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Abstract. One of the keys to retrieve soil moisture (SM) using the Spaceborne
Global Navigation Satellite System-Reflectometry (GNSS-R) technique is to cor-
rect for the influence of vegetation. In this paper, the surface reflectivity is calcu-
lated using the Cyclone Global Navigation Satellite System (CYGNSS) data, and
combine the Vegetation Water Content (VWC) provided by Soil Moisture Active
Passive (SMAP) data to establish linear regression model to retrieve SM products
with a temporal resolution of 3 days and a spatial resolution of 36 km on a pan-
tropical scale, and each of the models is parameterized pixel-by-pixel to allow
for tuning in accordance with regional variations. According to the experimental
findings, CYGNSSmay offer useful SM estimations across regions with moderate
vegetation, and the correlation coefficient (R) with SMAP reference data is up to
0.7. However, in the arid and densely vegetated regions, the retrieval performance
is degraded, and the R is 0.4 and 0.3 in the forest and bare soil areas, respectively.
The overall root mean square error (RMSE) is 0.042 cm3/cm3. In addition, a time-
series comparison of in-situ data from the International Soil Moisture Network
(ISMN) and the CYGNSS SM revealed a good correlation. The study proves the
necessity of considering vegetation effect in SM retrieval, which is of positive sig-
nificance for the promotion of the operational application of Spaceborne GNSS-R
SM retrieval.
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1 Introduction

Soil moisture (SM) is an important parameter in the energy exchange process between
land and atmosphere, plays a very important role in the climate system [1]. Traditional
SM monitoring techniques, such as drying and time-domain reflectometry, have great
accuracy but are difficult to use for large-scale monitoring because of the high time
consumption and equipment cost [2]. The growth of satellite-based remote sensing tech-
nology provides a new opportunity for continuous acquisition of large-scale SM data [3,
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4]. In recent years, Spaceborne GNSS-R technology has gradually become a research
hotspot to obtain large-scale and continuous SMdata. By processing GNSS(Global Nav-
igation Satellite System) satellite signals reflected from the earth surface, this technology
can be used to retrieve geophysical parameters of ocean and land. GNSS-R SM detec-
tion has many advantages, such as low cost, wide coverage and a large number of signal
sources, which can realize all-day and all-weather monitoring [5–8].

At present, a large number of literatures have studied the feasibility and effectiveness
of SM retrieval using satellite-borne GNSS-R. Chew et al. used TDS-1 (TechDemoSat-
1) data to prove that space-borne GNSS-R can be used to retrieve SM [9]. However,
due to the long revist time of the TDS-1 satellite and the limited space coverage, the
amount of data collected cannot achieve daily estimates of SM.By contrast,theCYGNSS
(Cyclone Global Navigation Satellite System) satellite constellation launched by NASA
in 2016 has short revisit time and large data volume. Previous studies have shown that
the correlation between time fluctuation of CYGNSS signal and SM is better than that
of TDS-1 data [10], which brings a new opportunity for obtaining SM with high spatial
and temporal resolution. Chew et al. found a strong positive correlation between the
change amount of CYGNSS reflectivity and SMAP SM, proving that CYGNSS can
be used to develop global SM products with high temporal resolution (maybe every 6
h) [10]. Clarizia et al. proposed a triple linear regression algorithm of “Reflectivity—
Vegetation—Roughness” to retrieve SM [11]. YanQingyun et al. improvedClarizia et al.
‘s algorithm and used CYGNSS DDM statistical moment to characterize the surface
roughness information, reducing the dependence on external auxiliary data [12]. Guo
Fei et al. considered the influence of surface temperature on space-borne GNSS-R SM
retrieval, and used a linear regression model to retrieve the quasi-global SM based
on CYGNSS data, proving the necessity of surface temperature in SM retrieval [13].
In addition, with the rapid development of machine learning, artificial neural network,
random forest and support vector regression are alsowidely used in SM retrieval [14–16].

The retrieval of SM by machine learning method can flexibly select the input param-
eters and deal with the nonlinear relationship between the parameters. However, it is
often faced with problems such as high dependence on auxiliary data, large amount of
training data required by the model and poor generalization ability of the training model.
In contrast, the method of SM retrieval based on empirical model is less dependent on
auxiliary data, and can show a clearer relationship between CYGNSS observation data
and SM. Moreover, it is more convenient to establish the retrieval model grid by grid for
local parameterization. In addition, existing studies have shown that there is a signifi-
cant correlation difference between different vegetation parameters and the attenuation
effect of microwave signals. For example, the Vegetation Optical Depth (VOD) data of
vegetation provided by SMAP L3 products has a poor correlation with the attenuation
of vegetation at microwave frequencies [11]. Based on this, this paper attempted to use
the data of Vegetation Water Content (VWC) in SMAP and CYGNSS observations to
establish a linear regression model for SM retrieval. Finally, the retrieval results were
compared with the reference data.



Extraction of Soil Moisture Based GNSS-R Considering Vegetation Factors 53

2 Observation Data

2.1 CYGNSS GNSS-R Data

CYGNSS is an Earth observation mission of NASA, which was launched on December
15, 2016. A total of eight small satellites are equipped with four-channel GNSS-R dual-
base radar receivers that collect GPS (Global Position System) signals reflected from
the ground and ocean [17]. These small satellites operate over the pan tropics with an
orbital inclination of 35 degrees, covering about 38° N to 38° N, and the average revisit
period is only 7 h [18]. The study uses CYGNSS Level 1 v3.1 scientific data products.
In order to improve the retrieval accuracy, this paper carried out quality control on the
CYGNSS data set. In addition to using the quality flag, the following data were also
filtering: (1) the incidence angle greater than 65°; (2) SNR less than 0dB; (3) Receiver
antenna gain less than 0dB; (4) Peak DDM values outside of delay bins 4 and 15 were
filtered out.

2.2 SMAP Data

This paper uses the SMAP L3 SM products, which has a spatial resolution of 36km.
The daily data consists of two parts: descending (AM) and ascending (PM) [4]. In this
paper, “SM” and “VWC” data are used as auxiliary parameters for model training and
prediction. In order to fully cover the research area, the data of three consecutive days
are averaged [12]. Also, CYGNSS data are gridded to the same EASE-Grid as SMAP
data for later comparison and verification [11]. Figure 1 shows the 2020 mean data of
SMAP SM and VWC and CYGNSS reflectivity.

Fig. 1. Annual means of: (a) SMAP SM and (b) SMAP VWC, and (c) CYGNSS reflectivity

2.3 ISMN Data

In this paper, the International Soil Moisture Network (ISMN) dataset was used to
independently verify the CYGNSS SM. Due to the limited penetration depth of L-band
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in soil, the observation value of 5cm SM was adopted, and only the data labeled “good”
of hourly SM was retained, which was processed as three-day average and compared
with CYGNSS retrieval results [19].

3 Methodology

By receiving and processing L-band electromagnetic signals transmitted by GPS satel-
lites, CYGNSS can retrieve the relevant parameters of the scattered surface. The GNSS
signal power reflected by the surface consists of two parts: coherent and incoherent scat-
tering component. Based on the assumption that CYGNSS land surveys are primarily
specular point reflections, that is, the coherent scattering component is the dominant
component in the reflected signal, then the power expression of the coherent component
is as follows [20]:

Pcoh
rl = Pt

rG
t

4π(Rt + Rr)
2

Grλ2

4π
�rl (1)

where, Pcoh
rl is the coherent component; Pt

r is the transmitting power of the signal; Gt

and Gr are the gain of transmitting antenna and receiving antenna respectively; Rt and
Rr are respectively the distance between the transmitter and the receiver and the specular
point; λ is the wavelength.

Then the surface reflectivity �rl can be calculated by CYGNSS BRCS (bistatic radar
cross section) σ [14]:

�rl = σ(Rt + Rr)
2

4π(RtRr)
2 (2)

By correcting the signal frequency attenuation effect caused by surface roughness
and vegetation cover, Fresnel reflection coefficient is calculated as follows:

�rl(θ) = Rrl(θ)2γ 2exp
(
−4k2s2 cos2(θ)

)
(3)

where, θ is the incident angle; Rrl is the Fresnel reflection coefficient; Transmissivity γ

indicates the attenuation caused by vegetation on signal transmission. The exponential
term, where k is the signal wave number and s is the surface root mean square height,
represents the impact of surface roughness.

Then, the relationship between reflection coefficient and dielectric constant was
established by Fresnel reflection equation. Finally, the dielectric model was used to
retrieve the SM.

Although Eq. (3) establishes an retrieval model of surface reflectivity considering
the influence of roughness and vegetation, it is still difficult to use specific coefficient
equations for SM retrieval on a global scale due to the absence of auxiliary data with high
enough spatial and temporal resolution and precision. Therefore, the linear regression
model was used in this paper to estimate SM by grid. In order to improve the spatial
coverage of the retrieval results, the CYGNSS observations were grid based on a three-
day period. This paper ignores the variation of roughness within the study time range,
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but considers the influence of vegetation through the variation of VWC. The retrieval
model is as follows:

CYGNSS SM = a · �rl + b · VWC + c (4)

where, a, b, and c are the to-be-determined coefficients.

4 Results and Analysis

4.1 Evaluation at Quasi-global Scale

Figure 2 shows the calculation results of the R and RMSE of the CYGNSS SM and
SMAP SM for each grid, where the values are 0.55 and 0.04 cm3/cm3, respectively.
The temporal correlation between CYGNSS SM and SMAP SM varies by region, with
generally higher correlations and lower RMSE inmedium vegetation coverage and semi-
arid regions. For highly vegetated areas the R is significantly reduced, mostly around 0.4,
and the root mean square error can even reach 0.07 cm3/cm3. This may be because dense
vegetation will cause more attenuation of the microwave signal frequencies, making the
urface reflectivity less sensitive to soil moisture. Moreover, the data quality of SMAP is
also a factor leading to the poor correlation between CYGNSS SM and SMAP SM in
these regions.

Fig. 2. (a) Temporal correlation and (b) RMSE between CYGNSS SM and SMAP SM

Figure 3 shows the data of land types in the pan-global area. To further demonstrate
how vegetation coverage affects the accuracy of CYGNSS SM data, the R between
CYGNSS SM and SMAP SM of different land types were aggregated to obtain the mean
value, as shown in Fig. 4. For the regions such as savanna, grassland and farmland, the R
is relatively high, generally above 0.65. However, due to the influence of vegetation and
roughness, the coherent scattering component in the reflected signal decreases, while
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the incoherent scattering component increases. Therefore, for the regions with dense
or low vegetation coverage, the R decreased significantly, generally below 0.5, further
indicates that the retrieval performance ofCYGNSSSM is improvedwhen the vegetation
coverage changes from low/high to medium.

Fig. 3. Land type data

Fig. 4. (a) Means of R based on different land types. Each lans type’s number of grids is indicated
by a gray bar. (b) Means of R and RMSE based on different vegetation coverage.

Several grids were randomly selected for time series analysis. As shown in Fig. 5,
CYGNSS SM can well reflect the dynamic variation trend of SMAP SM over time, but
the measurement accuracy needs to be improved.During certain periods, CYGNSS SM
was unable to capture detailed change information. In general, CYGNSS SM and SMAP
SM have good consistency. In the selected grids, the mean R is 0.8, and the mean RMSE
is 0.049 cm3/cm3.
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Fig. 5. SM time series between CYGNSS and SMAP in random grids

4.2 Validation at In-situ Sites

Comparison ismade between theCYGNSS retrieval results and the in-situmeasurements
carried out at ISMN sites. Figure 6 shows the time series analysis data of SM at six
representative sites. In the stable SM period, the fitting degree between CYGNSS SM
and ISMN SM was better. However, when SM changes greatly, CYGNSS SM will give
higher or lower estimates. In contrast, the correlation between SMAP SM and ISMNSM
is better, but in general, CYGNSS SM and ISMN SM have a good consistency. At all
sites, the mean R between the two was 0.68, and the mean RMSE was 0.073 cm3/cm3.

Fig. 6. SM time series between CYGNSS, SMAP, and ISMN at six sites

5 Conclusion and Discussion

In this paper, based on the surface reflectivity of CYGNSS and the VWC data provided
by SMAP, the linear regression modele were established to retrieve the pan-global SM
products in 2020. The correlation between the retrieval results and the SMAP reference
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data is closely related to the vegetation density in the region, and the retrieval performance
is the best in the region with the medium vegetation coverage. In addition, a time series
analysis was conducted between the retrieval results and SM from ISMNmeasured sites,
which showed a good consistency between them in the selected sites.

CYGNSS has an average revisit period of only 7.2 h. In this paper, in order to
improve the spatial coverage of data, three consecutive days of CYGNSS observation
values were grid, which resulted in the waste of high time resolution of CYGNSS data to
a certain extent. However, high temporal resolution and high spatial resolution are often
incompatible. Therefore, it is necessary to balance the temporal resolution and spatial
resolution of data according to the demand in practical application.

There is a correlation difference between different vegetation parameters and the
attenuation effect of microwave signal frequency. Previous studies mostly focused on
the correction of the retrieval effect by the VOD. This paper attempts to establish amodel
using theVWC parameter for the first time, although good results have been achieved
in the area of moderate vegetation coverage, the retrieval accuracy in other areas needs
to be improved. In the follow-up study, more vegetation parameters such as leaf area
index (LAI) and aboveground biomass can be considered to analyze the influence of
vegetation on the retrieval process.

Acknowledgments. The authorwould like to thankNASAfor providing theCYGNSSandSMAP
data. Thank you to the Global Energy andWater Exchanges Project (GEWEX), the Committee on
Earth Observation Satellites (CEOS) et al. for providing the ISMN data. All anonymous reviewers
and editors are thanked for their constructive review of this manuscript.

Funding. This research was funded by the National Natural Science Foundation of China
Projects (Grant No.42074041); The National Key Research and Development Program of China
(Grant No.2019YFC1509802); State Key Laboratory of Geo-Information Engineering (Grant
No. SKLGIE2022-ZZ2-07). This research was also supported in part by the Fundamental
Research Funds for the Central Universities, Chang’an University, (Grant No. 300102260301,
300102262401), in part by the Shaanxi Province Science and Technology Innovation Team (Grant
No. 2021 TD-51), and in part by the Shaanxi Province Geoscience Big Data and Geohazard
Prevention Innovation Team (2022).

References

1. Dobriyal, P., Qureshi, A., Badola, R., et al.: A review of the methods available for estimating
soil moisture and its implications for water resource management. J. Hydrol. 458, 110–117
(2012)

2. Western, A.W., Blöschl, G., Grayson, R.B.: Geostatistical characterisation of soil moisture
patterns in the Tarrawarra catchment. J. Hydrol. 205(1–2), 20–37 (1998)

3. Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., et al.: Soil moisture retrieval from space: the
soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39(8),
1729–1735 (2001)

4. Entekhabi, D., Njoku, E.G., O’Neill, P.E., et al.: The soil moisture active passive (SMAP)
mission. Proc. IEEE 98(5), 704–716 (2010)

5. Tao, T., Li, J., Zhu, Y., et al.: Spaceborne GNSS-R for retrieving soil moisture based on the
correction of stage model. Acta Geodaetica et Cartographica Sinica 51(9), 1942–1950 (2022)



Extraction of Soil Moisture Based GNSS-R Considering Vegetation Factors 59

6. Carreno-Luengo, H., Ruf, C.S.: Retrieving freeze/thaw surface state fromCYGNSSmeasure-
ments. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

7. Liu, Q., Zhang, S., Nan, Y., et al.: Flood detection of south asia using spaceborne GNSS-R
coherent signals. Geomatics Inf. Sci. Wuhan Univ. 46(11), 1641–1648 (2021)

8. Bu, J., Yu, K., Han, S.: Construction of spaceborne GNSS-R ocean waves significant wave
height retrieval model. Acta Geodaetica et Cartographica Sinica 51(9), 1920–1930 (2022)

9. Chew, C., Rashmi, S., Cinzia, Z.: Demonstrating soil moisture remote sensing with observa-
tions from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 43(7), 3317–3324
(2016)

10. Chew, C.C., Small, E.E.: Soil moisture sensing using spaceborne GNSS reflections: compar-
ison of CYGNSS reflectivity to SMAP soil moisture. Geophys. Res. Lett. 45(9), 4049–4057
(2018)

11. Clarizia, M.P., Pierdicca, N., Costantini, F., et al.: Analysis of CYGNSS data for soil moisture
retrieval. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 12(7), 2227–2235 (2019)

12. Yan, Q., Huang, W., Jin, S., et al.: Pan-tropical soil moisture mapping based on a three-layer
model from CYGNSS GNSS-R data. Remote Sens. Environ. 247, 111944 (2020)

13. Zhu, Y., Guo, F., Zhang, X.: Effect of surface temperature on soil moisture retrieval using
CYGNSS. Int. J. Appl. Earth Obs. Geoinf. 112, 102929 (2022)

14. Eroglu, O., Kurum, M., Boyd, D., et al.: High spatio-temporal resolution CYGNSS soil
moisture estimates using artificial neural networks. Remote Sens. 11(19), 2272 (2019)

15. Hu, Y., Wang, J., Li, Z., et al.: Land surface soil moisture along sichuan-tibet traffic corridor
retrieved by spaceborne global navigation satellite system reflectometry. Earth Sci. 47(6),
2058–2068 (2022)

16. Lei, F., Senyurek, V., Kurum, M., et al.: Quasi-global machine learning-based soil moisture
estimates at high spatio-temporal scales using CYGNSS and SMAP observations. Remote
Sens. Environ. 276, 113041 (2022)

17. Ruf, C.S., Chew, C., Lang, T., et al.: A new paradigm in earth environmental monitoring with
the CYGNSS small satellite constellation. Sci. Rep. 8(1), 8782 (2018)

18. Ruf, C.S., Atlas, R., Chang, P.S., et al.: New ocean winds satellite mission to probe hurricanes
and tropical convection. Bull. Am. Meteor. Soc. 97(3), 385–395 (2016)

19. Vreugdenhil, M., Gruber, A., Hegyiová, A., et al.: Global automated quality control of in situ
soil moisture data from the international soil moisture network. Vadose Zone J. 12(3) (2013)

20. De Roo, R.D., Ulaby, F.T.: Bistatic specular scattering from rough dielectric surfaces. IEEE
Trans. Antennas Propag. 42(2), 220–231 (1994)


	Extraction of Soil Moisture Based GNSS-R Considering Vegetation Factors
	1 Introduction
	2 Observation Data
	2.1 CYGNSS GNSS-R Data
	2.2 SMAP Data
	2.3 ISMN Data

	3 Methodology
	4 Results and Analysis
	4.1 Evaluation at Quasi-global Scale
	4.2 Validation at In-situ Sites

	5 Conclusion and Discussion
	References


