the Smad signaling transduction cascades and eventually reduced the rhBMP-2-
induced osteogenic differentiation in vitro (including ALP activity and bone-related protein and 
gene expression) and osteogenetic efficiency in vivo [220]. (Reprinted with permission from 
Elsevier Ltd. 2016) 

Furthermore, Lithium (Li+ ) ions, which are widely used as a long-term mood 
stabilizer in the treatment of depressive disorders, are known to affect embryonic 
development by altering cell fate determination and pattern formation. Li+ activates 
the canonical Wnt signaling pathway through inhibition of the β-catenin degradation 
kinase, glycogen synthase kinase-3 (GSK3) to mimic the canonical WNT signaling. 
Analogous to WNT, lithium prevents GSK3-mediated phosphorylation of cytosolic 
transcription factor β-catenin and its subsequent degradation by the proteasome 
complex. Although stabilization of β-catenin in osteoblasts has been shown to 
promote bone mass accrual in a mouse model, several studies reported inhibitory 
effects of lithium supplements on the osteogenic differentiation of cultured mesen-
chymal stem cells. One possible explanation for these apparent contradictory find-
ings might be that lithium affects the differentiation of osteoblast progenitors



through additional signaling events, which independently or in concert with WNT 
signaling, affect the bone resorption activities in vivo. In murine MC3T3-E1 
preosteoblasts and a pluripotent mesenchymal cell line C2C12, lithium inhibits 
BMP-2 signaling to affect osteogenic differentiation on account to reduction of 
BMP-2-induced Smad 1/5/8 phosphorylation without affecting their dephosphory-
lation. Additionally, in MC3T3-E1 cells, lithium attenuates BMP-2-induced osteo-
genic differentiation through GSK3 inhibition; while in C2C12 cells, these negative 
effects of lithium ions on BMP-2 signaling do not rely on GSK3 inhibition or 
activation of canonical WNT signaling [222]. 
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8.5.5.2 Influence of Various Ions on the Osteogenic Differentiation 
of Stem Cells 

Due to the excellent biocompatibility and bioactivity, CaP-based biomaterials have 
been attracting great attention in the bone regeneration. The dynamic dissolution/ 
precipitation of CaP minerals from the mineralized matrices dictates the concentra-
tions of Ca2+ and PO4 

3- in the extracellular milieu. The previous investigation has 
proposed the role for inorganic ions in stimulating osteogenic differentiation. 

The response of osteoprogenitors to calcium (Ca2+ ), which created an in vitro 
environment with high extracellular Ca2+ , is of primary interest for both normal bone 
homeostasis and the clinical field of bone regeneration. It reported that Ca2+ 

enhanced proliferation and morphological changes in human bone marrow-derived 
mesenchymal stromal cells (hMSCs) with the upregulated expression level of 
osteogenic genes including ECM proteins (osteopontin, bone sialoprotein, and 
osteocalcin) and BMP-2. This means hMSCs will develop an osteoblastic phenotype 
due to increased [Ca2+ ] in the culture medium. Ca2+ is a ligand for several G-protein-
coupled receptors (GPCRs), can enter the cell via gap junction hemichannels or 
activate the Notch signaling pathway in the chick embryo during left-right organ 
asymmetry acquisition. The best described GPCR involved in Ca2+ sensing is the 
Calcium Sensing receptor (CaSR), as well as metabotropic glutamate receptors 
(mGluRs), gamma-aminobutyric acid (GABA), GABAB, and GPRC6A. Further-
more, ion channels such as voltage-gated Ca2+ channels (VGCCs), acid sensing ion 
channels (ASIC)-ASIC1a/ASIC1b, and human ether-à-go-go related gene (HERG) 
K+ channels open in response to variations in [Ca2+ ]. The analysis of signal 
transduction pathways with GPCR agonists and antagonists, targeting the CaSR 
and mGluR1 respectively, suggests that these receptors are not involved in BMP-2 
expression, but cannot exclude the possibility of an unknown GPCR mediating 
hMSCs BMP-2 expression in response to [Ca2+ ]. Type L voltage-gated calcium 
channels are involved in mediating the signaling pathway between extracellular Ca2+ 

and BMP-2 expression, but not exclusively. Moreover, in other cell line such as 
osteoblasts, Ca2+ treatment results in phosphorylation of extracellular signal regu-
lated kinases 1 and 2 (ERK1/2), and ERK1/2 phosphorylation also occurred when 
MC3T3-E1 cells were treated with Ca2+ . In addition, biphasic CaP crystals failed to 
induce expression of a characteristic set of genes in mouse embryonic fibroblasts



when upstream activators of ERKs were blocked. In hMSCs, MEK1/2 activity is 
essential for the effect of Ca2+ , probably via Fos expression and AP-1 formation that 
in turn binds to the AP-1 binding domain of the BMP-2 promoter region [223]. 
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Phosphate ions have generated excitement in the field of vascular biology due to 
an increased propensity for intravascular calcification with hyperphosphatemia seen 
in chronic renal disease. The mechanism behind phosphate-induced osteogenesis has 
been partially elucidated to involve the ubiquitous sodium phosphate cotransporter 
SLC20A1, adenosine signaling, and ERK1/2 phosphorylation. Extracellular PO4 

3-

enters the cells through SLC20a1 and subsequently into the mitochondria, which 
serves as a substrate for ATP synthesis. ATP is then secreted and metabolized into 
adenosine, which subsequently promotes osteogenic differentiation of hMSCs 
through the A2b adenosine receptor via autocrine and/or paracrine signaling. 
Another possibility is that intracellular transport of calcium or phosphate ions 
inhibits negative regulators of the Smad signaling pathway such as Smad 6 or 
Smad 7 [224, 225]. 

Due to the pronounced effects for stimulating bone formation and inhibiting bone 
resorption, strontium (Sr2+ ) has been incorporated into biomaterials/scaffold to 
improve the bioactivity for bone-regeneration applications. It has reported that 
Sr2+ promotes osteoblast differentiation including upregulating expression of the 
endogenous BMP-2 probably via calcium sensing receptor (CaR)-dependent mech-
anism or modulation of the Wnt/β-catenin and MAPK pathways [226–231]. 

The further studies aimed to investigate the possible effects of strontium on MSCs 
and signaling pathways possibly involved. The increased phosphorylation of 
mitogen-activated protein kinase (MAPK) ERK1/2 and p38 was detected in 
strontium-treated MSCs. PD98059 and SB203580, selective inhibitors of ERK1/2 
kinase and p38, attenuated the effect of strontium on osteogenesis. Furthermore, it 
was demonstrated that Rat Sarcoma viral oncogene homolog (RAS), an upstream 
regulator of ERK1/2 and p38, was activated by strontium treatment and siRNA-
mediated Ras knockdown inhibited strontium stimulated expression of osteogenic 
markers. Finally, the transcriptional activity and phosphorylation level of Runx2 was 
significantly increased in response to strontium treatment in MSCs. PD98059 and 
Ras siRNA inhibited the effect of strontium on Runx2 activation. Taken together, 
strontium can promote osteogenic differentiation of MSCs through activating the 
Ras/MAPK signaling pathway and the downstream transcription factor 
Runx2 [232]. 

Wnt/β-catenin signaling is involved in almost every aspect in embryonic devel-
opment and plays a central role in bone development and homeostasis. β-Catenin 
signaling also plays an important role in regulating the commitment of the differen-
tiation of pluripotent stem cell into osteoblast lineage during fracture healing. The 
canonical Wnt signaling could regulate osteogenesis of MSCs and improve the 
efficiency of bone tissue engineering. The in vivo data demonstrated the expression 
of β-catenin and Frizzed receptor was significantly increased by strontium, thus 
transducing signals that activated the downstream osteogenic transcriptional factors 
and enhancing osteoblastic differentiation; on the other hand, strontium could also



inhibit the expression of Wnt pathway inhibitors, prevent the degradation of 
β-catenin, and promote osteogenic differentiation. 
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8.5.6 Influences of Other Molecules on rhBMP-2 and Stem 
Cell Differentiation 

8.5.6.1 Interactions Between GAG Sugars and BMP-2 

Recent evidence suggests that BMP-2 kinetics can be improved by complexing the 
growth factor with glycosaminoglycan (GAG) sugars [233]. GAGs are long-chain 
compounds composed of repeating disaccharide units with a carboxyl group and one 
or more sulfates, in which one sugar is N-acetylgalactosamine or 
N-acetylglucosamine [234]. These highly anionic, linear polysaccharides form 
important constituents of the extracellular matrix and are noted for their ability to 
bind, stabilize and protect various growth and adhesive factors [235]. Heparin, 
heparan sulfate (HS), keratan sulfate, dermatan sulfate, chondroitin sulfate, and 
hyaluronic acid are well known as endogenous GAGs. 

Heparin, a hyper-sulfated glycosaminoglycan (GAG) sugar harvested from mast 
cell-rich tissues, has been investigated extensively and shown great promise in this 
regard. Heparin can bind to and modulate various extracellular molecules including 
growth factors, adhesion molecules, and receptors. Rainer Ruppert et al. [236] 
identified the basic N-terminal domains of dimeric BMP-2 as heparin-binding sites 
that are not obligatory for receptor activation but modulate its biological activity. 
Some studies have reported that heparin enhances the bioactivities of BMP-2 
through binding to and stabilizing BMP-2, protecting BMP-2 from degradation 
and inhibition by BMP antagonists [233, 237], or acting as a BMP-2 coreceptor 
by facilitating ligand-induced receptor hetero-oligomerization [238], thereby 
improving BMP-2 efficacy. In contrast, some researchers have found that heparin 
inhibits BMP-2 osteogenic bioactivity in vitro by binding to both BMP-2 and BMPR 
[239], or sequestering BMP-2 on the cell surface and mediating the internalization of 
BMP-2 [233]. In addition, Shin Kanzaki et al. [240] found that heparin decreased the 
phosphorylation of Smad1/5/8 after 0.5 h culture, while prolonged periods of culture 
with heparin enhanced the Smad phosphorylation in BMP-2-stimulated MC3T3 
cells. These findings indicate biphasic effects of heparin on BMP-2 activity and 
suggest that heparin has complex effects on the BMP-2 osteogenic bioactivities. 
Thus, the mechanism by which heparin regulates bone metabolism induced by 
BMP-2 remains unclear. 

Despite promising results, the use of heparin to augment BMP-2 therapy may 
pose unwanted effects due to heparin's affinity for a wide range of proteins. For 
instance, heparin's ability to interact and activate antithrombin III promotes its wide 
use in anticoagulant therapy [241]. As the fracture hematoma acts as a reservoir for 
cytokines and growth factors important for bone repair [235], the use of anticoag-
ulant compounds like heparin may be counter-productive. Furthermore, heparin



treatment is known to reduce bone density and has been linked to the development of 
osteoporosis [242] through its pro-osteoclastic actions in vitro [243] and 
in vivo [242]. 
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Like heparin, HS is a GAG sugar with repeating disaccharide units of 
N-glucosamine and uronic acid. Importantly however, HS is less sulfated (40%– 
60%) compared to heparin (>80%), and has a greater variability in its sulfation 
pattern that is critical for binding specific signaling molecules [244]. This specificity 
is of major biomedical significance, because HS retains the advantageous bioactivity 
of heparin without the adverse effects associated with its pleiotropic protein affinity. 

Christian Dombrowski et al. [245] found that exogenous application of HS to 
cultures of primary rat MSCs could stimulate their proliferation, leading to increased 
expression of osteogenic markers and enhanced bone nodule formation. Studies 
from Bramono et al. [246] have demonstrated that marrow-derived HS (HS5) is an 
effective adjuvant of BMP-2 which sustains BMP-2-dependent osteogenic activity 
in a similar pattern to heparin and minimizes side effects by (1) prolonging BMP-2 
half-life, (2) reducing interactions between BMP-2 with its antagonist noggin, and 
(3) modulating BMP-2 distribution on the cell surface. The sulfated polysaccharides 
could enhance the biological activity of both homodimers and heterodimers of 
BMPs by continuously serving the ligands to their signaling receptors expressed 
on cell membranes [247]. In addition, not only the total amounts of sulfur but also its 
position and/or structure is important to modify the stimulatory capacity of BMP 
activity. 

Marie-Christelle Degat et al. [248] explored the binding capacity of synthetic 
heparin-like dextran derivatives to BMP-2. Affinity electrophoresis analysis pro-
vided evidence that carboxy-methylated dextran polymers grafted with high 
amounts of benzylamide groups (named DMCB) interact with BMP-2. In vitro, 
DMCB dose-dependently promoted osteoblast differentiation induced by BMP-2 in 
C2C12 myoblasts more efficiently than heparin. In rats in vivo, DMCB also stim-
ulated ectopic calcification mediated by BMP-2. These data indicate that dextran-
based polysaccharides prolong the half-life of the growth factor and promote its 
biological activity. 

Dose-dependent effects on BMP bioactivity were observed in both sulfated 
chitosan and heparin. Compared with native heparin, 2-N, 6-O-sulfated chitosan 
(26SCS) showed much stronger simultaneous effects on the BMP-2 bioactivity at 
low dose. Stimulated secreted Noggin protein failed to block the function of BMP-2 
in the presence of 26SCS. The BMP-2 ligand bound to its receptor was enhanced by 
low dose of 26SCS, whereas weakened by the increasing amounts of 26SCS. 
Furthermore, simultaneous administration of BMP-2 and 26SCS in vivo dose-
dependently induced larger amounts of ectopic bone formation compared with 
BMP-2 alone. These findings indicated that 26SCS could be used as the synergistic 
factor of BMP-2 for bone regeneration [249]. Marianne Buttner et al. [250] have 
reported that over-sulfated CS derivatives themselves are able to induce osteogenic 
differentiation of hMSC, probably independent of BMP-2 and TGF-β1 signaling and 
offer therefore an interesting approach for the improvement of bone healing. The 
enzymatic disruption of HS and CS chains on cell surface proteoglycans alters BMP



and Wnt activity so as to enhance the lineage commitment and osteogenic differen-
tiation of hMSCs [251]. 
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Hyaluronic acid is a long polysaccharide consisting of repeating disaccharide 
units of N-acetylglucosamine and D-glucuronic acid, and a major component of 
extracellular matrix (ECM) proteins in mammalian tissues. Michinao Kawano et al. 
[252] found that HA enhanced BMP-2 osteogenic bioactivity in MG63 cells via 
downregulation of BMP-2 antagonists and ERK phosphorylation. Also Jungju Kim 
et al. [253] found that during bone regeneration in vivo, there was a synergetic effect 
of bone formation with HA-based hydrogel with hMSCs and BMP-2 in the histo-
logical and immunohistochemical analysis. 

8.5.6.2 Dexamethasone/Ascorbic Acid/Glycerolphosphate (DAG) 

Dexamethasone/ascorbic acid/glycerolphosphate (DAG) and BMP-2 are potent 
agents in cell proliferation and differentiation pathways. Dexamethasone (DEX) is 
a synthetic glucocorticoid that has been used clinically as an anti-inflammatory drug, 
although long-term administration of DEX or other steroids may cause or exacerbate 
osteoporosis. However, DEX has also been used for decades to differentiate MSCs 
into adipogenic [254], chondrogenic [255], and osteogenic lineages [256]. DEX 
affected not only the proliferation rate but also the subpopulation composition of 
BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during 
osteogenic differentiation. During osteogenic induction by BMP-2, DEX also mark-
edly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic 
bone formation model, bone formation in muscle-implanted scaffolds containing 
dexamethasone and BMP-2 was more than two fold higher than that in scaffolds 
containing BMP-2 alone. These results suggest that DEX potently enhances the 
osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 
required for clinical application, thereby reducing the complications caused by 
excessive doses of BMP-2 [257]. 

In Langenbach and Handschel’s review [258], it has been concluded that Dex 
induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation 
and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Ascorbic 
acid leads to the increased secretion of collagen type I (Col1), which in turn leads to 
increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from 
β-Gly serves as a source for the phosphate in hydroxylapatite and in addition 
influences intracellular signaling molecules. Treatment with β-glycerolphosphate 
can result in nonosteogenic dystrophic mineralization. 

Marcus et al. [259] found that DAG induced collagen I secretion from MSCs, 
which was further increased by the combination of DAG + BMP-2. In comparison, 
the collagen scaffold and the control samples showed no significant influence on 
collagen I secretion of MSCs. DAG stimulation of MSCs led also to a steady but not 
significant increase of BMP-2 level. A DAG and more, a DAG+BMP-2, stimulation 
increased the number of mesenchymal cells (CD105+ /CD73+ ). To be summarized, 
BMP-2 enhances DAG-induced osteogenic differentiation in mesenchymal bone



marrow cells. Both agents interact in various ways and can modify osteoblastic bone 
formation. 
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8.5.6.3 Extracellular Antagonists of BMP-2 

BMP antagonists were found in the Spemann organizer of Xenopus embryos as a 
molecule to inhibit BMP binding to their receptors. They are designated as noggin 
and chordin. After the first discovery of the BMP antagonists, numerous BMP 
antagonists, which are secretory proteins with cysteine arrangement structure, were 
found. The extracellular BMP antagonists represent a number of secreted peptides, 
which bind BMPs with high affinity and prevent their interaction with their specific 
receptors. Antagonists such as Noggin, Chordin, Gremlin (Grem1), and twisted 
gastrulation-1 (Twsg1) have been shown to inhibit BMP action in a range of 
different cell types and developmental stage-specific contexts. 

Noggin binds to BMP-2 and BMP-4 with high affinity and to BMP-6 and BMP-7 
with low affinity to prevent further action of BMP action. Chao Chen’s study [253] 
showed that noggin suppression significantly decreased human MSC metabolism 
and DNA content on Days 3 and 6, and decreased total protein amount on Day 14. 
Noggin suppression also reduced the expression levels of osteoblastic genes, ALP, 
integrin-binding sialoprotein (IBSP), muscle segment homeobox gene (MSX2), 
osteocalcin (OC), osteopontin (OPN), and runt-related transcription factor-2 
(RUNX2). Significantly decreased enzymatic ALP activity in noggin-suppressed 
group was evident. Moreover, noggin suppression decreased calcium deposits by 
BMP-2-induced osteoblasts. Collectively, this study showed that noggin suppres-
sion decreased viability and BMP-2-induced osteogenic differentiation of human 
MSCs, suggesting that noggin is stimulatory to osteogenesis of human MSCs. It has 
also been reported that endogenous signaling by BMP-2 controls the differentiation 
of embryonic stem cells into this lineage. Treatment of embryonic stem cell cultures 
with BMP antagonist noggin blocks this form of differentiation and induces the 
appearance of a novel cell type that can give rise to neural precursors [260]. 

Chordin as well as noggin binds BMPs and modulates BMP action. Using 
fluorescent labeling, BMP-2 was found to be internalized in HeLa cells via a 
clathrin-dependent pathway, with Noggin and Grem1 increasing BMP-2 uptake. 
By contrast, chordin decreased BMP-2 uptake, suggesting that BMP ligand and 
receptor interactions on the cell surface involve cooperative binding of BMP antag-
onists such as Noggin and Grem1 as well as other proteins such as the Endoglin 
CD105 coreceptor [261]. Francois NK Kwong [262] demonstrated that chordin 
knockdown accelerated early osteogenesis of MSCs and led to increased deposition 
of mineral at late time points. The suppression of chordin led to an increase in the 
bioavailability of endogenously produced BMP-2 to drive the differentiation of 
osteoprogenitors. 

Twisted gastrulation (TSG) is expressed in lung, thymus, and kidney, and binds 
to BMPs to inhibit BMP action in osteoblasts. The action of TSG may be determined 
in cell-specific manner. Recent studies using TSG overexpression system in stromal/



preosteoblasts supported antagonistic activity of TSG on BMP signaling [257]. The 
mechanism for agonist activity of TSG is explained by indirect action: TSG pro-
motes cleavage of coassociator chordin to enhance to BMP activity. 
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Gremlin is a glycoprotein that binds and antagonizes the actions of BMPs-2, -4, 
and -7. Gremlin appears to activate the extracellular regulated kinase (ERK) pathway 
in endothelial and tumor cells, and as a consequence to have direct cellular effects. 
Gremlin antagonizes BMP actions on the differentiation of marrow stromal cells and 
on osteoblastic function in vitro. Targeted osteoblast gremlin overexpression in vivo 
leads to spontaneous fractures and osteopenia. The reduction in bone volume is due 
to a decrease in osteoblast function and in number, confirming a possible effect of 
this BMP antagonist in the regulation of cell growth. Gremlin and other members of 
the differential screening-selected gene aberrative in neuroblastoma family, such as 
cerberus, coco, and sclerostin, inhibit BMP as well as Wnt activity, suggesting 
additional potential mechanisms of action for this group of BMP antagonists [263]. 

8.5.6.4 Interplay Between BMP-2 and Other Cytokines 

Currently, commercially available rhBMP-2 is impregnated in an absorbable colla-
gen sponge (ACS), which is used to retain rhBMP-2 at wound sites and to permit a 
slow release into the extracellular milieu. In the clinic, trauma, contamination, 
degradation of the ACS, and exogenous BMP-2 [264, 265], can trigger an exagger-
ated inflammatory environment, which is characterized by the recruitment of inflam-
matory cells and stem cells to the implantation site and the secretion of various 
inflammatory cytokines in serium, such as TNF-α, IL-1β, IL-8, and IL-6 
[266]. Recently, the use of anti-inflammatory drugs such as bone morphogenetic 
protein-binding peptide [267], triptolide-micelles [268], and corticosteroids [269] 
was proved to reduce the inflammatory response and subsequently enhance the 
osteoinductive capacity of BMP-2. These results indicate that the low osteoinductive 
efficacy of BMP-2 may be a result of the exaggerated inflammatory environment. 
Huang’s group has reported that TNF-α/IL-1β- and BMP-2-activated p38 and 
ERK1/2 signaling have opposing roles that converge on Runx2 to regulate osteo-
blastic differentiation [270]. The elucidation of these mechanisms may hasten the 
development of new strategies and improve the osteoinductive efficacy of BMP-2 in 
the clinic to enhance osteoblastic differentiation and bone formation. Their recent 
studies have demonstrated that synergy between IL-6 and sIL-6R promotes the cell 
surface translocation of BMPRIA and maintains the stability of BMPRI A expres-
sion, leading to enhanced BMP-2/ACS-induced bone regeneration [271]. 

In addition, the combined release of stromal cell-derived factor-1 (SDF-1) and 
BMP-2 enhanced the recruitment of osteogenic cells and angiogenesis, resulting in 
the synergistic effect on bone regeneration [272]. Kerstin Kleinschmidt et al. [273] 
produced a mutant growth and differentiation factor-5 (GDF-5) protein BB-1 which 
enhanced heterotopic bone formation in mice. Rabbit radius defects treated with a 
BB-1-coated collagen carrier healed earlier and with increased bone volume com-
pared to BMP-2 and GDF-5 according to in vivo micro-CT follow-up. While BMP-2



callus often remained spongy, BB-1 supported earlier corticalis and marrow cavity 
formation, showing no pseudojoint persistence like with GDF-5. Thus, by combin-
ing positive angiogenic and osteogenic features of GDF-5 and BMP-2, only BB-1 
restored the natural bone architecture within 12 weeks, rendering this promising 
growth factor variant especially promising for long bone regeneration. 
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TGF-βs and FGF-2, -4, and -6 have been proven to be inducers of osteoblast 
proliferation (a higher extent for TGF-β and FGF-2) and inhibitors of ALP activity 
and osteoblast mineralization, indicating potential application for in vitro bone 
growth induction in bone tissue engineering. To determine how fibroblast growth 
factor-2 (FGF-2) affects the BMP signaling pathway during BMP-induced ectopic 
bone formation, Yokio Nakamura et al. [274] implanted type I collagen disks 
containing constant amounts of BMP-2 (5 μg) onto the back muscles of adult male 
mice and confirmed that low doses of FGF-2 increased ectopic bone formation 
in vivo and high doses inhibited bone formation. Northern and/or Western blots of 
recovered muscle from the in vivo experiment and treated muscle-derived primary 
culture cells from the in vitro experiment revealed that low doses of FGF-2, but not 
high doses, increased the expression BMP receptor (BMPR)-1B, phosphorylated 
Smad1, Noggin, and Osteocalcin. Further indicated that low-dose FGF-2 may 
facilitate BMP-2-induced ectopic bone formation by altering the expression of 
BMPRs on the surface of bone forming progenitor cells. 

In a summary, there is accumulating evidence to demonstrate that stem cell fate 
could be regulated by the chemical/mechanical properties of matrix materials, 
topography, geometry and hierarchy structure, and genetic clues delivered. It is 
obvious that stem cells have the ability to sense the microenvironment and give 
the response to the surroundings in a different manner. By well regulating the factors 
discussed above, the stem cells fates could be potentially directed to the desirable 
way for medical applications. However, the microenvironments surrounding the 
stem cells in vivo are integrated and complicated. Besides the factors we have 
discussed in this chapter, MSCs in vivo are also composed of microenvironmental 
cells that nurture stem cells and enable them to maintain tissue homeostasis, such as 
potential of hydrogen (pH), ionic concentration, cytokines secreted by immune cells, 
oxygen, and biomechanics introduced by implants. Numerous attempts have been 
made to reveal the interaction between the stem cells and microenvironment in vivo 
[275–277]. However, this field of research is still developing but there is great 
promise that stem cell fate could be controlled by designing advanced biomaterials 
and intelligent surfaces, which are responsive to their environment to fulfill bone 
healing demands. 

8.6 Future Perspectives 

Nanotopography and micro-/nanohierarchy structure have shown to offer important 
clues for controlling specific stem cell responses. Using these nanoscale features of 
biomaterials to guide stem cell fate holds great promise for bone repair and



regeneration. Furthermore, micro-/nanohierarchy structure could be designed on a 
single biomaterial to induce different stem cell responses by creating gradient pores, 
matching further scope for therapeutic applications. The main challenges in using 
these nanoscale features in the clinic applications are the precise control of 
nanostructures for large scale production. Therefore, it is necessary to make more 
attempts for the feasible and affordable technologies for large-scale production. 
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The immobilization of growth factors (i.e., rhBMP-2) or other bioactive agents to 
biomaterials has been confirmed to be a successful strategy in directing stem cell 
differentiation. it is highly desirable to study the effects of nanomaterials on protein 
structure and cell behavior and the regulatory mechanisms qualitatively and quan-
titatively. Many strategies have been applied for investigating material-cell interac-
tions and directing stem cell fate, despite the current series of studies in which 
material surface physicochemical properties contribute to stem cell properties, 
including adhesion, spreading, migration, proliferation, and differentiation; how-
ever, the effects of bulk and surface topology on cellular properties, multicell 
interactions, and multicell self-assembly in 3D and complex environments need 
more investigation. Further studies are also required for successful clinical transla-
tion. A better control of the bioactivity, orientation and spacing, stability of the 
growth factors will realize the desired control of stem cell differentiation, enrich the 
connotation of material biology, and guide the design of new materials. 

Another important issue is the long-term effects of biomaterials, the growth 
factors, and functional groups on the response of the stem cells/microenvironment 
in vivo. There is a great need to determine the better regulation of the inductive 
chemical clues for the desired response in a specific application. Since the cells other 
than stem cells in vivo would response to these material clues, further investigation 
need to be done to ensure the wanted functionalities without negative effects in vivo. 

Many studies have investigated the effect of different factors on stem cell 
behavior. However, it becomes a big challenge to take into account more factors 
and even all possible parameters for guiding the stem cell fate. Advanced technology 
and more testing model systems need to develop for mimicking the microenviron-
ments including stem cells, other surrounding cells, biomaterials, etc. All these 
knowledge and results allow us to better understand the intrinsic function and 
reparative properties of the stem cells and offer the great potential for more eco-
nomical and clinically effective cell therapies for future medical applications. 
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Chapter 9 
Cartilage Regeneration 

Yuankun Dai and Changyou Gao 

Abstract The treatment of damage to cartilage represents one of the most challeng-
ing clinical tasks due to the limited spontaneous healing and regenerative capability 
of cartilage. Clinically applied protocols for cartilage regeneration are still faced with 
various obstacles. The cartilage tissue engineering combines scaffolds, cells, and 
bioactive molecules, achieving cartilage engineering in vitro and cartilage regener-
ation in vivo. More recently, the controversy and difficulty in regulatory application 
of various cells and bioactive molecules gradually push forward the emergence of in 
situ inductive cartilage regeneration by recruiting endogenous regenerative cells. 
With these perspectives, we aim to present an overview of existing cartilage regen-
eration technologies with emphasis of recent progresses, development, and major 
steps taken toward the structure and functional regeneration of cartilage. In this 
chapter, essential elements of various protocols and their advantages and disadvan-
tages and challenges and future perspectives of cartilage regeneration are discussed. 

Keywords Tissue engineering · Cartilage regeneration · Scaffolds · Chondrocytes · 
Stem cells · In situ inductivity 

9.1 Introduction 

Articular cartilage is a highly developed connective tissue for weight-bearing and 
friction-reducing. Chondrocyte is the only type of cells in mature articular cartilage, 
occupying 1–10% of the tissue volume. Seventy to 80% of weight of articular 
cartilage is water. Collagen, proteoglycans, matrix glycoproteins, and small amount
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of elastin and phospholipids contribute the other 20–30% of the weight 
[1, 2]. Figure 9.1a shows the composition and structure of articular cartilage 
[3]. Cells and extracellular matrix (ECM) in cartilage distribute laterally in the 
superficial, randomly in the middle, and vertically in the deep layers of cartilage, 
respectively.
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The avascular structure in the articular cartilage determines that the chondrocytes 
can only get nutrients from the synovial fluid [4]. After maturation of cartilage, 
chondrocytes have low ability to migrate and proliferate. Hence, articular cartilage 
has low possibility of self-healing when lesion occurs. The intrinsic migration of 
bone marrow mesenchymal stem cells (BMSCs) into cartilage defect always leads to 
the formation of fibrocartilage [4]. 

Articular cartilage defects caused by arthritis and trauma severely affect the 
healthy life of human being. In order to treat cartilage defects, different protocols 
such as autologous chondrocyte implantation (ACI), mosaicplasty, microfracture, 
autologous matrix-induced chondrogenesis (AMIC), and cartilage tissue engineering 
have been developed, as shown in Fig. 9.1b [5]. 

ACI utilizes autologous chondrocytes grown in culture, which are reimplanted in 
a second-stage procedure to repair large chondral defects [6]. Mosaicplasty is 
indicated for the treatment of smaller defects, less than 2–4 cm2 in size, primarily 
on the femoral condyles. The treatment of larger lesions is limited by donor site 
morbidity, and the use in the patellofemoral joint is controversial [7]. To overcome 
these challenges, cartilage tissue engineering has been developed to realize the 
structural and functional regeneration of damaged cartilage [8]. As shown in 
Fig. 9.2a, the cells, scaffolds, and bioactive molecules are defined as three essential 
elements for the traditional cartilage tissue engineering [9, 10]. Various 
chondrogenetic cell sources are available for the cartilage tissue engineering. The 
chondrogenesis capability of these cells can be induced or enhanced with many 
biochemical or biomechanical stimulation in vitro. After culture in vitro, scaffold-
based or scaffold-free engineered cartilage could be obtained and implanted for 
cartilage regeneration in vivo. Hence, cartilage tissue engineering involves direct 
intra-articular delivery of progenitor cells, progenitor cell delivery on scaffolds, or 
cell-free scaffolds coated with biological factors to recruit endogenous cells for 
articular cartilage defect repair [10]. The implantation of biomaterials or cartilage 
constructs is always accompanied by injury through the surgical procedures. 

Inflammatory response takes a pivotal role in tissue repair and regeneration, since 
injury to the tissue always initiates an inflammatory response to the biomaterials. 
Moreover, the implantation of engineered cell–material hybrids elicits an adaptive 
immune reaction toward the cellular component, which in turn influences the host 
response to the material component [11]. When degradable biomaterials are applied, 
the immune response is additionally affected by the degradation products and 
surface changes of the biomaterials. Chronic inflammation in osteoarthritis develops 
as inflammatory stimuli persist at the implant site with macrophages, representing 
the driving force in perpetuating immune responses. Monocytes arriving at the 
implantation site undergo a phenotypic change to differentiate into macrophages. 
Their activation leads to further dissemination of chemo-attractants. Macrophages
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attached to the biomaterials can foster invasion of additional inflammatory cells by 
secreting chemokines [12]. Taking these concerns into consideration, challenges of 
articular cartilage tissue engineering are shown in Fig. 9.2b. In summary, difficulty 
in the regulation and maintenance of cell chondrogenetic phenotype, poor integra-
tion between the implanted and the host tissues, and immunoregulation of the 
implanted biomaterials are the main issues that impede the development of cartilage 
tissue engineering [10].
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Fig. 9.2 (a) Articular cartilage tissue engineering involving the formation of three-dimensional 
tissues in vitro by seeding cells into scaffolds or through scaffold-free approaches in the presence of 
biochemical and biomechanical stimuli. (b) Challenges in cartilage tissue engineering. (Reprinted 
from [10] with permission) 

9.2 Traditional Cell-Loaded Constructs for Cartilage 
Regeneration 

9.2.1 Biomaterials for Cartilage Regeneration 

An ideal cartilage tissue engineering scaffold should preserve the following charac-
teristics: biocompatible, biodegradable, highly porous, suitable for cell attachment, 
proliferation and differentiation, osteoconductive, noncytotoxic, flexible and elastic, 
and nonantigenic. Generally, biomaterials used for cartilage tissue engineering can 
be divided into two categories: natural polymers and synthetic polymers. Each kind 
of these materials has their own advantages and shortcomings [13]. The natural 
materials are hydrophilic and bioactive, which enhance the cell–material interactions 
and facilitate the cells’ chondrogenesis to the same extent. Collagen [14–21], fibrin 
[22–27], silk fibrin [28–32], hyaluronic acid (HA) [33–46], alginate [47–51], gelatin 
[40, 52–57], chitosan [58–64], etc. have been broadly invested in tissue engineering. 
The scaffolds based on these natural polymers are usually in a format of hydrogels, 
either with single or multicomponents. Examples of cartilage tissue engineering 
scaffolds based on native materials are shown in Fig. 9.3.
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Fig. 9.3 Examples of cartilage tissue engineering scaffolds based on native materials. (a) Collagen 
porous scaffold. (b) BMSCs-loaded fibrin glue. (c) Silk fibroin scaffold. (d) Acellular cartilage 
matrix. (Reprinted from [29, 65–67] with permission) 

9.2.1.1 Natural Materials 

Collagen, which constitutes the major part of the extracellular matrix (ECM) and is 
the essential component and mechanical building block of various physiological 
systems including cartilage, is highly recommended in cartilage tissue engineering. 
Collagen has many advantages including favorable biocompatibility and high den-
sity of the RGD sequences and other sequences facilitating cell adhesion and cell 
differentiation [19]. Macroporous scaffolds of collagen can be fabricated conve-
niently by freeze-drying and chemical cross-linking (Fig. 9.3a)  [67]. Vickers et al. 
prepared a chemically cross-linked collagen type II and glycosaminoglycan (GAG) 
scaffold with a low cross-linking density. Culture of bone marrow stem cells in the 
scaffold for 4 weeks in vitro found cell-mediated contraction, increased cell number 
density, and a greater degree of chondrogenesis [68]. Levingstone et al. fabricated a 
multilayer scaffold consisting of a bone layer composed of collagen type I and 
hydroxyapatite, an intermediate layer composed of collagen type I and type II and 
hydroxyapatite, and a superficial layer composed of collagen type I and HA 
[69]. The scaffolds were implanted into osteochondral defects created in the medial 
femoral condyle of the knee joint of New Zealand white rabbits, resulting in tissue 
regeneration with a zonal organization, repair of the subchondral bone, formation of 
an overlying cartilaginous layer, and evidence of an intermediate tidemark. 

Fibrin gel has several features including biocompatibility and biodegradability. 
The fibronectin-rich fibrin glue is an essential protein in cartilage matrix for 
chondrocytes-ECM interaction [26]. Fibrin gel could serve as a delivery system 
for chondrogenetic cells and/or bioactive molecules to facilitate cartilage regenera-
tion (Fig. 9.3b)  [65]. Fibrin gel loaded with human bone marrow-derived



mesenchymal stem cells (hMSCs) and growth factor could realize full regeneration 
of cartilage defects in rabbits [65]. Park et al. fabricated a hybrid hydrogel composed 
of fibrin and HA, into which chondrocytes were implanted for culture in vivo 
[23]. Cartilage-like tissues were formed in the hybrid hydrogel, showing higher 
amounts of the ECM components, GAG, and collagen. 
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Hyaluronic acid (HA) is one of the most extensively studied natural materials for 
cartilage tissue engineering. HA is a linear polysaccharide found natively in adult 
articular cartilage that is involved in many cellular processes, including proliferation, 
morphogenesis, inflammation, and wound repair. Furthermore, HA is also important 
to cartilage formation and is differentially regulated during limb bud formation and 
mesenchymal cell condensation. HA hydrogels support chondrocyte matrix deposi-
tion and chondrogenic differentiation of mesenchymal stem cells (MSCs) [70]. HA 
is widely used to functionalize hydrogels or scaffolds for regeneration of cartilage 
defects. Sheu et al. fabricated a hydrogel based on oxidized HA and resveratrol, into 
which chondrocytes were implanted for culture in vitro, resulting in upregulated 
expression of collagen type II, aggrecan, and Sox9 genes and downregulated 
inflammatory factors [39]. 

Alginate is a natural anionic and hydrophilic polymer obtained primarily from 
brown seaweed and bacteria. It is composed of β-D-mannuronate and α-L-guluronate 
residues [71] and has been widely applied in many biomedical fields due to its 
excellent biocompatibility, low toxicity, and the mild gelation condition required to 
form a cross-linked structure [49]. Alginate can be easily modified through chemical 
and physical reactions to obtain derivatives and can be processed into three-
dimensional scaffolds such as hydrogels, microspheres, microcapsules, sponges, 
foams, and fibers. Studies prove that the alginates would support the chondrogenesis 
[72, 73]. The cells-alginate constructs are widely used for the regeneration of 
articular cartilage defects, and some of the researches demonstrate quite positive 
results. Igarashi et al. delivered BMSCs in an ultra-purified alginate gel into articular 
cartilage defects in rabbit knees, resulting in complete regeneration of the 
defects [74]. 

Gelatin is a denatured collagen, but has relatively low antigenicity compared with 
collagen. Recently, gelatin-based biomaterials have been widely studied in tissue 
engineering. However, it is difficult to use pure gelatin scaffold for hard-tissue 
regeneration such as bone and cartilage due to its weaker mechanical strength. 
Hence, many studies focus on preparing pure gelatin scaffolds by using proper 
cross-linking methods [75] or hybrid scaffolds based on gelatin [40, 54, 55, 
76]. Some natural materials such as HA, fibrin, chitosan, and synthetic materials 
have been extensively incorporated to obtain hybrid scaffolds, which not only 
preserve higher mechanical property but also retain the bioactivity of natural 
materials. 

Chitosan is obtained by deacetylation of chitin which is an abundant natural 
material. The positive charge in the molecular chain may protect GAGs from 
hydrolysis [61]. However, the positive charge may also limit the proliferation of 
chondrocytes. Meanwhile, weaker mechanical property of wet chitosan also limits 
its application in cartilage tissue engineering [62]. Therefore, the hybrids of one or



more materials are always adopted for the application of chitosan in tissue 
engineering. 
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Silk fibroin extracted from silkworm cocoons is composed of fibrous protein 
(fibroin), containing amino acids and glue-like protein (sericin). Silk fibroin is 
widely used natural material for tissue regeneration taking into consideration of 
their excellence in biocompatibility, degradability, and mechanical properties 
[77, 78]. Scaffolds based on silk fibroin for cartilage regeneration can be fabricated 
through a template/solution-casting method as reported (Fig. 9.3c)  [29]. Biphasic 
scaffolds with a cartilage phase constituting of bovine cartilage matrix 
biofunctionalized fibroin and differentiated autologous prechondrocytes, and a 
bone phase (decellularized bovine bone) has been fabricated to promote cartilage 
regeneration in a model of joint damage in pigs [79]. Cao et al. developed a 
multifunctional silk-based hydrogel incorporated with metal-organic framework 
nanozymes, which showed enhanced cell viability as well as antioxidant and 
antibacterial properties. In the full-thickness osteochondral defect model of rabbit, 
the hydrogel displayed successful regeneration of osteochondral defect [80]. 

ECM materials have become more popular because the matrices retain the 
structure of native cartilage, which preserve mechanical and chemical signals that 
can induce cell differentiation and recruitment without additional biologic additives. 
Cartilage ECM can be obtained from either cell-derived matrices secreted during 
culture in vitro or from native cartilage (Fig. 9.3d)  [66]. Decellularization is an 
effective way to fully remove all cellular components and nucleic acids or to kill the 
remnant cells within the matrix [79–84]. The scaffolds based on the decellularized 
cartilage ECM regenerate hyaline cartilage when combined with rabbit MSCs after 
transplantation into weight-bearing area of patellar grooves in rabbits for 12 weeks 
[85]. Dai et al. prepared an acellular bone matrix scaffold using iliac bone of pigs 
[86]. The scaffold implantation combined with microfracture was used to treat full-
thickness articular defects (9 mm in diameter) without destroying the subchondral 
bone of pigs. 24 weeks after surgery, the defects were repaired with hyaline-like 
neocartilage which has the similar mechanical properties to the normal cartilage. 
Ayariga et al. developed a decellularized ECM scaffolds from avian articular 
cartilage [87]. The obtained scaffolds registered an interconnected and porous 
architecture, as well as stiffness comparable to the native cartilage tissues. Mean-
while, human chondrocytes survived, proliferated, and interacted with the scaffolds, 
showing that the decellularized scaffolds are suitable for cartilage regeneration. Das 
et al. prepared a cartilaginous ECM-derived biomaterial from goat ears [88]. MSCs 
showed obvious chondrogenic differentiation with increasing amount collagen and 
GAGs in the decellularized scaffolds. Upon implantation of the IGF-1-loaded cell-
free scaffolds in rabbits’ osteochondral defects for 3 months, the histological and 
micro-CT evaluation revealed significant enhancement and regeneration of 
neocartilage and subchondral bone. Oh et al. prepared full-thickness porcine 
cartilage-derived ECM, and then fabricated mechanically reinforced ECM scaffolds 
by combining salt-leaching and crosslinking methods [89]. Chondrocytes showed 
higher levels of cartilage-specific markers in the scaffolds compared to that in the 
ECM scaffolds prepared by simple freeze-drying [90]. Antler decellularized



cartilage-derived matrix (AdCDM) rich in collagen and GAGs was prepared by 
combining freezing-thawing and enzymatic degradation. Treatment of 
osteochondral defects with the AdCDM showed a flat and smooth surface of the 
neocartilage at the surgery site. Meanwhile, compared to porcine decellularized 
cartilage-derived matrix, AdCDM could lead to better osteochondral regeneration 
with higher international cartilage repair society scores (ICRS). Decellularized ECM 
bioinks, derived from specific native tissues or organs, have been used to fabricate 
3D-printed tissues and organs. Zhang et al. developed a crosslinker-free bioink with 
silk fibroin and decellularized articular cartilage extracellular matrix of goat 
[91]. The silk fibroin and decellularized ECM interconnect with each other through 
physical crosslinking and entanglement, which bypass the toxicity inherent in the 
chemical crosslinking process of most bioinks. In vitro test proved that BMSCs 
highly expressed chondrogenesis-specific genes in the 3D-printed scaffold using this 
bioink. 
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9.2.1.2 Synthetic Materials 

Synthetic polymers are also widely applied in cartilage tissue engineering, but the 
relatively low cell adhesive ability limits their applications. The widely used syn-
thetic materials include poly(lactide-co-glycolide) acid (PLGA) [40, 57, 92–94], 
polycaprolactone (PCL) [95–99], poly(ethylene glycol) (PEG) [34, 100–108], etc. 
The scaffolds composted of solely synthetic materials can hardly realize good tissue 
regeneration. Therefore, the natural materials such as collagen, gelatin, fibrin, HA, 
and acellular ECMs, as mentioned before, can be compounded or incorporated into 
the synthetic polymeric scaffolds. Examples of cartilage tissue engineering scaffolds 
based on synthetic materials are shown in Fig. 9.4. 

PCL is a semicrystalline polymer. It belongs to a family of poly α-hydroxyl esters 
and is one of the most widely used biodegradable polyesters for medical applications 
because of its biocompatibility, biodegradability, and flexibility [111]. It is widely 
used to prepare scaffolds for cartilage tissue engineering as well [40, 46, 47, 92, 112– 
114]. For example, Kim et al. prepared a PCL scaffold constructed with layers of 
electrospun and salt-leaching PCL membrane, into which chondrocytes were seeded 
by using an injectable heparin-based hydrogel (Fig. 9.4a). In vivo transplantation of 
the construct into partial-cartilage defects demonstrates significant cartilage forma-
tion with good integration to the surrounding cartilage [95]. Lebourg et al. modified 
PCL scaffolds with cross-linked HA to grant PCL more hydrophilic and biomimetic 
microenvironment. Complete regeneration of chondral defects in rabbits in vivo was 
confirmed by implanting the scaffolds for 24 weeks [38]. 

PLAG is usually synthesized via ring-opening copolymerization of lactide and 
glycolide, which has prominent advantages such as adjustable molecular weight and 
degradation rates, good mechanical properties especially toughness, and excellent 
processability [115]. It has been widely used to prepare scaffolds to engineer tissues 
including cartilage, bone, nerve, etc. [116–121]. Chang et al. seeded endothelial 
progenitor cells into a highly porous PLGA scaffold and implanted into the



osteochondral defect in the medial femoral condyle of rabbits. After 12 weeks, the 
defects were regenerated with hyaline cartilage, showing a normal columnar chon-
drocyte arrangement, higher Sox9 expression, and greater contents of GAG and 
collagen type II [122]. In order to enhance the bioactivity of PLGA scaffolds, 
bioactive materials such as HA, gelatin, collagen, and fibrinogen can be usually 
incorporated. PLGA/fibrin gel-based constructs combined with MSCs and TGF-β1 
chondrogenic genes could facilitate the in vivo regeneration of full-thickness carti-
lage defects in a rabbit model (Fig. 9.4b)  [109, 123, 124]. The PLGA scaffold is 
fabricated by a gelatin porogen leaching method, into which fibrinogen containing 
cells and plasmid TGF-β1 gene complexes is infiltrated and then gelated. The 
chondrocytes cultured in vitro distribute evenly and maintain a round morphology 
in the hybrid scaffold as that in the normal cartilage [125]. The implantation of 
PLGA/fibrin gel/N,N,N-trimethyl chitosan chloride (TMC)/pDNA-TGF-β1 con-
struct into osteochondral defects for 12 weeks in vivo results in regenerated cartilage 
with smooth surface and well integration with its surrounding tissue and subchondral 
bone [109]. 
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Fig. 9.4 Examples of cartilage tissue engineering scaffolds based on synthetic materials. (a) PLCL 
scaffold. (b) PLGA scaffold. (c) PEG hydrogel. (Reprinted from [95, 109, 110] with permission) 

PEG hydrogel has received wide attention due to its injectability, noncell-
adhesive property, cell compatibility, and low immunogenicity. Meanwhile, PEG 
hydrogel could be prepared for cartilage regeneration (Fig. 9.4c)  [110]. The 
nondegradability of PEG in physiological environment limits its application in tissue



engineering, although the PEG molecules of lower molecular weight, like PEG-400, 
have been proved to metabolize via renal or intestine pathways [126]. Biodegradable 
segments such as oligo(lactic acid), oligo(ε-caprolactone), oligo(trimethylene car-
bonate), and phosphate groups have been introduced into the PEG-based macromers. 
Fan et al. developed a microcavitary hydrogel via photopolymerization of biode-
gradable oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene 
carbonate) diacrylate macromers [106]. The cavitary structure in the hydrogel 
would accelerate degradation of the hydrogel. Compared with noncavitary hydrogel, 
the cell density and total contents of collagen and GAG are significantly higher. The 
hydrolytically biodegradable PEG hydrogels offer a promising platform for chon-
drocyte encapsulation and for tuning degradation of cartilage tissue engineering 
scaffolds. Skaalure et al. prepared a semi-interpenetrating network of bioactive HA 
and oligo(lactic acid)-PEG hydrogel, into which chondrocytes were encapsulated 
and cultured for 4 weeks. In this way, the contents of collagen and GAG are 
significantly increased [34]. 
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9.2.2 Cells for Cartilage Regeneration 

Chondrocytes in the cartilage produce cartilage ECMs and therefore have been the 
first choice for cartilage tissue engineering [127]. They are isolated from various 
sources such as articular cartilage, nasal septum, ribs, and ear cartilage and are 
extensively used for the study of cartilage regeneration in vitro and in vivo. How-
ever, one of the major limitations of chondrocytes is their instability in the culture 
in vitro, leading to the loss of expression of cartilage matrices such as collagen type 
II and aggrecan. Recently, multipotent MSCs have been gained increasing interest in 
cartilage tissue engineering as an alternative to autologous chondrocytes due to their 
ease in isolation and high expansion capacity in vitro. MSCs exhibit the potential to 
differentiate into chondrocytes [128], tenocytes [129], ligament cells [130], neuronal 
cells [131, 132], cardiomyocyte [133, 134], osteoblasts [135], and other cell types 
[136]. In particular, bone marrow-derived stem cells (BMSCs), adipose-derived 
stem cells (ADSCs), and embryonic stem cells (ESCs) are most widely applied in 
cartilage tissue engineering. 

9.2.2.1 Chondrocytes 

Chondrocytes are metabolically active cells that synthesize a large spectrum of ECM 
components such as collagen, glycoproteins, proteoglycans, and HA [127]. Since the 
chondrocytes are the only type of cells in articular cartilage, they are used for the 
regeneration of cartilage defects in priority both in vitro and in vivo [127, 137– 
144]. It is believed that the use of chondrocytes would lead to the formation of 
neotissue with exactly the same ECMs with the native cartilage [145]. The activity of 
chondrocytes is altered by many factors present within their chemical and



mechanical environment. However, the use of chondrocytes for cartilage repair 
suffers from chondrocyte dedifferentiation. A proper culture and delivery of 
chondrocytes, including the use of chondrogenetic culture medium, growth factors, 
and mesenchymal stem cells, need to be well adjusted in order to keep the phenotype 
of chondrocytes [140]. Three-dimensional scaffolds can better mimic the native 
microenvironment of chondrocytes in cartilage tissue, promoting cell–cell and 
cell–matrix interactions and enforcing round chondrogenetic cell morphology and 
thereby maintaining their phenotype. Xu et al. encapsulated chondrocytes in alginate 
gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth 
medium and then subcutaneously implanted the cells-loaded beads to evaluate the 
ectopic chondrogenesis [142]. The results prove high deposition of glycosamino-
glycan and expression of cartilage-specific genes. Lohan et al. precultured 
chondrocytes in polyglycolide (PGA) scaffolds for 3 weeks, which were then 
implanted into critical-sized osteochondral defect of rabbit knee femoropatellar 
groove [138, 141]. Twelve weeks after implantation, neocartilage was formed 
in vivo in the PGA constructs seeded with chondrocytes. The results are significantly 
better than those of the cell-free PGA scaffolds and empty defects. 
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9.2.2.2 Bone Marrow-Derived Stem Cells (BMSCs) 

BMSCs have been extensively used for chondrogenesis in a three-dimensional 
culture in vitro with addition of chondrogenetic factors and regeneration of cartilage 
defects in animal models in vivo [33, 146–149]. BMSCs can be isolated via plastic 
adhesion or negative selection from bone marrow aspirate that includes a highly 
heterogeneous cell population such as hematopoietic cells, endothelial cells, and 
adipocytes [150]. However, there are some limitations of BMSCs. The relative 
number of BMSCs in the marrow blood is rather small, and their differentiation 
ability decreases significantly with age [151]. Meanwhile, the constructs of cartilage 
containing BMSCs can raise many problems such as fibrosis, vascularization, the 
“hollow” phenomenon, and shrinkage likely due to the incomplete differentiation of 
BMSCs, deterring the clinical translation of tissue-engineered cartilage 
[149]. Hence, chondrogenetic bioactive factors are always applied to promote 
chondrogenesis differentiation of BMSCs. Li et al. fabricated a bilayered poly 
(vinyl alcohol)/gelatin/vanillin (PVA/Gel/V) and nanohydroxyapatite/polyamide-6 
(n-HA/PA6) scaffold, into which BMSCs were implanted. The obtained constructs 
were used for the regeneration of cartilage and subchondral bone defects in rabbits 
in vivo [152]. With BMSCs loading, the two different layers of the composite 
biomimetic scaffolds provide a suitable microenvironment for cells to form respec-
tive tissues.
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9.2.2.3 Adipose-Derived Stem Cells (ADSCs) 

ADSCs are becoming more and more attractive because they can be easily isolated 
from adipose tissues and cultured in vitro for an extended period of time with stable 
expansion and low levels of senescence [153]. Adipose tissue contains a large 
proportion of MSCs and is easily accessible in all individuals. Compared with 
BMSCs, the ADSCs are relatively abundant and can be easily available. In vitro 
and in vivo studies confirm the chondrogenetic ability of ADSCs and the ability of 
cartilage regeneration [154–160]. In the presence of platelet-rich plasma (PRP) and 
cartilage-specific extracellular molecules, the expression of collagen type II and 
aggrecan can be significantly upregulated [159, 160]. Wang et al. proved different 
chondrogenic degrees of ADSCs being cultured in hydrogels composed of chon-
droitin sulfate, HA, and heparin sulfate, respectively [157]. This chondrogenetic 
potential of ADSCs makes them a promising candidate for restoration of cartilage 
defects in vivo. Wang et al. implanted ADSCs into acellular cartilage matrices and 
used the cell-loading constructs to restore the articular cartilage defects of rabbits 
[158]. After 12 weeks of implantation, the defects are filled with neotissues, showing 
a smooth surface, highly expressed collagen type II and GAG, and chondrocyte-like 
cells in the recesses. TEM analysis confirms plenty of secretary matrix particles in 
the neotissue. 

9.2.2.4 Embryonic Stem Cells (ESCs) 

Recently, several studies have demonstrated the regeneration of cartilage defects 
in vivo by using ESC progenitor cells [161–164]. ESCs can be obtained from the 
blastocyst and are able to self-renew for a prolonged period of time without 
differentiation and, most importantly, can be differentiated into a large variety of 
tissues derived from all three germ layers. Although the application of ESCs would 
bring problems such as immunologic incompatibility, possible development of 
teratomas, and ethical issues in human, the in-depth study of ESCs would promote 
their applications in healing human diseases. For the cartilage regeneration, ESCs 
are also a promising choice [161, 163, 165–167]. Pilichi et al. demonstrated a 
positive result of application of nondifferentiated ESCs in vivo for osteochondral 
regeneration without tumorigenic and teratoma formation [164]. They treated 
osteochondral defects in a sheep model with ESCs for 24 weeks, proving the 
regeneration of articular cartilage defects with hyaline cartilage, without signs of 
immune rejection or teratoma. Toh et al. used TGF-β1 to induce chondrogenic 
differentiation of ESCs, explored the potential of these ESC-derived chondrogenic 
cells to produce an ECM-enriched cartilaginous tissue construct when cultured in 
HA hydrogel, and further investigated the cartilage regenerative ability in an 
osteochondral defects in a rat model [162]. Twelve weeks after implantation, a 
hyaline-like neocartilage layer is formed, showing good surface regularity and 
complete integration with the adjacent host cartilage and a regenerated 
subchondral bone.
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9.2.2.5 Induced Pluripotent Stem Cells (iPSCs) 

iPSCs may be generated from somatic cells through reprogramming, enabling them 
to possess embryonic-like properties. Shinya Yamanaka’s group initially derived the 
iPSCs in 2006 by reprogramming mouse fibroblasts, and human fibroblasts in the 
following year [168, 169]. iPSC may differentiate into other cell linages and be 
maintained in a nondifferentiated state for an extended period of time to cultivate 
cells, known as the self-renewal process. The iPSCs are similar to ESCs but less of 
an ethical dilemma [170]. Nam et al. obtained human iPSCs from cord blood 
mononuclear cells using the Sendai virus [171]. The iPSCs were differentiated into 
chondrogenic lineage with pellet culture and maintained for 30 days. The generated 
pellets showed high expression of chondrogenic gene and deposition of cartilage 
extracellular matrix proteins. Yamashita et al. reported that differentiation of iPSCs 
into hyaline cartilaginous particles and implantation of the particles into joint surface 
defects realized the repair of cartilage defects, and neither tumor nor ectopic tissue 
formation was observed [172]. Kotaka et al. labeled iPSCs magnetically with 
nanoscale iron particles, and delivered the cells specifically into cartilage defects 
in nude rats using a magnetic field [173]. The histological grading proved useful and 
safe for cartilage repair using the mentioned iPSCs. Liu et al. fabricated a 
polycaprolactone/gelatin scaffold using two separate electrospinning processes 
[174]. After seeded with mouse iPSCs derived from mouse dermal fibroblasts, the 
iPSCs-scaffolds were implanted into osteochondral defects of rabbits, resulting in an 
enhanced gross appearance and histological improvement, higher cartilage-specific 
gene expression and protein levels as well as subchondral bone regeneration. 

9.2.2.6 Dental Pulp Stem Cells (DPSCs) 

DPSCs are a type of self-renewal MSCs residing within the perivascular niche of the 
dental pulp [175]. DPSCs are a promising source of stem cells for tissue-engineering 
therapies because of their low cost and easy accessibility. DPSCs can differentiate 
into several different cell types, including neurons, odontoblasts, osteoblasts, adipo-
cytes and chondrocytes [176]. Mata et al. cultured DPSCs in 3% alginate hydrogel, 
and implanted the hydrogel in a rabbit model of cartilage damage [177]. Three 
months post surgery, the cartilage defects were well regenerated. Yanasse et al. 
reported a successful regeneration of full-thickness articular cartilage defects in 
rabbits using DPSCs-loaded platelet-rich plasma scaffolds [178]. 

9.2.2.7 Umbilical Cord Mesenchymal Stem Cells (UCMSCs) 

Human UCMSCs can be derived from various parts of human umbilical cord, 
including Wharton’s jelly, cord lining, and the perivascular region [179]. hUCMSCs 
are advantageous because of their high expansion capacity, noninvasive harvesting,



and hypoimmunogenicity. hUCMSCs possess the same potential of chondrogenic 
differentiation regardless of the portion of the umbilical cord from which they are 
isolated [180]. According to the research of Fong et al., the chondrogenic potential of 
hUCMSCs is thrice that of BMSCs in producing collagen [181]. Zheng et al. 
fabricated polycaprolactone/hydroxyapatite (PCL-HA) scaffolds using fused depo-
sition modeling 3D-printing technology [182]. Furthermore, rabbit UCMSCs and 
chondrocytes with a ratio of 3:1 were seeded on the prepared PCL/HA scaffolds. 
After 8 weeks of implantation into rabbits’ femoral trochlear defects, the ICRS 
scores of the repaired defects for the UCMSCs and chondrocyte-seeded PCL-HA 
scaffolds were significantly higher than the unseeded PCL/HA scaffolds. 
125 patients were included in a clinical study to evaluate cartilage regeneration by 
implanting allogenic hUCMSCs with concomitant high tibial osteotomy (HTO) 
[183]. Second-look arthroscopy and ICRS grade evaluation proved the effectiveness 
of this treatment for patients with medial compartment osteoarthritis and various 
deformities. Another clinical research including 176 patients also confirmed that 
implantation of allogenic hUCMSCs with concomitant HTO could provide clinical 
outcomes in terms of pain relief, functional scores, and quality of life [184]. 
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9.2.2.8 Other Cells 

Besides BMSCs, ADSCs, ESCs, iPSCs, DPSCs, UCMSCs, other types of stem cells 
from muscle, synovium, and periosteum can also be used for the cartilage regener-
ation [185–188]. 

Several works report that synovium-derived MSCs (SMSCs) show a higher 
colony-forming efficiency than BMSCs. Because the SMSCs display a great poten-
tial to differentiate into chondrocytes, they are one of the best candidates for the 
repair of cartilage defects [189]. SMSCs have the potential for both cartilage tissue 
engineering in vitro and cartilage regeneration in vivo. With appropriate stimulation, 
SMSCs are capable of migrating into articular cartilage defects and differentiating to 
chondrocytes [189–194]. Fan et al. explored therapeutic chondrogenesis of rabbit 
SMSCs encapsulated in photopolymerized hydrogels with the treatment of TGF-β1, 
resulting in positive SMSC chondrogenesis. Meanwhile, SMSCs may be a type of 
tissue-specific stem cells, because they can respond to signaling in the joint and 
promote cartilage defect regeneration [195]. Pei et al. isolated SMSCs from synovial 
tissue of rabbit knee joints and mixed SMSCs with fibrin glue, followed by seeding 
into a nonwoven PGA mesh. After the constructs were prematured for 1 month 
in vitro, they were implanted into rabbit knees to repair osteochondral defects. Six 
months later, the cartilage defects were full of smooth hyaline-like cartilage with 
high expressions of collagen type II and GAG and were well integrated with the 
surrounding native cartilage. No detectable collagen type I and macrophages were 
found [196].
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9.2.3 Bioactive Signals for Cartilage Regeneration 

The cell growth factors are typical bioactive molecules, which can stimulate or 
inhibit cellular proliferation, differentiation, migration, and gene expression 
[198]. There are a number of essential growth factors that have regulatory effects 
on chondrocytes or stem cells in terms of chondrocyte maturation and cartilage 
formation. The candidate growth factors include transforming growth factor β 
(TGF-β), insulin-like growth factor-1 (IGF-1), bone morphogenic proteins 
(BMPs), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), 
etc. [199]. Each growth factor plays a different role in the migration, proliferation, 
and differentiation of cells as summarized in Fig. 9.5. However, it is difficult to 
precisely define the function of each growth factor due to the functional overlaps in 
temporal scale [197]. 

9.2.3.1 TGF-β 

So far four types of TGF-β superfamily, namely, TGF-β1, TGF-β2, TGF-β3, and 
BMP, have been found in cartilage [198]. Activated TGF-β not only increases the 
synthesis of proteoglycan but also prevents degradation of cartilage ECM by 
inhibiting matrix metalloproteinase (MMP). These TGF-β isomers play an important 
role in the late stage of chondrocyte differentiation and may participate in bone 
formation as well. TGF-β1 induces early stage of chondrogenesis and increases

Fig. 9.5 Schematic overview of the role of growth factors at different stages of chondrogenesis. 
(Reprinted from [197] with permission)



the production of aggrecan and collagen type II [200]. TGF-β3 plays a role in the 
maturation of chondrocytes [201]. The TGF-β has been extensively used for the 
regeneration of cartilage defects in vitro and in vivo [122, 202–211]. For example, 
Yin et al. fabricated a TGF-β1-immobilized scaffold by incorporating TGF-β1-
loaded gelatin microspheres into PLGA framework and evaluated the ADSC differ-
entiation in the scaffold in vitro and regenerative ability of cartilage defect in vivo. 
The cell proliferation and GAG deposition in the TGF-β1-immobilized scaffold are 
significantly increased, and the cartilage regeneration is promoted in the defective 
articular cartilage in vivo [211]. Lu et al. engineered ADSCs with a baculovirus 
system that confers prolonged and robust TGF-β3/BMP-6 expression. Culture for 
2 weeks in vitro in a porous scaffold leads to the formation of cartilaginous 
constructs with improved maturity and mechanical properties. After implantation 
into full-thickness articular cartilage defects in rabbits, these engineered constructs 
regenerate neocartilages that resemble native hyaline cartilage in terms of cell 
morphology, matrix composition, and mechanical properties. The neocartilages 
also have cartilage-specific zonal structures without signs of hypertrophy and degen-
eration and integrate well with the native cartilages [187].
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9.2.3.2 IGFs 

IGFs have a polypeptide sequence similar to proinsulin that allows cells to commu-
nicate with their physiologic environment. IGF-1 is well known to promote cell 
proliferation and inhibit apoptosis. IGF-1 is expressed in developing cartilage, 
mature cartilage, and synovial fluid of the joint. Both of in vitro and in vivo studies 
confirm that IGF-1 can induce chondrocyte differentiation and proliferation of MSCs 
and enhance proteoglycan and collagen type II synthesis [212–219]. Spiller et al. 
encapsulated IGF-1 in degradable PLGA microparticles and embedded the particles 
in PVA hydrogel. The PGA fiber scaffolds with chondrocytes were wrapped around 
the hydrogels and were implanted subcutaneously in athymic mice. Histology 
analysis proves enhanced cartilage formation in the layers surrounding the hydrogel 
with increased content of ECMs, mechanical properties, and integration between the 
cartilage layers and the hydrogels [218]. The regeneration of cartilage and 
subchondral bone in vivo was confirmed by injecting IGF-1 suspended HA solution 
to the temporomandibular in a rabbit model. Twelve and twenty-four weeks after the 
injection, the defects were well repaired, and nearly normal microarchitectural 
properties of the subchondral cancellous bone were found in the defects [217]. 

9.2.3.3 BMPs 

BMPs are able to induce the formation of the cartilage and bone, which are required 
for the formation of prechondrogenic condensation and differentiation into 
chondrocytes. Meanwhile, they can increase the expression of the specific chondro-
cyte markers such as type X collagen [139, 205, 220–227]. BMP-2, a potent



regulator of chondrogenic expression, has received considerable attention in carti-
lage and osteochondral tissue engineering. Jeong et al. investigated the influence of 
BMP-2 on the production of cartilage matrix and subsequent bone matrix by using 
primary chondrocytes seeded on designed three-dimensional PCL scaffolds with 
chemically conjugated BMP-2. The chemically conjugated BMP-2/PCL scaffolds 
can significantly promote better cartilage regeneration without particularly acceler-
ating endochondral ossification both in vitro and in vivo compared with those 
non-BMP-2-treated scaffolds [139]. 
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9.2.3.4 FGF-2 

FGF-2 is known as a chondrocyte mitogen found in normal cartilage and has great 
potential for clinical applications. It can stimulate chondrocytes to synthesize carti-
laginous matrix [228–233]. Maehara et al. impregnated a porous hydroxyapatite/ 
collagen scaffold with FGF-2 and used the scaffolds to repair large osteochondral 
defects in a rabbit model. With the addition of FGF-2, the neotissue in the defects 
displays not only the most abundant bone regeneration but also cartilage regenera-
tion with hyaline-like appearance [232]. 

9.2.3.5 PDGF 

PDGF is a glycolytic protein released by platelets and other cells, which stimulates 
the growth of cells of mesenchymal origin, for example, the cartilage [234– 
237]. Meanwhile, the released PDGF-AA from hydrogel being filled in the full-
thickness cartilage defects greatly promotes BMSC recruitment into the hydrogel. 
This confirms the ability of PDGF to recruit BMSCs besides promotion of cell 
proliferation [237]. 

9.2.3.6 Exosomes (Exos) 

Exos are extracellular vesicles with 30–150 nm in diameter that are produced by 
cells through the paracrine pathway, which contain various types of nucleic acids 
and proteins [238]. Recently, Exos have been regarded as important carriers for 
transmitting biological signals between cells instead of waste products of cells. Exos 
derived from stem cells are considered as ideal substitutes for stem cells in “cell-
free” cartilage regeneration [239]. Jiang et.al. combined Exos derived from human 
Wharton’s jelly-derived MSCs with scaffold of acellular porcine articular cartilage 
[240]. 6 months’ experiment in vivo proved that the Exos can promote osteochondral 
regeneration in a “cell-free” condition. Shao et. al. revealed that Exos derived from 
infrapatellar fat pad MSCs can significantly promote the proliferation as well as the 
expression of Sox-9, Aggrecan, and Collagen II relative genes of chondrocytes 
in vitro [241]. Furthermore, Shao et.al. created a rabbit articular cartilage defect



with 4 mm in diameter and 1.5 mm in depth, and then treated with the Exos 
suspension. 12 weeks after the treatment, the defected cartilage was effectively 
regenerated with a hyaline morphology. In spite of these positive results using 
Exos to facilitate the regeneration of articular cartilage defect, the underlying 
mechanism of action remains unknown. Additionally, the low yield of Exos leads 
to a higher cost of Exos therapy than stem cell therapy, which might be the potential 
limitation to move the Exos therapy forward from bench to bedside [242]. 
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9.2.3.7 Platelet-Rich Plasma (PRP) 

PRP is a kind of autologous derivative of the whole blood, which is rich in growth 
factors. PRP could stimulate the migration and chondrogenic differentiation of 
human subchondral progenitor cells [243]. Meanwhile, PRP would counteract 
effects of an inflammatory environment on genes regulating matrix degradation 
and formation in human chondrocytes [244, 245]. Recently, PRP has commonly 
been utilized in the repair and regeneration of damaged articular cartilage. Lu et al. 
prepared an injectable hydrogel with hyaluronic acid (HA), fucoidan (FD) and 
gelatin (GLT), which was further cross-linked with genipin (GP) [246]. The 
PRP-loaded injectable hydrogel was prepared by adding PRP in the hydrogel before 
gelation. It could facilitate the sustained release of PRP growth factors, and promote 
cartilage regeneration in rabbits. Singh et al. developed a hybrid scaffold by embed-
ding PRP/alginate-based hydrogel in porous 3D scaffold of chitosan/chondroitin 
sulfate/silk fibroin [247]. The hybrid construct could provide PRP-based cocktails of 
growth factors, which facilitates chondrogenic ECM deposition and enhanced 
expression of cartilage tissue-specific collagen type II and aggrecan. Autologous 
chondrocytes-loaded hybrid scaffolds possess the superior potential to regenerate 
hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with 
surrounding tissue at the defect site. 

9.2.4 Methods for Cartilage Tissue Engineering 

9.2.4.1 Preculture In Vitro for Cartilage Tissue Engineering 

Functional repair of focal cartilage defects requires filling the space with neotissue 
that has compressive properties comparable to native tissue and integration with 
adjacent host cartilage. One of the main issues in cartilage tissue engineering is 
represented by the ideal maturation of the construct before implantation in vivo, in 
order to optimize matrix quality and integration [248]. Considerable progress has 
been made toward the in vitro tissue engineering of neocartilage with compressive 
properties approaching native levels [249–253]. In 1997, Cao et al. reported a human 
ear-shaped tissue-engineered construct by using bovine articular chondrocytes and a 
nonwoven PGA scaffold [254]. Deponti et al. studied the difference of cartilage



maturation with or without preculture. Articular chondrocytes were embedded in 
fibrin glue with preculture in vitro for 1 week and implanted subcutaneously in rat, 
proving better tissue maturation compared with the constructs without preculture 
[249]. Pei et al. mixed synovium-derived stem cells with fibrin glue, which were then 
seeded into nonwoven PGA mesh. After 1-month incubation with growth factors, 
the premature construct was used to repair osteochondral defects in a rabbit model. 
Six months later, the defects were full of smooth hyaline-like cartilage with high 
expression of collagen type II and GAG, which integrated well with the surrounding 
tissue too [196]. 
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Culture of constructs in a dynamic environment involving fluid flow or agitation 
is beneficial for cartilage synthesis compared to the static culture conditions 
[255]. Therefore, various bioreactors have been applied for cartilage tissue engi-
neering, offering advantages such as better control over culture conditions, reduced 
diffusional limitations for delivery of nutrients and metabolites, enhanced oxygen 
transfer, and exertion of mechanical and hydrodynamic forces influencing cell and 
tissue development [256]. Shahin et al. precultured chondrocytes in PGA scaffold 
for 5 weeks within a bioreactor, confirming improved GAG retention in the 
scaffolds [257]. 

9.2.4.2 Regeneration of Cartilage Defects In Situ 

With the deep acknowledge of cell behavior regulation and bioactive molecule 
functions, the in situ regeneration of cartilage defects with direct implantation of 
cartilage tissue engineering constructs based on biomaterials, cells, and bioactive 
growth factors has been extensively studied. The scaffolds based on native and/or 
synthetic materials play a role in supporting the viability of cells and deposition of 
neo-ECMs, while the bioactive growth factors regulate cell differentiation and 
physiological activity. Numerous studies give positive regenerative results by 
using the bioactive constructs in repair of articular cartilage defects. As described 
early, cells (chondrocytes, BMSCs, ADSCs, ESCs, etc.) and bioactive growth 
factors (TGF-β, IGF-1, BMPs, FGF, PDGF, etc.) are loaded into scaffolds 
(hydrogels, porous scaffolds, etc.), which are then implanted into the cartilage 
defects without prematuring. Li et al. implanted a PLGA scaffold filled with fibrin 
gel, mesenchymal stem cells (MSCs), and poly(ethylene oxide)-b-poly(L-lysine) 
(PEO-b-PLL)/pDNA-TGF-β1 complexes into osteochondral defects, resulting in 
full in situ regeneration of the defect [123]. However, the application of constructs 
containing cells and bioactive molecules is still faced with obstacles like source, 
amount, and phenotype maintenance of MSCs during culture, immune reaction 
against foreign cells, as well as feasibility of clinical translation considering the 
ratio of performance to price [258]. 

Injectable hydrogels have a greater potential to promote articular cartilage regen-
eration considering their tailorable structural and mechanical capabilities. Impor-
tantly, the free-flowing property makes it convenient for the loading of drugs, growth 
factors and cells into the injectable hydrogel by simple dissolution procedures



[38]. Zheng et.al. fabricated an injectable hydrogel based on silk fibroin, chitosan 
and thermal-sensitive glycerophosphate [259]. With the incorporation of TGF-β1 
and BMSCs, the prepared injectable hydrogel could promote the regeneration of 
partial-thickness cartilage defect on knees of SD rats. Dong et.al. developed a 
physiochemical dual crosslinking injectable hydrogel using catechol-modified gel-
atin, dopamine-modified oxidized hyaluronic acid, and dendritic mesoporous 
organic silica nanoparticles with Fe3+ layers for the encapsulation of dexamethasone 
[260]. The obtained hydrogel was injected into osteochondral defects of 3.5 mm in 
diameter and 5 mm in thickness of SD rats. Post implantation for 8 weeks revealed 
the efficacy of the treatment on cartilage defects by the effective removal of the ROS 
and the inhibition of TNF-α and IL-6. Dong et.al. fabricated an injectable chitosan/ 
silk fibroin hydrogel containing SDF-1 and PLGA microspheres loaded with 
Kartogenin [261]. The SDF-1 released from the hydrogel facilitated the recruitment 
of BMSCs in vivo, and the slowly released Kartogenin promoted the chondrogenesis 
of MSCs. After the hydrogel was injected into the cartilage defects (4 mm in 
diameter and 1.5 mm in depth) of rabbits combined with microfracture for 
12 weeks, the subchondral bones and superficial cartilage were reconstructed, 
which were similar to the natural tissues. 
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9.3 Cell-Free Constructs for Cartilage Regeneration In Situ 

Based upon the principles of tissue engineering, the stem cells and chondrocytes are 
usually used for cartilage regeneration. However, the controversy of using cells in 
tissue engineering still exists because of the uncertainty of dose, time point, as well 
as side effects [262]. In fact, stem cells are abundant in bone marrow and adult 
organs such as the brain, peripheral blood, skin, teeth, etc. Once tissues get damaged, 
endogenous stem/progenitor cells will migrate to the injured site through peripheral 
blood by responding to the immune cell-secreted biochemical signals 
[263, 264]. Therefore, homing of endogenous cells for tissue regeneration in situ 
would be a promising new therapeutic option to bypass the controversial of cell 
usage. Compared to that of the traditional cartilage tissue engineering, the recruit-
ment of cells into cartilage defect to realize the regeneration in situ still remains rare 
[265]. Nonetheless, the cell-free scaffolds combined with anti-inflammatory mole-
cules and BMSC-attractive chemokines would have positive influence on the regen-
erative outcome of cartilage defects. For example, Park et al. studied the in situ 
recruitment of BMSCs into cartilage defects by transplantation of 
polylactide/β-tricalcium phosphate (PLA/β-TCP) scaffolds containing IL-8 or 
MIP-3α [8]. Compared to those scaffolds without chemokines, the scaffolds with 
IL-8 or MIP-3α can highly facilitate the restoration of cartilage with a smoother 
surface and higher deposition of collagen. Wang et al. fabricated an anti-
inflammatory scaffold composed of resveratrol-grafted polyacrylic acid and 
atelocollagen [266]. The scaffolds were transplanted into osteochondral defects 
without the employment of cells. After implantation for 12 weeks, the



proinflammation genes such as IL-1, MMP13, and COX-2 were downregulated, 
while the cartilage-related genes were upregulated, leading to efficient regeneration 
of cartilage defects. For the sake of easier application clinically, a widely accepted 
biomaterial instead of a brand-new one would be the best choice for fabricating the 
scaffold. Dai et al. fabricated a macroporous fibrin scaffold with high Fg content and 
mechanical strength through a porogen leaching method by using PCL microspheres 
as the porogen. Together with the excellent bioactivity of Fg, the cell-free fibrin 
scaffold could efficiently regenerate full-thickness cartilage defects in rabbit knees, 
resulting in neocartilage with a smooth surface, well integrity with surrounding 
tissue, highly deposited GAGs and collagen type II, and higher expression of 
cartilage-related genes and proteins, which ensure the great potential for clinical 
application of Fg scaffold to achieve in situ inductive cartilage regeneration [267]. A 
PLGA scaffold with oriented pores in its radial direction was implanted into rabbit 
articular osteochondral defect for 12 weeks, confirming obvious tide mark forma-
tion, and abundant chondrocytes distributing regularly with obvious lacunas in the 
cartilage layer [268]. A scaffold with oriented pores in radial direction can be 
prepared by using methacrylated hyaluronic acid via controlled directional cooling, 
and followed with structure-stabilization via post photocrosslinking, and further 
infiltrated with PLGA to enhance the mechanical strength [269]. In vivo test proved 
that the composite without loading cells can facilitate simultaneous regeneration of 
both cartilage and subchondral bone. Meanwhile, the cell-free scaffolds can facilitate 
cartilage regeneration in clinic too. Roessler et al. implanted a cell-free collagen type 
I matrix for the treatment of large cartilage defects (mean defect size 
3.71 ± 1.93 cm2 , range 1.20–9.00) of the knee and conducted a short-term follow-
up after the implantation. Significant pain reduction was achieved after implantation 
for 6 weeks, while the activity of patients was highly improved and nearly reached to 
preoperative value after 12 months [270]. 
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9.4 Simultaneous Regeneration of Cartilage 
and Subchondral Bone 

Articular cartilage defects can be divided into two forms, full-thickness cartilage 
defects without subchondral bone damage and osteochondral defects involving both 
the cartilage and the underlying subchondral bone [271]. Subchondral bone plays a 
pivotal role in supporting cartilage and will suffer from deterioration once cartilage is 
damaged. When damage of subchondral bone occurs, the neocartilage has poor 
integration with the subchondral bone, leading to negative regeneration of the 
articular cartilage defects [272]. Hence, the regeneration of structure and functions 
of the articular cartilage defects can be realized only if both cartilage and 
subchondral bone are simultaneously regenerated with good interface binding 
[273]. There are several problems that should be overcome for the regeneration of 
osteochondral defects, including the construction of different layers of scaffolds,



well integration of the neoformed tissues with native tissues, and the effective 
binding of neoformed cartilage and subchondral bone [274]. Schematic design of 
multilayered scaffolds for osteochondral defect regeneration and typical multilay-
ered collagen scaffolds is shown in Fig. 9.6 [69]. Osteochondral tissues encompass 
cartilage layer, calcified cartilage, and subchondral bone layers in the spatial scale 
(Fig. 9.6a). The scaffolds with a biphasic structure based on different materials and 
different chemical or mechanical properties are designed for the regeneration of 
cartilage and subchondral bone, respectively (Fig. 9.6b) [275–279]. The evaluation 
of the regenerative ability of the scaffolds in vivo has found some positive results 
[280–283]. For example, the biphasic PEG/hydroxyapatite scaffold with cartilage-
and subchondral bone-like hierarchical nanoroughness, microstructure, and spatio-
temporal bioactive cues can be prepared by the 3D-printing technology. In vitro 
culture proves osteochondral differentiation of BMSCs in the scaffold [284]. The 
bilayered scaffold composed of PLCL, PLGA, and β-tricalcium phosphate (β-TCP) 
has been prepared by a sintering method and a gel pressing method. The 
PLGA/β-TCP layer has osteoconduction activity for bone regeneration, while the 
elastic PLCL scaffold has mechanoactive properties for cartilage regeneration 
[285]. The biphasic scaffold composed of aragonite-hyaluronic acid (Ar-HA) layers 
shows full regenerative ability of osteochondral defects with a critical size of 6 mm 
in diameter and 10 mm in depth in the load-bearing femoral condyle of goats [286]. 
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Fig. 9.6 (a) Schematic design of multilayered scaffolds for osteochondral defect regeneration. (b) 
Three-layered collagen scaffolds. (Reprinted from [69] with permission) 

Recently, 3D-printing technology has emerged as a promising strategy to fabri-
cate scaffolds for osteochondral defects. 3D-printing provides many advantages, 
including well-controlled architecture (size, shape, interconnectivity, and orienta-
tion). The 3D-printed scaffold would provide structural and mechanical support, and 
sufficient nutrient supply, leading to regeneration of functional cartilage akin to 
native tissue. Depending on the biomaterials, 3D-printed scaffolds for cartilage 
regeneration can be classified as natural, synthetic, and inorganic scaffolds.
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Fig. 9.7 3D-printed scaffolds of (a) cell-laden collagen, (b) modified PEG and gelatin, (c) modified 
PEG and gelatin incorporating with graphene, (d) polycaprolactone and modified gelatin, (e) short 
electrospinning gelatin/PLGA fibers and cartilage decellularized matrix, (f) gellan gum with Li-Mg-
Si bioceramics, (g) polycaprolactone and hydroxyapatite, (h) bone layer (polycaprolactone / 
hydroxyapatite) and cartilage layer (chitosan/silk firoin), (i) Zn/Co-MOF-β-TCP, (j) Mo-doped 
bioactive glass ceramic. (Reprinted from [287, 291, 296, 299, 295, 303, 182, 302, 316, 317] with 
permission) 

The natural 3D-printed scaffold is mainly designed in a form of hydrogel, by 
using proteins (collagen (Fig. 9.7a)  [287–289], gelatin (Fig. 9.7b)  [290–301], fibrin 
[292], and silk fibroin [298, 302]), polysaccharides (gellan gum [303], cellulose 
[303], chitosan [302], hyaluronic acid [294, 304, 305], alginate [290, 297, 303, 306– 
309], chondroitin sulfate [291]), and acellular matrix [295, 310, 311]. Compared 
with the traditional hydrogel with submicro- or nano-sized gel network, the 
3D-printed hydrogel could be granted with macropores which facilitate the supply 
of oxygen and nutrients and the proliferation and differentiation of encapsulated 
cells. Li et al. fabricated a macroporous hydrogel with silk fibroin and tyramine-
substituted gelatin by extrusion-based low temperature 3D printing [292]. The 
internal structure of the hydrogel could be well designed to improve the retention 
of stem cell aggregates and promote the articular cartilage repair. A bilayered 
hydrogel was fabricated using gellan gum, cellulose and sodium alginate 
[303]. Bioceramic particles were incorporated into the lower part of the hydrogel 
to mimic the subchondral bone. The hydrogel loaded with stem cells in the lower 
part, and with chondrocytes in the upper part could facilitate simultaneous regener-
ation of both cartilage and subchondral bone. Hydrogel with interpenetrating poly-
mer network could be fabricated by 3D-printed technology using polyethylene



glycol diacrylate, gelatin methacryloyl, and chondroitin sulfate methacrylate through 
photocrosslinking [291]. The designed hydrogel possessed not only adequate 
mechanical strength but also maintained a suitable 3D microenvironment for differ-
entiation, proliferation and extracellular matrix production of stem cells. 
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Compared with natural biomaterials, synthetic biomaterials are favored by 
researchers because of their strong controllability and mechanical properties. Up to 
now, several biodegradable synthetic polymers, including polyethylene glycol 
(PEG) (Fig. 9.7c) [291, 296], polyvinyl alcohol (PVA) [312], polyurethane 
[304, 311, 313], poly (lactic-co-glycolic acid) (PLGA) (Fig. 9.7e) [295], and 
polycaprolactone (PCL) (Fig. 9.7d)  [182, 299, 302, 308, 309, 314, 315], have 
been used in 3D-printed scaffolds for cartilage regeneration. For instance, Zhou 
et al. developed a graphene oxide-doped, gelatin methacrylate and poly (ethylene 
glycol) diacrylate (PEGDA)-based 3D-printing ink, in which the PEGDA could 
greatly improve the printability performance of the ink [296]. Because of the strong 
hydrogen bonding interaction in the PEGDA solution, there exists severe extrusion 
swelling of the pure PEGDA solution during the most common nozzle printing 
process, which greatly restricts the development of 3D printing of PEGDA hydrogel. 
Meng et al. improved the printing accuracy of PEGDA solution by adding graphene 
oxide and hydroxyapatite, and realized the 3D printing of a PEGDA-based hydrogel 
with a biomimetic pore size gradient [312]. Inspired by the architecture of collagen 
fibers in native cartilage tissue, Cao et al. fabricated a tri-layered scaffold with pore 
size gradient based on polycaprolactone and methacrylated alginate hydrogel encap-
sulating stem cells [308]. The stem cells-loaded gradient 3D-printed scaffolds 
showed excellent cell survival, proliferation and morphology, collagen II deposition, 
and hopeful chondrogenic differentiation. 

Moreover, the scaffolds for osteochondral repair based on bioresorbable ceramic, 
including hydroxyapatite (Fig. 9.7g, h)  [182, 288, 297, 301, 302, 307], β-tricalcium 
phosphate(β-TCP) [316], and bioactive glass ceramic (Fig. 9.7f)  [303, 317] can be 
fabricated by 3D-printing technology. Hydroxyapatite is one of the essential inor-
ganic components from bones and teeth, which is widely applied in biomedical 
engineering due to their excellent biocompatibility, bioactivity, osteointegrity, and 
osteoconductive properties [318]. Hsieh et al. prepared a biomimetic scaffold 
consisting of hydroxyapatite/polycaprolactone and glycidyl-methacrylate-
hyaluronic acid for healing osteochondral defects [319]. The scaffolds were 
implanted in the knees of a miniature pig for a period of 12 months, and realized 
the regeneration of hyaline cartilage. β-TCP is a typical bioresorbable ceramic for 
bone tissue regeneration [320]. Shu et al. prepared a 3D-printed β-TCP scaffold, 
which was further functionalized with zinc-cobalt bimetallic organic framework 
(Zn/Co-MOF) (Fig. 9.7i)  [316]. The hybrid scaffolds preserve excellent 
antioxidative and anti-inflammatory properties to protect cells from reactive oxygen 
species invasion, and induce the osteogenic and chondrogenic differentiation simul-
taneously in vitro. Moreover, in vivo studies prove that the Zn/Co-MOF-TCP scaf-
folds could accelerate the integrated regeneration of cartilage and subchondral bone 
in severe osteochondral defects induced by osteoarthritis. Dang et al. prepared a 
series of molybdenum-doped bioactive glass ceramic through combining a sol-gel



method with 3D-printing technology (Fig. 9.7j) [317]. The scaffold not only signif-
icantly stimulated the proliferation and differentiation of both chondrocytes and stem 
cells in vitro, but also showed bi-lineage bioactivities for regeneration of articular 
cartilage and subchondral bone tissues in vivo. 
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9.5 Histological Grading of Cartilage 

Histological quality of repaired cartilage is one of the most important evaluations of 
success in cartilage regeneration. Up to present, various histological scoring systems 
are used to evaluate the quality of cartilage tissues. Basically, a scoring system 
should be comprehensive but also applicable to researchers with limited knowledge 
of cartilage histology. In summary, the systems are divided into three categories to 
describe the osteoarthritic, in vivo repaired, and in vitro engineered cartilage, 
respectively [321]. 

Scoring systems for osteoarthritic cartilage focus on the degenerative features of 
healthy or diseased cartilage. Histological-Histochemical Grading System (HHGS) 
is the first system for the evaluation of osteoarthritic cartilage [322]. It evaluates the 
cartilage structure, cell distribution, Safranin-O staining, and tidemark integrity to 
classify the level of cartilage damage. HHGS is applied in the grading of both human 
and animal cartilages [323, 324]. Although widely used, HHGS is not efficient to 
evaluate the specific extent of cartilage deterioration [325]. Osteoarthritis Research 
Society International (OARSI) developed an Osteoarthritis Cartilage Histopathology 
Assessment System for better evaluation of the severity and the extent of cartilage 
surface damage during the arthritic process [326]. The OARSI system is more 
adequate for the assessment of mild osteoarthritis and could be more conveniently 
used by less experienced observers [325]. 

Many scoring systems are developed to evaluate the regeneration of cartilage 
defect in vivo. O’Driscoll score, Pineda scale, Wakitani score, OsScore, Knutsen 
score, and International Cartilage Repair Society (ICRS) score are widely used 
[321]. O’Driscoll is the first scoring system to assess the repaired cartilage in vivo 
and is frequently used for cartilage analysis in animal studies [327]. However, many 
different subitems make it a bit lengthy and complicated to use. Pineda scale is 
developed to simplify the assessment and is applied to evaluate the self-healing 
ability of cartilage defect in rabbit at the first beginning [328]. After that, Wakitani 
introduced a modified scoring system based on Pineda scale, which is extensively 
applied to evaluate animal cartilage repair in vivo [329]. O’Driscoll, Pineda scale, 
and Wakitani score are mainly used to evaluate cartilage repair in animal models. In 
contrast to the animal studies, the study of cartilage repair in human is hard to 
evaluate due to the infeasible harvest of large biopsy. Considering that, Robert et al. 
proposed a scoring system for small biopsy of repaired human cartilage, which is 
named as OsScore [330]. Moreover, ICRS introduced ICRS I and ICRS II scoring 
systems for more easy and reliable histological evaluation of repaired cartilage 
[331, 332]. ICRS scoring systems are based on a catalogue of repaired cartilage as



a reference for scoring. Distinguished from other systems, ICRS scoring enables 
discrimination of each subitem, instead of summarizing all the subitems to create a 
total score. Compared with the ICRS I, the ICRS II contains additional categories, 
making it more comprehensive. Especially when a scaffold is used in cartilage 
repair, a category of inflammation can be included to the ICRS II [333]. 
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Scoring system for engineered cartilage should focus on the quality of newly 
generated cartilage after engineering in vitro. Few histological scoring systems are 
available for the evaluation of engineered cartilage. O’Driscoll introduced a simple 
scoring system to evaluate the density of GAGs in the engineered cartilage 
[334]. This system is not sufficient since many other characteristics, for example, 
cell morphology, are not included. Another grading system, Bern score, was vali-
dated for the evaluation of engineered cartilage [335]. In contrast to O’Driscoll 
score, Bern score has a broader score range, which gives more information about the 
characteristics of tissue [336]. 

9.6 Challenges and Perspectives 

Although the cartilage tissue engineering has been investigated for over two 
decades, rather limited success is achieved to develop clinically relevant outcomes. 
Nonetheless, significant strides have been made to select optimal cell sources; to 
identify suitable chemistry, morphology, and compliance of scaffold materials; and 
to optimize culture conditions and dose and delivery of soluble factors, which are of 
great importance to develop models of cartilage development in vitro and regener-
ation of cartilage defects in vivo. Meanwhile, many efforts have been made to 
overcome the limitations in cell harvesting and to establish culture and implantation 
techniques in vitro. Novel methods of manufacture such as 3D printing have opened 
new horizons for constructing personalized constructs for cartilage regeneration. A 
thorough understanding of the biological processes at both cellular and molecular 
levels will ensure the safety and effectiveness of these innovations. With the deep 
understanding of pathological and healing principles under cartilage defects, cell 
homing and in situ inductive regeneration of both cartilage and subchondral bone are 
also full of prospects. All these developments, taken together, may in the future lead 
to the successful and cost-effective translation from the bench top to the bedside by 
using novel cell/biomaterial constructs in cartilage regeneration. 
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Chapter 10 
Skin Regeneration 

Xiaowen Zheng, Qian Li, Lie Ma, and Changyou Gao 

Abstract The engineering of skin substitutes and their applications on the regener-
ation of damaged skin have advanced dramatically in the past decades. However, 
scientists are still struggling with the generation of full-thickness skin with native 
structure and completed functions. In this chapter, classified by sources, recent 
developments of biomaterials for skin regeneration have been summarized. Then 
the most common formats of the engineering skin substitutes are introduced. The 
strategies of the biological functionalization in the design of skin substitutes are 
further summarized. Some important challenges in the field of skin substitutes such 
as angiogenesis, scarring, and appendages loss, and the advanced strategies includ-
ing endogenous stem cells-based therapy and on-demand therapy are particularly 
focused on. Finally, a brief conclusion and some perspectives are given in terms of 
the future trend of biomaterials for skin regeneration. 

Keywords Skin · Scaffold · Biofunctionalization · In situ regeneration · 
Regenerative medicine 

10.1 Introduction 

The skin, the largest organ of the human body, provides a protective barrier against 
physical, chemical, and biological pathogens to support and maintain human health. 
In addition, the skin also has the function of temperature regulation, external insult 
protection, and detoxing. Typically, the skin has hierarchical structures including the 
upper epidermal layer, interlayer dermis, and subcutaneous tissue. The epidermis
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whose thickness is 0.1–0.2 mm consists mainly of keratinocytes derived from the 
capillary network. The dermis layer composes of fibroblasts and extracellular matrix 
(ECM) including collagen, glycosaminoglycans (GAGs), and elastin. Skin append-
ages such as hair follicles, sweat glands, and sebaceous glands are from the subcu-
taneous tissue and play a great role in the sensation, temperature regulation, and 
detoxing (Fig. 10.1) [1].
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Fig. 10.1 The structure of the human skin. (Reprinted from Ref. [1] with permission. Copyright 
2007, Rights Managed by Nature Publishing Group) 

Burn, trauma, or chronic diseases frequently cause the loss of the skin, leading to 
descent of nonspecific immunity and bacterial infection, which is one of the most 
severe problems affecting human life quality. Thus, skin regeneration has become a 
major aim in the field of wound healing. In the past several decades, surgical 
therapies including skin transplantation have been applied to treat the loss of the 
skin and have achieved great success in skin regeneration. Autologous skin graft is 
the “gold standard” for clinical treatment of skin defect, and allograft plays a big role 
in the early period of skin repair as a temporary cover until a permanent skin graft is 
available. However, skin autograft and allograft are limited by the timely availability 
and donor sites. In addition, current skin grafts often suffer from a range of problems 
including incomplete biological functions, scar formation, and bacterial or virus 
infection during surgical therapies [2]. Thus, it has been becoming more and more 
urgent to find effective therapy strategies for the treatment of skin loss facing with 
the increasing clinical need and a vast patient resource. 

Recently, skin substitute based on tissue engineering is being rapidly developed 
to bypass the limitations of conventional tissue transplantation and provide new 
therapeutic strategy to restore skin function [3]. Tissue engineering combines



scaffold, cells, and biofactors to remodel the target tissue or organ in vitro, followed 
by in vivo transplantation according to the principles of materials, medicine, and 
biology. Skin tissue substitutes based on tissue engineering have been fabricating 
over the past several decades to provide more suitable therapeutic schemes for skin 
loss, and some commercial products are available in clinical application. For exam-
ple, Dermagrafts® , a dermal skin substitute consists of poly(glycolic acid) (PGA), 
poly(lactic acid) (PLA), and fibroblasts, has been used to treat diabetic ulcers 
[4]. However, the fully functional skin regeneration is still a big challenge for skin 
tissue engineering. Better tissue engineering strategy in the aspect of exploitation of 
new biomaterials and novel design of biomaterial scaffolds should be developed to 
fulfill the increasing demand of skin regeneration. 
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This chapter focuses on the application of tissue engineering and regenerative 
medicine approach for the fabrication of bioengineered constructs for skin regener-
ation. First of all, the materials and the design of material scaffold for skin regener-
ation are summarized. Then the biofunctionalization of biomaterial scaffold is 
reviewed by using proteins, genes, and cytokines. Finally, some important chal-
lenges for skin regeneration including angiogenesis, scarring, appendages regener-
ation, and in situ tissue regeneration are discussed. 

10.2 Materials for Skin Regeneration 

10.2.1 Natural Materials 

Collagen, one of the most important components of ECM and composed of a triple 
helix, is widely used in skin regeneration due to its good biocompatibility, biode-
gradability, flexibility, and structural and functional similarity to ECM [5]. Besides 
the collagen derived from animal, plant-derived human collagen has been shown to 
be a promising biomaterial for skin tissue engineering because of its low risk of an 
allergic response or disease transmission [6]. However, the poor mechanical prop-
erties of collagen limit its application in skin substitute. A variety of methods 
including cross-linking and blending with other substances have been established 
to improve the mechanical properties of collagen-based scaffold [7]. For example, 
synthetic human elastin/collagen composite scaffolds were fabricated by 
electrospinning for tissue engineering dermis [8]. The scaffold supported fibroblast 
infiltration, de novo collagen deposition, and new capillary formation. Recently, a 
full-thickness skin equivalent consists of collagen and silk was prepared to study 
skin biology [9]. In our lab, a collagen/chitosan scaffold cross-linked with glutaral-
dehyde has been fabricated to promote the growth of fibroblasts and dermis regen-
eration. The cross-linking of glutaraldehyde and introduction of chitosan can 
enhance the biostability of the scaffold [10, 11]. Wang et al. used PLGA-knitted 
mesh to integrate with collagen/chitosan scaffold to improve the mechanical strength 
of the scaffolds [12]. Some commercial products based on collagen have been 
applied in clinical practice. For example, Integra® fabricated by cross-linked bovine



collagen and chondroitin-6-sulfate was employed for dermal regeneration. 
Apligraf® , a collagen-based hydrogel seeded with dermal fibroblasts and epidermal 
cells, has been widely applied to treat burns and several kinds of ulcers in the clinic 
(Fig. 10.2) [13, 14]. But it remains a challenge to regenerate the skin with complete 
appendages. 
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Apligraf® Human skin 

Fig. 10.2 Histology of Apligraf compared with normal human skin. (Reprinted from Ref. [13] with 
permission. Copyright 2010 John Wiley & Sons, Inc.) 

Chitosan, the deacetylated derivative of chitin, is a linear polysaccharide 
consisting of glucosamine and N-acetyl glucosamine [15]. Chitosan can be tailored 
with various molecular weights (50–2000 kDa) as well as degrees of deacetylation 
(30–95%), allowing wide adjustment of mechanical and biological properties 
[16]. Cross-linking is usually made to control the degradation rate and enhance the 
mechanical properties of chitosan matrix for skin tissue engineering as well 
[17]. Chitosan can be applied to deliver bioactive molecules. For example, the 
human epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) 
were encapsulated in chitosan scaffold to promote wound healing [18, 19]. In 
addition, membranes based on chitosan are widely used as wound dressings because 
of the antibacterial capacity of chitosan [20]. However, the most extensive applica-
tion of chitosan for skin regeneration is serving as a three-dimensional matrix. 
Tchemtchoua et al. prepared chitosan nanofibrillar scaffold for skin repair. Com-
pared to chitosan sponge, the chitosan nanofibrillar scaffold induced a faster regen-
eration of both the epidermis and dermis (Fig. 10.3)  [21]. Kiyozumi et al. fabricated 
a photo-cross-linkable chitosan hydrogel containing DMEM/F12 medium



(medium-Az-CH-LA) for skin regeneration [22]. The hydrogel promoted 
re-epithelialization, vascularization, and wound repair. Moreover, compared to 
collagen sponge, thicker granulation tissue and earlier neovascularization were 
found in medium-Az-CH-LA [23]. 
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Fig. 10.3 Compared with chitosan films and sponges, the nanofibrillar structure strongly improved 
cell adhesion and proliferation in vitro. When used as a dressing covering full-thickness skin 
wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis 
compartments. (Reprinted from [21] with permission. Copyright 2011 American Chemical Society) 

Other natural biomaterials for skin regeneration including gelatin, hyaluronan, 
and fibrin are widely used as well. Shevchenko et al. designed a gelatin scaffold with 
attached silicone pseudo-epidermal layer for wound repair using a cryogelation 
technique [24]. The mechanical properties of the scaffold were comparable to the 
clinical product Integra® . In vivo test showed that the gelatin scaffold supports 
wound healing by allowing host cellular infiltration, biointegration, and remodeling. 
Monteiro et al. utilized a spray-assisted layer-by-layer assembly technique to fabri-
cate a multilayer film composed of poly-L-lysine (the epidermal component) and 
porous hyaluronic acid scaffold (the dermal component) in a rapid and controlled 
manner for skin tissue engineering [25]. The multilayer film enhances cell adhesion 
and regeneration of the epidermal barrier functions. Losi et al. prepared a fibrin-
based scaffold with incorporated VEGF- and bFGF-loaded nanoparticles to stimu-
late wound healing [26]. The scaffold induces re-epithelialization and enhances 
granulation tissue formation/maturity and collagen deposition in genetically diabetic 
mice. Acellular dermal matrix (ADM) is used to obtain scaffolds with similar 
components and structure of ECM of the natural skin. For instance, AlloDerm® 

made of ADM by LifeCell® Corporation is extensively employed for full-thickness 
skin regeneration. 

10.2.2 Synthetic Polymers 

The mechanical property is the biggest drawback of natural materials for skin 
regeneration: thus, natural materials usually need to be cross-linked or combined 
with other materials. On the contrary, synthetic polymers with predictable and



flexible physical and chemical properties including mechanical properties, func-
tional groups, and degradation rate can be obtained under controlled conditions 
with mature techniques. Besides, synthetic polymers are biodegradable, are less 
expensive, and have lower immunological response than natural materials [27]. Fur-
thermore, synthetic polymers such as PGA, PLA, poly(lactide-co-glycolide) 
(PLGA), and polycaprolactone (PCL) have been approved by the Food and Drug 
Administration (FDA) of the USA. 
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Synthetic polymers are important materials for skin regeneration. TransCyte® 

developed by the Advanced Tissue Science Company consisting of PLA scaffold 
and fibroblasts has been approved by the FDA for the healing of degree III burns 
[28]. PLGA matrices with fiber diameters varying from 150 to 6000 nm were 
fabricated via electrospinning [29]. Human skin fibroblasts acquire a well-spreading 
morphology and show significant growth on fiber matrices in the 350–1100 nm 
diameter range. Fibrous scaffolds composed of PLA and poly(ethylene glycol) 
(PEG) were prepared by electrospinning for skin tissue engineering [30]. The 
scaffold containing 30% PEG exhibited most beneficial properties including wetta-
bility, and adaptable bulk biodegradation, and promoted the penetration and growth 
of human dermal fibroblasts. However, synthetic polymers are usually hydrophobic, 
and their lack of functional groups leads to limited capacity to combine with 
biomolecules. To enforce the bioactivity of synthetic polymers, natural materials 
are widely applied with synthetic polymers to design hybrid scaffolds. Chen et al. 
fabricate a hybrid scaffold composed of knitted PLGA and weblike collagen 
microsponges to facilitate cell seeding and distribution and rapid formation of the 
dermal tissue [31]. A porous polycaprolactone (PCL)/collagen membrane was 
designed by Venugopal et al. via electrospinning. The well-defined nanostructure 
can well promote the growth and adhesion of cells [32]. The postmodification of 
synthetic polymers is another important method for the enhancement of bioactivity. 
Yang et al. used anhydrous ammonia plasma treatment to modify surface properties 
to improve the cell affinity of a PLA/PLGA scaffold [33]. The modified scaffold 
facilitated the growth of fibroblasts. Nanofibrous PCL/gelatin scaffolds were mod-
ified by collagen type I grafting [34]. The diameter of the fiber and porosity 
decreased with the increase of grafted collagen, and the collagen-modified 
nanofibrous PCL/gelatin scaffolds can maintain characteristic shape and promote 
proliferation of fibroblasts. 

10.3 Scaffold Design for Skin Regeneration 

The scaffold plays a vital role for skin regeneration by serving as a three-dimensional 
matrix for maintaining cell activities and promoting extracellular matrix formation, 
delivering biofactors, preserving tissue volume, and providing temporary mechan-
ical function. As the skin is complicated with a multilayer structure, how to design a 
scaffold mimicking the hierarchical structure and ultrastructure of ECM of the skin is 
an issue of great importance. So far different formats of scaffolds have been designed



to treat different kinds of damaged skins. For example, chitosan/poly(vinyl alcohol) 
(PVA) nanofibrous membrane has been prepared by electrospinning as a wound 
dressing [35]. However, for dermal or even full-thickness skin regeneration, the most 
common scaffold formats are porous scaffolds and hydrogels. 
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10.3.1 Porous Scaffolds 

The porous scaffold is the most common format for skin regeneration. Typically a 
porous scaffold possesses unique microstructures similar to native ECM, showing 
high surface area which facilitates cell attachment and growth. Both natural and 
synthetic polymers can be fabricated into the porous scaffolds with controlled three-
dimensional structures by methods such as gas foaming, freeze-drying, and 
electrospinning. 

A novel porous scaffold composed of collagen, hyaluronic acid, and gelatin was 
fabricated by freeze-drying for skin repair [36]. The average pore diameter of the 
scaffold was 132.5 ± 8.4 μm, which is beneficial for cell attachment and infiltration. 
The in vivo histological results revealed that the scaffold promoted wound healing 
compared to the group without treatments. Lu et al. fabricated a funnel-like porous 
PLLA–collagen and PLLA–gelatin hybrid scaffolds by forming collagen or gelatin 
sponge on a woven PLLA mesh for skin tissue engineering [37]. PLLA–collagen 
and PLLA–gelatin porous scaffolds promoted the regeneration of the dermal tissue 
and reduced contraction during the formation of new tissues. In our lab, Ma et al. 
have developed a collagen/chitosan hybrid porous scaffold which was cross-linked 
by glutaraldehyde (GA) to improve their biostability for skin regeneration [11]. Col-
lagen and chitosan are evenly distributed in the scaffolds with high porosity and 
good interconnectivity. In vitro culture suggested that the porous scaffold could 
maintain the original good cytocompatibility of collagen and effectively accelerate 
infiltration and proliferation of human dermal fibroblasts. In vivo test revealed that 
the scaffold could induce the fibroblast infiltration from the surrounding tissues. 
Besides, collagen/chitosan-silicone membrane bilayer dermal equivalent (BDE) was 
designed, in which the silicone membrane covers the hybrid scaffold to prevent 
water evaporation and infection (Fig. 10.4)  [38]. The porous BDE can be 
functionalized by plasmid DNA to form a gene-activated scaffold for more compli-
cated reconstruction of the damaged skin. For example, the porous BED combined 
with N,N,N-trimethyl chitosan chloride (TMC)/pDNA-VEGF complexes can signif-
icantly enhance the expression of VEGF, which in turn facilitates the regeneration of 
full-thickness incisional wounds [39]. To inhibit the scar formation during wound 
healing, TMC/siRNA-TGF-β1 complexes were incorporated into the BDE to inter-
fere in transforming growth factor-β1 (TGF-β1) signal pathway and suppress the 
expression of TGF-β1  [40]. The functionalized porous BDE can inhibit scar forma-
tion compared to the normal BDE. These results indicate that the porous BDE holds 
great promise for skin regeneration in clinical application.
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Fig. 10.4 (a) A view of the scaffold after being combined with a silicone membrane with a 
thickness of about 0.14 mm. (b) The microstructures of the scaffold observed under a scanning 
electron microscope. (Reprinted from Ref. [38] with permission. Copyright 2006 John Wiley & 
Sons, Ltd) 

10.3.2 Hydrogel 

Hydrogels are three-dimensional cross-linked polymer networks that are capable of 
absorbing large amount of water, which is important for the absorption of the excess 
of wound exudates [41]. In addition, hydrogels can protect the wound site from 
infection and promote the healing process by providing a moisturized environment. 
Moreover, hydrogels can preserve the bioactivity of growth factors, antibiotics, 
cytokines, and cells, making them ideal carriers for the delivery of biomolecules to 
realize complete skin regeneration. Many studies have been focused on the applica-
tions of hydrogel for skin regeneration [42–45]. 

Chitosan hydrogel is well known as a wound dressing, showing good biocom-
patibility, anti-infective activity, and the ability to accelerate wound healing. 
Thermo-responsive hydrogel was developed by using chitosan and agarose for 
skin regeneration [46]. The hydrogel prevented water loss and wound dehydration 
and was in favor of cell internalization and proliferation. A bilayer physical hydrogel 
of chitosan without any external cross-linking agent was used to induce inflamma-
tory cell migration and angiogenesis [47]. A hydrogel sheet composed of alginate, 
chitin/chitosan, and fucoidan (ACF-HS) has been developed for wound dressing 
(Fig. 10.5)  [48]. The hydrogel can provide a moist environment for rapid wound 
healing. Significantly advanced granulation tissue was observed in the healing-
impaired wounds being treated with the hydrogel. Wong et al. fabricated a pullulan– 
collagen composite hydrogel by using a salt-induced phase inversion technique, 
which can recapitulate the reticular structure of human dermal ECM [49]. The 
hydrogel promoted wound closure due to the increased recruitment of stromal 
cells as well as the formation of the granulation tissue. A versatile, nontoxic, in 
situ cross-linkable biodegradable dextran hydrogel loaded with chitosan micropar-
ticles containing VEGF and EGF was designed for skin regeneration. In vivo results 
showed that the hydrogel improved the physical, chemical, and biological protection



of the damaged skin [50]. Besides, the spatiotemporally controlled release of VEGF-
and EGF-enhanced angiogenesis and re-epithelialization are crucial for the recon-
struction of the native skin. More excitingly, a recent study shows that dextran-based
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Fig. 10.5 (a) Preparative procedures for ACF-HS. (b) Histological examination of wounds 
covered with ACF-HS or Kaltostat® and controls (uncovered). In the left panel, black arrows 
show formed granulation tissues. In the right panel, squares show the sites for microphotographs, 
and black arrows show blood vessels containing erythrocytes. (Reprinted from Ref. [48] with 
permission. Copyright 2009 Published by Elsevier Ltd)



hydrogels supported the infiltration of inflammatory cells, resulting in its rapid 
degradation and promoted infiltration of angiogenic cells and endothelial cells into 
the healing wounds [51]. In addition, the remarkable neovascularization and regen-
eration with hair follicles and sebaceous glands were observed after 21 days, and 
new hair was observed 5 weeks later. These results indicate that dextran-based 
hydrogel alone without bioactive factors can promote complete skin regeneration 
with appendages.
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10.4 Biofunctionalization of Skin Regeneration Scaffolds 

Skin repair is the result of synergistic effect of different kinds of cells whose 
proliferation, migration, differentiation, and ECM secretion are well regulated by 
bioactive factors such as growth factors, genes, and cytokines. Combining bioactive 
factors with scaffolds is a promising way to promote the efficiency and quality of the 
regenerated skin. 

10.4.1 Growth Factors 

Growth factors are capable of stimulating cellular growth, cellular proliferation, and 
cellular differentiation. Usually they are proteins or steroid hormones regulating a 
variety of cellular processes. Growth factors typically act as signaling molecules 
between cells to promote cell differentiation or maturation and have been widely 
used in tissue engineering skin constructs. Some growth factors are promising 
mediators of wound healing, such as the epidermal growth factor (EGF), fibroblast 
growth factor (FGF), vascular endothelial growth factors (VEGF), platelet-derived 
growth factor (PDGF), insulin-like growth factor-1 (IGF-1), transforming growth 
factors α and β (TGF-α and TGF-β), and hepatocyte growth factor (HGF). Site-
specific delivery of growth factors in microdevices could provide an efficient means 
of stimulating localized recruitment to the cell transplants and would ensure cell 
survival and functions. By combining growth factors with microvehicles, bioactive 
skin scaffolds can be constructed. Richardson et al. incorporated VEGF and PDGF 
into a porous PLGA scaffold to realize a controlled dose and rate of delivery, 
pioneering the research of a vehicle delivering multiple angiogenic factors with 
distinct kinetics [52]. Perets et al. incorporated bFGF-loaded microspheres with 
three-dimensional porous alginate scaffolds, achieving enhanced vascularization 
in vivo [53]. Tabata et al. combined FGF, HGF, and VEGF with collagen gels to 
promote the regeneration of hair follicles after implantation [54]. Mao et al. com-
bined FGF on a substrate via a layer-by-layer technique to fabricate bioactive films, 
on which fibroblasts proliferated better and secreted more ECM [55]. Regarding to 
hair follicle regeneration, HGF, a mitogen, motogen, and morphogen for lots of 
different organs, is expressed by the cells in human hair follicles and involved in the



cycle of hair growth. Uijtdewilligen et al. incorporated insulin-like growth factor-2 
(IGF-2) and sonic hedgehog (SHH) into a collagen type I heparin scaffold to form an 
embryonic-like scaffold which could help to repair the skin without contraction or 
scar formation [56]. 
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10.4.2 Genes 

As summarized above, with the ability to modulate and direct cells efficiently, the 
growth factors have been extensively used as bioactive factors to combine with 
tissue engineering scaffolds. However, the most challenging limitation is their short 
half-lives. The emerging gene technique provides an optional method to make cells 
produce growth factors constantly. Hence, functional genes can be incorporated into 
scaffolds as bioactive factors and are locally expressed to encode specific growth 
factors at wound site. Specific examples of application of gene therapy in skin tissue 
engineering will be introduced below. 

Shea et al. incorporated plasmid DNA encoding platelet-derived growth factor 
(PDGFB) into a three-dimensional PLGA sponge, implantation of which in a rat 
dermis showed enhancement of granulation tissue and vascularization [57]. Other 
types of matrices such as collagen and PVA sponges loaded with genes are also 
developed and used to treat cutaneous wounds, resulting in improvement of flap 
survival, granulation tissue formation, angiogenesis, and re-epithelialization 
[39, 58]. 

Alternatively, the nucleic acids (e.g., plasmid, siRNA) are complexed with 
cationic polymers or lipids, with the design of these transfection reagents depending 
upon the nucleic acid properties, such as size [59]. Complexation with polymers or 
lipids protects against degradation, creates a less negative particle relative to naked 
plasmid, and facilitates internalization and intracellular trafficking [60]. 

10.4.3 Cytokines 

Cytokines, a family of small molecules of approximately 8–10 kDa in size, are key 
regulators of cell migration, immune responses, and wound healing 
[61]. Proinflammatory cytokines, particularly IL-1 and IL-6 and TNF-α, are 
upregulated during the inflammatory phase of wound healing. 

IL-1 is produced by monocytes, neutrophils, macrophages, and keratinocytes and 
is immediately released by keratinocytes during wound healing. IL-1 activates 
fibroblasts and promotes the secretion of FGF [62]. IL-6 is secreted by neutrophils 
and monocytes and has been shown to be involved in healing response. Evidence 
shows that IL-6 is closely related with wound healing by regulating leukocyte 
infiltration, angiogenesis, and collagen accumulation [63]. TNF-α can promote the



expression of FGF-7, indicating that it can favor the process of 
re-epithelialization [64]. 
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Stromal cell-derived factor-1α (SDF-1α, CXCL12) chemokine is a member of the 
CXC family and works via the CXCR4 receptor. It plays a role in the inflammatory 
response by recruiting lymphocytes to the wound and promoting angiogenesis. 
Endothelial cells, myofibroblasts, and keratinocytes express SDF-1. A number of 
researches have proved that SDF-1α plays a pivotal role in the recruitment of stem 
cells. For example, PLGA scaffolds incorporated with SDF-1α can recruit more stem 
cells, which favors angiogenesis and decreases fibrotic and inflammatory responses. 
More interestingly, mechanical stretch can upregulate SDF-1α in the skin tissue and 
promote migration of circulating bone marrow-derived mesenchymal stem cells 
(BMSCs) [65]. The application of SDF-1α provides an avenue for the recruitment 
of stem cells, which is crucial for the in situ skin regeneration. For example, 
Nakamura et al. used mesenchymal stem cells (MSCs) genetically engineered with 
(SDF-1α) to heal skin wounds [66]. SDF-1α-engineered MSCs (SDF-MSCs) 
expressed more SDF-1α and enhanced the migration of MSCs and dermal fibroblasts 
and promoted skin wound closure. 

10.5 Important Challenges and Strategies 

Although many significant milestones of bioengineered skin have been reached for 
clinical therapies of full-thickness defects, challenges still remain to fulfill the criteria 
of “regenerated skin” with complete structural, esthetic, and functional properties as 
the nature of the skin. How to achieve rapid angiogenesis, inhibited scarring, and 
regeneration of appendages is a key issue related to the quality of the regenerated 
skin. In addition, in situ regeneration, which should be particularly concerned, would 
be less costly and complex than those approaches that require ex vivo cell 
manipulation. 

10.5.1 Angiogenesis 

One of the most critical issues for most bioengineered tissues is the rapid and 
appropriate angiogenesis of the constructs, since a tissue beyond a certain size 
generally cannot survive without the supply of nutrients and oxygen, and removal 
of waste products of cells [67]. For materials with a thickness larger than 0.4 mm, 
new blood vessels are not able to penetrate rapidly [68]. The delayed or poor 
angiogenesis of the reconstructed skin will hinder the nourishment of the overlaying 
epidermal layer and result in the failure of the graft. Moreover, if the transplantation 
of split-thickness skin grafts is delayed, the timely healing of the damaged skin will 
be hampered and the risk of death will increase [69]. It is clear that the blood supply 
is essential to realize the long-term integration of the reconstructed skin with the host



tissue. Therefore, acceleration of the angiogenesis rate to achieve rapid formation of 
new blood capillaries is urgently required, whereas still remains a research focus for 
improvement of existing skin substitutes. 

10 Skin Regeneration 435

Suitable pore size of tissue-engineered scaffold plays an important role in 
improving permeability, facilitating cell migration, and enhancing angiogenesis. 
Yannas et al. found that a pore size ranging from 90 to 150 μm and porosity larger 
than 90% promote vessel formation [70]. Pruitt et al. reported that only when pore 
size of scaffold is larger than 80 μm it can be conducive to the ingrowth of 
connective tissue and neovascularization [71]. Another possible approach to 
enhance the angiogenesis of the tissue-engineered skin is to combine the 
prefabricated vessels with some special kinds of cells to achieve better initial onset 
of revascularization for early anastomoses between graft and bed vessels. As one 
example, human dermal microvascular endothelial cells were incorporated into 
collagen or fibrin hydrogels. Three-dimensional capillaries were formed after trans-
plantation of the prevascularized substitutes [72]. The engineered capillaries were 
further stabilized by pericytes and smooth muscle cells and ultimately connected to 
the microvessels of the wound ground. It is also found some glycosaminoglycans 
have angiogenetic effect. Pieper et al. reported that the incorporation of glycosami-
noglycans could increase angiogenesis degree in vivo [73]. However, a sufficient 
vasculature still takes more than 4 weeks to develop. 

The most powerful approach to induce angiogenesis in the engineered tissues is to 
use angiogenetic growth factors such as bFGF, VEGF, and PDGF. So far many 
efforts have been made to enhance angiogenesis by incorporation of angiogenic 
growth factors into tissue engineering scaffolds. With the loading of bFGF, the fibrin 
and collagen scaffolds show enhanced angiogenesis when applied to the rabbit ear 
ulcers, therefore greatly improving the healing of full-thickness skin defects 
[74]. Wissink et al. used heparin to realize a controlled release of bFGF through 
specific binding, which is effective in promoting the growth of endothelial cells 
within the collagen scaffold in vitro [75]. Perets et al. encapsulated bFGF into PLGA 
microspheres and then loaded the microspheres into a porous sodium alginate 
scaffold [53]. The formation of large mature vessels was greatly promoted by the 
bFGF-loaded scaffold in a rat peritoneal model. 

However, delivery of the growth factors faces some challenges due to their 
sensitivity and instability, and their half-lives are only on the order of minutes in 
serum. In addition, the high cost of growth factors also limits their trial in practice. 
The gene technique has been considered as an alternative way in order to overcome 
the drawbacks of growth factors. By loading of more stable and functional genes into 
the scaffolds, the gene-activated matrix (GAMs) can be generated to locally transfect 
cells and constantly produce targeted growth factors at wound site. Endowed with 
the advantages of localized treatment, maintenance of effective amount of bioactive 
DNAs, and protection of DNAs against immune responses and nuclease degrada-
tion, the GAMs have shown great promise for the enhanced angiogenesis of the 
engineered skin. Mao et al. used TMC as a cationic gene delivery vector to carry 
plasmid DNA encoding VEGF (pDNA-VEGF) and constructed a gene-activated 
collagen scaffold for skin repair [76]. The in vivo application to Sprague-Dawley



mice demonstrated that the TMC/pDNA-VEGF complexes remarkably promoted 
the in vivo expression of VEGF and thus enhanced the angiogenesis of the scaffolds. 
Recently, a gene-activated collagen-chitosan/silicone membrane bilayer dermal 
equivalent (BDE) has been prepared and evaluated for treatment of the full-thickness 
incisional wounds in terms of histology, immunohistochemistry, immunofluores-
cence, real-time quantitative PCR, and Western blotting analysis in a porcine model 
[39]. The TMC/pDNA-VEGF group shows highest level of VEGF expression at 
both mRNA and protein levels, resulting in the highest densities of newly formed 
and mature vessels. After 112 days of ultrathin skin graft transplantation, the healing 
skin has a similar structure and ~80% tensile strength of the normal skin. Exploita-
tion of the gene-activated BDE for the healing of full-thickness burns was also 
performed, showing very positive angiogenesis and repair results similar to those for 
incisional wounds (Fig. 10.6) [77]. 
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Fig. 10.6 (a) Cumulative release of DNA from the scaffolds as a function of time. (b) TMC/ 
pDNA-VEGF group had a significantly higher number of newly formed and mature blood vessels. 
(Reprinted from Ref. [77] with permission. Copyright 2010 Elsevier Ltd) 

10.5.2 Scarring 

Although skin substitutes based on principle of regeneration have achieved impor-
tant progresses, scarring still remains a problem which results in issues such as 
disfiguration, itching, and local ulceration [78]. Prevention of scarring is therefore a 
major challenge to be addressed for the repair and regeneration of skin defects, and 
antiscarring technologies should be incorporated for the new generation of the skin 
constructs. 

Scars are the outcome of postnatal healing process of normal acute mammalian 
tissue repair including integration of bioengineered skins [79]. Scarring is a rapid 
tissue repairing process driven by an evolutionarily devised mechanism, allowing 
rapid recover of tissue integrity to fill tissue voids. Scarring involves a series of



cellular events related to tissue repair including inflammation, migration/prolifera-
tion and ECM deposition, and also the inputs of numerous cell types, matrix 
components, and signaling molecules. Essentially, the excessive and disordered 
accumulation of ECM such as collagen, as well as the imbalance of new deposition 
and destruction of collagen, directly leads to the scar formation. By contrast, the 
scar-free regeneration should have features including complete restoration of skin 
structure, normal collagen deposition, and regular distribution of hair follicles, 
capillaries, and glands, which reflects a focus of interest for the emerging fields of 
regenerative medicine. Central to a material-based approach for skin regeneration is 
to build a suitable environment where cells are exposed to a complex pattern of 
bioactive molecules, which direct desired cell behaviors and right tissue 
regeneration. 
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Fetal wound repair is essentially a scar-free regenerative process. It has been 
extensively studied and confirmed that embryonic scarless wound repair exhibits 
reduced fibrin clots and platelet degranulation, and suppressed inflammatory 
response, which has provided therapeutic strategies for scar-free repair. Most impor-
tantly, the growth factor profile is also quite different for embryonic wound and adult 
wound. The large family of TGF-β protein, which can be secreted by multiple cell 
types such as platelets, macrophages, and fibroblasts, is one of the most important 
biosignal molecules during the wound healing process. It acts as a chemokine for 
fibroblasts, induces differentiation of myofibroblasts, regulates the collagen synthe-
sis, and modulates the matrix turnover. Recent investigations have confirmed that the 
level of TGF-β1 and TGF-β2 in fetal skin injuries is lower than that in adult skin, 
while the level of TGF-β3 is elevated [80]. Inspired by these findings, successful 
reduction of scarring of adult skin wounds has been reported by interrupting TGF-β1 
and TGF-β2 signaling pathway through neutralization with antibodies, inactivation 
by proteoglycan-like decorin, and blockage of function by exogenous receptors, as 
well as exogenous addition of the TGF-β3 isoforms. Samuels et al. [81] found that 
hypertrophic scar was induced in a rabbit embryos subcutaneous model by injecting 
the TGF-β1 and TGF-β2, while the addition of their polyclonal neutralizing antibody 
could inhibit scarring and generate a normal tensile strength and more physical 
dermal architecture. A recent research proves that after infected by adenovirus 
encoding a truncated TGF-β receptor II, normal dermal fibroblasts could result in 
wounds with an average of 49% reduction of the scar area and less inflammatory 
reaction in the full-thickness incisional wounds in rats [82]. 

The recently emerging biomolecular cues of RNA interference (RNAi) offer a 
fascinating and prospective alternative to specifically silence targeted genes and 
downregulate targeted protein levels [83]. Delivery of exogenous small interfering 
RNA (siRNA) mediated by three-dimensional scaffolding materials is right now at 
the frontier of current research. Compared with other strategies, the RNAi not only 
shows higher efficiency and specificity during a long duration time but also avoids 
risks of immunogenicity and inactivation in the antibody method. In a recent 
research in our lab, TMC/siRNA complexes targeting TGF-β1 were incorporated 
into the collagen-chitosan/silicone membrane bilayer dermal equivalent (BDE) to 
fabricate an RNAi functionalized bioengineered skin (RNAi-BDE), aiming to



interfere TGF-β1 signal pathway, directing cell behaviors, and ultimately inhibiting 
scarring (Fig. 10.7). The RNAi-BDE functioned as a reservoir for the incorporated 
TMC/siRNA complexes, enabling a prolonged siRNA release. Application of the 
RNAi-BDE on the full-thickness skin defects of pig backs confirmed the in vivo 
inhibition of TGF-β1 expression by immunohistochemistry, real-time quantitative 
PCR, and Western blotting during 30 days postsurgery. The levels of other scar-
related factors such as collagen type I, collagen type III, and α-smooth muscle actin 
(α-SMA) were also downregulated. In combination with the ultrathin skin graft 
transplantation for 73 days, the regenerated skin by RNAi-BDE had an extremely 
similar structure to that of the normal one with significant scar inhibition. 
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Fig. 10.7 (a) The siRNA could silence special gene expression. (b) Combination of polycations 
TMC with siRNA to form complexes which could be transfected into cells. Wound formation is 
mainly caused by massive and disordered deposition of Col I and Col III. (c) TMC/siRNA can 
suppress the expression of both Col I and Col III significantly. (Reprinted from Ref. [40] with 
permission. Copyright 2012 Elsevier Ltd)
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10.5.3 Appendages 

Skin appendages such as hair follicle, sweat gland, sebaceous gland make skin 
functions well in touch, temperature sensation, excretion, perspiration, and thermo-
regulation. Regeneration of skin appendages is an important symbol of skin recovery 
and functionalization. Although some commercial artificial skin substitutions can 
achieve a structural repair in the epidermis and the dermis, it remains a challenge to 
regenerate the skin with complete appendages [13]. Hence, regenerated skin cannot 
fully replace normal skin in function. 

Hair follicle is a mini-organ which produces hair. It is composed of hair papilla, 
matrix, root sheath, hair fiber, bulge, and so on. There are three stages in hair growth: 
the growth phase (anagen), the regressing phase (catagen), and the quiescent phase 
(telogen). Growth cycles are controlled by chemical signals like epidermal growth 
factor. Efforts of reconstructing hair follicles have been made decades ago. Lin et al. 
combined epidermal stem cells in collagen/gelatin scaffold with fibroblasts; hair 
follicle-like structure was formed after implantation. It is also reported that the 
interaction between epidermal cells and mesenchymal cells contributes to the for-
mation of hair follicles. More recently, MSCs are induced into hair papilla-like cells 
[84]. Moreover, polysaccharide, as one main component of dermal ECM, is reported 
to induce the regeneration of hair follicles on a mice model [51]. Recently, it was 
reported that hair growth was promoted by adipose-derived stem cell (ASC) trans-
plantation in animal experiments, and a conditioned medium of ASCs (ASC-CM) 
induced the proliferation of hair-compositing cells in vitro. Jin et al. introduced some 
ASC stimulators in preconditioning to enhance hair regeneration [85]. They also 
highlighted the functional role of ASCs in hair cycle progression and concluded the 
advantages and disadvantages of their application in hair regeneration. 

Sweat glands are small tubular structures of the skin that can produce sweat. 
There are two kinds of sweat glands. Eccrine sweat glands are distributed all over the 
body (except for the lips, tip of the penis, and the clitoris), although their density 
varies a lot from region to region, while apocrine sweat glands are larger, having 
different mechanisms of secretion, and are limited to axilla (armpits) and perianal 
areas. Sweat glands play a key role in thermoregulation and inner balance. There-
fore, it is vital to reconstruct sweat glands especially for large-area burns. Fu et al. 
cultured sweat gland cells (SGCs) on gelatin microspheres containing EGF and 
delivered the SGCs-microspheres complex into an engineered skin construct mainly 
composed of a fibroblast-embedded collagen-based matrix [86]. This engineered 
skin construct was then transplanted onto full-thickness cutaneous wound in an 
athymic murine model. Remarkably, sweat gland-like structure can be achieved 
in vitro within the hybrid matrix. Huang Sha et al. designed a functional in vitro 
cell-laden three-dimensional extracellular matrix mimics (3D-ECM) with composite 
hydrogels based on gelatin and sodium alginate. It provides the spatial inductive 
cues for enhancing specific differentiation of epidermal lineages to regenerate sweat 
glands [87].
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Sebaceous glands are kind of microscopic glands in the skin that secrete an oily/ 
waxy matter, called sebum, to lubricate and waterproof the skin and hair of mam-
mals. In human beings, they are found in greatest abundance on the face and scalp, 
though distributed throughout all skin sites except the palms and soles. Compared 
with hair follicles and sweat glands, sebaceous glands are later to be studied. But 
exciting progress has been made related to reconstruction of sebaceous glands. Hair 
bulge cells have been reported to possess the potential of differentiating into 
sebaceous glands. Horsley et al. firstly found a kind of progenitor cells that can 
secret factor Blimp1, which can stimulate the regeneration of sebaceous glands when 
they get hurt [88]. 

Appendages do have a firm interaction rather than separate growth, although most 
researches are still confined to one certain appendage. With further study of biology 
of appendages, and clarifying the interaction of materials and related cells (specif-
ically stem cells) and appendages themselves, it is quite possible to functionalize 
skin constructs by reconstructing different appendages together in the future. 

10.5.4 In Situ Skin Regeneration 

Along with the advancement of science and technology in biology, medicine, and 
material science, the insight mechanism of wound healing is better understood. 
Diverse methods for skin repair and regeneration have also been developed. Stem 
cell-based therapy, which is a promising cure for a multitude of diseases and 
disorders, has been one of the best documented approaches in regenerative medicine. 
However, the ex vivo expansion of stem cells and their in vivo delivery are restricted 
by the low survival rate and the limited availability of stem cell sources. 

It has been demonstrated that endogenous stem cells can be actively attracted to 
sites of injury [3]. Thus, recruiting sufficient endogenous stem cells to the wound 
area and inducing them to repair the structure and functions of skin become a key 
challenge. This technique, known as in situ regeneration, has the potential to provide 
new therapeutic options for all kinds of tissues and organs. The in situ tissue 
regeneration method relies on endogenous stem cell homing, proliferation, differen-
tiation, and rebuilding functional skins. Such options would be less costly and 
complex than the traditional approaches which require substantial ex vivo cell 
manipulation. 

Microenvironment, which could be changed by cytokines, surface topology, and 
so on, could influence stem cell recruiting. Some cytokines can enhance tissue 
regeneration by facilitating cell homing. Chen et al. fabricated a radially oriented 
scaffold which could effectively promote BMSCs migration, whose effect was 
further enhanced by addition of stromal cell-derived factor-1 (SDF-1) (Fig. 10.8) 
[89]. It is reported that the migration abilities of PDMSCs exposed to hypoxic 
conditions are significantly increased. Interestingly, decreased integrin alpha4 in 
PDMSCs under hypoxia increases PDMSC migration ability [90]. In addition, bone 
morphogenetic protein-7 (BMP-7) is another cell homing factor [3]. Shao et al.



found that a peptide sequence (E7, EPLQLKM) with seven amino acids has a high 
specific affinity to bone marrow-derived MSCs [91]. In the subsequent work, E7 
peptide was immobilized to a collagen scaffold via a collagen-binding domain 
(CBD) to construct a functional collagen scaffold, which could enhance the speed 
of healing process [92]. It is reported that E7-modified scaffolds incorporated with 
rhTGF-β1 could maintain a sustained release and bioactivity. A series of analyses 
indicate that the E7 peptide promotes BMSC initial adhesion and that the scaffolds 
containing both E7 and rhTGF-β1 are the most favorable for BMSC survival 
(Fig. 10.9)  [93]. 
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Fig. 10.8 (a) Fabrication of the radially oriented (RO) and random collagen scaffolds. (b) The 
radially oriented scaffolds had significantly better mechanical property compared with the random 
scaffolds. (c) The cell number was quantified at low magnification and the radially oriented 
scaffolds accelerated cell infiltration. (Reprinted from Ref. [89] with permission. Copyright 2014 
Elsevier Ltd)
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Fig. 10.9 The preparation process for coaxial electrospun fiber scaffolds. (a) The process of 
coaxial electrospinning: the spinneret is composed of two concentric needles; the outer needle is 
used to deliver the shell solution (blue, PCL), while the inner needle is used to eject the core solution 
(red, rhTGF-β 1). (b) Scaffold composed of electrospun coaxial fibers, with core (red) and shell 
(blue) structure. (c) Scaffold conjugated with the BMSC-specific affinity peptide (E7) (green). (d) 
E7-modified scaffold facilitates adhesion of BMSCs onto the surface. (e) The E7-modified surface 
and sustained release of rhTGF-β 1 in the core of the coaxial fibers promote adhesion and 
differentiation of BMSCs [93]. (Reprinted from Ref. [93] with permission. Copyright 2014 Elsevier 
Ltd) 

10.5.5 On-Demand Therapy of Skin Defect 

The “Black Box” status of skin regeneration caused by the passive management of 
traditional materials makes it difficult to obtain the real status of skin defect and 
provide on-demand treatment in time. Therefore, the development of next-
generation skin regeneration system with the abilities of real-time monitoring, 
diagnosis at an early stage, and on-demand therapy is of great significance. By the 
integration of flexible electronics with wound dressing, a pioneer wearable skin 
regeneration system, which can collect physiological signals from wound sites and 
diagnose healing status real time, was proposed [94, 95]. On the other hand, 
providing therapy in time to match wound pathological need, i.e., on-demand 
therapy, is another designing requisite for next-generation skin regeneration system 
[96]. Therefore, some studies developed advanced wound dressings to provide



on-demand therapy by combining responsive drug-delivery system [97, 98]. Pang 
et al. reported a novel flexible electronic-integrated skin regeneration system 
(Fig. 10.10). It was capable of monitoring wound temperature in real-time to provide 
early diagnosis of pathological infection. By integrating a responsive antibacterial 
hydrogel into the healing system, antibiotics were released to wound sites 
controllably to realize on-demand therapy. Wound temperature was collected by 
the integrated sensor and transmitted via Bluetooth. Once wound temperature was 
higher than a preset value, infection would be diagnosed, and antibiotics were 
released responsively to kill bacteria as required [99]. 
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Fig. 10.10 Schematics of the structures and working principles of the smart flexible electronic-
integrated wound dressing. (a) The integrated system consists of a polydimethylsiloxane-
encapsulated flexible electronic layer and an UV-responsive antibacterial hydrogel. The flexible 
electronic device is integrated with a sensor for monitoring temperature and four UV-LEDs for 
emitting UV light (365 nm) to trigger the release of antibiotic from the UV-responsive antibacterial 
hydrogel when needed; a Bluetooth chip is also integrated for wireless data transmission in real 
time. (b) Conceptual view of the integrated system for infected-wound monitoring and on-demand 
treatment: (i) real-time monitoring of wound temperature and providing an alert of hyperthermia 
caused by infection; (ii) turning on UV-LEDs to trigger the release of antibiotics; (iii) infection 
inhibition by the released antibiotics, resulting in decreased wound temperature [99]. (Reprinted 
from Ref. [99] with permission. Copyright 2020 John Wiley & Sons, Ltd)
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10.6 Conclusions and Future Perspectives 

Skin regeneration is one of the most serious problems in clinical medicine. The use 
of skin grafts is still an important therapy for damaged skin. So far decades of efforts 
have focused on the development of the tissue-engineered skin based on material 
technologies, chemistry, biology, and medicine. Bioengineered skins for epidermal, 
dermal, and full-thickness defects have been fabricated, and some of them are 
currently commercially available. However, most of them are not sufficient to 
regenerate new skin similar with native skin. 

To realize the regeneration of the skin with a complicated structure and complete 
functions, it is becoming increasingly popular to design “smart biomaterial system” 

to provide instructive signals to stimulate target cell responses in the processes of 
skin regeneration. “Smart biomaterials” can be obtained by adjusting the properties 
of biomaterials including physical properties, chemical compositions, and 
biofunctions. Meanwhile, the application of flexible electronic devices into skin 
regeneration system is able to monitor the wound status in real time, and provide on 
demand therapy on the basis of need during the skin regeneration process. Moreover, 
by the combination of stem cells or in situ recruitment of endogenous stem cells, the 
stem cell hybrid material has attracted more and more interest for the in situ skin 
regeneration with appendages. We believe that with the development of biomaterial 
science and regenerative medicine, the skin with a complicated structure and 
multifunction similar to those of the native skin can be regenerated sooner or later. 
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Chapter 11 
Regeneration of Blood Vessels 

Muhammad Rafique, Yongzhen Wei, Adam C. Midgley, Kai Wang, 
Qiang Zhao, and Deling Kong 

Abstract Regeneration of damaged, diseased, or resected blood vessels can be 
achieved using vascular grafts. Additionally, vascular grafts can be used for bypass 
surgeries and as arteriovenous graft construction for hemodialysis access. These 
tubular structures are derived from either living donor vessels, decellularized vas-
cular tissues, artificially constructed polymeric scaffolds, or biomimetic tissue-
engineered blood vessels. Numerous factors can influence the performance of 
vascular grafts, their regenerative capacity, and their long-term patency and func-
tionality. These factors can include the choice of polymer scaffold, the polymer 
degradation rate and elasticity, the physical and biomechanical structure of the 
scaffold, and whether functional modifications have been made to the scaffolds. 
This chapter introduces the commonly utilized polymers for vascular graft construc-
tion, the fabrication techniques, functional modifications of vascular grafts, and the 
in vivo applicability and clinical relevance of vascular grafts. 

Keywords Vascular grafts · Polymers · Fabrication · Degradation · Tissue 
regeneration 
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11.1 Introduction: Overview of Vascular Grafts and Key 
Challenges 

Blood vessels have the imperative role of transporting blood around the body, 
delivering oxygen and nutrients to tissues. Vascular diseases such as atherosclerosis 
may result in obstruction of blood flow and tissue ischemia [1]. Vascular grafts have 
proven effective tools for the treatment of vascular diseases [2]. In the United States, 
an estimated 450,000 vascular grafts are used for bypass surgery each year, most of 
which are autologous venous and arterial grafts. However, autologous grafts are 
limited by availability due to prior use of autologous donor grafts or existing 
comorbidities in approximately 30% of cases, which necessitates the requirement 
for artificial vascular grafts [3]. Artificial blood vessels have become an indispens-
able necessity for cardiovascular surgeries. Some products have been successfully 
commercialized, such as polytetrafluoroethylene (PTFE; Teflon), expanded PTFE 
(ePTFE; Gore-Tex), and poly(ethylene terephthalate) (Dacron). Both Teflon and 
Dacron have been effectively employed as large-diameter (>6 mm internal diame-
ter) vascular grafts, wherein blood flow rate is high, yet these materials yield 
disappointing clinical results when used as small-diameter (<6 mm internal diam-
eter) coronary artery grafts [4]. In addition, nondegradation of Teflon and Dacron 
grafts often leads to calcification in the long term [5]. In this regard, development of 
vascular grafts with relatively slow biodegradation and controlled tissue regenerative 
processes has emerged as an important concept and direction. These grafts are 
designed to provide a favorable tissue microenvironment for the recruitment of 
autologous vascular cells and vascular progenitor cells. A key ideal is that following 
the complete degradation of the polymer scaffold, a native tissue-like “neoartery” is 
generated [6]. 

Despite recent advancements in knowledge and technologies for the fabrication 
of small-diameter vascular grafts, there are still many scientific questions that remain 
to be addressed. At the forefront of the questions being asked are how to: enhance 
vascular regeneration while avoiding pathogenesis; attain long-term patency; and 
achieve native tissue-like functionality. The current SDVG strategic landscape and 
approaches to meet clinical requirements are summarized below (Fig. 11.1). 

11.1.1 Endothelialization of Vascular Grafts 

The endothelium is a smooth luminal cell monolayer that facilitates laminar blood 
flow through the blood vessel, and it is also a dynamic organ with active roles in 
coagulation homeostasis, the sensing and transduction of the hemodynamic forces of 
circulation, and the cellular metabolism of the vascular wall [2]. A major focus of 
vascular graft research is the promotion of endothelialization. Within many general 
functions, the endothelium is a physiological barrier equipped with multiple mech-
anisms to prevent thrombus formation and maintain patency and homeostasis, by



harboring factors that interrupt the coagulation cascade, such as antithrombin III, the 
protein C receptor thrombomodulin, and tissue factor pathway inhibitor. The endo-
thelium prevents platelet activation by the production of nitric oxide, prostacyclin, 
ectonucleotidases, and surface heparan sulfates [7]. A vascular graft that resists 
thrombosis by forming a confluent luminal endothelium in vivo is a key objective 
in vascular tissue engineering. 
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Fig. 11.1 Schematic representation of current landscape of small-diameter vascular grafts (SDVG) 

11.1.2 Restenosis of Vascular Grafts 

A common shortcoming in the transplantation of small-diameter vascular grafts is 
the occurrence of short- and mid-term restenosis. Short-term restenosis is driven by 
platelet adhesion, activation, and aggregation, which results in thrombus formation. 
Mid-term restenosis is promoted by the overproliferation of vascular smooth muscle 
cells (VSMCs), resulting in neointimal hyperplasia. In general terms, the occurrence 
of restenosis could be ascribed to poor hemocompatibility of artificial vascular grafts 
[8]. In addition, physical forces have been associated with vascular graft intimal 
hyperplasia [9]. Prominently, compliance mismatches between the graft and sur-
rounding host artery results in adverse local hemodynamic effects at the anastomosis 
sites with consequent intimal thickening and eventual graft failure [10]. Development 
of more compliant sutures, suturing techniques, mechanical clips, biological glue, 
and laser-based solder techniques have taken precedent [11], with the shared aim to 
improve pulsatile laminar blood flow in arterial propagation across the anastomosis 
sites and to reduce damage to the surrounding endothelium [10]. Evidence supports 
that the timely formation of a confluent endothelial cell monolayer is crucial in 
preventing the initiation and progression of VSMC overgrowth. The endothelium 
prevents contact of blood components with the subendothelial matrix of the arterial 
wall, thereby avoiding activation of the coagulation cascade. This is imperative, as 
early events in the cascade, such as platelet degranulation following contact with



type-I collagen, have been shown to induce mitogenic factors such as transforming 
growth factor (TGF)-β [2]. Animal models of endothelial injury have demonstrated 
that loss of an intact endothelium results in VSMC phenotypic change to a prolif-
erative state. Indeed, it is widely accepted that increased proliferation of terminally 
differentiated VSMCs contribute significantly to neointima formation [2, 12]. There-
fore, construction of vascular grafts with hemocompatible luminal surfaces or 
blood–material interfaces with antithrombogenic properties is a key consideration 
during the design process. 
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11.1.3 Anticoagulation Functions of Vascular Grafts 

Several different antithrombotic agents have been evaluated experimentally with the 
shared aim of reducing the occurrence of thrombotic occlusion in small-diameter 
vascular grafts [13]. Heparin, a ubiquitously expressed mucopolysaccharide, inhibits 
thrombin and activated factors IX, X, XI, and XII, which participate in the conver-
sion of prothrombin to thrombin. Thus, heparin functions to reduce thrombin 
formation. In addition, heparin has a potent antiproliferative effect on VSMCs, 
independent of its anticoagulant activity, and mediated through interactions with 
cell receptors, growth factors, adhesion molecules, and protease inhibitors [14]. The 
systemic administration required to achieve therapeutic levels of antithrombotic 
drugs at the graft site is expensive and impacted by association with serious 
hemorrhagic complications. An alternative approach is the immobilization of 
antithrombotic agents on the graft material. This strategy offers advantages of 
inhibiting the localized thrombotic process while avoiding systemic side effects 
[15]. Enzyme prodrug therapy (EPT) is a technique that has been employed in the 
fabrication of anticoagulant vascular grafts [16]. The versatility of EPT allows the 
production of bioactive drug molecules by immobilized enzymes at the graft site, in 
response to the systemic administration of caged prodrugs. In addition to targeted 
and localized drug delivery, the advantage of EPT also includes the fine tuning of 
drug dosage, duration, and administration [17]. 

11.1.4 Calcification of Vascular Grafts 

The calcification of cardiovascular implants has been extensively described, and 
prevention of calcification has remained an important challenge for researchers and 
industry for decades [18]. The presence of cardiovascular calcification significantly 
predicts patient morbidity and mortality. Calcific mineral deposition within the soft 
cardiovascular tissues disrupts the normal biomechanical function of these tissues, 
leading to complications such as heart failure, myocardial infarction, and stroke 
[19]. The realization that calcification results from active cellular processes offers 
hope that the design strategies, choice of materials with favorable biomechanics, and



functional modification of vascular grafts can help to prevent the disease process. 
The underlying mechanism of vascular calcification includes the migration of 
VSMCs toward intima, resulting in intimal thickening and endovascular stenosis. 
One source of intimal hyperplasia and calcification has been suggested to be the 
unmitigated differentiation of stem cell antigen-1 (Sca-1)+ stem/progenitor cells into 
hyperproliferative VSMCs expressing the osteogenic genes, thus leading to mid- or 
late-term graft failure. To circumvent this, multiple approaches have been employed. 
For example, the sustained release of nitric oxide (NO) from engineered vascular 
grafts has shown benefits in attenuating the formation of calcification, which may in 
part be due to regulation of NO over stem cell biology [20–22]. In addition, the use 
of natural biomaterials has proven to be a promising strategy to reduce the risk of 
calcification, which has been suggested to be dependent on an improved rate of 
vascular tissue regeneration by implanted cardiovascular biomaterials [23]. 
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11.1.5 Animal Models for the Assessment of Vascular Grafts 

To assess the capacity of the new conduits to maintain physiologic function in the 
circulatory system and to determine the response of both the host and the conduits to 
implantation, evaluation of the grafts in preclinical animal studies is required 
[24]. Preclinical assessment of vascular grafts using appropriate animal models is 
essential to determine the clinical potential of engineered tissues. Advancement of 
knowledge and technologies used in vascular graft fabrication has led to multiple 
criteria that are utilized in the assessment of clinical potential. Each of these criteria 
may be best analyzed in different experimental settings. At first, the selection of an 
appropriate animal model needs to include criteria relevant to the vascular graft, such 
as implantation site, vascular diameter and length, and period of implantation. 
Equally important are criteria relevant to the animal species selected such as cost, 
availability, ease of handling, animal response to surgical procedures, target vessel 
diameter and length, and target physiology. Optimally, an animal model needs to be 
selected that meets most of these criteria. It is best to match site and diameter to test 
the hemodynamics and implantability; use longer grafts (>4 cm) to test patency; 
select the type of anastomosis (end to end, end to side) to test shear stress; or select 
species that exhibit similar immunogenicity and thrombogenicity mechanisms as 
those at work in humans. 

The type of analysis, for example, serial imaging or monitoring versus a single 
measurement at the end of the experiment, is also important in determining the 
choice of animal model. Secondly, similarity to human physiology is one major 
factor that is considered when assessing criteria specifically related to translational 
studies. For example, ovine and nonhuman primate models show greater similarity 
to humans in terms of thrombogenicity mechanisms as compared to canine or 
porcine models. On the other hand, dogs exhibit lack of spontaneous 
endothelialization of vascular grafts, and they tend to be hyperthrombogenic, akin 
to observations made in humans. These two features make the canine model more



stringent for vascular grafts testing. By contrast, lack of similarity in vascular 
dimensions and hemodynamics makes small animals, like murine models, poor 
choices for long-term grafts evaluation. However, the plethora of transgenic mice 
presents a very useful resource to dissect molecular mechanisms related to immune 
response, remodeling under pathogenic conditions, vascular reactivity, and other 
aspects of graft physiology. Age and gender should be considered. Age may affect 
the microenvironmental factors that are critical for successful grafting and long-term 
tissue regeneration. As the concerns of animal rights and limitations on the use of 
nonhuman primates increase, the porcine and ovine models have become more 
widely used in recent years. In addition to the ethical considerations, cost is also a 
factor, making the porcine and ovine choice models. There is no absolute ideal 
regarding animal model selection or international consensus on standards associated 
with the development and testing of vascular grafts. The lack of standardized models 
makes it difficult to compare results among different investigators. To best evaluate 
the implantation of vascular grafts in such a variety of animal models, there is a 
requirement for optimal model selection and use of proper internal controls [25]. 
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In comparison to small animal models, safety and efficacy parameters in preclin-
ical settings are closer to humans in large animal models, which exhibit similar 
coagulation systems, hemodynamics, and hematological profiles. For example, 
minipigs possess a similar anatomy, physiology, immune system, and life span to 
humans, which makes them a suitable large animal model for the evaluation of 
human-derived tissue engineered products for transplantation. Itoh et al. developed 
an immunodeficient pig model (IODP) by removing the spleen and thymus in 
combination with the administration of immunosuppressive drugs. The developed 
IOPD was employed for arteriovenous shunt grafting of human-origin three dimen-
sional (3D)-bioprinted tubes (HOBPT) and long-term implantation, which exem-
plifies the extent of steps required to move toward appropriate evaluations of 
preclinical cell regeneration approaches and regenerative medicine applications 
[26]. Grajciarová et al. analyzed tissue-engineered vascular grafts (TEVGs) 
implanted in ovine and porcine common carotid arteries. The research team found 
that ovine and porcine common carotid arteries were not equivalent in most param-
eters to human carotid or internal thoracic arteries. Furthermore, left and right ovine 
common carotid arteries did not have the same histological composition, suggesting 
limitations for sham-operated controls within the same animal. The team concluded 
that the middle and distal segments, but not the proximal segments, of ovine and 
porcine common carotid arteries served as the better sites for vascular graft implan-
tation and graft testing, indicating that implantation location can influence graft 
evaluation [27].



11 Regeneration of Blood Vessels 457

11.2 Selection of Polymers for Vascular Grafts 

In this section, we discuss other factors that influence vascular regeneration and their 
long-term patency and function. Among these factors, we focus on the selection of 
suitable polymers, their degradation and mechanical properties, the scaffolds’ struc-
ture, and examples of functional modification to scaffolds. 

11.2.1 Synthetic Polymers 

11.2.1.1 ePTFE 

Initial vascular prostheses used nondegradable polymers such as PTFE (Teflon) or 
ePTFE (Gore-Tex). ePTFE is very stable in vivo with no reported failures due to 
degradation of the graft. The process of ePTFE manufacture is by heating, stretching, 
and extrusion that results in a nontextile porous tube [25], with an electronegative 
luminal surface that is antithrombotic. A 5-year patency of 91–95% was achieved 
with ePTFE arterial substitutes, with neither trans-anastomotic nor transmural 
endothelialization. Decreased patency (45%) was observed in femoropopliteal 
bypass surgeries [28]. Surgeons have used nondegradable synthetic Teflon or 
Dacron as medium-to-large-diameter grafts, which can provide 10 years of 
symptom-free lifestyle. However, these materials have inferior performance in 
replacement of small-diameter (<6 mm) blood vessels due to high rates of 
neointimal hyperplasia and thrombosis [29]. Several attempts have been adopted 
to improve the patency of ePTFE grafts. An early study showed that preseeding 
ePTFE grafts with autologous endothelial cells (ECs) gave adequate ECs coverage 
and considerably improved patency of the grafts in canine models, compared to 
unseeded ePTFE grafts [30]. Compared with biodegradable materials, the chronic 
immune responses that can be induced by nondegradable properties and the stiffness 
of the nondegradable polymer materials themselves limit their wider applicability in 
the current clinical practice. 

11.2.1.2 PCL 

Poly (ε-caprolactone) (PCL) is a versatile polymer that shows strong promise for the 
construction of small-diameter vascular grafts due to its good biocompatibility, 
suitable mechanical strength, and slow biodegradation rate. Walpoth’s group [5] 
reported that electrospun PCL grafts were degraded to 20% of original molecular 
weight at 18 months of postimplantation, without dilatation and significant increase 
in compliance. PCL does not undergo plastic deformation when exposed to long 
cyclic strain. Therefore, it possesses elastic properties suitable for vascular graft 
application [31].
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The mechanical performance of PCL vascular grafts can be readily tuned by 
facile blending of PCL with other polymeric materials. Sang et al. indicated that 
PCL/collagen composite grafts, with fiber diameters of approximately 520 nm, 
possessed appropriate tensile strength (4.0 ± 0.4 MPa) and adequate elasticity 
(2.7 ± 1.2 MPa) [32]. The burst pressure of these composite grafts was 
4912 ± 155 mmHg, which was much greater than that of the pure PCL grafts 
(914 ± 130 mmHg) and native vessels. Mercado-Pagán et al. [33] synthesized 
biocompatible and biodegradable PCL-urethane macromers to fabricate hollow 
fiber membranes of varied sizes as small-diameter vascular graft candidates. Their 
tensile stiffness ranged from 0.09 to 0.11 N/mm and maximum tensile force from 
0.86 to 1.03 N, with minimum failure strains of approximately 130% and burst 
pressures from 1158 to 1468 mmHg. In another study, grafts were prepared by using 
the PLA and PCL physical blends in the ratios of 75:25 and 25:75 with the 
dimension of (40 × 0.2 × 4) millimeter by electrospinning [34]. Hydrophobicity 
and tensile stress were significantly higher in PLA-PCL (75:25), whereas tensile 
strain and fiber density were significantly higher in PLA-PCL (25:75). Cell viability 
and proliferation were rationally influenced by the aligned nanofibers. Gene expres-
sion revealed the grafts’ thromboresistivity, elasticity, and aided neovascularization. 
Thus, these scaffolds could be an ideal candidate for small-diameter blood vessel 
engineering. 

A 24-week comparison of the performance of electrospun PCL grafts and ePTFE 
grafts (2 mm diameter) as rat abdominal aorta replacement grafts was performed by 
Pektok et al. [35]. The research team found that PCL grafts showed enhanced tissue 
regeneration characteristics compared to ePTFE grafts. Faster endothelialization and 
extracellular matrix (ECM) formation in tandem with degradation of the PCL graft 
fibers were attributed as the major advantages of using PCL as a vascular graft 
material. Walpoth’s group [5] implanted electrospun PCL vascular grafts into rat 
abdominal aorta. Results showed no aneurysmal dilation, perfect patency, excellent 
structural integrity, and limited intimal hyperplasia throughout the study. 
Endothelialization, cell invasion, and neovascularization of the graft wall rapidly 
increased until 6 months. However, from 6 to 18 months, regression of cell number 
and capillary density and severe calcification were observed within the graft wall. 
The calcification was suggested to be linked to hypoxia, oxidative stress, and 
provocation of inflammation, due to the grafts’ dense fibrous structure or the local 
low compliance. 

Given that prolonged presence of synthetic polymer implants in vivo may pro-
voke chronic inflammatory responses from macrophages, leading to increased risk of 
calcification in long-term implantation, various approaches have been employed to 
adapt the properties of PCL grafts to alleviate persistent inflammation at graft sites. 
Kong’s group [6] fabricated macroporous electrospun PCL grafts with thicker fibers 
(5–6 μm) and larger pores (~30 μm). They demonstrated that thicker fiber 
electrospun PCL vascular grafts enhanced vascular regeneration and the remodeling 
process by mediating macrophage polarization into the “proregenerative” M2 phe-
notype, whereas the porosity facilitated enhanced cellular infiltration. Gao et al. 
sought to accelerate graft degradation rates by blending PCL with the fast degrading



synthetic polymer, poly(lactic-co-glycolic acid) (PLGA). Electrospun PCL/PLGA 
(60:40) scaffolds demonstrated more cellular infiltration after 4 weeks of subcuta-
neous implantation, owing to enhanced degradation of the PLGA component by 
hydrolysis [36]. Agarwal et al. constructed grafts with core fibers sealed by 
PCL/poly-L-lactic acid (PLLA), demonstrating that in vitro degradation was accel-
erated by blending PCL/PLLA, compared to PCL. Similarly, in vivo implantation in 
murine inferior vena cava replacement models showed higher degradation occurred 
in scaffolds containing PCL/PLLA blends [37]. Rafique et al. employed an alterna-
tive approach to mitigate prolonged inflammation. They incorporated 
dimethyloxalylglycine (DMOG), a competitive inhibitor of hypoxia-inducible factor 
(HIF)-hydroxylated prolyl hydroxylase, into electrospun PCL vascular grafts. 
DMOG-loaded PCL grafts were implanted in rat abdominal aorta replacement 
models for 1 month. The grafts remained patent and supported improved functional 
vascular regeneration, endothelialization, VSMC layer regeneration, and anti-
inflammatory responses, compared to unloaded PCL grafts [38]. 
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11.2.1.3 PLCL 

Poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers have been applied as a bio-
material for the construction of vascular grafts due to the high elastic properties and 
relatively long-term implantation duration. Kurobe et al. [39] have shown that the 
PLCL coating completely degrades 4 months after implantation in a mouse model. 
In previous reports, PLCL vascular grafts were fabricated by an extrusion-particulate 
leaching technique, but there were a few problems for extruded PLCL grafts in cell 
seeding efficiency, cell ingrowth, and mechanical strength. Sang-Heon et al. [40] 
fabricated and characterized a new tubular, macroporous, fibrous PLCL (5:5) graft 
using gel spinning. Compared to extruded PLCL scaffolds, the fibrous PLCL 
scaffold showed improved biological activities, such as cell seeding efficiency and 
proliferation, and improved mechanical properties, such as tensile strength and 
viscoelastic properties. Shafiq et al. [41] fabricated scaffolds by mixing appropriate 
proportions of linear PLCL and substance P (SP)-immobilized PLCL, using 
electrospinning to develop vascular grafts. PLCL-SP showed significantly higher 
host cell infiltration, blood vessel formation, and mesenchymal stem cells (MSCs) 
recruitment in vivo. Mun et al. [42] seeded VSMCs onto electrospun PLCL scaffolds 
to construct a three-dimensional network. The vascular grafts constructed using cell– 
matrix engineering were similar to the native vessels in their mechanical properties, 
such as tensile strength, tensile strain, and elastic-modulus. 

Adjustments to graft degradation rates can serve as a suitable strategy to rate-
match degradation to new tissue formation. Fukunishi et al. evaluated PLCL blended 
with polydioxanone (PDO) to form composite vascular grafts with improved per-
formances [43]. Fast and slow degrading vascular grafts were prepared by varying 
the ratio of PDO:PLCL. A 9:1 ratio showed the fastest degradation, and a 1:1 ratio 
showed the slowest degradation rate. Following in vivo implantation in rat abdom-
inal aorta, the fast-degrading grafts produced more ECM crosslinking enzymes,



including tissue transglutaminase (TG2) and lysly oxidase (LOX), and resulted in a 
well-organized ECM with mechanical properties similar to native artery. This study 
highlighted the importance of achieving rates of polymer degradability that can 
support the timely formation of new ECM and vascular tissue, while providing 
mechanical and functional support until the neoartery forms and can takeover 
mechanical and functional roles. 
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11.2.1.4 PGA 

The poly(glycolic acid) (PGA) is a highly biocompatible and bioresorbable polyester 
that demonstrates rapid biodegradability. Therefore, PGA is often used in vascular 
grafts to provide elevated and/or partial degradability. Cho et al. [44] fabricated a 
hybrid biodegradable polymer scaffold from PLCL copolymer reinforced with PGA 
fibers. The PGA/PLCL vascular patches were seeded with ECs and VSMCs differ-
entiated from bone marrow stromal cells (BMSCs) and implanted in the inferior vena 
cava (IVC) of bone marrow donor dogs. Compared with PLCL scaffolds, 
PGA/PLCL scaffolds exhibited tensile mechanical properties more similar to those 
of dog inferior vena cava. Eight weeks after implantation, the vascular patches 
remained patent with no sign of thrombosis, stenosis, or dilatation. Rapoport et al. 
[45] utilized electrospinning technique to form tubular scaffold composites with 
structural features reminiscent of the corrugated laminae seen in blood vessels. This 
tubular scaffold was fabricated with complex “J”-shaped behavior using elastic 
polyurethane (PU) and reinforcing PGA woven mesh. The mechanical behavior of 
this tubular scaffold achieved from a low-stiffness highly elastic zone giving rise to a 
high-stiffness zone, and the value of burst pressures and toughness was 
3095 ± 1016 mmHg and 6.3 ± 1.9 MJ/m3 , respectively. Another study incorporated 
a polyethylene terephthalate (PET) fiber core layer with a PGA fiber layer sheath to 
achieve grafts with partial degradability. After implantation, the PGA component 
rapidly degraded and was replaced by host tissue containing a mixture of α-smooth 
muscle actin (α-SMA)+ cells and other host cells. The grafts showed unified structure 
with the adjoined aortic tissues. The adhesion strength between the graft and aortic 
wall was significantly enhanced in the grafts that used PET/PGA layers, and there 
was demonstratable histologic and mechanical integration with the surrounding 
native aortic tissues [46]. Fukunishi et al. described the in vitro and in vivo degra-
dation of nanofibrous PGA/PLCL vascular grafts. In vitro evaluation showed that 
PGA/PLCL vascular grafts were degraded completely after 12 weeks and lost 100% 
of their strength. Long-term (6-months) in vivo evaluation in rat and sheep models of 
vascular transplantation showed that the grafts were fully degraded and remodeled 
into neoarteries in the sheep model, but were still present in the rat model, which 
indicated that in vivo degradation rates of vascular grafts should be more widely 
assessed in larger animal models to better predict degradation behavior in preclinical 
studies [47]. 

The Niklason lab utilized the relatively fast biodegradability of PGA scaffolds to 
generate bioreactor-grown tissue engineered vascular grafts and evaluated their



performance as arteriovenous access point for hemodialysis in baboon models, and 
as coronary artery bypass grafts in canine models. The grafts were seeded with 
human or canine vascular cells and incubated in a bioreactor that delivered cyclic 
radial strain to allow the production and deposition of a collagenous ECM. The 
grafts were subsequently decellularized, revealing ECM grafts free from PGA that 
were then used for in vivo implantation. In the animal models, the grafts remained 
patent without any dilatation, calcification, or intimal hyperplasia. This approach 
demonstrated that allogeneic cell sources can be effectively used with PGA scaffolds 
to produce readily available or “off-the-shelf” tissue engineered vascular grafts [48]. 
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11.2.1.5 PGS 

Polycondensation of glycerol and sebacic acid forms the elastomeric poly(glycerol 
sebacate) (PGS). PGS shows appreciable mechanical properties and biocompatibil-
ity and degrades within 2 months in vivo [49]. Ye et al. [50] described that PGS 
elastomer was used to construct the microvessel framework. In vivo studies of 
scaffolds implanted subcutaneously and intraperitoneally, without or with exoge-
nous cells, into nude rats demonstrated biodegradation of the membrane interface 
and host blood cell infiltration of the microvessels. This modular, implantable 
scaffold could serve as a basis for building tissue constructs of increasing scale 
and clinical relevance. 

In vitro hemocompatibility evaluation of PGS-based biphasic scaffolds were 
shown to be nonthrombogenic compared to other synthetic grafts [51]. Single-
layered three-dimensional microfluidic PGS scaffolds also achieved biomimetic 
fluid properties [52]. Wang’s group investigated the effect of pore size in PGS 
porous scaffold on VSMCs organization. They found that pores of 25–32 μm 
increased VSMCs alignment, elastin, and collagen production [53]. A shortcoming 
of PGS is its low mechanical strength, thereby increasing the risk of graft rupture or 
deformation. Thus, Wang’s group fabricated a PGS porous tube with an average 
pore size of 21.2 ± 0.79 μm enveloped by a dense nonwoven PCL fiber sheath to 
provide enhanced mechanical and structural stability to meet the demands of arterial 
blood pressure [54]. After implanting the cell-free biodegradable PGS/PCL elasto-
meric grafts into rat abdominal aorta, they found that the PGS graft cores degraded 
rapidly to yield neoarteries free of foreign materials at 3 months postimplantation in 
rat models. Based on this success, Khosravi et al. [55] developed a novel method for 
electrospinning smaller grafts composed of a PGS microfibrous core enveloped by a 
thin PCL outer sheath. Electrospun PGS-PCL composites were implanted as 
infrarenal aortic interposition grafts in mice and remained patent up to the 
12-month endpoint without rupture, thrombosis, or stenosis. 

Further work by the Wu lab prepared PGS/PCL composite grafts by varying the 
time of electrospinning of the PCL nanofiber sheath wrapped around the PGS fiber 
core. Increasing density of PCL nanofibers was shown to be beneficial for enhancing 
the mechanical strength of the vascular graft. After 3–12 months of in vivo implan-
tation in rat abdominal aorta, PCL reinforced PGS grafts were found to be superior in



patency rate, wall thickness, endothelial and smooth muscle cell remodeling, ele-
vated ECM remodeling of collagen, elastin and glycosaminoglycans and enhanced 
mechanical characteristics including tough and complaint mechanics. The fast 
degradation of PGS led to timely neoartery formation while PCL ensured maintained 
mechanical strength [56]. 
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11.2.2 Natural Polymers 

11.2.2.1 Collagen 

Collagen is a major structural component of ECM essential for mechanical integrity 
and is found in the majority of tissues. Collagen gels have long been used as tubular 
scaffolds for vascular graft engineering [57, 58]. Wu et al. [59] cocultured ECs and 
VSMCs onto collagen membranes, resulting in TEVGs that possessed sufficient 
tensile strength, favorable biocompatibility, and promoted vascular regeneration. 
Collagen-based scaffolds have been a choice platform for exploratory clinical trials 
for the repair of substantial tissue damage. Hirai et al. [60] developed collagen-based 
constructs for use in low-pressure-loaded venous systems. A solution of type-I 
collagen containing a suspension of bovine aortic VSMCs was poured into a tubular 
glass mold with a Dacron mesh support. After 24 weeks of in vitro culture, the 
resultant vascular constructs could tolerate luminal pressures up to 100 mmHg 
[61]. Kumar et al. [62] fabricated tubular conduits comprising collagen fiber net-
works and elastin-like protein polymers to mimic native tissue structure and func-
tion. These conduits compared favorably to the ultimate tensile strength (UTS) and a 
Young’s modulus of native blood vessels (1.4–11.1 MPa and 1.5 ± 0.3 MPa, 
respectively). The dense fibrillar collagen networks exhibited an UTS of 
0.71 ± 0.06 MPa, strain to failure of 37.1 ± 2.2%, and Young’s modulus of 
2.09 ± 0.42 MPa. 

11.2.2.2 Elastin 

The elastin protein provides flexibility and elasticity to tissues and organs. Elastin is 
found in abundance within artery walls, facilitating high strain and efficient elastic 
energy storage, which ensures pulsatile blood flow for tissue perfusion. Elastin 
scaffolds are typically brittle and exhibit lower mechanical parameters than native 
elastin-rich tissues. Elastin scaffolds have less stress relaxation than intact or 
decellularized aorta, which has stress relaxation rates that are linearly dependent 
on initial stress levels. The rate of stress relaxation for elastin increases linearly at 
stress levels below ~60 kPa [63]. Therefore, scaffolds that combine elastin with other 
macromolecules can maintain elasticity while improving mechanical strength. 
Buijtenhuijs et al. [64] lyophilized insoluble type-I collagen and elastin to produce 
porous scaffolds comprised of interspersed collagen and elastin fibers, which



improved mechanical performance. Smith et al. [65] fabricated cross-linked suture-
reinforced polydioxanone (PDO)-elastin tubes that exhibited compliance matching 
native arteries. Tropoelastin (TE) is the soluble polypeptide precursor of elastin. 
Thus, TE can be more readily fabricated into scaffolds using techniques that can 
enhance scaffold performance. McKenna et al. [66] fabricated a tubular construct 
using electrospun recombinant human TE (rhTE). The fabricated scaffolds had 
elastic moduli in the range of 0.15–0.91 MPa and ultimate tensile strengths of 
approximately 0.36 MPa. The results of in vitro studies demonstrated that the 
fabricated electrospun rhTE scaffolds supported the growth of an EC monolayer 
with typical cobblestone morphology after 48 h culture time. 
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11.2.2.3 Fibrin 

Fibrin is the product of fibrinogen cleavage and is an insoluble protein with 
prominent roles in the blood clotting cascade. In 2000, Ye et al. [67] prepared 3D 
fibrin gel matrices for cardiovascular tissue engineering and reported uniform cell 
growth and collagen deposition into the gel. Syedain et al. [68] fabricated TEVGs 
based on entrapment of human dermal fibroblasts in fibrin gel. The vascular grafts 
possessed circumferential fiber alignment characteristic of native arteries, which was 
essential for graft mechanical performance. The same team confirmed that hypoxia 
coupled with insulin supplementation improved collagen deposition and strength of 
fibrin-based TEVGs [69]. Elsayed et al. [70] devised the fabrication of novel, 
electrospun, multilayer, gelatin fiber scaffolds, with controlled fiber layer orientation 
and optimized gelatin cross-linking to achieve not only compliance equivalent to that 
of coronary artery but also for the first time strength of the wet tubular acellular 
scaffold (swollen with absorbed water) same as that of the tunica media of coronary 
artery in both circumferential and axial directions. Most importantly, the suture 
retention strength of gelatin scaffolds firstly achieved in the range of 1.8–1.94 N 
for wet acellular scaffolds and was same or better than that for fresh saphenous vein. 

11.2.2.4 Hyaluronic Acid 

Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan (GAG) comprised of 
linear, unbranching, polyanionic disaccharide units of D-glucuronic acid and N-ace-
tyl-D-glucosamine. Zhu et al. [71] demonstrated that collagen/HA scaffolds with 
interconnected porous networks provided appropriate mechanical properties and 
biocompatibility for use as an intimal layer scaffold for endothelialization. Joo 
et al. [72] reported that bioactive HA could be chemically modified into 
HA-catechol using a single-step method, which benefited in vitro endothelialization. 
Esterified HA (HYAFF) is routinely used for clinical tissue engineering applications. 
The problems associated with HA-based biopolymers are related to poor mechanical 
properties and rapid degradation rates. In efforts to increase mechanical properties of 
HA biomaterials, Arrigoni et al. [73] added sodium ascorbate (SA) to VSMC



cultures seeded in HYAFF nonwoven sheets. The SA facilitated the cross linking of 
VSMC-synthesized ECM with the HYAFF sheets, and when reformed into vascular 
grafts, provided improved mechanical properties, lower stiffness, and increased 
tensile strength. 

464 M. Rafique et al.

Emerging data continue to reveal differential physiological and pathological 
functions attributable to different molecular weight (MW) HA [74]. Qin et al. 
explored whether low MW (LMW) or high MW (HMW) HA was beneficial in 
vascular remodeling of biomimetic vascular grafts [75]. The team prepared 
electrospun vascular grafts from native artery ECM with biodegradable polyesters 
such as PLCL and PCL, in combination with either HMW or LMW 
HA. Incorporation of LMW (15–40 kDa) HA into electrospun vascular grafts 
enhanced endothelialization and migration of vascular stem/progenitor cells into 
the graft. At the same time, VSMCs demonstrated enhanced migration and subse-
quent elastin-enriched neoartery tissue formation after 6 months of implantation 
time. The beneficial VSMC responses were dependent on HA interactions with its 
principal cell-surface receptor CD44, which is a receptor known to govern a diverse 
array of cellular functions and growth mechanisms [76]. 

11.2.2.5 Chitosan 

Chitosan is the deacetylated product of the natural structural polysaccharide chitin, 
which is the main component of fungal cell walls, insect exoskeletons, and crusta-
cean carapaces. Chitosan is biodegradable, biocompatible, and bacteriostatic, among 
other attributed functions; and is widely used in the food, textile, agriculture, 
environmental protection, cosmetic, and biomedical industries. Chupa et al. [77] 
demonstrated that porous chitosan scaffolds could be generated by freezing and 
lyophilization. Ling et al. [78] employed a freeze-dried mesh of knitted chitosan 
fibers coated in a chitosan/gelatin. A next generation version of the scaffold pos-
sessed hydrophilic swelling, a burst strength of almost 4000 mmHg, and high suture 
retention strength [79], suggesting suitability for vascular graft fabrication. 

11.2.2.6 Silk Fibroin 

Silk fibers are obtained from various invertebrates such as insects and spiders. The 
Bombyx mori silkworm larvae are a major source of silk used in biomedical 
applications, such as implantable devices, retinal replacements, sutures, ligatures, 
and skin repair materials, among others. Silk fibers are composed of structural silk 
fibroin (SF) core filaments surrounded by a layer of sericin β-sheet crystals. SF is 
extracted from silk by a process known as degumming, wherein the sticky hydro-
philic sericin layers are removed [80]. SF possesses several advantages including 
in vivo proteolytic degradation, biocompatibility, and elevated cellular affinity. 
Double-raschel SF vascular grafts containing SF sponge were evaluated in animal 
models of arterial replacements, wherein an 85% patency rate was demonstrated in



rat abdominal aorta replacement models after 1 year of implantation. An early 
infiltration of ECs and VSMCs into the SF grafts promoted rapid endothelialization 
and vascular media regeneration, respectively [81]. Kiritani et al. used SF-based 
venous vascular grafts as replacements for rat inferior vena cava. The performance of 
SF grafts was compared to ePTFE implants, and after 4 weeks of implantation, SF 
grafts exhibited patency with superior endothelialization and collagen fiber 
remodeling compared to ePTFE grafts [82]. 
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11.2.2.7 Extracellular Matrix-Based Vascular Grafts 

The extracellular matrix (ECM) is a 3D network of extracellular polymeric macro-
molecules, such as collagen, elastin, fibrin, and HA, among others, which provide 
structural and biochemical support to cells. Thus, ECM-based scaffolds can provide 
a biologically active substrate on which cells can adhere, migrate, and infiltrate. It is 
increasingly recognized that biomimetic, natural polymers mimicking the ECM have 
low thrombogenicity and functional motifs that regulate cell–matrix interactions, 
with these factors being critical for TEVGs, especially small-diameter grafts. Pop-
ularized methods for generating acellular ECM-based vascular grafts include: the 
ex vivo decellularization of vascular or elastic tissues [83]; in vitro seeding of 
vascular cells onto polymer scaffolds, culture, and subsequent decellularization 
[48]; in vivo implantation of polymer scaffolds, and subsequent explant and 
decellularization [84]; and the incorporation of powdered ECM into vascular graft 
fabrication techniques [85]. 

11.2.3 Synthetic-Natural Polymer Hybrid Grafts 

Synthetic-natural hybrid materials aim to recapitulate the bioactivity provided by 
natural polymers, while benefiting from the mechanical advantages borne from 
synthetic polymers. Over recent years, there has been an evident trend in the 
published literature suggesting a preference for synthetic-natural hybrid vascular 
graft fabrication and their evaluation in preclinical studies. 

11.2.3.1 Synthetic Polymer Sheath-Reinforced Grafts 

Synthetic polymers can be used as supporting sheaths or stents to symmetrically 
reinforce living and decellularized vascular tissues, preventing collapse when used 
for vascular grafting. Jeremy et al. studied the effect of external synthetic stents and 
sheaths in pig models of vein-into-artery interposition grafting and showed a pro-
found effect on vein graft remodeling and thickening [86]. These outcomes appear to 
be mediated by the promotion of angiogenesis due to the accumulation of 
proangiogenic factors, inflammatory cells, ECs, and VSMCs in the space between



the graft and sheath/stent. Decellularization of allogeneic vascular grafts may dam-
age the ECM and impair the associated biomechanics (e.g., accelerate elastin 
deformation and degradation), and may result in vascular graft overexpansion and 
aneurysm formation. To address these problems, Gong et al. combined PCL 
nanofiber sheaths with decellularized small-diameter vessels, forming hybrid 
tissue-engineered vascular grafts (HTEVs) [87]. The luminal surfaces of HTEVs 
were coated with heparin before allograft transplantation. The electrospun PCL 
nanofiber sheaths significantly enhanced the biomechanics of decellularized vessels, 
facilitating patency and preventing vasodilation or aneurysm over the 6 weeks 
implantation time in rat models. Hemodynamic factors play major roles in intimal 
hyperplasia development and subsequent bypass failure. Longchamp et al. devel-
oped ex vivo models for the perfusion of human saphenous vein segments under 
arterial shear stress [88]. The data showed that the incorporation of external 
supporting scaffolds decreased dilatation and intimal hyperplasia while maintaining 
vein media layer integrity, via increases in shear stress and decreases in wall tension 
and VSMC apoptosis. At the molecular level, external meshes prevented the 
upregulation of matrix metalloproteinases (MMP-2, MMP-9) and plasminogen 
activator type I (PAI-1), which participate in the degradation and remodeling of 
ECM. Yang et al. fabricated a rapamycin-loaded HTEVs by using decellularized rat 
aorta as supported by an outer sheath of electrospun rapamycin-loaded PCL 
[89]. After 12 weeks of implantation time in rat abdominal aorta replacement 
models, the grafts exhibited improved mechanical properties and prolonged bioac-
tivity, compared to decellularized rat aorta alone. The grafts remained functional for 
up to 8 weeks and intimal hyperplasia was reduced across the 12 weeks implantation 
time, compared to HTEV without rapamycin. 
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11.2.3.2 Synthetic-Natural Polymer Blends and Layered Grafts 

Gelatin and Collagen Blends and Layers 

Combination of synthetic and natural polymers at the fabrication stage can result in 
hybrid vascular grafts that outperform grafts consisting of singular polymer mate-
rials. Shi et al. prepared hybrid grafts containing PCL and gelatin. Bioinert PCL 
benefitted from the addition of gelatin owing to its bioactivity and biocompatibility. 
The lumens were heparinized to reduce the incidence of thrombosis. These hybrid 
grafts efficiently promoted endothelialization and VSMC layer regeneration in vivo 
[90]. In a very recent study, Ma et al. evaluated heparinized PCL/collagen hybrid 
vascular grafts. The grafts were biocompatible, possessed biomechanics similar to 
natural artery, and promoted cell proliferation of ECs to enhance timely vascular 
tissue regeneration [91]. Ju et al. coelectrospun PCL/collagen bilayer scaffolds with 
a high porosity outer layer and lower porosity inner layer [92]. The outer layer 
enhanced VSMC infiltration and the inner layer facilitated EC attachment. The 
microstructure and mechanical properties of the PCL/collagen grafts were controlled 
by adjusting fiber diameter. Stitzel et al. discovered that controlling the ratio of



collagen, elastin, and PLGA improved the electrospinning process and overall 
physical strength of the scaffolds, which were capable of resisting rupture at 
approximately 12-fold normal systolic pressure [93]. Kobayashi et al. produced 
composite nanofiber vascular grafts composed of PGA/collagen, which could 
accomplish the recruitment of host cells and timely cellular infiltration without 
incorporation of other bio-derived matter-like growth factors [94]. Recently, the 
Wu group fabricated PGS core and PCL/collagen sheath small-diameter vascular 
grafts by coelectrospinning [95]. The grafts were coloaded with rapamycin and 
3-methyladenine (3-MA) and demonstrated sustained release to regulate macro-
phage autophagy, which in-turn polarized macrophages to M2-like phenotypes, 
promoted endothelialization, and drove the myogenic differentiation of vascular 
progenitor cells within the graft walls. 
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Fibrin Blends 

Fibrin alone has poor mechanical strength. Therefore, a combination of mechani-
cally strong materials with fibrin can offer improved outcomes. Yang et al. prepared 
electrospun vascular grafts by blending varying ratios of PU:fibrin (0:100, 5:95, 15: 
85, 25:75) [96]. The 15:85 blend demonstrated superior resistance to thrombosis and 
possessed appropriate mechanical properties. The hydrophilicity of fibrin elevated 
cell proliferation and adhesion in vitro, which ultimately translated to augmented 
vascular regeneration and remodeling in vivo, after 3 months of implantation. 

Chitosan Blends and Layers 

The poor mechanical properties of chitosan are a limitation that can be mitigated by 
its combination with synthetic polymers. Equivalent blends of chitosan and PCL 
demonstrate an ultimate strength two-fold that of chitosan alone [97]. Chen et al. 
[98] fabricated electrospun chitosan/poly(L-lactide-co-ε-caprolactone) (PLLA-CL) 
nanofibrous scaffolds that functionally and structurally resembled native ECM. The 
mechanical properties of the scaffolds were further improved (two-fold) by cross-
linking of the randomly orientated fibers. Nanofibrous chitosan/PCL vascular grafts 
were fabricated by sequential coelectrospinning [99], before further modification 
with heparin and immobilization of vascular endothelial growth factor (VEGF) to 
form VEGF-gradient scaffold layers. The resultant grafts successfully prevented 
thrombosis and promoted neoartery formation. Similarly, Yin et al. fabricated 
bilayered PLCL and polyethylene glycosylated (PEGylated)-chitosan [100]. A 
blend of 1:6 PEGylated-chitosan to PLCL was cast on a metal rod by drip feeding 
and PLCL and water soluble PEG was electrospun to form the outer layer. The 
composite grafts demonstrated the excellent hemocompatibility, structural integrity, 
blood vessel formation, EC, and VSMC layer regeneration in canine femoral artery 
replacement models. An elevated expression of angiogenesis related genes and 
negligible calcification were observed 24 weeks postimplantation.
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Silk Fibroin Blends and Layers 

Recently, Caldiroli et al. prepared three-layered hybrid SF/PU vascular grafts by 
sequential electrospinning stages [101]. The hybrid graft contained a PU middle 
layer, with SF inner and outer layers. The SF/PU hybrid grafts implanted in rat 
abdominal aorta replacement and femoral shunt models, wherein they maintained 
patent blood flow after 3 months of implantation time. Kuang et al. fabricated 
composite vascular grafts based on PLCL core and heparin/SF shell nanofibers by 
using electrospinning and freeze-drying [102]. The grafts could maintain long-term 
patency for up to 8 months implantation time in rabbit carotid artery replacement 
models. 

11.2.3.3 Synthetic Polymer-Reinforced Biotubes 

Alternatively, synthetic polymers can be used to fabricate scaffolds upon which cells 
or tissue can grow and integrate with the scaffold, depositing ECM between the 
synthetic polymer fibers, therein producing polymer-reinforced neotissue, or 
“biotubes” when scaffolds have cylindrical or tubular structures [103]. The biocom-
patibility and relatively low immunogenicity of PCL lends to the diversity of 
strategies that can be employed to develop vascular grafts with enhanced tissue 
regeneration and long-term performance. In a more recent innovative study, Zhi 
et al. used an in vivo bioengineering strategy to develop PCL reinforced biotubes 
(PBs) by implanting melt spun PCL based fibrous skeletons (PS) into the dorsal 
subcutaneous tissue [104]. After 1 month of subcutaneous implantation, PS were 
enriched with autologous extracellular matrix (ECM) and infiltrated host cells. The 
resultant PBs were evaluated as rat abdominal aorta replacements, canine carotid 
arterial replacements, and as ovine arteriovenous grafts for hemodialysis access. The 
developed PBs demonstrated superior mechanical characteristics, attenuation of 
intimal hyperplasia, rapid hemostasis, repeated needle puncture tolerance, long-
term patency and vascular regeneration in all three of the evaluated animal models. 

11.3 Fabrication of Polymeric Vascular Graft Scaffolds 

To date, numerous techniques have been employed to fabricate vascular grafts from 
synthetic and natural polymer materials. Each of these methods has its own unique 
advantages and disadvantages. The microstructures of the vascular grafts formed by 
these methods have a large influence on their regenerative and remodeling capacity. 
An important factor in vascular grafts is pore size. If pores are too small, it will 
hinder cell infiltration, but if pores are too large, problems such as blood leakage can 
occur. Current studies tend to fabricate vascular grafts using combination of two or 
more approaches. The following are some typical techniques usually applied in 
fabrication of polymer-based vascular grafts.
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11.3.1 Electrospinning 

Electrospinning is one of the most commonly employed techniques to fabricate 
vascular grafts. It is a simple and effective way to produce fibers ranging from 50 nm 
to 10 μm. The electrospinning apparatus consists of a syringe pump, a high-voltage 
power supply, a grounded iron rod, and a spinneret. Fibers are spun onto a collecting 
platform (typically a cylinder or mandrel), and fiber properties can be modified by 
regulating parameters such as rod rotating speed, voltage, flow velocity, and solution 
concentration. As discussed in greater detail above, a number of synthetic and 
natural polymers have been explored for the fabrication of nanofibers [105]. The 
Walpoth group have extensively studied electrospinning and PCL vascular graft 
fabrication for long-term implantation models. Electrospun PCL grafts showed 
excellent structural integrity and patency over 18 months of implantation time in 
rat models, with no aneurysmal dilation or thrombosis, and minimal intimal hyper-
plasia. However, calcification and a cellular regression were observed at 12 months 
postimplantation [5]. To prevent blood leakage but retain cell infiltrability, bilayered 
grafts have been prepared by electrospinning a high-porosity internal layer with a 
low-porosity external layer. It was previously identified that implanted bilayered 
grafts were occupied by cells that migrated from the anastomosis sites rather than 
cells captured and recruited from the circulating blood [106, 107]. This phenomenon 
represents an important directive with significance for the fabrication of biodegrad-
able vascular grafts. Limited cell infiltration into grafts hampers regeneration and 
remodeling. To circumvent this issue, macroporous electrospun PCL grafts with 
thicker fibers (5–6 μm) and larger pores (30 μm) were implanted in rat abdominal 
aorta replacement models. The macroporous grafts markedly improved cell infiltra-
tion, ECM secretion/deposition between the graft fibers, and functional regeneration. 
Analysis of the cellularization process revealed that the thicker-fiber scaffolds 
induced many M2 macrophages to infiltrate into the graft wall, which further 
promoted cellular infiltration and vascularization [6] (Fig. 11.2). 

Regeneration of VSMCs with circumferential orientation within the grafts is 
crucial for functional vascular reconstruction in vivo. Thus, the Kong lab fabricated 
a bilayered vascular graft with a circumferentially aligned microfiber internal layer 
by wet spinning, and an external layer composed of random nanofibers was prepared 
by electrospinning. The internal circumferentially aligned microfibers provided 
topographic guidance for in vivo regeneration of VSMCs, and the external random 
nanofibers offered enhanced mechanical properties and prevented leakage and 
rupture after graft implantation. The results demonstrated that circumferentially 
oriented VSMCs and longitudinally-aligned ECs were present in the neoartery, 
which was capable of exhibiting contraction and relaxation properties in response 
to vasoactive agents [108] (Fig. 11.3). 

Electrospinning has also been employed to generate sacrificial scaffolds that can 
later be used as substrates to grow cells or tissues, before removing the polymer 
template with polymer leaching methods to create patterned biologically derived 
scaffolds. Zhu et al. reported an example of this technique, wherein they fabricated



parallelly aligned PCL microfibers membranes by electrospinning. These mem-
branes were implanted in the subcutaneous pouch of rats for 4 weeks. The interfiber 
spaces of explanted membranes were filled with infiltrated cells, which had secreted 
a collagenous ECM. The PCL template was then removed by leaching and the 
scaffold decellularized to yield ECM membrane scaffolds containing microchannels 
where the PCL fibers had previously occupied. The broad applicability of ECM 
microchannel scaffolds included rat abdominal artery replacement models, wherein 
it promoted cellularization, vascularization, and favorably modulated the inflamma-
tory response. This approach was proposed to be suitable for developing “off-the-
shelf” ECM based scaffolds for augmenting tissue regeneration and integration after 
in vivo implantation [84]. 
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Fig. 11.2 Schematic illustrates that the pore size of electrospun PCL grafts may modulate the 
polarization of macrophages phenotype (Reprinted from Ref. [6] with permission, Copyright 2014 
Elsevier Ltd.) 

11.3.2 Melt Spinning 

Melt spinning deposits thin fibers on the collecting mandrel by melting the polymer 
solution in the absence of electric field. The obtained fibers typically exhibit an 
aligned orientation with insignificant variation in fiber diameter. Parameters such as 
fiber angle and interfiber spacing can be stringently controlled. Therefore, fiber 
morphological parameters are more reproducible and predictable. In recent studies,



melt spinning has been used to prepare core-shell fiber scaffolds with enhanced 
mechanical characteristics [109]. Zhi et al. employed melt spinning to produce PCL 
fiber skeletons (PS). The tight, consistent fiber angles allowed for heat treatment to 
create precision bonds between intersecting fibers. The prepared PS were implanted 
subcutaneously in the dorsum of rats and large animal models for subsequent 
enrichment with host cells and ECM components, thereby producing in vivo tissue 
engineered PS-reinforced biotubes (PBs). These PBs were evaluated in rat abdom-
inal aorta, canine carotid artery and sheep arteriovenous graft (AVG) models 
wherein the heat-treated medium fiber angle biotubes (hMPBs) demonstrated suit-
able mechanical strength, patency, rapid hemostasis and vascular regeneration, 
without aneurysmal dilatation [104]. 
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Fig. 11.3 (a) Schematic 
illustration shows the 
circumferentially aligned 
microfibers of the grafts 
which guide VSMCs’ 
regeneration in 
circumferential orientation. 
(b) The bilayered grafts are 
prepared by wet spinning 
and electrospinning method 
(Reprinted from Ref. [108] 
with permission. Copyright 
2015 Elsevier Ltd.) 
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11.3.3 Mold Pouring 

One of the earliest polymer-based grafts that entered clinical application was a 
hybrid biodegradable synthetic polymer vascular graft, fabricated by pouring a 
solution of PCL-PLA (50:50) copolymer onto PGA woven fabric sheets, followed 
by lyophilization [110]. Twenty-five patients received graft implants and no graft-
related mortalities were reported. There was no evidence of aneurysm formation,



graft infection, graft rupture, or ectopic calcification [111, 112]. Since then, mold 
pouring has become a popularized method to obtain coated scaffolds with desirable 
shapes. Polymer solutions are casted in specifically shaped molds with or without 
supporting meshes or structures. Upon solidification of the polymer solution, the 
mold is removed to leave the shaped scaffold. It can be used to construct tubular 
vascular grafts as well as branching blood vessels. In the fabrication of vascular 
grafts, usually injection molding is applied, wherein polymer solution is initially 
poured into a device possessing an inner rod relevant to desired luminal. Injection 
molding also allows integration of pore-forming methodologies such as gas foaming, 
salt leaching and phase separation. Molding can be achieved using singular poly-
mers, around inserted polymer mesh supports, molded with micropatterned surface 
topology, and using sacrificial polymers for the fabrication of mesochannels for 
ingrowth of vasculature [113]. 
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11.3.4 3D Bioprinting 

Gaining increasing attention in recent years, 3D-bioprinting technology has prom-
ising potential in multiple tissue engineering and regenerative medicine applications 
due to its extended applicability in bridging the divergence between artificial 
constructs and natural body tissues. The integration of biological and nano-
biological sciences has further extended 3D-bioprinting applications to transplanta-
tion, drug screening, clinical treatment and toxicological research. There are three 
common methods of 3D bioprinting, including extrusion, material jetting, and vat 
polymerization. In the field of tissue engineering of native body tissues including 
bone, cartilage, skin tissue, heart, neural tissues, and vascular grafts, the role of 3D 
bioprinting is becoming indispensable. Cui et al. constructed microvessels by ther-
mal ink-jet printing of human ECs and fibrin and observed rapid EC proliferation 
and microvasculature formation. In addition, vascular chips fabricated by using 
3D-bioprinting technology have been successfully utilized for in vitro studies 
[114]. Duarte et al. engineered vascular chip platforms by using elastin bio-ink 
hydrogels extruded with human umbilical vein ECs, resulting in the formation of 
vascular networks that closely resembled native tissue [115]. Huang et al. fabricated 
triple layered vascular grafts using E-jet 3D printing in combination with 
electrospinning and electrospraying. The prepared grafts had an internal aligned 
fibrous layer, a middle electrospun dense fibrous layer, and an external layer 
composed of mixed fibers obtained by coelectrospraying. The grafts were implanted 
and exhibited suitable mechanical strength due to aligned inner layer fibers, which 
also offered a suitable substrate for EC proliferation, migration, and cell infiltration 
into the graft walls via the porous outer layer [116].
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11.3.5 Particle Leaching 

Particle leaching methods have been utilized in vascular graft fabrication to induce 
elevated porosity to scaffolds. Wang’s lab developed bilayered vascular grafts 
composed of PGS layer fabricated by salt leaching method and PCL sheath gener-
ated by electrospinning which increased graft strength and prevented bleeding. 
Three months’ postimplantation in rat abdominal aorta, the neoarteries resembled 
native arteries in several aspects: a confluent endothelium and contractile smooth 
muscle layers and regular, strong, and synchronous pulsation [54]. The long-term 
study showed that the neoarteries contained nerves and had the same amount of 
mature elastin as native arteries and responded to vasomotor agents, although with 
smaller magnitude than native aortas [117]. A study by the Wu lab confirmed that the 
thickness and density of PCL sheath in bilayered grafts could affect the vascular 
remodeling and regeneration [56]. Sugar spheres can also be used as porogen to 
produce highly interconnected vascular graft by several steps. Polymer solution was 
firstly cast into an assembled sugar template under a mild vacuum. The polymer-
sugar composite was phase separated at low temperature overnight and then 
immersed into cyclohexane to exchange Tetrahydrofuran (THF). The consequential 
composites were freeze-dried, and the sugar spheres were leached out in distilled 
water and freeze-dried again. In vivo subcutaneous implantation studies indicated 
VSMCs differentiation and host tissue infiltration in the scaffolds [118]. A thin dense 
layer needed to prevent leakage of blood after this kind of macroporous vascular 
graft was implanted in vivo. 

11.3.6 Phase Separation 

Phase separation can generate macroporous scaffolds which can increase cell migra-
tion and cell seeding efficiency. Polymer dissolution is processed by liquid-liquid 
phase separation and polymer gelation to generate a nanofibrous sponge. Then the 
solvent is extracted, and the foam is freeze-dried. Many parameters such as gelation 
temperature, polymer concentration, solvent characteristics, and thermal treatment 
can affect scaffolds morphology, Young’s modulus, and tensile strength. Ma’s lab 
developed a porous vascular graft with biodegradable PLLA through thermally 
induced phase-separation (TIPS) techniques. The grafts with oriented gradient 
microtubular structures in the axial or radial direction can be produced by utilizing 
different thermal conductivities of the mold materials and using benzene as the 
solvent. The porosity, tubular size, and the orientational direction of the microtu-
bules can be regulated by the TIPS temperature, the polymer concentration, and by 
utilizing materials of different thermal conductivities [119]. Bilayered vascular 
grafts of poly(ester urethane) urea (PEUU) were fabricated by electrospinning and 
TIPS and implanted in vivo after seeded with pericytes. Cell-seeded TEVGs showed 
extremely higher patency rate than the unseeded control. The remodeled vascular



grafts consisted of multiple layers of α-SMA+ and calponin+ cells and a von 
Willebrand factor (VWF)+ EC monolayer on the lumen [120, 121]. Sugiura et al. 
developed a novel bioresorbable vascular graft with a porous PLCL sponge-type 
scaffold reinforced by PLA nanofibers, which was fabricated by phase-separation 
and electrospinning. The animal experiments showed promise for application as 
small-diameter arterial grafts [122]. 
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11.3.7 Solution Blow Spinning 

Akentjew et al. developed a new protocol for the construction of mechanically stable 
and biologically active nanofibrous vascular grafts that structurally mimicked human 
coronary artery ECM [123]. They employed dip spinning and solution blow spin-
ning (SBS) technology to introduce suitably angled nanofibers with partial fiber 
waviness in graft scaffolds. To achieve it, initially the PCL fibers were deposited on 
a spinning rod by solution blow spinning in which the rod moved vertically by dip 
spinning system (Fig. 11.4). Then cell laden methacryloyl gelatin alginate (GEAL) 
sublayers were made by vertical dipping of fiber coated rod into GEAL solution 
followed by exposure to UV light. The developed small-diameter vascular grafts 
were mechanically and biologically stable owing to the spatial deposition of fibers in 
required angles and fibers arrangements and loading of BM-MSCs in the wall of 
graft. It proved that cell encapsulated GEAL sublayer reinforced with PCL fibers 
was an effective strategy for the development of small-diameter vascular grafts 
mimicking the mechanics of human coronary artery, which can regulate the long-
term patency and remodeling in the in vivo settings. 

11.4 Functional Modification of Vascular Grafts 

11.4.1 Nitric Oxide-Releasing Materials 

Nitric oxide (NO) is a critical regulator of vascular homeostasis and serves as an 
excellent candidate for improving the thromboresistance of cardiovascular biomate-
rials. NO is endogenously produced by nitric oxide synthases: endothelial (eNOS); 
inducible (iNOS); and neuronal (nNOS) isoforms [124]. A reduction in the gener-
ation and bioavailability of NO occurs in several disorders, including platelet 
activation, arterial thrombosis, and atherosclerosis [125]. It was reported that endo-
thelial NO production is closely related to 5-year graft patency in patients receiving 
coronary artery bypass grafting [126]. Several studies have proven that the lower 
levels of NO produced by saphenous veins, compared to arterial conduits, may 
contribute to early graft failure [127, 128]. In this regard, molecular modification of 
blood-contacting devices with NO-generating compounds is one of the most direct 
and effective approaches to mimic the functions of the endothelium and thus reduce
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Fig. 11.4 (a) Schematic of angled solution blow spinning technique showing deposition of PCL 
fibers into a spinning rod to create a sublayer of PCL fibers. (b) Fabrication of GEAL sublayers 
through rotating retraction and exposure to ultraviolet (UV) radiation after vertical dipping of an 
oriented fiber-coated rod into GEAL solution. (c) Solution blow-spinning (SBS) equipment with a 
concentric outer nozzle for compressed air delivery and a central inner nozzle for the extrusion of 
PCL solution (right, end view) (Reprinted from Ref. [123] with permission. Copyright 2015 
Elsevier Ltd.)



thrombogenicity. However, the short half-life of NO (<1 s in the presence of oxygen 
and hemoglobin) and its radial influence are limited to a few micrometers [129]. Sev-
eral chemical strategies for NO-release and NO-generation have been developed to 
recapitulate the pharmacological potential of NO-releasing biomaterials [130, 22].
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NO-releasing materials were first reported by Smith et al. in 1996 [131], wherein 
covalent attachment of NO donors directly to the ePTFE polymer backbone was 
utilized to functionalize bypass grafts and provided enhanced antithrombotic per-
formance. Fleser et al. [132] implanted small-diameter (5 mm) PU vascular grafts 
coated with a polymer containing NO donors (dialkyl hexanediamine 
diazeniumdiolate) in sheep arteriovenous bridge-graft models for 21 days. Approx-
imately 80% of the NO-eluting grafts remained patent, compared with only 50% of 
control grafts. Despite a lack of statistical significance in patency rate differences, the 
control grafts contained adherent thrombi and fibrin matrices containing inflamma-
tory and red blood cells, whereas these were absent in NO-releasing grafts. 

In recent years, emergent roles in the regulation of VSMC proliferation, migra-
tion, and differentiation have made NO attractive for incorporation into degradable 
tissue engineering vascular grafts. Enayati et al. designed vascular grafts that 
supported long-term in situ release of bioactive NO by blending PCL with 
S-nitroso-human-serum-albumin (S-NO-HSA), an NO donor with a prolonged 
half-life. PCL-S-NO-HSA supported rapid endothelialization, whereas VSMC pro-
liferation was attenuated in the early phase [133]. The Zhao lab designed nitrate-
functionalized vascular grafts based on a design concept that utilized blends of 
LMW nitrate-functionalized PCL polymers with HMW PCL. In rat abdominal 
aorta replacement models, transplant of PCL/NO small-diameter vascular grafts 
demonstrated therapeutic efficacy, including maintenance of vessel patency, and 
enhanced vascular regeneration, as characterized by earlier regeneration of endothe-
lium and organized VSMC layer, compared to PCL small-diameter vascular grafts 
[20]. The same group went on to fabricate biohybrid vascular grafts by combining 
decellularized porcine veins and a nitrate-functionalized polymer sheath. The nitrate 
sheath provided sustained NO-release that mimicked native endothelium; thereby 
inhibiting intimal hyperplasia and vascular calcification in both rabbit and mouse 
models of right common carotid artery replacement. The underlying mechanism was 
revealed to involve a promotion of vascular stem/progenitor cell contribution to 
repopulation of vascular cell lineages and the subsequent enhancement of vascular 
regeneration and remodeling [21]. 

In addition to immobilization of NO donors on polymer matrix, there are many 
studies on modification of polymers by catalysts for promoting the transfer of NO 
from exogenous or endogenous NO donors in blood. Wang et al. [16] constructed a 
functional vascular graft by immobilization of β-galactosidase on vascular graft 
surface for catalyzing exogenous prodrug to release NO locally and sustain-
ably (Fig. 11.5). The functional vascular grafts were implanted into the rat abdom-
inal aorta with a 1-month monitoring period. The in vivo results showed effective 
inhibition of thrombus formation and enhancement of vascular tissue regeneration 
and remodeling of the grafts. However, nonspecific release of NO from these 
prodrugs was also evident because of the widespread distribution of endogenous



glycosidases in blood and specific tissues, which limits the therapeutic efficacy. Hou 
et al. reported a solution using a “bump-and-hole” strategy to modify an NO delivery 
system based on an enzyme-prodrug pair of galactosidase-Gal-NO [134]. Further 
studies are necessary to assess the use of engineered galactosidase-Gal-NO for NO 
delivery on blood-contacting devices. 
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Fig. 11.5 Illustration for the enzyme immobilized on the vascular grafts to catalyze the decompo-
sition of exogenously administrated NO prodrug to release NO. (a) Pathway for the surface enzyme 
functionalization of PCL vascular grafts (b) (Reprinted from Ref. [16] with permission. Copyright 
2015 Elsevier B.V) 

The endogenous NO donors, S-nitrosothiols (RSNOs), are present in circulating 
blood and offer opportunities to generate localized synthesis of NO at a continuous 
rate. Glutathione peroxidases (GPx) and selinium or copper ions with GPx-like 
catalytic activity can catalyze the decomposition of RSNOs into NO in vivo 
[130]. The Huang and Yang labs have published a series of studies that used 
selenocystamine or copper ions incorporated onto cardiovascular stents [135– 
137]. The NO release rates could mimic the natural endothelium rate (0.5 to 
4 × 10-10 mol × cm-2 × min-1 ) by adjusting the dose of incorporated catalytic



substances. In vivo data showed that modified stents promoted re-endothelialization 
while reducing neointimal formation. Recently, the same group developed 
NO-eluting organoselenium/alginate hydrogel coatings for vascular stents. The NO 
hydrogels coatings tolerated balloon dilation during angioplasty, prevented throm-
bosis, inhibited intimal hyperplasia, and effectively promoted the rapid restoration of 
native endothelium [138]. 
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The Niklason group demonstrated that local delivery of NO increased Fas 
receptor cell–surface expression and enhanced the potential VSMC-targeted apo-
ptosis by Fas ligand (FasL) delivered to the same region. The group developed FasL-
NO donor-releasing ethylene-vinyl acetate copolymer (EVAc)-coated stents. The 
stents were deployed into pig coronary arteries and cultured in a perfusion bioreactor 
for 1 week. The resultant FasL-NO donor-releasing EVAc-coated stents prevented 
the occurrence of intimal hyperplasia and in-stent restenosis, without harming 
endothelial restoration [139]. Kushwaha et al. [140] developed a nanofibrous matrix, 
which is formed by self-assembly of peptide amphiphiles (PAs), containing NO 
donating residues and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide sequence, a 
laminin-derived cell-adhesive peptide sequence. The NO-releasing nanofibrous 
matrix demonstrated a significantly enhanced proliferation of ECs but reduced 
VSMCs proliferation and platelet attachment. Andukuri et al. [141] reported a 
similar design in which electrospun PCL nanofibers were coated with 
NO-releasing PAs containing cell-adhesive ligands (YIGSR and KKKKK) by a 
solvent evaporation technique. The presence of YIGSR ligands and release of NO 
promoted the adhesion and proliferation of ECs while simultaneously limiting the 
adhesion and proliferation of VSMCs and the adhesion and activation of platelets. 
Yang et al. modified vascular stents with two vasoactive moieties (NO-generating 
organoselenium and endothelial progenitor cell-targeting peptide). These surface 
modified stents demonstrated superior inhibition of in-stent restenosis, thrombosis, 
and VSMC migration and proliferation, while promoting endothelial progenitor cell 
recruitment, adhesion, and proliferation [142]. 

11.4.2 Antibody and Peptide Modification 

Surface modification of blood-contacting devices with antibodies, functional pro-
teins or polypeptides has emerged as a popular strategy to maintain long-term 
homeostasis. Currently, research on antibody and polypeptide modification has 
two directions: improving hemocompatibility and enhancing endothelialization. 

Multiple approaches have been developed to diminish coagulation while promot-
ing endothelialization of ePTFE grafts. For example, Badv et al. developed ePFTE 
with endothelial cell specific anti-CD34 antibodies modified onto the luminal sur-
face. This modification hindered nonspecific adhesion of proteins, bacteria, and 
blood cells while promoting EC adhesion [143, 144]. Lu et al. used anti-CD133 
antibody to coat the ePTFE grafts [144]. After adsorption of polyethylenimine (PEI), 
dipped alternately in heparin solution and collagen solution, synthetic ePTFE grafts



coated with five bilayers of heparin/collagen were prepared. Then the multilayers 
were immersed in glutaraldehyde to promote cross-linking and to immobilize the 
anti-CD133 antibody. Finally, they implanted the graft into the carotid artery of pig. 
The results demonstrated that these synthetic ePTFE grafts coated with anti-CD133 
antibody-functionalized heparin/collagen multilayer may achieve rapid 
endothelialization. Zhao’s group developed a functional vascular graft by surface 
immobilization of stem cell antigen-1 (Sca-1) antibody on an electrospun PCL graft. 
Anti-Sca-1 antibody presentation significantly increased Sca-1+ vascular stem/pro-
genitor cell capture and retention in cell-free PCL scaffolds, which led to effective 
and enhanced vascular regeneration [145]. 
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Various polypeptides have been developed to minimize thrombogenicity and to 
improve the hemocompatibility of vascular grafts. In a study by Xing et al. ePTFE 
vascular grafts were modified with polydopamine (PDA) coating to enhance surface 
hydrophilicity, bivalirudin (BVLD) to provide antithrombogenic functionality and 
REDV tetrapeptides, which facilitated specific binding and capture of α4β1 integrin-
expressing ECs. The combination of these modifications resulted in improved 
patency and endothelialization of grafts after 12 weeks of implantation in porcine 
carotid artery replacement models [146]. 

C-type natriuretic peptides (CNPs) are endothelium-derived peptides shown to 
inhibit VSMC migration, constrictive remodeling, and thrombus formation after 
vascular injury [147]. Li et al. loaded CNPs into PCL grafts by electrospinning 
and confirmed improved hemocompatibility and vascular regeneration of artificial 
vascular grafts [148]. The Kong lab designed RGD (arginine-glycine-aspartic acid)-
containing amphiphilic molecule (Nap-FFGRGD) that self-assembled into a func-
tional coating on the surface of electrospun PCL fibers. Nap-FFGRGD coated PCL 
grafts provided a hydrophilic surface that exhibited prominent anticoagulation and 
enhanced cell adhesion in vitro [149], and enhanced in vivo patency rates and 
vascular regeneration after implantation in rabbit carotid arterial implantation 
models, compared to uncoated PCL grafts [150]. Hashi et al. conjugated the poly-
peptide hirudin, a derivative of Hirudo medicinalis leech saliva to PLLA vascular 
grafts through an intermediate PEG linker [49]. The PEG linker layer assisted in the 
reduction of platelet adhesion/aggregation, whereas immobilized hirudin suppressed 
thrombin activity, which led to improved graft patency rates. Mahara et al. modified 
ultrahigh hydrostatic pressure (UHP)-decellularized ostrich carotid arteries with a 
heterobifunctional peptide composed of a collagen-binding region (Pro-Hyp-Gly)n, 
(POG)n, and the REDV peptide. The modified graft was transplanted into minipig 
femoral arteries and was observed over the course of 20 days, without the adminis-
tration of anticoagulant medication. Five grafts remained patent and no 
thrombogenesis could be observed on the luminal surface. In contrast, all 
unmodified grafts became occluded with severe thrombosis [151]. 

Cell-specific peptides can be identified by phage display technology, which 
allows the identification of specific ligands for a particular cell surface protein 
even without prior knowledge of the particular cell-surface molecules [152]. Using 
this technique, Veleva et al. identified TPSLEQRTVYAK (TPS), a peptide ligand 
specific to endothelial outgrowth cells [153]. Subsequently, several studies have



attempted to incorporate TPS into biomaterials to capture endothelial progenitor 
cells in the blood. A fusion protein, TPS-linker-HGFI (TLH), which was composed 
of HGFI that originated from Grifola frondosa and functional peptide TPS, was 
expressed by Pichia pastoris expression system. PCL scaffolds were incubated 
overnight in a sterilized aqueous TLH solution, followed by blowing off the excess 
protein solution and drying in a super clean bench. Cell adhesion test showed that the 
TLH-modified PCL could specially enhance the adhesion of ECs and EPCs 
[154, 155]. This work presented a new perspective to apply hydrophobins in tissue 
engineering and regenerative medicine and provided an alternative approach in 
surface modification. However, one major challenge is to prevent nonspecific 
protein adsorption, which could mask the effects of TPS and hence require strategies 
such as passivation using PEG. Ji et al. developed a method for the dual 
functionalization of a PCL surface through the supramolecular assembly technology 
[156]. Functionalization of PCL-cyclodextrin (PCL-CD) through host–guest inclu-
sion complexation was performed in aqueous medium. PEG can decrease protein 
adsorption, and TPSLEQRTVYAK (TPS) peptide can specifically bind EPCs. The 
two kinds of functional molecules were immobilized on the PCL surface through 
host–guest inclusion complexation. Aqueous solution of adamantine 
(AD) conjugated guest compounds (PEG-AD and TPS-AD) alone or in combination 
was prepared (Fig. 11.6). Typically, the total concentration of guest compounds was 
kept at 1 mg/mL irrespective of the composition. Then PCL-CD films were put into 
the solutions, incubated, and dried. The relative composition of the PEG and TPS 
could be further fine-tuned by adjusting the feeding ratio. The PEG functionalization 
significantly inhibited the adsorption of fibrinogens and the adhesion of platelets, 
thus reducing the possibility of thrombus formation. Moreover, the 
TPS-functionalized surface showed enhanced attachment toward EPCs compared 
with the surface without TPS functionalization. The dual functions provided by the
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Fig. 11.6 Schematic illustration for the supramolecular assembly of functional molecules on the 
surface of PCL-CD film (Reprinted from Ref. [156] with permission. Copyright 2013 American 
Chemical Society)



corresponding functional molecules were well preserved, which indicated that the 
host–guest supramolecular assembly technology is particularly useful for covalent 
immobilization of bioactive molecules onto polymeric scaffolds.
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Another phage display derived peptide is CRRETAWAC. This sequence is 
specific to ECs and has a low affinity for platelets. It has been shown that this 
sequence can also bind to porcine ECs [157], hence facilitating future animal studies. 
Although some efficient progress on the technique for polypeptide modification has 
been reported, the clinical translation of these strategies remains constrained by the 
limited therapeutic duration afforded by a finite reservoir of bioactive agents, as well 
as by the degradation or denaturation of surface components by oxidation, hydroly-
sis and proteolysis when exposed over time to a physiological environment 
[158, 159]. Chaikof’s group developed an orthogonal ligation scheme that enables 
repeated covalent assembly and disassembly of surface bound biomolecular constit-
uents in vitro and in vivo [159]. This group selectively immobilized thrombin-
inhibitor, thrombomodulin (TM) on ePTFE vascular grafts in situ via this feasible 
strategy [160]. Reversible transpeptidation, a laboratory evolved Staphylococcus 
aureus sortase A (eSrtA) enabled the rapid immobilization of a recombinant TM 
fragment, containing an eSrtA recognition peptide (LPETG) motif, onto the vascular 
graft and permitted multiple cycles of bonding and stripping of engineered TM 
in vivo while preserving biological activity [161]. In addition, β-peptide polymers 
are designed to address the shortcomings of native peptides and have superior 
advantages of resistance to proteolysis [162]. Zhou et al. synthesized a series of 
amphiphilic β-peptide polymers with variable compositions of β-amino acid residues 
and tunable amphiphilicity. The results show that varying the composition of 
β-peptide polymers can tune the adhesion of EC and SMC in different trends. The 
optimal β-peptide polymer displays superior EC vs. SMC selectivity than 
EC-selective peptides regarding cell adhesion, proliferation, and migration. More-
over, β-peptide polymer-modification on material surface results in a complete in 
situ endothelialization of implanted materials and a significant reduction in intimal 
hyperplasia [163]. 

11.4.3 Incorporation of Growth Factors 

Vascular regeneration is a complex process that is tightly regulated by a variety of 
growth factors. Many researchers have committed to investigating how to modify 
artificial vascular grafts with growth factors to recapitulate vascular growth, repair, 
and regenerative processes. 

VEGF is an important angiogenic cytokine that exerts an effect on angiogenesis, 
is the most common growth factor used for promoting endothelialization [164]. A 
prospective cohort study showed that increased soluble vascular endothelial growth 
factor receptor-1 (sVEGFR-1) levels, a recently defined cytokine that reduces the 
amount of VEGF available to interact with their transmembrane receptors, are 
associated with arteriovenous fistula stenosis in hemodialysis patients [165]. These



results provide strong evidence that VEGF signaling is important in the prevention 
of vascular stenosis. VEGF acts directly on ECs or EPCs, promoting cell functions 
such as proliferation, migration, and differentiation. Taborska et al. developed a 
fibrin/heparin mesh to coat ePTFE vascular grafts. The meshes were further enriched 
with the growth factors, VEGF and fibroblast growth factor (FGF). The controlled 
release of heparin and growth factors prevented thrombus formation after implanta-
tion of ePTFE/fibrin graft that were preseeded with autologous ECs, thereby accel-
erating the formation of a cohesive endothelial monolayer [166]. The Kong lab 
prepared fusion proteins of hydrophobic HGFI linked to VEGF, which formed a 
self-assembled layer on the surface of hydrophobic PCL vascular grafts [167]. After 
implantation in rat abdominal aorta replacement models, the VEGF-HGFI complex-
modified grafts exhibited superior endothelialization and tissue regeneration com-
pared to control grafts [168]. The Swartz and Andreadis groups developed acellular 
TEVGs from small intestinal submucosa with immobilized heparin and VEGF, and 
showed that following implantation into ovine arteries, the grafts underwent com-
plete endothelialization and remained patent for 1-month [169]. Recently, the same 
group identified that VEGF captured blood circulating monocytes with high speci-
ficity and directed their differentiation toward a mixed EC- and macrophage-like 
phenotype [170]. 
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The Breuer group examined the role of vasculogenic platelet-derived growth 
factor (PDGF)-B in TEVG neotissue development using myeloid cell-specific 
PDGF-B knockout-mice. Results showed that myeloid cell-derived PDGF contrib-
utes to vascular neotissue formation by regulating VSMC proliferation and ECM 
deposition [171]. Han et al. prepared multilayered small-diameter vascular scaffolds 
dual loaded with VEGF and PDGF [172]. The multilayered grafts including inner, 
middle and outer layers were prepared by dual-source and dual-power 
electrospinning. The inner PEG-b-PLCL (PELCL)/gelatin was loaded with VEGF. 
The middle PLGA/gelatin layer was loaded with PDGF. The outer PCL/gelatin layer 
provided mechanical strength. The results suggested that dual-loading VEGF and 
PDGF enhanced vascular regeneration and maintained patency in rabbit left com-
mon carotid artery replacement models over the course of 8 weeks. However, growth 
factor therapies have led to concerns of overstimulation of VSMC proliferation that 
may induce neointimal hyperplasia in long-term implantations. Recently, the Owens 
group provided evidence that VSMC-to-myofibroblast transition was induced by 
PDGF and TGF-β and was dependent on aerobic glycolysis, whereas endothelial-to-
mesenchymal transition (EndoMT) was induced by interleukin (IL)-1β and TGF-β 
[173]. Moreover, endothelial-derived TGF-β signaling was shown to be a primary 
driver of atherosclerosis-associated vascular inflammation [174, 175]. Thus, these 
studies suggest that application and loading of growth factors into vascular grafts 
requires careful consideration, and techniques that benefit from controlled spatio-
temporal release may be preferred. 

Recent studies have suggested an important role for recipient resident stem/ 
progenitor cells in TEVG regeneration [176, 177]. After graft implantation, inflamed 
vascular cells might release cytokines such as stem cell factor (SCF) to recruit 
recipient stem/progenitor cells to vascular grafts and take part in the regeneration



and remodeling of vascular grafts [178]. Zhao’s group found that an 
HDAC7-derived peptide can mobilize vascular adventitial stem/progenitor cells 
and promote their differentiation into endothelial cells, thus accelerating the 
endothelialization of vascular grafts. This group incorporated dickkopf-3 (DKK-3) 
into tissue engineering vascular grafts and evaluated the functionalized vascular 
grafts in a rat model. Dkk3-loaded tissue-engineered vessel grafts showed efficient 
endothelization and recruitment of vascular progenitor cells, which had acquired 
characteristics of mature smooth muscle cells [179]. Stromal cell-derived factor-1α 
(SDF-1α) is considered to be a potent factor for EPCs homing and 
neovascularization. Yu et al. [180] cross-linked heparin to PLLA scaffold surfaces 
before incubating SDF-1α with the scaffolds to generate heparin-SDF-1α-treated 
PLLA scaffolds. These were implanted into the left common carotid artery of rats 
and demonstrated an enhanced self-regeneration capability of the grafts by recruiting 
endothelial progenitor cells and smooth muscle progenitor cells, contributing to 
endothelialization and the remodeling of the vascular wall, respectively. 
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To determine whether functional blood vessels could be formed in situ through 
recruitment of circulating cells, Talacua et al. [181] utilized Gore-Tex sheets and 
PCL/fibrin conduits loaded with monocyte chemoattractant protein-1 (MCP-1). 
Following implantation into the abdominal aorta of rats, an end-to-end anastomosis 
was made to a 4 × 10 mm2 impenetrable Gore-Tex strip using 10–0 interrupted 
sutures distally and proximally of the electrospun tube. Then, Gore-Tex was 
wrapped around the PCL in samples, creating an impenetrable outer layer. The 
results demonstrated that Gore-Tex shielding led to a significant reduction of cell 
ingrowth from neighboring tissues, whereas MCP-1 was beneficial to 
endothelialization and tissue formation via the recruitment of circulating cells. 

11.4.4 Incorporation of Nucleic Acids 

Gene therapy, supplementation, and regulation are potential treatment options for 
acquired and inherited cardiovascular diseases. In the 1980s, direct intra-arterial 
gene transfer with endovascular catheters demonstrated the potential of cardiovas-
cular gene therapy [182]. Currently, the potential targets for cardiovascular gene 
therapy include severe cardiac and peripheral ischemia, heart failure, vein graft 
failure, and some forms of dyslipidemias [183]. 

E2F transcription factor antisense decoys have been tested in clinical settings, but 
the results were disappointing [184]. However, these trials established the clinical 
feasibility of using a 30-min intraoperative window to functionalize graft tissues 
ex vivo with prophylactic therapies [185]. Akowuah et al. [186] engineered vascular 
grafts with genetically modified BMSCs on poly(propylene carbonate) graft, which 
delivered the tissue inhibitor of metalloproteinase 3 (TIMP-3) plasmid to the saphe-
nous vein graft in vitro by ultrasound exposure in the presence of echo contrast 
microbubbles. In porcine carotid artery transplantation models, at 28 days 
postgrafting, lumen and total vessel area were significantly greater in TIMP-3



group than in the untransfected and control groups. Meng et al. [187] developed a 
receptor-targeted nanocomplex (RTN) vector system. The RTN vector was com-
posed of cationic liposome lipofectin, a peptide (Peptide-Y: 
K16GACYGLPHKFCG), and plasmid DNA encoding iNOS. Vein grafts were 
transfected with RTN before engraftment into rabbit carotid arteries. The majority 
of ECs and macrophages remained positively transfected at 7-days. Morphometric 
analysis of vein graft samples at 28-day postimplantation showed an approximate 
50% reduction in neointimal thickness and 64% reduction in neointimal area in 
iNOS-treated groups compared with control groups. Zhong et al. [188] developed a 
novel recombinant lentivirus for the delivery of hepatocyte growth factor (HGF) and 
Bax in a rabbit vein graft model of bypass grafting. Rabbit vein segments were 
dissected and HGF and Bax cDNA were introduced by lentivirus vectors. Then, vein 
segments were interposed into the rabbit carotid arteries. The results showed that 
vein graft thickening was markedly reduced in HGF/Bax-treated rabbits compared to 
controls. Jiang’s group designed plasmid DNA encoding TIMP-3 and lyophilized it 
on the inner surface of a flexible, biodegradable, and conductive external metal-
polymer conductor stents (MPCS) to overexpress TIMP-3 in the adventitia and the 
middle layers of vein grafts. The engineered MPCS significantly inhibited intimal 
hyperplasia of vein grafts in rabbit models [189]. 
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Electrospun fibers can be easily gene functionalized by encapsulating plasmids, 
siRNAs, and microRNAs [190]. Yuan’s group developed a bioactive trilayered 
electrospun graft encapsulating both microRNA (miR)-126 and miR-145 for ratio-
nally modulating vascular regeneration. The rapid release of miR-126 from the inner 
layer could promote the proliferation and intracellular NO production of ECs. 
Meanwhile, the slow release of miR-145 from the middle layer was in favor of 
modulating the contractile SMC phenotype by targeting KLF4 and upregulating the 
protein expression of myocardin and myosin [191]. 

Genetically modified cells may be beneficial in fabricating TEVGs. They are 
generated by the introduction of genetic material into cells to: (1) replace a disease-
causing gene; (2) inactivate a mutated gene; (3) transdifferentiate some specific cell 
lineages; and (4) express growth factors for cell expansion [192]. Zhang et al. created 
small-diameter vessels by seeding and culturing eNOS-modified MSCs onto a 
synthetic polymer scaffold produced by an electrospinning technique [193]. The 
results showed that the seeded cells integrated with the microfibers of the scaffold to 
form a three-dimensional cellular network, indicating a favorable interaction 
between this synthetic scaffold and MSCs. High transduction efficiency was 
obtained with the use of concentrated retrovirus in the gene transfection of MSCs. 
The use of MSCs and therapeutic genes in tissue engineering of blood vessels could 
be helpful in improving vessel regeneration and patency.
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Chapter 12 
Myocardial Tissue Repair 
and Regeneration 

Kai Wang, Shuqin Wang, Yuchen Miao, Yuwen Lu, Houwei Zheng, 
Kaicheng Deng, Liang Song, Shifen Li, Yang Zhu, and Changyou Gao 

Abstract Heart failure caused by myocardial infarction (MI) remains a major threat 
to human health. After MI, a series of pathological events take place, including 
apoptosis of cardiac cells, arrhythmia, inflammation, fibrosis, and adverse 
remodeling of infarcted myocardium. To repair the damaged heart, researchers 
have done a lot to find out effective methods for the MI treatment. Recent progress 
in the field of biomaterials engineering for disease treatment mainly focused on 
tuning the physicochemical properties for better therapeutic effect based on tissue– 
biomaterial interaction. Among them, biomaterials have been developed to increase 
oxygen supply, salvage cardiac cells, maintain electroconductivity, mediate micro-
environment, and regenerate cardiomyocytes in the infarct and border zone, in order 
to preserve cardiac function and morphology. Strategies for controlling these prop-
erties include chemical modification, type and degree of crosslinking, and incorpo-
ration of bioactive molecules. This chapter focuses on the advances and clinical 
translation of various biomaterials for repair and regeneration of cardiac tissue 
after MI. 
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12.1 Introduction 

Heart failure (HF) remains one of the leading causes of mobility and mortality 
worldwide. HF is the end stage of various cardiovascular diseases, and adversely 
impacts cardiac function [1]. Myocardial infarction (MI) resulted from the occlusion 
of coronary arteries is the major cause of HF. Irreversible cardiomyocyte necrosis 
and apoptosis caused by myocardial ischemia would lead to electrical signal disor-
der, inflammation and fibrosis in infarcted area and border zone, which all contribute 
to the development of HF [2]. 

The focus of clinical interventions including percutaneous coronary intervention 
(PCI) and coronary artery bypass grafting (CABG) for MI can restore blood perfu-
sion in ischemic myocardium [3, 4]. In addition, medications including angiotensin-
converting enzyme inhibitors, angiotensin II receptor blockers, beta-blockers, 
diuretics, and inotropes are commonly applied in the early and middle stages of 
MI to increase blood supply. In the end stage, the ultimate option is heart transplan-
tation, yet the high cost and the shortage of suitable donors make it not suitable as a 
universal choice [5]. Another prospective approach for MI or HF treatment is stem 
cell-based therapy. The therapeutic potential of mesenchymal stem cells (MSCs) and 
endothelial progenitor cells (EPCs) has been demonstrated in terms of attenuating 
left ventricular remodeling and promoting angiogenesis [6, 7]. However, promoting 
retention and proliferation of implanted stem cells are highly challenging [7]. There-
fore, there is a need to develop more efficient and comprehensive therapies to repair 
heart function and promote cardiac tissue regeneration [8]. 

Numerous biomaterials have been developed to treat MI. These biomaterials not 
only offer mechanical support temporarily to inhibit LV dilation, but also serve as 
carriers to deliver bioactive payloads such as cells, exosomes, bioactive factors and 
drugs with improved retention [9, 10]. CorPatch, a cardiac patch device derived from 
decellularized porcine intestine, has been approved by FDA for treating HF 
[11]. The patients received CABG and fibrin patch implantation with human 
ESC-derived cardiac progenitor cells showed a substantial increase in left ventricular 
ejection fraction (LVEF) [12, 13]. Meanwhile, a Phase I clinical trial on VentriGel, 
an intramyocardially injected extracellular matrix hydrogel, has demonstrated its 
safety and feasibility of transendocardial injection [14]. A calcium–alginate hydro-
gel, named Algisyl-LVR, has been administered to dilated cardiomyopathy patients. 
The LV size was reduced, and no adverse events were reported after 24-months 
follow-up [15]. 

This chapter summarized recent advances in research and clinical translation of 
biomaterials for HF or MI treatment, with the focuses on alleviating ischemia, 
inhibiting LV dilatation, restoration of electric signal conduction, mediation of 
inflammation, and promoting cardiac regeneration (Scheme 12.1).
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Scheme 12.1 Methods and beneficial effects of biomaterials treatment for myocardial infarction 
and heart failure 

12.2 Restoration of Oxygen Supply 

12.2.1 Oxygen Production In Situ 

In myocardial infarction, the occlusion of coronary artery causes acute ischemia of 
the myocardium, leading to the unbalanced consumption of oxygen and adenosine 
triphosphate and ultimate ischemic necrosis of the myocardium [16]. Oxygen ther-
apy has been continuously improved since it was pioneered by Beddoes in 1978, as 
numerous studies have demonstrated their positive therapeutic effect on different 
types of ischemic diseases [17–19]. Current oxygen therapy for myocardial infarc-
tion focuses on systemic oxygen enrichment, but the efficacy needs to be improved. 
Moreover, the results of clinical trials and preclinical studies are inconsistent, and 
clinical data are scarce to demonstrate the efficacy of oxygen inhalation in MI 
patients [20, 21]. This may be a result of the mismatch between the systemic oxygen 
supplement and the disease characteristics of local hypoxic environment in the 
ischemic myocardium [16]. 

Biocompatible oxygen-carrying biomaterials (OCB) have been applied on myo-
cardial tissue repairment attributed to their reversible binding and on-demand release 
of oxygen. Hemoglobin-based oxygen carriers (HBOC) containing natural hemo-
globin or myoglobin have been widely studied [22–25]. For example, Caswell et al.



used HBOC-201 to reduce myocardial infarct size in a canine model of acute 
coronary artery occlusion and reperfusion [22]. Besides HBOC, perfluorocarbons 
have been applied to improve cardiac performance due to their high oxygen solu-
bility, chemical and biological inertness, and ease of sterilization [26, 27]. 
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Fig. 12.1 Oxygen-generating biomaterials. (a) Fabrication and oxygen release mechanism of 
oxygen releasing microspheres [28]. (Reprinted from [28] with permission, copyright 2021 
Elsevier). (b) False-colored scanning electron micrograph of multiple S. elongatus cyanobacteria 
(green) with a single rat cardiomyocyte (red) (left). Representative images of a live/dead assay of 
cardiomyocytes alone (middle) and cardiomyocytes cocultured with S. elongatus (right) 
[35]. (Reprinted from [35] with permission, copyright 2020 American Chemical Society). (c) 
Schematic illustration for the synthesis of UCCy@Gel for acute MI prevention (dark phase) and 
therapy (light phase) [37] (Reprinted from [37] with permission, copyright 2022 Wiley) 

As another kind of oxygen therapy materials, oxygen-generating biomaterials 
(OGB) are also employed in treating myocardial disease [28–38]. One category of 
OGB is based on the decomposition of peroxides to generate oxygen, of which the 
peroxides are usually combined with polymers to build oxygen releasing materials. 
As shown in Fig. 12.1a, Fan et al. developed an injectable, oxygen-releasing core/ 
shell microspheres with poly (lactide-co-glycolic acid) as shell and poly 
(N-vinylpyrrolidone)/H2O2 complex as core to augment cell survival and promote 
cardiac repair after myocardial infarction [28]. The system can be easily injected and 
retained at the infarction site. The system can release oxygen continuously for 
4 weeks which is significantly longer than the traditional oxygen system [29, 30], 
while avoiding the generation of excessive reactive oxygen species (ROS) induced 
by high oxygen concentration, thereby achieving heart repair as evidenced by 
echocardiographic and immunohistological analysis. 

Taking into account both oxygen production and consumption of metabolites, a 
photosynthetic OGB system was developed, which can form a small in situ ecosys-
tem where the metabolic products can be reused by photosynthetic organisms to 
produce O2 [31–33]. As shown in Fig. 12.1b, Haraguchi et al. created an in vitro



n

“symbiotic recycling system” composed of mammalian cells and algae, which can 
increase the dissolved oxygen concentration in the medium and decrease glucose 
consumption and lactate production, resulting in thicker cardiac tissues [34]. Cohen 
et al. developed an innovative approach to correct myocardial ischemia by directly 
applying photosynthetic S. elongatus to infarcts and inducing in situ photosynthesis 
[35]. With the help of S. elongatus and local light irradiation, the photosynthesis 
system can provide oxygen and nutrients to ischemic myocardium, thereby allevi-
ating the pathological conditions. Compared to that in the control ischemic myocar-
dium, the oxygenation level in S. elongatus-treated hearts increased by 25 times after 
10 min irradiation, and the cardiac output increased by 60% after 45 min treatment. 
In addition, S. elongatus can sustainably improve ventricular function after transient 
ischemia, as demonstrated by echocardiography and cardiac magnetic resonance 
imaging 4 weeks after treatment. However, without physical support after injection, 
local retention of the cyanobacteria in the myocardium is limited. Stapleton et al. 
used bioengineered hydrogel particles to extend the retention and further enhance the 
therapeutic effect of S. elongatus [36]. A mixture of aqueous calcium– 
ethylenediaminetetraacetic acid (Ca-EDTA) complex solution and aqueous 
alginate–S. elongatus solution was emulsified into microgels (50 μm–80 μm i  
diameter) using a microfluidic t-junction device. The encapsulation of S. elongatus 
into alginate microgels as delivery vehicles sustained local photosynthetic O2 deliv-
ery to ischemic myocardium. Moreover, as shown in Fig. 12.1c, Liu et al. developed 
a photoresponsive upconversion cyanobacterium nanocapsule (UCCy@Gel) to 
achieve near-infrared-induced respiration and photosynthesis [37]. In vitro experi-
ments demonstrated that the encapsulated cyanobacteria in UCCy@Gel maintained 
high activity. The MI mice injected with UCCy@Gel and treated with 980 nm NIR 
for 3 days showed significant improvement in cardiac function. It is hypothesized 
that oxygen therapy activates the Notch pathway to suppress macrophage polariza-
tion to the inflammatory M1 type, and the upregulation of HSP70 activates the 
Wnt/β-catenin pathway to downregulate caspase-3 in dark. 
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The studies of oxygen releasing materials for myocardial infarction treatment 
currently remain at the rodent level, while large animal models are needed to further 
substantiate their corresponding efficacy and safety. In addition, due to the risk of 
oxidative damage from hyperoxia and metabolic death from hypoxia, local oxygen 
concentration needs to be controlled in an appropriate range to achieve the recovery 
of cardiac function in infarcted hearts [39]. Nakada et al. discovered that ~7% 
oxygen for 2 weeks is effective in improving cardiomyocyte proliferation [40]. Opti-
mal target spatial and temporal profiles of oxygen concentration in infarct and border 
zone tissue are yet to be determined. 

12.2.2 Increasing Blood Supply 

When coronary arteries are occluded, the blood supply would be insufficient at the 
infarcted myocardium [41]. The pharmaceuticals, primary percutaneous coronary



intervention (PCI), and fibrinolytic therapy are mainstream modalities for treating 
ischemic cardiomyopathy, reducing infarct size and preserving cardiomyocytes via 
rapid dredging of the blocked vessels and restoring the structural integrity of the 
downstream vascular system [42]. When there are blockages in most of tiny blood 
vessels, or a large scale of cardiomyocyte death after MI, the PCI treatment seems 
not to work that well [43]. Therefore, it is necessary to find out additional 
cardioprotective strategies to rebuild vessels to increase blood supply after MI 
without bringing side effects. Using bioactive molecules such as genes, proteins or 
cells to promote angiogenesis is an appropriate method for restoring blood supply. 
Biomaterials such as hydrogels, scaffolds, patches, nanocarriers and liposomes are 
the ideal carriers for to shelter and deliver these bioactive molecules to the treating 
site, which have become promising treatments for ischemic cardiomyopathy [44]. 
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Growth factors including vascular endothelial growth factor (VEGF), basic 
fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like 
growth factor 1 (IGF-1), and stromal cell-derived factor 1 (SDF-1) have shown the 
ability of promoting angiogenesis in infarcted hearts [45]. Biomaterials have been 
used as carriers to extend the retention and control the release of the growth factors. 
For instance, Rufaihah et al. used polyethylene glycol and fibrinogen to prepare an 
injectable composite hydrogel to load and deliver VEGF-A in a sustained and 
controlled manner. The VEGF-loaded hydrogel significantly improves the angio-
genesis and cardiac function compared to MI control [46]. In addition, angiogenic 
effects can be further enhanced by combined use of growth factors. Coulombe et al. 
prepared a collagen-based hydrogel incorporated with proteins-loaded alginate 
microspheres, where the alginate microspheres loaded single, double and triple 
combinations of bFGF, VEGF and sonic hedgehog (SHH), which were then applied 
in a rat ischemia/reperfusion model. VEGF and bFGF together could promote 2D 
vascularization, and SHH could further encourage the growth of blood vessels in a 
3D-modified experiment of aortic ring vascularization. Altogether, the cocktail of 
growth factors outperforms single proteins in angiogenesis [47]. Exerting compre-
hensive therapeutic effects on the infarction site at the same time via cardiac patches 
is another promising therapeutic approach for MI treatment. Ye et al. designed a 
multifunctional device that included an elastic patch, microchannel networks and a 
therapeutic-agents-delivering system through a subcutaneously implanted pump. 
When applied in a rat MI model, the delivery system assisted by the pump is able 
to release the loaded platelet-derived growth factor-BB sustainably, which helps to 
further decrease ventricular remodeling, and facilitate angiogenesis and achieve a 
better cardiac function finally [48]. 

The emergence of stem cell therapies and their efficacy in animal experiments 
have brought great hope to restoration of blood supply in MI patients. Two main 
possible mechanisms of boosting angiogenesis by stem cells are direct 
cardiomyogenic/vasculogenic differentiation and indirect stimulation of the repara-
tive response through paracrine effects [49]. Human induced pluripotent stem cells 
(hiPSCs), as an important cell therapy choice, are widely used in experimental or 
clinical treatment for various ischemic diseases [50]. Multiple researches have 
demonstrated that hiPSCs are able to reduce the infarct size, inhibit tissue fibrosis,



improve cardiac function and increase ejection fraction. For example, Zhang et al. 
prepared a 3D fibrin patch combined with three kinds of hiPSCs-derived cells 
(cardiomyocytes, smooth muscle cells, endothelial cells) loaded with IGF1, which 
was injected into infarcted porcine hearts. There are significant improvements in 
myocardial contractile quality, wall stress and metabolism, demonstrating that the 
hiPSC treatment can promote myocardial repair and enhance heart function 
[51]. Likewise, Cheng et al. injected a hydrogel containing iPSCs-derived cardiac 
progenitor cells into a porcine MI model via intrapericardial injection, which was 
then formed a patch-like mold in the pericardial cavity, leading to a desirable cardiac 
regeneration and repair after 4 weeks of treatment [52]. 
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MicroRNAs (miRNA) are a class of noncoding single-stranded RNAs of about 
22 nucleotides in length encoded by endogenous genes, which can regulate gene 
expression, cell cycle, and developmental timing of organisms. Some miRNAs can 
alleviate important pathological consequences of MI [53]. Recent progresses have 
shown the potential of miRNA in MI treatment by stimulating neovascularization. 
For example, Yang et al. used functionalized mesoporous silica nanoparticles 
(MSNs) loaded with microRNA-21-5p, which were loaded into an injectable hydro-
gel to prepare a miRNA delivery system. In response to the local acidic microenvi-
ronment, a sustained release of microRNA-21 to the injection site was achieved. In a 
porcine MI model, microRNA-21-5p delivery to endothelial cells via MSNs remark-
ably promoted local neovascularization and decreased cardiomyocytes 
apoptosis [54]. 

12.3 Mechanical Support 

In some patients, left ventricular wall will become thin and dilate, forming a 
ventricular aneurysm [55]. According to Laplace theorem [56], the stress of the 
ventricular wall is inversely proportional to the thickness of the cardiac wall; thus, 
the dilatation and thinning of the left ventricular wall further increase the stress in the 
ventricular wall. This vicious cycle leads to expansion of necrosis and fibrosis [57]. 

Mechanical signals during ventricular remodeling are sensed by cardiac cells 
including cardiomyocytes and fibroblasts, and converted into transcriptional 
responses [58]. Transcriptional levels of mechanosensing genes including Piezo1 
and Piezo2 are significantly increased in patients with ischemic cardiomyopathy 
compared to control. Correspondingly, the expression of cardiac contraction genes is 
down-regulated [44]. Therefore, the mechanical environment in the myocardium 
needs to be fixed to fully repair the infarcted heart.
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12.3.1 Decreasing Mechanical Load 

As the LV dilates and LV wall becomes thinner, the stress and mechanical load in the 
infarct areas significantly increase [59]. Injectable hydrogels implanted into the 
myocardium and cardiac patches placed on epicardial surface could increase the 
thickness of myocardium, hence decrease the stress, strain, and mechanical load in 
the LV myocardium, and break the aforementioned vicious cycle. 

Decreasing mechanical load in myocardial infarct regions is desirable for heart 
with thinning left ventricular walls. The range of the stiffness for the native myo-
cardium is �20–100 kPa [60]. When stretched at 30% strain along the circumfer-
ential direction of the myocardium, the strain in the acute infarct region is higher 
than the strains in remote healthy regions. Biomaterials including hydrogels and 
cardiac patches for decreasing mechanical load of myocardial tissue must fulfill 
specific mechanical requirements of native myocardium to prevent mechanical mis-
matches that may impair heart function [61]. Wall et al. simulated the mechanical 
effects of injecting a noncontractile material into ovine LV myocardium with an 
anteroapical infarct using a finite element model [62]. The injectate reduces patho-
logical wall stress in a volume, stiffness, and position-dependent manner, particu-
larly in the border zone myocardium. Lin et al. studied how viscoelastic patch with 
different stiffness and viscosity affected the heart cycle on a simplified left ventricle 
[63]. At working frequency, the stroke volume dropped promptly as the order of 
magnitude of G′′/G′ (the ratio between the loss and storage modulus) approached 
10-1 . When G′′/G′ is near 10-1 , the ventricle has a longer exposure to the lowered 
stroke volume under initial prestretch during the equilibration process. It is desirable 
to have G′′/G′ ~1 for a wider frequency range, which can be satisfied at the gel point 
[64]. A material near the gel point can not only provide necessary fluidity, but also 
avoid excessive dissipation. 

As shown in in vitro tensile experiments, injectable hydrogels and cardiac patches 
significantly reduce the stress and strain in both longitudinal and circumferential 
directions of LV wall [65, 66]. Cardiac function and geometry are preserved in 
hydrogel- or patch-treated hearts compared to untreated ones. In addition, the 
expression of mechanosensing genes including Piezo1/2 and Angiotensin II is 
significantly lowered down, whereas the decreased expression level of cardiac 
contraction genes is also restored [67]. These results confirm the key role of 
mechanical effects in the progression of pathological LV remodeling, and the 
mechanical support from biomaterials can mediate such effects. 

The hydrogel materials are desirable to be stiff, degradable, and compatible with 
minimally invasive injection approaches [68]. Some common natural hydrogels 
made from collagen [69], fibrin [70], decellularized extracellular matrix (ECM) 
[71], chitosan [72], and alginate [73] are used for cardiac tissue engineering. 
Potential drawbacks for these materials include rapid degradation, long gelation 
time, and poor mechanical properties [74]. By altering the compositions, structures, 
and processing of hydrogels, their mechanical strength, porosity, degradation rate, 
gelation rate, and other properties can be modulated. Polyethylene glycol (PEG) is a



synthetic polymer, and its mechanical properties can be more easily modulated 
compared to natural polymers. Chow et al. [75] copolymerized PEG acrylate with 
PEG dithiol to develop a degradable hydrogel with mechanical properties similar to 
the normal infarcted myocardium. Poly(N-isopropylacrylamide) (PNIPAAm), a 
thermosensitive water-soluble homopolymer, has been used in conjunction with 
carbon nanotubes (CNTs), an attractive combination for cardiac engineering in 
particular due to the conductive abilities and strong mechanical properties of 
CNTs [76]. GelMA hydrogels can be tailored by modifying the amount of 
methacrylic anhydride, which can provide the hydrogels with considerable strength 
and stiffness [77]. 
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Injectable hydrogels have been tested in clinical trials. In one clinical study used 
IK-5001 device, injectable acellular alginate-based hydrogels were tested in 27 MI 
patients. All patients were treated with the hydrogel and all tolerated the procedure, 
with no adverse events. Moreover, echocardiographic results demonstrate that the 
left ventricular (LV) indices and the LVEF are preserved [78]. Hydrogel with 
alginate as the main component has been applied in clinical trials. Its therapeutic 
potential of inhibiting the injury process after MI has been proved in phase I and 
Phase II clinical trials, and the safety of implantation has been effectively verified 
[79–81]. Injection of Algisyl-LVR [82] was used for the first time in patients who 
had symptomatic heart failure. In all patients, the cardiac function of the left ventricle 
(LV) was improved significantly, as manifested by consistent reduction of the LV 
volume and wall stress through finite element method [83]. Zhu et al. [52] demon-
strated the feasibility of minimally-invasive intrapericardial injection in a clinically-
relevant porcine model to deliver therapeutic-bearing hydrogels to the heart for 
cardiac repair. 

Biomaterials-based cardiac patches can be categorized into two types according 
to the sources of materials including natural materials and synthetic materials. The 
natural materials for cardiac patches include proteins (collagen, fibrin, and gelatin), 
polysaccharides (alginate, chitosan, and hyaluronic acid), and decellularized tissues. 
Some groups adopted natural tissues such as peritoneum and muscle tissue to 
prepare cardiac patches. Fibrin materials have a nanometric fibrous structure similar 
to native ECM [84]. A clinical trial was performed to investigate the feasibility of the 
surgical procedure, revealing the effectiveness of the fibrin patch loaded with human 
ESC-derived cardiac progenitor cells in clinical applications [85]. Instead of open-
chest surgery, Tang et al. [86] explored a way to apply cardiac patches by spray-
painting platelet and fibrin in situ onto the heart. The spray method is beneficial in 
reducing fibrosis and improving cardiac function. With divalent and trivalent ions 
such as Ca2+ , the cohesive nature of alginate allows it to be compressed into the form 
of patch [87]. The decellularized tissue-based patches showed a high integration 
with host cardiac tissues, as characterized by the observation of neovascularization 
in the host myocardium [88]. The stiffness of most natural materials ranges in tens of 
Pa, so patches are hard to tolerate the stress exerted by ventricle. Mechanical 
properties of synthetic materials are usually higher, and batch-to-batch variability 
is usually lower compared to natural materials [89]. Among the synthetic materials, 
polyurethane (PU) and poly(glycerol sebacate) (PGS) have relatively higher



biocompatibility. Wagner et al. [90, 91] studied biodegradable polyester urethane 
urea (PEUU) patches. After being applied onto the infarcted myocardium, the PEUU 
patches promoted the formation of smooth muscle, induce muscle cellularization, 
attenuate LV adverse remodeling, and improve contractile function. Chen et al. [66] 
found that the Young’s modulus of PGS synthesized at 110, 120, and 130 °C ranges 
from tens of kPa to several MPa, which well meets the mechanical requirements of 
the materials applied for cardiac patches. Cardiac patches can be fixed to the 
myocardium by suturing [92], adhesion [93], and microneedles [59]. Compared to 
suturing and adhesion, the microneedle fixation is a facile and safe suture-free 
technology for patch implantation. Lu et al. [59] developed a self-interlocking 
patch which provides a mechanical support close to sutured patch. The circumfer-
ential and longitudinal strains in the infarct are reduced to 12.3% and -3.5%, 
respectively. 
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12.3.2 Assisting Cardiac Output 

As a result of myocardial infarction, the cardiac output is impaired, leading to 
disproportion between blood supply and demand [94, 95]. Drugs including sodium 
nitroprusside [96], dobutamine [97], milrinone [98], sacubitril/valsartan [99], and 
levosimendan [100, 101] are employed to increase cardiac output, but with conse-
quent side effects. For instance, cyanide toxicity is a complication of sodium 
nitroprusside administration [102], calcitropes such as dobutamine may increase 
myocardial oxygen demand and cause arrhythmias [98]. Mechanical devices are 
widely used as alternatives to enhance cardiac output, and the physical mechanisms 
vary depending on the type of devices. 

Temporary circulatory support (TCS) devices are used to enhance cardiac output 
in treatment for heart failure after myocardial infraction. Current commercially 
available devices include intra-aortic balloon pump (IABP), Impella, and 
TandemHeart. IABP has been widely used for five decades. First, the balloon is 
placed in the descending thoracic aorta. The balloon inflates and increases the 
volume in the aorta during diastole, causing the peak diastolic pressure to rise and 
coronary blood flow to increase. Subsequently, the balloon deflates during systole, 
the aortic volume decreases and results in reduction in the afterload with subsequent 
improved unloading of the left ventricle (Fig. 12.2)  [103]. However, some passive 
clinical results, including a failure to significantly reduced 30-day mortality in 
patients with AMI complicated by cardiogenic shock [104], cause the recommen-
dations for an IABP guideline downgrading in treating acute myocardial infarction. 

Impella is a kind of percutaneous temporary circulatory support device that is 
mainly composed of a motor pump and a pigtail catheter. It is inserted via the 
femoral artery, and the pigtail catheter is positioned across the aortic valve in a 
retrograde way, where left ventricular blood is delivered to the proximal aorta by the 
pump. This device works by decreasing left ventricular size, pressure, wall tension, 
and oxygen consumption [105].
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Fig. 12.2 Intra-aortic balloon pump schematic [106] (Reprinted from [106] with permission, 
copyright 2020 AME PUBL CO) 

Similar to Impella, TandemHeart is a percutaneous ventricular assisting device 
(VAD) consisting of drainage and return cannulas, a centrifugal pump, and a console 
regulating the pump. The drainage catheter is usually inserted via the femoral vein 
into the right atrium and placed in the left atrium by using a trans-septal approach 
[106]. The TandemHeart increases cardiac output and mean arterial pressure, and 
decreases cardiac filling pressure by venting the left atrium [107]. However, retro-
grade aortic blood flow increases left ventricular afterload, potentially diminishing 
the beneficial effects of this device [108]. 

LVAD (left ventricular assist device) is employed for extended mechanical 
circulatory support, which has two basic patterns of perfusion, including the pulsatile 
and continuous-flow devices. The development of LVAD can be divided into three 
stages. The first-generation devices simulate the natural perfusion by using pulsatile 
pumps, but have significant limitations including limited durability, extensive sur-
gery for implantation, large external lead, and audible pump [109, 110]. The second-
generation devices replace the pulsatile pumps with axial-flow pumps to provide 
continuous blood flow, thereby providing better organ perfusion and superior dura-
bility than the first generation. Continuous-flow LVADs have several basic compo-
nents including the inflow cannula, outflow cannula, internal pump, percutaneous 
driveline, controller, and power source. The inflow cannula placed in the LV delivers



blood from the LV cavity to the pumping chamber and subsequently carries blood 
from the pump chamber to the aorta. The primary difference between the third-
generation and the second-generation devices is the design of pump. The third-
generation devices use centrifugal pumps instead of axial-flow pumps to deliver 
blood based on centrifugal mechanism. Compared to the second generation, the 
third-generation LVADs have a noncontact bearing design, thereby are better at 
durability. It is known that excessive shear stress activates platelets. The centrifugal 
pumps allow lower shear in working process, and substantially reduce the chance of 
stroke and pump thrombosis [111]. 
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Fig. 12.3 (a) The muscle fiber orientations of the outer two layers of the myocardium of the heart 
inspire the design of the VAD. (b) Individual active layers composed of fluidic actuator contractile 
elements arranged and embedded in soft matrices can compress and decompress, twist and untwist, 
or simultaneously perform both actions [113] (Reprinted from [113] with permission, copyright 
2017 Science) 

The LVADs contact with blood, thus continuously activate the coagulation 
system, posing risks of embolization. Therefore, devices that do not contact with 
blood are highly desirable. The concept of DCC (direct cardiac compression device) 
was introduced more than 50 years ago to prevent any contact with blood by 
compressing the failing heart from its external surface (the epicardium) [112]. 

Walsh et al. [113] designed a tethered implantable sleeve (Fig. 12.3) based on soft 
robotic techniques that can provide circulatory support for patients with impaired 
heart function. Normally, myocardium simultaneously undergoes twisting and com-
pressive motions. Soft pneumatic artificial muscles (PAMs) are oriented in helical 
and circumferential patterns to simulate the two outer layers of the myocardial fibers 
of the heart to replicate cardiac motion. Silicone and thermoplastic polyurethane 
(TPU) are used to fabricate PAMs, and alginate polyacrylamide hydrogel is intro-
duced between device and tissue as a protective layer which can minimize inflam-
mation and reduce friction when the device moves over the heart. The cardiac output 
is reduced to about 45% of baseline when acute heart failure happens in a porcine 
model induced by fusing esmolol, then recovers to about 97% of baseline when the 
soft robotic sleeve is initiated. This study demonstrates the potential for soft robotic 
techniques applied in supporting heart function, but long-term safety and efficacy are 
yet to be verified. 

Gu et al. [114] combined permanent magnets and patches to provide powerful 
actuation assisting native heart pumping inside a magnetic actuation system 
(Fig. 12.4). Each magnetically active cardiac patch (MACP) is composed of an 
NdFeB magnet, a magnet housing, and a 3D-printed patch to fix on the epicardial



surface. The magnet housing and patch are made of polylactic acid (PLA) and 
durable resin (FLDUCL02), respectively. When preprogrammed dynamic magnetic 
fields are applied to the MACPs, the patches will compress the heart in a 
predetermined way. It is shown that EFs reach 37% in the left ventricle and 63% 
in the right ventricle on a healthy pig’s heart in vitro. However, this system could be 
further optimized, for example, exploring phase differences to increase the volumet-
ric output of the heart, and developing new methods to adhere the patches on the 
heart in a less invasive way instead of surgical sutures. 
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Fig. 12.4 Schematic illustration of functioning MACP [114] (Reprinted from [114] with permis-
sion, copyright 2021 Wiley) 

Zhou et al. developed an active hydraulic ventricular attaching support system 
(ASD) to overcome the major limitations of prior devices by combination and 
optimization of existing treatment means [115]. As shown in Fig. 12.5, ASD is a 
net cover composed of interconnected hollow flexible tubules. Apertures on the side 
facing the epicardium can be introduced into the tubules to release the therapeutic 
materials filled in hollow tubules. In addition, ASD tubules can be packed with fluid 
and connected to external pneumatic pump for exerting continuous pressure on the 
ventricles to provide physical pressure. ASD is implanted via a median-sternotomy 
and pericardiotomy, and placed over the heart to entirely enclose both ventricles and 
to protect the atrioventricular (AV) groove from interrupted sutures [116]. The latest 
experiments in a rat heart failure model indicate that the ASD can improve cardiac 
function and prevent ventricular remodeling [117]. However, further experiments



should also be conducted to study whether the pathologic remodeling persists or not 
after the termination of restraint therapy. 

510 K. Wang et al.

Fig. 12.5 The ASD device. (a) 3D model of ASD, (b) 3D blue wax model, (c) wax model of ASD 
was plunge into liquid silicon, (d) model put into oven for 1 h at 50 °C, (e) blue wax start melting 
from the ASD model at 100 °C for 30 min, (f) ASD from pure silicon, and (g) ASD connected with 
implantable catheter, scale bar 100 μm [118] (Reprinted from [118] with permission, copyright 
2019 Wiley) 

12.4 Restoration of Electrical Signal Conduction 

Due to the limited regenerative capacity of myocardial cells [119], heterogeneous 
fibrous tissue will gradually replace the infarcted myocardium after suffering MI, 
including the embedded cardiac conduction system. In many patients, the infarct is 
structurally featured with scattered clusters of surviving myocardial cells in the scar 
tissue, leading to reentrant and low conduction velocity of electrical singal. As a 
result, the infarcted myocardium could not maintain normal excitation-contraction 
coupling and electrical signal transduction, causing arrhythmia impairment in car-
diac pumping function, which is a major short-term risk in MI patients. Therefore, 
reconstructing cardiac conduction in the infarct is highly desirable and may generate 
synergic effect together with mechanical support. 

At present, the main method of clinical treatment for arrhythmia is radiofrequency 
catheter ablation (RFCA). RFCA is a minimally invasive therapy that sends the 
mapping and ablation electrode catheter into the heart through blood vessel, release 
the controllable radiofrequency current locally, and dehydrate the myocardial tissue 
causing tachycardia and dry necrosis, thus blocking the abnormal electrical activity 
to achieve the therapeutic purpose [120]. However, the above methods can not 
directly improve the electrical conductivity of myocardial infarction area. A prom-
ising strategy to reduce the risk of arrhythmia is to use conductive biomaterials to



o

assist electrical signal propagation and synchronize discrete myocardial tissue. There 
are two main strategies to implant conductive biomaterials, which are direct injection 
of biomaterials into the MI area and fixation of biomaterials on the surface of the 
myocardium. 
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Common conductive biomaterials mainly include intrinsic conductive polymers, 
carbon-based nanomaterials, and metal nanomaterials. Intrinsically conductive poly-
mers are synthetic polymers with conductive properties. The delocalized electrons 
move along their conjugated main chains, forming a large number of movable 
charge carriers (electrons or holes) in the molecular chains to achieve conductivity. 
The intrinsic conductive polymers in cardiac tissue engineering include polypyrrole 
(PPy), polyaniline (PANi), polythiophene (PTh), and their derivatives [121– 
123]. The carbon-based nanomaterials are a kind of biomaterials with unique 
structure and physical and chemical properties. Graphene, carbon nanotubes 
(CNTs), fullerenes and carbon dots [124–126] are the most popular carbon materials 
in cardiac repair. The metal nanomaterials have remarkable conductivity, and their 
high surface free energy allows them to be easily modified. Gold, silver and their 
related alloys are also commonly used as conductive biomaterials in biomedical 
applications. They are usually in nanometer size, such as nanotubes/nanowires 
[127], nanorods [128], and nanoparticles [129]. 

12.4.1 Conductive Injectates 

Injectable hydrogels have received extensive attention in the field of MI treatment 
and cardiac tissue engineering, because they can provide mechanical support and be 
functionalized to reduce necrosis, suppress inflammation and fibrosis, and promote 
angiogenesis [130]. Conductive hydrogels, cardiac patches, conductive nanofibrous 
membrane and porous conductive scaffold have been developed so far [131] t  
transmit electrical signals across the necrotic zones and connect the remaining 
contractile myocardium in the infarct. 

The conductive hydrogels are mainly fabricated by mixing conductive compo-
nents into hydrogel substrate such as carbon-based nanomaterials or metal 
nanoparticles. Nikkhah et al. fabricated UV-crosslinkable gold nanorods (GNR)-
incorporated gelatin methacrylate (GelMA) hybrid hydrogels for myocardial regen-
eration and repair (Fig. 12.6a). The conductive structure of hybrid hydrogels pro-
moted intercellular signal transmission and electrical signal transmission, which 
increased the expression of Cx43 gap junction and synchronous calcium signal 
transmission in myocardial cells. Notably, compared to pure GelMA hydrogel, 
cardiomyocytes grown on hybrid hydrogels showed more robust synchronized 
contraction behavior [128]. Ramezani et al. added carbon nanofibers into collagen 
to make the Col-CNF nanocomposite. The Col-CNF can significantly improve the 
repair of damaged cells without causing inflammation or toxic reaction, because the 
Col-CNF is a conductive, biocompatible material that can lead to new blood vessels 
[132]. Li et al. incorporated activated-graphene oxide (GO) into silk fiber hydrogel



and combined the composite with stem cells (Fig. 12.6b). The conductive scaffold 
not only improved cell survival and LV wall thickness, but also decreased scar 
area [133]. 
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Fig. 12.6 (a) Schematic illustration of the fabrication procedure of GelMA-GNR hybrid hydrogel 
construct [128]. (Reprinted from [128] with permission, copyright 2016 Elsevier). (b) Schematic 
representation of the structure of hydrogel network with GO nanoformulations and growth factors 
and its application in MI [133] (Reprinted from [133] with permission, copyright 2020 Elsevier) 

Another method of preparing conductive hydrogel is combining conductive 
components with hydrogel substrate through chemical and/or physical crosslinking 
[134], where the conductive components mainly include intrinsically conducting 
polymers, piezoelectric polymers and conjugated conductive polymers. Li et al. 
grafted pyrrole onto chitosan by chemical oxidative polymerization to prepare the 
polypyrrole (PPy)-chitosan conductive hydrogel (Fig. 12.7a)  [135]. Compared to 
chitosan alone, neonatal rat cardiomyocytes on the PPy-chitosan hydrogel exhibited 
enhanced Ca2+ signal transduction. The hydrogel can also improve the electrical 
coupling between skeletal muscles, indicating that PPy-chitosan can electrically 
connect the contraction cells. Electrocardiogram results showed that the QRS inter-
val of rats injected with the PPy-chitosan polymer is shortened, and the lateral 
activation rate was increased, proving that the conductivity was improved. Also, 
echocardiography proved that the index of cardiac function (ejection fraction and 
fraction shortening) is improved 8 weeks after injection. Wang et al. successfully 
synthesized biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly



(N-isopropyl acrylamide) (PLLA-PEG-PNIPAm), a kind of piezoelectric polymer 
that could form a hydrogel (NF-GMS) in vivo after injection (Fig. 12.7b) [136]. Ani-
mal experiments proved that the NF-GMS with CM can significantly reduce infarct 
area, stimulate angiogenesis in the infarct, and restore the cardiac function. Li et al. 
synthesized a conductive polymer, poly-3-amino-4-methoxybenzoic acid (PAMB), 
which was grafted onto nonconductive gelatin (PAMB-G) (Fig. 12.7c)  [137]. Micro-
electrode array (MEA) analysis showed that the hearts placed on PAMB-G hydrogel 
had a higher field potential amplitude compared to the hearts placed on gelatin, and 
can transfer current from one heart to another in the distance. After MI in the rat 
heart, PAMB-G hydrogel injected into the infarct area significantly promoted the 
transmission of current in the scar area, and enhances the synchronous contractility 
of the myocardium, thus protecting ventricular function and reducing arrhythmia. 
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Fig. 12.7 (a) Schematic outlining the grafting of PPy monomers to chitosan and subsequent cross-
linking to form a hydrogel [135]. (Reprinted from [135] with permission, copyright 2015 Lippincott 
Williams & Wilkins). (b) Triblock PLLA-PEG-PNIPAm copolymers and nanofibrous gelling 
microspheres (NF-GMS) [136]. (Reprinted from [136] with permission, copyright 2020 Wiley). 
(c) Synthesis and structure of PAMB hydrogel and mechanism of its restoring electrical impulse 
propagation and synchronizing myocardial contraction following a myocardial infarction [137] 
(Reprinted from [137] with permission, copyright 2020 Elsevier)
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12.4.2 Conductive Epicardial Bridges 

The conduction of electrical signals in myocardium is directional and anisotropic. 
Hydrogels, particularly injectable hydrogels, usually do not have anisotropic fea-
tures alike native myocardium and thus are intrinsically limited in fully restoring 
both speed and direction of myocardial conduction. In contrast, conductive cardiac 
patches prepared by electrospinning, film casting, 3D printing and other technolo-
gies can be endowed with anisotropy [138]. Although only fixed to epicardium, the 
patches are more continuous, cover a larger area, and have less damage to the 
myocardium. The conductive cardiac patches can bypass the abnormal area with 
conduction failure or slowness in the damaged myocardium, prevent arrhythmia, and 
restore normal electrical conduction [139]. 

Similar to conductive hydrogels, the common conductive components used to 
fabricate conductive patches are intrinsically conductive polymers, carbon-based 
nanomaterials and metal nanomaterials. Zhang et al. deposit reduced graphene oxide 
(rGO) on electrospun silk fibroin fiber to prepare conductive cardiac patches 
(rGO/silkA/R) with anisotropic conductivity (Fig. 12.8a) [140]. The anisotropic 
conductive rGO/silkA/R patch was efficient in repairing the infarcted myocardium 
compared to the nonconductive silk and the isotropic conductive silk. The conduc-
tive patch can significantly improve the cardiac function, survival rate of functional 
myocardial cells, and resistance to ventricular fibrillation to reduce the myocardial 
remodeling after infarction. This study proved that effective biomimetic myocardial 
microenvironment reconstruction based on anisotropic conductive patch biomate-
rials is a promising choice to promote the repair post MI. Santos et al. combined poly 
(glycerol sebacate) (PGS), collagen, and PPy to prepare composite cardiac patch by 
an evaporation method (Fig. 12.8b). In addition, the conductive patches showed 
higher blood wettability and faster drug release, and can induce cell signal 
transduction [141]. 

The mechanical and conductive anisotropy of conductive patches can also be 
realized through the design of micro patterns. Steven et al. used excimer laser micro 
cutting to micropattern honeycomb structure on chitosan films with PAN coating 
(AuxCP) [142]. The obtained conductive cardiac patches had a negative Poisson’s 
ratio. A broad range of mechanical strength and electrical anisotropy can be 
achieved, which allows adjustment to match the natural heart tissue. The AuxCP 
significantly increased the conduction velocity of the infarcted myocardium. Rat MI 
model results showed that the conductive patch integrated well with natural heart 
tissue in vivo, had negligible adverse effect on cardiac function, and did not cause 
severe fibrosis reaction [142].
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Fig. 12.8 (a) Schematics illustrating the fabrication of rGO/silkA/R scaffolds and their application 
in restoring electrical integrity in infarcted myocardium [140]. (Reprinted from [140] with permis-
sion, copyright 2022 Elsevier). (b) Schematic illustration of the steps used for the synthesis of 
conductive and elastic biodegradable cardiac patches by an evaporation method [141] (Reprinted 
from [141] with permission, copyright 2020 American Chemical Society) 

12.5 Mediation of Inflammation, Immune Responses, 
and Metabolism 

Inflammation is the body’s natural and fundamental response to signals of tissue 
damage or pathogenic infection [41]. Sudden cardiomyocyte death caused by myo-
cardial infarction rapidly activates the innate immune pathway, which triggers a 
strong but transient inflammatory response. Moderate inflammation facilitates the 
removal of dead cells and extracellular matrix debris and can be suppressed by 
subsequent repair process [143]. However, excessive inflammation increases the risk 
of heart failure. 

In the early stages of myocardial infarction, danger signals released from dam-
aged cardiomyocytes or pathogens are recognized by innate immune pattern



recognition receptors including Toll-like receptors (TLR) expressed on innate 
immune cells [144] such as monocytes, macrophages, and neutrophils. Upon bind-
ing to extracellular damage-associated molecular patterns (DAMPs), TLR activates 
cytoplasmic adaptor molecules, which initiates a series of activation pathways, 
including nuclear factor-κB (NF-κB), interferon regulators, and mitogen-activated 
protein kinase (MAPK) pathway. It will then lead to the production of 
proinflammatory cytokines such as tumor necrosis factor (TNF), interleukin-1β 
(IL-1β) and IL-6 and chemokines through transcriptional and posttranscriptional 
mechanisms [145]. The upregulation of TLR induces the synthesis of adhesion 
molecules in endothelial cells and activates leukocyte integrin, which mediates 
strong adhesion interactions and ultimately leads to the recruitment of inflammatory 
cells into infarcts [146]. 
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During the inflammation of myocardial infarction, resident immune cells in the 
myocardium are activated to produce cytokines, chemokines, proteases, growth 
factors, and free radicals [147]. Circulating immune cells then adhere on the inflam-
matory site via endothelial cells to enhance the proinflammatory response as men-
tioned above. If the response is insufficient or excessive, it would disrupt the balance 
between the innate and adaptive arms of the immune system, leading to late 
inflammation. This dysregulated immune response leads to a catastrophic cascade 
characterized by local or systemic tissue damage. In addition to TLR, the immune 
cells possess NOD-like receptors (NLR) that specifically recognize pathogenic 
patterns in the cytoplasm, leading to inflammasome-mediated activation of 
proinflammatory cytokine release. This results in the degradation of cytokines and 
oxidative damage to cells [148–150]. Macrophages in myocardial infarction are 
primarily responsible for eliminating apoptotic neutrophils and controlling inflam-
matory processes through phenotypic transformation. However, due to abnormal 
differentiation of macrophages and abnormal metabolism of neutrophils, the mac-
rophages remain in the M1 phenotype and release excessive proinflammatory 
factors, leading to aggravated inflammation [151]. Programmed anti-inflammatory 
regulation fails, and abnormal neutrophils result in excess production of reactive 
oxygen and nitrogen species (RONS). RONS, including oxygen and nitrogen 
radicals such as superoxide anion radicals (O2�-), hydroxyl radicals (�OH), and 
nitric oxide radicals (�NO), are proinflammatory molecules that cause lipid peroxi-
dation and oxidative stress. RONS activate IκB kinase, inhibit phosphotyrosine and 
phosphoserine/threonine phosphatases, thereby upregulating redox-sensitive NF-κB 
and further exacerbating inflammation [149]. This leads to poor angiogenesis and 
insufficient production of desirable growth factors. 

In addition, the high demand for oxygen in healing tissues, coupled with persis-
tent and overproduction of ROS, reduces oxygen utilization and micronutrient 
supply in injured tissues. This also affects cellular metabolism, which is a compila-
tion of enzyme-catalyzed chemical reactions in cells and is essential to all living 
organisms [152]. The excessive inflammation results in an energy imbalance, oxy-
gen imbalance, and redox imbalance in cellular metabolism.
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12.5.1 Suppressing Inflammation 

The inflammation can be controlled through ROS and some cell regulations. Con-
cretely, the level of ROS may be regulated by endogenous or exogenous antioxidant 
mechanisms involving the action of antioxidants by inhibiting the production of 
ROS, eliminating excess ROS, stimulating various antioxidant enzyme systems, and 
accelerating the production of nonenzymatic antioxidants or delivering the antiox-
idants such as superoxide dismutase (SOD), catalase (CAT), and glutathione perox-
idase (GPx) [153], ascorbate, α-tocopherol, and glutathione [154]. Fibroblasts and 
vascular cells, which are abundant in healing infarcts, may also help suppress 
inflammatory signals [155]. The acquisition of pericyte coating by angiogenic 
vessels in the infarcted heart may inhibit inflammatory activity, thereby stabilizing 
the microvasculature and preventing long-term leukocyte recruitment [156, 157]. 

The inflammation-inhibiting biomaterials mainly work through eliminating ROS, 
releasing anti-inflammatory agents, and/or providing mechanical support. A biode-
gradable elastic polyurethane polythioketal (PUTK) patch with ROS-responsive TK 
units was used for MI treatment in rats, showing myocardial protection effects 
(Fig. 12.9) [158, 159]. Upgraded PUTK films with antioxidant properties were

Fig. 12.9 Synthetic scheme for ROS-responsive polyurethane (PUTK) and nonresponsive poly-
urethane (PU) from poly(ε-caprolactone) diol, 1,6-hexamethylene diisocyanate, and chain 
extenders of ROS-cleavable thioketal (TK) and 1,6-hexanediamine (HMDA), respectively [158] 
(Reprinted from [158] with permission, copyright 2020 Elsevier)



synthesized using ascorbic acid (AA) as a chain extender. These patches support 
proliferation of C2C12 myoblasts and H9C2 cardiomyoblasts, reduce intracellular 
oxidative stress, scavenge free radicals, and alleviate ischemia-reperfusion injury 
[160]. A novel hydrogel that can effectively scavenge ROS with TK units and 
generate O2 in a hypoxia and inflammatory condition was prepared for MI treatment, 
which could almost recover fully the important heart functions, as indicated by 
LVEF, left ventricular fraction shortening (FS), end systolic volume (ESV), and 
end diastolic velocity (EDV) without difference to those of the sham ones 
[143]. Together with the patches or hydrogels, anti-inflammatory agents can be 
delivered to the target site. After injection, the hydrogel can continue to release the 
therapeutic agents such as stem cells and exosomes to suppress inflammation [52]. In 
addition, the mechanical support from hydrogels and patches can relieve inflamma-
tion in infarcted myocardium by affecting mechanosensing [161].
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12.5.2 Mediating Immune Responses 

In the late stages of inflammation, the immune cells including regulatory T (Treg) 
cells and Th2 cells, together with regulatory M2-like macrophages, increase in 
number and resolve inflammation by producing anti-inflammatory cytokines, includ-
ing transforming growth factor-β (TGF-β) and IL-10 [162, 163]. In fact, the cells do 
not need to be viable to mediate immune responses. Vagnozzi et al. reported that 
injecting freeze-thaw killed cells after ischemia-reperfusion injury resulted in the 
same functional improvement as injecting putative viable cells, suggesting that the 
proteins and genetic materials play a key role in promoting cardiac repair via 
mediation of immune response. On the other hand, the local injection of zymosan, 
a potent stimulant of innate immune system, is effective in treating cardiovascular 
diseases. This effect is attributed to the recruitment of CCR2+ and CX3CR1+ 

(M2-like) macrophages. In heart failure, CAR-T cells targeting activated cardiac 
fibroblasts and senescent cells reduced cardiac fiber burden [164]. 

In addition to affecting and recruiting immune cells, biomaterials that mimic 
immune cell functions also promote heart repair. The polylysine-modified polyure-
thane has the function of promoting M2 polarization and reducing inflammation 
in vitro and in vivo [165]. Tissue inhibitors of metalloproteinases, a family of 
endogenous MMP inhibitors expressed by immune cells including peripheral 
blood monocytes, B cells, and T cells, can suppress immune responses and inflam-
mation by reducing immune cell penetration and/or alleviating MMP-induced matrix 
degradation [166]. Fan et al. prepared a hydrogel by fusing bFGF with glutathione-
S-transferase (GST) and MMP-2/9 cleavable peptide PLGLAG (TIMP) to collagen. 
By inhibiting MMP-2/9 activities, the hydrogel mimics the TIMP secretion function 
of immune cells, resulting in attenuated ventricular wall thinning [167]. Moreover, 
polymer grids covered with extracellular matrix or rich in induced cardiomyocyte 
progenitors were applied in a mouse MI model. The grids promoted macrophage 
infiltration and polarization to M2 in the epicardium [168]. In addition, nanoparticles



that enhance immune tolerance have been used to modulate immune response. The 
nanoparticles-delivered antigen and rapamycin to dendritic cells (DC) can induce 
antigen-presenting tolerogenic dendritic cells (tDC) and antigen-specific Tregs. 
Intradermal injection of liposomal nanoparticles loaded with MI-associated antigens 
and rapamycin into MI mice elicited antigen-specific immune tolerance in vivo by 
generating antigen-specific Tregs in the infarct area and modulating macrophage 
polarization, thereby improving cardiac remodeling and function [169, 170]. 
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12.5.3 Regulating Metabolic Activities 

The heart uses energy in the form of adenosine triphosphate (ATP), but the heart 
muscle stores very little ATP; thus, ATP must be synthesized constantly. 
Cardiomyocyte metabolism involves the breakdown of nutrients, production of 
ATP (catabolism), and consumption of energy to synthesize complex molecules 
needed to perform cellular activities and energy storage (anabolic). Cardiomyocyte 
energy homeostasis is a cellular process that balances energy production and expen-
diture. Glycolysis and oxidative phosphorylation (OXPHOS) are two major meta-
bolic processes by which cells convert nutrients into energy in the form of ATP to 
support biosynthetic activities. Maintaining oxygen homeostasis is essential for the 
survival and function of most cells because oxygen is required for the OXPHOS 
process of ATP production [152]. Common treatments of metabolic disorders work 
by inhibiting glycolysis with drugs such as dichloroacetic acid, metformin, or in the 
myocardial infarction, by the paracrine effects of stem cells that increase ATP and 
NADH levels, decrease oxidative stress, and increase phosphorylated -Akt and 
phosphorylated -GSK-3β [171]. 

Biomaterials strategies have been developed to balance cardiac metabolism. 
Dimethyl itaconate (DMI) is an enzyme involved in the metabolic tricarboxylic 
acid cycle (TCA), which can effectively inhibit mammalian succinate dehydroge-
nase (SDH), and reverse the electron transport chain in mitochondria [172]. In 
ischemia-reperfusion injury, accumulated succinate is rapidly oxidized by SDH, 
which drives the production of massive ROS through reverse electron transport at 
mitochondrial complex [173]. Due to the inhibitory effect of DMI on SDH, local 
delivery of DMI by a cardiac patch to the infarct prevented the mitochondrial ROS 
overproduction and promotes the recovery from pathological conditions. As a result, 
released DMI reduced infarct size and improved ventricular function by inhibiting 
inflammation in the early stage and promoting anti-inflammatory activity in the late 
stage for proper tissue repair.



520 K. Wang et al.

12.6 Promotion of Cardiac Regeneration 

The strategies mentioned above mainly focus on preventing pathological LV 
remodeling and heart failure [174]. Heart transplantation remains the final option 
for end-stage heart failure [49]. However, the number of heart donors is small 
compared to the patient population [175, 176], and the recipients need immunosup-
pression therapy [177]. On the other hand, it is found that terminally differentiated 
cardiomyocytes in adult human heart has the ability to proliferate, although highly 
limited [178, 179]. In addition, exogenous cardiomyocytes can integrate with the 
host heart. Therefore, heart regeneration becomes a theoretically achievable goal and 
potentially a viable approach to combat heart failure [40, 49, 180]. In this section, we 
shall discuss current biomaterials-based treatments to promote cardiac regeneration. 

12.6.1 Delivery of Cardiac Cells Using Biomaterials 

Noncardiac cells and cardiac-derived cells, including skeletal myoblasts, bone 
marrow-derived cells, mesenchymal stem cells (MSCs), cardiac stem cells (CSCs), 
and induced pluripotent stem cells (iPSCs), have been used for cardiac regeneration 
[174]. For example, skeletal myoblasts were utilized to remuscularize the damaged 
heart and restore cardiac function. The transplanted skeletal myoblasts can differen-
tiate into a myogenic lineage, and then improve the ejection fraction in ischemic 
cardiomyopathies [181]. CSCs exhibit self-renewal and multipotent capacity to 
repair damaged hearts [182]. iPSCs can differentiate into functional cardiomyocytes 
in vitro, and then be transplanted into the heart [183]. 

However, as early clinical trials suffered from poor engraftment and differentia-
tion, the priority is to improve their early retention and subsequent differentiation. 
Biomaterials in tissue engineering intends to create an appropriate microenviron-
ment for cell therapies, promoting their survival, migration, proliferation and differ-
entiation for better treatment. Biomaterials can impact cell-based therapies by their 
spatiotemporal modulation on cell microenvironments, which can direct cell behav-
ior during their migration, differentiation, and regeneration in the microenvironment. 
Particularly, hydrogel scaffolds are attractive for stem cell delivery because they can 
improve the survival of transplanted cells or recruited endogenous cells to support 
cell-based treatment [184]. First, high-water content and tissue-like mechanical 
properties of hydrogels make them compatible with soft tissue. Furthermore, the 
porous structures of hydrogels are able to allow cell attachment and growth, as well 
as the “smart” release of biological agents at the injury site. Recently, Li et al. [185] 
showed that intrapericardial cavity (IPC) injection of adult mesenchymal stem cells 
in hydrogel is a promising solution for the low retention issue of MSCs at the 
infarction site (Fig. 12.10). Immunohistochemistry data reveal better cellular prolif-
eration, less apoptosis, and better vascular regeneration in the myocardium after 
delivery of MSCs in hydrogel. In addition, they further demonstrated the feasibility



and safety of IPC injection in a porcine model, the retention of MSCs was extended 
in the infarcted heart. 
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Fig. 12.10 Injection of GFP-MSCs into the pericardial cavity of infarcted mouse hearts is feasible 
and improves survival [185] (Reprinted from [185] with permission, copyright 2022 Elsevier) 

12.6.2 Delivery of Bioactive Factors 

A lot of cellular functions are achieved via cell–cell communications based on 
bioactive factors including growth factors, microRNAs (miRNAs), and exosomes. 
Some of these bioactive factors can promote heart regeneration by activating sig-
naling pathways that increase cardiomyocyte proliferation or suppressing signaling 
pathways that inhibit cardiomyocyte proliferation. For example, growth factor 
neuregulin 1 (NRG1) and its receptors, receptor tyrosine-protein kinase ERBB2 
and ERBB4, play a critical role in cardiac development [186]. After the activation of 
the NRG1–ERBB2/ERBB4 signaling pathway, cardiomyocyte proliferation can be 
restarted in injured heart [187, 188]. Incorporating NRG1 and FGF1 within 
bioresorbable PLGA-MPs maintained growth factor levels in the ischemic myocar-
dium in a rat MI model, leading to induction of tissue revascularization, activation of 
endogenous regeneration, and improvement in heart function [189]. 

RNA interference is a promising strategy for cardiac regeneration [190]. They 
mediate many processes in the damaged heart, including improving cardiomyocyte 
survival, promoting cardiomyocyte proliferation, inducing angiogenesis, and mod-
ulating cardiac repair. Adeno-associated virus 9 (AAV9)-mediated overexpression 
of mir-199a-3p and mir-590-3p can induce cardiomyocyte proliferation, stimulate 
cardiac regeneration and improve cardiac function [191]. Cardiomyocyte prolifera-
tion and heart regeneration are also induced by a cluster of mir-302/367 [192] via 
inhibition of Hippo/YAP signaling. Mir-34a [193], which was initially demonstrated 
to regulate the ageing process, is an important regulator of cardiomyocyte



proliferation and cardiac regeneration, so that inhibition of this miRNA leads to 
enhanced cardiomyocyte proliferation and cardiac regeneration in response to 
MI. Mir-26a [194] can promote angiogenesis by targeting relative antiangiogenic 
genes. Overexpression of mir-126 [195] can stimulate heart repair by improving 
survival and migration of transplanted mesenchymal stromal cells and 
proangiogenic bone-marrow-derived cells. Recently, mir-19a/b was proved to pro-
tect heart from MI and promote cardiomyocyte proliferation by inhibition of PTEN, 
a negative regulator of cardiomyocyte survival and proliferation [196]. Burdick et al. 
[197] developed an injectable supramolecular hydrogel to sustainably deliver 
mir-302 to the infarcted heart. The local and sustained release of mir-302 from 
hydrogels in vitro promoted cardiomyocyte proliferation over 2 weeks. Their find-
ings suggest that hydrogel-based miRNA delivery systems can lead to improved 
outcomes via cardiac regeneration after myocardial infarction. 
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Despite the encouraging results, some preclinical studies revealed the risks 
associated with miRNA application. Mir-199a in infarcted pig hearts stimulates 
cardiomyocyte de-differentiation, proliferation and cardiac repair. After delivery of 
mir-199a, the treated pigs showed marked improvement in both global and regional 
contractility, increased muscle mass and reduced scar size [198]. However, the 
subsequent persistent and uncontrolled expression of the microRNA resulted in 
sudden arrhythmic death of most of the treated pigs. Such events were concurrent 
with myocardial infiltration of proliferating cells displaying a poorly differentiated 
myoblastic phenotype. These results show that achieving cardiac repair through 
stimulation of endogenous cardiomyocyte proliferation is feasible in large animals. 
However, dosage of this therapy needs to be optimized. There is still a long way for 
clinical translation. Therefore, to combat heart failure, it may require synergic 
therapeutic strategies. Li et al. [54] developed a microRNA-21-5p delivery system 
using functionalized mesoporous silica nanoparticles (MSNs). This system enabled 
on-demand microRNA-21 delivery in response to acidic microenvironment. The 
released complexes are able to mediate inflammatory response by inhibiting M1 
polarization of macrophages. In addition, microRNA-21-5p delivery by MSNs pro-
motes neovascularization and rescues at-risk cardiomyocytes. The synergy of anti-
inflammatory and proangiogenic effects effectively reduce infarct size in a porcine 
model of myocardial infarction. 

12.7 Conclusion 

The immense potentials of biomaterials in promoting cardiac repair with respect to 
alleviating ischemia, providing mechanical support, restoration of electric signal 
conduction, mediation of inflammation, and promoting cardiac regeneration have 
attracted tremendous efforts. However, among the aforementioned strategies, only a 
few have been validated in clinical trials. More studies are required to demonstrate 
their safety and efficacy. The ultimate goal of regenerating damaged myocardium



and full restoration of cardiac function may be achieved by integrating and balancing 
the therapeutic effects of biomaterials designs. 
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Chapter 13 
Nerve Regeneration 

Kefei Zhao, Weiwei Zheng, Qiaoxuan Wang, Haijun Hu, 
and Changyou Gao 

Abstract Nerve injuries may result in neurological dysfunction or even permanent 
disability, which poses various challenges to physicians. In the peripheral nervous 
system (PNS), only small nerve injuries can be regenerated spontaneously in vivo, 
while larger nerve injuries must be treated surgically with biomaterials or nerve 
grafts harvested. Attributed to the influence of inhibiting factors such as inflamma-
tion and microenvironment changes, a solution to completely repair central nervous 
system (CNS) injuries has not been discovered. Hence, most bioengineering strate-
gies for PNS have been focused on the guidance of regenerative nerves, whereas the 
efforts for CNS have been focused on creating a suitable regenerating microenvi-
ronment in vivo. Recent advances in neurology, tissue engineering, biomaterials, 
gene transfection, and multifactor combinations offer optimistic prospects for the 
development of nerve regeneration. In this chapter, we firstly examine the current 
understanding of the neurophysiology and factors that are critical for nerve regen-
eration, and discuss their implications for promoting axon regeneration. Then, the 
current approaches, challenges, and future perspectives of biomaterials being 
explored to aid PNS and CNS regeneration are highlighted. 
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13.1 Introduction 

Nervous system, composed of neuronal cells, stromal cells, and glial cells, plays a 
dominant role in regulating physiological activities of the mammalian body, 
maintaining the homeostasis of the internal environment and coordinating the 
balance of the external environment [1]. However, nerve injury has emerged as a 
significant economic burden of the public. In recent decades, the incidence of nerve 
injuries has been on the rise, with hundreds of thousands of cases reported world-
wide [2]. Unfortunately, many of these injuries result in lifelong disability, as the 
available therapeutic options for repair are often suboptimal, especially for severe 
nerve lacerations [3]. 

Nerve injuries not only diminish the quality of life to patients but also present 
multiple challenges for physicians, ranging from mild discomfort to lifelong impair-
ment [4]. Sunderland [5] provides a classification scheme to effectively discuss 
nerve pathophysiology via a common language. As shown in Fig. 13.1a, nerve 
injuries are categorized into five grades based on the extent of damage to the 
axons, connective tissues, and presence of demyelination [6]. The mildest Grade I 
is known as neurapraxia and is defined by focal demyelination without damage to the 
axons or connective tissues. Neurapraxia is commonly caused by mild compression 
or traction of the nerve, which results in a decrease in conduction velocity and 
muscle weakness. Grade II, known as axonotmesis, involves direct damage to the 
axons and focal demyelination while maintaining continuity of the connective 
tissues. Grades III to V represent various degrees of neurotmesis, all of which 
involve increasing amounts of connective tissue damage. Grades III and IV typically

Fig. 13.1 (a) Classification of nerve trauma. (Reprinted from [6] with permission. Copyright 2013 
Elsevier). (b) The pathophysiology of spinal cord injury in the absence of treatments along the 
timeline. (Reprinted from [7] with permission. Copyright 2020 Springer Nature)



are resulted from acute traumatic compression of a blunt object, which causes 
damage to the endoneurium and perineurium [8, 9]. The most severe form, 
Grade V, involves complete transection of axons and connective tissue layers, 
leading to complete discontinuity of the nerve. In more than 90% of direct axonal 
injuries (Grades II to V), nerve regeneration is the primary means of recovery 
[10]. Failure of axons to regenerate and rebuild functional connections with their 
original targets often results in motor, sensory, and autonomic dysfunctions follow-
ing nerve injuries.
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The process of regenerating injured nerves shares similarities with axon growth 
during embryonic stages, but is hindered by numerous obstacles. The intrinsic 
growth capacity and surrounding inflammatory microenvironment play a key role 
in determining the extent of regeneration, resulting in various injury responses 
in vivo [11]. For instance, peripheral nerve injuries often result in robust regenera-
tion, leading to functional recovery. However, unlike the PNS, the mammalian CNS 
typically does not regenerate spontaneously due to the absence of certain regulatory 
mechanisms [12]. Figure 13.1b shows that primary trauma to the spinal cord without 
treatment not only inhibits neuronal regeneration significantly but also triggers a 
secondary cascade of inflammatory, vascular, and biochemical events that exacer-
bate the impairment of neuronal function [13–15]. Taking these concerns into 
consideration, a common feature of the studies in recent years is that the application 
of functional biomaterials can effectively regulate a series of behaviors of cells and 
contribute positively to several processes of nerve repair and regeneration [16]. With 
the constant development of both materials science and cell biology, there has been a 
surge in the creation of carriers, scaffolds, and templates. These novel designs aim to 
construct intricate, three-dimensional structures consisting of cells, growth factors, 
and biomaterials, which regulates the injury microenvironments and responses 
in vivo [17]. In order to identify a clinical treatment that is better suited for patients, 
researchers must prioritize the regeneration of axons and focus on translating 
fundamental research into practical clinical applications. In this chapter, we will 
examine the current understanding of neurophysiology and factors that are critical 
for nerve regeneration. We will discuss their implications for axon regeneration and 
highlight current approaches, challenges, and future perspectives of biomaterials 
being explored to aid PNS regeneration and CNS repair. 

13.2 Intrinsic Behavior of Axon Following Nerve Injury 

13.2.1 Pathology of Injured Neurons and Their 
Microenvironment 

13.2.1.1 The Pathophysiology of Nerve Injury 

The pathophysiology of nerve injury comprises primary and secondary injuries, 
resulting in a central lesion and an expanded zone of injury, respectively. The main



source of primary injury stems from an initial traumatic event, such as mechanical 
injury and ischemia-induced glucose and oxygen deprivation in stroke [18, 19]. A 
secondary injury occurs as a result of a series of biological and immune responses, 
which expand the initial injury area and ultimately lead to the formation of a glial 
scar. The timeline of events following spinal cord injury is summarized in Fig. 13.1b 
[7]. Briefly, the initial physical impact causes mechanical disruption to the structure 
of the spinal cord, resulting in cellular disruption and apoptosis which is known as 
primary injury. The release of damage-associated molecular patterns (DAMPs) from 
apoptotic and necrotic cells triggers the activation of microglia and astrocytes, the 
resident glial cells. The disruption of tight junctions of endothelial cell happens due 
to the released matrix metalloproteinase (MMPs) and other enzymes which lead to 
blood–brain barrier (BBB) damage. Leukocytes thereafter infiltrate into the paren-
chyma along with the upregulation of cellular adhesion molecules, cytokines, and 
chemokines, which activate immune response and lead to further tissue injury 
(secondary injury). The chronic inflammation phase could persist for several months 
until it is eventually inhibited by the development of a glial scar. However, this scar 
formation can hinder natural plasticity and tissue regeneration processes [20]. 
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13.2.1.2 Features of Pathological Microenvironments in Nerve Injury 

There are several features in the pathophysiology process of nerve injury, which are 
potential immunomodulatory targets. 

Excitotoxicity 

Glutamate is the principal neurotransmitter responsible for facilitating rapid synaptic 
transmission between presynaptic neurons, postsynaptic neurons, and glial cells. It 
binds to glutamate receptors located on various postsynaptic neurons, thereby 
playing a vital role in synaptic plasticity, memory, learning, and other cognitive 
functions. Ionotropic glutamate receptors, including N-methyl-D-aspartate 
(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA), and 
Kainate, require extracellular binding of glutamate to become activated. Even 
though the concentration of glutamate is 10,000 times higher inside the cell than 
outside, these receptors remain inactive without extracellular glutamate binding. 
Large amounts of intracellular neurotransmitters (e.g., glutamate) are released 
from apoptotic cells caused by the primary injury. The glutamate receptors, 
encompassing both NMDA and non-NMDA types, become hyperactivated. This 
results in an excessive influx of Ca2+ ions, as well as the accumulation of Na+ and 
chloride (Fig. 13.2). The disrupted osmotic equilibrium finally results in cell 
lyses [21].
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Fig. 13.2 Mechanism of excitotoxicity. (Reprinted from [21] with permission. Copyright 2013 
Elsevier) 

Oxidative Stress and Inflammatory Response 

Similar to other injury, overproduced reactive oxygen and nitrogen species 
(ROS/RNS) induced oxidative stress and inflammatory response including highly 
expressed inflammatory cytokines, chemokines, and other mediators are prominent 
in pathophysiology process of nerve injury. ROS/RNS are produced after injury to 
eliminate pathogen and infected cells. However, the accumulation of highly reactive 
ROS/RNS in chronic nerve injury can lead to significant damage to essential cellular 
components such as DNA and proteins, resulting in the impairment and destruction 
of normal cells and tissues [21, 22]. The production of inflammatory cytokines, 
including IL-1β, TNF-α, and IL-6, is initiated by microglia/macrophages with 
proinflammatory properties as well as immune cells located in the peripheral regions. 
These cytokines and chemokines recruit immune cells into the injury core after BBB 
damage and arose intense inflammatory response [23]. For example, TNF-α can 
arouse enlarged inflammation through mitogen-activated protein kinase (MAPK) 
signal pathway and activating canonical NF-κB pathway [24–26]. Besides, TNF-α 
can induce cell apoptosis/necroptosis, in most circumstances, via kinase receptor-
interacting serine/threonine-protein kinase1 pathway [25, 27, 28].
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Neurogenesis Inhibitor 

It is difficult for nerve tissue to regenerate after injury especially for central nervous 
system. There are mainly two types of barriers that separate nerve bridging and 
inhibit neurite growth. The first is proteins associated with myelin debris including 
the myelin-associated glycoprotein, myelin proteins Nogo, and oligodendrocyte 
myelin glycoprotein. The second deposit is comprised of chondroitin sulfate pro-
teoglycans (CSPGs), which consist of lecticans, phosphacan, transmembrane protein 
NG2, and small leucine-rich proteoglycans including biglycan and decorin [7]. Dai 
group identified that several functional regions of Nogo-A including Nogo-66 can 
promote the differentiation of neural progenitors into glial cells via mTOR-STAT3 
pathway [29, 30]. The inhibition of neuronal growth by CSPG involves multiple 
receptor proteins, such as protein tyrosine phosphatases (PTPσ), leukocyte common 
antigen-related phosphatase (LAR), NgR1, and NgR3 [31, 32]. Besides, CSPGs 
might act by hindering the signal pathway of molecules that promote growth, such as 
laminin and its receptor integrins. RhoA-Rho kinase signaling and Akt and Erk 
pathways were reported in CSPG inhibition, and more molecular mechanisms are 
under investigation [33]. 

13.2.2 Brief Regeneration Process Description 

To gain a better understanding of the mechanisms that control intrinsic regenerative 
ability, it is crucial to comprehend how injury detection occurs and which internal 
signaling events trigger and coordinate regenerative responses in both axon and 
soma. In this regard, we will begin by summarizing the general regulatory mecha-
nisms involved in PNS regeneration. Subsequently, we will discuss various manip-
ulations that may be employed to promote axon regeneration in the adult CNS. 

13.2.2.1 Growth Cone Formation 

Following axonal damage, several cellular processes take place at the injury site such 
as rupture of the axon's plasma membrane, influx of calcium and iron, and disas-
sembly of the cytoskeleton, among others. However, the recovery of the nerve 
heavily relies on the reestablishment of growth cone-like structures within a few 
hours of experiencing a crushing injury. As revealed by in vivo imaging, the 
formation of growth cone is the first process of axonal regrowth [34]. The motile 
growth cone in the mammalian PNS undergoes a restructuring of its cytoskeleton, 
resulting in the formation of a polarized extension that guides its movement. But, 
affected by the largely disorganized microtubules and unique microenvironment, the 
injured CNS axonal stumps undergo transformation into a retraction bulb without 
exhibiting regenerative response [35].
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13.2.2.2 Extension of Regenerating Axons 

It is possible that the regeneration of damaged nerves involves a process similar to 
axon growth during embryonic stages, but with additional obstacles to overcome. 
The injured axons are repaired by the cell body through a process of regeneration 
that involves bridging the gap between the stumps, starting from the proximal end 
and extending toward the distal end. During the initial stage of axon regeneration, 
existing vesicles within the proximal axon segment can merge with the axolemma to 
repair the membrane and support temporary axonal sprouting. As axonal growth 
progresses in later stages of regeneration, the requirements of lipids and proteins at 
extending axonal terminals are more dependent on the local synthesis to sustain 
regenerative growth [36]. Therefore, a crucial transformation occurs during the 
regeneration of neurons, which involves a shift in metabolic status from quiescent 
metabolism observed in mature neurons to an active anabolic metabolism in the 
regenerating neurons. However, injury in the adult CNS can often impede local 
synthesis, which can lead to the failure of neuronal regeneration after injury [37]. 

13.2.2.3 Role of Neural Signals 

After a partial injury in the CNS, both animals and humans tend to recover some 
degree of function spontaneously, which is attributed to the reorganization of 
surviving axons [37, 38]. However, transected axons exhibit minimal growth 
responses. Additionally, injured neurons undergo changes such as atrophic cell 
bodies, decreased axonal transport, and dystrophic growth cones [39]. These 
changes may cause a decline in the intrinsic regenerative ability of adult CNS 
neurons. Although damage sensors activate evolutionarily conserved responses, 
the interpretation of such signals varies greatly among injured axons' cell bodies. 
Nawabi and colleagues used proteomic methods and gene network analysis on 
injured mouse retinal ganglion cells to identify a set of injury-induced signaling 
alterations that included well-known regeneration regulators such as calcium, p53, 
JAK/STAT, and MAPK, as well as components of mTOR pathway such as Rictor, 
Raptor, mTOR, and c-myc [11, 40] (Fig. 13.3). 

13.3 PNS Therapeutic Strategies 

Despite the ability of the peripheral nerves to regenerate, the functional recovery is 
exceedingly challenging and necessitates the use of artificial techniques for more 
effective treatment [6, 41]. The most widely utilized form of treatment for peripheral 
nerve injuries (PNI) is surgery [42, 43]. Neurorrhaphy is typically used to suture 
together the proximal and distal ends of nerves with short gaps, which are less than 
1 cm in length [41]. The gold standard for repairing long peripheral nerve gaps



(>2 cm) is considered to be nerve autografts, which involve implanting a graft of the 
patient's own nerve tissue from another part of their body [6, 41, 44, 45]. However, 
donor-site morbidity, surgical difficulties, tissue availability, and a diameter 
mismatch between the recipient nerve and the graft limit the application of autolo-
gous nerve transplantation [41, 46, 47]. The use of artificial nerve guide conduits is 
being investigated as an alternative therapy strategy to address the limitations of 
nerve grafting approaches [45]. 
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Fig. 13.3 Developing strategies to promote regeneration by targeting various intrinsic control 
mechanisms involved in the regenerative process. (Reprinted from [11] with permission. Copyright 
2022 Elsevier) 

The term “nerve guide conduits” (NGCs) refer to nerve guidance channels 
constructed of natural and/or synthetic biopolymers that are intended to bridge 
nerve injury sites, which generally have mechanical and physiological properties 
for neural regeneration. In this chapter, we will discuss the development of different 
designs and materials utilized in NGCs, along with exploring the manufacturing 
techniques and cutting-edge technologies employed.
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13.3.1 Design of the Nerve Guide Conduits 

13.3.1.1 Single Hollow NGCs 

The earliest studies on utilizing tubulation to reconnect peripheral nerve gaps 
appeared in the nineteenth century [48]. In 1879, Neuber created a decalcified 
bone tube that could be absorbed by the body. This tube was initially used for 
wound drainage purposes [49]. Later in 1881, Gluck utilized this bone tube as a 
conduit to guide nerve regeneration [50]. Based on the concept of the single hollow 
tube, the first-generation NGCs were generally created as single hollow structures, 
which allow axonal elongation and steer regenerating axons to reconnect with their 
target neurons [51, 52]. The regenerative development of peripheral injured nerves 
in a hollow NGC could be succinctly represented in 5 phases (Fig. 13.4) [53, 54]: 
(1) the fluid phase; (2) the matrix phase; (3) the cellular migration phase; (4) the 
axonal phase; and (5) the myelination phase. After the injury, plasma exudate from 
both ends of the nerve fills the conduit which leads to an accumulation of 
neurotrophic factors and precursor molecules of extracellular matrix (ECM) over a 
period of several hours. Within the first week, an acellular fibrin cable forms between 
the injured nerve stumps in the second phase, which usually results in an ECM 
bridge for the subsequent stage. Then, the cellular migration begins, and Schwann 
cells (SCs), as well as a few endothelial and fibroblast cells, infiltrate into the gap 
along this fibrin cable. Following their proliferation and alignment, these SCs create 
an aligned SC cable—also known as the Büngner glial bands. Following the SCs 
cable, immature axons begin to regrow in the axonal phase, which occurs 2 weeks 
after the injury. The biological cues provided by the cable help guide the axons 
toward their distal targets. Once this process is complete, SCs transform into a 
myelinating phenotype and generate myelin, which wraps around each axon to 
produce mature myelinated axons. 

The NGCs’ hollow structure has been demonstrated that supports regenerative 
peripheral axons to be separated from fibrotic tissue, protects from mechanical 
pressures, reduces the growth of extra nerve fibers, and promotes the build-up of a 
dense concentration of neurotrophic factors. [53, 55, 56]. It also has the merit of 
simplicity and is easy to manufacture, making it extremely useful in clinical appli-
cations [45]. Between 1995 and 2010, the majority of Food and Drug Administration 
(FDA)-approved NGCs made of different materials have hollow structures and are 
used extensively in clinical treatment, including the Neurotube® , NeuraGen® , and 
Neurolac® [57–59]. 

However, the clinical application of hollow nerve guides that have been approved 
by the FDA or CE (European Conformity) is currently restricted to bridging nerve 
defects that are no longer than 3 cm in length [56]. The advantages of a single hollow 
conduit are outweighed by its limitations, for example, the improper dispersion of 
regenerative axons and incomplete reinnervation [60], the insufficient levels of 
regeneration because of the inadequate formation of ECM [61]. Moreover, the 
stiffness of the conduits is not strong enough to withstand the mechanical strain



from the surrounding tissue [59]. A proposal has been made for the further advance-
ment of hollow conduits with more sophisticated structural designs in order to 
enhance results after repairing nerve gaps that are larger. 

544 K. Zhao et al.

Fig. 13.4 Five different stages of nerve regeneration occur within the hollow NGC. (Reprinted 
under the terms of the CC-BY 4.0 license [53]. Copyright 2019, The Authors, published by 
Frontiers) 

13.3.1.2 Optimizing the Hollow NGCs 

The insufficient development of fibrin cables as an ECM component results in the 
inability of the solitary hollow structure in the long nerve gap to sustain sufficient 
formation of the SC cable. Due to this, the SCs are unable to align through the injury



site, which leads to a decrease in the formation of Bands of Bungner. These 
structures provide topographical guidance for regrowing axons, and their absence 
is the primary reason for poor regeneration [62]. Typically, as axons grow and 
extend, they form specialized structures at their tips called growth cones. These 
growth cones use filopodia and lamellipodia to explore and interact with the sur-
rounding environment at a very small scale, seeking out specific cues that guide them 
toward their intended targets [56]. Thus, researchers have focused on how to control 
the development of axon by adding or manipulating the internal structure of the 
conduits to improve nerve recovery. These approaches (Fig. 13.5) have been 
employed to limit the spreading of axons, enhance the exchange of nutrients, and 
create a peripheral nerve environment that more closely mimics its micro-
architecture [54]. 
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Fig. 13.5 Schematic summary of the structural repair strategies used to improve existing hollow 
nerve-guided catheters. (Reprinted from [54] with permission. Copyright 2012 The Royal Society) 

Multichannel NGCs 

The early version of the improved design introduced multichannels or 
microchannels into the tube to direct the regeneration of individual nerve fascicles



in a manner that mimics the architecture of the nerve fascicles. The use of multi/ 
micro-channels increases the surface area available for cell attachment and growth 
factor release, thereby enhancing nerve regeneration. Hadlock et al. fabricated a 
polymer multichannel conduit with finely controlled diameters and hole positions 
that simulate both skeletal muscle basal lamina and autograft architecture for 
bridging peripheral nerve defects in 2004. This unique channel structure increases 
by up to five times the surface area available for Schwann cell attachment in 
comparison to a single hollow conduit [63]. Yao et al. found that this design could 
decrease the overall axonal dispersion/misdirection. A range of collagen conduits, 
including 1-, 2-, 4-, and 7-channel conduits, were utilized to examine the impact of 
channel number on axonal regeneration, along with commercially produced single 
channel conduits (NeuraGen® ). Their findings demonstrated that the 1-channel and 
4-channel conduits developed in this study showed superior results in terms of 
axonal regeneration when compared to other conduit types. Additionally, they 
demonstrated that, compared to a 1-channel conduit, a 2- and a 4-channel conduit 
dramatically reduces the proportion of motor neurons with double projections 
[64]. According to this study, the use of multichannel tubes has the potential to 
prevent axons from being misdirected and improve the success of reinnervation with 
their corresponding targets. Until now, the multichannel nerve conduits are still a 
popular study topic, but the present generation of multichanneled NGCs are 
ill-suited for axon ingrowth because of their low mechanical flexibility, permeabil-
ity, and tiny cross-sectional area of channels [65–67]. The blunt edges of a 
multichanneled conduit can cause nerve fascicles to deform, as the outer layer of 
the conduit is directly sutured to the edge of the nerve segments' epineurium. This 
presents an immediate concern that may result in surgical complications [68]. A 
microchannel NGC with a jacket layer designed by Belanger et al. solved this 
problem commendably, and they found that the mechanical properties could be 
improved by using multilayer materials [69]. Although huge efforts have been 
taken on improving the multichannel NGCs, this design cannot avoid the same 
defect as the single-channel conduit—when the nerve gap is too long, the insufficient 
formation of the Bungner band will cause deficient nerve regeneration. Therefore, it 
is still necessary to take the manufacturing complexity into account and make further 
improvements before applying for clinical translation. 
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Intraluminal Guidance Structures 

The addition of structural intraluminal guide cues or physical lumen fillers is one 
topical nerve healing technique. These topographical cues could either replace the 
incomplete or unformed fibrin cable or serve as an extra anchor to help the fibrin 
cable formation [70], overcoming the limitation of single-channel and multichannel 
conduits to some extent. The pioneering work to improve the hollow conduits by 
adding fillers was performed by Lundborg on silicone tubes. A new type of artificial 
nerve graft was developed in 1997, made up of eight polyamide filaments with a 
diameter of 250 μm, enclosed within silicone tubes that had an inner diameter of



1.8 mm. This graft was successful in bridging an extended 15 mm gap in the sciatic 
nerve of rats, whereas conventional silicone tubes were unable to achieve compara-
ble nerve repair results in similar conditions [71]. After that, some researchers bent 
their efforts to incorporate structural intraluminal guidance cues into the hollow 
NGCs, which could be concluded in aligned fillers and irregular fillers. The former 
methods aim to introduce supporting fibers parallel to the axis of the axon to enhance 
the guidance of regenerating axons [72, 73]. Huang and colleagues developed a 
compound scaffold using electrospinning poly(ε-caprolactone) (PCL) with 
directionally frozen orientated collagen-chitosan filler. Their study showed that 
this scaffold, which had evenly distributed longitudinal guidance fillers, has prom-
ising clinical applications, as it promotes nerve regeneration and functional recovery 
[74]. The latter involves the addition of hydrogel or sponge materials with high 
porosity to facilitate the exchange of nutrients, offer adequate mechanical qualities, 
or mimic the natural microenvironment for cell growth [75–77]. The neurotrophic 
factors or exogenous cells could be added to the hydrogel or sponge materials to 
further promote nerve regeneration. BDTM PuraMatrixTM peptide hydrogel prepared 
by BD Biosciences was tested as a carrier within a tubular membrane conduit to 
promote regeneration across a 10 mm gap after PNI [78]. The double-layer com-
posite hydrogel nerve conduit constructed by injecting conductive hydrogel into the 
cavity of chitosan conduit significantly promotes sciatic nerve regeneration com-
pared with the chitosan hollow conduit [79]. Bian et al. created an injectable 
hydrogel using bisphosphonates that provide continuous delivery of Mg2+ in com-
bination with a 3D-engineered PCL conduit to facilitate the regeneration of periph-
eral nerves [80]. However, not only axon-regenerating rate but also nutrient 
exchange efficiency decline when the fillers have excessive density, inappropriate 
position, or erratic distribution. According to Ngo et al.’s research, it is crucial to 
take into account both the “packing density” (or “void fraction”) and the distribution 
of intraluminal structures when incorporating them into hollow NGC [81]. Thus, the 
impact of the fillers’ density, porosity, or distribution on nerves should be investi-
gated before the application of the NGCs with intraluminal Guidance Structures. 
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Although most clinical NGCs are designed as hollow structures, the tubes with 
fillers, known as the second-generation axon guidance channels, are gradually taken 
to the clinical stage. In 2012, a study conducted on rats demonstrated that the 
incorporation of synthetic collagen basal-lamina matrix along with chondroitin-6-
sulfate into the lumen had a significant positive impact on both bridging the nerve 
gap and improving functional motor recovery [82]. In 2014, Shakhbazau and 
colleagues suggested that a collagen-glycosaminoglycan (GAG) matrix which 
mimics the Schwann cell basal lamina could serve as an appropriate and biologically 
reasonable substrate for nerve regeneration [83]. Recently, the FDA-approved 
NeuraGen® 3D Nerve Guide Matrix, which is composed of collagen I shell and 
porous inner collagen matrix with chondroitin-6-sulfate, was launched by Integra 
Life Sciences Holding Corporation on March 22, 2022. This conduit has been 
created with the aim of facilitating an ideal healing environment for nerve repair in 
cases with short to mid-gap injuries.
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Luminal Wall Improvement 

Numerous regeneration processes, including cell differentiation, survival, and 
migration, are influenced by the interactions between cells and nerve conduits 
(cell–ECM, cell–cell). Thus, the scaffold surface is a crucial interface element of 
NGCs that could be modified and improved to promote the biological conditions for 
nerve regeneration. 

Some approaches are concentrated on physical alterations in the luminal wall, 
which are other physical guidance signals akin to the intraluminal guidance structure 
within a hollow NGC. These filaments range from orientated or nonorientated 
micrometer-scale features to the more biomimetic nanoscale topographies 
[53]. The ability to aid axonal growth cones in recognizing and reacting appropri-
ately to the surrounding environment, ultimately guiding them toward the distal 
stump, is a potential function assisting nerve regeneration [84, 85]. Ouyang et al. 
developed an effective method to electrospun nanofibers with multiple longitudinal 
nanogrooves into a fibrous NGC, and proved that this ordered structure can consid-
erably enhance nerve regeneration [86]. Gao et al. discovered that an NGC featuring 
both linear groove micropatterns and peptide gradients can significantly hasten the 
regeneration of the sciatic nerve, leading to improvements in rate, functional recov-
ery, microstructures, as well as a reduction of fibrosis in muscle tissues [87]. The 
grooved design of the conduit solves the issues of low cross-sectional area or 
porosity. The inner layer, which is longitudinally aligned, offers topographical 
cues that aid in the regeneration of axons and the migration of SCs. Meanwhile, 
the outer layer provides structural support to the conduit while maintaining its 
porosity. 

Generally, it is not enough to further promote nerve regeneration by altering the 
structure of the NGCs only, because the materials’ surfaces with hydrophobicity are 
unsuitable for cell adhesion or proliferation [88]. There has been significant research 
dedicated to enhancing scaffold surfaces with biomolecules, which can be accom-
plished through several methods including full protein coatings, physical adsorption 
or covalent conjugation of proteins, and the incorporation of protein mimetics onto 
material surfaces [54]. For example, introducing ECM proteins as NGC luminal wall 
coating as a biochemical contact-guidance cue for axonal growth [89], and using the 
short chain protein peptide mimetics such as RGD and IKVAK et al. can enhance the 
adhesion and proliferation of neural cells [87, 90, 91]. 

Combination Strategy 

Relying on a certain type of structural design alone cannot completely solve all the 
problems in the regeneration process of the nerve gap. Recently, research is absorbed 
in integrating two or more structural transformation methods in NGCs to repair nerve 
injury. For instance, Wang and Mo et al. fabricated a 3D biomimetic nerve conduit 
from silk fibroin and adopted a multiscale strategy to conquer the flaw of the low 
cross-section available for nerve regeneration, which more closely resembles the



natural milieu of the peripheral nerve. By utilizing 3D nanofiber sponges with 
parallel multichannels, researchers were able to create biomimetic nerve guidance 
conduits (NGCs) that mimicked the perineurium-like structures found in autografts. 
Through a series of analyses, it was demonstrated that these NGCs were effective in 
repairing sciatic nerve defects in vivo and showed similarity to autografts [68]. Park 
and Jung et al. utilized a nanoporous poly(lactide-co-ε-caprolactone) (PLCL) mem-
brane coupled with an inner-aligned gelatin hydrogel to design a nerve guidance 
conduit (NGC). The gelatin hydrogel possessed a microgrooved surface pattern that 
acted as a conducting guidance path for axonal regeneration and also served as a 
reservoir for the incorporation and release of bioactive molecules. This approach 
resulted in promising outcomes, demonstrating successful axonal regeneration 
[92]. Gao and Zhang et al. combined the surface topographical features and distri-
bution of biochemical cues to design an NGC with both the micropatterns and 
functional CQAASIKVAV peptide gradient, demonstrating that the different struc-
tures of NGCs play a synergistic role in rat nerve regeneration [87]. 
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13.3.2 Materials of the Nerve Guide Conduits 

For the NGCs, the material selection is a crucial factor that should take the rigorous 
safety, nutrition exchange efficiency, biocompatibility, biodegradability, and 
mechanical properties et al. into consideration before the NGCs used in the appli-
cation [93]. It generally can either be natural or synthetic (bioabsorbable or 
nonabsorbable) [94]. 

One of the earliest materials utilized for nerve regeneration is synthetic 
nondegradable silicone, because silicone performs admirably in the healing of 
peripheral nerve damage, creating an isolated environment for nerve regeneration 
[52, 56]. The first FDA-approved silicone rubber sheath was invented in 1985 
[93]. Several researchers have reported successful nerve repairs utilizing these 
products [52, 95, 96]. Clinical studies revealed that the silicone chamber could 
effectively repair nerve gaps between 3 and 5 mm in length [97]. However, the 
nondegradability, poor mechanical properties, and nonmachinability make the sili-
con tubes gradually eliminated from the field of peripheral nerve treatment. Now, the 
silicone tube has been used as a template to evaluate the regenerative effect of other 
materials [98]. Chen et al. demonstrated that the silicon NGC filled with collagen-, 
laminin-, and fibronectin-gel could result in further nerve regeneration compared to 
the empty silicone tubes [99]. 

Since the widespread use of silicone NGCs in nerve regeneration, researchers 
have explored a variety of natural, synthetic, and composite biopolymers to create 
NGCs. Each option has its advantages and disadvantages.
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13.3.2.1 Synthetic Materials 

Synthetic materials can be fabricated into 3D structures while maintaining 
regulatable mechanical properties. To avoid the inflammatory response and second-
ary removal operations associated with the nondegradable conduits, the enhanced 
NGCs have a tendency to opt for biodegradable materials that break down naturally 
within a reasonable time frame and provoke only mild foreign body responses. In 
1990, the first clinical absorbable NGCs made by polyglycolic acid (PGA) were 
studied by Mackinnon and Dellon, and the clinical report has determined that 
utilizing a bioabsorbable PGA tube for the reconstruction of nerve gaps up to 
3.0 cm yields clinical outcomes that are at least equivalent to those achieved through 
the traditional nerve graft procedure, while simultaneously circumventing any 
potential donor-site morbidity [100]. Then, the PGA conduits were approved by 
FDA and named Neurotube® in 1995 [58]. Other than PGA, there has been extensive 
research on the use of aliphatic polyesters such as polycaprolactone (PCL), poly 
(lactic acid) (PLA), and their copolymers (PLCL) for the fabrication of nerve 
guidance conduits (NGCs). Indeed, these polymers have been used widely in 
FDA-approved devices as well [45, 101]. PCL is a biocompatible, biodegradable, 
cost-effective, and nontoxic semicrystalline biomaterial and has excellent mechan-
ical properties, and electrospun PCL fibers could be similar to those of peripheral 
nerve ECM [102]. Reid and Luca developed the PCL NGCs, which displayed 
promising peripheral nerve regeneration in short and long-term studies [103]. PLA 
fiber-reinforced conduit was used by Lu et al. to repair a 10 mm gap in the rat sciatic 
nerve, resulting in successful regeneration at 8 weeks after operation [104]. While 
NGCs have shown superior results, they still face significant limitations such as a 
fast degradation rate leading to a reduction in short-term mechanical properties, the 
presence of acidic degradation products and low solubility [58]. These disadvantages 
could be overcome by tailoring polymeric properties such as copolymerization 
because the degradation property is regulated by the crystallinity and molecular 
weight of the synthesized copolymers [45]. Meek et al. synthesized a copolymer 
NGC from lactide and caprolactone to bridge a 12 mm sciatic nerve gap [105]. Wu 
altered the proportion of glycolide and lactide monomers to control the degradation 
rate and rigidity of poly(lactide-co-glycolide) (PLGA) copolymers [106]. Besides, 
there has been some interests in exploring poly(3-hydroxybutyrate) (PHB) [107], 
poly(phosphoesters) [108], and polyurethanes [109] as possible candidates for NGC 
materials. 

13.3.2.2 Natural Materials 

Natural polymers have a wide application in tissue engineering because they are 
biodegradable and biocompatible, nonimmunogenic, and hydrophilic, favoring the 
migration of supporting cells [110]. Natural polymers such as laminin, fibronectin, 
and collagen, as well as proteins such as silk fibroin and keratin, and polysaccharides



including chitosan and alginate have been the primary components of ECM utilized 
for nerve reconstruction in recent decades [43]. Collagen, as a major constituent of 
ECM, is widely utilized as a biological material for various purposes, including 
peripheral nerve regeneration. Current commercially accessible NGCs such as 
FDA-approved NeuraGen® , NeuroFlex™, NeuroMax™, NeuroWrap™, and 
NeuroMend™ are mainly made from cross-linked bovine collagen I [58]. Clinical 
trials utilizing NeuraGen tubes for repairing nerve gaps up to 18 mm within the hand 
demonstrated encouraging outcomes [111]. In China, clinical trials with nerve grafts 
made of chitosan have been authorized by China's State Food and Drug Adminis-
tration (CFDA) [112]. However, to improve the physiochemical properties such as 
mechanical strength, degradation/swelling, and stability, it is necessary to take into 
account material modification, since natural polymers have weak mechanical prop-
erties and are difficult to fabricate into 3D structures [43]. 
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13.3.2.3 Composite Materials 

There are few contemporary single-material NGCs because the biomaterials are 
usually modified or blended to meet the requirements of ideal NGCs. The composite 
materials include natural composite NGCs, synthetic composite NGCs, natural and 
synthetic composite NGCs, and organic-inorganic composite NGCs [93]. These 
composites have the ability of certain mechanical properties, adjustable degradation 
rates, and excellent biocompatibility. For example, Matsumine et al. created a 
biodegradable hybrid nerve conduit comprising of PGA and collagen. The conduit 
was filled with either adipose-derived stromal cells or stromal vascular fraction. 
Upon grafted this NGC onto the nerve defects, an excellent nerve regeneration effect 
was shown at 13 weeks [113]. Yu and Mo et al. developed a nerve guidance conduit 
using polypyrrole-coated PLCL/silk fibroin nanofibers. The conduit was tested on 
rats and shown to promote nerve regeneration by inducing proliferation of SCs in the 
early postsurgery stage and enhancing myelin formation in the later postsurgery 
stage [114]. 

13.3.3 Tissue-Engineered Nerve Grafts (TENGs) 

Recent developments in tissue engineering have led to the emergence of a subfield 
dedicated to neural tissue engineering. In this field, tissue-engineered nerve grafts 
(TENGs), comprised of both artificial and biological nerve grafts, have been devel-
oped as a potential substitute for or supplement to autologous nerve grafts [41]. To 
best direct the regeneration of peripheral axons to their correct destinations and 
enhance the outcome of utilizing NGCs only, the novel TENGs strategies are not 
only the varieties of materials or structures of the NGCs but also the combination 
with drug/gene/growth factors/cells delivery or external stimuli to promote the nerve 
regeneration [43, 115].
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During the process of peripheral nerve regeneration, Schwann cells (SCs) secrete 
and up-regulate various growth factors such as nerve growth factor (NGF), leukemia 
inhibitory factor (LIF), glial-derived neurotrophic factor (GDNF), ciliary 
neurotrophic factor (CNTF), growth-associated protein (GAP-43), brain-derived 
neurotrophic factor (BDNF), and neurotrophin-4 (NT4), among others. These 
growth factors play a significant role in axon regeneration. Upon injury to peripheral 
nerves, the growth factors produced by SCs will gradually decline and cannot be 
sustained indefinitely. Thus, the continuous supply of growth factors is critically 
required. Some researches design the TENGs with the ability to control the release of 
exogenous neurotrophic substances to improve nerve regeneration. A novel tech-
nique was devised by Nawrotek et al. to incorporate microspheres containing 
biologically active nerve growth factor into chitosan/polycaprolactone conduits. 
This approach has the potential to promote axonal growth and support regrowth of 
nerves over an extended period [116]. Besides, the structure of the scaffold itself can 
also be altered to promote sustained delivery. A multilayered fibrous scaffold was 
developed and fabricated by Koh and Hong et al., which consists of three layers (the 
first layer is aligned to provide topographical cues, while the following two layers 
are randomly oriented) and can release multiple growth factors in a controlled 
manner. This scaffold has potential applications in sciatic nerve regeneration in 
rats [117]. In addition to delivering growth factors, the delivery methods can also 
be utilized for delivering medicinal molecules and gene vectors. Gene therapies 
targeting neurotrophic factors have demonstrated the potential to stimulate periph-
eral axon regeneration and myelination. For instance, by overexpressing FGF-2 in 
Schwann cells and grafting them into peripheral nerve lesion sites, Schwann cells 
have been shown to promote nerve regeneration [118]. Kohn and Schulz-Siegmund 
et al. established a dual-component hydrogel system (cGEL) combined with an 
anhydride-containing oligomer. The cGEL was then modified to produce an inject-
able shear thinning filler for established nerve guidance conduits (NGCs), which 
included the small molecule LM11A-31. Their research showed that the LM11A-31 
functionalized cGEL filler, which possesses extracellular matrix (ECM)-like char-
acteristics and specific biochemical cues, has great potential to support peripheral 
nerve regeneration (PNR) [119]. 

In addition to growth factors, nerve regeneration can be aided by the implantation 
of seed cells, which can produce growth factors and influence the extracellular 
matrix. In neural tissue engineering, Schwann cells and stem cells (embryonic 
stem cells (ESC), induced pluripotent stem cells (iPSC), mesenchymal stem cells 
(MSC), adipose derived stem cells (ADSC), and neural stem cells (NSC)) are 
frequently employed as preferred seed cells incorporated into the NGCs. The 
specially manufactured NGC has excellent biocompatibility and a large specific 
surface, ease for increase the viability and survival rate of the cells [120]. Chen 
and Li et al. compared three treatment strategies (cell transplantation, multiscale 
scaffold, and scaffold loading Schwann cell progenitors) with respect to their 
regeneration efficiency and behavior of peripheral nerves. Their analysis led to the 
conclusion that using a scaffold treatment is more effective than relying solely on 
cell grafts. Additionally, preloading the scaffolds with neural crest stem cell-derived



Schwann cell progenitors yielded the most favorable results for promoting nerve 
regeneration [121]. Exosomes, which are nanosized extracellular vesicles released 
by almost all cell types, have recently been found to enhance nerve regeneration 
[122]. There is increasing evidence that exosome miRNAs play a crucial role in 
vascular regeneration [123], and that miRNAs transported by exosomes from 
Schwann cells, macrophages, and mesenchymal stem cells (MSCs) promote periph-
eral nerve regeneration [124]. 
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Although many efforts have been made to improve the TENGs, the ideal nerve 
conduit should be most similar to transplantation of autologous nerve. The primary 
objective of future research on nerve guidance conduits (NGCs) is to enhance their 
functionality through the integration of stem cells, external stimuli, neurotrophic 
factors, and drugs. Additionally, novel techniques such as Bio 3D printing technol-
ogy, which has great potential in peripheral nerve regeneration by producing three-
dimensional tissue structures using only cells, are being studied and 
developed [125]. 

13.4 CNS Therapeutic Strategies 

In the last decade, one of the most significant advancements in the field has been the 
development of various strategies that increase intrinsic regenerative ability. As a 
result, there is now reproducible and robust axon regrowth in the adult mammalian 
CNS (Fig. 13.3). The use of combinatorial manipulation of multiple factors has 
displayed great potential in creating therapeutic strategies for promoting functional 
recovery of injured axons. 

13.4.1 Inflammatory-Regulating Biomaterials 

Directed modulation of immune cell function to reduce neuroinflammation and 
promote tissue homeostasis and/or repair is a developing feasible strategy in nerve 
regeneration. Proinflammatory cytokines and reactive oxygen species are 
upregulated in neuroinflammation, leading to the recruitment of immune cells to 
the injured area in the central nervous system (CNS). This process ultimately pro-
motes unwanted tissue damage [126]. Adaptive biomaterials with physiologically 
responsive property conjugated and/or encapsulated with active molecules and drugs 
could regulate the inflammatory through reducing the recruitment and infiltration of 
immune cells, promoting polarization of M2 macrophage/microglia and lessening 
the proinflammatory biological molecules (Fig. 13.6). Systemic delivery of small 
molecules or proteins is used in the early stages of immunotherapy or 
immunomodulation [128]. For example, fingolimod, an FDA-approved small mol-
ecule, can prevent T-cell infiltration by blocking sphingosine 1-phosphate signaling 
[129]. Unfortunately, systemic delivery of drugs causes rapid excretion or loss and



poor targeting. Therefore, it is required to administration of large doses, leading to 
toxic side effects. 
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Fig. 13.6 Overview of inflammatory outcomes instructed by engineering material properties. 
(Reprinted under the terms of the CC-BY 4.0 license [127]. Copyright 2022, The Authors, 
published by MDPI) 

Biomaterials-based scaffolds allow the controlled, targeted, and local delivery of 
immunomodulatory factors including drugs (e.g., dexamethasone [130], Rolipram 
[131], minocycline [132]), proteins and growth factors [133], scavengers that can 
remove unfavorable factors (e.g., ROS), oligonucleotides (e.g., silencing RNA 
[134]), and endogenous biological signal molecules (e.g., H2S  [135–138], H2 

[139], and NO [140]). Minocycline (MC) is clinically used for antibacteria and 
anti-inflammation, exhibiting neuroprotective effect in cerebral ischemia, traumatic 
brain injury, and spinal cord injury [141]. An E-selection-targeting sialic acid-
polyethylene glycol-poly (lactic-co-glycolic acid) (SAPP) copolymer were used to



form micelles carrying MC (SAPPM), which deliver minocycline targeted to the 
lesion site and released for long time (Fig. 13.7). Such micelles could effectively 
accumulate in the lesion site of SCI and sustain release of MC over 72 h, inhibiting 
microglia activation obviously and promoting behavior recovery [132]. 
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Fig. 13.7 SAPPM micelles injected to injury site inhibit secondary injury and promote functional 
recovery. (Reprinted from [132] with permission. Copyright 2019 Elsevier) 

Proteins, especially those macromolecular proteins such as fibroblast growth 
factor 4 (FGF4) can hardly penetrate into blood spinal cord barrier and blood brain 
barrier. Sulfated glycosaminoglycans (GAGs), for example, heparan sulfate and 
chondroitin sulfate, are considered as reservoir to bind and stabilize growth factors 
and chemokines. As shown in Fig. 13.8, a laponite/heparin hydrogel loaded with 
FGF4 (Lap/Hep@FGF4) was used in SCI rats to reduce astrocyte migration/polar-
ization and promote the axonal generation [133]. RNA interference has become a 
powerful genetic tool for gene silence in many diseases [142, 143]. However, 
successful gene delivery requires gene carriers with various essential features, 
including easy degradation, cellular uptake, and intracellular release. Functionalized 
curdlan nanoparticles (CMI) carrying NF-kB p65 siRNA (sip65) to knockdown 
NF-kB p65 in transient middle cerebral artery occlusion result in microglia pheno-
type conversion from M1 to M2 [134]. Biological signal molecules such as H2S and 
NO have been proved to reduce macrophage infiltration and inflammatory cytokines 
in SCI. H2 could remove cytotoxic oxygen radicals and activate superoxide 
dismutase and catalase to accomplish antioxidant purpose [134]. A near-infrared 
(NIR)-triggered NO release nanosystem could release NO rapidly with stimulation 
of NIR light, which in turn suppresses gliosis and inflammation, leading 
neuroregeneration and preventing neurons from apoptosis [140].
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Fig. 13.8 Laponite/heparin hydrogel loaded with FGF4 suppresses inflammation and promotes 
remyelination and microtube stabilization. (Reprinted under the terms of the CC-BY 4.0 license 
[133]. Copyright 2022, The Authors, published by Ivyspring) 

Recently, many studies focus on scavenging excessive production of ROS to 
reduce inflammation and protect nerve cells in spinal cord injury, traumatic brain 
injury or cerebral infraction. As shown in Fig. 13.9, several methods have been 
developed to scavenge ROS and thereby improve the vile microenvironment after 
injury, including combined with ROS-responsive unit (e.g., selenium [144], sulfur 
[145–149], 2,2,6,6-tetramethylpiperidinyloxy [150], thioketal diamine [147, 151], 
boronic acid benzyl [152]), and carried or directly applied with antioxidant enzymes 
(e.g., superoxide dismutase (SOD) and catalase (CAT) [153]) or nanoenzymes (e.g., 
cerium oxide nanoparticles [154, 155], Prussian blue nanozymes [156], Manganese-
based nanozymes [157, 158], iron oxide nanoparticles [159], carbon dots nanozymes 
[160–162], MO-based polyoxometalate nanoclusters [163]). There are many 
ROS-responsive units applied to biomaterials [164]. Poly(propylene sulfide)120 
(PPS120) is a kind of sulfur-containing ROS quencher responding to H2O2, showing 
good anti-inflammatory property. To achieve ROS scavenging and responsive 
release of curcumin at the lesion site, a hydrogel made of matrix metalloproteinase 
responsive triglycerol monostearate was utilized to deliver PPS120 and curcumin. 
This hydrogel reduces the active microglia and reactive astrocyte, and the level of 
proinflammatory cytokines, leading to nerve regeneration and behavior recovery 
[148]. Nanomaterials called nanoenzymes have been employed for treating CNS 
injuries caused by RONS. These materials possess stable enzyme-like activity, 
powerful antioxidative ability, excellent stability in a physiological environment, 
and are cost-effective [165, 166]. Prussian blue (PB), an FDA-approved antidote for 
cesium and thallium intoxication, shows excellent biosafety. Hollow PB nanozymes 
were used for ischemic stroke treatment, showing great antioxidative, anti-
inflammatory and antiapoptotic function [156].
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Fig. 13.9 The method to remove ROS. (a) Combined with ROS-responsive unit. (Reprinted from 
[148] with permission. Copyright 2021 Elsevier). (b) Supply with SOD and CAT. (Reprinted from 
[153] with permission. Copyright 2020 Elsevier). (c) Nanoenzymes. (Reprinted from [161] with 
permission. Copyright 2019 American Chemical Society) 

In addition, several biomaterials such as chitosan and hyaluronan (HA) show 
anti-inflammatory properties to some extent. For instance, high molecular weight 
HA hydrogels could reduce the infiltration of macrophages and microglia cells, and 
the astrocytic response in SCI. Research has demonstrated that HA reduces 
microglia activation following stimulation by lipopolysaccharides through the 
MAPK activation pathway [167, 168]. Additionally, chitosan-NT3 material is capa-
ble of inhibiting microglia/macrophage infiltration, indicating a reduction in the 
immune response [169]. Overall, the inflammatory regulation shows great potential 
in CNS injury. 

13.4.2 Bioactive Protein/Peptide Signals Regulation 
Biomaterials 

As aforementioned, there are several features in the pathophysiology process of 
nerve injury. For better tissue repair after central nerve system injury, protein/peptide 
signals are then designed for inhibition or enhancement in different biological 
process, including removal of inhibitory molecules, increase of neurotrophic factors, 
addition of cell adhesion molecules, and decrease of glutamate excitotoxicity [170]. 

13.4.2.1 Removal of Inhibitory Molecules 

Chondroitin sulfate proteoglycans (CSPGs) deposit after nerve injury, forming glial 
scar and inhibiting axonal growth. CSPG are composed of core protein and chon-
droitin sulfate glycosaminoglycan (CS-GAG) on side chain [20]. Enzymatic



strategies targeting CSPGs with chondroitinase ABC (ChABC) and peptide strate-
gies for inhibiting CSPGS-receptors with intracellular sigma peptide (ISP) are 
promising approaches to render neuronal plasticity and connectivity. 
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Chondroitinase ABC (ChABC) 

The ChABC derived from bacteria is a depolymerizing lyase, which can cleave a 
broad range of glycosaminoglycan substrates including CS-GAG. Beneficial effects 
have been reported for ChABC used in traumatic brain injury (TBI), spinal cord 
injury (SCI), and stroke, showing enhanced axonal regeneration and improved 
functional recovery [171–173]. The limitation for ChABC application is its thermal 
instability. Thus, materials-based long-time control release and gene therapy for 
long-term ChABC gene expression are studied. Fabrizio Gelain group designed self-
assembling peptides (SAPs) hydrogel for sustained release of active ChABC after 
SCI [174]. The enzymatic activity of ChABC released from SAPs was maintained 
up to 42 days in both in vitro and in vivo measurements. In chronic SCI rats, 
enhanced neural regeneration exhibited after local injection of this SAPs hydrogel. 
Different with traditional gene delivery therapy using adeno-associated virus (AAV) 
and lentivirus, William L. Murphy group reported mineral-coated microparticles 
(MCMs) as ChABC mRNA delivery vehicles after SCI (Fig. 13.10) [175]. The

Fig. 13.10 Delivery of both MCMs and mRNA improves transfection efficiency in primary glial 
cells. (Reprinted under the terms of the CC-BY 4.0 license [175]. Copyright 2022, The Authors, 
published by Wiley)



production of ChABC was found to reduce the deposition of chondroitin sulfate 
proteoglycans (CSPGs) in an in vitro model of astrogliosis. ChABC was 
overexpressed within a glial scar after local microparticles injection, which 
improved the recovery of motor function seven weeks postinjury. Similar to 
ChABC, mammalian enzyme arylsulfatase B (ARSB, N-acetylgalatosamine-4-sul-
fatase), which hydrolyzes C4S moieties from CS-GAGs, has been used as another 
enzymatic strategy for CSPGs inhibition [20].
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Intracellular Sigma Peptide (ISP) 

The CSPGs take functions via interacting with semaphorins, members of the LAR 
subfamily, where PTPσ is one of the receptors [31, 176]. Based on the structure of 
PTPs and related phosphatases, the Jerry Silver group identified a 24-amino-acid 
intracellular wedge domain that is highly conserved [177]. According to inhibitory 
regulation mechanism of PTP, they designed ISP, including a novel peptide-mimetic 
of the PTPs wedge and a TAT domain 
(GRKKRRQRRRCDMAEHMERLKANDSLKLSQEYESI), to reduce CSPG-
mediated axonal inhibition [178]. Rats were subcutaneously treated daily with ISP 
for 7 consecutive weeks after contusive SCI for 1 day. Enhanced behavioral results 
and functional recovery were observed after ISP administration. Besides, Yu Luo 
group performed the same ISP treatment to mouse after middle cerebral artery 
occlusion (Fig. 13.11), leading to significant behavioral recovery accompanied by 
neuroprotection, axonal sprouting, and neuroblast migration into the lesion 
[179]. However, a few biomaterial-based systems are designed with ISP for CNS 
injury. Similar to ISP, the extracellular LAR peptide (ELP) and the intracellular LAR 
peptide (ILP) as binding peptides have been used to overcome growth restriction of 
CSPGs [32, 180]. 

13.4.2.2 Increasing Neurotrophic Factors 

The neurotrophic factors are typical bioactive molecules which are important for cell 
proliferation, neural differentiation, cell survival, neuronal plasticity, and axonal 
growth. Neurotrophic factors such as nerve growth factor (NGF), brain-derived 
neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and basic 
fibroblast growth factor (b-FGF) are utilized for neuroprotection and regeneration 
due to the challenges associated with axonal regeneration after CNS injury. 

Nerve Growth Factor (NGF) 

NGF, the first member of the neurotrophin family, was discovered in the 1950s and 
has since been recognized as a critical factor in neurobiology due to its ability to 
regulate various important functions such as survival, growth, and differentiation of



nerve cells in both the peripheral and central nervous systems [181]. NGF achieves 
its biological effects via the tropomyosin kinase receptor A (TrkA)-mitogen-acti-
vated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)/ 
phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway [182]. Considering 
the transient half-life of NGF, biocompatible scaffolds and hydrogels are developed 
with NGF encapsulation for effective long-time controlled release of NGF after CNS 
injury [183]. David L. Kaplan group reported that a silk fibroin nanofiber (SFN) 
hydrogel with hierarchical anisotropic microstructures can maintain the bioactivity 
of NGF and regulate the differentiation of neural stem cells more likely toward 
neuronal linage. Reduced scar formation and effective recovery of motor functions 
are achieved in a severe rat long span hemisection SCI model using this hydrogel 
matrix (Fig. 13.12) [184]. 
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Fig. 13.11 Blocking the CSPG receptor PTPs promotes axonal sprouting, migration of newly born 
neuroblasts, and recovery from stroke. (Reprinted under the terms of the CC-BY 4.0 license 
[179]. Copyright 2022, The Authors, published by Elsevier)
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Fig. 13.12 The schematic depicts aligned SFN hydrogels loaded with NGF for long-span spinal 
cord repair. The aligned topography of SFN promotes neural cell proliferation and migration, 
whereas the NGFs regulate NSC differentiation. (Reprinted from [184] with permission. Copyright 
2022 American Chemical Society) 

Brain-Derived Neurotrophic Factor (BDNF) 

BDNF is one of the best studied neurotrophins. By interacting with tropomyosin 
receptor kinase B (TrkB) receptors, BDNF plays an important role in neurogenesis, 
axonal sprouting, neuroprotection, myelination, and synaptic plasticity 
[185, 186]. Hydrogels, scaffolds, and nanoparticles are applied for BDNF encapsu-
lation for therapy of CNS injury [187–191]. Li et al. developed a collagen/chitosan 
scaffold that was integrated with BDNF using low-temperature extrusion 3D print-
ing, which preserved the biological activity of BDNF (Fig. 13.13). After eight weeks 
of implantation in the transected lesion of the spinal cord, the locomotor function of 
rats was significantly improved with the use of this scaffold [189]. Virus-based gene 
therapies are developed for BDNF expression, yet the sustained expression of BDNF 
may induce neuronal hyperexcitability and spasticity [170]. 

Vascular Endothelial Growth Factor (VEGF) 

Ischemia-induced oxygen and glucose deprivation can lead to cell apoptosis and 
inflammation response. Thus, using neurotrophic factors such as VEGF to promote 
blood supply via angiogenesis or vascularization is a promising strategy. Compared 
to soluble VEGF, VEGF binding to the extracellular matrix enables sustained 
activation of VEGF receptor-2 (VEGFR-2). According to this mechanism, Tatiana 
Segura group designed a hydrogel loaded with high cluster VEGF on heparin 
nanoparticles to improve angiogenesis for regeneration of brain tissue and promotion 
of neural repair after stroke (Fig. 13.14)  [192].
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Fig. 13.13 Neural regeneration after spinal cord injury is accelerated by using printed BDNF/ 
collagen/chitosan scaffolds that are integrated with a low-temperature extrusion 3D printer. 
(Reprinted under the terms of the CC-BY 4.0 license [189]. Copyright 2021, The Authors, 
published by Oxford University Press) 

Fig. 13.14 An injectable biomaterial with dual-functionality for angiogenesis in the brain after a 
stroke. (Reprinted from [192] with permission. Copyright 2018 Springer Nature) 

Basic Fibroblast Growth Factor (b-FGF) 

The neuroprotective effects of b-FGF have been utilized to facilitate recovery in 
CNS injuries. Intravenous injection of b-FGF suffers several limitations such as 
transient half-life, significantly stimulated tumor progression and increased toxic 
effect especially in high dose [193]. Thus, combination with biomaterial scaffolds



seems a promising strategy for better b-FGF performance. Xiao et al. created a 
polymer bioactive system that immobilized umbilical cord mesenchymal stem cells 
(UCMSC) and b-FGF in extracellular matrix (ECM) and heparin-poloxamer (HP) to 
enhance mitochondrial function and decrease apoptosis (Fig. 13.15) [194]. 
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13.4.3 Biomaterials for Regulating Cells 

In most central CNS, neurons and glial cells are lost, and cell replacement occurs in 
the CNS lesions. However, this method cannot satisfy the function of lost cells 
[195]. Stem cells could be introduced to new neurons or glia cells to lesson area in 
CNS, showing great potential for CNS regeneration. There are several cell types that 
can be utilized for CNS therapy, including neural stem and progenitor cells (NSPCs), 
olfactory ensheathing cells (OECs), schwann cells, oligodendrocyte precursor cells 
(OPCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells 
(MSCs) [196]. The mechanisms of action of transplanted cells including 
neuroprotection, immunomodulation, axon regeneration and sprouting, myelination, 
and relay formation [197]. Nonetheless, the implanted cell fate is influenced by the 
microenvironment. For example, NSPCs transplanted into host parenchyma mainly 
differentiate into oligodendrocytes, while they tend to differentiate to astrocytes in 
the lesson site [198]. In addition, allogeneic cells, for example, MSCs, have limited 
survival outside nervous system because of attacking by CD8+ T cells and natural 
killer cells [199]. 

Biomaterials can improve cell-based therapeutics by promoting the survival, 
differentiation, targeting, and integration of transplanted cells, protecting host neural 
cells, and removing inhibitory substances. In particular, hydrogels or microgels

Fig. 13.15 A newly developed thermosensitive hydrogel is capable of promoting spinal cord repair 
by regulating mitochondrial function. (Reprinted from [194] with permission. Copyright 2022 
American Chemical Society)



benefit to the endogenous cells together with transplanted cells surrounding the 
implant site.
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Natural polymers are easily obtainable and have well-studied physical, mechan-
ical, and biological properties. They contain cell adhesion signals and are biode-
gradable, although they tend to lose their biological activity during sterilization. On 
the other hand, synthetic biomaterials can be sterilized with ease, and their porosity, 
structure, stiffness, and degradation rate can be finely tuned to meet specific appli-
cations. Hydrogels or microgels have been prepared using various types of natural 
and synthetic polymers, including hyaluronic acid [200], chondroitin sulfate [201– 
203], gelatin [204, 205], poly(lactic-co-glycolic acid) [206], polyethylene glycol 
[207], and sodium alginate/collagen [208]. 

So far the transplanted cells have been mainly focused on bone marrow-derived 
MSC (BMSC) [151, 157, 205, 208], NPSC [201–203, 209], and iPSCs [200, 204, 
210]. BMSC appear to have many unique features such as less immunogenicity, 
fewer ethical problems and extensive sources. The transplanted BMSCs in the injury 
site release neurotrophic factors and take part in immunomodulation, and also have a 
potential to differentiate into neural cells [211]. As shown in Fig. 13.16, a thiokol-
containing and ROS-scavenging hydrogel encapsulated with epidermal growth 
factor, rat-derived basic fibroblast growth factor and BMSC were used to treat 
SCI. This hydrogel could regulate the hostile pathological microenvironment to 
protect BMSCs, leading to nerve regeneration to some extent. Besides, extracellular 
vesicles produced by stem cells, which contain proteins, lipids, nucleic acids, and 
other biomolecules, are extensively employed in the treatment of CNS injury 
[212, 213]. 

For cell therapy, besides transplanting the exogenous stem cells, endogenous 
repair is another method. However, neurogenesis is scarce or nonexistent in the early 
stages of spinal cord injury [214, 215]. Nevertheless, early studies of spinal cord 
injuries suggest that they retain the intrinsic ability of axons to grow. Although axon 
sprouting may extend beyond the lesion site, only a small number of axons are 
capable of long-distance regeneration to their original targets [216, 217]. Unexpect-
edly, recent evidence suggests that endogenous neural stem cells (also known as 
neural progenitor cells) have the ability to migrate tangentially from the 
subventricular zone (SVZ) to the neocortex via blood vessels and undergo 
neurogenesis in situ [218–220]. 

To improve the neurogenesis after CNS injury, biomaterials are combined with 
chemoattractants such as stromal cell-derived factor-1α (SDF-1α)  [221, 222], which 
are designed to physical orientation [223] and microgel scaffold to promote the 
endogenous neural stem cell migration to the injury site [224, 225]. SDF-1α is 
important for endogenous NSC or neural progenitor cells (NPC) to migrate from 
SVZ to the injured site in long distance. By combining SDF-1α and bFGF-loaded 
polyelectrolyte complex nanoparticles (PCNs) with HA matrices, a nanohybrid 
hydrogel capable of tunable gelation via Schiff base crosslinking can be formed. 
This hydrogel could effectively promote endogenous NSC migration and 
neurogenesis, contributing to the size of stroke cavity reduction and functional 
recovery [221].
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Fig. 13.16 The developed therapy for spinal cord injury involves a hydrogel containing bone 
marrow-derived mesenchymal stem cells and ROS-scavenging properties. (Reprinted under the 
terms of the CC-BY-NC-ND 4.0 license [151]. Copyright 2022, The Authors, published by 
Elsevier) 

Radial glial (RG) cells, arranged in parallel during embryonic development of the 
brain, are capable of guiding neurons to migrate toward areas of brain injury using 
cerebral cortex RG fibers as a bridge for neuroblast migration [226]. Kawauchi et al. 
created an aligned fibrin nanofiber hydrogel (AFG) with molecular self-assembly 
properties using electrospinning. Implantation of the aligned fibrin nanofiber hydro-
gel in brain can facilitate endogenous neurogenesis through various signaling path-
ways such as Notch, Wnt, Neurotrophin, Axon guidance, and MAPK [223]. 

13.5 Challenges and Perspectives 

Despite of numerous strategies for regeneration mechanisms and clinical applica-
tions, autografts remain the gold standard due to the lack of a viable alternative for 
long-segment PNS defects. Challenges such as neuron necrosis and precise axon 
alignment after PNS injury have not been fully addressed. The roles of revascular-
ization in PNS regeneration also need intense research. Nonetheless, there has been 
notable progress in creating a variety of nerve repair materials that differ in their 
composition, morphology, and compliance. Notably, the utilization of functional 
nerve conduits based on biomaterials to bridge nerve gaps and direct PNS regener-
ation offers renewed optimism for the thousands of individuals affected by PNS



injuries. Based on the understanding of the molecular mechanisms of neural regen-
eration, novel functionalized nerve conduits have the potential to guide polarized 
extension, to remove growth-inhibitory substrates, to delivery growth factors, to 
reduce cells apoptosis, and to improve injured microenvironment on demand. In 
addition, immunomodulatory therapy representing by promotion of M2 macrophage 
polarization also shows great promise for the repair of PNS injury. 
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Repairing damage to the CNS is a daunting challenge due to its limited response 
to treatment, and effective therapies for CNS injuries have yet to be discovered. 
Nevertheless, the application of biomaterial scaffolds and a combination of materials 
and cell therapy has yielded encouraging outcomes in CNS regeneration. Biomate-
rial scaffolds can mitigate inflammation at injury sites while modifying the micro-
environment of lesions. Moreover, they can transport neurotrophic factors and drugs 
to augment therapeutic effects. Additionally, merging biomaterial scaffolds with cell 
therapy can facilitate stem cells' survival and differentiation while decreasing the 
side effects associated with cell therapy. However, there are still several important 
issues need to be improved, for example, the biodegradability, biocompatibility, and 
mechanically flexibility of biomaterials, the combination therapy design across cell 
transplantation, drug delivery, and inflammation modulation, and the correspon-
dence between the rate of biomaterials degradation and the phases of tissue regen-
eration. Considering the advancements in materials and biology, it is a plausible 
conjecture that we can attain complete regeneration of the CNS in the foreseeable 
future. 
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