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Chapter 11 
Adaptive Signal Processing 

Learning Objectives 
After reading this chapter, the reader is expected to

• Implement and analyse the Wiener filter.
• Write a python code to implement the LMS algorithm and its variants.
• Perform system identification using the LMS algorithm.
• Perform inverse system modelling using the NLMS algorithm.
• Implement adaptive line enhancer using the LMS algorithm and its variants.
• Implement the RLS algorithm. 

Roadmap of the Chapter 
The roadmap of this chapter is depicted below. This chapter starts with the Wiener 
filter, least mean square (LMS) algorithm and its variant approaches for adaptive 
signal processing applications like system identification and signal denoising. Next, 
the RLS algorithm is discussed with the suitable python code. 
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PreLab Questions 
1. List out the valid differences between the optimal filter and the adaptive filter. 
2. What is an adaptive filter? How it differs from the ordinary filter. 
3. Examples of adaptive filter. 
4. When are adaptive filters preferred? 
5. List out the performance measures of the adaptive filter. 
6. What is an LMS algorithm? 
7. What do you mean by least square estimation? 
8. List out the variants of LMS algorithm. 
9. How the step size impacts the LMS algorithm? 

10. What is the RLS algorithm, and how it differs from LMS? 

11.1 Wiener Filter 

Wiener filter is the mean square error (MSE) optimal stationary linear filter for signal 
corrupted by additive noise. The Wiener filter computation requires the assumption 
that the signal and noise are in the random process. The general block diagram of the 
Wiener filter is shown in Fig. 11.1. The main objective of the Wiener filter is to 
obtain the filter coefficient of the LTI filter, which can provide the final output (y[n]) 
as much as the minimum MSE between the output and the desired signal or target (d 
[n]). In Fig. 11.1, s[n] denotes the original signal, which is a clean signal, and it is 
corrupted by additive noise η[n] to give the signal x[n]. The parameters of the filter 
have to be designated has to be designed in such a way that the output of the filter y 
[n] should resemble the desired signal d[n] such that the error ‘e[n]’ is minimum. 

The expression for the optimal Wiener filter is given by 

hopt =R- 1 p ð11:1Þ 

The above expression is termed as ‘Wiener-Hopf’ expression, which is named 
after American-born Norbert Wiener and Austrian-born Eberhard Hopf. The expres-
sion for optimal filter depends on the autocorrelation matrix (R) of the observed 
signal (x[n]) and the cross-correlation vector ( p) between the observed signal (x[n]) 
and the desired signal (d[n]). hopt denotes the optimal filter coefficients. 

Experiment 11.1 Wiener Filtering 
The aim of this experiment is to implement the Wiener filtering using python. Here 
the optimal filter coefficients are obtained using the Wiener-Hopf equation given in

Fig. 11.1 Block diagram of 
Wiener filter 

x[n] 

d[n] 

e[n] y[n] 

η[n] 

s[n] h[n] 



Eq. (11.1). The python code for Wiener filter is shown in Fig. 11.2. Simulation result 
of the python code given in Fig. 11.2 is depicted in Fig. 11.3.
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#Wiener filter 
import numpy as np 
from numpy.random import randn 
import matplotlib.pyplot as plt 
from scipy.linalg import toeplitz 
from scipy import signal 
#Step 1: Generation of signal s[n] 
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) 
Ns=len(s) 
#Step 2: Generation of random noise 
# n=randn(len(t))*0.1 
n=np.random.normal(0,.2,len(s)) 
#Step 3: Observed signal x[n] 
x=s+n 
#Step 4: Autocorrelation of observed signal 
rxx=np.correlate(x,x,mode='full') 
#Step 5: Cross-correlation between desired and observed signal 
rsx=np.correlate(s,x,mode='full') 
#Step 6: Deciding the length of the filter 
Nh=11 
#Step 7: Trimming the autocorrelation and cross-correlation values 
rxx1=rxx[Ns-1:Ns+Nh-1] 
rsx1=rsx[Ns-1:Ns+Nh-1] 
#Step 8: Obtaining the autocorrelation matrix 
Rx=toeplitz(rxx1) 
#Step 9: Inverse of the autocorrelation matrix 
Rx1=np.linalg.inv(Rx) 
#Step 10: Obtaining the filter coefficient 
w1=np.matmul(Rx1,rsx1) 
#Step 11: Filtering the noisy signal 
y=signal.lfilter(w1,1,x) 
plt.subplot(3,1,1),plt.plot(t,s),plt.xlabel('t-->'),plt.ylabel('Amplitude'),  
plt.title('Clean signal'),plt.subplot(3,1,2),plt.plot(t,x),plt.xlabel('t-->'), 
plt.ylabel('Amplitude'),plt.title('Noisy signal'),plt.subplot(3,1,3), plt.plot(t,y) 
plt.xlabel('t-->'),plt.ylabel('Amplitude'),plt.title('Filtered signal'),plt.tight_layout() 

Fig. 11.2 Python code for Wiener filtering 

The built-in functions used in python code shown in Fig. 11.2 is summarized in 
Table 11.1. 

Inference 
From Fig. 11.3, it can be made the following observations:
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Fig. 11.3 Simulation result of Wiener filter 

Table 11.1 Built-in functions used in the python code given in Fig. 11.2 

S. No. Objective Built-in function Library 

1 To generate a clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise, which follows normal distribution to 
clean signal 

np.random.nor-
mal() 

Numpy 

3 To perform autocorrelation np.correlate() Numpy 

4 To obtain the inverse of the matrix np.linalg.inv() Scipy 

5 To perform convolution signal.lfilter() Scipy 

1. The input or clean signal frequency is 5 Hz, and it is a smooth sine waveform. 
2. The additive noise added signal as input to the Wiener filter, and it is a distorted 

signal. 
3. The filtered signal is not a smooth sine waveform. However, this waveform is far 

better than the noisy signal. Hence, the Wiener filter has a capability to minimize 
the impact of additive noise in a signal. 

Task 
1. Change the value of standard deviation in random noise generation python 

command ‘np.random.normal(0,.2,len(s))’ given in Fig. 11.2. Execute and 
make the appropriate changes in this python code to get ‘filtered signal’ as similar 
as ‘clean signal’. 

Experiment 11.2 Wiener Filter Using Built-In Function 
This experiment performs the Wiener filtering using built-in function in ‘scipy’ 
library. The built-in function is available in the ‘scipy’ library ‘wiener’ can be 
used to filter out the noisy components. In this experiment, noise-free sinusoidal 
signal of 5 Hz frequency is generated. The clean signal is corrupted by adding



random noise, which follows the normal distribution with zero mean and 0.2 
standard deviation. The corrupted signal is then passed through the Wiener filter to 
minimize the impact of noise. The steps followed along with the built-in functions 
used in the program are given in Table 11.2. 
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Table 11.2 Steps followed and built-in functions 

S. No. Objective Built-in function Library 

1 To generate a clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise, which follows normal distribution to 
clean signal 

np.random.nor-
mal() 

Numpy 

3 To minimize the impact of noise using Wiener filter signal.wiener() Scipy 

#Wiener filter 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
#Step 1: Generation of clean signal 
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) 
#Step 2: Adding noise 
n=np.random.normal(0,.2,len(s)) 
x=s+n 
#Step 3: Wiener filter 
y=signal.wiener(x) 
#Step 4: Plotting the results 
plt.subplot(3,1,1),plt.plot(t,s), 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Clean signal') 
plt.subplot(3,1,2),plt.plot(t,x),plt.xlabel('Time'),plt.ylabel('Amplitude'), 
plt.title('Noisy signal'),plt.subplot(3,1,3),plt.plot(t,y) 
plt.xlabel('Time'),plt.ylabel('Amplitude'),plt.title('Filtered signal') 
plt.tight_layout() 

Fig. 11.4 Wiener filtering using built-in function 

The python code which performs this task is shown in Fig. 11.4, and the 
corresponding output is shown in Fig. 11.5. 

Inference 
From Fig. 11.5, it is possible to infer that the impact of noise is minimized after 
passing the noisy signal through Wiener filter. 

11.1.1 Wiener Filter in Frequency Domain 

From Wiener-Hopf equation, the expression for the optimal Wiener filter is given by
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Fig. 11.5 Result of Wiener filtering 

hopt =R- 1 p ð11:2Þ 

The above equation can be expressed as 

hopt = 
p 
R

ð11:3Þ 

In the above expression, ‘p’ represents the cross-correlation between desired 
signal and the observed signal, and ‘R’ represents the autocorrelation of the observed 
signal. Taking Fourier transform on both sides of Eq. (11.3), we get 

FT hopt = 
FT pf g  
FT Rf g ð11:4Þ 

According to the Wiener-Khinchin theorem, Fourier transform of autocorrelation 
function gives power spectral density. Using this theorem, Eq. (11.4) is expressed as 

H ejω = 
Sdx ejωð Þ  
Sxx ejωð Þ ð11:5Þ 

In Eq. (11.5), H(ejω ) represents the frequency response of the Wiener filter, 
Sdx(e

jω ) represents the cross-power spectral density estimation between desired and 
observed signal and Sxx(e

jω ) represents the power spectral density of the observed 
signal.
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Fig. 11.6 Wiener filter in frequency domain 

Experiment 11.3 Wiener Filter in Frequency Domain 
The steps followed in the implementation of Wiener filter in frequency domain are 
given in Fig. 11.6. The noisy signal is obtained by adding white noise, which follows 
normal distribution to the clean signal. The observed signal is a clean signal with 
white noise added to it. The power spectral density of the observed signal is 
represented by Sxx(e

jω ). The power spectral density between the desired and 
observed signal is represented by Sdx(e

jω ). The Wiener filter is obtained in the 

frequency domain using the relation H ejωð Þ= Sdx e
jωð Þ  

Sxx ejωð Þ. Here the desired signal is the 
clean signal s[n]. Upon taking inverse Fourier transform of H(ejω ), the impulse 
response of the Wiener filter is obtained. 

The python code used to implement the Wiener filter in frequency domain is 
shown in Fig. 11.7, and the corresponding output is in Fig. 11.8. 

The built-in functions used in the program and its purpose are given in Table 11.3. 

Inference 
From Fig. 11.8, the following observations can be made:
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#Wiener filter in frequency domain 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from matplotlib import patches  
t=np.linspace(0,1,100) 
s=np.sin(2*np.pi*5*t) #Step1: Generation of clean signal s[n] 
n=np.random.normal(0,0.1,len(t)) #Step 2: Generation of noise 
x=s+n #Step 3: Generation of observed signal x[n] 
Nh=25 
f,Pxx=signal.csd(x,x,nperseg=Nh) #Step 4: Power spectral density of observed signal 
f,Psx=signal.csd(s,x,nperseg=Nh) #Step 5: PSD of desired and observed signal 
H=Psx/Pxx #Step 6: Wiener filter in frequency domain  
h=np.fft.irfft(H) #Step 7: Wiener filter in time domain 
w, H1 = signal.freqz(h, 1) 
y=signal.filtfilt(h,1,x) #Step 8: Filtered signal 
plot1 = plt. figure(1) 
bx=plt.subplot(3,1,1) 
bx.plot(t,s),bx.set(title='Clean signal',xlabel='Time',ylabel='Amplitude') 
bx=plt.subplot(3,1,2) 
bx.plot(t,x),bx.set(title='Noisy signal',xlabel='Time',ylabel='Amplitude') 
bx=plt.subplot(3,1,3) 
bx.plot(t,y),bx.set(title='Filtered signal',xlabel='Time',ylabel='Amplitude') 
plt.tight_layout() 
plot2 = plt. figure(2) 
#Pole-zero plot of the filter 
ax = plt.subplot(2,2,3); 
unit_circle = patches.Circle((0,0),radius = 1 , fill = False,color='black',ls='solid',alpha = 0.1) 
ax.add_patch(unit_circle),ax.axhline(0,color='black',alpha = 0.5) 
ax.axvline(0,color='black',alpha = 0.5) 
b,a = h,[1] 
z,p,k = signal.tf2zpk(b,a) 
ax.plot(np.real(z),np.imag(z),'or',label='zeros') 
ax.plot(np.real(p),np.imag(p),'xb',label = 'poles') 
ax.set(title='Zeros and poles',xlabel='$\sigma$', ylabel='$j\omega$'),ax.legend(loc = 2),ax.grid() 
ax = plt.subplot(2,2,1) 
ax.stem(h),ax.set(title='Impulse response',xlabel='n-->',ylabel='Amplitude') 
ax = plt.subplot(2,2,2) 
ax.plot(w/np.pi,20*np.log10(abs(H1))),  
ax.set(title='Magnitude response',xlabel='w',ylabel='Magnitude') 
ax=plt.subplot(2, 2, 4) 
ax.plot(w/np.pi, 180/np.pi*np.unwrap(np.angle(H1))) 
ax.set(title='Phase response',xlabel='w',ylabel='Phase'),plt.tight_layout() 

Fig. 11.7 Python code to implement Wiener filter in frequency domain 

1. The impact of noise is minimized by applying the Wiener filter. 
2. The impulse response of the Wiener filter is not symmetric; hence, the phase 

response of the filter is not a linear curve. 
3. From the magnitude response, it is possible to observe that the filter is a lowpass 

filter, and it performs smoothing actions to minimize the impact of noise.
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Fig. 11.8 Result and characteristics of Wiener filtering 

Table 11.3 Built-in functions used in this experiment 

Built-in 
function 

1 To generate clean sinusoidal signal of 5 Hz frequency np.sin() Numpy 

2 To add white noise which follows normal distribution to 
clean signal 

np.random. 
normal() 

Numpy 

3 To compute the power spectral density signal.csd() Scipy 

4 To compute the impulse response of the filter from the 
frequency response 

np.fft.irfft() Numpy 

5 To obtain the frequency response of the filter signal.freqz() Scipy 

6 To obtain the poles, zeros and the gain of the filter from the 
transfer function 

signal.tf2zpk() Scipy 

Fig. 11.9 General block 
diagram of adaptive filtering 

x[n] Adaptive filter 
y[n] 

e[n] 

d[n] 

-

4. From the pole-zero plot, it is possible to observe that poles and zeros lie within the 
unit circle; hence the filter is stable. 

11.2 Adaptive Filter 

The adaptive filter is a non-linear filter, which updates the value of the filter 
coefficients based on some specific criterion. The general block diagram of the 
adaptive filter is shown in Fig. 11.9. From this figure, it is possible to observe that



the filter coefficients are updated based on the error, e[n] between the output of the 
filter y[n] and reference data d[n]. Examples of adaptive filters are LMS filter and 
RLS filter. 
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11.2.1 LMS Adaptive Filter 

The LMS is a least mean square algorithm that works based on the stochastic 
gradient descent approach to adapt the estimate based on the current error. The 
estimate is called the weight or filter coefficient. The weight or filter coefficient 
update equation of the LMS algorithm is given by. 

w nþ 1½ ]=w n½ ] þ μx n½ ]e n½ ] ð11:6Þ 

where w[n + 1] represents the new weight or updated weight, w[n] denotes the old 
weight, μ indicates the step size or learning rate, x[n] is the input signal or data and 
the error signal e[n] = d[n]- y[n]. d[n] is the reference data or target data, and y[n] is  
the actual output of the adaptive filter of the system. 

Experiment 11.4 Implementation of LMS Algorithm 
This experiment discusses the implementation of LMS algorithm for adaptive 
filtering using python. The python code to define the LMS algorithm as a function 
is shown in Fig. 11.10. This code can be called a function in the different applica-
tions of the LMS algorithm, which will be discussed in the subsequent experiments. 
From Fig. 11.10, it is possible to see that the weight updation formula of the LMS 
algorithm given in Eq. (11.6) exists in it. 

Inference 
1. From Fig. 11.10, it is possible to observe that the LMS algorithm is written as a 

function, and it can be called a signal processing application whenever needed. 

# This python code for LMS algorithm 
def LMS_algorithmm(x,mu,N,t): 
    # x = input data, mu = step size, t = reference data, N = Filter length 
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, N-F): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        w = w + mu * en * xn # Update filter (LMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.10 Python code for LMS algorithm



11.2 Adaptive Filter 453

Fig. 11.11 Block diagram 
of system identification 

e[n] 

d[n] y[n] 

x[n] 

System w(n) 

Adaptive 

algorithm 
∑ 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N1 = 500 # Size of the Input data 
N = 25 # Filter size 
n_iter=[10,50,100,150]# it must be less than (N1-N) 
x = np.random.randn(N1) # Input to the filter 
h = signal.firwin(N, 0.25) # FIR filter to be identified 
t = signal.convolve(x, h) # Target/desired signal 
t = t + 0.01 * np.random.randn(len(t)) # with added noise 
mu = 0.04 # LMS step size 
plt.figure(),plt.title('Filter to be Identified'),plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
for i in range(0,len(n_iter)): 
    [w,e]=LMS_algorithmm(x,mu,N,t,n_iter[i]); 
    plt.figure(),plt.title('Error signal at iteration %d' % n_iter[i]) 
    plt.stem(e),plt.xlabel('n-->'),plt.ylabel('e[n]') 
    plt.figure(),plt.title('Identified Filter at iteration %d' % n_iter[i]) 
    plt.stem(w),plt.xlabel('n-->'),plt.ylabel('w[n]') 

Fig. 11.12 Python code for unknown system identification 

2. The inputs to the LMS function are ‘x’, ‘mu’, ‘N’ and ‘t’. ‘x’ denotes the input 
data, ‘mu’ represents step size, ‘t’ denotes the reference data or target data and ‘N’ 
indicates the length of the adaptive filter. 

3. The outputs from this LMS function are ‘w’, which denotes the adaptive filter 
coefficients, and ‘e’ is an error between the estimate and target data. 

Experiment 11.5 System Identification Using LMS Algorithm 
This experiment deals with unknown system identification using the LMS algorithm. 
Let us consider the unknown system as an FIR filter with a length of 25. In this 
experiment, the output filter coefficients are obtained by using LMS algorithm with 
different number of iterations. The block diagram of the system identification is 
shown in Fig. 11.11. The python code to find the unknown system using the LMS 
algorithm is given in Fig. 11.12, and its simulation result is shown in Fig. 11.13.
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Fig. 11.14 Inverse system modelling using adaptive filter 

Figure 11.12 indicates that the number of iterations is considered as 10, 50, 
100 and 150, and the length of the unknown FIR filter is chosen as 25. The input 
to the LMS algorithm is a random signal with a length of 500 samples. The targeted 
or desired or reference data is obtained by convolving the input random signal with 
the unknown FIR filter coefficients along with the random noise. 

Note that the inputs to the LMS algorithm ([w,e]=LMS_algorithmm(x,mu,N,t, 
n_iter[i])) are random signal (x), learning rate (mu), length of the filter (N), a 
reference signal (t) and number or iteration (n_iter). Also, note that the filter 
coefficients (h) are not given as input to the LMS algorithm. The outputs of the 
LMS algorithm are error signal (e) and identified filter output (w). 

The simulation result of the python code given in Fig. 11.12 is displayed in 
Fig. 11.13. 

Inference 
From Fig. 11.13, it is possible to observe that the adaptive filter result approaches the 
original filter coefficients while increasing the number of iterations. 

Task 
Increase/decrease the length of the FIR filter and fix the number of iterations is 50. 
Comment on the observed result. 

Experiment 11.6 Inverse System Modelling Using LMS Algorithm 
This experiment discusses the inverse system modelling using LMS algorithm. The 
general block diagram of inverse system modelling using adaptive filter is shown in 
Fig. 11.14. From this figure, it is possible to understand that the unknown system and 
the adaptive filter are connected in a cascade form, and the delayed version of the 
input signal act as a reference signal. The aim of adaptive filtering in this experiment 
is to obtain the inverse system of the unknown system so that y[n] and d[n] will be 
similar. If y[n] and d[n] are similar, then the adaptive filter is equal to the inverse of 
the unknown system. 

In communication systems, inverse system modelling is used as channel equal-
ization. In such scenario, the adaptive filter is termed as ‘equalizer’. Adaptive 
equalizer can combat intersymbol interference. Intersymbol interference arises 
because of the spreading of a transmitted pulse due to the dispersive nature of the 
channel.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
mu,W=0.04,2.2 # learning rate,Channel Capacity 
filt_order,t_samples,delay,trial=7,200,4,1000 
noise_var,data_var=0.001,1 
for i in range(0,trial): 
    inp=np.zeros(filt_order) 
    data=np.zeros(filt_order+t_samples) 
    v=np.zeros(filt_order+t_samples) 
    w=np.zeros(filt_order) 
    #Generation of random data and random noise 
    for j in range(filt_order-1,t_samples+filt_order): 
        data[j]=np.fix(np.random.rand(1)+0.5)*2-1 
        v[j]=np.fix(np.random.rand(1)+0.5)*2*np.sqrt(noise_var)-np.sqrt(noise_var) 
    # Impusle response of the channel  
    h=np.zeros(3) 
    for j in range(0,3): 
        h[j]=(1/2)*(1+np.cos(2*np.pi/W)*(j-(3-1)))   
    C_out=signal.convolve(h,data) # Output from Channel 
    Err_square=np.zeros(len(C_out)) 
    data=np.append(np.zeros(len(h)-1), data) 
    v=np.append(np.zeros(len(h)-1), v) 
    C_outn=C_out+v; 
    [w,e]=LMS_algorithmm(C_outn,mu,filt_order,data,len(C_outn)-filt_order); 
    e=np.append(e,np.zeros(filt_order)) 
    Err_square=Err_square+(e**2) 
mse=Err_square/trial 
plt.figure,plt.subplot(2,2,1),plt.stem(h),plt.title('Impulse Resp. of Channel filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]'),plt.subplot(2,2,2),plt.stem(w), 
plt.title('Impulse Resp. of Inverse filter'),plt.xlabel('n-->'),plt.ylabel('h2[n]') 
cas=signal.convolve(w,h);#Cascade operation 
mag=fft(cas);#Frequency Response 
plt.subplot(2,2,3),plt.stem(cas),plt.title('Impulse Resp. of Cascaded filter'),plt.xlabel('n-->'), 
plt.ylabel('h1[n]*h2[n]'),plt.subplot(2,2,4),plt.plot(np.abs(mag)), 
plt.title('Mag. Resp. of Cascaded filter'),plt.xlabel('$\omega$-->'), plt.ylabel('|H($\omega$)|'), 
plt.ylim(0,10),plt.tight_layout() 

Fig. 11.15 Python code for Inverse system modelling 

The impulse response of the channel is given by 

h n½ ]= 
1 
2 

1þ cos 2π 
W 

n- 2ð Þ  , n= 1, 2, 3 

0, otherwise 
ð11:7Þ 

In the above equation, ‘W’ represents the channel capacity. Higher value of ‘W’ 
implies that the channel is more complex. 

The python code to obtain the inverse of unknown system using LMS algorithm 
is given in Fig. 11.15, and its corresponding simulation result is shown in Fig. 11.16.
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Fig. 11.16 Simulation result of inverse system modelling 

Inference 
From Fig. 11.16, it is possible to perceive the following facts 

1. The impulse response of the cascaded system is an impulse. This implies that the 
cascade of channel filter and its inverse system results in an identity system. 

2. The Fourier transform of an impulse response will result in a flat spectrum. This is 
obvious by observing the spectrum of the cascaded system. 

Task 
1. Increase the order of the adaptive filter and obtain the impulse response of the 

inverse system. 

11.2.2 Normalized LMS Algorithm 

The weight updation formula for the normalized LMS algorithm is given by 

w n  þ 1½ ]=wT n½ ] þ β 

xk k2 þ c e n½ ]x n½ ] ð11:8Þ 

where ‘β’ is a positive constant, which controls the convergence speed of the 
algorithm. ‘c’ is a small regularization parameter; it is added with the norm of the 
signal x[n] to avoid the divide by zero error.
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# This code for NLMS algorithm 
def NLMS_algorithmm(x,N,t,beta,c,n_iter): 
    # x = input data, N = Filter length t = reference data,  
    # beta = Convergence parameter, c = regularization constant,  
    # n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        mu=beta/((xn*(np.transpose(xn)))+c)#Learning rate update 
        w = w + mu * en * xn # Update filter (NLMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.17 Python code for NLMS algorithm 

Experiment 11.7 Normalized LMS (NLMS) Algorithm 
The python code for the normalized LMS algorithm is given in Fig. 11.17. 

Inference 
1. From Fig. 11.17, it is possible to observe that it is in the form of a function, and it 

can be called for the adaptive signal processing applications whenever required. 
2. Also, it is possible to know that step size or learning rate is not given as a direct 

input to the function. 
3. The step size is calculated using the input data, β and ‘c’. 

Experiment 11.8 Inverse System Modelling Using NLMS Algorithm 
This experiment is a repetition of the inverse system modelling experiment, which 
was discussed earlier. Here, Experiment 11.6 is repeated with the same specifica-
tions, and NLMS is used for adaptive filtering instead of LMS algorithm. The python 
code of this experiment is shown in Fig. 11.18, and its corresponding simulation 
result is displayed in Fig. 11.19. 

Inference 
The following conclusions can be made from this experiment: 

1. From this Fig. 11.19, it is possible to conclude that the cascade of channel and 
inverse filter gives the impulse response as unit impulse sequence. 

2. The magnitude response confirms that the cascaded filter spectrum is a dc. 
3. Therefore, the channel filter and the adaptive filter are inverse to each other.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
c,beta,W=1.5,0.25,2.2 # learning rate,Channel Capacity 
filt_order,t_samples,delay,trial=7,200,4,1500 
noise_var,data_var=0.001,1 
for i in range(0,trial): 
    inp=np.zeros(filt_order) 
    data=np.zeros(filt_order+t_samples) 
    v=np.zeros(filt_order+t_samples) 
    w=np.zeros(filt_order) 
    #Generation of random data and random noise 
    for j in range(filt_order-1,t_samples+filt_order): 
        data[j]=np.fix(np.random.rand(1)+0.5)*2-1 
        v[j]=np.fix(np.random.rand(1)+0.5)*2*np.sqrt(noise_var)-np.sqrt(noise_var) 
    # Impusle response of the channel  
    h=np.zeros(3) 
    for j in range(0,3): 
        h[j]=(1/2)*(1+np.cos(2*np.pi/W)*(j-(3-1)))   
    C_out=signal.convolve(h,data) # Output from Channel 
    Err_square=np.zeros(len(C_out)) 
    data=np.append(np.zeros(len(h)-1), data) 
    v=np.append(np.zeros(len(h)-1), v) 
    C_outn=C_out+v; 
    [w,e]=NLMS_algorithmm(C_outn,filt_order,data,beta,c,len(C_outn)-filt_order); 
    e=np.append(e,np.zeros(filt_order)) 
    Err_square=Err_square+(e**2) 
mse=Err_square/trial 
plt.figure,plt.subplot(2,2,1),plt.stem(h),plt.title('Impulse Resp. of Channel filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]'),plt.subplot(2,2,2),plt.stem(w),  
plt.title('Impulse Resp. of Inverse filter'),plt.xlabel('n-->'),plt.ylabel('h2[n]') 
cas=signal.convolve(w,h);#Cascade operation 
mag=fft(cas);#Frequency Response 
plt.subplot(2,2,3),plt.stem(cas),plt.title('Impulse Resp. of Cascaded filter') 
plt.xlabel('n-->'),plt.ylabel('h1[n]*h2[n]'),plt.subplot(2,2,4),plt.plot(np.abs(mag)), 
plt.title('Mag. Resp. of Cascaded filter'),plt.xlabel('$\omega$-->'), 
plt.ylabel('|H($\omega$)|'),plt.ylim(0,10),plt.tight_layout() 

Fig. 11.18 Python code for Experiment 11.8 

11.2.3 Sign LMS Algorithm 

The weight updation formula for Sign LMS algorithm is given by 

w nþ 1½ ]=w n½ ] þ  μ sign e n½ ]x n½ ]f g ð11:9Þ 

where ‘sign’ indicates the sign of the number, ‘w[n +  1]’ represents new weight and 
‘e[n]’ denotes the error signal between target and estimated signal.
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Fig. 11.19 Simulation result of the python code given in Fig. 11.18 
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Fig. 11.20 Block diagram of adaptive line enhancer 

Experiment 11.9 Adaptive Line Enhancer Using Sign LMS Algorithm 
This experiment discusses the python implementation of adaptive line enhancer 
using sign LMS algorithm. The block diagram of adaptive line enhancer is shown 
in Fig. 11.20. From this figure, it is possible to observe that input to the FIR filter is a 
noisy version of the input signal (x[n]), and the final output (y[n]) is the enhanced 
input signal or noise-free signal. The aim of this experiment is to remove the noisy 
components present in the input signal using sign LMS adaptive algorithm. The 
python code for the “sign LMS algorithm” is given in Fig. 11.21 as a function. 

The python code for adaptive line enhancer using sign LMS is given in 
Fig. 11.22. In this experiment, the input signal has 500, 2000 and 3500 Hz frequen-
cies. The sampling frequency is considered as 8000 Hz. The input signal is added 
with the external random noise, which is the input to the adaptive filter. The number



of delay is chosen as 10, and length of the adaptive FIR filter is fixed as 25. The main 
objective of this experiment is to recover or enhance the original signal from the 
noisy input data using sign LMS algorithm. The simulation result of the python code
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# This Code for Sign LMS algorithm 
def Sign_LMS_algorithmm(x,mu,N,t,n_iter): 
    # x = input data, mu = step size, t = reference data, N = Filter length 
    # n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    e = np.zeros(N1-N) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        en = t[n+N] - np.dot(xn,w) # Error 
        w = w + mu * np.sign(en * xn) # Update filter (LMS algorithm) 
        e[n] = en # Record error 
    return w,e 

Fig. 11.21 Python code for Sign LMS algorithm 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
f1,f2,f3,Fs=500,2000,3500,8000 # Signal and sampling freq 
T=1/Fs 
t=np.arange(0,1,T) 
noise=np.random.randn(len(t)); 
d=np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)+np.sin(2*np.pi*f3*t)+noise; 
delay,N,mu=10,25,0.001 # Delay,Filter length and step size 
x=np.append(np.zeros(delay),d); 
 [w,e]=Sign_LMS_algorithmm(x,mu,N,d,len(t)-N) 
y1=signal.convolve(w,x) 
mag_x=fft(x)/len(x);#Frequency Response 
mag_y=fft(y1)/len(y1);#Frequency Response 
plt.figure(),plt.subplot(2,2,1),plt.plot(x),plt.title('Input noisy signal') 
plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.subplot(2,2,2),plt.plot(y1),plt.title('Denoised signal') 
plt.xlabel('t-->'),plt.ylabel('y(t)') 
plt.subplot(2,2,3),plt.plot(np.abs(mag_x[0:4000])),plt.title('Spectrum of noisy signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|X($\omega$)|') 
plt.subplot(2,2,4),plt.plot(np.abs(mag_y[0:4000])),plt.title('Spectrum of denoised signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|Y($\omega$)|') 
plt.tight_layout() 

Fig. 11.22 Python code for adaptive line enhancer using sign LMS



given in Fig. 11.22 is shown in Fig. 11.23. From the magnitude spectrum, it is 
possible to observe that the noise impact is reduced by the sign LMS algorithm.
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Fig. 11.23 Simulation result of the adaptive line enhancer using sign LMS 

Inference 
From this experiment, the following observations can be drawn: 

1. From Fig. 11.23, the magnitude response of the noisy signal indicates that the 
signal has three unique frequency components and noisy components. 

2. The magnitude response of denoised signal has three spikes, and the impact of the 
noisy components is lesser than the input magnitude response. 

Task 
1. Do the suitable adjustments in the parameters used in the python code given in 

Fig. 11.22 to reduce the effect of noise in the denoised or enhanced signal? 

11.3 RLS Algorithm 

Recursive least square (RLS) is an adaptive algorithm based on the idea of least 
squares. The block diagram of the adaptive filter based on RLS algorithm is shown in 
Fig. 11.24. From the figure x[n] is the input to the filter, d[n] is the desired signal and 
the difference between the desired signal and the output of the filter is the error signal 
e[n]. Forgetting factor is used in RLS algorithm to remove or minimize the influence 
of old measurements. A small forgetting factor reduces the influence of old samples 
and increases the weight of new samples; as a result, a better tracking can be realized 
at the cost of a higher variance of the filter coefficients. A large forgetting factor



	

keeps more information about the old samples and has a lower variance of the filter 
coefficients, but it takes a longer time to converge. 
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Fig. 11.25 Flow chart of sequence of steps in RLS algorithm 

Let us define the a priori error as e n½ ]= d n½ ]-wT n- 1½ ]x n½ ] and the weight 
updation formula for the RLS algorithm is given by 

w n½ ]=w n- 1½ ] þ  P n- 1½ ]x n½ ]e n½ ]
λþ xT n½ ]P n- 1½ ]x n½ ] ð11:10Þ 

If k n½ ]= P n- 1½ ]x n½ ]
λþxT n½ ]P n- 1½ ]x n½ ] represents the gain, then the above expression can be 

written as 

w n½ ]=w n- 1½ ] þ  k n½ ]e n½ ] ð11:11Þ 

The flow chart of the sequence of steps followed in RLS algorithm is shown in 
Fig. 11.25. From the flow chart, it is possible to observe that the algorithm is 
iterative. Proper initialization of filter coefficients is necessary for convergence.
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# This Code for RLS algorithm 
def RLS_algorithmm(x,lamda,delta,N,t,n_iter): 
    # x = input data, lamda = Forgetting factor, delta = Regularization parameter 
    # t = reference data, N = Filter length, n_iter = number of iteration  
    N1=len(x) 
    w = np.zeros(N) # Initial filter 
    w=np.transpose(w) 
    e = np.zeros(N1-N) 
    P=np.eye(N)/delta 
    x=np.transpose(x) 
    for n in range(0, n_iter): 
        xn = x[n+N:n:-1] 
        k1=np.dot(P,xn) 
        k2=np.dot(np.transpose(xn),P) 
        k3=np.dot(k2,xn) 
        k =k1/(lamda+k3) 
        en = t[n+N] - np.dot(np.transpose(w),xn);# Error 
        w = w + np.dot(k,np.conjugate(en)) # Update filter (RLS algorithm) 
        P=(1/lamda)*P 
        e[n] = en # Record error 
    return w,e 

Fig. 11.26 Python code for RLS algorithm 

Experiment 11.10 Implementation of RLS Algorithm 
This experiment discusses the implementation of RLS algorithm using python. The 
python code for RLS algorithm is given in Fig. 11.26, and it is in the form of a 
function so that this function can be used for different applications. 

Experiment 11.11 Adaptive Line Enhancer Using RLS Algorithm 
This experiment is a repetition of Experiment 11.9; instead of sign LMS, RLS 
algorithm is used to filter out the noisy component present in the input signal. The 
python code for this experiment is given in Fig. 11.27, and its corresponding 
simulation result is displayed in Fig. 11.28. 

Inference 
From Fig. 11.28, it is possible to confirm that the magnitude response of the filtered 
or denoised output is better than the magnitude response of the noisy input. There-
fore, RLS algorithm can act as an adaptive line enhancer. 

Experiment 11.12 Comparison of System Identification with Different Adaptive 
Filters 
The main objective of this experiment is to compare the simulation result of different 
adaptive algorithms like LMS, NLMS, Sign LMS and RLS for the system identifi-
cation process. The python code to compare the simulation results of system 
identification is given in Fig. 11.29, and its simulation results are shown in 
Fig. 11.30.
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import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
from scipy.fft import fft 
f1,f2,Fs=500,2000,8000 # Signal and sampling freq 
T,lamda,delta=1/Fs,1.9,0.05 
t=np.arange(0,1,T) 
noise=np.random.randn(len(t)); 
d=np.sin(2*np.pi*f1*t)+np.sin(2*np.pi*f2*t)+noise; 
delay,N=10,50 # Delay,Filter length 
x=np.append(np.zeros(delay),d); 
[w,e]=RLS_algorithmm(x,lamda,delta,N,d,len(d)-N)  
y1=signal.convolve(w,x) 
mag_x=fft(x)/len(x);#Frequency Response 
mag_y=fft(y1)/len(y1);#Frequency Response 
plt.figure(),plt.subplot(2,2,1),plt.plot(x),plt.title('Input noisy signal') 
plt.xlabel('t-->'),plt.ylabel('x(t)') 
plt.subplot(2,2,2),plt.plot(y1),plt.title('Denoised signal') 
plt.xlabel('t-->'),plt.ylabel('y(t)') 
plt.subplot(2,2,3),plt.plot(np.abs(mag_x[0:4000])),plt.title('Spectrum of noisy signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|X($\omega$)|') 
plt.subplot(2,2,4),plt.plot(np.abs(mag_y[0:4000])),plt.title('Spectrum of denoised signal') 
plt.xlabel('$\omega$-->'),plt.ylabel('|Y($\omega$)|') 
plt.tight_layout() 

Fig. 11.27 Python code for adaptive line enhancer using RLS 

Inference 
From Fig. 11.30, it is possible to observe that proper selection of the adaptive filter 
parameters like step size or learning rate, forgetting factor and regularization plays a 
major role in using the adaptive filtering algorithm for the system identification 
application in signal processing. 

Task 
Write a python code to compare the simulation result of different adaptive algo-
rithms like LMS, NLMS, sign LMS and RLS for adaptive line enhancement 
application in signal processing. 

Exercises 
1. Execute the python code given in Fig. 11.12 and compare the estimated filter ‘w’ 

with the original filter coefficients ‘h’ for different length of the filter. Also, 
execute the same python code and comment on the convergence of the LMS 
algorithm with different values of learning rate ‘mu’, including negative value. 

2. Use the python code for the sign LMS algorithm given in Fig. 11.22 to compute 
the impulse response of the inverse filter and comment on the role of learning rate. 

3. Modify the sign LMS algorithm based on the equation of the sign regressor 
algorithm is given by w[n +  1]  = w[n]  +  μe[n] sign {x[n]}, and compute the 
impulse response of the inverse filter and comment on the simulation result.
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Fig. 11.28 Simulation result of the python code given in Fig. 11.27 

# Python code for the comparison of adaptive algorithms for system identification 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
N1 = 1500 # Size of the Input data 
N = 25 # Filter size 
n=np.arange(0,N,1) 
n_iter=200# it must be less than (N1-N) 
x = np.random.randn(N1) # Input to the filter 
h = signal.firwin(N, 0.25) # FIR filter to be identified 
t = signal.convolve(x, h) # Target/desired signal 
t = t + 0.01 * np.random.randn(len(t)) # with added noise 
mu,mu1,beta,c,lamda,delta = 0.05,0.0005,0.05,1.5,1,0.25 # LMS step size 
plt.figure(1),plt.title('Filter to be Identified') 
plt.stem(h),plt.xlabel('n-->'),plt.ylabel('h[n]') 
[w,e]=LMS_algorithmm(x,mu,N,t,n_iter); 
[w1,e1]=NLMS_algorithmm(x,N,t,beta,c,n_iter) 
[w2,e2]=Sign_LMS_algorithmm(x,mu1,N,t,n_iter) 
[w3,e3]=RLS_algorithmm(x,lamda,delta,N,t,n_iter) 
plt.figure(2),plt.subplot(2,2,1),plt.stem(n,w,'g'),plt.xlabel('n-->'),plt.ylabel('w[n]') 
plt.title('Identified by LMS'),plt.subplot(2,2,2),plt.stem(n,w1,'k'),plt.xlabel('n-->'), 
plt.ylabel('w[n]'),plt.title('Identified by NLMS'),plt.subplot(2,2,3), 
plt.stem(n,w2,'r'),plt.xlabel('n-->'),plt.ylabel('w[n]'),plt.title('Identified by Sign LMS') 
plt.subplot(2,2,4),plt.stem(n,w3,'b'),plt.xlabel('n-->'),plt.ylabel('w[n]') 
plt.title('Identified by RLS'),plt.tight_layout() 

Fig. 11.29 Python code for unknown system identification
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Fig. 11.30 Simulation result of the python code given in Fig. 11.29 

4. Modify the sign LMS algorithm based on the equation of sign-sign LMS algo-
rithm is given by w[n + 1]  = w[n] +  μ sign {e[n]} sign {x[n]}, and compute the 
impulse response of the inverse filter and comment on the simulation result. 

5. Use the python code for RLS algorithm given in Fig. 11.26 to obtain the inverse 
filter coefficients and comment on the simulation result. Also, comment on the 
selection of the forgetting factor and regularization parameter. 

Objective Questions 
1. The filter which is based on the minimum mean square error criterion, is 

A. Wiener filter 
B. Window-based FIR filter 
C. Frequency sampling-based FIR filter 
D. Savitsky Golay filter 

2. If ‘R’ is the autocorrelation matrix of the observed signal and ‘p’ represents the 
cross-correlation between the desired signal and the observed signal, then the 
expression for the Wiener-Hopf equation is 

A. wopt = R × p 
B. wopt = R + p 
C. wopt = R - p 
D. wopt = p/R 

3. The weight update expression of the standard LMS algorithm is 

A. w(n + 1)  = w(n) +  μx[n]e[n] 
B. w(n + 1)  = w(n) - μx[n]e[n] 
C. w(n + 1)  = w(n) +  μx[n]e2 [n] 
D. w(n +  1)  = w(n) - μx[n]e2 [n]



λmax

min

Statements 1 and 2 are true
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4. If μ refers to the step size and λ refers to the eigen value of the autocorrelation 
matrix, then the condition for convergence of LMS algorithm is given by 

A. 0< μ< 2 
λmin 

B. 0< μ< 2 
λmax 

C. 0< μ< 2 
2 

D. 0< μ< 2 
λ2 

5. Statement 1: Wiener filter is based on the statistics of the input data. 
Statement 2: Wiener filter is an optimal filter with respect to minimum mean 

absolute error 

A. 
B. Statement 1 is correct, and Statement 2 is wrong 
C. Statement 1 is wrong, Statement 2 is correct 
D. Statements 1 and 2 are wrong 

6. The filter which changes its characteristics in accordance with the environment is 
termed as 

A. Optimal filter 
B. Non-linear filter 
C. Adaptive filter 
D. Linear filter 
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