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Chapter 3 
Generation and Operation on Discrete-Time 
Sequence 

Learning Objectives 
After completing this chapter, the reader is expected to

• Generate standard discrete-time sequences like unit sample, unit step, unit ramp 
sequences, etc.

• Perform operations like folding, shifting and scaling on the discrete-time 
sequence.

• Perform linear convolution and circular convolution between discrete-time 
sequences.

• Perform autocorrelation and cross-correlation between discrete-time sequences. 

Road Map of the Chapter 
This chapter aims to generate different discrete-time signals or sequences and 
perform various mathematical operations on the discrete-time signal. The flow of 
the concept in this chapter is illustrated in the form of a block diagram, which is 
given below: 
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PreLab Questions 
1. What are the steps involved in converting the continuous-time signal into a 

discrete-time signal? 
2. Mention different forms of representations of discrete-time signals? 
3. Mention a few standard discrete-time sequences. 
4. Mention the significant features of the unit sample sequence (δ[n]). 
5. State the condition for the discrete-time signal to be periodic. 
6. Distinguish between energy and power signal. 
7. What are the various mathematical operations that can be performed on discrete-

time signals? 
8. When a discrete-time signal is said to be (a) an even signal (b) an odd signal? 

Give an example for each class of signal. Also, give an example of a signal 
which is neither even nor odd. 

9. Give an example of an energy and power signal. Also, give an example of a 
discrete-time signal which is neither energy nor power signal. 

10. Explain in your own word regarding the significance of convolution operation in 
signal processing. 

11. What is the relationship between convolution and correlation? Mention two 
applications of correlation.
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3.1 Generation of Discrete-Time Signals 

This section deals with the generation of different types of discrete-time signals like 
unit sample signal, unit step signal, unit ramp signal, real and complex exponential 
signals. The following section discusses about different mathematical operations that 
could be performed on discrete-time signals. 

Experiment 3.1 Generation of the Unit Sample Sequence 
The mathematical expression of the unit sample sequence (δ[n]) is given by 

δ n½ ]= 
1, if n= 0 

0, Otherwise
ð3:1Þ 

This experiment discusses the generation of unit sample sequence using ‘if’ and 
‘else’ conditions in python platform. The python code to generate unit sample 
sequence using ‘if’ and ‘else’ conditions is shown in Fig. 3.1, and the corresponding 
output is shown in Fig. 3.2. The built-in functions used in the program are given in 
Table 3.1. 

Inference 
It is possible to observe that unit sample sequence takes a value of ‘1’ at ‘n’ equal to 
zero and zero at other instances of ‘n’. 

Experiment 3.2 Generation of Unit Sample Sequence Using the Logical 
Operation 
This experiment deals with the logical operation used to generate unit sample 
sequence, and the python code for this experiment is shown in Fig. 3.3, and the 
corresponding output is shown in Fig. 3.4. 

Inference 
The statement (x = (n == 0)) given in Fig. 3.3 implies that the variable ‘x’ takes a 
value of ‘1’ if n = 0, and it takes a value of ‘0’ for all the other values of ‘n’. 

Fig. 3.1 Python code to 
generate unit sample 
sequence 

#Python code to generate unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11)  #Define the x-axis 
x=[1 if i==0 else 0 for i in n] #Unit sample sequence 
#Step 2: Plotting the sequence 
plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$') 
plt.xticks(n)
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Fig. 3.2 Unit sample sequence 

Table 3.1 Built-in functions used in unit sample signal generation 

S. No. Built-in function used Purpose 

1 np.arange() To generate evenly spaced values within a given interval 

2 plt.stem() To plot the discrete-time signal 

3 plt.xticks() To get or set the current tick locations and labels of the x-axis 

Fig. 3.3 Logical operation 
to generate unit sample 
sequence 

#Python code to generate unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
x=(n==0) #Unit sample sequence 
#Step 2: Plotting the sequence 
plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n) 

Experiment 3.3 Generation of Unit Sample Sequence Using the Built-In Func-
tion from the Scipy Library 
The built-in function in scipy library ‘unit_impulse’ can be used to generate unit 
sample sequence. The python code, which generates unit sample sequence using the 
built-in function from the scipy library, is shown in Fig. 3.5, and the corresponding 
output is shown in Fig. 3.6.
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Fig. 3.4 Output of python code shown in Fig. 3.3 

Fig. 3.5 Unit sample 
sequence generation using 
scipy library 

import matplotlib.pyplot as plt 
import numpy as np 
from scipy import signal 
n=np.arange(-5,6) 
x=signal.unit_impulse(len(n), 'mid') 
plt.stem(n, x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n) 

Inference 
From Figs. 3.5 and 3.6, it is possible to confirm that unit sample sequence can be 
generated using the scipy library with the built-in command of ‘signal.unit_impulse’. 

Experiment 3.4 Generation of Unit Step Sequence 
The mathematical expression of the unit step sequence is written as 

u n½ ]= 
1, if n≥ 0 

0, Otherwise
ð3:2Þ 

In this experiment, the unit step sequence is generated using two methods. In the 
first method, ‘if’ and ‘else’ conditions are used to generate unit step sequence. The 
second method uses logical operation to generate unit step signal. The python code, 
which generates unit step signal using two different methods, is shown in Fig. 3.7, 
and the corresponding output is shown in Fig. 3.8.
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Fig. 3.6 Result of python code shown in Fig. 3.5 

#Genertion of unit step signal 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
#Method 1 
x1=[1 if i>=0 else 0 for i in n] # if and else 
#Method 2 
x2=(n>=0) #Logical operation 
#Plotting the result 
plt.subplot(2,1,1), 
plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('u[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('u[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.7 Python code to generate unit step signal 

Inference 
From Fig. 3.8, it is possible to interpret that both methods yield the same result, 
which is a unit step signal. The unit step signal exhibits a sudden change in state from 
logic 0 to logic 1 instantaneously. 

Experiment 3.5 Generation of the Unit Ramp Signal 
The mathematical expression of the unit ramp sequence (r[n]) is written as
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Fig. 3.8 Result of python code shown in Fig. 3.7 

r n½ ]= 
n, if n≥ 0 

0, Otherwise
ð3:3Þ 

The python code, which generates unit ramp signal using two methods, is 
discussed in this experiment. In method 1, ‘if’ and ‘else’ conditions generate unit 
ramp signals, whereas in method 2, logical operation is used to generate unit ramp 
signals. The python code, which generates unit ramp signal using the two methods, 
is shown in Fig. 3.9, and the corresponding output is shown in Fig. 3.10. 

Inference 
From Fig. 3.10, it is possible to observe that the ramp signal generated using ‘if’ and 
‘else’ condition and ‘logical operation’ are alike. Unlike step signal, the ramp signal 
gradually increases from low to high value. 

Task 
1. Write a python code to generate unit ramp signal from unit step signal. 

Experiment 3.6 
From unit sample signal generates unit step signal, and from unit step signal 
generates unit ramp signal. 

The relationship between unit sample (δ[n]) and unit step (u[n]) sequence is given 
by



78 3 Generation and Operation on Discrete-Time Sequence

Fig. 3.9 Python code to 
generate unit ramp signal #Generation of unit ramp signal 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the sequence 
n=np.arange(-10,11,1)  #Define the x-axis 
#Two methods to generate unit ramp signal 
x1=[i if i>=0 else 0 for i in n] #Unit ramp sequence 
x2=n*(n>=0) #Logical operation 
#Plotting the result 
plt.subplot(2,1,1),plt.stem(n,x1),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('r[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('r[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.10 Result of python code shown in Fig. 3.9 

u n½ ]= 
n 

k = -1 
δ k½ ] ð3:4Þ 

and
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Fig. 3.11 Flow chart 
depicting the problem 
statement of Experiment 3.6 

Generation of unit sample sequence (δ[n]) 

Derive unit step sequence (u[n]) from unit 

sample sequence (δ[n]) 

Derive unit ramp sequence (r[n]) from unit 

step sequence (u[n]) 

δ n½ ]= u n½ ]- u n- 1½ ] 3:5Þ 

The relationship between the unit ramp and unit step sequence is given by 

r n½ ]= nu n½ ] ð3:6Þ 

The flow chart, which depicts the objective of this experiment, is shown in 
Fig. 3.11. 

From the flow chart, the unit sample sequence is generated first. From unit sample 
sequence, unit step sequence is obtained by repeated addition. From unit step 
sequence, unit ramp sequence is derived. The python code, which performs the 
above-mentioned task, is shown in Fig. 3.12, and the corresponding output is shown 
in Fig. 3.13. 

Inferences 
From the python code shown in Fig. 3.12, it is possible to infer that unit step 
sequence is obtained by repeatedly adding the unit sample sequence. The unit 
ramp sequence is obtained by weighting the unit step signal by a factor of ‘n’. 
From this example, it is possible to infer that any arbitrary signal x[n] can be obtained 
from the unit sample sequence by scaling and shifting operations. 

Task 
1. Write a python code to generate a unit sample signal from the unit step signal. 

Experiment 3.7 Generation of Real Exponential Sequence 
The expression for a real exponential signal is given by 

x n½ ]= αn ð3:7Þ 

where α must be a real value. The aim of this experiment is to generate real 
exponential sequence for four different values of ‘α’, namely, α = 0.5, α =  
0.5, α = 1.0 and α = - 1.0. The python code, which performs this task, is shown in 
Fig. 3.14, and the corresponding output is shown in Fig. 3.15.
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#Generation of test sequences from unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of unit sample sequence 
n=np.arange(-10,11) 
x=[1 if i==0 else 0 for i in n]  #delta[n] 
#Step 2: Unit step sequence from unit sample sequence 
y=np.zeros_like(n) 
for k in range(len(x)): 
     y[k]=np.sum(x[:k+1]) 
#Step 3: Unit ramp sequence from unit step sequence 
z=n*y 
#Step 4: Plotting the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$\delta[n]$'),plt.xticks(n),plt.yticks(x), 
plt.subplot(3,1,2),plt.stem(n,y),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('u[n]'),plt.xticks(n),plt.yticks(y), 
plt.subplot(3,1,3),plt.stem(n,z),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('r[n]'),plt.xticks(n), 
plt.tight_layout() 

Fig. 3.12 Python code to generate test signals from unit sample sequence 

Fig. 3.13 Result of python code shown in Fig. 3.12
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#Python code to generate real exponential sequences 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6,1)  #Define the x-axis 
alpha=[0.5, -0.5, 1.0, -1.0] 
for i in range(len(alpha)): 
    x=alpha[i]**n #Real exponential sequence 
    plt.subplot(2,2,i+1) 
    plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
    plt.title(r'$\alpha$={}'.format(alpha[i])) 
    plt.xticks(n) 
plt.tight_layout() 

Fig. 3.14 Python code to generate real exponential signal 
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Fig. 3.15 Result of python code shown in Fig. 3.14 

Inferences 
The following inference can be made from this experiment: 

1. If the value of α is 0 < α < 1, then the signal x[n] decreases in magnitude. This is 
evident by observing the first subplot for α = 0.5. 

2. If the value of α is -1 < α < 0, then the signal x[n] alternates in sign but 
decreases in magnitude. This is evident by viewing the second subplot in 
Fig. 3.15 for α = - 0.5. 

3. For α = 1.0, there is no oscillation and the amplitude is always one.
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#Python code to generate complex exponential sequences 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6,1)  #Define the x-axis 
omega_degree=[0, 90, 180, 270] 
omega_radians=np.deg2rad(omega_degree) 
for i in range(len(omega_radians)): 
    x=np.exp(1j*omega_radians[i]*n) #Complex exponential sequences 
    plt.subplot(2,2,i+1) 
    plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
    plt.title(r'$\omega={}^\circ$'.format(omega_degree[i])) 
    plt.xticks(n) 
plt.tight_layout() 

Fig. 3.16 Python code to generate complex exponential sequences 

4. For α = - 1.0, the signal x[n] toggles. This is the highest frequency in digital 
sequence. 

Task 
1. Obtain the real exponential sequence for α = 2 and comment on the nature of the 

signal. Here the term ‘nature’ refers to whether the signal is a bounded or not. 

Experiment 3.8 Generation of Complex Exponential Signal 
The general form of complex exponential signal is given by 

x n½ ]= ejωn ð3:8Þ 

where ‘ω’ represents the angular frequency in radians. The python code to generate 
complex exponential sequences for four different values of ‘ω’ such as ω= 
0, π 2 , π, 

3π 
2 is given in Fig. 3.16, and the corresponding output is shown in 

Fig. 3.17. 

Inferences 
The following inference can be drawn from this experiment: 

1. When ω = 0, the frequency is zero, the amplitude of the signal is constant and 
there is no variation in the signal. This is termed as DC signal. For a DC signal, 
the frequency is zero. 

2. With increase in the value of ‘ω’, the oscillation exhibited by the signal increases. 
At ω = π, the signal takes alternate values of +1 and -1. It is the highest 
frequency in the digital signal. 

Task 
1. Write a python code to prove the fact that digital frequency ‘ω’ is unique in the 

range 0 to 2π or from –π to π.
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Fig. 3.17 Complex exponential sequences for different values of ‘ω’ 

#Generation of signum function 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
x=np.sign(n) 
plt.stem(n,x) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.xticks(n) 
plt.yticks(x),plt.title('Signum function') 

Fig. 3.18 Python code to generate signum function 

Experiment 3.9 Generation of Signum Function 
Signum function is defined as a mathematical function that gives the sign of a real 
number. The signum function f : R → R is defined as 

sgn n½ ]= 

1, if n> 0 

0, if n= 0

- 1, if n< 0 

ð3:9Þ 

The python code to generate signum function is shown in Fig. 3.18, and the 
corresponding output is shown in Fig. 3.19.
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Fig. 3.19 Result of python code shown in Fig. 3.18 

Inference 
From Fig. 3.19, it is possible to observe that the signum function takes only three 
values, which are -1, 0 and 1; whenever n < 0, the signum function takes the value 
of -1. At n = 0, the signum function takes a value of ‘0’. For the positive values of 
‘n’, the signum function takes the value of +1. 

Task 
1. Is it possible to obtain signum function from unit step function? If yes, write a 

python code to generate discrete signum signal from unit step signal. 

3.2 Mathematical Operation on Discrete-Time Signals 

This section discusses various mathematical operations that are performed on 
discrete-time signals. The basic mathematical operations that could be performed 
on the discrete-time signals are given in Fig. 3.20. 

3.2.1 Amplitude Modification on DT Signal 

The different signal operations that come under amplitude modification are 
discussed in this section. 

(a) Amplitude scaling 
If x[n] is the input signal, the scaling of the signal x[n] by a factor of ‘A’ is 

represented as
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Fig. 3.20 Different mathematical operations on DT signal 

import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
n=np.arange(-10,11,1) 
x=(n==0) 
#Obtaining the output signals for different values of 'A' 
A=[2,0.5,1] #Three different values of factor 'A' 
y1=A[0]*x 
y2=A[1]*x 
y3=A[2]*x 
#Step 2: Plotting the result 
plt.subplot(2,2,1),plt.stem(n,x),plt.yticks([0,2]),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(2,2,2),plt.stem(n,y1) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_1[n]$'),plt.subplot(2,2,3),plt.stem(n,y2) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_2[n]$'),plt.subplot(2,2,4),plt.stem(n,y3),plt.yticks([0,2]), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_3[n]$') 
plt.tight_layout() 

Fig. 3.21 Python code to perform amplitude scaling 

y n½ ]=Ax n½ ] ð3:10Þ 

If A > 1, the operation is called as amplification, A < 1 represents attenuation. 
If A = 1, the output follows the input, it is called as input follower or buffer. 

Experiment 3.10 Amplitude Scaling 
Generate unit sample signal and perform the amplitude scaling for three different 
values of A, namely: A = 2, A = 0.5 and A = 1. Plot the input and output signal and 
comment on the observed output. 

The python code, which performs the above-mentioned task, is shown in 
Fig. 3.21, and the corresponding output is shown in Fig. 3.22.
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Fig. 3.22 Result of python code shown in Fig. 3.21 

Inference 
The following inferences can be made from this experiment: 

1. From Fig. 3.22, it is possible to observe that y1[n] is the amplified version of x[n], 
and y2[n] is the attenuated version of x[n]. If the gain is unity, the output follows 
the input, which is evident from the output y3[n]. 

2. This example illustrates the scaling of the amplitude axis for different values of 
the factor ‘A’. 

Task 
1. Write a python code to illustrate the fact that amplitude scaling changes the 

energy of the signal. 

(b) Amplitude Shifting 
If x[n] is the input signal, the amplitude shifting of the signal x[n] by a factor 

of ‘C’ is represented as 

y n½ ]= x n½ ]±C ð3:11Þ 

Experiment 3.11 Amplitude Shifting (DC Offset) 
Let x[n] represent the discrete-time sinusoidal signal, and perform the DC offset of 
this signal x[n] to obtain the signals y1[n] = x[n]  +  C and y2[n] = x[n]- C. The value



of ‘C’ for this experiment is to be chosen as 5. Write a python code to perform this 
task and comment on the observed output. 
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#DC offset 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input sinusoidal sequence 
t=np.linspace(0,1,100) 
x=np.sin(2*np.pi*5*t) 
#Step 2: Perform DC offset 
offset=[5,-5] 
y1=x+offset[0] 
y2=x+offset[1] 
#Step 3: Ploting the input and output signals 
plt.subplot(3,1,1),plt.stem(t,x), 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,1,2),plt.stem(t,y1) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_1$[n]') 
plt.subplot(3,1,3),plt.stem(t,y2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_2$[n]') 
plt.tight_layout() 

Fig. 3.23 Python code which performs DC offset 

The python code, which performs the above-mentioned task, is shown in 
Fig. 3.23, and the corresponding output is shown in Fig. 3.24. 

Inference 
By observing Fig. 3.24, it is possible to infer that the reference for signal y1[n] is  
+5 V, whereas the reference for signal y2[n] is -5 V. This is termed as DC offset. 

Task 
1. Does amplitude shifting affect the energy of the signal? Write a python code to 

answer this question. 

(c) Product of Two Signals 
The product of two signals x1[n] and x2[n] is represented by 

y n½ ]= x1 n½ ]× x2 n½ ] ð3:12Þ 

The amplitude of the resultant signal y[n] gets modified. For example, 
consider 

x1 n½ ]= sin 2πf 1nð Þ ð3:13Þ 
x2 n½ ]= cos 2πf 2nð Þ ð3:14Þ 

Substituting Eqs. (3.13) and (3.14) in Eq. (3.12), we get
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Fig. 3.24 Result of python code shown in Fig. 3.23 

y n½ ]= sin 2πf 1nð Þ× cos 2πf 2nð Þ ð3:15Þ 

Using the formula 

sinA cosB= 
1 
2 

sin Aþ Bð Þ þ  sin A-Bð Þf ð3:16Þ 

Equation (3.15) can be written as 

y n½ ]= 
1 
2 

sin 2π f 1 þ f 2ð Þnþ sin 2π f 1 - f 2ð ÞnÞf ð3:17Þ 

The amplitude of the output signal is different from the input signal x[n]. 

Experiment 3.12 Product of Two Signals 
Obtain the product of the two signals given by x1[n] = sin (2πf1n) and 
x2[n] = sin (2πf2n). In this example, consider f1 = f2 = 5Hz. Using the relation 
(3.17), the expression for the output signal is given by 
y n½ ]= 1 2 sin 2π f 1 þ f 2ð Þnþ sin 2π f 1 - f 2ð ÞnÞf . In this case, f1 = f2 = 5Hz; 
hence, the expression for the output signal is given by y n½ ]= 1 2 sin 2π 10ð ÞnÞf . 
The frequency of the resultant signal should be 10 Hz, whereas its amplitude is 
reduced by half. The python code, which performs this task, is shown in Fig. 3.25, 
and the corresponding output is shown in Fig. 3.26. 

Inference 
The following inferences can be drawn from this experiment:
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#Product of two signals 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signals 
t=np.arange(0,100,1) 
Fs=100 
x=np.sin(2*np.pi*(5/Fs)*t) 
y=np.cos(2*np.pi*(5/Fs)*t) 
#Step 2: Product of the two signals 
z=np.multiply(x,y) 
#Step 3: Plotting the result 
plt.subplot(3,1,1),plt.stem(t,x),plt.xlabel('n-->'),plt.ylabel('Ampltitude'),plt.title('$x_1[n]$') 
plt.subplot(3,1,2),plt.stem(t,y),plt.xlabel('n-->'),plt.ylabel('Ampltitude'),plt.title('$x_2[n]$'), 
plt.subplot(3,1,3),plt.stem(t,z),plt.yticks([-1,1]),plt.xlabel('n-->'),plt.ylabel('Ampltitude'), 
plt.title('$y[n]$') 
plt.tight_layout() 

Fig. 3.25 Python code to obtain the product of the two signals 
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Fig. 3.26 Result of python code shown in Fig. 3.25 

1. From Fig. 3.25, two signals of the same frequency are generated and multiplied. 
2. From Fig. 3.26, it is possible to observe that x1[n] is a sine wave and x2[n] is a  

cosine wave. The resultant signal y[n] is a sinusoidal signal with a frequency of 
10 Hz, whereas the amplitude of the output waveform is reduced by a factor 
of half. 

(d) Signal Addition
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#Addition of two signals 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of input signals 
n=np.arange(-10,11,1) 
x=(n>=0) 
y=(n>=0) 
#Step 2: Addition of the two signals 
z=np.add(x.astype('float32'),y.astype('float32')) 
#Step 3: Plotting the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_1[n]$'),plt.subplot(3,1,2),plt.stem(n,y),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$x_2[n]$'),plt.subplot(3,1,3),plt.stem(n,z),plt.xticks(n) 
plt.yticks([0,2]),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y[n]$') 
plt.tight_layout() 

Fig. 3.27 Python code to perform addition of two signals 

The signal addition results in a change in the amplitude of the signal. Two 
signals x1[n] and x2[n] are added together to obtain the resultant output signal y 
[n], which is given by 

y n½ ]= x1 n½ ] þ x2 n½ ] ð3:18Þ 

Experiment 3.13 Signal Addition 
In this example, let x1[n] = u[n] and x2[n] = u[n]. The signal y[n] is the addition of 
two unit step signals. The python code which performs this task is shown in 
Fig. 3.27, and the corresponding output is shown in Fig. 3.28. 

Inferences 
The following inferences are drawn from these Figs. 3.27 and 3.28: 

1. By observing Fig. 3.27, it is possible to observe that the result of logical operation 
is converted to float using the command ‘.astype(‘float32’)’. 

2. By observing Fig. 3.28, the inputs x1[n] and x2[n] are unit step signal, whose 
amplitude takes value from 0 to 1, whereas the amplitude of the output signal y[n] 
has variation from 0 to 2. 

3. This experiment illustrates the fact that the amplitude of the signal can be changed 
by signal addition operation.
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Fig. 3.28 Result of python code shown in Fig. 3.27 

Task 
1. Write a python code to illustrate the fact that ‘signal addition is a commutative 

operation’. 

3.2.1.1 Time Scaling Operation 

Time scaling operations can be classified into two types, namely, (1) downsampling 
and (2) upsampling. 

(a) Downsampling 
The downsampling of the signal x[n] by a factor of ‘M’ is represented as 

y n½ ]= x Mn½ ] ð3:19Þ 

where ‘M’ is an integer. Here ‘M- 1’ samples will be discarded between two 
consecutive samples. Downsampling by a factor of ‘2’ is represented as 

y n½ ]= x 2n½ ] ð3:20Þ 

Experiment 3.14 Downsampling 
This experiment discusses the downsampling operation on the input signal. The 
python code to perform downsampling by a factor of ‘2’ is shown in Fig. 3.29, and 
the corresponding output is shown in Fig. 3.30.
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#Downsampling by a factor of M 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
n=np.arange(-10,11,1) 
x=n 
M=2   #Downsampling factor 
m=np.arange(n[0]/2,(n[-1]/2)+1,1) 
#Step 2: Performing downsampling operation 
y=x[::M] 
#Step 3: Plotting the input and downsampled signal 
plt.subplot(2,1,1),plt.stem(n,x),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.xticks(n) 
plt.subplot(2,1,2),plt.stem(m,y),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]'),plt.xticks(n) 
plt.tight_layout() 

Fig. 3.29 Python code to perform downsampling operation 
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Fig. 3.30 Result of downsampling operation 

Inferences 
The following inferences can be drawn from this experiment: 

1. By observing Fig. 3.30, the number of samples in the input signal x[n] i  
21, whereas the number of samples in the output signal y[n] is 11. 

2. Downsampling leads to a reduction in the number of samples.
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Task 
1. Write a python code to prove the fact that downsampling is an irreversible 

operation. That is, it is not possible to obtain the original signal from the 
downsampled signal because downsampling results in loss of signal samples. 

(b) Upsampling 
The upsampling of the signal x[n] by a factor of ‘L’ is represented by 

y n½ ]= x 
n 
L

ð3:21Þ 

The upsampling operation is basically inserting ‘L - 1’ zeros between two 
consecutive samples. For L = 2, the above expression can be written as 

y n½ ]= x 
n 
2 

Experiment 3.15 Upsampling 
This experiment deals with the upsampling process of discrete-time signal. The 
python code, which performs the upsampling operation by a factor of 2, is shown 
in Fig. 3.31, and the corresponding output is shown in Fig. 3.32. 

Inference 
The following observations can be made from this experiment: 

By observing Fig. 3.32, it is possible to observe that in the case of upsampling by 
a factor of 2, one zero is inserted between successive samples. Generally, when 
upsampling by a factor of ‘L’, ‘L - 1’ zeros will be inserted between successive 
samples. Also, it shows that the number of samples in the output increases to almost 
L times than the number of samples in the input signal. 

Task 
1. Write a python code to illustrate the fact that ‘Upsampling is a reversible 

operation’. It is possible to obtain the original signal from the upsampled signal. 

3.2.1.2 Time Shifting Operation 

The time shifting operation can be broadly classified into two types: (1) delay 
operation and (2) advance operation. 

(a) Delay operation 
The delaying of the input signal by a factor of ‘k’ units is expressed as
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#Upsampling by a factor of 2 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generating the input signal 
L=2    #Upsampling factor 
n=np.arange(-5,6,1) 
N=len(n) 
m=np.arange(-N+1,N+1,1) 
x=np.ones(N) 
#Step 2: Upsampling the input signal 
y=np.zeros(L*N) 
y[::2]=x 
#Step 3: Plotting the input and output signal 
plt.subplot(2,1,1),plt.stem(n,x),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]'), 
plt.xticks(m),plt.subplot(2,1,2),plt.stem(m,y),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]'),plt.xticks(m) 
plt.tight_layout() 

Fig. 3.31 Python code performs upsampling by a factor of 2 
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Fig. 3.32 Result of upsampling by a factor of 2 

y n½ ]= x n- k½ ] ð3:22Þ 

where 'k' must be a positive integer. 
(b) Advance operation 

The advance of the input signal x[n] by a factor of ‘k’ units is expressed as
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Fig. 3.33 Delay and 
advance of unit step 
sequence 

#Delay and advance operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11) 
x1=(n>=0) #u[n] 
k=5 
x2=(n>=k) #Delay of u[n] 
x3=(n>=-k)#Advance of u[n] 
plt.subplot(3,1,1),plt.stem(n,x1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n]') 
plt.subplot(3,1,2),plt.stem(n,x2),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n-5]') 
plt.subplot(3,1,3),plt.stem(n,x3),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('u[n+5]') 
plt.tight_layout() 

y n½ ]= x nþ k½ ] ð3:23Þ 

where ‘k’ must be a positive integer. 

Experiment 3.16 Time Shifting Operation 
This experiment performs both delay and advance operations by a factor of 'k' units 
on the unit step signal. First, the unit step signal is generated; then, it is delayed by a 
factor of 5 units. The unit step signal is advanced by the factor of 5 units. The python 
code, which performs this task, is shown in Fig. 3.33, and the corresponding output 
is shown in Fig. 3.34. 

Inference 
This experiment illustrates the concept of shifting operation on the signal. Delay of 
the signal u[n] by a factor of ‘5’ units results in u[n - 5], whereas advance of the 
signal u[n] by a factor of 5 units results in u[n + 5]. It is to be observed that shifting 
operation on the signal will not alter the energy of the signal. 

Task 
1. Write a python code to illustrate the fact that the signal energy is unaltered due to 

signal shifting. 

3.2.1.3 Time Reversal Operation 

The time reversal of the signal x[n] is denoted as x[-n]. This refers to flipping the 
signal x[n] from left to right and right to left. It can be considered as a signal 
reflection about the origin. A discrete-time signal can be reversed in time by



changing the sign of the independent variable for all instances. Two different ways to 
perform time reversal operation in python are given below. 
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Fig. 3.34 Delay and advance of unit step sequence 

Experiment 3.17 Time Reversal Without Built-In Function 
This experiment deals with the time reversal operation using python without built-in 
function. In this method, the signal x[n] is  flipped from left to right using the 
command" x[::-1]", the python code which performs the task of time reversal is 
shown in Fig. 3.35, and the corresponding output is shown in Fig. 3.36. 

Inference 
Figure 3.36 clearly indicates that the left side of the input signal is moved into the 
right side of the output signal and the right side of the input signal is moved into the 
left side of the output signal. 

Experiment 3.18 Time Reversal Using Built-In Function 
This experiment tries to obtain the time reversal using a python built-in function. In 
this method, the built-in function ‘np.fliplr()’ is used to perform a time reversal 
operation. The python code, which performs this task, is shown in Fig. 3.37, and the 
corresponding output is shown in Fig. 3.38. 

Inference 
This experiment confirms that the time reversal can be done using ‘np.fliplr’ built-in 
function. 

Task 
1. Write a python code to illustrate that flipping operation does not alter the signal’s 

energy.



3.3 Convolution 97

#Time reversal operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
x=(n) 
y=x[::-1] 
plt.subplot(2,1,1),plt.stem(n,x) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,1,2),plt.stem(n,y) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.35 Method-1 to perform time reversal operation 
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Fig. 3.36 Result of python code shown in Fig. 3.35 

3.3 Convolution 

Convolution is an important operation in digital signal processing, because many 
DSP algorithms use convolution operations in one form or other. The most common 
application of convolution operation is filtering. It can be used for signal enhance-
ment. The relationship between the input and output of a linear time-invariant system 
shown in Fig. 3.39. 

The relationship between the input and output of the system is given by
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#Time reversal operation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-10,11,1) 
x=(n) 
y=np.fliplr([x])[0] 
plt.subplot(2,1,1),plt.stem(n,x) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,1,2),plt.stem(n,y) 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.37 Method-2 to perform time reversal operation 

0 

10 

–10 –2–4–6–8 0–3–5–7–9 –1 102 4 6 83 5 7 91 
n--> 

x[n] 

A
m
pl
itu

de
 

–10 

–10 –2–4–6–8 0–3–5–7–9 –1 102 4 6 83 5 7 91 
n--> 

y[n] 

0 

10 

A
m
pl
itu

de
 

–10 

Fig. 3.38 Result of python code shown in Fig. 3.37 

y n½ ]= x n½ ] * h n½ ] ð3:24Þ 

In the above expression, ‘*’ denotes the convolution operation. The above 
expression can be written as 

y n½ ]= 
1 

k = -1 
x k½ ]h n- k½ ] ð3:25Þ 

Convolution obeys commutative property; hence, the above equation can be 
expressed as
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h[n] x[n] y[n] 

Fig. 3.39 Representation of the LTI system 

y n½ ]= 
1 

k = -1 
h k½ ]x n- k½ ] ð3:26Þ 

Experiment 3.19 Convolution of Given Signal with Unit Sample Signal 
This experiment illustrates the fact that the convolution of any signal (x[n]) with unit 
sample signal (δ[n]) will result in the same signal x[n]. This is expressed as 

x n½ ] * δ n½ ]= x n½ ] ð3:27Þ 

The python code, which illustrates the above concept, is shown in Fig. 3.40, and 
the corresponding output is shown in Fig. 3.41. 

Inferences 
The following inferences can be drawn from this experiment: 

1. From Fig. 3.41, the input signal (x[n]) generated is a triangular signal. 
2. The impulse response (h[n]) is unit sample signal (δ[n]). 
3. The signal x[n] is convolved with unit sample signal to obtain the output signal y 

[n]. It can be observed that the output signal y[n] resembles the input signal x[n]. 

Experiment 3.20 Convolution of the Signal x[n] with Shifted Unit Sample Signal 
This experiment illustrates the fact that the signal x[n] can be shifted by convolving it 
with δ[n ± k]. Convolving the signal x[n] with δ[n - k] results in delaying the signal 
x[n] by a factor of ‘k’. Convolving the signal x[n] with δ[n + k] results in advancing 
the signal x[n] by a factor of ‘k’. This is expressed as 

x n½ ] * δ n± k½ ]= x n± k½ ] ð3:28Þ 

The python code, which performs this task, is shown in Fig. 3.42, and the 
corresponding output is shown in Fig. 3.43. 

Inferences 
The task performed by the python program is summarized in Fig. 3.44. 

1. The input signal x[n] is applied to two systems with impulse responses 
h1[n] = δ[n - k] and  h2[n] = δ[n + k] to obtain the output signals y1[n] and 
y2[n] respectively. 

2. By comparing the input signal x[n] with the output signal y1[n], it is possible to 
observe that the output signal y1[n] is a shifted version (delayed version) of the 
input signal x[n].
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#Convolution with unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generation of triangular signal 
x=5-np.abs(n) 
#Step 2: Generation of unit sample signal 
h=(n==0) 
#Step 3: Perform the convolution 
y=np.convolve(x,h,mode='full') 
#Step 4: Displaying the result 
plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(3,1,2),plt.stem(n,h), 
plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('h[n]') 
plt.subplot(3,1,3),plt.stem(n1,y),plt.xticks(n1),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('y[n]') 
plt.tight_layout() 

Fig. 3.40 Convolution of the signal x[n] with unit sample signal δ[n] 
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Fig. 3.41 Result of python code shown in Fig. 3.40

3. By comparing the input signal x[n] with the output signal y2[n], it is possible to 
observe that the output signal y2[n] is a shifted version (advanced version) of the 
input signal x[n]. 

4. This experiment illustrates the fact that signal shifting can be accomplished using 
convolution operation. 
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#Convolution with shifted unit sample sequence 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generation of triangular signal 
x=5-np.abs(n) 
#Step 2: Generation of shifted unit sample signals 
k=5 
h1=(n==k) 
h2=(n==-k) 
#Step 3: Perform the convolution 
y1=np.convolve(x,h1,mode='full') 
y2=np.convolve(x,h2,mode='full') 
#Step 4: Displaying the result 
plt.subplot(3,2,1),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,2,2),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(3,2,3),plt.stem(n,h1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1[n]$') 
plt.subplot(3,2,4),plt.stem(n,h2),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2[n]$') 
plt.subplot(3,2,5),plt.stem(n1,y1),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('$y_1[n]$'),plt.subplot(3,2,6),plt.stem(n1,y2),plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.title('$y_2[n]$') 
plt.tight_layout() 

Fig. 3.42 Python code to perform convolution of signal x[n] with shifted unit sample signal 

Task 
1. Repeat the above experiment with a rectangular pulse signal instead of a 

triangular one. 

Experiment 3.21 Commutative Property of Convolution 
The motive of this experiment is to prove the commutative property of convolution. 
The commutative property of convolution is expressed as 

x n½ ] * h n½ ]= h n½ ] * x n½ ] ð3:29Þ 

The python code to illustrate the commutative property of convolution is given in 
Fig. 3.45, and the corresponding output is shown in Fig. 3.46. 

Inferences 
The following inferences can be drawn from Fig. 3.46:



ð

102 3 Generation and Operation on Discrete-Time Sequence

0 

5 

–2–4 0–3–5 –1 2 43 51 
n--> 

A
m

pl
itu

de
 x[n] 

0 

5 

–2–4 0–3–5 –1 2 43 51 
n--> 

A
m

pl
itu

de
 x[n] 

0 

1 

–2–4 0–3–5 –1 2 43 51 
n--> 

A
m

pl
itu

de
 h1[n] 

0 

1 

–2–4 0–3–5 –1 2 43 51 
n--> 

A
m

pl
itu

de
 h2[n] 

0 

5 

0–5–10 105 
n--> 

A
m

pl
itu

de
 y1[n] 

0 

5 

0–5–10 105 
n--> 

A
m

pl
itu

de
 y2[n] 

Fig. 3.43 Result of python code shown in Fig. 3.42 

Fig. 3.44 Task performed 
by the python example 

x[n] 

y1[n] 

y2[n] 

h1[n]=δ[n – k] 

h2[n]=δ[n + k] 

1. The input signal x[n] is a pulse signal. Similarly, the signal h[n] is a pulse signal. 
The signals x[n] and h[n] are the same. 

2. The signal y1[n] is obtained by convolving x[n] with h[n], whereas the signal y2[n] 
is obtained by convolving h[n] with x[n]. From Fig. 3.46, the signals y1[n] and 
y2[n] are the same. 

3. This experiment illustrates that convolution is commutative. Also, the convolu-
tion of two pulse signals results in a triangular signal. 

Task 
1. In the above experiment, let L1 and L2 be the length of the signals x[n] and h 

[n]. Then, the length of the convolved signal is L1 + L2 - 1. Write a python code 
to illustrate that linear convolution results in stretching the length of the signal. 

Experiment 3.22 Associative Property of Convolution 
The associative property of convolution is expressed as 

x n½ ] * h1 n½ ]ð Þ * h2 n½ ]= x n½ ] * h1 n½ ] * h2 n½ ]ð Þ 3:30Þ 

To illustrate this property, the input signal x[n] chosen is x[n] = ejπn , which 
toggles between +1 and -1. The impulse response h1[n] = δ[n - k] and the impulse
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#Commutative property of convolution 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
N=len(n) 
n1=np.arange(-N+1,N) 
#Step 1: Generating x[n] 
x=np.array([0,0,0,0,1,1,1,0,0,0,0]) 
#Step 2: Generating h[n] 
h=x 
#Step 3: Obtaining the outputs 
y1=np.convolve(x,h,mode='full') 
y2=np.convolve(h,x,mode='full') 
#Sep 4: Plotting the results 
plt.subplot(2,2,1),plt.stem(n,x),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('x[n]') 
plt.subplot(2,2,2),plt.stem(n,h),plt.xlabel('n-->'),plt.ylabel('Amplitude'), 
plt.title('h[n]'),plt.subplot(2,2,3),plt.stem(n1,y1) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_1[n]$= x[n]*h[n]') 
plt.subplot(2,2,4),plt.stem(n1,y2) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$y_2[n]$=h[n]*x[n]') 
plt.tight_layout() 

Fig. 3.45 Python code to illustrate the commutative property of convolution 
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Fig. 3.46 Result of python code shown in Fig. 3.45



response h2[n] = δ[n + k]. The python code, which illustrates the associative 
property of the convolution operation, is given in Fig. 3.47, and the corresponding 
outputs are shown in Figs. 3.48 and 3.49, respectively.
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#Associative property of convolution 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-5,6) 
#Step 1: Generation of triangular signal 
x=np.exp(1j*np.pi*n) 
#Step 2: Generation of shifted unit sample signals 
k=5 
h1=(n==k) 
h2=(n==-k) 
#Step 3: Perform the convolution 
u1=np.convolve(x,h1,mode='full') 
y1=np.convolve(u1,h2,mode='full') 
v1=np.convolve(h1,h2,mode='full') 
y2=np.convolve(x,v1,mode='full') 
N=len(y1) 
n1=np.arange(-N/2,N/2) 
#Step 4: Displaying the result 
plt.figure(1),plt.subplot(3,1,1),plt.stem(n,x),plt.xticks(n),plt.xlabel('n'), 
plt.ylabel('Amplitude'),plt.title('x[n]'),plt.subplot(3,1,2),plt.stem(n,h1),plt.xticks(n) 
plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_1$[n]'),plt.subplot(3,1,3), 
plt.stem(n,h2),plt.xticks(n),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$h_2$[n]') 
plt.tight_layout() 
plt.figure(2),plt.subplot(2,1,1),plt.stem(n1,y1), 
plt.title('$y_1[n]$=(x[n]*$h_1$[n])*$h_2$[n]'), plt.xlabel('n-->'), 
plt.ylabel('Amplitude'),plt.subplot(2,1,2),plt.stem(n1,y1) 
plt.title('$y_2[n]$=x[n]*($h_1$[n])*$h_2$[n])'),plt.xlabel('n-->'),plt.ylabel('Amplitude') 
plt.tight_layout() 

Fig. 3.47 Python code to illustrate associative property of convolution 

Inferences 
The following are the inferences from this experiment: 

1. The input signal x[n] = (-1)n , -5 ≤ n ≤ 5. The impulse response h1[n] = δ[n -
5] and h2[n] = δ[n + 5], which is shown in Fig. 3.48. 

2. The output y1[n] = (x[n]*h1[n])*h2[n], whereas the output y2[n] = x[n]*(h1[n] 
*h2[n]). From Fig. 3.49, it is possible to observe that the output y1[n] = y2[n], 
which shows that associative property of convolution is verified. 

Experiment 3.23 Distributive Property of Convolution 
The distributive property of convolution is expressed as
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x½n] * ðh1½n] þ  h2½n]Þ= x½n] * h1½n] þ  x½n] * h2½n] 3:31Þ 

For illustration, the signal x[n] is chosen as x[n] = δ[n +  1]  +  2δ[n]  +  δ[n - 1], 
h1[n] = δ[n +  1]  +  δ[n]  +  δ[n - 1] and h2[n] = - δ[n +  1] - δ[n - 1] such that 
h1[n]  +  h2[n] results in unit sample signal. The python code, which illustrates the 
distributive of convolution, is shown in Fig. 3.50, and the corresponding outputs are 
shown in Figs. 3.51 and 3.52, respectively.
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Inferences 
1. From Fig. 3.51, it is possible to observe that the input signal and the impulse 

responses are all finite-duration signals. The input signal is expressed as x 
[n] = δ[n + 1] +  2δ[n] +  δ[n - 1]. The impulse responses are given by 
h1[n] = δ[n + 1] +  δ[n] +  δ[n - 1] and h2[n] = - δ[n + 1] - δ[n - 1]. 

2. The sum of the impulse responses results in a unit sample signal, which is 
expressed as h1[n] +  h2[n] = δ[n]. Also, convolution of any input signal x[n] 
with unit sample signal results in the same signal, which is expressed as x 
[n] * δ[n] = x[n]. Because of this property, the output signal y1[n] is same as 
the input signal x[n]. 

3. By observing the output signals y1[n] and y2[n], it is possible to infer 
y1[n] = y2[n], which implies that the distributive property of convolution is 
illustrated through this experiment. 

Experiment 3.24 Convolution of a Square Wave with Lowpass Filter 
Coefficient 
In this experiment, a square wave of fundamental frequency 5 Hz is generated. It is 
then passed through moving average filter with M = 5, 7, 9, and 11. The block 
diagram of the experiment performed is shown in Fig. 3.53. 

The impulse response of lowpass filter (moving average filter) is given by 

h n½ ]= 
1 
M 

M- 1 

k = 0 

δ n- k½ ] ð3:32Þ 

In this experiment, the value of ‘M’ is chosen as 5, 7, 9 and 11. 
The expression for the output signal is given by 

y n½ ]= x n½ ] * h n½ ]

The python code which accomplishes this task is shown in Fig. 3.54, and the 
corresponding output is shown in Figs. 3.55 and 3.56. 

Inferences 
The following inferences can be drawn from Figs. 3.55 and 3.56: 

1. The input to the system is a square wave of a fundamental frequency 5 Hz. 
2. The system is passed through lowpass filter to obtain a triangular waveform. 
3. By observing the input and output waveform, it is possible to observe that the 

system converts drastic change (square waveform) to a gradual change (sawtooth 
waveform). The system basically performs lowpass filtering of the input signal. 

4. The extent of smoothing is governed by the value of ‘M’. Increasing the value of 
‘M’ increases the extent of smoothing the input signal.
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Fig. 3.52 Plot of the output signals 

Fig. 3.53 Block diagram of 
problem statement

Square wave 
Low pass filter 

Input signal Output signal 

? 

Task 
1. In the above experiment, replace the square wave input with sine wave with a 

spike signal. That is a sine wave with an abrupt change in amplitude in a few time 
instants. Now pass this sine wave through the moving average filter and comment 
on the observed signal.
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#Low pass filtering of square wave 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of input signal 
t=np.linspace(0,1,100) 
x=signal.square(2*np.pi*5*t) 
#Step 2: Generation of low pass filter coefficient 
M=[5,7,9,11] 
fig1=plt.figure(1) 
plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Input signal') 
for i in range(len(M)): 
    h=1/M[i]*np.ones(M[i]) 
#Step 3: Obtaining the output signal 
    y=np.convolve(x,h,mode='full') 
    fig2=plt.figure(2) 
#Step 4: Plotting the results 

plt.subplot(2,2,i+1),plt.plot(t,y[0:len(t)]),    plt.xlabel('Time'), 
plt.ylabel('Amplitude'),plt.title('Output signal for M={}'.format(M[i])) 

    plt.tight_layout() 

Fig. 3.54 Python code to perform lowpass filtering of square wave 
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Fig. 3.55 Input square waveform 

Experiment 3.25 Convolution of a Square Wave with Highpass Filter 
Coefficient 
In this experiment, the square wave is passed through highpass filter whose impulse 
response is h[n] = {1/2, -1/2}. The highpass filter is basically a change detector. 
When a square wave is fed to highpass filter, the resultant waveform is a spike



waveform. The python code, which performs this task, is shown in Fig. 3.57, and the 
corresponding output is shown in Fig. 3.58. 
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Fig. 3.56 Lowpass filtered square waveform 

Inferences 
The following inferences can be made from this experiment: 

1. From Fig. 3.57, it is possible to infer that the input signal is a square wave, the 
impulse response of highpass filter is h[n] = {1/2, -1/2}. 

2. From Fig. 3.58, it is possible to observe that the output waveform is a spike 
waveform. It is due to the fact that differentiation of a constant is zero. In a square 
wave, major portion is constant in magnitude; hence, differentiation of a constant 
is zero. Highpass filter is a change detector; hence, it gives spike waveform as the 
output for the input square waveform. 

Task 
1. Generate sine wave of 5 Hz frequency. Add white noise, which follows normal 

distribution to this sine wave. Now pass this noisy sine wave through highpass 
filter. Plot the clean sine wave, noisy sine wave and highpass filtered signal. Write 
a python code to answer the query ‘Does highpass filter tend to amplify the 
noise?’
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#Square wave through high pass filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of input signal 
t=np.linspace(0,1,100) 
x=signal.square(2*np.pi*5*t) 
#Step 2: Generation of high pass filter coefficient 
h=np.array([0.5,-0.5]) 
#Step 3: To obtain the output signal 
y=np.convolve(x,h,mode='full') 
#Step 4: Plotting the input and output signal 
plt.subplot(3,1,1),plt.plot(t,x),plt.xlabel('time'),plt.ylabel('Amplitude') 
plt.title('Input signal'),plt.subplot(3,1,2),plt.stem(h),plt.xlabel('n-->'),  
plt.ylabel('Amplitude'),plt.title('h[n]'),plt.subplot(3,1,3), 
plt.plot(t,y[0:len(t)]),plt.xlabel('time'),plt.ylabel('Amplitude'),plt.title('Output signal') 
plt.tight_layout() 

Fig. 3.57 Python code to perform highpass filtering of square wave 
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Fig. 3.58 Spike waveform obtained by differentiating input square wave 

3.4 Correlation 

Correlation is a tool to find the relative similarity between two signals. Correlation 
has two variants, namely: autocorrelation and cross-correlation. Autocorrelation 
involves the correlation of a signal with itself. Cross-correlation is performed 
when two different signals are correlated with one another. 

The expression for autocorrelation of the sequence x[n] is given by



ð
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rxxðlÞ= x½l] * x½- l] 3:33Þ 

Equation (3.33) gives the relationship between correlation and convolution. 
Convolving the folded version of the sequence x[n] with the signal x[n] results in 
autocorrelation. Equation (3.33) can be expressed as 

rxxðlÞ= 
1 

n= -1 
x½n]x½n þ l] 3:34Þ 

Some of the properties of the autocorrelation function are summarized below: 

1. Autocorrelation function is an even function. It is expressed as rxx(-l ) = rxx(l ). 
2. Autocorrelation attains its maximum value at zero lag. It is expressed as rxx(0) ≥ | 

rxx(k)| for all ‘k’. 

The cross-correlation between two signals x[n] and y[n] is expressed as 

rxyðlÞ= x½l] * y½- l] 3:35Þ 

The above equation can be expressed as 

rxyðlÞ= 
1 

k = -1 
x½k]y½l þ k] 3:36Þ 

Experiment 3.26 Autocorrelation and Cross-correlation of Sine 
and Cosine Waves 
In this experiment, two signals, namely, sine wave and cosine wave of frequency 
5 Hz, are generated. Then, the autocorrelation between the sinewave and cosine 
wave and the cross-correlation between sine and cosine wave is computed. The 
results of autocorrelated and cross-correlated signals are plotted. The python code, 
which performs the above-mentioned task, is shown in Fig. 3.59, and the 
corresponding output is shown in Fig. 3.60. 

Inferences 
The following observation can be made from this experiment: 

1. The autocorrelation between the sine waves is represented by rxx(l ). The auto-
correlation result is observed to be even symmetric. The maximum value is 
obtained at zero lag. 

2. The autocorrelation between the cosine waves is represented by ryy(l ). The 
autocorrelation is an even symmetric function with the maximum value obtained 
at zero lag. 

3. The cross correlation between sine and cosine waves is not even symmetric. Also, 
it is possible to observe that rxy(l ) is not equal to ryx(l ).
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#Autcorrelation and cross-correlation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sine and cosine wave 
t=np.linspace(0,1,100) 
f=5 
x=np.sin(2*np.pi*f*t) 
y=np.cos(2*np.pi*f*t) 
N=len(x) 
#Step 2: Perform autocorreation and cross-correlation 
rxx=np.correlate(x,x,mode='full') 
ryy=np.correlate(y,y,mode='full') 
rxy=np.correlate(x,y,mode='full') 
ryx=np.correlate(y,x,mode='full') 
lag = np.arange(-N+1,N) 
#Step 3: Plot the results 
plt.subplot(2,2,1),plt.plot(lag,rxx),plt.xlabel('Lag'),plt.ylabel('Autocorrelation') 
plt.title('$r_{xx}(l)$'),plt.subplot(2,2,2),plt.plot(lag,ryy) 
plt.xlabel('Lag'),plt.ylabel('Autocorrelation'),plt.title('$r_{yy}(l)$') 
plt.subplot(2,2,3),plt.plot(lag,rxy),plt.xlabel('Lag'),plt.ylabel('Cross correlation') 
plt.title('$r_{xy}(l)$'),plt.subplot(2,2,4),plt.plot(lag,ryx),plt.xlabel('Lag'),  
plt.ylabel('Cross correlation'),plt.title('$r_{yx}(l)$') 
plt.tight_layout()   

Fig. 3.59 Autocorrelation and cross-correlation between signals 

4. The autocorrelation and cross-correlation are used to find the relative similarity 
between the two signals. 

Tasks 
1. Write a python code to illustrate the fact that maximum value of autocorrelation 

occurs at zero lag. 
2. Write a python code to illustrate the fact that correlation can be performed in 

terms of convolution. That is convolution of a signal with its folded version 
results in autocorrelation. 

Experiment 3.27 Autocorrelation of Sine Wave to Itself and Noisy Signal 
In this experiment, sine wave of 5 Hz is generated. It is stored as the variable ‘x’. The 
sine wave is then corrupted by random noise, which follows normal distribution to 
obtain the signal ‘y’. The autocorrelation of clean sine wave is obtained as rxx(l ), and 
the cross-correlation between the clean and noisy sine wave is obtained as rxy(l ). The 
python code, which performs this task, is shown in Fig. 3.61, and the corresponding 
output is shown in Fig. 3.62.
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Fig. 3.60 Autocorrelation and cross-correlation results 

Inferences 
1. In Fig. 3.62, x(t) represents clean sine wave of 5 Hz frequency, and y(t) represents 

noisy sine wave. The noisy sine wave is obtained by adding random noise to the 
clean sine wave. 

2. In Fig. 3.62, rxx(l ) represents the autocorrelation of a clean sine wave. The 
autocorrelation function exhibits even symmetry, with the maximum value 
occurring at zero lag. 

3. In Fig. 3.62, rxy(l ) represents the cross-correlation between clean and noisy sine 
waves. The cross-correlation is not exhibiting even symmetry relation. Compar-
ing rxx(l ) and rxy(l ), the maximum value is obtained in autocorrelation function. 
Thus, the autocorrelation reveals the relative similarity between the signals. 

Experiment 3.28 Delay Estimation Using Autocorrelation 
In this experiment, unit step sequence (signal ×1) is generated, it is then shifted by a 
factor of ‘5’ units to the right to obtain the signal ×2. The autocorrelation of the 
signal ×1 to itself and the correlation between the signals ×1 and ×2 are used to 
estimate the delay. The python code, which performs this function, is shown in 
Fig. 3.63, and the corresponding output is shown in Fig. 3.64. 

Inference 
Upon displaying the result, the answer in the variable ‘td’ is ‘5’, which is a measure 
of delay between the two signals x1[n] and x2[n]. Thus, autocorrelation can be used 
to measure or estimate the delay between the two signals.
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#Autocorrelation and cross-correlation 
import numpy as np 
import matplotlib.pyplot as plt 
#Step 1: Generation of sine and cosine wave 
t=np.linspace(0,1,100) 
f=5 
x=np.sin(2*np.pi*f*t) 
#Step 2: Generation of noisy signal 
w=2.5*np.random.randn(len(t)) 
y=x+w 
N=len(x) 
#Step 2: Perform autocorreation and cross-correlation 
rxx=np.correlate(x,x,mode='full') 
rxy=np.correlate(x,y,mode='full') 
lag = np.arange(-N+1,N) 
#Step 3: Plot the results 
plt.subplot(2,2,1),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude') 
plt.title('Sine wave (x(t))'),plt.subplot(2,2,2),plt.plot(t,y) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Noisy sine wave(y(t))') 
plt.subplot(2,2,3),plt.plot(lag,rxx),plt.xlabel('Lag'),plt.ylabel('Autocorrelation') 
plt.title('$r_{xx}(l)$'),plt.subplot(2,2,4),plt.plot(lag,rxy) 
plt.xlabel('Lag'),plt.ylabel('Cross correlation'),plt.title('$r_{xy}(l)$') 
plt.tight_layout()         

Fig. 3.61 Python code to perform autocorrelation of clean and noisy sine wave 

Exercises 
1. Generate the following sequences (a) x1[n] = δ[n + 1] +  δ[n - 1] 

(b) x1[n] = δ[n + 1] - δ[n - 1] (c) x3[n] = δ[n] + 2δ[n - 1] + δ[n - 2] and 
(d) x4[n] = δ[n]- δ[n- 1] + δ[n- 2], and plot it using a subplot, which consists 
of two rows and two columns. The time index should vary from -5 to +5. 

2. Write a python code to generate the finite length discrete-time signals 
(a) x1[n] = u[n] - u[n - 5], (b) x2[n] = δ[n], (c) x3[n] = u[n + 5] - u[n - 5] 

and (d) x4 n½ ]= 
n, 0≤ n≤ 5 

0, otherwise 
in the interval -10 ≤ n ≤ 10. Use subplot to plot 

the generated signals. 
3. Generate a complex exponential signal x n½ ]= ej

π 
4n, - 10≤ n≤ 10. Perform the 

following: (a) Extract the real and imaginary part of this signal. (b) Reconstruct 
the signal x[n] from the real and imaginary parts using the relation x[n] = Re {x 
[n]} + j Im {x[n]}. 

4. Generate a complex exponential signal of the form x n½ ]= ej
π 
8n, - 10≤ n≤ 10. 

Obtain the signal y[n], which is expressed as y[n] = x[n] × x*[n], and comment 
on the nature of the signal y[n]. 

5. Write a python code to generate the following sequences:
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Fig. 3.62 Autocorrelation and cross-correlation of clean and noisy sine wave 

#Delay estimation using correlation 
import numpy as np 
import matplotlib.pyplot as plt 
n=np.arange(-20,21) 
#Step 1: Generation of unit step signal 
x1=(n>=0) 
#Step 2: Delay signal by a factor of 5 units 
x2=(n>=5) 
N=len(x1) 
lag=np.arange(-N+1,N) 
#Step 3: Perform autocorrelation of signal x1 
rxx=np.correlate(x1,x1,mode='full') 
#Step 4: Perform the cross-correlation between x1 and x2 
ryx=np.correlate(x2,x1,mode='full') 
#Step 4: Estimate the delay 
td=np.argmax(ryx)-np.argmax(rxx) 
#Step 5: Plot the signal and its delayed version 
print('Time delay={}'.format(td)) 
plt.subplot(2,1,1),plt.stem(n,x1),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_1[n]$') 
plt.subplot(2,1,2),plt.stem(n,x2),plt.xlabel('n-->'),plt.ylabel('Amplitude'),plt.title('$x_2[n]$') 
plt.tight_layout() 

Fig. 3.63 Python code to perform delay estimation
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Fig. 3.64 Signal and its delayed version

(a) x1[n] = δ[n] +  δ[n - 1] + δ[n - 2] + δ[n - 3] + δ[n - 4] + δ[n - 5] + δ[n -
6] + δ[n - 7] 

(b) x2[n] = δ[n]- δ[n- 1] + δ[n- 2]- δ[n- 3] + δ[n- 4]- δ[n- 5] + δ[n-
6] - δ[n - 7] 

(c) x3[n] = δ[n] +  δ[n- 1]- δ[n- 2]- δ[n- 3] + δ[n- 4] + δ[n- 5]- δ[n-
6] - δ[n - 7] 

(d) x4[n] = δ[n] +  δ[n- 1] + δ[n- 2] + δ[n- 3]- δ[n- 4]- δ[n- 5]- δ[n-
6] - δ[n - 7] 

Compute the energy of these sequences and comment on the obtained 
result. 

6. Sketch the following signals in the range -5 ≤ n ≤ 5 (a) x1[n] = 2n δ[n - 2] 
(b) x2[n] = n[δ[n + 2] +  δ[n - 2]]. 

Generate the signal x n½ ]= 
5- nj j, nj j≤ 5 

0, otherwise 
in the range -10 ≤ n ≤ 10. Extract 

the even and odd part of the signal. Try to reconstruct the signal from the even 
and odd part and comment on the observed output. 

8. Write a python code to demonstrate the following facts: 

(a) Product to two even signals is an even signal. 
(b) Product of two odd signals is an even signal. 
(c) Product of an even and odd signal is odd signal. 

9. Read a speech signal and perform the autocorrelation of the speech signal, and 
observe whether the autocorrelation function is an even function. 

10. Read a ‘male’ and ‘female’ voice. Perform the following
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(a) Autocorrelation of the male voice (x) 
(b) Autocorrelation of the female voice ( y) 
(c) Cross-correlation between male and female voice 
(d) Cross-correlation between female and male voice 

Comment on the observed output. 

Objective Questions 
1. The python code segment shown below generates 

A. Unit sample signal 
B. Unit step signal 
C. Unit ramp signal 
D. Real exponential signal 

2. The value of the signal ‘x’ shown in the following python code is high at n =? 

A. -1 
B. -2 
C. 0 
D. 2 

3. If the variable ‘x’ contains the signal of interest, then the variable ‘y’ in the 
following python code returns 

A. Maximum value of the signal 
B. Minimum value of the signal 
C. Energy of the signal 
D. Power of the signal 

4. The signal generated in the variable ‘x’ after executing the following segment of 
code is 

A. x[n] = δ[n] +  δ[n – 1] – δ[n + 1]  
B. x[n] = δ[n + 1] +  δ[n] +  δ[n – 1] 
C. x[n] = δ[n + 1] +  δ[n] – δ[n – 1] 
D. x[n] = δ[n +  1]  +  2δ[n]  +  δ[n – 1]
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5. The signal generated in the variable ‘x’ after executing the following segment of 
code is 

A. Unit sample sequence 
B. Unit step sequence 
C. Unit ramp sequence 
D. Real exponential sequence 

6. What would be the energy of the signal ‘x’ which is stored in variable ‘E’ if the 
following code segment is executed? 

A. 1J 
B. 2J 
C. 3J 
D. 4J 

7. What operation is performed on the input signal ‘x’ if the following segment of 
code is executed? 

A. Convolution of signal ‘x’ with itself 
B. Correlation of the signal ‘x’ with itself 
C. Power spectral estimation of the signal ‘x’ 
D. Energy density estimation of signal ‘x’ 

8. A square wave is fed to a lowpass filter, the resulting signal is 

A. Sine wave 
B. Cosine wave 
C. Triangular wave 
D. Inverted square wave 

9. The energy of the signal is unaltered by the following mathematical operation 

A. Downsampling of the signal by a factor of ‘M’ 
B. Upsampling the signal by a factor of ‘L’ 
C. Amplitude scaling 
D. Folding of the signal
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10. The energy of the signal is unaltered by the following mathematical operation: 

A. Downsampling of the signal by a factor of ‘M’ 
B. Upsampling the signal by a factor of ‘L’ 
C. Delaying or advancing the signal by a factor of ‘k’ 
D. Amplitude scaling of the signal 

11. Upsampling by a factor of ‘L’ inserts 

A. ‘L’ zeros between successive samples 
B. ‘L – 1’ zeros between successive samples 
C. ‘L + 1’ zeros between successive samples 
D. ‘L + 2’ zeros between successive samples 

12. If a discrete-time signal x[n] obeys the relation x[-n] = x[n], then the signal is 

A. Odd signal 
B. Even signal 
C. Either even or odd signal 
D. Neither even nor odd signal 

13. Sum of elements of finite duration discrete-time odd signal is 

A. Infinite 
B. One 
C. Zero 
D. Always negative 

14. The python code shown below generates the following signal in the variable ‘x’ 

A. u[n] 
B. u[-n] 
C. u[n + 5]  
D. u[n – 5] 

15. The product of two odd signal results in 

A. Odd signal 
B. Even signal 
C. Either even or odd signal depending on the length of the signals 
D. Neither even nor odd signal 

16. Identify the statement which is FALSE 

A. Autocorrelation is finding the relative similarity of the signal to itself. 
B. Autocorrelation is an even function.
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C. Autocorrelation attains its maximum value at zero lag. 
D. Auto correlation is an odd function. 

17. What will be the fundamental period of the signal ‘x’ if the following python 
code is executed? 

A. 1 
B. 2 
C. 3 
D. 4 

18. Assertion: Highpass filter act as change detector 
Reason: Highpass filter has the ability to detect the change in the input signal 

A. 
B. Assertion is true, reason is false. 
C. Assertion is false, reason may be true. 
D. Both assertion and reason are false. 

19. What will be the length of the signal ‘y’ if the following code segment is 
executed? 

A. 11 
B. 21 
C. 31 
D. 41 

20. What will be the impulse response (h[n]) if the following code segment is 
executed? 

A. h[n] = δ[n] 
B. h[n] = δ[n - 1] 
C. h[n] = u[n] 
D. h[n] = u[n - 1]
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21. Identify the statement that is WRONG with respect to ‘folding’ or ‘time 
reversal’ operation 

A. Folding operation does not alter the energy of the signal. 
B. Folding increases the length of the signal. 
C. If the folded version of the signal is equal to the signal itself, then the signal 

is even signal. 
D. If the folded version of the signal is equal to the signal itself, then the signal 

is odd signal. 

22. If x[n] is a unit step signal, then the following signal (y[n]) generated from x[n] is  

A. Unit sample signal 
B. Unit step signal 
C. Unit ramp signal 
D. Real exponential signal 

23. The fundamental frequency of the signal generated by executing the following 
code is 

A. ω = π/2 rad/sample 
B. ω = π rad/sample 
C. ω = π/4 rad/sample 
D. ω = π/8 rad/sample 
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